WorldWideScience

Sample records for marrow-derived cultured mast

  1. Bone marrow-derived cultured mast cells and peritoneal mast cells as targets of a growth activity secreted by BALB/3T3 fibroblasts

    International Nuclear Information System (INIS)

    Jozaki, K.; Kuriu, A.; Hirota, S.; Onoue, H.; Ebi, Y.; Adachi, S.; Ma, J.Y.; Tarui, S.; Kitamura, Y.

    1991-01-01

    When fibroblast cell lines were cultured in contact with bone marrow-derived cultured mast cells (CMC), both NIH/3T3 and BALB/3T3 cell lines supported the proliferation of CMC. In contrast, when contact between fibroblasts and CMC was prohibited by Biopore membranes or soft agar, only BALB/3T3 fibroblasts supported CMC proliferation, suggesting that BALB/3T3 but not NIH/3T3 cells secreted a significant amount of a mast cell growth activity. Moreover, the BALB/3T3-derived growth activity induced the incorporation of [3H]thymidine by CMC and the clonal growth of peritoneal mast cells in methylcellulose. The mast cell growth activity appeared to be different from interleukin 3 (IL-3) and interleukin 4 (IL-4), because mRNAs for these interleukins were not detectable in BALB/3T3 fibroblasts. Although mast cells are genetically deficient in tissues of W/Wv mice, CMC did develop when bone marrow cells of W/Wv mice were cultured with pokeweed mitogen-stimulated spleen cell-conditioned medium. Because BALB/3T3 fibroblast-conditioned medium (BALB-FCM) did not induce the incorporation of [3H]thymidine by W/Wv CMC, the growth activity in BALB-FCM appeared to be a ligand for the receptor encoded by the W (c-kit) locus. Because CMC and peritoneal mast cells are obtained as homogeneous suspensions rather easily, these cells may be potentially useful as targets for the fibroblast-derived mast cell growth activity

  2. Isolation of Mature (Peritoneum-Derived Mast Cells and Immature (Bone Marrow-Derived Mast Cell Precursors from Mice.

    Directory of Open Access Journals (Sweden)

    Steffen K Meurer

    Full Text Available Mast cells (MCs are a versatile cell type playing key roles in tissue morphogenesis and host defence against bacteria and parasites. Furthermore, they can enhance immunological danger signals and are implicated in inflammatory disorders like fibrosis. This granulated cell type originates from the myeloid lineage and has similarities to basophilic granulocytes, both containing large quantities of histamine and heparin. Immature murine mast cells mature in their destination tissue and adopt either the connective tissue (CTMC or mucosal (MMC type. Some effector functions are executed by activation/degranulation of MCs which lead to secretion of a typical set of MC proteases (MCPT and of the preformed or newly synthesized mediators from its granules into the local microenvironment. Due to the potential accumulation of mutations in key signalling pathway components of corresponding MC cell-lines, primary cultured MCs are an attractive mean to study general features of MC biology and aspects of MC functions relevant to human disease. Here, we describe a simple protocol for the simultaneous isolation of mature CTMC-like murine MCs from the peritoneum (PMCs and immature MC precursors from the bone marrow (BM. The latter are differentiated in vitro to yield BM-derived MCs (BMMC. These cells display the typical morphological and phenotypic features of MCs, express the typical MC surface markers, and can be propagated and kept in culture for several weeks. The provided protocol allows simple amplification of large quantities of homogenous, non-transformed MCs from the peritoneum and bone marrow-derived mast cells for cell- and tissue-based biomedical research.

  3. Interleukin-3 Does Not Affect the Differentiation of Mast Cells Derived from Human Bone Marrow Progenitors

    Science.gov (United States)

    Shimizu, Yuji; Matsumoto, Kenji; Okayama, Yoshimichi; Kentaro, Sakai; Maeno, Toshitaka; Suga, Tatsuo; Miura, Toru; Takai, Shinji; Kurabayashi, Masahiko; Saito, Hirohisa

    2008-01-01

    Although IL-3 is commonly used for culture of human progenitor-derived mast cells together with Stem cell factor (SCF) and IL-6, the effect of IL-3 on human mast cell differentiation has not been well elucidated. Human bone marrow CD34+ progenitors were cultured for up to 12 weeks in the presence of rhSCF and rhIL-6 either with rhIL-3 (IL-3 (+)) or without rhIL-3 (IL-3 (−)) for the initial 1-week of culture. Total cell number increased at 2 weeks in IL-3 (+), as compared to IL-3 (−), but changes in the appearance of mast cells were delayed. When IL-3 was present for the initial 1-week culture, granules looked more mature with IL-3 than without IL-3. However, tryptase and chymase contents, and surface antigen expression (CD18, CD51, CD54, and CD117) were not altered by IL-3. Surface expression and mRNA level of FcεRIα and histamine release by crosslinking of FcεRIα did not differ from one preparation to the next. GeneChip analysis revealed that no significant differences were observed between IL-3 (+) and IL-3 (−) cells either when inactivated or activated by aggregation of FcεRIα. These findings indicate that initial incubation of human bone marrow CD34+ progenitors with IL-3 does not affect the differentiation of mast cells. PMID:18214796

  4. Mast cell repopulation of the peritoneal cavity: contribution of mast cell progenitors versus bone marrow derived committed mast cell precursors

    Directory of Open Access Journals (Sweden)

    Pastor Maria

    2010-06-01

    Full Text Available Abstract Background Mast cells have recently gained new importance as immunoregulatory cells that are involved in numerous pathological processes. One result of these processes is an increase in mast cell numbers at peripheral sites. This study was undertaken to determine the mast cell response in the peritoneal cavity and bone marrow during repopulation of the peritoneal cavity in rats. Results Two mast cell specific antibodies, mAb AA4 and mAb BGD6, were used to distinguish the committed mast cell precursor from more mature mast cells. The peritoneal cavity was depleted of mast cells using distilled water. Twelve hours after distilled water injection, very immature mast cells could be isolated from the blood and by 48 hours were present in the peritoneal cavity. At this same time the percentage of mast cells in mitosis increased fourfold. Mast cell depletion of the peritoneal cavity also reduced the total number of mast cells in the bone marrow, but increased the number of mast cell committed precursors. Conclusions In response to mast cell depletion of the peritoneal cavity, a mast cell progenitor is released into the circulation and participates in repopulation of the peritoneal cavity, while the committed mast cell precursor is retained in the bone marrow.

  5. Identification of microRNAs regulating the developmental pathways of bone marrow derived mast cells.

    Directory of Open Access Journals (Sweden)

    Yang Xiang

    Full Text Available MicroRNAs (miRNAs play important roles in leukocyte differentiation, although those utilised for specific programs and key functions remain incompletely characterised. As a global approach to gain insights into the potential regulatory role of miRNA in mast cell differentiation we characterised expression in BM cultures from the initiation of differentiation. In cultures enriched in differentiating mast cells we characterised miRNA expression and identified miRNA targeting the mRNA of putative factors involved in differentiation pathways and cellular identity. Detailed pathway analysis identified a unique miRNA network that is intimately linked to the mast cell differentiation program.We identified 86 unique miRNAs with expression patterns that were up- or down- regulated at 5-fold or more during bone marrow derived mast cells (BMMC development. By employing TargetScan and MeSH databases, we identified 524 transcripts involved in 30 canonical pathways as potentially regulated by these specific 86 miRNAs. Furthermore, by applying miRanda and IPA analyses, we predict that 7 specific miRNAs of this group are directly associated with the expression of c-Kit and FcεRIα and likewise, that 18 miRNAs promote expression of Mitf, GATA1 and c/EBPα three core transcription factors that direct mast cell differentiation. Furthermore, we have identified 11 miRNAs that may regulate the expression of STATs-3, -5a/b, GATA2 and GATA3 during differentiation, along with 13 miRNAs that target transcripts encoding Ndst2, mMCP4 and mMCP6 and thus may regulate biosynthesis of mast cell secretory mediators.This investigation characterises changes in miRNA expression in whole BM cultures during the differentiation of mast cells and predicts functional links between miRNAs and their target mRNAs for the regulation of development. This information provides an important resource for further investigations of the contributions of miRNAs to mast cell differentiation and

  6. Effect of sodium butyrate treatment on the granule morphology, histamine level and elemental content of the bone marrow-derived mast cell

    Energy Technology Data Exchange (ETDEWEB)

    Rydzynski, K. [Inst. of Occupational Medicine, Lodz (Poland); Dalen, H. [Bergen Univ. (Norway)

    1994-12-31

    Mast cells derived from the bone marrow of BALB/c mice (BMMC) were cultures and their growth ceased with sodium butyrate. Sodium butyrate treatment (1 mM, 4 days) caused maturation of the granules, and increased histamine content from approx. 1 pg/cell to 4 pg/cell. X-ray microanalysis revealed that maturation of the granules was accompanied by the increase in relative weight percent of sodium, phosphorus and sulphur, with concomitant decrease in chloride. The sulphur to potassium ratio increased three-fold in butyrate-treated mast cells. The existence of a different elemental composition during mast cell maturation may provide additional parameter for rapid discrimination of mast cell subpopulations. (author). 28 refs, 6 figs.

  7. Effects of ionizing radiation on differentiation of murine bone marrow cells into mast cells

    International Nuclear Information System (INIS)

    Murakami, Sho; Yoshino, Hironori; Ishikawa, Junya; Yamaguchi, Masaru; Tsujiguchi, Takakiyo; Nishiyama, Ayaka; Yokoyama, Kouki; Kashiwakura, Ikuo

    2015-01-01

    Mast cells, immune effector cells produced from bone marrow cells, play a major role in immunoglobulin E–mediated allergic responses. Ionizing radiation affects the functions of mast cells, which are involved in radiation-induced tissue damage. However, whether ionizing radiation affects the differential induction of mast cells is unknown. Here we investigated whether bone marrow cells of X-irradiated mice differentiated into mast cells. To induce mast cells, bone marrow cells from X-irradiated and unirradiated mice were cultured in the presence of cytokines required for mast cell induction. Although irradiation at 0.5 Gy and 2 Gy decreased the number of bone marrow cells 1 day post-irradiation, the cultured bone marrow cells of X-irradiated and unirradiated mice both expressed mast cell–related cell-surface antigens. However, the percentage of mast cells in the irradiated group was lower than in the unirradiated group. Similar decreases in the percentage of mast cells induced in the presence of X-irradiation were observed 10 days post irradiation, although the number of bone marrow cells in irradiated mice had recovered by this time. Analysis of mast cell function showed that degranulation of mast cells after immunoglobulin E–mediated allergen recognition was significantly higher in the X-irradiated group compared with in the unirradiated group. In conclusion, bone marrow cells of X-irradiated mice differentiated into mast cells, but ionizing radiation affected the differentiation efficiency and function of mast cells. (author)

  8. Different radiosensitivities of mast-cell precursors in the bone marrow and skin of mice

    International Nuclear Information System (INIS)

    Kitamura, Y.; Yokoyama, M.; Sonoda, T.; Mori, K.J.

    1983-01-01

    Although tissue mast cells are derived from the bone marrow, some descendants of bone marrow-derived precursors retain the ability to proliferate and differentiate into mast cells even after localization in the skin. The purpose of the present study was to determine the D0 values for mast-cell precursors in the bone marrow and those localized in the skin. Bone marrow cells were removed from (WB X C57BL/6)F1-+/+ mice after various doses of irradiation and injected into the skin of the congenic W/Wv mice which were genetically without mast cells. Radiosensitivity of mast-cell precursors in the bone marrow was evaluated by determining the proportion of the injection sites at which mast cells did not appear. For the assay of the radiosensitivity of mast-cell precursors localized in the skin, pieces of skin were removed from beige C57BL/6 (bgJ/bgJ. Chediak-Higashi syndrome) mice after various doses of irradiation and grafted onto the back of the normal C57BL/6 mice. Radiosensitivity of mast-cell precursors in the skin was evaluated by determining the decrease of beige-type mast cells which possessed giant granules. Mast-cell precursors in the bone marrow were much more radiosensitive than those localized in the skin. D0 value was about 100 rad for the former and about 800 rad for the latter

  9. Different radiosensitivities of mast-cell precursors in the bone marrow and skin of mice

    International Nuclear Information System (INIS)

    Kitamura, Y.; Yokoyama, M.; Sonoda, T.; Mori, K.J.

    1983-01-01

    Although tissue mast cells are derived from the bone marrow, some descendants of bone marrow-derived precursors retain the ability to proliferate and differentiate into mast cells even after localization in the skin. The purpose of the present study was to determine the D 0 values for mast-cell precursors in the bone marrow and those localized in the skin. Bone marrow cells were removed from (WB X C57BL/6)F 1 +/+ mice after various doses of irradiation and injected into the skin of the congenic W/W/sup v/ mice which were genetically without mast cells. Radiosensitivity of mast-cell precursors in the bone marrow was evaluated by determining the proportion of the injection sites at which mast cells did not appear. For the assay of the radiosensitivity of mast-cell precursors localized in the skin, pieces of skin were removed from beige C57BL/6 (bg/sup J//bg/sup J/, Chediak-Higashi syndrome) mice after various doses of irradiation and grafted onto the backs of the normal C57BL/6 mice. Radiosensitivity of mast-cell precursors in the skin was evaluated by determining the decrease of beige-type mast cells which possessed giant granules. Mast-cell precursors in the bone marrow were much more radiosenitive than those localized in the skin. D 0 value was about 100 rad for the former and about 800 rad for the latter

  10. Cutaneous mast cell maturation does not depend on an intact bone marrow microenvironment

    International Nuclear Information System (INIS)

    Charley, M.R.; Mikhael, A.; Sontheimer, R.D.; Gilliam, J.N.; Bennett, M.

    1984-01-01

    A study was made to determine whether the maturation of murine cutaneous mast cells from stem cells depends on an intact bone marrow microenvironment. Normal bone marrow cells (+/+) were infused into 2 groups of mast cell-deficient mice: WBB6F1-W/Wv mice and 89 Sr-pretreated W/Wv mice. 89 Sr is a long-lived bone-seeking radioisotope which provides continuous irradiation of the marrow and thereby ablates the marrow microenvironment. Skin biopsies revealed that the 89 Sr-pretreated mice and the controls had repopulated their skin with mast cells equally well. Natural killer cell function was significantly depressed in the 89 Sr-treated mice, confirming that the marrow microenvironment had been functionally altered. It appears that, although the precursors for cutaneous mast cells are marrow derived, they do not need an intact marrow microenvironment for maturation

  11. Establishment and characterization of mouse bone marrow-derived mast cell hybridomas

    International Nuclear Information System (INIS)

    Kawahara, Takeshi

    2012-01-01

    Interleukin (IL)-3-dependent mouse bone marrow-derived mast cells (BMMCs) are an important model for studying the function of mucosal-type mast cells. In the present study, BMMCs were successfully immortalized by cell fusion using a hypoxanthine–aminopterin–thymidine medium-sensitive variant of P815 mouse mastocytoma (P815-6TgR) as a partner cell line. The established mouse mast cell hybridomas (MMCHs) expressed α, β, and γ subunits of high-affinity immunoglobulin E (IgE) receptor (FcεRI) and possessed cytoplasmic granules devoid of or partially filled with electron-dense material. Four independent MMCH clones continuously proliferated without supplemental exogenous IL-3 and showed a degranulation response on stimulation with IgE+antigen. Furthermore, histamine synthesis and release by degranulation were confirmed in MMCH-D5, a MMCH clone that showed the strongest degranulation response. MMCH-D5 exhibited elevated levels of IL-3, IL-4, IL-13, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor (TNF)-α, and cyclooxygenase 2, and production of prostaglandin D 2 and leukotriene C 4 in response to IgE-induced stimulation. MMCH clones also expressed Toll-like receptors (TLRs) 1, 2, 4, and 6 and showed elevated levels of TNF-α expression in response to stimulation with TLR2 and TLR4 ligands. The MMCHs established using this method should be suitable for studies on FcεRI- and TLR-mediated effector functions of mast cells.

  12. Establishment and characterization of mouse bone marrow-derived mast cell hybridomas

    Energy Technology Data Exchange (ETDEWEB)

    Kawahara, Takeshi, E-mail: tkawafb@shinshu-u.ac.jp [Integrated Department of Sciences of Functional Foods, Graduate School of Agriculture, Shinshu University, Nagano (Japan)

    2012-11-01

    Interleukin (IL)-3-dependent mouse bone marrow-derived mast cells (BMMCs) are an important model for studying the function of mucosal-type mast cells. In the present study, BMMCs were successfully immortalized by cell fusion using a hypoxanthine-aminopterin-thymidine medium-sensitive variant of P815 mouse mastocytoma (P815-6TgR) as a partner cell line. The established mouse mast cell hybridomas (MMCHs) expressed {alpha}, {beta}, and {gamma} subunits of high-affinity immunoglobulin E (IgE) receptor (Fc{epsilon}RI) and possessed cytoplasmic granules devoid of or partially filled with electron-dense material. Four independent MMCH clones continuously proliferated without supplemental exogenous IL-3 and showed a degranulation response on stimulation with IgE+antigen. Furthermore, histamine synthesis and release by degranulation were confirmed in MMCH-D5, a MMCH clone that showed the strongest degranulation response. MMCH-D5 exhibited elevated levels of IL-3, IL-4, IL-13, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor (TNF)-{alpha}, and cyclooxygenase 2, and production of prostaglandin D{sub 2} and leukotriene C{sub 4} in response to IgE-induced stimulation. MMCH clones also expressed Toll-like receptors (TLRs) 1, 2, 4, and 6 and showed elevated levels of TNF-{alpha} expression in response to stimulation with TLR2 and TLR4 ligands. The MMCHs established using this method should be suitable for studies on Fc{epsilon}RI- and TLR-mediated effector functions of mast cells.

  13. Changes in numbers and types of mast cell colony-forming cells in the peritoneal cavity of mice after injection of distilled water: evidence that mast cells suppress differentiation of bone marrow-derived precursors

    International Nuclear Information System (INIS)

    Kanakura, Y.; Kuriu, A.; Waki, N.; Nakano, T.; Asai, H.; Yonezawa, T.; Kitamura, Y.

    1988-01-01

    Two different types of cells in the peritoneal cavity of mice produce mast cell colonies in methylcellulose. Large mast cell colonies are produced by bone marrow-derived precursors resembling lymphoid cells by light microscopy (L-CFU-Mast), whereas medium and small mast cell colonies are produced by morphologically identifiable mast cells (M-CFU-Mast and S-CFU-Mast, respectively). In the present study we eradicated peritoneal mast cells by intraperitoneal (IP) injection of distilled water. The regeneration process was investigated to clarify the relationship between L-CFU-Mast, M-CFU-Mast, and S-CFU-Mast. After injection of distilled water, M-CFU-Mast and S-CFU-Mast disappeared, but L-CFU-Mast increased, and then M-CFU-Mast and S-CFU-Mast appeared, suggesting the presence of a hierarchic relationship. When purified peritoneal mast cells were injected two days after the water injection, the L-CFU-Mast did not increase. In the peritoneal cavity of WBB6F1-+/+ mice that had been lethally irradiated and rescued by bone marrow cells of C57BL/6-bgJ/bgJ (beige, Chediak-Higashi syndrome) mice, L-CFU-Mast were of bgJ/bgJ type, but M-CFU-Mast and S-CFU-Mast were of +/+ type. The injection of distilled water to the radiation chimeras resulted in the development of bgJ/bgJ-type M-CFU-Mast and then S-CFU-Mast. The presence of mast cells appeared to suppress the recruitment of L-CFU-Mast from the bloodstream and to inhibit the differentiation of L-CFU-Mast to M-CFU-Mast

  14. Benzoxazole derivatives suppress lipopolysaccharide-induced mast cell activation.

    Science.gov (United States)

    Cho, Kyung-Ah; Park, Minhwa; Kim, Yu-Hee; Choo, Hea-Young Park; Lee, Kyung Ho

    2018-05-01

    Mast cells are central regulators of allergic inflammation that function by releasing various proallergic inflammatory mediators, including histamine, eicosanoids and proinflammatory cytokines. Occasionally, bacterial infections may initiate or worsen allergic inflammation. A number of studies have indicated that activation of lipoxygenase in mast cells positive regulates allergic inflammatory responses by generating leukotrienes and proinflammatory cytokines. In the present study, the effects of benzoxazole derivatives on the lipopolysaccharide (LPS)‑induced expression of proinflammatory cytokines, production of histamine and surface expression of co‑stimulatory molecules on bone marrow-derived mast cells (BMMCs) were studied. The benzoxazole derivatives significantly reduced the expression of interleukin (IL)‑1β, IL‑6, IL‑13, tumor necrosis factor‑α, perilipin (PLIN) 2, and PLIN3 in BMMCs treated with LPS. Furthermore, histamine production was suppressed in BMMCs treated with LPS, or treated with phorbol-12-myristate-13-acetate/ionomycin. Benzoxazole derivatives marginally affected the surface expression of cluster of differentiation (CD)80 and CD86 on BMMCs in the presence of LPS, although LPS alone did not increase the expression of those proteins. Therefore, benzoxazole derivatives inhibited the secretion of proinflammatory cytokines in mast cells and may be potential candidate anti‑allergic agents to suppress mast cell activation.

  15. Characterization and modulation of canine mast cell derived eicosanoids

    Science.gov (United States)

    Lin, Tzu-Yin; London, Cheryl A.

    2013-01-01

    Mast cells play an important role in both innate and acquired immunity as well as several pathological conditions including allergy, arthritis and neoplasia. They influence these processes by producing a variety of mediators including cytokines, chemokines and eicosanoids. Very little is currently known about the spectrum of inflammatory mediators, particularly eicosanoids (prostaglandins and leukotrienes), produced by canine mast cells. This is important since modulating mast cell derived eicosanoids may help in the treatment of autoimmune and inflammatory disorders. The purpose of this study was to investigate the spectrum of eicosanoids produced by normal canine mast cells and to evaluate the effects of cytokines and non-steroidal anti-inflammatory mediators (NSAIDS) on eicosanoid production and release. Canine bone marrow derived cultured mast cells (cBMCMCs) expressed COX-1, COX-2, and 5-LOX and synthesized and released PGD2, PGE2, LTB4, and LTC4 following activation by a variety of stimuli. The selective COX-2 NSAIDs carprofen (Rimadyl®) and deracoxib (Deramaxx®) inhibited PGD2 and PGE2 production but only slightly inhibited LTB4 and LTC4. The mixed COX-1/COX-2 inhibitor piroxicam blocked PGD2 and PGE2 production, but upregulated LTC4 following treatment while tepoxilan (Zubrin®), a pan COX/LOX inhibitor, markedly reduced the production of all eicosanoids. The LOX inhibitor nordihydroguaiaretic acid (NDGA) prevented LTB4/LTC4 release and BMBMC degranulation. Pre-incubation of cBMCMCs with IL-4 and SCF sensitized these cells to degranulation in response to substance P. In conclusion, canine BMCMCs produce an array of eicosanoids similar to those produced by mast cells from other species. Tepoxilan appeared to be the most effective NSAID for blocking eicosanoid production and thus may be useful for modulating mast cell mediated responses in dogs. PMID:20036014

  16. Generation, isolation, and maintenance of rodent mast cells and mast cell lines

    DEFF Research Database (Denmark)

    Jensen, Bettina M; Swindle, Emily J; Iwaki, Shoko

    2006-01-01

    Antigen-mediated mast cell activation, with subsequent mediator release, is a major initiator of the inflammatory allergic response associated with such conditions as asthma. A comprehensive understanding of the principles involved in this process therefore is key to the development of novel...... therapies for the treatment of these disease states. In vitro models of mast cell function have allowed significant progress to be made in the recognition of the fundamental principles of mast cell activation via the high-affinity IgE receptor (FcvarepsilonRI) and, more recently, other receptors expressed...... on mast cells. In addition to human mast cells, the major cell culture systems employed to investigate these responses are rat and mouse peritoneal mast cells, mouse bone-marrow-derived mast cells, the rat basophilic leukemia cell line RBL-2H3, and the mouse MC/9 mast cell line. In this unit, we describe...

  17. Thrombopoietin inhibits murine mast cell differentiation

    Science.gov (United States)

    Martelli, Fabrizio; Ghinassi, Barbara; Lorenzini, Rodolfo; Vannucchi, Alessandro M; Rana, Rosa Alba; Nishikawa, Mitsuo; Partamian, Sandra; Migliaccio, Giovanni; Migliaccio, Anna Rita

    2009-01-01

    We have recently shown that Mpl, the thrombopoietin receptor, is expressed on murine mast cells and on their precursors and that targeted deletion of the Mpl gene increases mast cell differentiation in mice. Here we report that treatment of mice with thrombopoietin, or addition of this growth factor to bone marrow-derived mast cell cultures, severely hampers the generation of mature cells from their precursors by inducing apoptosis. Analysis of the expression profiling of mast cells obtained in the presence of thrombopoietin suggests that thrombopoietin induces apoptosis of mast cells by reducing expression of the transcription factor Mitf and its target anti-apoptotic gene Bcl2. PMID:18276801

  18. Isolation, culture expansion and characterization of canine bone marrow derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    D Kazemi

    2016-07-01

    Full Text Available The purpose of the present study was to isolate, culture expand and characterize canine bone marrow derived mesenchymal stem cells. Bone marrow aspirates of 15 adult male dogs were collected to this end and their mononuclear cells isolated by centrifugation and cultured in standard media. The adherent cells were isolated and their mesenchymal origin was confirmed at 3rd passage by cellular morphology, expression of surface antigens and differentiation to osteogenic and adipogenic lineage. After 4 days, spindle shaped fibroblast like cells which were apparently bone marrow derived mesenchymal stem cells appeared in culture medium and their numbers increased over time. The cells reached 3rd passage with over 75% confluent after a mean of 22.89±5.75 days. Flow cytometric analysis revealed that the cells negatively expressed CD34 and CD45 antigens while positively expressing CD44 and CD105 antigens. Differentiation into osteogenic and adipogenic lineage had taken place after one month culture in induction medium. VDR, COL1A1, BGLAP and SPARC gene expression indicated that mesenchymal stem cells isolated from canine bone marrow had differentiated into osteogenic lineage. These findings can form the basis of any forthcoming clinical studies involving the use of canine mesenchymal stem cells particularly in the field of bone and cartilage regeneration.

  19. Microtubule nucleation in mouse bone marrow-derived mast cells is regulated by the concerted action of GIT1/βPIX proteins and calcium

    Czech Academy of Sciences Publication Activity Database

    Sulimenko, Vadym; Hájková, Zuzana; Černohorská, Markéta; Sulimenko, Tetyana; Sládková, Vladimíra; Dráberová, Lubica; Vinopal, Stanislav; Dráberová, Eduarda; Dráber, Pavel

    2015-01-01

    Roč. 194, č. 9 (2015), s. 4099-4111 ISSN 0022-1767 R&D Projects: GA ČR GAP302/12/1673; GA ČR GPP302/11/P709; GA ČR(CZ) GA14-09807S; GA ČR GA15-22194S; GA MŠk(CZ) LD13015; GA MŠk LH12050; GA MZd NT14467 Institutional support: RVO:68378050 Keywords : Bone Marrow-Derived Mast Cells * Microtubule Nucleation * GIT1/beta PIX Proteins * Calcium Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.985, year: 2015

  20. Deep-Sea-Derived Butyrolactone I Suppresses Ovalbumin-Induced Anaphylaxis by Regulating Mast Cell Function in a Murine Model.

    Science.gov (United States)

    Liu, Qing-Mei; Xie, Chun-Lan; Gao, Yuan-Yuan; Liu, Bo; Lin, Wei-Xiang; Liu, Hong; Cao, Min-Jie; Su, Wen-Jin; Yang, Xian-Wen; Liu, Guang-Ming

    2018-05-22

    Deep-sea-derived butyrolactone I (BTL-I), which was identified as a type of butanolide, was isolated from Aspergillus sp. Ovalbumin (OVA)-induced BALB/c anaphylaxis was established to explore the antifood allergic activity of BTL-I. As a result, BTL-I was able to alleviate OVA-induced allergy symptoms, reduce the levels of histamine and mouse mast cell proteinases, inhibit OVA-specific IgE, and decrease the population of mast cells in the spleen and mesenteric lymph nodes. BTL-I also significantly suppressed mast-dependent passive cutaneous anaphylaxis. Additionally, the maturation of bone marrow-derived mast cells (BMMCs) declined as BTL-I caused down-regulation of c-KIT receptors. Furthermore, molecular docking analyses revealed that BTL-I interacted with the inhibitory receptor, FcγRIIB. In conclusion, the reduction of mast cell function by deep-sea-derived BTL-I as well as its interactions with the inhibitory receptor, FcγRIIB, may contribute to BTL-I-related protection against food anaphylaxis.

  1. Adenosine derived from Staphylococcus aureus-engulfed macrophages functions as a potent stimulant for the induction of inflammatory cytokines in mast cells

    DEFF Research Database (Denmark)

    Ma, Ying Jie; Kim, Chan-Hee; Ryu, Kyoung-Hwa

    2011-01-01

    In this study, we attempted to isolate novel mast cell-stimulating molecules from Staphylococcus aureus. Water-soluble extract of S. aureus cell lysate strongly induced human interleukin- 8 in human mast cell line-1 and mouse interleukin-6 in mouse bone marrow-derived mast cells. The active...... adenosine receptor blocker, verified that purified adenosine can induce interleukin-8 production via adenosine receptors on mast cells. Moreover, adenosine was purified from S. aureusengulfed RAW264.7 cells, a murine macrophage cell line, used to induce phagocytosis of S. aureus. These results show a novel...

  2. Rotating three-dimensional dynamic culture of adult human bone marrow-derived cells for tissue engineering of hyaline cartilage.

    Science.gov (United States)

    Sakai, Shinsuke; Mishima, Hajime; Ishii, Tomoo; Akaogi, Hiroshi; Yoshioka, Tomokazu; Ohyabu, Yoshimi; Chang, Fei; Ochiai, Naoyuki; Uemura, Toshimasa

    2009-04-01

    The method of constructing cartilage tissue from bone marrow-derived cells in vitro is considered a valuable technique for hyaline cartilage regenerative medicine. Using a rotating wall vessel (RWV) bioreactor developed in a NASA space experiment, we attempted to efficiently construct hyaline cartilage tissue from human bone marrow-derived cells without using a scaffold. Bone marrow aspirates were obtained from the iliac crest of nine patients during orthopedic operation. After their proliferation in monolayer culture, the adherent cells were cultured in the RWV bioreactor with chondrogenic medium for 2 weeks. Cells from the same source were cultured in pellet culture as controls. Histological and immunohistological evaluations (collagen type I and II) and quantification of glycosaminoglycan were performed on formed tissues and compared. The engineered constructs obtained using the RWV bioreactor showed strong features of hyaline cartilage in terms of their morphology as determined by histological and immunohistological evaluations. The glycosaminoglycan contents per microg DNA of the tissues were 10.01 +/- 3.49 microg/microg DNA in the case of the RWV bioreactor and 6.27 +/- 3.41 microg/microg DNA in the case of the pellet culture, and their difference was significant. The RWV bioreactor could provide an excellent environment for three-dimensional cartilage tissue architecture that can promote the chondrogenic differentiation of adult human bone marrow-derived cells.

  3. Mouse mannose-binding lectin-A and ficolin-A inhibit lipopolysaccharide-mediated pro-inflammatory responses on mast cells

    DEFF Research Database (Denmark)

    Ma, Ying Jie; Kang, Hee Jung; Kim, Ji Yeon

    2013-01-01

    It is unknown how soluble pattern-recognition receptors in blood, such as mannose-binding lectin (MBL) and ficolins, modulate mast cell-mediated inflammatory responses. We investigate how mouse MBL-A or ficolin-A regulate mouse bone marrow-derived mast cells (mBMMCs)-derived inflammatory response...... cytokine production by LPS-mediated TLR4 in mBMMCs appears to be down-regulated, indicating that mouse MBL and ficolin may have an inhibitory function toward mouse TLR4-mediated excessive inflammation on the mast cells.......It is unknown how soluble pattern-recognition receptors in blood, such as mannose-binding lectin (MBL) and ficolins, modulate mast cell-mediated inflammatory responses. We investigate how mouse MBL-A or ficolin-A regulate mouse bone marrow-derived mast cells (mBMMCs)-derived inflammatory response...

  4. Mast cell-derived histamine mediates cystitis pain.

    Directory of Open Access Journals (Sweden)

    Charles N Rudick

    2008-05-01

    Full Text Available Mast cells trigger inflammation that is associated with local pain, but the mechanisms mediating pain are unclear. Interstitial cystitis (IC is a bladder disease that causes debilitating pelvic pain of unknown origin and without consistent inflammation, but IC symptoms correlate with elevated bladder lamina propria mast cell counts. We hypothesized that mast cells mediate pelvic pain directly and examined pain behavior using a murine model that recapitulates key aspects of IC.Infection of mice with pseudorabies virus (PRV induces a neurogenic cystitis associated with lamina propria mast cell accumulation dependent upon tumor necrosis factor alpha (TNF, TNF-mediated bladder barrier dysfunction, and pelvic pain behavior, but the molecular basis for pelvic pain is unknown. In this study, both PRV-induced pelvic pain and bladder pathophysiology were abrogated in mast cell-deficient mice but were restored by reconstitution with wild type bone marrow. Pelvic pain developed normally in TNF- and TNF receptor-deficient mice, while bladder pathophysiology was abrogated. Conversely, genetic or pharmacologic disruption of histamine receptor H1R or H2R attenuated pelvic pain without altering pathophysiology.These data demonstrate that mast cells promote cystitis pain and bladder pathophysiology through the separable actions of histamine and TNF, respectively. Therefore, pain is independent of pathology and inflammation, and histamine receptors represent direct therapeutic targets for pain in IC and other chronic pain conditions.

  5. Bone marrow-derived mesenchymal stem cells express the pericyte marker 3G5 in culture and show enhanced chondrogenesis in hypoxic conditions.

    Science.gov (United States)

    Khan, Wasim S; Adesida, Adetola B; Tew, Simon R; Lowe, Emma T; Hardingham, Timothy E

    2010-06-01

    Bone marrow-derived mesenchymal stem cells are a potential source of cells for the repair of articular cartilage defects. Hypoxia has been shown to improve chondrogenesis in some cells. In this study, bone marrow-derived stem cells were characterized and the effects of hypoxia on chondrogenesis investigated. Adherent bone marrow colony-forming cells were characterized for stem cell surface epitopes, and then cultured as cell aggregates in chondrogenic medium under normoxic (20% oxygen) or hypoxic (5% oxygen) conditions. The cells stained strongly for markers of adult mesenchymal stem cells, and a high number of cells were also positive for the pericyte marker 3G5. The cells showed a chondrogenic response in cell aggregate cultures and, in lowered oxygen, there was increased matrix accumulation of proteoglycan, but less cell proliferation. In hypoxia, there was increased expression of key transcription factor SOX6, and of collagens II and XI, and aggrecan. Pericytes are a candidate stem cell in many tissue, and our results show that bone marrow-derived mesenchymal stem cells express the pericyte marker 3G5. The response to chondrogenic culture in these cells was enhanced by lowered oxygen tension. This has important implications for tissue engineering applications of bone marrow-derived stem cells. (c) 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. Wnt-β-Catenin Signaling Promotes the Maturation of Mast Cells

    Directory of Open Access Journals (Sweden)

    Tomoko Yamaguchi

    2016-01-01

    Full Text Available Mast cells play an important role in the pathogenesis of allergic diseases. Immature mast cells migrate into peripheral tissues from the bone marrow and undergo complete maturation. Interestingly, mast cells have characteristics similar to hematopoietic stem cells (HSCs, such as self-renewal and c-kit expression. In HSCs, Wnt signaling is involved in their maintenance and differentiation. On the other hand, the relation between Wnt signaling and mast cell differentiation is poorly understood. To study whether Wnt signals play a role in the maturation of mast cells, we studied the effect of Wnt proteins on mast cell maturation of bone marrow-derived mast cells (BMMCs. The expression levels of CD81 protein and histidine decarboxylase mRNA and activity of mast cell-specific protease were all elevated in BMMCs treated with Wnt5a. In addition, Wnt5a induced the expression of Axin2 and TCF mRNA in BMMCs. These results showed that Wnt5a could promote the maturation of mast cells via the canonical Wnt signaling pathway and provide important insights into the molecular mechanisms underlying the differentiation of mast cells.

  7. Culture of equine bone marrow mononuclear fraction and adipose tissue-derived stromal vascular fraction cells in different media

    Directory of Open Access Journals (Sweden)

    Gesiane Ribeiro

    2013-12-01

    Full Text Available The objective of this study was to evaluate the culture of equine bone marrow mononuclear fraction and adipose tissue - derived stromal vascular fraction cells in two different cell culture media. Five adult horses were submitted to bone marrow aspiration from the sternum, and then from the adipose tissue of the gluteal region near the base of the tail. Mononuclear fraction and stromal vascular fraction were isolated from the samples and cultivated in DMEM medium supplemented with 10% fetal bovine serum or in AIM-V medium. The cultures were observed once a week with an inverted microscope, to perform a qualitative analysis of the morphology of the cells as well as the general appearance of the cell culture. Colony-forming units (CFU were counted on days 5, 15 and 25 of cell culture. During the first week of culture, differences were observed between the samples from the same source maintained in different culture media. The number of colonies was significantly higher in samples of bone marrow in relation to samples of adipose tissue.

  8. S1P₄ Regulates Passive Systemic Anaphylaxis in Mice but Is Dispensable for Canonical IgE-Mediated Responses in Mast Cells.

    Science.gov (United States)

    Kulinski, Joseph M; Proia, Richard L; Larson, Elisabeth M; Metcalfe, Dean D; Olivera, Ana

    2018-04-25

    Mast cells are key players in the development of inflammatory allergic reactions. Cross-linking of the high-affinity receptor for IgE (FcεRI) on mast cells leads to the generation and secretion of the sphingolipid mediator, sphingosine-1-phosphate (S1P) which is able, in turn, to transactivate its receptors on mast cells. Previous reports have identified the expression of two of the five receptors for S1P on mast cells, S1P₁ and S1P₂, with functions in FcεRI-mediated chemotaxis and degranulation, respectively. Here, we show that cultured mouse mast cells also express abundant message for S1P₄. Genetic deletion of S1pr4 did not affect the differentiation of bone marrow progenitors into mast cells or the proliferation of mast cells in culture. A comprehensive characterization of IgE-mediated responses in S1P₄-deficient bone marrow-derived and peritoneal mouse mast cells indicated that this receptor is dispensable for mast cell degranulation, cytokine/chemokine production and FcεRI-mediated chemotaxis in vitro. However, interleukin-33 (IL-33)-mediated enhancement of IgE-induced degranulation was reduced in S1P₄-deficient peritoneal mast cells, revealing a potential negative regulatory role for S1P₄ in an IL-33-rich environment. Surprisingly, genetic deletion of S1pr4 resulted in exacerbation of passive systemic anaphylaxis to IgE/anti-IgE in mice, a phenotype likely related to mast cell-extrinsic influences, such as the high circulating levels of IgE in these mice which increases FcεRI expression and consequently the extent of the response to FcεRI engagement. Thus, we provide evidence that S1P₄ modulates anaphylaxis in an unexpected manner that does not involve regulation of mast cell responsiveness to IgE stimulation.

  9. Activated human mast cells induce LOX-1-specific scavenger receptor expression in human monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Mervi Alanne-Kinnunen

    Full Text Available Activated mast cells in atherosclerotic lesions degranulate and release bioactive compounds capable of regulating atherogenesis. Here we examined the ability of activated human primary mast cells to regulate the expression of the major scavenger receptors in cultured human primary monocyte-derived macrophages (HMDMs.Components released by immunologically activated human primary mast cells induced a transient expression of lectin-like oxidized LDL receptor (LOX-1 mRNA in HMDMs, while the expression of two other scavenger receptors, MSR1 and CD36, remained unaffected. The LOX-1-inducing secretory components were identified as histamine, tumor necrosis factor alpha (TNF-α, and transforming growth factor beta (TGF-β1, which exhibited a synergistic effect on LOX-1 mRNA expression. Histamine induced a transient expression of LOX-1 protein. Mast cell -induced increase in LOX-1 expression was not associated with increased uptake of oxidized LDL by the macrophages.Mast cell-derived histamine, TNF-α, and TGF-β1 act in concert to induce a transient increase in LOX-1 expression in human primary monocyte-derived macrophages. The LOX-1-inducing activity potentially endows mast cells a hitherto unrecognized role in the regulation of innate immune reactions in atherogenesis.

  10. The chemokine receptor CCR1 is identified in mast cell-derived exosomes.

    Science.gov (United States)

    Liang, Yuting; Qiao, Longwei; Peng, Xia; Cui, Zelin; Yin, Yue; Liao, Huanjin; Jiang, Min; Li, Li

    2018-01-01

    Mast cells are important effector cells of the immune system, and mast cell-derived exosomes carrying RNAs play a role in immune regulation. However, the molecular function of mast cell-derived exosomes is currently unknown, and here, we identify differentially expressed genes (DEGs) in mast cells and exosomes. We isolated mast cells derived exosomes through differential centrifugation and screened the DEGs from mast cell-derived exosomes, using the GSE25330 array dataset downloaded from the Gene Expression Omnibus database. Biochemical pathways were analyzed by Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway on the online tool DAVID. DEGs-associated protein-protein interaction networks (PPIs) were constructed using the STRING database and Cytoscape software. The genes identified from these bioinformatics analyses were verified by qRT-PCR and Western blot in mast cells and exosomes. We identified 2121 DEGs (843 up and 1278 down-regulated genes) in HMC-1 cell-derived exosomes and HMC-1 cells. The up-regulated DEGs were classified into two significant modules. The chemokine receptor CCR1 was screened as a hub gene and enriched in cytokine-mediated signaling pathway in module one. Seven genes, including CCR1, CD9, KIT, TGFBR1, TLR9, TPSAB1 and TPSB2 were screened and validated through qRT-PCR analysis. We have achieved a comprehensive view of the pivotal genes and pathways in mast cells and exosomes and identified CCR1 as a hub gene in mast cell-derived exosomes. Our results provide novel clues with respect to the biological processes through which mast cell-derived exosomes modulate immune responses.

  11. A new and efficient culture method for porcine bone marrow-derived M1- and M2-polarized macrophages.

    Science.gov (United States)

    Gao, Jiye; Scheenstra, Maaike R; van Dijk, Albert; Veldhuizen, Edwin J A; Haagsman, Henk P

    2018-06-01

    Macrophages play an important role in the innate immune system as part of the mononuclear phagocyte system (MPS). They have a pro-inflammatory signature (M1-polarized macrophages) or anti-inflammatory signature (M2-polarized macrophages) based on expression of surface receptors and secretion of cytokines. However, very little is known about the culture of macrophages from pigs and more specific about the M1 and M2 polarization in vitro. Porcine monocytes or mononuclear bone marrow cells were used to culture M1- and M2-polarized macrophages in the presence of GM-CSF and M-CSF, respectively. Surface receptor expression was measured with flow cytometry and ELISA was used to quantify cytokine secretion in response to LPS and PAM 3 CSK 4 stimulation. Human monocyte-derived macrophages were used as control. Porcine M1- and M2-polarized macrophages were cultured best using porcine GM-CSF and murine M-CSF, respectively. Cultures from bone marrow cells resulted in a higher yield M1- and M2-polarized macrophages which were better comparable to human monocyte-derived macrophages than cultures from porcine monocytes. Porcine M1-polarized macrophages displayed the characteristic fried egg shape morphology, lower CD163 expression and low IL-10 production. Porcine M2-polarized macrophages contained the spindle-like morphology, higher CD163 expression and high IL-10 production. Porcine M1- and M2-polarized macrophages can be most efficiently cultured from mononuclear bone marrow cells using porcine GM-CSF and murine M-CSF. The new culture method facilitates more refined studies of porcine macrophages in vitro, important for both porcine and human health since pigs are increasingly used as model for translational research. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  12. S1P4 Regulates Passive Systemic Anaphylaxis in Mice but Is Dispensable for Canonical IgE-Mediated Responses in Mast Cells

    Directory of Open Access Journals (Sweden)

    Joseph M. Kulinski

    2018-04-01

    Full Text Available Mast cells are key players in the development of inflammatory allergic reactions. Cross-linking of the high-affinity receptor for IgE (FcεRI on mast cells leads to the generation and secretion of the sphingolipid mediator, sphingosine-1-phosphate (S1P which is able, in turn, to transactivate its receptors on mast cells. Previous reports have identified the expression of two of the five receptors for S1P on mast cells, S1P1 and S1P2, with functions in FcεRI-mediated chemotaxis and degranulation, respectively. Here, we show that cultured mouse mast cells also express abundant message for S1P4. Genetic deletion of S1pr4 did not affect the differentiation of bone marrow progenitors into mast cells or the proliferation of mast cells in culture. A comprehensive characterization of IgE-mediated responses in S1P4-deficient bone marrow-derived and peritoneal mouse mast cells indicated that this receptor is dispensable for mast cell degranulation, cytokine/chemokine production and FcεRI-mediated chemotaxis in vitro. However, interleukin-33 (IL-33-mediated enhancement of IgE-induced degranulation was reduced in S1P4-deficient peritoneal mast cells, revealing a potential negative regulatory role for S1P4 in an IL-33-rich environment. Surprisingly, genetic deletion of S1pr4 resulted in exacerbation of passive systemic anaphylaxis to IgE/anti-IgE in mice, a phenotype likely related to mast cell-extrinsic influences, such as the high circulating levels of IgE in these mice which increases FcεRI expression and consequently the extent of the response to FcεRI engagement. Thus, we provide evidence that S1P4 modulates anaphylaxis in an unexpected manner that does not involve regulation of mast cell responsiveness to IgE stimulation.

  13. Mechanism of mast cell adhesion to human tenocytes in vitro.

    Science.gov (United States)

    Behzad, Hayedeh; Tsai, Shu-Huei; Nassab, Paulina; Mousavizadeh, Rouhollah; McCormack, Robert G; Scott, Alex

    2015-01-01

    Mast cells and fibroblasts are two key players involved in many fibrotic and degenerative disorders. In the present study we examined the nature of binding interactions between human mast cells and tendon fibroblasts (tenocytes). In the mast cell-fibroblast co-culture model, mast cells were shown to spontaneously bind to tenocytes, in a process that was partially mediated by α5β1 integrin receptors. The same receptors on mast cells significantly mediated binding of these cells to tissue culture plates in the presence of tenocyte-conditioned media; the tenocyte-derived fibronectin in the media was shown to also play a major role in these binding activities. Upon binding to tenocytes or tissue culture plates, mast cells acquired an elongated phenotype, which was dependent on α5β1 integrin and tenocyte fibronectin. Additionally, tenocyte-derived fibronectin significantly enhanced mRNA expression of the adhesion molecule, THY1, by mast cells. Our data suggests that α5β1 integrin mediates binding of mast cells to human tenocyte and to tenocyte-derived ECM proteins, in particular fibronectin. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. Effect of lipopolysaccharide (LPS and peptidoglycan (PGN on human mast cell numbers, cytokine production, and protease composition

    Directory of Open Access Journals (Sweden)

    Wu Yalin

    2008-08-01

    Full Text Available Abstract Background Human mast cell (HuMC maturation occurs in tissues interfacing with the external environment, exposing both mast cell progenitors and mature mast cells, to bacteria and their products. It is unknown, however, whether long- or short-term exposure to bacteria-derived toll-like receptor (TLR ligands, such as lipopolysaccharide (LPS or peptidoglycan (PGN, influences HuMC biology. Results Over 6 wks of culture, LPS had minimal effect on HuMC numbers but increased CD117, tryptase and chymase expression. PGN inhibited HuMC development. For mature mast cells, LPS in the presence of rhSCF (10 ng/ml increased CD117, tryptase, chymase and carboxypeptidase expression, primarily in CD117low HuMC. LPS decreased FcεRI expression and β-hexosaminidase release; but had no effect on LTC4 and PGD2 production. PGN reduced HuMC numbers; and CD117 and tryptase expression. IL-1β and IL-6 (in addition to IL-8 and IL-12 were detected in short-term culture supernatants of LPS treated cells, and reproduced the increases in CD117, tryptase, chymase, and carboxypeptidase expression observed in the presence of LPS. Comparative studies with mouse bone marrow-derived mast cells from wild type, but not TLR4 knockout mice, showed increases in mRNA of mouse mast cell chymases MMCP-1, MMCP-2 and MMCP-4. Conclusion PGN inhibits HuMC growth, while LPS exerts its primary effects on mature HuMC by altering cytokine production and protease composition, particularly at low concentrations of SCF. These data demonstrate the ability of bacterial products to alter HuMC mediator production, granular content, and number which may be particularly relevant at mucosal sites where HuMC are exposed to these products.

  15. Anti-inflammatory activity of 6-hydroxy-2,7-dimethoxy-1,4-henanthraquinone from tuberous roots of yam (Dioscorea batatas) through inhibition of prostaglandin D₂ and leukotriene C₄ production in mouse bone marrow-derived mast cells.

    Science.gov (United States)

    Jin, Meihua; Lu, Yue; Yang, Ju Hye; Jo, Tae Hyung; Park, Young In; Lee, Chong-Kil; Park, Sang-Jo; Son, Kun Ho; Chang, Hyeun Wook

    2011-09-01

    6-Hydroxy-2,7-dimethoxy-1,4-phenanthraquinone (PAQ) isolated from the tuberous roots of Yam (Dioscorea batatas) inhibited cyclooxygenase-2 (COX-2) and cyclooxygenase-1 (COX-1) dependent prostaglandin D(2) (PGD(2)) generation in mouse bone marrow-derived mast cells in a concentration-dependent manner with IC(50) values of 0.08 μM and 0.27 μM, respectively. In the Western blotting with specific anti-COX-2 antibodies, the decrease of the quantity of PGD(2) was accompanied by a decrease in the COX-2 protein level. But PAQ did not affect COX-1 protein level. In addition, this compound inhibited 5-lipoxygenase (5-LOX) dependent production of leukotriene C(4) in a dose-dependent manner, with an IC(50) of 0.032 μM. These results demonstrate that PAQ has a dual COX-2/5-LOX inhibitory activity. This compound also inhibited the degranulation reaction in a dose-dependent manner with an IC(50) of 2.7 μM. Thus, these results suggest that PAQ may be useful in regulating mast cell-mediated inflammatory diseases.

  16. Impact of starting material (fresh versus cryopreserved marrow) on mesenchymal stem cell culture.

    Science.gov (United States)

    Kaplan, Alesia; Sackett, Katie; Sumstad, Darin; Kadidlo, Dianne; McKenna, David H

    2017-09-01

    Mesenchymal stem cells (MSCs) continue to be investigated in multiple clinical trials as potential therapy for different disorders. There is ongoing controversy surrounding the clinical use of cryopreserved versus fresh MSCs. However, little is known about how cryopreservation affects marrow as starting material. The growth kinetics of MSC cultures derived from fresh versus cryopreserved marrow were compared. Data were reviewed on the growth kinetics of MSCs derived from fresh versus cryopreserved marrow of nine donors. Marrow harvested from each donor was separated into four aliquots (one fresh and three cryopreserved for culture). Data on the date of mononuclear cell cryopreservation/thaw, MSC counts at Passages 1 and 2, MSC doubling, MSC fold expansion, viability (of mononuclear cells and final MSCs), and on flow cytometry markers of mononuclear cells and final MSCs were analyzed for the fresh and cryopreserved marrow groups. In total, 21 MSC lots (seven fresh and 14 cryopreserved) were obtained. The average age of cryopreserved mononuclear cell product was 295 days (range, 18-1241 days). There were no significant differences between MSC numbers at Passage 1 (p = 0.1), final MSC numbers (p = 0.5), MSC doubling (p = 0.7), or MSC fold expansion (p = 0.7). A significant difference was observed in viability by flow cytometry for both mononuclear cells (p = 0.002) and final MSCs (p = 0.009), with higher viability in the fresh marrow group. This study demonstrates that MSCs derived from cryopreserved marrow have the same growth characteristics as fresh marrow-derived MSCs. Further studies are needed to explore potential differences in clinical efficacy. © 2017 AABB.

  17. Proliferative activity of vervet monkey bone marrow-derived adherent cells

    International Nuclear Information System (INIS)

    Kramvis, A.; Garnett, H.M.

    1987-01-01

    Vervet monkey bone marrow-derived adherent cell population cultured in Fischer's medium supplemented with 12.5% fetal calf serum and 12.5% horse serum consists of two cell shapes: fusiform (type I) and polygonal (type II). Limiting-dilution cloning of the cells suggested that the two morphologically distinct cell types belong to the same cellular system even though they differ in their proliferative capabilities. The labeling index of type II cells, as measured by autoradiography, was found to be consistently lower than that of type I cells. It is probable that these two phenotypes represent different stages of differentiation, where progenitor type I gives rise to type II cells. The bone marrow-derived adherent cells were found to be cytokinetically at rest in vivo, using the thymidine suicide test, and relatively radioresistant with a D0 = 2.1 Gy and n = 2.36 at the time of explantation from the bone. Furthermore, in culture these cells are characterized by a relatively long cell cycle of 60 h, where the length of the S phase is 30 h, G2 is 12 h, M is 6 h, and G1 is 12 h. Thus, the vervet monkey bone marrow-derived adherent cells represent a cell population with a low turnover rate both in vivo and in vitro

  18. Development of a rapid culture method to induce adipocyte differentiation of human bone marrow-derived mesenchymal stem cells

    International Nuclear Information System (INIS)

    Ninomiya, Yuichi; Sugahara-Yamashita, Yzumi; Nakachi, Yutaka; Tokuzawa, Yoshimi; Okazaki, Yasushi; Nishiyama, Masahiko

    2010-01-01

    Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time for the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor γ agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-β1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.

  19. A novel method to generate and culture human mast cells: Peripheral CD34+ stem cell-derived mast cells (PSCMCs).

    Science.gov (United States)

    Schmetzer, Oliver; Valentin, Patricia; Smorodchenko, Anna; Domenis, Rossana; Gri, Giorgia; Siebenhaar, Frank; Metz, Martin; Maurer, Marcus

    2014-11-01

    The identification and characterization of human mast cell (MC) functions are hindered by the shortage of MC populations suitable for investigation. Here, we present a novel technique for generating large numbers of well differentiated and functional human MCs from peripheral stem cells (=peripheral stem cell-derived MCs, PSCMCs). Innovative and key features of this technique include 1) the use of stem cell concentrates, which are routinely discarded by blood banks, as the source of CD34+ stem cells, 2) cell culture in serum-free medium and 3) the addition of LDL as well as selected cytokines. In contrast to established and published protocols that use CD34+ or CD133+ progenitor cells from full blood, we used a pre-enriched cell population obtained from stem cell concentrates, which yielded up to 10(8) differentiated human MCs per batch after only three weeks of culture starting with 10(6) total CD34+ cells. The total purity on MCs (CD117+, FcεR1+) generated by this method varied between 55 and 90%, of which 4-20% were mature MCs that contain tryptase and chymase and show expression of FcεRI and CD117 in immunohistochemistry. PSCMCs showed robust histamine release in response to stimulation with anti-FcεR1 or IgE/anti-IgE, and increased proliferation and differentiation in response to IL-1β or IFN-γ. Taken together, this new protocol of the generation of large numbers of human MCs provides for an innovative and suitable option to investigate the biology of human MCs. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Safety assessment of bone marrow derived MSC grown in platelet-rich plasma

    Directory of Open Access Journals (Sweden)

    Shoji Fukuda

    2015-06-01

    Full Text Available The injection of endothelial progenitor cells and mononuclear cells derived from bone marrow at the ischemic region of peripheral artery disease patients is reported to be effective for therapeutic angiogenesis; however, these cell therapies require large amounts of bone marrow to obtain sufficient numbers of cells. To solve this problem, we attempted to culture bone-marrow-derived mesenchymal stem cells (BM-MSC, which are supposed to secrete several cytokines that promote angiogenesis. We also focused on using platelet-rich plasma (PRP as a supplement for cell culture instead of fetal bovine serum. Human BM-MSC obtained from healthy volunteers expanded rapidly when cultured with 10% PRP prepared from their own blood. FACS analysis revealed that these cultured human MSC were homogeneous populations, and chromosomal analysis showed a normal karyotype. Moreover, the angiogenetic effect was apparent two weeks after human BM-MSC were injected into the ischemic muscle in SCID mice. Tumor formation was not detected three months after injection into SCID mice either subcutaneously or intramuscularly. To simulate clinical settings, canine BM-MSC were grown with canine PRP and injected into their ischemic muscles. We confirmed that donor cells existed in situ two and six weeks after operation without any side effects. These results suggest that cultured human BM-MSC can be a promising cell source for therapeutic angiogenesis.

  1. Kefiran suppresses antigen-induced mast cell activation.

    Science.gov (United States)

    Furuno, Tadahide; Nakanishi, Mamoru

    2012-01-01

    Kefir is a traditional fermented milk beverage produced by kefir grains in the Caucasian countries. Kefiran produced by Lactobacillus kefiranofaciens in kefir grains is an exopolysaccharide having a repeating structure with glucose and galactose residues in the chain sequence and has been suggested to exert many health-promoting effects such as immunomodulatory, hypotensive, hypocholesterolemic activities. Here we investigated the effects of kefiran on mast cell activation induced by antigen. Pretreatment with kefiran significantly inhibited antigen-induced Ca(2+) mobilization, degranulation, and tumor necrosis factor-α production in bone marrow-derived mast cells (BMMCs) in a dose-dependent manner. The phosphorylation of Akt, glycogen synthase kinase 3β, and extracellular signal-regulated kinases (ERKs) after antigen stimulation was also suppressed by pretreatment of BMMCs with kefiran. These findings indicate that kefiran suppresses mast cell degranulation and cytokine production by inhibiting the Akt and ERKs pathways, suggesting an anti-inflammatory effect for kefiran.

  2. Inhibitory effects of Piper betle on production of allergic mediators by bone marrow-derived mast cells and lung epithelial cells.

    Science.gov (United States)

    Wirotesangthong, Mali; Inagaki, Naoki; Tanaka, Hiroyuki; Thanakijcharoenpath, Witchuda; Nagai, Hiroichi

    2008-03-01

    The leaves of the Piper betle Linn. (Piperaceae) are used in traditional medicine and possess anti-oxidant, anti-bacterial, anti-fungal, anti-diabetic and radioprotective activities. However, little is known about their anti-allergic activity. Therefore, the effects of P. betle ethanolic extract (PE) on the production of histamine and granulocyte macrophage-colony-stimulating factor (GM-CSF) by murine bone marrow mast cells (BMMCs) and on the secretion of eotaxin and IL-8 by the human lung epithelial cell line, BEAS-2B, were investigated in vitro. PE significantly decreased histamine and GM-CSF produced by an IgE-mediated hypersensitive reaction, and inhibited eotaxin and IL-8 secretion in a TNF-alpha and IL-4-induced allergic reaction. The results suggest that P. betle may offer a new therapeutic approach for the control of allergic diseases through inhibition of production of allergic mediators.

  3. Mast cells enhance T cell activation: Importance of mast cell-derived TNF

    Science.gov (United States)

    Nakae, Susumu; Suto, Hajime; Kakurai, Maki; Sedgwick, Jonathon D.; Tsai, Mindy; Galli, Stephen J.

    2005-05-01

    Mast cells are not only important effector cells in immediate hypersensitivity reactions and immune responses to pathogens but also can contribute to T cell-mediated disorders. However, the mechanisms by which mast cells might influence T cells in such settings are not fully understood. We find that mast cells can enhance proliferation and cytokine production in multiple T cell subsets. Mast cell-dependent enhancement of T cell activation can be promoted by FcRI-dependent mast cell activation, TNF production by both mast cells and T cells, and mast cell-T cell contact. However, at high concentrations of cells, mast cells can promote T cell activation independent of IgE or TNF. Finally, mast cells also can promote T cell activation by means of soluble factors. These findings identify multiple mechanisms by which mast cells can influence T cell proliferation and cytokine production. allergy | asthma | autoimmunity | cytokines | immune response

  4. Marrow-derived mesenchymal stem cells: role in epithelial tumor cell determination.

    Science.gov (United States)

    Fierro, Fernando A; Sierralta, Walter D; Epuñan, Maria J; Minguell, José J

    2004-01-01

    Marrow stroma represents an advantageous environment for development of micrometastatic cells. Within the cellular structure of marrow stroma, mesenchymal stem cells (MSC) have been postulated as an interacting target for disseminated cancer cells. The studies reported here were performed to gain more information on the interaction of the human breast cancer cell line MCF-7 with human bone marrow-derived MSC cells and to investigate whether this interaction affects tumor cell properties. The results showed that after co-culture with MSC, changes were detected in the morphology, proliferative capacity and aggregation pattern of MCF-7 cells, but these parameters were not affected after the co-culture of MSC cells with a non-tumorigenic breast epithelial cell line, MCF-10. Since the indirect culture of MCF-7 with MSC or its products also resulted in functional changes in the tumor cells, we evaluated whether these effects could be attributed to growth factors produced by MSC cells. It was found that VEGF and IL-6 mimic the effects produced by MSC or its products on the proliferation and aggregation properties of MCF-7, cells, respectively. Thus, it seems that after entry of disseminated tumor cells into the marrow space, their proliferative and morphogenetic organization patterns are modified after interaction with distinct stromal cells and/or with specific signals from the marrow microenvironment.

  5. Effects of marrow storage at 4 degrees C on the subsequent generation of long-term marrow cultures

    International Nuclear Information System (INIS)

    Takahashi, M.; Singer, J.W.

    1985-01-01

    The present study was undertaken to examine the effect of marrow preservation at 4 degrees C on subsequent long-term culture, which evaluates both hematopoietic precursor cells and hematopoietic microenvironmental cells. Storage of unfractionated marrow was superior to storage of buffy-coat cells in tissue culture medium with 20% fetal calf serum. CFU-C recovery in unfractionated marrow was 48.4% at four days and 21.4% at seven days. Long-term marrow cultures from cells stored at 4 degrees C for up to seven days produced CFU-C for up to seven weeks and established confluent marrow stromal cell layers. Suspension cultures of marrow cells preserved at 4 degrees C for seven days cultured with irradiated allogeneic marrow stromal cell layers from normal long-term marrow cultures showed significantly increased CFU-C production from week 2 to week 5 when compared with the control cultures without adherent cell layers. These data suggest that marrow storage at 4 degrees C for up to seven days preserves early hematopoietic precursor cells and microenvironmental cells and may be used for autologous rescue from marrow ablative therapy

  6. Small Molecule-BIO Accelerates and Enhances Marrow-Derived Mesenchymal Stem Cell in Vitro Chondrogenesis

    Directory of Open Access Journals (Sweden)

    Mohamadreza Baghaban Eslaminejad

    2014-03-01

    Full Text Available Background: Hyaline cartilage defects exhibit a major challenge in the field of orthopedic surgery owing to its limited repair capacity. On the other hand, mesenchymal stem cells (MSCs are regarded as potent cells with a property of cartilage regeneration. We aimed to optimize marrow-derived MSC chondrogenic culture using a small bioactive molecule referred to as BIO. Methods: MSCs from the marrow of NMRI mice were extracted, culture-expanded, and characterized. Micro-mass culture was then established for chondrogenic differentiation (control group. The cultures of MSC in chondrogenic medium supplemented with 0.01, 0.05, 0.1, and 1 µM BIO were taken as the experimental groups. Cartilage differentiation was examined by both histological sections and real-time PCR for Sox9, aggrecan, and collagen II at different time points. Moreover, the involvement of the Wnt pathway was investigated. Results: Based on histological sections, there was seemingly more intense metachromatic matrix produced in the cultures with 0.01 µM BIO. In this experimental group, cartilage-specific genes tended to be upregulated at day 14 compared to day 21 of the control group, indicating the accelerating effect of BIO on cartilage differentiation. Overall, there was statistically a significant increase (P=0.01 in the expression level of cartilage-specific genes in cultures with 0.01 µM BIO (enhancing effects. These upregulations appeared to be mediated through the Wnt pathway evident from the significant upregulation of T-cell factor and beta-catenin molecules (P=0.01. Conclusion: Taken together, BIO at 0.01 µM could accelerate and enhance in vitro chondrogenesis of mouse marrow-derived MSCs. Please cite this article as: Baghaban Eslaminejad MR, Fallah N. Small Molecule-BIO Accelerates and Enhances Marrow-Derived Mesenchymal Stem Cell in Vitro Chondrogenesis. Iran J Med Sci. 2014;39(2:107-116.

  7. Contribution of engineered nanomaterials physicochemical properties to mast cell degranulation

    Science.gov (United States)

    Johnson, Monica M.; Mendoza, Ryan; Raghavendra, Achyut J.; Podila, Ramakrishna; Brown, Jared M.

    2017-03-01

    The rapid development of engineered nanomaterials (ENMs) has grown dramatically in the last decade, with increased use in consumer products, industrial materials, and nanomedicines. However, due to increased manufacturing, there is concern that human and environmental exposures may lead to adverse immune outcomes. Mast cells, central to the innate immune response, are one of the earliest sensors of environmental insult and have been shown to play a role in ENM-mediated immune responses. Our laboratory previously determined that mast cells are activated via a non-FcɛRI mediated response following silver nanoparticle (Ag NP) exposure, which was dependent upon key physicochemical properties. Using bone marrow-derived mast cells (BMMCs), we tested the hypothesis that ENM physicochemical properties influence mast cell degranulation. Exposure to 13 physicochemically distinct ENMs caused a range of mast degranulation responses, with smaller sized Ag NPs (5 nm and 20 nm) causing the most dramatic response. Mast cell responses were dependent on ENMs physicochemical properties such as size, apparent surface area, and zeta potential. Surprisingly, minimal ENM cellular association by mast cells was not correlated with mast cell degranulation. This study suggests that a subset of ENMs may elicit an allergic response and contribute to the exacerbation of allergic diseases.

  8. Skin Mast Cell Promotion in Random Skin Flaps in Rats using Bone Marrow Mesenchymal Stem Cells and Amniotic Membrane

    Science.gov (United States)

    Chehelcheraghi, Farzaneh; Abbaszadeh, Abolfazl; Tavafi, Magid

    2018-03-06

    Skin flap procedures are employed in plastic surgery, but failure can lead to necrosis of the flap. Studies have used bone marrow mesenchymal stem cells (BM-MSCs) to improve flap viability. BM-MSCs and acellular amniotic membrane (AAM) have been introduced as alternatives. The objective of this study was to evaluate the effect of BM-MSCs and AAM on mast cells of random skin flaps (RSF) in rats. RSFs (80 × 30 mm) were created on 40 rats that were randomly assigned to one of four groups, including (I) AAM, (II) BM-MSCs, (III) BM-MSCs/AAM, and (IV) saline (control). Transplantation was carried out during the procedure (zero day). Flap necrosis was observed on day 7, and skin samples were collected from the transition line of the flap to evaluate the total number and types of mast cells. The development and the total number of mast cells were related to the development of capillaries. The results of one-way ANOVA indicated that there was no statistically significant difference between the mean numbers of mast cell types for different study groups. However, the difference between the total number of mast cells in the study groups was statistically significant (p = 0.001). The present study suggests that the use of AAM/BM-MSCs can improve the total number of mast cells and accelerate the growth of capillaries at the transient site in RSFs in rats.

  9. Platelet lysate as a novel serum-free media supplement for the culture of equine bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Naskou, Maria C; Sumner, Scarlett M; Chocallo, Anna; Kemelmakher, Hannah; Thoresen, Merrilee; Copland, Ian; Galipeau, Jacques; Peroni, John F

    2018-03-22

    Mesenchymal stem cells (MSCs) produced for clinical purposes rely on culture media containing fetal bovine serum (FBS) which is xenogeneic and has the potential to significantly alter the MSC phenotype, rendering these cells immunogenic. As a result of bovine-derived exogenous proteins expressed on the cell surface, MSCs may be recognized by the host immune system as non-self and be rejected. Platelet lysate (PL) may obviate some of these concerns and shows promising results in human medicine as a possible alternative to FBS. Our goal was to evaluate the use of equine platelet lysate (ePL) pooled from donor horses in place of FBS to culture equine MSCs. We hypothesized that ePL, produced following apheresis, will function as the sole media supplement to accelerate the expansion of equine bone marrow-derived MSCs without altering their phenotype and their immunomodulatory capacity. Platelet concentrate was obtained via plateletpheresis and ePL were produced via freeze-thaw and centrifugation cycles. Population doublings (PD) and doubling time (DT) of bone marrow-derived MSCs (n = 3) cultured with FBS or ePL media were calculated. Cell viability, immunophenotypic analysis, and trilineage differentiation capacity of MSCs were assessed accordingly. To assess the ability of MSCs to modulate inflammatory responses, E. coli lipopolysaccharide (LPS)-stimulated monocytes were cocultured with MSCs cultured in the two different media formulations, and cell culture supernatants were assayed for the production of tumor necrosis factor (TNF)-α. Our results showed that MSCs cultured in ePL media exhibited similar proliferation rates (PD and DT) compared with those cultured in FBS at individual time points. MSCs cultured in ePL showed a statistically significant increased viability following a single washing step, expressed similar levels of MSC markers compared to FBS, and were able to differentiate towards the three lineages. Finally, MSCs cultured in ePL efficiently suppressed

  10. Association of mast cell-derived VEGF and proteases in Dengue shock syndrome.

    Directory of Open Access Journals (Sweden)

    Takahisa Furuta

    Full Text Available BACKGROUND: Recent in-vitro studies have suggested that mast cells are involved in Dengue virus infection. To clarify the role of mast cells in the development of clinical Dengue fever, we compared the plasma levels of several mast cell-derived mediators (vascular endothelial cell growth factor [VEGF], soluble VEGF receptors [sVEGFRs], tryptase, and chymase and -related cytokines (IL-4, -9, and -17 between patients with differing severity of Dengue fever and healthy controls. METHODOLOGY/PRINCIPAL FINDINGS: The study was performed at Children's Hospital No. 2, Ho Chi Minh City, and Vinh Long Province Hospital, Vietnam from 2002 to 2005. Study patients included 103 with Dengue fever (DF, Dengue hemorrhagic fever (DHF, and Dengue shock syndrome (DSS, as diagnosed by the World Health Organization criteria. There were 189 healthy subjects, and 19 febrile illness patients of the same Kinh ethnicity. The levels of mast cell-derived mediators and -related cytokines in plasma were measured by ELISA. VEGF and sVEGFR-1 levels were significantly increased in DHF and DSS compared with those of DF and controls, whereas sVEGFR-2 levels were significantly decreased in DHF and DSS. Significant increases in tryptase and chymase levels, which were accompanied by high IL-9 and -17 concentrations, were detected in DHF and DSS patients. By day 4 of admission, VEGF, sVEGFRs, and proteases levels had returned to similar levels as DF and controls. In-vitro VEGF production by mast cells was examined in KU812 and HMC-1 cells, and was found to be highest when the cells were inoculated with Dengue virus and human Dengue virus-immune serum in the presence of IL-9. CONCLUSIONS: As mast cells are an important source of VEGF, tryptase, and chymase, our findings suggest that mast cell activation and mast cell-derived mediators participate in the development of DHF. The two proteases, particularly chymase, might serve as good predictive markers of Dengue disease severity.

  11. Different culture media affect growth characteristics, surface marker distribution and chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells.

    Science.gov (United States)

    Hagmann, Sebastien; Moradi, Babak; Frank, Sebastian; Dreher, Thomas; Kämmerer, Peer Wolfgang; Richter, Wiltrud; Gotterbarm, Tobias

    2013-07-30

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) play an important role in modern tissue engineering, while distinct variations of culture media compositions and supplements have been reported. Because MSCs are heterogeneous regarding their regenerative potential and their surface markers, these parameters were compared in four widely used culture media compositions. MSCs were isolated from bone marrow and expanded in four established cell culture media. MSC yield/1000 MNCs, passage time and growth index were observed. In P4, typical MSC surface markers were analysed by fluorescence cytometry. Additionally, chondrogenic, adipogenic and osteogenic differentiation potential were evaluated. Growth index and P0 cell yield varied importantly between the media. The different expansion media had a significant influence on the expression of CD10, CD90, CD105, CD140b CD146 and STRO-1. While no significant differences were observed regarding osteogenic and adipogenic differentiation, chondrogenic differentiation was superior in medium A as reflected by GAG/DNA content. The choice of expansion medium can have a significant influence on growth, differentiation potential and surface marker expression of mesenchymal stromal cells, which is of fundamental importance for tissue engineering procedures.

  12. Imaging immune response of skin mast cells in vivo with two-photon microscopy

    Science.gov (United States)

    Li, Chunqiang; Pastila, Riikka K.; Lin, Charles P.

    2012-02-01

    Intravital multiphoton microscopy has provided insightful information of the dynamic process of immune cells in vivo. However, the use of exogenous labeling agents limits its applications. There is no method to perform functional imaging of mast cells, a population of innate tissue-resident immune cells. Mast cells are widely recognized as the effector cells in allergy. Recently their roles as immunoregulatory cells in certain innate and adaptive immune responses are being actively investigated. Here we report in vivo mouse skin mast cells imaging with two-photon microscopy using endogenous tryptophan as the fluorophore. We studied the following processes. 1) Mast cells degranulation, the first step in the mast cell activation process in which the granules are released into peripheral tissue to trigger downstream reactions. 2) Mast cell reconstitution, a procedure commonly used to study mast cells functioning by comparing the data from wild type mice, mast cell-deficient mice, and mast-cell deficient mice reconstituted with bone marrow-derived mast cells (BMMCs). Imaging the BMMCs engraftment in tissue reveals the mast cells development and the efficiency of BMMCs reconstitution. We observed the reconstitution process for 6 weeks in the ear skin of mast cell-deficient Kit wsh/ w-sh mice by two-photon imaging. Our finding is the first instance of imaging mast cells in vivo with endogenous contrast.

  13. Local Xenotransplantation of Bone Marrow Derived Mast Cells (BMMCs) Improves Functional Recovery of Transected Sciatic Nerve in Cat: A Novel Approach in Cell Therapy.

    Science.gov (United States)

    Mohammadi, Rahim; Anousheh, Dana; Alaei, Mohammad-Hazhir; Nikpasand, Amin; Rostami, Hawdam; Shahrooz, Rasoul

    2018-04-01

    To determine the effects of bone marrow derived mast cells (BMMCs) on functional recovery of transected sciatic nerve in animal model of cat. A 20-mm sciatic nerve defect was bridged using a silicone nerve guide filled with BMMCs in BMMC group. In Sham-surgery group (SHAM), the sciatic nerve was only exposed and manipulated. In control group (SILOCONE) the gap was repaired with a silicone nerve guide and both ends were sealed using sterile Vaseline to avoid leakage and the nerve guide was filled with 100 μL of phosphate-buffered saline alone. In cell treated group ([SILOCONE/BMMC) the nerve guide was filled with 100 μL BMMCs (2× 106 cells/100 μL). The regenerated nerve fibers were studied, biomechanically, histologically and immunohiscochemically 6 months later. Biomechanical studies confirmed faster recovery of regenerated axons in BMMCs transplanted animals compared to control group ( p <0.05). Morphometric indices of the regenerated fibers showed that the number and diameter of the myelinated fibers were significantly higher in BMMCs transplanted animals than in control group ( p <0.05). In immunohistochemistry, location of reactions to S-100 in BMMCs transplanted animals was clearly more positive than that in control group. BMMCs xenotransplantation could be considered as a readily accessible source of cells that could improve recovery of transected sciatic nerve.

  14. Immortalized porcine mesenchymal cells derived from nasal mucosa, lungs, lymph nodes, spleen and bone marrow retain their stemness properties and trigger the expression of siglec-1 in co-cultured blood monocytic cells.

    Science.gov (United States)

    Garba, Abubakar; Desmarets, Lowiese M B; Acar, Delphine D; Devriendt, Bert; Nauwynck, Hans J

    2017-01-01

    Mesenchymal stromal cells have been isolated from different sources. They are multipotent cells capable of differentiating into many different cell types, including osteocytes, chondrocytes and adipocytes. They possess a therapeutic potential in the management of immune disorders and the repair of damaged tissues. Previous work in our laboratory showed an increase of the percentages of CD172a+, CD14+, CD163+, Siglec-1+, CD4+ and CD8+ hematopoietic cells, when co-cultured with immortalized mesenchymal cells derived from bone marrow. The present work aimed to demonstrate the stemness properties of SV40-immortalized mesenchymal cells derived from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow and their immunomodulatory effect on blood monocytes. Mesenchymal cells from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow were isolated and successfully immortalized using simian virus 40 large T antigen (SV40LT) and later, co-cultured with blood monocytes, in order to examine their differentiation stage (expression of Siglec-1). Flow cytometric analysis revealed that the five mesenchymal cell lines were positive for mesenchymal cell markers CD105, CD44, CD90 and CD29, but lacked the expression of myeloid cell markers CD16 and CD11b. Growth analysis of the cells demonstrated that bone marrow derived-mesenchymal cells proliferated faster compared with those derived from the other tissues. All five mesenchymal cell lines co-cultured with blood monocytes for 1, 2 and 7 days triggered the expression of siglec-1 in the monocytes. In contrast, no siglec-1+ cells were observed in monocyte cultures without mesenchymal cell lines. Mesenchymal cells isolated from nasal mucosa, lungs, spleen, lymph nodes and bone marrow were successfully immortalized and these cell lines retained their stemness properties and displayed immunomodulatory effects on blood monocytes.

  15. (E,Z)-3-(3',5'-Dimethoxy-4'-hydroxy-benzylidene)-2-indolinone blocks mast cell degranulation.

    Science.gov (United States)

    Kiefer, S; Mertz, A C; Koryakina, A; Hamburger, M; Küenzi, P

    2010-05-12

    (E,Z)-3-(3',5'-Dimethoxy-4'-hydroxy-benzylidene)-2-indolinone (indolinone) is an alkaloid that has been identified as a pharmacologically active compound in extracts of the traditional anti-inflammatory herb Isatis tinctoria. Indolinone has been shown to inhibit compound 48/80-induced mast cell degranulation in vitro. Application of indolinone to bone marrow derived mast cells showed that it was uniformly distributed in the cytoplasm and that cellular uptake was terminated within minutes. Pre-treatment of IgE-sensitized mast cells with 100nM indolinone rendered them insensitive against FcvarepsilonRI-receptor dependent degranulation. However, upstream signalling induced by antigen such as activation of PI3-K and MAPK remained unaffected. We conclude that indolinone blocks mast cell degranulation at the level of granule exocitosis with an IC(50) of 54nm.

  16. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    International Nuclear Information System (INIS)

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica; Gonzalez Espinosa, Claudia

    2010-01-01

    Research highlights: → Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. → CoCl 2 -induced VEGF secretion in mast cells occurs by a Ca 2+ -insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. → Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits FcεRI-dependent anaphylactic degranulation in mast cells. → Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl 2 ) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl 2 promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl 2 -induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl 2 -induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl 2 in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals-dependent Fyn kinase activation.

  17. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados del IPN (Cinvestav, IPN) (Mexico); Gonzalez Espinosa, Claudia, E-mail: cgonzal@cinvestav.mx [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados del IPN (Cinvestav, IPN) (Mexico)

    2010-10-15

    Research highlights: {yields} Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. {yields} CoCl{sub 2}-induced VEGF secretion in mast cells occurs by a Ca{sup 2+}-insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. {yields} Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits Fc{epsilon}RI-dependent anaphylactic degranulation in mast cells. {yields} Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl{sub 2}) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl{sub 2} promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl{sub 2}-induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl{sub 2}-induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl{sub 2} in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals

  18. Mast Cell Subsets and Their Functional Modulation by the Acanthocheilonema viteae Product ES-62

    Directory of Open Access Journals (Sweden)

    Dimity H. Ball

    2013-01-01

    Full Text Available ES-62, an immunomodulator secreted by filarial nematodes, exhibits therapeutic potential in mouse models of allergic inflammation, at least in part by inducing the desensitisation of FcεRI-mediated mast cell responses. However, in addition to their pathogenic roles in allergic and autoimmune diseases, mast cells are important in fighting infection, wound healing, and resolving inflammation, reflecting that mast cells exhibit a phenotypic and functional plasticity. We have therefore characterised the differential functional responses to antigen (via FcεRI and LPS and their modulation by ES-62 of the mature peritoneal-derived mast cells (PDMC; serosal and those of the connective tissue-like mast cells (CTMC and the mucosal-like mast cells derived from bone marrow progenitors (BMMC as a first step to produce disease tissue-targeted therapeutics based on ES-62 action. All three mast cell populations were rendered hyporesponsive by ES-62 and whilst the mechanisms underlying such desensitisation have not been fully delineated, they reflect a downregulation of calcium and PKCα signalling. ES-62 also downregulated MyD88 and PKCδ in mucosal-type BMMC but not PDMC, the additional signals targeted in mucosal-type BMMC likely reflecting that these cells respond to antigen and LPS by degranulation and cytokine secretion whereas PDMC predominantly respond in a degranulation-based manner.

  19. Molecular and stimulus-response profiles illustrate heterogeneity between peripheral and cord blood-derived human mast cells

    DEFF Research Database (Denmark)

    Jensen, Bettina M; Frandsen, Pernille; Raaby, Ellen Margrethe Nedergaard

    2014-01-01

    Different protocols exist for in vitro development of HuMCs from hematopoietic stem cells, which results in distinct mast cells regarding molecular markers and activation patterns. Here, we introduce a SR profile using immunological, neurogenic, and pharmacological stimuli to characterize cellular...... functionality. Mast cells were obtained from three culture protocols using two types of PBdMCs (CD34(+) PBdMC or CD133(+) PBdMC) and one type of CBdMC (CD133(+) CBdMC). We analyzed resting cells for specific mast cell markers at protein and mRNA levels, thereby creating a molecular profile. To characterize......-IgE stimulation. Here, the SR profile identified the CD133(+) PBdMC as the most active cells regarding secretion of IL-10, IL-13, GM-CSF, and TNF-α. Cells from all three culture protocols, however, produced IL-10 spontaneously at comparable levels. We recommend validating mast cell cultures by means of molecular...

  20. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita; Barhanpurkar, Amruta P.; Pote, Satish T. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Jhaveri, Hiral M. [Department of Periodontics and Oral Implantology, Dr. D.Y. Patil Dental College and Hospital, Pune (India); Mishra, Gyan C. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Wani, Mohan R., E-mail: mohanwani@nccs.res.in [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India)

    2010-03-12

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.

  1. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    International Nuclear Information System (INIS)

    Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita; Barhanpurkar, Amruta P.; Pote, Satish T.; Jhaveri, Hiral M.; Mishra, Gyan C.; Wani, Mohan R.

    2010-01-01

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.

  2. Intestinal mucosal mast cells from rats infected with Nippostrongylus brasiliensis contain protease-resistant chondroitin sulfate di-B proteoglycans

    International Nuclear Information System (INIS)

    Stevens, R.L.; Lee, T.D.G.; Seldin, D.C.; Austen, K.F.; Befus, A.D.; Bienenstock, J.

    1986-01-01

    Rats infected with the helminth Nippostrongylus brasiliensis were injected i.p. with 2 mCi of [ 35 S] sulfate on days 13, 15, 17, and 19 after infection. The intestines were removed from animals on day 20 or 21 after infection, the intestinal cells were obtained by collagenase treatment and mechanical dispersion of the tissue, and the 35 S-labeled mucosal mast cells (MMC) were enriched to 60 to 65% purity by Percoll centrifugation. The isolated proteoglycans were of approx. 150,000 m.w., were resistant to pronase degradation, and contained highly sulfated chondroitin sulfate side chains. The presence in normal mammalian cells of chondroitin sulfate proteoglycans that contain a high percentage of the unusual disulfated di-B disaccharide has not been previously reported. The rat intestinal MMC proteoglycans are the first chondroitin sulfate proteoglycans that have been isolated from an enriched populations of normal mast cells. They are homologous to the chondroitin sulfate-rich proteoglycans of the transformed rat basophilic leumekia-1 cell and the cultured interleukin 3-dependent mouse bone marrow-derived mast cell, in that these chondroitin sulfate proteoglycans are all highly sulfated, protease-resistant proteoglycans

  3. Bone marrow-derived fibroblast growth factor-2 induces glial cell proliferation in the regenerating peripheral nervous system

    Directory of Open Access Journals (Sweden)

    Ribeiro-Resende Victor

    2012-07-01

    Full Text Available Abstract Background Among the essential biological roles of bone marrow-derived cells, secretion of many soluble factors is included and these small molecules can act upon specific receptors present in many tissues including the nervous system. Some of the released molecules can induce proliferation of Schwann cells (SC, satellite cells and lumbar spinal cord astrocytes during early steps of regeneration in a rat model of sciatic nerve transection. These are the major glial cell types that support neuronal survival and axonal growth following peripheral nerve injury. Fibroblast growth factor-2 (FGF-2 is the main mitogenic factor for SCs and is released in large amounts by bone marrow-derived cells, as well as by growing axons and endoneurial fibroblasts during development and regeneration of the peripheral nervous system (PNS. Results Here we show that bone marrow-derived cell treatment induce an increase in the expression of FGF-2 in the sciatic nerve, dorsal root ganglia and the dorsolateral (DL region of the lumbar spinal cord (LSC in a model of sciatic nerve transection and connection into a hollow tube. SCs in culture in the presence of bone marrow derived conditioned media (CM resulted in increased proliferation and migration. This effect was reduced when FGF-2 was neutralized by pretreating BMMC or CM with a specific antibody. The increased expression of FGF-2 was validated by RT-PCR and immunocytochemistry in co-cultures of bone marrow derived cells with sciatic nerve explants and regenerating nerve tissue respectivelly. Conclusion We conclude that FGF-2 secreted by BMMC strongly increases early glial proliferation, which can potentially improve PNS regeneration.

  4. Silk fibroin/chitosan thin film promotes osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Li, Da-Wei; He, Jin; He, Feng-Li; Liu, Ya-Li; Liu, Yang-Yang; Ye, Ya-Jing; Deng, Xudong; Yin, Da-Chuan

    2018-04-01

    As a biodegradable polymer thin film, silk fibroin/chitosan composite film overcomes the defects of pure silk fibroin and chitosan films, respectively, and shows remarkable biocompatibility, appropriate hydrophilicity and mechanical properties. Silk fibroin/chitosan thin film can be used not only as metal implant coating for bone injury repair, but also as tissue engineering scaffold for skin, cornea, adipose, and other soft tissue injury repair. However, the biocompatibility of silk fibroin/chitosan thin film for mesenchymal stem cells, a kind of important seed cell of tissue engineering and regenerative medicine, is rarely reported. In this study, silk fibroin/chitosan film was prepared by solvent casting method, and the rat bone marrow-derived mesenchymal stem cells were cultured on the silk fibroin/chitosan thin film. Osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells were induced, respectively. The proliferation ability, osteogenic and adipogenic differentiation abilities of rat bone marrow-derived mesenchymal stem cells were systematically compared between silk fibroin/chitosan thin film and polystyrene tissue culture plates. The results showed that silk fibroin/chitosan thin film not only provided a comparable environment for the growth and proliferation of rat bone marrow-derived mesenchymal stem cells but also promoted their osteogenic and adipogenic differentiation. This work provided information of rat bone marrow-derived mesenchymal stem cells behavior on silk fibroin/chitosan thin film and extended the application of silk fibroin/chitosan thin film. Based on the results, we suggested that the silk fibroin/chitosan thin film could be a promising material for tissue engineering of bone, cartilage, adipose, and skin.

  5. Trophic effects of adipose-tissue-derived and bone-marrow-derived mesenchymal stem cells enhance cartilage generation by chondrocytes in co-culture.

    Science.gov (United States)

    Pleumeekers, M M; Nimeskern, L; Koevoet, J L M; Karperien, M; Stok, K S; van Osch, G J V M

    2018-01-01

    Combining mesenchymal stem cells (MSCs) and chondrocytes has great potential for cell-based cartilage repair. However, there is much debate regarding the mechanisms behind this concept. We aimed to clarify the mechanisms that lead to chondrogenesis (chondrocyte driven MSC-differentiation versus MSC driven chondroinduction) and whether their effect was dependent on MSC-origin. Therefore, chondrogenesis of human adipose-tissue-derived MSCs (hAMSCs) and bone-marrow-derived MSCs (hBMSCs) combined with bovine articular chondrocytes (bACs) was compared. hAMSCs or hBMSCs were combined with bACs in alginate and cultured in vitro or implanted subcutaneously in mice. Cartilage formation was evaluated with biochemical, histological and biomechanical analyses. To further investigate the interactions between bACs and hMSCs, (1) co-culture, (2) pellet, (3) Transwell® and (4) conditioned media studies were conducted. The presence of hMSCs-either hAMSCs or hBMSCs-increased chondrogenesis in culture; deposition of GAG was most evidently enhanced in hBMSC/bACs. This effect was similar when hMSCs and bAC were combined in pellet culture, in alginate culture or when conditioned media of hMSCs were used on bAC. Species-specific gene-expression analyses demonstrated that aggrecan was expressed by bACs only, indicating a predominantly trophic role for hMSCs. Collagen-10-gene expression of bACs was not affected by hBMSCs, but slightly enhanced by hAMSCs. After in-vivo implantation, hAMSC/bACs and hBMSC/bACs had similar cartilage matrix production, both appeared stable and did not calcify. This study demonstrates that replacing 80% of bACs by either hAMSCs or hBMSCs does not influence cartilage matrix production or stability. The remaining chondrocytes produce more matrix due to trophic factors produced by hMSCs.

  6. Histamine release from rodent and human mast cells induced by protoporphyrin and ultraviolet light: studies of the mechanism of mast-cell activation in erythropoietic protoporphyria

    International Nuclear Information System (INIS)

    Glover, R.A.; Bailey, C.S.; Barrett, K.E.; Wasserman, S.I.; Gigli, I.

    1990-01-01

    We report that protoporphyrin (PP) and ultraviolet light (UVA) induces histamine release from rat peritoneal mast cells, mouse bone marrow mast cells and human cutaneous mast cells in a dose- and temperature-dependent manner. The mast-cell activation was associated with loss of membrane integrity and inhibited by the hydrogen peroxide scavenger, catalase. Histamine release was independent of extracellular calcium in the rodent mast cells, but was markedly reduced in the absence of calcium in human cells. These findings indicate that PP and UVA induce mast-cell-mediator release by a process that may involve hydrogen peroxide formation. There appear to be differences in response to PP and UVA between rodent and human mast cells. (author)

  7. Histamine release from rodent and human mast cells induced by protoporphyrin and ultraviolet light: studies of the mechanism of mast-cell activation in erythropoietic protoporphyria

    Energy Technology Data Exchange (ETDEWEB)

    Glover, R.A.; Bailey, C.S.; Barrett, K.E.; Wasserman, S.I.; Gigli, I. (California Univ., San Diego, CA (USA). Dept. of Medicine)

    1990-04-01

    We report that protoporphyrin (PP) and ultraviolet light (UVA) induces histamine release from rat peritoneal mast cells, mouse bone marrow mast cells and human cutaneous mast cells in a dose- and temperature-dependent manner. The mast-cell activation was associated with loss of membrane integrity and inhibited by the hydrogen peroxide scavenger, catalase. Histamine release was independent of extracellular calcium in the rodent mast cells, but was markedly reduced in the absence of calcium in human cells. These findings indicate that PP and UVA induce mast-cell-mediator release by a process that may involve hydrogen peroxide formation. There appear to be differences in response to PP and UVA between rodent and human mast cells. (author).

  8. Role of whole bone marrow, whole bone marrow cultured cells, and mesenchymal stem cells in chronic wound healing.

    Science.gov (United States)

    Rodriguez-Menocal, Luis; Shareef, Shahjahan; Salgado, Marcela; Shabbir, Arsalan; Van Badiavas, Evangelos

    2015-03-13

    Recent evidence has shown that bone marrow cells play critical roles during the inflammatory, proliferative and remodeling phases of cutaneous wound healing. Among the bone marrow cells delivered to wounds are stem cells, which can differentiate into multiple tissue-forming cell lineages to effect, healing. Gaining insight into which lineages are most important in accelerating wound healing would be quite valuable in designing therapeutic approaches for difficult to heal wounds. In this report we compared the effect of different bone marrow preparations on established in vitro wound healing assays. The preparations examined were whole bone marrow (WBM), whole bone marrow (long term initiating/hematopoietic based) cultured cells (BMC), and bone marrow derived mesenchymal stem cells (BM-MSC). We also applied these bone marrow preparations in two murine models of radiation induced delayed wound healing to determine which had a greater effect on healing. Angiogenesis assays demonstrated that tube formation was stimulated by both WBM and BMC, with WBM having the greatest effect. Scratch wound assays showed higher fibroblast migration at 24, 48, and 72 hours in presence of WBM as compared to BM-MSC. WBM also appeared to stimulate a greater healing response than BMC and BM-MSC in a radiation induced delayed wound healing animal model. These studies promise to help elucidate the role of stem cells during repair of chronic wounds and reveal which cells present in bone marrow might contribute most to the wound healing process.

  9. Generation of mast cells from mouse fetus: analysis of differentiation and functionality, and transcriptome profiling using next generation sequencer.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Fukuishi

    Full Text Available While gene knockout technology can reveal the roles of proteins in cellular functions, including in mast cells, fetal death due to gene manipulation frequently interrupts experimental analysis. We generated mast cells from mouse fetal liver (FLMC, and compared the fundamental functions of FLMC with those of bone marrow-derived mouse mast cells (BMMC. Under electron microscopy, numerous small and electron-dense granules were observed in FLMC. In FLMC, the expression levels of a subunit of the FcεRI receptor and degranulation by IgE cross-linking were comparable with BMMC. By flow cytometry we observed surface expression of c-Kit prior to that of FcεRI on FLMC, although on BMMC the expression of c-Kit came after FcεRI. The surface expression levels of Sca-1 and c-Kit, a marker of putative mast cell precursors, were slightly different between bone marrow cells and fetal liver cells, suggesting that differentiation stage or cell type are not necessarily equivalent between both lineages. Moreover, this indicates that phenotypically similar mast cells may not have undergone an identical process of differentiation. By comprehensive analysis using the next generation sequencer, the same frequency of gene expression was observed for 98.6% of all transcripts in both cell types. These results indicate that FLMC could represent a new and useful tool for exploring mast cell differentiation, and may help to elucidate the roles of individual proteins in the function of mast cells where gene manipulation can induce embryonic lethality in the mid to late stages of pregnancy.

  10. Generation of mast cells from mouse fetus: analysis of differentiation and functionality, and transcriptome profiling using next generation sequencer.

    Science.gov (United States)

    Fukuishi, Nobuyuki; Igawa, Yuusuke; Kunimi, Tomoyo; Hamano, Hirofumi; Toyota, Masao; Takahashi, Hironobu; Kenmoku, Hiromichi; Yagi, Yasuyuki; Matsui, Nobuaki; Akagi, Masaaki

    2013-01-01

    While gene knockout technology can reveal the roles of proteins in cellular functions, including in mast cells, fetal death due to gene manipulation frequently interrupts experimental analysis. We generated mast cells from mouse fetal liver (FLMC), and compared the fundamental functions of FLMC with those of bone marrow-derived mouse mast cells (BMMC). Under electron microscopy, numerous small and electron-dense granules were observed in FLMC. In FLMC, the expression levels of a subunit of the FcεRI receptor and degranulation by IgE cross-linking were comparable with BMMC. By flow cytometry we observed surface expression of c-Kit prior to that of FcεRI on FLMC, although on BMMC the expression of c-Kit came after FcεRI. The surface expression levels of Sca-1 and c-Kit, a marker of putative mast cell precursors, were slightly different between bone marrow cells and fetal liver cells, suggesting that differentiation stage or cell type are not necessarily equivalent between both lineages. Moreover, this indicates that phenotypically similar mast cells may not have undergone an identical process of differentiation. By comprehensive analysis using the next generation sequencer, the same frequency of gene expression was observed for 98.6% of all transcripts in both cell types. These results indicate that FLMC could represent a new and useful tool for exploring mast cell differentiation, and may help to elucidate the roles of individual proteins in the function of mast cells where gene manipulation can induce embryonic lethality in the mid to late stages of pregnancy.

  11. Bone marrow-derived mesenchymal stem cells propagate immunosuppressive/anti-inflammatory macrophages in cell-to-cell contact-independent and -dependent manners under hypoxic culture.

    Science.gov (United States)

    Takizawa, Naoki; Okubo, Naoto; Kamo, Masaharu; Chosa, Naoyuki; Mikami, Toshinari; Suzuki, Keita; Yokota, Seiji; Ibi, Miho; Ohtsuka, Masato; Taira, Masayuki; Yaegashi, Takashi; Ishisaki, Akira; Kyakumoto, Seiko

    2017-09-15

    Immunosuppressive/anti-inflammatory macrophage (Mφ), M2-Mφ that expressed the typical M2-Mφs marker, CD206, and anti-inflammatory cytokine, interleukin (IL)-10, is beneficial and expected tool for the cytotherapy against inflammatory diseases. Here, we demonstrated that bone marrow-derived lineage-positive (Lin+) blood cells proliferated and differentiated into M2-Mφs by cooperation with the bone marrow-derived mesenchymal stem cells (MSCs) under hypoxic condition: MSCs not only promoted proliferation of undifferentiated M2-Mφs, pre-M2-Mφs, in the Lin+ fraction via a proliferative effect of the MSCs-secreted macrophage colony-stimulating factor, but also promoted M2-Mφ polarization of the pre-M2-Mφs through cell-to-cell contact with the pre-M2-Mφs. Intriguingly, an inhibitor for intercellular adhesion molecule (ICAM)-1 receptor/lymphocyte function-associated antigen (LFA)-1, Rwj50271, partially suppressed expression of CD206 in the Lin+ blood cells but an inhibitor for VCAM-1 receptor/VLA-4, BIO5192, did not, suggesting that the cell-to-cell adhesion through LFA-1 on pre-M2-Mφs and ICAM-1 on MSCs was supposed to promoted the M2-Mφ polarization. Thus, the co-culture system consisting of bone marrow-derived Lin+ blood cells and MSCs under hypoxic condition was a beneficial supplier of a number of M2-Mφs, which could be clinically applicable to inflammatory diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Lin- CD34hi CD117int/hi FcεRI+ cells in human blood constitute a rare population of mast cell progenitors.

    Science.gov (United States)

    Dahlin, Joakim S; Malinovschi, Andrei; Öhrvik, Helena; Sandelin, Martin; Janson, Christer; Alving, Kjell; Hallgren, Jenny

    2016-01-28

    Mast cells are rare tissue-resident immune cells that are involved in allergic reactions, and their numbers are increased in the lungs of asthmatics. Murine lung mast cells arise from committed bone marrow-derived progenitors that enter the blood circulation, migrate through the pulmonary endothelium, and mature in the tissue. In humans, mast cells can be cultured from multipotent CD34(+) progenitor cells. However, a population of distinct precursor cells that give rise to mast cells has remained undiscovered. To our knowledge, this is the first report of human lineage-negative (Lin(-)) CD34(hi) CD117(int/hi) FcεRI(+) progenitor cells, which represented only 0.0053% of the isolated blood cells in healthy individuals. These cells expressed integrin β7 and developed a mast cell-like phenotype, although with a slow cell division capacity in vitro. Isolated Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood cells had an immature mast cell-like appearance and expressed high levels of many mast cell-related genes as compared with human blood basophils in whole-transcriptome microarray analyses. Furthermore, serglycin, tryptase, and carboxypeptidase A messenger RNA transcripts were detected by quantitative reverse transcription-polymerase chain reaction. Altogether, we propose that the Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood cells are closely related to human tissue mast cells and likely constitute an immediate precursor population, which can give rise to predominantly mast cells. Furthermore, asthmatics with reduced lung function had a higher frequency of Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood mast cell progenitors than asthmatics with normal lung function. © 2016 by The American Society of Hematology.

  13. Selective inhibition of B lymphocytes in TBTC-treated human bone marrow long-term culture.

    NARCIS (Netherlands)

    Carfi', M.; Bowe, G.; Pieters, R.; Gribaldo, L.

    2010-01-01

    Tributyltin chloride (TBTC) is well known for its immunotoxic effect, in particular towards immature thymocytes. TBTC is also known to induce adipocyte differentiation in primary human bone marrow cultures, which is reflected in the decrease in a number of adipocyte-derived cytokines, chemokines and

  14. Mast cells in lung of rat

    Directory of Open Access Journals (Sweden)

    I. Ivanova

    2017-09-01

    Full Text Available This paper is a short review of scientific literature on lung mast cells in norm and pathology that shows the current state of this problem. Particular attention is paid to the quantity, location and arrangement of the mast cells. The mast cells are a part of immune system whom origin are myeloid stem cells. They are a kind of white blood cells. Many authors from the 19th century to the present day have traced and described the role of mast cells in the human body, their structure and changes depending on the functional state of the organism. Paul Ehrlich is the first author that described in his doctoral thesis the mast cells as effectors of allergy particularly in the beginning of reaction and in acute phase of the process. Research has continued through out the 20th century and researchers' efforts are primarily focused on clarifying the structure and function of mast cells and identifying their role in pathological responses in the human body. Mast cells are found in all organs, but they predominate in peripheral blood, spleen and bone marrow. There are cells in the rat skin that live for about 12 weeks, and more recent studies have found that proliferation of mature mast cells is caused by various factors.

  15. Comparative study of adipose-derived stem cells and bone marrow-derived stem cells in similar microenvironmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Guneta, Vipra [Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Tan, Nguan Soon [School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); KK Research Centre, KK Women' s and Children Hospital, 100 Bukit Timah Road, Singapore 229899 (Singapore); Institute of Molecular and Cell Biology, Agency for Science Technology & Research - A*STAR, 61 Biopolis Drive, Proteos, Singapore 138673 (Singapore); Chan, Soon Kiat Jeremy [School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Tanavde, Vivek [Bioinformatics Institute, Agency for Science Technology & Research - A*STAR, 30 Biopolis Street, Matrix, Singapore 138671 (Singapore); Lim, Thiam Chye [Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, National University Hospital (NUH) and National University of Singapore (NUS), Kent Ridge Wing, Singapore 119074 (Singapore); Wong, Thien Chong Marcus [Plastic, Reconstructive and Aesthetic Surgery Section, Tan Tock Seng Hospital (TTSH), 11, Jalan Tan Tock Seng, Singapore 308433 (Singapore); Choong, Cleo, E-mail: cleochoong@ntu.edu.sg [Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); KK Research Centre, KK Women' s and Children Hospital, 100 Bukit Timah Road, Singapore 229899 (Singapore)

    2016-11-01

    Mesenchymal stem cells (MSCs), which were first isolated from the bone marrow, are now being extracted from various other tissues in the body, including the adipose tissue. The current study presents systematic evidence of how the adipose tissue-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (Bm-MSCs) behave when cultured in specific pro-adipogenic microenvironments. The cells were first characterized and identified as MSCs in terms of their morphology, phenotypic expression, self-renewal capabilities and multi-lineage potential. Subsequently, the proliferation and gene expression profiles of the cell populations cultured on two-dimensional (2D) adipose tissue extracellular matrix (ECM)-coated tissue culture plastic (TCP) and in three-dimensional (3D) AlgiMatrix® microenvironments were analyzed. Overall, it was found that adipogenesis was triggered in both cell populations due to the presence of adipose tissue ECM. However, in 3D microenvironments, ASCs and Bm-MSCs were predisposed to the adipogenic and osteogenic lineages respectively. Overall, findings from this study will contribute to ongoing efforts in adipose tissue engineering as well as provide new insights into the role of the ECM and cues provided by the immediate microenvironment for stem cell differentiation. - Highlights: • Native adipose tissue ECM coated on 2D TCP triggers adipogenesis in both ASCs and Bm-MSCs. • A 3D microenvironment with similar stiffness to adipose tissue induces adipogenic differentiation of ASCs. • ASCs cultured in 3D alginate scaffolds exhibit predisposition to adipogenesis. • Bm-MSCs cultured in 3D alginate scaffolds exhibit predisposition to osteogenesis. • The native microenvironment of the cells affects their differentiation behaviour in vitro.

  16. Comparative study of adipose-derived stem cells and bone marrow-derived stem cells in similar microenvironmental conditions

    International Nuclear Information System (INIS)

    Guneta, Vipra; Tan, Nguan Soon; Chan, Soon Kiat Jeremy; Tanavde, Vivek; Lim, Thiam Chye; Wong, Thien Chong Marcus; Choong, Cleo

    2016-01-01

    Mesenchymal stem cells (MSCs), which were first isolated from the bone marrow, are now being extracted from various other tissues in the body, including the adipose tissue. The current study presents systematic evidence of how the adipose tissue-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (Bm-MSCs) behave when cultured in specific pro-adipogenic microenvironments. The cells were first characterized and identified as MSCs in terms of their morphology, phenotypic expression, self-renewal capabilities and multi-lineage potential. Subsequently, the proliferation and gene expression profiles of the cell populations cultured on two-dimensional (2D) adipose tissue extracellular matrix (ECM)-coated tissue culture plastic (TCP) and in three-dimensional (3D) AlgiMatrix® microenvironments were analyzed. Overall, it was found that adipogenesis was triggered in both cell populations due to the presence of adipose tissue ECM. However, in 3D microenvironments, ASCs and Bm-MSCs were predisposed to the adipogenic and osteogenic lineages respectively. Overall, findings from this study will contribute to ongoing efforts in adipose tissue engineering as well as provide new insights into the role of the ECM and cues provided by the immediate microenvironment for stem cell differentiation. - Highlights: • Native adipose tissue ECM coated on 2D TCP triggers adipogenesis in both ASCs and Bm-MSCs. • A 3D microenvironment with similar stiffness to adipose tissue induces adipogenic differentiation of ASCs. • ASCs cultured in 3D alginate scaffolds exhibit predisposition to adipogenesis. • Bm-MSCs cultured in 3D alginate scaffolds exhibit predisposition to osteogenesis. • The native microenvironment of the cells affects their differentiation behaviour in vitro.

  17. Roles of PU.1 in monocyte- and mast cell-specific gene regulation: PU.1 transactivates CIITA pIV in cooperation with IFN-gamma.

    Science.gov (United States)

    Ito, Tomonobu; Nishiyama, Chiharu; Nakano, Nobuhiro; Nishiyama, Makoto; Usui, Yoshihiko; Takeda, Kazuyoshi; Kanada, Shunsuke; Fukuyama, Kanako; Akiba, Hisaya; Tokura, Tomoko; Hara, Mutsuko; Tsuboi, Ryoji; Ogawa, Hideoki; Okumura, Ko

    2009-07-01

    Over-expression of PU.1, a myeloid- and lymphoid-specific transcription factor belonging to the Ets family, induces monocyte-specific gene expression in mast cells. However, the effects of PU.1 on each target gene and the involvement of cytokine signaling in PU.1-mediated gene expression are largely unknown. In the present study, PU.1 was over-expressed in two different types of bone marrow-derived cultured mast cells (BMMCs): BMMCs cultured with IL-3 plus stem cell factor (SCF) and BMMCs cultured with pokeweed mitogen-stimulated spleen-conditioned medium (PWM-SCM). PU.1 over-expression induced expression of MHC class II, CD11b, CD11c and F4/80 on PWM-SCM-cultured BMMCs, whereas IL-3/SCF-cultured BMMCs expressed CD11b and F4/80, but not MHC class II or CD11c. When IFN-gamma was added to the IL-3/SCF-based medium, PU.1 transfectant acquired MHC class II expression, which was abolished by antibody neutralization or in Ifngr(-/-) BMMCs, through the induction of expression of the MHC class II transactivator, CIITA. Real-time PCR detected CIITA mRNA driven by the fourth promoter, pIV, and chromatin immunoprecipitation indicated direct binding of PU.1 to pIV in PU.1-over-expressing BMMCs. PU.1-over-expressing cells showed a marked increase in IL-6 production in response to LPS stimulation in both IL-3/SCF and PWM-SCM cultures. These results suggest that PU.1 overproduction alone is sufficient for both expression of CD11b and F4/80 and for amplification of LPS-induced IL-6 production. However, IFN-gamma stimulation is essential for PU.1-mediated transactivation of CIITA pIV. Reduced expression of mast cell-related molecules and transcription factors GATA-1/2 and up-regulation of C/EBPalpha in PU.1 transfectants indicate that enforced PU.1 suppresses mast cell-specific gene expression through these transcription factors.

  18. Regulation of endothelial cell adhesion molecule expression by mast cells, macrophages, and neutrophils.

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2011-01-01

    Full Text Available Leukocyte adhesion to the vascular endothelium and subsequent transendothelial migration play essential roles in the pathogenesis of cardiovascular diseases such as atherosclerosis. The leukocyte adhesion is mediated by localized activation of the endothelium through the action of inflammatory cytokines. The exact proinflammatory factors, however, that activate the endothelium and their cellular sources remain incompletely defined.Using bone marrow-derived mast cells from wild-type, Tnf(-/-, Ifng(-/-, Il6(-/- mice, we demonstrated that all three of these pro-inflammatory cytokines from mast cells induced the expression of vascular cell adhesion molecule-1 (VCAM-1, intercellular adhesion molecule-1 (ICAM-1, P-selectin, and E-selectin in murine heart endothelial cells (MHEC at both mRNA and protein levels. Compared with TNF-α and IL6, IFN-γ appeared weaker in the induction of the mRNA levels, but at protein levels, both IL6 and IFN-γ were weaker inducers than TNF-α. Under physiological shear flow conditions, mast cell-derived TNF-α and IL6 were more potent than IFN-γ in activating MHEC and in promoting neutrophil adhesion. Similar observations were made when neutrophils or macrophages were used. Neutrophils and macrophages produced the same sets of pro-inflammatory cytokines as did mast cells to induce MHEC adhesion molecule expression, with the exception that macrophage-derived IFN-γ showed negligible effect in inducing VCAM-1 expression in MHEC.Mast cells, neutrophils, and macrophages release pro-inflammatory cytokines such as TNF-α, IFN-γ, and IL6 that induce expression of adhesion molecules in endothelium and recruit of leukocytes, which is essential to the pathogenesis of vascular inflammatory diseases.

  19. Cells derived from young bone marrow alleviate renal aging.

    Science.gov (United States)

    Yang, Hai-Chun; Rossini, Michele; Ma, Li-Jun; Zuo, Yiqin; Ma, Ji; Fogo, Agnes B

    2011-11-01

    Bone marrow-derived stem cells may modulate renal injury, but the effects may depend on the age of the stem cells. Here we investigated whether bone marrow from young mice attenuates renal aging in old mice. We radiated female 12-mo-old 129SvJ mice and reconstituted them with bone marrow cells (BMC) from either 8-wk-old (young-to-old) or 12-mo-old (old-to-old) male mice. Transfer of young BMC resulted in markedly decreased deposition of collagen IV in the mesangium and less β-galactosidase staining, an indicator of cell senescence. These changes paralleled reduced expression of plasminogen activator inhibitor-1 (PAI-1), PDGF-B (PDGF-B), the transdifferentiation marker fibroblast-specific protein-1 (FSP-1), and senescence-associated p16 and p21. Tubulointerstitial and glomerular cells derived from the transplanted BMC did not show β-galactosidase activity, but after 6 mo, there were more FSP-1-expressing bone marrow-derived cells in old-to-old mice compared with young-to-old mice. Young-to-old mice also exhibited higher expression of the anti-aging gene Klotho and less phosphorylation of IGF-1 receptor β. Taken together, these data suggest that young bone marrow-derived cells can alleviate renal aging in old mice. Direct parenchymal reconstitution by stem cells, paracrine effects from adjacent cells, and circulating anti-aging molecules may mediate the aging of the kidney.

  20. Marrow Derived Antibody Library for the Treatment of Neuroblastoma

    Science.gov (United States)

    2015-12-01

    Award Number: W81XWH-12-1-0332 TITLE: Marrow-Derived Antibody Library for the Treatment of Neuroblastoma PRINCIPAL INVESTIGATOR: Giselle...Marrow-Derived Antibody Library for Treatment of Neuroblastoma 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...to Spectrum Health. 14. ABSTRACT Neuroblastoma (NB) is the most common solid tumor in children, which accounts for 15% of all pediatric cancer deaths

  1. Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe; Frøbert, Ole; Holst-Hansen, Claus

    2014-01-01

    Background: Treatment of myocardial infarction with bone marrow-derived mesenchymal stem cells and recently also adipose-derived stem cells has shown promising results. In contrast to clinical trials and their use of autologous bone marrow-derived cells from the ischemic patient, the animal...... myocardial infarction models are often using young donors and young, often immune-compromised, recipient animals. Our objective was to compare bone marrow-derived mesenchymal stem cells with adipose-derived stem cells from an elderly ischemic patient in the treatment of myocardial infarction, using a fully...... grown non-immunecompromised rat model. Methods: Mesenchymal stem cells were isolated from adipose tissue and bone marrow and compared with respect to surface markers and proliferative capability. To compare the regenerative potential of the two stem cell populations, male Sprague-Dawley rats were...

  2. Development of donor-derived thymic lymphomas after allogeneic bone marrow transplantation in AKR/J mice

    International Nuclear Information System (INIS)

    Yasumizu, R.; Hiai, H.; Sugiura, K.

    1988-01-01

    The transplantation of bone marrow cells from BALB/c (but not C57BL/6 and C3H/HeN) mice was observed to lead to the development of thymic lymphomas (leukemias) in AKR/J mice. Two leukemic cell lines, CAK1.3 and CAK4.4, were established from the primary culture of two thymic lymphoma, and surface phenotypes of these cell lines found to be H-2d and Thy-1.2+, indicating that these lymphoma cells are derived from BALB/c donor bone marrow cells. Further analyses of surface markers revealed that CAK1.3 is L3T4+ Lyt2+ IL2R-, whereas CAK4.4 is L3T4- Lyt2- IL2R+. Both CAK1.3 and CAK4.4 were transplantable into BALB/c but not AKR/J mice, further indicating that these cells are of BALB/c bone marrow donor origin. The cells were found to produce XC+-ecotropic viruses, but xenotropic and mink cell focus-forming viruses were undetectable. Inasmuch as thymic lymphomas are derived from bone marrow cells of leukemia-resistant BALB/c strain of mice under the allogeneic environment of leukemia-prone AKR/J mice, this animal model may serve as a useful tool not only for the analysis of leukemic relapse after bone marrow transplantation but also for elucidation of the mechanism of leukemogenesis

  3. STIM1-Directed Reorganization of Microtubules in Activated Mast Cells

    Czech Academy of Sciences Publication Activity Database

    Hájková, Zuzana; Bugajev, Viktor; Dráberová, Eduarda; Vinopal, Stanislav; Dráberová, Lubica; Janáček, Jiří; Dráber, Petr; Dráber, Pavel

    2011-01-01

    Roč. 186, č. 2 (2011), s. 913-923 ISSN 0022-1767 R&D Projects: GA ČR(CZ) GD204/09/H084; GA ČR GA204/09/1777; GA ČR GA301/09/1826; GA ČR GAP302/10/1759; GA MŠk LC545; GA MŠk(CZ) LC06063; GA AV ČR KAN200520701 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50110509 Keywords : STIM1 * bone marrow-derived mast cells * microtubules Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.788, year: 2011

  4. Changes in mast cells during acute radiation sickness(a morphometric study)

    International Nuclear Information System (INIS)

    Datsenko, A.V.; Shikhodyrov, V.V.

    1985-01-01

    Changes in the morphometric parameters of rat mast cells during acute radiation sickness have been studied. The most significant deviation of the quantitative indices of mast cells from the control values were noted at the height of the bone-marrow, at the terminal stage of the intestinal, and during the first few hours of the cerebral forms of acute radiation sickness

  5. The role of bone marrow-derived cells during the bone healing process in the GFP mouse bone marrow transplantation model.

    Science.gov (United States)

    Tsujigiwa, Hidetsugu; Hirata, Yasuhisa; Katase, Naoki; Buery, Rosario Rivera; Tamamura, Ryo; Ito, Satoshi; Takagi, Shin; Iida, Seiji; Nagatsuka, Hitoshi

    2013-03-01

    Bone healing is a complex and multistep process in which the origin of the cells participating in bone repair is still unknown. The involvement of bone marrow-derived cells in tissue repair has been the subject of recent studies. In the present study, bone marrow-derived cells in bone healing were traced using the GFP bone marrow transplantation model. Bone marrow cells from C57BL/6-Tg (CAG-EGFP) were transplanted into C57BL/6 J wild mice. After transplantation, bone injury was created using a 1.0-mm drill. Bone healing was histologically assessed at 3, 7, 14, and 28 postoperative days. Immunohistochemistry for GFP; double-fluorescent immunohistochemistry for GFP-F4/80, GFP-CD34, and GFP-osteocalcin; and double-staining for GFP and tartrate-resistant acid phosphatase were performed. Bone marrow transplantation successfully replaced the hematopoietic cells into GFP-positive donor cells. Immunohistochemical analyses revealed that osteoblasts or osteocytes in the repair stage were GFP-negative, whereas osteoclasts in the repair and remodeling stages and hematopoietic cells were GFP-positive. The results indicated that bone marrow-derived cells might not differentiate into osteoblasts. The role of bone marrow-derived cells might be limited to adjustment of the microenvironment by differentiating into inflammatory cells, osteoclasts, or endothelial cells in immature blood vessels.

  6. Onset of apoprotein E secretion during differentiation of mouse bone marrow-derived mononuclear phagocytes

    International Nuclear Information System (INIS)

    Werb, Z.; Chin, J.R.

    1983-01-01

    A number of macrophage functions were sequentially expressed when the bone marrow precursors of mononuclear phagocytes differentiated in culture in the presence of a specific growth factor, colony-stimulating factor-1. The authors defined the expression of apoprotein E (ApoE), a major secreted protein of resident peritoneal macrophages, during maturation of adherent bone marrow-derived mononuclear phagocytes into macrophages. By 5 d the bone marrow macrophages were active secretory cells, but few cells contained intracellular immunoreactive ApoE, and little, if any, ApoE was secreted. ApoE secretion was initiated at 9 d, and this correlated with an increase in the percentage of macrophages containing intracellular ApoE. The onset of ApoE secretion was selective, and little change occurred in the other major secreted proteins detected by [ 35 S]methionine incorporation. In parallel, the high rate of plasminogen activator secretion, which peaked at 7 d, decreased markedly. ApoE secretion was not associated with altered expression of the macrophage surface antigen, la, or with secretion of fibronectin. Virtually all cells in independent colonies of bone marrow-derived macrophages eventually expressed ApoE. The proliferating monocyte/macrophage-like cell lines P388D1, J774.2, WHEI-3, RAW 264.1, and MGI.D + secreted little or no ApoE. These data establish that ApoE secretion is developmentally regulated

  7. Recruitment of bone marrow derived cells during anti-angiogenic therapy in GBM : Bone marrow derived cell in GBM

    NARCIS (Netherlands)

    Boer, Jennifer C.; Walenkamp, Annemiek M. E.; den Dunnen, Wilfred F. A.

    2014-01-01

    Glioblastoma (GBM) is a highly vascular tumor characterized by rapid and invasive tumor growth, followed by oxygen depletion, hypoxia and neovascularization, which generate a network of disorganized, tortuous and permeable vessels. Recruitment of bone marrow derived cells (BMDC) is crucial for

  8. A comparison of three-dimensional culture systems to evaluate in vitro chondrogenesis of equine bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Watts, Ashlee E; Ackerman-Yost, Jeremy C; Nixon, Alan J

    2013-10-01

    To compare in vitro three-dimensional (3D) culture systems that model chondrogenesis of bone marrow-derived mesenchymal stem cells (MSCs). MSCs from five horses 2-3 years of age were consolidated in fibrin 0.3% alginate, 1.2% alginate, 2.5×10(5) cell pellets, 5×10(5) cell pellets, and 2% agarose, and maintained in chondrogenic medium with supplemental TGF-β1 for 4 weeks. Pellets and media were tested at days 1, 14, and 28 for gene expression of markers of chondrogenic maturation and hypertrophy (ACAN, COL2B, COL10, SOX9, 18S), and evaluated by histology (hematoxylin and eosin, Toluidine Blue) and immunohistochemistry (collagen type II and X). alginate, fibrin alginate (FA), and both pellet culture systems resulted in chondrogenic transformation. Adequate RNA was not obtained from agarose cultures at any time point. There was increased COL2B, ACAN, and SOX9 expression on day 14 from both pellet culture systems. On day 28, increased expression of COL2B was maintained in 5×10(5) cell pellets and there was no difference in ACAN and SOX9 between FA and both pellet cultures. COL10 expression was significantly lower in FA cultures on day 28. Collagen type II was abundantly formed in all culture systems except alginate and collagen type X was least in FA hydrogels. equine MSCs respond to 3D culture in FA blended hydrogel and both pellet culture systems with chondrogenic induction. For prevention of terminal differentiation and hypertrophy, FA culture may be superior to pellet culture systems.

  9. Listeria monocytogenes alters mast cell phenotype, mediator and osteopontin secretion in a listeriolysin-dependent manner.

    Directory of Open Access Journals (Sweden)

    Catherine E Jobbings

    Full Text Available Whilst mast cells participate in the immune defence against the intracellular bacterium Listeria monocytogenes, there is conflicting evidence regarding the ability of L. monocytogenes to infect mast cells. It is known that the pore-forming toxin listeriolysin (LLO is important for mast cell activation, degranulation and the release of pro-inflammatory cytokines. Mast cells, however, are a potential source of a wide range of cytokines, chemokines and other mediators including osteopontin, which contributes to the clearing of L. monocytogenes infections in vivo, although its source is unknown. We therefore aimed to resolve the controversy of mast cell infection by L. monocytogenes and investigated the extent of mediator release in response to the bacterium. In this paper we show that the infection of bone marrow-derived mast cells by L. monocytogenes is inefficient and LLO-independent. LLO, however, is required for calcium-independent mast cell degranulation as well as for the transient and selective downregulation of cell surface CD117 (c-kit on mast cells. We demonstrate that in addition to the key pro-inflammatory cytokines TNF-α and IL-6, mast cells release a wide range of other mediators in response to L. monocytogenes. Osteopontin, IL-2, IL-4, IL-13 and granulocyte macrophage colony-stimulating factor (GM-CSF, and chemokines including CCL2, CCL3, CCL4 and CCL5 are released in a MyD88-dependent manner. The wide range of mediators released by mast cells in response to L. monocytogenes may play an important role in the recruitment and activation of a variety of immune cells in vivo. The cocktail of mediators, however, is unlikely to skew the immune response to a particular effector response. We propose that mast cells provide a hitherto unreported source of osteopontin, and may provide an important role in co-ordinating the immune response during Listeria infection.

  10. Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis

    International Nuclear Information System (INIS)

    Aguirre, A.; Planell, J.A.; Engel, E.

    2010-01-01

    Research highlights: → BM-EPCs and MSCs establish complex, self-organizing structures in co-culture. → Co-culture decreases proliferation by cellular self-regulatory mechanisms. → Co-cultured cells present an activated proangiogenic phenotype. → qRT-PCR and cluster analysis identify new target genes playing important roles. -- Abstract: Tissue engineering aims to regenerate tissues and organs by using cell and biomaterial-based approaches. One of the current challenges in the field is to promote proper vascularization in the implant to prevent cell death and promote host integration. Bone marrow endothelial progenitor cells (BM-EPCs) and mesenchymal stem cells (MSCs) are bone marrow resident stem cells widely employed for proangiogenic applications. In vivo, they are likely to interact frequently both in the bone marrow and at sites of injury. In this study, the physical and biochemical interactions between BM-EPCs and MSCs in an in vitro co-culture system were investigated to further clarify their roles in vascularization. BM-EPC/MSC co-cultures established close cell-cell contacts soon after seeding and self-assembled to form elongated structures at 3 days. Besides direct contact, cells also exhibited vesicle transport phenomena. When co-cultured in Matrigel, tube formation was greatly enhanced even in serum-starved, growth factor free medium. Both MSCs and BM-EPCs contributed to these tubes. However, cell proliferation was greatly reduced in co-culture and morphological differences were observed. Gene expression and cluster analysis for wide panel of angiogenesis-related transcripts demonstrated up-regulation of angiogenic markers but down-regulation of many other cytokines. These data suggest that cross-talk occurs in between BM-EPCs and MSCs through paracrine and direct cell contact mechanisms leading to modulation of the angiogenic response.

  11. Kalanchoe pinnata inhibits mast cell activation and prevents allergic airway disease.

    Science.gov (United States)

    Cruz, E A; Reuter, S; Martin, H; Dehzad, N; Muzitano, M F; Costa, S S; Rossi-Bergmann, B; Buhl, R; Stassen, M; Taube, C

    2012-01-15

    Aqueous extract of Kalanchoe pinnata (Kp) have been found effective in models to reduce acute anaphylactic reactions. In the present study, we investigate the effect of Kp and the flavonoid quercetin (QE) and quercitrin (QI) on mast cell activation in vitro and in a model of allergic airway disease in vivo. Treatment with Kp and QE in vitro inhibited degranulation and cytokine production of bone marrow-derived mast cells following IgE/FcɛRI crosslinking, whereas treatment with QI had no effect. Similarly, in vivo treatment with Kp and QE decreased development of airway hyperresponsiveness, airway inflammation, goblet cell metaplasia and production of IL-5, IL-13 and TNF. In contrast, treatment with QI had no effect on these parameters. These findings demonstrate that treatment with Kp or QE is effective in treatment of allergic airway disease, providing new insights to the immunomodulatory functions of this plant. Copyright © 2011 Elsevier GmbH. All rights reserved.

  12. Inhibitory Effects of Viscum coloratum Extract on IgE/Antigen-Activated Mast Cells and Mast Cell-Derived Inflammatory Mediator-Activated Chondrocytes

    Directory of Open Access Journals (Sweden)

    Jae-Myung Yoo

    2016-12-01

    Full Text Available The accumulation and infiltration of mast cells are found in osteoarthritic lesions in humans and rodents. Nonetheless, the roles of mast cells in osteoarthritis are almost unknown. Although Viscum coloratum has various beneficial actions, its effect on allergic and osteoarthritic responses is unknown. In this study, we established an in vitro model of mast cell-mediated osteoarthritis and investigated the effect of the ethanol extract of Viscum coloratum (VEE on IgE/antigen (IgE/Ag-activated mast cells and mast cell-derived inflammatory mediator (MDIM-stimulated chondrocytes. The anti-allergic effect of VEE was evaluated by degranulation, inflammatory mediators, and the FcεRI signaling cascade in IgE/Ag-activated RBL-2H3 cells. The anti-osteoarthritic action of VEE was evaluated by cell migration, and the expression, secretion, and activity of MMPs in MDIM-stimulated SW1353 cells. VEE significantly inhibited degranulation (IC50: 93.04 μg/mL, the production of IL-4 (IC50: 73.28 μg/mL, TNF-α (IC50: 50.59 μg/mL, PGD2 and LTC4, and activation of the FcεRI signaling cascade in IgE/Ag-activated RBL-2H3 cells. Moreover, VEE not only reduced cell migration but also inhibited the expression, secretion, and/or activity of MMP-1, MMP-3, or MMP-13 in MDIM-stimulated SW1353 cells. In conclusion, VEE possesses both anti-allergic and anti-osteoarthritic properties. Therefore, VEE could possibly be considered a new herbal drug for anti-allergic and anti-osteoarthritic therapy. Moreover, the in vitro model may be useful for the development of anti-osteoarthritic drugs.

  13. Generation, isolation, and maintenance of human mast cells and mast cell lines derived from peripheral blood or cord blood

    DEFF Research Database (Denmark)

    Rådinger, Madeleine; Jensen, Bettina M; Kuehn, Hye Sun

    2010-01-01

    Antigen-mediated mast cell activation is a pivotal step in the initiation of allergic disorders including anaphylaxis and atopy. To date, studies aimed at investigating the mechanisms regulating these responses, and studies designed to identify potential ways to prevent them, have primarily been...... conducted in rodent mast cells. However, to understand how these responses pertain to human disease, and to investigate and develop novel therapies for the treatment of human mast cell-driven disease, human mast cell models may have greater relevance. Recently, a number of systems have been developed...... to allow investigators to readily obtain sufficient quantities of human mast cells to conduct these studies. These mast cells release the appropriate suite of inflammatory mediators in response to known mast cell activators including antigen. These systems have also been employed to examine the signaling...

  14. Identification of a subpopulation of marrow MSC-derived medullary adipocytes that express osteoclast-regulating molecules: marrow adipocytes express osteoclast mediators.

    Directory of Open Access Journals (Sweden)

    Vance Holt

    Full Text Available Increased marrow medullary adipogenesis and an associated decrease in bone mineral density, usually observed in elderly individuals, is a common characteristic in senile osteoporosis. In this study we investigated whether cells of the medullary adipocyte lineage have the potential to directly support the formation of osteoclasts, whose activity in bone leads to bone degradation. An in vitro mesenchymal stem cell (MSC-derived medullary adipocyte lineage culture model was used to study the expression of the important osteoclast mediators RANKL, M-CSF, SDF-1, and OPG. We further assessed whether adipocytes at a specific developmental stage were capable of supporting osteoclast-like cell formation in culture. In vitro MSC-derived medullary adipocytes showed an mRNA and protein expression profile of M-CSF, RANKL, and OPG that was dependent on its developmental/metabolic stage. Furthermore, RANKL expression was observed in MSC-derived adipocytes that were at a distinct lineage stage and these cells were also capable of supporting osteoclast-like cell formation in co-cultures with peripheral blood mononuclear cells. These results suggest a connection between medullary adipocytes and osteoclast formation in vivo and may have major significance in regards to the mechanisms of decreased bone density in senile osteoporosis.

  15. UVB-induced systemic immunosuppression: role of mast cells and histamine

    International Nuclear Information System (INIS)

    Hart, P.H.; Grimbaldeston, M.A.; Finlay-Jones, J.J.

    1999-01-01

    Full text: UVB radiation (290-320 nm) is immunosuppressive by multiple mechanisms allowing the outgrowth of UV-induced tumours in both mouse and man. Furthermore, patients with non-melanoma skin cancers have a higher risk of death from other cancers which could be explained by UV-induced immunomodulation. The mechanism(s) of suppression by UVB depend on whether the sensitising antigen is applied to the irradiated site ('local') or to non-irradiated sites ('systemic'). In the former, the activity of UV-induced TNFα is important as it affects the migration of Langerhans cells to draining lymph nodes. In contrast, histamine from dermal mast cells is critical to the early events by which UVB can suppress systemic immune responses. The prevalence of dermal mast cells in 7 strains and substrains of mice correlates directly with their susceptibility to UVB-induced systemic immunosuppression. Furthermore, mast cell depleted mice (Wf/Wf) are resistant to UVB-induced systemic immunomodulation. However, they become susceptible after reconstitution of the site to be irradiated with bone marrow derived mast cell precursors. The mice also gain susceptibility to cis-urocanic acid-induced systemic immunomodulation. There is considerable evidence that histamine is the mast cell product critical to downstream immunosuppressive events. Firstly, physiological concentrations of histamine suppress contact hypersensitivity responses. Secondly, histamine receptor antagonists halve UVB-induced systemic immunosuppression. Thirdly, mice with different UVB-susceptibilities are equally susceptible to histamine-induced immunosuppression, and finally, histamine can suppress contact hypersensitivity responses in Wf/Wf mice. We suggest that histamine may be immunomodulatory by multiple pathways. Histamine can induce the production of immunosuppressive prostanoids from keratinocytes. A lymphocyte-derived, histamine-induced suppressor factor was reported in the 1970's. More recently histamine has

  16. Use of long-term human marrow cultures to demonstrate progenitor cell precursors in marrow treated with 4-hydroperoxycyclophosphamide

    International Nuclear Information System (INIS)

    Winton, E.F.; Colenda, K.W.

    1987-01-01

    The continued retrieval of progenitor cells (CFU-GEMM, BFU-E, CFU-E, CFU-GM) from human long-term marrow cultures (LTMC) is not uncommonly used as evidence that proliferation and differentiation are occurring in more primitive hematopoietic stem cells (HSC) in these cultures. Alternatively, the continued presence of progenitors in LTMC could be the result of survival and/or limited self-renewal of progenitor cells present when the culture was initiated, and such progenitors would have little relevance to the parent HSC. The following studies were designed to determine the relative contributions of precursors of progenitor cells to the total progenitor cells present in LTMC using a two-stage regeneration model. The adherent layer in LTMC was established over 3 weeks, irradiated (875 rad) to permanently eliminate resident hematopoietic cells, and recharged with autologous cryo-preserved marrow that was either treated or not treated (control) with 4-hydroperoxycyclophosphamide (4-HC, 100 micrograms/ml for 30 min). The 4-HC-treated marrow contained no progenitor cells, yet based on clinical autologous bone marrow transplant experience, has intact HSC. Within 1-3 weeks, progenitor cells reappeared in the irradiated LTMC recharged with 4-HC-treated marrow, and were preferentially located in the adherent layer. By 2-6 weeks, the number of progenitor cells in the adherent layer of LTMC recharged with 4-HC marrow was equivalent to control LTMC. The progenitors regenerating in the irradiated LTMC recharged with 4-HC-treated marrow appear to originate from precursors of progenitor cells, perhaps HSC. We propose this model may be useful in elucidating cellular and molecular correlates of progenitor cell regeneration from precursors

  17. Bone marrow-derived microglia infiltrate into the paraventricular nucleus of chronic psychological stress-loaded mice.

    Directory of Open Access Journals (Sweden)

    Koji Ataka

    Full Text Available BACKGROUND: Microglia of the central nervous system act as sentinels and rapidly react to infection or inflammation. The pathophysiological role of bone marrow-derived microglia is of particular interest because they affect neurodegenerative disorders and neuropathic pain. The hypothesis of the current study is that chronic psychological stress (chronic PS induces the infiltration of bone marrow-derived microglia into hypothalamus by means of chemokine axes in brain and bone marrow. METHODS AND FINDINGS: Here we show that bone marrow-derived microglia specifically infiltrate the paraventricular nucleus (PVN of mice that received chronic PS. Bone marrow derived-microglia are CX3CR1(lowCCR2(+CXCR4(high, as distinct from CX3CR1(highCCR2(-CXCR4(low resident microglia, and express higher levels of interleukin-1β (IL-1β but lower levels of tumor necrosis factor-α (TNF-α. Chronic PS stimulates the expression of monocyte chemotactic protein-1 (MCP-1 in PVN neurons, reduces stromal cell-derived factor-1 (SDF-1 in the bone marrow and increases the frequency of CXCR4(+ monocytes in peripheral circulation. And then a chemokine (C-C motif receptor 2 (CCR2 or a β3-adrenoceptor blockade prevents infiltration of bone marrow-derived microglia in the PVN. CONCLUSION: Chronic PS induces the infiltration of bone marrow-derived microglia into PVN, and it is conceivable that the MCP-1/CCR2 axis in PVN and the SDF-1/CXCR4 axis in bone marrow are involved in this mechanism.

  18. Long-term culture and differentiation of porcine red bone marrow hematopoietic cells co-cultured with immortalized mesenchymal cells.

    Science.gov (United States)

    Garba, Abubakar; Acar, Delphine D; Roukaerts, Inge D M; Desmarets, Lowiese M B; Devriendt, Bert; Nauwynck, Hans J

    2017-09-01

    Mesenchymal cells are multipotent stromal cells with self-renewal, differentiation and immunomodulatory capabilities. We aimed to develop a co-culture model for differentiating hematopoietic cells on top of immortalized mesenchymal cells for studying interactions between hematopoietic and mesenchymal cells, useful for adequately exploring the therapeutic potential of mesenchymal cells. In this study, we investigated the survival, proliferation and differentiation of porcine red bone marrow hematopoietic cells co-cultured with immortalized porcine bone marrow mesenchymal cells for a period of five weeks. Directly after collection, primary porcine bone marrow mesenchymal cells adhered firmly to the bottom of the culture plates and showed a fibroblast-like appearance, one week after isolation. Upon immortalization, porcine bone marrow mesenchymal cells were continuously proliferating. They were positive for simian virus 40 (SV40) large T antigen and the mesenchymal cell markers CD44 and CD55. Isolated red bone marrow cells were added to these immortalized mesenchymal cells. Five weeks post-seeding, 92±6% of the red bone marrow hematopoietic cells were still alive and their number increased 3-fold during five weekly subpassages on top of the immortalized mesenchymal cells. The red bone marrow hematopoietic cells were originally small and round; later, the cells increased in size. Some of them became elongated, while others remained round. Tiny dendrites appeared attaching hematopoietic cells to the underlying immortalized mesenchymal cells. Furthermore, weekly differential-quick staining of the cells indicated the presence of monoblasts, monocytes, macrophages and lymphocytes in the co-cultures. At three weeks of co-culture, flow cytometry analysis showed an increased surface expression of CD172a, CD14, CD163, CD169, CD4 and CD8 up to 37±0.8%, 40±8%, 41±4%, 23±3% and 19±5% of the hematopoietic cells, respectively. In conclusion, continuous mesenchymal cell

  19. Mast cells are present in the choroid of the normal eye in most vertebrate classes.

    Science.gov (United States)

    McMenamin, Paul Gerard; Polla, Emily

    2013-07-01

    Mast cells are bone marrow-derived tissue-homing leukocytes, which have traditionally been regarded as effector cells in allergic disorders, responses against parasites, and regulation of blood flow, but a broader perspective of their functional heterogeneity, such as immunomodulation, angiogenesis, tissue repair, and remodeling after injury, is now emerging. The persistence of mast cells in connective tissues throughout the evolution of vertebrates is evidence of strong selective pressure suggesting that these cells must have multiple beneficial and important roles in normal homeostasis. While mast cells are present within the uveal tract of eutherian mammals, there is little known about their presence in the choroid of other vertebrate classes. Eye tissues from a range of vertebrate species (fish, amphibian, reptiles, birds, marsupials, monotreme, and eutherian mammals) were investigated. Tissues were fixed in either 2% glutaraldehyde, 2% paraformaldehyde or a mixture of both and processed for resin embedding. Semi-thin sections of the retina and choroid were cut and stained with toluidine blue. Mast cells were identified in the choroid of all classes of vertebrates investigated except sharks. Their morphology, location, and staining characteristics were remarkably similar from teleost fish through to eutherian mammals and bore close morphological resemblance to mammalian connective tissue mast cells. The similar morphology and distribution of mast cells in the choroid of all vertebrate classes studied suggest a basic physiological function that has been retained since the evolution of the vertebrate eye. © 2013 American College of Veterinary Ophthalmologists.

  20. Exosomes Derived from Human Bone Marrow Mesenchymal Stem Cells Promote Tumor Growth Through Hedgehog Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jin Qi

    2017-08-01

    Full Text Available Background/Aims: Mesenchymal stem/stromal cells (MSCs are known to home to sites of tumor microenvironments where they participate in the formation of the tumor microenvironment and to interplay with tumor cells. However, the potential functional effects of MSCs on tumor cell growth are controversial. Here, we, from the view of bone marrow MSC-derived exosomes, study the molecular mechanism of MSCs on the growth of human osteosarcoma and human gastric cancer cells. Methods: MSCs derived from human bone marrow (hBMSCs were isolated and cultured in complete DMEM/F12 supplemented with 10% exosome-depleted fetal bovine serum and 1% penicillin-streptomycin, cell culture supernatants containing exosomes were harvested and exosome purification was performed by ultracentrifugation. Osteosarcoma (MG63 and gastric cancer (SGC7901 cells, respectively, were treated with hBMSC-derived exosomes in the presence or absence of a small molecule inhibitor of Hedgehog pathway. Cell viability was measured by transwell invasion assay, scratch migration assay and CCK-8 test. The expression of the signaling molecules Smoothened, Patched-1, Gli1 and the ligand Shh were tested by western blot and RT-PCR. Results: In this study, we found that hBMSC-derived exosomes promoted MG63 and SGC7901 cell growth through the activation of Hedgehog signaling pathway. Inhibition of Hedgehog signaling pathway significantly suppressed the process of hBMSC-derived exosomes on tumor growth. Conclusion: Our findings demonstrated the new roles of hedgehog signaling pathway in the hBMSCs-derived exosomes induced tumor progression.

  1. Functional evaluation of bone marrow derived DC of tumor bearing mice after immunotherapy

    International Nuclear Information System (INIS)

    Li Min; Chen Cheng; Gu Tao; Zhou Huan; Zhang Feng; Zhu Yibei; Yu Gehua; Zhang Xueguang; Gu Zongjiang

    2006-01-01

    Objective: To evaluate the function of bone marrow derived DC of tumor bearing mice after immunotherapy. Methods: Tumor bearing mice were immunized with DC vaccine plus injection of agonistic anti-4-1BB monoclonal antibody. The proliferation of T cells primed with bone marrow derived DC of tumor bearing mice after immunotherapy was tested by 3 H-TdR incorporation. ELISA was employed to determine the levels of IL-2, IFN-γ and IL-10 secreted by DC primed T cells. Results: Bone marrow derived DC of tumor bearing mice was less efficient in stimulating the proliferation of T cells and IL-2 and IFN-γ secretion made by T cells. After immunotherapy, the proliferation of cells and IL-2 and IFN-γ secretionmade by T cells were enhanced. Conclusion: The function of bone marrow derived DC of tumor bearing mice after immunotherapy was ameliorated. (authors)

  2. Assay of mast cell mediators

    DEFF Research Database (Denmark)

    Rådinger, Madeleine; Jensen, Bettina M; Swindle, Emily

    2015-01-01

    Mediator release from activated mast cells is a major initiator of the symptomology associated with allergic disorders such as anaphylaxis and asthma. Thus, methods to monitor the generation and release of such mediators have widespread applicability in studies designed to understand the processes...... regulating mast cell activation and for the identification of therapeutic approaches to block mast cell-driven disease. In this chapter, we discuss approaches used for the determination of mast cell degranulation, lipid-derived inflammatory mediator production, and cytokine/chemokine gene expression as well...

  3. Blastema from rabbit ear contains progenitor cells comparable to marrow derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Mohamadreza Baghaban Eslaminejad

    2012-09-01

    Full Text Available Rabbits have the capacity to regenerate holes in their ears by forming a blastema, a tissue that is made up of a group of undifferentiated cells. The purpose of the present study was to isolate and characterize blastema progenitor cells and compare them with marrow mesenchymal stem cells (MSCs. Five New Zealand white male rabbits were used in the present study. A 2-mm hole was created in the animal ears. After 4 days, the blastema ring formed in the periphery of the hole was removed and cultivated. The cells were expanded through several subcultures and compared with the MSCs derived from the marrow of same animal in terms of in vitro differentiation capacity, growth kinetics and culture requirements for optimal proliferation. The primary cultures from both cells tended to be heterogeneous. Fibroblastic cells became progressively dominant with advancing passages. Similar to MSCs blastema passaged-3 cells succeeded to differentiate into bone, cartilage and adipose cell lineages. Even lineage specific genes tended to express in higher level in blastema cells compared to MSCs (p < 0.05. Moreover blastema cells appeared more proliferative; producing more colonies (p < 0.05. While blastema cells showed extensive proliferation in 15% fetal bovine serum (FBS, MSCs displayed higher expansion rate at 10% FBS. In conclusion, blastema from rabbit ear contains a population of fibroblastic cells much similar in characteristic to bone marrow mesenchymal stem cells. However, the two cells were different in the level of lineage-specific gene expression, the growth curve characteristics and the culture requirements.

  4. Neural stem cells induce bone-marrow-derived mesenchymal stem cells to generate neural stem-like cells via juxtacrine and paracrine interactions

    International Nuclear Information System (INIS)

    Alexanian, Arshak R.

    2005-01-01

    Several recent reports suggest that there is far more plasticity that previously believed in the developmental potential of bone-marrow-derived cells (BMCs) that can be induced by extracellular developmental signals of other lineages whose nature is still largely unknown. In this study, we demonstrate that bone-marrow-derived mesenchymal stem cells (MSCs) co-cultured with mouse proliferating or fixed (by paraformaldehyde or methanol) neural stem cells (NSCs) generate neural stem cell-like cells with a higher expression of Sox-2 and nestin when grown in NS-A medium supplemented with N2, NSC conditioned medium (NSCcm) and bFGF. These neurally induced MSCs eventually differentiate into β-III-tubulin and GFAP expressing cells with neuronal and glial morphology when grown an additional week in Neurobasal/B27 without bFGF. We conclude that juxtacrine interaction between NSCs and MSCs combined with soluble factors released from NSCs are important for generation of neural-like cells from bone-marrow-derived adherent MSCs

  5. Transfection of bone marrow derived cells with immunoregulatory proteins.

    Science.gov (United States)

    Khantakova, Julia N; Silkov, Alexander N; Tereshchenko, Valeriy P; Gavrilova, Elena V; Maksyutov, Rinat A; Sennikov, Sergey V

    2018-03-23

    In vitro electroporation gene transfer was first performed in 1982. Today, this technology has become one of the major vehicles for non-viral transfection of cells. All non-viral transfections, such as calcium phosphate precipitation, lipofection, and magnetic transfection, have been shown to achieve a transfection efficiency of up to 70% in commonly used cell lines, but not in primary cells. Here we describe the use of electroporation to transfect primary mouse bone marrow-derived cells, such as macrophages (Mφ) and dendritic cells (DCs) with high efficiencies (45%-72%) and minimal cell death. The transfection efficiencies and cell death varied depending on the culture duration of the DCs and Mφ. Moreover, the electroporation efficiency was increased when conditioning medium was used for culturing the cells. Furthermore, we demonstrated that measuring the plasmid-encoded secreted proteins is a highly sensitive method for determining the transfection efficiency. In summary, electroporation with plasmid vectors is an efficient method for producing DCs and Mφ with transient expression of immunoregulatory proteins. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. The role of Hibiscus sabdariffa L. (Roselle) in maintenance of ex vivo murine bone marrow-derived hematopoietic stem cells.

    Science.gov (United States)

    Abdul Hamid, Zariyantey; Lin Lin, Winnie Hii; Abdalla, Basma Jibril; Bee Yuen, Ong; Latif, Elda Surhaida; Mohamed, Jamaludin; Rajab, Nor Fadilah; Paik Wah, Chow; Wak Harto, Muhd Khairul Akmal; Budin, Siti Balkis

    2014-01-01

    Hematopoietic stem cells- (HSCs-) based therapy requires ex vivo expansion of HSCs prior to therapeutic use. However, ex vivo culture was reported to promote excessive production of reactive oxygen species (ROS), exposing HSCs to oxidative damage. Efforts to overcome this limitation include the use of antioxidants. In this study, the role of Hibiscus sabdariffa L. (Roselle) in maintenance of cultured murine bone marrow-derived HSCs was investigated. Aqueous extract of Roselle was added at varying concentrations (0-1000 ng/mL) for 24 hours to the freshly isolated murine bone marrow cells (BMCs) cultures. Effects of Roselle on cell viability, reactive oxygen species (ROS) production, glutathione (GSH) level, superoxide dismutase (SOD) activity, and DNA damage were investigated. Roselle enhanced the survival (P Roselle increased (P Roselle showed significant cellular genoprotective potency against H2O2-induced DNA damage. Conclusively, Roselle shows novel property as potential supplement and genoprotectant against oxidative damage to cultured HSCs.

  7. Comparison of uncultured marrow mononuclear cells and culture-expanded mesenchymal stem cells in 3D collagen-chitosan microbeads for orthopedic tissue engineering.

    Science.gov (United States)

    Wise, Joel K; Alford, Andrea I; Goldstein, Steven A; Stegemann, Jan P

    2014-01-01

    Stem cell-based therapies have shown promise in enhancing repair of bone and cartilage. Marrow-derived mesenchymal stem cells (MSC) are typically expanded in vitro to increase cell number, but this process is lengthy, costly, and there is a risk of contamination and altered cellular properties. Potential advantages of using fresh uncultured bone marrow mononuclear cells (BMMC) include heterotypic cell and paracrine interactions between MSC and other marrow-derived cells including hematopoietic, endothelial, and other progenitor cells. In the present study, we compared the osteogenic and chondrogenic potential of freshly isolated BMMC to that of cultured-expanded MSC, when encapsulated in three-dimensional (3D) collagen-chitosan microbeads. The effect of low and high oxygen tension on cell function and differentiation into orthopedic lineages was also examined. Freshly isolated rat BMMC (25 × 10(6) cells/mL, containing an estimated 5 × 10(4) MSC/mL) or purified and culture-expanded rat bone marrow-derived MSC (2 × 10(5) cells/mL) were added to a 65-35 wt% collagen-chitosan hydrogel mixture and fabricated into 3D microbeads by emulsification and thermal gelation. Microbeads were cultured in control MSC growth media in either 20% O2 (normoxia) or 5% O2 (hypoxia) for an initial 3 days, and then in control, osteogenic, or chondrogenic media for an additional 21 days. Microbead preparations were evaluated for viability, total DNA content, calcium deposition, and osteocalcin and sulfated glycosaminoglycan expression, and they were examined histologically. Hypoxia enhanced initial progenitor cell survival in fresh BMMC-microbeads, but it did not enhance osteogenic potential. Fresh uncultured BMMC-microbeads showed a similar degree of osteogenesis as culture-expanded MSC-microbeads, even though they initially contained only 1/10th the number of MSC. Chondrogenic differentiation was not strongly supported in any of the microbead formulations. This study demonstrates the

  8. Identification of resident and inflammatory bone marrow derived cells in the sclera by bone marrow and haematopoietic stem cell transplantation.

    Science.gov (United States)

    Hisatomi, Toshio; Sonoda, Koh-hei; Ishikawa, Fumihiko; Qiao, Hong; Nakazawa, Takahiro; Fukata, Mitsuhiro; Nakamura, Toru; Noda, Kousuke; Miyahara, Shinsuke; Harada, Mine; Kinoshita, Shigeru; Hafezi-Moghadam, Ali; Ishibashi, Tatsuro; Miller, Joan W

    2007-04-01

    To characterise bone marrow derived cells in the sclera under normal and inflammatory conditions, we examined their differentiation after transplantation from two different sources, bone marrow and haematopoietic stem cells (HSC). Bone marrow and HSC from green fluorescent protein (GFP) transgenic mice were transplanted into irradiated wild-type mice. At 1 month after transplantation, mice were sacrificed and their sclera examined by histology, immunohistochemistry (CD11b, CD11c, CD45), and transmission and scanning electron microscopy. To investigate bone marrow derived cell recruitment under inflammatory conditions, experimental autoimmune uveitis (EAU) was induced in transplanted mice. GFP positive cells were distributed in the entire sclera and comprised 22.4 (2.8)% (bone marrow) and 28.4 (10.9)% (HSC) of the total cells in the limbal zone and 18.1 (6.7)% (bone marrow) and 26.3 (3.4)% (HSC) in the peripapillary zone. Immunohistochemistry showed that GFP (+) CD11c (+), GFP (+) CD11b (+) cells migrated in the sclera after bone marrow and HSC transplantation. Transmission and scanning electron microscopy revealed antigen presenting cells among the scleral fibroblasts. In EAU mice, vast infiltration of GFP (+) cells developed into the sclera. We have provided direct and novel evidence for the migration of bone marrow and HSC cells into the sclera differentiating into macrophages and dendritic cells. Vast infiltration of bone marrow and HSC cells was found to be part of the inflammatory process in EAU.

  9. Multiple regulatory roles of the mouse transmembrane adaptor protein NTAL in gene transcription and mast cell physiology.

    Directory of Open Access Journals (Sweden)

    Iva Polakovicova

    Full Text Available Non-T cell activation linker (NTAL; also called LAB or LAT2 is a transmembrane adaptor protein that is expressed in a subset of hematopoietic cells, including mast cells. There are conflicting reports on the role of NTAL in the high affinity immunoglobulin E receptor (FcεRI signaling. Studies carried out on mast cells derived from mice with NTAL knock out (KO and wild type mice suggested that NTAL is a negative regulator of FcεRI signaling, while experiments with RNAi-mediated NTAL knockdown (KD in human mast cells and rat basophilic leukemia cells suggested its positive regulatory role. To determine whether different methodologies of NTAL ablation (KO vs KD have different physiological consequences, we compared under well defined conditions FcεRI-mediated signaling events in mouse bone marrow-derived mast cells (BMMCs with NTAL KO or KD. BMMCs with both NTAL KO and KD exhibited enhanced degranulation, calcium mobilization, chemotaxis, tyrosine phosphorylation of LAT and ERK, and depolymerization of filamentous actin. These data provide clear evidence that NTAL is a negative regulator of FcεRI activation events in murine BMMCs, independently of possible compensatory developmental alterations. To gain further insight into the role of NTAL in mast cells, we examined the transcriptome profiles of resting and antigen-activated NTAL KO, NTAL KD, and corresponding control BMMCs. Through this analysis we identified several genes that were differentially regulated in nonactivated and antigen-activated NTAL-deficient cells, when compared to the corresponding control cells. Some of the genes seem to be involved in regulation of cholesterol-dependent events in antigen-mediated chemotaxis. The combined data indicate multiple regulatory roles of NTAL in gene expression and mast cell physiology.

  10. Good manufacturing practice-compliant expansion of marrow-derived stem and progenitor cells for cell therapy.

    Science.gov (United States)

    Gastens, Martin H; Goltry, Kristin; Prohaska, Wolfgang; Tschöpe, Diethelm; Stratmann, Bernd; Lammers, Dirk; Kirana, Stanley; Götting, Christian; Kleesiek, Knut

    2007-01-01

    Ex vivo expansion is being used to increase the number of stem and progenitor cells for autologous cell therapy. Initiation of pivotal clinical trials testing the efficacy of these cells for tissue repair has been hampered by the challenge of assuring safe and high-quality cell production. A strategy is described here for clinical-scale expansion of bone marrow (BM)-derived stem cells within a mixed cell population in a completely closed process from cell collection through postculture processing using sterile connectable devices. Human BM mononuclear cells (BMMNC) were isolated, cultured for 12 days, and washed postharvest using either standard open procedures in laminar flow hoods or using automated closed systems. Conditions for these studies were similar to long-term BM cultures in which hematopoietic and stromal components are cultured together. Expansion of marrow-derived stem and progenitor cells was then assessed. Cell yield, number of colony forming units (CFU), phenotype, stability, and multilineage differentiation capacity were compared from the single pass perfusion bioreactor and standard flask cultures. Purification of BMMNC using a closed Ficoll gradient process led to depletion of 98% erythrocytes and 87% granulocytes, compared to 100% and 70%, respectively, for manual processing. After closed system culture, mesenchymal progenitors, measured as CD105+CD166+CD14-CD45- and fibroblastic CFU, expanded 317- and 364-fold, respectively, while CD34+ hematopoietic progenitors were depleted 10-fold compared to starting BMMNC. Cultured cells exhibited multilineage differentiation by displaying adipogenic, osteogenic, and endothelial characteristics in vitro. No significant difference was observed between manual and bioreactor cultures. Automated culture and washing of the cell product resulted in 181 x 10(6) total cells that were viable and contained fibroblastic CFU for at least 24 h of storage. A combination of closed, automated technologies enabled

  11. Enhanced neuro-therapeutic potential of Wharton's Jelly-derived mesenchymal stem cells in comparison with bone marrow mesenchymal stem cells culture.

    Science.gov (United States)

    Drela, Katarzyna; Lech, Wioletta; Figiel-Dabrowska, Anna; Zychowicz, Marzena; Mikula, Michał; Sarnowska, Anna; Domanska-Janik, Krystyna

    2016-04-01

    Substantial inconsistencies in mesenchymal stem (stromal) cell (MSC) therapy reported in early translational and clinical studies may indicate need for selection of the proper cell population for any particular therapeutic purpose. In the present study we have examined stromal stem cells derived either from umbilical cord Wharton's Jelly (WJ-MSC) or bone marrow (BM-MSC) of adult, healthy donors. The cells characterized in accordance with the International Society for Cellular Therapy (ISCT) indications as well as other phenotypic and functional parameters have been compared under strictly controlled culture conditions. WJ-MSC, in comparison with BM-MSC, exhibited a higher proliferation rate, a greater expansion capability being additionally stimulated under low-oxygen atmosphere, enhanced neurotrophic factors gene expression and spontaneous tendency toward a neural lineage differentiation commitment confirmed by protein and gene marker induction. Our data suggest that WJ-MSC may represent an example of immature-type "pre-MSC," where a substantial cellular component is embryonic-like, pluripotent derivatives with the default neural-like differentiation. These cells may contribute in different extents to nearly all classical MSC populations adversely correlated with the age of cell donors. Our data suggest that neuro-epithelial markers, like nestin, stage specific embryonic antigens-4 or α-smooth muscle actin expressions, may serve as useful indicators of MSC culture neuro-regeneration-associated potency. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  12. Characterization of human erythroid burst-promoting activity derived from bone marrow conditioned media

    International Nuclear Information System (INIS)

    Porter, P.N.; Ogawa, M.

    1982-01-01

    Bone marrow conditioned media (BMCM) increases burst number and the incorporation of 59 Fe into heme by bursts when peripheral blood or bone marrow cells are cultured at limiting serum concentrations. Burst-promoting activity (BPA) has now been purified approximately 300-fold from this source by ion-exchange chromatography on DEAE-Sephadex and absorption chromatography on hydroxyapatite agarose gel. Marrow BPA increased burst number and hemoglobin (Hb) synthesis in a dose-dependent manner. A larger increase in Hb synthesis than in burst number was consistently observed, which was probably a consequence of the increase in the number of cells per burst that occurs in the presence of BPA. The role of BPA in culture could be distinguished from erythropoietin (Ep), since no bursts grew in the absence of Ep, whether or not BPA was present, and since it had no effect on the growth of erythroid colonies scored at day 5 of culture. Our purified fraction did not support the growth of CFU-C in culture. Activity was stable at temperatures of 70 degrees C or lower for 10 min; exposure to 80 degrees C resulted in approximately 50% loss of activity. BPA was completely inactivated by treatment at 100 degrees C for 10 min. Thus, human bone marrow cells produce a heat-sensitive factor that specifically promotes the growth of early erythroid progenitors in culture

  13. Impact of culture medium on maturation of bone marrow-derived murine dendritic cells via the aryl hydrocarbon receptor.

    Science.gov (United States)

    Ilchmann, Anne; Krause, Maren; Heilmann, Monika; Burgdorf, Sven; Vieths, Stefan; Toda, Masako

    2012-05-01

    The aryl hydrocarbon receptor (AhR) plays a role in modulating dendritic cell (DC) immunity. Iscove's modified Dulbecco's medium (IMDM) contains higher amounts of AhR ligands than RPMI1640 medium. Here, we examined the influence of AhR ligand-containing medium on the maturation and T-cell stimulatory capacity of bone marrow-derived murine dendritic cells (BMDCs). BMDCs generated in IMDM (BMDCs/IMDM) expressed higher levels of co-stimulatory and MHC class II molecules, and lower levels of pattern-recognition receptors, especially toll-like receptor (TLR) 2, TLR4, and scavenger receptor class A (SR-A), compared to BMDCs generated in RPMI1640 medium (BMDCs/RPMI). Cytokine responses against ligands of TLRs and antigen uptake mediated by SR-A were remarkably reduced in BMDCs/IMDM, whereas the T-cell stimulatory capacity of the cells was enhanced, compared to BMDCs/RPMI. The enhanced maturation of BMDCs/IMDM was attenuated in the presence of an AhR antagonist, indicating involvement of AhR in the maturation. Interestingly, BMDCs/IMDM induced Th2 and Th17 differentiation at low and high concentrations of antigen respectively, when co-cultured with CD4(+) T-cells from antigen-specific T-cell receptor transgenic mice. In contrast, BMDCs/RPMI induced Th1 differentiation predominantly in the co-culture. Taken together, optimal selection of medium seems necessary when studying BMDCs, depending on the target receptors on the cell surface of DCs and type of helper T-cells for the co-culture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Role of mast cell- and non-mast cell-derived inflammatory mediators in immunologic induction of synaptic plasticity

    Directory of Open Access Journals (Sweden)

    A.A.C. Albuquerque

    1997-07-01

    Full Text Available We have previously discovered a long-lasting enhancement of synaptic transmission in mammal autonomic ganglia caused by immunological activation of ganglionic mast cells. Subsequent to mast cell activation, lipid and peptide mediators are released which may modulate synaptic function. In this study we determined whether some mast cell-derived mediators, prostaglandin D2 (PGD2; 1.0 µM, platelet aggregating factor (PAF; 0.3 µM and U44619 (a thromboxane analogue; 1.0 µM, and also endothelin-1 (ET-1; 0.5 µM induce synaptic potentiation in the guinea pig superior cervical ganglion (SCG, and compared their effects on synaptic transmission with those induced by a sensitizing antigen, ovalbumin (OVA; 10 µg/ml. The experiments were carried out on SCGs isolated from adult male guinea pigs (200-250 g actively sensitized to OVA, maintained in oxygenated Locke solution at 37oC. Synaptic potentiation was measured through alterations of the integral of the post-ganglionic compound action potential (CAP. All agents tested caused long-term (LTP; duration ³30 min or short-term (STP; <30 min potentiation of synaptic efficacy, as measured by the increase in the integral of the post-ganglionic CAP. The magnitude of mediator-induced potentiation was never the same as the antigen-induced long-term potentiation (A-LTP. The agent that best mimicked the antigen was PGD2, which induced a 75% increase in CAP integral for LTP (antigen: 94% and a 34% increase for STP (antigen: 91%. PAF-, U44619-, and ET-1-induced increases in CAP integral ranged for LTP from 34 to 47%, and for STP from 0 to 26%. These results suggest that the agents investigated may participate in the induction of A-LTP

  15. Mast cells contribute to the mucosal adjuvant effect of CTA1-DD after IgG-complex formation.

    Science.gov (United States)

    Fang, Yu; Larsson, Lisa; Mattsson, Johan; Lycke, Nils; Xiang, Zou

    2010-09-01

    Mast cell activation is one of the most dramatic immune-mediated responses the body can encounter. In the worst scenario (i.e., anaphylaxis), this response is fatal. However, the importance of mast cells as initiators and effectors of both innate and adaptive immunity in healthy individuals has recently been appreciated. It was reported that mast cell activation can be used as an adjuvant to promote Ag-specific humoral immune responses upon vaccination. In this study, we have used a clinically relevant mucosal adjuvant, cholera toxin A1 subunit (CTA1)-DD, which is a fusion protein composed of CTA1, the ADP-ribosylating part of cholera toxin, and DD, two Ig-binding domains derived from Staphylococcus aureus protein A. CTA1-DD in combination with polyclonal IgG induced degranulation and production of TNF-alpha from mouse mast cells. Furthermore, CTA1-DD and polyclonal IgG complex induced mast cell degranulation in mouse skin tissue and nasal mucosa. We also found that intranasal immunization with hapten (4-hydroxy-3-nitrophenyl) acetyl (NP) coupled to chicken gammaglobulin admixed with CTA1-DD complexed with polyclonal IgG greatly enhanced serum IgG anti-NP Ab responses and stimulated higher numbers of NP-specific plasma cells in the bone marrow as compared with that observed in mice immunized with NP-chicken gammaglobulin with CTA1-DD alone. This CTA1-DD/IgG complex-mediated enhancement was mast cell dependent because it was absent in mast cell-deficient Kit(W-sh/W-sh) mice. In conclusion, our data suggest that a clinically relevant adjuvant, CTA1-DD, exerts additional augmenting effects through activation of mucosal mast cells, clearly demonstrating that mast cells could be further exploited for improving the efficacy of mucosal vaccines.

  16. The skeletal cell-derived molecule sclerostin drives bone marrow adipogenesis.

    Science.gov (United States)

    Fairfield, Heather; Falank, Carolyne; Harris, Elizabeth; Demambro, Victoria; McDonald, Michelle; Pettitt, Jessica A; Mohanty, Sindhu T; Croucher, Peter; Kramer, Ina; Kneissel, Michaela; Rosen, Clifford J; Reagan, Michaela R

    2018-02-01

    The bone marrow niche is a dynamic and complex microenvironment that can both regulate, and be regulated by the bone matrix. Within the bone marrow (BM), mesenchymal stromal cell (MSC) precursors reside in a multi-potent state and retain the capacity to differentiate down osteoblastic, adipogenic, or chondrogenic lineages in response to numerous biochemical cues. These signals can be altered in various pathological states including, but not limited to, osteoporotic-induced fracture, systemic adiposity, and the presence of bone-homing cancers. Herein we provide evidence that signals from the bone matrix (osteocytes) determine marrow adiposity by regulating adipogenesis in the bone marrow. Specifically, we found that physiologically relevant levels of Sclerostin (SOST), which is a Wnt-inhibitory molecule secreted from bone matrix-embedded osteocytes, can induce adipogenesis in 3T3-L1 cells, mouse ear- and BM-derived MSCs, and human BM-derived MSCs. We demonstrate that the mechanism of SOST induction of adipogenesis is through inhibition of Wnt signaling in pre-adipocytes. We also demonstrate that a decrease of sclerostin in vivo, via both genetic and pharmaceutical methods, significantly decreases bone marrow adipose tissue (BMAT) formation. Overall, this work demonstrates a direct role for SOST in regulating fate determination of BM-adipocyte progenitors. This provides a novel mechanism for which BMAT is governed by the local bone microenvironment, which may prove relevant in the pathogenesis of certain diseases involving marrow adipose. Importantly, with anti-sclerostin therapy at the forefront of osteoporosis treatment and a greater recognition of the role of BMAT in disease, these data are likely to have important clinical implications. © 2017 Wiley Periodicals, Inc.

  17. Use of bone marrow derived stem cells in a fracture non-union

    Directory of Open Access Journals (Sweden)

    Binod C. Raulo

    2012-01-01

    Full Text Available This is an attempt of using in vitro cultured mesenchymal stem cells (MSCs from bone marrow in joining of a fracture non-union. Bone marrow cells were obtained and differentially centrifuged for MSCs that were grown in vitro in mesenchymal stem cell basal medium aseptically, for 10 d. The cell mass was injected around the fracture non-union. Healthy conditions of development of tissue regeneration at the trauma site and due bone joining were recorded. It is concluded that in vitro cultured MSCs had a blithesome effect on the fracture non-union.

  18. Incidence of trypanosomes in the Canada goose as revealed by bone marrow culture

    Science.gov (United States)

    Diamond, L.S.; Herman, C.M.

    1954-01-01

    1. Techniques are described for the cultural isolation of trypanosomes from avian bone marrow obtained from living birds or at autopsy. A new medium SNB-9 (saline-neopeptone-blood) is described. In addition to being a good medium for growing avian trypanosomes, it is excellent for growing trypanosomes of amphibians and mammals. 2. Evidence is presented demonstrating the superiority of (a) cultures over stained smears for detecting the presence of trypanosomes in the Canada goose, and (b) bone marrow over heart blood of this species as a source of trypanosomes for culture. 3. In April 1952, from cultures of bone marrow collected at autopsy it was demonstrated that trypanosome infection occurred in 33 (40.2%) of 82 Canada geese from the Pea Island National Wildlife Refuge. On February 17, 1953, cultures of bone marrow obtained from living birds revealed presence of trypanosomes in 12 (20.7%) of 58 geese from the same refuge. On February 26, 1953, by employing the latter method, 9 (20.4%) of 44 geese from Blackwater National Wildlife Refuge were shown to harbor the parasites. In another survey ninety-two geese from seven national wildlife refuges subjected to the biopsy technique showed evidence of infection in 13 (14.1 %) birds and indicated that trypanosome infection is widely distributed in this host.

  19. Monitoring Tumour Cell Purge by Long Term Marrow Culture in Acute Leukemia

    International Nuclear Information System (INIS)

    El-Masry, M.; Hashem, T. M.

    2001-01-01

    Purging of leukemic cells from bone marrow harvested for autologous bone marrow transplantation (ABMT) remains a challenge. This work aimed at evaluating the efficacy of long-term marrow culture (LTMC) on purging leukemic progenitors in acute leukemia. Design and methods: We planned to study the presence of immunoglobulin heavy (lgH) chain gene rearrangements by polymerase chain reaction (PCR) at diagnosis for bone marrow of 23 patients with acute leukemia. LTMC was performed only for patients who showed positive IgH chain gene monoclonality at diagnosis. The efficiency of purge was evaluated by PCR for monoclonal IgH chain gene on weekly basis of LTMC. Results: Of the 23 studied cases, 18 (78.26%) showed positive clonal IgH chain gene at diagnosis. LTMC study showed that 6/]8 (33.33%), 3/18 (16.67%),7/18 (38.89%) and 2/18 (11.11 %) underwent complete purging of the leukemic progenitors at the first, second, third and fourth weeks of culture, respectively. Follow up could be performed for 14 positive ALL cases after induction of remission; 12/14 (85.7%) showed minimal residual disease (MRD) while only two cases did not show MRD. Complete purging of the latter two cases by LTMC occurred on the second and third weeks of culture. Conclusion: LTMC is a useful and successful method for leukemic cell purging. LTMC should be undertaken at initial diagnosis and on an individual basis. Each case should be dealt with solely to determine at which week of culture complete purging could be obtained for subsequent autologous grafting of the purged marrow

  20. Degranulating mast cells in fibrotic regions of human tumors and evidence that mast cell heparin interferes with the growth of tumor cells through a mechanism involving fibroblasts

    International Nuclear Information System (INIS)

    Samoszuk, Michael; Kanakubo, Emi; Chan, John K

    2005-01-01

    The purpose of this study was to test the hypothesis that mast cells that are present in fibrotic regions of cancer can suppress the growth of tumor cells through an indirect mechanism involving peri-tumoral fibroblasts. We first immunostained a wide variety of human cancers for the presence of degranulated mast cells. In a subsequent series of controlled in vitro experiments, we then co-cultured UACC-812 human breast cancer cells with normal fibroblasts in the presence or absence of different combinations and doses of mast cell tryptase, mast cell heparin, a lysate of the human mast cell line HMC-1, and fibroblast growth factor-7 (FGF-7), a powerful, heparin-binding growth factor for breast epithelial cells. Degranulating mast cells were localized predominantly in the fibrous tissue of every case of breast cancer, head and neck cancer, lung cancer, ovarian cancer, non-Hodgkin's lymphoma, and Hodgkin's disease that we examined. Mast cell tryptase and HMC-1 lysate had no significant effect on the clonogenic growth of cancer cells co-cultured with fibroblasts. By contrast, mast cell heparin at multiple doses significantly reduced the size and number of colonies of tumor cells co-cultured with fibroblasts, especially in the presence of FGF-7. Neither heparin nor FGF-7, individually or in combination, produced any significant effect on the clonogenic growth of breast cancer cells cultured without fibroblasts. Degranulating mast cells are restricted to peri-tumoral fibrous tissue, and mast cell heparin is a powerful inhibitor of clonogenic growth of tumor cells co-cultured with fibroblasts. These results may help to explain the well-known ability of heparin to inhibit the growth of primary and metastatic tumors

  1. Degranulating mast cells in fibrotic regions of human tumors and evidence that mast cell heparin interferes with the growth of tumor cells through a mechanism involving fibroblasts

    Directory of Open Access Journals (Sweden)

    Kanakubo Emi

    2005-09-01

    Full Text Available Abstract Background The purpose of this study was to test the hypothesis that mast cells that are present in fibrotic regions of cancer can suppress the growth of tumor cells through an indirect mechanism involving peri-tumoral fibroblasts. Methods We first immunostained a wide variety of human cancers for the presence of degranulated mast cells. In a subsequent series of controlled in vitro experiments, we then co-cultured UACC-812 human breast cancer cells with normal fibroblasts in the presence or absence of different combinations and doses of mast cell tryptase, mast cell heparin, a lysate of the human mast cell line HMC-1, and fibroblast growth factor-7 (FGF-7, a powerful, heparin-binding growth factor for breast epithelial cells. Results Degranulating mast cells were localized predominantly in the fibrous tissue of every case of breast cancer, head and neck cancer, lung cancer, ovarian cancer, non-Hodgkin's lymphoma, and Hodgkin's disease that we examined. Mast cell tryptase and HMC-1 lysate had no significant effect on the clonogenic growth of cancer cells co-cultured with fibroblasts. By contrast, mast cell heparin at multiple doses significantly reduced the size and number of colonies of tumor cells co-cultured with fibroblasts, especially in the presence of FGF-7. Neither heparin nor FGF-7, individually or in combination, produced any significant effect on the clonogenic growth of breast cancer cells cultured without fibroblasts. Conclusion Degranulating mast cells are restricted to peri-tumoral fibrous tissue, and mast cell heparin is a powerful inhibitor of clonogenic growth of tumor cells co-cultured with fibroblasts. These results may help to explain the well-known ability of heparin to inhibit the growth of primary and metastatic tumors.

  2. Effects of BIO on proliferation and chondrogenic differentiation of mouse marrow derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Nasrin Fallah

    2013-06-01

    Full Text Available In vitroexpansion of mesenchymal stem cell (MSCs into large number is necessary fortheir application in cell-based treatment of articular cartilage defects. On the other hand,some studies have indicated that BIO (6-Bromoindirubin-3-Oxime possesses mitogeniceffects on cell culture. The objective of the present study was to examine the effect of BIO onin vitro expansion and chondrogenic differentiation of mouse marrow-derived MSCs. Theculture was established using bone marrow tissue obtained from 10 NMRI mice. MSC natureof the isolated cells was verified according to the minimal criteria proposed for MSC.Passaged-3 cells were seeded in 24-well culture plates and treated by 0.05, 0.01, 0.1, 1.0 and1.5 μM BIO forsevendays. The culture without BIO was taken as the control. At the end ofcultivation period, the cultures were examinedfor viable cell number which was then used tocalculate population doubling time (PDT. The BIO with higher proliferation-promoting effectwas investigated for its chondrogenic effect on MSC culture. There was significantly moreviable cells at the cultures treated by 0.1 μM BIO. At this culture the cells tended to doubletheir population in rapid rate (each 43.07 hr than the cells treated with the other BIOconcentrations (p< 0.05. Interestingly treatment of MSC chondrogenic culture with 0.1 μMBIO ledto the up-regulation of cartilage specific genes including aggrecan, collagen II andSox9. In conclusion BIO at 0.1 μM could enhance mouse MSC in vitro proliferation as well astheir chondrogenic differentiation. These findings would be of great importance for the fieldof regenerative medicine.

  3. Genomic and transcriptomic comparison of allergen and silver nanoparticle-induced mast cell degranulation reveals novel non-immunoglobulin E mediated mechanisms.

    Science.gov (United States)

    Johnson, Monica; Alsaleh, Nasser; Mendoza, Ryan P; Persaud, Indushekhar; Bauer, Alison K; Saba, Laura; Brown, Jared M

    2018-01-01

    Mast cells represent a crucial cell type in host defense; however, maladaptive responses are contributing factors in the pathogenesis of allergic diseases. Previous work in our laboratory has shown that exposure to silver nanoparticles (AgNPs) results in mast cell degranulation via a non-immunoglobulin E (IgE) mechanism. In this study, we utilized a systems biology approach to identify novel genetic factors playing a role in AgNP-induced mast cell degranulation compared to the classical activation by antigen-mediated FcεRI crosslinking. Mast cell degranulation was assessed in bone marrow-derived mast cells isolated from 23 strains of mice following exposure to AgNPs or FcεRI crosslinking with dinitrophenyl (DNP). Utilizing strain-dependent mast cell degranulation, an association mapping study identified 3 chromosomal regions that were significantly associated with mast cell degranulation by AgNP and one non-overlapping region associated with DNP-mediated degranulation. Two of the AgNP-associated regions correspond to genes previously reported to be associated with allergic disorders (Trac2 on chromosome 1 and Traf6 on chromosome 2) and an uncharacterized gene identified on chromosome 1 (Fam126b). In conjunction, RNA-sequencing performed on mast cells from the high and low responder strains revealed 3754 and 34 differentially expressed genes that were unique to DNP and AgNP exposures, respectively. Select candidate genes include Ptger4, a gene encoding a G-protein coupled receptor in addition to a multifunctional adaptor protein, Txnip, that may be driving mast cell degranulation by AgNP. Taken together, we identified novel genes that have not been previously shown to play a role in nanoparticle-mediated mast cell activation. With further functional evaluation in the future, these genes may be potential therapeutic targets in the treatment of non-IgE mediated mast cell-linked disorders.

  4. Paracrine effects of bone marrow-derived endothelial progenitor cells: cyclooxygenase-2/prostacyclin pathway in pulmonary arterial hypertension.

    Directory of Open Access Journals (Sweden)

    Dong-Mei Jiang

    Full Text Available BACKGROUND: Endothelial dysfunction is the pathophysiological characteristic of pulmonary arterial hypertension (PAH. Some paracrine factors secreted by bone marrow-derived endothelial progenitor cells (BMEPCs have the potential to strengthen endothelial integrity and function. This study investigated whether BMEPCs have the therapeutic potential to improve monocrotaline (MCT-induced PAH via producing vasoprotective substances in a paracrine fashion. METHODS AND RESULTS: Bone marrow-derived mononuclear cells were cultured for 7 days to yield BMEPCs. 24 hours or 3 weeks after exposure to BMEPCs in vitro or in vivo, the vascular reactivity, cyclooxygenase-2 (COX-2 expression, prostacyclin (PGI2 and cAMP release in isolated pulmonary arteries were examined respectively. Treatment with BMEPCs could improve the relaxation of pulmonary arteries in MCT-induced PAH and BMEPCs were grafted into the pulmonary bed. The COX-2/prostacyclin synthase (PGIS and its progenies PGI2/cAMP were found to be significantly increased in BMEPCs treated pulmonary arteries, and this action was reversed by a selective COX-2 inhibitor, NS398. Moreover, the same effect was also observed in conditioned medium obtained from BMEPCs culture. CONCLUSIONS: Implantation of BMEPCs effectively ameliorates MCT-induced PAH. Factors secreted in a paracrine fashion from BMEPCs promote vasoprotection by increasing the release of PGI2 and level of cAMP.

  5. A PEDF-Derived Peptide Inhibits Retinal Neovascularization and Blocks Mobilization of Bone Marrow-Derived Endothelial Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Richard Longeras

    2012-01-01

    Full Text Available Proliferative diabetic retinopathy is characterized by pathological retinal neovascularization, mediated by both angiogenesis (involving mature endothelial cells and vasculogenesis (involving bone marrow-derived circulating endothelial progenitor cells (EPCs. Pigment epithelium-derived factor (PEDF contains an N-terminal 34-amino acid peptide (PEDF-34 that has antiangiogenic properties. Herein, we present a novel finding that PEDF-34 also possesses antivasculogenic activity. In the oxygen-induced retinopathy (OIR model using transgenic mice that have Tie2 promoter-driven GFP expression, we quantified Tie2GFP+ cells in bone marrow and peripheral blood by fluorescence-activated cell sorting (FACS. OIR significantly increased the number of circulating Tie2-GFP+ at P16, correlating with the peak progression of neovascularization. Daily intraperitoneal injections of PEDF-34 into OIR mice decreased the number of Tie2-GFP+ cells in the circulation at P16 by 65% but did not affect the number of Tie2-GFP+ cells in the bone marrow. These studies suggest that PEDF-34 attenuates EPC mobilization from the bone marrow into the blood circulation during retinal neovascularization.

  6. Stimulation of the proliferation of hemopoietic stem cells in irradiated bone marrow cell culture

    International Nuclear Information System (INIS)

    Mori, K.J.; Izumi, H.; Seto, A.

    1981-01-01

    Long-term hemopoiesis was established in bone marrow cell culture in vitro. This culture was shown to support the recovery proliferation of hemopoietic stem cells completely in vitro after irradiation. Hemopoietic stem cells were stimulated into proliferation in culture when normal bone marrow cells were overlayed on top of the irradiated adherent cell colonies. These results indicate that proliferation and differentiation of hemopoietic stem cells in vitro are also supported by stromahemopoietic cell interactions

  7. Bone marrow and bone marrow derived mononuclear stem cells therapy for the chronically ischemic myocardium

    International Nuclear Information System (INIS)

    Waksman, Ron; Baffour, Richard

    2003-01-01

    Bone marrow stem cells have been shown to differentiate into various phenotypes including cardiomyocytes, vascular endothelial cells and smooth muscle. Bone marrow stem cells are mobilized and home in to areas of injured myocardium where they are involved in tissue repair. In addition, bone marrow secretes multiple growth factors, which are essential for angiogenesis and arteriogenesis. In some patients, these processes are not enough to avert clinical symptoms of ischemic disease. Therefore, in vivo administration of an adequate number of stem cells would be a significant therapeutic advance. Unfractionated bone marrow derived mononuclear stem cells, which contain both hematopoietic and nonhematopoietic cells may be more appropriate for cell therapy. Studies in animal models suggest that implantation of different types of stem cells improve angiogenesis and arteriogenesis, tissue perfusion as well as left ventricular function. Several unanswered questions remain. For example, the optimal delivery approach, dosage and timing of the administration of cell therapy as well as durability of improvements need to be studied. Early clinical studies have demonstrated safety and feasibility of various cell therapies in ischemic disease. Randomized, double blind and placebo-controlled clinical trials need to be completed to determine the effectiveness of stem cell

  8. Columnar metaplasia in a surgical mouse model of gastro-esophageal reflux disease is not derived from bone marrow-derived cell.

    Science.gov (United States)

    Aikou, Susumu; Aida, Junko; Takubo, Kaiyo; Yamagata, Yukinori; Seto, Yasuyuki; Kaminishi, Michio; Nomura, Sachiyo

    2013-09-01

    The incidence of esophageal adenocarcinoma has increased in the last 25 years. Columnar metaplasia in Barrett's mucosa is assumed to be a precancerous lesion for esophageal adenocarcinoma. However, the induction process of Barrett's mucosa is still unknown. To analyze the induction of esophageal columnar metaplasia, we established a mouse gastro-esophageal reflux disease (GERD) model with associated development of columnar metaplasia in the esophagus. C57BL/6 mice received side-to-side anastomosis of the esophagogastric junction with the jejunum, and mice were killed 10, 20, and 40 weeks after operation. To analyze the contribution of bone marrow-derived cells to columnar metaplasia in this surgical GERD model, some mice were transplanted with GFP-marked bone marrow after the operation. Seventy-three percent of the mice (16/22) showed thickened mucosa in esophagus and 41% of mice (9/22) developed columnar metaplasia 40 weeks after the operation with a mortality rate of 4%. Bone marrow-derived cells were not detected in columnar metaplastic epithelia. However, scattered epithelial cells in the thickened squamous epithelia in regions of esophagitis did show bone marrow derivation. The results demonstrate that reflux induced by esophago-jejunostomy in mice leads to the development of columnar metaplasia in the esophagus. However, bone marrow-derived cells do not contribute directly to columnar metaplasia in this mouse model. © 2013 Japanese Cancer Association.

  9. The Suppressive Activity of Fucofuroeckol-A Derived from Brown Algal Ecklonia stolonifera Okamura on UVB-Induced Mast Cell Degranulation

    Directory of Open Access Journals (Sweden)

    Thanh Sang Vo

    2018-01-01

    Full Text Available UV light, especially UVB, is known as a trigger of allergic reaction, leading to mast cell degranulation and histamine release. In this study, phlorotannin Fucofuroeckol-A (F-A derived from brown algal Ecklonia stolonifera Okamura was evaluated for its protective capability against UVB-induced allergic reaction in RBL-2H3 mast cells. It was revealed that F-A significantly suppress mast cell degranulation via decreasing histamine release as well as intracellular Ca2+ elevation at the concentration of 50 μM. Moreover, the inhibitory effect of F-A on IL-1β and TNF-α productions was also evidenced. Notably, the protective activity of F-A against mast cell degranulation was found due to scavenging ROS production. Accordingly, F-A from brown algal E. stolonifera was suggested to be promising candidate for its protective capability against UVB-induced allergic reaction.

  10. A method for generation of bone marrow-derived macrophages from cryopreserved mouse bone marrow cells.

    Directory of Open Access Journals (Sweden)

    Fernanda M Marim

    Full Text Available The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L. amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells.

  11. Silver Nanoparticle-Directed Mast Cell Degranulation Is Mediated through Calcium and PI3K Signaling Independent of the High Affinity IgE Receptor.

    Directory of Open Access Journals (Sweden)

    Nasser B Alsaleh

    Full Text Available Engineered nanomaterial (ENM-mediated toxicity often involves triggering immune responses. Mast cells can regulate both innate and adaptive immune responses and are key effectors in allergic diseases and inflammation. Silver nanoparticles (AgNPs are one of the most prevalent nanomaterials used in consumer products due to their antimicrobial properties. We have previously shown that AgNPs induce mast cell degranulation that was dependent on nanoparticle physicochemical properties. Furthermore, we identified a role for scavenger receptor B1 (SR-B1 in AgNP-mediated mast cell degranulation. However, it is completely unknown how SR-B1 mediates mast cell degranulation and the intracellular signaling pathways involved. In the current study, we hypothesized that SR-B1 interaction with AgNPs directs mast cell degranulation through activation of signal transduction pathways that culminate in an increase in intracellular calcium signal leading to mast cell degranulation. For these studies, we utilized bone marrow-derived mast cells (BMMC isolated from C57Bl/6 mice and RBL-2H3 cells (rat basophilic leukemia cell line. Our data support our hypothesis and show that AgNP-directed mast cell degranulation involves activation of PI3K, PLCγ and an increase in intracellular calcium levels. Moreover, we found that influx of extracellular calcium is required for the cells to degranulate in response to AgNP exposure and is mediated at least partially via the CRAC channels. Taken together, our results provide new insights into AgNP-induced mast cell activation that are key for designing novel ENMs that are devoid of immune system activation.

  12. Detection of mast cell secretion by using surface enhanced Raman scattering

    Science.gov (United States)

    Li, Juan; Li, Ren; Zheng, Liqin; Wang, Yuhua; Xie, Shusen; Lin, Juqiang

    2016-10-01

    Acupuncture can cause a remarkable increase in degranulation of the mast cells, which has attracted the interest of researchers since the 1980s. Surface-enhanced Raman scattering (SERS) could obtain biochemical information with high sensitivity and specificity. In this study, SERS was used to detect the degree of degranulation of mast cells according to different incubate time. Mast cells was incubated with culture medium for 0 h, 12 h and 24 h, then centrifuge the culture medium, decant the supernatant, and discard the mast cell. SERS was performed to obtain the biochemical fingerprinting signatures of the centrifuged medium. The spectra data are then analyzed by spectral peaks attribution and the principal component analysis (PCA). The measured Raman spectra of the two groups were separated well by PCA. It indicated that mast cells had secreted some substances into cultured medium though degranulation did not happen.

  13. Ethanol Extract of Sanguisorbae Radix Inhibits Mast Cell Degranulation and Suppresses 2,4-Dinitrochlorobenzene-Induced Atopic Dermatitis-Like Skin Lesions

    Directory of Open Access Journals (Sweden)

    Ju-Hye Yang

    2016-01-01

    Full Text Available Sanguisorbae Radix (SR is well known as herbal medicine named “Zi-Yu” in Korea, which is the dried roots of Sanguisorba officinalis L. (Rosacease. We investigated the underlying mechanism on the inhibition of atopic dermatitis (AD of an ethanol extract of SR (ESR using 2,4-dinitrochlorobenzene- (DNCB- induced AD mice model. Oral administration of ESR significantly suppressed DNCB-induced AD-like symptoms such as scratching behavior, ear thickness, epidermal thickness, and IgE levels. To investigate the effects of ESR treatment on degranulation of IgE/Ag-activated mouse bone marrow-derived mast cells (BMMCs, we measured the release of β-hexosaminidase (β-HEX, degranulation marker. ESR decreased the infiltration of eosinophils and mast cells into the AD skin lesions. Furthermore, ESR significantly inhibited degranulation of IgE/Ag-activated BMMCs. We have demonstrated that ESR decreased AD symptoms in mice and inhibits degranulation of IgE/Ag-activated mast cells. Our study suggests that ESR may serve as a potential therapeutic candidate for the treatment of AD symptoms.

  14. Mesenchymal stem cells derived from adipose tissue vs bone marrow: in vitro comparison of their tropism towards gliomas.

    Directory of Open Access Journals (Sweden)

    Courtney Pendleton

    Full Text Available INTRODUCTION: Glioblastoma is the most common primary malignant brain tumor, and is refractory to surgical resection, radiation, and chemotherapy. Human mesenchymal stem cells (hMSC may be harvested from bone marrow (BMSC and adipose (AMSC tissue. These cells are a promising avenue of investigation for the delivery of adjuvant therapies. Despite extensive research into putative mechanisms for the tumor tropism of MSCs, there remains no direct comparison of the efficacy and specificity of AMSC and BMSC tropism towards glioma. METHODS: Under an IRB-approved protocol, intraoperative human Adipose MSCs (hAMSCs were established and characterized for cell surface markers of mesenchymal stem cell origin in conjunction with the potential for tri-lineage differentiation (adipogenic, chondrogenic, and osteogenic. Validated experimental hAMSCs were compared to commercially derived hBMSCs (Lonza and hAMSCs (Invitrogen for growth responsiveness and glioma tropism in response to glioma conditioned media obtained from primary glioma neurosphere cultures. RESULTS: Commercial and primary culture AMSCs and commercial BMSCs demonstrated no statistically significant difference in their migration towards glioma conditioned media in vitro. There was statistically significant difference in the proliferation rate of both commercial AMSCs and BMSCs as compared to primary culture AMSCs, suggesting primary cultures have a slower growth rate than commercially available cell lines. CONCLUSIONS: Adipose- and bone marrow-derived mesenchymal stem cells have similar in vitro glioma tropism. Given the well-documented ability to harvest larger numbers of AMSCs under local anesthesia, adipose tissue may provide a more efficient source of MSCs for research and clinical applications, while minimizing patient morbidity during cell harvesting.

  15. Emerging paradigms and questions on pro-angiogenic bone marrow-derived myelomonocytic cells.

    Science.gov (United States)

    Laurent, Julien; Touvrey, Cédric; Botta, Francesca; Kuonen, François; Ruegg, Curzio

    2011-01-01

    Cancer-related inflammation has emerged in recent years as a major event contributing to tumor angiogenesis, tumor progression and metastasis formation. Bone marrow-derived and inflammatory cells promote tumor angiogenesis by providing endothelial progenitor cells that differentiate into mature endothelial cells, and by secreting pro-angiogenic factors and remodeling the extracellular matrix to stimulate angiogenesis though paracrine mechanisms. Several bone marrow-derived myelonomocytic cells, including monocytes and macrophages, have been identified and characterized by several laboratories in recent years. While the central role of these cells in promoting tumor angiogenesis, tumor progression and metastasis is nowadays well established, many questions remain open and new ones are emerging. These include the relationship between their phenotype and function, the mechanisms of pro-angiogenic programming, their contribution to resistance to anti-angiogenic treatments and to metastasis and their potential clinical use as biomarkers of angiogenesis and anti-angiogenic therapies. Here, we will review phenotypical and functional aspects of bone marrow-derived myelonomocytic cells and discuss some of the current outstanding questions.

  16. The mast cell degranulator compound 48/80 directly activates neurons.

    Directory of Open Access Journals (Sweden)

    Michael Schemann

    Full Text Available BACKGROUND: Compound 48/80 is widely used in animal and tissue models as a "selective" mast cell activator. With this study we demonstrate that compound 48/80 also directly activates enteric neurons and visceral afferents. METHODOLOGY/PRINCIPAL FINDINGS: We used in vivo recordings from extrinsic intestinal afferents together with Ca(++ imaging from primary cultures of DRG and nodose neurons. Enteric neuronal activation was examined by Ca(++ and voltage sensitive dye imaging in isolated gut preparations and primary cultures of enteric neurons. Intraluminal application of compound 48/80 evoked marked afferent firing which desensitized on subsequent administration. In egg albumen-sensitized animals, intraluminal antigen evoked a similar pattern of afferent activation which also desensitized on subsequent exposure to antigen. In cross-desensitization experiments prior administration of compound 48/80 failed to influence the mast cell mediated response. Application of 1 and 10 µg/ml compound 48/80 evoked spike discharge and Ca(++ transients in enteric neurons. The same nerve activating effect was observed in primary cultures of DRG and nodose ganglion cells. Enteric neuron cultures were devoid of mast cells confirmed by negative staining for c-kit or toluidine blue. In addition, in cultured enteric neurons the excitatory action of compound 48/80 was preserved in the presence of histamine H(1 and H(2 antagonists. The mast cell stabilizer cromolyn attenuated compound 48/80 and nicotine evoked Ca(++ transients in mast cell-free enteric neuron cultures. CONCLUSIONS/SIGNIFICANCE: The results showed direct excitatory action of compound 48/80 on enteric neurons and visceral afferents. Therefore, functional changes measured in tissue or animal models may involve a mast cell independent effect of compound 48/80 and cromolyn.

  17. Exposure to tobacco-derived materials induces overproduction of secreted proteinases in mast cells

    International Nuclear Information System (INIS)

    Small-Howard, Andrea; Turner, Helen

    2005-01-01

    Mast cells reside at interfaces with the environment, including the mucosa of the respiratory and gastrointestinal tracts. This localization exposes mast cells to inhaled, or ingested, environmental challenges. In the airways of smokers, resident immune cells will be in contact with the condensed components of cigarette smoke. Mast cells are of particular interest due to their ability to promote airway remodeling and mucus hypersecretion. Clinical data show increased levels of mast cell-secreted tryptase and increased numbers of degranulated mast cells in the lavage and bronchial tissue of smokers. Since mast cell-secreted proteinases (MCPTs), including tryptases, contribute to pathological airway remodeling, we investigated the relationship between mast cell proteinases and smoke exposure. We exposed a mast cell line to cigarette smoke condensate (CSC). We show that CSC exposure increases MCPT levels in mast cells using an assay for tryptase-type MCPT activity. We hypothesized that this increase in MCPT activity reflects a CSC-induced increase in the cytosolic pool of proteinase molecules, via stimulation of MCPT transcription. Transcript array data suggested that mRNA changes in response to CSC were limited in number and peaked after 3 h of CSC exposure. However, we noted marked transcriptional regulation of several MCPT genes. CSC-induced changes in the mRNA levels for MCPTs were confirmed using quantitative RT-PCR. Taken together, our data suggest that chronic exposure to cigarette smoke up-regulates MCPT levels in mast cells at both the protein and the mRNA level. We suggest that the pathological airway remodeling that has been described in clinical studies of smoke inhalation may be attributable to MCPT overproduction in vivo

  18. Measuring histamine and cytokine release from basophils and mast cells

    DEFF Research Database (Denmark)

    Jensen, Bettina M; Falkencrone, Sidsel; Skov, Per S

    2014-01-01

    Basophils and mast cells are known for their capability to release both preformed and newly synthesized inflammatory mediators. In this chapter we describe how to stimulate and detect histamine released from basophils in whole blood, purified basophils, in vitro cultured mast cells, and in situ...... skin mast cells. We also give an example of an activation protocol for basophil and mast cell cytokine release and discuss approaches for cytokine detection....

  19. Soluble N-Ethylmaleimide-Sensitive Factor Attachment Protein Receptor-Derived Peptides for Regulation of Mast Cell Degranulation.

    Science.gov (United States)

    Yang, Yoosoo; Kong, Byoungjae; Jung, Younghoon; Park, Joon-Bum; Oh, Jung-Mi; Hwang, Jaesung; Cho, Jae Youl; Kweon, Dae-Hyuk

    2018-01-01

    Vesicle-associated V-soluble N -ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and target membrane-associated T-SNAREs (syntaxin 4 and SNAP-23) assemble into a core trans -SNARE complex that mediates membrane fusion during mast cell degranulation. This complex plays pivotal roles at various stages of exocytosis from the initial priming step to fusion pore opening and expansion, finally resulting in the release of the vesicle contents. In this study, peptides with the sequences of various SNARE motifs were investigated for their potential inhibitory effects against SNARE complex formation and mast cell degranulation. The peptides with the sequences of the N-terminal regions of vesicle-associated membrane protein 2 (VAMP2) and VAMP8 were found to reduce mast cell degranulation by inhibiting SNARE complex formation. The fusion of protein transduction domains to the N-terminal of each peptide enabled the internalization of the fusion peptides into the cells equally as efficiently as cell permeabilization by streptolysin-O without any loss of their inhibitory activities. Distinct subsets of mast cell granules could be selectively regulated by the N-terminal-mimicking peptides derived from VAMP2 and VAMP8, and they effectively decreased the symptoms of atopic dermatitis in mouse models. These results suggest that the cell membrane fusion machinery may represent a therapeutic target for atopic dermatitis.

  20. Mast Cells Produce a Unique Chondroitin Sulfate Epitope.

    Science.gov (United States)

    Farrugia, Brooke L; Whitelock, John M; O'Grady, Robert; Caterson, Bruce; Lord, Megan S

    2016-02-01

    The granules of mast cells contain a myriad of mediators that are stored and protected by the sulfated glycosaminoglycan (GAG) chains that decorate proteoglycans. Whereas heparin is the GAG predominantly associated with mast cells, mast cell proteoglycans are also decorated with heparan sulfate and chondroitin sulfate (CS). This study investigated a unique CS structure produced by mast cells that was detected with the antibody clone 2B6 in the absence of chondroitinase ABC digestion. Mast cells in rodent tissue sections were characterized using toluidine blue, Leder stain and the presence of mast cell tryptase. The novel CS epitope was identified in rodent tissue sections and localized to cells that were morphologically similar to cells chemically identified as mast cells. The rodent mast cell-like line RBL-2H3 was also shown to express the novel CS epitope. This epitope co-localized with multiple CS proteoglycans in both rodent tissue and RBL-2H3 cultured cells. These findings suggest that the novel CS epitope that decorates mast cell proteoglycans may play a role in the way these chains are structured in mast cells. © 2016 The Histochemical Society.

  1. Human bone marrow-derived mesenchymal cell reactions to 316L stainless steel : An in vitro study on cell viability and interleukin-6 expression

    NARCIS (Netherlands)

    Anwar, I.B.; Santoso, A.; Saputra, E.; Ismail, R.; Jamari, J.; van der Heide, E.

    2017-01-01

    Purpose: Human bone marrow-derived mesenchymal cell (hBMC) reactions to 316L stainless steel (316L-SS) have never been evaluated. The objective of this study was to assess cell viability and interleukin-6 expression of hBMC cultures upon treatment with a 316L-SS implant. Methods: A cytotoxicity

  2. Acidic environment augments FcεRI-mediated production of IL-6 and IL-13 in mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Kamide, Yosuke, E-mail: m08702012@gunma-u.ac.jp [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara (Japan); Ishizuka, Tamotsu [Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Tobo, Masayuki [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Tsurumaki, Hiroaki [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Aoki, Haruka; Mogi, Chihiro [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Nakakura, Takashi [Department of Anatomy, Graduate School of Medicine, Teikyo University, Tokyo (Japan); Yatomi, Masakiyo; Ono, Akihiro; Koga, Yasuhiko [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Sato, Koichi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Hisada, Takeshi [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Dobashi, Kunio [Gunma University Graduate School of Health Sciences, Maebashi (Japan); Yamada, Masanobu [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Okajima, Fumikazu [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan)

    2015-08-28

    Although blood pH is maintained in a narrow range of around pH 7.4 in living organisms, inflammatory loci are characterized by acidic conditions. Mast cells tend to reside close to the surface of the body in areas such as the mucosa and skin where they may be exposed to exogenous acids, and they play an important role in immune responses. However, little is known about the effects of extracellular acidification on the functions of mast cell. Here, we found that extracellular acidification increased the dinitrophenyl-conjugated human serum albumin (DNP-HSA)-induced production of interleukin (IL)-6 and IL-13 in MC/9 cells or bone marrow-derived mouse mast cells sensitized with anti-DNP IgE. Extracellular acidification also inhibited migration of MC/9 cells toward DNP-HSA. In addition, acidic pH stimulated antigen-induced activation of p38 mitogen-activated protein kinase (MAPK) and protein kinase B (Akt). These findings suggest that extracellular acidification augmented antigen/IgE-induced and FcεRI-mediated production of IL-6 and IL-13 in mast cells, and that this was associated with the enhancement of p38 MAPK and Akt activation. - Highlights: • Antigen-induced IL-6 and IL-13 production was augmented by acidic pH in mast cells. • Acidic pH-induced actions were associated with activation of p38 MAPK and Akt. • Inhibition of p38 MAPK and Akt attenuated cytokine responses to acidic pH. • Acidic pH effects are not attributable to actions of known proton-sensing GPCRs.

  3. Mast cells in atherosclerotic cardiovascular disease - Activators and actions.

    Science.gov (United States)

    Kovanen, Petri T; Bot, Ilze

    2017-12-05

    Mast cells are potent actors involved in inflammatory reactions in various tissues, including both in the intimal and the adventitial layers of atherosclerotic arteries. In the arterial intima, the site of atherogenesis, mast cells are activated to degranulate, and thereby triggered to release an abundance of preformed inflammatory mediators, notably histamine, heparin, neutral proteases and cytokines stored in their cytoplasmic secretory granules. Depending on the stimulus, mast cell activation may also launch prolonged synthesis and secretion of single bioactive molecules, such as cytokines and derivatives of arachidonic acid. The mast cell-derived mediators may impede the functions of different types of cells present in atherosclerotic lesions, and also compromise the structural and functional integrity of the intimal extracellular matrix. In the adventitial layer of atherosclerotic coronary arteries, mast cells locate next to peptidergic sensory nerve fibers, which, by releasing neuropeptides may activate mast cells to release vasoactive compounds capable of triggering local vasoconstriction. The concerted actions of arterial mast cells have the potential to contribute to the initiation and progression of atherosclerosis, and ultimately to destabilization and rupture of an advanced atherosclerotic plaque with ensuing atherothrombotic complications. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Regulation of heme metabolism in normal and sideroblastic bone marrow cells in culture

    International Nuclear Information System (INIS)

    Ibraham, N.G.; Lutton, J.D.; Hoffman, R.; Levere, R.D.

    1985-01-01

    Heme metabolism was examined in developing in vitro erythroid colonies (CFUE) and in bone marrow samples taken directly from four normal donors and four patients with sideroblastic anemia. Maximum activities of delta-aminolevulinic acid synthase (ALAS), ALA dehydratase (ALAD), and 14 C-ALA incorporation into heme were achieved in normal marrow CFUE after 8 days of culture, whereas heme oxygenase progressively decreased to low levels of activity during the same period. Assays on nucleated bone marrow cells taken directly from patients revealed that ALAS activity was considerably reduced in idiopathic sideroblastic anemia (IASA) and X-linked sideroblastic anemia (X-SA) bone marrow specimens, whereas the activity increased more than twofold (normal levels) when cells were assayed from 8-day CFUE. In all cases, ALAD activity appeared to be within normal levels. Measurement of heme synthesis revealed that normal levels of 14 C-ALA incorporation into heme were achieved in IASA cells but were reduced in X-SA cells. In marked contrast to levels in normal cells, heme oxygenase was found to be significantly elevated (two- to fourfold) in bone marrow cells taken directly from patients with IASA and X-SA. Results from this study demonstrate that IASA and X-SA bone marrow cells have disturbances in ALAS and heme metabolism, and that erythropoiesis (CFUE) can be restored to normal levels when cells are cultured in methylcellulose

  5. Syntaxin binding protein 1 is not required for allergic inflammation via IgE-mediated mast cell activation.

    Directory of Open Access Journals (Sweden)

    Zhengli Wu

    Full Text Available Mast cells play a central role in both innate and acquired immunity. When activated by IgE-dependent FcεRI cross-linking, mast cells rapidly initiate a signaling cascade and undergo an extensive release of their granule contents, including inflammatory mediators. Some SNARE (soluble N-ethylmaleimide-sensitive fusion factor attachment protein receptor proteins and SM (Sec1/Munc18 family proteins are involved in mast cell degranulation. However, the function of syntaxin binding protein 1 (STXBP1, a member of SM family, in mast cell degranulation is currently unknown. In this study, we examined the role of STXBP1 in IgE-dependent mast cell activation. Liver-derived mast cells (LMCs from wild-type and STXBP1-deficient mice were cultured in vitro for the study of mast cell maturation, degranulation, cytokine and chemokine production, as well as MAPK, IκB-NFκB, and NFAT signaling pathways. In addition, in vivo models of passive cutaneous anaphylaxis and late-phase IgE-dependent inflammation were conducted in mast cell deficient W(sh mice that had been reconstituted with wild-type or STXBP1-deficient mast cells. Our findings indicate that STXBP1 is not required for any of these important functional mechanisms in mast cells both in vitro and in vivo. Our results demonstrate that STXBP1 is dispensable during IgE-mediated mast cell activation and in IgE-dependent allergic inflammatory reactions.

  6. Proliferation differentiation and therapeutic effect of short-term cultured murine bone marrow cells

    International Nuclear Information System (INIS)

    Zhao Zekun; Cong Jianbo

    1986-01-01

    Murine bone marrow cells were cultured in conditioned medium of muscle. After 24 hours of culture, both adherent and suspended cells appeared in the culture. The adherent cells mainly consisted of macrophages and the suspended cells were predominantly granulocytes. After 6 days, the total number of nucleated cells and CFU-C in the culture increased about 400% and 600% respectively, but CFU-S reduced to 21% approximately. Lymphocytes persisted only for 4 days. The stem cells (CFU-S) from 6-day culture were injected into the lethally irradiated syngenic mice. The 30 day survival rate of the treated mice was 89% whereas that of the controls was only 7%. The bone marrow cells in 2/8 of recipients sacrificed at 30 or 60 days were of donor type and 6/8 of the recipients were chimeras

  7. Fer and Fps/Fes participate in a Lyn-dependent pathway from FcepsilonRI to platelet-endothelial cell adhesion molecule 1 to limit mast cell activation.

    Science.gov (United States)

    Udell, Christian M; Samayawardhena, Lionel A; Kawakami, Yuko; Kawakami, Toshiaki; Craig, Andrew W B

    2006-07-28

    Mast cells express the high affinity IgE receptor FcepsilonRI, which upon aggregation by multivalent antigens elicits signals that cause rapid changes within the mast cell and in the surrounding tissue. We previously showed that FcepsilonRI aggregation caused a rapid increase in phosphorylation of both Fer and Fps/Fes kinases in bone marrow-derived mast cells. In this study, we report that FcepsilonRI aggregation leads to increased Fer/Fps kinase activities and that Fer phosphorylation downstream of FcepsilonRI is independent of Syk, Fyn, and Gab2 but requires Lyn. Activated Fer/Fps readily phosphorylate the C terminus of platelet-endothelial cell adhesion molecule 1 (Pecam-1) on immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and a non-ITIM residue (Tyr(700)) in vitro and in transfected cells. Mast cells devoid of Fer/Fps kinase activities display a reduction in FcepsilonRI aggregation-induced tyrosine phosphorylation of Pecam-1, with no defects in recruitment of Shp1/Shp2 phosphatases observed. Lyn-deficient mast cells display a dramatic reduction in Pecam-1 phosphorylation at Tyr(685) and a complete loss of Shp2 recruitment, suggesting a role as an initiator kinase for Pecam-1. Consistent with previous studies of Pecam-1-deficient mast cells, we observe an exaggerated degranulation response in mast cells lacking Fer/Fps kinases at low antigen dosages. Thus, Lyn and Fer/Fps kinases cooperate to phosphorylate Pecam-1 and activate Shp1/Shp2 phosphatases that function in part to limit mast cell activation.

  8. Mast Cell Interactions and Crosstalk in Regulating Allergic Inflammation.

    Science.gov (United States)

    Velez, Tania E; Bryce, Paul J; Hulse, Kathryn E

    2018-04-17

    This review summarizes recent findings on mast cell biology with a focus on IgE-independent roles of mast cells in regulating allergic responses. Recent studies have described novel mast cell-derived molecules, both secreted and membrane-bound, that facilitate cross-talk with a variety of immune effector cells to mediate type 2 inflammatory responses. Mast cells are complex and dynamic cells that are persistent in allergy and are capable of providing signals that lead to the initiation and persistence of allergic mechanisms.

  9. Organotypic culture of human bone marrow adipose tissue.

    Science.gov (United States)

    Uchihashi, Kazuyoshi; Aoki, Shigehisa; Shigematsu, Masamori; Kamochi, Noriyuki; Sonoda, Emiko; Soejima, Hidenobu; Fukudome, Kenji; Sugihara, Hajime; Hotokebuchi, Takao; Toda, Shuji

    2010-04-01

    The precise role of bone marrow adipose tissue (BMAT) in the marrow remains unknown. The purpose of the present study was therefore to describe a novel method for studying BMAT using 3-D collagen gel culture of BMAT fragments, immunohistochemistry, ELISA and real-time reverse transcription-polymerase chain reaction. Mature adipocytes and CD45+ leukocytes were retained for >3 weeks. Bone marrow stromal cells (BMSC) including a small number of lipid-laden preadipocytes and CD44+/CD105+ mesenchymal stem cell (MSC)-like cells, developed from BMAT. Dexamethasone (10 micromol/L), but not insulin (20 mU/mL), significantly increased the number of preadipocytes. Dexamethasone and insulin also promoted leptin production and gene expression in BMAT. Adiponectin production by BMAT was BMAT, in which adiponectin protein secretion is normally very low, and that BMAT may exhibit a different phenotype from that of the visceral and subcutaneous adipose tissues. BMAT-osteoblast interactions were also examined, and it was found that osteoblasts inhibited the development of BMSC and reduced leptin production, while BMAT inhibited the growth and differentiation of osteoblasts. The present novel method proved to be useful for the study of BMAT biology.

  10. Inhibitory effects of methamphetamine on mast cell activation and cytokine/chemokine production stimulated by lipopolysaccharide in C57BL/6J mice.

    Science.gov (United States)

    Xue, Li; Geng, Yan; Li, Ming; Jin, Yao-Feng; Ren, Hui-Xun; Li, Xia; Wu, Feng; Wang, Biao; Cheng, Wei-Ying; Chen, Teng; Chen, Yan-Jiong

    2018-04-01

    Previous studies have demonstrated that methamphetamine (MA) influences host immunity; however, the effect of MA on lipopolysaccharide (LPS)-induced immune responses remains unknown. Mast cells (MCs) are considered to serve an important role in the innate and acquired immune response, but it remains unknown whether MA modulates MC activation and LPS-stimulated cytokine production. The present study aimed to investigate the effect of MA on LPS-induced MC activation and the production of MC-derived cytokines in mice. Markers for MC activation, including cluster of differentiation 117 and the type I high affinity immunoglobulin E receptor, were assessed in mouse intestines. Levels of MC-derived cytokines in the lungs and thymus were also examined. The results demonstrated that cytokines were produced in the bone marrow-derived mast cells (BMMCs) of mice. The present study demonstrated that MA suppressed the LPS-mediated MC activation in mouse intestines. MA also altered the release of MC cytokines in the lung and thymus following LPS stimulation. In addition, LPS-stimulated cytokines were decreased in the BMMCs of mice following treatment with MA. The present study demonstrated that MA may regulate LPS-stimulated MC activation and cytokine production.

  11. Bone marrow-derived osteoblast progenitor cells in circulating blood contribute to ectopic bone formation in mice

    International Nuclear Information System (INIS)

    Otsuru, Satoru; Tamai, Katsuto; Yamazaki, Takehiko; Yoshikawa, Hideki; Kaneda, Yasufumi

    2007-01-01

    Recent studies have suggested the existence of osteoblastic cells in the circulation, but the origin and role of these cells in vivo are not clear. Here, we examined how these cells contribute to osteogenesis in a bone morphogenetic protein (BMP)-induced model of ectopic bone formation. Following lethal dose-irradiation and subsequent green fluorescent protein-transgenic bone marrow cell-transplantation (GFP-BMT) in mice, a BMP-2-containing collagen pellet was implanted into muscle. Three weeks later, a significant number of GFP-positive osteoblastic cells were present in the newly generated ectopic bone. Moreover, peripheral blood mononuclear cells (PBMNCs) from the BMP-2-implanted mouse were then shown to include osteoblast progenitor cells (OPCs) in culture. Passive transfer of the PBMNCs isolated from the BMP-2-implanted GFP-mouse to the BMP-2-implanted nude mouse led to GFP-positive osteoblast accumulation in the ectopic bone. These data provide new insight into the mechanism of ectopic bone formation involving bone marrow-derived OPCs in circulating blood

  12. Dental pulp-derived stromal cells exhibit a higher osteogenic potency than bone marrow-derived stromal cells in vitro and in a porcine critical-size bone defect model

    Directory of Open Access Journals (Sweden)

    Jensen Jonas

    2016-01-01

    Full Text Available Introduction: The osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSCs was compared with that of dental pulp-derived stromal cells (DPSCs in vitro and in a pig calvaria critical-size bone defect model. Methods: BMSCs and DPSCs were extracted from the tibia bone marrow and the molar teeth of each pig, respectively. BMSCs and DPSCs were cultured in monolayer and on a three-dimensional (3D polycaprolactone (PCL – hyaluronic acid – tricalcium phosphate (HT-PCL scaffold. Population doubling (PD, alkaline phosphatase (ALP activity, and calcium deposition were measured in monolayer. In the 3D culture ALP activity, DNA content, and calcium deposition were evaluated. Six non-penetrating critical-size defects were made in each calvarium of 14 pigs. Three paired sub-studies were conducted: (1 empty defects vs. HT-PCL scaffolds; (2 PCL scaffolds vs. HT-PCL scaffolds; and (3 autologous BMSCs on HT-PCL scaffolds vs. autologous DPSCs on HT-PCL scaffolds. The observation time was five weeks. Bone volume fractions (BV/TV were assessed with micro-computed tomography (μCT and histomorphometry. Results and discussion: The results from the in vitro study revealed a higher ALP activity and calcium deposition of the DPSC cultures compared with BMSC cultures. Significantly more bone was present in the HT-PCL group than in both the pure PCL scaffold group and the empty defect group in vivo. DPSCs generated more bone than BMSCs when seeded on HT-PCL. In conclusion, DPSCs exhibited a higher osteogenic potential compared with BMSCs both in vitro and in vivo, making it a potential cell source for future bone tissue engineering.

  13. Serum Total Tryptase Level Confirms Itself as a More Reliable Marker of Mast Cells Burden in Mast Cell Leukaemia (Aleukaemic Variant

    Directory of Open Access Journals (Sweden)

    P. Savini

    2015-01-01

    Full Text Available Mast cell leukemia (MCL is a very rare form of systemic mastocytosis (SM with a short median survival of 6 months. We describe a case of a 65-year-old woman with aleukaemic variant of MCL with a very high serum total tryptase level of 2255 μg/L at diagnosis, which occurred following an episode of hypotensive shock. She fulfilled the diagnostic criteria of SM, with a bone marrow smear infiltration of 50–60% of atypical mast cells (MCs. She tested negative for the KIT D816V mutation, without any sign of organ damage (no B- or C-findings and only few mediator-related symptoms. She was treated with antihistamine alone and then with imatinib for the appearance of anemia. She maintained stable tryptase level and a very indolent clinical course for twenty-two months; then, she suddenly progressed to acute MCL with a serum tryptase level up to 12960 μg/L. The patient died due to haemorrhagic diathesis twenty-four months after diagnosis. This clinical case maybe represents an example of the chronic form of mast cell leukemia, described as unpredictable disease, in which the serum total tryptase level has confirmed itself as a reliable marker of mast cells burden regardless of the presence of other signs or symptoms.

  14. Evaluating effects of L-carnitine on human bone-marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Fujisawa, Koichi; Takami, Taro; Fukui, Yumi; Quintanilha, Luiz Fernando; Matsumoto, Toshihiko; Yamamoto, Naoki; Sakaida, Isao

    2017-05-01

    Mesenchymal stem cells (MSCs) are multipotent cells showing potential for use in regenerative medicine. Culture techniques that are more stable and methods for the more efficient production of MSCs with therapeutic efficacy are needed. We evaluate the effects of growing bone marrow (Bm)-derived MSCs in the presence of L-carnitine, which is believed to promote lipid metabolism and to suppress apoptosis. The presence of L-carnitine decreased the degree of drug-induced apoptosis and suppressed adipogenic differentiation. Metabolomic analysis by means of the exhaustive investigation of metabolic products showed that, in addition to increased β-oxidation and the expression of all carnitine derivatives other than deoxycarnitine (an intermediate in carnitine synthesis), polysaturated and polyunsaturated acids were down-regulated. An integrated analysis incorporating both serial analysis of gene expression and metabolomics revealed increases in cell survival, suggesting the utility of carnitine. The addition of carnitine elevated the oxygen consumption rate by BmMSCs that had been cultured for only a few generations and those that had become senescent following repeated replication indicating that mitochondrial activation occurred. Our exhaustive analysis of the effects of various carnitine metabolites thus suggests that the addition of L-carnitine to BmMSCs during expansion enables efficient cell production.

  15. Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure

    DEFF Research Database (Denmark)

    Mathiasen, Anders Bruun; Qayyum, Abbas Ali; Jørgensen, Erik

    2015-01-01

    AIMS: Regenerative treatment with mesenchymal stromal cells (MSCs) has been promising in patients with ischaemic heart failure but needs confirmation in larger randomized trials. We aimed to study effects of intra-myocardial autologous bone marrow-derived MSC treatment in patients with severe isc...... identified. CONCLUSION: Intra-myocardial injections of autologous culture expanded MSCs were safe and improved myocardial function in patients with severe ischaemic heart failure. STUDY REGISTRATION NUMBER: NCT00644410 (ClinicalTrials.gov)....... ischaemic heart failure. METHODS AND RESULTS: The MSC-HF trial is a randomized, double-blind, placebo-controlled trial. Patients were randomized 2 : 1 to intra-myocardial injections of MSC or placebo, respectively. The primary endpoint was change in left ventricular end-systolic volume (LVESV), measured...

  16. Mast cells in viral infections

    Directory of Open Access Journals (Sweden)

    Piotr Witczak

    2012-04-01

    Full Text Available  There are some premises suggesting that mast cells are involved in the mechanisms of anti-virus defense and in viral disease pathomechanisms. Mast cells are particularly numerous at the portals of infections and thus may have immediate and easy contact with the external environment and invading pathogens. These cells express receptors responsible for recognition of virus-derived PAMP molecules, mainly Toll-like receptors (TLR3, TLR7/8 and TLR9, but also RIG-I-like and NOD-like molecules. Furthermore, mast cells generate various mediators, cytokines and chemokines which modulate the intensity of inflammation and regulate the course of innate and adaptive anti-viral immunity. Indirect evidence for the role of mast cells in viral infections is also provided by clinical observations and results of animal studies. Currently, more and more data indicate that mast cells can be infected by some viruses (dengue virus, adenoviruses, hantaviruses, cytomegaloviruses, reoviruses, HIV-1 virus. It is also demonstrated that mast cells can release pre formed mediators as well as synthesize de novo eicosanoids in response to stimulation by viruses. Several data indicate that virus-stimulated mast cells secrete cytokines and chemokines, including interferons as well as chemokines with a key role in NK and Tc lymphocyte influx. Moreover, some information indicates that mast cell stimulation via TLR3, TLR7/8 and TLR9 can affect their adhesion to extracellular matrix proteins and chemotaxis, and influence expression of some membrane molecules. Critical analysis of current data leads to the conclusion that it is not yet possible to make definitive statements about the role of mast cells in innate and acquired defense mechanisms developing in the course of viral infection and/or pathomechanisms of viral diseases.

  17. Enhancement of distribution of dermal multipotent stem cells to bone marrow in rats of total body irradiation by platelet-derived growth factor-AA treatment

    International Nuclear Information System (INIS)

    Zong Zhaowen; Ren Yongchuan; Shen Yue; Chen Yonghua; Ran Xinze; Shi Chunmeng; Cheng Tianmin

    2011-01-01

    Objective: To observe whether dermal multipotent stem cells (dMSCs) treated with platelet-derived growth factor-AA (PDGF-AA) could distribute more frequently to the bone marrow in rats of total body irradiation (TBI). Methods: Male dMSCs were isolated and 10 μg/L PDGF-AA was added to the culture medium and further cultured for 2 h. Then the expression of tenascin-C were examined by Western blot, and the migration ability of dMSCs was assessed in transwell chamber. The pre-treated dMSCs were transplanted by tail vein injection into female rats administered with total body irradiation, and 2 weeks after transplantation, real-time PCR was employed to measure the amount of dMSCs in bone marrow. Non-treated dMSCs served as control.Results PDGF-AA treatment increased the expression of tenascin-C in dMSCs, made (1.79 ± 0.13) × 10 5 cells migrate to the lower chamber under the effect of bone marrow extract, and distributed to bone marrow in TBI rats, significantly more than (1.24 ± 0.09) ×10 5 in non-treated dMSCs (t=8.833, P<0.01). Conclusions: PDGF-AA treatment could enhance the migration ability of dMSCs and increase the amount of dMSCs in bone marrow of TBI rats after transplantation. (authors)

  18. Bone marrow-derived cells are differentially involved in pathological and physiological retinal angiogenesis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Zou, He [Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan); Otani, Atsushi, E-mail: otan@kuhp.kyoto-u.ac.jp [Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan); Oishi, Akio; Yodoi, Yuko; Kameda, Takanori; Kojima, Hiroshi; Yoshimura, Nagahisa [Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan)

    2010-01-08

    Purpose: Bone marrow-derived cells have been shown to play roles in angiogenesis. Although these cells have been shown to promote angiogenesis, it is not yet clear whether these cells affect all types of angiogenesis. This study investigated the involvement of bone marrow-derived cells in pathological and physiological angiogenesis in the murine retina. Materials and methods: The oxygen-induced retinopathy (OIR) model was used as a retinal angiogenesis model in newborn mice. To block the influence of bone marrow-derived cells, the mice were irradiated with a 4-Gy dose of radiation from a {sup 137}Cs source. Irradiation was performed in four different conditions with radio dense 2-cm thick lead disks; (1) H group, the head were covered with these discs to protect the eyes from radiation; (2) A group, all of the body was covered with these discs; (3) N group, mice were completely unshielded; (4) C group, mice were put in the irradiator but were not irradiated. On P17, the retinal areas showing pathological and physiological retinal angiogenesis were measured and compared to the retinas of nonirradiated mice. Results: Although irradiation induced leukocyte depletion, it did not affect the number of other cell types or body weight. Retinal nonperfusion areas were significantly larger in irradiated mice than in control mice (P < 0.05), indicating that physiological angiogenesis was impaired. However, the formation of tuft-like angiogenesis processes was more prominent in the irradiated mice (P < 0.05), indicating that pathological angiogenesis was intact. Conclusions: Bone marrow-derived cells seem to be differentially involved in the formation of physiological and pathological retinal vessels. Pathological angiogenesis in the murine retina does not require functional bone marrow-derived cells, but these cells are important for the formation of physiological vessels. Our results add a new insight into the pathology of retinal angiogenesis and bolster the hypothesis that

  19. Bone marrow-derived cells are differentially involved in pathological and physiological retinal angiogenesis in mice

    International Nuclear Information System (INIS)

    Zou, He; Otani, Atsushi; Oishi, Akio; Yodoi, Yuko; Kameda, Takanori; Kojima, Hiroshi; Yoshimura, Nagahisa

    2010-01-01

    Purpose: Bone marrow-derived cells have been shown to play roles in angiogenesis. Although these cells have been shown to promote angiogenesis, it is not yet clear whether these cells affect all types of angiogenesis. This study investigated the involvement of bone marrow-derived cells in pathological and physiological angiogenesis in the murine retina. Materials and methods: The oxygen-induced retinopathy (OIR) model was used as a retinal angiogenesis model in newborn mice. To block the influence of bone marrow-derived cells, the mice were irradiated with a 4-Gy dose of radiation from a 137 Cs source. Irradiation was performed in four different conditions with radio dense 2-cm thick lead disks; (1) H group, the head were covered with these discs to protect the eyes from radiation; (2) A group, all of the body was covered with these discs; (3) N group, mice were completely unshielded; (4) C group, mice were put in the irradiator but were not irradiated. On P17, the retinal areas showing pathological and physiological retinal angiogenesis were measured and compared to the retinas of nonirradiated mice. Results: Although irradiation induced leukocyte depletion, it did not affect the number of other cell types or body weight. Retinal nonperfusion areas were significantly larger in irradiated mice than in control mice (P < 0.05), indicating that physiological angiogenesis was impaired. However, the formation of tuft-like angiogenesis processes was more prominent in the irradiated mice (P < 0.05), indicating that pathological angiogenesis was intact. Conclusions: Bone marrow-derived cells seem to be differentially involved in the formation of physiological and pathological retinal vessels. Pathological angiogenesis in the murine retina does not require functional bone marrow-derived cells, but these cells are important for the formation of physiological vessels. Our results add a new insight into the pathology of retinal angiogenesis and bolster the hypothesis that bone

  20. Mast Cells Synthesize, Store, and Release Nerve Growth Factor

    Science.gov (United States)

    Leon, A.; Buriani, A.; dal Toso, R.; Fabris, M.; Romanello, S.; Aloe, L.; Levi-Montalcini, R.

    1994-04-01

    Mast cells and nerve growth factor (NGF) have both been reported to be involved in neuroimmune interactions and tissue inflammation. In many peripheral tissues, mast cells interact with the innervating fibers. Changes in the behaviors of both of these elements occur after tissue injury/inflammation. As such conditions are typically associated with rapid mast cell activation and NGF accumulation in inflammatory exudates, we hypothesized that mast cells may be capable of producing NGF. Here we report that (i) NGF mRNA is expressed in adult rat peritoneal mast cells; (ii) anti-NGF antibodies clearly stain vesicular compartments of purified mast cells and mast cells in histological sections of adult rodent mesenchymal tissues; and (iii) medium conditioned by peritoneal mast cells contains biologically active NGF. Mast cells thus represent a newly recognized source of NGF. The known actions of NGF on peripheral nerve fibers and immune cells suggest that mast cell-derived NGF may control adaptive/reactive responses of the nervous and immune systems toward noxious tissue perturbations. Conversely, alterations in normal mast cell behaviors may provoke maladaptive neuroimmune tissue responses whose consequences could have profound implications in inflammatory disease states, including those of an autoimmune nature.

  1. The Role of Hibiscus sabdariffa L. (Roselle in Maintenance of Ex Vivo Murine Bone Marrow-Derived Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Zariyantey Abdul Hamid

    2014-01-01

    Full Text Available Hematopoietic stem cells- (HSCs- based therapy requires ex vivo expansion of HSCs prior to therapeutic use. However, ex vivo culture was reported to promote excessive production of reactive oxygen species (ROS, exposing HSCs to oxidative damage. Efforts to overcome this limitation include the use of antioxidants. In this study, the role of Hibiscus sabdariffa L. (Roselle in maintenance of cultured murine bone marrow-derived HSCs was investigated. Aqueous extract of Roselle was added at varying concentrations (0–1000 ng/mL for 24 hours to the freshly isolated murine bone marrow cells (BMCs cultures. Effects of Roselle on cell viability, reactive oxygen species (ROS production, glutathione (GSH level, superoxide dismutase (SOD activity, and DNA damage were investigated. Roselle enhanced the survival (P<0.05 of BMCs at 500 and 1000 ng/mL, increased survival of Sca-1+ cells (HSCs at 500 ng/mL, and maintained HSCs phenotype as shown from nonremarkable changes of surface marker antigen (Sca-1 expression in all experimental groups. Roselle increased (P<0.05 the GSH level and SOD activity but the level of reactive oxygen species (ROS was unaffected. Moreover, Roselle showed significant cellular genoprotective potency against H2O2-induced DNA damage. Conclusively, Roselle shows novel property as potential supplement and genoprotectant against oxidative damage to cultured HSCs.

  2. The Role of Hibiscus sabdariffa L. (Roselle) in Maintenance of Ex Vivo Murine Bone Marrow-Derived Hematopoietic Stem Cells

    Science.gov (United States)

    Abdul Hamid, Zariyantey; Lin Lin, Winnie Hii; Abdalla, Basma Jibril; Bee Yuen, Ong; Latif, Elda Surhaida; Mohamed, Jamaludin; Rajab, Nor Fadilah; Paik Wah, Chow; Budin, Siti Balkis

    2014-01-01

    Hematopoietic stem cells- (HSCs-) based therapy requires ex vivo expansion of HSCs prior to therapeutic use. However, ex vivo culture was reported to promote excessive production of reactive oxygen species (ROS), exposing HSCs to oxidative damage. Efforts to overcome this limitation include the use of antioxidants. In this study, the role of Hibiscus sabdariffa L. (Roselle) in maintenance of cultured murine bone marrow-derived HSCs was investigated. Aqueous extract of Roselle was added at varying concentrations (0–1000 ng/mL) for 24 hours to the freshly isolated murine bone marrow cells (BMCs) cultures. Effects of Roselle on cell viability, reactive oxygen species (ROS) production, glutathione (GSH) level, superoxide dismutase (SOD) activity, and DNA damage were investigated. Roselle enhanced the survival (P < 0.05) of BMCs at 500 and 1000 ng/mL, increased survival of Sca-1+ cells (HSCs) at 500 ng/mL, and maintained HSCs phenotype as shown from nonremarkable changes of surface marker antigen (Sca-1) expression in all experimental groups. Roselle increased (P < 0.05) the GSH level and SOD activity but the level of reactive oxygen species (ROS) was unaffected. Moreover, Roselle showed significant cellular genoprotective potency against H2O2-induced DNA damage. Conclusively, Roselle shows novel property as potential supplement and genoprotectant against oxidative damage to cultured HSCs. PMID:25405216

  3. Long-Term Results of Cartilage Repair after Allogeneic Transplantation of Cartilaginous Aggregates Formed from Bone Marrow-Derived Cells for Large Osteochondral Defects in Rabbit Knees.

    Science.gov (United States)

    Yoshioka, Tomokazu; Mishima, Hajime; Sakai, Shinsuke; Uemura, Toshimasa

    2013-10-01

    The purpose of this study was to evaluate the long-term results of cartilage repair after allogeneic transplantation of cartilaginous aggregates formed from bone marrow-derived cells. Bone marrow cells were harvested from 12-day-old rabbits. The cells were subjected to a monolayer culture, and the spindle-shaped cells attached to the flask surface were defined as bone marrow-derived mesenchymal cells. After the monolayer culture, a 3-dimensional cartilaginous aggregate was formed using a bioreactor with chondrogenesis. We created osteochondral defects, measuring 5 mm in diameter and 4 mm in depth, at the femoral trochlea of 10-week-old rabbits. Two groups were established, the transplanted group in which the cartilaginous aggregate was transplanted into the defect, and the control group in which the defect was left untreated. Twenty-six and 52 weeks after surgery, the rabbits were sacrificed and their tissue repair status was evaluated macroscopically (International Cartilage Repair Society [ICRS] score) and histologically (O'Driscoll score). The ICRS scores were as follows: at week 26, 7.2 ± 0.5 and 7.6 ± 0.8; at week 52, 7.6 ± 1.1 and 9.7 ± 0.7, for the transplanted and control groups, respectively. O'Driscoll scores were as follows: at week 26, 12.6 ± 1.9 and 10.1 ± 1.9; at week 52, 9.6 ± 3.0 and 14.0 ± 1.4, each for transplanted and control groups, respectively. No significant differences were observed between the groups. This study demonstrates that allogeneic transplantation of cartilaginous aggregates formed from bone marrow-derived cells produces comparable long-term results based on macroscopic and histological outcome measures when compared with osteochondral defects that are left untreated.

  4. Destiny of autologous bone marrow-derived stromal cells implanted in the vocal fold.

    Science.gov (United States)

    Kanemaru, Shin-ichi; Nakamura, Tatsuo; Yamashita, Masaru; Magrufov, Akhmar; Kita, Tomoko; Tamaki, Hisanobu; Tamura, Yoshihiro; Iguchi, Fuku-ichiro; Kim, Tae Soo; Kishimoto, Masanao; Omori, Koichi; Ito, Juichi

    2005-12-01

    The aim of this study was to investigate the destiny of implanted autologous bone marrow-derived stromal cells (BSCs) containing mesenchymal stem cells. We previously reported the successful regeneration of an injured vocal fold through implantation of BSCs in a canine model. However, the fate of the implanted BSCs was not examined. In this study, implanted BSCs were traced in order to determine the type of tissues resulting at the injected site of the vocal fold. After harvest of bone marrow from the femurs of green fluorescent transgenic mice, adherent cells were cultured and selectively amplified. By means of a fluorescence-activated cell sorter, it was confirmed that some cells were strongly positive for mesenchymal stem cell markers, including CD29, CD44, CD49e, and Sca-1. These cells were then injected into the injured vocal fold of a nude rat. Immunohistologic examination of the resected vocal folds was performed 8 weeks after treatment. The implanted cells were alive in the host tissues and showed positive expression for keratin and desmin, markers for epithelial tissue and muscle, respectively. The implanted BSCs differentiated into more than one tissue type in vivo. Cell-based tissue engineering using BSCs may improve the quality of the healing process in vocal fold injuries.

  5. Design, synthesis, and biological evaluation of 2-substituted-2,3,4,9-tetrahydrospiro-β-carboline-3-carboxylic acid derivatives as first-in-class mast cell stabilizers.

    Science.gov (United States)

    Singh, Jatinder; Shah, Ramanpreet; Singh, Dhandeep; Jaggi, Amteshwar S; Singh, Nirmal

    2018-05-01

    Mast cell degranulation plays a momentous role in myriad diseases like asthma, eczema, allergic rhinitis, and conjunctivitis as well as anaphylactic shock; hence, there is an unmet need for developing new mast cells stabilizers. The reported mast cell stabilizers have a heterocyclic moiety and an acidic group. Furthermore, the role of tryptophan in suppression of mast cell activation is established. Hence, we prepared constrained analogs of tryptophan, which are derivatives of 2,3,4,9-tetrahydrospiro-β-carboline-3-carboxylic acid, and evaluated them for ex vivo inhibition of compound 48/80-induced mast degranulation activity. By comparing IC 50 (μM) values with that of the standard drug sodium cromoglycate (IC 50  = 0.489 ± 0.003 μM), compounds with bulky groups like heptyl (compound 9; IC 50  = 0.389 ± 0.015 μM) and octyl (compound 10; IC 50  = 0.354 ± 0.023 μM) were found to be of similar potency as sodium cromoglycate. Furthermore, the polar group-containing compounds like the chloropropyl (compound 16; IC 50  = 0.382 ± 0.083 μM) and benzoyl derivative (compound 14; IC 50  = 00.469 ± 0.032 μM) were also found to be of similar potency as sodium cromoglycate. This is a seminal study of spiro-β-carboline mast cell stabilization having a wider scope in mast cell research; yet, the mechanism of action remains elusive. © 2018 Deutsche Pharmazeutische Gesellschaft.

  6. Hematopoietic microenvironment. Origin, lineage, and transplantability of the stromal cells in long-term bone marrow cultures from chimeric mice

    International Nuclear Information System (INIS)

    Perkins, S.; Fleischman, R.A.

    1988-01-01

    Studies of bone marrow transplant patients have suggested that the stromal cells of the in vitro hematopoietic microenvironment are transplantable into conditioned recipients. Moreover, in patients with myeloproliferative disorders, all of the stromal cells, which include presumptive endothelial cells, appear to be derived from hematopoietic precursors. To confirm these findings, we have constructed two chimeric mouse models: (a) traditional radiation chimeras, and (b) fetal chimeras, produced by placental injection of bone marrow into genetically anemic Wx/Wv fetuses, a technique that essentially precludes engraftment of nonhematopoietic cells. Using two-color indirect immunofluorescence, the stromal cells in long-term bone marrow culture derived from these chimeras were analyzed for donor or host origin by strain-specific H-2 antigens, and for cell lineage by a variety of other specific markers. 75-95% of the stromal cells were shown to be hematopoietic cells of the monocyte-macrophage lineage, based upon donor origin, phagocytosis, and expression of specific hematopoietic surface antigens. The remaining 5-25% of the stromal cells were exclusively host in origin. Apart from occasional fat cells, these cells uniformly expressed collagen type IV, laminin, and a surface antigen associated with endothelial cells. Since these endothelial-like cells are not transplantable into radiation or fetal chimeras, they are not derived from hematopoietic stem cells. The contrast between our findings and human studies suggests either unexpected species differences in the origin of stromal lineages or limitations in the previous methodology used to detect nonhematopoietic stromal cells

  7. CD13-positive bone marrow-derived myeloid cells promote angiogenesis, tumor growth, and metastasis.

    Science.gov (United States)

    Dondossola, Eleonora; Rangel, Roberto; Guzman-Rojas, Liliana; Barbu, Elena M; Hosoya, Hitomi; St John, Lisa S; Molldrem, Jeffrey J; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2013-12-17

    Angiogenesis is fundamental to tumorigenesis and an attractive target for therapeutic intervention against cancer. We have recently demonstrated that CD13 (aminopeptidase N) expressed by nonmalignant host cells of unspecified types regulate tumor blood vessel development. Here, we compare CD13 wild-type and null bone marrow-transplanted tumor-bearing mice to show that host CD13(+) bone marrow-derived cells promote cancer progression via their effect on angiogenesis. Furthermore, we have identified CD11b(+)CD13(+) myeloid cells as the immune subpopulation directly regulating tumor blood vessel development. Finally, we show that these cells are specifically localized within the tumor microenvironment and produce proangiogenic soluble factors. Thus, CD11b(+)CD13(+) myeloid cells constitute a population of bone marrow-derived cells that promote tumor progression and metastasis and are potential candidates for the development of targeted antiangiogenic drugs.

  8. Epithelial architectural destruction is necessary for bone marrow derived cell contribution to regenerating prostate epithelium.

    Science.gov (United States)

    Palapattu, Ganesh S; Meeker, Alan; Harris, Timothy; Collector, Michael I; Sharkis, Saul J; DeMarzo, Angelo M; Warlick, Christopher; Drake, Charles G; Nelson, William G

    2006-08-01

    Using various nonphysiological tissue injury/repair models numerous studies have demonstrated the capacity of bone marrow derived cells to contribute to the repopulation of epithelial tissues following damage. To investigate whether this phenomenon might also occur during periods of physiological tissue degeneration/regeneration we compared the ability of bone marrow derived cells to rejuvenate the prostate gland in mice that were castrated and then later treated with dihydrotestosterone vs mice with prostate epithelium that had been damaged by lytic virus infection. Using allogenic bone marrow grafts from female donor transgenic mice expressing green fluorescent protein transplanted into lethally irradiated males we were able to assess the contributions of bone marrow derived cells to recovery of the prostatic epithelium in 2 distinct systems, including 1) surgical castration followed 1 week later by dihydrotestosterone replacement and 2) intraprostatic viral injection. Eight to 10-week-old male C57/Bl6 mice were distributed among bone marrow donor-->recipient/prostate injury groups, including 5 with C57/Bl6-->C57/Bl6/no injury, 3 with green fluorescent protein-->C57/Bl6/no injury, 3 with green fluorescent protein-->C57/Bl6/vehicle injection, 4 with green fluorescent protein-->C57/Bl6/virus injection and 3 each with green fluorescent protein-->C57/Bl6/castration without and with dihydrotestosterone, respectively. Prostate tissues were harvested 3 weeks after dihydrotestosterone replacement or 14 days following intraprostatic viral injection. Prostate tissue immunofluorescence was performed with antibodies against the epithelial marker cytokeratin 5/8, the hematopoietic marker CD45 and green fluorescent protein. Mice that sustained prostate injury from vaccinia virus infection with concomitant severe inflammation and glandular disruption showed evidence of bone marrow derived cell reconstitution of prostate epithelium, that is approximately 4% of all green

  9. 3T3 fibroblasts induce cloned interleukin 3-dependent mouse mast cells to resemble connective tissue mast cells in granular constituency

    International Nuclear Information System (INIS)

    Dayton, E.T.; Pharr, P.; Ogawa, M.; Serafin, W.E.; Austen, K.F.; Levi-Schaffer, F.; Stevens, R.L.

    1988-01-01

    As assessed by ultrastructure, histochemical staining, and T-cell dependency, in vitro-differentiated interleukin 3-dependent mouse mast cells are comparable to the mast cells that reside in the gastrointestinal mucosa but not in the skin or the serosal cavity of the mouse. The authors now demonstrate that when cloned interleukin 3-dependent mast cells are cocultured with mouse skin-derived 3T3 fibroblasts in the presence of WEHI-3 conditioned medium for 28 days, the mast cells acquire the ability to stain with safranin, increase their histamine content ∼ 50-fold and their carboxypeptidase. A content ∼ 100-fold, and augment ∼ their biosynthesis of proteoglycans bearing 35 S-labeled haparin relative to 35 S-labeled chondroitin sulfate glycosaminoglycans. Thus, fibroblasts induce interleukin 3-dependent mouse mast cells to change phenotype from mucosal-like to connective tissue-like, indicating that the biochemical and functional characteristics of this mast cell type are strongly influenced by the connective tissue microenvironment

  10. The proteomic dataset for bone marrow derived human mesenchymal stromal cells: Effect of in vitro passaging

    Directory of Open Access Journals (Sweden)

    Samuel T. Mindaye

    2015-12-01

    Full Text Available Bone-marrow derived mesenchymal stromal cells (BMSCs have been in clinical trials for therapy. One major bottleneck in the advancement of BMSC-based products is the challenge associated with cell isolation, characterization, and ensuring cell fitness over the course of in vitro cell propagation steps. The data in this report is part of publications that explored the proteomic changes following in vitro passaging of BMSCs [4] and the molecular heterogeneity in cultures obtained from different human donors [5,6].The methodological details involving cell manufacturing, proteome harvesting, protein identification and quantification as well as the bioinformatic analyses were described to ensure reproducibility of the results.

  11. Response of murine bone marrow-derived mesenchymal stromal cells to dry-etched porous silicon scaffolds.

    Science.gov (United States)

    Hajj-Hassan, Mohamad; Khayyat-Kholghi, Maedeh; Wang, Huifen; Chodavarapu, Vamsy; Henderson, Janet E

    2011-11-01

    Porous silicon shows great promise as a bio-interface material due to its large surface to volume ratio, its stability in aqueous solutions and to the ability to precisely regulate its pore characteristics. In the current study, porous silicon scaffolds were fabricated from single crystalline silicon wafers by a novel xenon difluoride dry etching technique. This simplified dry etch fabrication process allows selective formation of porous silicon using a standard photoresist as mask material and eliminates the post-formation drying step typically required for the wet etching techniques, thereby reducing the risk of damaging the newly formed porous silicon. The porous silicon scaffolds supported the growth of primary cultures of bone marrow derived mesenchymal stromal cells (MSC) plated at high density for up to 21 days in culture with no significant loss of viability, assessed using Alamar Blue. Scanning electron micrographs confirmed a dense lawn of cells at 9 days of culture and the presence of MSC within the pores of the porous silicon scaffolds. Copyright © 2011 Wiley Periodicals, Inc.

  12. Detection of transketolase in bone marrow-derived insulin-producing cells: benfotiamine enhances insulin synthesis and glucose metabolism.

    Science.gov (United States)

    Oh, Seh-Hoon; Witek, Rafal P; Bae, Si-Hyun; Darwiche, Houda; Jung, Youngmi; Pi, Liya; Brown, Alicia; Petersen, Bryon E

    2009-01-01

    Adult bone marrow (BM)-derived insulin-producing cells (IPCs) are capable of regulating blood glucose levels in chemically induced hyperglycemic mice. Using cell transplantation therapy, fully functional BM-derived IPCs help to mediate treatment of diabetes mellitus. Here, we demonstrate the detection of the pentose phosphate pathway enzyme, transketolase (TK), in BM-derived IPCs cultured under high-glucose conditions. Benfotiamine, a known activator of TK, was not shown to affect the proliferation of insulinoma cell line, INS-1; however, when INS-1 cells were cultured with oxythiamine, an inhibitor of TK, cell proliferation was suppressed. Treatment with benfotiamine activated glucose metabolism in INS-1 cells in high-glucose culture conditions, and appeared to maximize the BM-derived IPCs ability to synthesize insulin. Benfotiamine was not shown to induce the glucose receptor Glut-2, however it was shown to activate glucokinase, the enzyme responsible for conversion of glucose to glucose-6-phosphate. Furthermore, benfotiamine-treated groups showed upregulation of the downstream glycolytic enzyme, glyceraldehyde phosphate dehydrogenase (GAPDH). However, in cells where the pentose phosphate pathway was blocked by oxythiamine treatment, there was a clear downregulation of Glut-2, glucokinase, insulin, and GAPDH. When benfotiamine was used to treat mice transplanted with BM-derived IPCs transplanted, their glucose level was brought to a normal range. The glucose challenge of normal mice treated with benfotiamine lead to rapidly normalized blood glucose levels. These results indicate that benfotiamine activates glucose metabolism and insulin synthesis to prevent glucose toxicity caused by high concentrations of blood glucose in diabetes mellitus.

  13. Histamine and chondroitin sulfate E proteoglycan released by cultured human colonic mucosa: indication for possible presence of E mast cells

    International Nuclear Information System (INIS)

    Eliakim, R.; Gilead, L.; Ligumsky, M; Okon, E.; Rachmilewitz, D.; Razin, E.

    1986-01-01

    An association between the release of histamine and chondroitin sulfate E proteoglycan (PG) was demonstrates in human colonic mucosa (HCM). Colonic biopsy samples incorporated [ 35 S]sulfate into PG, which was partially released into the culture medium during the incubation period. Ascending thin-layer chromatography of the released 35 S-labeled PG after its digestion by chondroitin ABC lyase (chondroitinase, EC 4.2.2.4) followed by autoradiography yielded three products that migrated in the position of monosulfated disaccharides of N-acetylgalactosamine 4-sulfate and N-acetylgalactosoamine 6-sulfate and of an oversulfated disaccharide possessing N-acetylgalatosamine 4,6-disulfate. Cultured colonic mucosa released 23.6 +/- 3.7ng of histamine per mg of wet tissue without any special trigger. Comparison by linear regression analysis of the release of histamine and chondroitin [ 35 S]sulfate E PG revealed a correlation coefficient (r) of 0.7. Histological examination of the colonic biopsies revealed the presence of many mast cells in various degrees of degranulation in the mucosa and submucosa. The above correlation, the observation that most of the mast cells showed various degrees of degranulation, and the lack of heparin synthesis as opposed to the synthesis and immunological release of chondroitin sulfate E strongly suggest that the E mast cell exists in the human colon

  14. The development of human mast cells. An historical reappraisal

    Energy Technology Data Exchange (ETDEWEB)

    Ribatti, Domenico, E-mail: domenico.ribatti@uniba.it

    2016-03-15

    The understanding of mast cell (MC) differentiation is derived mainly from in vitro studies of different stages of stem and progenitor cells. The hematopoietic lineage development of human MCs is unique compared to other myeloid-derived cells. Human MCs originate from CD34{sup +}/CD117{sup +}/CD13{sup +}multipotent hematopoietic progenitors, which undergo transendothelial recruitment into peripheral tissues, where they complete differentiation. Stem cell factor (SCF) is a major chemotactic factor for MCs and their progenitors. SCF also elicits cell-cell and cell-substratum adhesion, facilitates the proliferation, and sustains the survival, differentiation, and maturation, of MCs. Because MC maturation is influenced by local microenvironmental factors, different MC phenotypes can develop in different tissues and organs. - Highlights: • Human mast cells originate from CD34/CD117/CD13 positive multipotent hematopoietic progenitors. • Stem cell factor is a major chemotactic factor for mast cells and their progenitors. • Different mast cell phenotypes can develop in different tissues and organs.

  15. The development of human mast cells. An historical reappraisal

    International Nuclear Information System (INIS)

    Ribatti, Domenico

    2016-01-01

    The understanding of mast cell (MC) differentiation is derived mainly from in vitro studies of different stages of stem and progenitor cells. The hematopoietic lineage development of human MCs is unique compared to other myeloid-derived cells. Human MCs originate from CD34"+/CD117"+/CD13"+multipotent hematopoietic progenitors, which undergo transendothelial recruitment into peripheral tissues, where they complete differentiation. Stem cell factor (SCF) is a major chemotactic factor for MCs and their progenitors. SCF also elicits cell-cell and cell-substratum adhesion, facilitates the proliferation, and sustains the survival, differentiation, and maturation, of MCs. Because MC maturation is influenced by local microenvironmental factors, different MC phenotypes can develop in different tissues and organs. - Highlights: • Human mast cells originate from CD34/CD117/CD13 positive multipotent hematopoietic progenitors. • Stem cell factor is a major chemotactic factor for mast cells and their progenitors. • Different mast cell phenotypes can develop in different tissues and organs.

  16. Role of bone marrow-derived stem cells, renal progenitor cells and ...

    African Journals Online (AJOL)

    It remains the leading cause of late allograft loss. Bone marrow derived stem cells are undifferentiated cells typically characterized by their capacity for self renewal, ability to give rise to multiple differentiated cellular population, including hematopoietic (HSCs) and mesenchymal stem cells (MSCs). Characterization of HSCs ...

  17. Isolation, culture and intraportal transplantation of rat marrow stromal cell

    International Nuclear Information System (INIS)

    Wang Ping; Wang Jianhua; Yan Zhiping; Li Wentao; Lin Genlai; Hu Meiyu; Wang Yanhong

    2004-01-01

    Objective: To observe the tracing and evolution of marrow stromal cell (MSC) after intraportal transplantation into the liver of homogenous rats, and to provide experimental data for MSC differentiation to hepatocyte in vivo. Methods: The MSC was isolated from the leg bone marrow of adult SD rats, and purified by culture-expanded in vitro. Before transplantation, MSC was labeled with DAPI. Then 10 5 MSC were intraportally transplanted into the homogenous rat liver. Rats were killed at 2 hours and 1, 2, 3 and 4 weeks after transplantation. The cryosection samples of liver and lung were observed under fluorescence microscopy. Results: MSC in vitro culture had high ability of proliferation. Except 4 rats were dead because of abdominal bleeding or infection, other recipients were healthy until sacrificed. The implantation cells were detected by identifying the DAPI labeled MSC in the host livers, but not in the host lungs. Conclusion: Intraportal transplanted MSC could immigrate and survive in the host livers at least for 4 weeks. They could immigrate from the small branches of portal veins to hepatic parenchyma

  18. Podoplanin-expressing Cells Derived from Bone Marrow Play a Crucial Role in Postnatal Lymphatic Neovascularization

    Science.gov (United States)

    Lee, Ji Yoon; Park, Changwon; Cho, Yong Pil; Lee, Eugine; Kim, Hyongbum; Kim, Pilhan; Yun, Seok H.; Yoon, Young-sup

    2010-01-01

    Background Emerging evidence has suggested a contribution of bone marrow (BM) cells to lymphatic vessel formation; however, the exact phenotype of the cells with lymphatic endothelial progenitor cell (LEPC) function has yet to be identified. Here we investigate the identity of BM-derived LEPCs and their role in lymphatic neovascularization. Methods and Results Culture of BM-mononuclear cells (MNCs) in the presence of VEGFA, VEGFC and EGF resulted in expression of lymphatic endothelial cell (LEC) markers. Among these cells, podoplanin+ cells were isolated by magnetic-labeled cell separation system (MACS) and characterized by FACS and immunocytochemistry. These podoplanin+ cells highly express markers for LECs, hematopoietic lineages, and stem/progenitor cells, and upon further cultivation, generate LECs. We further confirmed that podoplanin+ cells exist in small numbers in BM and peripheral blood (PB) of normal mice, but are significantly (15 fold) augmented upon lymphangiogenic stimuli such as tumor implantation. Next, to evaluate the potential of podoplanin+ cells for the formation of new lymphatic vessels in vivo, we injected culture-isolated or freshly isolated BM-derived podoplanin+ cells into wound and tumor models. Immunohistochemistry demonstrated that the injected cells were incorporated into the lymphatic vasculature, displayed LEC phenotypes, and increased lymphatic vascular density in tissues, suggesting lymphvasculogenesis. Podoplanin+ cells also expressed high levels of lymphangiogenic cytokines and increased proliferation of LECs during co-culture, suggesting a lymphangiogenic or paracrine role. Conclusions Our results provide compelling evidence that BM-derived podoplanin+ cells, a previously unrecognized cell type, function as LEPCs and participate in postnatal lymphatic neovascularization through both lymphvasculogenesis and lymphangiogenesis. PMID:20855662

  19. Central nervous system mast cells in peripheral inflammatory nociception

    Directory of Open Access Journals (Sweden)

    Ellmeier Wilfried

    2011-06-01

    Full Text Available Abstract Background Functional aspects of mast cell-neuronal interactions remain poorly understood. Mast cell activation and degranulation can result in the release of powerful pro-inflammatory mediators such as histamine and cytokines. Cerebral dural mast cells have been proposed to modulate meningeal nociceptor activity and be involved in migraine pathophysiology. Little is known about the functional role of spinal cord dural mast cells. In this study, we examine their potential involvement in nociception and synaptic plasticity in superficial spinal dorsal horn. Changes of lower spinal cord dura mast cells and their contribution to hyperalgesia are examined in animal models of peripheral neurogenic and non-neurogenic inflammation. Results Spinal application of supernatant from activated cultured mast cells induces significant mechanical hyperalgesia and long-term potentiation (LTP at spinal synapses of C-fibers. Lumbar, thoracic and thalamic preparations are then examined for mast cell number and degranulation status after intraplantar capsaicin and carrageenan. Intradermal capsaicin induces a significant percent increase of lumbar dural mast cells at 3 hours post-administration. Peripheral carrageenan in female rats significantly increases mast cell density in the lumbar dura, but not in thoracic dura or thalamus. Intrathecal administration of the mast cell stabilizer sodium cromoglycate or the spleen tyrosine kinase (Syk inhibitor BAY-613606 reduce the increased percent degranulation and degranulated cell density of lumbar dural mast cells after capsaicin and carrageenan respectively, without affecting hyperalgesia. Conclusion The results suggest that lumbar dural mast cells may be sufficient but are not necessary for capsaicin or carrageenan-induced hyperalgesia.

  20. Insights in Anaphylaxis and Clonal Mast Cell Disorders

    Directory of Open Access Journals (Sweden)

    David González-de-Olano

    2017-07-01

    Full Text Available The prevalence of anaphylaxis among patients with clonal mast cell disorders (MCD is clearly higher comparing to the general population. Due to a lower frequency of symptoms outside of acute episodes, clonal MCD in the absence of skin lesions might sometimes be difficult to identify which may lead to underdiagnosis, and anaphylaxis is commonly the presenting symptom in these patients. Although the release of mast cell (MC mediators upon MC activation might present with a wide variety of symptoms, particular clinical features typically characterize MC mediator release episodes in patients with clonal MCD without skin involvement. Final diagnosis requires a bone marrow study, and it is recommended that this should be done in reference centers. In this article, we address the main triggers for anaphylaxis, risk factors, clinical presentation, diagnosis, and management of patients with MC activation syndromes (MCASs, with special emphasis on clonal MCAS [systemic mastocytosis and mono(clonal MC activations syndromes].

  1. Overexpression of miR-9 in mast cells is associated with invasive behavior and spontaneous metastasis

    International Nuclear Information System (INIS)

    Fenger, Joelle M; Bear, Misty D; Volinia, Stefano; Lin, Tzu-Yin; Harrington, Bonnie K; London, Cheryl A; Kisseberth, William C

    2014-01-01

    While microRNA (miRNA) expression is known to be altered in a variety of human malignancies contributing to cancer development and progression, the potential role of miRNA dysregulation in malignant mast cell disease has not been previously explored. The purpose of this study was to investigate the potential contribution of miRNA dysregulation to the biology of canine mast cell tumors (MCTs), a well-established spontaneous model of malignant mast cell disease. We evaluated the miRNA expression profiles from biologically low-grade and biologically high-grade primary canine MCTs using real-time PCR-based TaqMan Low Density miRNA Arrays and performed real-time PCR to evaluate miR-9 expression in primary canine MCTs, malignant mast cell lines, and normal bone marrow-derived mast cells (BMMCs). Mouse mast cell lines and BMMCs were transduced with empty or pre-miR-9 expressing lentiviral constructs and cell proliferation, caspase 3/7 activity, and invasion were assessed. Transcriptional profiling of cells overexpressing miR-9 was performed using Affymetrix GeneChip Mouse Gene 2.0 ST arrays and real-time PCR was performed to validate changes in mRNA expression. Our data demonstrate that unique miRNA expression profiles correlate with the biological behavior of primary canine MCTs and that miR-9 expression is increased in biologically high grade canine MCTs and malignant cell lines compared to biologically low grade tumors and normal canine BMMCs. In transformed mouse malignant mast cell lines expressing either wild-type (C57) or activating (P815) KIT mutations and mouse BMMCs, miR-9 overexpression significantly enhanced invasion but had no effect on cell proliferation or apoptosis. Transcriptional profiling of normal mouse BMMCs and P815 cells possessing enforced miR-9 expression demonstrated dysregulation of several genes, including upregulation of CMA1, a protease involved in activation of matrix metalloproteases and extracellular matrix remodeling. Our findings

  2. Mast cell-dependent IL-33/ST2 signaling is protective against the development of airway hyperresponsiveness in a house dust mite mouse model of asthma.

    Science.gov (United States)

    Zoltowska Nilsson, A M; Lei, Y; Adner, M; Nilsson, G P

    2018-03-01

    Interleukin-33 (IL-33) and its receptor ST2 have been influentially associated with the pathophysiology of asthma. Due to the divergent roles of IL-33 in regulating mast cell functions, there is a need to further characterize IL-33/ST2-dependent mast cell responses and their significance in the context of asthma. This study aimed to investigate how IL-33/ST2-dependent mast cell responses contribute to the development of airway hyperresponsiveness (AHR) and airway inflammation in a mouse model of house dust mite (HDM)-induced asthma. Mast cell-deficient C57BL/6-Kit W-sh (Wsh) mice engrafted with either wild-type (Wsh + MC-WT) or ST2-deficient bone marrow-derived mast cells (Wsh + MC-ST2KO) were exposed to HDM delivered intranasally. An exacerbated development of AHR in response to HDM was seen in Wsh + MC-ST2KO compared with Wsh + MC-WT mice. The contribution of this IL-33/ST2-dependent mast cell response to AHR seems to reside within the smaller airways in the peripheral parts of the lung, as suggested by the isolated yet marked effect on tissue resistance. Considering the absence of a parallel increase in cellular inflammation in bronchoalveolar lavage fluid (BALF) and lung, the aggravated AHR in Wsh + MC-ST2KO mice seems to be independent of cellular inflammation. We observed an association between the elevated AHR and reduced PGE 2 levels in BALF . Due to the protective properties of PGE 2 in airway responses, it is conceivable that IL-33/ST2-dependent mast cell induction of PGE 2 could be responsible for the dampening effect on AHR. In conclusion, we reveal that IL-33/ST2-dependent mast cell responses can have a protective, rather than causative role, in the development of AHR.

  3. Contribution of different bone marrow-derived cell types in endometrial regeneration using an irradiated murine model.

    Science.gov (United States)

    Gil-Sanchis, Claudia; Cervelló, Irene; Khurana, Satish; Faus, Amparo; Verfaillie, Catherine; Simón, Carlos

    2015-06-01

    To study the involvement of seven types of bone marrow-derived cells (BMDCs) in the endometrial regeneration in mice after total body irradiation. Prospective experimental animal study. University research laboratories. β-Actin-green fluorescent protein (GFP) transgenic C57BL/6-Tg (CAG-EGFP) and C57BL/6J female mice. The BMDCs were isolated from CAG-EGFP mice: unfractionated bone marrow cells, hematopoietic progenitor cells, endothelial progenitor cells (EPCs), and mesenchymal stem cells (MSCs). In addition three murine GFP(+) cell lines were used: mouse Oct4 negative BMDC multipotent adult progenitor cells (mOct4(-)BM-MAPCs), BMDC hypoblast-like stem cells (mOct4(+) BM-HypoSCs), and MSCs. All cell types were injected through the tail vein of 9 Gy-irradiated C57BL/6J female mice. Flow cytometry, cell culture, bone marrow transplantation assays, histologic evaluation, immunohistochemistry, proliferation, apoptosis, and statistical analysis. After 12 weeks, histologic analysis revealed that uteri of mice with mOct4(-)BM-MAPCs and MSC line were significantly smaller than uteri of mice with uncultured BMDCs or mOct4(+) BM-HypoSCs. The percentage of engrafted GFP(+) cells ranged from 0.13%-4.78%. Expression of Ki-67 was lower in all uteri from BMDCs treated mice than in the control, whereas TUNEL(+) cells were increased in the EPCs and mOct4(+)BM-HypoSCs groups. Low number of some BMDCs can be found in regenerating endometrium, including stromal, endotelial, and epithelial compartments. Freshly isolated MSCs and EPCs together with mOct4(+) BM-HypoSCs induced the greatest degree of regeneration, whereas culture isolated MSCs and mOct4(-)BM-MAPCs transplantation may have an inhibitory effect on endometrial regeneration. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. Mast cell function modulating IgE-mediated allergy

    Directory of Open Access Journals (Sweden)

    Ruby Pawankar

    1999-01-01

    Full Text Available Allergic diseases, such as atopic rhinitis, bronchial asthma and urticaria, are prevalent and increasing in frequency. Mast cells are known to play a central role in the immediate phase reaction of allergic diseases through the IgE-mediated release of a variety of chemical mediators, such as histamine, leukotrienes and prostaglandins. In contrast, T lymphocytes, basophils and eosinophils are thought to be responsible for inducing the late phase response. However, whether the mast cell can be simplistically assigned a role in the immediate phase allergic response and whether mast cells are necessary for the ongoing allergic response, including the development of hyperresponsiveness, remains to be completely studied. In the present article, the author will discuss the integrated roles of mast cells in IgE-mediated allergic inflammation, with specific emphasis on the roles of mast cell-derived cytokines in the late phase allergic response and chronic allergic inflammation.

  5. Potential of Osteoblastic Cells Derived from Bone Marrow and Adipose Tissue Associated with a Polymer/Ceramic Composite to Repair Bone Tissue.

    Science.gov (United States)

    Freitas, Gileade P; Lopes, Helena B; Almeida, Adriana L G; Abuna, Rodrigo P F; Gimenes, Rossano; Souza, Lucas E B; Covas, Dimas T; Beloti, Marcio M; Rosa, Adalberto L

    2017-09-01

    One of the tissue engineering strategies to promote bone regeneration is the association of cells and biomaterials. In this context, the aim of this study was to evaluate if cell source, either from bone marrow or adipose tissue, affects bone repair induced by osteoblastic cells associated with a membrane of poly(vinylidene-trifluoroethylene)/barium titanate (PVDF-TrFE/BT). Mesenchymal stem cells (MSC) were isolated from rat bone marrow and adipose tissue and characterized by detection of several surface markers. Also, both cell populations were cultured under osteogenic conditions and it was observed that MSC from bone marrow were more osteogenic than MSC from adipose tissue. The bone repair was evaluated in rat calvarial defects implanted with PVDF-TrFE/BT membrane and locally injected with (1) osteoblastic cells differentiated from MSC from bone marrow, (2) osteoblastic cells differentiated from MSC from adipose tissue or (3) phosphate-buffered saline. Luciferase-expressing osteoblastic cells derived from bone marrow and adipose tissue were detected in bone defects after cell injection during 25 days without difference in luciferin signal between cells from both sources. Corroborating the in vitro findings, osteoblastic cells from bone marrow combined with the PVDF-TrFE/BT membrane increased the bone formation, whereas osteoblastic cells from adipose tissue did not enhance the bone repair induced by the membrane itself. Based on these findings, it is possible to conclude that, by combining a membrane with cells in this rat model, cell source matters and that bone marrow could be a more suitable source of cells for therapies to engineer bone.

  6. In vitro formation of osteoclasts from long-term cultures of bone marrow mononuclear phagocytes

    International Nuclear Information System (INIS)

    Burger, E.H.; Van der Meer, J.W.; van de Gevel, J.S.; Gribnau, J.C.; Thesingh, G.W.; van Furth, R.

    1982-01-01

    The origin of osteoclasts was studied in an in vitro model using organ cultures of periosteum-free embryonic mouse long-bone primordia, which were co-cultured with various cell populations. The bone rudiments were freed of their periosteum-perichondrium by collagenase treatment in a stage before cartilage erosion and osteoclast formation, and co-cultured for 7 d with either embryonic liver or mononuclear phagocytes from various sources. Light and electron microscopic examination of the cultures showed that mineralized matrix-resorbing osteoclasts developed only in bones co-cultured with embryonic liver or with cultured bone marrow mononuclear phagocytes but not when co-cultured with blood monocytes or resident or exudate peritoneal macrophages. Osteoclasts developed from the weakly adherent, but not from the strongly adherent cells of bone marrow cultures, whereas 1,000 rad irradiation destroyed the capacity of such cultures to form osteoclasts. In bone cultures to which no other cells were added, osteoclasts were virtually absent. Bone-resorbing activity of in vitro formed osteoclasts was demonstrated by 45 Ca release studies. These studies demonstrate that osteoclasts develop from cells present in cultures of proliferating mononuclear phagocytes and that, at least in our system, monocytes and macrophages are unable to form osteoclasts. The most likely candidates for osteoclast precursor cells seem to be monoblasts and promonocytes

  7. Discrepancy of biologic behavior influenced by bone marrow derived cells in lung cancer.

    Science.gov (United States)

    Zhang, Jie; Niu, Xiao-Min; Liao, Mei-Lin; Liu, Yun; Sha, Hui-Fang; Zhao, Yi; Yu, Yong-Feng; Tan, Qiang; Xiang, Jia-Qing; Fang, Jing; Lv, Dan-Dan; Li, Xue-Bing; Lu, Shun; Chen, Hai-Quan

    2010-11-01

    Disseminated cancer cells may initially require local nutrients and growth factors to thrive and survive in bone marrow. However, data on the influence of bone marrow derived cells (BMDC, also called bone stromal cells in some publications) on lung cancer cells is largely unexplored. This study explored the mechanism of how bone stromal factors contribute to the bone tropism in lung cancer. The difference among lung cancer cell lines in their abilities to metastasize to bone was found using the SCID animal model. Supernatant of bone marrow aspiration (BM) and condition medium from human bone stromal cells (BSC) were used to study the activity of bone stromal factors. We found bone stromal factors significantly increased the proliferation, invasion, adhesion and expression of angiogenosis-related factors, and inhibited the apoptosis for high bone metastasis H460 lung cancer cells. These biologic effects were not seen in SPC-A1 or A549 cells, which are low bone metastasis lung cancer cells. Adhesion of H460 cells to surface coated with bone stromal cells can activate some signal transduction pathways, and alter the expression of adhesion associated factors, including integrin β 3 and ADAMTS-1, two potential targets related with bone metastasis. We concluded that bone marrow derived cells had a profound effect on biological behavior of lung cancers, therefore favoring the growth of lung cancer cells in bone.

  8. The Phenotypic Fate of Bone Marrow-Derived Stem Cells in Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Guowei Feng

    2013-11-01

    Full Text Available Background: Despite increasing attention on the role of bone marrow derived stem cells in repair or rejuvenation of tissues and organs, cellular mechanisms of such cell-based therapy remain poorly understood. Methods: We reconstituted hematopoiesis in recipient C57BL/6J mice by transplanting syngeneic GFP+ bone marrow (BM cells. Subsequently, the recipients received subcutaneous injection of granulocyte-colony stimulating factor (G-CSF and were subjected to acute renal ischemic injury. Flow cytometry and immunostaining were performed at various time points to assess engraftment and phenotype of BM derived stem cells. Results: Administration of G-CSF increased the release of BM derived stem cells into circulation and enhanced the ensuing recruitment of BM derived stem cells into injured kidney. During the second month post injury, migrated BM derived stem cells lost hematopoietic phenotype (CD45 but maintained the expression of other markers (Sca-1, CD133 and CD44, suggesting their potential of transdifferentiation into renal stem cells. Moreover, G-CSF treatment enhanced the phenotypic conversion. Conclusion: Our work depicted a time-course dependent transition of phenotypic characteristics of BM derived stem cells, demonstrated the existence of BM derived stem cells in damaged kidney and revealed the effects of G-CSF on cell transdifferentiation.

  9. Mast cells exert pro-inflammatory effects of relevance to the pathophyisology of tendinopathy.

    Science.gov (United States)

    Behzad, Hayedeh; Sharma, Aishwariya; Mousavizadeh, Rouhollah; Lu, Alex; Scott, Alex

    2013-01-01

    We have previously found an increased mast cell density in tendon biopsies from patients with patellar tendinopathy compared to controls. This study examined the influence of mast cells on basic tenocyte functions, including production of the inflammatory mediator prostaglandin E2 (PGE2), extracellular matrix remodeling and matrix metalloproteinase (MMP) gene transcription, and collagen synthesis. Primary human tenocytes were stimulated with an established human mast cell line (HMC-1). Extracellular matrix remodeling was studied by culturing tenocytes in a three-dimensional collagen lattice. Survival/proliferation was assessed with the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt (MTS) assay. Levels of mRNA for COX-2, COL1A1, MMP1, and MMP7 were determined by quantitative real-time polymerase chain reaction (qPCR). Cox-2 protein level was assessed by Western blot analysis and type I procollagen was detected by immunofluorescent staining. PGE2 levels were determined using an enzyme-linked immunosorbent assay (ELISA). Mast cells stimulated tenocytes to produce increased levels of COX-2 and the pro-inflammatory mediator PGE2, which in turn decreased COL1A1 mRNA expression. Additionally, mast cells reduced the type I procollagen protein levels produced by tenocytes. Transforming growth factor beta 1 (TGF-β1) was responsible for the induction of Cox-2 and PGE2 by tenocytes. Mast cells increased MMP1 and MMP7 transcription and increased the contraction of a three-dimensional collagen lattice by tenocytes, a phenomenon which was blocked by a pan-MMP inhibitor (Batimastat). Our data demonstrate that mast cell-derived PGE2 reduces collagen synthesis and enhances expression and activities of MMPs in human tenocytes.

  10. Hedgehog-mediated paracrine interaction between hepatic stellate cells and marrow-derived mesenchymal stem cells

    International Nuclear Information System (INIS)

    Lin Nan; Tang Zhaofeng; Deng Meihai; Zhong Yuesi; Lin Jizong; Yang Xuhui; Xiang Peng; Xu Ruiyun

    2008-01-01

    During liver injury, bone marrow-derived mesenchymal stem cells (MSCs) can migrate and differentiate into hepatocytes. Hepatic stellate cell (SC) activation is a pivotal event in the development of liver fibrosis. Therefore, we hypothesized that SCs may play an important role in regulating MSC proliferation and differentiation through the paracrine signaling pathway. We demonstrate that MSCs and SCs both express hedgehog (Hh) pathway components, including its ligands, receptors, and target genes. Transwell co-cultures of SCs and MSCs showed that the SCs produced sonic hedgehog (Shh), which enhanced the proliferation and differentiation of MSCs. These findings demonstrate that SCs indirectly modulate the activity of MSCs in vitro via the Hh pathway, and provide a plausible explanation for the mechanisms of transplanted MSCs in the treatment of liver fibrosis

  11. Bone Formation by Sheep Stem Cells in an Ectopic Mouse Model: Comparison of Adipose and Bone Marrow Derived Cells and Identification of Donor-Derived Bone by Antibody Staining

    Directory of Open Access Journals (Sweden)

    Kristian Kjærgaard

    2016-01-01

    Full Text Available Background. Scaffolds for bone tissue engineering (BTE can be loaded with stem and progenitor cells (SPC from different sources to improve osteogenesis. SPC can be found in bone marrow, adipose tissue, and other tissues. Little is known about osteogenic potential of adipose-derived culture expanded, adherent cells (A-CEAC. This study compares in vivo osteogenic capacity between A-CEAC and bone marrow derived culture expanded, adherent cells (BM-CEAC. Method. A-CEAC and BM-CEAC were isolated from five female sheep and seeded on hydroxyapatite granules prior to subcutaneous implantation in immunodeficient mice. The doses of cells in the implants were 0.5 × 106, 1.0 × 106, or 1.5 × 106 A-CEAC and 0.5 × 106 BM-CEAC, respectively. After eight weeks, bone volume versus total tissue volume (BV/TV was quantified using histomorphometry. Origin of new bone was assessed using human vimentin (HVIM antibody staining. Results. BM-CEAC yielded significantly higher BV/TV than any A-CEAC group, and differences between A-CEAC groups were not statistically significant. HVIM antibody stain was successfully used to identify sheep cells in this model. Conclusion. A-CEAC and BM-CEAC were capable of forming bone, and BM-CEAC yielded significantly higher BV/TV than any A-CEAC group. In vitro treatment to enhance osteogenic capacity of A-CEAC is suggested for further research in ovine bone tissue engineering.

  12. Telomerase deficiency in bone marrow-derived cells attenuates angiotensin II-induced abdominal aortic aneurysm formation.

    Science.gov (United States)

    Findeisen, Hannes M; Gizard, Florence; Zhao, Yue; Cohn, Dianne; Heywood, Elizabeth B; Jones, Karrie L; Lovett, David H; Howatt, Deborah A; Daugherty, Alan; Bruemmer, Dennis

    2011-02-01

    Abdominal aortic aneurysms (AAA) are an age-related vascular disease and an important cause of morbidity and mortality. In this study, we sought to determine whether the catalytic component of telomerase, telomerase reverse transcriptase (TERT), modulates angiotensin (Ang) II-induced AAA formation. Low-density lipoprotein receptor-deficient (LDLr-/-) mice were lethally irradiated and reconstituted with bone marrow-derived cells from TERT-deficient (TERT-/-) mice or littermate wild-type mice. Mice were placed on a diet enriched in cholesterol, and AAA formation was quantified after 4 weeks of Ang II infusion. Repopulation of LDLr-/- mice with TERT-/- bone marrow-derived cells attenuated Ang II-induced AAA formation. TERT-deficient recipient mice revealed modest telomere attrition in circulating leukocytes at the study end point without any overt effect of the donor genotype on white blood cell counts. In mice repopulated with TERT-/- bone marrow, aortic matrix metalloproteinase-2 (MMP-2) activity was reduced, and TERT-/- macrophages exhibited decreased expression and activity of MMP-2 in response to stimulation with Ang II. Finally, we demonstrated in transient transfection studies that TERT overexpression activates the MMP-2 promoter in macrophages. TERT deficiency in bone marrow-derived macrophages attenuates Ang II-induced AAA formation in LDLr-/- mice and decreases MMP-2 expression. These results point to a previously unrecognized role of TERT in the pathogenesis of AAA.

  13. Mast-Cell-Derived TNF Amplifies CD8+ Dendritic Cell Functionality and CD8+ T Cell Priming

    Directory of Open Access Journals (Sweden)

    Jan Dudeck

    2015-10-01

    Full Text Available Mast cells are critical promoters of adaptive immunity in the contact hypersensitivity model, but the mechanism of allergen sensitization is poorly understood. Using Mcpt5-CreTNFFL/FL mice, we show here that the absence of TNF exclusively in mast cells impaired the expansion of CD8+ T cells upon sensitization and the T-cell-driven adaptive immune response to elicitation. T cells primed in the absence of mast cell TNF exhibited a diminished efficiency to transfer sensitization to naive recipients. Specifically, mast cell TNF promotes CD8+ dendritic cell (DC maturation and migration to draining lymph nodes. The peripherally released mast cell TNF further critically boosts the CD8+ T-cell-priming efficiency of CD8+ DCs, thereby linking mast cell effects on T cells to DC modulation. Collectively, our findings identify the distinct potential of mast cell TNF to amplify CD8+ DC functionality and CD8+ T-cell-dominated adaptive immunity, which may be of great importance for immunotherapy and vaccination approaches.

  14. Proteome analysis identifies L1CAM/CD171 and DPP4/CD26 as novel markers of human skin mast cells.

    Science.gov (United States)

    Gschwandtner, M; Paulitschke, V; Mildner, M; Brunner, P M; Hacker, S; Eisenwort, G; Sperr, W R; Valent, P; Gerner, C; Tschachler, E

    2017-01-01

    The function of skin mast cells has been well documented in IgE-mediated allergic reactions, whereas other mast cell functions are poorly defined. This study aimed at identifying novel mast cell proteins by proteome analysis of primary human skin mast cells. The proteome of skin mast cells was compared to other cell types and analyzed using bioinformatics. The expression and function of two proteins hitherto not described in skin mast cells was investigated in isolated mast cells as well as in mast cells in situ. Within the mast cell proteome, we identified 49 highly expressed proteins previously not described in mast cells; 21 of these proteins were found to be selectively expressed in mast cells. Two proteins, the neural cell adhesion molecule L1 and dipeptidyl peptidase 4, were further studied. L1 was found to be highly expressed in mast cells in normal, psoriasis, and mastocytosis skin. Dipeptidyl peptidase 4 was found to be expressed in mast cells in normal, psoriasis, and mastocytosis skin as well as in bone marrow mast cells in patients with systemic mastocytosis. In normal skin, mast cells were identified as a major source of dipeptidyl peptidase 4 and we also found that skin mast cells and fibroblasts secrete an active form of this enzyme. In a systematic proteomics approach we identified two novel mast cell proteins potentially relevant to skin homeostasis: neural cell adhesion molecule L1 and dipeptidyl peptidase 4. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Meningeal mast cell-T cell crosstalk regulates T cell encephalitogenicity.

    Science.gov (United States)

    Russi, Abigail E; Walker-Caulfield, Margaret E; Guo, Yong; Lucchinetti, Claudia F; Brown, Melissa A

    2016-09-01

    GM-CSF is a cytokine produced by T helper (Th) cells that plays an essential role in orchestrating neuroinflammation in experimental autoimmune encephalomyelitis, a rodent model of multiple sclerosis. Yet where and how Th cells acquire GM-CSF expression is unknown. In this study we identify mast cells in the meninges, tripartite tissues surrounding the brain and spinal cord, as important contributors to antigen-specific Th cell accumulation and GM-CSF expression. In the absence of mast cells, Th cells do not accumulate in the meninges nor produce GM-CSF. Mast cell-T cell co-culture experiments and selective mast cell reconstitution of the meninges of mast cell-deficient mice reveal that resident meningeal mast cells are an early source of caspase-1-dependent IL-1β that licenses Th cells to produce GM-CSF and become encephalitogenic. We also provide evidence of mast cell-T cell co-localization in the meninges and CNS of recently diagnosed acute MS patients indicating similar interactions may occur in human demyelinating disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Enhanced adipogenic differentiation of bovine bone marrow-derived mesenchymal stem cells

    Science.gov (United States)

    Until now, the isolation and characterization of bovine bone marrow-derived mesenchymal stem cells (bBM-MSCs) have not been established, which prompted us to optimize the differentiation protocol for bBM-MSCs. In this study, bBM-MSCs were freshly isolated from three 6-month-old cattle and used for p...

  17. 4-Chlorotetrazolo[1,5-a]quinoxaline inhibits activation of Syk kinase to suppress mast cells in vitro and mast cell-mediated passive cutaneous anaphylaxis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kui Lea [Center for Drug Development Assistance, National Institute of Food Drug Safety Evaluation (NIFDS), KFDA, Cheongwon-gun (Korea, Republic of); Ko, Na Young; Lee, Jun Ho; Kim, Do Kyun; Kim, Hyuk Soon; Kim, A-Ram; Her, Erk; Kim, Bokyung [Department of Immunology and physiology, College of Medicine, Konkuk University, Chungju (Korea, Republic of); Kim, Hyung Sik [College of Pharmacy, Pusan National University, Busan (Korea, Republic of); Moon, Eun-Yi [Department of Bioscience and Biotechnology, College of Biological Science, Sejong University, Seoul (Korea, Republic of); Kim, Young Mi [College of Pharmacy, Duksung Women' s University, Seoul (Korea, Republic of); Kim, Hang-Rae, E-mail: hangrae2@snu.ac.kr [Department of Anatomy, Seoul National University College of Medicine, Seoul (Korea, Republic of); Choi, Wahn Soo, E-mail: wahnchoi@kku.ac.kr [Department of Immunology and physiology, College of Medicine, Konkuk University, Chungju (Korea, Republic of)

    2011-12-15

    4-Chlorotetrazolo[1,5-a]quinoxaline is a quinoxaline derivative. We aimed to study the effects of 4-chlorotetrazolo[1,5-a]quinoxaline on activation of mast cells in vitro and in mice. 4-Chlorotetrazolo[1,5-a]quinoxaline reversibly inhibited degranulation of mast cells in a dose-dependent manner, and also suppressed the expression and secretion of TNF-{alpha} and IL-4 in mast cells. Mechanistically, 4-chlorotetrazolo[1,5-a]quinoxaline inhibited activating phosphorylation of Syk and LAT, which are crucial for early Fc{epsilon}RI-mediated signaling events, as well as Akt and MAP kinases, which play essential roles in the production of various pro-inflammatory cytokines in mast cells. Notably, although 4-chlorotetrazolo[1,5-a]quinoxaline inhibited the activation of Fyn and Syk, minimal inhibition was observed in mast cells in the case of Lyn. Furthermore, consistent with its in vitro activity, 4-chlorotetrazolo[1,5-a]quinoxaline significantly suppressed mast cell-mediated passive cutaneous anaphylaxis in mice. In summary, the results from this study demonstrate that 4-chlorotetrazolo[1,5-a]quinoxaline shows an inhibitory effect on mast cells in vitro and in vivo, and that this is mediated by inhibiting the activation of Syk in mast cells. Therefore, 4-chlorotetrazolo[1,5-a]quinoxaline could be useful in the treatment of mast cell-mediated allergic diseases. -- Highlights: Black-Right-Pointing-Pointer 4-chlorotetrazolo[1,5-a]quinoxaline is a quinoxaline derivative. Black-Right-Pointing-Pointer The effect of 4-chlorotetrazolo[1,5-a]quinoxaline on mast cells was investigated. Black-Right-Pointing-Pointer 4-chlorotetrazolo[1,5-a]quinoxaline reversibly inhibited Syk activation. Black-Right-Pointing-Pointer 4-chlorotetrazolo[1,5-a]quinoxaline could be useful for IgE-mediated allergy.

  18. 4-Chlorotetrazolo[1,5-a]quinoxaline inhibits activation of Syk kinase to suppress mast cells in vitro and mast cell-mediated passive cutaneous anaphylaxis in mice

    International Nuclear Information System (INIS)

    Park, Kui Lea; Ko, Na Young; Lee, Jun Ho; Kim, Do Kyun; Kim, Hyuk Soon; Kim, A-Ram; Her, Erk; Kim, Bokyung; Kim, Hyung Sik; Moon, Eun-Yi; Kim, Young Mi; Kim, Hang-Rae; Choi, Wahn Soo

    2011-01-01

    4-Chlorotetrazolo[1,5-a]quinoxaline is a quinoxaline derivative. We aimed to study the effects of 4-chlorotetrazolo[1,5-a]quinoxaline on activation of mast cells in vitro and in mice. 4-Chlorotetrazolo[1,5-a]quinoxaline reversibly inhibited degranulation of mast cells in a dose-dependent manner, and also suppressed the expression and secretion of TNF-α and IL-4 in mast cells. Mechanistically, 4-chlorotetrazolo[1,5-a]quinoxaline inhibited activating phosphorylation of Syk and LAT, which are crucial for early FcεRI-mediated signaling events, as well as Akt and MAP kinases, which play essential roles in the production of various pro-inflammatory cytokines in mast cells. Notably, although 4-chlorotetrazolo[1,5-a]quinoxaline inhibited the activation of Fyn and Syk, minimal inhibition was observed in mast cells in the case of Lyn. Furthermore, consistent with its in vitro activity, 4-chlorotetrazolo[1,5-a]quinoxaline significantly suppressed mast cell-mediated passive cutaneous anaphylaxis in mice. In summary, the results from this study demonstrate that 4-chlorotetrazolo[1,5-a]quinoxaline shows an inhibitory effect on mast cells in vitro and in vivo, and that this is mediated by inhibiting the activation of Syk in mast cells. Therefore, 4-chlorotetrazolo[1,5-a]quinoxaline could be useful in the treatment of mast cell-mediated allergic diseases. -- Highlights: ► 4-chlorotetrazolo[1,5-a]quinoxaline is a quinoxaline derivative. ► The effect of 4-chlorotetrazolo[1,5-a]quinoxaline on mast cells was investigated. ► 4-chlorotetrazolo[1,5-a]quinoxaline reversibly inhibited Syk activation. ► 4-chlorotetrazolo[1,5-a]quinoxaline could be useful for IgE-mediated allergy.

  19. Stimulation of mast cells leads to cholesterol accumulation in macrophages in vitro by a mast cell granule-mediated uptake of low density lipoprotein

    International Nuclear Information System (INIS)

    Kokkonen, J.O.; Kovanen, P.T.

    1987-01-01

    The uptake of low density lipoprotein (LDL) by cultured mouse macrophages was markedly promoted by isolated rat mast cell granules present in the culture medium. The granule-mediated uptake of 125 I-LDL enhanced the rate of cholesteryl ester synthesis in the macrophages, the result being accumulation of cholesteryl esters in these cells. Binding of LDL to the granules was essential for the granule-mediated uptake of LDL by macrophages, for the uptake process was prevented by treating the granules with avidin or protamine chloride or by treating LDL with 1,2-cyclohexanedione, all of which inhibit the binding of LDL to the granules. Inhibition of granule phagocytosis by the macrophages with cytochalasin B also abolished the granule-mediated uptake of LDL. Finally, mouse macrophage monolayers and LDL were incubated in the presence of isolated rat serosal mast cells. Stimulation of the mast cells with compound 48/80, a degranulating agent, resulted in dose-dependent release of secretory granules from the mast cells and a parallel increase in 14 C cholesteryl ester synthesis in the macrophages. The results show that, in this in vitro model, the sequence of events leading to accumulation of cholesteryl esters in macrophages involves initial stimulation of mast cells, subsequent release of their secretory granules, binding of LDL to the exocytosed granules, and, finally, phagocytosis of the LDL-containing granules by macrophages

  20. Characteristics of monolayer culture of bone marrow cells of rats bearing 239Pu-induced osteosarcoma

    International Nuclear Information System (INIS)

    Bukhtoyarova, Z.M.; Lemberg, V.K.

    1984-01-01

    The report is concerned with a monolayer culture of bone marrow cells of rats in which optimal blastogenic dose (92.5 kBq/kg) induced osteosarcoma. The cell culture showed an enhanced rate of fibroblast-like cell proliferation (increased number of mitoses and symplasts and larger colonies of cells), apparent signs of radiation in ury (pathologic mitoses, chromosome aberrations and gaps) as well as an increase in ploidy. Diffusion chamber measurements demonstrated osteogenic precursor-cells in osteosarcoma-bearing rats to be highly capable of bone formation. This relatively high ability seems to occur outside bone marrow as well

  1. The transcriptome of the human mast cell leukemia cells HMC-1.2: an approach to identify specific changes in the gene expression profile in KitD816V systemic mastocytosis.

    Science.gov (United States)

    Haenisch, B; Herms, S; Molderings, G J

    2013-05-01

    To circumvent the costly isolation procedure associated with tissue mast cells, human mast cell lines such as HMC-1 are employed in mastocytosis research, but their relation to mutated mast cells in systemic mastocytosis has not been investigated systematically. In the present study, we determined the transcriptome of HMC-1.2 cells and compared the expression data with those reported in the literature for normal human resting lung and tonsillar mast cells as well as leukocytes from peripheral blood and mononuclear cells from bone marrow aspirates of patients with D816 V-positive systemic mastocytosis. Our results suggest that HMC-1.2 cells are an appropriate model for the investigation of this variant of systemic mast cell activation disease. The data confirm previous suggestions that the pathologically increased activity of mast cells in patients with D816 V-positive systemic mastocytosis can be deduced from the detection of mutation-related changes in the gene expression profile in leukocytes from peripheral blood and in mononuclear cells from bone marrow aspirates. Thus, mutation-related changes of the expression profile can serve as surrogates (besides clustering of mast cells, expression of CD25, and increased release of tryptase) for the presence of the mutation D816 V in tyrosine kinase Kit in patients with systemic mastocytosis according to the WHO criteria. Whether this also holds true for systemic mast cell activation disease caused by other mutations in Kit or other mast cell activity-related genes is a subject for future studies.

  2. Giardia lamblia: identification of molecules that contribute to direct mast cell activation.

    Science.gov (United States)

    Muñoz-Cruz, Samira; Gomez-García, Argelia; Matadamas-Martínez, Félix; Alvarado-Torres, Juan A; Meza-Cervantez, Patricia; Arriaga-Pizano, Lourdes; Yépez-Mulia, Lilián

    2018-06-02

    Mast cells play a central role in the early clearance of the intestinal parasite Giardia lamblia. In a previous study, we reported that G. lamblia live trophozoites or trophozoite-derived total soluble extract induced direct activation (IgE-independent) of mast cells and release of IL-6 and TNF-α. To identify the Giardia molecules and the mast cell receptors involved in this activation, trophozoite-derived total soluble proteins separated into three fractions (F1-F3) were evaluated for its ability to activate mast cells in vitro. F2 activated mast cells in a greater extent than F1 and F3. Furthermore, F2 induced the release of IL-6 and TNF-α by mast cells. TLR2 and TLR4 expression increased slightly after mast cell stimulation with either F2 or total soluble extract; however, these receptors were not involved in F2 or total soluble extract-induced proinflammatory cytokine production. Proteins present in F2 as unique and high-intensity bands identified by liquid chromatography coupled with tandem mass spectrometry, include molecules with important biological activities such as enolase and arginine deiminase (ADI). Recombinant ADI and enolase were tested for their ability to activate mast cells, but only ADI induced a significant release of IL-6 and TNF-α. ADI product, citrulline but not ammonium, also induced mast cell release of TNF-α. Interestingly, recombinant ADI still stimulated the secretion of TNF-α by mast cells in a arginine-free medium, although in a lower extend that in the presence of arginine, indicating that either ADI itself can stimulate mast cells or through its metabolic product, citrulline.

  3. Mint3 in bone marrow-derived cells promotes lung metastasis in breast cancer model mice.

    Science.gov (United States)

    Hara, Toshiro; Murakami, Yoshinori; Seiki, Motoharu; Sakamoto, Takeharu

    2017-08-26

    Breast cancer is one of the most common cancers in women in the world. Although breast cancer is well treatable at the early stage, patients with distant metastases show a poor prognosis. Data from recent studies using transplantation models indicate that Mint3/APBA3 might promote breast cancer malignancy. However, whether Mint3 indeed contributes to tumor development, progression, or metastasis in vivo remains unclear. To address this, here we examined whether Mint3 depletion affects tumor malignancy in MMTV-PyMT breast cancer model mice. In MMTV-PyMT mice, Mint3 depletion did not affect tumor onset and tumor growth, but attenuated lung metastases. Experimental lung metastasis of breast cancer Met-1 cells derived from MMTV-PyMT mice also decreased in Mint3-depleted mice, indicating that host Mint3 expression affected lung metastasis of MMTV-PyMT-derived breast cancer cells. Further bone marrow transplant experiments revealed that Mint3 in bone marrow-derived cells promoted lung metastasis in MMTV-PyMT mice. Thus, targeting Mint3 in bone marrow-derived cells might be a good strategy for preventing metastasis and improving the prognosis of breast cancer patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Induction of Microglial Activation by Mediators Released from Mast Cells

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    2016-04-01

    Full Text Available Background/Aims: Microglia are the resident immune cells in the brain and play a pivotal role in immune surveillance in the central nervous system (CNS. Brain mast cells are activated in CNS disorders and induce the release of several mediators. Thus, brain mast cells, rather than microglia, are the “first responders” due to injury. However, the functional aspects of mast cell-microglia interactions remain uninvestigated. Methods: Conditioned medium from activated HMC-1 cells induces microglial activation similar to co-culture of microglia with HMC-1 cells. Primary cultured microglia were examined by flow cytometry analysis and confocal microscopy. TNF- alpha and IL-6 were measured with commercial ELISA kits. Cell signalling was analysed by Western blotting. Results: In the present study, we found that the conditioned medium from activated HMC-1 cells stimulated microglial activation and the subsequent production of the pro-inflammatory factors TNF-α and IL-6. Co-culture of microglia and HMC-1 cells with corticotropin-releasing hormone (CRH for 24, 48 and 72 hours increased TNF-α and IL-6 production. Antagonists of histamine receptor 1 (H1R, H4R, proteinase-activated receptor 2 (PAR2 or Toll-like receptor 4 (TLR4 reduced HMC-1-induced pro-inflammatory factor production and MAPK and PI3K/AKT pathway activation. Conclusions: These results imply that activated mast cells trigger microglial activation. Interactions between mast cells and microglia could constitute a new and unique therapeutic target for CNS inflammation-related diseases.

  5. Bone marrow-derived thymic antigen-presenting cells determine self-recognition of Ia-restricted T lymphocytes

    International Nuclear Information System (INIS)

    Longo, D.L.; Kruisbeek, A.M.; Davis, M.L.; Matis, L.A.

    1985-01-01

    The authors previously have demonstrated that in radiation-induced bone marrow chimeras, T-cell self-Ia restriction specificity appeared to correlate with the phenotype of the bone marrow-derived antigen-presenting (or dendritic) cell in the thymus during T-cell development. However, these correlations were necessarily indirect because of the difficulty in assaying thymic function directly by adult thymus transplant, which has in the past been uniformly unsuccessful. They now report success in obtaining functional T cells from nude mice grafted with adult thymuses reduced in size by treatment of the thymus donor with anti-thymocyte globulin and cortisone. When (B10 Scn X B10.D2)F1 nude mice (I-Ab,d) are given parental B10.D2 (I-Ad) thymus grafts subcutaneously, their T cells are restricted to antigen recognition in association with I-Ad gene products but not I-Ab gene products. Furthermore, thymuses from (B10 X B10.D2)F1 (I-Ab,d)----B10 (I-Ab) chimeras transplanted 6 months or longer after radiation (a time at which antigen-presenting cell function is of donor bone marrow phenotype) into (B10 X B10.D2)F1 nude mice generate T cells restricted to antigen recognition in association with both I-Ad and I-Ab gene products. Thymuses from totally allogeneic bone marrow chimeras appear to generate T cells of bone marrow donor and thymic host restriction specificity. Thus, when thymus donors are radiation-induced bone marrow chimeras, the T-cell I-region restriction of the nude mice recipients is determined at least in part by the phenotype of the bone marrow-derived thymic antigen presenting cells or dendritic cells in the chimeric thymus

  6. Recombinant ArtinM activates mast cells.

    Science.gov (United States)

    Barbosa-Lorenzi, Valéria Cintra; Cecilio, Nerry Tatiana; de Almeida Buranello, Patricia Andressa; Pranchevicius, Maria Cristina; Goldman, Maria Helena S; Pereira-da-Silva, Gabriela; Roque-Barreira, Maria Cristina; Jamur, Maria Célia; Oliver, Constance

    2016-07-04

    Mast cells are hematopoietically derived cells that play a role in inflammatory processes such as allergy, as well as in the immune response against pathogens by the selective and rapid release of preformed and lipid mediators, and the delayed release of cytokines. The native homotetrameric lectin ArtinM, a D-mannose binding lectin purified from Artocarpus heterophyllus seeds, is one of several lectins that are able to activate mast cells. Besides activating mast cells, ArtinM has been shown to affect several biological responses, including immunomodulation and acceleration of wound healing. Because of the potential pharmacological application of ArtinM, a recombinant ArtinM (rArtinM) was produced in Escherichia coli. The current study evaluated the ability of rArtinM to induce mast cell degranulation and activation. The glycan binding specificity of rArtinM was similar to that of jArtinM. rArtinM, via its CRD, was able to degranulate, releasing β-hexosaminidase and TNF-α, and to promote morphological changes on the mast cell surface. Moreover, rArtinM induced the release of the newly-synthesized mediator, IL-4. rArtinM does not have a co-stimulatory effect on the FcεRI degranulation via. The IgE-dependent mast cell activation triggered by rArtinM seems to be dependent on NFkB activation. The lectin rArtinM has the ability to activate and degranulate mast cells via their CRDs. The present study indicates that rArtinM is a suitable substitute for the native form, jArtinM, and that rArtinM may serve as an important and reliable pharmacological agent.

  7. Review of Preclinical and Clinical Studies of Bone Marrow-Derived Cell Therapies for Intracerebral Hemorrhage

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Rosado-de-Castro

    2016-01-01

    Full Text Available Stroke is the second leading cause of mortality worldwide, causing millions of deaths annually, and is also a major cause of disability-adjusted life years. Hemorrhagic stroke accounts for approximately 10 to 27% of all cases and has a fatality rate of about 50% in the first 30 days, with limited treatment possibilities. In the past two decades, the therapeutic potential of bone marrow-derived cells (particularly mesenchymal stem cells and mononuclear cells has been intensively investigated in preclinical models of different neurological diseases, including models of intracerebral hemorrhage and subarachnoid hemorrhage. More recently, clinical studies, most of them small, unblinded, and nonrandomized, have suggested that the therapy with bone marrow-derived cells is safe and feasible in patients with ischemic or hemorrhagic stroke. This review discusses the available evidence on the use of bone marrow-derived cells to treat hemorrhagic strokes. Distinctive properties of animal studies are analyzed, including study design, cell dose, administration route, therapeutic time window, and possible mechanisms of action. Furthermore, clinical trials are also reviewed and discussed, with the objective of improving future studies in the field.

  8. Systemic mast cell disease (SMCD) and bone pain. A case treated with radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Hesselmann, S.; Micke, O.; Schaefer, U.; Willich, N. [University Hospital Muenster (Germany). Dept. of Radiotherapy and Radiooncology

    2002-05-01

    Background: Systemic mast cell disease (SMCD) is a rare disease characterized by a multitopic proliferation of cytologically and/or functionally abnormal tissue mast cells. SMCD preferentially involves the skin, spleen, liver, lymph nodes and the bone marrow. The cause of SMCD is unknown. Bony pain, caused by mast cell infiltration of the marrow cavity, is present in up to 28% of cases and is frequently chronic and difficult to palliate with medical therapy. Case Report: We report one case of refractory bone pain in a 54-year-old female Caucasian patient with advanced SMCD and associated bony involvement, which was treated with radiotherapy for pain palliation. Between 1995 and 1998, the patient was irradiated at four different locations: 1) right shoulder and proximal right humerus, 2) both hands, 3) both knees, 4) left humerus with a total dose of 40 Gy in 2.0 or 2.5 Gy daily fractions. Results: Different results of pain palliation were achieved. In one location the pain was reduced for 55 months until her death due to disease progression, whereas in two other locations a pain control was maintained for 3 and 6 months after radiotherapy. In one location, no pain reduction was achieved. Severe side effects were not observed. Conclusion: Palliative radiotherapy has a role in the control of severe intractable bone pain in patients with advanced SMCD, though in some cases the effect may be short or incomplete. The observed palliation of pain can even differ in the same patient. (orig.)

  9. Systemic mast cell disease (SMCD) and bone pain. A case treated with radiotherapy

    International Nuclear Information System (INIS)

    Hesselmann, S.; Micke, O.; Schaefer, U.; Willich, N.

    2002-01-01

    Background: Systemic mast cell disease (SMCD) is a rare disease characterized by a multitopic proliferation of cytologically and/or functionally abnormal tissue mast cells. SMCD preferentially involves the skin, spleen, liver, lymph nodes and the bone marrow. The cause of SMCD is unknown. Bony pain, caused by mast cell infiltration of the marrow cavity, is present in up to 28% of cases and is frequently chronic and difficult to palliate with medical therapy. Case Report: We report one case of refractory bone pain in a 54-year-old female Caucasian patient with advanced SMCD and associated bony involvement, which was treated with radiotherapy for pain palliation. Between 1995 and 1998, the patient was irradiated at four different locations: 1) right shoulder and proximal right humerus, 2) both hands, 3) both knees, 4) left humerus with a total dose of 40 Gy in 2.0 or 2.5 Gy daily fractions. Results: Different results of pain palliation were achieved. In one location the pain was reduced for 55 months until her death due to disease progression, whereas in two other locations a pain control was maintained for 3 and 6 months after radiotherapy. In one location, no pain reduction was achieved. Severe side effects were not observed. Conclusion: Palliative radiotherapy has a role in the control of severe intractable bone pain in patients with advanced SMCD, though in some cases the effect may be short or incomplete. The observed palliation of pain can even differ in the same patient. (orig.)

  10. Mast cells dysregulate apoptotic and cell cycle genes in mucosal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Davis Paul

    2006-12-01

    Full Text Available Abstract Background Mucosal squamous cell carcinoma of the head and neck is a disease of high mortality and morbidity. Interactions between the squamous cell carcinoma and the host's local immunity, and how the latter contributes to the biological behavior of the tumor are unclear. In vivo studies have demonstrated sequential mast cell infiltration and degranulation during squamous cell carcinogenesis. The degree of mast cell activation correlates closely with distinct phases of hyperkeratosis, dysplasia, carcinoma in-situ and invasive carcinoma. However, the role of mast cells in carcinogenesis is unclear. Aim This study explores the effects of mast cells on the proliferation and gene expression profile of mucosal squamous cell carcinoma using human mast cell line (HMC-1 and human glossal squamous cell carcinoma cell line (SCC25. Methods HMC-1 and SCC25 were co-cultured in a two-compartment chamber, separated by a polycarbonate membrane. HMC-1 was stimulated to degranulate with calcium ionophore A23187. The experiments were done in quadruplicate. Negative controls were established where SCC25 were cultured alone without HMC-1. At 12, 24, 48 and 72 hours, proliferation and viability of SCC25 were assessed with MTT colorimetric assay. cDNA microarray was employed to study differential gene expression between co-cultured and control SCC25. Results HMC-1/SCC25 co-culture resulted in suppression of growth rate for SCC-25 (34% compared with 110% for the control by 72 hours, p Conclusion We show that mast cells have a direct inhibitory effect on the proliferation of mucosal squamous cell carcinoma in vitro by dysregulating key genes in apoptosis and cell cycle control.

  11. In vitro differentiation of bone marrow stromal cells into neurons and glial cells and differential protein expression in a two-compartment bone marrow stromal cell/neuron co-culture system.

    Science.gov (United States)

    Qi, Xu; Shao, Ming; Peng, Haisheng; Bi, Zhenggang; Su, Zhiqiang; Li, Hulun

    2010-07-01

    This study was performed to establish a bone marrow stromal cell (BMSC)/neuron two-compartment co-culture model in which differentiation of BMSCs into neurons could occur without direct contact between the two cell types, and to investigate protein expression changes during differentiation of this entirely BMSC-derived population. Cultured BMSCs isolated from Wistar rats were divided into three groups: BMSC culture, BMSC/neuron co-culture and BMSC/neuron two-compartment co-culture. Cells were examined for neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP) expression. The electrophysiological behavior of the BMSCs was examined using patch clamping. Proteins that had significantly different expression levels in BMSCs cultured alone and co-cultured with neurons were studied using a protein chip-mass spectroscopy technique. Expression of NSE and GFAP were significantly higher in co-culture cells than in two-compartment co-culture cells, and significantly higher in both co-culture groups than in BMSCs cultured alone. Five proteins showed significant changes in expression during differentiation: TIP39_RAT and CALC_RAT underwent increases, and INSL6_RAT, PNOC_RAT and PCSK1_RAT underwent decreases in expression. We conclude that BMSCs can differentiate into neurons during both contact co-culture with neurons and two-compartment co-culture with neurons. The rate at which BMSCs differentiated into neurons was higher in contact co-culture than in non-contact co-culture.

  12. Idiopathic Mast Cell Activation Syndrome With Associated Salicylate Intolerance.

    Science.gov (United States)

    Rechenauer, Tobias; Raithel, Martin; Götze, Thomas; Siebenlist, Gregor; Rückel, Aline; Baenkler, Hanns-Wolf; Hartmann, Arndt; Haller, Florian; Hoerning, André

    2018-01-01

    Idiopathic mast cell activation syndrome can be a rare cause for chronic abdominal pain in children. It remains a diagnosis by exclusion that can be particularly challenging due to the vast variety of possible clinical manifestations. We present a 13-year-old boy who suffered from a multitude of unspecific complaints over a long period of time. In this case, an assessment of mast cell-derived metabolites and immunohistochemical analysis of bioptic specimen was worthwhile. After ruling out, primary (oncologic) and secondary causes for mast cell activation, pharmacologic treatment adapted to the patient's salicylate intolerance resulted in a major relief of symptoms.

  13. Possible mechanisms of retinal function recovery with the use of cell therapy with bone marrow-derived stem cells

    Directory of Open Access Journals (Sweden)

    Rubens Camargo Siqueira

    2010-10-01

    Full Text Available Bone marrow has been proposed as a potential source of stem cells for regenerative medicine. In the eye, degeneration of neural cells in the retina is a hallmark of such widespread ocular diseases as age-related macular degeneration (AMD and retinitis pigmentosa. Bone marrow is an ideal tissue for studying stem cells mainly because of its accessibility. Furthermore, there are a number of well-defined mouse models and cell surface markers that allow effective study of hematopoiesis in healthy and injured mice. Because of these characteristics and the experience of bone marrow transplantation in the treatment of hematological disease such as leukemia, bone marrow-derived stem cells have also become a major tool in regenerative medicine. Those cells may be able to restore the retina function through different mechanisms: A cellular differentiation, B paracrine effect, and C retinal pigment epithelium repair. In this review, we described these possible mechanisms of recovery of retinal function with the use of cell therapy with bone marrow-derived stem cells.

  14. Ibrutinib enhances IL-17 response by modulating the function of bone marrow derived dendritic cells.

    Science.gov (United States)

    Natarajan, Gayathri; Terrazas, Cesar; Oghumu, Steve; Varikuti, Sanjay; Dubovsky, Jason A; Byrd, John C; Satoskar, Abhay R

    Ibrutinib (PCI-32765) is an irreversible dual Btk/Itk inhibitor shown to be effective in treating several B cell malignancies. However, limited studies have been conducted to study the effect of this drug on myeloid cell function. Hence, we studied the effect of ibrutinib treatment on TLR-4 mediated activation of bone marrow derived dendritic cell culture (DCs). Upon ibrutinib treatment, LPS-treated DCs displayed lower synthesis of TNF-α and nitric oxide (NO) and higher induction of IL-6, TGF-β, IL-10 and IL-18. While ibrutinib dampened MHC-II and CD86 expression on DCs, CD80 expression was upregulated. Further, ibrutinib-treated DCs promoted T cell proliferation and enhanced IL-17 production upon co-culture with nylon wool enriched T cells. Taken together, our results indicate that ibrutinib modulates TLR-4 mediated DC activation to promote an IL-17 response. We describe a novel mode of action for ibrutinib on DCs which should be explored to treat other forms of cancer besides B cell malignancies.

  15. Effects Of Hypoxia in Long-Term In Vitro Expansion of Human Bone Marrow Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Pezzi, Annelise; Amorin, Bruna; Laureano, Álvaro; Valim, Vanessa; Dahmer, Alice; Zambonato, Bruna; Sehn, Filipe; Wilke, Ianaê; Bruschi, Lia; Silva, Maria Aparecida Lima da; Filippi-Chiela, Eduardo; Silla, Lucia

    2017-10-01

    Mesenchymal stem cells (MSC) are considered multipotent stromal, non-hematopoietic cells with properties of self-renovation and differentiation. Optimal conditions for culture of MSC have been under investigation. The oxygen tension used for cultivation has been studied and appears to play an important role in biological behavior of mesenchymal cells. The aim is characterize MSC in hypoxia and normoxia conditions comparing their morphological and functional characteristics. Bone marrow-derived mesenchymal stem cells obtained from 15 healthy donors and cultured. MSC obtained from each donor were separated into two cultivation conditions normoxia (21% O 2 ) and hypoxia (three donors at 1%, three donors at 2%, five donors at 3%, and four donors at 4% O 2 ) up to second passage. MSC were evaluated for proliferation, differentiation, immunophenotyping, size and cell complexity, oxidative stress, mitochondrial activity, and autophagy. Culture conditions applied did not seem to affect immunophenotypic features and cellular plasticity. However, cells subjected to hypoxia showed smaller size and greater cellular complexity, besides lower proliferation (P cells cultured in low O 2 tension had lower mitochondrial activity (P Cell. Biochem. 118: 3072-3079, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice.

    Directory of Open Access Journals (Sweden)

    Lei Chen

    Full Text Available Growing evidence indicates that bone marrow-derived mesenchymal stem cells (BM-MSCs enhance wound repair via paracrine. Because the extent of environmental oxygenation affects the innate characteristics of BM-MSCs, including their stemness and migration capacity, the current study set out to elucidate and compare the impact of normoxic and hypoxic cell-culture conditions on the expression and secretion of BM-MSC-derived paracrine molecules (e.g., cytokines, growth factors and chemokines that hypothetically contribute to cutaneous wound healing in vivo. Semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR and enzyme-linked immunosorbent assay (ELISA analyses of normoxic and hypoxic BM-MSCs and their conditioned medium fractions showed that the stem cells expressed and secreted significantly higher amounts of basic fibroblast growth factor (bFGF,vascular endothelial growth factor A (VEGF-A interleukin 6 (IL-6 and interleukin 8 (IL-8 under hypoxic conditions. Moreover, hypoxic BM-MSC-derived conditioned medium (hypoCM vs. normoxic BM-MSC-derived conditioned medium (norCM or vehicle control medium significantly enhanced the proliferation of keratinocytes, fibroblasts and endothelial cells, the migration of keratinocytes, fibroblasts, endothelial cells and monocytes, and the formation of tubular structures by endothelial cells cultured on Matrigel matrix. Consistent with these in vitro results, skin wound contraction was significantly accelerated in Balb/c nude mice treated with topical hypoCM relative to norCM or the vehicle control. Notably increased in vivo cell proliferation, neovascularization as well as recruitment of inflammatory macrophages and evidently decreased collagen I, and collagen III were also found in the hypoCM-treated group. These findings suggest that BM-MSCs promote murine skin wound healing via hypoxia-enhanced paracrine.

  17. Bone marrow-derived CD13+ cells sustain tumor progression

    Science.gov (United States)

    Dondossola, Eleonora; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2014-01-01

    Non-malignant cells found within neoplastic lesions express alanyl (membrane) aminopeptidase (ANPEP, best known as CD13), and CD13-null mice exhibit limited tumor growth and angiogenesis. We have recently demonstrated that a subset of bone marrow-derived CD11b+CD13+ myeloid cells accumulate within neoplastic lesions in several murine models of transplantable cancer to promote angiogenesis. If these findings were confirmed in clinical settings, CD11b+CD13+ myeloid cells could become a non-malignant target for the development of novel anticancer regimens. PMID:25339996

  18. Fyn kinase controls Fc{epsilon}RI receptor-operated calcium entry necessary for full degranulation in mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Miranda, Elizabeth; Ibarra-Sanchez, Alfredo [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados (Cinvestav), Sede Sur, Calzada de los Tenorios 235, Col. Granjas Coapa, CP 14330 Mexico City (Mexico); Gonzalez-Espinosa, Claudia, E-mail: cgonzal@cinvestav.mx [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados (Cinvestav), Sede Sur, Calzada de los Tenorios 235, Col. Granjas Coapa, CP 14330 Mexico City (Mexico)

    2010-01-22

    IgE-antigen-dependent crosslinking of the high affinity IgE receptor (Fc{epsilon}RI) on mast cells leads to degranulation, leukotriene synthesis and cytokine production. Calcium (Ca{sup 2+}) mobilization is a sine qua non requisite for degranulation, allowing the rapid secretion of stored pro-inflammatory mediators responsible for allergy symptoms. Fyn is a Src-family kinase that positively controls Fc{epsilon}RI-induced mast cell degranulation. However, our understanding of the mechanism connecting Fyn activation to secretion of pre-synthesized mediators is very limited. We analyzed Fc{epsilon}RI-dependent Ca{sup 2+} mobilization in bone marrow-derived mast cells (BMMCs) differentiated from WT and Fyn -/- knock out mice. Fyn -/- BMMCs showed a marked defect in extracellular Ca{sup 2+} influx after Fc{epsilon}RI crosslinking but not after thapsigargin addition. High concentrations of Gadolinium (Gd{sup 3+}) partially blocked Fc{epsilon}RI-induced Ca{sup 2+} influx in WT cells but, in contrast, completely inhibited Ca{sup 2+} mobilization in Fyn -/- cells. Low concentrations of an inhibitor of the canonical transient receptor potential (TRPC) Ca{sup 2+} channels (2-aminoethoxyphenyl-borane, 2-APB) blocked Fc{epsilon}RI-induced maximal Ca{sup 2+} rise in WT but not in Fyn -/- cells. Ca{sup 2+} entry through Fyn-controlled, 2-APB sensitive channels was found to be important for full degranulation and IL-2 mRNA accumulation in WT cells. Immunoprecipitation assays showed that Fyn kinase interacts with TRPC 3/6/7 channels after IgE-antigen stimulation, but its association is not related to protein tyrosine phosphorylation. Results indicate Fyn kinase mediates the receptor-dependent activation of TRPC channels that contribute to degranulation in Fc{epsilon}RI-stimulated mast cells.

  19. Fps/Fes protein-tyrosine kinase regulates mast cell adhesion and migration downstream of Kit and beta1 integrin receptors.

    Science.gov (United States)

    Smith, Julie A; Samayawardhena, Lionel A; Craig, Andrew W B

    2010-03-01

    Activation of Kit receptor protein-tyrosine kinase (PTK) by its ligand Stem Cell Factor (SCF) is required for the development of mast cells, and for the regulation of mast cell proliferation, migration and modulation of inflammatory mediator release. Recent studies have implicated the non-receptor PTK Fps/Fes (hereafter referred to as Fes) in signaling downstream of oncogenic Kit, however, the potential role of Fes in regulating Kit signaling is not well defined. In this study, we show that SCF induces transient tyrosine phosphorylation of wild-type Fes as well as kinase-dead Fes in bone marrow-derived mast cells (BMMCs). The latter finding implicates an upstream kinase acting on Fes, which we identified as Fyn PTK. SCF treatment of BMMCs promoted recruitment of Fes to Kit, potentially via direct interaction of the Fes SH2 domain with phosphorylated Kit. While Fes was not required for SCF-induced signaling to Akt and Erk kinases, Fes-deficient (fes-/-) BMMCs displayed a defect in sustained p38 kinase activation, compared to control cells. SCF-treated Fes-deficient BMMCs also displayed elevated beta1 integrin-mediated cell adhesion and spreading on fibronectin, compared to control cells, and a reduction in cell polarization at later times of SCF treatment. Restoring Fes expression in fes-/- BMMCs by retroviral transduction was sufficient to rescue cell spreading and polarization defects. Interestingly, SCF-induced chemotaxis of BMMCs was also defective in Fes-deficient BMMCs, and restored in Fes-rescue BMMCs. Overall, these results implicate Fes in regulating cross-talk between Kit and beta1 integrins to promote cytoskeletal reorganization and motility of mast cells.

  20. Rupatadine inhibits inflammatory mediator release from human laboratory of allergic diseases 2 cultured mast cells stimulated by platelet-activating factor.

    Science.gov (United States)

    Alevizos, Michail; Karagkouni, Anna; Vasiadi, Magdalini; Sismanopoulos, Nikolaos; Makris, Michael; Kalogeromitros, Dimitrios; Theoharides, Theoharis C

    2013-12-01

    Mast cells are involved in allergy and inflammation by the secretion of multiple mediators, including histamine, cytokines, and platelet-activating factor (PAF), in response to different triggers, including emotional stress. PAF has been associated with allergic inflammation, but there are no clinically available PAF inhibitors. To investigate whether PAF could stimulate human mast cell mediator release and whether rupatadine (RUP), a dual histamine-1 and PAF receptor antagonist, could inhibit the effect of PAF on human mast cells. Laboratory of allergic diseases 2 cultured mast cells were stimulated with PAF (0.001, 0.01, and 0.1 μmol/L) and substance P (1 μmol/L) with or without pretreatment with RUP (2.5 and 25 μmol/L), which was added 10 minutes before stimulation. Release of β-hexosaminidase was measured in supernatant fluid by spectrophotoscopy, and histamine, interleukin-8, and tumor necrosis factor were measured by enzyme-linked immunosorbent assay. PAF stimulated a statistically significant release of histamine, interleukin-8, and tumor necrosis factor (0.001-0.1 μmol/L) that was comparable to that stimulated by substance P. Pretreatment with RUP (25 μmol/L) for 10 minutes inhibited this effect. In contrast, pretreatment of laboratory of allergic diseases 2 cells with diphenhydramine (25 μmol/L) did not inhibit mediator release, suggesting that the effect of RUP was not due to its antihistaminic effect. PAF stimulates human mast cell release of proinflammatory mediators that is inhibited by RUP. This action endows RUP with additional properties in treating allergic inflammation. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  1. Thy-1+ dendritic cells in murine epidermis are bone marrow-derived

    International Nuclear Information System (INIS)

    Breathnach, S.M.; Katz, S.I.

    1984-01-01

    Thy-1+, Ly-5+ dendritic cells have recently been described as a resident cell population in murine epidermis, but their ontogeny and function are unknown. The origin and turnover of epidermal Thy-1+ cells utilizing chimeric mice were investigated. Lethally x-irradiated AKR/J (Thy-1.1+) and AKR/Cum (Thy-1.2+) mice were reconstituted with allogeneic bone marrow cells with or without thymocytes from congenic AKR/Cum or AKR/J mice, respectively. The density of residual indigenous Thy-1.1+ cells in AKR/J chimeras and Thy-1.2+ cells in AKR/Cum chimeras was substantially reduced following x-irradiation, as determined by immunofluorescence staining of epidermal sheets. Epidermal repopulation by allogeneic Thy-1+ dendritic epidermal cells was first observed at 5 weeks in AKR/J chimeras and at 7 weeks in AKR/Cum chimeras and progressed slowly. Repopulation was not enhanced by increasing the number of allogeneic bone marrow cells injected from 2 X 10(7) to 10(8) cells or by the addition of 8 X 10(7) allogeneic thymocytes to the donor inoculate. Epidermal repopulation by allogeneic Thy-1.2+ cells was not seen in AKR/J mice reconstituted with syngeneic bone marrow cells and allogeneic Thy-1.2+ AKR/Cum thymocytes. Taken together, these results indicate that Thy-1+ dendritic epidermal cells are derived from the bone marrow and suggest that they are not related to conventional peripheral T-lymphocytes

  2. In vitro evaluation of cardiomyogenic differentiation of bone marrow derived mesenchymal stem cells (MSCs)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Hwan; Lee, Yong Jin; Kang, Joo Hyun [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2010-10-15

    Bone marrow derived mesenchymal stem cells (MSCs) are excellent candidate as therapeutic agent for cell therapy. MSCs can be expanded in vitro rapidly (more than 3-5 fold in a weeks), and maintained their stem cell properties for a long culture period. Recently, many investigators have suggested that MSCs have ability to differentiate into cardiomyocytes by given appropriate condition in vitro or in vivo. Although, MSCs may be useful cell therapeutic agents in heart disease, there are still exist major barriers to track their capacity to differentiate into functional cardiomyocytes. In our previous study, the transgenic mouse model expressing sodium iodide symporter (NIS) driven by {alpha}-myosin heavy chain ({alpha}-MHC) promoter was developed to image cardiomyocyte with {gamma}-camera and microPET in vivo. In this study, we investigate the monitoring availability of {alpha}-MHC driven NIS gene of MSCs from the transgenic mouse during cardiomyogenic differentiation in vitro

  3. Use of Bone Marrow derived Stem Cells in patients with Cardiovascular Disorders

    Directory of Open Access Journals (Sweden)

    Abraham S

    2007-01-01

    Full Text Available Patients with end stage heart failure have very few treatment options. The long waiting times for transplant and the complications associated with immunosuppression has led to the search for alternatives. Subsequent to the isolation and characterization of stem cells, tremendous advances have been made and the safety and feasibility of autologous bone marrow derived stem cells has been proven in preclinical studies. Clinical studies have also shown mobilized cells repair the infracted heart, improving function and survival. We have started a clinical study to evaluate the efficacy of bone marrow derived stem cells. Bone-marrow was aspirated from the right iliac crest and the stem cells were isolated by density gradient method and suspended according to the mode of delivery.From Jan 2007 till date 10 patients (8 adults, 2 children, age with end stage cardiovascular disorder of varied etiology (Ischemic left ventricular dysfunction - 6 patients, Primary pulmonary hypertension - 2 patients, Dilated cardiomyopathy -1 patient, Biventricular non-compaction -1 patient underwent stem cell therapy. All patients were evaluated and cardiac function was measured by using echocardiography and thallium scintigraphy. There were no procedure related complications. These patients are being regularly followed-up and one patient who has completed 6-month follow-up has shown improvement in perfusion as well as increase in ejection fraction of 10%. Stem cell therapy in patients with end-stage cardiovascular disorder might be a promising tool by means of angiogenesis and other paracrine mechanisms.

  4. Proteinase activated receptor 1 mediated fibrosis in a mouse model of liver injury: a role for bone marrow derived macrophages.

    Directory of Open Access Journals (Sweden)

    Yiannis N Kallis

    Full Text Available Liver fibrosis results from the co-ordinated actions of myofibroblasts and macrophages, a proportion of which are of bone marrow origin. The functional effect of such bone marrow-derived cells on liver fibrosis is unclear. We examine whether changing bone marrow genotype can down-regulate the liver's fibrotic response to injury and investigate mechanisms involved. Proteinase activated receptor 1 (PAR1 is up-regulated in fibrotic liver disease in humans, and deficiency of PAR1 is associated with reduced liver fibrosis in rodent models. In this study, recipient mice received bone marrow transplantation from PAR1-deficient or wild-type donors prior to carbon tetrachloride-induced liver fibrosis. Bone marrow transplantation alone from PAR1-deficient mice was able to confer significant reductions in hepatic collagen content and activated myofibroblast expansion on wild-type recipients. This effect was associated with a decrease in hepatic scar-associated macrophages and a reduction in macrophage recruitment from the bone marrow. In vitro, PAR1 signalling on bone marrow-derived macrophages directly induced their chemotaxis but did not stimulate proliferation. These data suggest that the bone marrow can modulate the fibrotic response of the liver to recurrent injury. PAR1 signalling can contribute to this response by mechanisms that include the regulation of macrophage recruitment.

  5. Addition of exogenous cytokines in mixed lymphocyte culture for selecting related donors for bone marrow transplantation

    Directory of Open Access Journals (Sweden)

    Jeane Eliete Laguila Visentainer

    Full Text Available CONTEXT: Mixed lymphocyte culturing has led to conflicting opinions regarding the selection of donors for bone marrow transplantation. The association between a positive mixed lymphocyte culture and the development of graft-versus-host disease (GVHD is unclear. The use of exogenous cytokines in mixed lymphocyte cultures could be an alternative for increasing the sensitivity of culture tests. OBJECTIVE: To increase the sensitivity of mixed lymphocyte cultures between donor and recipient human leukocyte antigen (HLA identical siblings, using exogenous cytokines, in order to predict post-transplantation GVHD and/or rejection. TYPE OF STUDY: Prospective study. SETTING: Bone Marrow Transplantation Unit, Universidade Estadual de Campinas. PARTICIPANTS: Seventeen patients with hematological malignancies and their respective donors selected for bone marrow transplantation procedures. PROCEDURES: Standard and modified mixed lymphocyte culturing by cytokine supplementation was carried out using donor and recipient cells typed for HLA. MAIN MEASUREMENTS: Autologous and allogenic responses in mixed lymphocyte cultures after the addition of IL-4 or IL-2. RESULTS: In comparison with the standard method, average responses in the modified mixed lymphocyte cultures increased by a factor of 2.0 using IL-4 (p < 0.001 and 6.4 using IL-2 (p < 0.001, for autologous donor culture responses. For donor-versus-recipient culture responses, the increase was by a factor of 1.9 using IL-4 (p < 0.001 and 4.1 using IL-2 (p < 0.001. For donor-versus-unrelated culture responses, no significant increase was observed using IL-4, and a mean response inhibition of 20% was observed using IL-2 (p < 0.001. Neither of the cytokines produced a significant difference in the unrelated control versus recipient cell responses. CONCLUSION: IL-4 supplementation was the best for increasing the mixed lymphocyte culture sensitivity. However, IL-4 also increased autologous responses, albeit less

  6. Stimulated human mast cells secrete mitochondrial components that have autocrine and paracrine inflammatory actions.

    Directory of Open Access Journals (Sweden)

    Bodi Zhang

    Full Text Available Mast cells are hematopoietically-derived tissue immune cells that participate in acquired and innate immunity, as well as in inflammation through release of many chemokines and cytokines, especially in response to the pro-inflammatory peptide substance P (SP. Inflammation is critical in the pathogenesis of many diseases, but the trigger(s is often unknown. We investigated if mast cell stimulation leads to secretion of mitochondrial components and whether these could elicit autocrine and/or paracrine inflammatory effects. Here we show that human LAD2 mast cells stimulated by IgE/anti-IgE or by the SP led to secretion of mitochondrial particles, mitochondrial (mt mtDNA and ATP without cell death. Mitochondria purified from LAD2 cells and, when mitochondria added to mast cells trigger degranulation and release of histamine, PGD(2, IL-8, TNF, and IL-1β. This stimulatory effect is partially inhibited by an ATP receptor antagonist and by DNAse. These results suggest that the mitochondrial protein fraction may also contribute. Purified mitochondria also stimulate IL-8 and vascular endothelial growth factor (VEGF release from cultured human keratinocytes, and VEGF release from primary human microvascular endothelial cells. In order to investigate if mitochondrial components could be secreted in vivo, we injected rats intraperiotoneally (ip with compound 48/80, which mimicks the action of SP. Peritoneal mast cells degranulated and mitochondrial particles were documented by transimission electron microscopy outside the cells. We also wished to investigate if mitochondrial components secreted locally could reach the systemic circulation. Administration ip of mtDNA isolated from LAD2 cells in rats was detected in their serum within 4 hr, indicating that extravascular mtDNA could enter the systemic circulation. Secretion of mitochondrial components from stimulated live mast cells may act as "autopathogens" contributing to the pathogenesis of inflammatory

  7. The Bone Marrow-Derived Stromal Cells

    DEFF Research Database (Denmark)

    Tencerova, Michaela; Kassem, Moustapha

    2016-01-01

    Bone marrow (BM) microenvironment represents an important compartment of bone that regulates bone homeostasis and the balance between bone formation and bone resorption depending on the physiological needs of the organism. Abnormalities of BM microenvironmental dynamics can lead to metabolic bone...... diseases. BM stromal cells (also known as skeletal or mesenchymal stem cells) [bone marrow stromal stem cell (BMSC)] are multipotent stem cells located within BM stroma and give rise to osteoblasts and adipocytes. However, cellular and molecular mechanisms of BMSC lineage commitment to adipocytic lineage...

  8. Mast Cell Function

    Science.gov (United States)

    da Silva, Elaine Zayas Marcelino; Jamur, Maria Célia

    2014-01-01

    Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been only in the past two decades that mast cells have gained recognition for their involvement in other physiological and pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the local microenvironment and have a marked influence on their ability to specifically recognize and respond to various stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions with regards to their regulation, phenotype and role. PMID:25062998

  9. Tanshinone IIA suppresses FcεRI-mediated mast cell signaling and anaphylaxis by activation of the Sirt1/LKB1/AMPK pathway.

    Science.gov (United States)

    Li, Xian; Park, Soon Jin; Jin, Fansi; Deng, Yifeng; Yang, Ju Hye; Chang, Jae-Hoon; Kim, Dong-Young; Kim, Jung-Ae; Lee, Youn Ju; Murakami, Makoto; Son, Kun Ho; Chang, Hyeun Wook

    2018-06-01

    AMP-activated protein kinase (AMPK) and its upstream mediators liver kinase B1 (LKB1) and sirtuin 1 (Sirt1) are generally known as key regulators of metabolism. We have recently reported that the AMPK pathway negatively regulates mast cell activation and anaphylaxis. Tanshinone IIA (Tan IIA), an active component of Salvia miltiorrhiza extract that is currently used for the treatment of cardiovascular and cerebrovascular diseases, shows anti-diabetic activity and improves insulin resistance in db/db mice through activation of AMPK. The aim of this study was to evaluate the anti-allergic activity of Tan IIA in vivo and to investigate the underlying mechanism in vitro in the context of AMPK signaling. The anti-allergic effect of Tan IIA was evaluated using mouse bone marrow-derived mast cells (BMMCs) from AMPKα2 -/- or Sirt1 -/- mice, or BMMCs transfected with siRNAs specific for AMPKα2, LKB1, or Sirt1. AMPKα2 -/- and Sirt1 -/- mice were used to confirm the anti-allergic effect of Tan IIA in anaphylaxis in vivo. Tan IIA dose-dependently inhibited FcεRI-mediated degranulation and production of eicosanoids and cytokines in BMMCs. These inhibitory effects were diminished by siRNA-mediated knockdown or genetic deletion of AMPKα2 or Sirt1. Moreover, Tan IIA inhibited a mast cell-mediated local passive anaphylactic reaction in wild-type mice, but not in AMPKα2 -/- or Sirt1 -/- mice. In conclusion, Tan IIA suppresses FcεRI-mediated mast cell activation and anaphylaxis through activation of the inhibitory Sirt1-LKB1-AMPK pathway. Thus, Tan IIA may be useful as a new therapeutic agent for mast cell-mediated allergic diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit achilles tendon model.

    Science.gov (United States)

    Chong, Alphonsus K S; Ang, Abel D; Goh, James C H; Hui, James H P; Lim, Aymeric Y T; Lee, Eng Hin; Lim, Beng Hai

    2007-01-01

    A repaired tendon needs to be protected for weeks until it has accrued enough strength to handle physiological loads. Tissue-engineering techniques have shown promise in the treatment of tendon and ligament defects. The present study tested the hypothesis that bone marrow-derived mesenchymal stem cells can accelerate tendon-healing after primary repair of a tendon injury in a rabbit model. Fifty-seven New Zealand White rabbits were used as the experimental animals, and seven others were used as the source of bone marrow-derived mesenchymal stem cells. The injury model was a sharp complete transection through the midsubstance of the Achilles tendon. The transected tendon was immediately repaired with use of a modified Kessler suture and a running epitendinous suture. Both limbs were used, and each side was randomized to receive either bone marrow-derived mesenchymal stem cells in a fibrin carrier or fibrin carrier alone (control). Postoperatively, the rabbits were not immobilized. Specimens were harvested at one, three, six, and twelve weeks for analysis, which included evaluation of gross morphology (sixty-two specimens), cell tracing (twelve specimens), histological assessment (forty specimens), immunohistochemistry studies (thirty specimens), morphometric analysis (forty specimens), and mechanical testing (sixty-two specimens). There were no differences between the two groups with regard to the gross morphology of the tendons. The fibrin had degraded by three weeks. Cell tracing showed that labeled bone marrow-derived mesenchymal stem cells remained viable and present in the intratendinous region for at least six weeks, becoming more diffuse at later time-periods. At three weeks, collagen fibers appeared more organized and there were better morphometric nuclear parameters in the treatment group (p tendon repair can improve histological and biomechanical parameters in the early stages of tendon-healing.

  11. Curcumin-functionalized silk materials for enhancing adipogenic differentiation of bone marrow-derived human mesenchymal stem cells

    Science.gov (United States)

    Li, Chunmei; Luo, Tingting; Zheng, Zhaozhu; Murphy, Amanda R.; Wang, Xiaoqin; Kaplan, David L.

    2014-01-01

    Curcumin, a natural phenolic compound derived from the plant Curcuma longa, was physically entrapped and stabilized in silk hydrogel films and its influence on human bone marrow-derived mesenchymal stem cells (hBMSCs) was assessed related to adipogenic differentiation. The presence of curcumin significantly reduced silk gelation time and changed the porous morphology of gel matrix, but did not change the formation of silk beta-sheet structure. Based on spectrofluorimetric analysis, curcumin likely interacted with hydrophobic residues in silk, interacting with the beta-sheet domains formed in the hydrogels. The antioxidant activity of silk film-associated curcumin remained functional over at least one month in both the dry and hydrated state. Negligible curcumin was released from silk hydrogel films over 48 hours incubation in aqueous solution. For hBMSCs cultured on silk films containing more than 0.25 mg/mL curcumin, cell proliferation was inhibited while adipogenesis was significantly promoted based on transcripts as well as oil red O staining. When hBMSCs were cultured in media containing free curcumin, both proliferation and adipogenesis of hBMSCs were inhibited when curcumin concentrations exceeded 5 μM, which is more than 1,000-times higher than the level of curcumin released from the films in aqueous solution. Thus, silk film-associated curcumin exhibited different effects on hBMSC proliferation and differentiation when compared to curcumin in solution. PMID:25132274

  12. Forced expression of Sox2 or Nanog in human bone marrow derived mesenchymal stem cells maintains their expansion and differentiation capabilities

    International Nuclear Information System (INIS)

    Go, Masahiro J.; Takenaka, Chiemi; Ohgushi, Hajime

    2008-01-01

    Mesenchymal stem cells (MSCs) derived from human bone marrow have capability to differentiate into cells of mesenchymal lineage. The cells have already been applied in various clinical situations because of their expansion and differentiation capabilities. The cells lose their capabilities after several passages, however. With the aim of conferring higher capability on human bone marrow MSCs, we introduced the Sox2 or Nanog gene into the cells. Sox2 and Nanog are not only essential for pluripotency and self-renewal of embryonic stem cells, but also expressed in somatic stem cells that have superior expansion and differentiation potentials. We found that Sox2-expressing MSCs showed consistent proliferation and osteogenic capability in culture media containing basic fibroblast growth factor (bFGF) compared to control cells. Significantly, in the presence of bFGF in culture media, most of the Sox2-expressing cells were small, whereas the control cells were elongated in shape. We also found that Nanog-expressing cells even in the absence of bFGF had much higher capabilities for expansion and osteogenesis than control cells. These results demonstrate not only an effective way to maintain proliferation and differentiation potentials of MSCs but also an important implication about the function of bFGF for self-renewal of stem cells including MSCs

  13. Reduction of radiation-induced damage to salivary gland by bone marrow derived stem cells

    International Nuclear Information System (INIS)

    Coppes, R.P.; Wierenga, P.K.; Kampinga, H.H.; De Hann, G.

    2003-01-01

    Irradiation of the salivary glands can result in severe side effects that reduce the patient's quality of life. Late damage to the salivary glands is mainly caused by exhaustion of the tissue's stem cells. Post-irradiation replacement of salivary gland stem cells with healthy donor stem cells may reduce complications. Bone marrow derived stem cells (BMSC) have been show to be multipotent and engraft in many tissue after injury. In this study we assessed the potential of BMSC to reduce irradiation-induced salivary gland damage. The salivary glands of wild type C57Bl/6 mice were locally irradiated with 20 Gy. Thirty days later, BMSC from transgenic eGFP+ C57Bl/6 mice were transplanted by i.v. injection or by direct injection into the salivary glands. In addition, animals were transplanted with eGFP + bone marrow after 9.5 Gy TBI excluding the salivary glands. Subsequently, the animals were locally irradiated to the salivary gland with 20 Gy. Thirty days later i.v. G-CSF mobilised eGFP + bone marrow derived stem cells to the peripheral blood. Again thirty days after mobilisation, the salivary gland were harvested. eGFP + cells were detected by confocal laser fluorescence scanning microscopy and flow cytometry and H and E histology was performed. eGFP + cells were detected in the salivary gland after all protocols. The number of eGFP + cells in irradiated salivary glands was highest in animals treated with G-CSF. Intraglandular transplantation, in contrast, was successful only in 1 out of 8 attempts. Immuno-histochemistry using a-SM-actin antibodies showed the close vicinity of actin and eGFP within the cells, demonstrating the occurrence of BMSC derived myoepithelial cells in irradiated salivary gland. Further, cell-type specific antibodies will reveal the nature of all eGFP + cells. H and E histology revealed improved gland morphology in animals treated with G-CSF after irradiation when compared to the non-treated animals. These preliminary results indicate that bone

  14. The comparison of knee osteoarthritis treatment with single-dose bone marrow-derived mononuclear cells vs. hyaluronic acid injections.

    Science.gov (United States)

    Goncars, Valdis; Jakobsons, Eriks; Blums, Kristaps; Briede, Ieva; Patetko, Liene; Erglis, Kristaps; Erglis, Martins; Kalnberzs, Konstantins; Muiznieks, Indrikis; Erglis, Andrejs

    2017-01-01

    The aim of this study was to compare treatment methods of the knee joint degenerative osteoarthritis, using autologous bone marrow-derived mononuclear cells and hyaluronic acid injections and observe prevalence of adverse effects in both groups. A prospective randomized controlled clinical trial was carried out. The analysis of pain and changes in osteoarthritis symptoms after a single intra-articular bone marrow-derived mononuclear cell injection into the knee joint in the Kellgren-Lawrence stage II-III osteoarthritis during the 12-month period were performed. The results were compared with the control group treated routinely by hyaluronic acid injections therapy. A therapy group of patients (n=28) received single bone marrow-derived mononuclear cell intra-articular injections. A control group of patients (n=28) was treated with a total of three sodium hyaluronate intra-articular injections each one performed a week apart. The clinical results were obtained using the Knee Osteoarthritis Outcome Score (KOOS) and the Knee Society Score (KSS) before and 3, 6, and 12 months after injection. A statistically significant improvement was observed in the mononuclear cell group over the starting point in all scores. At the endpoint at month 12, the KOOS score improved significantly (Phyaluronic acid versus the bone marrow-derived mononuclear cells group at time points 6 and 12 months demonstrated a statistically significant (Phyaluronic acid group. In both groups serious adverse effects were not observed. The intra-articular injection of bone marrow-derived mononuclear cells is a safe manipulation with no side effects during the 12-month period. This treatment provides statistically significant clinical improvement between the starting point and 1, 3, 6, and 12 months after. When compared to hyaluronic acid treatment, better pain relief in the long-term period of mononuclear cell group was observed. Copyright © 2017 The Lithuanian University of Health Sciences. Production

  15. Bone Marrow-Derived Cells as a Therapeutic Approach to Optic Nerve Diseases

    Directory of Open Access Journals (Sweden)

    Louise A. Mesentier-Louro

    2016-01-01

    Full Text Available Following optic nerve injury associated with acute or progressive diseases, retinal ganglion cells (RGCs of adult mammals degenerate and undergo apoptosis. These diseases have limited therapeutic options, due to the low inherent capacity of RGCs to regenerate and due to the inhibitory milieu of the central nervous system. Among the numerous treatment approaches investigated to stimulate neuronal survival and axonal extension, cell transplantation emerges as a promising option. This review focuses on cell therapies with bone marrow mononuclear cells and bone marrow-derived mesenchymal stem cells, which have shown positive therapeutic effects in animal models of optic neuropathies. Different aspects of available preclinical studies are analyzed, including cell distribution, potential doses, routes of administration, and mechanisms of action. Finally, published and ongoing clinical trials are summarized.

  16. Cultivation of murine bone marrow macrophages in sponges: a method that permits recovery of viable cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Akporiaye, E T; Stewart, S; Stewart, C C

    1984-01-01

    Various investigators have cultured murine bone marrow or peritoneal cells in vitro on glass or plastic surfaces with the ultimate aim of retrieving adherent macrophages for morphologic and functional evaluation. The removal of these adherent macrophages by conventional techniques has been consistently accompanied by low yield and significant cell damage. The authors report here a simple technique for culturing murine bone marrow cells in gelatin sponges (Spongostan and Gelfoam) in growth medium containing 10% fetal bovine serum and 10% L-cell conditioned medium. Viable cells were retrieved from the sponges in 10 min by digestion with collagenase. The in situ growth kinetics were similar to those found for cells cultured on plastic dishes. The recovered cells were adherent, phagocytic, positive for Fc ..gamma.. receptors, and had esterase activity. 23 references, 1 figure, 1 table.

  17. Bioactive lipid coating of bone allografts directs engraftment and fate determination of bone marrow-derived cells in rat GFP chimeras.

    Science.gov (United States)

    Das, Anusuya; Segar, Claire E; Chu, Yihsuan; Wang, Tiffany W; Lin, Yong; Yang, Chunxi; Du, Xeujun; Ogle, Roy C; Cui, Quanjun; Botchwey, Edward A

    2015-09-01

    Bone grafting procedures are performed to treat wounds incurred during wartime trauma, accidents, and tumor resections. Endogenous mechanisms of repair are often insufficient to ensure integration between host and donor bone and subsequent restoration of function. We investigated the role that bone marrow-derived cells play in bone regeneration and sought to increase their contributions by functionalizing bone allografts with bioactive lipid coatings. Polymer-coated allografts were used to locally deliver the immunomodulatory small molecule FTY720 in tibial defects created in rat bone marrow chimeras containing genetically-labeled bone marrow for monitoring cell origin and fate. Donor bone marrow contributed significantly to both myeloid and osteogenic cells in remodeling tissue surrounding allografts. FTY720 coatings altered the phenotype of immune cells two weeks post-injury, which was associated with increased vascularization and bone formation surrounding allografts. Consequently, degradable polymer coating strategies that deliver small molecule growth factors such as FTY720 represent a novel therapeutic strategy for harnessing endogenous bone marrow-derived progenitors and enhancing healing in load-bearing bone defects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Bone Marrow Derivation of Interstitial Cells of Cajal in Small Intestine Following Intestinal Injury

    Directory of Open Access Journals (Sweden)

    Dengqun Liu

    2010-01-01

    Full Text Available Interstitial cells of Cajal (ICCs in gastrointestinal tract are specialized cells serving as pacemaker cells. The origin of ICCs is currently not fully characterized. In this work, we aimed to study whether bone marrow-derived cells (BMDCs could contribute to the origin of ICCs in the muscular plexus of small intestine using GFP-C57BL/6 chimeric mice.Engraftment of BMDCs in the intestine was investigated for GFP expression. GFP positive bone marrow mononuclear cells reached a proportion of 95.65%±3.72% at different times in chimerism. Donor-derived cells distributed widely in all the layers of the gastrointestinal tract. There were GFP positive BMDCs in the myenteric plexus, which resembled characteristics of ICCs, including myenteric location, c-Kit positive staining, and ramified morphology. Donor-derived ICCs in the myenteric plexus contributed to a percentage ranging 9.25%±4.9% of all the ICCs in the myenteric plexus. In conclusion, here we described that donor-derived BMDCs might differentiate into gastrointestinal ICCs after radiation injury, which provided an alternative source for the origin of the ICCs in the muscular plexus of adult intestine. These results further identified the plasticity of BMDCs and indicated therapeutic implications of BMDCs for the gastrointestinal dysmotility caused by ICCs disorders.

  19. Application of cultured human mast cells (CHMC) for the design and structure-activity relationship of IgE-mediated mast cell activation inhibitors.

    Science.gov (United States)

    Argade, Ankush; Bhamidipati, Somasekhar; Li, Hui; Carroll, David; Clough, Jeffrey; Keim, Holger; Sylvain, Catherine; Rossi, Alexander B; Coquilla, Christina; Issakani, Sarkiz D; Masuda, Esteban S; Payan, Donald G; Singh, Rajinder

    2015-01-01

    Here we report the optimization of small molecule inhibitors of human mast cell degranulation via anti-IgE-mediated tryptase release following cross-linking and activation of IgE-loaded FcεR1 receptors. The compounds are selective upstream inhibitors of FcεR1-dependent human mast cell degranulation and proved to be devoid of activity in downstream ionomycin mediated degranulation. Structure-activity relationship (SAR) leading to compound 26 is outlined. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Toll-Like Receptor 4 in Bone Marrow-Derived Cells Contributes to the Progression of Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2014-01-01

    Full Text Available Diabetic retinopathy (DR is a major microvascular complication in diabetics, and its mechanism is not fully understood. Toll-like receptor 4 (TLR4 plays a pivotal role in the maintenance of the inflammatory state during DR, and the deletion of TLR4 eventually alleviates the diabetic inflammatory state. To further elucidate the mechanism of DR, we used bone marrow transplantation to establish reciprocal chimeric animals of TLR4 mutant mice and TLR4 WT mice combined with diabetes mellitus (DM induction by streptozotocin (STZ treatment to identify the role of TLR4 in different cell types in the development of the proinflammatory state during DR. TLR4 mutation did not block the occurrence of high blood glucose after STZ injection compared with WT mice but did alleviate the progression of DR and alter the expression of the small vessel proliferation-related genes, vascular endothelial growth factor (VEGF, and hypoxia inducible factor-1α (HIF-1α. Grafting bone marrow-derived cells from TLR4 WT mice into TLR4 mutant mice increased the levels of TNF-α, IL-1β, and MIP-2 and increased the damage to the retina. Similarly, VEGF and HIF-1α expression were restored by the bone marrow transplantation. These findings identify an essential role for TLR4 in bone marrow-derived cells contributing to the progression of DR.

  1. Bone marrow-derived multipotent mesenchymal stromal cells from horses after euthanasia.

    Science.gov (United States)

    Schröck, Carmen; Eydt, Carina; Geburek, Florian; Kaiser, Lena; Päbst, Felicitas; Burk, Janina; Pfarrer, Christiane; Staszyk, Carsten

    2017-11-01

    Allogeneic equine multipotent mesenchymal stromal cells (eMSCs) have been proposed for use in regenerative therapies in veterinary medicine. A source of allogeneic eMSCs might be the bone marrow from euthanized horses. The purpose of this study was to compare in vitro characteristics of equine bone marrow derived eMSC (eBM-MSCs) from euthanized horses (eut-MSCs) and from narcotized horses (nar-MSCs). Eut-MSCs and nar-MSCs showed typical eMSC marker profiles (positive: CD44, CD90; negative: CD11a/CD18 and MHCII) and possessed tri-lineage differentiation characteristics. Although CD105 and MHCI expression varied, no differences were detected between eut-MSCs and nar-MSCs. Proliferation characteristics did not differ between eut-MSCs and nar-MSCs, but age dependent decrease in proliferation and increase in MHCI expression was detected. These results suggest the possible use of eut-MSCs for therapeutic applications and production of commercial available eBM-MSC products.

  2. In Vitro Desensitization of Human Skin Mast Cells

    Science.gov (United States)

    Zhao, Wei; Gomez, Gregorio; Macey, Matthew; Kepley, Christopher L.

    2013-01-01

    Desensitization is a clinical procedure whereby incremental doses of a drug are administered over several hours to a sensitive patient until a therapeutic dose and clinical tolerance are achieved. Clinical tolerance may occur in part by attenuating the mast cell response. In the present study, primary human skin mast cells were used to establish and characterize an in vitro model of desensitization. Mast cells in culture were armed with allergen-specific (4-hydroxy-3-nitro-phenylacety and Der p2) and non-specific IgE antibodies, and then desensitized by incremental exposures to 4-hydroxy-3-nitrophenylacety-BSA. This desensitization procedure abrogated the subsequent degranulation response to the desensitizing allergen, to an unrelated allergen, and to IgG anti-FcεRI, but not to C5a, substance P, compound 48/80, and calcium ionophore. Desensitized cells regained their FcεRI-dependent degranulation capability by 24–48 h after free allergen had been removed. Therefore, sensitized human skin mast cells are reversibly desensitized in vitro by exposure to incremental doses of that allergen, which also cross-desensitizes them to an unrelated allergen. PMID:22009002

  3. Neural Crest Cells Isolated from the Bone Marrow of Transgenic Mice Express JCV T-Antigen.

    Directory of Open Access Journals (Sweden)

    Jennifer Gordon

    Full Text Available JC virus (JCV, a common human polyomavirus, is the etiological agent of the demyelinating disease, progressive multifocal leukoencephalopathy (PML. In addition to its role in PML, studies have demonstrated the transforming ability of the JCV early protein, T-antigen, and its association with some human cancers. JCV infection occurs in childhood and latent virus is thought to be maintained within the bone marrow, which harbors cells of hematopoietic and non-hematopoietic lineages. Here we show that non-hematopoietic mesenchymal stem cells (MSCs isolated from the bone marrow of JCV T-antigen transgenic mice give rise to JCV T-antigen positive cells when cultured under neural conditions. JCV T-antigen positive cells exhibited neural crest characteristics and demonstrated p75, SOX-10 and nestin positivity. When cultured in conditions typical for mesenchymal cells, a population of T-antigen negative cells, which did not express neural crest markers arose from the MSCs. JCV T-antigen positive cells could be cultured long-term while maintaining their neural crest characteristics. When these cells were induced to differentiate into neural crest derivatives, JCV T-antigen was downregulated in cells differentiating into bone and maintained in glial cells expressing GFAP and S100. We conclude that JCV T-antigen can be stably expressed within a fraction of bone marrow cells differentiating along the neural crest/glial lineage when cultured in vitro. These findings identify a cell population within the bone marrow permissible for JCV early gene expression suggesting the possibility that these cells could support persistent viral infection and thus provide clues toward understanding the role of the bone marrow in JCV latency and reactivation. Further, our data provides an excellent experimental model system for studying the cell-type specificity of JCV T-antigen expression, the role of bone marrow-derived stem cells in the pathogenesis of JCV-related diseases

  4. Hematological effects: comparative studies on the radiation survival characteristics in vivo and in vitro of bone marrow-derived clonogenic populations (CFU-C and PFU-C) and some observations on bone marrow cellularity in beagles

    International Nuclear Information System (INIS)

    Wilson, F.D.; O'Grady, L.; Momeni, M.; Wheeling, J.A.; Klein, K.; Graham, R.; Jow, N.; Di Bartola, S.

    1975-01-01

    Data accumulated for the hematological effects program are reviewed. Particular emphasis is given to the effects of acute and chronic irradiation on hematopoietic progenitor populations (CFU-C, colony-forming units in culture) and ''candidate'' mesenchymal progenitors (PFU-C, plaque-forming units in culture) using methylcellulose bone marrow culture systems and both in vivo and in vitro radiation exposure protocols. Preliminary results of studies on the temporal effects of acute x-irradiation on the capacity of PFU-C to generate colony stimulating activity (CSA) are also presented. The results of such experiments are providing the basis upon which future RBE studies on a variety of nuclides will be structured. Data (including age related changes) is also presented on in vivo bone marrow cellularity determinations, as well as for marrow stem cell quantitative studies using nondestructive techniques for normal Beagles. In these studies, two techniques for correction of variable effects of hemodilution are compared. Such studies are also providing baseline data for the 60 Co hematological effects program

  5. Bone marrow extract as a growth supplement for human iliac apophyseal chondrocyte culture

    Directory of Open Access Journals (Sweden)

    Balasubramanian Balakumar

    2016-01-01

    Full Text Available Background & objectives: Human bone marrow is rich in various growth factors which may support the chondrocyte growth. This study was conducted to compare the culture characteristics of human growth plate chondrocyte in foetal bovine serum (FBS and human autologous bone marrow extract (BME in monolayer culture. Methods: Iliac crest apophyseal cartilage was harvested from four donors, aged between two and nine years, undergoing hip surgery. Chondrocytes were propagated under two culture conditions, with 10 per cent FBS and 10 per cent autologous BME harvested from the same donors. Cells were harvested at 7, 14 and 21 days to assess viability, morphology, cell count and immunocytochemistry. Results: With an initial seeding density of 2500 cells/cm 2 , the average yield in monolayer cultured with FBS was 3.35 × 10 5 , 5.9 × 10 5 , 14.1 × 10 5 and BME was 0.66 × 10 5 , 1.57 × 10 5 and 3.48 × 10 5 at 7, 14 and 21 days, respectively. Viability was 98.21 per cent with FBS and 97.45 per cent with BME at 21 days. In BME supplemented cultures, hyaline phenotype was maintained up to 21 days. The yield was higher in the FBS supplemented group; however, the phenotype could not be maintained by the FBS group as long as BME group. Interpretation & conclusions: Autologous BME was found to be a safer alternative to FBS for human studies. BME could maintain the hyaline phenotype for a longer time. Ways to enhance the cell yield needs to be explored in future studies.

  6. Variation in primary and culture-expanded cells derived from connective tissue progenitors in human bone marrow space, bone trabecular surface and adipose tissue.

    Science.gov (United States)

    Qadan, Maha A; Piuzzi, Nicolas S; Boehm, Cynthia; Bova, Wesley; Moos, Malcolm; Midura, Ronald J; Hascall, Vincent C; Malcuit, Christopher; Muschler, George F

    2018-03-01

    Connective tissue progenitors (CTPs) embody the heterogeneous stem and progenitor cell populations present in native tissue. CTPs are essential to the formation and remodeling of connective tissue and represent key targets for tissue-engineering and cell-based therapies. To better understand and characterize CTPs, we aimed to compare the (i) concentration and prevalence, (ii) early in vitro biological behavior and (iii) expression of surface-markers and transcription factors among cells derived from marrow space (MS), trabecular surface (TS), and adipose tissues (AT). Cancellous-bone and subcutaneous-adipose tissues were collected from 8 patients. Cells were isolated and cultured. Colony formation was assayed using Colonyze software based on ASTM standards. Cell concentration ([Cell]), CTP concentration ([CTP]) and CTP prevalence (P CTP ) were determined. Attributes of culture-expanded cells were compared based on (i) effective proliferation rate and (ii) expression of surface-markers CD73, CD90, CD105, SSEA-4, SSEA-3, SSEA-1/CD15, Cripto-1, E-Cadherin/CD324, Ep-CAM/CD326, CD146, hyaluronan and transcription factors Oct3/4, Sox-2 and Nanog using flow cytometry. Mean [Cell], [CTP] and P CTP were significantly different between MS and TS samples (P = 0.03, P = 0.008 and P= 0.0003), respectively. AT-derived cells generated the highest mean total cell yield at day 6 of culture-4-fold greater than TS and more than 40-fold greater than MS per million cells plated. TS colonies grew with higher mean density than MS colonies (290 ± 11 versus 150 ± 11 cell per mm 2 ; P = 0.0002). Expression of classical-mesenchymal stromal cell (MSC) markers was consistently recorded (>95%) from all tissue sources, whereas all the other markers were highly variable. The prevalence and biological potential of CTPs are different between patients and tissue sources and lack variation in classical MSC markers. Other markers are more likely to discriminate differences

  7. Differential expression of CCN-family members in primary human bone marrow-derived mesenchymal stem cells during osteogenic, chondrogenic and adipogenic differentiation

    Directory of Open Access Journals (Sweden)

    Hendrich Christian

    2005-03-01

    Full Text Available Abstract Background The human cysteine rich protein 61 (CYR61, CCN1 as well as the other members of the CCN family of genes play important roles in cellular processes such as proliferation, adhesion, migration and survival. These cellular events are of special importance within the complex cellular interactions ongoing in bone remodeling. Previously, we analyzed the role of CYR61/CCN1 as an extracellular signaling molecule in human osteoblasts. Since mesenchymal stem cells of bone marrow are important progenitors for various differentiation pathways in bone and possess increasing potential for regenerative medicine, here we aimed to analyze the expression of CCN family members in bone marrow-derived human mesenchymal stem cells and along the osteogenic, the adipogenic and the chondrogenic differentiation. Results Primary cultures of human mesenchymal stem cells were obtained from the femoral head of patients undergoing total hip arthroplasty. Differentiation into adipocytes and osteoblasts was done in monolayer culture, differentiation into chondrocytes was induced in high density cell pellet cultures. For either pathway, established differentiation markers and CCN-members were analyzed at the mRNA level by RT-PCR and the CYR61/CCN1 protein was analyzed by immunocytochemistry. RT-PCR and histochemical analysis revealed the appropriate phenotype of differentiated cells (Alizarin-red S, Oil Red O, Alcian blue, alkaline phosphatase; osteocalcin, collagen types I, II, IX, X, cbfa1, PPARγ, aggrecan. Mesenchymal stem cells expressed CYR61/CCN1, CTGF/CCN2, CTGF-L/WISP2/CCN5 and WISP3/CCN6. The CYR61/CCN1 expression decreased markedly during osteogenic differentiation, adipogenic differentiation and chondrogenic differentiation. These results were confirmed by immuncytochemical analyses. WISP2/CCN5 RNA expression declined during adipogenic differentiation and WISP3/CCN6 RNA expression was markedly reduced in chondrogenic differentiation. Conclusion The

  8. Effect of in vivo exposure to benzene on the characteristics of bone marrow adherent cells

    Energy Technology Data Exchange (ETDEWEB)

    Garnett, H M; Cronkite, E P; Drew, R T

    1983-01-01

    The effect of benzene on the adherent cell population, cultured from the bone marrow of exposed mice was investigated in the presence and absence of hydrocortisone. The adherent CFUs from exposed animals did not differ either in numbers or self-replicate ability to those derived from shown exposed animals. Adherent layers from mice exposed to 100 or 400 pp-benzene were devoid of fat cells regardless of the presence or absence of hydrocortisone. Hydrocortisone was shown to influence the proportion of acid phosphatase-positive cells derived from benzene-exposed animals. Those results suggest that benzene exposure may influence the bone marrow stromal cells.

  9. Communication between mast cells and rat submucosal neurons.

    Science.gov (United States)

    Bell, Anna; Althaus, Mike; Diener, Martin

    2015-08-01

    Histamine is a mast cell mediator released e.g. during food allergy. The aim of the project was to identify the effect of histamine on rat submucosal neurons and the mechanisms involved. Cultured submucosal neurons from rat colon express H1, H2 and H3 receptors as shown by immunocytochemical staining confirmed by reverse transcriptase polymerase chain reaction (RT-PCR) with messenger RNA (mRNA) isolated from submucosal homogenates as starting material. Histamine evoked a biphasic rise of the cytosolic Ca(2+) concentration in cultured submucosal neurons, consisting in a release of intracellularly stored Ca(2+) followed by an influx from the extracellular space. Although agonists of all three receptor subtypes evoked an increase in the cytosolic Ca(2+) concentration, experiments with antagonists revealed that mainly H1 (and to a lesser degree H2) receptors mediate the response to histamine. In coculture experiments with RBL-2H3 cells, a mast cell equivalent, compound 48/80, evoked an increase in the cytosolic Ca(2+) concentration of neighbouring neurons. Like the response to native histamine, the neuronal response to the mast cell degranulator was strongly inhibited by the H1 receptor antagonist pyrilamine and reduced by the H2 receptor antagonist cimetidine. In rats sensitized against ovalbumin, exposure to the antigen induced a rise in short-circuit current (I sc) across colonic mucosa-submucosa preparations without a significant increase in paracellular fluorescein fluxes. Pyrilamine strongly inhibited the increase in I sc, a weaker inhibition was observed after blockade of protease receptors or 5-lipoxygenase. Consequently, H1 receptors on submucosal neurons seem to play a pivotal role in the communication between mast cells and the enteric nervous system.

  10. Enhancement of the repair of dog alveolar cleft by an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture.

    Science.gov (United States)

    Yuanzheng, Chen; Yan, Gao; Ting, Li; Yanjie, Fu; Peng, Wu; Nan, Bai

    2015-05-01

    Autologous bone graft has been regarded as the criterion standard for the repair of alveolar cleft. However, the most prominent issue in alveolar cleft treatment is the high absorption rate of the bone graft. The authors' objective was to investigate the effects of an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture on the repair of dog alveolar cleft. Twenty beagle dogs with unilateral alveolar clefts created by surgery were divided randomly into four groups: group A underwent repair with an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture; group B underwent repair with autologous iliac bone and bone marrow-derived mesenchymal stem cells; group C underwent repair with autologous iliac bone and platelet-rich fibrin; and group D underwent repair with autologous iliac bone as the control. One day and 6 months after transplantation, the transplant volumes and bone mineral density were assessed by quantitative computed tomography. All of the transplants were harvested for hematoxylin and eosin staining 6 months later. Bone marrow-derived mesenchymal stem cells and platelet-rich fibrin transplants formed the greatest amounts of new bone among the four groups. The new bone formed an extensive union with the underlying maxilla in groups A, B, and C. Transplants with the bone marrow-derived mesenchymal stem cells, platelet-rich fibrin, and their mixture retained the majority of their initial volume, whereas the transplants in the control group showed the highest absorption rate. Bone mineral density of transplants with the bone marrow-derived mesenchymal stem cells, platelet-rich fibrin, and their mixture 6 months later was significantly higher than in the control group (p platelet-rich fibrin mixed transplants. Hematoxylin and eosin staining showed that the structure of new bones formed the best in group A. Both bone marrow-derived mesenchymal stem cells and platelet

  11. Feasibility of autologous bone marrow mesenchymal stem cell-derived extracellular matrix scaffold for cartilage tissue engineering.

    Science.gov (United States)

    Tang, Cheng; Xu, Yan; Jin, Chengzhe; Min, Byoung-Hyun; Li, Zhiyong; Pei, Xuan; Wang, Liming

    2013-12-01

    Extracellular matrix (ECM) materials are widely used in cartilage tissue engineering. However, the current ECM materials are unsatisfactory for clinical practice as most of them are derived from allogenous or xenogenous tissue. This study was designed to develop a novel autologous ECM scaffold for cartilage tissue engineering. The autologous bone marrow mesenchymal stem cell-derived ECM (aBMSC-dECM) membrane was collected and fabricated into a three-dimensional porous scaffold via cross-linking and freeze-drying techniques. Articular chondrocytes were seeded into the aBMSC-dECM scaffold and atelocollagen scaffold, respectively. An in vitro culture and an in vivo implantation in nude mice model were performed to evaluate the influence on engineered cartilage. The current results showed that the aBMSC-dECM scaffold had a good microstructure and biocompatibility. After 4 weeks in vitro culture, the engineered cartilage in the aBMSC-dECM scaffold group formed thicker cartilage tissue with more homogeneous structure and higher expressions of cartilaginous gene and protein compared with the atelocollagen scaffold group. Furthermore, the engineered cartilage based on the aBMSC-dECM scaffold showed better cartilage formation in terms of volume and homogeneity, cartilage matrix content, and compressive modulus after 3 weeks in vivo implantation. These results indicated that the aBMSC-dECM scaffold could be a successful novel candidate scaffold for cartilage tissue engineering. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  12. Stimulation and support of haemopoietic stem cell proliferation by irradiated stroma cell colonies in bone marrow cell culture in vitro

    International Nuclear Information System (INIS)

    Mori, K.J.; Izumi, Hiroko; Seto, Akira

    1981-01-01

    A culture system was established in which haemopoietic stem cells can undergo a recovery proliferation after a depletion of the stem cells, completely in vitro. To elucidate the source of the stimulatory factors, normal bone marrow cells were overlayed on top of the irradiated adherent 'stromal' cell colonies in the bone marrow cell culture. This stimulated the proliferation of haemopoietic stem cells in the cultured cells in suspension. The present results indicate that the stromal cells produce factors which stimulate stem cell proliferation. Whether the stimulation is evoked by direct cell-cell interactions or by humoral factors is as yet to be studied. (author)

  13. Comparison of allogeneic platelet lysate and fetal bovine serum for in vitro expansion of equine bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Seo, Jong-pil; Tsuzuki, Nao; Haneda, Shingo; Yamada, Kazutaka; Furuoka, Hidefumi; Tabata, Yasuhiko; Sasaki, Naoki

    2013-10-01

    Mesenchymal stem cells (MSCs) are promising candidates for cell-based therapy and tissue engineering approaches. Fetal bovine serum (FBS) is commonly used for in vitro MSC expansion; however, the use of FBS may be associated with ethical, scientific, and safety issues. This study aimed to compare the ability of allogeneic platelet lysate (PL) and FBS to cause equine bone marrow-derived MSC expansion. MSCs were isolated from bone marrow aspirate in media supplemented with either PL or FBS, and cell proliferation properties and characteristics were examined. There were no significant differences in MSC yield, colony-forming unit-fibroblast (CFU-F) assay, and population doubling time between PL and FBS cultures. In addition, both PL-MSCs and FBS-MSCs showed similar results in term of ALP staining, osteogenic differentiation, and RT-PCR, although there were subtle differences in morphology, growth pattern, and adhesive properties. These results suggest that PL is a suitable alternative to FBS for use in equine MSC expansion, without the problems related to FBS use. Published by Elsevier India Pvt Ltd.

  14. Isolation, Culture, and Differentiation of Bone Marrow Stromal Cells and Osteoclast Progenitors from Mice.

    Science.gov (United States)

    Maridas, David E; Rendina-Ruedy, Elizabeth; Le, Phuong T; Rosen, Clifford J

    2018-01-06

    Bone marrow stromal cells (BMSCs) constitute a cell population routinely used as a representation of mesenchymal stem cells in vitro. They reside within the bone marrow cavity alongside hematopoietic stem cells (HSCs), which can give rise to red blood cells, immune progenitors, and osteoclasts. Thus, extractions of cell populations from the bone marrow results in a very heterogeneous mix of various cell populations, which can present challenges in experimental design and confound data interpretation. Several isolation and culture techniques have been developed in laboratories in order to obtain more or less homogeneous populations of BMSCs and HSCs invitro. Here, we present two methods for isolation of BMSCs and HSCs from mouse long bones: one method that yields a mixed population of BMSCs and HSCs and one method that attempts to separate the two cell populations based on adherence. Both methods provide cells suitable for osteogenic and adipogenic differentiation experiments as well as functional assays.

  15. Concentration-dependent behaviors of bone marrow derived mesenchymal stem cells and infectious bacteria toward magnesium oxide nanoparticles.

    Science.gov (United States)

    Wetteland, Cheyann Lee; Nguyen, Nhu-Y Thi; Liu, Huinan

    2016-04-15

    This article reports the quantitative relationship between the concentration of magnesium oxide (MgO) nanoparticles and its distinct biological activities towards mammalian cells and infectious bacteria for the first time. The effects of MgO nanoparticles on the viability of bone marrow derived mesenchymal stem cells (BMSCs) and infectious bacteria (both gram-negative Escherichia coli and gram-positive Staphylococcus epidermidis) showed a concentration-dependent behavior in vitro. The critical concentrations of MgO nanoparticles identified in this study provided valuable guidelines for biomaterial design toward potential clinical translation. BMSCs density increased significantly when cultured in 200μg/mL of MgO in comparison to the Cells Only control without MgO. The density of BMSCs decreased significantly after culture in the media with 500μg/mL or more of MgO. Concentrations at or above 1000μg/mL of MgO resulted in complete BMSCs death. Quantification of colony forming units (CFU) revealed that the minimum bactericidal concentration (MBC) of MgO for E. coli and S. epidermidis was 1200μg/mL. The addition of MgO nanoparticles into the cultures increased the pH and Mg(2+) ion concentration in the respective culture media, which might have played a role in the observed cell responses but not the main factors. E. coli and S. epidermidis still proliferated significantly at alkaline pH up to 10 or with supplemental Mg(2+) dosages up to 50mM, indicating bactericidal properties of MgO are beyond the effects of increased media pH and Mg(2+) ion concentrations. MgO nanoparticles at a concentration of 200μg/mL provided dual benefits of promoting BMSC proliferation while reducing bacterial adhesion, which should be further studied for potential medical implant applications. The use of free MgO nanoparticles yielded detrimental effects to BMSCs in concentrations above 300μg/mL. We recommend further study into MgO nanoparticle as a coating material or as a part of a

  16. Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow.

    NARCIS (Netherlands)

    Zhang, W.; Walboomers, X.F.; Osch, G.J.V.M. van; Dolder, J. van den; Jansen, J.A.

    2008-01-01

    The aim of this study was to compare the ability of hard tissue regeneration of four types of stem cells or precursors under both in vitro and in vivo situations. Primary cultures of rat bone marrow, rat dental pulp, human bone marrow, and human dental pulp cells were seeded onto a porous ceramic

  17. Bone marrow-derived versus parenchymal sources of inducible nitric oxide synthase in experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Zehntner, Simone P; Bourbonniere, Lyne; Hassan-Zahraee, Mina

    2004-01-01

    . These discrepancies may reflect balance between immunoregulatory and neurocytopathologic roles for NO. We investigated selective effects of bone marrow-derived versus CNS parenchymal sources of iNOS in EAE in chimeric mice. Chimeras that selectively expressed or ablated iNOS in leukocytes both showed significant...

  18. Hypoxia-Induced Mitogenic Factor (HIMF/FIZZ1/RELM?) Recruits Bone Marrow-Derived Cells to the Murine Pulmonary Vasculature

    OpenAIRE

    Angelini, Daniel J.; Su, Qingning; Kolosova, Irina A.; Fan, Chunling; Skinner, John T.; Yamaji-Kegan, Kazuyo; Collector, Michael; Sharkis, Saul J.; Johns, Roger A.

    2010-01-01

    Background Pulmonary hypertension (PH) is a disease of multiple etiologies with several common pathological features, including inflammation and pulmonary vascular remodeling. Recent evidence has suggested a potential role for the recruitment of bone marrow-derived (BMD) progenitor cells to this remodeling process. We recently demonstrated that hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM?) is chemotactic to murine bone marrow cells in vitro and involved in pulmonary vascular remodeling ...

  19. Mast cell-deficient Kit(W-sh) "Sash" mutant mice display aberrant myelopoiesis leading to the accumulation of splenocytes that act as myeloid-derived suppressor cells.

    Science.gov (United States)

    Michel, Anastasija; Schüler, Andrea; Friedrich, Pamela; Döner, Fatma; Bopp, Tobias; Radsak, Markus; Hoffmann, Markus; Relle, Manfred; Distler, Ute; Kuharev, Jörg; Tenzer, Stefan; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Schild, Hansjörg; Schmitt, Edgar; Becker, Marc; Stassen, Michael

    2013-06-01

    Mast cell-deficient Kit(W-sh) "sash" mice are widely used to investigate mast cell functions. However, mutations of c-Kit also affect additional cells of hematopoietic and nonimmune origin. In this study, we demonstrate that Kit(W-sh) causes aberrant extramedullary myelopoiesis characterized by the expansion of immature lineage-negative cells, common myeloid progenitors, and granulocyte/macrophage progenitors in the spleen. A consistent feature shared by these cell types is the reduced expression of c-Kit. Populations expressing intermediate and high levels of Ly6G, a component of the myeloid differentiation Ag Gr-1, are also highly expanded in the spleen of sash mice. These cells are able to suppress T cell responses in vitro and phenotypically and functionally resemble myeloid-derived suppressor cells (MDSC). MDSC typically accumulate in tumor-bearing hosts and are able to dampen immune responses. Consequently, transfer of MDSC from naive sash mice into line 1 alveolar cell carcinoma tumor-bearing wild-type littermates leads to enhanced tumor progression. However, although it can also be observed in sash mice, accelerated growth of transplanted line 1 alveolar cell carcinoma tumors is a mast cell-independent phenomenon. Thus, the Kit(W-sh) mutation broadly affects key steps in myelopoiesis that may have an impact on mast cell research.

  20. Long-term engraftment of bone marrow-derived cells in the intimal hyperplasia lesion of autologous vein grafts.

    Science.gov (United States)

    Diao, Yanpeng; Guthrie, Steve; Xia, Shen-Ling; Ouyang, Xiaosen; Zhang, Li; Xue, Jing; Lee, Pui; Grant, Maria; Scott, Edward; Segal, Mark S

    2008-03-01

    Intimal hyperplasia of autologous vein grafts is a critical problem affecting the long-term patency of many types of vascular reconstruction. Within intimal hyperplasia lesions, smooth muscle cells are a major component, playing an essential role in the pathological process. Given that bone marrow-derived cells may differentiate into smooth muscle cells in the neointima of injured arteries, we hypothesized that the bone marrow may serve as a source for some of the smooth muscle cells within intimal hyperplasia lesions of vein grafts. To test this hypothesis, we used an established mouse model for intimal hyperplasia in wild-type mice that had been transplanted with bone marrow from a green fluorescent protein (GFP+/+) transgenic mouse. High-resolution confocal microscopy analysis performed 2 and 8 weeks after grafting demonstrated expression of GFP in 5.4 +/- 0.8% and 11.9 +/- 2.3%, respectively, of smooth muscle cells within intimal hyperplasia lesions. By 16 weeks, GFP expression in smooth muscle cells was not detected by immunohistochemistry; however, real-time PCR revealed that 20.2 +/- 1.7% of the smooth muscle cells captured from the neointima lesion by laser capture microdissection at 16 weeks contained GFP DNA. Our results suggest that bone marrow-derived cells differentiated into smooth muscle cells within the intimal lesion and may provide a novel clinical approach for decreasing intimal hyperplasia in vein grafts.

  1. Bone marrow-derived T lymphocytes responsible for allograft rejection

    International Nuclear Information System (INIS)

    Senjanovic, M.; Marusic, M.

    1984-01-01

    Lethally irradiated mice reconstituted with syngeneic bone marrow cells were grafted with allogeneic skin grafts 6-7 weeks after irradiation and reconstitution. Mice with intact thymuses rejected the grafts whereas the mice thymectomized before irradiation and reconstitution did not. Thymectomized irradiated mice (TIR mice) reconstituted with bone marrow cells from donors immune to the allografts rejected the grafts. Bone marrow cells from immunized donors, pretreated with Thy 1.2 antibody and C', did not confer immunity to TIR recipients. To determine the number of T lymphocytes necessary for the transfer of immunity by bone marrow cells from immunized donors, thymectomized irradiated mice were reconstituted with nonimmune bone marrow cells treated with Thy 1.2 antibody and C' and with various numbers of splenic T lymphocytes from nonimmune and immune donors. Allogeneic skin graft rejection was obtained with 10(6) nonimmune or 10(4) immune T cells. The effect of immune T cells was specific: i.e., immune T cells accelerated only rejection of the relevant skin grafts whereas against a third-party skin grafts acted as normal T lymphocytes

  2. Can bone marrow differentiate into renal cells?

    Science.gov (United States)

    Imai, Enyu; Ito, Takahito

    2002-10-01

    A considerable plasticity of adult stem cells has been confirmed in a wide variety of tissues. In particular, the pluripotency of bone marrow-derived stem cells may influence the regeneration of injured tissues and may provide novel avenues in regenerative medicine. Bone marrow contains at least hematopoietic and mesenchymal stem cells, and both can differentiate into a wide range of differentiated cells. Side population (SP) cells, which are originally defined in bone marrow cells by high efflux of DNA-binding dye, seem to be a new class of multipotent stem cells. Irrespective of the approach used to obtain stem cells, the fates of marrow-derived cells following bone marrow transplantation can be traced by labeling donor cells with green fluorescence protein or by identifying donor Y chromosome in female recipients. So far, bone marrow-derived cells have been reported to differentiate into renal cells, including mesangial cells, endothelial cells, podocytes, and tubular cells in the kidney, although controversy exists. Further studies are required to address this issue. Cell therapy will be promising when we learn to control stem cells such as bone marrow-derived stem cells, embryonic stem cells, and resident stem cells in the kidney. Identification of factors that support stem cells or promote their differentiation should provide a relevant step towards cell therapy.

  3. Bone marrow-derived mesenchymal stem cells versus adipose-derived mesenchymal stem cells for peripheral nerve regeneration

    Directory of Open Access Journals (Sweden)

    Marcela Fernandes

    2018-01-01

    Full Text Available Studies have confirmed that bone marrow-derived mesenchymal stem cells (MSCs can be used for treatment of several nervous system diseases. However, isolation of bone marrow-derived MSCs (BMSCs is an invasive and painful process and the yield is very low. Therefore, there is a need to search for other alterative stem cell sources. Adipose-derived MSCs (ADSCs have phenotypic and gene expression profiles similar to those of BMSCs. The production of ADSCs is greater than that of BMSCs, and ADSCs proliferate faster than BMSCs. To compare the effects of venous grafts containing BMSCs or ADSCs on sciatic nerve injury, in this study, rats were randomly divided into four groups: sham (only sciatic nerve exposed, Matrigel (MG; sciatic nerve injury + intravenous transplantation of MG vehicle, ADSCs (sciatic nerve injury + intravenous MG containing ADSCs, and BMSCs (sciatic nerve injury + intravenous MG containing BMSCs groups. Sciatic functional index was calculated to evaluate the function of injured sciatic nerve. Morphologic characteristics of nerves distal to the lesion were observed by toluidine blue staining. Spinal motor neurons labeled with Fluoro-Gold were quantitatively assessed. Compared with sham-operated rats, sciatic functional index was lower, the density of small-diameter fibers was significantly increased, and the number of motor neurons significantly decreased in rats with sciatic nerve injury. Neither ADSCs nor BMSCs significantly improved the sciatic nerve function of rats with sciatic nerve injury, increased fiber density, fiber diameters, axonal diameters, myelin sheath thickness, and G ratios (axonal diameter/fiber diameter ratios in the sciatic nerve distal to the lesion site. There was no significant difference in the number of spinal motor neurons among ADSCs, BMSCs and MG groups. These results suggest that neither BMSCs nor ADSCs provide satisfactory results for peripheral nerve repair when using MG as the conductor for

  4. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films

    Energy Technology Data Exchange (ETDEWEB)

    Luan Xiying [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Wang Yong [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Duan Xiang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Duan Qiaoyan [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Li Mingzhong [School of Materials Engineering, Suzhou University, Suzhou 215006 (China); Lu Shenzhou [School of Materials Engineering, Suzhou University, Suzhou 215006 (China); Zhang Huanxiang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Zhang Xueguang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China)

    2006-12-15

    Silk fibroin of the silkworm Bombyx mori has been studied extensively, while the research on Antheraea pernyi silk fibroin (A. pernyi SF) in biomaterials is only at an early stage. In this study, the attachment, morphology, growth and phenotype of human bone marrow derived mesenchymal stem cells (hBMSCs) cultured on the regenerated A. pernyi SF films were studied in vitro. The results indicated that the attachment of hBMSCs on the regenerated A. pernyi SF films was almost the same as that on the collagen films. MTT and cell counting analyses demonstrated that the growth of hBMSCs on the regenerated A. pernyi SF films was better than that on controls. Moreover, electron scanning microscopy and fluorescence-activated cell sorting assays showed that the regenerated A. pernyi SF supported hBMSCs growth and functional maintenance compared with the controls. These data suggest that the regenerated A. pernyi SF, like Bombyx mori silk fibroin (B. mori SF) and collagen, can support hBMSCs attachment, growth and phenotypic maintenance, and has better biocompatibilities for hBMSCs in vitro culture.

  5. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films

    International Nuclear Information System (INIS)

    Luan Xiying; Wang Yong; Duan Xiang; Duan Qiaoyan; Li Mingzhong; Lu Shenzhou; Zhang Huanxiang; Zhang Xueguang

    2006-01-01

    Silk fibroin of the silkworm Bombyx mori has been studied extensively, while the research on Antheraea pernyi silk fibroin (A. pernyi SF) in biomaterials is only at an early stage. In this study, the attachment, morphology, growth and phenotype of human bone marrow derived mesenchymal stem cells (hBMSCs) cultured on the regenerated A. pernyi SF films were studied in vitro. The results indicated that the attachment of hBMSCs on the regenerated A. pernyi SF films was almost the same as that on the collagen films. MTT and cell counting analyses demonstrated that the growth of hBMSCs on the regenerated A. pernyi SF films was better than that on controls. Moreover, electron scanning microscopy and fluorescence-activated cell sorting assays showed that the regenerated A. pernyi SF supported hBMSCs growth and functional maintenance compared with the controls. These data suggest that the regenerated A. pernyi SF, like Bombyx mori silk fibroin (B. mori SF) and collagen, can support hBMSCs attachment, growth and phenotypic maintenance, and has better biocompatibilities for hBMSCs in vitro culture

  6. Ascomycin macrolactam derivative SDZ ASM 981 inhibits the release of granule-associated mediators and of newly synthesized cytokines in RBL 2H3 mast cells in an immunophilin-dependent manner.

    Science.gov (United States)

    Hultsch, T; Müller, K D; Meingassner, J G; Grassberger, M; Schopf, R E; Knop, J

    1998-09-01

    Mast cells play an important role in the pathological development of many inflammatory and allergic diseases and inhibition of mast cell activation is a potential target for therapeutic intervention. Therefore, the effect of the novel ascomycin macrolactam derivative SDZ ASM 981 on Fc epsilonRI-mediated activation of rat basophilic leukemia (RBL) cells, as a model for mast cell activation, was investigated. First, the ability to inhibit different mast cell immunophilins in vitro was tested. Using recombinant macrophilin-12 (FKBP-12), inhibition of rotamase activity with an IC50 of approximately 6 nM was observed. The rotamase activity of cyclophilin A (18 kDa) was not affected. Secondly, the effect of SDZ ASM 981 on Fc epsilonRI-mediated mast cell activation was investigated in the RBL cell model. SDZ ASM 981 inhibited exocytosis of preformed mediators (e.g. serotonin) with an IC50 of approximately 30 nM. Transcription and release of newly synthesized mediators (e.g. TNF-alpha) was inhibited with an IC50 of approximately 100 nM. The inhibitory effect of SDZ ASM 981 was antagonized by rapamycin. We conclude that SDZ ASM 981 is a potent inhibitor of Fc epsilonRI-mediated activation of mast cells in vitro. The mechanism of action involves formation of (calcineurin) inhibitory complexes with macrophilins. We suggest that this inhibitory action on mast cells might contribute to the antiinflammatory effect of SDZ ASM 981 observed in vivo (e.g. in aptopic dermatitis and psoriasis).

  7. Characterization of bone marrow derived mesenchymal stem cells in suspension

    Science.gov (United States)

    2012-01-01

    Introduction Bone marrow mesenchymal stem cells (BMMSCs) are a heterogeneous population of postnatal precursor cells with the capacity of adhering to culture dishes generating colony-forming unit-fibroblasts (CFU-F). Here we identify a new subset of BMMSCs that fail to adhere to plastic culture dishes and remain in culture suspension (S-BMMSCs). Methods To catch S-BMMSCs, we used BMMSCs-produced extracellular cell matrix (ECM)-coated dishes. Isolated S-BMMSCs were analyzed by in vitro stem cell analysis approaches, including flow cytometry, inductive multiple differentiation, western blot and in vivo implantation to assess the bone regeneration ability of S-BMMSCs. Furthermore, we performed systemic S-BMMSCs transplantation to treat systemic lupus erythematosus (SLE)-like MRL/lpr mice. Results S-BMMSCs are capable of adhering to ECM-coated dishes and showing mesenchymal stem cell characteristics with distinction from hematopoietic cells as evidenced by co-expression of CD73 or Oct-4 with CD34, forming a single colony cluster on ECM, and failure to differentiate into hematopoietic cell lineage. Moreover, we found that culture-expanded S-BMMSCs exhibited significantly increased immunomodulatory capacities in vitro and an efficacious treatment for SLE-like MRL/lpr mice by rebalancing regulatory T cells (Tregs) and T helper 17 cells (Th17) through high NO production. Conclusions These data suggest that it is feasible to improve immunotherapy by identifying a new subset BMMSCs. PMID:23083975

  8. Immunohistochemical localization of host and donor-derived cells in the regenerating thymus of radiation bone marrow chimeras

    International Nuclear Information System (INIS)

    Ceredig, R.; Schreyer, M.

    1984-01-01

    The anatomical distribution of CBA (Thy-1.2) host and AKR (Thy-1.1) donor-derived cells in the regenerating thymus of AKR → CBA radiation bone marrow chimeras was investigated. Cryostat sections of chimeric thymuses were incubated with biotin-conjugated monoclonal anti-Thy-1 antibodies specific for host and donor-derived cells and the distribution of the corresponding Thy-1 antigen revealed by the immunoperoxidase staining technique. The thymus was initially repopulated by Thy-1.2 + host-derived cells, but by 28 days following bone marrow reconstitution the few remaining host cells were found mostly in the thymus medulla. However, occasional Thy-1.2 + cells were still present in extramedullary, primarily cortical, sites. Donor-derived (Thy-1.1 + ) cells were first seen in the 11-day chimeric thymus as single cells frequently closely associated with blood vessels in medullary areas. By 17 days, the cortex contained many Thy-1.1 + cells, although occasional single positive cells were still present in the medulla. Changes in the anatomical distribution of host and donor-derived cells in the regenerating chimeric thymus appeared to correlate with changes in their Thy-1 fluorescence profile as determined by flow microfluorometry. (Auth.)

  9. Use of a centrifugation-based, point-of-care device for production of canine autologous bone marrow and platelet concentrates.

    Science.gov (United States)

    Thoesen, Michael S; Berg-Foels, Wendy S Vanden; Stokol, Tracy; Rassnick, Kenneth M; Jacobson, May S; Kevy, Sherwin V; Todhunter, Rory J

    2006-10-01

    To analyze a centrifugation-based, point-of-care device that concentrates canine platelets and bone marrow-derived cells. 19 adult sexually intact dogs. Anticoagulated peripheral blood (60 mL) and 60 mL of anticoagulated bone marrow aspirate (BMA) were concentrated by centrifugation with the centrifugation-based, point-of-care device to form a platelet and a bone marrow concentrate (BMC) from 11 dogs. Blood samples were analyzed on the basis of hemograms, platelet count, and PCV. The BMA and BMC were analyzed to determine PCV, total nucleated cell count, RBC count, and differential cell counts. The BMC stromal cells were cultured in an osteoinductive medium. Eight additional dogs were used to compare the BMC yield with that in which heparin was infused into the bone marrow before aspiration. The centrifugation-based, point-of-care device concentrated platelets by 6-fold over baseline (median recovery, 63.1%) with a median of 1,336 x 10(3) platelets/microL in the 7-mL concentrate. The nucleated cells in BMCs increased 7-fold (median recovery, 42.9%) with a median of 720 x 10(3) cells/microL in the 4-mL concentrate. The myeloid nucleated cells and mononuclear cells increased significantly in BMCs with a significant decrease in PCV, compared with that of BMAs. Stromal cell cultures expressed an osteoblastic phenotype in culture. Infusion of heparin into the bone marrow eliminated clot formation and created less variation in the yield (median recovery, 61.9%). Bone marrow-derived cell and platelet-rich concentrates may form bone if delivered in an engineered graft, thus decreasing the need for cancellous bone grafts.

  10. Ciclosporin Does Not Influence Bone Marrow-Derived Cell Differentiation to Myofibroblasts Early after Renal Ischemia/Reperfusion

    NARCIS (Netherlands)

    Broekema, Martine; Harmsen, Martin C.; Koerts, Jasper A.; van Kooten, Theo G.; Uges, Donald R. A.; Petersen, Arjen H.; van Luyn, Marja J. A.; Navis, Gerjan; Popa, Eliane R.

    2009-01-01

    Background: Ischemia/reperfusion injury (IRI) is a risk factor for the development of interstitial fibrosis. Previously we had shown that after renal IRI, bone marrow-derived cells (BMDC) can differentiate to interstitial myofibroblasts. Here we hypothesized that the immunosuppressant ciclosporin A

  11. Cocaine- and amphetamine-regulated transcript promotes the differentiation of mouse bone marrow-derived mesenchymal stem cells into neural cells

    OpenAIRE

    Jin Jiali; Chen Zhibin; Zhang Meijuan; Huang Danqing; Liu Zhuo; Huang Siyuan; Zhang Zhuo; Wang Zhongyuan; Chen Lei; Chen Ling; Xu Yun

    2011-01-01

    Abstract Background Neural tissue has limited potential to self-renew after neurological damage. Cell therapy using BM-MSCs (bone marrow mesenchymal stromal cells) seems like a promising approach for the treatment of neurological diseases. However, the neural differentiation of stem cells influenced by massive factors and interactions is not well studied at present. Results In this work, we isolated and identified MSCs from mouse bone marrow. Co-cultured with CART (0.4 nM) for six days, BM-MS...

  12. Ultrasound-guided cytology of spleen and liver: a prognostic tool in canine cutaneous mast cell tumor.

    Science.gov (United States)

    Stefanello, D; Valenti, P; Faverzani, S; Bronzo, V; Fiorbianco, V; Pinto da Cunha, N; Romussi, S; Cantatore, M; Caniatti, M

    2009-01-01

    In the clinical staging of cutaneous mast cell tumors (cMCT), the diagnosis of metastasis is controversial based on cytological examination of lymph nodes, spleen, liver, bone marrow, and blood. To define the prognostic role of ultrasound-guided cytology of spleen and liver in cMCT. The results of cytological evaluation were compared in relation with survival time. Fifty-two client-owned dogs with a diagnosis of cMCT. Selection of cases was based on cytological evaluation of liver and spleen to detect infiltration at distant sites. The Kaplan Meier method was used to compare survival in dogs with and without infiltration of spleen and liver (log-rank test P dogs with cMCT had mast cell infiltration of spleen, liver, or both and 4 of these dogs had involvement of the regional lymph nodes. The majority of dogs had 2 or more ultrasonographically abnormal findings simultaneously in spleen and liver. Nine dogs had grade II cMCT, and 1 had grade III cMCT. Dogs with positive evidence of mast cell infiltration to spleen, liver, or both had shorter survival times (34 versus 733 days) compared with dogs negative for mast cell infiltration at distant sites. Dogs with evidence of mast cell infiltration at distant sites have a shorter survival times than dogs without evidence of infiltration at distant sites. This study suggests that cytology of spleen and liver is indicated either for ultrasonographically normal or for ultrasonographically abnormal spleen and liver in dogs with cMCT.

  13. Autologous bone marrow purging with LAK cells.

    Science.gov (United States)

    Giuliodori, L; Moretti, L; Stramigioli, S; Luchetti, F; Annibali, G M; Baldi, A

    1993-12-01

    In this study we will demonstrate that LAK cells, in vitro, can lyse hematologic neoplastic cells with a minor toxicity of the staminal autologous marrow cells. In fact, after bone marrow and LAK co-culture at a ratio of 1/1 for 8 hours, the inhibition on the GEMM colonies resulted to be 20% less compared to the untreated marrow. These data made LAK an inviting agent for marrow purging in autologous bone marrow transplantation.

  14. Regulated proliferation of primitive hematopoietic progenitor cells in long-term human marrow cultures

    International Nuclear Information System (INIS)

    Cashman, J.; Eaves, A.C.; Eaves, C.J.

    1985-01-01

    We have examined the cycling status of various classes of erythroid and granulopoietic progenitor populations maintained for many weeks in standard normal long-term human marrow cultures. These were initiated with a single inoculum of marrow aspirate and were routinely fed by weekly removal of half of the nonadherent cells and replacement of half of the growth medium. Progenitors of large erythroid colonies (more than eight erythroblast clusters) present in the nonadherent fraction and progenitors of small granulocyte/macrophage colonies (fewer than 500 cells) present in both the nonadherent and adherent fractions were found to be actively cycling at all times examined (28% to 63% kill following a 20-minute exposure to 20 microCi/mL of high specific activity 3 H-thymidine). In contrast, progenitors of large granulocyte/macrophage colonies (more than 500 cells) and progenitors of large erythroid colonies (more than eight erythroblast clusters), present in the adherent layer, consistently alternated between a quiescent state at the time of each weekly medium change and a proliferating state two to three days later (0% to 13% kill and 21% to 49% kill, respectively). Additional experiments revealed that the activation of primitive progenitors in the adherent layer was not dependent on the addition of fresh glutamine or hydrocortisone, nor on the physical manipulations involved in changing the growth medium. These studies provide the first direct evidence that normal long-term human marrow cultures support the continued turnover of a variety of early hematopoietic progenitor cell types. Further, they indicate that the proliferative activity of the most primitive of these progenitors is regulated by stage-specific cell-cell interactions that are subject to manipulation

  15. TNF-α Regulates Mast Cell Functions by Inhibiting Cell Degranulation

    Directory of Open Access Journals (Sweden)

    Yuwei Gao

    2017-11-01

    Full Text Available Background/Aims: The aim of this study was to investigate the involvement of inducible co-stimulatory ligand (ICOSL expression in stimulation of mast cells (MCs by TNF-α and the ability of TNF-α stimulation of MCs to influence CD4+ T cell differentiation and function. The mechanisms underlying TNF-α stimulation of MCs were also explored. Methods: Mast cells and CD4+ T cells were prepared from C57BL/6 mice (aged 6–8 weeks. ICOSL expression by MCs was measured by real-time PCR and flow cytometry, and levels of IL-4, IL-10 and IFN-γ were measured by ELISA. Results: ICOSL expression by MCs was increased by TNF-α stimulation, and resulted in interaction with CD4+ T cells. The IL-4 and IL-10 levels in the co-culture system increased, while IFN-γ levels decreased. Furthermore, CD4+CD25+Foxp3+ T cell proliferation was induced by co-culture with TNF-α-stimulated MCs. The mechanism by which TNF-α stimulated MCs was dependent on the activation of the MAPK signaling pathway. Conclusion: TNF-α upregulated the expression of ICOSL on mast cells via a mechanism that is dependent on MAPK phosphorylation. TNF-α-treated MCs promoted the differentiation of regulatory T cells and induced a shift in cytokine expression from a Th1 to a Th2 profile by up-regulation ICOSL expression and inhibition of MC degranulation. Our study reveals a novel mechanism by which mast cells regulate T cell function.

  16. Development of a 3D bone marrow adipose tissue model.

    Science.gov (United States)

    Fairfield, Heather; Falank, Carolyne; Farrell, Mariah; Vary, Calvin; Boucher, Joshua M; Driscoll, Heather; Liaw, Lucy; Rosen, Clifford J; Reagan, Michaela R

    2018-01-26

    Over the past twenty years, evidence has accumulated that biochemically and spatially defined networks of extracellular matrix, cellular components, and interactions dictate cellular differentiation, proliferation, and function in a variety of tissue and diseases. Modeling in vivo systems in vitro has been undeniably necessary, but when simplified 2D conditions rather than 3D in vitro models are used, the reliability and usefulness of the data derived from these models decreases. Thus, there is a pressing need to develop and validate reliable in vitro models to reproduce specific tissue-like structures and mimic functions and responses of cells in a more realistic manner for both drug screening/disease modeling and tissue regeneration applications. In adipose biology and cancer research, these models serve as physiologically relevant 3D platforms to bridge the divide between 2D cultures and in vivo models, bringing about more reliable and translationally useful data to accelerate benchtop to bedside research. Currently, no model has been developed for bone marrow adipose tissue (BMAT), a novel adipose depot that has previously been overlooked as "filler tissue" but has more recently been recognized as endocrine-signaling and systemically relevant. Herein we describe the development of the first 3D, BMAT model derived from either human or mouse bone marrow (BM) mesenchymal stromal cells (MSCs). We found that BMAT models can be stably cultured for at least 3 months in vitro, and that myeloma cells (5TGM1, OPM2 and MM1S cells) can be cultured on these for at least 2 weeks. Upon tumor cell co-culture, delipidation occurred in BMAT adipocytes, suggesting a bidirectional relationship between these two important cell types in the malignant BM niche. Overall, our studies suggest that 3D BMAT represents a "healthier," more realistic tissue model that may be useful for elucidating the effects of MAT on tumor cells, and tumor cells on MAT, to identify novel therapeutic

  17. Repair of large full-thickness articular cartilage defects in the rabbit: the effects of joint distraction and autologous bone-marrow-derived mesenchymal cell transplantation.

    Science.gov (United States)

    Yanai, T; Ishii, T; Chang, F; Ochiai, N

    2005-05-01

    We produced large full-thickness articular cartilage defects in 33 rabbits in order to evaluate the effect of joint distraction and autologous culture-expanded bone-marrow-derived mesenchymal cell transplantation (ACBMT) at 12 weeks. After fixing the knee on a hinged external fixator, we resected the entire surface of the tibial plateau. We studied three groups: 1) with and without joint distraction; 2) with joint distraction and collagen gel, and 3) with joint distraction and ACBMT and collagen gel. The histological scores were significantly higher in the groups with ACBMT collagen gel (p distraction, collagen gel and ACBMT.

  18. Mast Wake Reduction by Shaping

    National Research Council Canada - National Science Library

    Beauchamp, Charles H

    2005-01-01

    The present invention relates to various mast shapes, in which the mast shapes minimize the production of visible, electro-optic, infrared and radar cross section wake signatures produced by water surface piercing masts...

  19. Effect of low oxygen tension on the biological characteristics of human bone marrow mesenchymal stem cells

    OpenAIRE

    Kim, Dae Seong; Ko, Young Jong; Lee, Myoung Woo; Park, Hyun Jin; Park, Yoo Jin; Kim, Dong-Ik; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-01-01

    Culture of mesenchymal stem cells (MSCs) under ambient conditions does not replicate the low oxygen environment of normal physiological or pathological states and can result in cellular impairment during culture. To overcome these limitations, we explored the effect of hypoxia (1 % O2) on the biological characteristics of MSCs over the course of different culture periods. The following biological characteristics were examined in human bone marrow-derived MSCs cultured under hypoxia for 8 week...

  20. In vitro induction of alkaline phosphatase levels predicts in vivo bone forming capacity of human bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Henk-Jan Prins

    2014-03-01

    Full Text Available One of the applications of bone marrow stromal cells (BMSCs that are produced by ex vivo expansion is for use in in vivo bone tissue engineering. Cultured stromal cells are a mixture of cells at different stages of commitment and expansion capability, leading to a heterogeneous cell population that each time can differ in the potential to form in vivo bone. A parameter that predicts for in vivo bone forming capacity is thus far lacking. We employed single colony-derived BMSC cultures to identify such predictive parameters. Using limiting dilution, we have produced sixteen single CFU-F derived BMSC cultures from human bone marrow and found that only five of these formed bone in vivo. The single colony-derived BMSC strains were tested for proliferation, osteogenic-, adipogenic- and chondrogenic differentiation capacity and the expression of a variety of associated markers. The only robust predictors of in vivo bone forming capacity were the induction of alkaline phosphatase, (ALP mRNA levels and ALP activity during in vitro osteogenic differentiation. The predictive value of in vitro ALP induction was confirmed by analyzing “bulk-cultured” BMSCs from various bone marrow biopsies. Our findings show that in BMSCs, the additional increase in ALP levels over basal levels during in vitro osteogenic differentiation is predictive of in vivo performance.

  1. Recent progress in the differentiation of bone marrow derived ...

    African Journals Online (AJOL)

    ONOS

    2010-08-09

    Aug 9, 2010 ... Bone marrow mesenchymal stem cells (BMMSCs) are one of the cells found in bone marrow stromal. A large number of ..... BMMSCs and myocardial cells using biomimetic electrical ... effect ventricular remodeling after infarction. Meyern et al. ... to small sample sizes and different experimental con- ditions.

  2. Pathologic and Protective Roles for Microglial Subsets and Bone Marrow- and Blood-Derived Myeloid Cells in Central Nervous System Inflammation

    DEFF Research Database (Denmark)

    Wlodarczyk, Agnieszka; Cédile, Oriane; Jensen, Kirstine Nolling

    2015-01-01

    Inflammation is a series of processes designed for eventual clearance of pathogens and repair of damaged tissue. In the context of autoimmune recognition, inflammatory processes are usually considered to be pathological. This is also true for inflammatory responses in the central nervous system...... (CNS). However, as in other tissues, neuroinflammation can have beneficial as well as pathological outcomes. The complex role of encephalitogenic T cells in multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE) may derive from heterogeneity of the myeloid cells...... with which these T cells interact within the CNS. Myeloid cells, including resident microglia and infiltrating bone marrow-derived cells, such as dendritic cells (DC) and monocytes/macrophages [bone marrow-derived macrophages (BMDM)], are highly heterogeneous populations that may be involved in neurotoxicity...

  3. Recent progress in the differentiation of bone marrow derived ...

    African Journals Online (AJOL)

    Bone marrow mesenchymal stem cells (BMMSCs) are one of the cells found in bone marrow stromal. A large number of studies have shown that BMMSCs cannot only differentiate into hematopoietic stromal cells, but can migrate and position themselves in multiple non-hematopoietic organizations and differentiate into the ...

  4. An Autologous Bone Marrow Mesenchymal Stem Cell–Derived Extracellular Matrix Scaffold Applied with Bone Marrow Stimulation for Cartilage Repair

    Science.gov (United States)

    Tang, Cheng; Jin, Chengzhe; Du, Xiaotao; Yan, Chao; Min, Byoung-Hyun; Xu, Yan

    2014-01-01

    Purpose: It is well known that implanting a bioactive scaffold into a cartilage defect site can enhance cartilage repair after bone marrow stimulation (BMS). However, most of the current scaffolds are derived from xenogenous tissue and/or artificial polymers. The implantation of these scaffolds adds risks of pathogen transmission, undesirable inflammation, and other immunological reactions, as well as ethical issues in clinical practice. The current study was undertaken to evaluate the effectiveness of implanting autologous bone marrow mesenchymal stem cell–derived extracellular matrix (aBMSC-dECM) scaffolds after BMS for cartilage repair. Methods: Full osteochondral defects were performed on the trochlear groove of both knees in 24 rabbits. One group underwent BMS only in the right knee (the BMS group), and the other group was treated by implantation of the aBMSC-dECM scaffold after BMS in the left knee (the aBMSC-dECM scaffold group). Results: Better repair of cartilage defects was observed in the aBMSC-dECM scaffold group than in the BMS group according to gross observation, histological assessments, immunohistochemistry, and chemical assay. The glycosaminoglycan and DNA content, the distribution of proteoglycan, and the distribution and arrangement of type II and I collagen fibers in the repaired tissue in the aBMSC-dECM scaffold group at 12 weeks after surgery were similar to that surrounding normal hyaline cartilage. Conclusions: Implanting aBMSC-dECM scaffolds can enhance the therapeutic effect of BMS on articular cartilage repair, and this combination treatment is a potential method for successful articular cartilage repair. PMID:24666429

  5. Comparison of clinical grade human platelet lysates for cultivation of mesenchymal stromal cells from bone marrow and adipose tissue

    DEFF Research Database (Denmark)

    Juhl, Morten; Tratwal, Josefine; Follin, Bjarke

    2016-01-01

    be devoid of any animal derived components. We have evaluated whether human Platelet Lysate (hPL) could be an attractive alternative to animal supplements. METHODS: MSCs from bone marrow (BMSCs) and adipose tissue-derived stromal cells (ASCs) obtained from three donors were culture expanded in three...... culture conditions with 10% fetal bovine serum (FBS). Cell morphology, proliferation, phenotype, genomic stability, and differentiation potential were analyzed. RESULTS: Regardless of manufacturer, BMSCs and ASCs cultured in hPL media showed a significant increase in proliferation capacity compared to FBS...

  6. Bone-marrow-derived mesenchymal stem cells inhibit gastric aspiration lung injury and inflammation in rats.

    Science.gov (United States)

    Zhou, Jing; Jiang, Liyan; Long, Xuan; Fu, Cuiping; Wang, Xiangdong; Wu, Xiaodan; Liu, Zilong; Zhu, Fen; Shi, Jindong; Li, Shanqun

    2016-09-01

    Gastric aspiration lung injury is one of the most common clinical events. This study investigated the effects of bone-marrow-derived mesenchymal stem cells (BMSCs) on combined acid plus small non-acidified particle (CASP)-induced aspiration lung injury. Enhanced green fluorescent protein (EGFP(+) ) or EGFP(-) BMSCs or 15d-PGJ2 were injected via the tail vein into rats immediately after CASP-induced aspiration lung injury. Pathological changes in lung tissues, blood gas analysis, the wet/dry weight ratio (W/D) of the lung, levels of total proteins and number of total cells and neutrophils in bronchoalveolar lavage fluid (BALF) were determined. The cytokine levels were measured using ELISA. Protein expression was determined by Western blot. Bone-marrow-derived mesenchymal stem cells treatment significantly reduced alveolar oedema, exudation and lung inflammation; increased the arterial partial pressure of oxygen; and decreased the W/D of the lung, the levels of total proteins and the number of total cells and neutrophils in BALF in the rats with CASP-induced lung injury. Bone-marrow-derived mesenchymal stem cells treatment decreased the levels of tumour necrosis factor-α and Cytokine-induced neutrophil chemoattractant (CINC)-1 and the expression of p-p65 and increased the levels of interleukin-10 and 15d-PGJ2 and the expression of peroxisome proliferator-activated receptor (PPAR)-γ in the lung tissue in CASP-induced rats. Tumour necrosis factor-α stimulated BMSCs to secrete 15d-PGJ2 . A tracking experiment showed that EGFP(+) BMSCs were able to migrate to local lung tissues. Treatment with 15d-PGJ2 also significantly inhibited CASP-induced lung inflammation and the production of pro-inflammatory cytokines. Our results show that BMSCs can protect lung tissues from gastric aspiration injury and inhibit lung inflammation in rats. A beneficial effect might be achieved through BMSC-derived 15d-PGJ2 activation of the PPAR-γ receptor, reducing the production of

  7. Identification of a murine CD45-F4/80lo HSC-derived marrow endosteal cell associated with donor stem cell engraftment.

    Science.gov (United States)

    Overholt, Kathleen M; Otsuru, Satoru; Olson, Timothy S; Guess, Adam J; Velazquez, Victoria M; Desbourdes, Laura; Dominici, Massimo; Horwitz, Edwin M

    2017-12-26

    Hematopoietic stem cells (HSCs) reside in specialized microenvironments within the marrow designated as stem cell niches, which function to support HSCs at homeostasis and promote HSC engraftment after radioablation. We previously identified marrow space remodeling after hematopoietic ablation, including osteoblast thickening, osteoblast proliferation, and megakaryocyte migration to the endosteum, which is critical for effective engraftment of donor HSCs. To further evaluate the impact of hematopoietic cells on marrow remodeling, we used a transgenic mouse model (CD45Cre/iDTR) to selectively deplete hematopoietic cells in situ. Depletion of hematopoietic cells immediately before radioablation and hematopoietic stem cell transplantation abrogated donor HSC engraftment and was associated with strikingly flattened endosteal osteoblasts with preserved osteoblast proliferation and megakaryocyte migration. Depletion of monocytes, macrophages, or megakaryocytes (the predominant hematopoietic cell populations that survive short-term after irradiation) did not lead to an alteration of osteoblast morphology, suggesting that a hematopoietic-derived cell outside these lineages regulates osteoblast morphologic adaptation after irradiation. Using 2 lineage-tracing strategies, we identified a novel CD45 - F4/80 lo HSC-derived cell that resides among osteoblasts along the endosteal marrow surface and, at least transiently, survives radioablation. This newly identified marrow cell may be an important regulator of HSC engraftment, possibly by influencing the shape and function of endosteal osteoblasts.

  8. Inhibition of Angiogenic Factor Production from Murine Mast Cells by an Antiallergic Agent (Epinastine Hydrochloride In Vitro

    Directory of Open Access Journals (Sweden)

    K. Asano

    2008-01-01

    Full Text Available Angiogenesis is an important event both in the development of allergic inflammatory responses and in the pathophysiology of tissue remodeling in allergic diseases. In the present study, therefore, we examined the influence of antihistamines on angiogenesis through the choice of epinastine hydrochloride (EP and murine mast cells in vitro. Mast cells (5×105 cells/mL presensitized with murine IgE specific for ovalbumin (OVA were stimulated with 10 ng/mL OVA in the presence of various concentrations of EP for 4 hours. The levels of angiogenesis factors, keratinocyte-derived chemokine (KC, tumor necrosis factor-α (TNF, and vascular endothelial growth factor (VEGF in culture supernatants, were examined by ELISA. We also examined mRNA expression for the angiogenesis factors by RT-PCR. EP significantly inhibited the production of KC, TNF, and VEGF induced by IgE-dependent mechanism at more than 25 ng/mL. Semiquantitative analysis using RT-PCR showed that EP also significantly reduced mRNA expressions for KC, TNF, and VEGF. These results strongly suggest that EP suppresses angiogenesis factor production through the inhibition of mRNA expression in mast cells and results in favorable modification of clinical conditions of allergic diseases.

  9. Angiogenic dysfunction in bone marrow-derived early outgrowth cells from diabetic animals is attenuated by SIRT1 activation.

    Science.gov (United States)

    Yuen, Darren A; Zhang, Yanling; Thai, Kerri; Spring, Christopher; Chan, Lauren; Guo, Xiaoxin; Advani, Andrew; Sivak, Jeremy M; Gilbert, Richard E

    2012-12-01

    Impaired endothelial repair is a key contributor to microvascular rarefaction and consequent end-organ dysfunction in diabetes. Recent studies suggest an important role for bone marrow-derived early outgrowth cells (EOCs) in mediating endothelial repair, but the function of these cells is impaired in diabetes, as in advanced age. We sought to determine whether diabetes-associated EOC dysfunction might be attenuated by pharmacological activation of silent information regulator protein 1 (SIRT1), a lysine deacetylase implicated in nutrient-dependent life span extension in mammals. Despite being cultured in normal (5.5 mM) glucose for 7 days, EOCs from diabetic rats expressed less SIRT1 mRNA, induced less endothelial tube formation in vitro and neovascularization in vivo, and secreted less of the proangiogenic ELR(+) CXC chemokines CXCL1, CXCL3, and CXCL5. Ex vivo SIRT1 activation restored EOC chemokine secretion and increased the in vitro and in vivo angiogenic activity of EOC conditioned medium derived from diabetic animals to levels similar to that derived from control animals. These findings suggest a pivotal role for SIRT1 in diabetes-induced EOC dysfunction and that its pharmacologic activation may provide a new strategy for the restoration of EOC-mediated repair mechanisms.

  10. Effect of hypoxia on equine mesenchymal stem cells derived from bone marrow and adipose tissue

    Directory of Open Access Journals (Sweden)

    Ranera Beatriz

    2012-08-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs derived from bone marrow (BM-MSCs and adipose tissue (AT-MSCs are being applied to equine cell therapy. The physiological environment in which MSCs reside is hypoxic and does not resemble the oxygen level typically used in in vitro culture (20% O2. This work compares the growth kinetics, viability, cell cycle, phenotype and expression of pluripotency markers in both equine BM-MSCs and AT-MSCs at 5% and 20% O2. Results At the conclusion of culture, fewer BM-MSCs were obtained in hypoxia than in normoxia as a result of significantly reduced cell division. Hypoxic AT-MSCs proliferated less than normoxic AT-MSCs because of a significantly higher presence of non-viable cells during culture. Flow cytometry analysis revealed that the immunophenotype of both MSCs was maintained in both oxygen conditions. Gene expression analysis using RT-qPCR showed that statistically significant differences were only found for CD49d in BM-MSCs and CD44 in AT-MSCs. Similar gene expression patterns were observed at both 5% and 20% O2 for the remaining surface markers. Equine MSCs expressed the embryonic markers NANOG, OCT4 and SOX2 in both oxygen conditions. Additionally, hypoxic cells tended to display higher expression, which might indicate that hypoxia retains equine MSCs in an undifferentiated state. Conclusions Hypoxia attenuates the proliferative capacity of equine MSCs, but does not affect the phenotype and seems to keep them more undifferentiated than normoxic MSCs.

  11. In utero transplantation of human bone marrow-derived multipotent mesenchymal stem cells in mice.

    Science.gov (United States)

    Chou, Shiu-Huey; Kuo, Tom K; Liu, Ming; Lee, Oscar K

    2006-03-01

    Mesenchymal stem cells (MSCs) are multipotent cells that can be isolated from human bone marrow and possess the potential to differentiate into progenies of embryonic mesoderm. However, current evidence is based predominantly on in vitro experiments. We used a murine model of in utero transplantation (IUT) to study the engraftment capabilities of human MSCs. MSCs were obtained from bone marrow by negative immunoselection and limiting dilution, and were characterized by flow cytometry and by in vitro differentiation into osteoblasts, chondrocytes, and adipocytes. MSCs were transplanted into fetal mice at a gestational age of 14 days. Engraftment of human MSCs was determined by flow cytometry, polymerase chain reaction, and fluorescence in situ hybridization (FISH). MSCs engrafted into tissues originating from all three germ layers and persisted for up to 4 months or more after delivery, as evidenced by the expression of the human-specific beta-2 microglobulin gene and by FISH for donor-derived cells. Donor-derived CD45+ cells were detectable in the peripheral blood of recipients, suggesting the participation of MSCs in hematopoiesis at the fetal stage. This model can further serve to evaluate possible applications of MSCs. Copyright 2006 Orthopaedic Research Society.

  12. Gene expression profile and functionality of ESC-derived Lin-ckit+Sca-1+ cells are distinct from Lin-ckit+Sca-1+ cells isolated from fetal liver or bone marrow.

    Directory of Open Access Journals (Sweden)

    Irina Fernandez

    Full Text Available In vitro bioreactor-based cultures are being extensively investigated for large-scale production of differentiated cells from embryonic stem cells (ESCs. However, it is unclear whether in vitro ESC-derived progenitors have similar gene expression profiles and functionalities as their in vivo counterparts. This is crucial in establishing the validity of ESC-derived cells as replacements for adult-isolated cells for clinical therapies. In this study, we compared the gene expression profiles of Lin-ckit+Sca-1+ (LKS cells generated in vitro from mouse ESCs using either static or bioreactor-based cultures, with that of native LKS cells isolated from mouse fetal liver (FL or bone marrow (BM. We found that in vitro-generated LKS cells were more similar to FL- than to BM LKS cells in gene expression. Further, when compared to cells derived from bioreactor cultures, static culture-derived LKS cells showed fewer differentially expressed genes relative to both in vivo LKS populations. Overall, the expression of hematopoietic genes was lower in ESC-derived LKS cells compared to cells from BM and FL, while the levels of non-hematopoietic genes were up-regulated. In order to determine if these molecular profiles correlated with functionality, we evaluated ESC-derived LKS cells for in vitro hematopoietic-differentiation and colony formation (CFU assay. Although static culture-generated cells failed to form any colonies, they did differentiate into CD11c+ and B220+ cells indicating some hematopoietic potential. In contrast, bioreactor-derived LKS cells, when differentiated under the same conditions failed to produce any B220+ or CD11c+ cells and did not form colonies, indicating that these cells are not hematopoietic progenitors. We conclude that in vitro culture conditions significantly affect the transcriptome and functionality of ESC-derived LKS cells and although in vitro differentiated LKS cells were lineage negative and expressed both ckit and Sca-1

  13. Pre-irradiation of tissue culture flasks leads to diminished stem and progenitor cell production in long-term bone marrow cultures

    International Nuclear Information System (INIS)

    Rooney, P.; Wright, E.G.

    1993-01-01

    Empty plastic tissue culture flasks were exposed to X-irradiation doses of 0.3-10.0 Gy, prior to the establishment of long-term bone marrow cultures. During the course of a 10 week culture period, all irradiated plastic flasks exhibited a dramatic decrease in the number of both haemopoietic stem cells and myeloid progenitor cells, in the non-adherent layer, when compared with controls. This decrease was not due to a decrease in the number of non-adherent cells produced. Histological examination of non-adherent cells showed an increase in mature granulocytic cells with few blast cells. Morphologically, the adherent layers of irradiated flasks demonstrated a delay in appearance or absence of fat cell production. X-irradiation of glass tissue culture flasks had no deleterious effect. (author)

  14. Effects of bacterial lipopolysaccharide and X-irradiation on the production of colony-stimulating factor and the maintenance of granulopoiesis in bone marrow culture

    International Nuclear Information System (INIS)

    Izumi, H.; Miyanomae, T.; Tsurusawa, M.; Fujita, J.; Mori, K.

    1984-01-01

    Effects of bacterial lipopolysaccharide (LPS) and X-irradiation on CSF production and granulopoiesis in long-term bone marrow cultures were studied. Levels of colony-stimulating factor (CSF) increased soon after the refeeding of the culture, but the activity was undetectable at day 7. Addition of LPS induced a significant increase in CSF levels in the culture, followed by an elevated granulopoiesis. The increase in CSF levels was suppressed when culture medium that had been harvested at refeeding on day 7 was added. Although irradiation did not increase CSF production, granulopoiesis was markedly stimulated shortly after irradiation. Thus granulopoiesis in long-term bone marrow culture may also be regulated by humoral factors such as CSF, and the culture system may represent the in vivo response to haemopoietic stimuli. (author)

  15. Primary tumor cells of myeloma patients induce interleukin-6 secretion in long-term bone marrow cultures

    NARCIS (Netherlands)

    Lokhorst, H. M.; Lamme, T.; de Smet, M.; Klein, S.; de Weger, R. A.; van Oers, R.; Bloem, A. C.

    1994-01-01

    Long-term bone marrow cultures (LTBMC) from patients with multiple myeloma (MM) and normal donors were analyzed for immunophenotype and cytokine production. Both LTBMC adherent cells from myeloma and normal donor origin expressed CD10, CD13, the adhesion molecules CD44, CD54, vascular cell adhesion

  16. Th17 cell-mediated immune responses promote mast cell proliferation by triggering stem cell factor in keratinocytes

    International Nuclear Information System (INIS)

    Cho, Kyung-Ah; Park, Minhwa; Kim, Yu-Hee; Woo, So-Youn

    2017-01-01

    Although mast cells are traditionally thought to function as effector cells in allergic responses, they have increasingly been recognized as important regulators of various immune responses. Mast cells mature locally; thus, tissue-specific influences are important for promoting mast cell accumulation and survival in the skin and the gastrointestinal tract. In this study, we determined the effects of keratinocytes on mast cell accumulation during Th17-mediated skin inflammation. We observed increases in dermal mast cells in imiquimod-induced psoriatic dermatitis in mice accompanied by the expression of epidermal stem cell factor (SCF), a critical mast cell growth factor. Similar to mouse epidermal keratinocytes, SCF was highly expressed in the human HaCaT keratinocyte cell line following stimulation with IL−17. Further, keratinocytes promoted mast cell proliferation following stimulation with IL−17 in vitro. However, the effects of keratinocytes on mast cells were significantly diminished in the presence of anti−CD117 (stem cell factor receptor) blocking antibodies. Taken together, our results revealed that the Th17-mediated inflammatory environment promotes mast cell accumulation through keratinocyte-derived SCF. - Highlights: • Psoriasis-like skin inflammation increase dermal mast cells. • Keratinocyte produce stem cell factor in psoriasis-like skin inflammation. • Keratinocyte promote mast cell proliferation by stem cell factor dependent manner

  17. Role of bone marrow-derived CD11c+ dendritic cells in systolic overload-induced left ventricular inflammation, fibrosis and hypertrophy.

    Science.gov (United States)

    Wang, Huan; Kwak, Dongmin; Fassett, John; Liu, Xiaohong; Yao, Wu; Weng, Xinyu; Xu, Xin; Xu, Yawei; Bache, Robert J; Mueller, Daniel L; Chen, Yingjie

    2017-05-01

    Inflammatory responses play an important role in the development of left ventricular (LV) hypertrophy and dysfunction. Recent studies demonstrated that increased T-cell infiltration and T-cell activation contribute to LV hypertrophy and dysfunction. Dendritic cells (DCs) are professional antigen-presenting cells that orchestrate immune responses, especially by modulating T-cell function. In this study, we investigated the role of bone marrow-derived CD11c + DCs in transverse aortic constriction (TAC)-induced LV fibrosis and hypertrophy in mice. We observed that TAC increased the number of CD11c + cells and the percentage of CD11c + MHCII + (major histocompatibility complex class II molecule positive) DCs in the LV, spleen and peripheral blood in mice. Using bone marrow chimeras and an inducible CD11c + DC ablation model, we found that depletion of bone marrow-derived CD11c + DCs significantly attenuated LV fibrosis and hypertrophy in mice exposed to 24 weeks of moderate TAC. CD11c + DC ablation significantly reduced TAC-induced myocardial inflammation as indicated by reduced myocardial CD45 + cells, CD11b + cells, CD8 + T cells and activated effector CD8 + CD44 + T cells in LV tissues. Moreover, pulsing of autologous DCs with LV homogenates from TAC mice promoted T-cell proliferation. These data indicate that bone marrow-derived CD11c + DCs play a maladaptive role in hemodynamic overload-induced cardiac inflammation, hypertrophy and fibrosis through the presentation of cardiac self-antigens to T cells.

  18. Transplantation of bone marrow-derived mesenchymal stem cells expressing elastin alleviates pelvic floor dysfunction.

    Science.gov (United States)

    Jin, Minfei; Chen, Ying; Zhou, Yun; Mei, Yan; Liu, Wei; Pan, Chenhao; Hua, Xiaolin

    2016-04-05

    Pelvic floor dysfunction (PFD) is a group of clinical conditions including stress urinary incontinence (SUI) and pelvic organ prolapse (POP). The abnormality of collagen and elastin metabolism in pelvic connective tissues is implicated in SUI and POP. To reconstitute the connective tissues with normal distribution of collagen and elastin, we transduced elastin to bone marrow-derived mesenchymal stem cells (BMSC). Elastin-expressing BMSCs were then differentiated to fibroblasts using bFGF, which produced collagen and elastin. To achieve the sustained release of bFGF, we formulated bFGF in poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NP). In an in vitro cell culture system of 7 days, when no additional bFGF was administrated, the initial PLGA-loaded bFGF NP induced prolonged production of collagen and elastin from elastin-expressing BMSCs. In vivo, co-injection of PLGA-loaded bFGF NP and elastin-expressing BMSCs into the PFD rats significantly improved the outcome of urodynamic tests. Together, these results provided an efficient model of connective tissue engineering using BMSC and injectable PLGA-loaded growth factors. Our results provided the first instance of a multidisciplinary approach, combining both stem cell and nanoparticle technologies, for the treatment of PFD.

  19. Transplant of stem cells derived from bone marrow and granulocytic growth factor in acute and chronic ischemic myocardiopathy

    International Nuclear Information System (INIS)

    Senior Juan M; Cuellar Francisco; Velasquez Oscar; Velasquez Margarita; Navas Claudia M; Ortiz Sergio; Delgado Juan A; Guillerrno, Blanco; Londono Juan L; Coronado Manuel A; Gomez Francisco; Alzate, Fernando Leon; Zuluaga Alejandra

    2007-01-01

    Recent studies have shown the safety and efficacy of the stem cells derived from bone marrow (BMC) implant with concomitant administration of stimulating factor of granulocyte colonies in patients with acute myocardial infarction with ST segment elevation and in chronic ischemic cardiopathy. An open prospective (before and after) design was made to evaluate the safety and efficacy of cell therapy associated to growth factor administration. The first experience with this kind of therapy is reported. Methodology: this is a 6 months follow-up report of patients with acute and chronic ischemic cardiopathy to who transplant of stem cells derived from bone marrow mobilized with granulocyte colonies growth stimulating factor via coronary arteries or epicardium was realized. Two groups of patients were included: Ten patients with anterior wall infarct and 2. Five patients with chronic ischemic cardiopathy, all with extensive necrosis demonstrated by absence of myocardial viability through nuclear medicine and ejection fraction of less than 40%. Results: significant improvement of ejection fraction from 29.44 ± 3.36 to 37.6 ± 5.3 with p<0.001 and decrease of ventricular systolic and diastolic volume without statistical significance (p =0.31 and 0.4 respectively) were demonstrated. Exercise capacity evidenced by increment in the six minutes test, exercise time and the MET number achieved, increased in a significant way. There were significant changes in the perfusion defect from the second follow-up month and no complications directly related to the stem cells derived from bone marrow transplant or the use of stimulating granulocyte colony factor were presented. Conclusions: this is the first experience of stem cells derived from bone marrow transplant associated to the administration of stimulating granulocyte growth colony factor in which recovery of left ventricular function was demonstrated, as well as improvement in exercise capacity and in the perfusion defect

  20. Hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM alpha recruits bone marrow-derived cells to the murine pulmonary vasculature.

    Directory of Open Access Journals (Sweden)

    Daniel J Angelini

    2010-06-01

    Full Text Available Pulmonary hypertension (PH is a disease of multiple etiologies with several common pathological features, including inflammation and pulmonary vascular remodeling. Recent evidence has suggested a potential role for the recruitment of bone marrow-derived (BMD progenitor cells to this remodeling process. We recently demonstrated that hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM alpha is chemotactic to murine bone marrow cells in vitro and involved in pulmonary vascular remodeling in vivo.We used a mouse bone marrow transplant model in which lethally irradiated mice were rescued with bone marrow transplanted from green fluorescent protein (GFP(+ transgenic mice to determine the role of HIMF in recruiting BMD cells to the lung vasculature during PH development. Exposure to chronic hypoxia and pulmonary gene transfer of HIMF were used to induce PH. Both models resulted in markedly increased numbers of BMD cells in and around the pulmonary vasculature; in several neomuscularized small (approximately 20 microm capillary-like vessels, an entirely new medial wall was made up of these cells. We found these GFP(+ BMD cells to be positive for stem cell antigen-1 and c-kit, but negative for CD31 and CD34. Several of the GFP(+ cells that localized to the pulmonary vasculature were alpha-smooth muscle actin(+ and localized to the media layer of the vessels. This finding suggests that these cells are of mesenchymal origin and differentiate toward myofibroblast and vascular smooth muscle. Structural location in the media of small vessels suggests a functional role in the lung vasculature. To examine a potential mechanism for HIMF-dependent recruitment of mesenchymal stem cells to the pulmonary vasculature, we performed a cell migration assay using cultured human mesenchymal stem cells (HMSCs. The addition of recombinant HIMF induced migration of HMSCs in a phosphoinosotide-3-kinase-dependent manner.These results demonstrate HIMF-dependent recruitment of BMD

  1. Paracrine effects and heterogeneity of marrow-derived stem/progenitor cells: relevance for the treatment of respiratory diseases.

    Science.gov (United States)

    Conese, Massimo; Carbone, Annalucia; Castellani, Stefano; Di Gioia, Sante

    2013-01-01

    Stem cell-based treatment may represent a hope for the treatment of acute lung injury and pulmonary fibrosis, and other chronic lung diseases, such as cystic fibrosis, asthma and chronic obstructive pulmonary disease (COPD). It is well established in preclinical models that bone marrow-derived stem and progenitor cells exert beneficial effects on inflammation, immune responses and repairing of damage in virtually all lung-borne diseases. While it was initially thought that the positive outcome was due to a direct engraftment of these cells into the lung as endothelial and epithelial cells, paracrine factors are now considered the main mechanism through which stem and progenitor cells exert their therapeutic effect. This knowledge has led to the clinical use of marrow cells in pulmonary hypertension with endothelial progenitor cells (EPCs) and in COPD with mesenchymal stromal (stem) cells (MSCs). Bone marrow-derived stem cells, including hematopoietic stem/progenitor cells, MSCs, EPCs and fibrocytes, encompass a wide array of cell subsets with different capacities of engraftment and injured tissue-regenerating potential. The characterization/isolation of the stem cell subpopulations represents a major challenge to improve the efficacy of transplantation protocols used in regenerative medicine and applied to lung disorders. Copyright © 2013 S. Karger AG, Basel.

  2. ECM microenvironment unlocks brown adipogenic potential of adult human bone marrow-derived MSCs.

    Science.gov (United States)

    Lee, Michelle H; Goralczyk, Anna G; Kriszt, Rókus; Ang, Xiu Min; Badowski, Cedric; Li, Ying; Summers, Scott A; Toh, Sue-Anne; Yassin, M Shabeer; Shabbir, Asim; Sheppard, Allan; Raghunath, Michael

    2016-02-17

    Key to realizing the diagnostic and therapeutic potential of human brown/brite adipocytes is the identification of a renewable, easily accessible and safe tissue source of progenitor cells, and an efficacious in vitro differentiation protocol. We show that macromolecular crowding (MMC) facilitates brown adipocyte differentiation in adult human bone marrow mesenchymal stem cells (bmMSCs), as evidenced by substantially upregulating uncoupling protein 1 (UCP1) and uncoupled respiration. Moreover, MMC also induced 'browning' in bmMSC-derived white adipocytes. Mechanistically, MMC creates a 3D extracellular matrix architecture enshrouding maturing adipocytes in a collagen IV cocoon that is engaged by paxillin-positive focal adhesions also at the apical side of cells, without contact to the stiff support structure. This leads to an enhanced matrix-cell signaling, reflected by increased phosphorylation of ATF2, a key transcription factor in UCP1 regulation. Thus, tuning the dimensionality of the microenvironment in vitro can unlock a strong brown potential dormant in bone marrow.

  3. Intractable Diseases Treated with Intra-Bone Marrow-Bone Marrow Transplantation

    Directory of Open Access Journals (Sweden)

    Ming eLi

    2014-09-01

    Full Text Available Bone marrow transplantation (BMT is used to treat hematological disorders, autoimmune diseases and lymphoid cancers. Intra bone marrow-BMT (IBM-BMT has been proven to be a powerful strategy for allogeneic BMT due to the rapid hematopoietic recovery and the complete restoration of T cell functions. IBM-BMT not only replaces hematopoietic stem cells but also mesenchymal stem cells (MSMCs. MSMCs are multi-potent stem cells that can be isolated from bone marrow, umbilical cord blood, and adipose tissue. MSMCs play an important role in the support of hematopoiesis, and modify and influence the innate and adaptive immune systems. MSMCs also differentiate into mesodermal, endodermal and ectodermal lineage cells to repair tissues. This review aims to summarize the functions of bone marrow-derived- MSMCs, and the treatment of intractable diseases such as rheumatoid arthritis and malignant tumors with IBM-BMT.

  4. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure.

    Science.gov (United States)

    Akahane, M; Shimizu, T; Kira, T; Onishi, T; Uchihara, Y; Imamura, T; Tanaka, Y

    2016-11-01

    To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone. Osteogenic cell sheets were prepared by culturing rat bone marrow stromal cells in a minimal essential medium (MEM), MEM with AscP, MEM with Dex, and MEM with Dex and AscP (Dex/AscP). The cell number and messenger (m)RNA expression were assessed in vitro, and the appearance of the cell sheets was observed after mechanical retrieval using a scraper. β-tricalcium phosphate (β-TCP) was then wrapped with the cell sheets from the four different groups and subcutaneously implanted into rats. After mechanical retrieval, the osteogenic cell sheets from the MEM, MEM with AscP, and MEM with Dex groups appeared to be fragmented or incomplete structures. The cell sheets cultured with Dex/AscP remained intact after mechanical retrieval, without any identifiable tears. Culture with Dex/AscP increased the mRNA and protein expression of extracellular matrix proteins and cell number compared with those of the other three groups. More bridging bone formation was observed after transplantation of the β-TCP scaffold wrapped with cell sheets cultured with Dex/AscP, than in the other groups. These results suggest that culture with Dex/AscP improves the mechanical integrity of the osteogenic cell sheets, allowing retrieval of the confluent cells in a single cell sheet structure. This method may be beneficial when applied in cases of difficult tissue reconstruction, such as nonunion, bone defects, and osteonecrosis.Cite this article: M. Akahane, T. Shimizu, T. Kira, T. Onishi, Y. Uchihara, T. Imamura, Y. Tanaka. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure. Bone Joint Res 2016;5:569-576. DOI: 10.1302/2046-3758.511.BJR-2016-0013.R1. © 2016 Akahane et al.

  5. AUTOLOGOUS Marrow-Derived Stem Cell-Seeded Gene-Supplemented Collagen Scaffolds for Spinal Cord Regeneration as a Treatment for Paralysis

    National Research Council Canada - National Science Library

    Spector, Myron

    2006-01-01

    .... Moreover, the authors will be investigating the effects of incorporating genes from nerve growth factors into the collagen scaffolds and seeding the scaffolds with marrow-derived mesenchymal stem cells...

  6. Porous PEOT/PBT scaffolds for bone tissue engineering: preparation, characterization, and in vitro bone marrow cell culturing

    NARCIS (Netherlands)

    Claase, M.B.; Grijpma, Dirk W.; Mendes, S.C.; Mendes, Sandra C.; de Bruijn, Joost Dick; Feijen, Jan

    2003-01-01

    The preparation, characterization, and in vitro bone marrow cell culturing on porous PEOT/PBT copolymer scaffolds are described. These scaffolds are meant for use in bone tissue engineering. Previous research has shown that PEOT/PBT copolymers showed in vivo degradation, calcification, and bone

  7. Ultrastructural and radiobiological characterization of stromal cells in continuous, long-term marrow culture

    International Nuclear Information System (INIS)

    Tavassoli, M.

    1982-01-01

    Hemopoietic stromal cells were studied in continuous, long-term marrow culture. A correlative study was carried out involving cytochemistry as well as scanning (SEM), and transmission electron microscopy (TEM) with sections cut either perpendicular or parallel to the substratum. Only two stromal cell types were identified: epithelioid cells and macrophages. The appearance of these cells, however, varied according to their topography in the culture and the method of observation; a finding that may explain the multiplicity of the cell types reported in these cultures. The two cell types displayed considerable interconnections and interactions which may be essential in their support function for the proliferation and maintenance of hemopoietic stem cells. They also demonstrated numerous coated pits and vesicles suggestive of extensive receptor-mediated endocytosis. Stromal cells, generally thought to be relatively radioresistant, demonstrated hitherto unrecognized radiosensitivity in culture. Doses of radiation as low as 500 rads interfered with their support function for the maintenance of the hemopoietic stem cell

  8. Diffusion chamber culture of mouse bone marrow cells, (1)

    International Nuclear Information System (INIS)

    Sigeta, Chiharu; Tanaka, Kimio; Kawakami, Masahito; Takahashi, Hiroshi; Ohkita, Takeshi

    1980-01-01

    Mouse bone marrow cells were cultured in diffusion chambers (DC) implanted in the peritoneal cavity of host mice. Host mice were subjected to (1) irradiation ( 60 Co 800 rad) and/or (2) phenylhydrazine induced anemia and then receiving irradiation ( 60 Co 600 rad). After culture periods of 3-7 days, the total number of cells in DC was increased. A marked increase in DC is due to the proliferation of granulocyte series. When host mice were subjected to anemia and irradiation, the start of cell proliferation in DC was delay about two days. On the whole, anemia and irradiation host reduced a little cell growth in DC. The number of immature granulocytes grown in DC in irradiated hosts or anemia and irradiated hosts increased and reached a plateu at day 5. During the plateu period, the proportions between immature and mature granulocytes in DC were kept constantly. The number of macrophages showed a two-phase increasing. Erythroid cells and lymphocytes rapidly disappeared from the chambers during 3 days. The number of erythroid cells was not significantly influenced even in anemia and irradiation hosts. (author)

  9. A Catalytic Role for Proangiogenic Marrow-Derived Cells in Tumor Neovascularization

    Science.gov (United States)

    Seandel, Marco; Butler, Jason; Lyden, David; Rafii, Shahin

    2010-01-01

    Small numbers of proangiogenic bone marrow-derived cells (BMDCs) can play pivotal roles in tumor progression. In this issue of Cancer Cell, two papers, utilizing different tumor angiogenesis models, both find that activated MMP-9 delivered by BMDCs modulates neovessel remodeling, thereby promoting tumor growth. The changes in microvascular anatomy induced by MMP-9-expressing BMDCs are strikingly different between the preirradiated tumor vascular bed model employed by Ahn and Brown and the invasive glioblastoma model utilized by Du et al., likely mirroring the complexity of the real tumor microenvironment and the intricacy of roles of different BMDC populations in mediating tumor neoangiogenesis. PMID:18328420

  10. Beyond The Prime Directive: The MAST Discovery Portal and High Level Science Products

    Science.gov (United States)

    Fleming, Scott W.; Abney, Faith; Donaldson, Tom; Dower, Theresa; Fraquelli, Dorothy A.; Koekemoer, Anton M.; Levay, Karen; Matuskey, Jacob; McLean, Brian; Quick, Lee; Rogers, Anthony; Shiao, Bernie; Thompson, Randy; Tseng, Shui-Ay; Wallace, Geoff; White, Richard L.

    2015-01-01

    The Mikulski Archive for Space Telescopes (MAST) is a NASA-funded archive for a wide range of astronomical missions, primarily supporting space-based UV and optical telescopes. What is less well-known is that MAST provides much more than just a final resting place for primary data products and documentation from these missions. The MAST Discovery Portal is our new search interface that integrates all the missions that MAST supports into a single interface, allowing users to discover (and retrieve) data from other missions that overlap with your targets of interest. In addition to searching MAST, the Portal allows users to search the Virtual Observatory, granting access to data from thousands of collections registered with the VO, including large missions spanning the electromagnetic spectrum (e.g., Chandra, SDSS, Spitzer, 2MASS, WISE). The Portal features table import/export, coordinate-based cross-matching, dynamic chart plotting, and the AstroView sky viewer with footprint overlays. We highlight some of these capabilities with science-driven examples. MAST also accepts High Level Science Products (HLSPs) from the community. These HLSPs are user-generated data products that can be related to a MAST-supported mission. MAST provides a permanent archive for these data with linked references, and integrates it within MAST infrastructure and services. We highlight some of the most recent HLSPs MAST has released, including the HST Frontier Fields, GALEX All-Sky Diffuse Radiation Mapping, a survey of the intergalactic medium with HST-COS, and one of the most complete line lists ever derived for a white dwarf using FUSE AND HST-STIS. These HLSPs generate substantial interest from the community, and are an excellent way to increase visibility and ensure the longevity of your data.

  11. Mast cell leukemia associated with undefined morphology and chronic basophilic leukemia.

    Science.gov (United States)

    Cehreli, Cavit; Alacacioglu, Inci; Piskin, Ozden; Ates, Halil; Cehreli, Ruksan; Calibasi, Gizem; Yuksel, Erdinc; Ozkal, Sermin; Ozsan, Guner H

    2014-01-01

    Mast cell leukemia (MCL) is rare type of neoplasia with an incidence of 1% in a large series of 342 adult patients with systemic mastocytosis (SM). Chronic basophilic leukemia (CBL) is an extremely rare type of leukemia with appearance of 7 cases in the literature. A 73 year-old female patient who presented with weaknes, had a prolonged duration of hematologic remission after treatment of her CBL by hydroxyurea (HU). Evolution of SM occurring as a second neoplasia concurrently with relapse of de novo CBL was demonstrated by mast cells (MCs) infiltration in the bone marrow (BM) biopsy and smear and increase in tryptase level. Transformation to MCL with simultaneous occurrance of accelerated phase of CBL were documented by the appearance of MCs in both BM and peripheral blood (PB) smears, antigen expressions detected by flow cytometry and spesific stains. Sequence analysis of c-kit gene revealed c-kit exon 11 K550N mutation. Undefined associations of MCL with different mast cell morphology, increase in IL-6 level and accelerated phase of de novo CBL was described. Elevations in CRP and IL-6 levels occurring with increases in basophil counts to high levels revealed that febrile episodes with abdominal pain seen in our patient were induced by increase in IL-6 levels released from neoplastic basophils. Neoplastic basophils with diffuse and coarse basophilic granules possibly mimic neutrophils with toxic granules and cause wrong characterization of neoplastic basophils as neutrophils by the automated blood cell counters and misleaded physicians.

  12. Inflammation induced by mast cell deficiency rather than the loss of interstitial cells of Cajal causes smooth muscle dysfunction in W/Wv mice

    Science.gov (United States)

    Winston, John H.; Chen, Jinghong; Shi, Xuan-Zheng; Sarna, Sushil K.

    2014-01-01

    The initial hypothesis suggested that the interstitial cells of Cajal (ICC) played an essential role in mediating enteric neuronal input to smooth muscle cells. Much information for this hypothesis came from studies in W/Wv mice lacking ICC. However, mast cells, which play critical roles in regulating inflammation in their microenvironment, are also absent in W/Wv mice. We tested the hypothesis that the depletion of mast cells in W/Wv mice generates inflammation in fundus muscularis externa (ME) that impairs smooth muscle reactivity to Ach, independent of the depletion of ICC. We performed experiments on the fundus ME from wild type (WT) and W/Wv mice before and after reconstitution of mast cells by bone marrow transplant. We found that mast cell deficiency in W/Wv mice significantly increased COX-2 and iNOS expression and decreased smooth muscle reactivity to Ach. Mast cell reconstitution or concurrent blockade of COX-2 and iNOS restored smooth muscle contractility without affecting the suppression of c-kit in W/Wv mice. The expression of nNOS and ChAT were suppressed in W/Wv mice; mast cell reconstitution did not restore them. We conclude that innate inflammation induced by mast cell deficiency in W/Wv mice impairs smooth muscle contractility independent of ICC deficiency. The impairment of smooth muscle contractility and the suppression of the enzymes regulating the synthesis of Ach and NO in W/Wv mice need to be considered in evaluating the role of ICC in regulating smooth muscle and enteric neuronal function in W/Wv mice. PMID:24550836

  13. Individual clones of hemopoietic cells in murine long-term bone marrow culture

    International Nuclear Information System (INIS)

    Chertkov, J.L.; Deryugina, E.I.; Drize, N.J.; Udalov, G.A.

    1987-01-01

    Forty-seven individual hemopoietic cell clones bearing unique radiation markers were studied in long-term bone marrow cultures. Throughout cultivation clones appeared at different times, from 1 to 12 weeks after explantation, survived during 1-10 more weeks, and were characterized by marked variability in size. Usually, the number of metaphases peculiar to an individual clone rapidly increased, achieved maximum, and then underwent a decline. Cells of reliably disappearing clones were never seen again. The experimental results provide further evidence for the model of hemopoiesis by clonal succession

  14. Inhibition of IgE-induced mast cell activation by ethyl tertiary-butyl ether, a bioethanol-derived fuel oxygenate.

    Science.gov (United States)

    Yamaki, Kouya; Yoshino, Shin

    2009-09-01

    The effect of ethyl tertiary-butyl ether (ETBE), which is widely used as a fuel oxygenate commonly produced from bioethanol, on immunoglobulin (Ig)E-dependent mast cell activation was investigated. The rat mast cell line RBL2H3 sensitised with monoclonal anti-ovalbumin IgE was challenged with ovalbumin in the presence or absence of ETBE, tert-butanol (TBA), which is the main metabolite of ETBE in humans, and ethanol. Degranulation of RBL2H3 was examined by the release of beta-hexosaminidase. To understand the mechanisms responsible for regulating mast cell function, the effects of ETBE, TBA and ethanol on the levels of intracellular calcium, phosphorylation of Akt (as a marker of phosphatidylinositol 3-kinase) and global tyrosine phosphorylation were also measured as indicators of mast cell activation. In the presence of ETBE, TBA or ethanol, IgE-induced release of beta-hexosaminidase was decreased. These compounds also attenuated the IgE-mediated increase in the levels of intracellular Ca(2+), phosphorylation of Akt and global tyrosine phosphorylation in RBL2H3 cells. ETBE, TBA and ethanol inhibited mast cell degranulation by inhibiting the increase in intracellular calcium ion concentration and activation of phosphatidylinositol 3-kinase and protein tyrosine kinase activation, suggesting that exposure to ETBE might affect immune responses, particularly in allergic diseases.

  15. Are mast cells important in diabetes?

    Directory of Open Access Journals (Sweden)

    Duraisamy Kempuraj

    2016-11-01

    Full Text Available Diabetes is a metabolic disorder characterized by hyperglycemia and associated with microvascular and macrovascular syndromes mediated by mast cells. Mast cells are activated through cross-linking of their surface high affinity receptors for IgE (FcRI or other antigens, leading to degranulation and release of stored inflammatory mediators, and cytokines/chemokines without degranulation. Mast cells are implicated in innate and acquired immunity, inflammation and metabolic disorders such as diabetes. Histamine and tryptase genes in mast cells are overexpressed in pancreatic tissue of type 2 diabetes mellitus (T2DM patients. Histamine is a classic inflammatory mediator generated by activated receptors of mast cells from the histamine-forming enzyme histidine decarboxylase (HDC, which can be activated by two inflammatory chemokines, RANTES and MPC1, when injected intramuscularly or intradermally in mice. This activation is inhibited in genetically mast cell-deficient W/Wv mice, which show higher insulin sensitivity and glucose tolerance. This study contributes to understanding the mechanism by which mast cells profoundly affect diabetes, and their manipulation could represent a new therapeutic strategy. However, further studies are needed to clarify the role of mast cells in inflammation and metabolic disorders such as diabetes.

  16. Are Mast Cells MASTers in Cancer?

    Science.gov (United States)

    Varricchi, Gilda; Galdiero, Maria Rosaria; Loffredo, Stefania; Marone, Giancarlo; Iannone, Raffaella; Marone, Gianni; Granata, Francescopaolo

    2017-01-01

    Prolonged low-grade inflammation or smoldering inflammation is a hallmark of cancer. Mast cells form a heterogeneous population of immune cells with differences in their ultra-structure, morphology, mediator content, and surface receptors. Mast cells are widely distributed throughout all tissues and are stromal components of the inflammatory microenvironment that modulates tumor initiation and development. Although canonically associated with allergic disorders, mast cells are a major source of pro-tumorigenic (e.g., angiogenic and lymphangiogenic factors) and antitumorigenic molecules (e.g., TNF-α and IL-9), depending on the milieu. In certain neoplasias (e.g., gastric, thyroid and Hodgkin's lymphoma) mast cells play a pro-tumorigenic role, in others (e.g., breast cancer) a protective role, whereas in yet others they are apparently innocent bystanders. These seemingly conflicting results suggest that the role of mast cells and their mediators could be cancer specific. The microlocalization (e.g., peritumoral vs intratumoral) of mast cells is another important aspect in the initiation/progression of solid and hematologic tumors. Increasing evidence in certain experimental models indicates that targeting mast cells and/or their mediators represent a potential therapeutic target in cancer. Thus, mast cells deserve focused consideration also as therapeutic targets in different types of tumors. There are many unanswered questions that should be addressed before we understand whether mast cells are an ally, adversary, or innocent bystanders in human cancers.

  17. Involvement of transcription factor encoded by the mouse mi locus (MITF) in apoptosis of cultured mast cells induced by removal of interleukin-3.

    Science.gov (United States)

    Tsujimura, T.; Hashimoto, K.; Morii, E.; Tunio, G. M.; Tsujino, K.; Kondo, T.; Kanakura, Y.; Kitamura, Y.

    1997-01-01

    Mast cells develop when spleen cells of mice are cultured in the medium containing interleukin (IL)-3. Cultured mast cells (CMCs) show apoptosis when they are incubated in the medium without IL-3. We obtained CMCs from tg/tg mice that did not express the transcription factor encoded by the mi gene (MITF) due to the integration of a transgene at its 5' flanking region. MITF is a member of the basic-helix-loop-helix-leucine zipper (bHLH-Zip) protein family of transcription factors. We investigated the effect of MITF on the apoptosis of CMCs after removal of IL-3. When cDNA encoding normal MITF ((+)-MITF) was introduced into tg/tg CMCs with the retroviral vector, the apoptosis of tg/tg CMCs was significantly accelerated. The mutant mi allele represents a deletion of an arginine at the basic domain of MITF. The apoptosis of tg/tg CMCs was not accelerated by the introduction of cDNA encoding mi-MITF. The overexpression of (+)-MITF was not prerequisite to the acceleration of the apoptosis, as the apoptotic process proceeded faster in +/+ CMCs than in mi/mi CMCs. The Ba/F3 lymphoid cell line is also dependent on IL-3, and Ba/F3 cells show apoptosis after removal of IL-3. The c-myc gene encodes another transcription factor of the bHLH-Zip family, and the overexpression of the c-myc gene accelerated the apoptosis of Ba/F3 cells. However, the overexpression of (+)-MITF did not accelerate the apoptosis of Ba/F3 cells. The (+)-MITF appeared to play some roles for the acceleration of the apoptosis specifically in the mast cell lineage. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9327738

  18. Targeted disruption of the Mast syndrome gene SPG21 in mice impairs hind limb function and alters axon branching in cultured cortical neurons

    Science.gov (United States)

    Soderblom, Cynthia; Stadler, Julia; Jupille, Henri; Blackstone, Craig; Shupliakov, Oleg

    2017-01-01

    Mast syndrome (SPG21) is a childhood-onset, autosomal recessive, complicated form of hereditary spastic paraplegia (HSP) characterized by dementia, thin corpus callosum, white matter abnormalities, and cerebellar and extrapyramidal signs in addition to spastic paraparesis. A nucleotide insertion resulting in premature truncation of the SPG21 gene product maspardin underlies this disorder, likely leading to loss of protein function. In this study, we generated SPG21−/− knockout mice by homologous recombination as a possible animal model for SPG21. Though SPG21−/− mice appeared normal at birth, within several months they developed gradually progressive hind limb dysfunction. Cerebral cortical neurons cultured from SPG21−/− mice exhibited significantly more axonal branching than neurons from wild-type animals, while comprehensive neuropathological analysis of SPG21−/− mice did not reveal definitive abnormalities. Since alterations in axon branching have been seen in neurons derived from animal models of other forms of HSP as well as motor neuron diseases, this may represent a common cellular pathogenic theme. PMID:20661613

  19. Route of delivery influences biodistribution of human bone marrow-derived mesenchymal stromal cells following experimental bone marrow transplantation

    Directory of Open Access Journals (Sweden)

    Wang FJ

    2015-12-01

    Full Text Available Mesenchymal stromal cells (MSCs have shown promise as treatment for graft-versus-host disease (GvHD following allogeneic bone marrow transplantation (alloBMT. Mechanisms mediating in vivo effects of MSCs remain largely unknown, including their biodistribution following infusion. To this end, human bone-marrow derived MSCs (hMSCs were injected via carotid artery (IA or tail vein (TV into allogeneic and syngeneic BMT recipient mice. Following xenogeneic transplantation, MSC biodistribution was measured by bioluminescence imaging (BLI using hMSCs transduced with a reporter gene system containing luciferase and by scintigraphic imaging using hMSCs labeled with [99mTc]-HMPAO. Although hMSCs initially accumulated in the lungs in both transplant groups, more cells migrated to organs in alloBMT recipient as measured by in vivo BLI and scintigraphy and confirmed by ex vivo BLI imaging, immunohistochemistry and quantitative RT-PCR. IA injection resulted in persistent whole–body hMSC distribution in alloBMT recipients, while hMSCs were rapidly cleared in the syngeneic animals within one week. In contrast, TV-injected hMSCs were mainly seen in the lungs with fewer cells traveling to other organs. Summarily, these results demonstrate the potential use of IA injection to alter hMSC biodistribution in order to more effectively deliver hMSCs to targeted tissues and microenvironments.

  20. Culture of human mesenchymal stem cells using a candidate pharmaceutical grade xeno-free cell culture supplement derived from industrial human plasma pools.

    Science.gov (United States)

    Díez, José M; Bauman, Ewa; Gajardo, Rodrigo; Jorquera, Juan I

    2015-03-13

    Fetal bovine serum (FBS) is an animal product used as a medium supplement. The animal origin of FBS is a concern if cultured stem cells are to be utilized for human cell therapy. Therefore, a substitute for FBS is desirable. In this study, an industrial, xeno-free, pharmaceutical-grade supplement for cell culture (SCC) under development at Grifols was tested for growth of human mesenchymal stem cells (hMSCs), cell characterization, and differentiation capacity. SCC is a freeze-dried product obtained through cold-ethanol fractionation of industrial human plasma pools from healthy donors. Bone marrow-derived hMSC cell lines were obtained from two commercial suppliers. Cell growth was evaluated by culturing hMSCs with commercial media or media supplemented with SCC or FBS. Cell viability and cell yield were assessed with an automated cell counter. Cell surface markers were studied by indirect immunofluorescence assay. Cells were cultured then differentiated into adipocytes, chondrocytes, osteoblasts, and neurons, as assessed by specific staining and microscopy observation. SCC supported the growth of commercial hMSCs. Starting from the same number of seeded cells in two consecutive passages of culture with medium supplemented with SCC, hMSC yield and cell population doubling time were equivalent to the values obtained with the commercial medium and was consistent among lots. The viability of hMSCs was higher than 90%, while maintaining the characteristic phenotype of undifferentiated hMSCs (positive for CD29, CD44, CD90, CD105, CD146, CD166 and Stro-1; negative for CD14 and CD19). Cultured hMSCs maintained the potential for differentiation into adipocytes, chondrocytes, osteoblasts, and neurons. The tested human plasma-derived SCC sustains the adequate growth of hMSCs, while preserving their differentiation capacity. SCC can be a potential candidate for cell culture supplement in advanced cell therapies.

  1. Anti-apoptotic BFL-1 is the major effector in activation-induced human mast cell survival.

    Directory of Open Access Journals (Sweden)

    Maria Ekoff

    Full Text Available Mast cells are best known for their role in allergic reactions, where aggregation of FcεRI leads to the release of mast cell mediators causing allergic symptoms. The activation also induces a survival program in the cells, i.e., activation-induced mast cell survival. The aim of the present study was to investigate how the activation-induced survival is mediated. Cord blood-derived mast cells and the mast cell line LAD-2 were activated through FcεRI crosslinking, with or without addition of chemicals that inhibit the activity or expression of selected Bcl-2 family members (ABT-737; roscovitine. Cell viability was assessed using staining and flow cytometry. The expression and function of Bcl-2 family members BFL-1 and MCL-1 were investigated using real-time quantitative PCR and siRNA treatment. The mast cell expression of Bfl-1 was investigated in skin biopsies. FcεRI crosslinking promotes activation-induced survival of human mast cells and this is associated with an upregulation of the anti-apoptotic Bcl-2 family member Bfl-1. ABT-737 alone or in combination with roscovitine decreases viability of human mast cells although activation-induced survival is sustained, indicating a minor role for Bcl-X(L, Bcl-2, Bcl-w and Mcl-1. Reducing BFL-1 but not MCL-1 levels by siRNA inhibited activation-induced mast cell survival. We also demonstrate that mast cell expression of Bfl-1 is elevated in birch-pollen-provocated skin and in lesions of atopic dermatitis and psoriasis patients. Taken together, our results highlight Bfl-1 as a major effector in activation-induced human mast cell survival.

  2. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis.

    Science.gov (United States)

    Zhang, Cui; Li, Liang; Jiang, Yuanda; Wang, Cuicui; Geng, Baoming; Wang, Yanqiu; Chen, Jianling; Liu, Fei; Qiu, Peng; Zhai, Guangjie; Chen, Ping; Quan, Renfu; Wang, Jinfu

    2018-03-13

    Bone formation is linked with osteogenic differentiation of mesenchymal stem cells (MSCs) in the bone marrow. Microgravity in spaceflight is known to reduce bone formation. In this study, we used a real microgravity environment of the SJ-10 Recoverable Scientific Satellite to examine the effects of space microgravity on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs). hMSCs were induced toward osteogenic differentiation for 2 and 7 d in a cell culture device mounted on the SJ-10 Satellite. The satellite returned to Earth after going through space experiments in orbit for 12 d, and cell samples were harvested and analyzed for differentiation potentials. The results showed that space microgravity inhibited osteogenic differentiation and resulted in adipogenic differentiation, even under osteogenic induction conditions. Under space microgravity, the expression of 10 genes specific for osteogenesis decreased, including collagen family members, alkaline phosphatase ( ALP), and runt-related transcription factor 2 ( RUNX2), whereas the expression of 4 genes specific for adipogenesis increased, including adipsin ( CFD), leptin ( LEP), CCAAT/enhancer binding protein β ( CEBPB), and peroxisome proliferator-activated receptor-γ ( PPARG). In the analysis of signaling pathways specific for osteogenesis, we found that the expression and activity of RUNX2 was inhibited, expression of bone morphogenetic protein-2 ( BMP2) and activity of SMAD1/5/9 were decreased, and activity of focal adhesion kinase (FAK) and ERK-1/2 declined significantly under space microgravity. These data indicate that space microgravity plays a dual role by decreasing RUNX2 expression and activity through the BMP2/SMAD and integrin/FAK/ERK pathways. In addition, we found that space microgravity increased p38 MAPK and protein kinase B (AKT) activities, which are important for the promotion of adipogenic differentiation of hMSCs. Space microgravity significantly

  3. Provocation of skin graft rejection across murine class II differences by non--bone-marrow-derived cells

    International Nuclear Information System (INIS)

    Stuart, P.M.; Beck-Maier, B.; Melvold, R.W.

    1984-01-01

    We have evaluated the relative contribution of bone-marrow-derived cells to skin allograft immunogenicity in mice differing only at class II major histocompatibility genes by using bone marrow radiation chimeras as donors. The mouse strains used were C57BL/6Kh (B6) and B6.C-H-2bm12 (bm12), which differ only at at A beta gene of the I region of the mouse H-2 complex. Our results demonstrated that skin from (B6----bm12) chimeras was accepted by bm12 recipients and rejected by B6 mice in a manner indistinguishable from that of normal bm12 skin. Likewise, naive bm12 mice rejected (bm12----B6) chimeric skin and normal B6 skin equally well, and B6 animals accepted both types of skin grafts. Our data argues that the donor cell-type leading to graft rejection across limited I region differences is not of bone marrow origin, and that these cells must--at least under certain circumstances--express class II antigens

  4. Dynamic of distribution of human bone marrow-derived mesenchymal stem cells after transplantation into adult unconditioned mice.

    Science.gov (United States)

    Allers, Carolina; Sierralta, Walter D; Neubauer, Sonia; Rivera, Francisco; Minguell, José J; Conget, Paulette A

    2004-08-27

    The use of mesenchymal stem cells (MSC) for cell therapy relies on their capacity to engraft and survive long-term in the appropriate target tissue(s). Animal models have demonstrated that the syngeneic or xenogeneic transplantation of MSC results in donor engraftment into the bone marrow and other tissues of conditioned recipients. However, there are no reliable data showing the fate of human MSC infused into conditioned or unconditioned adult recipients. In the present study, the authors investigated, by using imaging, polymerase chain reaction (PCR), and in situ hybridization, the biodistribution of human bone marrow-derived MSC after intravenous infusion into unconditioned adult nude mice. As assessed by imaging (gamma camera), PCR, and in situ hybridization analysis, the authors' results demonstrate the presence of human MSC in bone marrow, spleen, and mesenchymal tissues of recipient mice. These results suggest that human MSC transplantation into unconditioned recipients represents an option for providing cellular therapy and avoids the complications associated with drugs or radiation conditioning.

  5. Design and implementation of the TRACIA: intracoronary autologous transplant of bone marrow-derived stem cells for acute ST elevation myocardial infarction

    OpenAIRE

    Peña-Duque, Marco A.; Martínez-Ríos, Marco A.; Calderón G, Eva; Mejía, Ana M.; Gómez, Enrique; Martínez-Sánchez, Carlos; Figueroa, Javier; Gaspar, Jorge; González, Héctor; Bialoztosky, David; Meave, Aloha; Uribe-González, Jhonathan; Alexánderson, Erick; Ochoa, Victor; Masso, Felipe

    2011-01-01

    Objective: To describe the design of a protocol of intracoronary autologous transplant of bone marrow-derived stem cells for acute ST-elevation myocardial infarction (STEMI) and to report the safety of the procedure in the first patients included. Methods: The TRACIA study was implemented following predetermined inclusion and exclusion criteria. The protocol includes procedures such as randomization, bone marrow retrieval, stem cells processing, intracoronary infusion of stem cells in the inf...

  6. Micro-/Nano- sized hydroxyapatite directs differentiation of rat bone marrow derived mesenchymal stem cells towards an osteoblast lineage

    Science.gov (United States)

    Huang, Yan; Zhou, Gang; Zheng, Lisha; Liu, Haifeng; Niu, Xufeng; Fan, Yubo

    2012-03-01

    Regenerative medicine consisting of cells and materials provides a new way for the repair and regeneration of tissues and organs. Nano-biomaterials are highlighted due to their advantageous features compared with conventional micro-materials. The aim of this study is to investigate the effects of micro-/nano- sized hydroxyapatite (μ/n-HA) on the osteogenic differentiation of rat bone marrow derived mesenchymal stem cells (rBMSCs). μ/n-HA were prepared by a microwave synthesizer and precipitation method, respectively. Different sizes of μ/n-HA were characterized by IR, XRD, SEM, TEM and co-cultured with rBMSCs. It was shown that rBMSCs expressed higher levels of osteoblast-related markers by n-HA than μ-HA stimulation. The size of HA is an important factor for affecting the osteogenic differentiation of rBMSCs. This provides a new avenue for mechanistic studies of stem cell differentiation and a new approach to obtain more committed differentiated cells.

  7. Mast cells & Company

    Directory of Open Access Journals (Sweden)

    Friederike eJönsson

    2012-02-01

    Full Text Available Classically, allergy depends on IgE antibodies and on high-affinity IgE receptors expressed by mast cells and basophils. This long accepted IgE/FcεRI/mast cell paradigm, on which the definition of immediate hypersensitivity was based in the Gell and Coomb’s classification, appears too reductionist. Recently accumulated evidence indeed requires that not only IgE but also IgG antibodies, that not only FcεRI but also FcγR of the different types, that not only mast cells and basophils but also neutrophils, monocytes, macrophages, eosinophils, and other myeloid cells by considered as important players in allergy. This view markedly changes our understanding of allergic diseases and, possibly, their treatment.

  8. Mast cell chymase reduces the toxicity of Gila monster venom, scorpion venom, and vasoactive intestinal polypeptide in mice

    Science.gov (United States)

    Akahoshi, Mitsuteru; Song, Chang Ho; Piliponsky, Adrian M.; Metz, Martin; Guzzetta, Andrew; Åbrink, Magnus; Schlenner, Susan M.; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Pejler, Gunnar; Tsai, Mindy; Galli, Stephen J.

    2011-01-01

    Mast cell degranulation is important in the pathogenesis of anaphylaxis and allergic disorders. Many animal venoms contain components that can induce mast cell degranulation, and this has been thought to contribute to the pathology and mortality caused by envenomation. However, we recently reported evidence that mast cells can enhance the resistance of mice to the venoms of certain snakes and that mouse mast cell–derived carboxypeptidase A3 (CPA3) can contribute to this effect. Here, we investigated whether mast cells can enhance resistance to the venom of the Gila monster, a toxic component of that venom (helodermin), and the structurally similar mammalian peptide, vasoactive intestinal polypeptide (VIP). Using 2 types of mast cell–deficient mice, as well as mice selectively lacking CPA3 activity or the chymase mouse mast cell protease-4 (MCPT4), we found that mast cells and MCPT4, which can degrade helodermin, can enhance host resistance to the toxicity of Gila monster venom. Mast cells and MCPT4 also can limit the toxicity associated with high concentrations of VIP and can reduce the morbidity and mortality induced by venoms from 2 species of scorpions. Our findings support the notion that mast cells can enhance innate defense by degradation of diverse animal toxins and that release of MCPT4, in addition to CPA3, can contribute to this mast cell function. PMID:21926462

  9. Gastritis promotes an activated bone marrow-derived mesenchymal stem cell with a phenotype reminiscent of a cancer-promoting cell.

    Science.gov (United States)

    Donnelly, Jessica M; Engevik, Amy C; Engevik, Melinda; Schumacher, Michael A; Xiao, Chang; Yang, Li; Worrell, Roger T; Zavros, Yana

    2014-03-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) promote gastric cancer in response to gastritis. In culture, BM-MSCs are prone to mutation with continued passage but it is unknown whether a similar process occurs in vivo in response to gastritis. The purpose of this study was to identify the role of chronic gastritis in the transformation of BM-MSCs leading to an activated cancer-promoting phenotype. Age matched C57BL/6 (BL/6) and gastrin deficient (GKO) mice were used for isolation of stomach, serum and mesenchymal stem cells (MSCs) at 3 and 6 months of age. MSC activation was assessed by growth curve analysis, fluorescence-activated cell sorting and xenograft assays. To allow for the isolation of bone marrow-derived stromal cells and assay in response to chronic gastritis, IRG/Vav-1(Cre) mice that expressed both enhanced green fluorescent protein-expressing hematopoietic cells and red fluorescent protein-expressing stromal cells were generated. In a parabiosis experiment, IRG/Vav-1(Cre) mice were paired to either an uninfected Vav-1(Cre) littermate or a BL/6 mouse inoculated with Helicobacter pylori. GKO mice displayed severe atrophic gastritis accompanied by elevated gastric tissue and circulating transforming growth factor beta (TGFβ) by 3 months of age. Compared to BM-MSCs isolated from uninflamed BL/6 mice, BM-MSCs isolated from GKO mice displayed an increased proliferative rate and elevated phosphorylated-Smad3 suggesting active TGFβ signaling. In xenograft assays, mice injected with BM-MSCs from 6-month-old GKO animals displayed tumor growth. RFP+ stromal cells were rapidly recruited to the gastric mucosa of H. pylori parabionts and exhibited changes in gene expression. Gastritis promotes the in vivo activation of BM-MSCs to a phenotype reminiscent of a cancer-promoting cell.

  10. Human Bone Marrow-Derived Mesenchymal Cell Reactions to 316L Stainless Steel: An in Vitro Study on Cell Viability and Interleukin-6 Expression

    Science.gov (United States)

    Anwar, Iwan Budiwan; Santoso, Asep; Saputra, Eko; Ismail, Rifky; Jamari, J.; Van der Heide, Emile

    2017-01-01

    Purpose: Human bone marrow-derived mesenchymal cell (hBMC) reactions to 316L stainless steel (316L-SS) have never been evaluated. The objective of this study was to assess cell viability and interleukin-6 expression of hBMC cultures upon treatment with a 316L-SS implant. Methods: A cytotoxicity analysis was conducted with a 3-(4,5-dimethylthiazol 2-yl)-2,5-diphenyltetrazolium (MTT) assay after a period of 24, 48 and 72 hours of incubation. Expression of interleukin-6 was measured using enzyme-linked immunosorbent assay (ELISA). Results: Cell viability measurement was performed via IC50 formula. All treatment group showed a > 50 % cell viability with a range of 56,5 - 96,9 % at 24 hours, 51,8-77,3% at 48 hours and 70,1- 120 % at 72 hours. Interleukin-6 expression was downregulated subsequent to treatment with 316L-SS compared to the control group. Conclusion: We found that 316L-SS did not exhibit toxicity towards hBMC culture. PMID:28761837

  11. Radiological protection effect on vanillin derivative VND3207 radiation-induced cytogenetic damage in mouse bone marrow cells

    International Nuclear Information System (INIS)

    Wang Chuangao; Wang Li; Zhou Pingkun; Wang Zhongwen; Hu Yongzhe; Jin Haiming; Zhang Xueqing; Chen Ying

    2010-01-01

    Objective: To study the protection of vanillin derivative VND3207 on the cytogenetic damage of mouse bone marrow cell induced by ionizing radiation. Methods: BALB/c mice were randomly divided into five groups: normal control group, 2 Gy dose irradiation group, and three groups of 2 Gy irradiation with VND3207 protection at doses of 10, 50 and 100 mg/kg, respectively. VND3207 was given by intragastric administration once a day for five days. Two hours after the last drug administration, the mice were irradiated with 2 Gy γ-rays. The changes of polychromatophilic erythroblasts micronuclei (MN), chromosome aberration (CA) and mitosis index (MI) of mouse bone marrow cells were observed at 24 and 48 h after irradiation. Results: Under the protection of VND3207 at the dosages 10, 50, 100 μmg/kg, the yields of poly-chromatophilic erythroblasts MN and CA of bone marrow cells were significantly decreased (t=2.36-4.26, P<0.05), and the marrow cells MI remained much higher level compared with the irradiated mice without drug protection (t=2.58, 2.01, P<0.05). The radiological protection effect was drug dose-dependent, and the administration of VND3207 at the dosage of 100 mg/kg resulted in reduction by 50 % and 65% in the yields of MN and CA, respectively. Conclusions: VND3207 had a good protection effect of on γ-ray induced cytogentic damage of mouse bone marrow cells. (authors)

  12. Heparan sulfate C5-epimerase is essential for heparin biosynthesis in mast cells.

    Science.gov (United States)

    Feyerabend, Thorsten B; Li, Jin-Ping; Lindahl, Ulf; Rodewald, Hans-Reimer

    2006-04-01

    Biosynthesis of heparin, a mast cell-derived glycosaminoglycan with widespread importance in medicine, has not been fully elucidated. In biosynthesis of heparan sulfate (HS), a structurally related polysaccharide, HS glucuronyl C5-epimerase (Hsepi) converts D-glucuronic acid (GlcA) to L-iduronic acid (IdoA) residues. We have generated Hsepi-null mouse mutant mast cells, and we show that the same enzyme catalyzes the generation of IdoA in heparin and that 'heparin' lacking IdoA shows a distorted O-sulfation pattern.

  13. Evidence that Meningeal Mast Cells Can Worsen Stroke Pathology in Mice

    Science.gov (United States)

    Arac, Ahmet; Grimbaldeston, Michele A.; Nepomuceno, Andrew R.B.; Olayiwola, Oluwatobi; Pereira, Marta P.; Nishiyama, Yasuhiro; Tsykin, Anna; Goodall, Gregory J.; Schlecht, Ulrich; Vogel, Hannes; Tsai, Mindy; Galli, Stephen J.; Bliss, Tonya M.; Steinberg, Gary K.

    2015-01-01

    Stroke is the leading cause of adult disability and the fourth most common cause of death in the United States. Inflammation is thought to play an important role in stroke pathology, but the factors that promote inflammation in this setting remain to be fully defined. An understudied but important factor is the role of meningeal-located immune cells in modulating brain pathology. Although different immune cells traffic through meningeal vessels en route to the brain, mature mast cells do not circulate but are resident in the meninges. With the use of genetic and cell transfer approaches in mice, we identified evidence that meningeal mast cells can importantly contribute to the key features of stroke pathology, including infiltration of granulocytes and activated macrophages, brain swelling, and infarct size. We also obtained evidence that two mast cell-derived products, interleukin-6 and, to a lesser extent, chemokine (C-C motif) ligand 7, can contribute to stroke pathology. These findings indicate a novel role for mast cells in the meninges, the membranes that envelop the brain, as potential gatekeepers for modulating brain inflammation and pathology after stroke. PMID:25134760

  14. Human Cord Blood and Bone Marrow CD34+ Cells Generate Macrophages That Support Erythroid Islands.

    Directory of Open Access Journals (Sweden)

    Eyayu Belay

    Full Text Available Recently, we developed a small molecule responsive hyperactive Mpl-based Cell Growth Switch (CGS that drives erythropoiesis associated with macrophages in the absence of exogenous cytokines. Here, we compare the physical, cellular and molecular interaction between the macrophages and erythroid cells in CGS expanded CD34+ cells harvested from cord blood, marrow or G-CSF-mobilized peripheral blood. Results indicated that macrophage based erythroid islands could be generated from cord blood and marrow CD34+ cells but not from G-CSF-mobilized CD34+ cells. Additional studies suggest that the deficiency resides with the G-CSF-mobilized CD34+ derived monocytes. Gene expression and proteomics studies of the in vitro generated erythroid islands detected the expression of erythroblast macrophage protein (EMP, intercellular adhesion molecule 4 (ICAM-4, CD163 and DNASE2. 78% of the erythroblasts in contact with macrophages reached the pre reticulocyte orthochromatic stage of differentiation within 14 days of culture. The addition of conditioned medium from cultures of CD146+ marrow fibroblasts resulted in a 700-fold increase in total cell number and a 90-fold increase in erythroid cell number. This novel CD34+ cell derived erythroid island may serve as a platform to explore the molecular basis of red cell maturation and production under normal, stress and pathological conditions.

  15. Incorporation of bone marrow cells in pancreatic pseudoislets improves posttransplant vascularization and endocrine function.

    Directory of Open Access Journals (Sweden)

    Christine Wittig

    Full Text Available Failure of revascularization is known to be the major reason for the poor outcome of pancreatic islet transplantation. In this study, we analyzed whether pseudoislets composed of islet cells and bone marrow cells can improve vascularization and function of islet transplants. Pancreatic islets isolated from Syrian golden hamsters were dispersed into single cells for the generation of pseudoislets containing 4×10(3 cells. To create bone marrow cell-enriched pseudoislets 2×10(3 islet cells were co-cultured with 2×10(3 bone marrow cells. Pseudoislets and bone marrow cell-enriched pseudoislets were transplanted syngeneically into skinfold chambers to study graft vascularization by intravital fluorescence microscopy. Native islet transplants served as controls. Bone marrow cell-enriched pseudoislets showed a significantly improved vascularization compared to native islets and pseudoislets. Moreover, bone marrow cell-enriched pseudoislets but not pseudoislets normalized blood glucose levels after transplantation of 1000 islet equivalents under the kidney capsule of streptozotocin-induced diabetic animals, although the bone marrow cell-enriched pseudoislets contained only 50% of islet cells compared to pseudoislets and native islets. Fluorescence microscopy of bone marrow cell-enriched pseudoislets composed of bone marrow cells from GFP-expressing mice showed a distinct fraction of cells expressing both GFP and insulin, indicating a differentiation of bone marrow-derived cells to an insulin-producing cell-type. Thus, enrichment of pseudoislets by bone marrow cells enhances vascularization after transplantation and increases the amount of insulin-producing tissue. Accordingly, bone marrow cell-enriched pseudoislets may represent a novel approach to increase the success rate of islet transplantation.

  16. First results from MAST

    DEFF Research Database (Denmark)

    Sykes, A.; Akers, R.J.; Appel, L.C.

    2001-01-01

    MAST is one of the new generation of large, purpose-built spherical tokamaks (STs) now becoming operational, designed to investigate the properties of the ST in large, collisionless plasmas. The first six months of MAST operations have been remarkably successful. Operationally, both merging-compr...

  17. Radioprotection against radiation induced bone marrow syndrome by a semi-synthetic derivative of chlorophyll

    International Nuclear Information System (INIS)

    Suryavanshi, Shweta; Sharma, Deepak; Checker, Rahul; Santosh Kumar, S.; Sainis, Krishna B.

    2014-01-01

    A plethora of biological properties have been attributed to chlorophyllin (CHL), the water soluble derivative of the green plant pigment chlorophyll. Several studies are available describing its ability to modify genotoxic effects. It has been shown that administration CHL to human lymphopenic individuals led to the recovery and restoration of the immune system and also inhibited aflatoxin B1-DNA binding in individuals residing in high risk exposure to this liver carcinogen. The present study is aimed at establishing radioprotective efficacy of CHL against ionizing radiation induced hematopoietic syndrome. CHL offered complete protection against whole body irradiation (WBI, 7 Gy) induced mortality in mice. This observation was supported by increase in the number of macroscopic endogenous colonies enumerated on the surface of the spleens taken from CHL+WBI group as compared to WBI group. Radioprotection by CHL was found to be mediated by increasing the frequency of hematopoietic stem cells (HSCs) as evaluated by side population assay. Administration of CHL induced G1 arrest in bone marrow cells, increased number of granulocytes and neutrophils in the peripheral blood. At the molecular level, activation of ERK was observed in bone marrow cells obtained from CHL administered mice. In conclusion, CHL mediated radioprotection was attributed to increased stem cell numbers, G1 arrest in bone marrow cells, increased neutrophil numbers and ERK activation. (author)

  18. Culture Medium Supplements Derived from Human Platelet and Plasma: Cell Commitment and Proliferation Support

    Directory of Open Access Journals (Sweden)

    Anita Muraglia

    2017-11-01

    Full Text Available Present cell culture medium supplements, in most cases based on animal sera, are not fully satisfactory especially for the in vitro expansion of cells intended for human cell therapy. This paper refers to (i an heparin-free human platelet lysate (PL devoid of serum or plasma components (v-PL and (ii an heparin-free human serum derived from plasma devoid of PL components (Pl-s and to their use as single components or in combination in primary or cell line cultures. Human mesenchymal stem cells (MSC primary cultures were obtained from adipose tissue, bone marrow, and umbilical cord. Human chondrocytes were obtained from articular cartilage biopsies. In general, MSC expanded in the presence of Pl-s alone showed a low or no proliferation in comparison to cells grown with the combination of Pl-s and v-PL. Confluent, growth-arrested cells, either human MSC or human articular chondrocytes, treated with v-PL resumed proliferation, whereas control cultures, not supplemented with v-PL, remained quiescent and did not proliferate. Interestingly, signal transduction pathways distinctive of proliferation were activated also in cells treated with v-PL in the absence of serum, when cell proliferation did not occur, indicating that v-PL could induce the cell re-entry in the cell cycle (cell commitment, but the presence of serum proteins was an absolute requirement for cell proliferation to happen. Indeed, Pl-s alone supported cell growth in constitutively activated cell lines (U-937, HeLa, HaCaT, and V-79 regardless of the co-presence of v-PL. Plasma- and plasma-derived serum were equally able to sustain cell proliferation although, for cells cultured in adhesion, the Pl-s was more efficient than the plasma from which it was derived. In conclusion, the cells expanded in the presence of the new additives maintained their differentiation potential and did not show alterations in their karyotype.

  19. Human lung mast cells modulate the functions of airway smooth muscle cells in asthma.

    Science.gov (United States)

    Alkhouri, H; Hollins, F; Moir, L M; Brightling, C E; Armour, C L; Hughes, J M

    2011-09-01

    Activated mast cell densities are increased on the airway smooth muscle in asthma where they may modulate muscle functions and thus contribute to airway inflammation, remodelling and airflow obstruction. To determine the effects of human lung mast cells on the secretory and proliferative functions of airway smooth muscle cells from donors with and without asthma. Freshly isolated human lung mast cells were stimulated with IgE/anti-IgE. Culture supernatants were collected after 2 and 24 h and the mast cells lysed. The supernatants/lysates were added to serum-deprived, subconfluent airway smooth muscle cells for up to 48 h. Released chemokines and extracellular matrix were measured by ELISA, proliferation was quantified by [(3) H]-thymidine incorporation and cell counting, and intracellular signalling by phospho-arrays. Mast cell 2-h supernatants reduced CCL11 and increased CXCL8 and fibronectin production from both asthmatic and nonasthmatic muscle cells. Leupeptin reversed these effects. Mast cell 24-h supernatants and lysates reduced CCL11 release from both muscle cell types but increased CXCL8 release by nonasthmatic cells. The 24-h supernatants also reduced asthmatic, but not nonasthmatic, muscle cell DNA synthesis and asthmatic cell numbers over 5 days through inhibiting extracellular signal-regulated kinase (ERK) and phosphatidylinositol (PI3)-kinase pathways. However, prostaglandins, thromboxanes, IL-4 and IL-13 were not involved in reducing the proliferation. Mast cell proteases and newly synthesized products differentially modulated the secretory and proliferative functions of airway smooth muscle cells from donors with and without asthma. Thus, mast cells may modulate their own recruitment and airway smooth muscle functions locally in asthma. © 2011 John Wiley & Sons A/S.

  20. Epidermis–dermis junction as a novel location for bone marrow-derived cells to reside in response to ionizing radiation

    International Nuclear Information System (INIS)

    Okano, Junko; Kojima, Hideto; Katagi, Miwako; Nakae, Yuki; Terashima, Tomoya; Nakagawa, Takahiko; Kurakane, Takeshi; Okamoto, Naoki; Morohashi, Keita; Maegawa, Hiroshi; Udagawa, Jun

    2015-01-01

    Bone marrow-derived cells (BMDCs) can migrate into the various organs in the mice irradiated by ionizing radiation (IR). However, it may not be the case in the skin. While IR is used for bone marrow (BM) transplantation, studying with the epidermal sheets demonstrated that the BMDC recruitment is extraordinarily rare in epidermis in the mouse. Herein, using the chimera mice with BM from green fluorescent protein (GFP) transgenic mice, we simply examined if BMDCs migrate into any layers in the total skin, as opposed to the epidermal sheets, in response to IR. Interestingly, we identified the presence of GFP-positive (GFP + ) cells in the epidermis-dermis junction in the total skin sections although the epidermal cell sheets failed to have any GFP cells. To examine a possibility that the cells in the junction could be mechanically dissociated during separating epidermal sheets, we then salvaged such dissociated cells and examined its characteristics. Surprisingly, some GFP + cells were found in the salvaged cells, indicating that these cells could be derived from BM. In addition, such BMDCs were also associated with inflammation in the junction. In conclusion, BMDCs can migrate to and reside in the epidermis-dermis junction after IR. - Highlights: • Bone marrow-derived cells (BMDCs) migrate in the epidermis due to ionizing radiation (IR). • BMDCs dissociate from the epidermis-dermis junction in preparing epidermal sheets. • The doses of IR determine the location and the number of migrating BMDCs in the skin

  1. Epidermis–dermis junction as a novel location for bone marrow-derived cells to reside in response to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Okano, Junko, E-mail: jokano@belle.shiga-med.ac.jp [Division of Anatomy and Cell Biology, Shiga University of Medical Science, Shiga (Japan); Kojima, Hideto; Katagi, Miwako [Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga (Japan); Nakae, Yuki [Department of Internal Medicine, Shiga University of Medical Science, Shiga (Japan); Terashima, Tomoya [Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga (Japan); Nakagawa, Takahiko [TMK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto (Japan); Kurakane, Takeshi; Okamoto, Naoki; Morohashi, Keita [Division of Anatomy and Cell Biology, Shiga University of Medical Science, Shiga (Japan); Maegawa, Hiroshi [Department of Internal Medicine, Shiga University of Medical Science, Shiga (Japan); Udagawa, Jun [Division of Anatomy and Cell Biology, Shiga University of Medical Science, Shiga (Japan)

    2015-06-12

    Bone marrow-derived cells (BMDCs) can migrate into the various organs in the mice irradiated by ionizing radiation (IR). However, it may not be the case in the skin. While IR is used for bone marrow (BM) transplantation, studying with the epidermal sheets demonstrated that the BMDC recruitment is extraordinarily rare in epidermis in the mouse. Herein, using the chimera mice with BM from green fluorescent protein (GFP) transgenic mice, we simply examined if BMDCs migrate into any layers in the total skin, as opposed to the epidermal sheets, in response to IR. Interestingly, we identified the presence of GFP-positive (GFP{sup +}) cells in the epidermis-dermis junction in the total skin sections although the epidermal cell sheets failed to have any GFP cells. To examine a possibility that the cells in the junction could be mechanically dissociated during separating epidermal sheets, we then salvaged such dissociated cells and examined its characteristics. Surprisingly, some GFP{sup +} cells were found in the salvaged cells, indicating that these cells could be derived from BM. In addition, such BMDCs were also associated with inflammation in the junction. In conclusion, BMDCs can migrate to and reside in the epidermis-dermis junction after IR. - Highlights: • Bone marrow-derived cells (BMDCs) migrate in the epidermis due to ionizing radiation (IR). • BMDCs dissociate from the epidermis-dermis junction in preparing epidermal sheets. • The doses of IR determine the location and the number of migrating BMDCs in the skin.

  2. Human bone-marrow-derived mesenchymal stem cells

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Abdallah, Basem M

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of cells present in bone-marrow stroma and the stroma of various organs with the capacity for mesoderm-like cell differentiation into, for example, osteoblasts, adipocytes, and chondrocytes. MSC are being introduced in the clinic for the treatment...

  3. [Bone marrow stromal damage mediated by immune response activity].

    Science.gov (United States)

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis.

  4. Continuous Lymphoid Cell Lines with Characteristics of B Cells (Bone-Marrow-Derived), Lacking the Epstein-Barr Virus Genome and Derived from Three Human Lymphomas

    Science.gov (United States)

    Klein, George; Lindahl, Tomas; Jondal, Mikael; Leibold, Wolfgang; Menézes, José; Nilsson, Kenneth; Sundström, Christer

    1974-01-01

    Three exceptional cell lines have been tested for the presence of the Epstein-Barr virus genome by nucleic acid hybridization (complementary RNA·DNA) and Epstein-Barr virus-determined nuclear antigen tests. Two lines were derived from Swedish lymphoma cases and one from an African Burkitt-like lymphoma biopsy that was negative for Epstein-Barr virus DNA and the virus-determined nuclear antigen. All three lines apparently lacked the viral genome. Two of the three lines clearly had characteristics of B-cells (bone-marrow-derived). PMID:4369887

  5. Radiosensitivity of stromal cells responsible for in vitro maintenance of hemopoietic stem cells in continuous, long-term marrow culture. [/sup 137/Cs; Mice

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, M

    1982-05-01

    Marrow stromal cells are generally thought to be radioresistant. However, when the marrow was irradiated in vivo or in vitro before its use for the continuous longterm marrow culture, doses of radiation as low as 500 rad interfered with the establishment of the adherent stromal layer. Moreover, when the stromal layer was permitted to establish, similar doses of radiation interfered with its potential to support the proliferation and maintenance of the hemopoietic stem cell. Thus, marrow stromal cells appear to be more radiosensitive than hitherto thought. The type of damage may vary, however, according to the dose of radiation. Small doses may interfere with such functions as adhesion or cell division while larger doses may completely destroy the cell.

  6. Alkylating chemotherapeutic agents cyclophosphamide and melphalan cause functional injury to human bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Kemp, Kevin; Morse, Ruth; Sanders, Kelly; Hows, Jill; Donaldson, Craig

    2011-07-01

    The adverse effects of melphalan and cyclophosphamide on hematopoietic stem cells are well-known; however, the effects on the mesenchymal stem cells (MSCs) residing in the bone marrow are less well characterised. Examining the effects of chemotherapeutic agents on patient MSCs in vivo is difficult due to variability in patients and differences in the drug combinations used, both of which could have implications on MSC function. As drugs are not commonly used as single agents during high-dose chemotherapy (HDC) regimens, there is a lack of data comparing the short- or long-term effects these drugs have on patients post treatment. To help address these problems, the effects of the alkylating chemotherapeutic agents cyclophosphamide and melphalan on human bone marrow MSCs were evaluated in vitro. Within this study, the exposure of MSCs to the chemotherapeutic agents cyclophosphamide or melphalan had strong negative effects on MSC expansion and CD44 expression. In addition, changes were seen in the ability of MSCs to support hematopoietic cell migration and repopulation. These observations therefore highlight potential disadvantages in the use of autologous MSCs in chemotherapeutically pre-treated patients for future therapeutic strategies. Furthermore, this study suggests that if the damage caused by chemotherapeutic agents to marrow MSCs is substantial, it would be logical to use cultured allogeneic MSCs therapeutically to assist or repair the marrow microenvironment after HDC.

  7. Mast cell deficiency results in the accumulation of preadipocytes in adipose tissue in both obese and non-obese mice

    Directory of Open Access Journals (Sweden)

    Yasushi Ishijima

    2014-01-01

    Full Text Available Mast cells have been suggested to play key roles in adipogenesis. We herein show that the expression of preadipocyte, but not adipocyte, marker genes increases in the white adipose tissue of mast cell-deficient (KitW-sh/W-sh mice under both obese and non-obese conditions. In vitro culturing with adipogenic factors revealed increased adipocytes differentiated from the KitW-sh/W-sh stromal vascular fraction, suggesting the accumulation of preadipocytes. Moreover, the increased expression of preadipocyte genes was restored by mast cell reconstitution in the KitW-sh/W-sh mice. These results suggest positive effects of mast cells on the preadipocyte to adipocyte transition under both physiological and pathological conditions.

  8. Modeling chronic myeloid leukemia in immunodeficient mice reveals expansion of aberrant mast cells and accumulation of pre-B cells

    International Nuclear Information System (INIS)

    Askmyr, M; Ågerstam, H; Lilljebjörn, H; Hansen, N; Karlsson, C; Palffy, S von; Landberg, N; Högberg, C; Lassen, C; Rissler, M; Richter, J; Ehinger, M; Järås, M; Fioretos, T

    2014-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm that, if not treated, will progress into blast crisis (BC) of either myeloid or B lymphoid phenotype. The BCR-ABL1 fusion gene, encoding a constitutively active tyrosine kinase, is thought to be sufficient to cause chronic phase (CP) CML, whereas additional genetic lesions are needed for progression into CML BC. To generate a humanized CML model, we retrovirally expressed BCR-ABL1 in the cord blood CD34 + cells and transplanted these into NOD-SCID (non-obese diabetic/severe-combined immunodeficient) interleukin-2-receptor γ-deficient mice. In primary mice, BCR-ABL1 expression induced an inflammatory-like state in the bone marrow and spleen, and mast cells were the only myeloid lineage specifically expanded by BCR-ABL1. Upon secondary transplantation, the pronounced inflammatory phenotype was lost and mainly human mast cells and macrophages were found in the bone marrow. Moreover, a striking block at the pre-B-cell stage was observed in primary mice, resulting in an accumulation of pre-B cells. A similar block in B-cell differentiation could be confirmed in primary cells from CML patients. Hence, this humanized mouse model of CML reveals previously unexplored features of CP CML and should be useful for further studies to understand the disease pathogenesis of CML

  9. Mast cell activators as novel immune regulators.

    Science.gov (United States)

    Johnson-Weaver, Brandi; Choi, Hae Woong; Abraham, Soman N; Staats, Herman F

    2018-05-26

    Mast cells are an important cell type of the innate immune system that when activated, play a crucial role in generating protective innate host responses after bacterial and viral infection. Additionally, activated mast cells influence lymph node composition to regulate the induction of adaptive immune responses. The recognition that mast cells play a beneficial role in host responses to microbial infection and induction of adaptive immunity has provided the rationale to evaluate mast cell activators for use as antimicrobials or vaccine adjuvants. This review summarizes the role of mast cell activators in antimicrobial responses while also discussing the use of different classes of mast cell activators as potent vaccine adjuvants that enhance the induction of protective immune responses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Wind flow around met masts

    Energy Technology Data Exchange (ETDEWEB)

    Heraud, P.; Masson, C.; Tusch, M. [Garrad Hassan Canada Inc., Ottawa, ON (Canada)

    2010-07-01

    This PowerPoint presentation discussed the impacts of meteorological masts on the measurement of wind resources. Two types of meteorological masts are used in wind power applications, namely lattice, and tubular masts. Anemometer accuracy can be impacted by the logger as well as by the instrumentation layout. The International Electrochemical Commission (IEC) recommends that anemometers are placed at a 45 degree angle from pre-dominant winds. However, the impact of turbulent flow around meteorological masts is poorly understood. The numerical model developed in the study included mass and momentum conservation models for tubular and lattice towers. Distortion level recommendations were presented. The study showed that distortion depends on the layout, and that IEC recommendations for instrumentation layouts need to be revised. tabs., figs.

  11. Overview of physics results from MAST towards ITER/DEMO and the MAST Upgrade

    DEFF Research Database (Denmark)

    Meyer, H.; Abel, I.G.; Akers, R.J.

    2013-01-01

    New diagnostic, modelling and plant capability on the Mega Ampère Spherical Tokamak (MAST) have delivered important results in key areas for ITER/DEMO and the upcoming MAST Upgrade, a step towards future ST devices on the path to fusion currently under procurement. Micro-stability analysis...

  12. Bone Marrow-Derived, Neural-Like Cells Have the Characteristics of Neurons to Protect the Peripheral Nerve in Microenvironment

    Directory of Open Access Journals (Sweden)

    Shi-lei Guo

    2015-01-01

    Full Text Available Effective repair of peripheral nerve defects is difficult because of the slow growth of new axonal growth. We propose that “neural-like cells” may be useful for the protection of peripheral nerve destructions. Such cells should prolong the time for the disintegration of spinal nerves, reduce lesions, and improve recovery. But the mechanism of neural-like cells in the peripheral nerve is still unclear. In this study, bone marrow-derived neural-like cells were used as seed cells. The cells were injected into the distal end of severed rabbit peripheral nerves that were no longer integrated with the central nervous system. Electromyography (EMG, immunohistochemistry, and transmission electron microscopy (TEM were employed to analyze the development of the cells in the peripheral nerve environment. The CMAP amplitude appeared during the 5th week following surgery, at which time morphological characteristics of myelinated nerve fiber formation were observed. Bone marrow-derived neural-like cells could protect the disintegration and destruction of the injured peripheral nerve.

  13. Proliferation of Prostate Stromal Cell Induced by Benign Prostatic Hyperplasia Epithelial Cell Stimulated With Trichomonas vaginalis via Crosstalk With Mast Cell.

    Science.gov (United States)

    Kim, Jung-Hyun; Kim, Sang-Su; Han, Ik-Hwan; Sim, Seobo; Ahn, Myoung-Hee; Ryu, Jae-Sook

    2016-11-01

    Chronic inflammation has a role in the pathogenesis of benign prostatic hyperplasia (BPH) and prostate cancer. Mast cells have been detected in chronic inflammatory infiltrate of the prostate, and it is possible that the interaction between prostate epithelial cells and Trichomonas vaginalis influences the activity of mast cells in the prostate stroma. Activated mast cells might influence the biological functions of nearby tissues and cells. In this study, we investigated whether mast cells reacted with the culture supernatant of BPH epithelial cells infected with T. vaginalis may induce the proliferation of prostate stromal cells. To measure the proliferation of prostate stromal cells in response to chronic inflammation caused by the infection of BPH-1 cells with T. vaginalis, the CCK-8 assay and wound healing assay were used. ELISAs, quantitative real-time PCR, western blotting and immunofluorescence were used to measure the production and expression of inflammatory cytokine and cytokine receptor. BPH-1 cells incubated with live trichomonads produced increased levels of CCL2, IL-1β, IL-6, and CXCL8, and induced the migration of mast cells and monocytes. When the culture supernatant of BPH-1 cells stimulated with trichomonads (TCM) was added to mast cells, they became activated, as confirmed by release of β-hexosaminidase and CXCL8. Prostate stromal cells incubated with the culture supernatant of mast cells activated with TCM (M-TCM) proliferated and expressed increased levels of CXCL8, CCL2, and the cytokine receptors CXCR1 and CCR2. Blocking the chemokine receptors reduced the proliferation of stromal cells and also decreased the production of CXCL8 and CCL2. Moreover, the expression of FGF2, cyclin D1, and Bcl-2 was increased in the proliferated stromal cells stimulated with M-TCM. Additionally, the M-TCM-treated stromal cells were more invasive than control cells. The inflammatory mediators released by BPH epithelial cells in response to infection by

  14. Immunophenotypic characterisation and cytogenetic analysis of mesenchymal stem cells from equine bone marrow and foal umbilical cords during in vitro culture

    Directory of Open Access Journals (Sweden)

    Mazurkevych Anatoliy

    2016-09-01

    Full Text Available Introduction: The objective of the study was immunophenotypic and cytogenetic analysis of mesenchymal stem cells from equine bone marrow and foal umbilical cords during in vitro culture.

  15. The globoseries glycosphingolipid SSEA-4 is a marker of bone marrow-derived clonal multipotent stromal cells in vitro and in vivo.

    Science.gov (United States)

    Rosu-Myles, Michael; McCully, Jennifer; Fair, Joel; Mehic, Jelica; Menendez, Pablo; Rodriguez, Rene; Westwood, Carole

    2013-05-01

    The therapeutic potential of multipotent stromal cells (MSC) may be enhanced by the identification of markers that allow their discrimination and enumeration both in vivo and in vitro. Here, we investigated the ability of embryonic stem cell-associated glycosphingolipids to isolate human MSC from both whole-bone-marrow (BM) and stromal cell cultures. Only SSEA-4 was consistently expressed on cells within the CD45loCD105hi marrow fraction and could be used to isolate cells with the capacity to give rise to stromal cultures containing MSC. Human stromal cultures, generated in either the presence or absence of serum, contained heterogeneous cell populations discriminated by the quantity of SSEA-4 epitopes detected on their surface. A low level of surface SSEA-4 (SSEA-4lo) correlated with undetectable levels of the α2,3-sialyltransferase-II enzyme required to synthesize SSEA-4; a reduced proliferative potential; and the loss of fat-, bone-, and cartilage-forming cells during long-term culture. In vitro, single cells with the capacity to generate multipotent stromal cultures were detected exclusively in the SSEA-4hi fraction. Our data demonstrate that a high level of surface epitopes for SSEA-4 provides a definitive marker of MSC from human BM.

  16. Feasibility and Efficiency of Human Bone Marrow Stromal Cell Culture with Allogeneic Platelet Lysate-Supplementation for Cell Therapy against Stroke

    Directory of Open Access Journals (Sweden)

    Chengbo Tan

    2016-01-01

    Full Text Available Currently, there is increasing interest in human bone marrow stromal cells (hBMSCs as regeneration therapy against cerebral stroke. The aim of the present study was to evaluate the feasibility and validity of hBMSC cultures with allogeneic platelet lysates (PLs. Platelet concentrates (PC were harvested from healthy volunteers and made into single donor-derived PL (sPL. The PL mixtures (mPL were made from three different sPL. Some growth factors and platelet cell surface antigens were detected by enzyme-linked immunosorbent assay (ELISA. The hBMSCs cultured with 10% PL were analyzed for their proliferative potential, surface markers, and karyotypes. The cells were incubated with superparamagnetic iron oxide (SPIO agents and injected into a pig brain. MRI and histological analysis were performed. Consequently, nine lots of sPL and three mPL were prepared. ELISA analysis showed that PL contained adequate growth factors and a particle of platelet surface antigens. Cell proliferation capacity of PLs was equivalent to or higher than that of fetal calf serum (FCS. No contradiction in cell surface markers and no chromosomal aberrations were found. The MRI detected the distribution of SPIO-labeled hBMSCs in the pig brain. In summary, the hBMSCs cultured with allogeneic PL are suitable for cell therapy against stroke.

  17. Trophic Effects of Mesenchymal Stem Cells in Chondrocyte Co-Cultures are Independent of Culture Conditions and Cell Sources

    NARCIS (Netherlands)

    Wu, Ling; Prins, H.J.; Helder, M.; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes

    2012-01-01

    Earlier, we have shown that the increased cartilage production in pellet co-cultures of chondrocytes and bone marrow-derived mesenchymal stem cells (BM-MSCs) is due to a trophic role of the MSC in stimulating chondrocyte proliferation and matrix production rather than MSCs actively undergoing

  18. Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources

    NARCIS (Netherlands)

    Wu, L.; Prins, H.J.; Helder, M.N.; van Blitterswijk, C.A.; Karperien, M.

    2012-01-01

    Earlier, we have shown that the increased cartilage production in pellet co-cultures of chondrocytes and bone marrow-derived mesenchymal stem cells (BM-MSCs) is due to a trophic role of the MSC in stimulating chondrocyte proliferation and matrix production rather than MSCs actively undergoing

  19. Comparative miRNA-Based Fingerprinting Reveals Biological Differences in Human Olfactory Mucosa- and Bone-Marrow-Derived Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Susan Louise Lindsay

    2016-05-01

    Full Text Available Previously we reported that nestin-positive human mesenchymal stromal cells (MSCs derived from the olfactory mucosa (OM enhanced CNS myelination in vitro to a greater extent than bone-marrow-derived MSCs (BM-MSCs. miRNA-based fingerprinting revealed the two MSCs were 64% homologous, with 26 miRNAs differentially expressed. We focused on miR-146a-5p and miR-140-5p due to their reported role in the regulation of chemokine production and myelination. The lower expression of miR-140-5p in OM-MSCs correlated with higher secretion of CXCL12 compared with BM-MSCs. Addition of CXCL12 and its pharmacological inhibitors to neural co-cultures supported these data. Studies on related miR-146a-5p targets demonstrated that OM-MSCs had lower levels of Toll-like receptors and secreted less pro-inflammatory cytokines, IL-6, IL-8, and CCL2. OM-MSCs polarized microglia to an anti-inflammatory phenotype, illustrating potential differences in their inflammatory response. Nestin-positive OM-MSCs could therefore offer a cell transplantation alternative for CNS repair, should these biological behaviors be translated in vivo.

  20. Sphingosine-1-phosphate mediates proliferation maintaining the multipotency of human adult bone marrow and adipose tissue-derived stem cells.

    Science.gov (United States)

    He, Xiaoli; H'ng, Shiau-Chen; Leong, David T; Hutmacher, Dietmar W; Melendez, Alirio J

    2010-08-01

    High renewal and maintenance of multipotency of human adult stem cells (hSCs), are a prerequisite for experimental analysis as well as for potential clinical usages. The most widely used strategy for hSC culture and proliferation is using serum. However, serum is poorly defined and has a considerable degree of inter-batch variation, which makes it difficult for large-scale mesenchymal stem cells (MSCs) expansion in homogeneous culture conditions. Moreover, it is often observed that cells grown in serum-containing media spontaneously differentiate into unknown and/or undesired phenotypes. Another way of maintaining hSC development is using cytokines and/or tissue-specific growth factors; this is a very expensive approach and can lead to early unwanted differentiation. In order to circumvent these issues, we investigated the role of sphingosine-1-phosphate (S1P), in the growth and multipotency maintenance of human bone marrow and adipose tissue-derived MSCs. We show that S1P induces growth, and in combination with reduced serum, or with the growth factors FGF and platelet-derived growth factor-AB, S1P has an enhancing effect on growth. We also show that the MSCs cultured in S1P-supplemented media are able to maintain their differentiation potential for at least as long as that for cells grown in the usual serum-containing media. This is shown by the ability of cells grown in S1P-containing media to be able to undergo osteogenic as well as adipogenic differentiation. This is of interest, since S1P is a relatively inexpensive natural product, which can be obtained in homogeneous high-purity batches: this will minimize costs and potentially reduce the unwanted side effects observed with serum. Taken together, S1P is able to induce proliferation while maintaining the multipotency of different human stem cells, suggesting a potential for S1P in developing serum-free or serum-reduced defined medium for adult stem cell cultures.

  1. Human bone marrow-derived and umbilical cord-derived mesenchymal stem cells for alleviating neuropathic pain in a spinal cord injury model

    OpenAIRE

    Yousefifard, Mahmoud; Nasirinezhad, Farinaz; Shardi Manaheji, Homa; Janzadeh, Atousa; Hosseini, Mostafa; Keshavarz, Mansoor

    2016-01-01

    Background Stem cell therapy can be used for alleviating the neuropathic pain induced by spinal cord injuries (SCIs). However, survival and differentiation of stem cells following their transplantation vary depending on the host and intrinsic factors of the cell. Therefore, the present study aimed to determine the effect of stem cells derived from bone marrow (BM-MSC) and umbilical cord (UC-MSC) on neuropathic pain relief. Methods A compression model was used to induce SCI in a rat model. A w...

  2. Analyzing the cellular contribution of bone marrow to fracture healing using bone marrow transplantation in mice

    International Nuclear Information System (INIS)

    Colnot, C.; Huang, S.; Helms, J.

    2006-01-01

    The bone marrow is believed to play important roles during fracture healing such as providing progenitor cells for inflammation, matrix remodeling, and cartilage and bone formation. Given the complex nature of bone repair, it remains difficult to distinguish the contributions of various cell types. Here we describe a mouse model based on bone marrow transplantation and genetic labeling to track cells originating from bone marrow during fracture healing. Following lethal irradiation and engraftment of bone marrow expressing the LacZ transgene constitutively, wild type mice underwent tibial fracture. Donor bone marrow-derived cells, which originated from the hematopoietic compartment, did not participate in the chondrogenic and osteogenic lineages during fracture healing. Instead, the donor bone marrow contributed to inflammatory and bone resorbing cells. This model can be exploited in the future to investigate the role of inflammation and matrix remodeling during bone repair, independent from osteogenesis and chondrogenesis

  3. Mechanisms of glyceryl trinitrate provoked mast cell degranulation

    DEFF Research Database (Denmark)

    Pedersen, Sara Hougaard; Ramachandran, Roshni; Amrutkar, Dipak Vasantrao

    2015-01-01

    inflammation and dural mast cell degranulation is supported by the effectiveness of prednisolone on glyceryl trinitrate-induced delayed headache. METHODS: Using a newly developed rat model mimicking the human glyceryl trinitrate headache model, we have investigated the occurrence of dural mast cell...... glyceryl trinitrate-induced mast cell degranulation whereas the calcitonin gene-related peptide-receptor antagonist olcegepant and the substance P receptor antagonist L-733,060 did not affect mast cell degranulation. However, topical application of two different nitric oxide donors did not cause mast cell...... degranulation ex vivo. CONCLUSIONS: Direct application of an exogenous nitric oxide donor on dural mast cells does not cause mast cell degranulation ex vivo. In vivo application of the nitric oxide donor glyceryl trinitrate leads to a prominent level of degranulation via a yet unknown mechanism. This effect can...

  4. Postirradiation changes in the amount and contact properties of bone marrow neutrophils in a short-term culture

    International Nuclear Information System (INIS)

    Chukhlovin, A.B.; Nikolaevskaya, L.V.

    1988-01-01

    A study was made of the adherence to plastic Petri dishes and viability ( as non-pyknotic cell counts) of rat bone marrow cells cultured for 5 to 22 h in 199 media containing 15% fresh isologous serum. An overall decrease in the number of viable myelokaryocytes including mature neutrophils was observed in the cultures irradiated with doses of 3 to 12 Gy. In addition gamma irradiation increased substantially the adherence of neutrophyls and to a lesser extent of other myelokaryocytes. A possibility of early radiation-induced disturbances in granulocytic maturation is discussed

  5. Bone Formation by Sheep Stem Cells in an Ectopic Mouse Model: Comparison of Adipose and Bone Marrow Derived Cells and Identification of Donor-Derived Bone by Antibody Staining

    DEFF Research Database (Denmark)

    Kjærgaard, Kristian; Dreyer, Chris Halling; Ditzel, Nicholas

    2016-01-01

    expanded, adherent cells (A-CEAC). This study compares in vivo osteogenic capacity between A-CEAC and bone marrow derived culture expanded, adherent cells (BM-CEAC). Method. A-CEAC and BM-CEAC were isolated from five female sheep and seeded on hydroxyapatite granules prior to subcutaneous implantation...... in immunodeficient mice. The doses of cells in the implants were 0.5 × 106, 1.0 × 106, or 1.5 × 106 A-CEAC and 0.5 × 106 BM-CEAC, respectively. After eight weeks, bone volume versus total tissue volume (BV/TV) was quantified using histomorphometry. Origin of new bone was assessed using human vimentin (HVIM) antibody...... staining. Results. BM-CEAC yielded significantly higher BV/TV than any A-CEAC group, and differences between A-CEAC groups were not statistically significant. HVIM antibody stain was successfully used to identify sheep cells in this model. Conclusion. A-CEAC and BM-CEAC were capable of forming bone, and BM...

  6. Inhibition of neurotensin-stimulated mast cell secretion and carboxypeptidase A activity by the peptide inhibitor of carboxypeptidase A and neurotensin-receptor antagonist SR 48692.

    Science.gov (United States)

    Miller, L A; Cochrane, D E; Feldberg, R S; Carraway, R E

    1998-06-01

    Neurotensin (NT), a peptide found in brain and several peripheral tissues, is a potent stimulus for mast cell secretion and its actions are blocked by the specific NT receptor antagonist, SR 48692. Subsequent to stimulation, NT is rapidly degraded by mast cell carboxypeptidase A (CPA). In the experiments described here, we tested for the involvement of CPA activity in the activation of mast cell secretion by the peptide, NT. Mast cells were isolated from the peritoneal and pleural cavities of rats, purified over metrizamide gradients and incubated at 37 degrees C in Locke solution or Locke containing the appropriate inhibitors. For some experiments, media derived from mast cells stimulated by compound 48/80 were used as a source of mast cell CPA activity. Treatment of mast cells with the highly specific peptide inhibitor of CPA derived from potato (PCI) inhibited histamine release in response to NT and NT8-13 (the biologically active region of NT). This inhibition required some 20 min to develop and was only partially reversed by a 20-min wash period. PCI (10 microM) did not inhibit histamine release in response to NT1-12, bradykinin, compound 48/80, the calcium ionophore, A23187, or anti-IgE serum. PCI also inhibited mast cell CPA activity. SR 48692, a highly selective antagonist of the brain NT receptor and of NT-stimulated mast cell secretion, also inhibited mast cell CPA activity as well as bovine pancreatic CPA activity in a concentration-dependent manner. It is suggested that the mast cell binding site for NT and the active site for CPA may share similar characteristics. The results are discussed in terms of NT mechanism of action on the mast cell.

  7. Omalizumab may not inhibit mast cell and basophil activation in vitro.

    Science.gov (United States)

    Gericke, J; Ohanyan, T; Church, M K; Maurer, M; Metz, M

    2015-09-01

    In March 2014, omalizumab, a monoclonal anti-IgE antibody, was approved for the treatment of chronic spontaneous urticaria (CSU). The primary mode of action of omalizumab is considered to be the reduction in free IgE serum levels and the subsequent down-regulation of FcεRI, the high affinity receptor for IgE, on mast cells and basophils. Recently, it has been suggested that most CSU patients have an autoimmune aetiology which may lead to chronic activation of mast cells and basophils. To understand more of the mechanisms by which omalizumab may exert its effects in CSU, its efficacy was tested on human mast cells and basophils. Omalizumab, which was or was not preincubated with serum from healthy donors or CSU patients, was coincubated with isolated healthy donor skin mast cells or peripheral blood-derived monocytes containing 1-2% basophils. Degranulation was induced using anti-human IgE, C5a, or substance P and histamine release determined. Anti-human IgE-induced histamine release from mast cells or basophils was not altered in the presence or absence of omalizumab. In contrast, preincubation of mast cells with DARPin Fc fusion protein, a positive control for negative signalling via FcεRI-FcγRIIb cross activation, significantly diminished histamine release. Moreover, omalizumab, that was preincubated with healthy donor serum, CSU patient serum or auto-reactive CSU serum to allow for the formation of potential immune complexes, did not alter induced histamine release in a coincubation setup with mast cells or basophils as compared to the absence of omalizumab. In vivo, blood basophil numbers and basophil histamine content increase under omalizumab therapy. Our results suggest that the rapid response to omalizumab therapy is more likely to result from the elimination of an activating signal rather than the generation of a negative, inhibitory signal. © 2014 European Academy of Dermatology and Venereology.

  8. Evaluation of the effects of different culture media on the myogenic differentiation potential of adipose tissue- or bone marrow-derived human mesenchymal stem cells.

    Science.gov (United States)

    Stern-Straeter, Jens; Bonaterra, Gabriel Alejandro; Juritz, Stephanie; Birk, Richard; Goessler, Ulrich Reinhart; Bieback, Karen; Bugert, Peter; Schultz, Johannes; Hörmann, Karl; Kinscherf, Ralf; Faber, Anne

    2014-01-01

    The creation of functional muscles/muscle tissue from human stem cells is a major goal of skeletal muscle tissue engineering. Mesenchymal stem cells (MSCs) from fat/adipose tissue (AT-MSCs), as well as bone marrow (BM-MSCs) have been shown to bear myogenic potential, which makes them candidate stem cells for skeletal muscle tissue engineering applications. The aim of this study was to analyse the myogenic differentiation potential of human AT-MSCs and BM-MSCs cultured in six different cell culture media containing different mixtures of growth factors. The following cell culture media were used in our experiments: mesenchymal stem cell growth medium (MSCGM)™ as growth medium, MSCGM + 5-azacytidine (5-Aza), skeletal muscle myoblast cell growth medium (SkGM)-2 BulletKit™, and 5, 30 and 50% conditioned cell culture media, i.e., supernatant of human satellite cell cultures after three days in cell culture mixed with MSCGM. Following the incubation of human AT-MSCs or BM-MSCs for 0, 4, 8, 11, 16 or 21 days with each of the cell culture media, cell proliferation was measured using the alamarBlue® assay. Myogenic differentiation was evaluated by quantitative gene expression analyses, using quantitative RT-PCR (qRT-PCR) and immunocytochemical staining (ICC), using well-defined skeletal markers, such as desmin (DES), myogenic factor 5 (MYF5), myosin, heavy chain 8, skeletal muscle, perinatal (MYH8), myosin, heavy chain 1, skeletal muscle, adult (MYH1) and skeletal muscle actin-α1 (ACTA1). The highest proliferation rates were observed in the AT-MSCs and BM-MSCs cultured with SkGM-2 BulletKit medium. The average proliferation rate was higher in the AT-MSCs than in the BM-MSCs, taking all six culture media into account. qRT-PCR revealed the expression levels of the myogenic markers, ACTA1, MYH1 and MYH8, in the AT-MSC cell cultures, but not in the BM-MSC cultures. The muscle-specific intermediate filament, DES, was only detected (by ICC) in the AT-MSCs, but not in the BM

  9. Mast cells and their mediators in cutaneous wound healing--active participants or innocent bystanders?

    Science.gov (United States)

    Artuc, M; Hermes, B; Steckelings, U M; Grützkau, A; Henz, B M

    1999-02-01

    Mast cells are traditionally viewed as effector cells of immediate type hypersensitivity reactions. There is, however, a growing body of evidence that the cells might play an important role in the maintenance of tissue homeostasis and repair. We here present our own data and those from the literature elucidating the possible role of mast cells during wound healing. Studies on the fate of mast cells in scars of varying ages suggest that these cells degranulate during wounding, with a marked decrease of chymase-positive cells, although the total number of cells does not decrease, based on SCF-receptor staining. Mast cells contain a plethora of preformed mediators like heparin, histamine, tryptase, chymase, VEGF and TNF-alpha which, on release during the initial stages of wound healing, affect bleeding and subsequent coagulation and acute inflammation. Various additional vasoactive and chemotactic, rapidly generated mediators (C3a, C5a, LTB4, LTC4, PAF) will contribute to these processes, whereas mast cell-derived proinflammatory and growth promoting peptide mediators (VEGF, FGF-2, PDGF, TGF-beta, NGF, IL-4, IL-8) contribute to neoangiogenesis, fibrinogenesis or re-epithelization during the repair process. The increasing number of tryptase-positive mast cells in older scars suggest that these cells continue to be exposed to specific chemotactic, growth- and differentiation-promoting factors throughout the process of tissue remodelling. All these data indicate that mast cells contribute in a major way to wound healing. their role as potential initiators of or as contributors to this process, compared to other cell types, will however have to be further elucidated.

  10. Inhibitory effect of putranjivain A on allergic inflammation through suppression of mast cell activation

    International Nuclear Information System (INIS)

    Kim, Hui-Hun; Park, Seung-Bin; Lee, Soyoung; Kwon, Taeg Kyu; Shin, Tae-Yong; Park, Pil-Hoon; Lee, Seung-Ho; Kim, Sang-Hyun

    2014-01-01

    A great number of people are suffering from allergic inflammatory disease such as asthma, atopic dermatitis, and sinusitis. Therefore discovery of drugs for the treatment of these diseases is an important subject in human health. Putranjivain A (PJA), member of ellagitannin, is known to possess beneficial effects including anti-cancer and anti-viral activities. The aim of the present study was to elucidate whether PJA modulates the allergic inflammatory reaction and to study its possible mechanisms of action using mast cell-based in vitro and in vivo models. The study was performed in anaphylaxis mouse model and cultured mast cells. PJA inhibited the expression of pro-inflammatory cytokines in immunoglobulin E-stimulated mast cells. PJA reduced this expression by inhibiting nuclear factor (NF)-κB and nuclear factor of activated T cell. The oral administration of PJA reduced systemic and cutaneous anaphylaxis, the release of serum histamine, and the expression of the histamine H 1 receptor. In addition, PJA attenuated the activation of mast cells. PJA inhibited the release of histamine from various types of mast cells by the suppression of intracellular calcium. The inhibitory activity of PJA on the allergic reaction was similar to that of disodium cromoglycate, a known anti-allergic drug. These results suggest that PJA can facilitate the prevention or treatment of allergic inflammatory diseases mediated by mast cells. - Highlights: • PJA reduced the degranulation of mast cells. • PJA inhibited the production of inflammatory cytokines. • The effect of PJA on allergic reaction was comparable to the DSCG. • PJA might be a candidate for the treatment of allergic inflammatory diseases

  11. Inhibitory effect of putranjivain A on allergic inflammation through suppression of mast cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hui-Hun; Park, Seung-Bin; Lee, Soyoung [CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Kwon, Taeg Kyu [Department of Immunology, School of Medicine, Keimyung University, Daegu 704-701 (Korea, Republic of); Shin, Tae-Yong [College of Pharmacy, Woosuk University, Jeonju 565-701 (Korea, Republic of); Park, Pil-Hoon; Lee, Seung-Ho [College of Pharmacy, Youngnam University, Kyungsan 712-749 (Korea, Republic of); Kim, Sang-Hyun, E-mail: shkim72@knu.ac.kr [CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of)

    2014-02-01

    A great number of people are suffering from allergic inflammatory disease such as asthma, atopic dermatitis, and sinusitis. Therefore discovery of drugs for the treatment of these diseases is an important subject in human health. Putranjivain A (PJA), member of ellagitannin, is known to possess beneficial effects including anti-cancer and anti-viral activities. The aim of the present study was to elucidate whether PJA modulates the allergic inflammatory reaction and to study its possible mechanisms of action using mast cell-based in vitro and in vivo models. The study was performed in anaphylaxis mouse model and cultured mast cells. PJA inhibited the expression of pro-inflammatory cytokines in immunoglobulin E-stimulated mast cells. PJA reduced this expression by inhibiting nuclear factor (NF)-κB and nuclear factor of activated T cell. The oral administration of PJA reduced systemic and cutaneous anaphylaxis, the release of serum histamine, and the expression of the histamine H{sub 1} receptor. In addition, PJA attenuated the activation of mast cells. PJA inhibited the release of histamine from various types of mast cells by the suppression of intracellular calcium. The inhibitory activity of PJA on the allergic reaction was similar to that of disodium cromoglycate, a known anti-allergic drug. These results suggest that PJA can facilitate the prevention or treatment of allergic inflammatory diseases mediated by mast cells. - Highlights: • PJA reduced the degranulation of mast cells. • PJA inhibited the production of inflammatory cytokines. • The effect of PJA on allergic reaction was comparable to the DSCG. • PJA might be a candidate for the treatment of allergic inflammatory diseases.

  12. Mac-1low early myeloid cells in the bone marrow-derived SP fraction migrate into injured skeletal muscle and participate in muscle regeneration

    International Nuclear Information System (INIS)

    Ojima, Koichi; Uezumi, Akiyoshi; Miyoshi, Hiroyuki; Masuda, Satoru; Morita, Yohei; Fukase, Akiko; Hattori, Akihito; Nakauchi, Hiromitsu; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi

    2004-01-01

    Recent studies have shown that bone marrow (BM) cells, including the BM side population (BM-SP) cells that enrich hematopoietic stem cells (HSCs), are incorporated into skeletal muscle during regeneration, but it is not clear how and what kinds of BM cells contribute to muscle fiber regeneration. We found that a large number of SP cells migrated from BM to muscles following injury in BM-transplanted mice. These BM-derived SP cells in regenerating muscles expressed different surface markers from those of HSCs and could not reconstitute the mouse blood system. BM-derived SP/Mac-1 low cells increased in number in regenerating muscles following injury. Importantly, our co-culture studies with activated satellite cells revealed that this fraction carried significant potential for myogenic differentiation. By contrast, mature inflammatory (Mac-1 high ) cells showed negligible myogenic activities. Further, these BM-derived SP/Mac-1 low cells gave rise to mononucleate myocytes, indicating that their myogenesis was not caused by stochastic fusion with host myogenic cells, although they required cell-to-cell contact with myogenic cells for muscle differentiation. Taken together, our data suggest that neither HSCs nor mature inflammatory cells, but Mac-1 low early myeloid cells in the BM-derived SP fraction, play an important role in regenerating skeletal muscles

  13. Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice

    International Nuclear Information System (INIS)

    Gao Xiaodong; Song Lujun; Shen Kuntang; Wang Hongshan; Niu Weixin; Qin Xinyu

    2008-01-01

    The transplantation of bone marrow (BM) derived cells to initiate pancreatic regeneration is an attractive but as-yet unrealized strategy. Presently, BM derived cells from green fluorescent protein transgenic mice were transplanted into diabetic mice. Repair of diabetic islets was evidenced by reduction of hyperglycemia, increase in number of islets, and altered pancreatic histology. Cells in the pancreata of recipient mice co-expressed BrdU and insulin. Double staining revealed β cells were in the process of proliferation. BrdU + insulin - PDX-1 + cells, Ngn3 + cells and insulin + glucagon + cells, which showed stem cells, were also found during β-cell regeneration. The majority of transplanted cells were mobilized to the islet and ductal regions. In recipient pancreas, transplanted cells simultaneously expressed CD34 but did not express insulin, PDX-1, Ngn3, Nkx2.2, Nkx6.1, Pax4, Pax6, and CD45. It is concluded that BM derived cells especially CD34 + cells can promote repair of pancreatic islets. Moreover, both proliferation of β cells and differentiation of pancreatic stem cells contribute to the regeneration of β cells

  14. An ovine tracheal explant culture model for allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Abeynaike Latasha

    2010-08-01

    Full Text Available Abstract Background The airway epithelium is thought to play an important role in the pathogenesis of asthmatic disease. However, much of our understanding of airway epithelial cell function in asthma has been derived from in vitro studies that may not accurately reflect the interactive cellular and molecular pathways active between different tissue constituents in vivo. Methods Using a sheep model of allergic asthma, tracheal explants from normal sheep and allergic sheep exposed to house dust mite (HDM allergen were established to investigate airway mucosal responses ex vivo. Explants were cultured for up to 48 h and tissues were stained to identify apoptotic cells, goblet cells, mast cells and eosinophils. The release of cytokines (IL-1α, IL-6 and TNF-α by cultured tracheal explants, was assessed by ELISA. Results The general morphology and epithelial structure of the tracheal explants was well maintained in culture although evidence of advanced apoptosis within the mucosal layer was noted after culture for 48 h. The number of alcian blue/PAS positive mucus-secreting cells within the epithelial layer was reduced in all cultured explants compared with pre-cultured (0 h explants, but the loss of staining was most evident in allergic tissues. Mast cell and eosinophil numbers were elevated in the allergic tracheal tissues compared to naïve controls, and in the allergic tissues there was a significant decline in mast cells after 24 h culture in the presence or absence of HDM allergen. IL-6 was released by allergic tracheal explants in culture but was undetected in cultured control explants. Conclusions Sheep tracheal explants maintain characteristics of the airway mucosa that may not be replicated when studying isolated cell populations in vitro. There were key differences identified in explants from allergic compared to control airways and in their responses in culture for 24 h. Importantly, this study establishes the potential for the

  15. Specific profiles of ion channels and ionotropic receptors define adipose- and bone marrow derived stromal cells.

    Czech Academy of Sciences Publication Activity Database

    Forostyak, Oksana; Butenko, Olena; Anděrová, Miroslava; Forostyak, Serhiy; Syková, Eva; Verkhratsky, A.; Dayanithi, Govindan

    2016-01-01

    Roč. 16, č. 3 (2016), s. 622-634 ISSN 1873-5061 R&D Projects: GA ČR(CZ) GA14-34077S; GA ČR(CZ) GAP304/11/2373; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:68378041 Keywords : adipose derived stromal cells * bone marrow stromal cell * Ca(2+) signaling * Ion channels Subject RIV: FH - Neurology Impact factor: 3.494, year: 2016

  16. The effect of cyclic hydrostatic pressure on the functional development of cartilaginous tissues engineered using bone marrow derived mesenchymal stem cells.

    Science.gov (United States)

    Meyer, E G; Buckley, C T; Steward, A J; Kelly, D J

    2011-10-01

    Mechanical signals can play a key role in regulating the chondrogenic differentiation of mesenchymal stem cells (MSCs). The objective of this study was to determine if the long-term application of cyclic hydrostatic pressure could be used to improve the functional properties of cartilaginous tissues engineered using bone marrow derived MSCs. MSCs were isolated from the femora of two porcine donors, expanded separately under identical conditions, and then suspended in cylindrical agarose hydrogels. Constructs from both donors were maintained in a chemically defined media supplemented with TGF-β3 for 42 days. TGF-β3 was removed from a subset of constructs from day 21 to 42. Loaded groups were subjected to 10 MPa of cyclic hydrostatic pressurisation at 1 Hz for one hour/day, five days/week. Loading consisted either of continuous hydrostatic pressure (CHP) initiated at day 0, or delayed hydrostatic pressure (DHP) initiated at day 21. Free swelling (FS) constructs were cultured in parallel as controls. Constructs were assessed at days 0, 21 and 42. MSCs isolated from both donors were morphologically similar, demonstrated comparable colony forming unit-fibroblast (CFU-F) numbers, and accumulated near identical levels of collagen and GAG following 42 days of free swelling culture. Somewhat unexpectedly the two donors displayed a differential response to hydrostatic pressure. For one donor the application of CHP resulted in increased collagen and GAG accumulation by day 42, resulting in an increased dynamic modulus compared to FS controls. In contrast, CHP had no effect on matrix accumulation for the other donor. The application of DHP had no effect on either matrix accumulation or construct mechanical properties for both donors. Variability in the response to hydrostatic pressure was also observed for three further donors. In conclusion, this study demonstrates that the application of long-term hydrostatic pressure can be used to improve the functional properties of

  17. Bone marrow-derived cells in the population of spinal microglia after peripheral nerve injury

    Science.gov (United States)

    Tashima, Ryoichi; Mikuriya, Satsuki; Tomiyama, Daisuke; Shiratori-Hayashi, Miho; Yamashita, Tomohiro; Kohro, Yuta; Tozaki-Saitoh, Hidetoshi; Inoue, Kazuhide; Tsuda, Makoto

    2016-01-01

    Accumulating evidence indicates that peripheral nerve injury (PNI) activates spinal microglia that are necessary for neuropathic pain. Recent studies using bone marrow (BM) chimeric mice have reported that after PNI, circulating BM-derived cells infiltrate into the spinal cord and differentiate into microglia-like cells. This raises the possibility that the population of spinal microglia after PNI may be heterogeneous. However, the infiltration of BM cells in the spinal cord remains controversial because of experimental adverse effects of strong irradiation used for generating BM chimeric mice. In this study, we evaluated the PNI-induced spinal infiltration of BM-derived cells not only by irradiation-induced myeloablation with various conditioning regimens, but also by parabiosis and mice with genetically labelled microglia, models without irradiation and BM transplantation. Results obtained from these independent approaches provide compelling evidence indicating little contribution of circulating BM-derived cells to the population of spinal microglia after PNI. PMID:27005516

  18. The emerging role of mast cells in liver disease.

    Science.gov (United States)

    Jarido, Veronica; Kennedy, Lindsey; Hargrove, Laura; Demieville, Jennifer; Thomson, Joanne; Stephenson, Kristen; Francis, Heather

    2017-08-01

    The depth of our knowledge regarding mast cells has widened exponentially in the last 20 years. Once thought to be only important for allergy-mediated events, mast cells are now recognized to be important regulators of a number of pathological processes. The revelation that mast cells can influence organs, tissues, and cells has increased interest in mast cell research during liver disease. The purpose of this review is to refresh the reader's knowledge of the development, type, and location of mast cells and to review recent work that demonstrates the role of hepatic mast cells during diseased states. This review focuses primarily on liver diseases and mast cells during autoimmune disease, hepatitis, fatty liver disease, liver cancer, and aging in the liver. Overall, these studies demonstrate the potential role of mast cells in disease progression.

  19. Establishment of a novel high-affinity IgE receptor-positive canine mast cell line with wild-type c-kit receptors

    International Nuclear Information System (INIS)

    Amagai, Yosuke; Tanaka, Akane; Ohmori, Keitaro; Matsuda, Hiroshi

    2008-01-01

    Much is known regarding participations of mast cells with innate and acquired immunity by secreting various cytokines and chemical mediators. However, details of mast cell biology still remain unclear. In this study, we successfully established a novel growth factor-independent mast cell line (MPT-1) derived from canine mast cell tumor. MPT-1 cells manifested factor-independent proliferation as floating cells containing a large amount of histamine, as well as chymase-like dog mast cell protease 3, in cytosolic granules. Particularly, MPT-1 cells expressed high-affinity IgE receptors (FcεRI) and wild-type c-kit receptors. Degranulation of MPT-1 cells was induced not only by stimulation with calcium ionophore but also by cross-linkage of the surface IgE. Given that MPT-1 is the first mast cell line with FcεRI which has no c-kit mutations, MPT-1 cells may provide great contribution for investigation of IgE-mediated activation mechanisms of mast cells, leading to development of effective treatment for allergic disorders

  20. Are mast cells important in diabetes?

    OpenAIRE

    Duraisamy Kempuraj; Alessandro Caraffa; Gianpaolo Ronconi; Gianfranco Lessiani; Pio Conti

    2016-01-01

    Diabetes is a metabolic disorder characterized by hyperglycemia and associated with microvascular and macrovascular syndromes mediated by mast cells. Mast cells are activated through cross-linking of their surface high affinity receptors for IgE (FcRI) or other antigens, leading to degranulation and release of stored inflammatory mediators, and cytokines/chemokines without degranulation. Mast cells are implicated in innate and acquired immunity, inflammation and metabolic disorders such as d...

  1. Decreased hypertrophic differentiation accompanies enhanced matrix formation in co-cultures of outer meniscus cells with bone marrow mesenchymal stromal cells

    Science.gov (United States)

    2012-01-01

    Introduction The main objective of this study was to determine whether meniscus cells from the outer (MCO) and inner (MCI) regions of the meniscus interact similarly to or differently with mesenchymal stromal stem cells (MSCs). Previous study had shown that co-culture of meniscus cells with bone marrow-derived MSCs result in enhanced matrix formation relative to mono-cultures of meniscus cells and MSCs. However, the study did not examine if cells from the different regions of the meniscus interacted similarly to or differently with MSCs. Methods Human menisci were harvested from four patients undergoing total knee replacements. Tissue from the outer and inner regions represented pieces taken from one third and two thirds of the radial distance of the meniscus, respectively. Meniscus cells were released from the menisci after collagenase treatment. Bone marrow MSCs were obtained from the iliac crest of two patients after plastic adherence and in vitro culture until passage 2. Primary meniscus cells from the outer (MCO) or inner (MCI) regions of the meniscus were co-cultured with MSCs in three-dimensional (3D) pellet cultures at 1:3 ratio, respectively, for 3 weeks in the presence of serum-free chondrogenic medium containing TGF-β1. Mono-cultures of MCO, MCI and MSCs served as experimental control groups. The tissue formed after 3 weeks was assessed biochemically, histochemically and by quantitative RT-PCR. Results Co-culture of inner (MCI) or outer (MCO) meniscus cells with MSCs resulted in neo-tissue with increased (up to 2.2-fold) proteoglycan (GAG) matrix content relative to tissues formed from mono-cultures of MSCs, MCI and MCO. Co-cultures of MCI or MCO with MSCs produced the same amount of matrix in the tissue formed. However, the expression level of aggrecan was highest in mono-cultures of MSCs but similar in the other four groups. The DNA content of the tissues from co-cultured cells was not statistically different from tissues formed from mono-cultures of

  2. Optimization of Ex Vivo Murine Bone Marrow Derived Immature Dendritic Cells: A Comparative Analysis of Flask Culture Method and Mouse CD11c Positive Selection Kit Method

    Directory of Open Access Journals (Sweden)

    Rahul Ashok Gosavi

    2018-01-01

    Full Text Available 12–14 days of culturing of bone marrow (BM cells containing various growth factors is widely used method for generating dendritic cells (DCs from suspended cell population. Here we compared flask culture method and commercially available CD11c Positive Selection kit method. Immature BMDCs’ purity of adherent as well as suspended cell population was generated in the decreasing concentration of recombinant-murine granulocyte-macrophage colony-stimulating factor (rmGM-CSF in nontreated tissue culture flasks. The expression of CD11c, MHCII, CD40, and CD86 was measured by flow cytometry. We found significant difference (P<0.05 between the two methods in the adherent cells population but no significant difference was observed between the suspended cell populations with respect to CD11c+ count. However, CD11c+ was significantly higher in both adhered and suspended cell population by culture method but kit method gave more CD11c+ from suspended cells population only. On the other hand, using both methods, immature DC expressed moderate level of MHC class II molecules as well as low levels of CD40 and CD86. Our findings suggest that widely used culture method gives the best results in terms of yield, viability, and purity of BMDCs from both adherent and suspended cell population whereas kit method works well for suspended cell population.

  3. Eosinophilic Esophagitis: Relevance of Mast Cell Infiltration.

    Science.gov (United States)

    Strasser, Daniel S; Seger, Shanon; Bussmann, Christian; Pierlot, Gabin M; Groenen, Peter M A; Stalder, Anna K; Straumann, Alex

    2018-05-17

    Eosinophilic esophagitis (EoE) is a chronic-inflammatory disease characterized clinically by symptoms of esophageal dysfunction and histopathologically by a prominent eosinophilic inflammation. Despite eosinophils having histologically a pre-dominant position, their role in the immunopathogenesis of the disease is still questionable. Several other inflammatory cells are involved and may play a critical role as well. The purpose of this study was to characterize the mast cell infiltration, and to correlate it with clinical state of EoE. Using immunohistochemistry and quantitative morphometry, we extensively investigated eosinophils and mast cells in esophageal biopsies from patients with active EoE and from patients with EoE in remission, and compared the findings with healthy individuals. In EoE, epithelium and lamina propria were similarly infiltrated with eosinophils. In contrast, mast cells infiltration was limited to the epithelium, displaying a localized immune response. Interestingly, whereas epithelial mast cells and eosinophils were high in active EoE, some patients in remission e.g. normalized epithelial eosinophils, showed remaining high numbers of mast cells. Patient clustering supported 2 groups of patients in clinical remission, differentiating based on presence or absence of epithelial mast cells. Active EoE is characterized - in addition to the well-known tissue eosinophilia by a marked epithelium-restricted mast cell infiltration. Of interest, in a subgroup of patients, mast cell infiltration persisted despite clinical remission. To elucidate the clinical consequence of persistent epithelial mast cells infiltration further studies are required following patients in clinical remission longitudinally. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. MAST data acquisition system

    International Nuclear Information System (INIS)

    Shibaev, S.; Counsell, G.; Cunningham, G.; Manhood, S.J.; Thomas-Davies, N.; Waterhouse, J.

    2006-01-01

    The data acquisition system of the Mega-Amp Spherical Tokamak (MAST) presently collects up to 400 MB of data in about 3000 data items per shot, and subsequent fast growth is expected. Since the start of MAST operations (in 1999) the system has changed dramatically. Though we continue to use legacy CAMAC hardware, newer VME, PCI, and PXI based sub-systems collect most of the data now. All legacy software has been redesigned and new software has been developed. Last year a major system improvement was made-replacement of the message distribution system. The new message system provides easy connection of any sub-system independently of its platform and serves as a framework for many new applications. A new data acquisition controller provides full control of common sub-systems, central error logging, and data acquisition alarms for the MAST plant. A number of new sub-systems using Linux and Windows OSs on VME, PCI, and PXI platforms have been developed. A new PXI unit has been designed as a base sub-system accommodating any type of data acquisition and control devices. Several web applications for the real-time MAST monitoring and data presentation have been developed

  5. Probable impact of age and hypoxia on proliferation and microRNA expression profile of bone marrow-derived human mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Norlaily Mohd Ali

    2016-01-01

    Full Text Available Decline in the therapeutic potential of bone marrow-derived mesenchymal stem cells (MSC is often seen with older donors as compared to young. Although hypoxia is known as an approach to improve the therapeutic potential of MSC in term of cell proliferation and differentiation capacity, its effects on MSC from aged donors have not been well studied. To evaluate the influence of hypoxia on different age groups, MSC from young (60 years donors were expanded under hypoxic (5% O2 and normal (20% O2 culture conditions. MSC from old donors exhibited a reduction in proliferation rate and differentiation potential together with the accumulation of senescence features compared to that of young donors. However, MSC cultured under hypoxic condition showed enhanced self-renewing and proliferation capacity in both age groups as compared to normal condition. Bioinformatic analysis of the gene ontology (GO and KEGG pathway under hypoxic culture condition identified hypoxia-inducible miRNAs that were found to target transcriptional activity leading to enhanced cell proliferation, migration as well as decrease in growth arrest and apoptosis through the activation of multiple signaling pathways. Overall, differentially expressed miRNA provided additional information to describe the biological changes of young and aged MSCs expansion under hypoxic culture condition at the molecular level. Based on our findings, the therapeutic potential hierarchy of MSC according to donor’s age group and culture conditions can be categorized in the following order: young (hypoxia > young (normoxia > old aged (hypoxia > old aged (normoxia.

  6. Dominance and persistence of donor marrow in long-lived allogeneic radiation chimeras obtained with unmanipulated bone marrow

    International Nuclear Information System (INIS)

    Pierpaoli, W.; Maestroni, G.J.M.

    1983-01-01

    Allogeneic, H-2-incompatible irradiation chimeras (H-2sup(d) → H-2sup(b)) constructed with normal, unmanipulated bone marrow and with marrow-derived factors live long and do not manifest a GvH disease. Their response to primary immunization is deficient but their alloreactivity is normal. This chimeric allotolerance cannot be passively transferred from chimeric donors to normal irradiated recipients. Passive transfer of both donor- or recipient-type immuno-competent T-cells into the chimeric mice does not lead to syngeneic reconstitution, rejection of the engrafted marrow or GvH disease, and the mice maintain permanently their chimerism. This new model demonstrates that chimerism is not eradicable in long-lived chimeras reconstituted with unmanipulated bone marrow, and that the bone marrow itself plays a dominant role in maintenance of chimerism. (Auth.)

  7. Hepatocyte growth factor is constitutively produced by donor-derived bone marrow cells and promotes regeneration of pancreatic β-cells

    International Nuclear Information System (INIS)

    Izumida, Yoshihiko; Aoki, Takeshi; Yasuda, Daisuke; Koizumi, Tomotake; Suganuma, Chisaki; Saito, Koji; Murai, Noriyuki; Shimizu, Yoshinori; Hayashi, Ken; Odaira, Masanori; Kusano, Tomokazu; Kushima, Miki; Kusano, Mitsuo

    2005-01-01

    Recent studies have demonstrated that the transplantation of bone marrow cells following diabetes induced by streptozotocin can support the recovery of pancreatic β-cell mass and a partial reversal of hyperglycemia. To address this issue, we examined whether the c-Met/hepatocyte growth factor (HGF) signaling pathway was involved in the recovery of β-cell injury after bone marrow transplantation (BMT). In this model, donor-derived bone marrow cells were positive for HGF immunoreactivity in the recipient spleen, liver, lung, and pancreas as well as in the host hepatocytes. Indeed, plasma HGF levels were maintained at a high value. The frequency of c-Met expression and its proliferative activity and differentiative response in the pancreatic ductal cells in the BMT group were greater than those in the PBS-treated group, resulting in an elevated number of endogenous insulin-producing cells. The induction of the c-Met/HGF signaling pathway following BMT promotes pancreatic regeneration in diabetic rats

  8. The enigmatic role of mast cells in dominant tolerance.

    Science.gov (United States)

    de Vries, Victor C; Pino-Lagos, Karina; Elgueta, Raul; Noelle, Randolph J

    2009-08-01

    The role of regulatory T cells (Treg) in peripheral tolerance has been studied extensively in transplantation research. Recently, mast cells have been shown to play an indispensable role in allograft tolerance. The purpose of this review is to inform the reader on the current standings of the role of mast cells in dominant tolerance with an emphasis on the interaction of mast cells with Treg. Mast cells are required to sustain peripheral tolerance via Treg. Treg can stabilize mast cells degranulation by contact-dependent mechanisms through the interaction of OX40 and its ligand OX40L, and by production of soluble factors, such as interleukin-10 and transforming growth factor-beta. Conversely, the activation and subsequent degranulation of mast cells break peripheral tolerance. Both mast cells and Treg are needed to create a local immunosuppressive environment in the transplant. Treg are not only necessary to suppress effector T-cell responses but also to stabilize mast cells. Mast cells in return could contribute to the immunosuppressive state by release of transforming growth factor-beta, interleukin-10 and specific proteases. However, the molecular basis for mast cells control of Treg suppression in organ transplantation is still unresolved.

  9. Removing the cells from adult bone marrow derived stem cell therapy does not eliminate cardioprotection.

    Science.gov (United States)

    Yasin, Mohammed

    2013-04-01

    The debate as to whether adult stem cell therapy is regenerative or not continues. The non-regenerative benefits of adult bone marrow-derived stem cell therapy were investigated by testing whether the supernatant derived from unfractionated bone marrow mononuclear cells might be cardioprotective in an animal model of myocardial ischaemia-reperfusion injury. Regional myocardial reperfusion injury was acquired by 25 min reversible left anterior descending coronary artery (LAD) occlusion followed by 2 h reperfusion, in anaesthetized Wistar male rats. Unfractionated bone marrow mononuclear cells (BMMNC) isolated from sibling Wistar male rat whole bone marrow were phenotyped by fluorescence activated cell sorting flowcytometry for the haematopoietic stem cell surface markers c-kit, CD34, CD45 and CD133. Animals subjected to regional myocardial reperfusion injury received either 10 million BMMNC or BMMNC supernatant (BMS); both were collected in 0.5 ml phosphate-buffered saline and delivered by intravenous bolus at the onset of reperfusion. The left ventricular region distal to the LAD occlusion point was excised for measurement of myocardial infarct size and proteomic analysis, which was used to identify whether there were any differences in myocardial proteins associated with intravenous injection of either BMMNC or BMS. BMMNC were phenotyped to be c-kit(+) (7 ± 1%), CD34(+) (7 ± 1%), CD45(+) (54 ± 6%), CD133(+) (15 ± 1%). The supernatant reduced myocardial infarct size (BMS 34 ± 2%, n = 15 vs control 57 ± 2%, n = 7, P < 0.0001), which was comparable to the reduction in infarct size afforded by the injection of cells (BMMNC 33 ± 3% vs control 57 ± 2%, n = 10, P < 0.0001). Proteomics of hearts treated with either BMS or BMMNC demonstrated higher expression of (i) anti-apoptotic signal transduction protein: 14-3-3-epsilon (1.5-fold); (ii) anti-oxidants: peroxiredoxin-6 (2.1-fold); (iii) heat shock proteins: alpha B-crystallin (1.7-fold), heat shock protein 72 (2

  10. Promoting effect of small molecules in cardiomyogenic and neurogenic differentiation of rat bone marrow-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Khanabdali R

    2015-12-01

    Full Text Available Ramin Khanabdali,1 Anbarieh Saadat,1 Maizatul Fazilah,1 Khairul Fidaa’ Khairul Bazli,1 Rida-e-Maria Qazi,2 Ramla Sana Khalid,2 Durriyyah Sharifah Hasan Adli,1 Soheil Zorofchian Moghadamtousi,1 Nadia Naeem,2 Irfan Khan,2 Asmat Salim,2 ShamsulAzlin Ahmad Shamsuddin,1 Gokula Mohan1 1Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; 2Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan Abstract: Small molecules, growth factors, and cytokines have been used to induce differentiation of stem cells into different lineages. Similarly, demethylating agents can trigger differentiation in adult stem cells. Here, we investigated the in vitro differentiation of rat bone marrow mesenchymal stem cells (MSCs into cardiomyocytes by a demethylating agent, zebularine, as well as neuronal-like cells by β-mercaptoethanol in a growth factor or cytokines-free media. Isolated bone marrow-derived MSCs cultured in Dulbecco’s Modified Eagle’s Medium exhibited a fibroblast-like morphology. These cells expressed positive markers for CD29, CD44, and CD117 and were negative for CD34 and CD45. After treatment with 1 µM zebularine for 24 hours, the MSCs formed myotube-like structures after 10 days in culture. Expression of cardiac-specific genes showed that treated MSCs expressed significantly higher levels of cardiac troponin-T, Nkx2.5, and GATA-4 compared with untreated cells. Immunocytochemical analysis showed that differentiated cells also expressed cardiac proteins, GATA-4, Nkx 2.5, and cardiac troponin-T. For neuronal differentiation, MSCs were treated with 1 and 10 mM β-mercaptoethanol overnight for 3 hours in complete and serum-free Dulbecco’s Modified Eagle’s Medium, respectively. Following overnight treatment, neuron-like cells with axonal and dendritic-like projections originating from the

  11. Possible Involvement of Human Mast Cells in the Establishment of Pregnancy via Killer Cell Ig-Like Receptor 2DL4.

    Science.gov (United States)

    Ueshima, Chiyuki; Kataoka, Tatsuki R; Hirata, Masahiro; Sugimoto, Akihiko; Iemura, Yoshiki; Minamiguchi, Sachiko; Nomura, Takashi; Haga, Hironori

    2018-06-01

    The involvement of mast cells in the establishment of pregnancy is unclear. Herein, we found that human mast cells are present in the decidual tissues of parous women and expressed a human-specific protein killer cell Ig-like receptor (KIR) 2DL4, a receptor for human leukocyte antigen G expressed on human trophoblasts. In contrast, decreased numbers of decidual mast cells and reduced KIR2DL4 expression were observed in these cells of infertile women who had undergone long-term corticosteroid treatment. Co-culture of the human mast cell line, LAD2, and human trophoblast cell line, HTR-8/SVneo, accelerated the migration and tube formation of HTR-8/SVneo cells in a KIR2DL4-dependent manner. These observations suggest the possible involvement of human mast cells in the establishment of pregnancy via KIR2DL4 and that long-term corticosteroid treatment may cause infertility by influencing the phenotypes of decidual mast cells. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. TBTC induces adipocyte differentiation in human bone marrow long term culture

    International Nuclear Information System (INIS)

    Carfi, M.; Croera, C.; Ferrario, D.; Campi, V.; Bowe, G.; Pieters, R.; Gribaldo, L.

    2008-01-01

    Organotins are widely used in agriculture and the chemical industry, causing persistent and widespread pollution. Organotins may affect the brain, liver and immune system and eventually human health. Recently, it has been shown that tri-butyltin (TBT) interacts with nuclear receptors PPARγ (peroxisome proliferator-activated receptor γ) and RXR (retinoid x receptor) leading to adipocyte differentiation in the 3T3 cell line. Since adipocytes are known to influence haematopoiesis, for instance through the expression of cytokines and adhesion molecules, it was considered of interest to further study the adipocyte-stimulating effect of TBTC in human bone marrow cultures. Nile Red spectrofluorimetric analysis showed a significant increase of adipocytes in TBTC-treated cultures after 14 days of long term culture. Real-time PCR and Western blot analysis confirmed the high expression of the specific adipocyte differentiation marker aP2 (adipocyte-specific fatty acid binding protein). PPARγ, but not RXR, mRNA was increased after 24 h and 48 h exposure. TBTC also induced a decrease in a number of chemokines, interleukins, and growth factors. Also the expression of leptin, a hormone involved in haematopoiesis, was down regulated by TBTC treatment. It therefore appears that TBTC induced adipocyte differentiation, whilst reducing a number of haematopoietic factors. This study indicates that TBTC may interfere in the haematopoietic process through an alteration of the stromal layer and cytokine homeostasis

  13. Generation of dendritic cells from human bone marrow mononuclear cells: advantages for clinical application in comparison to peripheral blood monocyte derived cells.

    Science.gov (United States)

    Bai, L; Feuerer, M; Beckhove, P; Umansky, V; Schirrmacher, V

    2002-02-01

    Dendritic cells (DCs) currently used for vaccination in clinical studies to induce immunity against malignant cells are normally generated from peripheral blood-derived monocytes. Here we studied conditions for the generation of DCs from unseparated human bone marrow (BM) mononuclear cells and compared them functionally with DCs from blood. The two types of DCs, from bone marrow (BM-DC) and peripheral blood (BL-DC), were generated in parallel from the same normal healthy donors by culturing in serum-free X-VIVO 20 medium containing GM-CSF and IL-4, and then the phenotypes and functions were compared. BM-DC generation occurred in 14 days and involved proliferative expansion from CD34 stem cells and differentiation while BL-DC generation occurred in 7 days from CD14 monocytes and involved only differentiation. A 7- to 25-fold higher number of DCs could be obtained from BM than from blood. BM-DC had similar phenotypes as BL-DC. The capacity to stimulate MLR reactivity in allogeneic T lymphocytes was higher with BM-DC than that with BL-DC. Also, the capacity to stimulate autologous memory T cell responses to tetanus toxoid (TT) or tuberculin (PPD) was higher with BM-DC than with BL-DC. These results suggest that BM-DC as produced here may be a very economic and useful source of professional antigen-presenting cells for anti-tumor immunotherapeutic protocols.

  14. Study of mast cell count in skin tags

    Directory of Open Access Journals (Sweden)

    Zaher Hesham

    2007-01-01

    Full Text Available Background: Skin tags or acrochordons are common tumors of middle-aged and elderly subjects. They consist of loose fibrous tissue and occur mainly on the neck and major flexures as small, soft, pedunculated protrusions. Objectives: The aim was to compare the mast cells count in skin tags to adjacent normal skin in diabetic and nondiabetic participants in an attempt to elucidate the possible role of mast cells in the pathogenesis of skin tags. Participants and Methods: Thirty participants with skin tags were divided into group I (15 nondiabetic participants and group II (15 diabetic participants. Three biopsies were obtained from each participant: a large skin tag, a small skin tag and adjacent normal skin. Mast cell count from all the obtained sections was carried out, and the mast cell density was expressed as the average mast cell count/high power field (HPF. Results: A statistically significant increase in mast cells count in skin tags in comparison to normal skin was detected in group I and group II. There was no statistically significant difference between mast cell counts in skin tags of both the groups. Conclusion: Both the mast cell mediators and hyperinsulinemia are capable of inducing fibroblast proliferation and epidermal hyperplasia that are the main pathologic abnormalities seen in all types of skin tags. However, the presence of mast cells in all examined skin tags regardless of diabetes and obesity may point to the possible crucial role of mast cells in the etiogenesis of skin tags through its interaction with fibroblasts and keratinocytes.

  15. Beneficial Effects of Autologous Bone Marrow-Derived Mesenchymal Stem Cells in Naturally Occurring Tendinopathy

    Science.gov (United States)

    Smith, Roger Kenneth Whealands; Werling, Natalie Jayne; Dakin, Stephanie Georgina; Alam, Rafiqul; Goodship, Allen E.; Dudhia, Jayesh

    2013-01-01

    Tendon injuries are a common age-related degenerative condition where current treatment strategies fail to restore functionality and normal quality of life. This disease also occurs naturally in horses, with many similarities to human tendinopathy making it an ideal large animal model for human disease. Regenerative approaches are increasingly used to improve outcome involving mesenchymal stem cells (MSCs), supported by clinical data where injection of autologous bone marrow derived MSCs (BM-MSCs) suspended in marrow supernatant into injured tendons has halved the re-injury rate in racehorses. We hypothesized that stem cell therapy induces a matrix more closely resembling normal tendon than the fibrous scar tissue formed by natural repair. Twelve horses with career-ending naturally-occurring superficial digital flexor tendon injury were allocated randomly to treatment and control groups. 1X107 autologous BM-MSCs suspended in 2 ml of marrow supernatant were implanted into the damaged tendon of the treated group. The control group received the same volume of saline. Following a 6 month exercise programme horses were euthanized and tendons assessed for structural stiffness by non-destructive mechanical testing and for morphological and molecular composition. BM-MSC treated tendons exhibited statistically significant improvements in key parameters compared to saline-injected control tendons towards that of normal tendons and those in the contralateral limbs. Specifically, treated tendons had lower structural stiffness (ptendon repair in enhancing normalisation of biomechanical, morphological, and compositional parameters. These data in natural disease, with no adverse findings, support the use of this treatment for human tendon injuries. PMID:24086616

  16. Characterization of Cellular and Molecular Heterogeneity of Bone Marrow Stromal Cells

    DEFF Research Database (Denmark)

    Elsafadi, Mona; Manikandan, Muthurangan; Atteya, Muhammad

    2016-01-01

    and osteoblast differentiation genes which included several homeobox genes: TBX15, HOXA2 and HOXA10, and IGF1, FGFR3, BMP6, MCAM, ITGA10, IGFBP5, and ALP. siRNA-based downregulation of the ALP gene in CL1 impaired osteoblastic and adipocytic differentiation. Our studies demonstrate the existence of molecular......Human bone marrow-derived stromal stem cells (hBMSC) exhibit multiple functions, including differentiation into skeletal cells (progenitor function), hematopoiesis support, and immune regulation (nonprogenitor function). We have previously demonstrated the presence of morphological and functional...... and functional heterogeneity in cultured hBMSC. ALP can be employed to identify osteoblastic and adipocytic progenitor cells in the heterogeneous hBMSC cultures...

  17. Diverse exocytic pathways for mast cell mediators.

    Science.gov (United States)

    Xu, Hao; Bin, Na-Ryum; Sugita, Shuzo

    2018-04-17

    Mast cells play pivotal roles in innate and adaptive immunities but are also culprits in allergy, autoimmunity, and cardiovascular diseases. Mast cells respond to environmental changes by initiating regulated exocytosis/secretion of various biologically active compounds called mediators (e.g. proteases, amines, and cytokines). Many of these mediators are stored in granules/lysosomes and rely on intricate degranulation processes for release. Mast cell stabilizers (e.g. sodium cromoglicate), which prevent such degranulation processes, have therefore been clinically employed to treat asthma and allergic rhinitis. However, it has become increasingly clear that different mast cell diseases often involve multiple mediators that rely on overlapping but distinct mechanisms for release. This review illustrates existing evidence that highlights the diverse exocytic pathways in mast cells. We also discuss strategies to delineate these pathways so as to identify unique molecular components which could serve as new drug targets for more effective and specific treatments against mast cell-related diseases. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. Immune regulation by mast cells

    NARCIS (Netherlands)

    Suurmond, Jolien

    2016-01-01

    The objective of this PhD thesis is to understand mast cell (and basophil) functions and their role in autoimmune disease by focusing on three main aims: 1. To characterize the interaction between innate and Fc receptor triggers on mast cell and basophil function 2. To analyze the interaction

  19. IgE by itself affects mature rat mast cell preformed and de novo-synthesized mediator release and amplifies mast cell migratory response.

    Directory of Open Access Journals (Sweden)

    Aleksandra Słodka

    Full Text Available BACKGROUND: Immunoglobulin E (IgE binds to high affinity receptor FcεRI numerously expressed on mast cells. Recent findings have revealed that IgE by itself may regulate various aspects of mast cell biology, however, detailed data is still limited. METHODOLOGY/FINDINGS: Here, we have examined the influence of IgE alone, used at different concentrations, on mast cell activity and releasability. For the study we have employed in vivo differentiated mature tissue mast cells isolated from rat peritoneal cavity. Mast cells were exposed to IgE alone and then the release of preformed and de novo-synthesized mediators, surface FcεRI expression and mast cell migratory response were assessed. IgE by itself was found to up-regulate FcεRI expression and activate mast cells to degranulation, as well as de novo synthesis and release of cysteinyl leukotrienes and TNF. We have provided evidence that IgE alone also amplified spontaneous and CCL5- or TNF-induced migration of mast cells. Importantly, IgE was effective only at concentrations ≥ 3 µg/mL. A molecular basis investigation using an array of specific inhibitors showed that Src kinases, PLC/PLA2, MAP kinases (ERK and p38 and PI3K were entirely or partially involved in IgE-induced mast cell response. Furthermore, IgE alone stimulated the phosphorylation of MAP kinases and PI3K in rat mast cells. CONCLUSION: Our results clearly demonstrated that IgE by itself, at higher concentrations, influences mast cell activity and releasability. As there are different conditions when the IgE level is raised it might be supposed that in vivo IgE is one of the important factors modulating mast cell biology within tissues.

  20. Biochemical and microscopic evidence for the internalization and degradation of heparin-containing mast cell granules by bovine endothelial cells

    International Nuclear Information System (INIS)

    Atkins, F.M.; Friedman, M.M.; Metcalfe, D.D.

    1985-01-01

    Incubation of [ 35 S]heparin-containing mast cell granules with cultured bovine endothelial cells was followed by the appearance of 35 S-granule-associated radioactivity within the endothelial cells and a decrease in radioactivity in the extracellular fluid. These changes occurred during the first 24 hours of incubation and suggested ingestion of the mast cell granules by the endothelial cells. Periodic electron microscopic examination of the monolayers confirmed this hypothesis by demonstrating apposition of the granules to the plasmalemma of endothelial cells, which was followed by the engulfment of the granules by cytoplasmic projections. Under light microscopic examination, mast cell granules within endothelial cells then appeared to undergo degradation. The degradation of [ 35 S]heparin in mast cell granules was demonstrated by a decrease in the amount of intracellular [ 35 S]heparin proteoglycan after 24 hours and the appearance of free [ 35 S]sulfate in the extracellular compartment. Intact endothelial cells were more efficient at degrading [ 35 S]heparin than were cell lysates or cell supernatants. These data provide evidence of the ability of endothelial cells to ingest mast cell granules and degrade native heparin that is presented as a part of the mast cell granule

  1. Elevated Systemic Levels of Eosinophil, Neutrophil, and Mast Cell Granular Proteins in Strongyloides Stercoralis Infection that Diminish following Treatment.

    Science.gov (United States)

    Rajamanickam, Anuradha; Munisankar, Saravanan; Bhootra, Yukthi; Dolla, Chandra Kumar; Nutman, Thomas B; Babu, Subash

    2018-01-01

    Infection with the helminth parasite Strongyloides stercoralis ( Ss ) is commonly clinically asymptomatic that is often accompanied by peripheral eosinophilia. Granulocytes are activated during helminth infection and can act as immune effector cells. Plasma levels of eosinophil and neutrophil granular proteins convey an indirect measure of granulocyte degranulation and are prominently augmented in numerous helminth-infected patients. In this study, we sought to examine the levels of eosinophil, neutrophil, and mast cell activation-associated granule proteins in asymptomatic Ss infection and to understand their kinetics following anthelmintic therapy. To this end, we measured the plasma levels of eosinophil cationic protein, eosinophil-derived neurotoxin, eosinophil peroxidase, eosinophil major basic protein, neutrophil elastase, myeloperoxidase, neutrophil proteinase-3, mast cell tryptase, leukotriene C4, and mast cell carboxypeptidase-A3 in individuals with asymptomatic Ss infection or without Ss infection [uninfected (UN)]. We also estimated the levels of all of these analytes in infected individuals following definitive treatment of Ss infection. We demonstrated that those infected individuals have significantly enhanced plasma levels of eosinophil cationic protein, eosinophil-derived neurotoxin, eosinophil peroxidase, eosinophil major basic protein, elastase, myeloperoxidase, mast cell tryptase, leukotriene C4, and carboxypeptidase-A3 compared to UN individuals. Following the treatment of Ss infection, each of these granulocyte-associated proteins drops significantly. Our data suggest that eosinophil, neutrophil, and mast cell activation may play a role in the response to Ss infection.

  2. Induction of dexamethasone (DM) of histidine decarboxylase (HDC) in mast cells

    International Nuclear Information System (INIS)

    Ichikawa, A.; Imanishi, N.; Nakayama, T.; Asano, M.; Tomita, K.

    1986-01-01

    Effects of glucocorticoids on HDC in cultured mouse mastocytoma P-815 cells and rat peritoneal mast cells (RPMC) were investigated to explore the role of steroids in inflammatory tissues. DM (1 nM to 10 μM) significantly elevated the histamine content and HDC activity of P-815 cells (37 0 C, 24 hrs), accompanying with a growth retardation of the cells by about 40%. In contrast to histamine, serotonin levels of P-815 cells were decreased by treatment with DM. However, DM had no significant effects on the activities of various enzymes other than HDC present in granules or membrane of P-815 cells. DM-induced increases of histamine and HDC activity were completely suppressed by the addition of cycloheximide and actinomycin D. P-815 cells were found to have the binding sites for 3 H-DM in the cytosol (Kd=2.2 nM, 450 sites/cell) and in the nuclei (Kd=0.1 nM, 39 sites/nucleus). Purified HDC from P-815 cells was identified to be an isozyme of mast cell type enzyme (MW=110K, pI=5.4). In contrast, the basal histamine level of cultured RPMC was not affected by treatment of DM, which suppressed histamine release activity induced by DNP-ascaris antiserum by 40%-50%. Histamine-depleted RPMC after degranulation partially recovered histamine level by 50%-60% in the presence of DM. These results showed that glucocorticoids specifically stimulated histamine formation with the increased de novo synthesis of HDC in mast cells

  3. Transmission Lines or Poles, Electric, MDTA High Mast lighting, High Mast Lighting along I 95, Maryland Transportation Authority High Mast Lighting poles, Published in 2011, 1:1200 (1in=100ft) scale, Maryland Transportation Authority.

    Data.gov (United States)

    NSGIC State | GIS Inventory — Transmission Lines or Poles, Electric dataset current as of 2011. MDTA High Mast lighting, High Mast Lighting along I 95, Maryland Transportation Authority High Mast...

  4. Cytoskeleton in Mast Cell Signaling

    Science.gov (United States)

    Dráber, Pavel; Sulimenko, Vadym; Dráberová, Eduarda

    2012-01-01

    Mast cell activation mediated by the high affinity receptor for IgE (FcεRI) is a key event in allergic response and inflammation. Other receptors on mast cells, as c-Kit for stem cell factor and G protein-coupled receptors (GPCRs) synergistically enhance the FcεRI-mediated release of inflammatory mediators. Activation of various signaling pathways in mast cells results in changes in cell morphology, adhesion to substrate, exocytosis, and migration. Reorganization of cytoskeleton is pivotal in all these processes. Cytoskeletal proteins also play an important role in initial stages of FcεRI and other surface receptors induced triggering. Highly dynamic microtubules formed by αβ-tubulin dimers as well as microfilaments build up from polymerized actin are affected in activated cells by kinases/phosphatases, Rho GTPases and changes in concentration of cytosolic Ca2+. Also important are nucleation proteins; the γ-tubulin complexes in case of microtubules or Arp 2/3 complex with its nucleation promoting factors and formins in case of microfilaments. The dynamic nature of microtubules and microfilaments in activated cells depends on many associated/regulatory proteins. Changes in rigidity of activated mast cells reflect changes in intermediate filaments build up from vimentin. This review offers a critical appraisal of current knowledge on the role of cytoskeleton in mast cells signaling. PMID:22654883

  5. Application of bone marrow and adipose-derived mesenchymal stem cells for testing the biocompatibility of metal-based biomaterials functionalized with ascorbic acid

    International Nuclear Information System (INIS)

    Marycz, Krzysztof; Śmieszek, Agnieszka; Grzesiak, Jakub; Donesz-Sikorska, Anna; Krzak-Roś, Justyna

    2013-01-01

    In this study, metal-based biomaterials were functionalized with ascorbic acid (LAA). Two types of substrates were used: austenitic steel 316L and titanium Ti6Al4V. Coatings were prepared with the sol–gel method and applied on metal surfaces using the dip-coating technique. Ascorbic acid was delivered with SiO 2 -coating at concentrations of 0.1 and 0.4 M. The morphology of the surfaces and coatings was determined using scanning electron microscope (SEM), whereas their elemental composition by SEM-EDX. Immobilization of ascorbic acid in the coatings was confirmed with Raman spectroscopy. The biocompatibility of the materials obtained was tested in vitro using both bone marrow- and adipose-derived mesenchymal stem cells (BMMSC and ADMSC, respectively). Proliferation rate and morphology of cells cultured in the presence of designed biomaterials were monitored after 24, 48, 120 and 168 h of propagation. The results obtained indicated that silica coatings doped with 0.4 M LAA had a positive effect on the proliferation rate of investigated cells, and in some cases on the growth pattern of culture. (paper)

  6. Cross-Linking Mast Cell Specific Gangliosides Stimulates the Release of Newly Formed Lipid Mediators and Newly Synthesized Cytokines

    Directory of Open Access Journals (Sweden)

    Edismauro Garcia Freitas Filho

    2016-01-01

    Full Text Available Mast cells are immunoregulatory cells that participate in inflammatory processes. Cross-linking mast cell specific GD1b derived gangliosides by mAbAA4 results in partial activation of mast cells without the release of preformed mediators. The present study examines the release of newly formed and newly synthesized mediators following ganglioside cross-linking. Cross-linking the gangliosides with mAbAA4 released the newly formed lipid mediators, prostaglandins D2 and E2, without release of leukotrienes B4 and C4. The effect of cross-linking these gangliosides on the activation of enzymes in the arachidonate cascade was then investigated. Ganglioside cross-linking resulted in phosphorylation of cytosolic phospholipase A2 and increased expression of cyclooxygenase-2. Translocation of 5-lipoxygenase from the cytosol to the nucleus was not induced by ganglioside cross-linking. Cross-linking of GD1b derived gangliosides also resulted in the release of the newly synthesized mediators, interleukin-4, interleukin-6, and TNF-α. The effect of cross-linking the gangliosides on the MAP kinase pathway was then investigated. Cross-linking the gangliosides induced the phosphorylation of ERK1/2, JNK1/2, and p38 as well as activating both NFκB and NFAT in a Syk-dependent manner. Therefore, cross-linking the mast cell specific GD1b derived gangliosides results in the activation of signaling pathways that culminate with the release of newly formed and newly synthesized mediators.

  7. Radiosensitivity of marrow stromal cells and the effect of some radioprotective agents

    International Nuclear Information System (INIS)

    Liu Shuhua

    1992-01-01

    The results showed that marrow stromal cells include fibroblasts, reticular cells, macrophages and adipocytes. The capability of the adherent layer derived from marrow cells of 2 mouse femurs to support hematopoietic stem cells was stronger than those of layers derived from 0.5 or 1 mouse femurs. The radiosensitivity of bone marrow stromal cells was lower than that of hematopoietic stem cells. The radioprotective effect of AET and PLP (polysaccharide of Lobaria Pulmonaria Hoffm) on the bone marrow stromal cells and their capability to support hematopoietic stem cells was clearly demonstrated

  8. Bone marrow-derived stromal cells are more beneficial cell sources for tooth regeneration compared with adipose-derived stromal cells.

    Science.gov (United States)

    Ye, Lanfeng; Chen, Lin; Feng, Fan; Cui, Junhui; Li, Kaide; Li, Zhiyong; Liu, Lei

    2015-10-01

    Tooth loss is presently a global epidemic and tooth regeneration is thought to be a feasible and ideal treatment approach. Choice of cell source is a primary concern in tooth regeneration. In this study, the odontogenic differentiation potential of two non-dental-derived stem cells, adipose-derived stromal cells (ADSCs) and bone marrow-derived stromal cells (BMSCs), were evaluated both in vitro and in vivo. ADSCs and BMSCs were induced in vitro in the presence of tooth germ cell-conditioned medium (TGC-CM) prior to implantation into the omentum majus of rats, in combination with inactivated dentin matrix (IDM). Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the mRNA expression levels of odontogenic-related genes. Immunofluorescence and immunohistochemical assays were used to detect the protein levels of odontogenic-specific genes, such as DSP and DMP-1 both in vitro and in vivo. The results suggest that both ADSCs and BMSCs have odontogenic differentiation potential. However, the odontogenic potential of BMSCs was greater compared with ADSCs, showing that BMSCs are a more appropriate cell source for tooth regeneration. © 2015 International Federation for Cell Biology.

  9. Co-cultured hBMSCs and HUVECs on human bio-derived bone scaffolds provide support for the long-term ex vivo culture of HSC/HPCs.

    Science.gov (United States)

    Huang, Xiaobing; Li, Chenglong; Zhu, Biao; Wang, Hailian; Luo, Xiangwei; Wei, Lingling

    2016-05-01

    In order to closely mimic a multi-cell state in hematopoietic stem/progenitor cells (HSC/HPCs) vascular niche, we co-cultured human bone marrow mesenchymal stem cells (hBMSCs) and human umbilical vein endothelial cells (HUVECs) without any cytokines as feeder cells and applied bio-derived bone from human femoral metaphyseal portion as scaffold to develop a new HSC/HPCs three-dimensional culture system (named 3D-Mix cultures). Scanning electron and fluorescent microscopy showed excellent biocompatibility of bio-derived bone to hBMSCs and HUVECs in vitro. Flow cytometry analysis and quantitative real-time polymerase chain reaction (qPCR) assay of p21 expression demonstrated that 3D-Mix could promote self-renewal and ex vivo expansion of HSCs/HPCs significantly higher than 3D-hMSC and 3D-HUVEC. Long-term culture initiating cell (LTC-IC) confirmed that 3D-Mix had the most powerful activity of maintaining multipotent differentiation of primitive cell subpopulation in HSCs. The nonobese diabetic/severe combined immunodeficiency (NOD/SCID) repopulating cell (SRC) assay demonstrated that 3D-Mix promoted the expansion of long-term primitive transplantable HSCs. qPCR of alkaline phosphatase (ALP) and osteocalcin (OC) demonstrated that HUVECs enhanced the early osteogenic differentiation of BMSCs. Western blot and qPCR revealed that HUVECs activated Wnt/β-catenin signaling in hBMSCs inducing Notch signal activation in HSCs. Our study indicated that interaction between hMSCs and HUVECs may have a critical role in to influent on HSCs/HPCs fate in vitro. These results demonstrated that the 3D-Mix have the ability to support the maintenance and proliferation of HSCs/HPCs in vitro. © 2016 Wiley Periodicals, Inc.

  10. The comparison of knee osteoarthritis treatment with single-dose bone marrow-derived mononuclear cells vs. hyaluronic acid injections

    Directory of Open Access Journals (Sweden)

    Valdis Goncars

    2017-01-01

    Conclusions: The intra-articular injection of bone marrow-derived mononuclear cells is a safe manipulation with no side effects during the 12-month period. This treatment provides statistically significant clinical improvement between the starting point and 1, 3, 6, and 12 months after. When compared to hyaluronic acid treatment, better pain relief in the long-term period of mononuclear cell group was observed.

  11. Rapid isolation of bone marrow mesenchymal stromal cells using integrated centrifuge-based technology.

    Science.gov (United States)

    Meppelink, Amanda M; Wang, Xing-Hua; Bradica, Gino; Barron, Kathryn; Hiltz, Kathleen; Liu, Xiang-Hong; Goldman, Scott M; Vacanti, Joseph P; Keating, Armand; Hoganson, David M

    2016-06-01

    The use of bone marrow-derived mesenchymal stromal cells (MSCs) in cell-based therapies is currently being developed for a number of diseases. Thus far, the clinical results have been inconclusive and variable, in part because of the variety of cell isolation procedures and culture conditions used in each study. A new isolation technique that streamlines the method of concentration and demands less time and attention could provide clinical and economic advantages compared with current methodologies. In this study, we evaluated the concentrating capability of an integrated centrifuge-based technology compared with standard Ficoll isolation. MSCs were concentrated from bone marrow aspirate using the new device and the Ficoll method. The isolation capabilities of the device and the growth characteristics, secretome production, and differentiation capacity of the derived cells were determined. The new MSC isolation device concentrated the bone marrow in 90 seconds and resulted in a mononuclear cell yield 10-fold higher and with a twofold increase in cell retention compared with Ficoll. The cells isolated using the device were shown to exhibit similar morphology and functional activity as assessed by growth curves and secretome production compared to the Ficoll-isolated cells. The surface marker and trilineage differentiation profile of the device-isolated cells was consistent with the known profile of MSCs. The faster time to isolation and greater cell yield of the integrated centrifuge-based technology may make this an improved approach for MSC isolation from bone marrow aspirates. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  12. Advances in the understanding and clinical management of mastocytosis and clonal mast cell activation syndromes [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    David González-de-Olano

    2016-11-01

    Full Text Available Clonal mast cell activation syndromes and indolent systemic mastocytosis without skin involvement are two emerging entities that sometimes might be clinically difficult to distinguish, and they involve a great challenge for the physician from both a diagnostic and a therapeutic point of view. Furthermore, final diagnosis of both entities requires a bone marrow study; it is recommended that this be done in reference centers. In this article, we address the current consensus and guidelines for the suspicion, diagnosis, classification, treatment, and management of these two entities.

  13. Biomarkers for evaluation of mast cell and basophil activation.

    Science.gov (United States)

    Kabashima, Kenji; Nakashima, Chisa; Nonomura, Yumi; Otsuka, Atsushi; Cardamone, Chiara; Parente, Roberta; De Feo, Giulia; Triggiani, Massimo

    2018-03-01

    Mast cells and basophils play a pathogenetic role in allergic, inflammatory, and autoimmune disorders. These cells have different development, anatomical location and life span but share many similarities in mechanisms of activation and type of mediators. Mediators secreted by mast cells and basophils correlate with clinical severity in asthma, chronic urticaria, anaphylaxis, and other diseases. Therefore, effective biomarkers to measure mast cell and basophil activation in vivo could potentially have high diagnostic and prognostic values. An ideal biomarker should be specific for mast cells or basophils, easily and reproducibly detectable in blood or biological fluids and should be metabolically stable. Markers of mast cell and basophil include molecules secreted by stimulated cells and surface molecules expressed upon activation. Some markers, such as histamine and lipid mediators are common to mast cells and basophils whereas others, such as tryptase and other proteases, are relatively specific for mast cells. The best surface markers of activation expressed on mast cells and basophils are CD63 and CD203. While these mediators and surface molecules have been associated to a variety of diseases, none of them fulfills requirements for an optimal biomarker and search for better indicators of mast cell/basophil activation in vivo is ongoing. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Subthreshold IKK activation modulates the effector functions of primary mast cells and allows specific targeting of transformed mast cells

    Science.gov (United States)

    Drube, Sebastian; Beyer, Mandy; Rothe, Mandy; Rabenhorst, Anja; Göpfert, Christiane; Meininger, Isabel; Diamanti, Michaela A.; Stegner, David; Häfner, Norman; Böttcher, Martin; Reinecke, Kirstin; Herdegen, Thomas; Greten, Florian R.; Nieswandt, Bernhard; Hartmann, Karin; Krämer, Oliver H.; Kamradt, Thomas

    2015-01-01

    Mast cell differentiation and proliferation depends on IL-3. IL-3 induces the activation of MAP-kinases and STATs and consequently induces proliferation and survival. Dysregulation of IL-3 signaling pathways also contribute to inflammation and tumorigenesis. We show here that IL-3 induces a SFK- and Ca2+-dependent activation of the inhibitor of κB kinases 2 (IKK2) which results in mast cell proliferation and survival but does not induce IκBα-degradation and NFκB activation. Therefore we propose the term “subthreshold IKK activation”. This subthreshold IKK activation also primes mast cells for enhanced responsiveness to IL-33R signaling. Consequently, co-stimulation with IL-3 and IL-33 increases IKK activation and massively enhances cytokine production induced by IL-33. We further reveal that in neoplastic mast cells expressing constitutively active Ras, subthreshold IKK activation is associated with uncontrolled proliferation. Consequently, pharmacological IKK inhibition reduces tumor growth selectively by inducing apoptosis in vivo. Together, subthreshold IKK activation is crucial to mediate the full IL-33-induced effector functions in primary mast cells and to mediate uncontrolled proliferation of neoplastic mast cells. Thus, IKK2 is a new molecularly defined target structure. PMID:25749030

  15. Elaeocarpusin Inhibits Mast Cell-Mediated Allergic Inflammation

    Directory of Open Access Journals (Sweden)

    Min-Jong Kim

    2018-06-01

    Full Text Available Mast cells are major effector cells for allergic responses that act by releasing inflammatory mediators, such as histamine and pro-inflammatory cytokines. Accordingly, different strategies have been pursued to develop anti-allergic and anti-inflammatory candidates by regulating the function of mast cells. The purpose of this study was to determine the effectiveness of elaeocarpusin (EL on mast cell-mediated allergic inflammation. We isolated EL from Elaeocarpus sylvestris L. (Elaeocarpaceae, which is known to possess anti-inflammatory properties. For this study, various sources of mast cells and mouse anaphylaxis models were used. EL suppressed the induction of markers for mast cell degranulation, such as histamine and β-hexosaminidase, by reducing intracellular calcium levels. Expression of pro-inflammatory cytokines, such as tumor necrosis factor-α and IL-4, was significantly decreased in activated mast cells by EL. This inhibitory effect was related to inhibition of the phosphorylation of Fyn, Lyn, Syk, and Akt, and the nuclear translocation of nuclear factor-κB. To confirm the effect of EL in vivo, immunoglobulin E-mediated passive cutaneous anaphylaxis (PCA and ovalbumin-induced active systemic anaphylaxis (ASA models were induced. EL reduced the PCA reaction in a dose dependent manner. In addition, EL attenuated ASA reactions such as hypothemia, histamine release, and IgE production. Our results suggest that EL is a potential therapeutic candidate for allergic inflammatory diseases that acts via the inhibition of mast cell degranulation and expression of proinflammatory cytokines.

  16. In vitro analysis of equine, bone marrow-derived mesenchymal stem cells demonstrates differences within age- and gender-matched horses.

    Science.gov (United States)

    Carter-Arnold, J L; Neilsen, N L; Amelse, L L; Odoi, A; Dhar, M S

    2014-09-01

    Stem cell therapies are used routinely in equine practice. Most published reports characterise stem cells derived from younger horses; however, middle-aged horses are often in athletic performance, and experience degenerative medical conditions. Thus, mesenchymal stem cells (MSCs) from this group should be investigated. To describe differences in in vitro adherence, proliferation and potential for differentiation of equine bone marrow-derived MSCs (equine BMMSCs) harvested from middle-aged (10-13 years old) female donors. Descriptive study of stem cell characteristics. Equine BMMSCs from 6 horses were cultured in vitro and evaluated for viability, proliferation, osteogenesis, chondrogenesis, adipogenesis, cluster-of-differentiation markers and gene expression. Equine BMMSCs from all 6 donors demonstrated fibroblastic, cellular morphology, adherence to plastic and expression of cluster-of-differentiation markers. They varied in their rate of proliferation and trilineage differentiation. The equine BMMSCs of one of 6 donors demonstrated a higher rate of proliferation, enhanced ability for cell passaging and a more robust in vitro differentiation. Comparatively, equine BMMSCs from 2 donors demonstrated a lower rate of proliferation and lack of osteogenic and chondrogenic differentiation. The results of this study confirm that donor-to-donor variation in equine BMMSCs exists and this variation can be documented using in vitro assays. Subjective assessment suggests that the rate of proliferation tends to correlate with differentiation potential. © 2013 EVJ Ltd.

  17. Controversial role of mast cells in skin cancers.

    Science.gov (United States)

    Varricchi, Gilda; Galdiero, Maria R; Marone, Giancarlo; Granata, Francescopaolo; Borriello, Francesco; Marone, Gianni

    2017-01-01

    Cancer development is a multistep process characterized by genetic and epigenetic alterations during tumor initiation and progression. The stromal microenvironment can promote tumor development. Mast cells, widely distributed throughout all tissues, are a stromal component of many solid and haematologic tumors. Mast cells can be found in human and mouse models of skin cancers such as melanoma, basal and squamous cell carcinomas, primary cutaneous lymphomas, haemangiomas and Merkel cell carcinoma. However, human and animal studies addressing potential functions of mast cells and their mediators in skin cancers have provided conflicting results. In several studies, mast cells play a pro-tumorigenic role, whereas in others, they play an anti-tumorigenic role. Other studies have failed to demonstrate a clear role for tumor-associated mast cells. Many unanswered questions need to be addressed before we understand whether tumor-associated mast cells are adversaries, allies or simply innocent bystanders in different types and subtypes of skin cancers. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Phenotypic and functional properties of murine thymocytes. II. Quantitation of host- and donor-derived cytolytic T lymphocyte precursors in regenerating radiation bone marrow chimeras

    International Nuclear Information System (INIS)

    Ceredig, R.; McDonald, H.R.

    1982-01-01

    Thymocytes from radiation bone marrow chimeras, in which donor bone marrow and irradiated recipient differed at the Thy-1 locus, were stained by indirect immunofluorescence with monoclonal anti-Thy-1 antibodies and analyzed by flow microfluorometry (FMF). Kinetic studies indicated an early appearance of host-derived (CBA, Thy-1.2 + ) thymocytes, which reaches maximum number of 10 to 20 x 10 6 cells at 12 to 16 days after bone marrow reconstitution. Donor-derived (AKR, Thy-1.1 + ) cells were not detectable until 10 to 12 days after reconstitution; subsequently, they increased exponentially in number until 28 days, when they accounted for essentially all cells in the thymus (50 x 10 6 ). Concomitant with the appearance and disappearance of host-derived cells was a change in their Thy-1 surface phenotype. In particular, the proportion of host cells having a ''mature'' phenotype (weakly Thy-1.2 staining) increased progressively with time after irradiation. Functional studies using a sensitive mixed leukocyte microculture system to quantitate cytolytic T lymphocyte precursors (CTL-P) were also carried out in regenerating chimeric thymuses. Initially, the regenerating thymus contained few CTL-P, but by 4 wk after reconstitution, frequencies similar to control adult thymuses were obtained. Analysis of the CTL-P content of host and donor-derived subpopulations, separated either by appropriate anti-Thy-1 antibody plus complement or by direct cell sorting, indicated that both host- and donor-derived cells contained appreciable numbers of CTL-P. Furthermore, increases in CTL-P frequency of both host and donor subpopulations correlated with changes in their surface Thy-1 phenotype

  19. Mast cells and atopic dermatitis. Stereological quantification of mast cells in atopic dermatitis and normal human skin

    DEFF Research Database (Denmark)

    Damsgaard, T E; Olesen, A B; Sørensen, Flemming Brandt

    1997-01-01

    Stereological quantification of mast cell numbers was applied to sections of punch biopsies from lesional and nonlesional skin of atopic dermatitis patients and skin of healthy volunteers. We also investigated whether the method of staining and/or the fixative influenced the results...... of the determination of the mast cell profile numbers. The punch biopsies were taken from the same four locations in both atopic dermatitis patients and normal individuals. The locations were the scalp, neck and flexure of the elbow (lesional skin), and nates (nonlesional skin). Clinical scoring was carried out...... yielded the following results: (1) in atopic dermatitis lesional skin an increased number of mast cell profiles was found as compared with nonlesional skin, (2) comparing atopic dermatitis skin with normal skin, a significantly increased number of mast cell profiles per millimetre squared was found...

  20. The MAST improved divertor

    International Nuclear Information System (INIS)

    Darke, A.C.; Hayward, R.J.; Counsell, G.F.; Hawkins, K.

    2005-01-01

    The Mega Amp Spherical Tokamak (MAST) at Culham is one of the leading world machines studying the spherical tokamak (ST) concept. At the time of the initial construction in 1998 little was known about the sort of divertor structures that would be required in an ST. The machine was therefore provided with relatively rudimentary structures that were designed mostly to protect important components from the hot plasma. While these have served the machine well it was accepted that they might not be suitable when operating MAST to its full potential. The years of experience of operating MAST have led to the design, manufacture and now installation of a new divertor, the MAST improved divertor (MID), that should be able to cope with the full performance of the machine. The design is based on imbricated (fan-shaped) disks of tiles at the top and bottom of the machine for the outer strike points, giving an excellent compromise between power handling and diagnostic access, with substantial new centre column strike point armour and a shaped plate in between. High purity graphite is chosen as the plasma facing material in preference to CFC since in this case it has a better balance of performance and cost. The lower imbricated disk is insulated in alternate sectors for studies of divertor biasing and extensive diagnostics and additional inboard gas injection are included

  1. Therapeutic doses of doxorubicin induce premature senescence of human mesenchymal stem cells derived from menstrual blood, bone marrow and adipose tissue.

    Science.gov (United States)

    Kozhukharova, Irina; Zemelko, Victoria; Kovaleva, Zoya; Alekseenko, Larisa; Lyublinskaya, Olga; Nikolsky, Nikolay

    2018-03-01

    Doxorubicin (Dox) is an effective anticancer drug with known activity against a wide spectrum of malignancies, hematologic malignancies in particular. Despite extensive clinical use, the mechanisms of its side effects and negative action on normal cells remain under study. The aim of this study was to investigate the effect of Dox on cultured human mesenchymal stem cells (MSCs) derived from menstrual blood (eMSCs), bone marrow (BMSCs) and adipose tissue (AMSCs). Dox treatment in high doses decreased the survival of MSCs in a dose-dependent manner. Clinically relevant low doses of Dox induced premature senescence of eMSCs, BMSCs and AMSCs, but did not kill the cells. Dox caused cell cycle arrest and formation of γ-H2AX foci, and increased the number of SA-β-gal-positive cells. BMSCs entered premature senescence earlier than other MSCs. It has been reported that neural-like cells differentiated from MSCs of various origins are more sensitive to Dox than their parent cells. Dox-treated differentiated MSCs exhibited lower viability and earlier generation of γ-H2AX foci. Dox administration inhibited secretory activity in neural-like cells. These findings suggest that a clinically relevant Dox dose damages cultured MSCs, inducing their premature senescence. MSCs are more resistant to this damage than differentiated cells.

  2. Widespread immunological functions of mast cells: fact or fiction?

    Science.gov (United States)

    Rodewald, Hans-Reimer; Feyerabend, Thorsten B

    2012-07-27

    Immunological functions of mast cells are currently considered to be much broader than the original role of mast cells in IgE-driven allergic disease. The spectrum of proposed mast cell functions includes areas as diverse as the regulation of innate and adaptive immune responses, protective immunity against viral, microbial, and parasitic pathogens, autoimmunity, tolerance to graft rejection, promotion of or protection from cancer, wound healing, angiogenesis, cardiovascular diseases, diabetes, obesity, and others. The vast majority of in vivo mast cell data have been based on mast cell-deficient Kit mutant mice. However, work in new mouse mutants with unperturbed Kit function, which have a surprisingly normal immune system, has failed to corroborate some key immunological aspects, formerly attributed to mast cells. Here, we consider the implications of these recent developments for the state of the field as well as for future work, aiming at deciphering the physiological functions of mast cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Less contribution of mast cells to the progression of renal fibrosis in Rat kidneys with chronic renal failure.

    Science.gov (United States)

    Baba, Asuka; Tachi, Masahiro; Ejima, Yutaka; Endo, Yasuhiro; Toyama, Hiroaki; Saito, Kazutomo; Abe, Nozomu; Yamauchi, Masanori; Miura, Chieko; Kazama, Itsuro

    2017-02-01

    Chronic renal failure (CRF) is histopathologically characterized by tubulointerstitial fibrosis in addition to glomerulosclerosis. Although mast cells are known to infiltrate into the kidneys with chronic inflammation, we know little about their contribution to the pathogenesis of renal fibrosis associated with CRF. The aim of this study was to reveal the involvement of mast cells in the progression of renal fibrosis in CRF. Using a rat model with CRF resulting from 5/6 nephrectomy, we examined the histopathological features of the kidneys and the infiltration of mast cells into the renal interstitium. By treating the rats with a potent mast cell stabilizer, tranilast, we also examined the involvement of mast cells in the progression of renal fibrosis associated with CRF. The CRF rat kidneys were characterized by the wide staining of collagen III and increased number of myofibroblasts, indicating the progression of renal fibrosis. Compared to T-lymphocytes or macrophages, the number of tryptase-positive mast cells was much smaller within the fibrotic kidneys and they did not proliferate in situ. The mRNA expression of mast cell-derived fibroblast-activating factors was not increased in the renal cortex isolated from CRF rat kidneys. Treatment with tranilast did not suppress the progression of renal fibrosis, nor did it ameliorate the progression of glomerulosclerosis and the interstitial proliferation of inflammatory leukocytes. This study demonstrated for the first time that mast cells are neither increased nor activated in the fibrotic kidneys of CRF rats. Compared to T-lymphocytes or macrophages that proliferate in situ within the fibrotic kidneys, mast cells were less likely to contribute to the progression of renal fibrosis associated with CRF. © 2016 Asian Pacific Society of Nephrology.

  4. Evaluation of Functional Marrow Irradiation Based on Skeletal Marrow Composition Obtained Using Dual-Energy Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Magome, Taiki [Department of Radiological Sciences, Faculty of Health Sciences, Komazawa University, Tokyo (Japan); Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota (United States); Department of Radiology, The University of Tokyo Hospital, Tokyo (Japan); Froelich, Jerry [Department of Radiology, University of Minnesota, Minneapolis, Minnesota (United States); Takahashi, Yutaka [Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota (United States); Department of Radiation Oncology, Osaka University, Osaka (Japan); Arentsen, Luke [Department of Therapeutic Radiology, University of Minnesota, Minneapolis, Minnesota (United States); Holtan, Shernan; Verneris, Michael R. [Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota (United States); Brown, Keenan [Mindways Software Inc, Austin, Texas (United States); Haga, Akihiro; Nakagawa, Keiichi [Department of Radiology, The University of Tokyo Hospital, Tokyo (Japan); Holter Chakrabarty, Jennifer L. [College of Medicine, Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Giebel, Sebastian [Department of Bone Marrow Transplantation, Comprehensive Cancer Center M. Curie-Sklodowska Memorial Institute, Gliwice (Poland); Wong, Jeffrey [Department of Radiation Oncology, Beckman Research Institute, City of Hope, Duarte, California (United States); Dusenbery, Kathryn [Department of Therapeutic Radiology, University of Minnesota, Minneapolis, Minnesota (United States); Storme, Guy [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Brussels (Belgium); Hui, Susanta K., E-mail: shui@coh.org [Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota (United States); Department of Therapeutic Radiology, University of Minnesota, Minneapolis, Minnesota (United States); Department of Radiation Oncology, Beckman Research Institute, City of Hope, Duarte, California (United States)

    2016-11-01

    Purpose: To develop an imaging method to characterize and map marrow composition in the entire skeletal system, and to simulate differential targeted marrow irradiation based on marrow composition. Methods and Materials: Whole-body dual energy computed tomography (DECT) images of cadavers and leukemia patients were acquired, segmented to separate bone marrow components, namely, bone, red marrow (RM), and yellow marrow (YM). DECT-derived marrow fat fraction was validated using histology of lumbar vertebrae obtained from cadavers. The fractions of RM (RMF = RM/total marrow) and YMF were calculated in each skeletal region to assess the correlation of marrow composition with sites and ages. Treatment planning was simulated to target irradiation differentially at a higher dose (18 Gy) to either RM or YM and a lower dose (12 Gy) to the rest of the skeleton. Results: A significant correlation between fat fractions obtained from DECT and cadaver histology samples was observed (r=0.861, P<.0001, Pearson). The RMF decreased in the head, neck, and chest was significantly inversely correlated with age but did not show any significant age-related changes in the abdomen and pelvis regions. Conformity of radiation to targets (RM, YM) was significantly dependent on skeletal sites. The radiation exposure was significantly reduced (P<.05, t test) to organs at risk (OARs) in RM and YM irradiation compared with standard total marrow irradiation (TMI). Conclusions: Whole-body DECT offers a new imaging technique to visualize and measure skeletal-wide marrow composition. The DECT-based treatment planning offers volumetric and site-specific precise radiation dosimetry of RM and YM, which varies with aging. Our proposed method could be used as a functional compartment of TMI for further targeted radiation to specific bone marrow environment, dose escalation, reduction of doses to OARs, or a combination of these factors.

  5. Mast cells in the sheep, hedgehog and rat forebrain

    Science.gov (United States)

    MICHALOUDI, HELEN C.; PAPADOPOULOS, GEORGIOS C.

    1999-01-01

    The study was designed to reveal the distribution of various mast cell types in the forebrain of the adult sheep, hedgehog and rat. Based on their histochemical and immunocytochemical characteristics, mast cells were categorised as (1) connective tissue-type mast cells, staining metachromatically purple with the toluidine blue method, or pale red with the Alcian blue/safranin method, (2) mucosal-type or immature mast cells staining blue with the Alcian blue/safranin method and (3) serotonin immunopositive mast cells. All 3 types of brain mast cells in all species studied were located in both white and grey matter, often associated with intraparenchymal blood vessels. Their distribution pattern exhibited interspecies differences, while their number varied considerably not only between species but also between individuals of each species. A distributional left-right asymmetry, with more cells present on the left side, was observed in all species studied but it was most prominent in the sheep brain. In the sheep, mast cells were abundantly distributed in forebrain areas, while in the hedgehog and the rat forebrain, mast cells were less widely distributed and were relatively or substantially fewer in number respectively. A limited number of brain mast cells, in all 3 species, but primarily in the rat, were found to react both immunocytochemically to 5-HT antibody and histochemically with Alcian blue/safranin staining. PMID:10634696

  6. Television alignment of mast assembly in refueling of nuclear reactor

    International Nuclear Information System (INIS)

    Kaufmann, J.W.; Swidwa, K.J.; Hornak, L.P.

    1990-01-01

    This patent describes the refueling of a nuclear reactor having component assemblies of at least one type and being disposed in a pit in a containment under water, the refueling being carried out with a mast movable axially and circumferentially for raising and lowering the component assemblies, a mechanism, connected to an end of the mast, cooperative with the mast, for engaging a component assembly to be raised by the mast, a television camera, and a television monitor having an image-reference indication, the mechanism being connected to the mast movable with the mast; the method of positioning the mechanism to engage the component assembly appropriately for raising and lowering. It comprises: mounting the camera on the mechanism movable therewith, suspending the mast in the water of the pit with the mechanism extending from the end of the mast in the pit in position to engage the component assembly

  7. A Study on Assessment of Mast Cells in Oral Squamous Cell ...

    African Journals Online (AJOL)

    molecules, immune response receptors and other surface molecules, which ... treatment and that inhibiting mast cell function may inhibit tumor growth. Keywords: Mast .... Discussion. Mast cells have ... suggests that degranulation is critical in the ability of mast cells to enhance tumor ... Deeper understanding of mast cell ...

  8. Extracellular vesicle-derived protein from Bifidobacterium longum alleviates food allergy through mast cell suppression.

    Science.gov (United States)

    Kim, Jung-Hwan; Jeun, Eun-Ji; Hong, Chun-Pyo; Kim, Seong-Hoon; Jang, Min Seong; Lee, Eun-Jung; Moon, Sook Jin; Yun, Chang Ho; Im, Sin-Hyeog; Jeong, Seok-Geun; Park, Beom-Young; Kim, Kyong-Tai; Seoh, Ju-Young; Kim, Yoon-Keun; Oh, Sung-Jong; Ham, Jun-Sang; Yang, Bo-Gie; Jang, Myoung Ho

    2016-02-01

    The incidence of food allergies has increased dramatically during the last decade. Recently, probiotics have been studied for the prevention and treatment of allergic disease. We examined whether Bifidobacterium longum KACC 91563 and Enterococcus faecalis KACC 91532 have the capacity to suppress food allergies. B longum KACC 91563 and E faecalis KACC 91532 were administered to BALB/c wild-type mice, in which food allergy was induced by using ovalbumin and alum. Food allergy symptoms and various immune responses were assessed. B longum KACC 91563, but not E faecalis KACC 91532, alleviated food allergy symptoms. Extracellular vesicles of B longum KACC 91563 bound specifically to mast cells and induced apoptosis without affecting T-cell immune responses. Furthermore, injection of family 5 extracellular solute-binding protein, a main component of extracellular vesicles, into mice markedly reduced the occurrence of diarrhea in a mouse food allergy model. B longum KACC 91563 induces apoptosis of mast cells specifically and alleviates food allergy symptoms. Accordingly, B longum KACC 91563 and family 5 extracellular solute-binding protein exhibit potential as therapeutic approaches for food allergies. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  9. Effects of extracellular matrix proteins on macrophage differentiation, growth, and function: comparison of liquid and agar culture systems

    Science.gov (United States)

    Armstrong, J. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Both spaceflight and skeletal unloading suppress the haematopoietic differentiation of macrophages (Sonnenfeld et al., Aviat. Space Environ. Med., 61:648-653, 1990; Armstrong et al., J. Appl. Physiol., 75:2734-2739, 1993). The mechanism behind this reduction in haematopoiesis has yet to be elucidated. However, changes in bone marrow extracellular matrix (ECM) may be involved. To further understand the role of ECM products in macrophage differentiation, we have performed experiments evaluating the effects of fibronectin, laminin, collagen type I, and collagen type IV on macrophage development and function. Bone marrow-derived macrophages cultured on four different ECM substrates in liquid culture medium showed less growth than those cultured on plastic. Significant morphological differences were seen on each of the substrates used. Phenotypically and functionally, as measured by class II major histocompatibility molecule (MHCII) expression, MAC-2 expression, and the secretion of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha), these macrophages were similar. In contrast, bone marrow-derived macrophages cultured in suspension, using agar, showed no difference in growth when exposed to ECM proteins. However, IL-6 and TNF-alpha secretion was affected by fibronectin, laminin, collagen type I, and collagen type IV in a concentration-dependent manner. We conclude that the ECM products fibronectin, laminin, collagen type I, and collagen type IV have profound effects on macrophage development and function. Additionally, we suggest that an ECM-supplemented agar culture system provides an environment more analogous to in vivo bone marrow than does a traditional liquid culture system.

  10. Immunophenotypic and Ultrastructural Analysis of Mast Cells in Hermansky-Pudlak Syndrome Type-1: A Possible Connection to Pulmonary Fibrosis.

    Directory of Open Access Journals (Sweden)

    Arnold S Kirshenbaum

    Full Text Available Hermansky-Pudlak Syndrome type-1 (HPS-1 is an autosomal recessive disorder caused by mutations in HPS1 which result in reduced expression of the HPS-1 protein, defective lysosome-related organelle (LRO transport and absence of platelet delta granules. Patients with HPS-1 exhibit oculocutaneous albinism, colitis, bleeding and pulmonary fibrosis postulated to result from a dysregulated immune response. The effect of the HPS1 mutation on human mast cells (HuMCs is unknown. Since HuMC granules classify as LROs along with platelet granules and melanosomes, we set out to determine if HPS-1 cutaneous and CD34+ culture-derived HuMCs have distinct granular and cellular characteristics. Cutaneous and cultured CD34+-derived HuMCs from HPS-1 patients were compared with normal cutaneous and control HuMCs, respectively, for any morphological and functional differences. One cytokine-independent HPS-1 culture was expanded, cloned, designated the HP proMastocyte (HPM cell line and characterized. HPS-1 and idiopathic pulmonary fibrosis (IPF alveolar interstitium showed numerous HuMCs; HPS-1 dermal mast cells exhibited abnormal granules when compared to healthy controls. HPS-1 HuMCs showed increased CD63, CD203c and reduced mediator release following FcɛRI aggregation when compared with normal HuMCs. HPM cells also had the duplication defect, expressed FcɛRI and intracytoplasmic proteases and exhibited less mediator release following FcɛRI aggregation. HPM cells constitutively released IL-6, which was elevated in patients' serum, in addition to IL-8, fibronectin-1 (FN-1 and galectin-3 (LGALS3. Transduction with HPS1 rescued the abnormal HPM morphology, cytokine and matrix secretion. Microarray analysis of HPS-1 HuMCs and non-transduced HPM cells confirmed upregulation of differentially expressed genes involved in fibrogenesis and degranulation. Cultured HPS-1 HuMCs appear activated as evidenced by surface activation marker expression, a decrease in mediator

  11. Mobilization of endogenous bone marrow derived endothelial progenitor cells and therapeutic potential of parathyroid hormone after ischemic stroke in mice.

    Directory of Open Access Journals (Sweden)

    Li-Li Wang

    Full Text Available Stroke is a major neurovascular disorder threatening human life and health. Very limited clinical treatments are currently available for stroke patients. Stem cell transplantation has shown promising potential as a regenerative treatment after ischemic stroke. The present investigation explores a new concept of mobilizing endogenous stem cells/progenitor cells from the bone marrow using a parathyroid hormone (PTH therapy after ischemic stroke in adult mice. PTH 1-34 (80 µg/kg, i.p. was administered 1 hour after focal ischemia and then daily for 6 consecutive days. After 6 days of PTH treatment, there was a significant increase in bone marrow derived CD-34/Fetal liver kinase-1 (Flk-1 positive endothelial progenitor cells (EPCs in the peripheral blood. PTH treatment significantly increased the expression of trophic/regenerative factors including VEGF, SDF-1, BDNF and Tie-1 in the brain peri-infarct region. Angiogenesis, assessed by co-labeled Glut-1 and BrdU vessels, was significantly increased in PTH-treated ischemic brain compared to vehicle controls. PTH treatment also promoted neuroblast migration from the subventricular zone (SVZ and increased the number of newly formed neurons in the peri-infarct cortex. PTH-treated mice showed significantly better sensorimotor functional recovery compared to stroke controls. Our data suggests that PTH therapy improves endogenous repair mechanisms after ischemic stroke with functional benefits. Mobilizing endogenous bone marrow-derived stem cells/progenitor cells using PTH and other mobilizers appears an effective and feasible regenerative treatment after ischemic stroke.

  12. The validity of the Michigan Alcoholism Screening Test (MAST)

    DEFF Research Database (Denmark)

    Storgaard, H; Nielsen, S D; Gluud, C

    1994-01-01

    This review examines the validity of the Michigan Alcoholism Screening Test (MAST) as a screening instrument for alcohol problems. Studies that compare the MAST-questionnaire with other defined diagnostic criteria of alcohol problems were retrieved through MEDLINE and a cross-bibliographic check....... A total of 20 validity studies were included. The studies varied considerably regarding the prevalence of alcohol problems, the diagnostic criteria, and the examined patient categories. The MAST compared with other diagnostic criteria of alcohol problems gave validity measures with the following span...... and the specificities show substantial variations. The variables that seem to have the largest influence on the PVpos seem to be the prevalence of alcohol problems, the diagnostic method against which the MAST-questionnaire is validated, and the populations on which the MAST is applied. The MAST should in the future...

  13. Influence of bone marrow-derived mesenchymal stem cells pre-implantation differentiation approach on periodontal regeneration in vivo.

    Science.gov (United States)

    Cai, Xinjie; Yang, Fang; Yan, Xiangzhen; Yang, Wanxun; Yu, Na; Oortgiesen, Daniel A W; Wang, Yining; Jansen, John A; Walboomers, X Frank

    2015-04-01

    The implantation of bone marrow-derived mesenchymal stem cells (MSCs) has previously been shown successful to achieve periodontal regeneration. However, the preferred pre-implantation differentiation strategy (e.g. maintenance of stemness, osteogenic or chondrogenic induction) to obtain optimal periodontal regeneration is still unknown. This in vivo study explored which differentiation approach is most suitable for periodontal regeneration. Mesenchymal stem cells were obtained from Fischer rats and seeded onto poly(lactic-co-glycolic acid)/poly(ɛ-caprolactone) electrospun scaffolds, and then pre-cultured under different in vitro conditions: (i) retention of multilineage differentiation potential; (ii) osteogenic differentiation approach; and (iii) chondrogenic differentiation approach. Subsequently, the cell-scaffold constructs were implanted into experimental periodontal defects of Fischer rats, with empty scaffolds as controls. After 6 weeks of implantation, histomorphometrical analyses were applied to evaluate the regenerated periodontal tissues. The chondrogenic differentiation approach showed regeneration of alveolar bone and ligament tissues. The retention of multilineage differentiation potential supported only ligament regeneration, while the osteogenic differentiation approach boosted alveolar bone regeneration. Chondrogenic differentiation of MSCs before implantation is a useful strategy for regeneration of alveolar bone and periodontal ligament, in the currently used rat model. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. SENDS criteria from the diversification of MAST procedures. Implementation of preoperative simulation; SENDS-Kriterien als Entwicklungstheorem der MAST-Prozeduren. Einfuehrung praeoperativer Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Rieger, B. [Universitaetsklinikum Carl Gustav Carus, Klinik und Poliklinik fuer Neurochirurgie, Dresden (Germany)

    2015-10-15

    Minimal access spinal technologies (MAST) lead to a diversification of surgical procedures, which requires careful selection of the procedure and outcome monitoring. For a rational selection of the procedure simulation, endoscopy, navigation, decompression and stabilization (SENDS) criteria can be derived from the development of the MAST procedures. Preoperative simulation has diagnostic and therapeutic values. The SENDS criteria can be verified indirectly via outcome control. Biomechanically meaningful diagnostic x-rays of the spinal segment to be surgically treated are currently carried out with the patient in inclination and reclination. Software-related preoperative simulation based on these x-ray images facilitates the selection and implementation of the MAST procedure. For preoperative simulation motion shots are needed in inclination, neutral position and reclination and the dimensions can be obtained using an x-ray ball or a computed tomography (CT) scan. The SENDS criteria are useful because established procedures based on these criteria reach a comparable outcome. Preoperative simulation appears to be a useful selection criterion. Preoperatively it is necessary to collate patient and segment information in order to provide each patient with individualized treatment. So far there is no evidence for a better outcome after preoperative simulation but a reduction of surgery time and intraoperative radiation exposure could already be demonstrated. Minimally invasive methods should be preferred if there is a comparable outcome. The establishment of new procedures has to be accompanied by the maintenance of a spine register. Minimally invasive surgical procedures should be individualized for each patient and segment. Mobility X-ray images should be prepared for use with the preoperative simulation as the information content significantly increases with respect to the MAST procedure. (orig.) [German] Die Minimal Access Spine Technology (MAST) fuehrt zur

  15. The Osteogenic Properties of Multipotent Mesenchymal Stromal Cells in Cultures on TiO2 Sol-Gel-Derived Biomaterial

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2015-01-01

    Full Text Available The biocompatibility of the bone implants is a crucial factor determining the successful tissue regeneration. The aim of this work was to compare cellular behavior and osteogenic properties of rat adipose-derived multipotent stromal cells (ASCs and bone marrow multipotent stromal cells (BMSCs cultured on metallic substrate covered with TiO2 sol-gel-derived nanolayer. The morphology, proliferation rate, and osteogenic differentiation potential of both ASCs and BMSCs propagated on the biomaterials were examined. The potential for osteogenic differentiation of ASCs and BMSCs was determined based on the presence of specific markers of osteogenesis, that is, alkaline phosphatase (ALP, osteopontin (OPN, and osteocalcin (OCL. Additionally, the concentration of calcium and phosphorus in extracellular matrix was determined using energy-dispersive X-ray spectroscopy (SEM-EDX. Obtained results showed that TiO2 layer influenced proliferation activity of ASCs, which manifested by shortening of population doubling time and increase of OPN secretion. However, characteristic features of cells morphology and growth pattern of cultures prompted us to conclude that ultrathin TiO2 layer might also enhance osteodifferentiation of BMSCs. Therefore in our opinion, both populations of MSCs should be used for biological evaluation of biomaterials compatibility, such results may enhance the area of investigations related to regenerative medicine.

  16. Genetic control of eosinophilia in mice: gene(s) expressed in bone marrow-derived cells control high responsiveness

    International Nuclear Information System (INIS)

    Vadas, M.A.

    1982-01-01

    A heterogeneity in the capacity of strains of mice to mount eosinophilia is described. BALB/c and C3H are eosinophil high responder strains (EO-HR) and CBA and A/J are eosinophil low responder strains (EO-LR), judged by the response of blood eosinophils to Ascaris suum, and the response of blood, bone marrow, and spleen eosinophils to keyhole limpet hemocyanin given 2 days after 150 mg/kg cyclophosphamide. Some of the gene(s) for high responsiveness appear to be dominant because (EO-HR x EO-LR)F 1 mice were intermediate to high responders. This gene is expressed in bone marrow-derived cells because radiation chimeras of the type EO-HR→F 1 were high responders and EO-LR→F 1 were low responders. This description of a genetic control of eosinophilia in mice may be useful in understanding the role of this cell in parasite immunity and allergy

  17. Identification of subpopulations in mesenchymal stem cell-like cultures from human umbilical cord

    Directory of Open Access Journals (Sweden)

    Majore Ingrida

    2009-03-01

    Full Text Available Abstract Background A variety of cell types can be identified in the adherent fraction of bone marrow mononuclear cells including more primitive and embryonic-like stem cells, mesenchymal stem cells (MSC, lineage-committed progenitors as well as mature cells such as osteoblasts and fibroblasts. Different methods are described for the isolation of single bone marrow stem cell subpopulations – beginning from ordinary size sieving, long term cultivation under specific conditions to FACS-based approaches. Besides bone marrow-derived subpopulations, also other tissues including human umbilical cord (UC have been recently suggested to provide a potential source for MSC. Although of clinical importance, these UC-derived MSC populations remain to be characterized. It was thus the aim of the present study to identify possible subpopulations in cultures of MSC-like cells obtained from UC. We used counterflow centrifugal elutriation (CCE as a novel strategy to successfully address this question. Results UC-derived primary cells were separated by CCE and revealed differentially-sized populations in the fractions. Thus, a subpopulation with an average diameter of about 11 μm and a small flat cell body was compared to a large sized subpopulation of about 19 μm average diameter. Flow cytometric analysis revealed the expression of certain MSC stem cell markers including CD44, CD73, CD90 and CD105, respectively, although these markers were expressed at higher levels in the small-sized population. Moreover, this small-sized subpopulation exhibited a higher proliferative capacity as compared to the total UC-derived primary cultures and the large-sized cells and demonstrated a reduced amount of aging cells. Conclusion Using the CCE technique, we were the first to demonstrate a subpopulation of small-sized UC-derived primary cells carrying MSC-like characteristics according to the presence of various mesenchymal stem cell markers. This is also supported by the

  18. Stereological quantification of mast cells in human synovium

    DEFF Research Database (Denmark)

    Damsgaard, T E; Sørensen, Flemming Brandt; Herlin, T

    1999-01-01

    Mast cells participate in both the acute allergic reaction as well as in chronic inflammatory diseases. Earlier studies have revealed divergent results regarding the quantification of mast cells in the human synovium. The aim of the present study was therefore to quantify these cells in the human...... synovium, using stereological techniques. Different methods of staining and quantification have previously been used for mast cell quantification in human synovium. Stereological techniques provide precise and unbiased information on the number of cell profiles in two-dimensional tissue sections of......, in this case, human synovium. In 10 patients suffering from osteoarthritis a median of 3.6 mast cells/mm2 synovial membrane was found. The total number of cells (synoviocytes, fibroblasts, lymphocytes, leukocytes) present was 395.9 cells/mm2 (median). The mast cells constituted 0.8% of all the cell profiles...

  19. Dental pulp-derived stromal cells exhibit a higher osteogenic potency than bone marrow-derived stromal cells in vitro and in a porcine critical-size bone defect model

    DEFF Research Database (Denmark)

    Jensen, Jonas; Tvedesøe, Claus; Rölfing, Jan Hendrik Duedal

    2016-01-01

    marrow and the molar teeth of each pig, respectively. BMSCs and DPSCs were cultured in monolayer and on a three-dimensional (3D) polycaprolactone (PCL) - hyaluronic acid - tricalcium phosphate (HT-PCL) scaffold. Population doubling (PD), alkaline phosphatase (ALP) activity, and calcium deposition were...... measured in monolayer. In the 3D culture ALP activity, DNA content, and calcium deposition were evaluated. Six non-penetrating critical-size defects were made in each calvarium of 14 pigs. Three paired sub-studies were conducted: (1) empty defects vs. HT-PCL scaffolds; (2) PCL scaffolds vs. HT...... a higher ALP activity and calcium deposition of the DPSC cultures compared with BMSC cultures. Significantly more bone was present in the HT-PCL group than in both the pure PCL scaffold group and the empty defect group in vivo. DPSCs generated more bone than BMSCs when seeded on HT-PCL. In conclusion...

  20. Phenotypic and functional properties of murine thymocytes. II. Quantitation of host- and donor-derived cytolytic T lymphocyte precursors in regenerating radiation bone marrow chimeras

    Energy Technology Data Exchange (ETDEWEB)

    Ceredig, R.; McDonald, H.R.

    1982-02-01

    Thymocytes from radiation bone marrow chimeras, in which donor bone marrow and irradiated recipient differed at the Thy-1 locus, were stained by indirect immunofluorescence with monoclonal anti-Thy-1 antibodies and analyzed by flow microfluorometry (FMF). Kinetic studies indicated an early appearance of host-derived (CBA, Thy-1.2/sup +/) thymocytes, which reaches maximum number of 10 to 20 x 10/sup 6/ cells at 12 to 16 days after bone marrow reconstitution. Donor-derived (AKR, Thy-1.1/sup +/) cells were not detectable until 10 to 12 days after reconstitution; subsequently, they increased exponentially in number until 28 days, when they accounted for essentially all cells in the thymus (50 x 10/sup 6/). Concomitant with the appearance and disappearance of host-derived cells was a change in their Thy-1 surface phenotype. In particular, the proportion of host cells having a ''mature'' phenotype (weakly Thy-1.2 staining) increased progressively with time after irradiation. Functional studies using a sensitive mixed leukocyte microculture system to quantitate cytolytic T lymphocyte precursors (CTL-P) were also carried out in regenerating chimeric thymuses. Initially, the regenerating thymus contained few CTL-P, but by 4 wk after reconstitution, frequencies similar to control adult thymuses were obtained. Analysis of the CTL-P content of host and donor-derived subpopulations, separated either by appropriate anti-Thy-1 antibody plus complement or by direct cell sorting, indicated that both host- and donor-derived cells contained appreciable numbers of CTL-P. Furthermore, increases in CTL-P frequency of both host and donor subpopulations correlated with changes in their surface Thy-1 phenotype.

  1. Mast Cells in Abdominal Aortic Aneurysms

    DEFF Research Database (Denmark)

    Shi, Guo-Ping; Lindholt, Jes Sanddal

    2013-01-01

    Mast cells (MCs) are proinflammatory cells that play important roles in allergic responses, tumor growth, obesity, diabetes, atherosclerosis, and abdominal aortic aneurysm (AAA). Although the presence and function of MCs in atherosclerotic lesions have been thoroughly studied in human specimens......, in primary cultured vascular cells, and in atherosclerosis in animals, their role in AAA was recognized only recently. Via multiple activation pathways, MCs release a spectrum of mediators � including histamine, inflammatory cytokines, chemokines, growth factors, proteoglycans, and proteases � to activate...... neighboring cells, degrade extracellular matrix proteins, process latent bioactive molecules, promote angiogenesis, recruit additional inflammatory cells, and stimulate vascular cell apoptosis. These activities associate closely with medial elastica breakdown, medial smooth-muscle cell loss and thinning...

  2. Nanocrystalline diamond: In vitro biocompatibility assessment by MG63 and human bone marrow cells cultures.

    Science.gov (United States)

    Amaral, M; Dias, A G; Gomes, P S; Lopes, M A; Silva, R F; Santos, J D; Fernandes, M H

    2008-10-01

    Nanocrystalline diamond (NCD) has a great potential for prosthetic implants coating. Nevertheless, its biocompatibility still has to be better understood. To do so, we employed several materials characterization techniques (SEM, AFM, micro-Raman spectroscopy) and cell culture assays using MG63 osteoblast-like and human bone marrow cells. Biochemical routines (MTT assays, Lowry's method, ALP activity) supported by SEM and confocal microscopy characterization were carried out. We used silicon nitride (Si3N4) substrates for NCD coatings based on a previous demonstration of the superior adhesion and tribological performance of these NCD coated ceramics. Results demonstrate an improved human osteoblast proliferation and the stimulation of differentiated markers, like ALP activity and matrix mineralization, compared with standard polystyrene tissue culture plates. The nanometric featuring of NCD, associated to its chemical affinity are key points for bone regeneration purposes.

  3. Biocompatibility of Poly-ε-caprolactone-hydroxyapatite composite on mouse bone marrow-derived osteoblasts and endothelial cells

    Directory of Open Access Journals (Sweden)

    Wooley Paul H

    2009-02-01

    Full Text Available Abstract Background Tissue-engineered bone may be developed by seeding the cells capable of both osteogenesis and vascularization on biocompatible composite scaffolds. The current study investigated the performance of mice bone marrow-derived osteogenic cells and endothelial cells as seeded on hydroxyapatite (HA and poly-ε-caprolactone (PCL composite scaffolds. Methods Mononuclear cells were induced to osteoblasts and endothelial cells respectively, which were defined by the expression of osteocalcin, alkaline phosphatase (ALP, and deposits of calcium-containing crystal for osteoblasts, or by the expression of vascular endothelial growth factor receptor-2 (VEGFR-2 and von Willebrand factor (vWF, and the formation of a capillary network in Matrigel™ for endothelial cells. Both types of cell were seeded respectively on PCL-HA scaffolds at HA to PCL weight ratio of 1:1, 1:4, or 0:1 and were evaluated using scanning electron microscopy, ALP activity (of osteoblasts and nitric oxide production (of endothelial cells plus the assessment of cell viability. Results The results indicated that HA led to a positive stimulation of osteoblasts viability and ALP activity, while HA showed less influence on endothelial cells viability. An elevated nitric oxide production of endothelial cells was observed in HA-containing group. Conclusion Supplement of HA into PCL improved biocompatible for bone marrow-derived osteoblasts and endothelial cells. The PCL-HA composite integrating with two types of cells may provide a useful system for tissue-engineered bone grafts with vascularization.

  4. Corneal endothelial expansion promoted by human bone marrow mesenchymal stem cell-derived conditioned medium.

    Directory of Open Access Journals (Sweden)

    Makiko Nakahara

    Full Text Available Healthy corneal endothelium is essential for maintaining corneal clarity, as the damage of corneal endothelial cells and loss of cell count causes severe visual impairment. Corneal transplantation is currently the only therapy for severe corneal disorders. The greatly limited proliferative ability of human corneal endothelial cells (HCECs, even in vitro, has challenged researchers to establish efficient techniques for the cultivating HCECs, a pivotal issue for clinical applications. The aim of this study was to evaluate conditioned medium (CM obtained from human bone marrow-derived mesenchymal stem cells (MSCs (MSC-CM for use as a consistent expansion protocol of HCECs. When HCECs were maintained in the presence of MSC-CM, cell morphology assumed a hexagonal shape similar to corneal endothelial cells in vivo, as opposed to the irregular cell shape observed in control cultures in the absence of MSC-CM. They also maintained the functional protein phenotypes; ZO-1 and Na(+/K(+-ATPase were localized at the intercellular adherent junctions and pump proteins of corneal endothelium were accordingly expressed. In comparison to the proliferative potential observed in the control cultures, HCECs maintained in MSC-CM were found to have more than twice as many Ki67-positive cells and a greatly increased incorporation of BrdU into DNA. MSC-CM further facilitated the cell migration of HCECs. Lastly, the mechanism of cell proliferation mediated by MSC-CM was investigated, and phosphorylation of Akt and ERK1/2 was observed in HCECs after exposure to MSC-CM. The inhibitor to PI 3-kinase maintained the level of p27(Kip1 for up to 24 hours and greatly blocked the expression of cyclin D1 and D3 during the early G1 phase, leading to the reduction of cell density. These findings indicate that MSC-CM not only stimulates the proliferation of HCECs by regulating the G1 proteins of the cell cycle but also maintains the characteristic differentiated phenotypes necessary

  5. Mast cells in rheumatoid arthritis: friends or foes?

    Science.gov (United States)

    Rivellese, Felice; Nerviani, Alessandra; Rossi, Francesca Wanda; Marone, Gianni; Matucci-Cerinic, Marco; de Paulis, Amato; Pitzalis, Costantino

    2017-06-01

    Mast cells are tissue-resident cells of the innate immunity, implicated in the pathogenesis of many autoimmune diseases, including rheumatoid arthritis (RA). They are present in synovia and their activation has been linked to the potentiation of inflammation in the course of RA. However, recent investigations questioned the role of mast cells in arthritis. In particular, animal models generated conflicting results, so that many of their pro-inflammatory, i.e. pro-arthritogenic functions, even though supported by robust experimental evidence, have been labelled as redundant. At the same time, a growing body of evidence suggests that mast cells can act as tunable immunomodulatory cells. These characteristics, not yet fully understood in the context of RA, could partially explain the inconsistent results obtained with experimental models, which do not account for the pro- and anti-inflammatory functions exerted in more chronic heterogeneous conditions such as RA. Here we present an overview of the current knowledge on mast cell involvement in RA, including the intriguing hypothesis of mast cells acting as subtle immunomodulatory cells and the emerging concept of synovial mast cells as potential biomarkers for patient stratification. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Mast cells: potential positive and negative roles in tumor biology.

    Science.gov (United States)

    Marichal, Thomas; Tsai, Mindy; Galli, Stephen J

    2013-11-01

    Mast cells are immune cells that reside in virtually all vascularized tissues. Upon activation by diverse mechanisms, mast cells can secrete a broad array of biologically active products that either are stored in the cytoplasmic granules of the cells (e.g., histamine, heparin, various proteases) or are produced de novo upon cell stimulation (e.g., prostaglandins, leukotrienes, cytokines, chemokines, and growth factors). Mast cells are best known for their effector functions during anaphylaxis and acute IgE-associated allergic reactions, but they also have been implicated in a wide variety of processes that maintain health or contribute to disease. There has been particular interest in the possible roles of mast cells in tumor biology. In vitro studies have shown that mast cells have the potential to influence many aspects of tumor biology, including tumor development, tumor-induced angiogenesis, and tissue remodeling, and the shaping of adaptive immune responses to tumors. Yet, the actual contributions of mast cells to tumor biology in vivo remain controversial. Here, we review some basic features of mast cell biology with a special emphasis on those relevant to their potential roles in tumors. We discuss how using in vivo tumor models in combination with models in which mast cell function can be modulated has implicated mast cells in the regulation of host responses to tumors. Finally, we summarize data from studies of human tumors that suggest either beneficial or detrimental roles for mast cells in tumors. ©2013 AACR.

  7. Mast cells and eosinophils in invasive breast carcinoma

    International Nuclear Information System (INIS)

    Amini, Rose-Marie; Aaltonen, Kirsimari; Nevanlinna, Heli; Carvalho, Ricardo; Salonen, Laura; Heikkilä, Päivi; Blomqvist, Carl

    2007-01-01

    Inflammatory cells in the tumour stroma has gained increasing interest recently. Thus, we aimed to study the frequency and prognostic impact of stromal mast cells and tumour infiltrating eosinophils in invasive breast carcinomas. Tissue microarrays containing 234 cases of invasive breast cancer were prepared and analysed for the presence of stromal mast cells and eosinophils. Tumour infiltrating eosinophils were counted on hematoxylin-eosin slides. Immunostaining for tryptase was done and the total number of mast cells were counted and correlated to the proliferation marker Ki 67, positivity for estrogen and progesterone receptors, clinical parameters and clinical outcome. Stromal mast cells were found to correlate to low grade tumours and estrogen receptor positivity. There was a total lack of eosinophils in breast cancer tumours. A high number of mast cells in the tumours correlated to low-grade tumours and estrogen receptor positivity. Eosinophils are not tumour infiltrating in breast cancers

  8. Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia

    International Nuclear Information System (INIS)

    Wang, Suna; Zhou, Yifu; Andreyev, Oleg; Hoyt, Robert F.; Singh, Avneesh; Hunt, Timothy; Horvath, Keith A.

    2014-01-01

    Studying the proliferative ability of human bone marrow derived mesenchymal stem cells in hypoxic conditions can help us achieve the effective regeneration of ischemic injured myocardium. Cardiac-type fatty acid binding protein (FABP3) is a specific biomarker of muscle and heart tissue injury. This protein is purported to be involved in early myocardial development, adult myocardial tissue repair and responsible for the modulation of cell growth and proliferation. We have investigated the role of FABP3 in human bone marrow derived mesenchymal stem cells under ischemic conditions. MSCs from 12 donors were cultured either in standard normoxic or modified hypoxic conditions, and the differential expression of FABP3 was tested by quantitative RT PCR and western blot. We also established stable FABP3 expression in MSCs and searched for variation in cellular proliferation and differentiation bioprocesses affected by hypoxic conditions. We identified: (1) the FABP3 differential expression pattern in the MSCs under hypoxic conditions; (2) over-expression of FABP3 inhibited the growth and proliferation of the MSCs; however, improved their survival in low oxygen environments; (3) the cell growth factors and positive cell cycle regulation genes, such as PCNA, APC, CCNB1, CCNB2 and CDC6 were all down-regulated; while the key negative cell cycle regulation genes TP53, BRCA1, CASP3 and CDKN1A were significantly up-regulated in the cells with FABP3 overexpression. Our data suggested that FABP3 was up-regulated under hypoxia; also negatively regulated the cell metabolic process and the mitotic cell cycle. Overexpression of FABP3 inhibited cell growth and proliferation via negative regulation of the cell cycle and down-regulation of cell growth factors, but enhances cell survival in hypoxic or ischemic conditions. - Highlights: • FABP3 expression pattern was studied in 12 human hypoxic-MSCs. • FABP3 mRNA and proteins are upregulated in the MSCs under hypoxic conditions.

  9. Mast cells and exosomes in hyperoxia-induced neonatal lung disease.

    Science.gov (United States)

    Veerappan, A; Thompson, M; Savage, A R; Silverman, M L; Chan, W S; Sung, B; Summers, B; Montelione, K C; Benedict, P; Groh, B; Vicencio, A G; Peinado, H; Worgall, S; Silver, R B

    2016-06-01

    Chronic lung disease of prematurity (CLD) is a frequent sequela of premature birth and oxygen toxicity is a major associated risk factor. Impaired alveolarization, scarring, and inflammation are hallmarks of CLD. Mast cell hyperplasia is a feature of CLD but the role of mast cells in its pathogenesis is unknown. We hypothesized that mast cell hyperplasia is a consequence of neonatal hyperoxia and contributes to CLD. Additionally, mast cell products may have diagnostic and prognostic value in preterm infants predisposed to CLD. To model CLD, neonatal wild-type and mast cell-deficient mice were placed in an O2 chamber delivering hyperoxic gas mixture [inspired O2 fraction (FiO2 ) of 0.8] (HO) for 2 wk and then returned to room air (RA) for an additional 3 wk. Age-matched controls were kept in RA (FiO2 of 0.21). Lungs from HO mice had increased numbers of mast cells, alveolar simplification and enlargement, and increased lung compliance. Mast cell deficiency proved protective by preserving air space integrity and lung compliance. The mast cell mediators β-hexosaminidase (β-hex), histamine, and elastase increased in the bronchoalveolar lavage fluid of HO wild-type mice. Tracheal aspirate fluids (TAs) from oxygenated and mechanically ventilated preterm infants were analyzed for mast cell products. In TAs from infants with confirmed cases of CLD, β-hex was elevated over time and correlated with FiO2 Mast cell exosomes were also present in the TAs. Collectively, these data show that mast cells play a significant role in hyperoxia-induced lung injury and their products could serve as potential biomarkers in evolving CLD. Copyright © 2016 the American Physiological Society.

  10. Bone marrow stromal cell transplantation mitigates radiation-induced gastrointestinal syndrome in mice.

    Directory of Open Access Journals (Sweden)

    Subhrajit Saha

    Full Text Available Nuclear accidents and terrorism presents a serious threat for mass casualty. While bone-marrow transplantation might mitigate hematopoietic syndrome, currently there are no approved medical countermeasures to alleviate radiation-induced gastrointestinal syndrome (RIGS, resulting from direct cytocidal effects on intestinal stem cells (ISC and crypt stromal cells. We examined whether bone marrow-derived adherent stromal cell transplantation (BMSCT could restitute irradiated intestinal stem cells niche and mitigate radiation-induced gastrointestinal syndrome.Autologous bone marrow was cultured in mesenchymal basal medium and adherent cells were harvested for transplantation to C57Bl6 mice, 24 and 72 hours after lethal whole body irradiation (10.4 Gy or abdominal irradiation (16-20 Gy in a single fraction. Mesenchymal, endothelial and myeloid population were characterized by flow cytometry. Intestinal crypt regeneration and absorptive function was assessed by histopathology and xylose absorption assay, respectively. In contrast to 100% mortality in irradiated controls, BMSCT mitigated RIGS and rescued mice from radiation lethality after 18 Gy of abdominal irradiation or 10.4 Gy whole body irradiation with 100% survival (p<0.0007 and p<0.0009 respectively beyond 25 days. Transplantation of enriched myeloid and non-myeloid fractions failed to improve survival. BMASCT induced ISC regeneration, restitution of the ISC niche and xylose absorption. Serum levels of intestinal radioprotective factors, such as, R-Spondin1, KGF, PDGF and FGF2, and anti-inflammatory cytokines were elevated, while inflammatory cytokines were down regulated.Mitigation of lethal intestinal injury, following high doses of irradiation, can be achieved by intravenous transplantation of marrow-derived stromal cells, including mesenchymal, endothelial and macrophage cell population. BMASCT increases blood levels of intestinal growth factors and induces regeneration of the irradiated

  11. Recovery of the proliferative and functional integrity of mouse bone marrow in long-term cultures established after whole-body irradiation at different doses and dose rates

    International Nuclear Information System (INIS)

    Bierkens, J.G.; Hendry, J.H.; Testa, N.G.

    1991-01-01

    Injury inflicted upon the bone marrow stroma following whole-body irradiation and its repair over a 1-year period has been assessed in murine long-term bone marrow cultures established at increasing time intervals after irradiation. Different doses at different dose rates (10 Gy at 0.05 cGy/min, 4.5 Gy and 10 Gy at 1.6 cGy/min, and 4 x 4.5 Gy [3 weeks between doses] at 60 cGy/min) were chosen so as to maximize differences in effect in the stroma. The cellularity of the adherent layer in long-term cultures established 1 month after irradiation was reduced by 40%-90% depending on the dose and dose rate. Simultaneous with the poor ability of the marrow to form adherent layers, the cumulative spleen colony-forming unit (CFU-S) and granulocyte-macrophage colony-forming cell (GM-CFC) production over a 7-week period was reduced to 0% and 30% of control cultures, respectively. The slow recovery of the adherent layer was paralleled by an increase in the numbers of CFU-S and GM-CFC in the supernatant. Cultures established from repeatedly irradiated mice performed poorly over the entire 1-year period. Whereas the regeneration of the stroma was near complete 1 year after irradiation, the CFU-S and GM-CFC levels reached only between 50% and 80% of control cultures, respectively. Also, the concentration of CFU-S and GM-CFC in the supernatant remained persistently lower in cultures established from irradiated mice as compared to control cultures. The levels of sulfated glycosaminoglycans, which have been implicated in the establishment of the functional integrity of the microenvironment, were not reduced in the adherent layers at any time after irradiation. These results indicate that the regeneration of the stroma is accompanied by an incomplete recovery of active hemopoiesis in vitro

  12. Differential expression pattern of extracellular matrix molecules during chondrogenesis of mesenchymal stem cells from bone marrow and adipose tissue

    DEFF Research Database (Denmark)

    Mehlhorn, A T; Niemeyer, P; Kaiser, S

    2006-01-01

    Adipose-derived adult stem cells (ADASCs) or bone marrow-derived mesenchymal stem cells (BMSCs) are considered as alternative cell sources for cell-based cartilage repair due to their ability to produce cartilage-specific matrix. This article addresses the differential expression pattern...... chondroinduction. TGF-beta1 induces alternative splicing of the alpha(1)-procollagen type II transcript in BMSCs, but not in ADASCs. These findings may direct the development of a cell-specific culture environment either to prevent hypertrophy in BMSCs or to promote chondrogenic maturation in ADASCs....

  13. Phenotypical and functional characteristics of mesenchymal stem cells from bone marrow: comparison of culture using different media supplemented with human platelet lysate or fetal bovine serum

    Science.gov (United States)

    2012-01-01

    Introduction Mesenchymal stem cells (MSCs) are multipotent cells able to differentiate into several mesenchymal lineages, classically derived from bone marrow (BM) but potentially from umbilical cord blood (UCB). Although they are becoming a good tool for regenerative medicine, they usually need to be expanded in fetal bovine serum (FBS)-supplemented media. Human platelet lysate (HPL) has recently been proposed as substitute for safety reasons, but it is not yet clear how this supplement influences the properties of expanded MSCs. Methods In the present study, we compared the effect of various media combining autologous HPL with or without FBS on phenotypic, proliferative and functional (differentiation, cytokine secretion profile) characteristics of human BM-derived MSCs. Results Despite less expression of adipogenic and osteogenic markers, MSCs cultured in HPL-supplemented media fully differentiated along osteoblastic, adipogenic, chondrogenic and vascular smooth muscle lineages. The analyses of particular specific proteins expressed during osteogenic differentiation (calcium-sensing receptor (CaSR) and parathormone receptor (PTHR)) showed their decrease at D0 before any induction for MSC cultured with HPL mostly at high percentage (10%HPL). The cytokine dosage showed a clear increase of proliferation capacity and interleukin (IL)-6 and IL-8 secretion. Conclusions This study shows that MSCs can be expanded in media supplemented with HPL that can totally replace FBS. HPL-supplemented media not only preserves their phenotype as well as their differentiation capacity, but also shortens culture time by increasing their growth rate. PMID:22333342

  14. [Multi-channel promotion of lung cancer progress by bone marrow derived mesenchymal stem cells in tumor microenvironment].

    Science.gov (United States)

    Luo, D; Hu, S Y; Liu, G X

    2018-02-23

    Objective: To observe the growth and metastasis of lung cancer promoted by bone marrow derived mesenchymal stem cells (BMSCs) in tumor microenvironment and investigate the underlined mechanisms. Methods: Specific chemotaxis of BMSCs towards lung cancer was observed, and the tumor growth and metastasis were assessed in vivo . Furthermore, CD34 expression determined by immunohistochemistry was used to assess the microvessel density (MVD), and the expressions of GFP and α-SMA determined by immunofluorescence were used to detect the BMSCs derived mesenchymal cells. We investigated the effect of BMSCs on migration, invasion of lung cancer cells including A549 and H446 cells by using scratch assays and Transwell Assay in vitro. We also explored the effect of BMSCs on epithelial mesenchymal transition of A549 and H446 cells by observing the phenotype transition and E-Cadherin protein expression detected by Western blot. At last, we screened the potentially key soluble factors by enzyme linked immunosorbent assay (ELISA). Results: In NOD mice, labeled BMSCs injected via tail vein were special chemotaxis to tumor cells, and promoted the tumor growth [the time of tumor formation in A549+ BMSCs and A549 alone was (5.0±1.5) days and (10.0±3.6) days, respectively, P cell carcinoma and promoted the migration and invasion of lung cancer cells (the A of cells in the migrated lower chambers of A549+ BMSCs and A549 alone was 1.9±0.2 and 1.1±0.1, respectively, P cells in the migrated lower chambers of H446+ BMSCs and H446 alone was 1.9±0.3 and 0.9±0.2, respectively, P cell shape was longer and sharper, the intercellular junctions were reduced and the relative expression level of E-Cadherin protein in A549 co-cultured with BMDCs was 0.36, significantly down-regulated when compared to 0.55 of A549 alone ( P cells alone ( P <0.05). The concentration of IL-6 in the conditional medium of BMSCs, A549 co-cultured with BMSCs and H446 co-cultured with BMSCs was 910.5, 957.2, and 963

  15. Role of bone marrow-derived stem cells, renal progenitor cells and stem cell factor in chronic renal allograft nephropathy

    OpenAIRE

    Hayam Abdel Meguid El Aggan; Mona Abdel Kader Salem; Nahla Mohamed Gamal Farahat; Ahmad Fathy El-Koraie; Ghaly Abd Al-Rahim Mohammed Kotb

    2013-01-01

    Introduction: Chronic allograft nephropathy (CAN) is a poorly understood clinico-pathological entity associated with chronic allograft loss due to immunologic and non-immunologic causes. It remains the leading cause of late allograft loss. Bone marrow derived stem cells are undifferentiated cells typically characterized by their capacity for self renewal, ability to give rise to multiple differentiated cellular population, including hematopoietic (HSCs) and mesenchymal stem cells (MSCs). Char...

  16. Bone Marrow Regeneration Promoted by Biophysically Sorted Osteoprogenitors From Mesenchymal Stromal Cells

    Science.gov (United States)

    Poon, Zhiyong; Lee, Wong Cheng; Guan, Guofeng; Nyan, Lin Myint; Lim, Chwee Teck; Han, Jongyoon

    2015-01-01

    Human tissue repair deficiencies can be supplemented through strategies to isolate, expand in vitro, and reimplant regenerative cells that supplant damaged cells or stimulate endogenous repair mechanisms. Bone marrow-derived mesenchymal stromal cells (MSCs), a subset of which is described as mesenchymal stem cells, are leading candidates for cell-mediated bone repair and wound healing, with hundreds of ongoing clinical trials worldwide. An outstanding key challenge for successful clinical translation of MSCs is the capacity to produce large quantities of cells in vitro with uniform and relevant therapeutic properties. By leveraging biophysical traits of MSC subpopulations and label-free microfluidic cell sorting, we hypothesized and experimentally verified that MSCs of large diameter within expanded MSC cultures were osteoprogenitors that exhibited significantly greater efficacy over other MSC subpopulations in bone marrow repair. Systemic administration of osteoprogenitor MSCs significantly improved survival rates (>80%) as compared with other MSC subpopulations (0%) for preclinical murine bone marrow injury models. Osteoprogenitor MSCs also exerted potent therapeutic effects as “cell factories” that secreted high levels of regenerative factors such as interleukin-6 (IL-6), interleukin-8 (IL-8), vascular endothelial growth factor A, bone morphogenetic protein 2, epidermal growth factor, fibroblast growth factor 1, and angiopoietin-1; this resulted in increased cell proliferation, vessel formation, and reduced apoptosis in bone marrow. This MSC subpopulation mediated rescue of damaged marrow tissue via restoration of the hematopoiesis-supporting stroma, as well as subsequent hematopoiesis. Together, the capabilities described herein for label-freeisolation of regenerative osteoprogenitor MSCs can markedly improve the efficacy of MSC-based therapies. PMID:25411477

  17. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells

    OpenAIRE

    Zhang, Xiaowei; Wu, Shili; Naccarato, Ty; Prakash-Damani, Manan; Chou, Yuan; Chu, Cong-Qiu; Zhu, Yong

    2017-01-01

    Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC) to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9) is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrat...

  18. Hydrostatic pressure in combination with topographical cues affects the fate of bone marrow-derived human mesenchymal stem cells for bone tissue regeneration.

    Science.gov (United States)

    Reinwald, Yvonne; El Haj, Alicia J

    2018-03-01

    Topographical and mechanical cues are vital for cell fate, tissue development in vivo, and to mimic the native cell growth environment in vitro. To date, the combinatory effect of mechanical and topographical cues as not been thoroughly investigated. This study investigates the effect of PCL nanofiber alignment and hydrostatic pressure on stem cell differentiation for bone tissue regeneration. Bone marrow-derived human mesenchymal stem cells were seeded onto standard tissue culture plastic and electrospun random and aligned nanofibers. These substrates were either cultured statically or subjected to intermittent hydrostatic pressure at 270 kPa, 1 Hz for 60 min daily over 21 days in osteogenic medium. Data revealed higher cell metabolic activities for all mechanically stimulated cell culture formats compared with non-stimulated controls; and random fibers compared with aligned fibers. Fiber orientation influenced cell morphology and patterns of calcium deposition. Significant up-regulation of Collagen-I, ALP, and Runx-2 were observed for random and aligned fibers following mechanical stimulation; highest levels of osteogenic markers were expressed when hydrostatic pressure was applied to random fibers. These results indicate that fiber alignment and hydrostatic pressure direct stem cell fate and are important stimulus for tissue regeneration. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: A: 629-640, 2018. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc.

  19. Bone Marrow Stem Cell Derived Paracrine Factors for Regenerative Medicine: Current Perspectives and Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Tom J. Burdon

    2011-01-01

    Full Text Available During the past several years, there has been intense research in the field of bone marrow-derived stem cell (BMSC therapy to facilitate its translation into clinical setting. Although a lot has been accomplished, plenty of challenges lie ahead. Furthermore, there is a growing body of evidence showing that administration of BMSC-derived conditioned media (BMSC-CM can recapitulate the beneficial effects observed after stem cell therapy. BMSCs produce a wide range of cytokines and chemokines that have, until now, shown extensive therapeutic potential. These paracrine mechanisms could be as diverse as stimulating receptor-mediated survival pathways, inducing stem cell homing and differentiation or regulating the anti-inflammatory effects in wounded areas. The current review reflects the rapid shift of interest from BMSC to BMSC-CM to alleviate many logistical and technical issues regarding cell therapy and evaluates its future potential as an effective regenerative therapy.

  20. Vaccine adjuvants: Tailor-made mast-cell granules

    Science.gov (United States)

    Gunzer, Matthias

    2012-03-01

    Mast cells induce protective immune responses through secretion of stimulatory granules. Microparticles modelled after mast-cell granules are now shown to replicate and enhance the functions of their natural counterparts and to direct the character of the resulting immunity.

  1. Myelosuppressive conditioning using busulfan enables bone marrow cell accumulation in the spinal cord of a mouse model of amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Coral-Ann B Lewis

    Full Text Available Myeloablative preconditioning using irradiation is the most commonly used technique to generate rodents having chimeric bone marrow, employed for the study of bone marrow-derived cell accumulation in the healthy and diseased central nervous system. However, irradiation has been shown to alter the blood-brain barrier, potentially creating confounding artefacts. To better study the potential of bone marrow-derived cells to function as treatment vehicles for neurodegenerative diseases alternative preconditioning regimens must be developed. We treated transgenic mice that over-express human mutant superoxide dismutase 1, a model of amyotrophic lateral sclerosis, with busulfan to determine whether this commonly used chemotherapeutic leads to stable chimerism and promotes the entry of bone marrow-derived cells into spinal cord. Intraperitoneal treatment with busulfan at 60 mg/kg or 80 mg/kg followed by intravenous injection of green fluorescent protein-expressing bone marrow resulted in sustained levels of chimerism (~80%. Bone marrow-derived cells accumulated in the lumbar spinal cord of diseased mice at advanced stages of pathology at both doses, with limited numbers of bone marrow derived cells observed in the spinal cords of similarly treated, age-matched controls; the majority of bone marrow-derived cells in spinal cord immunolabelled for macrophage antigens. Comparatively, significantly greater numbers of bone marrow-derived cells were observed in lumbar spinal cord following irradiative myeloablation. These results demonstrate bone marrow-derived cell accumulation in diseased spinal cord is possible without irradiative preconditioning.

  2. Tumor microvessel density–associated mast cells in canine nodal lymphoma

    Science.gov (United States)

    Mann, Elizabeth; Whittington, Lisa

    2014-01-01

    Objective: Mast cells are associated in angiogenesis in various human and animal neoplasms. However, association of mast cells with tumor microvessel density in canine lymphoma was not previously documented. The objective of the study is to determine if mast cells are increased in canine nodal lymphomas and to evaluate their correlation with tumor microvessel density and grading of lymphomas. Methods: Nodal lymphomas from 33 dogs were studied and compared with nonneoplastic lymph nodes from 6 dogs as control. Mast cell count was made on Toluidine blue stained sections. Immunohistochemistry using antibody against Factor VIII was employed to visualize and determine microvessel density. Results: The mast cell count in lymphoma (2.95 ± 2.4) was significantly higher (p < 0.05) than that in the control (0.83 ± 0.3) and was positively correlated with tumor microvessel density (r = 0.44, p = 0.009). Significant difference was not observed in mast cell count and tumor microvessel density among different gradings of lymphomas. Conclusions: Mast cells are associated with tumor microvessel density in canine nodal lymphoma with no significant difference among gradings of lymphomas. Mast cells may play an important role in development of canine nodal lymphomas. Further detailed investigation on the role of mast cells as important part of tumor microenvironment in canine nodal lymphomas is recommended. PMID:26770752

  3. Tumor microvessel density–associated mast cells in canine nodal lymphoma

    Directory of Open Access Journals (Sweden)

    Moges Woldemeskel

    2014-11-01

    Full Text Available Objective: Mast cells are associated in angiogenesis in various human and animal neoplasms. However, association of mast cells with tumor microvessel density in canine lymphoma was not previously documented. The objective of the study is to determine if mast cells are increased in canine nodal lymphomas and to evaluate their correlation with tumor microvessel density and grading of lymphomas. Methods: Nodal lymphomas from 33 dogs were studied and compared with nonneoplastic lymph nodes from 6 dogs as control. Mast cell count was made on Toluidine blue stained sections. Immunohistochemistry using antibody against Factor VIII was employed to visualize and determine microvessel density. Results: The mast cell count in lymphoma (2.95 ± 2.4 was significantly higher (p < 0.05 than that in the control (0.83 ± 0.3 and was positively correlated with tumor microvessel density (r = 0.44, p = 0.009. Significant difference was not observed in mast cell count and tumor microvessel density among different gradings of lymphomas. Conclusions: Mast cells are associated with tumor microvessel density in canine nodal lymphoma with no significant difference among gradings of lymphomas. Mast cells may play an important role in development of canine nodal lymphomas. Further detailed investigation on the role of mast cells as important part of tumor microenvironment in canine nodal lymphomas is recommended.

  4. G-CSF treatment after myocardial infarction: impact on bone marrow-derived vs cardiac progenitor cells.

    Science.gov (United States)

    Brunner, Stefan; Huber, Bruno C; Fischer, Rebekka; Groebner, Michael; Hacker, Marcus; David, Robert; Zaruba, Marc-Michael; Vallaster, Marcus; Rischpler, Christoph; Wilke, Andrea; Gerbitz, Armin; Franz, Wolfgang-Michael

    2008-06-01

    Besides its classical function in the field of autologous and allogenic stem cell transplantation, granulocyte colony-stimulating factor (G-CSF) was shown to have protective effects after myocardial infarction (MI) by mobilization of bone marrow-derived progenitor cells (BMCs) and in addition by activation of multiple signaling pathways. In the present study, we focused on the impact of G-CSF on migration of BMCs and the impact on resident cardiac cells after MI. Mice (C57BL/6J) were sublethally irradiated, and BM from green fluorescent protein (GFP)-transgenic mice was transplanted. Coronary artery ligation was performed 10 weeks later. G-CSF (100 microg/kg) was daily injected for 6 days. Subpopulations of enhanced GFP(+) cells in peripheral blood, bone marrow, and heart were characterized by flow cytometry. Growth factor expression in the heart was analyzed by quantitative real-time polymerase chain reaction. Perfusion was investigated in vivo by gated single photon emission computed tomography (SPECT). G-CSF-treated animals revealed a reduced migration of c-kit(+) and CXCR-4(+) BMCs associated with decreased expression levels of the corresponding growth factors, namely stem cell factor and stromal-derived factor-1 alpha in ischemic myocardium. In contrast, the number of resident cardiac Sca-1(+) cells was significantly increased. However, SPECT-perfusion showed no differences in infarct size between G-CSF-treated and control animals 6 days after MI. Our study shows that G-CSF treatment after MI reduces migration capacity of BMCs into ischemic tissue, but increases the number of resident cardiac cells. To optimize homing capacity a combination of G-CSF with other agents may optimize cytokine therapy after MI.

  5. Mast cell distribution in normal adult skin

    NARCIS (Netherlands)

    A.S. Janssens (Artiena Soe); R. Heide (Rogier); J.C. den Hollander (Jan); P.G.M. Mulder (P. G M); B. Tank (Bhupendra); A.P. Oranje (Arnold)

    2005-01-01

    markdownabstract__AIMS:__ To investigate mast cell distribution in normal adult skin to provide a reference range for comparison with mastocytosis. __METHODS:__ Mast cells (MCs) were counted in uninvolved skin adjacent to basal cell carcinomas and other dermatological disorders in adults.

  6. Foetal stem cell derivation & characterization for osteogenic lineage

    Directory of Open Access Journals (Sweden)

    A Mangala Gowri

    2013-01-01

    Full Text Available Background & objectives: Mesencymal stem cells (MSCs derived from foetal tissues present a multipotent progenitor cell source for application in tissue engineering and regenerative medicine. The present study was carried out to derive foetal mesenchymal stem cells from ovine source and analyze their differentiation to osteogenic linage to serve as an animal model to predict human applications. Methods: Isolation and culture of sheep foetal bone marrow cells were done and uniform clonally derived MSC population was collected. The cells were characterized using cytochemical, immunophenotyping, biochemical and molecular analyses. The cells with defined characteristics were differentiated into osteogenic lineages and analysis for differentiated cell types was done. The cells were analyzed for cell surface marker expression and the gene expression in undifferentiated and differentiated osteoblast was checked by reverse transcriptase PCR (RT PCR analysis and confirmed by sequencing using genetic analyzer. Results: Ovine foetal samples were processed to obtain mononuclear (MNC cells which on culture showed spindle morphology, a characteristic oval body with the flattened ends. MSC population CD45 - /CD14 - was cultured by limiting dilution to arrive at uniform spindle morphology cells and colony forming units. The cells were shown to be positive for surface markers such as CD44, CD54, integrinβ1, and intracellular collagen type I/III and fibronectin. The osteogenically induced MSCs were analyzed for alkaline phosphatase (ALP activity and mineral deposition. The undifferentiated MSCs expressed RAB3B, candidate marker for stemness in MSCs. The osteogenically induced and uninduced MSCs expressed collagen type I and MMP13 gene in osteogenic induced cells. Interpretation & conclusions: The protocol for isolation of ovine foetal bone marrow derived MSCs was simple to perform, and the cultural method of obtaining pure spindle morphology cells was established

  7. Adhesive and mechanical regulation of mesenchymal stem cell differentiation in human bone marrow and periosteum-derived progenitor cells

    Directory of Open Access Journals (Sweden)

    Jeroen Eyckmans

    2012-08-01

    It has previously been demonstrated that cell shape can influence commitment of human bone marrow-derived mesenchymal stem cells (hBMCs to adipogenic, osteogenic, chondrogenic, and other lineages. Human periosteum-derived cells (hPDCs exhibit multipotency similar to hBMCs, but hPDCs may offer enhanced potential for osteogenesis and chondrogenesis given their apparent endogenous role in bone and cartilage repair in vivo. Here, we examined whether hPDC differentiation is regulated by adhesive and mechanical cues comparable to that reported for hBMC differentiation. When cultured in the appropriate induction media, hPDCs at high cell seeding density demonstrated enhanced levels of adipogenic or chondrogenic markers as compared with hPDCs at low cell seeding density. Cell seeding density correlated inversely with projected area of cell spreading, and directly limiting cell spreading with micropatterned substrates promoted adipogenesis or chondrogenesis while substrates promoting cell spreading supported osteogenesis. Interestingly, cell seeding density influenced differentiation through both changes in cell shape and non-shape-mediated effects: density-dependent adipogenesis and chondrogenesis were regulated primarily by cell shape whereas non-shape effects strongly influenced osteogenic potential. Inhibition of cytoskeletal contractility by adding the Rho kinase inhibitor Y27632 further enhanced adipogenic differentiation and discouraged osteogenic differentiation of hPDCs. Together, our results suggest that multipotent lineage decisions of hPDCs are impacted by cell adhesive and mechanical cues, though to different extents than hBMCs. Thus, future studies of hPDCs and other primary stem cell populations with clinical potential should consider varying biophysical metrics for more thorough optimization of stem cell differentiation.

  8. Bone marrow stromal cell : mediated neuroprotection for spinal cord repair

    NARCIS (Netherlands)

    Ritfeld, Gaby Jane

    2014-01-01

    Currently, there is no treatment available that restores anatomy and function after spinal cord injury. This thesis explores transplantation of bone marrow-derived mesenchymal stem cells (bone marrow stromal cells; BMSCs) as a therapeutic approach for spinal cord repair. BMSCs secrete neurotrophic

  9. Antibacterial agent triclosan suppresses RBL-2H3 mast cell function

    International Nuclear Information System (INIS)

    Palmer, Rachel K.; Hutchinson, Lee M.; Burpee, Benjamin T.; Tupper, Emily J.; Pelletier, Jonathan H.; Kormendy, Zsolt; Hopke, Alex R.; Malay, Ethan T.; Evans, Brieana L.; Velez, Alejandro; Gosse, Julie A.

    2012-01-01

    Triclosan is a broad-spectrum antibacterial agent, which has been shown previously to alleviate human allergic skin disease. The purpose of this study was to investigate the hypothesis that the mechanism of this action of triclosan is, in part, due to effects on mast cell function. Mast cells play important roles in allergy, asthma, parasite defense, and carcinogenesis. In response to various stimuli, mast cells degranulate, releasing allergic mediators such as histamine. In order to investigate the potential anti-inflammatory effect of triclosan on mast cells, we monitored the level of degranulation in a mast cell model, rat basophilic leukemia cells, clone 2H3. Having functional homology to human mast cells, as well as a very well defined signaling pathway leading to degranulation, this cell line has been widely used to gain insight into mast-cell driven allergic disorders in humans. Using a fluorescent microplate assay, we determined that triclosan strongly dampened the release of granules from activated rat mast cells starting at 2 μM treatment, with dose-responsive suppression through 30 μM. These concentrations were found to be non-cytotoxic. The inhibition was found to persist when early signaling events (such as IgE receptor aggregation and tyrosine phosphorylation) were bypassed by using calcium ionophore stimulation, indicating that the target for triclosan in this pathway is likely downstream of the calcium signaling event. Triclosan also strongly suppressed F-actin remodeling and cell membrane ruffling, a physiological process that accompanies degranulation. Our finding that triclosan inhibits mast cell function may explain the clinical data mentioned above and supports the use of triclosan or a mechanistically similar compound as a topical treatment for allergic skin disease, such as eczema. -- Highlights: ►The effects of triclosan on mast cell function using a murine mast cell model. ►Triclosan strongly inhibits degranulation of mast cells.

  10. Mast cell-neural interactions contribute to pain and itch.

    Science.gov (United States)

    Gupta, Kalpna; Harvima, Ilkka T

    2018-03-01

    Mast cells are best recognized for their role in allergy and anaphylaxis, but increasing evidence supports their role in neurogenic inflammation leading to pain and itch. Mast cells act as a "power house" by releasing algogenic and pruritogenic mediators, which initiate a reciprocal communication with specific nociceptors on sensory nerve fibers. Consequently, nerve fibers release inflammatory and vasoactive neuropeptides, which in turn activate mast cells in a feedback mechanism, thus promoting a vicious cycle of mast cell and nociceptor activation leading to neurogenic inflammation and pain/pruritus. Mechanisms underlying mast cell differentiation, activation, and intercellular interactions with inflammatory, vascular, and neural systems are deeply influenced by their microenvironment, imparting enormous heterogeneity and complexity in understanding their contribution to pain and pruritus. Neurogenic inflammation is central to both pain and pruritus, but specific mediators released by mast cells to promote this process may vary depending upon their location, stimuli, underlying pathology, gender, and species. Therefore, in this review, we present the contribution of mast cells in pathological conditions, including distressing pruritus exacerbated by psychologic stress and experienced by the majority of patients with psoriasis and atopic dermatitis and in different pain syndromes due to mastocytosis, sickle cell disease, and cancer. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Redox status evaluation in dogs affected by mast cell tumour.

    Science.gov (United States)

    Finotello, R; Pasquini, A; Meucci, V; Lippi, I; Rota, A; Guidi, G; Marchetti, V

    2014-06-01

    Oxidative stress status has been evaluated in depth in human medicine and its role in carcinogenesis has been clearly established. The purpose of this prospective study was to evaluate antioxidant concentrations and oxidative stress in dogs with mast cell tumours (MCTs) that had received no previous treatments, and to compare them to healthy controls. In 23 dogs with mast cell tumour and 10 healthy controls, oxidative status was assessed using the Reactive Oxygen Metabolites-derived compounds (d-ROMs) test, antioxidant activity was measured by the Biological Antioxidant Potential (BAP) test, and α-tocopherol levels were evaluated using high-performance liquid chromatography and ultraviolet analysis. At baseline, dogs with MCT had significantly higher d-ROMs (P defence barrier are altered in dogs with newly diagnosed MCT compared with control dogs. Future studies are needed in order to assess the prognostic role of oxidative stress and to evaluate the impact of different therapeutic approaches. © 2012 John Wiley & Sons Ltd.

  12. Entamoeba histolytica-secreted cysteine proteases induce IL-8 production in human mast cells via a PAR2-independent mechanism.

    Science.gov (United States)

    Lee, Young Ah; Nam, Young Hee; Min, Arim; Kim, Kyeong Ah; Nozaki, Tomoyoshi; Saito-Nakano, Yumiko; Mirelman, David; Shin, Myeong Heon

    2014-01-01

    Entamoeba histolytica is an extracellular tissue parasite causing colitis and occasional liver abscess in humans. E. histolytica-derived secretory products (SPs) contain large amounts of cysteine proteases (CPs), one of the important amoebic virulence factors. Although tissue-residing mast cells play an important role in the mucosal inflammatory response to this pathogen, it is not known whether the SPs induce mast cell activation. In this study, when human mast cells (HMC-1 cells) were stimulated with SPs collected from pathogenic wild-type amoebae, interleukin IL-8 mRNA expression and production were significantly increased compared with cells incubated with medium alone. Inhibition of CP activity in the SPs with heat or the CP inhibitor E64 resulted in significant reduction of IL-8 production. Moreover, SPs obtained from inhibitors of cysteine protease (ICP)-overexpressing amoebae with low CP activity showed weaker stimulatory effects on IL-8 production than the wild-type control. Preincubation of HMC-1 cells with antibodies to human protease-activated receptor 2 (PAR2) did not affect the SP-induced IL-8 production. These results suggest that cysteine proteases in E. histolytica-derived secretory products stimulate mast cells to produce IL-8 via a PAR2-independent mechanism, which contributes to IL-8-mediated tissue inflammatory responses during the early phase of human amoebiasis. © Y.A. Lee et al., published by EDP Sciences, 2014.

  13. Entamoeba histolytica-secreted cysteine proteases induce IL-8 production in human mast cells via a PAR2-independent mechanism

    Directory of Open Access Journals (Sweden)

    Lee Young Ah

    2014-01-01

    Full Text Available Entamoeba histolytica is an extracellular tissue parasite causing colitis and occasional liver abscess in humans. E. histolytica-derived secretory products (SPs contain large amounts of cysteine proteases (CPs, one of the important amoebic virulence factors. Although tissue-residing mast cells play an important role in the mucosal inflammatory response to this pathogen, it is not known whether the SPs induce mast cell activation. In this study, when human mast cells (HMC-1 cells were stimulated with SPs collected from pathogenic wild-type amoebae, interleukin IL-8 mRNA expression and production were significantly increased compared with cells incubated with medium alone. Inhibition of CP activity in the SPs with heat or the CP inhibitor E64 resulted in significant reduction of IL-8 production. Moreover, SPs obtained from inhibitors of cysteine protease (ICP-overexpressing amoebae with low CP activity showed weaker stimulatory effects on IL-8 production than the wild-type control. Preincubation of HMC-1 cells with antibodies to human protease-activated receptor 2 (PAR2 did not affect the SP-induced IL-8 production. These results suggest that cysteine proteases in E. histolytica-derived secretory products stimulate mast cells to produce IL-8 via a PAR2-independent mechanism, which contributes to IL-8-mediated tissue inflammatory responses during the early phase of human amoebiasis.

  14. Mast cells in neuroinflammation and brain disorders

    NARCIS (Netherlands)

    Hendriksen, Erik|info:eu-repo/dai/nl/304841900; van Bergeijk, Doris; Oosting, Ronald S|info:eu-repo/dai/nl/087179695; Redegeld, Frank A|info:eu-repo/dai/nl/074752464

    2017-01-01

    It is well recognized that neuroinflammation is involved in the pathogenesis of various neurodegenerative diseases. Microglia and astrocytes are major pathogenic components within this process and known to respond to proinflammatory mediators released from immune cells such as mast cells. Mast cells

  15. The Model for Assessment of Telemedicine (MAST)

    DEFF Research Database (Denmark)

    Kidholm, Kristian; Clemensen, Jane; Caffery, Liam J

    2017-01-01

    The evaluation of telemedicine can be achieved using different evaluation models or theoretical frameworks. This paper presents a scoping review of published studies which have applied the Model for Assessment of Telemedicine (MAST). MAST includes pre-implementation assessment (e.g. by use...

  16. Sources and methods to reconstruct past masting patterns in European oak species.

    Science.gov (United States)

    Szabó, Péter

    2012-01-01

    The irregular occurrence of good seed years in forest trees is known in many parts of the world. Mast year frequency in the past few decades can be examined through field observational studies; however, masting patterns in the more distant past are equally important in gaining a better understanding of long-term forest ecology. Past masting patterns can be studied through the examination of historical written sources. These pose considerable challenges, because data in them were usually not recorded with the aim of providing information about masting. Several studies examined masting in the deeper past, however, authors hardly ever considered the methodological implications of using and combining various source types. This paper provides a critical overview of the types of archival written that are available for the reconstruction of past masting patterns for European oak species and proposes a method to unify and evaluate different types of data. Available sources cover approximately eight centuries and can be put into two basic categories: direct observations on the amount of acorns and references to sums of money received in exchange for access to acorns. Because archival sources are highly different in origin and quality, the optimal solution for creating databases for past masting data is a three-point scale: zero mast, moderate mast, good mast. When larger amounts of data are available in a unified three-point-scale database, they can be used to test hypotheses about past masting frequencies, the driving forces of masting or regional masting patterns.

  17. Quantification and localization of mast cells in periapical lesions.

    Science.gov (United States)

    Mahita, V N; Manjunatha, B S; Shah, R; Astekar, M; Purohit, S; Kovvuru, S

    2015-01-01

    Periapical lesions occur in response to chronic irritation in periapical tissue, generally resulting from an infected root canal. Specific etiological agents of induction, participating cell population and growth factors associated with maintenance and resolution of periapical lesions are incompletely understood. Among the cells found in periapical lesions, mast cells have been implicated in the inflammatory mechanism. Quantifications and the possible role played by mast cells in the periapical granuloma and radicular cyst. Hence, this study is to emphasize the presence (localization) and quantification of mast cells in periapical granuloma and radicular cyst. A total of 30 cases and out of which 15 of periapical granuloma and 15 radicular cyst, each along with the case details from the previously diagnosed cases in the department of oral pathology were selected for the study. The gender distribution showed male 8 (53.3%) and females 7 (46.7%) in periapical granuloma cases and male 10 (66.7%) and females 5 (33.3%) in radicular cyst cases. The statistical analysis used was unpaired t-test. Mean mast cell count in periapical granuloma subepithelial and deeper connective tissue, was 12.40 (0.99%) and 7.13 (0.83%), respectively. The mean mast cell counts in subepithelial and deeper connective tissue of radicular cyst were 17.64 (1.59%) and 12.06 (1.33%) respectively, which was statistically significant. No statistical significant difference was noted among males and females. Mast cells were more in number in radicular cyst. Based on the concept that mast cells play a critical role in the induction of inflammation, it is logical to use therapeutic agents to alter mast cell function and secretion, to thwart inflammation at its earliest phases. These findings may suggest the possible role of mast cells in the pathogenesis of periapical lesions.

  18. Bone Marrow?Derived Mesenchymal Stem Cells Enhance Bacterial Clearance and Preserve Bioprosthetic Integrity in a Model of Mesh Infection

    OpenAIRE

    Criman, Erik T.; Kurata, Wendy E.; Matsumoto, Karen W.; Aubin, Harry T.; Campbell, Carmen E.; Pierce, Lisa M.

    2016-01-01

    Background: The reported incidence of mesh infection in contaminated operative fields is as high as 30% regardless of the material used. Recently, mesenchymal stem cells (MSCs) have been shown to possess favorable immunomodulatory properties and improve tissue incorporation when seeded onto bioprosthetics. The aim of this study was to evaluate whether seeding noncrosslinked bovine pericardium (Veritas Collagen Matrix) with allogeneic bone marrow?derived MSCs improves infection resistance in v...

  19. Reliable and inexpensive expression of large, tagged, exogenous proteins in murine bone marrow-derived macrophages using a second generation lentiviral system

    Directory of Open Access Journals (Sweden)

    Matthew R. Miller

    2015-08-01

    Full Text Available Over the past two decades, researchers have struggled to efficiently express foreign DNA in primary macrophages, impeding research progress. The applications of lipofection, electroporation, microinjection, and viral-mediated transfer typically result in disruptions in macrophage differentiation and function, low expression levels of exogenous proteins, limited efficiency and high cell mortality. In this report, after extensive optimization, we present a method of expressing large tagged proteins at high efficiency, consistency, and low cost using lentiviral infection. This method utilizes laboratory-propagated second generation plasmids to produce efficient virus that can be stored for later use. The expression of proteins up to 150 kDa in size is achieved in 30–70% of cells while maintaining normal macrophage differentiation and morphology as determined by fluorescence microscopy and Western blot analysis. This manuscript delineates the reagents and methods used to produce lentivirus to express exogenous DNA in murine bone marrow-derived macrophages sufficient for single cell microscopy as well as functional assays requiring large numbers of murine bone marrow-derived macrophages.

  20. Thrombomodulin inhibits the activation of eosinophils and mast cells.

    Science.gov (United States)

    Roeen, Ziaurahman; Toda, Masaaki; D'Alessandro-Gabazza, Corina N; Onishi, Masahiro; Kobayashi, Tetsu; Yasuma, Taro; Urawa, Masahito; Taguchi, Osamu; Gabazza, Esteban C

    2015-01-01

    Eosinophils and mast cells play critical roles in the pathogenesis of bronchial asthma. Activation of both cells leads to the release of pro-inflammatory mediators in the airway of asthmatic patients. Recently, we have shown that inhaled thrombomodulin inhibits allergic bronchial asthma in a mouse model. In the present study, we hypothesize that thrombomodulin can inhibit the activation of eosinophils and mast cells. The effect of thrombomodulin on the activation and release of inflammatory mediators from eosinophils and mast cells was evaluated. Thrombomodulin inhibited the eotaxin-induced chemotaxis, upregulation of CD11b and degranulation of eosinophils. Treatment with thrombomodulin also significantly suppressed the degranulation and synthesis of inflammatory cytokines and chemokines in eosinophils and mast cells. Mice treated with a low-dose of inhaled thrombomodulin have decreased number of eosinophils and activated mast cells and Th2 cytokines in the lungs compared to untreated mice. The results of this study suggest that thrombomodulin may modulate allergic responses by inhibiting the activation of both eosinophils and mast cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Testing the "toxin hypothesis of allergy": Mast cells, IgE, and innate and acquired immune responses to venoms*

    Science.gov (United States)

    Tsai, Mindy; Starkl, Philipp; Marichal, Thomas; Galli, Stephen J.

    2015-01-01

    Summary Work in mice indicates that innate functions of mast cells, particularly degradation of venom toxins by mast cell-derived proteases, can enhance resistance to certain arthropod or reptile venoms. Recent reports indicate that acquired Th2 immune responses associated with the production of IgE antibodies, induced by Russell’s viper venom or honeybee venom, or by a component of honeybee venom, bee venom phospholipase 2 (bvPLA2), can increase the resistance of mice to challenge with potentially lethal doses of either of the venoms or bvPLA2. These findings support the conclusion that, in contrast to the detrimental effects associated with allergic Th2 immune responses, mast cells and IgE-dependent immune responses to venoms can contribute to innate and adaptive resistance to venom-induced pathology and mortality. PMID:26210895

  2. Quantifying mast cells in bladder pain syndrome by immunohistochemical analysis

    DEFF Research Database (Denmark)

    Larsen, M.S.; Mortensen, S.; Nordling, J.

    2008-01-01

    OBJECTIVES To evaluate a simple method for counting mast cells, thought to have a role in the pathophysiology of bladder pain syndrome (BPS, formerly interstitial cystitis, a syndrome of pelvic pain perceived to be related to the urinary bladder and accompanied by other urinary symptoms, e. g....... frequency and nocturia), as > 28 mast cells/mm(2) is defined as mastocytosis and correlated with clinical outcome. PATIENTS AND METHODS The current enzymatic staining method (naphtolesterase) on 10 mu m sections for quantifying mast cells is complicated. In the present study, 61 patients had detrusor...... sections between, respectively. Mast cells were counted according to a well-defined procedure. RESULTS The old and the new methods, on 10 and 3 mu m sections, showed a good correlation between mast cell counts. When using tryptase staining and 3 mu m sections, the mast cell number correlated well...

  3. Distorted secretory granule composition in mast cells with multiple protease deficiency.

    Science.gov (United States)

    Grujic, Mirjana; Calounova, Gabriela; Eriksson, Inger; Feyerabend, Thorsten; Rodewald, Hans-Reimer; Tchougounova, Elena; Kjellén, Lena; Pejler, Gunnar

    2013-10-01

    Mast cells are characterized by an abundance of secretory granules densely packed with inflammatory mediators such as bioactive amines, cytokines, serglycin proteoglycans with negatively charged glycosaminoglycan side chains of either heparin or chondroitin sulfate type, and large amounts of positively charged proteases. Despite the large biological impact of mast cell granules and their contents on various pathologies, the mechanisms that regulate granule composition are incompletely understood. In this study, we hypothesized that granule composition is dependent on a dynamic electrostatic interrelationship between different granule compounds. As a tool to evaluate this possibility, we generated mice in which mast cells are multideficient in a panel of positively charged proteases: the chymase mouse mast cell protease-4, the tryptase mouse mast cell protease-6, and carboxypeptidase A3. Through a posttranslational effect, mast cells from these mice additionally lack mouse mast cell protease-5 protein. Mast cells from mice deficient in individual proteases showed normal morphology. In contrast, mast cells with combined protease deficiency displayed a profound distortion of granule integrity, as seen both by conventional morphological criteria and by transmission electron microscopy. An assessment of granule content revealed that the distorted granule integrity in multiprotease-deficient mast cells was associated with a profound reduction of highly negatively charged heparin, whereas no reduction in chondroitin sulfate storage was observed. Taken together with previous findings showing that the storage of basic proteases conversely is regulated by anionic proteoglycans, these data suggest that secretory granule composition in mast cells is dependent on a dynamic interrelationship between granule compounds of opposite electrical charge.

  4. Mast Cell Proteases 6 and 7 Stimulate Angiogenesis by Inducing Endothelial Cells to Release Angiogenic Factors.

    Directory of Open Access Journals (Sweden)

    Devandir Antonio de Souza Junior

    Full Text Available Mast cell proteases are thought to be involved with tumor progression and neo-vascularization. However, their exact role is still unclear. The present study was undertaken to further elucidate the function of specific subtypes of recombinant mouse mast cell proteases (rmMCP-6 and 7 in neo-vascularization. SVEC4-10 cells were cultured on Geltrex® with either rmMCP-6 or 7 and tube formation was analyzed by fluorescence microscopy and scanning electron microscopy. Additionally, the capacity of these proteases to induce the release of angiogenic factors and pro and anti-angiogenic proteins was analyzed. Both rmMCP-6 and 7 were able to stimulate tube formation. Scanning electron microscopy showed that incubation with the proteases induced SVEC4-10 cells to invade the gel matrix. However, the expression and activity of metalloproteases were not altered by incubation with the mast cell proteases. Furthermore, rmMCP-6 and rmMCP-7 were able to induce the differential release of angiogenic factors from the SVEC4-10 cells. rmMCP-7 was more efficient in stimulating tube formation and release of angiogenic factors than rmMCP-6. These results suggest that the subtypes of proteases released by mast cells may influence endothelial cells during in vivo neo-vascularization.

  5. Mast cell subsets and neuropeptides in leprosy reactions

    Directory of Open Access Journals (Sweden)

    Antunes Sérgio Luiz Gomes

    2003-01-01

    Full Text Available The immunohistochemical identification of neuropeptides (calcitonin gene-related peptide, vasoactive intestinal polypeptide, substance P, alpha-melanocyte stimulating hormone and gamma-melanocyte stimulating hormone quantification of mast cells and their subsets (tryptase/chymase-immunoreactive mast cells = TCMC and tryptase-immunoreactive mast cells = TMC were determined in biopsies of six patients with leprosy reactions (three patients with type I reaction and three with type II. Biopsies were compared with those taken from the same body site in the remission stage of the same patient. We found a relative increase of TMC in the inflammatory infiltrate of the reactional biopsies compared to the post-reactional biopsy. Also, the total number of mast cells and the TMC/TCMC ratio in the inflammatory infiltrate was significantly higher than in the intervening dermis of the biopsies of both periods. No significant difference was found regarding neuroptide expression in the reactional and post-reactional biopsies. The relative increase of TMC in the reactional infiltrates could implicate this mast cell subset in the reported increase of the immune response in leprosy reactions.

  6. Ultraviolet B radiation increases hairless mouse mast cells in a dose-dependent manner and alters distribution of UV-induced mast cell growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Kligman, L.H.; Murphy, G.F. [Pennsylvania Univ., Philadelphia, PA (United States). School of Medicine

    1996-01-01

    In studies of the effects of chronic UVB irradiation on dermal connective tissue in the hairless mouse, we observed that the number and size of mast cells was increased. Because mast cells are known to be associated with connective tissue remodeling, we examined and quantified the effect of increasing UVB (290-320 nm)doses on this cell. Groups of mice were exposed to filtered FS-40 Westinghouse lamps (290-400 nm: peak irradiance 313 nm) for 1-5 minimal erythema doses (MED) thrice weekly for 10 weeks. Appropriate controls were included. Biopsies, processed for light microscopy, were stained with toluidine blue. Mast cells were counted in 15 high-magnification fields per specimen with upper and lower dermis scored separately. Significant increases in large densely granular mast cells occurred at 2 MED in the lower dermic in association with the UVB-exacerbated granulomatous reaction. In the upper dermis, mast cells were significantly increased with 3 MED. These findings suggest that mast cells may play a dual role in UV-irradiated skin with those in the lower dermis related to inflammation processes and those in the upper dermis involved in connective tissue modeling. To gain understanding of the mechanism of mast cell recruitment and maturation, we examined the effect of UVB on mast cell growth factor expression. This was enhanced in the epidermis by UVB, with a shift from cytoplasmic staining to membrane-associated or intercellular staining at 2 MED and higher. Dermal dendritic and mononuclear cells also showed increased reactivity. (Author).

  7. The mast on the house

    DEFF Research Database (Denmark)

    Landberg, L.

    1997-01-01

    An often encountered problem when preparing the basic input data for a wind atlas is the correction for the influence of the house or hut on which the mast - whose data forms the basis of this wind atlas - is placed. The paper will describe an experiment, where this problem has been addressed....... The knowledge gained will be used to give guide-lines as to the use of the WASP program to correct the observations. Should the house/hut simply be treated as an extension of the mast, should the house/hut be treated as a hill with speed-up effects, or should the house/hill be ignored completely? The paper...... will show that the house/hut should indeed be treated as a hill with speed-up effects. Placing meteorological masts on houses or huts is common practice in quite a few countries in the world. The problem is therefore one which most people involved in detailed wind resource assessment will face sooner...

  8. Mast cells in the human lung at high altitude

    Science.gov (United States)

    Heath, Donald

    1992-12-01

    Mast cell densities in the lung were measured in five native highlanders of La Paz (3600 m) and in one lowlander dying from high-altitude pulmonary oedema (HAPO) at 3440 m. Two of the highlanders were mestizos with normal pulmonary arteries and the others were Aymara Indians with muscular remodelling of their pulmonary vasculature. The aim of the investigation was to determine if accumulation of mast cells in the lung at high altitude (HA) is related to alveolar hypoxia alone, to a combination of hypoxia and muscularization of the pulmonary arterial tree, or to oedema of the lung. The lungs of four lowlanders were used as normoxic controls. The results showed that the mast cell density of the two Mestizos was in the normal range of lowlanders (0.6-8.8 cells/mm2). In the Aymara Indians the mast cell counts were raised (25.6-26.0 cells/mm2). In the lowlander dying from HAPO the mast cell count was greatly raised to 70.1 cells/mm2 lung tissue. The results show that in native highlanders an accumulation of mast cells in the lung is not related to hypoxia alone but to a combination of hypoxia and muscular remodelling of the pulmonary arteries. However, the most potent cause of increased mast cell density in the lung at high altitude appears to be high-altitude pulmonary oedema.

  9. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Xiaowei Zhang

    Full Text Available Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9 is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrating recombinant SOX9 protein in regeneration of hyaline cartilage in situ at the site of cartilage injury. We generated a recombinant SOX9 protein which was fused with super positively charged green fluorescence protein (GFP (scSOX9 to facilitate cell penetration. scSOX9 was able to induce chondrogenesis of bone marrow derived MSC in vitro. In a rabbit cartilage injury model, scSOX9 in combination with microfracture significantly improved quality of repaired cartilage as shown by macroscopic appearance. Histological analysis revealed that the reparative tissue induced by microfracture with scSOX9 had features of hyaline cartilage; and collagen type II to type I ratio was similar to that in normal cartilage. This short term in vivo study demonstrated that when administered at the site of microfracture, scSOX9 was able to induce reparative tissue with features of hyaline cartilage.

  10. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Zhang, Xiaowei; Wu, Shili; Naccarato, Ty; Prakash-Damani, Manan; Chou, Yuan; Chu, Cong-Qiu; Zhu, Yong

    2017-01-01

    Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC) to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9) is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrating recombinant SOX9 protein in regeneration of hyaline cartilage in situ at the site of cartilage injury. We generated a recombinant SOX9 protein which was fused with super positively charged green fluorescence protein (GFP) (scSOX9) to facilitate cell penetration. scSOX9 was able to induce chondrogenesis of bone marrow derived MSC in vitro. In a rabbit cartilage injury model, scSOX9 in combination with microfracture significantly improved quality of repaired cartilage as shown by macroscopic appearance. Histological analysis revealed that the reparative tissue induced by microfracture with scSOX9 had features of hyaline cartilage; and collagen type II to type I ratio was similar to that in normal cartilage. This short term in vivo study demonstrated that when administered at the site of microfracture, scSOX9 was able to induce reparative tissue with features of hyaline cartilage.

  11. Bone marrow transplantations to study gene function in hematopoietic cells

    NARCIS (Netherlands)

    de Winther, Menno P. J.; Heeringa, Peter

    2011-01-01

    Immune cells are derived from hematopoietic stem cells in the bone marrow. Experimental replacement of bone marrow offers the unique possibility to replace immune cells, to study gene function in mouse models of disease. Over the past decades, this technique has been used extensively to study, for

  12. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus.

    Science.gov (United States)

    Westerweel, Peter E; Teraa, Martin; Rafii, Shahin; Jaspers, Janneke E; White, Ian A; Hooper, Andrea T; Doevendans, Pieter A; Verhaar, Marianne C

    2013-01-01

    Circulating Endothelial Progenitor Cell (EPC) levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired -at least partly- due to dysfunction of the bone marrow stromal compartment. Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1(+)Flk-1(+) EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34(+) hematopoietic progenitor cells (HPC) and supporting stroma was assessed by co-cultures. To study progenitor cell-endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients.

  13. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Peter E Westerweel

    Full Text Available Circulating Endothelial Progenitor Cell (EPC levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired -at least partly- due to dysfunction of the bone marrow stromal compartment.Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1(+Flk-1(+ EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34(+ hematopoietic progenitor cells (HPC and supporting stroma was assessed by co-cultures. To study progenitor cell-endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed.In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro.EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients.

  14. Antibacterial agent triclosan suppresses RBL-2H3 mast cell function

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, Rachel K., E-mail: rachel.palmer@maine.edu [Graduate School of Biomedical Sciences, University of Maine, Orono, ME 04469 (United States); Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469 (United States); Hutchinson, Lee M.; Burpee, Benjamin T.; Tupper, Emily J.; Pelletier, Jonathan H.; Kormendy, Zsolt; Hopke, Alex R.; Malay, Ethan T.; Evans, Brieana L.; Velez, Alejandro [Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469 (United States); Gosse, Julie A., E-mail: julie.gosse@umit.maine.edu [Graduate School of Biomedical Sciences, University of Maine, Orono, ME 04469 (United States); Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469 (United States)

    2012-01-01

    Triclosan is a broad-spectrum antibacterial agent, which has been shown previously to alleviate human allergic skin disease. The purpose of this study was to investigate the hypothesis that the mechanism of this action of triclosan is, in part, due to effects on mast cell function. Mast cells play important roles in allergy, asthma, parasite defense, and carcinogenesis. In response to various stimuli, mast cells degranulate, releasing allergic mediators such as histamine. In order to investigate the potential anti-inflammatory effect of triclosan on mast cells, we monitored the level of degranulation in a mast cell model, rat basophilic leukemia cells, clone 2H3. Having functional homology to human mast cells, as well as a very well defined signaling pathway leading to degranulation, this cell line has been widely used to gain insight into mast-cell driven allergic disorders in humans. Using a fluorescent microplate assay, we determined that triclosan strongly dampened the release of granules from activated rat mast cells starting at 2 μM treatment, with dose-responsive suppression through 30 μM. These concentrations were found to be non-cytotoxic. The inhibition was found to persist when early signaling events (such as IgE receptor aggregation and tyrosine phosphorylation) were bypassed by using calcium ionophore stimulation, indicating that the target for triclosan in this pathway is likely downstream of the calcium signaling event. Triclosan also strongly suppressed F-actin remodeling and cell membrane ruffling, a physiological process that accompanies degranulation. Our finding that triclosan inhibits mast cell function may explain the clinical data mentioned above and supports the use of triclosan or a mechanistically similar compound as a topical treatment for allergic skin disease, such as eczema. -- Highlights: ►The effects of triclosan on mast cell function using a murine mast cell model. ►Triclosan strongly inhibits degranulation of mast cells.

  15. Mast cells, peptides and cardioprotection - an unlikely marriage?

    LENUS (Irish Health Repository)

    Walsh, S K

    2012-01-31

    1 Mast cells have classically been regarded as the \\'bad guys\\' in the setting of acute myocardial ischaemia, where their released contents are believed to contribute both to tissue injury and electrical disturbances resulting from ischaemia. Recent evidence suggests, however, that if mast cell degranulation occurs in advance of ischaemia onset, this may be cardioprotective by virtue of the depletion of mast cell contents that can no longer act as instruments of injury when the tissue becomes ischaemic. 2 Many peptides, such as ET-1, adrenomedullin, relaxin and atrial natriuretic peptide, have been demonstrated to be cardioprotective when given prior to the onset of myocardial ischaemia, although their physiological functions are varied and the mechanisms of their cardioprotective actions appear to be diverse and often ill defined. However, one common denominator that is emerging is the ability of these peptides to modulate mast cell degranulation, raising the possibility that peptide-induced mast cell degranulation or stabilization may hold the key to a common mechanism of their cardioprotection. 3 The aim of this review was to consolidate the evidence implying that mast cell degranulation could play both a detrimental and protective role in myocardial ischaemia, depending upon when it occurs, and that this may underlie the cardioprotective effects of a range of diverse peptides that exerts physiological effects within the cardiovascular system.

  16. Bone marrow-derived CD13+ cells sustain tumor progression: A potential non-malignant target for anticancer therapy.

    Science.gov (United States)

    Dondossola, Eleonora; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2014-01-01

    Non-malignant cells found within neoplastic lesions express alanyl (membrane) aminopeptidase (ANPEP, best known as CD13), and CD13-null mice exhibit limited tumor growth and angiogenesis. We have recently demonstrated that a subset of bone marrow-derived CD11b + CD13 + myeloid cells accumulate within neoplastic lesions in several murine models of transplantable cancer to promote angiogenesis. If these findings were confirmed in clinical settings, CD11b + CD13 + myeloid cells could become a non-malignant target for the development of novel anticancer regimens.

  17. Evidence for autocrine and paracrine regulation of allergen-induced mast cell mediator release in the guinea pig airways.

    Science.gov (United States)

    Yu, Li; Liu, Qi; Canning, Brendan J

    2018-03-05

    Mast cells play an essential role in immediate type hypersensitivity reactions and in chronic allergic diseases of the airways, including asthma. Mast cell mediator release can be modulated by locally released autacoids and circulating hormones, but surprisingly little is known about the autocrine effects of mediators released upon mast cell activation. We thus set out to characterize the autocrine and paracrine effects of mast cell mediators on mast cell activation in the guinea pig airways. By direct measures of histamine, cysteinyl-leukotriene and thromboxane release and with studies of allergen-evoked contractions of airway smooth muscle, we describe a complex interplay amongst these autacoids. Notably, we observed an autocrine effect of the cysteinyl-leukotrienes acting through cysLT 1 receptors on mast cell leukotriene release. We confirmed the results of previous studies demonstrating a marked enhancement of mast cell mediator release following cyclooxygenase inhibition, but we have extended these results by showing that COX-2 derived eicosanoids inhibit cysteinyl-leukotriene release and yet are without effect on histamine release. Given the prominent role of COX-1 inhibition in aspirin-sensitive asthma, these data implicate preformed mediators stored in granules as the initial drivers of these adverse reactions. Finally, we describe the paracrine signaling cascade leading to thromboxane synthesis in the guinea pig airways following allergen challenge, which occurs indirectly, secondary to cysLT 1 receptor activation on structural cells and/ or leukocytes within the airway wall, and a COX-2 dependent synthesis of the eicosanoid. The results highlight the importance of cell-cell and autocrine interactions in regulating allergic responses in the airways. Copyright © 2017. Published by Elsevier B.V.

  18. Effect of human scavenger receptor class A overexpression in bone marrow-derived cells on cholesterol levels and atherosclerosis in ApoE-deficient mice

    NARCIS (Netherlands)

    van Eck, M.; de Winther, M. P.; Herijgers, N.; Havekes, L. M.; Hofker, M. H.; Groot, P. H.; van Berkel, T. J.

    2000-01-01

    In the arterial wall, scavenger receptor class A (SRA) is implicated in pathological lipid deposition. In contrast, in the liver, SRA is suggested to remove modified lipoproteins from the circulation, thereby protecting the body from their pathological action. The role of SRA on bone marrow-derived

  19. Effect of human scavenger receptor class A overexpression in bone marrow-derived cells on cholesterol levels and atherosclerosis in apoE-deficient mice

    NARCIS (Netherlands)

    Eck, M. van; Winther, M.P.J. de; Herijgers, N.; Havekes, L.M.; Hofker, M.H.; Groot, P.H.E.; Berkel, T.J.C. van

    2000-01-01

    In the arterial wall, scavenger receptor class A (SRA) is implicated in pathological lipid deposition. In contrast, in the liver, SRA is suggested to remove modified lipoproteins from the circulation, thereby protecting the body from their pathological action. The role of SRA on bone marrow-derived

  20. In vitro proliferation of haemopoietic cells in the presence of adherent cell layers. II. Differential effect of adherent cell layers derived from various organs

    NARCIS (Netherlands)

    Reimann, J.; Burger, H.

    1979-01-01

    Mouse bone marrow-derived adherent cell populations promoted proliferation of haemopoietic cells in vitro in a liquid culture system for at least 4 weeks. Adherent cell layers derived from other haemopoietic organs (foetal liver, adult spleen) and fibroblasts from embryonic tissues did not maintain