WorldWideScience

Sample records for marrow derived macrophages

  1. A method for generation of bone marrow-derived macrophages from cryopreserved mouse bone marrow cells.

    Directory of Open Access Journals (Sweden)

    Fernanda M Marim

    Full Text Available The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L. amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells.

  2. Proteinase activated receptor 1 mediated fibrosis in a mouse model of liver injury: a role for bone marrow derived macrophages.

    Directory of Open Access Journals (Sweden)

    Yiannis N Kallis

    Full Text Available Liver fibrosis results from the co-ordinated actions of myofibroblasts and macrophages, a proportion of which are of bone marrow origin. The functional effect of such bone marrow-derived cells on liver fibrosis is unclear. We examine whether changing bone marrow genotype can down-regulate the liver's fibrotic response to injury and investigate mechanisms involved. Proteinase activated receptor 1 (PAR1 is up-regulated in fibrotic liver disease in humans, and deficiency of PAR1 is associated with reduced liver fibrosis in rodent models. In this study, recipient mice received bone marrow transplantation from PAR1-deficient or wild-type donors prior to carbon tetrachloride-induced liver fibrosis. Bone marrow transplantation alone from PAR1-deficient mice was able to confer significant reductions in hepatic collagen content and activated myofibroblast expansion on wild-type recipients. This effect was associated with a decrease in hepatic scar-associated macrophages and a reduction in macrophage recruitment from the bone marrow. In vitro, PAR1 signalling on bone marrow-derived macrophages directly induced their chemotaxis but did not stimulate proliferation. These data suggest that the bone marrow can modulate the fibrotic response of the liver to recurrent injury. PAR1 signalling can contribute to this response by mechanisms that include the regulation of macrophage recruitment.

  3. Susceptibility of bone marrow-derived macrophages to influenza virus infection is dependent on macrophage phenotype.

    Science.gov (United States)

    Campbell, Gillian M; Nicol, Marlynne Q; Dransfield, Ian; Shaw, Darren J; Nash, Anthony A; Dutia, Bernadette M

    2015-10-01

    The role of the macrophage in influenza virus infection is complex. Macrophages are critical for resolution of influenza virus infections but implicated in morbidity and mortality in severe infections. They can be infected with influenza virus and consequently macrophage infection is likely to have an impact on the host immune response. Macrophages display a range of functional phenotypes, from the prototypical pro-inflammatory classically activated cell to alternatively activated anti-inflammatory macrophages involved in immune regulation and wound healing. We were interested in how macrophages of different phenotype respond to influenza virus infection and therefore studied the infection of bone marrow-derived macrophages (BMDMs) of classical and alternative phenotype in vitro. Our results show that alternatively activated macrophages are more readily infected and killed by the virus than classically activated. Classically activated BMDMs express the pro-inflammatory markers inducible nitric oxide synthase (iNOS) and TNF-α, and TNF-α expression was further upregulated following infection. Alternatively activated macrophages express Arginase-1 and CD206; however, following infection, expression of these markers was downregulated whilst expression of iNOS and TNF-α was upregulated. Thus, infection can override the anti-inflammatory state of alternatively activated macrophages. Importantly, however, this results in lower levels of pro-inflammatory markers than those produced by classically activated cells. Our results showed that macrophage phenotype affects the inflammatory macrophage response following infection, and indicated that modulating the macrophage phenotype may provide a route to develop novel strategies to prevent and treat influenza virus infection.

  4. A new and efficient culture method for porcine bone marrow-derived M1- and M2-polarized macrophages.

    Science.gov (United States)

    Gao, Jiye; Scheenstra, Maaike R; van Dijk, Albert; Veldhuizen, Edwin J A; Haagsman, Henk P

    2018-06-01

    Macrophages play an important role in the innate immune system as part of the mononuclear phagocyte system (MPS). They have a pro-inflammatory signature (M1-polarized macrophages) or anti-inflammatory signature (M2-polarized macrophages) based on expression of surface receptors and secretion of cytokines. However, very little is known about the culture of macrophages from pigs and more specific about the M1 and M2 polarization in vitro. Porcine monocytes or mononuclear bone marrow cells were used to culture M1- and M2-polarized macrophages in the presence of GM-CSF and M-CSF, respectively. Surface receptor expression was measured with flow cytometry and ELISA was used to quantify cytokine secretion in response to LPS and PAM 3 CSK 4 stimulation. Human monocyte-derived macrophages were used as control. Porcine M1- and M2-polarized macrophages were cultured best using porcine GM-CSF and murine M-CSF, respectively. Cultures from bone marrow cells resulted in a higher yield M1- and M2-polarized macrophages which were better comparable to human monocyte-derived macrophages than cultures from porcine monocytes. Porcine M1-polarized macrophages displayed the characteristic fried egg shape morphology, lower CD163 expression and low IL-10 production. Porcine M2-polarized macrophages contained the spindle-like morphology, higher CD163 expression and high IL-10 production. Porcine M1- and M2-polarized macrophages can be most efficiently cultured from mononuclear bone marrow cells using porcine GM-CSF and murine M-CSF. The new culture method facilitates more refined studies of porcine macrophages in vitro, important for both porcine and human health since pigs are increasingly used as model for translational research. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Bone marrow-derived and peritoneal macrophages have different inflammatory response to oxLDL and M1/M2 marker expression

    DEFF Research Database (Denmark)

    Bisgaard, Line S; Mogensen, Christina K; Rosendahl, Alexander

    2016-01-01

    Macrophages are heterogeneous and can polarize into specific subsets, e.g. pro-inflammatory M1-like and re-modelling M2-like macrophages. To determine if peritoneal macrophages (PEMs) or bone marrow derived macrophages (BMDMs) resembled aortic macrophages from ApoE-/- mice, their M1/M2 phenotype,......, ACSL1, SRB1, DGAT1, and cpt1a) was decreased in advanced versus early lesions. In conclusion, PEMs and BMDMs are phenotypically distinct and differ from macrophages in lesions with respect to expression of M1/M2 markers and lipid metabolism genes....

  6. Reliable and inexpensive expression of large, tagged, exogenous proteins in murine bone marrow-derived macrophages using a second generation lentiviral system

    Directory of Open Access Journals (Sweden)

    Matthew R. Miller

    2015-08-01

    Full Text Available Over the past two decades, researchers have struggled to efficiently express foreign DNA in primary macrophages, impeding research progress. The applications of lipofection, electroporation, microinjection, and viral-mediated transfer typically result in disruptions in macrophage differentiation and function, low expression levels of exogenous proteins, limited efficiency and high cell mortality. In this report, after extensive optimization, we present a method of expressing large tagged proteins at high efficiency, consistency, and low cost using lentiviral infection. This method utilizes laboratory-propagated second generation plasmids to produce efficient virus that can be stored for later use. The expression of proteins up to 150 kDa in size is achieved in 30–70% of cells while maintaining normal macrophage differentiation and morphology as determined by fluorescence microscopy and Western blot analysis. This manuscript delineates the reagents and methods used to produce lentivirus to express exogenous DNA in murine bone marrow-derived macrophages sufficient for single cell microscopy as well as functional assays requiring large numbers of murine bone marrow-derived macrophages.

  7. Intracellular glutathione status regulates mouse bone marrow monocyte-derived macrophage differentiation and phagocytic activity

    International Nuclear Information System (INIS)

    Kim, Jin-Man; Kim, Hyunsoo; Kwon, Soon Bok; Lee, Soo Young; Chung, Sung-Chang; Jeong, Dae-Won; Min, Byung-Moo

    2004-01-01

    Although a redox shift can regulate the development of cells, including proliferation, differentiation, and survival, the role of the glutathione (GSH) redox status in macrophage differentiation remains unclear. In order to elucidate the role of a redox shift, macrophage-like cells were differentiated from the bone marrow-derived monocytes that were treated with a macrophage colony stimulating factor (M-CSF or CSF-1) for 3 days. The macrophagic cells were characterized by a time-dependent increase in three major symptoms: the number of phagocytic cells, the number of adherent cells, and the mRNA expression of c-fms, a M-CSF receptor that is one of the macrophage-specific markers and mediates development signals. Upon M-CSF-driven macrophage differentiation, the GSH/GSSG ratio was significantly lower on day 1 than that observed on day 0 but was constant on days 1-3. To assess the effect of the GSH-depleted and -repleted status on the differentiation and phagocytosis of the macrophages, GSH depletion by BSO, a specific inhibitor of the de novo GSH synthesis, inhibited the formation of the adherent macrophagic cells by the down-regulation of c-fms, but did not affect the phagocytic activity of the macrophages. To the contrary, GSH repletion by the addition of NAC, which is a GSH precursor, or reduced GSH in media had no effect on macrophage differentiation, and led to a decrease in the phagocytic activity. Furthermore, we observed that there is checkpoint that is capable of releasing from the inhibition of the formation of the adherent macrophagic cells according to GSH depletion by BSO. Summarizing, these results indicate that the intracellular GSH status plays an important role in the differentiation and phagocytosis of macrophages

  8. The cellular prion protein negatively regulates phagocytosis and cytokine expression in murine bone marrow-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available The cellular prion protein (PrP(C is a glycosylphosphatidylinositol (GPI-anchored glycoprotein on the cell surface. Previous studies have demonstrated contradictory roles for PrP(C in connection with the phagocytic ability of macrophages. In the present work, we investigated the function of PrP(C in phagocytosis and cytokine expression in bone marrow-derived macrophages infected with Escherichia coli. E. coli infection induced an increase in the PRNP mRNA level. Knockout of PrP(C promoted bacterial uptake; upregulated Rab5, Rab7, and Eea1 mRNA expression; and increased the recruitment of lysosomal-associated membrane protein-2 to phagosomes, suggesting enhanced microbicidal activity. Remarkably, knockout of PrP(C suppressed the proliferation of internalized bacteria and increased the expression of cytokines such as interleukin-1β. Collectively, our data reveal an important role of PrP(C as a negative regulator for phagocytosis, phagosome maturation, cytokine expression, and macrophage microbicidal activity.

  9. Classically and alternatively activated bone marrow derived macrophages differ in cytoskeletal functions and migration towards specific CNS cell types

    Directory of Open Access Journals (Sweden)

    Dijkstra Christine D

    2011-05-01

    Full Text Available Abstract Background Macrophages play an important role in neuroinflammatory diseases such as multiple sclerosis (MS and spinal cord injury (SCI, being involved in both damage and repair. The divergent effects of macrophages might be explained by their different activation status: classically activated (CA/M1, pro-inflammatory, macrophages and alternatively activated (AA/M2, growth promoting, macrophages. Little is known about the effect of macrophages with these phenotypes in the central nervous system (CNS and how they influence pathogenesis. The aim of this study was therefore to determine the characteristics of these phenotypically different macrophages in the context of the CNS in an in vitro setting. Results Here we show that bone marrow derived CA and AA macrophages have a distinct migratory capacity towards medium conditioned by various cell types of the CNS. AA macrophages were preferentially attracted by the low weight ( Conclusion In conclusion, since AA macrophages are more motile and are attracted by NCM, they are prone to migrate towards neurons in the CNS. CA macrophages have a lower motility and a stronger adhesion to ECM. In neuroinflammatory diseases the restricted migration and motility of CA macrophages might limit lesion size due to bystander damage.

  10. Onset of apoprotein E secretion during differentiation of mouse bone marrow-derived mononuclear phagocytes

    International Nuclear Information System (INIS)

    Werb, Z.; Chin, J.R.

    1983-01-01

    A number of macrophage functions were sequentially expressed when the bone marrow precursors of mononuclear phagocytes differentiated in culture in the presence of a specific growth factor, colony-stimulating factor-1. The authors defined the expression of apoprotein E (ApoE), a major secreted protein of resident peritoneal macrophages, during maturation of adherent bone marrow-derived mononuclear phagocytes into macrophages. By 5 d the bone marrow macrophages were active secretory cells, but few cells contained intracellular immunoreactive ApoE, and little, if any, ApoE was secreted. ApoE secretion was initiated at 9 d, and this correlated with an increase in the percentage of macrophages containing intracellular ApoE. The onset of ApoE secretion was selective, and little change occurred in the other major secreted proteins detected by [ 35 S]methionine incorporation. In parallel, the high rate of plasminogen activator secretion, which peaked at 7 d, decreased markedly. ApoE secretion was not associated with altered expression of the macrophage surface antigen, la, or with secretion of fibronectin. Virtually all cells in independent colonies of bone marrow-derived macrophages eventually expressed ApoE. The proliferating monocyte/macrophage-like cell lines P388D1, J774.2, WHEI-3, RAW 264.1, and MGI.D + secreted little or no ApoE. These data establish that ApoE secretion is developmentally regulated

  11. Glycyrrhizic Acid Promotes M1 Macrophage Polarization in Murine Bone Marrow-Derived Macrophages Associated with the Activation of JNK and NF-κB.

    Science.gov (United States)

    Mao, Yulong; Wang, Baikui; Xu, Xin; Du, Wei; Li, Weifen; Wang, Youming

    2015-01-01

    The roots and rhizomes of Glycyrrhiza species (licorice) have been widely used as natural sweeteners and herbal medicines. The aim of this study is to investigate the effect of glycyrrhizic acid (GA) from licorice on macrophage polarization. Both phenotypic and functional activities of murine bone marrow-derived macrophages (BMDMs) treated by GA were assessed. Our results showed that GA obviously increased the cell surface expression of CD80, CD86, and MHCII molecules. Meanwhile, GA upregulated the expression of CCR7 and the production of TNF-α, IL-12, IL-6, and NO (the markers of classically activated (M1) macrophages), whereas it downregulated the expression of MR, Ym1, and Arg1 (the markers of alternatively activated (M2) macrophage). The functional tests showed that GA dramatically enhanced the uptake of FITC-dextran and E. coli K88 by BMDMs and decreased the intracellular survival of E. coli K88 and S. typhimurium. Moreover, we demonstrated that JNK and NF-κB activation are required for GA-induced NO and M1-related cytokines production, while ERK1/2 pathway exhibits a regulatory effect via induction of IL-10. Together, these findings indicated that GA promoted polarization of M1 macrophages and enhanced its phagocytosis and bactericidal capacity. The results expanded our knowledge about the role of GA in macrophage polarization.

  12. Human Cord Blood and Bone Marrow CD34+ Cells Generate Macrophages That Support Erythroid Islands.

    Directory of Open Access Journals (Sweden)

    Eyayu Belay

    Full Text Available Recently, we developed a small molecule responsive hyperactive Mpl-based Cell Growth Switch (CGS that drives erythropoiesis associated with macrophages in the absence of exogenous cytokines. Here, we compare the physical, cellular and molecular interaction between the macrophages and erythroid cells in CGS expanded CD34+ cells harvested from cord blood, marrow or G-CSF-mobilized peripheral blood. Results indicated that macrophage based erythroid islands could be generated from cord blood and marrow CD34+ cells but not from G-CSF-mobilized CD34+ cells. Additional studies suggest that the deficiency resides with the G-CSF-mobilized CD34+ derived monocytes. Gene expression and proteomics studies of the in vitro generated erythroid islands detected the expression of erythroblast macrophage protein (EMP, intercellular adhesion molecule 4 (ICAM-4, CD163 and DNASE2. 78% of the erythroblasts in contact with macrophages reached the pre reticulocyte orthochromatic stage of differentiation within 14 days of culture. The addition of conditioned medium from cultures of CD146+ marrow fibroblasts resulted in a 700-fold increase in total cell number and a 90-fold increase in erythroid cell number. This novel CD34+ cell derived erythroid island may serve as a platform to explore the molecular basis of red cell maturation and production under normal, stress and pathological conditions.

  13. Bone marrow-derived mesenchymal stem cells propagate immunosuppressive/anti-inflammatory macrophages in cell-to-cell contact-independent and -dependent manners under hypoxic culture.

    Science.gov (United States)

    Takizawa, Naoki; Okubo, Naoto; Kamo, Masaharu; Chosa, Naoyuki; Mikami, Toshinari; Suzuki, Keita; Yokota, Seiji; Ibi, Miho; Ohtsuka, Masato; Taira, Masayuki; Yaegashi, Takashi; Ishisaki, Akira; Kyakumoto, Seiko

    2017-09-15

    Immunosuppressive/anti-inflammatory macrophage (Mφ), M2-Mφ that expressed the typical M2-Mφs marker, CD206, and anti-inflammatory cytokine, interleukin (IL)-10, is beneficial and expected tool for the cytotherapy against inflammatory diseases. Here, we demonstrated that bone marrow-derived lineage-positive (Lin+) blood cells proliferated and differentiated into M2-Mφs by cooperation with the bone marrow-derived mesenchymal stem cells (MSCs) under hypoxic condition: MSCs not only promoted proliferation of undifferentiated M2-Mφs, pre-M2-Mφs, in the Lin+ fraction via a proliferative effect of the MSCs-secreted macrophage colony-stimulating factor, but also promoted M2-Mφ polarization of the pre-M2-Mφs through cell-to-cell contact with the pre-M2-Mφs. Intriguingly, an inhibitor for intercellular adhesion molecule (ICAM)-1 receptor/lymphocyte function-associated antigen (LFA)-1, Rwj50271, partially suppressed expression of CD206 in the Lin+ blood cells but an inhibitor for VCAM-1 receptor/VLA-4, BIO5192, did not, suggesting that the cell-to-cell adhesion through LFA-1 on pre-M2-Mφs and ICAM-1 on MSCs was supposed to promoted the M2-Mφ polarization. Thus, the co-culture system consisting of bone marrow-derived Lin+ blood cells and MSCs under hypoxic condition was a beneficial supplier of a number of M2-Mφs, which could be clinically applicable to inflammatory diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Proteomic Analysis Reveals Distinct Metabolic Differences Between Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) and Macrophage Colony Stimulating Factor (M-CSF) Grown Macrophages Derived from Murine Bone Marrow Cells.

    Science.gov (United States)

    Na, Yi Rang; Hong, Ji Hye; Lee, Min Yong; Jung, Jae Hun; Jung, Daun; Kim, Young Won; Son, Dain; Choi, Murim; Kim, Kwang Pyo; Seok, Seung Hyeok

    2015-10-01

    Macrophages are crucial in controlling infectious agents and tissue homeostasis. Macrophages require a wide range of functional capabilities in order to fulfill distinct roles in our body, one being rapid and robust immune responses. To gain insight into macrophage plasticity and the key regulatory protein networks governing their specific functions, we performed quantitative analyses of the proteome and phosphoproteome of murine primary GM-CSF and M-CSF grown bone marrow derived macrophages (GM-BMMs and M-BMMs, respectively) using the latest isobaric tag based tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Strikingly, metabolic processes emerged as a major difference between these macrophages. Specifically, GM-BMMs show significant enrichment of proteins involving glycolysis, the mevalonate pathway, and nitrogen compound biosynthesis. This evidence of enhanced glycolytic capability in GM-BMMs is particularly significant regarding their pro-inflammatory responses, because increased production of cytokines upon LPS stimulation in GM-BMMs depends on their acute glycolytic capacity. In contrast, M-BMMs up-regulate proteins involved in endocytosis, which correlates with a tendency toward homeostatic functions such as scavenging cellular debris. Together, our data describes a proteomic network that underlies the pro-inflammatory actions of GM-BMMs as well as the homeostatic functions of M-BMMs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Myelopotentiating effect of curcumin in tumor-bearing host: Role of bone marrow resident macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Vishvakarma, Naveen Kumar; Kumar, Anjani; Kumar, Ajay; Kant, Shiva [School of Biotechnology, Banaras Hindu University, Varanasi-221 005, U.P. (India); Bharti, Alok Chandra [Division of Molecular Oncology, Institute of Cytology and Preventive Oncology, Noida, UP (India); Singh, Sukh Mahendra, E-mail: sukhmahendrasingh@yahoo.com [School of Biotechnology, Banaras Hindu University, Varanasi-221 005, U.P. (India)

    2012-08-15

    The present investigation was undertaken to study if curcumin, which is recognized for its potential as an antineoplastic and immunopotentiating agent, can also influence the process of myelopoiesis in a tumor-bearing host. Administration of curcumin to tumor-bearing host augmented count of bone marrow cell (BMC) accompanied by an up-regulated BMC survival and a declined induction of apoptosis. Curcumin administration modulated expression of cell survival regulatory molecules: Bcl2, p53, caspase-activated DNase (CAD) and p53-upregulated modulator of apoptosis (PUMA) along with enhanced expression of genes of receptors for M-CSF and GM-CSF in BMC. The BMC harvested from curcumin-administered hosts showed an up-regulated colony forming ability with predominant differentiation into bone marrow-derived macrophages (BMDM), responsive for activation to tumoricidal state. The number of F4/80 positive bone marrow resident macrophages (BMM), showing an augmented expression of M-CSF, was also augmented in the bone marrow of curcumin-administered host. In vitro reconstitution experiments indicated that only BMM of curcumin-administered hosts, but not in vitro curcumin-exposed BMM, augmented BMC survival. It suggests that curcumin-dependent modulation of BMM is of indirect nature. Such prosurvival action of curcumin is associated with altered T{sub H1}/T{sub H2} cytokine balance in serum. Augmented level of serum-borne IFN-γ was found to mediate modulation of BMM to produce enhanced amount of monokines (IL-1, IL-6, TNF-α), which are suggested to augment the BMC survival. Taken together the present investigation indicates that curcumin can potentiate myelopoiesis in a tumor-bearing host, which may have implications in its therapeutic utility. Highlights: ► Curcumin augments myelopoiesis in tumor-bearing host. ► Bone marrow resident macrophages mediate curcumin-dependent augmented myelopoiesis. ► Serum borne cytokine are implicated in modulation of bone marrow resident

  16. Myelopotentiating effect of curcumin in tumor-bearing host: Role of bone marrow resident macrophages

    International Nuclear Information System (INIS)

    Vishvakarma, Naveen Kumar; Kumar, Anjani; Kumar, Ajay; Kant, Shiva; Bharti, Alok Chandra; Singh, Sukh Mahendra

    2012-01-01

    The present investigation was undertaken to study if curcumin, which is recognized for its potential as an antineoplastic and immunopotentiating agent, can also influence the process of myelopoiesis in a tumor-bearing host. Administration of curcumin to tumor-bearing host augmented count of bone marrow cell (BMC) accompanied by an up-regulated BMC survival and a declined induction of apoptosis. Curcumin administration modulated expression of cell survival regulatory molecules: Bcl2, p53, caspase-activated DNase (CAD) and p53-upregulated modulator of apoptosis (PUMA) along with enhanced expression of genes of receptors for M-CSF and GM-CSF in BMC. The BMC harvested from curcumin-administered hosts showed an up-regulated colony forming ability with predominant differentiation into bone marrow-derived macrophages (BMDM), responsive for activation to tumoricidal state. The number of F4/80 positive bone marrow resident macrophages (BMM), showing an augmented expression of M-CSF, was also augmented in the bone marrow of curcumin-administered host. In vitro reconstitution experiments indicated that only BMM of curcumin-administered hosts, but not in vitro curcumin-exposed BMM, augmented BMC survival. It suggests that curcumin-dependent modulation of BMM is of indirect nature. Such prosurvival action of curcumin is associated with altered T H1 /T H2 cytokine balance in serum. Augmented level of serum-borne IFN-γ was found to mediate modulation of BMM to produce enhanced amount of monokines (IL-1, IL-6, TNF-α), which are suggested to augment the BMC survival. Taken together the present investigation indicates that curcumin can potentiate myelopoiesis in a tumor-bearing host, which may have implications in its therapeutic utility. Highlights: ► Curcumin augments myelopoiesis in tumor-bearing host. ► Bone marrow resident macrophages mediate curcumin-dependent augmented myelopoiesis. ► Serum borne cytokine are implicated in modulation of bone marrow resident

  17. Telomerase deficiency in bone marrow-derived cells attenuates angiotensin II-induced abdominal aortic aneurysm formation.

    Science.gov (United States)

    Findeisen, Hannes M; Gizard, Florence; Zhao, Yue; Cohn, Dianne; Heywood, Elizabeth B; Jones, Karrie L; Lovett, David H; Howatt, Deborah A; Daugherty, Alan; Bruemmer, Dennis

    2011-02-01

    Abdominal aortic aneurysms (AAA) are an age-related vascular disease and an important cause of morbidity and mortality. In this study, we sought to determine whether the catalytic component of telomerase, telomerase reverse transcriptase (TERT), modulates angiotensin (Ang) II-induced AAA formation. Low-density lipoprotein receptor-deficient (LDLr-/-) mice were lethally irradiated and reconstituted with bone marrow-derived cells from TERT-deficient (TERT-/-) mice or littermate wild-type mice. Mice were placed on a diet enriched in cholesterol, and AAA formation was quantified after 4 weeks of Ang II infusion. Repopulation of LDLr-/- mice with TERT-/- bone marrow-derived cells attenuated Ang II-induced AAA formation. TERT-deficient recipient mice revealed modest telomere attrition in circulating leukocytes at the study end point without any overt effect of the donor genotype on white blood cell counts. In mice repopulated with TERT-/- bone marrow, aortic matrix metalloproteinase-2 (MMP-2) activity was reduced, and TERT-/- macrophages exhibited decreased expression and activity of MMP-2 in response to stimulation with Ang II. Finally, we demonstrated in transient transfection studies that TERT overexpression activates the MMP-2 promoter in macrophages. TERT deficiency in bone marrow-derived macrophages attenuates Ang II-induced AAA formation in LDLr-/- mice and decreases MMP-2 expression. These results point to a previously unrecognized role of TERT in the pathogenesis of AAA.

  18. Transferrin-derived synthetic peptide induces highly conserved pro-inflammatory responses of macrophages.

    Science.gov (United States)

    Haddad, George; Belosevic, Miodrag

    2009-02-01

    We examined the induction of macrophage pro-inflammatory responses by transferrin-derived synthetic peptide originally identified following digestion of transferrin from different species (murine, bovine, human N-lobe and goldfish) using elastase. The mass spectrometry analysis of elastase-digested murine transferrin identified a 31 amino acid peptide located in the N2 sub-domain of the transferrin N-lobe, that we named TMAP. TMAP was synthetically produced and shown to induce a number of pro-inflammatory genes by quantitative PCR. TMAP induced chemotaxis, a potent nitric oxide response, and TNF-alpha secretion in different macrophage populations; P338D1 macrophage-like cells, mouse peritoneal macrophages, mouse bone marrow-derived macrophages (BMDM) and goldfish macrophages. The treatment of BMDM cultures with TMAP stimulated the production of nine cytokines and chemokines (IL-6, MCP-5, MIP-1 alpha, MIP-1 gamma, MIP-2, GCSF, KC, VEGF, and RANTES) that was measured using cytokine antibody array and confirmed by Western blot. Our results indicate that transferrin-derived peptide, TMAP, is an immunomodulating molecule capable of inducing pro-inflammatory responses in lower and higher vertebrates.

  19. Characteristics of macrophages in irradiation chimeras in mice reconstituted with allogeneic bone marrow cells

    International Nuclear Information System (INIS)

    Yasumizu, R.; Onoe, K.; Iwabuchi, K.; Ogasawara, M.; Fujita, M.; Okuyama, H.; Good, R.A.; Morikawa, K.

    1985-01-01

    Biological and immunological characteristics of the reticuloendothelial system of irradiation bone marrow chimeric mice and macrophages collected from various tissue sources of the mice were studied. The chimeras showed comparable activities in carbon clearance to those of normal donor or recipient mice. The macrophages from spleen, lymph node, bone marrow, peripheral blood, liver, peritoneal cavity, and lung were demonstrated to be of donor marrow origin. They showed almost the same enzyme activities and phagocytic capability of sheep erythrocytes (SRBC, E), SRBC sensitized with anti-SRBC IgG (EA), and SRBC sensitized with anti-SRBC IgM and coated with complement (EAC) as those of normal mice. Proportions of Fc receptor and complement receptor-positive cells are also in normal range. In addition, the antigen-presenting capability of the chimeric macrophages for in vitro primary antibody response to SRBC was intact. These observations suggest that the reticuloendothelial system and macrophages of allogeneic bone marrow chimeras where donor and recipient differ at the major histocompatibility complex have no defect so far as could be ascertained by the present study

  20. F4/80+ Host Macrophages Are a Barrier to Murine Embryonic Stem Cell-Derived Hematopoietic Progenitor Engraftment In Vivo.

    Science.gov (United States)

    Thompson, Heather L; van Rooijen, Nico; McLelland, Bryce T; Manilay, Jennifer O

    2016-01-01

    Understanding how embryonic stem cells and their derivatives interact with the adult host immune system is critical to developing their therapeutic potential. Murine embryonic stem cell-derived hematopoietic progenitors (ESHPs) were generated via coculture with the bone marrow stromal cell line, OP9, and then transplanted into NOD.SCID.Common Gamma Chain (NSG) knockout mice, which lack B, T, and natural killer cells. Compared to control mice transplanted with adult lineage-negative bone marrow (Lin - BM) progenitors, ESHP-transplanted mice attained a low but significant level of donor hematopoietic chimerism. Based on our previous studies, we hypothesized that macrophages might contribute to the low engraftment of ESHPs in vivo . Enlarged spleens were observed in ESHP-transplanted mice and found to contain higher numbers of host F4/80 + macrophages compared to BM-transplanted controls. In vivo depletion of host macrophages using clodronate-loaded liposomes improved the ESHP-derived hematopoietic chimerism in the spleen but not in the BM. F4/80 + macrophages demonstrated a striking propensity to phagocytose ESHP targets in vitro . Taken together, these results suggest that macrophages are a barrier to both syngeneic and allogeneic ESHP engraftment in vivo .

  1. Interactions of proteoliposomes from serogroup B Neisseria meningitidis with bone marrow-derived dendritic cells and macrophages: adjuvant effects and antigen delivery.

    Science.gov (United States)

    Rodríguez, Tamara; Pérez, Oliver; Ménager, Nathalie; Ugrinovic, Sanja; Bracho, Gustavo; Mastroeni, Pietro

    2005-01-26

    Exposure to proteoliposomes from serogroup B Neisseria meningitidis (PL) induced up-regulation of MHC-II, MHC-I, CD40, CD80 and CD86 expression on the surface of murine bone marrow-derived dendritic cells (DC). CD40, CD80 and CD86 were up-regulated on bone marrow-derived macrophages (MPhi) upon stimulation with PL. Both DC and MPhi released TNFalpha, but only DC produced IL12(p70) in response to PL. A small increase in the expression of MHC-II, CD40 and CD86, as well as production of IL12(p70), was observed on the cell surface of DC, but not MPhi from LPS-non-responder C3H/HeJ after exposure to PL. DC, but not MPhi, incubated with PL containing ovalbumin (PL-OVA) presented OVA-specific peptides to CD4+ and CD8+ OVA-specific T-cell hybridomas. These data clearly indicate that PL exert an immunomodulatory effect on DC and MPhi, with some contribution of non-LPS components besides the main role of LPS. The work also shows the potential of PL as a general system to deliver antigens to DC for presentation to CD4+ and CD8+ T-cells.

  2. Identification of resident and inflammatory bone marrow derived cells in the sclera by bone marrow and haematopoietic stem cell transplantation.

    Science.gov (United States)

    Hisatomi, Toshio; Sonoda, Koh-hei; Ishikawa, Fumihiko; Qiao, Hong; Nakazawa, Takahiro; Fukata, Mitsuhiro; Nakamura, Toru; Noda, Kousuke; Miyahara, Shinsuke; Harada, Mine; Kinoshita, Shigeru; Hafezi-Moghadam, Ali; Ishibashi, Tatsuro; Miller, Joan W

    2007-04-01

    To characterise bone marrow derived cells in the sclera under normal and inflammatory conditions, we examined their differentiation after transplantation from two different sources, bone marrow and haematopoietic stem cells (HSC). Bone marrow and HSC from green fluorescent protein (GFP) transgenic mice were transplanted into irradiated wild-type mice. At 1 month after transplantation, mice were sacrificed and their sclera examined by histology, immunohistochemistry (CD11b, CD11c, CD45), and transmission and scanning electron microscopy. To investigate bone marrow derived cell recruitment under inflammatory conditions, experimental autoimmune uveitis (EAU) was induced in transplanted mice. GFP positive cells were distributed in the entire sclera and comprised 22.4 (2.8)% (bone marrow) and 28.4 (10.9)% (HSC) of the total cells in the limbal zone and 18.1 (6.7)% (bone marrow) and 26.3 (3.4)% (HSC) in the peripapillary zone. Immunohistochemistry showed that GFP (+) CD11c (+), GFP (+) CD11b (+) cells migrated in the sclera after bone marrow and HSC transplantation. Transmission and scanning electron microscopy revealed antigen presenting cells among the scleral fibroblasts. In EAU mice, vast infiltration of GFP (+) cells developed into the sclera. We have provided direct and novel evidence for the migration of bone marrow and HSC cells into the sclera differentiating into macrophages and dendritic cells. Vast infiltration of bone marrow and HSC cells was found to be part of the inflammatory process in EAU.

  3. Pathologic and Protective Roles for Microglial Subsets and Bone Marrow- and Blood-Derived Myeloid Cells in Central Nervous System Inflammation

    DEFF Research Database (Denmark)

    Wlodarczyk, Agnieszka; Cédile, Oriane; Jensen, Kirstine Nolling

    2015-01-01

    Inflammation is a series of processes designed for eventual clearance of pathogens and repair of damaged tissue. In the context of autoimmune recognition, inflammatory processes are usually considered to be pathological. This is also true for inflammatory responses in the central nervous system...... (CNS). However, as in other tissues, neuroinflammation can have beneficial as well as pathological outcomes. The complex role of encephalitogenic T cells in multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE) may derive from heterogeneity of the myeloid cells...... with which these T cells interact within the CNS. Myeloid cells, including resident microglia and infiltrating bone marrow-derived cells, such as dendritic cells (DC) and monocytes/macrophages [bone marrow-derived macrophages (BMDM)], are highly heterogeneous populations that may be involved in neurotoxicity...

  4. Emerging paradigms and questions on pro-angiogenic bone marrow-derived myelomonocytic cells.

    Science.gov (United States)

    Laurent, Julien; Touvrey, Cédric; Botta, Francesca; Kuonen, François; Ruegg, Curzio

    2011-01-01

    Cancer-related inflammation has emerged in recent years as a major event contributing to tumor angiogenesis, tumor progression and metastasis formation. Bone marrow-derived and inflammatory cells promote tumor angiogenesis by providing endothelial progenitor cells that differentiate into mature endothelial cells, and by secreting pro-angiogenic factors and remodeling the extracellular matrix to stimulate angiogenesis though paracrine mechanisms. Several bone marrow-derived myelonomocytic cells, including monocytes and macrophages, have been identified and characterized by several laboratories in recent years. While the central role of these cells in promoting tumor angiogenesis, tumor progression and metastasis is nowadays well established, many questions remain open and new ones are emerging. These include the relationship between their phenotype and function, the mechanisms of pro-angiogenic programming, their contribution to resistance to anti-angiogenic treatments and to metastasis and their potential clinical use as biomarkers of angiogenesis and anti-angiogenic therapies. Here, we will review phenotypical and functional aspects of bone marrow-derived myelonomocytic cells and discuss some of the current outstanding questions.

  5. T3 Regulates a Human Macrophage-Derived TSH-β Splice Variant: Implications for Human Bone Biology.

    Science.gov (United States)

    Baliram, R; Latif, R; Morshed, S A; Zaidi, M; Davies, T F

    2016-09-01

    TSH and thyroid hormones (T3 and T4) are intimately involved in bone biology. We have previously reported the presence of a murine TSH-β splice variant (TSH-βv) expressed specifically in bone marrow-derived macrophages and that exerted an osteoprotective effect by inducing osteoblastogenesis. To extend this observation and its relevance to human bone biology, we set out to identify and characterize a TSH-β variant in human macrophages. Real-time PCR analyses using human TSH-β-specific primers identified a 364-bp product in macrophages, bone marrow, and peripheral blood mononuclear cells that was sequence verified and was homologous to a human TSH-βv previously reported. We then examined TSH-βv regulation using the THP-1 human monocyte cell line matured into macrophages. After 4 days, 46.1% of the THP-1 cells expressed the macrophage markers CD-14 and macrophage colony-stimulating factor and exhibited typical morphological characteristics of macrophages. Real-time PCR analyses of these cells treated in a dose-dependent manner with T3 showed a 14-fold induction of human TSH-βv mRNA and variant protein. Furthermore, these human TSH-βv-positive cells, induced by T3 exposure, had categorized into both M1 and M2 macrophage phenotypes as evidenced by the expression of macrophage colony-stimulating factor for M1 and CCL-22 for M2. These data indicate that in hyperthyroidism, bone marrow resident macrophages have the potential to exert enhanced osteoprotective effects by oversecreting human TSH-βv, which may exert its local osteoprotective role via osteoblast and osteoclast TSH receptors.

  6. Preferential magnetic nanoparticle uptake by bone marrow derived macrophages sub-populations: effect of surface coating on polarization, toxicity, and in vivo MRI detection

    Energy Technology Data Exchange (ETDEWEB)

    Al Faraj, Achraf, E-mail: aalfaraj@ksu.edu.sa [College of Applied Medical Sciences, King Saud University, Molecular and Cellular Imaging Lab, Department of Radiological Sciences (Saudi Arabia)

    2013-07-15

    Noninvasive imaging of macrophages activity has raised increasing interest for diagnosis of different diseases, which make them attractive vehicles to deliver contrast agents or drugs for diagnostic or therapeutic purposes. In this study, the effect of polyethylene glycol functionalization of magnetic iron oxide nanoparticles and their further surface modification with carboxylic groups on bone marrow-derived M1 and M2 macrophages phenotype, labeling efficiency, uptake mechanism, biocompatibility, and their in vivo MR detection was assessed. An enhanced labeling efficiency was observed for carboxylic surface-modified superparamagnetic iron oxide (SPIO) compared to PEGylated SPIO and to a higher extent to plain SPIO along with a higher uptake by M2 subsets. Magnetic nanoparticles were found located in the periphery of the vesicles dispersed in the cytoplasm in TEM. Investigation of the labeling mechanism by inhibiting different uptake pathways revealed that endocytosis via scavenger receptor A, a process known to be clathrin mediated, plays a central role in the cellular uptake kinetics of both macrophages subpopulations. Biocompatibility evaluation showed no variation in cell viability and mitochondrial membrane potential with a low release of ROS. Flow cytometry and measurement of iNOS and Arginase 1 activity as marker of M1 and M2 macrophages polarization confirmed that magnetic labeling of macrophages subsets did not affect their polarization. In addition, no variation was observed in the biodistribution of magnetic iron oxide-labeled M1 and M2 macrophages subsets when monitored using noninvasive magnetic resonance imaging with a better detection for the enhanced SPIO-PEG-COOH-labeled cells.

  7. Preferential magnetic nanoparticle uptake by bone marrow derived macrophages sub-populations: effect of surface coating on polarization, toxicity, and in vivo MRI detection

    International Nuclear Information System (INIS)

    Al Faraj, Achraf

    2013-01-01

    Noninvasive imaging of macrophages activity has raised increasing interest for diagnosis of different diseases, which make them attractive vehicles to deliver contrast agents or drugs for diagnostic or therapeutic purposes. In this study, the effect of polyethylene glycol functionalization of magnetic iron oxide nanoparticles and their further surface modification with carboxylic groups on bone marrow-derived M1 and M2 macrophages phenotype, labeling efficiency, uptake mechanism, biocompatibility, and their in vivo MR detection was assessed. An enhanced labeling efficiency was observed for carboxylic surface-modified superparamagnetic iron oxide (SPIO) compared to PEGylated SPIO and to a higher extent to plain SPIO along with a higher uptake by M2 subsets. Magnetic nanoparticles were found located in the periphery of the vesicles dispersed in the cytoplasm in TEM. Investigation of the labeling mechanism by inhibiting different uptake pathways revealed that endocytosis via scavenger receptor A, a process known to be clathrin mediated, plays a central role in the cellular uptake kinetics of both macrophages subpopulations. Biocompatibility evaluation showed no variation in cell viability and mitochondrial membrane potential with a low release of ROS. Flow cytometry and measurement of iNOS and Arginase 1 activity as marker of M1 and M2 macrophages polarization confirmed that magnetic labeling of macrophages subsets did not affect their polarization. In addition, no variation was observed in the biodistribution of magnetic iron oxide-labeled M1 and M2 macrophages subsets when monitored using noninvasive magnetic resonance imaging with a better detection for the enhanced SPIO–PEG–COOH-labeled cells

  8. Spliced XBP1 promotes macrophage survival and autophagy by interacting with Beclin-1

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Ping-Ge [Southern Medical University, Guangzhou, Guangdong 510515 (China); Jiang, Zhi-Xin [Centre Laboratory, The 305th Hospital of the People' s Liberation Army, Beijing 100017 (China); Li, Jian-Hua [Department of Geriatric Cardiology, Chinese PLA General Hosptial, Beijing 100853 (China); Zhou, Zhe, E-mail: zhouzhe76@126.com [Laboratory of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Zhang, Qing-Hua, E-mail: 1056055170@qq.com [Department of Cardiology, The 305th Hospital of the People' s Liberation Army, Beijing 100017 (China)

    2015-08-07

    Macrophage autophagy plays an important role in the development of atherosclerosis, but the precise mechanism mediating this process is unclear. The potential role of the X-box binding protein 1 (XBP1), a crucial transduction factor that is involved in endoplasmic reticulum stress and the unfolded protein response, in bone marrow-derived macrophage autophagy is unknown. This study mainly explores the roles of XBP1 mRNA splicing in bone marrow-derived macrophage autophagy. The present study shows that the transient overexpression of spliced XBP1 via adenovirus-mediated gene transfer induces autophagy and promotes proliferation in bone marrow-derived macrophages via the down-regulation of Beclin-1, but that the sustained overexpression of spliced XBP1 leads to apoptosis. When XBP1 is down-regulated in bone marrow-derived macrophages using siRNA, rapamycin-induced autophagosome formation is ablated. Furthermore, we have detected the overexpression of XBP1 in areas of atherosclerotic plaques in the arteries of ApoE−/− mice. These results demonstrate that XBP1 mRNA splicing plays an important role in maintaining the function of bone marrow-derived macrophages and provide new insight into the study and treatment of atherosclerosis. - Highlights: • XBP1 was up-regulated in atherosclerotic plaques of ApoE−/− mice. • Transient spliced XBP1 overexpression induced macrophages autophagy via Beclin-1. • Sustained spliced XBP1 overexpression triggered macrophages apoptosis. • Spliced XBP1 plays a key role in maintaining the macrophages survival.

  9. Hepatocyte growth factor modulates interleukin-6 production in bone marrow derived macrophages: implications for inflammatory mediated diseases.

    Directory of Open Access Journals (Sweden)

    Gina M Coudriet

    2010-11-01

    Full Text Available The generation of the pro-inflammatory cytokines IL-6, TNF-α, and IL-1β fuel the acute phase response (APR. To maintain body homeostasis, the increase of inflammatory proteins is resolved by acute phase proteins via presently unknown mechanisms. Hepatocyte growth factor (HGF is transcribed in response to IL-6. Since IL-6 production promotes the generation of HGF and induces the APR, we posited that accumulating HGF might be a likely candidate for quelling excess inflammation under non-pathological conditions. We sought to assess the role of HGF and how it influences the regulation of inflammation utilizing a well-defined model of inflammatory activation, lipopolysaccharide (LPS-stimulation of bone marrow derived macrophages (BMM. BMM were isolated from C57BL6 mice and were stimulated with LPS in the presence or absence of HGF. When HGF was present, there was a decrease in production of the pro-inflammatory cytokine IL-6, along with an increase in the anti-inflammatory cytokine IL-10. Altered cytokine production correlated with an increase in phosphorylated GSK3β, increased retention of the phosphorylated NFκB p65 subunit in the cytoplasm, and an enhanced interaction between CBP and phospho-CREB. These changes were a direct result of signaling through the HGF receptor, MET, as effects were reversed in the presence of a selective inhibitor of MET (SU11274 or when using BMM from macrophage-specific conditional MET knockout mice. Combined, these data provide compelling evidence that under normal circumstances, HGF acts to suppress the inflammatory response.

  10. Macrophage Activation Mechanisms in Human Monocytic Cell Line-derived Macrophages.

    Science.gov (United States)

    Sumiya, Yu; Ishikawa, Mami; Inoue, Takahiro; Inui, Toshio; Kuchiike, Daisuke; Kubo, Kentaro; Uto, Yoshihiro; Nishikata, Takahito

    2015-08-01

    Although the mechanisms of macrophage activation are important for cancer immunotherapy, they are poorly understood. Recently, easy and robust assay systems for assessing the macrophage-activating factor (MAF) using monocytic cell line-derived macrophages were established. Gene-expression profiles of U937- and THP-1-derived macrophages were compared using gene expression microarray analysis and their responses against several MAFs were examined by in vitro experiments. Activated states of these macrophages could not be assigned to a specific sub-type but showed, however, different unique characteristics. The unique of monocytic cell line-derived macrophages could provide clues to understand the activation mechanism of macrophages and, therefore, help to develop effective cancer immunotherapy with MAFs. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Arctigenin suppresses receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclast differentiation in bone marrow-derived macrophages.

    Science.gov (United States)

    Kim, A-Ram; Kim, Hyuk Soon; Lee, Jeong Min; Choi, Jung Ho; Kim, Se Na; Kim, Do Kyun; Kim, Ji Hyung; Mun, Se Hwan; Kim, Jie Wan; Jeon, Hyun Soo; Kim, Young Mi; Choi, Wahn Soo

    2012-05-05

    Osteoclasts, multinucleated bone-resorbing cells, are closely associated with bone diseases such as rheumatoid arthritis and osteoporosis. Osteoclasts are derived from hematopoietic precursor cells, and their differentiation is mediated by two cytokines, including macrophage colony stimulating factor and receptor activator of nuclear factor κB ligand (RANKL). Previous studies have shown that arctigenin exhibits an anti-inflammatory effect. However, the effect of arctigenin on osteoclast differentiation is yet to be elucidated. In this study, we found that arctigenin inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages in a dose-dependent manner and suppressed RANKL-mediated bone resorption. Additionally, the expression of typical marker proteins, such as NFATc1, c-Fos, TRAF6, c-Src, and cathepsin K, were significantly inhibited. Arctigenin inhibited the phosphorylation of Erk1/2, but not p38 and JNK, in a dose-dependent manner. Arctigenin also dramatically suppressed immunoreceptor tyrosine-based activation motif-mediated costimulatory signaling molecules, including Syk and PLCγ2, and Gab2. Notably, arctigenin inhibited the activation of Syk through RANKL stimulation. Furthermore, arctigenin prevented osteoclast differentiation in the calvarial bone of mice following stimulation with lipopolysaccharide. Our results show that arctigenin inhibits osteoclast differentiation in vitro and in vivo. Therefore, arctigenin may be useful for treating rheumatoid arthritis and osteoporosis. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs.

    Science.gov (United States)

    Winkler, Ingrid G; Sims, Natalie A; Pettit, Allison R; Barbier, Valérie; Nowlan, Bianca; Helwani, Falak; Poulton, Ingrid J; van Rooijen, Nico; Alexander, Kylie A; Raggatt, Liza J; Lévesque, Jean-Pierre

    2010-12-02

    In the bone marrow, hematopoietic stem cells (HSCs) reside in specific niches near osteoblast-lineage cells at the endosteum. To investigate the regulation of these endosteal niches, we studied the mobilization of HSCs into the bloodstream in response to granulocyte colony-stimulating factor (G-CSF). We report that G-CSF mobilization rapidly depletes endosteal osteoblasts, leading to suppressed endosteal bone formation and decreased expression of factors required for HSC retention and self-renewal. Importantly, G-CSF administration also depleted a population of trophic endosteal macrophages (osteomacs) that support osteoblast function. Osteomac loss, osteoblast suppression, and HSC mobilization occurred concomitantly, suggesting that osteomac loss could disrupt endosteal niches. Indeed, in vivo depletion of macrophages, in either macrophage Fas-induced apoptosis (Mafia) transgenic mice or by administration of clodronate-loaded liposomes to wild-type mice, recapitulated the: (1) loss of endosteal osteoblasts and (2) marked reduction of HSC-trophic cytokines at the endosteum, with (3) HSC mobilization into the blood, as observed during G-CSF administration. Together, these results establish that bone marrow macrophages are pivotal to maintain the endosteal HSC niche and that the loss of such macrophages leads to the egress of HSCs into the blood.

  13. Gaucher iPSC-derived macrophages produce elevated levels of inflammatory mediators and serve as a new platform for therapeutic development.

    Science.gov (United States)

    Panicker, Leelamma M; Miller, Diana; Awad, Ola; Bose, Vivek; Lun, Yu; Park, Tea Soon; Zambidis, Elias T; Sgambato, Judi A; Feldman, Ricardo A

    2014-09-01

    Gaucher disease (GD) is an autosomal recessive disorder caused by mutations in the acid β-glucocerebrosidase (GCase; GBA) gene. The hallmark of GD is the presence of lipid-laden Gaucher macrophages, which infiltrate bone marrow and other organs. These pathological macrophages are believed to be the sources of elevated levels of inflammatory mediators present in the serum of GD patients. The alteration in the immune environment caused by GD is believed to play a role in the increased risk of developing multiple myeloma and other malignancies in GD patients. To determine directly whether Gaucher macrophages are abnormally activated and whether their functional defects can be reversed by pharmacological intervention, we generated GD macrophages by directed differentiation of human induced pluripotent stem cells (hiPSC) derived from patients with types 1, 2, and 3 GD. GD hiPSC-derived macrophages expressed higher levels of tumor necrosis factor α, IL-6, and IL-1β than control cells, and this phenotype was exacerbated by treatment with lipopolysaccharide. In addition, GD hiPSC macrophages exhibited a striking delay in clearance of phagocytosed red blood cells, recapitulating the presence of red blood cell remnants in Gaucher macrophages from bone marrow aspirates. Incubation of GD hiPSC macrophages with recombinant GCase, or with the chaperones isofagomine and ambroxol, corrected the abnormal phenotypes of GD macrophages to an extent that reflected their known clinical efficacies. We conclude that Gaucher macrophages are the likely source of the elevated levels of inflammatory mediators in the serum of GD patients and that GD hiPSC are valuable new tools for studying disease mechanisms and drug discovery. © 2014 AlphaMed Press.

  14. Assessment of Antibody-based Drugs Effects on Murine Bone Marrow and Peritoneal Macrophage Activation.

    Science.gov (United States)

    Kozicky, Lisa; Sly, Laura M

    2017-12-26

    Macrophages are phagocytic innate immune cells, which initiate immune responses to pathogens and contribute to healing and tissue restitution. Macrophages are equally important in turning off inflammatory responses. We have shown that macrophages stimulated with intravenous immunoglobulin (IVIg) can produce high amounts of the anti-inflammatory cytokine, interleukin 10 (IL-10), and low levels of pro-inflammatory cytokines in response to bacterial lipopolysaccharides (LPS). IVIg is a polyvalent antibody, primarily immunoglobulin Gs (IgGs), pooled from the plasma of more than 1,000 blood donors. It is used to supplement antibodies in patients with immune deficiencies or to suppress immune responses in patients with autoimmune or inflammatory conditions. Infliximab, a therapeutic anti-tumor necrosis factor alpha (TNFα) antibody, has also been shown to activate macrophages to produce IL-10 in response to inflammatory stimuli. IVIg and other antibody-based biologics can be tested to determine their effects on macrophage activation. This paper describes methods for derivation, stimulation, and assessment of murine bone marrow macrophages activated by antibodies in vitro and murine peritoneal macrophages activated with antibodies in vivo. Finally, we demonstrate the use of western blotting to determine the contribution of specific cell signaling pathways to anti-inflammatory macrophage activity. These protocols can be used with genetically modified mice, to determine the effect of a specific protein(s) on anti-inflammatory macrophage activation. These techniques can also be used to assess whether specific biologics may act by changing macrophages to an IL-10-producing anti-inflammatory activation state that reduces inflammatory responses in vivo. This can provide information on the role of macrophage activation in the efficacy of biologics during disease models in mice, and provide insight into a potential new mechanism of action in people. Conversely, this may caution

  15. Effect of bone marrow depletion on prostaglandin E-producing suppressor macrophages in mouse spleen

    International Nuclear Information System (INIS)

    Shibata, Y.; Volkman, A.

    1985-01-01

    The i.p. injection of Corynebacterium parvum (CP) into CBA/J mice effected increases in macrophage colony-forming cells (M-CFC) when spleen cells were cultured with L cell culture filtrate as a source of colony-stimulating factor. Significant increases in phagocytic macrophages (M phi) with Fc receptors for IgG2a and IgG2b immune complexes were additionally noted among the spleen cells in these mice. These M phi effectively inhibited Con A-induced lymphocyte proliferation, probably reflecting a 10-fold increase above normal controls in prostaglandin E to 47 ng/3 X 10(6) spleen cells/ml. To determine whether the suppressor M phi are immediate derivatives of splenic M-CFC, we tried to induce suppressor M phi by the injection of CP into mice depleted of bone marrow M-CFC by the earlier administration of the bone-seeking isotope, 89Sr. This procedure reduced M-CFC in the bone marrow to less than 1% of normal for more than 30 days. Monocytes in the blood fell to 5% of normal by day 10 and were 30% on day 30. Levels of resident peritoneal M phi showed relatively little change in this period. By contrast, splenic M-CFC increased to 20-fold higher than the cold 88Sr controls. CP-induced suppressor M phi activity, however, was sharply reduced in 89Sr marrow-depleted mice on day 10, despite the striking increase in M-CFC. There was a threefold increase in the number of phagocytic M phi binding IgG2a immune complexes, with no significant increase in IgG2b binding M phi. The kinetics of recovery of suppressor M phi activity showed that on days 20, 30, and 50 after 89Sr injection the activities reached 20%, 30%, and 70% of the cold control, respectively, and correlated with the recovery of significant levels of M-CFC in the bone marrow. Taken together, these observations suggest that splenic M-CFC are not an immediate source of PGE-suppressor M phi in vivo

  16. Heterogeneity of the radiosensitivity and origins of tissue macrophage colony-forming cells

    Energy Technology Data Exchange (ETDEWEB)

    Oghiso, Yoichi; Yamada, Yutaka (National Inst. of Radiological Sciences, Chiba (Japan))

    1992-12-01

    Previous studies suggest that the radiosensitivity and origin of tissue macrophage precursors differ from those of hemopoietic macrophage colony-forming units (CFU-Ms) committed to macrophage-lineage cells. We assessed the origins of tissue macrophage colony-forming cells (M-CFCs) in mice by comparing their kinetics and radiosensitivities in the normal steady state and under the conditions of bone marrow depletion by [sup 89]Sr-administration and/or splenectomy. The results indicate that the radiosensitive peritoneal M-CFCs elicited by thioglycollate are derived from bone marrow macrophage precursors; where as alveolar M-CFCs, which are radioresistant, are self-sustained locally and independent of hemopoietic macrophage precursors. In contrast, highly radiosensitive liver M-CFCs are probably derived from CFU-Ms that appear to be propagated in the spleen in association with hemopoietic responses. (author).

  17. Augmented macrophage differentiation and polarization of tumor-associated macrophages towards M1 subtype in listeria-administered tumor-bearing host.

    Science.gov (United States)

    Rai, Rakesh K; Vishvakarma, Naveen K; Mohapatra, Tribhuban M; Singh, Sukh Mahendra

    2012-09-01

    This study investigates the effect of Listeria administration on differentiation of macrophages from precursor bone marrow cells and functional status of tumor-associated macrophages (TAM). Listeria administration not only resulted in an augmented infiltration of tumor by F4/80 macrophages but also repolarized the functional status of TAM displaying features of some M1 macrophage subtype with upregulated phagocytosis and tumoricidal activity accompanied by altered expression of monocarboxylate transporter-1, toll-like receptor-2, surface markers: CD11c, interleukin-2 receptor, CD62L, and secreted molecules: nitric oxide, interleukin (IL)-1, IL-6, tumor necrosis factor-α, and vascular endothelial growth factor. Declined tumor cell survival and modulated repertoire of cytokines: interferon-γ, IL-6, IL-10, and transforming growth factor-β in tumor microenvironment indicated their role in polarization of TAM towards proinflammatory state. Bone marrow cell of Listeria-administered tumor-bearing mice showed augmented survival, declined expression of p53 upregulated modulator of apoptosis with an upregulated differentiation into activation responsive bone marrow-derived macrophages along with altered expression of macrophage-colony stimulating factor, macrophage-colony stimulating factor receptor, and granulocyte macrophage-colony stimulating factor receptor. These findings indicate that Listeria infection is associated with an augmented differentiation of macrophages accompanied by tumoricidal activation of TAM.

  18. Reducing macrophages to improve bone marrow stromal cell survival in the contused spinal cord.

    NARCIS (Netherlands)

    Ritfeld, G.J.; Nandoe Tewarie, R.D.S.; Rahiem, S.T.; Hurtado, A.; Roos, R.A.; Grotenhuis, A.; Oudega, M.

    2010-01-01

    We tested whether reducing macrophage infiltration would improve the survival of allogeneic bone marrow stromal cells (BMSC) transplanted in the contused adult rat thoracic spinal cord. Treatment with cyclosporine, minocycline, or methylprednisolone all resulted in a significant decrease in

  19. Niacin and olive oil promote skewing to the M2 phenotype in bone marrow-derived macrophages of mice with metabolic syndrome.

    Science.gov (United States)

    Montserrat-de la Paz, Sergio; Naranjo, Maria C; Lopez, Sergio; Abia, Rocio; Muriana, Francisco J G; Bermudez, Beatriz

    2016-05-18

    Metabolic syndrome (MetS) is associated with obesity, dyslipemia, type 2 diabetes and chronic low-grade inflammation. The aim of this study was to determine the role of high-fat low-cholesterol diets (HFLCDs) rich in SFAs (HFLCD-SFAs), MUFAs (HFLCD-MUFAs) or MUFAs plus omega-3 long-chain PUFAs (HFLCD-PUFAs) on polarisation and inflammatory potential in bone marrow-derived macrophages (BMDMs) from niacin (NA)-treated Lep(ob/ob)LDLR(-/-) mice. Animals fed with HFLCD-SFAs had increased weight and serum triglycerides, and their BMDMs accumulated triglycerides over the animals fed with HFLCD-MUFAs or -PUFAs. Furthermore, BMDMs from animals fed with HFLCD-SFAs were polarised towards the M1 phenotype with functional competence to produce pro-inflammatory cytokines, whereas BMDMs from animals fed with HFLCD-MUFAs or -PUFAs were skewed to the anti-inflammatory M2 phenotype. These findings open opportunities for developing novel nutritional strategies with olive oil as the most important dietary source of MUFAs (notably oleic acid) to prevent development and progression of metabolic complications in the NA-treated MetS.

  20. Human Induced Pluripotent Stem Cell-Derived Macrophages Share Ontogeny with MYB-Independent Tissue-Resident Macrophages

    Directory of Open Access Journals (Sweden)

    Julian Buchrieser

    2017-02-01

    Full Text Available Tissue-resident macrophages, such as microglia, Kupffer cells, and Langerhans cells, derive from Myb-independent yolk sac (YS progenitors generated before the emergence of hematopoietic stem cells (HSCs. Myb-independent YS-derived resident macrophages self-renew locally, independently of circulating monocytes and HSCs. In contrast, adult blood monocytes, as well as infiltrating, gut, and dermal macrophages, derive from Myb-dependent HSCs. These findings are derived from the mouse, using gene knockouts and lineage tracing, but their applicability to human development has not been formally demonstrated. Here, we use human induced pluripotent stem cells (iPSCs as a tool to model human hematopoietic development. By using a CRISPR-Cas9 knockout strategy, we show that human iPSC-derived monocytes/macrophages develop in an MYB-independent, RUNX1-, and SPI1 (PU.1-dependent fashion. This result makes human iPSC-derived macrophages developmentally related to and a good model for MYB-independent tissue-resident macrophages, such as alveolar and kidney macrophages, microglia, Kupffer cells, and Langerhans cells.

  1. Heterogeneity Within Macrophage Populations: A Possible Role for Colony Stimulating Factors

    Science.gov (United States)

    1988-04-04

    highest concentration ofriFN-yused (5.0 U/ml), a depression of T cell proliferation induced by the antigen-pulsed rGM-CSF-derived macrophages was...stimulation by rGM-CSF and nCSF-1 in bone marrow cells derived from normal mice and mice 3 and 7 days post-treatment with 5FU . Bone marrow cells

  2. Radiosensitivity of marrow stromal cells and the effect of some radioprotective agents

    International Nuclear Information System (INIS)

    Liu Shuhua

    1992-01-01

    The results showed that marrow stromal cells include fibroblasts, reticular cells, macrophages and adipocytes. The capability of the adherent layer derived from marrow cells of 2 mouse femurs to support hematopoietic stem cells was stronger than those of layers derived from 0.5 or 1 mouse femurs. The radiosensitivity of bone marrow stromal cells was lower than that of hematopoietic stem cells. The radioprotective effect of AET and PLP (polysaccharide of Lobaria Pulmonaria Hoffm) on the bone marrow stromal cells and their capability to support hematopoietic stem cells was clearly demonstrated

  3. Moderate restriction of macrophage-tropic human immunodeficiency virus type 1 by SAMHD1 in monocyte-derived macrophages.

    Science.gov (United States)

    Taya, Kahoru; Nakayama, Emi E; Shioda, Tatsuo

    2014-01-01

    Macrophage-tropic human immunodeficiency virus type 1 (HIV-1) strains are able to grow to high titers in human monocyte-derived macrophages. However, it was recently reported that cellular protein SAMHD1 restricts HIV-1 replication in human cells of the myeloid lineage, including monocyte-derived macrophages. Here we show that degradation of SAMHD1 in monocyte-derived macrophages was associated with moderately enhanced growth of the macrophage-tropic HIV-1 strain. SAMHD1 degradation was induced by treating target macrophages with vesicular stomatitis virus glycoprotein-pseudotyped human immunodeficiency virus type 2 (HIV-2) particles containing viral protein X. For undifferentiated monocytes, HIV-2 particle treatment allowed undifferentiated monocytes to be fully permissive for productive infection by the macrophage-tropic HIV-1 strain. In contrast, untreated monocytes were totally resistant to HIV-1 replication. These results indicated that SAMHD1 moderately restricts even a macrophage-tropic HIV-1 strain in monocyte-derived macrophages, whereas the protein potently restricts HIV-1 replication in undifferentiated monocytes.

  4. Elastin-derived peptides promote abdominal aortic aneurysm formation by modulating M1/M2 macrophage polarization1

    Science.gov (United States)

    Dale, Matthew A; Xiong, Wanfen; Carson, Jeffrey S; Suh, Melissa K; Karpisek, Andrew D.; Meisinger, Trevor M.; Casale, George P.; Baxter, B. Timothy

    2016-01-01

    Abdominal aortic aneurysm (AAA) is a dynamic vascular disease characterized by inflammatory cell invasion and extracellular matrix (ECM) degradation. Damage to elastin in the ECM results in release of elastin-derived peptides (EDPs), which are chemotactic for inflammatory cells such as monocytes. Their effect on macrophage polarization is less well known. Pro-inflammatory M1 macrophages initially are recruited to sites of injury but, if their effects are prolonged, they can lead to chronic inflammation that prevents normal tissue repair. Conversely, anti-inflammatory M2 macrophages reduce inflammation and aid in wound healing. Thus, a proper M1/M2 ratio is vital for tissue homeostasis. AAA tissue reveals a high M1/M2 ratio where pro-inflammatory cells and their associated markers dominate. In the present study, in vitro treatment of bone marrow-derived macrophages with EDPs induced M1 macrophage polarization. By using C57Bl/6 mice, antibody-mediated neutralization of EDPs reduced aortic dilation, matrix metalloproteinase activity, and pro-inflammatory cytokine expression at early and late time points after aneurysm induction. Furthermore, direct manipulation of the M1/M2 balance altered aortic dilation. Injection of M2 polarized macrophages reduced aortic dilation after aneurysm induction. EDPs promoted a pro-inflammatory environment in aortic tissue by inducing M1 polarization and neutralization of EDPs attenuated aortic dilation. The M1/M2 imbalance is vital to aneurysm formation. PMID:27183603

  5. Indirect macrophage responses to ionizing radiation: implications for genotype-dependent bystander signaling.

    Science.gov (United States)

    Coates, Philip J; Rundle, Jana K; Lorimore, Sally A; Wright, Eric G

    2008-01-15

    In addition to the directly mutagenic effects of energy deposition in DNA, ionizing radiation is associated with a variety of untargeted and delayed effects that result in ongoing bone marrow damage. Delayed effects are genotype dependent with CBA/Ca mice, but not C57BL/6 mice, susceptible to the induction of damage and also radiation-induced acute myeloid leukemia. Because macrophages are a potential source of ongoing damaging signals, we have determined their gene expression profiles and we show that bone marrow-derived macrophages show widely different intrinsic expression patterns. The profiles classify macrophages derived from CBA/Ca mice as M1-like (pro-inflammatory) and those from C57BL/6 mice as M2-like (anti-inflammatory); measurements of NOS2 and arginase activity in normal bone marrow macrophages confirm these findings. After irradiation in vivo, but not in vitro, C57BL/6 macrophages show a reduction in NOS2 and an increase in arginase activities, indicating a further M2 response, whereas CBA/Ca macrophages retain an M1 phenotype. Activation of specific signal transducer and activator of transcription signaling pathways in irradiated hemopoietic tissues supports these observations. The data indicate that macrophage activation is not a direct effect of radiation but a tissue response, secondary to the initial radiation exposure, and have important implications for understanding genotype-dependent responses and the mechanisms of the hemotoxic and leukemogenic consequences of radiation exposure.

  6. Cultivation of murine bone marrow macrophages in sponges: a method that permits recovery of viable cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Akporiaye, E T; Stewart, S; Stewart, C C

    1984-01-01

    Various investigators have cultured murine bone marrow or peritoneal cells in vitro on glass or plastic surfaces with the ultimate aim of retrieving adherent macrophages for morphologic and functional evaluation. The removal of these adherent macrophages by conventional techniques has been consistently accompanied by low yield and significant cell damage. The authors report here a simple technique for culturing murine bone marrow cells in gelatin sponges (Spongostan and Gelfoam) in growth medium containing 10% fetal bovine serum and 10% L-cell conditioned medium. Viable cells were retrieved from the sponges in 10 min by digestion with collagenase. The in situ growth kinetics were similar to those found for cells cultured on plastic dishes. The recovered cells were adherent, phagocytic, positive for Fc ..gamma.. receptors, and had esterase activity. 23 references, 1 figure, 1 table.

  7. Functional bone marrow scintigraphy in psoriatics

    International Nuclear Information System (INIS)

    Munz, D.; Altmeyer, P.; Chilf, G.; Schlesinger, G.; Holzmann, H.; Hoer, G.

    1982-01-01

    24 psoriatics as well as 24 normal healthy adults were studied by functional bone marrow scintigraphy using Tc-99m-labeled human serum albumin millimicrospheres (Tc-99m-HSA-MM). Functional bone marrow scintigraphy is an in vivo test system for the assessment of various functional properties of fixed macrophages. 58% of psoriatics who had no systemic drug treatment demonstrated peripheral extension of the bone marrow space indicating hyperplasia of bone marrow macrophages. This phenomenon could be observed only in one normal subject who was a high-performance sportsman. 83% (n=6) of psoriatics with cirrhosis of liver demonstrated bone marrow extension. The 'capacity' of bone marrow macrophages to engulf Tc-99m-HSA-MM ('uptake ratio') was diminished in 42% of non-treated as well as 66% of psoriatics treated with aromatic retinoid. The phagocytic and proteolytic turnover of Tc-99m-HSA-MM in bone marrow, spleen, and liver was found to be accelerated in 66% of non-treated psoriatics, normal, accelerated or delayed in psoriatics treated with aromatic retinoid as well as considerably delayed in all of the psoriatics with cirrhosis of liver. Functional bone marrow scintigraphy proved to be an appropriate in vivo test system to reveal abnormalities of fixed macrophages in psoriatics. Furthermore, theratpeutic effects as well as influences of pre-existing disorders on different macrophage populations can be assessed. (Author)

  8. Unique proteomic signatures distinguish macrophages and dendritic cells.

    Directory of Open Access Journals (Sweden)

    Lev Becker

    Full Text Available Monocytes differentiate into heterogeneous populations of tissue macrophages and dendritic cells (DCs that regulate inflammation and immunity. Identifying specific populations of myeloid cells in vivo is problematic, however, because only a limited number of proteins have been used to assign cellular phenotype. Using mass spectrometry and bone marrow-derived cells, we provided a global view of the proteomes of M-CSF-derived macrophages, classically and alternatively activated macrophages, and GM-CSF-derived DCs. Remarkably, the expression levels of half the plasma membrane proteins differed significantly in the various populations of cells derived in vitro. Moreover, the membrane proteomes of macrophages and DCs were more distinct than those of classically and alternatively activated macrophages. Hierarchical cluster and dual statistical analyses demonstrated that each cell type exhibited a robust proteomic signature that was unique. To interrogate the phenotype of myeloid cells in vivo, we subjected elicited peritoneal macrophages harvested from wild-type and GM-CSF-deficient mice to mass spectrometric and functional analysis. Unexpectedly, we found that peritoneal macrophages exhibited many features of the DCs generated in vitro. These findings demonstrate that global analysis of the membrane proteome can help define immune cell phenotypes in vivo.

  9. Identification of a murine CD45-F4/80lo HSC-derived marrow endosteal cell associated with donor stem cell engraftment.

    Science.gov (United States)

    Overholt, Kathleen M; Otsuru, Satoru; Olson, Timothy S; Guess, Adam J; Velazquez, Victoria M; Desbourdes, Laura; Dominici, Massimo; Horwitz, Edwin M

    2017-12-26

    Hematopoietic stem cells (HSCs) reside in specialized microenvironments within the marrow designated as stem cell niches, which function to support HSCs at homeostasis and promote HSC engraftment after radioablation. We previously identified marrow space remodeling after hematopoietic ablation, including osteoblast thickening, osteoblast proliferation, and megakaryocyte migration to the endosteum, which is critical for effective engraftment of donor HSCs. To further evaluate the impact of hematopoietic cells on marrow remodeling, we used a transgenic mouse model (CD45Cre/iDTR) to selectively deplete hematopoietic cells in situ. Depletion of hematopoietic cells immediately before radioablation and hematopoietic stem cell transplantation abrogated donor HSC engraftment and was associated with strikingly flattened endosteal osteoblasts with preserved osteoblast proliferation and megakaryocyte migration. Depletion of monocytes, macrophages, or megakaryocytes (the predominant hematopoietic cell populations that survive short-term after irradiation) did not lead to an alteration of osteoblast morphology, suggesting that a hematopoietic-derived cell outside these lineages regulates osteoblast morphologic adaptation after irradiation. Using 2 lineage-tracing strategies, we identified a novel CD45 - F4/80 lo HSC-derived cell that resides among osteoblasts along the endosteal marrow surface and, at least transiently, survives radioablation. This newly identified marrow cell may be an important regulator of HSC engraftment, possibly by influencing the shape and function of endosteal osteoblasts.

  10. Bone marrow stromal elements in murine leukemia; Decreased CSF-producing fibroblasts and normal IL-1 expression by macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Ishay, Z [Laboratory of Experimental Hematology, Department of Anatomy and Embryology, Hebrew University-Hadassah Medical School (Israel); Barak, V [Laboratory of Immunology, Department of Oncology, Hadassah University Hospital (Israel); Shoshan, S [Faculty of Dental Medicine, Connective Tissue Research Laboratory, Hebrew University, Jerusalem (Israel); Prindull, G [Department of Pediatrics, University of Gottingen, Gottingen (Germany, F.R.)

    1990-01-01

    A study of bone marrow stromal elements in murine acute myeloid leukemia (AML) was carried out. Our previous studies had indicated marrow stromal deficiency in murine AML. In the current investigation, separate stromal cells were cultured and the results obtained have shown that, while marrow stromal macrophages are normal in leukemia and express adequate amounts of IL-1, the fibroblasts are markedly reduced. However, if sufficient fibroblasts are pooled in vitro, they produce adequate amounts of CSF. Test of TNF{alpha} in leukemic cells CM, as possible cause of marrow stromal inhibition in leukemia, had not disclosed this cytokine. Further, it was observed that total body lethal irradiation of leukemic mice aggravates the stromal deficiency, confirming results of our previous investigations. It is concluded that bone marrow stromal deficiency in murine AML is due to decreased fibroblasts and, implicity, reduced CSF production. (author).

  11. Effects of extracellular matrix proteins on macrophage differentiation, growth, and function: comparison of liquid and agar culture systems

    Science.gov (United States)

    Armstrong, J. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Both spaceflight and skeletal unloading suppress the haematopoietic differentiation of macrophages (Sonnenfeld et al., Aviat. Space Environ. Med., 61:648-653, 1990; Armstrong et al., J. Appl. Physiol., 75:2734-2739, 1993). The mechanism behind this reduction in haematopoiesis has yet to be elucidated. However, changes in bone marrow extracellular matrix (ECM) may be involved. To further understand the role of ECM products in macrophage differentiation, we have performed experiments evaluating the effects of fibronectin, laminin, collagen type I, and collagen type IV on macrophage development and function. Bone marrow-derived macrophages cultured on four different ECM substrates in liquid culture medium showed less growth than those cultured on plastic. Significant morphological differences were seen on each of the substrates used. Phenotypically and functionally, as measured by class II major histocompatibility molecule (MHCII) expression, MAC-2 expression, and the secretion of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha), these macrophages were similar. In contrast, bone marrow-derived macrophages cultured in suspension, using agar, showed no difference in growth when exposed to ECM proteins. However, IL-6 and TNF-alpha secretion was affected by fibronectin, laminin, collagen type I, and collagen type IV in a concentration-dependent manner. We conclude that the ECM products fibronectin, laminin, collagen type I, and collagen type IV have profound effects on macrophage development and function. Additionally, we suggest that an ECM-supplemented agar culture system provides an environment more analogous to in vivo bone marrow than does a traditional liquid culture system.

  12. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    International Nuclear Information System (INIS)

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal; Nguyen-Thanh, Tung; Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang; Kim, Won

    2014-01-01

    Highlights: • Knockout of SIRT2 attenuates lipopolysaccharide-induced iNOS expression. • Lipopolysaccharide-induced NO production is decreased in SIRT2 KO macrophage. • SIRT2 deficiency suppresses lipopolysaccharide-induced ROS production in macrophage. • M1-macrophage related factors are decreased in SIRT2 deficient cells. • SIRT2 deficiency decreases lipopolysaccharide-induced activation of NFκB. - Abstract: Introduction: SIRT2 is a NAD(+)-dependent deacetylases and associated with numerous processes such as infection, carcinogenesis, DNA damage and cell cycle regulation. However, the role of SIRT2 in inflammatory process in macrophage remains unclear. Materials and methods: In the present study, we have evaluated the regulatory effects of SIRT2 in lipopolysaccharide (LPS)-stimulated macrophages isolated from SIRT2 knockout (KO) and wild type (WT) mice or Raw264.7 macrophage cells. As inflammatory parameters, expression of inducible nitric oxide synthase (iNOS), the productions of nitric oxide, reactive oxygen species (ROS) and M1-macrophage-related factors were evaluated. We also examined the effects of SIRT2 on activation of nuclear factor-kappaB (NFκB) signaling. Results: SIRT2 deficiency inhibits LPS-induced iNOS mRNA and protein expression in bone marrow derived macrophages. SIRT2-siRNA transfection also suppressed LPS-induced iNOS expression in Raw264.7 macrophage cells. Bone marrow derived macrophages isolated from SIRT2 KO mice produced lower nitric oxide and expressed lower levels of M1-macrophage related markers including iNOS and CD86 in response to LPS than WT mice. Decrease of SIRT2 reduced the LPS-induced reactive oxygen species production. Deficiency of SIRT2 resulted in inhibition of NFκB activation through reducing the phosphorylation and degradation of IκBα. The phosphorylation and nuclear translocation of p65 was significantly decreased in SIRT2-deficient macrophages after LPS stimulation. Discussion: Our data suggested that

  13. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal; Nguyen-Thanh, Tung [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kang, Kyung Pyo [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Lee, Sik [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Park, Sung Kwang [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Kim, Won, E-mail: kwon@jbnu.ac.kr [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of)

    2014-08-08

    Highlights: • Knockout of SIRT2 attenuates lipopolysaccharide-induced iNOS expression. • Lipopolysaccharide-induced NO production is decreased in SIRT2 KO macrophage. • SIRT2 deficiency suppresses lipopolysaccharide-induced ROS production in macrophage. • M1-macrophage related factors are decreased in SIRT2 deficient cells. • SIRT2 deficiency decreases lipopolysaccharide-induced activation of NFκB. - Abstract: Introduction: SIRT2 is a NAD(+)-dependent deacetylases and associated with numerous processes such as infection, carcinogenesis, DNA damage and cell cycle regulation. However, the role of SIRT2 in inflammatory process in macrophage remains unclear. Materials and methods: In the present study, we have evaluated the regulatory effects of SIRT2 in lipopolysaccharide (LPS)-stimulated macrophages isolated from SIRT2 knockout (KO) and wild type (WT) mice or Raw264.7 macrophage cells. As inflammatory parameters, expression of inducible nitric oxide synthase (iNOS), the productions of nitric oxide, reactive oxygen species (ROS) and M1-macrophage-related factors were evaluated. We also examined the effects of SIRT2 on activation of nuclear factor-kappaB (NFκB) signaling. Results: SIRT2 deficiency inhibits LPS-induced iNOS mRNA and protein expression in bone marrow derived macrophages. SIRT2-siRNA transfection also suppressed LPS-induced iNOS expression in Raw264.7 macrophage cells. Bone marrow derived macrophages isolated from SIRT2 KO mice produced lower nitric oxide and expressed lower levels of M1-macrophage related markers including iNOS and CD86 in response to LPS than WT mice. Decrease of SIRT2 reduced the LPS-induced reactive oxygen species production. Deficiency of SIRT2 resulted in inhibition of NFκB activation through reducing the phosphorylation and degradation of IκBα. The phosphorylation and nuclear translocation of p65 was significantly decreased in SIRT2-deficient macrophages after LPS stimulation. Discussion: Our data suggested that

  14. Transfection of bone marrow derived cells with immunoregulatory proteins.

    Science.gov (United States)

    Khantakova, Julia N; Silkov, Alexander N; Tereshchenko, Valeriy P; Gavrilova, Elena V; Maksyutov, Rinat A; Sennikov, Sergey V

    2018-03-23

    In vitro electroporation gene transfer was first performed in 1982. Today, this technology has become one of the major vehicles for non-viral transfection of cells. All non-viral transfections, such as calcium phosphate precipitation, lipofection, and magnetic transfection, have been shown to achieve a transfection efficiency of up to 70% in commonly used cell lines, but not in primary cells. Here we describe the use of electroporation to transfect primary mouse bone marrow-derived cells, such as macrophages (Mφ) and dendritic cells (DCs) with high efficiencies (45%-72%) and minimal cell death. The transfection efficiencies and cell death varied depending on the culture duration of the DCs and Mφ. Moreover, the electroporation efficiency was increased when conditioning medium was used for culturing the cells. Furthermore, we demonstrated that measuring the plasmid-encoded secreted proteins is a highly sensitive method for determining the transfection efficiency. In summary, electroporation with plasmid vectors is an efficient method for producing DCs and Mφ with transient expression of immunoregulatory proteins. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Induced-Pluripotent-Stem-Cell-Derived Primitive Macrophages Provide a Platform for Modeling Tissue-Resident Macrophage Differentiation and Function.

    Science.gov (United States)

    Takata, Kazuyuki; Kozaki, Tatsuya; Lee, Christopher Zhe Wei; Thion, Morgane Sonia; Otsuka, Masayuki; Lim, Shawn; Utami, Kagistia Hana; Fidan, Kerem; Park, Dong Shin; Malleret, Benoit; Chakarov, Svetoslav; See, Peter; Low, Donovan; Low, Gillian; Garcia-Miralles, Marta; Zeng, Ruizhu; Zhang, Jinqiu; Goh, Chi Ching; Gul, Ahmet; Hubert, Sandra; Lee, Bernett; Chen, Jinmiao; Low, Ivy; Shadan, Nurhidaya Binte; Lum, Josephine; Wei, Tay Seok; Mok, Esther; Kawanishi, Shohei; Kitamura, Yoshihisa; Larbi, Anis; Poidinger, Michael; Renia, Laurent; Ng, Lai Guan; Wolf, Yochai; Jung, Steffen; Önder, Tamer; Newell, Evan; Huber, Tara; Ashihara, Eishi; Garel, Sonia; Pouladi, Mahmoud A; Ginhoux, Florent

    2017-07-18

    Tissue macrophages arise during embryogenesis from yolk-sac (YS) progenitors that give rise to primitive YS macrophages. Until recently, it has been impossible to isolate or derive sufficient numbers of YS-derived macrophages for further study, but data now suggest that induced pluripotent stem cells (iPSCs) can be driven to undergo a process reminiscent of YS-hematopoiesis in vitro. We asked whether iPSC-derived primitive macrophages (iMacs) can terminally differentiate into specialized macrophages with the help of growth factors and organ-specific cues. Co-culturing human or murine iMacs with iPSC-derived neurons promoted differentiation into microglia-like cells in vitro. Furthermore, murine iMacs differentiated in vivo into microglia after injection into the brain and into functional alveolar macrophages after engraftment in the lung. Finally, iPSCs from a patient with familial Mediterranean fever differentiated into iMacs with pro-inflammatory characteristics, mimicking the disease phenotype. Altogether, iMacs constitute a source of tissue-resident macrophage precursors that can be used for biological, pathophysiological, and therapeutic studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Differential activation of Fyn kinase distinguishes saturated and unsaturated fats in mouse macrophages.

    Science.gov (United States)

    Tarabra, Elena; An Lee, Ting-Wen; Zammit, Victor A; Vatish, Manu; Yamada, Eijiro; Pessin, Jeffrey E; Bastie, Claire C

    2017-10-17

    Diet-induced obesity is associated with increased adipose tissue activated macrophages. Yet, how macrophages integrate fatty acid (FA) signals remains unclear. We previously demonstrated that Fyn deficiency ( fynKO ) protects against high fat diet-induced adipose tissue macrophage accumulation. Herein, we show that inflammatory markers and reactive oxygen species are not induced in fynKO bone marrow-derived macrophages exposed to the saturated FA palmitate, suggesting that Fyn regulates macrophage function in response to FA signals. Palmitate activates Fyn and re-localizes Fyn into the nucleus of RAW264.7, J774 and wild-type bone marrow-derived macrophages. Similarly, Fyn activity is increased in cells of adipose tissue stromal vascular fraction of high fat-fed control mice, with Fyn protein being located in the nucleus of these cells. We demonstrate that Fyn modulates palmitate-dependent oxidative stress in macrophages. Moreover, Fyn catalytic activity is necessary for its nuclear re-localization and downstream effects, as Fyn pharmacological inhibition abolishes palmitate-induced Fyn nuclear redistribution and palmitate-dependent increase of oxidative stress markers. Importantly, mono-or polyunsaturated FAs do not activate Fyn, and fail to re-localize Fyn to the nucleus. Together these data demonstrate that macrophages integrate nutritional FA signals via a differential activation of Fyn that distinguishes, at least partly, the effects of saturated versus unsaturated fats.

  17. Cells derived from young bone marrow alleviate renal aging.

    Science.gov (United States)

    Yang, Hai-Chun; Rossini, Michele; Ma, Li-Jun; Zuo, Yiqin; Ma, Ji; Fogo, Agnes B

    2011-11-01

    Bone marrow-derived stem cells may modulate renal injury, but the effects may depend on the age of the stem cells. Here we investigated whether bone marrow from young mice attenuates renal aging in old mice. We radiated female 12-mo-old 129SvJ mice and reconstituted them with bone marrow cells (BMC) from either 8-wk-old (young-to-old) or 12-mo-old (old-to-old) male mice. Transfer of young BMC resulted in markedly decreased deposition of collagen IV in the mesangium and less β-galactosidase staining, an indicator of cell senescence. These changes paralleled reduced expression of plasminogen activator inhibitor-1 (PAI-1), PDGF-B (PDGF-B), the transdifferentiation marker fibroblast-specific protein-1 (FSP-1), and senescence-associated p16 and p21. Tubulointerstitial and glomerular cells derived from the transplanted BMC did not show β-galactosidase activity, but after 6 mo, there were more FSP-1-expressing bone marrow-derived cells in old-to-old mice compared with young-to-old mice. Young-to-old mice also exhibited higher expression of the anti-aging gene Klotho and less phosphorylation of IGF-1 receptor β. Taken together, these data suggest that young bone marrow-derived cells can alleviate renal aging in old mice. Direct parenchymal reconstitution by stem cells, paracrine effects from adjacent cells, and circulating anti-aging molecules may mediate the aging of the kidney.

  18. Marrow Derived Antibody Library for the Treatment of Neuroblastoma

    Science.gov (United States)

    2015-12-01

    Award Number: W81XWH-12-1-0332 TITLE: Marrow-Derived Antibody Library for the Treatment of Neuroblastoma PRINCIPAL INVESTIGATOR: Giselle...Marrow-Derived Antibody Library for Treatment of Neuroblastoma 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...to Spectrum Health. 14. ABSTRACT Neuroblastoma (NB) is the most common solid tumor in children, which accounts for 15% of all pediatric cancer deaths

  19. In vitro and in vivo models of cerebral ischemia show discrepancy in therapeutic effects of M2 macrophages.

    Directory of Open Access Journals (Sweden)

    Virginie Desestret

    Full Text Available THE INFLAMMATORY RESPONSE FOLLOWING ISCHEMIC STROKE IS DOMINATED BY INNATE IMMUNE CELLS: resident microglia and blood-derived macrophages. The ambivalent role of these cells in stroke outcome might be explained in part by the acquisition of distinct functional phenotypes: classically (M1 and alternatively activated (M2 macrophages. To shed light on the crosstalk between hypoxic neurons and macrophages, an in vitro model was set up in which bone marrow-derived macrophages were co-cultured with hippocampal slices subjected to oxygen and glucose deprivation. The results showed that macrophages provided potent protection against neuron cell loss through a paracrine mechanism, and that they expressed M2-type alternative polarization. These findings raised the possibility of using bone marrow-derived M2 macrophages in cellular therapy for stroke. Therefore, 2 million M2 macrophages (or vehicle were intravenously administered during the subacute stage of ischemia (D4 in a model of transient middle cerebral artery occlusion. Functional neuroscores and magnetic resonance imaging endpoints (infarct volumes, blood-brain barrier integrity, phagocytic activity assessed by iron oxide uptake were longitudinally monitored for 2 weeks. This cell-based treatment did not significantly improve any outcome measure compared with vehicle, suggesting that this strategy is not relevant to stroke therapy.

  20. Estrogen Signaling Contributes to Sex Differences in Macrophage Polarization during Asthma.

    Science.gov (United States)

    Keselman, Aleksander; Fang, Xi; White, Preston B; Heller, Nicola M

    2017-09-01

    Allergic asthma is a chronic Th2 inflammation in the lungs that constricts the airways and presents as coughing and wheezing. Asthma mostly affects boys in childhood and women in adulthood, suggesting that shifts in sex hormones alter the course of the disease. Alveolar macrophages have emerged as major mediators of allergic lung inflammation in animal models as well as humans. Whether sex differences exist in macrophage polarization and the molecular mechanism(s) that drive differential responses are not well understood. We found that IL-4-stimulated bone marrow-derived and alveolar macrophages from female mice exhibited greater expression of M2 genes in vitro and after allergen challenge in vivo. Alveolar macrophages from female mice exhibited greater expression of the IL-4Rα and estrogen receptor (ER) α compared with macrophages from male mice following allergen challenge. An ERα-specific agonist enhanced IL-4-induced M2 gene expression in macrophages from both sexes, but more so in macrophages from female mice. Furthermore, IL-4-stimulated macrophages from female mice exhibited more transcriptionally active histone modifications at M2 gene promoters than did macrophages from male mice. We found that supplementation of estrogen into ovariectomized female mice enhanced M2 polarization in vivo upon challenge with allergen and that macrophage-specific deletion of ERα impaired this M2 polarization. The effects of estrogen are long-lasting; bone marrow-derived macrophages from ovariectomized mice implanted with estrogen exhibited enhanced IL-4-induced M2 gene expression compared with macrophages from placebo-implanted littermates. Taken together, our findings suggest that estrogen enhances IL-4-induced M2 gene expression and thereby contributes to sex differences observed in asthma. Copyright © 2017 by The American Association of Immunologists, Inc.

  1. Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe; Frøbert, Ole; Holst-Hansen, Claus

    2014-01-01

    Background: Treatment of myocardial infarction with bone marrow-derived mesenchymal stem cells and recently also adipose-derived stem cells has shown promising results. In contrast to clinical trials and their use of autologous bone marrow-derived cells from the ischemic patient, the animal...... myocardial infarction models are often using young donors and young, often immune-compromised, recipient animals. Our objective was to compare bone marrow-derived mesenchymal stem cells with adipose-derived stem cells from an elderly ischemic patient in the treatment of myocardial infarction, using a fully...... grown non-immunecompromised rat model. Methods: Mesenchymal stem cells were isolated from adipose tissue and bone marrow and compared with respect to surface markers and proliferative capability. To compare the regenerative potential of the two stem cell populations, male Sprague-Dawley rats were...

  2. Novel characterization of monocyte-derived cell populations in the meninges and choroid plexus and their rates of replenishment in bone marrow chimeric mice.

    Science.gov (United States)

    Chinnery, Holly R; Ruitenberg, Marc J; McMenamin, Paul G

    2010-09-01

    The mouse dura mater, pia mater, and choroid plexus contain resident macrophages and dendritic cells (DCs). These cells participate in immune surveillance, phagocytosis of cellular debris, uptake of antigens from the surrounding cerebrospinal fluid and immune regulation in many pathologic processes. We used Cx3cr1 knock-in, CD11c-eYFP transgenic and bone marrow chimeric mice to characterize the phenotype, density and replenishment rate of monocyte-derived cells in the meninges and choroid plexus and to assess the role of the chemokine receptor CX3CR1 on their number and tissue distribution. Iba-1 major histocompatibility complex (MHC) Class II CD169 CD68 macrophages and CD11c putative DCs were identified in meningeal and choroid plexus whole mounts. Comparison of homozygous and heterozygous Cx3cr1 mice did not reveal CX3CR1-dependancy on density, distribution or phenotype of monocyte-derived cells. In turnover studies, wild type lethally irradiated mice were reconstituted with Cx3cr1/-positive bone marrow and were analyzed at 3 days, 1, 2, 4 and 8 weeks after transplantation. There was a rapid replenishment of CX3CR1-positive cells in the dura mater (at 4 weeks) and the choroid plexus was fully reconstituted by 8 weeks. These data provide the foundation for future studies on the role of resident macrophages and DCs in conditions such as meningitis, autoimmune inflammatory disease and in therapies involving irradiation and hematopoietic or stem cell transplantation.

  3. The role of bone marrow-derived cells during the bone healing process in the GFP mouse bone marrow transplantation model.

    Science.gov (United States)

    Tsujigiwa, Hidetsugu; Hirata, Yasuhisa; Katase, Naoki; Buery, Rosario Rivera; Tamamura, Ryo; Ito, Satoshi; Takagi, Shin; Iida, Seiji; Nagatsuka, Hitoshi

    2013-03-01

    Bone healing is a complex and multistep process in which the origin of the cells participating in bone repair is still unknown. The involvement of bone marrow-derived cells in tissue repair has been the subject of recent studies. In the present study, bone marrow-derived cells in bone healing were traced using the GFP bone marrow transplantation model. Bone marrow cells from C57BL/6-Tg (CAG-EGFP) were transplanted into C57BL/6 J wild mice. After transplantation, bone injury was created using a 1.0-mm drill. Bone healing was histologically assessed at 3, 7, 14, and 28 postoperative days. Immunohistochemistry for GFP; double-fluorescent immunohistochemistry for GFP-F4/80, GFP-CD34, and GFP-osteocalcin; and double-staining for GFP and tartrate-resistant acid phosphatase were performed. Bone marrow transplantation successfully replaced the hematopoietic cells into GFP-positive donor cells. Immunohistochemical analyses revealed that osteoblasts or osteocytes in the repair stage were GFP-negative, whereas osteoclasts in the repair and remodeling stages and hematopoietic cells were GFP-positive. The results indicated that bone marrow-derived cells might not differentiate into osteoblasts. The role of bone marrow-derived cells might be limited to adjustment of the microenvironment by differentiating into inflammatory cells, osteoclasts, or endothelial cells in immature blood vessels.

  4. C-reactive protein interaction with macrophages: in vitro induction of tumor cytotoxicity, and characterization of C-reactive protein binding to macrophages

    International Nuclear Information System (INIS)

    Zahedi, K.A.

    1987-01-01

    The ability of C-reactive protein (CRP) to activate macrophages to tumoricidal state was examined. CRP was able to activate macrophages to kill tumor cells. The activation was shown to be due to CRP and not to low levels of other activators present in the CRP preparations, since specific removal of CRP led to abrogation of the CRP mediated activation of macrophages. The role of lipopolysaccharide (LPS) as a contaminating activator was eliminated by showing the ability of CRP preparations to activate macrophages from LPS non-responsive strains of mice, and to activate macrophages under conditions which specifically inactivated or removed the contaminating LPS. In order to exclude the possibility of indirect activation of macrophages by other cells present in the peritoneal exudate cell population, effect of CRP on pure macrophages was examined. Bone marrow derived macrophages as well as well as macrophage cell lines exhibited a significant increase in their capacity to kill tumor cells after treatment with CRP. The nature of CRP and macrophage interaction was examined using radioiodinated CRP. Labelled CRP bound specifically to macrophages and macrophage cell lines

  5. Protein energy malnutrition increases arginase activity in monocytes and macrophages.

    Science.gov (United States)

    Corware, Karina; Yardley, Vanessa; Mack, Christopher; Schuster, Steffen; Al-Hassi, Hafid; Herath, Shanthi; Bergin, Philip; Modolell, Manuel; Munder, Markus; Müller, Ingrid; Kropf, Pascale

    2014-01-01

    Protein energy malnutrition is commonly associated with immune dysfunctions and is a major factor in susceptibility to infectious diseases. In this study, we evaluated the impact of protein energy malnutrition on the capacity of monocytes and macrophages to upregulate arginase, an enzyme associated with immunosuppression and increased pathogen replication. Our results show that monocytes and macrophages are significantly increased in the bone marrow and blood of mice fed on a protein low diet. No alteration in the capacity of bone marrow derived macrophages isolated from malnourished mice to phagocytose particles, to produce the microbicidal molecule nitric oxide and to kill intracellular Leishmania parasites was detected. However, macrophages and monocytes from malnourished mice express significantly more arginase both in vitro and in vivo. Using an experimental model of visceral leishmaniasis, we show that following protein energy malnutrition, the increased parasite burden measured in the spleen of these mice coincided with increased arginase activity and that macrophages provide a more permissive environment for parasite growth. Taken together, these results identify a novel mechanism in protein energy malnutrition that might contributes to increased susceptibility to infectious diseases by upregulating arginase activity in myeloid cells.

  6. Human Induced Pluripotent Stem Cell-Derived Macrophages for Unraveling Human Macrophage Biology.

    Science.gov (United States)

    Zhang, Hanrui; Reilly, Muredach P

    2017-11-01

    Despite a substantial appreciation for the critical role of macrophages in cardiometabolic diseases, understanding of human macrophage biology has been hampered by the lack of reliable and scalable models for cellular and genetic studies. Human induced pluripotent stem cell (iPSC)-derived macrophages (IPSDM), as an unlimited source of subject genotype-specific cells, will undoubtedly play an important role in advancing our understanding of the role of macrophages in human diseases. In this review, we summarize current literature in the differentiation and characterization of IPSDM at phenotypic, functional, and transcriptomic levels. We emphasize the progress in differentiating iPSC to tissue resident macrophages, and in understanding the ontogeny of in vitro differentiated IPSDM that resembles primitive hematopoiesis, rather than adult definitive hematopoiesis. We review the application of IPSDM in modeling both Mendelian genetic disorders and host-pathogen interactions. Finally, we highlighted the potential areas of research using IPSDM in functional validation of coronary artery disease loci in genome-wide association studies, functional genomic analyses, drug testing, and cell therapeutics in cardiovascular diseases. © 2017 American Heart Association, Inc.

  7. Recruitment of bone marrow derived cells during anti-angiogenic therapy in GBM : Bone marrow derived cell in GBM

    NARCIS (Netherlands)

    Boer, Jennifer C.; Walenkamp, Annemiek M. E.; den Dunnen, Wilfred F. A.

    2014-01-01

    Glioblastoma (GBM) is a highly vascular tumor characterized by rapid and invasive tumor growth, followed by oxygen depletion, hypoxia and neovascularization, which generate a network of disorganized, tortuous and permeable vessels. Recruitment of bone marrow derived cells (BMDC) is crucial for

  8. Macrophage-derived microvesicles promote proliferation and migration of Schwann cell on peripheral nerve repair

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Chuan, E-mail: zhchuansy@163.com; Ma, Cheng-bin; Yuan, Hong-mou; Cao, Bao-yuan; Zhu, Jia-jun

    2015-12-04

    Background: Macrophages have been implicated in peripheral nerve regeneration. However, whether macrophages-derived microvesicles (MVs) are involved in this process remains unknown. In the present study, the effects of macrophages-derived MVs on proliferation and migration of Schwann cells (SCs) were evaluated in both in vitro and in vivo. Methods: Human monocytic leukaemia cell line (THP-1) was successfully driven to M1 and M2 phenotypes by delivery of either IFN-γ or IL-4, respectively. SCs incubated with M1 or M2 macrophages-derived MVs, the cell migration and proliferation were assessed, and expression levels of nerve growth factor (NGF) and Laminin were measured. A rat model of sciatic nerve was established and the effects of macrophages-derived MVs on nerve regeneration were investigated. Results: M2-derived MVs elevated migration, proliferation, NFG and Laminin protein levels of SCs compared with M1-or M0-derived MVs. The relative expression levels of miR-223 were also increased in M2 macrophages and M2-derived MVs. Transfected M2 macrophages with miR-223 inhibitor then co-incubated with SCs, an inhibition of cell migration and proliferation and a down-regulated levels of NFG and Laminin protein expression were observed. In vivo, M2-derived MVs significantly increased the infiltration and axon number of SCs. Conclusion: M2-derived MVs promoted proliferation and migration of SCs in vitro and in vivo, which provided a therapeutic strategy for nerve regeneration. - Highlights: • M2 macrophages-derived MVs elevated migration and proliferation of SCs. • M2 macrophages-derived MVs up-regulated NFG and Laminin expression of SCs. • MiR-223 expression was increased in M2 macrophages-derived MVs. • MiR-223 inhibitor reduced migration and proliferation of SCs co-incubated with MVs. • MiR-223 inhibitor down-regulated NFG and Laminin levels of SCs co-incubated with MVs.

  9. Monocyte/macrophage-derived soluble CD163: A novel biomarker in multiple myeloma

    DEFF Research Database (Denmark)

    Andersen, Morten Nørgaard; Abildgaard, Niels; Maniecki, Maciej B

    2014-01-01

    fluids (soluble CD163, sCD163). In this study, we examined serum sCD163 as a biomarker in patients with newly diagnosed multiple myeloma. METHODS: Peripheral blood (n = 104) and bone marrow (n = 17) levels of sCD163 were measured using an enzyme-linked immunosorbent assay. RESULTS: At diagnosis, high s......CD163 was associated with higher stage according to the International Staging System (ISS) and with other known prognostic factors in multiple myeloma (creatinine, C-reactive protein, and beta-2 microglobulin). Soluble CD163 decreased upon high-dose treatment, and in a multivariate survival analysis...... in bone marrow samples than in the matched blood samples, which indicate a localized production of sCD163 within the bone marrow microenvironment. CONCLUSIONS: Soluble CD163 was found to be a prognostic marker in patients with multiple myeloma. This may indicate that macrophages and/or monocytes have...

  10. Adenosine derived from Staphylococcus aureus-engulfed macrophages functions as a potent stimulant for the induction of inflammatory cytokines in mast cells

    DEFF Research Database (Denmark)

    Ma, Ying Jie; Kim, Chan-Hee; Ryu, Kyoung-Hwa

    2011-01-01

    In this study, we attempted to isolate novel mast cell-stimulating molecules from Staphylococcus aureus. Water-soluble extract of S. aureus cell lysate strongly induced human interleukin- 8 in human mast cell line-1 and mouse interleukin-6 in mouse bone marrow-derived mast cells. The active...... adenosine receptor blocker, verified that purified adenosine can induce interleukin-8 production via adenosine receptors on mast cells. Moreover, adenosine was purified from S. aureusengulfed RAW264.7 cells, a murine macrophage cell line, used to induce phagocytosis of S. aureus. These results show a novel...

  11. Bone marrow-derived microglia infiltrate into the paraventricular nucleus of chronic psychological stress-loaded mice.

    Directory of Open Access Journals (Sweden)

    Koji Ataka

    Full Text Available BACKGROUND: Microglia of the central nervous system act as sentinels and rapidly react to infection or inflammation. The pathophysiological role of bone marrow-derived microglia is of particular interest because they affect neurodegenerative disorders and neuropathic pain. The hypothesis of the current study is that chronic psychological stress (chronic PS induces the infiltration of bone marrow-derived microglia into hypothalamus by means of chemokine axes in brain and bone marrow. METHODS AND FINDINGS: Here we show that bone marrow-derived microglia specifically infiltrate the paraventricular nucleus (PVN of mice that received chronic PS. Bone marrow derived-microglia are CX3CR1(lowCCR2(+CXCR4(high, as distinct from CX3CR1(highCCR2(-CXCR4(low resident microglia, and express higher levels of interleukin-1β (IL-1β but lower levels of tumor necrosis factor-α (TNF-α. Chronic PS stimulates the expression of monocyte chemotactic protein-1 (MCP-1 in PVN neurons, reduces stromal cell-derived factor-1 (SDF-1 in the bone marrow and increases the frequency of CXCR4(+ monocytes in peripheral circulation. And then a chemokine (C-C motif receptor 2 (CCR2 or a β3-adrenoceptor blockade prevents infiltration of bone marrow-derived microglia in the PVN. CONCLUSION: Chronic PS induces the infiltration of bone marrow-derived microglia into PVN, and it is conceivable that the MCP-1/CCR2 axis in PVN and the SDF-1/CXCR4 axis in bone marrow are involved in this mechanism.

  12. Multiple Myeloma Macrophages: Pivotal Players in the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Simona Berardi

    2013-01-01

    Full Text Available Tumor microenvironment is essential for multiple myeloma (MM growth, progression, and drug resistance through provision of survival signals and secretion of growth and proangiogenic factors. This paper examines the importance of macrophages within MM bone marrow (BM microenvironment, referred to as MM-associated macrophages, as a potential niche component that supports tumor plasma cells. These macrophages are derived from peripheral blood monocytes recruited into the tumor. Upon activation by MM plasma cells and mesenchymal stromal cells, macrophages can release growth factors, proteolytic enzymes, cytokines, and inflammatory mediators that promote plasma cell growth and survival. Macrophages promote tumor progression through several mechanisms including angiogenesis, growth, and drug resistance. Indeed, these macrophages are essential for the induction of an angiogenic response through vasculogenic mimicry, and this ability proceeds in step with progression of the plasma cell tumors. Data suggest that macrophages play an important role in the biology and survival of patients with MM, and they may be a target for the MM antivascular management.

  13. Immune Enhancing Activity of β-(1,3)-Glucan Isolated from Genus Agrobacterium in Bone-Marrow Derived Macrophages and Mice Splenocytes.

    Science.gov (United States)

    Byun, Eui-Baek; Jang, Beom-Su; Byun, Eui-Hong; Sung, Nak-Yun

    2016-01-01

    An effective method for activating macrophages and deriving a Th1 immune response could be used to improve the defenses of hosts. In this study, we investigated the immunomodulation effect and the related signaling mechanism of [Formula: see text]-(1,3)-glucan, isolated from the Agrobacterium species. Here, we found that [Formula: see text]-(1,3)-glucan predominantly induced the tumor necrosis factor (TNF)-[Formula: see text], interleukin (IL)-1[Formula: see text], IL-6, IL-12p70, and nitric oxide, which was dependent on mitogen-activated protein kinases (MAPK) and nuclear factor (NF)-[Formula: see text]B signaling. Additionally, [Formula: see text]-(1,3)-glucan treatment significantly up-regulated the expression of the co-stimulatory molecules CD80 and CD86, and also significantly increased the expression of iNOS and Dectin-1, which is a transmembrane protein that binds [Formula: see text]-glucan and associates with macrophage activation. Importantly, the splenic T cells co-cultured with [Formula: see text]-(1,3)-glucan-treated macrophages produced the a Th1 cytokine profile that includes high levels of IFN-[Formula: see text], but not IL-4 (Th2 cytokine), indicating that [Formula: see text]-(1,3)-glucan contributes to Th1 polarization of the immune response. Taken together, our results suggest that [Formula: see text]-(1,3)-glucan isolated from Agrobacterium species can induce macrophage activation through the MAPK and NF-[Formula: see text]B signaling pathway, as well as Th1 polarization.

  14. Characteristic features of intracellular pathogenic Leptospira in infected murine macrophages.

    Science.gov (United States)

    Toma, Claudia; Okura, Nobuhiko; Takayama, Chitoshi; Suzuki, Toshihiko

    2011-11-01

    Leptospira interrogans is a spirochaete responsible for a zoonotic disease known as leptospirosis. Leptospires are able to penetrate the abraded skin and mucous membranes and rapidly disseminate to target organs such as the liver, lungs and kidneys. How this pathogen escape from innate immune cells and spread to target organs remains poorly understood. In this paper, the intracellular trafficking undertaken by non-pathogenic Leptospira biflexa and pathogenic L. interrogans in mouse bone marrow-derived macrophages was compared. The delayed in the clearance of L. interrogans was observed. Furthermore, the acquisition of lysosomal markers by L. interrogans-containing phagosomes lagged behind that of L. biflexa-containing phagosomes, and although bone marrow-derived macrophages could degrade L. biflexa as well as L. interrogans, a population of L. interrogans was able to survive and replicate. Intact leptospires were found within vacuoles at 24 h post infection, suggesting that bacterial replication occurs within a membrane-bound compartment. In contrast, L. biflexa were completely degraded at 24 h post infection. Furthermore, L. interrogans but not L. biflexa, were released to the extracellular milieu. These results suggest that pathogenic leptospires are able to survive, replicate and exit from mouse macrophages, enabling their eventual spread to target organs. © 2011 Blackwell Publishing Ltd.

  15. Monocytes/Macrophages Control Resolution of Transient Inflammatory Pain

    Science.gov (United States)

    Willemen, Hanneke L. D. M.; Eijkelkamp, Niels; Carbajal, Anibal Garza; Wang, Huijing; Mack, Matthias; Zijlstra, Jitske; Heijnen, Cobi J.; Kavelaars, Annemieke

    2014-01-01

    Insights into mechanisms governing resolution of inflammatory pain are of great importance for many chronic pain–associated diseases. Here we investigate the role of macrophages/monocytes and the anti-inflammatory cytokine interleukin-10 (IL-10) in the resolution of transient inflammatory pain. Depletion of mice from peripheral monocytes/macrophages delayed resolution of intraplantar IL-1β- and carrageenan-induced inflammatory hyperalgesia from 1 to 3 days to >1 week. Intrathecal administration of a neutralizing IL-10 antibody also markedly delayed resolution of IL-1β- and carrageenan-induced inflammatory hyperalgesia. Recently, we showed that IL-1β- and carrageenan-induced hyperalgesia is significantly prolonged in LysM-GRK2+/− mice, which have reduced levels of G-protein-coupled receptor kinase 2 (GRK2) in LysM+ myeloid cells. Here we show that adoptive transfer of wild-type, but not of GRK2+/−, bone marrow-derived monocytes normalizes the resolution of IL-1β-induced hyperalgesia in LysM-GRK2+/− mice. Adoptive transfer of IL-10−/− bone marrow-derived monocytes failed to normalize the duration of IL-1β-induced hyperalgesia in LysM-GRK2+/− mice. Mechanistically, we show that GRK2+/− macrophages produce less IL-10 in vitro. In addition, intrathecal IL-10 administration attenuated IL-1β-induced hyperalgesia in LysM-GRK2+/− mice, whereas it had no effect in wild-type mice. Our data uncover a key role for monocytes/macrophages in promoting resolution of inflammatory hyperalgesia via a mechanism dependent on IL-10 signaling in dorsal root ganglia. Perspective We show that IL-10-producing monocytes/macrophages promote resolution of transient inflammatory hyperalgesia. Additionally, we show that reduced monocyte/macrophage GRK2 impairs resolution of hyperalgesia and reduces IL-10 production. We propose that low GRK2 expression and/or impaired IL-10 production by monocytes/macrophages represent peripheral biomarkers for the risk of developing

  16. Extracellular vesicles from Leishmania-infected macrophages confer an anti-infection cytokine-production profile to naïve macrophages.

    Directory of Open Access Journals (Sweden)

    André Cronemberger-Andrade

    2014-09-01

    Full Text Available Extracellular vesicles (EVs are structures with phospholipid bilayer membranes and 100-1000 nm diameters. These vesicles are released from cells upon activation of surface receptors and/or apoptosis. The production of EVs by dendritic cells, mast cells, macrophages, and B and T lymphocytes has been extensively reported in the literature. EVs may express MHC class II and other membrane surface molecules and carry antigens. The aim of this study was to investigate the role of EVs from Leishmania-infected macrophages as immune modulatory particles.In this work it was shown that BALB/c mouse bone marrow-derived macrophages, either infected in vitro with Leishmania amazonensis or left uninfected, release comparable amounts of 50-300 nm-diameter extracellular vesicles (EVs. The EVs were characterized by flow cytometry and electron microscopy. The incubation of naïve macrophages with these EVs for 48 hours led to a statistically significant increase in the production of the cytokines IL-12, IL-1β, and TNF-α.EVs derived from macrophages infected with L. amazonensis induce other macrophages, which in vivo could be bystander cells, to produce the proinflammatory cytokines IL-12, IL-1β and TNF-α. This could contribute both to modulate the immune system in favor of a Th1 immune response and to the elimination of the Leishmania, leading, therefore, to the control the infection.

  17. Functional evaluation of bone marrow derived DC of tumor bearing mice after immunotherapy

    International Nuclear Information System (INIS)

    Li Min; Chen Cheng; Gu Tao; Zhou Huan; Zhang Feng; Zhu Yibei; Yu Gehua; Zhang Xueguang; Gu Zongjiang

    2006-01-01

    Objective: To evaluate the function of bone marrow derived DC of tumor bearing mice after immunotherapy. Methods: Tumor bearing mice were immunized with DC vaccine plus injection of agonistic anti-4-1BB monoclonal antibody. The proliferation of T cells primed with bone marrow derived DC of tumor bearing mice after immunotherapy was tested by 3 H-TdR incorporation. ELISA was employed to determine the levels of IL-2, IFN-γ and IL-10 secreted by DC primed T cells. Results: Bone marrow derived DC of tumor bearing mice was less efficient in stimulating the proliferation of T cells and IL-2 and IFN-γ secretion made by T cells. After immunotherapy, the proliferation of cells and IL-2 and IFN-γ secretionmade by T cells were enhanced. Conclusion: The function of bone marrow derived DC of tumor bearing mice after immunotherapy was ameliorated. (authors)

  18. Red Wine administration to Apolipoprotein E-deficient Mice reduces their Macrophage-derived Extracellular Matrix Atherogenic Properties

    Directory of Open Access Journals (Sweden)

    MARIELLE KAPLAN

    2004-01-01

    Full Text Available Proteoglycans (PGs from the arterial extracellular matrix (ECM contribute to the trapping of LDL and oxidized LDL (Ox-LDL in the arterial wall, a phenomenon called "lipoprotein retention". Moreover, we have shown that subsequent to their binding to the matrix, LDL and Ox-LDL are taken up by macrophages. Oxidative stress significantly increases macrophage secretion of ECM-PGs, lipoprotein binding to the ECM and the uptake of ECM-retained lipoproteins by macrophages. The aim of the present study was to determine whether red wine administration to atherosclerotic mice would affect their peritoneal macrophage-derived extracellular matrix properties, such as the glycosaminoglycan content and the ability to bind LDL. In addition, we questioned the ability of LDL bound to the mice peritoneal macrophages-derived ECM to be taken up by macrophages. Red wine administration to atherosclerotic mice did not affect the mice peritoneal macrophages-derived ECM glycosaminoglycan content but it significantly reduced the mice peritoneal macrophages-derived ECM ability to bind LDL and the subsequent uptake of ECM-retained LDL by the macrophages. The present study thus clearly demonstrated the inhibitory effect of red wine consumption by E0 mice on their peritoneal macrophage-derived extracellular matrix atherogenic properties.

  19. Impaired IFNγ-Signaling and Mycobacterial Clearance in IFNγR1-Deficient Human iPSC-Derived Macrophages

    Directory of Open Access Journals (Sweden)

    Anna-Lena Neehus

    2018-01-01

    Full Text Available Mendelian susceptibility to mycobacterial disease (MSMD is caused by inborn errors of interferon gamma (IFNγ immunity and is characterized by severe infections by weakly virulent mycobacteria. Although IFNγ is the macrophage-activating factor, macrophages from these patients have never been studied. We demonstrate the generation of heterozygous and compound heterozygous (iMSMD-cohet induced pluripotent stem cells (iPSCs from a single chimeric patient, who suffered from complete autosomal recessive IFNγR1 deficiency and received bone-marrow transplantation. Loss of IFNγR1 expression had no influence on the macrophage differentiation potential of patient-specific iPSCs. In contrast, lack of IFNγR1 in iMSMD-cohet macrophages abolished IFNγ-dependent phosphorylation of STAT1 and induction of IFNγ-downstream targets such as IRF-1, SOCS-3, and IDO. As a consequence, iMSMD-cohet macrophages show impaired upregulation of HLA-DR and reduced intracellular killing of Bacillus Calmette-Guérin. We provide a disease-modeling platform that might be suited to investigate novel treatment options for MSMD and to gain insights into IFNγ signaling in macrophages.

  20. Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo.

    Science.gov (United States)

    Iqbal, Asif J; McNeill, Eileen; Kapellos, Theodore S; Regan-Komito, Daniel; Norman, Sophie; Burd, Sarah; Smart, Nicola; Machemer, Daniel E W; Stylianou, Elena; McShane, Helen; Channon, Keith M; Chawla, Ajay; Greaves, David R

    2014-10-09

    The recruitment of monocytes and their differentiation into macrophages at sites of inflammation are key events in determining the outcome of the inflammatory response and initiating the return to tissue homeostasis. To study monocyte trafficking and macrophage differentiation in vivo, we have generated a novel transgenic reporter mouse expressing a green fluorescent protein (GFP) under the control of the human CD68 promoter. CD68-GFP mice express high levels of GFP in both monocyte and embryo-derived tissue resident macrophages in adult animals. The human CD68 promoter drives GFP expression in all CD115(+) monocytes of adult blood, spleen, and bone marrow; we took advantage of this to directly compare the trafficking of bone marrow-derived CD68-GFP monocytes to that of CX3CR1(GFP) monocytes in vivo using a sterile zymosan peritonitis model. Unlike CX3CR1(GFP) monocytes, which downregulate GFP expression on differentiation into macrophages in this model, CD68-GFP monocytes retain high-level GFP expression for 72 hours after differentiation into macrophages, allowing continued cell tracking during resolution of inflammation. In summary, this novel CD68-GFP transgenic reporter mouse line represents a powerful resource for analyzing monocyte mobilization and monocyte trafficking as well as studying the fate of recruited monocytes in models of acute and chronic inflammation. © 2014 by The American Society of Hematology.

  1. Myelosuppressive conditioning using busulfan enables bone marrow cell accumulation in the spinal cord of a mouse model of amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Coral-Ann B Lewis

    Full Text Available Myeloablative preconditioning using irradiation is the most commonly used technique to generate rodents having chimeric bone marrow, employed for the study of bone marrow-derived cell accumulation in the healthy and diseased central nervous system. However, irradiation has been shown to alter the blood-brain barrier, potentially creating confounding artefacts. To better study the potential of bone marrow-derived cells to function as treatment vehicles for neurodegenerative diseases alternative preconditioning regimens must be developed. We treated transgenic mice that over-express human mutant superoxide dismutase 1, a model of amyotrophic lateral sclerosis, with busulfan to determine whether this commonly used chemotherapeutic leads to stable chimerism and promotes the entry of bone marrow-derived cells into spinal cord. Intraperitoneal treatment with busulfan at 60 mg/kg or 80 mg/kg followed by intravenous injection of green fluorescent protein-expressing bone marrow resulted in sustained levels of chimerism (~80%. Bone marrow-derived cells accumulated in the lumbar spinal cord of diseased mice at advanced stages of pathology at both doses, with limited numbers of bone marrow derived cells observed in the spinal cords of similarly treated, age-matched controls; the majority of bone marrow-derived cells in spinal cord immunolabelled for macrophage antigens. Comparatively, significantly greater numbers of bone marrow-derived cells were observed in lumbar spinal cord following irradiative myeloablation. These results demonstrate bone marrow-derived cell accumulation in diseased spinal cord is possible without irradiative preconditioning.

  2. Radiation-induced enlargement of granulocytic and macrophage progenitor cells in mouse bone marrow

    Energy Technology Data Exchange (ETDEWEB)

    Metcalf, D; Johnson, G R; Wilson, J [Walter and Eliza Hall Inst. of Medical Research, Parkville (Australia)

    1977-01-01

    The peak sedimentation velocity of C/sub 57/BL mouse bone marrow progenitors of granulocytes and macrophages (GM-colony-forming cells, GM-CFC's) increased from 4.3 mm/h to 7 to 8 mm/h by 2 days after 250 rad whole body irradiation and slowly returned to normal over the next 3 weeks. Preliminary irradiation and/or endotoxin injection did not prevent this radiation-induced change. Some change in sedimentation velocity was seen with as little as 100 rad irradiation. Neither buoyant density nor cell cycle changes could account for the sedimentation velocity data which therefore indicate a major volume increase in the GM-CFC's. This size enlargement affected all subpopulations of GM-CFC's which consequently maintained their size relationship with one another.

  3. Endometriosis, a disease of the macrophage

    Directory of Open Access Journals (Sweden)

    Annalisa eCapobianco

    2013-01-01

    Full Text Available Endometriosis, a common cause of pelvic pain and female infertility, depends on the growth of vascularised endometrial tissue at ectopic sites. Endometrial fragments reach the peritoneal cavity during the fertile years: local cues decide whether they yield endometriotic lesions. Macrophages are recruited at sites of hypoxia and tissue stress, where they clear cell debris and heme-iron and generate pro-life and pro-angiogenesis signals. Macrophages are abundant in endometriotic lesions, where are recruited and undergo alternative activation. In rodents macrophages are required for lesions to establish and to grow; bone-marrow derived Tie-2 expressing macrophages specifically contribute to lesions neovasculature, possibly because they concur to the recruitment of circulating endothelial progenitors, and sustain their survival and the integrity of the vessel wall. Macrophages sense cues (hypoxia, cell death, iron overload in the lesions and react delivering signals to restore the local homeostasis: their action represents a necessary, non-redundant step in the natural history of the disease. Endometriosis may be due to a misperception of macrophages about ectopic endometrial tissue. They perceive it as a wound, they activate programs leading to ectopic cell survival and tissue vascularization. Clearing this misperception is a critical area for the development of novel medical treatments of endometriosis, an urgent and unmet medical need.

  4. The skeletal cell-derived molecule sclerostin drives bone marrow adipogenesis.

    Science.gov (United States)

    Fairfield, Heather; Falank, Carolyne; Harris, Elizabeth; Demambro, Victoria; McDonald, Michelle; Pettitt, Jessica A; Mohanty, Sindhu T; Croucher, Peter; Kramer, Ina; Kneissel, Michaela; Rosen, Clifford J; Reagan, Michaela R

    2018-02-01

    The bone marrow niche is a dynamic and complex microenvironment that can both regulate, and be regulated by the bone matrix. Within the bone marrow (BM), mesenchymal stromal cell (MSC) precursors reside in a multi-potent state and retain the capacity to differentiate down osteoblastic, adipogenic, or chondrogenic lineages in response to numerous biochemical cues. These signals can be altered in various pathological states including, but not limited to, osteoporotic-induced fracture, systemic adiposity, and the presence of bone-homing cancers. Herein we provide evidence that signals from the bone matrix (osteocytes) determine marrow adiposity by regulating adipogenesis in the bone marrow. Specifically, we found that physiologically relevant levels of Sclerostin (SOST), which is a Wnt-inhibitory molecule secreted from bone matrix-embedded osteocytes, can induce adipogenesis in 3T3-L1 cells, mouse ear- and BM-derived MSCs, and human BM-derived MSCs. We demonstrate that the mechanism of SOST induction of adipogenesis is through inhibition of Wnt signaling in pre-adipocytes. We also demonstrate that a decrease of sclerostin in vivo, via both genetic and pharmaceutical methods, significantly decreases bone marrow adipose tissue (BMAT) formation. Overall, this work demonstrates a direct role for SOST in regulating fate determination of BM-adipocyte progenitors. This provides a novel mechanism for which BMAT is governed by the local bone microenvironment, which may prove relevant in the pathogenesis of certain diseases involving marrow adipose. Importantly, with anti-sclerostin therapy at the forefront of osteoporosis treatment and a greater recognition of the role of BMAT in disease, these data are likely to have important clinical implications. © 2017 Wiley Periodicals, Inc.

  5. A Role of RIP3-Mediated Macrophage Necrosis in Atherosclerosis Development

    Directory of Open Access Journals (Sweden)

    Juan Lin

    2013-01-01

    Full Text Available Necrotic death of macrophages has long been known to be present in atherosclerotic lesions but has not been studied. We examined the role of receptor interacting protein (RIP 3, a mediator of necrotic cell death, in atherosclerosis and found that RIP3−/−;Ldlr−/− mice were no different from RIP3+/+;Ldlr−/− mice in early atherosclerosis but had significant reduction in advanced atherosclerotic lesions. Similar results were observed in Apoe−/− background mice. Bone marrow transplantation revealed that loss of RIP3 expression from bone-marrow-derived cells is responsible for the reduced disease progression. While no difference was found in apoptosis between RIP3−/−;Ldlr−/− and RIP3+/+;Ldlr−/− mice, electron microscopy revealed a significant reduction of macrophage primary necrosis in the advanced lesions of RIP3−/− mice. In vitro cellular studies showed that RIP3 deletion had no effect on oxidized low-density lipoprotein (LDL-induced macrophage apoptosis, but prevented macrophage primary necrosis occurring in response to oxidized LDL under caspase inhibition or RIP3 overexpression conditions. RIP3-dependent necrosis is not postapoptotic, and the increased primary necrosis in advanced atherosclerotic lesions most likely resulted from the increase of RIP3 expression. Our data demonstrate that primary necrosis of macrophages is proatherogenic during advanced atherosclerosis development.

  6. Exosomes derived from gastric cancer cells activate NF-κB pathway in macrophages to promote cancer progression.

    Science.gov (United States)

    Wu, Lijun; Zhang, Xu; Zhang, Bin; Shi, Hui; Yuan, Xiao; Sun, Yaoxiang; Pan, Zhaoji; Qian, Hui; Xu, Wenrong

    2016-09-01

    Exosomes are nano-sized membrane vesicles secreted by both normal and cancer cells. Emerging evidence indicates that cancer cells derived exosomes contribute to cancer progression through the modulation of tumor microenvironment. However, the effects of exosomes derived from gastric cancer cells on macrophages are not well understood. In this study, we investigated the biological role of gastric cancer cells derived exosomes in the activation of macrophages. We demonstrated that gastric cancer cells derived exosomes activated macrophages to express increased levels of proinflammatory factors, which in turn promoted tumor cell proliferation and migration. In addition, gastric cancer cells derived exosomes remarkably upregulated the phosphorylation of NF-κB in macrophages. Inhibiting the activation of NF-κB reversed the upregulation of proinflammatory factors in macrophages and blocked their promoting effects on gastric cancer cells. Moreover, we found that gastric cancer cells derived exosomes could also activate macrophages from human peripheral blood monocytes through the activation of NF-κB. In conclusion, our results suggest that gastric cancer cells derived exosomes stimulate the activation of NF-κB pathway in macrophages to promote cancer progression, which provides a potential therapeutic approach for gastric cancer by interfering with the interaction between exosomes and macrophages in tumor microenvironment.

  7. Novel Role of Endogenous Catalase in Macrophage Polarization in Adipose Tissue.

    Science.gov (United States)

    Park, Ye Seul; Uddin, Md Jamal; Piao, Lingjuan; Hwang, Inah; Lee, Jung Hwa; Ha, Hunjoo

    2016-01-01

    Macrophages are important components of adipose tissue inflammation, which results in metabolic diseases such as insulin resistance. Notably, obesity induces a proinflammatory phenotypic switch in adipose tissue macrophages, and oxidative stress facilitates this switch. Thus, we examined the role of endogenous catalase, a key regulator of oxidative stress, in the activity of adipose tissue macrophages in obese mice. Catalase knockout (CKO) exacerbated insulin resistance, amplified oxidative stress, and accelerated macrophage infiltration into epididymal white adipose tissue in mice on normal or high-fat diet. Interestingly, catalase deficiency also enhanced classical macrophage activation (M1) and inflammation but suppressed alternative activation (M2) regardless of diet. Similarly, pharmacological inhibition of catalase activity using 3-aminotriazole induced the same phenotypic switch and inflammatory response in RAW264.7 macrophages. Finally, the same phenotypic switch and inflammatory responses were observed in primary bone marrow-derived macrophages from CKO mice. Taken together, the data indicate that endogenous catalase regulates the polarization of adipose tissue macrophages and thereby inhibits inflammation and insulin resistance.

  8. Impaired IFNγ-Signaling and Mycobacterial Clearance in IFNγR1-Deficient Human iPSC-Derived Macrophages.

    Science.gov (United States)

    Neehus, Anna-Lena; Lam, Jenny; Haake, Kathrin; Merkert, Sylvia; Schmidt, Nico; Mucci, Adele; Ackermann, Mania; Schubert, Madline; Happle, Christine; Kühnel, Mark Philipp; Blank, Patrick; Philipp, Friederike; Goethe, Ralph; Jonigk, Danny; Martin, Ulrich; Kalinke, Ulrich; Baumann, Ulrich; Schambach, Axel; Roesler, Joachim; Lachmann, Nico

    2018-01-09

    Mendelian susceptibility to mycobacterial disease (MSMD) is caused by inborn errors of interferon gamma (IFNγ) immunity and is characterized by severe infections by weakly virulent mycobacteria. Although IFNγ is the macrophage-activating factor, macrophages from these patients have never been studied. We demonstrate the generation of heterozygous and compound heterozygous (iMSMD-cohet) induced pluripotent stem cells (iPSCs) from a single chimeric patient, who suffered from complete autosomal recessive IFNγR1 deficiency and received bone-marrow transplantation. Loss of IFNγR1 expression had no influence on the macrophage differentiation potential of patient-specific iPSCs. In contrast, lack of IFNγR1 in iMSMD-cohet macrophages abolished IFNγ-dependent phosphorylation of STAT1 and induction of IFNγ-downstream targets such as IRF-1, SOCS-3, and IDO. As a consequence, iMSMD-cohet macrophages show impaired upregulation of HLA-DR and reduced intracellular killing of Bacillus Calmette-Guérin. We provide a disease-modeling platform that might be suited to investigate novel treatment options for MSMD and to gain insights into IFNγ signaling in macrophages. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. A PEDF-Derived Peptide Inhibits Retinal Neovascularization and Blocks Mobilization of Bone Marrow-Derived Endothelial Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Richard Longeras

    2012-01-01

    Full Text Available Proliferative diabetic retinopathy is characterized by pathological retinal neovascularization, mediated by both angiogenesis (involving mature endothelial cells and vasculogenesis (involving bone marrow-derived circulating endothelial progenitor cells (EPCs. Pigment epithelium-derived factor (PEDF contains an N-terminal 34-amino acid peptide (PEDF-34 that has antiangiogenic properties. Herein, we present a novel finding that PEDF-34 also possesses antivasculogenic activity. In the oxygen-induced retinopathy (OIR model using transgenic mice that have Tie2 promoter-driven GFP expression, we quantified Tie2GFP+ cells in bone marrow and peripheral blood by fluorescence-activated cell sorting (FACS. OIR significantly increased the number of circulating Tie2-GFP+ at P16, correlating with the peak progression of neovascularization. Daily intraperitoneal injections of PEDF-34 into OIR mice decreased the number of Tie2-GFP+ cells in the circulation at P16 by 65% but did not affect the number of Tie2-GFP+ cells in the bone marrow. These studies suggest that PEDF-34 attenuates EPC mobilization from the bone marrow into the blood circulation during retinal neovascularization.

  10. The effect of two novel amino acid-coated magnetic nanoparticles on survival in vascular endothelial cells, bone marrow stromal cells, and macrophages

    Science.gov (United States)

    Wu, Qinghua; Meng, Ning; Zhang, Yanru; Han, Lei; Su, Le; Zhao, Jing; Zhang, Shangli; Zhang, Yun; Zhao, Baoxiang; Miao, Junying

    2014-09-01

    Magnetic nanoparticles (MNPs) have been popularly used in many fields. Recently, many kinds of MNPs are modified as new absorbents, which have attracted considerable attention and are promising to be applied in waste water. In our previous study, we synthesized two novel MNPs surface-coated with glycine or lysine, which could efficiently remove many anionic and cationic dyes under severe conditions. It should be considered that MNP residues in water may exert some side effects on human health. In the present study, we evaluated the potential nanotoxicity of MNPs in human endothelial cells, macrophages, and rat bone marrow stromal cells. The results showed that the two kinds of nanoparticles were consistently absorbed into the cell cytoplasm. The concentration of MNPs@Gly that could distinctly decrease survival was 15 μg/ml in human umbilical vascular endothelial cells (HUVECs) or bone marrow stromal cells (BMSCs) and 10 μg/ml in macrophages. While the concentration of MNPs@Lys that obviously reduced viability was 15 μg/ml in HUVECs or macrophages and 50 μg/ml in BMSCs. Furthermore, cell nucleus staining and cell integrity assay indicated that the nanoparticles induced cell apoptosis, but not necrosis even at a high concentration. Altogether, these data suggest that the amino acid-coated magnetic nanoparticles exert relatively high cytotoxicity. By contrast, lysine-coated magnetic nanoparticles are more secure than glycine-coated magnetic nanoparticles.

  11. Bone marrow and bone marrow derived mononuclear stem cells therapy for the chronically ischemic myocardium

    International Nuclear Information System (INIS)

    Waksman, Ron; Baffour, Richard

    2003-01-01

    Bone marrow stem cells have been shown to differentiate into various phenotypes including cardiomyocytes, vascular endothelial cells and smooth muscle. Bone marrow stem cells are mobilized and home in to areas of injured myocardium where they are involved in tissue repair. In addition, bone marrow secretes multiple growth factors, which are essential for angiogenesis and arteriogenesis. In some patients, these processes are not enough to avert clinical symptoms of ischemic disease. Therefore, in vivo administration of an adequate number of stem cells would be a significant therapeutic advance. Unfractionated bone marrow derived mononuclear stem cells, which contain both hematopoietic and nonhematopoietic cells may be more appropriate for cell therapy. Studies in animal models suggest that implantation of different types of stem cells improve angiogenesis and arteriogenesis, tissue perfusion as well as left ventricular function. Several unanswered questions remain. For example, the optimal delivery approach, dosage and timing of the administration of cell therapy as well as durability of improvements need to be studied. Early clinical studies have demonstrated safety and feasibility of various cell therapies in ischemic disease. Randomized, double blind and placebo-controlled clinical trials need to be completed to determine the effectiveness of stem cell

  12. Columnar metaplasia in a surgical mouse model of gastro-esophageal reflux disease is not derived from bone marrow-derived cell.

    Science.gov (United States)

    Aikou, Susumu; Aida, Junko; Takubo, Kaiyo; Yamagata, Yukinori; Seto, Yasuyuki; Kaminishi, Michio; Nomura, Sachiyo

    2013-09-01

    The incidence of esophageal adenocarcinoma has increased in the last 25 years. Columnar metaplasia in Barrett's mucosa is assumed to be a precancerous lesion for esophageal adenocarcinoma. However, the induction process of Barrett's mucosa is still unknown. To analyze the induction of esophageal columnar metaplasia, we established a mouse gastro-esophageal reflux disease (GERD) model with associated development of columnar metaplasia in the esophagus. C57BL/6 mice received side-to-side anastomosis of the esophagogastric junction with the jejunum, and mice were killed 10, 20, and 40 weeks after operation. To analyze the contribution of bone marrow-derived cells to columnar metaplasia in this surgical GERD model, some mice were transplanted with GFP-marked bone marrow after the operation. Seventy-three percent of the mice (16/22) showed thickened mucosa in esophagus and 41% of mice (9/22) developed columnar metaplasia 40 weeks after the operation with a mortality rate of 4%. Bone marrow-derived cells were not detected in columnar metaplastic epithelia. However, scattered epithelial cells in the thickened squamous epithelia in regions of esophagitis did show bone marrow derivation. The results demonstrate that reflux induced by esophago-jejunostomy in mice leads to the development of columnar metaplasia in the esophagus. However, bone marrow-derived cells do not contribute directly to columnar metaplasia in this mouse model. © 2013 Japanese Cancer Association.

  13. Revisiting mouse peritoneal macrophages: heterogeneity, development and function

    Directory of Open Access Journals (Sweden)

    Alexandra Dos Anjos Cassado

    2015-05-01

    Full Text Available Tissue macrophages play a crucial role in the maintenance of tissue homeostasis and also contribute to inflammatory and reparatory responses during pathogenic infection and tissue injury. The high heterogeneity of these macrophages is consistent with their adaptation to distinct tissue environments and specialization to develop niche-specific functions. Although peritoneal macrophages are one of best-studied macrophage populations, only recently it was demonstrated the co-existence of two subsets in mouse PerC, which exhibit distinct phenotypes, functions and origins. These macrophage subsets have been classified according to their morphology as LPMs (large peritoneal macrophages and SPMs (small peritoneal macrophages. LPMs, the most abundant subset under steady-state conditions, express high levels of F4/80 and low levels of class II molecules of the major histocompatibility complex (MHC. LPMs appear to be originated from embriogenic precursors, and their maintenance in PerC is regulated by expression of specific transcription factors and tissue-derived signals. Conversely, SPMs, a minor subset in unstimulated PerC, have a F4/80lowMHC-IIhigh phenotype and are generated from bone-marrow-derived myeloid precursors. In response to infectious or inflammatory stimuli, the cellular composition of PerC is dramatically altered, where LPMs disappear and SPMs become the prevalent population together with their precursor, the inflammatory monocyte. SPMs appear to be the major source of inflammatory mediators in PerC during infection whereas LPMs contribute for gut-associated lymphoid tissue (GALT-independent and retinoic acid-dependent IgA production by peritoneal B-1 cells. In the last years, considerable efforts have been made to broaden our understanding of LPM and SPM origin, transcriptional regulation and functional profile. This review addresses these issues, focusing on the impact of tissue-derived signals and external stimulation in the complex

  14. Bone Marrow Mesenchymal Stem Cell-Based Engineered Cartilage Ameliorates Polyglycolic Acid/Polylactic Acid Scaffold-Induced Inflammation Through M2 Polarization of Macrophages in a Pig Model.

    Science.gov (United States)

    Ding, Jinping; Chen, Bo; Lv, Tao; Liu, Xia; Fu, Xin; Wang, Qian; Yan, Li; Kang, Ning; Cao, Yilin; Xiao, Ran

    2016-08-01

    : The regeneration of tissue-engineered cartilage in an immunocompetent environment usually fails due to severe inflammation induced by the scaffold and their degradation products. In the present study, we compared the tissue remodeling and the inflammatory responses of engineered cartilage constructed with bone marrow mesenchymal stem cells (BMSCs), chondrocytes, or both and scaffold group in pigs. The cartilage-forming capacity of the constructs in vitro and in vivo was evaluated by histological, biochemical, and biomechanical analyses, and the inflammatory response was investigated by quantitative analysis of foreign body giant cells and macrophages. Our data revealed that BMSC-based engineered cartilage suppressed in vivo inflammation through the alteration of macrophage phenotype, resulting in better tissue survival compared with those regenerated with chondrocytes alone or in combination with BMSCs. To further confirm the macrophage phenotype, an in vitro coculture system established by engineered cartilage and macrophages was studied using immunofluorescence, enzyme-linked immunosorbent assay, and gene expression analysis. The results demonstrated that BMSC-based engineered cartilage promoted M2 polarization of macrophages with anti-inflammatory phenotypes including the upregulation of CD206, increased IL-10 synthesis, decreased IL-1β secretion, and alterations in gene expression indicative of M1 to M2 transition. It was suggested that BMSC-seeded constructs have the potential to ameliorate scaffold-induced inflammation and improve cartilaginous tissue regeneration through M2 polarization of macrophages. Finding a strategy that can prevent scaffold-induced inflammation is of utmost importance for the regeneration of tissue-engineered cartilage in an immunocompetent environment. This study demonstrated that bone marrow mesenchymal stem cell (BMSC)-based engineered cartilage could suppress inflammation by increasing M2 polarization of macrophages, resulting

  15. Role of Osteal Macrophages in Bone Metabolism

    Directory of Open Access Journals (Sweden)

    Sun Wook Cho

    2015-03-01

    Full Text Available Macrophages have been shown to have pleiotropic functions in various pathophysiologies, especially in terms of anti-inflammatory and regenerative activity. Recently, the novel functions of bone marrow resident macrophages (called osteal macrophages were intensively studied in bone development, remodeling and tissue repair processes. This review discusses the current evidence for a role of osteal macrophages in bone modeling, remodeling, and fracture healing processes.

  16. Human mesenchymal stem cells alter macrophage phenotype and promote regeneration via homing to the kidney following ischemia-reperfusion injury

    NARCIS (Netherlands)

    Wise, Andrea F; Williams, Timothy M; Kiewiet, Mensiena B G; Payne, Natalie L; Siatskas, Christopher; Samuel, Chrishan S; Ricardo, Sharon D

    2014-01-01

    Mesenchymal stem cells (MSCs) ameliorate injury and accelerate repair in many organs, including the kidney, although the reparative mechanisms and interaction with macrophages have not been elucidated. This study investigated the reparative potential of human bone marrow-derived MSCs and traced

  17. Intramacrophage survival of uropathogenic Escherichia coli: Differences between diverse clinical isolates and between mouse and human macrophages

    DEFF Research Database (Denmark)

    Bokil, Nilesh J.; Totsika, Makrina; Carey, Alison J.

    2011-01-01

    assays, CFT073 was able to survive within primary mouse bone marrow-derived macrophages (BMM) up to 24h post-infection. Three additional well-characterized clinical UPEC isolates associated with distinct UTI symptomatologies displayed variable long-term survival within BMM. UPEC strains UTI89 and VR50...... or initial uptake of bacteria. E. coli UTI89 localized to a Lamp1+ vesicular compartment within BMM. In contrast to survival within mouse BMM, intracellular bacterial loads of VR50 were low in both human monocyte-derived macrophages (HMDM) and in human T24 bladder epithelial cells. Collectively, these data...

  18. Proliferative activity of vervet monkey bone marrow-derived adherent cells

    International Nuclear Information System (INIS)

    Kramvis, A.; Garnett, H.M.

    1987-01-01

    Vervet monkey bone marrow-derived adherent cell population cultured in Fischer's medium supplemented with 12.5% fetal calf serum and 12.5% horse serum consists of two cell shapes: fusiform (type I) and polygonal (type II). Limiting-dilution cloning of the cells suggested that the two morphologically distinct cell types belong to the same cellular system even though they differ in their proliferative capabilities. The labeling index of type II cells, as measured by autoradiography, was found to be consistently lower than that of type I cells. It is probable that these two phenotypes represent different stages of differentiation, where progenitor type I gives rise to type II cells. The bone marrow-derived adherent cells were found to be cytokinetically at rest in vivo, using the thymidine suicide test, and relatively radioresistant with a D0 = 2.1 Gy and n = 2.36 at the time of explantation from the bone. Furthermore, in culture these cells are characterized by a relatively long cell cycle of 60 h, where the length of the S phase is 30 h, G2 is 12 h, M is 6 h, and G1 is 12 h. Thus, the vervet monkey bone marrow-derived adherent cells represent a cell population with a low turnover rate both in vivo and in vitro

  19. Purinergic signaling during macrophage differentiation results in M2 alternative activated macrophages.

    Science.gov (United States)

    Barberà-Cremades, Maria; Baroja-Mazo, Alberto; Pelegrín, Pablo

    2016-02-01

    Macrophages represent a highly heterogenic cell population of the innate immune system, with important roles in the initiation and resolution of the inflammatory response. Purinergic signaling regulates both M1 and M2 macrophage function at different levels by controlling the secretion of cytokines, phagocytosis, and the production of reactive oxygen species. We found that extracellular nucleotides arrest macrophage differentiation from bone marrow precursors via adenosine and P2 receptors. This results in a mature macrophage with increased expression of M2, but not M1, genes. Similar to adenosine and ATP, macrophage growth arrested with LPS treatment resulted in an increase of the M2-related marker Ym1. Recombinant Ym1 was able to affect macrophage proliferation and could, potentially, be involved in the arrest of macrophage growth during hematopoiesis. © Society for Leukocyte Biology.

  20. CRISPR/Cas9-Mediated Gene Editing in Human iPSC-Derived Macrophage Reveals Lysosomal Acid Lipase Function in Human Macrophages-Brief Report.

    Science.gov (United States)

    Zhang, Hanrui; Shi, Jianting; Hachet, Melanie A; Xue, Chenyi; Bauer, Robert C; Jiang, Hongfeng; Li, Wenjun; Tohyama, Junichiro; Millar, John; Billheimer, Jeffrey; Phillips, Michael C; Razani, Babak; Rader, Daniel J; Reilly, Muredach P

    2017-11-01

    To gain mechanistic insights into the role of LIPA (lipase A), the gene encoding LAL (lysosomal acid lipase) protein, in human macrophages. We used CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) technology to knock out LIPA in human induced pluripotent stem cells and then differentiate to macrophage (human-induced pluripotent stem cells-derived macrophage [IPSDM]) to explore the human macrophage LIPA loss-of-function phenotypes. LIPA was abundantly expressed in monocyte-derived macrophages and was markedly induced on IPSDM differentiation to comparable levels as in human monocyte-derived macrophage. IPSDM with knockout of LIPA ( LIPA -/- ) had barely detectable LAL enzymatic activity. Control and LIPA -/- IPSDM were loaded with [ 3 H]-cholesteryl oleate-labeled AcLDL (acetylated low-density lipoprotein) followed by efflux to apolipoprotein A-I. Efflux of liberated [ 3 H]-cholesterol to apolipoprotein A-I was abolished in LIPA -/- IPSDM, indicating deficiency in LAL-mediated lysosomal cholesteryl ester hydrolysis. In cells loaded with [ 3 H]-cholesterol-labeled AcLDL, [ 3 H]-cholesterol efflux was, however, not different between control and LIPA -/- IPSDM. ABCA1 (ATP-binding cassette, subfamily A, member 1) expression was upregulated by AcLDL loading but to a similar extent between control and LIPA -/- IPSDM. In nonlipid loaded state, LIPA -/- IPSDM had high levels of cholesteryl ester mass compared with minute amounts in control IPSDM. Yet, with AcLDL loading, overall cholesteryl ester mass was increased to similar levels in both control and LIPA -/- IPSDM. LIPA -/- did not impact lysosomal apolipoprotein-B degradation or expression of IL1B , IL6 , and CCL5. CONCLUSIONS: LIPA -/- IPSDM reveals macrophage-specific hallmarks of LIPA deficiency. CRISPR/Cas9 and IPSDM provide important tools to study human macrophage biology and more broadly for future studies of disease-associated LIPA genetic variation in human

  1. Macrophage function in murine allogeneic bone marrow radiation chimeras in the early phase after transplantation

    International Nuclear Information System (INIS)

    Roesler, J.; Baccarini, M.; Vogt, B.; Lohmann-Matthes, M.L.

    1989-01-01

    We tested several of the functions of macrophages (M phi) in the early phase after allogeneic bone marrow transfer to get information about this important aspect of the nonspecific immune system in the T-cell-deficient recipient. On days 3-5 after transfer, the number of M phi was reduced in the spleen, liver, lungs, and peritoneal cavity (Pe). The phagocytosis of sheep red blood cells (SRBC) by these M phi was normal or even enhanced, as in the case of Pe-M phi. Already on days 8-12 after transfer, the number of M phi in spleen and liver exceeded that of controls, whereas the number was still reduced in lungs and Pe. We examined their ability to kill P815 tumor cells, to produce tumor necrosis factor-alpha (TNF alpha), to phagocytose SRBC, to produce reactive oxygen intermediates (ROI) in vitro and to kill Listeria monocytogenes in vivo. Most functions were normal and often even enhanced, depending on the organ origin, but the ability of Pe-M phi to produce ROI was reduced. Proliferative response to macrophage colony-stimulating factor (M-CSF) and killing of YAC-1 tumor cells revealed a high frequency of macrophage precursor cells in the spleen and liver and a high natural killer (NK) activity in the liver. Altogether, enhanced nonspecific immune function, especially preactivated M phi, may enable chimeras to survive attacks by opportunistic pathogens

  2. Hypoxia-Inducible Factor-1α Expression in Macrophages Promotes Development of Atherosclerosis

    DEFF Research Database (Denmark)

    Pedersen, Annemarie Aarup; Pedersen, Tanja X; Junker, Nanna

    2016-01-01

    transplanted with bone marrow from mice with HIF-1α deficiency in the myeloid cells or control bone marrow. The HIF-1α deficiency in myeloid cells reduced atherosclerosis in aorta of the Ldlr(-/-) recipient mice by ≈72% (P=0.006).In vitro, HIF-1α-deficient macrophages displayed decreased differentiation...... to proinflammatory M1 macrophages and reduced expression of inflammatory genes. HIF-1α deficiency also affected glucose uptake, apoptosis, and migratory abilities of the macrophages. CONCLUSIONS: HIF-1α expression in macrophages affects their intrinsic inflammatory profile and promotes development of atherosclerosis....

  3. Polyelectrolyte Complex Optimization for Macrophage Delivery of Redox Enzyme Nanoparticles

    Science.gov (United States)

    Zhao, Yuling; Haney, Matthew J.; Klyachko, Natalia L.; Li, Shu; Booth, Stephanie L.; Higginbotham, Sheila M.; Jones, Jocelyn; Zimmerman, Matthew C.; Mosley, R. Lee; Kabanov, Alexander V.; Gendelman, Howard E.; Batrakova, Elena V.

    2011-01-01

    Background We posit that cell-mediated drug delivery can improve transport of therapeutic enzymes to the brain and decrease inflammation and neurodegeneration induced during Parkinson’s disease. Our prior work demonstrated that macrophages loaded with nanoformulated catalase (“nanozyme”) protect the nigrostriatum in a murine model of Parkinson’s disease. Packaging of catalase into block ionomer complex with a synthetic polyelectrolyte block copolymers protects the enzyme degradation in macrophages. Methods We examined relationships between the composition and structure of block ionomer complexes, their physicochemical characteristics, and loadings, release rates, and catalase activity in bone marrow-derived macrophages. Results Formation of block-ionomer complexes resulted in improved aggregation stability. Block ionomer complexes with ε-polylisine, and poly-L-glutamic acid -poly(ethylene glycol) demonstrated the least cytotoxicity and high loading and release rates, however, did not efficiently protect catalase inside macrophages. Conclusion nanozymes with polyethyleneimine- and poly(L-lysine)10-poly(ethylene glycol) provided the best protection of enzymatic activity for cell-mediated drug delivery. PMID:21182416

  4. CD14-dependent monocyte isolation enhances phagocytosis of listeria monocytogenes by proinflammatory, GM-CSF-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Caroline Neu

    Full Text Available Macrophages are an important line of defence against invading pathogens. Human macrophages derived by different methods were tested for their suitability as models to investigate Listeria monocytogenes (Lm infection and compared to macrophage-like THP-1 cells. Human primary monocytes were isolated by either positive or negative immunomagnetic selection and differentiated in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF or macrophage colony-stimulating factor (M-CSF into pro- or anti-inflammatory macrophages, respectively. Regardless of the isolation method, GM-CSF-derived macrophages (GM-Mφ stained positive for CD206 and M-CSF-derived macrophages (M-Mφ for CD163. THP-1 cells did not express CD206 or CD163 following incubation with PMA, M- or GM-CSF alone or in combination. Upon infection with Lm, all primary macrophages showed good survival at high multiplicities of infection whereas viability of THP-1 was severely reduced even at lower bacterial numbers. M-Mφ generally showed high phagocytosis of Lm. Strikingly, phagocytosis of Lm by GM-Mφ was markedly influenced by the method used for isolation of monocytes. GM-Mφ derived from negatively isolated monocytes showed low phagocytosis of Lm whereas GM-Mφ generated from positively selected monocytes displayed high phagocytosis of Lm. Moreover, incubation with CD14 antibody was sufficient to enhance phagocytosis of Lm by GM-Mφ generated from negatively isolated monocytes. By contrast, non-specific phagocytosis of latex beads by GM-Mφ was not influenced by treatment with CD14 antibody. Furthermore, phagocytosis of Lactococcus lactis, Escherichia coli, human cytomegalovirus and the protozoan parasite Leishmania major by GM-Mφ was not enhanced upon treatment with CD14 antibody indicating that this effect is specific for Lm. Based on these observations, we propose macrophages derived by ex vivo differentiation of negatively selected human primary monocytes as the most

  5. Expression analysis of G Protein-Coupled Receptors in mouse macrophages.

    Science.gov (United States)

    Lattin, Jane E; Schroder, Kate; Su, Andrew I; Walker, John R; Zhang, Jie; Wiltshire, Tim; Saijo, Kaoru; Glass, Christopher K; Hume, David A; Kellie, Stuart; Sweet, Matthew J

    2008-04-29

    Monocytes and macrophages express an extensive repertoire of G Protein-Coupled Receptors (GPCRs) that regulate inflammation and immunity. In this study we performed a systematic micro-array analysis of GPCR expression in primary mouse macrophages to identify family members that are either enriched in macrophages compared to a panel of other cell types, or are regulated by an inflammatory stimulus, the bacterial product lipopolysaccharide (LPS). Several members of the P2RY family had striking expression patterns in macrophages; P2ry6 mRNA was essentially expressed in a macrophage-specific fashion, whilst P2ry1 and P2ry5 mRNA levels were strongly down-regulated by LPS. Expression of several other GPCRs was either restricted to macrophages (e.g. Gpr84) or to both macrophages and neural tissues (e.g. P2ry12, Gpr85). The GPCR repertoire expressed by bone marrow-derived macrophages and thioglycollate-elicited peritoneal macrophages had some commonality, but there were also several GPCRs preferentially expressed by either cell population. The constitutive or regulated expression in macrophages of several GPCRs identified in this study has not previously been described. Future studies on such GPCRs and their agonists are likely to provide important insights into macrophage biology, as well as novel inflammatory pathways that could be future targets for drug discovery.

  6. Rictor/mammalian target of rapamycin complex 2 promotes macrophage activation and kidney fibrosis.

    Science.gov (United States)

    Ren, Jiafa; Li, Jianzhong; Feng, Ye; Shu, Bingyan; Gui, Yuan; Wei, Wei; He, Weichun; Yang, Junwei; Dai, Chunsun

    2017-08-01

    Mammalian target of rapamycin (mTOR) signalling controls many essential cellular functions. However, the role of Rictor/mTOR complex 2 (mTORC2) in regulating macrophage activation and kidney fibrosis remains largely unknown. We report here that Rictor/mTORC2 was activated in macrophages from the fibrotic kidneys of mice. Ablation of Rictor in macrophages reduced kidney fibrosis, inflammatory cell accumulation, macrophage proliferation and polarization after unilateral ureter obstruction or ischaemia/reperfusion injury. In bone marrow-derived macrophages (BMMs), deletion of Rictor or blockade of protein kinase Cα inhibited cell migration. Additionally, deletion of Rictor or blockade of Akt abolished interleukin-4-stimulated or transforming growth factor (TGF)-β1-stimulated macrophage M2 polarization. Furthermore, deletion of Rictor downregulated TGF-β1-stimulated upregulation of multiple profibrotic cytokines, including platelet-derived growth factor, vascular endothelial growth factor and connective tissue growth factor, in BMMs. Conditioned medium from TGF-β1-pretreated Rictor -/- macrophages stimulated fibroblast activation less efficiently than that from TGF-β1-pretreated Rictor +/+ macrophages. These results demonstrate that Rictor/mTORC2 signalling can promote macrophage activation and kidney fibrosis. Targeting this signalling pathway in macrophages may shine light on ways to protect against kidney fibrosis in patients with chronic kidney diseases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  7. Consistent inhibition of cyclooxygenase drives macrophages towards the inflammatory phenotype.

    Directory of Open Access Journals (Sweden)

    Yi Rang Na

    Full Text Available Macrophages play important roles in defense against infection, as well as in homeostasis maintenance. Thus alterations of macrophage function can have unexpected pathological results. Cyclooxygenase (COX inhibitors are widely used to relieve pain, but the effects of long-term usage on macrophage function remain to be elucidated. Using bone marrow-derived macrophage culture and long-term COX inhibitor treatments in BALB/c mice and zebrafish, we showed that chronic COX inhibition drives macrophages into an inflammatory state. Macrophages differentiated in the presence of SC-560 (COX-1 inhibitor, NS-398 (COX-2 inhibitor or indomethacin (COX-1/2 inhibitor for 7 days produced more TNFα or IL-12p70 with enhanced p65/IκB phosphoylation. YmI and IRF4 expression was reduced significantly, indicative of a more inflammatory phenotype. We further observed that indomethacin or NS-398 delivery accelerated zebrafish death rates during LPS induced sepsis. When COX inhibitors were released over 30 days from an osmotic pump implant in mice, macrophages from peritoneal cavities and adipose tissue produced more TNFα in both the basal state and under LPS stimulation. Consequently, indomethacin-exposed mice showed accelerated systemic inflammation after LPS injection. Our findings suggest that macrophages exhibit a more inflammatory phenotype when COX activities are chronically inhibited.

  8. Enhancement of the grafting efficiency of transplanted marrow cells by preincubation with interleukin-3 and granulocyte-macrophage colony-stimulating factor

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, M.; Konno, M.; Shiota, Y.; Omoto, E.; Minguell, J.J.; Zanjani, E.D.

    1991-04-01

    To improve the grafting efficiency of transplanted murine hematopoietic progenitors, we briefly preincubated mouse bone marrow cells with interleukin-3 (IL-3) or granulocyte-macrophage colony-stimulating factor (GM-CSF) ex vivo before their transplantation into irradiated recipients. This treatment was translated into an increase in the seeding efficiency of colony-forming unit-spleen (CFU-S) and CFU-GM after transplantation. Not only was the concentration of CFU-S in the tibia increased 2 and 24 hours after transplantation, but the total cell number and CFU-S and CFU-GM concentrations were persistently higher in IL-3- and GM-CSF-treated groups 1 to 3 weeks after transplantation. In addition, the survival of animals as a function of transplanted cell number was persistently higher in IL-3- and GM-CSF-treated groups compared with controls. The data indicate that the pretreatment of marrow cells with IL-3 and GM-CSF before transplantation increases the seeding efficiency of hematopoietic stem cells and probably other progenitor cells after transplantation. This increased efficiency may be mediated by upward modulation of homing receptors. Therefore, ex vivo preincubation of donor marrow cells with IL-3 and GM-CSF may be a useful tactic in bone marrow transplantation.

  9. Classically and alternatively activated bone marrow derived macrophages differ in cytoskeletal functions and migration towards specific CNS cell types

    NARCIS (Netherlands)

    Vereyken, Elly J. F.; Heijnen, Priscilla D. A. M.; Baron, Wia; de Vries, Elga H. E.; Dijkstra, Christine D.; Teunissen, Charlotte E.

    2011-01-01

    Background: Macrophages play an important role in neuroinflammatory diseases such as multiple sclerosis (MS) and spinal cord injury (SCI), being involved in both damage and repair. The divergent effects of macrophages might be explained by their different activation status: classically activated

  10. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita; Barhanpurkar, Amruta P.; Pote, Satish T. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Jhaveri, Hiral M. [Department of Periodontics and Oral Implantology, Dr. D.Y. Patil Dental College and Hospital, Pune (India); Mishra, Gyan C. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Wani, Mohan R., E-mail: mohanwani@nccs.res.in [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India)

    2010-03-12

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.

  11. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    International Nuclear Information System (INIS)

    Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita; Barhanpurkar, Amruta P.; Pote, Satish T.; Jhaveri, Hiral M.; Mishra, Gyan C.; Wani, Mohan R.

    2010-01-01

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.

  12. Differential S1P Receptor Profiles on M1- and M2-Polarized Macrophages Affect Macrophage Cytokine Production and Migration.

    Science.gov (United States)

    Müller, Jan; von Bernstorff, Wolfram; Heidecke, Claus-Dieter; Schulze, Tobias

    2017-01-01

    Introduction . Macrophages are key players in complex biological processes. In response to environmental signals, macrophages undergo polarization towards a proinflammatory (M1) or anti-inflammatory (M2) phenotype. Sphingosine 1-phosphate (S1P) is a bioactive lysophospholipid that acts via 5 G-protein coupled receptors (S1P 1-5 ) in order to influence a broad spectrum of biological processes. This study assesses S1P receptor expression on macrophages before and after M1 and M2 polarization and performs a comparative analysis of S1P signalling in the two activational states of macrophages. Methods . Bone marrow derived macrophages (BMDM) from C57 BL/6 mice were cultured under either M1- or M2-polarizing conditions. S1P-receptor expression was determined by quantitative RT-PCR. Influence of S1P on macrophage activation, migration, phagocytosis, and cytokine secretion was assessed in vitro. Results . All 5 S1P receptor subclasses were expressed in macrophages. Culture under both M1- and M2-polarizing conditions led to significant downregulation of S1P 1 . In contrast, M1-polarized macrophages significantly downregulated S1P 4 . The expression of the remaining three S1P receptors did not change. S1P increased expression of iNOS under M2-polarizing conditions. Furthermore, S1P induced chemotaxis in M1 macrophages and changed cytokine production in M2 macrophages. Phagocytosis was not affected by S1P-signalling. Discussion . The expression of different specific S1P receptor profiles may provide a possibility to selectively influence M1- or M2-polarized macrophages.

  13. Restoration of prostaglandin E2-producing splenic macrophages in 89Sr-treated mice with bone marrow from Corynebacterium parvum primed donors

    International Nuclear Information System (INIS)

    Shibata, Y.

    1989-01-01

    Administration of Corynebacterium parvum (CP), 56 mg/kg ip to CBA/J mice effected the induction of prostaglandin E2 (PGE2) producing macrophages (M phi) in the bone marrow and the spleen. Maximal release of PGE2 from M phi cultured in vitro with calcium ionophore A23187 for 2 h was reached by marrow M phi removed on 5 days after CP (450 ng/mg cell protein), and by splenic M phi 9 days after CP (400 ng/mg). Neither M phi population, however, yielded more than 6.0 ng/mg leukotriene C4. To assess ontogenic relationships mice were depleted of bone marrow and blood monocytes by iv injection of the bone-seeking isotope, 89Sr. CP was given at several points before or after bone marrow cell depletion. PGE2 production by splenic M phi harvested on day 9 after CP was profoundly impaired when CP was administered either concurrently with or 3 days after 89Sr. When CP was administered 1, 3, 5, and 7 days before 89Sr, however, the induction of PGE2-producing M phi in the spleen was unaffected. To determine whether bone marrow cells from CP-injected donors can restore PGE2-producing splenic M phi (PGSM) in 89Sr-mice, recipient mice which had and had not received CP 3 days after 89Sr were transfused with 5 x 10(6) syngeneic bone marrow cells from donor mice prepared at varying intervals after CP administration. The results clearly indicate the capacity of bone marrow cells harvested on either day 1 or 2 following CP to restore PGSM in CP-primed, but not unprimed, recipients

  14. Phenotypic, functional, and quantitative characterization of canine peripheral blood monocyte-derived macrophages

    Directory of Open Access Journals (Sweden)

    R Bueno

    2005-08-01

    Full Text Available The yield as well as phenotypic and functional parameters of canine peripheral blood monocyte-derived macrophages were analyzed. The cells that remained adherent to Teflon after 10 days of culture had high phagocytic activity when inoculated with Leishmania chagasi. Flow cytometric analysis demonstrated that more than 80% of cultured cells were positive for the monocyte/macrophage marker CD14.

  15. Exosomes derived from human macrophages suppress endothelial cell migration by controlling integrin trafficking.

    Science.gov (United States)

    Lee, Hee Doo; Kim, Yeon Hyang; Kim, Doo-Sik

    2014-04-01

    Integrin trafficking, including internalization, recycling, and lysosomal degradation, is crucial for the regulation of cellular functions. Exosomes, nano-sized extracellular vesicles, are believed to play important roles in intercellular communications. This study demonstrates that exosomes released from human macrophages negatively regulate endothelial cell migration through control of integrin trafficking. Macrophage-derived exosomes promote internalization of integrin β1 in primary HUVECs. The internalized integrin β1 persistently accumulates in the perinuclear region and is not recycled back to the plasma membrane. Experimental results indicate that macrophage-derived exosomes stimulate trafficking of internalized integrin β1 to lysosomal compartments with a corresponding decrease in the integrin destined for recycling endosomes, resulting in proteolytic degradation of the integrin. Moreover, ubiquitination of HUVEC integrin β1 is enhanced by the exosomes, and exosome-mediated integrin degradation is blocked by bafilomycin A, a lysosomal degradation inhibitor. Macrophage-derived exosomes were also shown to effectively suppress collagen-induced activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway and HUVEC migration, which are both dependent on integrin β1. These observations provide new insight into the functional significance of exosomes in the regulation of integrin trafficking. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Bone marrow-derived cells are differentially involved in pathological and physiological retinal angiogenesis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Zou, He [Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan); Otani, Atsushi, E-mail: otan@kuhp.kyoto-u.ac.jp [Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan); Oishi, Akio; Yodoi, Yuko; Kameda, Takanori; Kojima, Hiroshi; Yoshimura, Nagahisa [Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan)

    2010-01-08

    Purpose: Bone marrow-derived cells have been shown to play roles in angiogenesis. Although these cells have been shown to promote angiogenesis, it is not yet clear whether these cells affect all types of angiogenesis. This study investigated the involvement of bone marrow-derived cells in pathological and physiological angiogenesis in the murine retina. Materials and methods: The oxygen-induced retinopathy (OIR) model was used as a retinal angiogenesis model in newborn mice. To block the influence of bone marrow-derived cells, the mice were irradiated with a 4-Gy dose of radiation from a {sup 137}Cs source. Irradiation was performed in four different conditions with radio dense 2-cm thick lead disks; (1) H group, the head were covered with these discs to protect the eyes from radiation; (2) A group, all of the body was covered with these discs; (3) N group, mice were completely unshielded; (4) C group, mice were put in the irradiator but were not irradiated. On P17, the retinal areas showing pathological and physiological retinal angiogenesis were measured and compared to the retinas of nonirradiated mice. Results: Although irradiation induced leukocyte depletion, it did not affect the number of other cell types or body weight. Retinal nonperfusion areas were significantly larger in irradiated mice than in control mice (P < 0.05), indicating that physiological angiogenesis was impaired. However, the formation of tuft-like angiogenesis processes was more prominent in the irradiated mice (P < 0.05), indicating that pathological angiogenesis was intact. Conclusions: Bone marrow-derived cells seem to be differentially involved in the formation of physiological and pathological retinal vessels. Pathological angiogenesis in the murine retina does not require functional bone marrow-derived cells, but these cells are important for the formation of physiological vessels. Our results add a new insight into the pathology of retinal angiogenesis and bolster the hypothesis that

  17. Bone marrow-derived cells are differentially involved in pathological and physiological retinal angiogenesis in mice

    International Nuclear Information System (INIS)

    Zou, He; Otani, Atsushi; Oishi, Akio; Yodoi, Yuko; Kameda, Takanori; Kojima, Hiroshi; Yoshimura, Nagahisa

    2010-01-01

    Purpose: Bone marrow-derived cells have been shown to play roles in angiogenesis. Although these cells have been shown to promote angiogenesis, it is not yet clear whether these cells affect all types of angiogenesis. This study investigated the involvement of bone marrow-derived cells in pathological and physiological angiogenesis in the murine retina. Materials and methods: The oxygen-induced retinopathy (OIR) model was used as a retinal angiogenesis model in newborn mice. To block the influence of bone marrow-derived cells, the mice were irradiated with a 4-Gy dose of radiation from a 137 Cs source. Irradiation was performed in four different conditions with radio dense 2-cm thick lead disks; (1) H group, the head were covered with these discs to protect the eyes from radiation; (2) A group, all of the body was covered with these discs; (3) N group, mice were completely unshielded; (4) C group, mice were put in the irradiator but were not irradiated. On P17, the retinal areas showing pathological and physiological retinal angiogenesis were measured and compared to the retinas of nonirradiated mice. Results: Although irradiation induced leukocyte depletion, it did not affect the number of other cell types or body weight. Retinal nonperfusion areas were significantly larger in irradiated mice than in control mice (P < 0.05), indicating that physiological angiogenesis was impaired. However, the formation of tuft-like angiogenesis processes was more prominent in the irradiated mice (P < 0.05), indicating that pathological angiogenesis was intact. Conclusions: Bone marrow-derived cells seem to be differentially involved in the formation of physiological and pathological retinal vessels. Pathological angiogenesis in the murine retina does not require functional bone marrow-derived cells, but these cells are important for the formation of physiological vessels. Our results add a new insight into the pathology of retinal angiogenesis and bolster the hypothesis that bone

  18. Soybean-derived Bowman-Birk inhibitor inhibits neurotoxicity of LPS-activated macrophages

    Directory of Open Access Journals (Sweden)

    Persidsky Yuri

    2011-02-01

    Full Text Available Abstract Background Lipopolysaccharide (LPS, the major component of the outer membrane of gram-negative bacteria, can activate immune cells including macrophages. Activation of macrophages in the central nervous system (CNS contributes to neuronal injury. Bowman-Birk inhibitor (BBI, a soybean-derived protease inhibitor, has anti-inflammatory properties. In this study, we examined whether BBI has the ability to inhibit LPS-mediated macrophage activation, reducing the release of pro-inflammatory cytokines and subsequent neurotoxicity in primary cortical neural cultures. Methods Mixed cortical neural cultures from rat were used as target cells for testing neurotoxicity induced by LPS-treated macrophage supernatant. Neuronal survival was measured using a cell-based ELISA method for expression of the neuronal marker MAP-2. Intracellular reactive oxygen species (ROS production in macrophages was measured via 2', 7'-dichlorofluorescin diacetate (DCFH2DA oxidation. Cytokine expression was determined by quantitative real-time PCR. Results LPS treatment of macrophages induced expression of proinflammatory cytokines (IL-1β, IL-6 and TNF-α and of ROS. In contrast, BBI pretreatment (1-100 μg/ml of macrophages significantly inhibited LPS-mediated induction of these cytokines and ROS. Further, supernatant from BBI-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-BBI-pretreated and LPS-activated macrophage cultures. BBI, when directly added to the neuronal cultures (1-100 μg/ml, had no protective effect on neurons with or without LPS-activated macrophage supernatant treatment. In addition, BBI (100 μg/ml had no effect on N-methyl-D-aspartic acid (NMDA-mediated neurotoxicity. Conclusions These findings demonstrate that BBI, through its anti-inflammatory properties, protects neurons from neurotoxicity mediated by activated macrophages.

  19. Bone marrow-derived macrophages exclusively expressed caveolin-2: The role of inflammatory activators and hypoxia

    Czech Academy of Sciences Publication Activity Database

    Macečková, Michaela; Martíšková, Hana; Koudelka, Adolf; Kubala, Lukáš; Lojek, Antonín; Pekarová, Michaela

    2015-01-01

    Roč. 220, č. 11 (2015), s. 1266-1274 ISSN 0171-2985 R&D Projects: GA ČR(CZ) GP13-40882P; GA MŠk(CZ) EE2.3.30.0030 Grant - others:GAAV(CZ) M200041208 Institutional support: RVO:68081707 Keywords : NF-KAPPA-B * RAT PERITONEAL-MACROPHAGES * NITRIC-OXIDE PRODUCTION Subject RIV: EC - Immunology Impact factor: 2.781, year: 2015

  20. Bone marrow-derived fibrocytes promote stem cell-like properties of lung cancer cells.

    Science.gov (United States)

    Saijo, Atsuro; Goto, Hisatsugu; Nakano, Mayuri; Mitsuhashi, Atsushi; Aono, Yoshinori; Hanibuchi, Masaki; Ogawa, Hirohisa; Uehara, Hisanori; Kondo, Kazuya; Nishioka, Yasuhiko

    2018-05-01

    Cancer stem cells (CSCs) represent a minor population that have clonal tumor initiation and self-renewal capacity and are responsible for tumor initiation, metastasis, and therapeutic resistance. CSCs reside in niches, which are composed of diverse types of stromal cells and extracellular matrix components. These stromal cells regulate CSC-like properties by providing secreted factors or by physical contact. Fibrocytes are differentiated from bone marrow-derived CD14 + monocytes and have features of both macrophages and fibroblasts. Accumulating evidence has suggested that stromal fibrocytes might promote cancer progression. However, the role of fibrocytes in the CSC niches has not been revealed. We herein report that human fibrocytes enhanced the CSC-like properties of lung cancer cells through secreted factors, including osteopontin, CC-chemokine ligand 18, and plasminogen activator inhibitor-1. The PIK3K/AKT pathway was critical for fibrocytes to mediate the CSC-like functions of lung cancer cells. In human lung cancer specimens, the number of tumor-infiltrated fibrocytes was correlated with high expression of CSC-associated protein in cancer cells. These results suggest that fibrocytes may be a novel cell population that regulates the CSC-like properties of lung cancer cells in the CSC niches. Copyright © 2018. Published by Elsevier B.V.

  1. Stress-Induced Recruitment of Bone Marrow-Derived Monocytes to the Brain Promotes Anxiety-Like Behavior

    Science.gov (United States)

    Wohleb, Eric S.; Powell, Nicole D.

    2013-01-01

    Social stress is associated with altered immunity and higher incidence of anxiety-related disorders. Repeated social defeat (RSD) is a murine stressor that primes peripheral myeloid cells, activates microglia, and induces anxiety-like behavior. Here we show that RSD-induced anxiety-like behavior corresponded with an exposure-dependent increase in circulating monocytes (CD11b+/SSClo/Ly6Chi) and brain macrophages (CD11b+/SSClo/CD45hi). Moreover, RSD-induced anxiety-like behavior corresponded with brain region-dependent cytokine and chemokine responses involved with myeloid cell recruitment. Next, LysM-GFP+ and GFP+ bone marrow (BM)-chimeric mice were used to determine the neuroanatomical distribution of peripheral myeloid cells recruited to the brain during RSD. LysM-GFP+ mice showed that RSD increased recruitment of GFP+ macrophages to the brain and increased their presence within the perivascular space (PVS). In addition, RSD promoted recruitment of GFP+ macrophages into the PVS and parenchyma of the prefrontal cortex, amygdala, and hippocampus of GFP+ BM-chimeric mice. Furthermore, mice deficient in chemokine receptors associated with monocyte trafficking [chemokine receptor-2 knockout (CCR2KO) or fractalkine receptor knockout (CX3CR1KO)] failed to recruit macrophages to the brain and did not develop anxiety-like behavior following RSD. Last, RSD-induced macrophage trafficking was prevented in BM-chimeric mice generated with CCR2KO or CX3CR1KO donor cells. These findings indicate that monocyte recruitment to the brain in response to social stress represents a novel cellular mechanism that contributes to the development of anxiety. PMID:23966702

  2. Activation of nucleotide-binding domain-like receptor containing protein 3 inflammasome in dendritic cells and macrophages by Streptococcus sanguinis.

    Science.gov (United States)

    Saeki, Ayumi; Suzuki, Toshihiko; Hasebe, Akira; Kamezaki, Ryousuke; Fujita, Mari; Nakazawa, Futoshi; Shibata, Ken-Ichiro

    2017-03-01

    Streptococcus sanguinis is frequently isolated from the blood of patients with infective endocarditis and contributes to the pathology of this disease through induction of interleukin (IL)-1β responsible for the development of the disease. However, the mechanism of IL-1β induction remains unknown. In this study, S. sanguinis activated a murine dendritic cell (DC) to induce IL-1β and this activity was attenuated by silencing the mRNAs of nucleotide-binding domain-like receptor containing protein 3 (NLRP3) and caspase-1. S. sanguinis induced IL-1β production in murine bone marrow-derived macrophage, but this activity was significantly reduced in bone marrow-derived macrophages from NLRP3-, apoptosis-associated speck-like protein containing a caspase-recruitment domain-, and caspase-1-deficient mice. DC phagocytosed S. sanguinis cells, followed by the release of adenosine triphosphate (ATP). The ATP-degradating enzyme attenuated the release of ATP and IL-1β. The inhibitors for ATP receptor reduced IL-1β release in DC. These results strongly suggest that S. sanguinis has the activity to induce IL-1β through the NLRP3 inflammasome in macrophage and DC and interaction of purinergic receptors with ATP released is involved in expression of the activity. © 2016 John Wiley & Sons Ltd.

  3. Thermal sensitivity and thermally enhanced radiosensitivity of murine bone marrow granulocyte-macrophage colony-forming units (CFU-GM)

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi

    1994-01-01

    This study was to evaluate thermal response of granulocyte-macrophage colony-forming unit (CFU-GM) in vitro and to investigate the difference of thermally enhanced radiosensitivity on cell survivals of CFU-GM between in vitro and in vivo. In in vitro heating exposure, bone marrow suspensions, obtained from mouse femora or tibiae, were incubated; and in vivo heating exposure, the lower half-body of mice were immersed in a circulating hot water bath. For irradiation schedules, cell suspensions were irradiated in vitro or in vivo (whole-body irradiation). Thermal sensitivity curve, obtained by in vivo heating exposure, showed a shoulder region at short exposures followed by an exponential decline during longer heating exposures. The Arrhenius curve showed a break at 42.3deg C and inactivation enthalpy was 1836 kJ/mol (438 kcal/mole) below the break point and 704 kJ/mole (168 kcal/mole) above the point. When bone marrow suspensions, obtained after either in vitro or in vivo irradiation, were heated in vitro at 42deg C for 60 min, supura-additive effect on cell survivals was observed by in vivo irradiation, but not observed by in vitro irradiation. Thermal enhancement ratio (TER), defined as D 0 of combined in vivo irradiation and in vitro heating divided by D 0 of the sole in vivo irradiation, was 1.12. In vivo heating following in vivo irradiation also showed supra-additive effect, giving TER of 1.66. These findings indicated that murine marrow CFU-GM is sensitive to hyperthermia and that thermal radiosensitization is never negligible when hyperthermia is employed with preceding X-irradiation. Thus, combined use of radiotherapy and hyperthermia may decrease bone marrow function. (N.K.)

  4. Establishment and characterization of mouse bone marrow-derived mast cell hybridomas

    International Nuclear Information System (INIS)

    Kawahara, Takeshi

    2012-01-01

    Interleukin (IL)-3-dependent mouse bone marrow-derived mast cells (BMMCs) are an important model for studying the function of mucosal-type mast cells. In the present study, BMMCs were successfully immortalized by cell fusion using a hypoxanthine–aminopterin–thymidine medium-sensitive variant of P815 mouse mastocytoma (P815-6TgR) as a partner cell line. The established mouse mast cell hybridomas (MMCHs) expressed α, β, and γ subunits of high-affinity immunoglobulin E (IgE) receptor (FcεRI) and possessed cytoplasmic granules devoid of or partially filled with electron-dense material. Four independent MMCH clones continuously proliferated without supplemental exogenous IL-3 and showed a degranulation response on stimulation with IgE+antigen. Furthermore, histamine synthesis and release by degranulation were confirmed in MMCH-D5, a MMCH clone that showed the strongest degranulation response. MMCH-D5 exhibited elevated levels of IL-3, IL-4, IL-13, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor (TNF)-α, and cyclooxygenase 2, and production of prostaglandin D 2 and leukotriene C 4 in response to IgE-induced stimulation. MMCH clones also expressed Toll-like receptors (TLRs) 1, 2, 4, and 6 and showed elevated levels of TNF-α expression in response to stimulation with TLR2 and TLR4 ligands. The MMCHs established using this method should be suitable for studies on FcεRI- and TLR-mediated effector functions of mast cells.

  5. Establishment and characterization of mouse bone marrow-derived mast cell hybridomas

    Energy Technology Data Exchange (ETDEWEB)

    Kawahara, Takeshi, E-mail: tkawafb@shinshu-u.ac.jp [Integrated Department of Sciences of Functional Foods, Graduate School of Agriculture, Shinshu University, Nagano (Japan)

    2012-11-01

    Interleukin (IL)-3-dependent mouse bone marrow-derived mast cells (BMMCs) are an important model for studying the function of mucosal-type mast cells. In the present study, BMMCs were successfully immortalized by cell fusion using a hypoxanthine-aminopterin-thymidine medium-sensitive variant of P815 mouse mastocytoma (P815-6TgR) as a partner cell line. The established mouse mast cell hybridomas (MMCHs) expressed {alpha}, {beta}, and {gamma} subunits of high-affinity immunoglobulin E (IgE) receptor (Fc{epsilon}RI) and possessed cytoplasmic granules devoid of or partially filled with electron-dense material. Four independent MMCH clones continuously proliferated without supplemental exogenous IL-3 and showed a degranulation response on stimulation with IgE+antigen. Furthermore, histamine synthesis and release by degranulation were confirmed in MMCH-D5, a MMCH clone that showed the strongest degranulation response. MMCH-D5 exhibited elevated levels of IL-3, IL-4, IL-13, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor (TNF)-{alpha}, and cyclooxygenase 2, and production of prostaglandin D{sub 2} and leukotriene C{sub 4} in response to IgE-induced stimulation. MMCH clones also expressed Toll-like receptors (TLRs) 1, 2, 4, and 6 and showed elevated levels of TNF-{alpha} expression in response to stimulation with TLR2 and TLR4 ligands. The MMCHs established using this method should be suitable for studies on Fc{epsilon}RI- and TLR-mediated effector functions of mast cells.

  6. CD13-positive bone marrow-derived myeloid cells promote angiogenesis, tumor growth, and metastasis.

    Science.gov (United States)

    Dondossola, Eleonora; Rangel, Roberto; Guzman-Rojas, Liliana; Barbu, Elena M; Hosoya, Hitomi; St John, Lisa S; Molldrem, Jeffrey J; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2013-12-17

    Angiogenesis is fundamental to tumorigenesis and an attractive target for therapeutic intervention against cancer. We have recently demonstrated that CD13 (aminopeptidase N) expressed by nonmalignant host cells of unspecified types regulate tumor blood vessel development. Here, we compare CD13 wild-type and null bone marrow-transplanted tumor-bearing mice to show that host CD13(+) bone marrow-derived cells promote cancer progression via their effect on angiogenesis. Furthermore, we have identified CD11b(+)CD13(+) myeloid cells as the immune subpopulation directly regulating tumor blood vessel development. Finally, we show that these cells are specifically localized within the tumor microenvironment and produce proangiogenic soluble factors. Thus, CD11b(+)CD13(+) myeloid cells constitute a population of bone marrow-derived cells that promote tumor progression and metastasis and are potential candidates for the development of targeted antiangiogenic drugs.

  7. Apoptotic death of Listeria monocytogenes-infected human macrophages induced by lactoferricin B, a bovine lactoferrin-derived peptide.

    Science.gov (United States)

    Longhi, C; Conte, M P; Ranaldi, S; Penta, M; Valenti, P; Tinari, A; Superti, F; Seganti, L

    2005-01-01

    Listeria monocytogenes, an intracellular facultative food-borne pathogen, was reported to induce apoptosis in vitro and in vivo in a variety of cell types with the exception of murine macrophages. These cells represent the predominant compartment of bacterial multiplication and die as a result of necrosis. In this study we showed that human non-activated and IFN-gamma-activated macrophagic-like (THP-1) cells infected with L. monocytogenes, mainly die by necrosis rather than by an apoptotic process. Two natural products derived from bovine milk, lactoferrin and its derivative peptide lactoferricin B, are capable of regulating the fate of infected human macrophages. Bovine lactoferrin treatment of macrophages protects them from L. monocytogenes-induced death whereas lactoferricin B, its derivative peptide, determines a shifting of the equilibrium from necrosis to apoptosis.

  8. Notch signaling regulates expression of Mcl-1 and apoptosis in PPD-treated macrophages.

    Science.gov (United States)

    Palaga, Tanapat; Ratanabunyong, Siriluk; Pattarakankul, Thitiporn; Sangphech, Naunpun; Wongchana, Wipawee; Hadae, Yukihiro; Kueanjinda, Patipark

    2013-09-01

    Macrophages are cellular targets for infection by bacteria and viruses. The fate of infected macrophages plays a key role in determining the outcome of the host immune response. Apoptotic cell death of macrophages is considered to be a protective host defense that eliminates pathogens and infected cells. In this study, we investigated the involvement of Notch signaling in regulating apoptosis in macrophages treated with tuberculin purified protein derivative (PPD). Murine bone marrow-derived macrophages (BMMs) treated with PPD or infected with Mycobacterium bovis Bacillus Calmette-Guérin (BCG) induced upregulation of Notch1. This upregulation correlated well with the upregulation of the anti-apoptotic gene mcl-1 both at the transcriptional and translational levels. Decreased levels of Notch1 and Mcl-1 were observed in BMM treated with PPD when a gamma secretase inhibitor (GSI), which inhibits the processing of Notch receptors, was used. Moreover, silencing Notch1 in the macrophage-like cell line RAW264.7 decreased Mcl-1 protein expression, suggesting that Notch1 is critical for Mcl-1 expression in macrophages. A significant increase in apoptotic cells was observed upon treatment of BMM with PPD in the presence of GSI compared to the vehicle-control treated cells. Finally, analysis of the mcl-1 promoter in humans and mice revealed a conserved potential CSL/RBP-Jκ binding site. The association of Notch1 with the mcl-1 promoter was confirmed by chromatin immunoprecipitation. Taken together, these results indicate that Notch1 inhibits apoptosis of macrophages stimulated with PPD by directly controlling the mcl-1 promoter.

  9. The thyroid hormone triiodothyronine controls macrophage maturation and functions: protective role during inflammation.

    Science.gov (United States)

    Perrotta, Cristiana; Buldorini, Marcella; Assi, Emma; Cazzato, Denise; De Palma, Clara; Clementi, Emilio; Cervia, Davide

    2014-01-01

    The endocrine system participates in regulating macrophage maturation, although little is known about the modulating role of the thyroid hormones. In vitro results demonstrate a negative role of one such hormone, triiodothyronine (T3), in triggering the differentiation of bone marrow-derived monocytes into unpolarized macrophages. T3-induced macrophages displayed a classically activated (M1) signature. A T3-induced M1-priming effect was also observed on polarized macrophages because T3 reverses alternatively activated (M2) activation, whereas it enhances that of M1 cells. In vivo, circulating T3 increased the content of the resident macrophages in the peritoneal cavity, whereas it reduced the content of the recruited monocyte-derived cells. Of interest, T3 significantly protected mice against endotoxemia induced by lipopolysaccharide i.p. injection; in these damaged animals, decreased T3 levels increased the recruited (potentially damaging) cells, whereas restoring T3 levels decreased recruited and increased resident (potentially beneficial) cells. These data suggest that the anti-inflammatory effect of T3 is coupled to the modulation of peritoneal macrophage content, in a context not fully explained by the M1/M2 framework. Thyroid hormone receptor expression analysis and the use of different thyroid hormone receptor antagonists suggest thyroid hormone receptor β1 as the major player mediating T3 effects on macrophages. The novel homeostatic link between thyroid hormones and the pathophysiological role of macrophages opens new perspectives on the interactions between the endocrine and immune systems. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice.

    Directory of Open Access Journals (Sweden)

    Lei Chen

    Full Text Available Growing evidence indicates that bone marrow-derived mesenchymal stem cells (BM-MSCs enhance wound repair via paracrine. Because the extent of environmental oxygenation affects the innate characteristics of BM-MSCs, including their stemness and migration capacity, the current study set out to elucidate and compare the impact of normoxic and hypoxic cell-culture conditions on the expression and secretion of BM-MSC-derived paracrine molecules (e.g., cytokines, growth factors and chemokines that hypothetically contribute to cutaneous wound healing in vivo. Semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR and enzyme-linked immunosorbent assay (ELISA analyses of normoxic and hypoxic BM-MSCs and their conditioned medium fractions showed that the stem cells expressed and secreted significantly higher amounts of basic fibroblast growth factor (bFGF,vascular endothelial growth factor A (VEGF-A interleukin 6 (IL-6 and interleukin 8 (IL-8 under hypoxic conditions. Moreover, hypoxic BM-MSC-derived conditioned medium (hypoCM vs. normoxic BM-MSC-derived conditioned medium (norCM or vehicle control medium significantly enhanced the proliferation of keratinocytes, fibroblasts and endothelial cells, the migration of keratinocytes, fibroblasts, endothelial cells and monocytes, and the formation of tubular structures by endothelial cells cultured on Matrigel matrix. Consistent with these in vitro results, skin wound contraction was significantly accelerated in Balb/c nude mice treated with topical hypoCM relative to norCM or the vehicle control. Notably increased in vivo cell proliferation, neovascularization as well as recruitment of inflammatory macrophages and evidently decreased collagen I, and collagen III were also found in the hypoCM-treated group. These findings suggest that BM-MSCs promote murine skin wound healing via hypoxia-enhanced paracrine.

  11. Epithelial architectural destruction is necessary for bone marrow derived cell contribution to regenerating prostate epithelium.

    Science.gov (United States)

    Palapattu, Ganesh S; Meeker, Alan; Harris, Timothy; Collector, Michael I; Sharkis, Saul J; DeMarzo, Angelo M; Warlick, Christopher; Drake, Charles G; Nelson, William G

    2006-08-01

    Using various nonphysiological tissue injury/repair models numerous studies have demonstrated the capacity of bone marrow derived cells to contribute to the repopulation of epithelial tissues following damage. To investigate whether this phenomenon might also occur during periods of physiological tissue degeneration/regeneration we compared the ability of bone marrow derived cells to rejuvenate the prostate gland in mice that were castrated and then later treated with dihydrotestosterone vs mice with prostate epithelium that had been damaged by lytic virus infection. Using allogenic bone marrow grafts from female donor transgenic mice expressing green fluorescent protein transplanted into lethally irradiated males we were able to assess the contributions of bone marrow derived cells to recovery of the prostatic epithelium in 2 distinct systems, including 1) surgical castration followed 1 week later by dihydrotestosterone replacement and 2) intraprostatic viral injection. Eight to 10-week-old male C57/Bl6 mice were distributed among bone marrow donor-->recipient/prostate injury groups, including 5 with C57/Bl6-->C57/Bl6/no injury, 3 with green fluorescent protein-->C57/Bl6/no injury, 3 with green fluorescent protein-->C57/Bl6/vehicle injection, 4 with green fluorescent protein-->C57/Bl6/virus injection and 3 each with green fluorescent protein-->C57/Bl6/castration without and with dihydrotestosterone, respectively. Prostate tissues were harvested 3 weeks after dihydrotestosterone replacement or 14 days following intraprostatic viral injection. Prostate tissue immunofluorescence was performed with antibodies against the epithelial marker cytokeratin 5/8, the hematopoietic marker CD45 and green fluorescent protein. Mice that sustained prostate injury from vaccinia virus infection with concomitant severe inflammation and glandular disruption showed evidence of bone marrow derived cell reconstitution of prostate epithelium, that is approximately 4% of all green

  12. Marrow-derived mesenchymal stem cells: role in epithelial tumor cell determination.

    Science.gov (United States)

    Fierro, Fernando A; Sierralta, Walter D; Epuñan, Maria J; Minguell, José J

    2004-01-01

    Marrow stroma represents an advantageous environment for development of micrometastatic cells. Within the cellular structure of marrow stroma, mesenchymal stem cells (MSC) have been postulated as an interacting target for disseminated cancer cells. The studies reported here were performed to gain more information on the interaction of the human breast cancer cell line MCF-7 with human bone marrow-derived MSC cells and to investigate whether this interaction affects tumor cell properties. The results showed that after co-culture with MSC, changes were detected in the morphology, proliferative capacity and aggregation pattern of MCF-7 cells, but these parameters were not affected after the co-culture of MSC cells with a non-tumorigenic breast epithelial cell line, MCF-10. Since the indirect culture of MCF-7 with MSC or its products also resulted in functional changes in the tumor cells, we evaluated whether these effects could be attributed to growth factors produced by MSC cells. It was found that VEGF and IL-6 mimic the effects produced by MSC or its products on the proliferation and aggregation properties of MCF-7, cells, respectively. Thus, it seems that after entry of disseminated tumor cells into the marrow space, their proliferative and morphogenetic organization patterns are modified after interaction with distinct stromal cells and/or with specific signals from the marrow microenvironment.

  13. RORα Induces KLF4-Mediated M2 Polarization in the Liver Macrophages that Protect against Nonalcoholic Steatohepatitis

    Directory of Open Access Journals (Sweden)

    Yong-Hyun Han

    2017-07-01

    Full Text Available The regulation of M1/M2 polarization in liver macrophages is closely associated with the progression of nonalcoholic steatohepatitis (NASH; however, the mechanism involved in this process remains unclear. Here, we describe the orphan nuclear receptor retinoic-acid-related orphan receptor α (RORα as a key regulator of M1/M2 polarization in hepatic residential Kupffer cells (KCs and infiltrated monocyte-derived macrophages. RORα enhanced M2 polarization in KCs by inducing the kruppel-like factor 4. M2 polarization was defective in KCs and bone-marrow-derived macrophages of the myeloid-specific RORα null mice, and these mice were susceptible to HFD-induced NASH. We found that IL-10 played an important role in connecting the function of M2 KCs to lipid accumulation and apoptosis in hepatocytes. Importantly, M2 polarization was controlled by a RORα activator, JC1-40, which improved symptoms of NASH. Our results suggest that the M2-promoting effects of RORα in liver macrophages may provide better therapeutic strategies against NASH.

  14. Of macrophages and red blood cells; a complex love story

    NARCIS (Netherlands)

    de Back, Djuna Z.; Kostova, Elena B.; van Kraaij, Marian; van den Berg, Timo K.; van Bruggen, Robin

    2014-01-01

    Macrophages tightly control the production and clearance of red blood cells (RBC). During steady state hematopoiesis, approximately 10(10) RBC are produced per hour within erythroblastic islands in humans. In these erythroblastic islands, resident bone marrow macrophages provide erythroblasts with

  15. Role of bone marrow-derived stem cells, renal progenitor cells and ...

    African Journals Online (AJOL)

    It remains the leading cause of late allograft loss. Bone marrow derived stem cells are undifferentiated cells typically characterized by their capacity for self renewal, ability to give rise to multiple differentiated cellular population, including hematopoietic (HSCs) and mesenchymal stem cells (MSCs). Characterization of HSCs ...

  16. Generation of reactive oxygen species (ROS) is a key factor for stimulation of macrophage proliferation by ceramide 1-phosphate

    International Nuclear Information System (INIS)

    Arana, Lide; Gangoiti, Patricia; Ouro, Alberto; Rivera, Io-Guané; Ordoñez, Marta; Trueba, Miguel; Lankalapalli, Ravi S.; Bittman, Robert; Gomez-Muñoz, Antonio

    2012-01-01

    We previously demonstrated that ceramide 1-phosphate (C1P) is mitogenic for fibroblasts and macrophages. However, the mechanisms involved in this action were only partially described. Here, we demonstrate that C1P stimulates reactive oxygen species (ROS) formation in primary bone marrow-derived macrophages, and that ROS are required for the mitogenic effect of C1P. ROS production was dependent upon prior activation of NADPH oxidase by C1P, which was determined by measuring phosphorylation of the p40phox subunit and translocation of p47phox from the cytosol to the plasma membrane. In addition, C1P activated cytosolic calcium-dependent phospholipase A 2 and protein kinase C-α, and NADPH oxidase activation was blocked by selective inhibitors of these enzymes. These inhibitors, and inhibitors of ROS production, blocked the mitogenic effect of C1P. By using BHNB-C1P (a photolabile caged-C1P analog), we demonstrate that all of these C1P actions are caused by intracellular C1P. It can be concluded that the enzyme responsible for C1P-stimulated ROS generation in bone marrow-derived macrophages is NADPH oxidase, and that this enzyme is downstream of PKC-α and cPLA 2 -α in this pathway. -- Highlights: ► Ceramide 1-phosphate (C1P) stimulates reactive oxygen species (ROS) formation. ► The enzyme responsible for ROS generation by C1P in macrophages is NADPH oxidase. ► NADPH oxidase lies downstream of cPLA 2 -α and PKC-α in this pathway. ► ROS generation is essential for the stimulation of macrophage proliferation by C1P.

  17. Lack of RNase L attenuates macrophage functions.

    Directory of Open Access Journals (Sweden)

    Xin Yi

    Full Text Available Macrophages are one of the major cell types in innate immunity against microbial infection. It is believed that the expression of proinflammatory genes such as tumor necrosis factor-α (TNF-α, interleukin (IL-1β, IL-6, and cyclooxygenase-2 (Cox-2 by macrophages is also crucial for activation of both innate and adaptive immunities. RNase L is an interferon (IFN inducible enzyme which is highly expressed in macrophages. It has been demonstrated that RNase L regulates the expression of certain inflammatory genes. However, its role in macrophage function is largely unknown.Bone marrow-derived macrophages (BMMs were generated from RNase L(+/+and (-/- mice. The migration of BMMs was analyzed by using Transwell migration assays. Endocytosis and phagocytosis of macrophages were assessed by using fluorescein isothiocyanate (FITC-Dextran 40,000 and FITC-E. coli bacteria, respectively. The expression of inflammatory genes was determined by Western Blot and ELISA. The promoter activity of Cox-2 was measured by luciferase reporter assays.Lack of RNase L significantly decreased the migration of BMMs induced by M-CSF, but at a less extent by GM-CSF and chemokine C-C motif ligand-2 (CCL2. Interestingly, RNase L deficient BMMs showed a significant reduction of endocytic activity to FITC-Dextran 40,000, but no any obvious effect on their phagocytic activity to FITC-bacteria under the same condition. RNase L impacts the expression of certain genes related to cell migration and inflammation such as transforming growth factor (TGF-β, IL-1β, IL-10, CCL2 and Cox-2. Furthermore, the functional analysis of the Cox-2 promoter revealed that RNase L regulated the expression of Cox-2 in macrophages at its transcriptional level. Taken together, our findings provide direct evidence showing that RNase L contributes to innate immunity through regulating macrophage functions.

  18. In vitro methods of assessing ocular biocompatibility using THP-1-derived macrophages.

    Science.gov (United States)

    McCanna, David Joseph; Barthod-Malat, Aurore V; Gorbet, Maud B

    2015-01-01

    Macrophages play an important role in the elimination of infections, the removal of debris and in tissue repair after infection and trauma. In vitro models that assess ocular biomaterials for toxicity typically focus on the effects of these materials on epithelial or fibroblast cells. This investigation evaluated known ocular toxins deposited on model materials for their effects on the viability and activation of macrophages. THP-1-derived macrophages were cultured onto silicone films (used as a base biomaterial) deposited with chemical toxins (benzalkonium chloride (BAK), zinc diethyldithiocarbamate (ZDEC) and lipopolysaccharide (LPS)). Utilizing three fluorescent dyes calcein, ethidium homodimer-1 (EthD-1) and annexin V, the viability of macrophages attached to the biomaterial was determined using confocal microscopy. Propidium iodide (PI) staining and alamarBlue® (resazurin) reduction were used to assess cell death and metabolic activity. CD14, CD16, CD33, CD45, and CD54 expression of adherent macrophages, were also evaluated to detect LPS activation of macrophages using flow cytometry. The sensitivity of this test battery was demonstrated as significant toxicity from treated surfaces with ZDEC (0.001-0.01%), and BAK (0.001%-0.1%) was detected. Also, macrophage activation could be detected by measuring CD54 expression after exposure to adsorbed LPS. These in vitro methods will be helpful in determining the toxicity potential of new ocular biomaterials.

  19. Isolation, culture expansion and characterization of canine bone marrow derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    D Kazemi

    2016-07-01

    Full Text Available The purpose of the present study was to isolate, culture expand and characterize canine bone marrow derived mesenchymal stem cells. Bone marrow aspirates of 15 adult male dogs were collected to this end and their mononuclear cells isolated by centrifugation and cultured in standard media. The adherent cells were isolated and their mesenchymal origin was confirmed at 3rd passage by cellular morphology, expression of surface antigens and differentiation to osteogenic and adipogenic lineage. After 4 days, spindle shaped fibroblast like cells which were apparently bone marrow derived mesenchymal stem cells appeared in culture medium and their numbers increased over time. The cells reached 3rd passage with over 75% confluent after a mean of 22.89±5.75 days. Flow cytometric analysis revealed that the cells negatively expressed CD34 and CD45 antigens while positively expressing CD44 and CD105 antigens. Differentiation into osteogenic and adipogenic lineage had taken place after one month culture in induction medium. VDR, COL1A1, BGLAP and SPARC gene expression indicated that mesenchymal stem cells isolated from canine bone marrow had differentiated into osteogenic lineage. These findings can form the basis of any forthcoming clinical studies involving the use of canine mesenchymal stem cells particularly in the field of bone and cartilage regeneration.

  20. Discrepancy of biologic behavior influenced by bone marrow derived cells in lung cancer.

    Science.gov (United States)

    Zhang, Jie; Niu, Xiao-Min; Liao, Mei-Lin; Liu, Yun; Sha, Hui-Fang; Zhao, Yi; Yu, Yong-Feng; Tan, Qiang; Xiang, Jia-Qing; Fang, Jing; Lv, Dan-Dan; Li, Xue-Bing; Lu, Shun; Chen, Hai-Quan

    2010-11-01

    Disseminated cancer cells may initially require local nutrients and growth factors to thrive and survive in bone marrow. However, data on the influence of bone marrow derived cells (BMDC, also called bone stromal cells in some publications) on lung cancer cells is largely unexplored. This study explored the mechanism of how bone stromal factors contribute to the bone tropism in lung cancer. The difference among lung cancer cell lines in their abilities to metastasize to bone was found using the SCID animal model. Supernatant of bone marrow aspiration (BM) and condition medium from human bone stromal cells (BSC) were used to study the activity of bone stromal factors. We found bone stromal factors significantly increased the proliferation, invasion, adhesion and expression of angiogenosis-related factors, and inhibited the apoptosis for high bone metastasis H460 lung cancer cells. These biologic effects were not seen in SPC-A1 or A549 cells, which are low bone metastasis lung cancer cells. Adhesion of H460 cells to surface coated with bone stromal cells can activate some signal transduction pathways, and alter the expression of adhesion associated factors, including integrin β 3 and ADAMTS-1, two potential targets related with bone metastasis. We concluded that bone marrow derived cells had a profound effect on biological behavior of lung cancers, therefore favoring the growth of lung cancer cells in bone.

  1. Fluid-Phase Pinocytosis of Native Low Density Lipoprotein Promotes Murine M-CSF Differentiated Macrophage Foam Cell Formation

    Science.gov (United States)

    Xu, Qing; Bohnacker, Thomas; Wymann, Matthias P.; Kruth, Howard S.

    2013-01-01

    During atherosclerosis, low-density lipoprotein (LDL)-derived cholesterol accumulates in macrophages to form foam cells. Macrophage uptake of LDL promotes foam cell formation but the mechanism mediating this process is not clear. The present study investigates the mechanism of LDL uptake for macrophage colony-stimulating factor (M-CSF)-differentiated murine bone marrow-derived macrophages. LDL receptor-null (LDLR−/−) macrophages incubated with LDL showed non-saturable accumulation of cholesterol that did not down-regulate for the 24 h examined. Incubation of LDLR−/− macrophages with increasing concentrations of 125I-LDL showed non-saturable macrophage LDL uptake. A 20-fold excess of unlabeled LDL had no effect on 125I-LDL uptake by wild-type macrophages and genetic deletion of the macrophage scavenger receptors CD36 and SRA did not affect 125I-LDL uptake, showing that LDL uptake occurred by fluid-phase pinocytosis independently of receptors. Cholesterol accumulation was inhibited approximately 50% in wild-type and LDLR−/− mice treated with LY294002 or wortmannin, inhibitors of all classes of phosphoinositide 3-kinases (PI3K). Time-lapse, phase-contrast microscopy showed that macropinocytosis, an important fluid-phase uptake pathway in macrophages, was blocked almost completely by PI3K inhibition with wortmannin. Pharmacological inhibition of the class I PI3K isoforms alpha, beta, gamma or delta did not affect macrophage LDL-derived cholesterol accumulation or macropinocytosis. Furthermore, macrophages from mice expressing kinase-dead class I PI3K beta, gamma or delta isoforms showed no decrease in cholesterol accumulation or macropinocytosis when compared with wild-type macrophages. Thus, non-class I PI3K isoforms mediated macropinocytosis in these macrophages. Further characterization of the components necessary for LDL uptake, cholesterol accumulation, and macropinocytosis identified dynamin, microtubules, actin, and vacuolar type H(+)-ATPase as

  2. The Phenotypic Fate of Bone Marrow-Derived Stem Cells in Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Guowei Feng

    2013-11-01

    Full Text Available Background: Despite increasing attention on the role of bone marrow derived stem cells in repair or rejuvenation of tissues and organs, cellular mechanisms of such cell-based therapy remain poorly understood. Methods: We reconstituted hematopoiesis in recipient C57BL/6J mice by transplanting syngeneic GFP+ bone marrow (BM cells. Subsequently, the recipients received subcutaneous injection of granulocyte-colony stimulating factor (G-CSF and were subjected to acute renal ischemic injury. Flow cytometry and immunostaining were performed at various time points to assess engraftment and phenotype of BM derived stem cells. Results: Administration of G-CSF increased the release of BM derived stem cells into circulation and enhanced the ensuing recruitment of BM derived stem cells into injured kidney. During the second month post injury, migrated BM derived stem cells lost hematopoietic phenotype (CD45 but maintained the expression of other markers (Sca-1, CD133 and CD44, suggesting their potential of transdifferentiation into renal stem cells. Moreover, G-CSF treatment enhanced the phenotypic conversion. Conclusion: Our work depicted a time-course dependent transition of phenotypic characteristics of BM derived stem cells, demonstrated the existence of BM derived stem cells in damaged kidney and revealed the effects of G-CSF on cell transdifferentiation.

  3. A role for the JAK-STAT1 pathway in blocking replication of HSV-1 in dendritic cells and macrophages

    Directory of Open Access Journals (Sweden)

    Town Terrence

    2009-05-01

    Full Text Available Abstract Background Macrophages and dendritic cells (DCs play key roles in host defense against HSV-1 infection. Although macrophages and DCs can be infected by herpes simplex virus type 1 (HSV-1, both cell types are resistant to HSV-1 replication. The aim of our study was to determine factor (s that are involved in the resistance of DCs and macrophages to productive HSV-1 infection. Results We report here that, in contrast to bone marrow-derived DCs and macrophages from wild type mice, DCs and macrophages isolated from signal transducers and activators of transcription-1 deficient (STAT1-/- mice were susceptible to HSV-1 replication and the production of viral mRNAs and DNA. There were differences in expression of immediate early, early, and late gene transcripts between STAT1+/+ and STAT1-/- infected APCs. Conclusion These results suggest for the first time that the JAK-STAT1 pathway is involved in blocking replication of HSV-1 in DCs and macrophages.

  4. A role for the JAK-STAT1 pathway in blocking replication of HSV-1 in dendritic cells and macrophages

    Science.gov (United States)

    Mott, Kevin R; UnderHill, David; Wechsler, Steven L; Town, Terrence; Ghiasi, Homayon

    2009-01-01

    Background Macrophages and dendritic cells (DCs) play key roles in host defense against HSV-1 infection. Although macrophages and DCs can be infected by herpes simplex virus type 1 (HSV-1), both cell types are resistant to HSV-1 replication. The aim of our study was to determine factor (s) that are involved in the resistance of DCs and macrophages to productive HSV-1 infection. Results We report here that, in contrast to bone marrow-derived DCs and macrophages from wild type mice, DCs and macrophages isolated from signal transducers and activators of transcription-1 deficient (STAT1-/-) mice were susceptible to HSV-1 replication and the production of viral mRNAs and DNA. There were differences in expression of immediate early, early, and late gene transcripts between STAT1+/+ and STAT1-/- infected APCs. Conclusion These results suggest for the first time that the JAK-STAT1 pathway is involved in blocking replication of HSV-1 in DCs and macrophages. PMID:19439086

  5. Bone marrow-derived fibroblast growth factor-2 induces glial cell proliferation in the regenerating peripheral nervous system

    Directory of Open Access Journals (Sweden)

    Ribeiro-Resende Victor

    2012-07-01

    Full Text Available Abstract Background Among the essential biological roles of bone marrow-derived cells, secretion of many soluble factors is included and these small molecules can act upon specific receptors present in many tissues including the nervous system. Some of the released molecules can induce proliferation of Schwann cells (SC, satellite cells and lumbar spinal cord astrocytes during early steps of regeneration in a rat model of sciatic nerve transection. These are the major glial cell types that support neuronal survival and axonal growth following peripheral nerve injury. Fibroblast growth factor-2 (FGF-2 is the main mitogenic factor for SCs and is released in large amounts by bone marrow-derived cells, as well as by growing axons and endoneurial fibroblasts during development and regeneration of the peripheral nervous system (PNS. Results Here we show that bone marrow-derived cell treatment induce an increase in the expression of FGF-2 in the sciatic nerve, dorsal root ganglia and the dorsolateral (DL region of the lumbar spinal cord (LSC in a model of sciatic nerve transection and connection into a hollow tube. SCs in culture in the presence of bone marrow derived conditioned media (CM resulted in increased proliferation and migration. This effect was reduced when FGF-2 was neutralized by pretreating BMMC or CM with a specific antibody. The increased expression of FGF-2 was validated by RT-PCR and immunocytochemistry in co-cultures of bone marrow derived cells with sciatic nerve explants and regenerating nerve tissue respectivelly. Conclusion We conclude that FGF-2 secreted by BMMC strongly increases early glial proliferation, which can potentially improve PNS regeneration.

  6. Enhanced adipogenic differentiation of bovine bone marrow-derived mesenchymal stem cells

    Science.gov (United States)

    Until now, the isolation and characterization of bovine bone marrow-derived mesenchymal stem cells (bBM-MSCs) have not been established, which prompted us to optimize the differentiation protocol for bBM-MSCs. In this study, bBM-MSCs were freshly isolated from three 6-month-old cattle and used for p...

  7. The co-transcriptome of uropathogenic Escherichia coli-infected mouse macrophages reveals new insights into host-pathogen interactions

    KAUST Repository

    Mavromatis, Charalampos Harris; Bokil, Nilesh J.; Totsika, Makrina; Kakkanat, Asha; Schaale, Kolja; Cannistraci, Carlo V.; Ryu, Tae Woo; Beatson, Scott A.; Ulett, Glen C.; Schembri, Mark A.; Sweet, Matthew J.; Ravasi, Timothy

    2015-01-01

    Urinary tract infections (UTI) are among the most common infections in humans. Uropathogenic Escherichia coli (UPEC) can invade and replicate within bladder epithelial cells, and some UPEC strains can also survive within macrophages. To understand the UPEC transcriptional programme associated with intramacrophage survival, we performed host–pathogen co-transcriptome analyses using RNA sequencing. Mouse bone marrow-derived macrophages (BMMs) were challenged over a 24 h time course with two UPEC reference strains that possess contrasting intramacrophage phenotypes: UTI89, which survives in BMMs, and 83972, which is killed by BMMs. Neither of these strains caused significant BMM cell death at the low multiplicity of infection that was used in this study. We developed an effective computational framework that simultaneously separated, annotated and quantified the mammalian and bacterial transcriptomes. Bone marrow-derived macrophages responded to the two UPEC strains with a broadly similar gene expression programme. In contrast, the transcriptional responses of the UPEC strains diverged markedly from each other. We identified UTI89 genes up-regulated at 24 h post-infection, and hypothesized that some may contribute to intramacrophage survival. Indeed, we showed that deletion of one such gene (pspA) significantly reduced UTI89 survival within BMMs. Our study provides a technological framework for simultaneously capturing global changes at the transcriptional level in co-cultures, and has generated new insights into the mechanisms that UPEC use to persist within the intramacrophage environment.

  8. The co-transcriptome of uropathogenic Escherichia coli-infected mouse macrophages reveals new insights into host-pathogen interactions

    KAUST Repository

    Mavromatis, Charalampos Harris

    2015-01-24

    Urinary tract infections (UTI) are among the most common infections in humans. Uropathogenic Escherichia coli (UPEC) can invade and replicate within bladder epithelial cells, and some UPEC strains can also survive within macrophages. To understand the UPEC transcriptional programme associated with intramacrophage survival, we performed host–pathogen co-transcriptome analyses using RNA sequencing. Mouse bone marrow-derived macrophages (BMMs) were challenged over a 24 h time course with two UPEC reference strains that possess contrasting intramacrophage phenotypes: UTI89, which survives in BMMs, and 83972, which is killed by BMMs. Neither of these strains caused significant BMM cell death at the low multiplicity of infection that was used in this study. We developed an effective computational framework that simultaneously separated, annotated and quantified the mammalian and bacterial transcriptomes. Bone marrow-derived macrophages responded to the two UPEC strains with a broadly similar gene expression programme. In contrast, the transcriptional responses of the UPEC strains diverged markedly from each other. We identified UTI89 genes up-regulated at 24 h post-infection, and hypothesized that some may contribute to intramacrophage survival. Indeed, we showed that deletion of one such gene (pspA) significantly reduced UTI89 survival within BMMs. Our study provides a technological framework for simultaneously capturing global changes at the transcriptional level in co-cultures, and has generated new insights into the mechanisms that UPEC use to persist within the intramacrophage environment.

  9. Mint3 in bone marrow-derived cells promotes lung metastasis in breast cancer model mice.

    Science.gov (United States)

    Hara, Toshiro; Murakami, Yoshinori; Seiki, Motoharu; Sakamoto, Takeharu

    2017-08-26

    Breast cancer is one of the most common cancers in women in the world. Although breast cancer is well treatable at the early stage, patients with distant metastases show a poor prognosis. Data from recent studies using transplantation models indicate that Mint3/APBA3 might promote breast cancer malignancy. However, whether Mint3 indeed contributes to tumor development, progression, or metastasis in vivo remains unclear. To address this, here we examined whether Mint3 depletion affects tumor malignancy in MMTV-PyMT breast cancer model mice. In MMTV-PyMT mice, Mint3 depletion did not affect tumor onset and tumor growth, but attenuated lung metastases. Experimental lung metastasis of breast cancer Met-1 cells derived from MMTV-PyMT mice also decreased in Mint3-depleted mice, indicating that host Mint3 expression affected lung metastasis of MMTV-PyMT-derived breast cancer cells. Further bone marrow transplant experiments revealed that Mint3 in bone marrow-derived cells promoted lung metastasis in MMTV-PyMT mice. Thus, targeting Mint3 in bone marrow-derived cells might be a good strategy for preventing metastasis and improving the prognosis of breast cancer patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Development of donor-derived thymic lymphomas after allogeneic bone marrow transplantation in AKR/J mice

    International Nuclear Information System (INIS)

    Yasumizu, R.; Hiai, H.; Sugiura, K.

    1988-01-01

    The transplantation of bone marrow cells from BALB/c (but not C57BL/6 and C3H/HeN) mice was observed to lead to the development of thymic lymphomas (leukemias) in AKR/J mice. Two leukemic cell lines, CAK1.3 and CAK4.4, were established from the primary culture of two thymic lymphoma, and surface phenotypes of these cell lines found to be H-2d and Thy-1.2+, indicating that these lymphoma cells are derived from BALB/c donor bone marrow cells. Further analyses of surface markers revealed that CAK1.3 is L3T4+ Lyt2+ IL2R-, whereas CAK4.4 is L3T4- Lyt2- IL2R+. Both CAK1.3 and CAK4.4 were transplantable into BALB/c but not AKR/J mice, further indicating that these cells are of BALB/c bone marrow donor origin. The cells were found to produce XC+-ecotropic viruses, but xenotropic and mink cell focus-forming viruses were undetectable. Inasmuch as thymic lymphomas are derived from bone marrow cells of leukemia-resistant BALB/c strain of mice under the allogeneic environment of leukemia-prone AKR/J mice, this animal model may serve as a useful tool not only for the analysis of leukemic relapse after bone marrow transplantation but also for elucidation of the mechanism of leukemogenesis

  11. Silk fibroin/chitosan thin film promotes osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Li, Da-Wei; He, Jin; He, Feng-Li; Liu, Ya-Li; Liu, Yang-Yang; Ye, Ya-Jing; Deng, Xudong; Yin, Da-Chuan

    2018-04-01

    As a biodegradable polymer thin film, silk fibroin/chitosan composite film overcomes the defects of pure silk fibroin and chitosan films, respectively, and shows remarkable biocompatibility, appropriate hydrophilicity and mechanical properties. Silk fibroin/chitosan thin film can be used not only as metal implant coating for bone injury repair, but also as tissue engineering scaffold for skin, cornea, adipose, and other soft tissue injury repair. However, the biocompatibility of silk fibroin/chitosan thin film for mesenchymal stem cells, a kind of important seed cell of tissue engineering and regenerative medicine, is rarely reported. In this study, silk fibroin/chitosan film was prepared by solvent casting method, and the rat bone marrow-derived mesenchymal stem cells were cultured on the silk fibroin/chitosan thin film. Osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells were induced, respectively. The proliferation ability, osteogenic and adipogenic differentiation abilities of rat bone marrow-derived mesenchymal stem cells were systematically compared between silk fibroin/chitosan thin film and polystyrene tissue culture plates. The results showed that silk fibroin/chitosan thin film not only provided a comparable environment for the growth and proliferation of rat bone marrow-derived mesenchymal stem cells but also promoted their osteogenic and adipogenic differentiation. This work provided information of rat bone marrow-derived mesenchymal stem cells behavior on silk fibroin/chitosan thin film and extended the application of silk fibroin/chitosan thin film. Based on the results, we suggested that the silk fibroin/chitosan thin film could be a promising material for tissue engineering of bone, cartilage, adipose, and skin.

  12. Role of Rab5 in the formation of macrophage-derived foam cell.

    Science.gov (United States)

    Chan, Lokwern; Hong, Jin; Pan, Junjie; Li, Jian; Wen, Zhichao; Shi, Haiming; Ding, Jianping; Luo, Xinping

    2017-09-12

    Foam cells play a key role in the occurrence and pathogenesis of atherosclerosis. Its formation starts with the ingestion of oxidized low-density lipoprotein (oxLDL). The process is associated with Ras related protein in brain 5 (Rab5) which plays a critical role in regulating endocytosis and early endosomal trafficking. Base on this, we presumed that Rab5 might participate in the maturation of foam cell. The aim of this study is to investigate the effect of Rab5 on macrophage cholesterol during the evolvement of macrophage when induced by oxLDL to the formation of foam cell. Immunohistochemistry was performed to analyze the distribution of macrophages and Rab5 in atherosclerotic plaque. RNA inteference study and transfection of inactive mutant (GFP-Rab5-S34N) and active mutant (GFP-Rab5-Q79L) in U937-derived macrophage were utilized to investigate the impact of Rab5 on the process of macrophage cholesterol, which could be detected by oil red O staining, determination of intracellular lipid content, filipin staining, nile red staining and the costaining of early endosome antigen-1 (EEA-1) and 1,1'-dioctadecyl-3,3,3',3'-tetramethylin dicarbocyanine (Dil)-labelled oxLDL (Dil-oxLDL). Rab5 was found abundantly localized in macrophage rich areas of human atherosclerotic lesions. On the foam cell study, the expression of Rab5 was increased after the incubation of oxLDL. The inteference study indicated the depletion of Rab5 led to the decreases of oil red O staining areas, total cholesterol and cholesterol esters in U937-derived marophages. Moreover, the fluorescence intensity of filipin and nile red staining were lower in GFP-Rab5-S34N as compared with GFP-Rab5-Q79L. The confocal study demonstrated less Dil-oxLDL was internalized in GFP-Rab5-S34N as compared with GFP-Rab5-Q79L; the result showed also the decrease in colocalization of internalized Dil-oxLDL and EEA-1 for GFP-Rab5-S34N as compared with GFP-Rab5-Q79L. Rab5 plays an important role in modulating the

  13. BMP pathway regulation of and by macrophages.

    Directory of Open Access Journals (Sweden)

    Megha Talati

    Full Text Available Pulmonary arterial hypertension (PAH is a disease of progressively increasing pulmonary vascular resistance, associated with mutations of the type 2 receptor for the BMP pathway, BMPR2. The canonical signaling pathway for BMPR2 is through the SMAD family of transcription factors. BMPR2 is expressed in every cell type, but the impact of BMPR2 mutations affecting SMAD signaling, such as Bmpr2delx4+, had only previously been investigated in smooth muscle and endothelium. In the present study, we created a mouse with universal doxycycline-inducible expression of Bmpr2delx4+ in order to determine if broader expression had an impact relevant to the development of PAH. We found that the most obvious phenotype was a dramatic, but patchy, increase in pulmonary inflammation. We crossed these double transgenic mice onto an NF-κB reporter strain, and by luciferase assays on live mice, individual organs and isolated macrophages, we narrowed down the origin of the inflammatory phenotype to constitutive activation of tissue macrophages. Study of bone marrow-derived macrophages from mutant and wild-type mice suggested a baseline difference in differentiation state in Bmpr2 mutants. When activated with LPS, both mutant and wild-type macrophages secrete BMP pathway inhibitors sufficient to suppress BMP pathway activity in smooth muscle cells (SMC treated with conditioned media. Functionally, co-culture with macrophages results in a BMP signaling-dependent increase in scratch closure in cultured SMC. We conclude that SMAD signaling through BMP is responsible, in part, for preventing macrophage activation in both live animals and in cells in culture, and that activated macrophages secrete BMP inhibitors in sufficient quantity to cause paracrine effect on vascular smooth muscle.

  14. ISG15 governs mitochondrial function in macrophages following vaccinia virus infection.

    Directory of Open Access Journals (Sweden)

    Sara Baldanta

    2017-10-01

    Full Text Available The interferon (IFN-stimulated gene 15 (ISG15 encodes one of the most abundant proteins induced by interferon, and its expression is associated with antiviral immunity. To identify protein components implicated in IFN and ISG15 signaling, we compared the proteomes of ISG15-/- and ISG15+/+ bone marrow derived macrophages (BMDM after vaccinia virus (VACV infection. The results of this analysis revealed that mitochondrial dysfunction and oxidative phosphorylation (OXPHOS were pathways altered in ISG15-/- BMDM treated with IFN. Mitochondrial respiration, Adenosine triphosphate (ATP and reactive oxygen species (ROS production was higher in ISG15+/+ BMDM than in ISG15-/- BMDM following IFN treatment, indicating the involvement of ISG15-dependent mechanisms. An additional consequence of ISG15 depletion was a significant change in macrophage polarization. Although infected ISG15-/- macrophages showed a robust proinflammatory cytokine expression pattern typical of an M1 phenotype, a clear blockade of nitric oxide (NO production and arginase-1 activation was detected. Accordingly, following IFN treatment, NO release was higher in ISG15+/+ macrophages than in ISG15-/- macrophages concomitant with a decrease in viral titer. Thus, ISG15-/- macrophages were permissive for VACV replication following IFN treatment. In conclusion, our results demonstrate that ISG15 governs the dynamic functionality of mitochondria, specifically, OXPHOS and mitophagy, broadening its physiological role as an antiviral agent.

  15. Bone marrow-derived thymic antigen-presenting cells determine self-recognition of Ia-restricted T lymphocytes

    International Nuclear Information System (INIS)

    Longo, D.L.; Kruisbeek, A.M.; Davis, M.L.; Matis, L.A.

    1985-01-01

    The authors previously have demonstrated that in radiation-induced bone marrow chimeras, T-cell self-Ia restriction specificity appeared to correlate with the phenotype of the bone marrow-derived antigen-presenting (or dendritic) cell in the thymus during T-cell development. However, these correlations were necessarily indirect because of the difficulty in assaying thymic function directly by adult thymus transplant, which has in the past been uniformly unsuccessful. They now report success in obtaining functional T cells from nude mice grafted with adult thymuses reduced in size by treatment of the thymus donor with anti-thymocyte globulin and cortisone. When (B10 Scn X B10.D2)F1 nude mice (I-Ab,d) are given parental B10.D2 (I-Ad) thymus grafts subcutaneously, their T cells are restricted to antigen recognition in association with I-Ad gene products but not I-Ab gene products. Furthermore, thymuses from (B10 X B10.D2)F1 (I-Ab,d)----B10 (I-Ab) chimeras transplanted 6 months or longer after radiation (a time at which antigen-presenting cell function is of donor bone marrow phenotype) into (B10 X B10.D2)F1 nude mice generate T cells restricted to antigen recognition in association with both I-Ad and I-Ab gene products. Thymuses from totally allogeneic bone marrow chimeras appear to generate T cells of bone marrow donor and thymic host restriction specificity. Thus, when thymus donors are radiation-induced bone marrow chimeras, the T-cell I-region restriction of the nude mice recipients is determined at least in part by the phenotype of the bone marrow-derived thymic antigen presenting cells or dendritic cells in the chimeric thymus

  16. Review of Preclinical and Clinical Studies of Bone Marrow-Derived Cell Therapies for Intracerebral Hemorrhage

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Rosado-de-Castro

    2016-01-01

    Full Text Available Stroke is the second leading cause of mortality worldwide, causing millions of deaths annually, and is also a major cause of disability-adjusted life years. Hemorrhagic stroke accounts for approximately 10 to 27% of all cases and has a fatality rate of about 50% in the first 30 days, with limited treatment possibilities. In the past two decades, the therapeutic potential of bone marrow-derived cells (particularly mesenchymal stem cells and mononuclear cells has been intensively investigated in preclinical models of different neurological diseases, including models of intracerebral hemorrhage and subarachnoid hemorrhage. More recently, clinical studies, most of them small, unblinded, and nonrandomized, have suggested that the therapy with bone marrow-derived cells is safe and feasible in patients with ischemic or hemorrhagic stroke. This review discusses the available evidence on the use of bone marrow-derived cells to treat hemorrhagic strokes. Distinctive properties of animal studies are analyzed, including study design, cell dose, administration route, therapeutic time window, and possible mechanisms of action. Furthermore, clinical trials are also reviewed and discussed, with the objective of improving future studies in the field.

  17. Effect of the Gc-derived macrophage-activating factor precursor (preGcMAF) on phagocytic activation of mouse peritoneal macrophages.

    Science.gov (United States)

    Uto, Yoshihiro; Yamamoto, Syota; Takeuchi, Ryota; Nakagawa, Yoshinori; Hirota, Keiji; Terada, Hiroshi; Onizuka, Shinya; Nakata, Eiji; Hori, Hitoshi

    2011-07-01

    The 1f1f subtype of the Gc protein (Gc(1f1f) protein) was converted into Gc-derived macrophage-activating factor (GcMAF) by enzymatic processing in the presence of β-galactosidase of an activated B-cell and sialidase of a T-cell. We hypothesized that preGc(1f1f)MAF, the only Gc(1f1f) protein lacking galactose, can be converted to GcMAF in vivo because sialic acid is cleaved by residual sialidase. Hence, we investigated the effect of preGc(1f1f)MAF on the phagocytic activation of mouse peritoneal macrophages. We examined the sugar moiety of preGc(1f1f)MAF with a Western blot using peanut agglutinin (PNA) and Helix pomatia agglutinin (HPA) lectin. We also found that preGc(1f1f)MAF significantly enhanced phagocytic activity in mouse peritoneal macrophages but only in the presence of the mouse peritoneal fluid; the level of phagocytic activity was the same as that observed for GcMAF. PreGc(1f1f)MAF can be used as an effective macrophage activator in vivo.

  18. Safety assessment of bone marrow derived MSC grown in platelet-rich plasma

    Directory of Open Access Journals (Sweden)

    Shoji Fukuda

    2015-06-01

    Full Text Available The injection of endothelial progenitor cells and mononuclear cells derived from bone marrow at the ischemic region of peripheral artery disease patients is reported to be effective for therapeutic angiogenesis; however, these cell therapies require large amounts of bone marrow to obtain sufficient numbers of cells. To solve this problem, we attempted to culture bone-marrow-derived mesenchymal stem cells (BM-MSC, which are supposed to secrete several cytokines that promote angiogenesis. We also focused on using platelet-rich plasma (PRP as a supplement for cell culture instead of fetal bovine serum. Human BM-MSC obtained from healthy volunteers expanded rapidly when cultured with 10% PRP prepared from their own blood. FACS analysis revealed that these cultured human MSC were homogeneous populations, and chromosomal analysis showed a normal karyotype. Moreover, the angiogenetic effect was apparent two weeks after human BM-MSC were injected into the ischemic muscle in SCID mice. Tumor formation was not detected three months after injection into SCID mice either subcutaneously or intramuscularly. To simulate clinical settings, canine BM-MSC were grown with canine PRP and injected into their ischemic muscles. We confirmed that donor cells existed in situ two and six weeks after operation without any side effects. These results suggest that cultured human BM-MSC can be a promising cell source for therapeutic angiogenesis.

  19. Macrophages discriminate glycosylation patterns of apoptotic cell-derived microparticles.

    Science.gov (United States)

    Bilyy, Rostyslav O; Shkandina, Tanya; Tomin, Andriy; Muñoz, Luis E; Franz, Sandra; Antonyuk, Volodymyr; Kit, Yuriy Ya; Zirngibl, Matthias; Fürnrohr, Barbara G; Janko, Christina; Lauber, Kirsten; Schiller, Martin; Schett, Georg; Stoika, Rostyslav S; Herrmann, Martin

    2012-01-02

    Inappropriate clearance of apoptotic remnants is considered to be the primary cause of systemic autoimmune diseases, like systemic lupus erythematosus. Here we demonstrate that apoptotic cells release distinct types of subcellular membranous particles (scMP) derived from the endoplasmic reticulum (ER) or the plasma membrane. Both types of scMP exhibit desialylated glycotopes resulting from surface exposure of immature ER-derived glycoproteins or from surface-borne sialidase activity, respectively. Sialidase activity is activated by caspase-dependent mechanisms during apoptosis. Cleavage of sialidase Neu1 by caspase 3 was shown to be directly involved in apoptosis-related increase of surface sialidase activity. ER-derived blebs possess immature mannosidic glycoepitopes and are prioritized by macrophages during clearance. Plasma membrane-derived blebs contain nuclear chromatin (DNA and histones) but not components of the nuclear envelope. Existence of two immunologically distinct types of apoptotic blebs may provide new insights into clearance-related diseases.

  20. Characterization of hemopoietic stem cell chimerism in antibody-facilitated bone marrow chimeras

    International Nuclear Information System (INIS)

    Francescutti, L.H.; Gambel, P.; Wegmann, T.G.

    1985-01-01

    The authors have previously described a model for bone marrow transplantation that involves preparation of the host with monoclonal antibody against class I or class II antigens instead of irradiation or cytotoxic drugs. This allows engraftment and subsequent repopulation of the host by donor tissue. They have previously reported on chimerism in the peripheral blood of P1----(P1 X P2)F1 animals. In this report, the authors describe the examination of the bone marrow and spleen stem cell chimerism of these antibody-facilitated (AF) chimeras, by determining, with an isozyme assay, the phenotype of methylcellulose colonies grown from stem cells. They have found a correlation between peripheral blood chimerism and the stem cell constitution of both spleen and bone marrow. The peripheral blood chimerism also correlates with the level of chimerism in macrophages derived from peritoneal exudate cells. These findings indicate that assaying the peripheral blood of such chimeras provides an excellent indication of the degree of chimerism at the stem cell level and stands in sharp contrast to the level of chimerism in certain lymphoid compartments

  1. Cyclooxygenase-2 inhibition blocks M2 macrophage differentiation and suppresses metastasis in murine breast cancer model.

    Directory of Open Access Journals (Sweden)

    Yi-Rang Na

    Full Text Available Tumor cells are often associated with abundant macrophages that resemble the alternatively activated M2 subset. Tumor-associated macrophages (TAMs inhibit anti-tumor immune responses and promote metastasis. Cyclooxygenase-2 (COX-2 inhibition is known to prevent breast cancer metastasis. This study hypothesized that COX-2 inhibition affects TAM characteristics potentially relevant to tumor cell metastasis. We found that the specific COX-2 inhibitor, etodolac, inhibited human M2 macrophage differentiation, as determined by decreased CD14 and CD163 expressions and increased TNFα production. Several key metastasis-related mediators, such as vascular endothelial growth factor-A, vascular endothelial growth factor-C, and matrix metalloproteinase-9, were inhibited in the presence of etodolac as compared to untreated M2 macrophages. Murine bone marrow derived M2 macrophages also showed enhanced surface MHCII IA/IE and CD80, CD86 expressions together with enhanced TNFα expressions with etodolac treatment during differentiation. Using a BALB/c breast cancer model, we found that etodolac significantly reduced lung metastasis, possibly due to macrophages expressing increased IA/IE and TNFα, but decreased M2 macrophage-related genes expressions (Ym1, TGFβ. In conclusion, COX-2 inhibition caused loss of the M2 macrophage characteristics of TAMs and may assist prevention of breast cancer metastasis.

  2. Possible mechanisms of retinal function recovery with the use of cell therapy with bone marrow-derived stem cells

    Directory of Open Access Journals (Sweden)

    Rubens Camargo Siqueira

    2010-10-01

    Full Text Available Bone marrow has been proposed as a potential source of stem cells for regenerative medicine. In the eye, degeneration of neural cells in the retina is a hallmark of such widespread ocular diseases as age-related macular degeneration (AMD and retinitis pigmentosa. Bone marrow is an ideal tissue for studying stem cells mainly because of its accessibility. Furthermore, there are a number of well-defined mouse models and cell surface markers that allow effective study of hematopoiesis in healthy and injured mice. Because of these characteristics and the experience of bone marrow transplantation in the treatment of hematological disease such as leukemia, bone marrow-derived stem cells have also become a major tool in regenerative medicine. Those cells may be able to restore the retina function through different mechanisms: A cellular differentiation, B paracrine effect, and C retinal pigment epithelium repair. In this review, we described these possible mechanisms of recovery of retinal function with the use of cell therapy with bone marrow-derived stem cells.

  3. The recovery of bone marrow derived GM-CFU in baboons unilaterally exposed to a total body LD50/30d mixed neutron-gamma irradiation

    International Nuclear Information System (INIS)

    Herodin, F.; Orfeuvre, H.; Janodet, D.; Mestries, J.C.; Fatome, M.

    1990-01-01

    The unilateral exposure of baboons to a total body LD 50/30d mixed neutron/gamma irradiation was characterized to be non uniform in dose distribution. The pattern of recovery of granulocyte-macrophage progenitors in bone marrow samples collected from entrance and exit sides respectively is consistent with this observed heterogeneity [fr

  4. IQGAP1 is involved in post-ischemic neovascularization by regulating angiogenesis and macrophage infiltration.

    Directory of Open Access Journals (Sweden)

    Norifumi Urao

    2010-10-01

    Full Text Available Neovascularization is an important repair mechanism in response to ischemic injury and is dependent on inflammation, angiogenesis and reactive oxygen species (ROS. IQGAP1, an actin-binding scaffold protein, is a key regulator for actin cytoskeleton and motility. We previously demonstrated that IQGAP1 mediates vascular endothelial growth factor (VEGF-induced ROS production and migration of cultured endothelial cells (ECs; however, its role in post-ischemic neovascularization is unknown.Ischemia was induced by left femoral artery ligation, which resulted in increased IQGAP1 expression in Mac3(+ macrophages and CD31(+ capillary-like ECs in ischemic legs. Mice lacking IQGAP1 exhibited a significant reduction in the post-ischemic neovascularization as evaluated by laser Doppler blood flow, capillary density and α-actin positive arterioles. Furthermore, IQGAP1(-/- mice showed a decrease in macrophage infiltration and ROS production in ischemic muscles, leading to impaired muscle regeneration and increased necrosis and fibrosis. The numbers of bone marrow (BM-derived cells in the peripheral blood were not affected in these knockout mice. BM transplantation revealed that IQGAP1 expressed in both BM-derived cells and tissue resident cells, such as ECs, is required for post-ischemic neovascularization. Moreover, thioglycollate-induced peritoneal macrophage recruitment and ROS production were inhibited in IQGAP1(-/- mice. In vitro, IQGAP1(-/- BM-derived macrophages showed inhibition of migration and adhesion capacity, which may explain the defective macrophage recruitment into the ischemic tissue in IQGAP1(-/- mice.IQGAP1 plays a key role in post-ischemic neovascularization by regulating, not only, ECs-mediated angiogenesis but also macrophage infiltration as well as ROS production. Thus, IQGAP1 is a potential therapeutic target for inflammation- and angiogenesis-dependent ischemic cardiovascular diseases.

  5. Bone marrow-derived CD13+ cells sustain tumor progression

    Science.gov (United States)

    Dondossola, Eleonora; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2014-01-01

    Non-malignant cells found within neoplastic lesions express alanyl (membrane) aminopeptidase (ANPEP, best known as CD13), and CD13-null mice exhibit limited tumor growth and angiogenesis. We have recently demonstrated that a subset of bone marrow-derived CD11b+CD13+ myeloid cells accumulate within neoplastic lesions in several murine models of transplantable cancer to promote angiogenesis. If these findings were confirmed in clinical settings, CD11b+CD13+ myeloid cells could become a non-malignant target for the development of novel anticancer regimens. PMID:25339996

  6. Conditioned medium from alternatively activated macrophages induce mesangial cell apoptosis via the effect of Fas

    International Nuclear Information System (INIS)

    Huang, Yuan; Luo, Fangjun; Li, Hui; Jiang, Tao; Zhang, Nong

    2013-01-01

    During inflammation in the glomerulus, the proliferation of myofiroblast-like mesangial cells is commonly associated with the pathological process. Macrophages play an important role in regulating the growth of resident mesangial cells in the glomeruli. Alternatively activated macrophage (M2 macrophage) is a subset of macrophages induced by IL-13/IL-4, which is shown to play a repair role in glomerulonephritis. Prompted by studies of development, we performed bone marrow derived macrophage and rat mesangial cell co-culture study. Conditioned medium from IL-4 primed M2 macrophages induced rat mesangial cell apoptosis. The pro-apoptotic effect of M2 macrophages was demonstrated by condensed nuclei stained with Hoechst 33258, increased apoptosis rates by flow cytometry analysis and enhanced caspase-3 activation by western blot. Fas protein was up-regulated in rat mesangial cells, and its neutralizing antibody ZB4 partly inhibited M2 macrophage-induced apoptosis. The up-regulated arginase-1 expression in M2 macrophage also contributed to this apoptotic effect. These results indicated that the process of apoptosis triggered by conditioned medium from M2 macrophages, at least is partly conducted through Fas in rat mesangial cells. Our findings provide compelling evidence that M2 macrophages control the growth of mesangial cells in renal inflammatory conditions. - Highlights: • Conditioned-medium from M2 macrophages induces rat mesangial cell (MsC) apoptosis. • M2 macrophage conditioned medium exerts its pro-apoptotic effects via Fas ligand. • Arginase-1 activity in M2 macrophages plays a role in inducing apoptosis in rat MsC

  7. Conditioned medium from alternatively activated macrophages induce mesangial cell apoptosis via the effect of Fas

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuan; Luo, Fangjun; Li, Hui; Jiang, Tao; Zhang, Nong, E-mail: nzhang@fudan.edu.cn

    2013-11-15

    During inflammation in the glomerulus, the proliferation of myofiroblast-like mesangial cells is commonly associated with the pathological process. Macrophages play an important role in regulating the growth of resident mesangial cells in the glomeruli. Alternatively activated macrophage (M2 macrophage) is a subset of macrophages induced by IL-13/IL-4, which is shown to play a repair role in glomerulonephritis. Prompted by studies of development, we performed bone marrow derived macrophage and rat mesangial cell co-culture study. Conditioned medium from IL-4 primed M2 macrophages induced rat mesangial cell apoptosis. The pro-apoptotic effect of M2 macrophages was demonstrated by condensed nuclei stained with Hoechst 33258, increased apoptosis rates by flow cytometry analysis and enhanced caspase-3 activation by western blot. Fas protein was up-regulated in rat mesangial cells, and its neutralizing antibody ZB4 partly inhibited M2 macrophage-induced apoptosis. The up-regulated arginase-1 expression in M2 macrophage also contributed to this apoptotic effect. These results indicated that the process of apoptosis triggered by conditioned medium from M2 macrophages, at least is partly conducted through Fas in rat mesangial cells. Our findings provide compelling evidence that M2 macrophages control the growth of mesangial cells in renal inflammatory conditions. - Highlights: • Conditioned-medium from M2 macrophages induces rat mesangial cell (MsC) apoptosis. • M2 macrophage conditioned medium exerts its pro-apoptotic effects via Fas ligand. • Arginase-1 activity in M2 macrophages plays a role in inducing apoptosis in rat MsC.

  8. The Impairment of Macrophage-to-Feces Reverse Cholesterol Transport during Inflammation Does Not Depend on Serum Amyloid A.

    Science.gov (United States)

    de Beer, Maria C; Wroblewski, Joanne M; Noffsinger, Victoria P; Ji, Ailing; Meyer, Jason M; van der Westhuyzen, Deneys R; de Beer, Frederick C; Webb, Nancy R

    2013-01-01

    Studies suggest that inflammation impairs reverse cholesterol transport (RCT). We investigated whether serum amyloid A (SAA) contributes to this impairment using an established macrophage-to-feces RCT model. Wild-type (WT) mice and mice deficient in SAA1.1 and SAA2.1 (SAAKO) were injected intraperitoneally with (3)H-cholesterol-labeled J774 macrophages 4 hr after administration of LPS or buffered saline. (3)H-cholesterol in plasma 4 hr after macrophage injection was significantly reduced in both WT and SAAKO mice injected with LPS, but this was not associated with a reduced capacity of serum from LPS-injected mice to promote macrophage cholesterol efflux in vitro. Hepatic accumulation of (3)H-cholesterol was unaltered in either WT or SAAKO mice by LPS treatment. Radioactivity present in bile and feces of LPS-injected WT mice 24 hr after macrophage injection was reduced by 36% (P < 0.05) and 80% (P < 0.001), respectively. In contrast, in SAAKO mice, LPS did not significantly reduce macrophage-derived (3)H-cholesterol in bile, and fecal excretion was reduced by only 45% (P < 0.05). Injection of cholesterol-loaded allogeneic J774 cells, but not syngeneic bone-marrow-derived macrophages, transiently induced SAA in C57BL/6 mice. Our study confirms reports that acute inflammation impairs steps in the RCT pathway and establishes that SAA plays only a minor role in this impairment.

  9. The Impairment of Macrophage-to-Feces Reverse Cholesterol Transport during Inflammation Does Not Depend on Serum Amyloid A

    Directory of Open Access Journals (Sweden)

    Maria C. de Beer

    2013-01-01

    Full Text Available Studies suggest that inflammation impairs reverse cholesterol transport (RCT. We investigated whether serum amyloid A (SAA contributes to this impairment using an established macrophage-to-feces RCT model. Wild-type (WT mice and mice deficient in SAA1.1 and SAA2.1 (SAAKO were injected intraperitoneally with 3H-cholesterol-labeled J774 macrophages 4 hr after administration of LPS or buffered saline. 3H-cholesterol in plasma 4 hr after macrophage injection was significantly reduced in both WT and SAAKO mice injected with LPS, but this was not associated with a reduced capacity of serum from LPS-injected mice to promote macrophage cholesterol efflux in vitro. Hepatic accumulation of 3H-cholesterol was unaltered in either WT or SAAKO mice by LPS treatment. Radioactivity present in bile and feces of LPS-injected WT mice 24 hr after macrophage injection was reduced by 36%   (P<0.05 and 80%   (P<0.001, respectively. In contrast, in SAAKO mice, LPS did not significantly reduce macrophage-derived 3H-cholesterol in bile, and fecal excretion was reduced by only 45%   (P<0.05. Injection of cholesterol-loaded allogeneic J774 cells, but not syngeneic bone-marrow-derived macrophages, transiently induced SAA in C57BL/6 mice. Our study confirms reports that acute inflammation impairs steps in the RCT pathway and establishes that SAA plays only a minor role in this impairment.

  10. Thy-1+ dendritic cells in murine epidermis are bone marrow-derived

    International Nuclear Information System (INIS)

    Breathnach, S.M.; Katz, S.I.

    1984-01-01

    Thy-1+, Ly-5+ dendritic cells have recently been described as a resident cell population in murine epidermis, but their ontogeny and function are unknown. The origin and turnover of epidermal Thy-1+ cells utilizing chimeric mice were investigated. Lethally x-irradiated AKR/J (Thy-1.1+) and AKR/Cum (Thy-1.2+) mice were reconstituted with allogeneic bone marrow cells with or without thymocytes from congenic AKR/Cum or AKR/J mice, respectively. The density of residual indigenous Thy-1.1+ cells in AKR/J chimeras and Thy-1.2+ cells in AKR/Cum chimeras was substantially reduced following x-irradiation, as determined by immunofluorescence staining of epidermal sheets. Epidermal repopulation by allogeneic Thy-1+ dendritic epidermal cells was first observed at 5 weeks in AKR/J chimeras and at 7 weeks in AKR/Cum chimeras and progressed slowly. Repopulation was not enhanced by increasing the number of allogeneic bone marrow cells injected from 2 X 10(7) to 10(8) cells or by the addition of 8 X 10(7) allogeneic thymocytes to the donor inoculate. Epidermal repopulation by allogeneic Thy-1.2+ cells was not seen in AKR/J mice reconstituted with syngeneic bone marrow cells and allogeneic Thy-1.2+ AKR/Cum thymocytes. Taken together, these results indicate that Thy-1+ dendritic epidermal cells are derived from the bone marrow and suggest that they are not related to conventional peripheral T-lymphocytes

  11. Small Molecule-BIO Accelerates and Enhances Marrow-Derived Mesenchymal Stem Cell in Vitro Chondrogenesis

    Directory of Open Access Journals (Sweden)

    Mohamadreza Baghaban Eslaminejad

    2014-03-01

    Full Text Available Background: Hyaline cartilage defects exhibit a major challenge in the field of orthopedic surgery owing to its limited repair capacity. On the other hand, mesenchymal stem cells (MSCs are regarded as potent cells with a property of cartilage regeneration. We aimed to optimize marrow-derived MSC chondrogenic culture using a small bioactive molecule referred to as BIO. Methods: MSCs from the marrow of NMRI mice were extracted, culture-expanded, and characterized. Micro-mass culture was then established for chondrogenic differentiation (control group. The cultures of MSC in chondrogenic medium supplemented with 0.01, 0.05, 0.1, and 1 µM BIO were taken as the experimental groups. Cartilage differentiation was examined by both histological sections and real-time PCR for Sox9, aggrecan, and collagen II at different time points. Moreover, the involvement of the Wnt pathway was investigated. Results: Based on histological sections, there was seemingly more intense metachromatic matrix produced in the cultures with 0.01 µM BIO. In this experimental group, cartilage-specific genes tended to be upregulated at day 14 compared to day 21 of the control group, indicating the accelerating effect of BIO on cartilage differentiation. Overall, there was statistically a significant increase (P=0.01 in the expression level of cartilage-specific genes in cultures with 0.01 µM BIO (enhancing effects. These upregulations appeared to be mediated through the Wnt pathway evident from the significant upregulation of T-cell factor and beta-catenin molecules (P=0.01. Conclusion: Taken together, BIO at 0.01 µM could accelerate and enhance in vitro chondrogenesis of mouse marrow-derived MSCs. Please cite this article as: Baghaban Eslaminejad MR, Fallah N. Small Molecule-BIO Accelerates and Enhances Marrow-Derived Mesenchymal Stem Cell in Vitro Chondrogenesis. Iran J Med Sci. 2014;39(2:107-116.

  12. Use of Bone Marrow derived Stem Cells in patients with Cardiovascular Disorders

    Directory of Open Access Journals (Sweden)

    Abraham S

    2007-01-01

    Full Text Available Patients with end stage heart failure have very few treatment options. The long waiting times for transplant and the complications associated with immunosuppression has led to the search for alternatives. Subsequent to the isolation and characterization of stem cells, tremendous advances have been made and the safety and feasibility of autologous bone marrow derived stem cells has been proven in preclinical studies. Clinical studies have also shown mobilized cells repair the infracted heart, improving function and survival. We have started a clinical study to evaluate the efficacy of bone marrow derived stem cells. Bone-marrow was aspirated from the right iliac crest and the stem cells were isolated by density gradient method and suspended according to the mode of delivery.From Jan 2007 till date 10 patients (8 adults, 2 children, age with end stage cardiovascular disorder of varied etiology (Ischemic left ventricular dysfunction - 6 patients, Primary pulmonary hypertension - 2 patients, Dilated cardiomyopathy -1 patient, Biventricular non-compaction -1 patient underwent stem cell therapy. All patients were evaluated and cardiac function was measured by using echocardiography and thallium scintigraphy. There were no procedure related complications. These patients are being regularly followed-up and one patient who has completed 6-month follow-up has shown improvement in perfusion as well as increase in ejection fraction of 10%. Stem cell therapy in patients with end-stage cardiovascular disorder might be a promising tool by means of angiogenesis and other paracrine mechanisms.

  13. Mycobacterium leprae upregulates IRGM expression in monocytes and monocyte-derived macrophages.

    Science.gov (United States)

    Yang, Degang; Chen, Jia; Zhang, Linglin; Cha, Zhanshan; Han, Song; Shi, Weiwei; Ding, Ru; Ma, Lan; Xiao, Hong; Shi, Chao; Jing, Zhichun; Song, Ningjing

    2014-08-01

    Leprosy is caused by the infection of Mycobacterium leprae, which evokes a strong inflammatory response and leads to nerve damage. Immunity-related GTPase family M protein (IRGM) plays critical roles in controlling inflammation. The objective of the study was to investigate whether IRGM is involved in the infection of M. leprae. Levels of IRGM were assessed in M. leprae-infected CD4(+) T cells, monocytes, and monocyte-derived macrophages. Data revealed that both protein and mRNA levels of IRGM were increased in monocytes after M. leprae infection. Interestingly, monocyte-derived macrophages showed more prominent IRGM expression with M. leprae infection, whereas the bacteria did not affect IRGM in CD4(+) T cells. Furthermore, we assessed levels of IRGM in CD4(+) T cells and monocytes from 78 leprosy patients and 40 healthy controls, and observed upregulated protein level of IRGM in the monocytes from leprosy patients. Also, IRGM expression was inversely correlated with the severity of the disease. These findings suggested a close involvement of IRGM in M. leprae infection and indicated a potential mechanism of defending M. leprae infection.

  14. Transfer of innate resistance and susceptibility to Leishmania donovani infection in mouse radiation bone marrow chimaeras

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, P.R.; Blackwell, J.M.; Bradley, D.J. (London School of Hygiene and Tropical Medicine (UK))

    1984-07-01

    Reciprocal radiation bone marrow chimaeras were made between H-2-compatible strains of mice innately resistant or susceptible to visceral leishmaniasis. In initial experiments, susceptibility but not resistance to Leishmania donovani could be transferred with donor bone marrow into irradiated recipients. In subsequent experiments it was possible to transfer both resistance and susceptibility. This was achieved either by selecting more radiosensitive mouse strains as susceptible recipients, or alternatively by increasing the irradiation dose for the susceptible recipients used in the initial experiments. Using the higher irradiation dose, successful transfer of resistance and susceptibility between congenic mice carrying the Lshsup(r) and Lshsup(s) alleles on the more radioresistant B10 genetic background provided firm evidence that the results obtained in this study were specifically related to expression of the Lsh gene. It is concluded that Lsh gene-controlled resistance and susceptibility to L. donovani is determined by bone marrow-derived cells. The cell type(s) involved is likely to be of the macrophage lineage.

  15. Transfer of innate resistance and susceptibility to Leishmania donovani infection in mouse radiation bone marrow chimaeras

    International Nuclear Information System (INIS)

    Crocker, P.R.; Blackwell, J.M.; Bradley, D.J.

    1984-01-01

    Reciprocal radiation bone marrow chimaeras mere made between H-2-compatible strains of mice innately resistant or susceptible to visceral leishmaniasis. In initial experiments, susceptibility but not resistance to Leishmania donovani could be transferred with donor bone marrow into irradiated recipients. In subsequent experiments it was possible to transfer both resistance and susceptibility. This was achieved either by selecting more radiosensitive mouse strains as susceptible recipients, or alternatively by increasing the irradiation dose for the susceptible recipients used in the initial experiments. Using the higher irradiation dose, successful transfer of resistance and susceptibility between congenic mice carrying the Lshsup(r) and Lshsup(s) alleles on the more radioresistant B10 genetic background provided firm evidence that the results obtained in this study were specifically related to expression of the Lsh gene. It is concluded that Lsh gene-controlled resistance and susceptibility to L. donovani is determined by bone marrow-derived cells. The cell type(s) involved is likely to be of the macrophage lineage. (author)

  16. The Bone Marrow-Derived Stromal Cells

    DEFF Research Database (Denmark)

    Tencerova, Michaela; Kassem, Moustapha

    2016-01-01

    Bone marrow (BM) microenvironment represents an important compartment of bone that regulates bone homeostasis and the balance between bone formation and bone resorption depending on the physiological needs of the organism. Abnormalities of BM microenvironmental dynamics can lead to metabolic bone...... diseases. BM stromal cells (also known as skeletal or mesenchymal stem cells) [bone marrow stromal stem cell (BMSC)] are multipotent stem cells located within BM stroma and give rise to osteoblasts and adipocytes. However, cellular and molecular mechanisms of BMSC lineage commitment to adipocytic lineage...

  17. Neutrophil derived LTB4 induces macrophage aggregation in response to encapsulated Streptococcus iniae infection.

    Directory of Open Access Journals (Sweden)

    William J B Vincent

    Full Text Available Immune cells sense and react to a multitude of factors including both host and microbe-derived signals. Understanding how cells translate these cues into particular cellular behaviors is a complex yet critical area of study. We have previously shown that both neutrophils and macrophages are important for controlling the fish pathogen Streptococcus iniae. Here, we report both host and bacterial determinants leading to the formation of organized macrophage aggregates as part of the host inflammatory response in a subset of infected larvae. Streptococcal capsule was a required signal for aggregate formation. Macrophage aggregation coincided with NFκB activity, and the formation of these aggregates is mediated by leukotriene B4 (LTB4 produced by neutrophils. Depletion, inhibition, or genetic deletion of leukotriene A4 hydrolase (Lta4h, which catalyzes the last step in LTB4 synthesis, resulted in the absence of macrophage aggregation. Larvae with impaired neutrophil function also had impaired macrophage aggregation; however, aggregate formation was partially rescued with the addition of exogenous LTB4. Neutrophil-specific expression of lta4h was sufficient to rescue macrophage aggregation in Lta4h-deficient larvae and increased host survival following infection. In summary, our findings highlight a novel innate immune response to infection in which specific bacterial products drive neutrophils that modulate macrophage behavior through eicosanoid signaling.

  18. Intramacrophage survival of uropathogenic Escherichia coli: Differences between diverse clinical isolates and between mouse and human macrophages

    KAUST Repository

    Bokil, Nilesh J.

    2011-11-01

    Uropathogenic E. coli (UPEC) are the primary cause of urinary tract infections. Recent studies have demonstrated that UPEC can invade and replicate within epithelial cells, suggesting that this bacterial pathogen may occupy an intracellular niche within the host. Given that many intracellular pathogens target macrophages, we assessed the interactions between UPEC and macrophages. Colonization of the mouse bladder by UPEC strain CFT073 resulted in increased expression of myeloid-restricted genes, consistent with the recruitment of inflammatory macrophages to the site of infection. In in vitro assays, CFT073 was able to survive within primary mouse bone marrow-derived macrophages (BMM) up to 24h post-infection. Three additional well-characterized clinical UPEC isolates associated with distinct UTI symptomatologies displayed variable long-term survival within BMM. UPEC strains UTI89 and VR50, originally isolated from patients with cystitis and asymptomatic bacteriuria respectively, showed elevated bacterial loads in BMM at 24h post-infection as compared to CFT073 and the asymptomatic bacteriuria strain 83972. These differences did not correlate with differential effects on macrophage survival or initial uptake of bacteria. E. coli UTI89 localized to a Lamp1 + vesicular compartment within BMM. In contrast to survival within mouse BMM, intracellular bacterial loads of VR50 were low in both human monocyte-derived macrophages (HMDM) and in human T24 bladder epithelial cells. Collectively, these data suggest that some UPEC isolates may subvert macrophage anti-microbial pathways, and that host species differences may impact on intracellular UPEC survival. © 2011 Elsevier GmbH.

  19. Efficient natural defense mechanisms against Listeria monocytogenes in T and B cell-deficient allogeneic bone marrow radiation chimeras. Preactivated macrophages are the main effector cells in an early phase after bone marrow transfer

    International Nuclear Information System (INIS)

    Roesler, J.; Groettrup, E.B.; Baccarini, M.; Lohmann-Mattes, M.L.

    1989-01-01

    Radiation chimeras in the early phase after bone marrow transplantation are a good model to study the efficiency of the body's nonspecific defense system represented by macrophages (M phi), polymorphonuclear cells (PMN), and NK cells. These cell types are present in large numbers in spleen and liver at that time, whereas the specific immune system represented by T and B cells is functionally deficient. We previously reported enhanced activities in vitro of M phi (and PMN) from recipient animals in an early phase after allogeneic bone marrow transfer. We here demonstrate that these activities result in enhanced spontaneous resistance against Listeria monocytogenes in vivo: CFU of L. monocytogenes in spleen and liver 48 h after infection were about 1 or 2 to 4 log steps less than in untreated control mice of donor or host haplotype. This enhanced resistance decreased over the 4-mo period after marrow transfer. Preactivated M phi were identified as the most important effector cells. Isolated from spleen and peritoneal cavity, they performed enhanced killing of phagocytosed Listeria. Such preactivated M phi occurred in recipient animals after transfer of allogeneic but not of syngeneic bone marrow. The precise mechanism of M phi activation in the allogeneic radiation chimera in the complete absence of any detectable T cell function is not clear at present. However, these preactivated M phi display an important protective effect against L. monocytogenes: chimeras could eliminate Listeria without acquisition of positive delayed-type sensitivity when infected with 10(3) bacteria. An inoculum of 5 . 10(3) L. monocytogenes resulted either in prolonged survival compared with normal mice of the recipient haplotype or in definitive survival accompanied by a positive delayed-type sensitivity

  20. Normal autophagic activity in macrophages from mice lacking Gαi3, AGS3, or RGS19.

    Directory of Open Access Journals (Sweden)

    Ali Vural

    Full Text Available In macrophages autophagy assists antigen presentation, affects cytokine release, and promotes intracellular pathogen elimination. In some cells autophagy is modulated by a signaling pathway that employs Gαi3, Activator of G-protein Signaling-3 (AGS3/GPSM1, and Regulator of G-protein Signaling 19 (RGS19. As macrophages express each of these proteins, we tested their importance in regulating macrophage autophagy. We assessed LC3 processing and the formation of LC3 puncta in bone marrow derived macrophages prepared from wild type, Gnai3(-/-, Gpsm1(-/-, or Rgs19(-/- mice following amino acid starvation or Nigericin treatment. In addition, we evaluated rapamycin-induced autophagic proteolysis rates by long-lived protein degradation assays and anti-autophagic action after rapamycin induction in wild type, Gnai3(-/-, and Gpsm1(-/- macrophages. In similar assays we compared macrophages treated or not with pertussis toxin, an inhibitor of GPCR (G-protein couple receptor triggered Gαi nucleotide exchange. Despite previous findings, the level of basal autophagy, autophagic induction, autophagic flux, autophagic degradation and the anti-autophagic action in macrophages that lacked Gαi3, AGS3, or RGS19; or had been treated with pertussis toxin, were similar to controls. These results indicate that while Gαi signaling may impact autophagy in some cell types it does not in macrophages.

  1. Cord blood-derived macrophage-lineage cells rapidly stimulate osteoblastic maturation in mesenchymal stem cells in a glycoprotein-130 dependent manner.

    Directory of Open Access Journals (Sweden)

    Tania J Fernandes

    Full Text Available In bone, depletion of osteoclasts reduces bone formation in vivo, as does osteal macrophage depletion. How osteoclasts and macrophages promote the action of bone forming osteoblasts is, however, unclear. Since recruitment and differentiation of multi-potential stromal cells/mesenchymal stem cells (MSC generates new active osteoblasts, we investigated whether human osteoclasts and macrophages (generated from cord blood-derived hematopoietic progenitors induce osteoblastic maturation in adipose tissue-derived MSC. When treated with an osteogenic stimulus (ascorbate, dexamethasone and β-glycerophosphate these MSC form matrix-mineralising, alkaline phosphatase-expressing osteoblastic cells. Cord blood-derived progenitors were treated with macrophage colony stimulating factor (M-CSF to form immature proliferating macrophages, or with M-CSF plus receptor activator of NFκB ligand (RANKL to form osteoclasts; culture medium was conditioned for 3 days by these cells to study their production of osteoblastic factors. Both osteoclast- and macrophage-conditioned medium (CM greatly enhanced MSC osteoblastic differentiation in both the presence and absence of osteogenic medium, evident by increased alkaline phosphatase levels within 4 days and increased mineralisation within 14 days. These CM effects were completely ablated by antibodies blocking gp130 or oncostatin M (OSM, and OSM was detectable in both CM. Recombinant OSM very potently stimulated osteoblastic maturation of these MSC and enhanced bone morphogenetic protein-2 (BMP-2 actions on MSC. To determine the influence of macrophage activation on this OSM-dependent activity, CM was collected from macrophage populations treated with M-CSF plus IL-4 (to induce alternative activation or with GM-CSF, IFNγ and LPS to cause classical activation. CM from IL-4 treated macrophages stimulated osteoblastic maturation in MSC, while CM from classically-activated macrophages did not. Thus, macrophage-lineage cells

  2. Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit achilles tendon model.

    Science.gov (United States)

    Chong, Alphonsus K S; Ang, Abel D; Goh, James C H; Hui, James H P; Lim, Aymeric Y T; Lee, Eng Hin; Lim, Beng Hai

    2007-01-01

    A repaired tendon needs to be protected for weeks until it has accrued enough strength to handle physiological loads. Tissue-engineering techniques have shown promise in the treatment of tendon and ligament defects. The present study tested the hypothesis that bone marrow-derived mesenchymal stem cells can accelerate tendon-healing after primary repair of a tendon injury in a rabbit model. Fifty-seven New Zealand White rabbits were used as the experimental animals, and seven others were used as the source of bone marrow-derived mesenchymal stem cells. The injury model was a sharp complete transection through the midsubstance of the Achilles tendon. The transected tendon was immediately repaired with use of a modified Kessler suture and a running epitendinous suture. Both limbs were used, and each side was randomized to receive either bone marrow-derived mesenchymal stem cells in a fibrin carrier or fibrin carrier alone (control). Postoperatively, the rabbits were not immobilized. Specimens were harvested at one, three, six, and twelve weeks for analysis, which included evaluation of gross morphology (sixty-two specimens), cell tracing (twelve specimens), histological assessment (forty specimens), immunohistochemistry studies (thirty specimens), morphometric analysis (forty specimens), and mechanical testing (sixty-two specimens). There were no differences between the two groups with regard to the gross morphology of the tendons. The fibrin had degraded by three weeks. Cell tracing showed that labeled bone marrow-derived mesenchymal stem cells remained viable and present in the intratendinous region for at least six weeks, becoming more diffuse at later time-periods. At three weeks, collagen fibers appeared more organized and there were better morphometric nuclear parameters in the treatment group (p tendon repair can improve histological and biomechanical parameters in the early stages of tendon-healing.

  3. Murine iPSC-Derived Macrophages as a Tool for Disease Modeling of Hereditary Pulmonary Alveolar Proteinosis due to Csf2rb Deficiency

    Directory of Open Access Journals (Sweden)

    Adele Mucci

    2016-08-01

    Full Text Available Induced pluripotent stem cells (iPSCs represent an innovative source for the standardized in vitro generation of macrophages (Mφ. We here describe a robust and efficient protocol to obtain mature and functional Mφ from healthy as well as disease-specific murine iPSCs. With regard to morphology, surface phenotype, and function, our iPSC-derived Mφ (iPSC-Mφ closely resemble their counterparts generated in vitro from bone marrow cells. Moreover, when we investigated the feasibility of our differentiation system to serve as a model for rare congenital diseases associated with Mφ malfunction, we were able to faithfully recapitulate the pathognomonic defects in GM-CSF signaling and Mφ function present in hereditary pulmonary alveolar proteinosis (herPAP. Thus, our studies may help to overcome the limitations placed on research into certain rare disease entities by the lack of an adequate supply of disease-specific primary cells, and may aid the development of novel therapeutic approaches for herPAP patients.

  4. Exosomes derived from hypoxic epithelial ovarian cancer deliver microRNA-940 to induce macrophage M2 polarization.

    Science.gov (United States)

    Chen, Xin; Ying, Xiang; Wang, Xinjing; Wu, Xiaoli; Zhu, Qinyi; Wang, Xipeng

    2017-07-01

    Hypoxia is a common feature of solid tumors. It is closely related to tumor progression. Exosomal microRNAs derived from cancers are considered to be mediators between cancer cells and the tumor microenvironment. In addition, the number of tumor-associated macrophages (TAMs) in the tumor microenvironment has also been demonstrated to correlate with tumor development. However, the relationship between tumor-secreted exosomes and TAM polarization under hypoxic conditions during tumor progression is not clear. Herein, we demonstrated that hypoxia induces the high expression of microRNA-940 (miR‑940) in exosomes derived from epithelial ovarian cancer (EOC). We also found that miR‑940 is highly expressed in exosomes isolated from ascites of EOC patients. Moreover, the overexpression of miR‑940 in macrophages delivered by exosomes stimulated M2 phenotype polarization, while the M2 subtype macrophages promoted EOC proliferation and migration. These results highlight the function of hypoxia in enhancing the high level of expression of miR‑940 in tumor exosomes taken up by macrophages. We also showed that the tumor-promoting function of miR‑940 is mediated by TAM polarization in EOC. These findings show that tumor-derived exosomal miR‑940 induced by hypoxia plays an important role in stimulating TAM polarization in the progression of EOC.

  5. Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kodali, Vamsi; Littke, Matthew H.; Tilton, Susan C.; Teeguarden, Justin G.; Shi, Liang; Frevert, Charles W.; Wang, Wei; Pounds, Joel G.; Thrall, Brian D.

    2013-08-27

    Although the potential human health impacts from exposure to engineered nanoparticles (ENPs) are uncertain, past epidemiological studies have established correlations between exposure to ambient air pollution particulates and the incidence of pneumonia and lung infections. Using amorphous silica and superparamagnetic iron oxide (SPIO) as model high production volume ENPs, we examined how macrophage activation by bacterial lipopolysaccharide (LPS) or the lung pathogen Streptococcus pneumoniae is altered by ENP pretreatment. Neither silica nor SPIO treatment elicited direct cytotoxic or pro-inflammatory effects in bone marrow-derived macrophages. However, pretreatment of macrophages with SPIO caused extensive reprogramming of nearly 500 genes regulated in response to LPS challenge, hallmarked by exaggerated activation of oxidative stress response pathways and suppressed activation of both pro- and anti-inflammatory pathways. Silica pretreatment altered regulation of only 67 genes, but there was strong correlation with gene sets affected by SPIO. Macrophages exposed to SPIO displayed a phenotype suggesting an impaired ability to transition from an M1 to M2-like activation state, characterized by suppressed IL-10 induction, enhanced TNFα production, and diminished phagocytic activity toward S. pneumoniae. Studies in macrophages deficient in scavenger receptor A (SR-A) showed SR-A participates in cell uptake of both the ENPs and S. pneumonia and co-regulates the anti-inflammatory IL-10 pathway. Thus, mechanisms for dysregulation of innate immunity exist by virtue that common receptor recognition pathways are used by some ENPs and pathogenic bacteria, although the extent of transcriptional reprogramming of macrophage function depends on the physicochemical properties of the ENP after internalization. Our results also illustrate that biological effects of ENPs may be indirectly manifested only after challenging normal cell function. Finally, nanotoxicology screening

  6. Gc protein-derived macrophage activating factor (GcMAF): isoelectric focusing pattern and tumoricidal activity.

    Science.gov (United States)

    Mohamad, Saharuddin Bin; Nagasawa, Hideko; Sasaki, Hideyuki; Uto, Yoshihiro; Nakagawa, Yoshinori; Kawashima, Ken; Hori, Hitoshi

    2003-01-01

    Gc protein is the precursor for Gc protein-derived macrophage activating factor (GcMAF), with three phenotypes: Gc1f, Gc1s and Gc2, based on its electrophoretic mobility. The difference in electrophoretic mobility is because of the difference in its posttranslational sugar moiety composition. We compared the difference between Gc protein and GcMAF electrophoretic mobility using the isoelectric focusing (IEF) method. The tumoricidal activity of GcMAF-treated macrophage was evaluated after coculture with L-929 cell. The tumoricidal mechanism was investigated using TNF bioassay and nitric oxide (NO) release. The difference in Gc protein and GcMAF electrophoretic mobility was detected. The tumoricidal activity of GcMAF-treated macrophage was detected, but no release of TNF and NO was detected. The difference of isoelectric focusing mobility in Gc protein and GcMAF would be useful to develop a GcMAF detection method. GcMAF increased macrophage tumoricidal activity but TNF and NO release were not involved in the mechanism.

  7. [Bone marrow stromal damage mediated by immune response activity].

    Science.gov (United States)

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis.

  8. Reduction of radiation-induced damage to salivary gland by bone marrow derived stem cells

    International Nuclear Information System (INIS)

    Coppes, R.P.; Wierenga, P.K.; Kampinga, H.H.; De Hann, G.

    2003-01-01

    Irradiation of the salivary glands can result in severe side effects that reduce the patient's quality of life. Late damage to the salivary glands is mainly caused by exhaustion of the tissue's stem cells. Post-irradiation replacement of salivary gland stem cells with healthy donor stem cells may reduce complications. Bone marrow derived stem cells (BMSC) have been show to be multipotent and engraft in many tissue after injury. In this study we assessed the potential of BMSC to reduce irradiation-induced salivary gland damage. The salivary glands of wild type C57Bl/6 mice were locally irradiated with 20 Gy. Thirty days later, BMSC from transgenic eGFP+ C57Bl/6 mice were transplanted by i.v. injection or by direct injection into the salivary glands. In addition, animals were transplanted with eGFP + bone marrow after 9.5 Gy TBI excluding the salivary glands. Subsequently, the animals were locally irradiated to the salivary gland with 20 Gy. Thirty days later i.v. G-CSF mobilised eGFP + bone marrow derived stem cells to the peripheral blood. Again thirty days after mobilisation, the salivary gland were harvested. eGFP + cells were detected by confocal laser fluorescence scanning microscopy and flow cytometry and H and E histology was performed. eGFP + cells were detected in the salivary gland after all protocols. The number of eGFP + cells in irradiated salivary glands was highest in animals treated with G-CSF. Intraglandular transplantation, in contrast, was successful only in 1 out of 8 attempts. Immuno-histochemistry using a-SM-actin antibodies showed the close vicinity of actin and eGFP within the cells, demonstrating the occurrence of BMSC derived myoepithelial cells in irradiated salivary gland. Further, cell-type specific antibodies will reveal the nature of all eGFP + cells. H and E histology revealed improved gland morphology in animals treated with G-CSF after irradiation when compared to the non-treated animals. These preliminary results indicate that bone

  9. The comparison of knee osteoarthritis treatment with single-dose bone marrow-derived mononuclear cells vs. hyaluronic acid injections.

    Science.gov (United States)

    Goncars, Valdis; Jakobsons, Eriks; Blums, Kristaps; Briede, Ieva; Patetko, Liene; Erglis, Kristaps; Erglis, Martins; Kalnberzs, Konstantins; Muiznieks, Indrikis; Erglis, Andrejs

    2017-01-01

    The aim of this study was to compare treatment methods of the knee joint degenerative osteoarthritis, using autologous bone marrow-derived mononuclear cells and hyaluronic acid injections and observe prevalence of adverse effects in both groups. A prospective randomized controlled clinical trial was carried out. The analysis of pain and changes in osteoarthritis symptoms after a single intra-articular bone marrow-derived mononuclear cell injection into the knee joint in the Kellgren-Lawrence stage II-III osteoarthritis during the 12-month period were performed. The results were compared with the control group treated routinely by hyaluronic acid injections therapy. A therapy group of patients (n=28) received single bone marrow-derived mononuclear cell intra-articular injections. A control group of patients (n=28) was treated with a total of three sodium hyaluronate intra-articular injections each one performed a week apart. The clinical results were obtained using the Knee Osteoarthritis Outcome Score (KOOS) and the Knee Society Score (KSS) before and 3, 6, and 12 months after injection. A statistically significant improvement was observed in the mononuclear cell group over the starting point in all scores. At the endpoint at month 12, the KOOS score improved significantly (Phyaluronic acid versus the bone marrow-derived mononuclear cells group at time points 6 and 12 months demonstrated a statistically significant (Phyaluronic acid group. In both groups serious adverse effects were not observed. The intra-articular injection of bone marrow-derived mononuclear cells is a safe manipulation with no side effects during the 12-month period. This treatment provides statistically significant clinical improvement between the starting point and 1, 3, 6, and 12 months after. When compared to hyaluronic acid treatment, better pain relief in the long-term period of mononuclear cell group was observed. Copyright © 2017 The Lithuanian University of Health Sciences. Production

  10. 4T1 Murine Mammary Carcinoma Cells Enhance Macrophage-Mediated Innate Inflammatory Responses.

    Directory of Open Access Journals (Sweden)

    Laurence Madera

    Full Text Available Tumor progression and the immune response are intricately linked. While it is known that cancers alter macrophage inflammatory responses to promote tumor progression, little is known regarding how cancers affect macrophage-dependent innate host defense. In this study, murine bone-marrow-derived macrophages (BMDM were exposed to murine carcinoma-conditioned media prior to assessment of the macrophage inflammatory response. BMDMs exposed to 4T1 mammary carcinoma-conditioned medium demonstrated enhanced production of pro-inflammatory cytokines tumor necrosis factor α, interleukin-6, and CCL2 in response to lipopolysaccharide (LPS while production of interleukin-10 remained unchanged. The increased LPS-induced production of pro-inflammatory cytokines was transient and correlated with enhanced cytokine production in response to other Toll-like receptor agonists, including peptidoglycan and flagellin. In addition, 4T1-conditioned BMDMs exhibited strengthened LPS-induced nitric oxide production and enhanced phagocytosis of Escherichia coli. 4T1-mediated augmentation of macrophage responses to LPS was partially dependent on the NFκB pathway, macrophage-colony stimulating factor, and actin polymerization, as well as the presence of 4T1-secreted extracellular vesicles. Furthermore, peritoneal macrophages obtained from 4T1 tumor-bearing mice displayed enhanced pro-inflammatory cytokine production in response to LPS. These results suggest that uptake of 4T1-secreted factors and actin-mediated ingestion of 4T1-secreted exosomes by macrophages cause a transient enhancement of innate inflammatory responses. Mammary carcinoma-mediated regulation of innate immunity may have significant implications for our understanding of host defense and cancer progression.

  11. Bone Marrow-Derived Cells as a Therapeutic Approach to Optic Nerve Diseases

    Directory of Open Access Journals (Sweden)

    Louise A. Mesentier-Louro

    2016-01-01

    Full Text Available Following optic nerve injury associated with acute or progressive diseases, retinal ganglion cells (RGCs of adult mammals degenerate and undergo apoptosis. These diseases have limited therapeutic options, due to the low inherent capacity of RGCs to regenerate and due to the inhibitory milieu of the central nervous system. Among the numerous treatment approaches investigated to stimulate neuronal survival and axonal extension, cell transplantation emerges as a promising option. This review focuses on cell therapies with bone marrow mononuclear cells and bone marrow-derived mesenchymal stem cells, which have shown positive therapeutic effects in animal models of optic neuropathies. Different aspects of available preclinical studies are analyzed, including cell distribution, potential doses, routes of administration, and mechanisms of action. Finally, published and ongoing clinical trials are summarized.

  12. Gly[14]-humanin inhibits ox-LDL uptake and stimulates cholesterol efflux in macrophage-derived foam cells.

    Science.gov (United States)

    Zhu, Wa-Wa; Wang, Shu-Rong; Liu, Zhi-Hua; Cao, Yong-Jun; Wang, Fen; Wang, Jing; Liu, Chun-Feng; Xie, Ying; Xie, Ying; Zhang, Yan-Lin

    2017-01-01

    Foam cell formation, which is caused by imbalanced cholesterol influx and efflux by macrophages, plays a vital role in the occurrence and development of atherosclerosis. Humanin (HN), a mitochondria-derived peptide, can prevent the production of reactive oxygen species and death of human aortic endothelial cells exposed to oxidized low-density lipoprotein (ox-LDL) and has a protective effect on patients with in early atherosclerosis. However, the effects of HN on the regulation of cholesterol metabolism in RAW 264.7 macrophages are still unknown. This study was designed to investigate the role of [Gly14]-humanin (HNG) in lipid uptake and cholesterol efflux in RAW 264.7 macrophages. Flow cytometry and live cell imaging results showed that HNG reduced Dil-ox-LDL accumulation in the RAW 264.7 macrophages. A similar result was obtained for lipid accumulation by measuring cellular cholesterol content. Western blot analysis showed that ox-LDL treatment upregulated not only the protein expression of CD36 and LOX-1, which mediate ox-LDL endocytosis, but also ATP-binding cassette (ABC) transporter A1 and ABCG1, which mediate ox-LDL exflux. HNG pretreatment inhibited the upregulation of CD36 and LOX-1 levels, prompting the upregulation of ABCA1 and ABCG1 levels induced by ox-LDL. Therefore we concluded that HNG could inhibit ox-LDL-induced macrophage-derived foam cell formation, which occurs because of a decrease in lipid uptake and an increase in cholesterol efflux from macrophage cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Regulation of endothelial cell adhesion molecule expression by mast cells, macrophages, and neutrophils.

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2011-01-01

    Full Text Available Leukocyte adhesion to the vascular endothelium and subsequent transendothelial migration play essential roles in the pathogenesis of cardiovascular diseases such as atherosclerosis. The leukocyte adhesion is mediated by localized activation of the endothelium through the action of inflammatory cytokines. The exact proinflammatory factors, however, that activate the endothelium and their cellular sources remain incompletely defined.Using bone marrow-derived mast cells from wild-type, Tnf(-/-, Ifng(-/-, Il6(-/- mice, we demonstrated that all three of these pro-inflammatory cytokines from mast cells induced the expression of vascular cell adhesion molecule-1 (VCAM-1, intercellular adhesion molecule-1 (ICAM-1, P-selectin, and E-selectin in murine heart endothelial cells (MHEC at both mRNA and protein levels. Compared with TNF-α and IL6, IFN-γ appeared weaker in the induction of the mRNA levels, but at protein levels, both IL6 and IFN-γ were weaker inducers than TNF-α. Under physiological shear flow conditions, mast cell-derived TNF-α and IL6 were more potent than IFN-γ in activating MHEC and in promoting neutrophil adhesion. Similar observations were made when neutrophils or macrophages were used. Neutrophils and macrophages produced the same sets of pro-inflammatory cytokines as did mast cells to induce MHEC adhesion molecule expression, with the exception that macrophage-derived IFN-γ showed negligible effect in inducing VCAM-1 expression in MHEC.Mast cells, neutrophils, and macrophages release pro-inflammatory cytokines such as TNF-α, IFN-γ, and IL6 that induce expression of adhesion molecules in endothelium and recruit of leukocytes, which is essential to the pathogenesis of vascular inflammatory diseases.

  14. Bone marrow-derived mesenchymal stem cells express the pericyte marker 3G5 in culture and show enhanced chondrogenesis in hypoxic conditions.

    Science.gov (United States)

    Khan, Wasim S; Adesida, Adetola B; Tew, Simon R; Lowe, Emma T; Hardingham, Timothy E

    2010-06-01

    Bone marrow-derived mesenchymal stem cells are a potential source of cells for the repair of articular cartilage defects. Hypoxia has been shown to improve chondrogenesis in some cells. In this study, bone marrow-derived stem cells were characterized and the effects of hypoxia on chondrogenesis investigated. Adherent bone marrow colony-forming cells were characterized for stem cell surface epitopes, and then cultured as cell aggregates in chondrogenic medium under normoxic (20% oxygen) or hypoxic (5% oxygen) conditions. The cells stained strongly for markers of adult mesenchymal stem cells, and a high number of cells were also positive for the pericyte marker 3G5. The cells showed a chondrogenic response in cell aggregate cultures and, in lowered oxygen, there was increased matrix accumulation of proteoglycan, but less cell proliferation. In hypoxia, there was increased expression of key transcription factor SOX6, and of collagens II and XI, and aggrecan. Pericytes are a candidate stem cell in many tissue, and our results show that bone marrow-derived mesenchymal stem cells express the pericyte marker 3G5. The response to chondrogenic culture in these cells was enhanced by lowered oxygen tension. This has important implications for tissue engineering applications of bone marrow-derived stem cells. (c) 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. Bioactive lipid coating of bone allografts directs engraftment and fate determination of bone marrow-derived cells in rat GFP chimeras.

    Science.gov (United States)

    Das, Anusuya; Segar, Claire E; Chu, Yihsuan; Wang, Tiffany W; Lin, Yong; Yang, Chunxi; Du, Xeujun; Ogle, Roy C; Cui, Quanjun; Botchwey, Edward A

    2015-09-01

    Bone grafting procedures are performed to treat wounds incurred during wartime trauma, accidents, and tumor resections. Endogenous mechanisms of repair are often insufficient to ensure integration between host and donor bone and subsequent restoration of function. We investigated the role that bone marrow-derived cells play in bone regeneration and sought to increase their contributions by functionalizing bone allografts with bioactive lipid coatings. Polymer-coated allografts were used to locally deliver the immunomodulatory small molecule FTY720 in tibial defects created in rat bone marrow chimeras containing genetically-labeled bone marrow for monitoring cell origin and fate. Donor bone marrow contributed significantly to both myeloid and osteogenic cells in remodeling tissue surrounding allografts. FTY720 coatings altered the phenotype of immune cells two weeks post-injury, which was associated with increased vascularization and bone formation surrounding allografts. Consequently, degradable polymer coating strategies that deliver small molecule growth factors such as FTY720 represent a novel therapeutic strategy for harnessing endogenous bone marrow-derived progenitors and enhancing healing in load-bearing bone defects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Bone Marrow Derivation of Interstitial Cells of Cajal in Small Intestine Following Intestinal Injury

    Directory of Open Access Journals (Sweden)

    Dengqun Liu

    2010-01-01

    Full Text Available Interstitial cells of Cajal (ICCs in gastrointestinal tract are specialized cells serving as pacemaker cells. The origin of ICCs is currently not fully characterized. In this work, we aimed to study whether bone marrow-derived cells (BMDCs could contribute to the origin of ICCs in the muscular plexus of small intestine using GFP-C57BL/6 chimeric mice.Engraftment of BMDCs in the intestine was investigated for GFP expression. GFP positive bone marrow mononuclear cells reached a proportion of 95.65%±3.72% at different times in chimerism. Donor-derived cells distributed widely in all the layers of the gastrointestinal tract. There were GFP positive BMDCs in the myenteric plexus, which resembled characteristics of ICCs, including myenteric location, c-Kit positive staining, and ramified morphology. Donor-derived ICCs in the myenteric plexus contributed to a percentage ranging 9.25%±4.9% of all the ICCs in the myenteric plexus. In conclusion, here we described that donor-derived BMDCs might differentiate into gastrointestinal ICCs after radiation injury, which provided an alternative source for the origin of the ICCs in the muscular plexus of adult intestine. These results further identified the plasticity of BMDCs and indicated therapeutic implications of BMDCs for the gastrointestinal dysmotility caused by ICCs disorders.

  17. Rotating three-dimensional dynamic culture of adult human bone marrow-derived cells for tissue engineering of hyaline cartilage.

    Science.gov (United States)

    Sakai, Shinsuke; Mishima, Hajime; Ishii, Tomoo; Akaogi, Hiroshi; Yoshioka, Tomokazu; Ohyabu, Yoshimi; Chang, Fei; Ochiai, Naoyuki; Uemura, Toshimasa

    2009-04-01

    The method of constructing cartilage tissue from bone marrow-derived cells in vitro is considered a valuable technique for hyaline cartilage regenerative medicine. Using a rotating wall vessel (RWV) bioreactor developed in a NASA space experiment, we attempted to efficiently construct hyaline cartilage tissue from human bone marrow-derived cells without using a scaffold. Bone marrow aspirates were obtained from the iliac crest of nine patients during orthopedic operation. After their proliferation in monolayer culture, the adherent cells were cultured in the RWV bioreactor with chondrogenic medium for 2 weeks. Cells from the same source were cultured in pellet culture as controls. Histological and immunohistological evaluations (collagen type I and II) and quantification of glycosaminoglycan were performed on formed tissues and compared. The engineered constructs obtained using the RWV bioreactor showed strong features of hyaline cartilage in terms of their morphology as determined by histological and immunohistological evaluations. The glycosaminoglycan contents per microg DNA of the tissues were 10.01 +/- 3.49 microg/microg DNA in the case of the RWV bioreactor and 6.27 +/- 3.41 microg/microg DNA in the case of the pellet culture, and their difference was significant. The RWV bioreactor could provide an excellent environment for three-dimensional cartilage tissue architecture that can promote the chondrogenic differentiation of adult human bone marrow-derived cells.

  18. The transcriptome of Legionella pneumophila-infected human monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Christopher T D Price

    Full Text Available Legionella pneumophila is an intracellular bacterial pathogen that invades and replicates within alveolar macrophages through injection of ∼ 300 effector proteins by its Dot/Icm type IV translocation apparatus. The bona fide F-box protein, AnkB, is a nutritional virulence effector that triggers macrophages to generate a surplus of amino acids, which is essential for intravacuolar proliferation. Therefore, the ankB mutant represents a novel genetic tool to determine the transcriptional response of human monocyte-derived macrophages (hMDMs to actively replicating L. pneumophila.Here, we utilized total human gene microarrays to determine the global transcriptional response of hMDMs to infection by wild type or the ankB mutant of L. pneumophila. The transcriptomes of hMDMs infected with either actively proliferating wild type or non-replicative ankB mutant bacteria were remarkably similar. The transcriptome of infected hMDMs was predominated by up-regulation of inflammatory pathways (IL-10 anti-inflammatory, interferon signaling and amphoterin signaling, anti-apoptosis, and down-regulation of protein synthesis pathways. In addition, L. pneumophila modulated diverse metabolic pathways, particularly those associated with bio-active lipid metabolism, and SLC amino acid transporters expression.Taken together, the hMDM transcriptional response to L. pneumophila is independent of intra-vacuolar replication of the bacteria and primarily involves modulation of the immune response and metabolic as well as nutritional pathways.

  19. Toll-Like Receptor 4 in Bone Marrow-Derived Cells Contributes to the Progression of Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2014-01-01

    Full Text Available Diabetic retinopathy (DR is a major microvascular complication in diabetics, and its mechanism is not fully understood. Toll-like receptor 4 (TLR4 plays a pivotal role in the maintenance of the inflammatory state during DR, and the deletion of TLR4 eventually alleviates the diabetic inflammatory state. To further elucidate the mechanism of DR, we used bone marrow transplantation to establish reciprocal chimeric animals of TLR4 mutant mice and TLR4 WT mice combined with diabetes mellitus (DM induction by streptozotocin (STZ treatment to identify the role of TLR4 in different cell types in the development of the proinflammatory state during DR. TLR4 mutation did not block the occurrence of high blood glucose after STZ injection compared with WT mice but did alleviate the progression of DR and alter the expression of the small vessel proliferation-related genes, vascular endothelial growth factor (VEGF, and hypoxia inducible factor-1α (HIF-1α. Grafting bone marrow-derived cells from TLR4 WT mice into TLR4 mutant mice increased the levels of TNF-α, IL-1β, and MIP-2 and increased the damage to the retina. Similarly, VEGF and HIF-1α expression were restored by the bone marrow transplantation. These findings identify an essential role for TLR4 in bone marrow-derived cells contributing to the progression of DR.

  20. Hyperglycemia induces mixed M1/M2 cytokine profile in primary human monocyte-derived macrophages.

    Science.gov (United States)

    Moganti, Kondaiah; Li, Feng; Schmuttermaier, Christina; Riemann, Sarah; Klüter, Harald; Gratchev, Alexei; Harmsen, Martin C; Kzhyshkowska, Julia

    2017-10-01

    Hyperglycaemia is a key factor in diabetic pathology. Macrophages are essential regulators of inflammation which can be classified into two major vectors of polarisation: classically activated macrophages (M1) and alternatively activated macrophages (M2). Both types of macrophages play a role in diabetes, where M1 and M2-produced cytokines can have detrimental effects in development of diabetes-associated inflammation and diabetic vascular complications. However, the effect of hyperglycaemia on differentiation and programming of primary human macrophages was not systematically studied. We established a unique model to assess the influence of hyperglycaemia on M1 and M2 differentiation based on primary human monocyte-derived macrophages. The effects of hyperglycaemia on the gene expression and secretion of prototype M1 cytokines TNF-alpha and IL-1beta, and prototype M2 cytokines IL-1Ra and CCL18 were quantified by RT-PCR and ELISA. Hyperglycaemia stimulated production of TNF-alpha, IL-1beta and IL-1Ra during macrophage differentiation. The effect of hyperglycaemia on TNF-alpha was acute, while the stimulating effect on IL-1beta and IL-1Ra was constitutive. Expression of CCL18 was supressed in M2 macrophages by hyperglycaemia. However the secreted levels remained to be biologically significant. Our data indicate that hyperglycaemia itself, without additional metabolic factors induces mixed M1/M2 cytokine profile that can support of diabetes-associated inflammation and development of vascular complications. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Bone marrow-derived multipotent mesenchymal stromal cells from horses after euthanasia.

    Science.gov (United States)

    Schröck, Carmen; Eydt, Carina; Geburek, Florian; Kaiser, Lena; Päbst, Felicitas; Burk, Janina; Pfarrer, Christiane; Staszyk, Carsten

    2017-11-01

    Allogeneic equine multipotent mesenchymal stromal cells (eMSCs) have been proposed for use in regenerative therapies in veterinary medicine. A source of allogeneic eMSCs might be the bone marrow from euthanized horses. The purpose of this study was to compare in vitro characteristics of equine bone marrow derived eMSC (eBM-MSCs) from euthanized horses (eut-MSCs) and from narcotized horses (nar-MSCs). Eut-MSCs and nar-MSCs showed typical eMSC marker profiles (positive: CD44, CD90; negative: CD11a/CD18 and MHCII) and possessed tri-lineage differentiation characteristics. Although CD105 and MHCI expression varied, no differences were detected between eut-MSCs and nar-MSCs. Proliferation characteristics did not differ between eut-MSCs and nar-MSCs, but age dependent decrease in proliferation and increase in MHCI expression was detected. These results suggest the possible use of eut-MSCs for therapeutic applications and production of commercial available eBM-MSC products.

  2. Nocardia brasiliensis induces formation of foamy macrophages and dendritic cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Irene Meester

    Full Text Available Foamy cells have been described in various infectious diseases, for example in actinomycetoma induced by Nocardia brasiliensis. These cells are generally considered to be macrophages, although they present dendritic cell (DC-specific surface markers. In this study, we determined and confirmed the lineage of possible precursors of foamy cells in vitro and in vivo using an experimental actinomycetoma model in BALB/c mice. Bone marrow-derived macrophages (BMDM or DC (BMDC were infected in vitro with N. brasiliensis or labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE. Both, macrophages and DC, differentiated into foamy cells after in vitro infection. CFSE-labeled BMDM or BMDC were tested for phagocytosis and CD11c/CD11b receptors markers expression before being transferred into the actinomycetoma lesion site of infected mice. In vivo studies showed that BMDM and BMDC were traced at the site where foamy cells are present in the experimental actinomycetoma. Interestingly, many of the transferred BMDM and BMDC were stained with the lipid-droplet fluorophore Nile Red. In conclusion, macrophages and DC cells can be differentiated into foamy cells in vitro and in vivo during N. brasiliensis infection.

  3. Nocardia brasiliensis induces formation of foamy macrophages and dendritic cells in vitro and in vivo.

    Science.gov (United States)

    Meester, Irene; Rosas-Taraco, Adrian Geovanni; Salinas-Carmona, Mario Cesar

    2014-01-01

    Foamy cells have been described in various infectious diseases, for example in actinomycetoma induced by Nocardia brasiliensis. These cells are generally considered to be macrophages, although they present dendritic cell (DC)-specific surface markers. In this study, we determined and confirmed the lineage of possible precursors of foamy cells in vitro and in vivo using an experimental actinomycetoma model in BALB/c mice. Bone marrow-derived macrophages (BMDM) or DC (BMDC) were infected in vitro with N. brasiliensis or labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE). Both, macrophages and DC, differentiated into foamy cells after in vitro infection. CFSE-labeled BMDM or BMDC were tested for phagocytosis and CD11c/CD11b receptors markers expression before being transferred into the actinomycetoma lesion site of infected mice. In vivo studies showed that BMDM and BMDC were traced at the site where foamy cells are present in the experimental actinomycetoma. Interestingly, many of the transferred BMDM and BMDC were stained with the lipid-droplet fluorophore Nile Red. In conclusion, macrophages and DC cells can be differentiated into foamy cells in vitro and in vivo during N. brasiliensis infection.

  4. Rac2 controls tumor growth, metastasis and M1-M2 macrophage differentiation in vivo.

    Directory of Open Access Journals (Sweden)

    Shweta Joshi

    Full Text Available Although it is well-established that the macrophage M1 to M2 transition plays a role in tumor progression, the molecular basis for this process remains incompletely understood. Herein, we demonstrate that the small GTPase, Rac2 controls macrophage M1 to M2 differentiation and the metastatic phenotype in vivo. Using a genetic approach, combined with syngeneic and orthotopic tumor models we demonstrate that Rac2-/- mice display a marked defect in tumor growth, angiogenesis and metastasis. Microarray, RT-PCR and metabolomic analysis on bone marrow derived macrophages isolated from the Rac2-/- mice identify an important role for Rac2 in M2 macrophage differentiation. Furthermore, we define a novel molecular mechanism by which signals transmitted from the extracellular matrix via the α4β1 integrin and MCSF receptor lead to the activation of Rac2 and potentially regulate macrophage M2 differentiation. Collectively, our findings demonstrate a macrophage autonomous process by which the Rac2 GTPase is activated downstream of the α4β1 integrin and the MCSF receptor to control tumor growth, metastasis and macrophage differentiation into the M2 phenotype. Finally, using gene expression and metabolomic data from our Rac2-/- model, and information related to M1-M2 macrophage differentiation curated from the literature we executed a systems biologic analysis of hierarchical protein-protein interaction networks in an effort to develop an iterative interactome map which will predict additional mechanisms by which Rac2 may coordinately control macrophage M1 to M2 differentiation and metastasis.

  5. Autophagy deficiency in macrophages enhances NLRP3 inflammasome activity and chronic lung disease following silica exposure

    International Nuclear Information System (INIS)

    Jessop, Forrest; Hamilton, Raymond F.; Rhoderick, Joseph F.; Shaw, Pamela K.; Holian, Andrij

    2016-01-01

    Autophagy is an important metabolic mechanism that can promote cellular survival following injury. The specific contribution of autophagy to silica-induced inflammation and disease is not known. The objective of these studies was to determine the effects of silica exposure on the autophagic pathway in macrophages, as well as the general contribution of autophagy in macrophages to inflammation and disease. Silica exposure enhanced autophagic activity in vitro in Bone Marrow derived Macrophages and in vivo in Alveolar Macrophages isolated from silica-exposed mice. Impairment of autophagy in myeloid cells in vivo using Atg5 fl/fl LysM-Cre + mice resulted in enhanced cytotoxicity and inflammation after silica exposure compared to littermate controls, including elevated IL-18 and the alarmin HMGB1 in the whole lavage fluid. Autophagy deficiency caused some spontaneous inflammation and disease. Greater silica-induced acute inflammation in Atg5 fl/fl LysM-Cre + mice correlated with increased fibrosis and chronic lung disease. These studies demonstrate a critical role for autophagy in suppressing silica-induced cytotoxicity and inflammation in disease development. Furthermore, this data highlights the importance of basal autophagy in macrophages and other myeloid cells in maintaining lung homeostasis. - Highlights: • Silica exposure increases autophagy in macrophages. • Autophagy deficient mice have enhanced inflammation and silicosis. • Autophagy deficiency in macrophages results in greater silica-induced cytotoxicity. • Autophagy deficiency in macrophages increases extracellular IL-18 and HMGB1.

  6. The role of TREM-2 in internalization and intracellular survival of Brucella abortus in murine macrophages.

    Science.gov (United States)

    Wei, Pan; Lu, Qiang; Cui, Guimei; Guan, Zhenhong; Yang, Li; Sun, Changjiang; Sun, Wanchun; Peng, Qisheng

    2015-02-15

    Triggering receptor expressed on myeloid cells-2 (TREM-2) is a cell surface receptor primarily expressed on macrophages and dendritic cells. TREM-2 functions as a phagocytic receptor for bacteria as well as an inhibitor of Toll like receptors (TLR) induced inflammatory cytokines. However, the role of TREM-2 in Brucella intracellular growth remains unknown. To investigate whether TREM-2 is involved in Brucella intracellular survival, we chose bone marrow derived macrophages (BMDMs), in which TREM-2 is stably expressed, as cell model. Colony formation Units (CFUs) assay suggests that TREM-2 is involved in the internalization of Brucella abortus (B. abortus) by macrophages, while silencing of TREM-2 decreases intracellular survival of B. abortus. To further study the underlying mechanisms of TREM-2-mediated bacterial intracellular survival, we examined the activation of B. abortus-infected macrophages through determining the kinetics of activation of the three MAPKs, including ERK, JNK and p38, and measuring TNFα production in response to lipopolysaccharide (LPS) of Brucella (BrLPS) or B. abortus stimulation. Our data show that TREM-2 deficiency promotes activation of Brucella-infected macrophages. Moreover, our data also demonstrate that macrophage activation promotes killing of Brucella by enhancing nitric oxygen (NO), but not reactive oxygen species (ROS) production, macrophage apoptosis or cellular death. Taken together, these findings provide a novel interpretation of Brucella intracellular growth through inhibition of NO production produced by TREM-2-mediated activated macrophages. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Effect of Vibrio cholerae neuraminidase on the mitogen response of T lymphocytes. I. Enhancement of macrophage T-lymphocyte cooperation in concanavalin-A-induced lymphocyte activation.

    Science.gov (United States)

    Knop, J

    1980-12-01

    Vibrio cholerae neuraminidase (VCN) enhances the immune response of lymphocytes in various systems, such as antigen- and mitogen-induced blastogenesis, mixed lymphocyte culture (MLC) and tumor-cell response. We used macrophage-depleted and reconstituted murine lymph-node T-cells to investigate the effect of VCN on macrophage-T-lymphocyte co-operation in Con-A-induced lymphocyte activation. In unfractionated lymph-node cells VCN enhanced the Con-A-induced lymphocyte activation as measured by 3H-thymidine (3H-dThd) incorporation. Removing macrophages from the cells resulted in a significantly diminished response. In addition the enhancing effect of VCN was greatly reduced. Reconstitution of the lymphocyte cultures with macrophages in increasing numbers and from various sources rstored the lymphocyte response and the enhancing effect of VCN. VCN proved to be most efficient in cultures reconstituted with normal peritoneal macrophages. Some effect was also observed using bone-marrow-derived (BM) macrophages. However, higher numbers of normal PE macrophages in the presence of VCN inhibited lymphocyte activation, and inhibition by thioglycollate-broth-induced macrophages was considerably increased by VCN. These results suggest that VCN acts by increasing the efficiency of macrophage-T lymphocyte interaction.

  8. Macrophage activation and differentiation signals regulate schlafen-4 gene expression: evidence for Schlafen-4 as a modulator of myelopoiesis.

    Directory of Open Access Journals (Sweden)

    Wendy J van Zuylen

    Full Text Available BACKGROUND: The ten mouse and six human members of the Schlafen (Slfn gene family all contain an AAA domain. Little is known of their function, but previous studies suggest roles in immune cell development. In this report, we assessed Slfn regulation and function in macrophages, which are key cellular regulators of innate immunity. METHODOLOGY/PRINCIPAL FINDINGS: Multiple members of the Slfn family were up-regulated in mouse bone marrow-derived macrophages (BMM by the Toll-like Receptor (TLR4 agonist lipopolysaccharide (LPS, the TLR3 agonist Poly(I∶C, and in disease-affected joints in the collagen-induced model of rheumatoid arthritis. Of these, the most inducible was Slfn4. TLR agonists that signal exclusively through the MyD88 adaptor protein had more modest effects on Slfn4 mRNA levels, thus implicating MyD88-independent signalling and autocrine interferon (IFN-β in inducible expression. This was supported by the substantial reduction in basal and LPS-induced Slfn4 mRNA expression in IFNAR-1⁻/⁻ BMM. LPS causes growth arrest in macrophages, and other Slfn family genes have been implicated in growth control. Slfn4 mRNA levels were repressed during macrophage colony-stimulating factor (CSF-1-mediated differentiation of bone marrow progenitors into BMM. To determine the role of Slfn4 in vivo, we over-expressed the gene specifically in macrophages in mice using a csf1r promoter-driven binary expression system. Transgenic over-expression of Slfn4 in myeloid cells did not alter macrophage colony formation or proliferation in vitro. Monocyte numbers, as well as inflammatory macrophages recruited to the peritoneal cavity, were reduced in transgenic mice that specifically over-expressed Slfn4, while macrophage numbers and hematopoietic activity were increased in the livers and spleens. CONCLUSIONS: Slfn4 mRNA levels were up-regulated during macrophage activation but down-regulated during differentiation. Constitutive Slfn4 expression in the

  9. Enhancement of the repair of dog alveolar cleft by an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture.

    Science.gov (United States)

    Yuanzheng, Chen; Yan, Gao; Ting, Li; Yanjie, Fu; Peng, Wu; Nan, Bai

    2015-05-01

    Autologous bone graft has been regarded as the criterion standard for the repair of alveolar cleft. However, the most prominent issue in alveolar cleft treatment is the high absorption rate of the bone graft. The authors' objective was to investigate the effects of an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture on the repair of dog alveolar cleft. Twenty beagle dogs with unilateral alveolar clefts created by surgery were divided randomly into four groups: group A underwent repair with an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture; group B underwent repair with autologous iliac bone and bone marrow-derived mesenchymal stem cells; group C underwent repair with autologous iliac bone and platelet-rich fibrin; and group D underwent repair with autologous iliac bone as the control. One day and 6 months after transplantation, the transplant volumes and bone mineral density were assessed by quantitative computed tomography. All of the transplants were harvested for hematoxylin and eosin staining 6 months later. Bone marrow-derived mesenchymal stem cells and platelet-rich fibrin transplants formed the greatest amounts of new bone among the four groups. The new bone formed an extensive union with the underlying maxilla in groups A, B, and C. Transplants with the bone marrow-derived mesenchymal stem cells, platelet-rich fibrin, and their mixture retained the majority of their initial volume, whereas the transplants in the control group showed the highest absorption rate. Bone mineral density of transplants with the bone marrow-derived mesenchymal stem cells, platelet-rich fibrin, and their mixture 6 months later was significantly higher than in the control group (p platelet-rich fibrin mixed transplants. Hematoxylin and eosin staining showed that the structure of new bones formed the best in group A. Both bone marrow-derived mesenchymal stem cells and platelet

  10. Key Role of the Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate Responses of Macrophages.

    Science.gov (United States)

    Maler, Mareike D; Nielsen, Peter J; Stichling, Nicole; Cohen, Idan; Ruzsics, Zsolt; Wood, Connor; Engelhard, Peggy; Suomalainen, Maarit; Gyory, Ildiko; Huber, Michael; Müller-Quernheim, Joachim; Schamel, Wolfgang W A; Gordon, Siamon; Jakob, Thilo; Martin, Stefan F; Jahnen-Dechent, Willi; Greber, Urs F; Freudenberg, Marina A; Fejer, György

    2017-08-01

    The scavenger receptor MARCO is expressed in several subsets of naive tissue-resident macrophages and has been shown to participate in the recognition of various bacterial pathogens. However, the role of MARCO in antiviral defense is largely unexplored. Here, we investigated whether MARCO might be involved in the innate sensing of infection with adenovirus and recombinant adenoviral vectors by macrophages, which elicit vigorous immune responses in vivo Using cells derived from mice, we show that adenovirus infection is significantly more efficient in MARCO-positive alveolar macrophages (AMs) and in AM-like primary macrophage lines (Max Planck Institute cells) than in MARCO-negative bone marrow-derived macrophages. Using antibodies blocking ligand binding to MARCO, as well as gene-deficient and MARCO-transfected cells, we show that MARCO mediates the rapid adenovirus transduction of macrophages. By enhancing adenovirus infection, MARCO contributes to efficient innate virus recognition through the cytoplasmic DNA sensor cGAS. This leads to strong proinflammatory responses, including the production of interleukin-6 (IL-6), alpha/beta interferon, and mature IL-1α. These findings contribute to the understanding of viral pathogenesis in macrophages and may open new possibilities for the development of tools to influence the outcome of infection with adenovirus or adenovirus vectors. IMPORTANCE Macrophages play crucial roles in inflammation and defense against infection. Several macrophage subtypes have been identified with differing abilities to respond to infection with both natural adenoviruses and recombinant adenoviral vectors. Adenoviruses are important respiratory pathogens that elicit vigorous innate responses in vitro and in vivo The cell surface receptors mediating macrophage type-specific adenovirus sensing are largely unknown. The scavenger receptor MARCO is expressed on some subsets of naive tissue-resident macrophages, including lung alveolar macrophages

  11. Activated human mast cells induce LOX-1-specific scavenger receptor expression in human monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Mervi Alanne-Kinnunen

    Full Text Available Activated mast cells in atherosclerotic lesions degranulate and release bioactive compounds capable of regulating atherogenesis. Here we examined the ability of activated human primary mast cells to regulate the expression of the major scavenger receptors in cultured human primary monocyte-derived macrophages (HMDMs.Components released by immunologically activated human primary mast cells induced a transient expression of lectin-like oxidized LDL receptor (LOX-1 mRNA in HMDMs, while the expression of two other scavenger receptors, MSR1 and CD36, remained unaffected. The LOX-1-inducing secretory components were identified as histamine, tumor necrosis factor alpha (TNF-α, and transforming growth factor beta (TGF-β1, which exhibited a synergistic effect on LOX-1 mRNA expression. Histamine induced a transient expression of LOX-1 protein. Mast cell -induced increase in LOX-1 expression was not associated with increased uptake of oxidized LDL by the macrophages.Mast cell-derived histamine, TNF-α, and TGF-β1 act in concert to induce a transient increase in LOX-1 expression in human primary monocyte-derived macrophages. The LOX-1-inducing activity potentially endows mast cells a hitherto unrecognized role in the regulation of innate immune reactions in atherogenesis.

  12. Functional paralysis of GM-CSF-derived bone marrow cells productively infected with ectromelia virus.

    Directory of Open Access Journals (Sweden)

    Lidia Szulc-Dąbrowska

    Full Text Available Ectromelia virus (ECTV is an orthopoxvirus responsible for mousepox, a lethal disease of certain strains of mice that is similar to smallpox in humans, caused by variola virus (VARV. ECTV, similar to VARV, exhibits a narrow host range and has co-evolved with its natural host. Consequently, ECTV employs sophisticated and host-specific strategies to control the immune cells that are important for induction of antiviral immune response. In the present study we investigated the influence of ECTV infection on immune functions of murine GM-CSF-derived bone marrow cells (GM-BM, comprised of conventional dendritic cells (cDCs and macrophages. Our results showed for the first time that ECTV is able to replicate productively in GM-BM and severely impaired their innate and adaptive immune functions. Infected GM-BM exhibited dramatic changes in morphology and increased apoptosis during the late stages of infection. Moreover, GM-BM cells were unable to uptake and process antigen, reach full maturity and mount a proinflammatory response. Inhibition of cytokine/chemokine response may result from the alteration of nuclear translocation of NF-κB, IRF3 and IRF7 transcription factors and down-regulation of many genes involved in TLR, RLR, NLR and type I IFN signaling pathways. Consequently, GM-BM show inability to stimulate proliferation of purified allogeneic CD4+ T cells in a primary mixed leukocyte reaction (MLR. Taken together, our data clearly indicate that ECTV induces immunosuppressive mechanisms in GM-BM leading to their functional paralysis, thus compromising their ability to initiate downstream T-cell activation events.

  13. Fusion between Intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming.

    Science.gov (United States)

    Powell, Anne E; Anderson, Eric C; Davies, Paige S; Silk, Alain D; Pelz, Carl; Impey, Soren; Wong, Melissa H

    2011-02-15

    The most deadly phase in cancer progression is attributed to the inappropriate acquisition of molecular machinery leading to metastatic transformation and spread of disease to distant organs. Although it is appreciated that metastasis involves epithelial-mesenchymal interplay, the underlying mechanism defining this process is poorly understood. Specifically, how cancer cells evade immune surveillance and gain the ability to navigate the circulatory system remains a focus. One possible mechanism underlying metastatic conversion is fusion between blood-derived immune cells and cancer cells. While this notion is a century old, in vivo evidence that cell fusion occurs within tumors and imparts genetic or physiologic changes remains controversial. We have previously demonstrated in vivo cell fusion between blood cells and intestinal epithelial cells in an injury setting. Here, we hypothesize that immune cells, such as macrophages, fuse with tumor cells imparting metastatic capabilities by transferring their cellular identity. We used parabiosis to introduce fluorescent-labeled bone marrow-derived cells to mice with intestinal tumors, finding that fusion between circulating blood-derived cells and tumor epithelium occurs during the natural course of tumorigenesis. Moreover, we identify the macrophage as a key cellular partner for this process. Interestingly, cell fusion hybrids retain a transcriptome identity characteristic of both parental derivatives, while also expressing a unique subset of transcripts. Our data supports the novel possibility that tumorigenic cell fusion may impart physical behavior attributed to migratory macrophages, including navigation of circulation and immune evasion. As such, cell fusion may represent a promising novel mechanism underlying the metastatic conversion of cancer cells. ©2011 AACR.

  14. Efficient, long term production of monocyte-derived macrophages from human pluripotent stem cells under partly-defined and fully-defined conditions.

    Directory of Open Access Journals (Sweden)

    Bonnie van Wilgenburg

    Full Text Available Human macrophages are specialised hosts for HIV-1, dengue virus, Leishmania and Mycobacterium tuberculosis. Yet macrophage research is hampered by lack of appropriate cell models for modelling infection by these human pathogens, because available myeloid cell lines are, by definition, not terminally differentiated like tissue macrophages. We describe here a method for deriving monocytes and macrophages from human Pluripotent Stem Cells which improves on previously published protocols in that it uses entirely defined, feeder- and serum-free culture conditions and produces very consistent, pure, high yields across both human Embryonic Stem Cell (hESC and multiple human induced Pluripotent Stem Cell (hiPSC lines over time periods of up to one year. Cumulatively, up to ∼3×10(7 monocytes can be harvested per 6-well plate. The monocytes produced are most closely similar to the major blood monocyte (CD14(+, CD16(low, CD163(+. Differentiation with M-CSF produces macrophages that are highly phagocytic, HIV-1-infectable, and upon activation produce a pro-inflammatory cytokine profile similar to blood monocyte-derived macrophages. Macrophages are notoriously hard to genetically manipulate, as they recognise foreign nucleic acids; the lentivector system described here overcomes this, as pluripotent stem cells can be relatively simply genetically manipulated for efficient transgene expression in the differentiated cells, surmounting issues of transgene silencing. Overall, the method we describe here is an efficient, effective, scalable system for the reproducible production and genetic modification of human macrophages, facilitating the interrogation of human macrophage biology.

  15. Bone marrow-derived versus parenchymal sources of inducible nitric oxide synthase in experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Zehntner, Simone P; Bourbonniere, Lyne; Hassan-Zahraee, Mina

    2004-01-01

    . These discrepancies may reflect balance between immunoregulatory and neurocytopathologic roles for NO. We investigated selective effects of bone marrow-derived versus CNS parenchymal sources of iNOS in EAE in chimeric mice. Chimeras that selectively expressed or ablated iNOS in leukocytes both showed significant...

  16. Hypoxia-Induced Mitogenic Factor (HIMF/FIZZ1/RELM?) Recruits Bone Marrow-Derived Cells to the Murine Pulmonary Vasculature

    OpenAIRE

    Angelini, Daniel J.; Su, Qingning; Kolosova, Irina A.; Fan, Chunling; Skinner, John T.; Yamaji-Kegan, Kazuyo; Collector, Michael; Sharkis, Saul J.; Johns, Roger A.

    2010-01-01

    Background Pulmonary hypertension (PH) is a disease of multiple etiologies with several common pathological features, including inflammation and pulmonary vascular remodeling. Recent evidence has suggested a potential role for the recruitment of bone marrow-derived (BMD) progenitor cells to this remodeling process. We recently demonstrated that hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM?) is chemotactic to murine bone marrow cells in vitro and involved in pulmonary vascular remodeling ...

  17. Long-term engraftment of bone marrow-derived cells in the intimal hyperplasia lesion of autologous vein grafts.

    Science.gov (United States)

    Diao, Yanpeng; Guthrie, Steve; Xia, Shen-Ling; Ouyang, Xiaosen; Zhang, Li; Xue, Jing; Lee, Pui; Grant, Maria; Scott, Edward; Segal, Mark S

    2008-03-01

    Intimal hyperplasia of autologous vein grafts is a critical problem affecting the long-term patency of many types of vascular reconstruction. Within intimal hyperplasia lesions, smooth muscle cells are a major component, playing an essential role in the pathological process. Given that bone marrow-derived cells may differentiate into smooth muscle cells in the neointima of injured arteries, we hypothesized that the bone marrow may serve as a source for some of the smooth muscle cells within intimal hyperplasia lesions of vein grafts. To test this hypothesis, we used an established mouse model for intimal hyperplasia in wild-type mice that had been transplanted with bone marrow from a green fluorescent protein (GFP+/+) transgenic mouse. High-resolution confocal microscopy analysis performed 2 and 8 weeks after grafting demonstrated expression of GFP in 5.4 +/- 0.8% and 11.9 +/- 2.3%, respectively, of smooth muscle cells within intimal hyperplasia lesions. By 16 weeks, GFP expression in smooth muscle cells was not detected by immunohistochemistry; however, real-time PCR revealed that 20.2 +/- 1.7% of the smooth muscle cells captured from the neointima lesion by laser capture microdissection at 16 weeks contained GFP DNA. Our results suggest that bone marrow-derived cells differentiated into smooth muscle cells within the intimal lesion and may provide a novel clinical approach for decreasing intimal hyperplasia in vein grafts.

  18. Bone marrow-derived T lymphocytes responsible for allograft rejection

    International Nuclear Information System (INIS)

    Senjanovic, M.; Marusic, M.

    1984-01-01

    Lethally irradiated mice reconstituted with syngeneic bone marrow cells were grafted with allogeneic skin grafts 6-7 weeks after irradiation and reconstitution. Mice with intact thymuses rejected the grafts whereas the mice thymectomized before irradiation and reconstitution did not. Thymectomized irradiated mice (TIR mice) reconstituted with bone marrow cells from donors immune to the allografts rejected the grafts. Bone marrow cells from immunized donors, pretreated with Thy 1.2 antibody and C', did not confer immunity to TIR recipients. To determine the number of T lymphocytes necessary for the transfer of immunity by bone marrow cells from immunized donors, thymectomized irradiated mice were reconstituted with nonimmune bone marrow cells treated with Thy 1.2 antibody and C' and with various numbers of splenic T lymphocytes from nonimmune and immune donors. Allogeneic skin graft rejection was obtained with 10(6) nonimmune or 10(4) immune T cells. The effect of immune T cells was specific: i.e., immune T cells accelerated only rejection of the relevant skin grafts whereas against a third-party skin grafts acted as normal T lymphocytes

  19. Can bone marrow differentiate into renal cells?

    Science.gov (United States)

    Imai, Enyu; Ito, Takahito

    2002-10-01

    A considerable plasticity of adult stem cells has been confirmed in a wide variety of tissues. In particular, the pluripotency of bone marrow-derived stem cells may influence the regeneration of injured tissues and may provide novel avenues in regenerative medicine. Bone marrow contains at least hematopoietic and mesenchymal stem cells, and both can differentiate into a wide range of differentiated cells. Side population (SP) cells, which are originally defined in bone marrow cells by high efflux of DNA-binding dye, seem to be a new class of multipotent stem cells. Irrespective of the approach used to obtain stem cells, the fates of marrow-derived cells following bone marrow transplantation can be traced by labeling donor cells with green fluorescence protein or by identifying donor Y chromosome in female recipients. So far, bone marrow-derived cells have been reported to differentiate into renal cells, including mesangial cells, endothelial cells, podocytes, and tubular cells in the kidney, although controversy exists. Further studies are required to address this issue. Cell therapy will be promising when we learn to control stem cells such as bone marrow-derived stem cells, embryonic stem cells, and resident stem cells in the kidney. Identification of factors that support stem cells or promote their differentiation should provide a relevant step towards cell therapy.

  20. One in vitro model for visceral adipose-derived fibroblasts in chronic inflammation

    International Nuclear Information System (INIS)

    Yue Guiping; Du Lirui; Xia Tao; He Xianhui; Qiu Huan; Xu Lihui; Chen Xiaodong; Feng Shengqiu; Yang Zaiqing

    2005-01-01

    One pathogenesis of the obesity-associated complications is that consistent with increased body fat mass, the elevation of adipose tissue-derived cytokines inflicts a low-grade chronic inflammation, which ultimately leads to metabolic disorders. Adipocytes and macrophages in visceral adipose (VA) have been confirmed to contribute to the chronic inflammation; however, the role of the resident fibroblasts is still unknown. We established one VA fibroblast cell line, termed VAFC. Morphological analysis indicated that there were large numbers of pits at the cell plasma membrane. In vitro VAFC cells promoted bone marrow cells to differentiate into macrophages and protected them from apoptosis in the serum-free conditions. Additionally, they also interfered in lymphocytes proliferation. On the basis of these results, this cell line might be an in vitro model for understanding the role of adipose-derived fibroblasts in obesity-associated chronic inflammation

  1. Bone marrow-derived mesenchymal stem cells versus adipose-derived mesenchymal stem cells for peripheral nerve regeneration

    Directory of Open Access Journals (Sweden)

    Marcela Fernandes

    2018-01-01

    Full Text Available Studies have confirmed that bone marrow-derived mesenchymal stem cells (MSCs can be used for treatment of several nervous system diseases. However, isolation of bone marrow-derived MSCs (BMSCs is an invasive and painful process and the yield is very low. Therefore, there is a need to search for other alterative stem cell sources. Adipose-derived MSCs (ADSCs have phenotypic and gene expression profiles similar to those of BMSCs. The production of ADSCs is greater than that of BMSCs, and ADSCs proliferate faster than BMSCs. To compare the effects of venous grafts containing BMSCs or ADSCs on sciatic nerve injury, in this study, rats were randomly divided into four groups: sham (only sciatic nerve exposed, Matrigel (MG; sciatic nerve injury + intravenous transplantation of MG vehicle, ADSCs (sciatic nerve injury + intravenous MG containing ADSCs, and BMSCs (sciatic nerve injury + intravenous MG containing BMSCs groups. Sciatic functional index was calculated to evaluate the function of injured sciatic nerve. Morphologic characteristics of nerves distal to the lesion were observed by toluidine blue staining. Spinal motor neurons labeled with Fluoro-Gold were quantitatively assessed. Compared with sham-operated rats, sciatic functional index was lower, the density of small-diameter fibers was significantly increased, and the number of motor neurons significantly decreased in rats with sciatic nerve injury. Neither ADSCs nor BMSCs significantly improved the sciatic nerve function of rats with sciatic nerve injury, increased fiber density, fiber diameters, axonal diameters, myelin sheath thickness, and G ratios (axonal diameter/fiber diameter ratios in the sciatic nerve distal to the lesion site. There was no significant difference in the number of spinal motor neurons among ADSCs, BMSCs and MG groups. These results suggest that neither BMSCs nor ADSCs provide satisfactory results for peripheral nerve repair when using MG as the conductor for

  2. Oral contraceptives modify DNA methylation and monocyte-derived macrophage function

    Directory of Open Access Journals (Sweden)

    Campesi Ilaria

    2012-01-01

    Full Text Available Abstract Background Fertile women may be encouraged to use contraception during clinical trials to avoid potential drug effects on fetuses. However, hormonal contraception interferes with pharmacokinetics and pharmacodynamics and modifies internal milieus. Macrophages depend on the milieu to which they are exposed. Therefore, we assessed whether macrophage function would be affected by the use of combined oral contraceptives (OCs and if this influence depended on the androgenic or non-androgenic properties of progestin. Methods Healthy adult women were enrolled and stratified into two groups: women who did not use OCs (Fs and women treated with OCs (FOCs. FOCs were further stratified as a function of androgenic (FOCA+ and non-androgenic (FOCA- properties of progestins. Routine hematological, biochemical, inflammatory and endothelial dysfunction parameters were measured. Monocyte-derived macrophages (MDMs were evaluated for the expression and activity of estrogen receptors and androgen receptors, and release of tumor necrosis factor α (TNFα was measured from unstimulated and lipopolysaccharide-stimulated cells. Results As is already known, the use of OCs changed numerous parameters: the number of lymphocytes, iron levels, total iron-binding capacity of transferrin, triglycerides, high-density lipoprotein, total cholesterol, and C-reactive protein increased, while prothrombin time and alkaline phosphatase decreased. Hormonal levels also varied: cortisol was higher in FOCs, while luteinizing hormone, follicle-stimulating hormone, and testosterone were lower in FOCs. Asymmetric dimethylarginine, an index of endothelial function, was lower in FOC than in Fs, as were cysteine and bilirubin. The androgenic properties of progestins affected the activity of OCs: in particular, white blood cell count, hemoglobin, high-density lipoprotein and calcium were higher in FOCA- than in FOCA+, whereas percentage oxygen saturation and γ-glutamyl transpeptidase

  3. The improvement of M1 polarization in macrophages by glycopeptide derived from Ganoderma lucidum.

    Science.gov (United States)

    Sun, Li-Xin; Lin, Zhi-Bin; Lu, Jie; Li, Wei-Dong; Niu, Yan-Dong; Sun, Yu; Hu, Chen-Yang; Zhang, Guo-Qiang; Duan, Xin-Suo

    2017-06-01

    Ganoderma lucidum (Fr.) Karst (Ganodermataceae) is a medicinal mushroom that has been extensively used in China for centuries to promote longevity and improve vigor without significant adverse effects. There is continuous interest in the bioactive properties of G. lucidum in view of its newly developed popularity in other regions besides Asia, such as Europe. Glycopeptide derived from G. lucidum (Gl-PS) is one of the main effective components isolated from this mushroom. The Gl-PS has been demonstrated pleiotropic with many bioactivities including immunomodulatory and antitumor effects. Macrophages are important cells involved in innate and adaptive immunity. Classically activated macrophages (M1) and alternatively activated macrophages (M2), with their different roles, display distinct cytokine profiles: M1 preferentially produces TNF-α, IL-6, and IL-12; conversely, M2 generates more IL-10 and arginase. Gl-PS might have the potential to promote macrophage M1 polarization by lipopolysaccharide (LPS). In this study, LPS was used to induce the M1 polarization. It was shown that the level of the TNF-α, IL-6, and IL-12 were increased and the IL-10 and arginase I were decreased in the polarized M1 macrophages after application of Gl-PS compared to the control. The results indicated the potential of Gl-PS to promote M1 polarization vs M2, with the health beneficial understanding of the bioactivities of Gl-PS.

  4. Bone marrow stromal cell transplantation mitigates radiation-induced gastrointestinal syndrome in mice.

    Directory of Open Access Journals (Sweden)

    Subhrajit Saha

    Full Text Available Nuclear accidents and terrorism presents a serious threat for mass casualty. While bone-marrow transplantation might mitigate hematopoietic syndrome, currently there are no approved medical countermeasures to alleviate radiation-induced gastrointestinal syndrome (RIGS, resulting from direct cytocidal effects on intestinal stem cells (ISC and crypt stromal cells. We examined whether bone marrow-derived adherent stromal cell transplantation (BMSCT could restitute irradiated intestinal stem cells niche and mitigate radiation-induced gastrointestinal syndrome.Autologous bone marrow was cultured in mesenchymal basal medium and adherent cells were harvested for transplantation to C57Bl6 mice, 24 and 72 hours after lethal whole body irradiation (10.4 Gy or abdominal irradiation (16-20 Gy in a single fraction. Mesenchymal, endothelial and myeloid population were characterized by flow cytometry. Intestinal crypt regeneration and absorptive function was assessed by histopathology and xylose absorption assay, respectively. In contrast to 100% mortality in irradiated controls, BMSCT mitigated RIGS and rescued mice from radiation lethality after 18 Gy of abdominal irradiation or 10.4 Gy whole body irradiation with 100% survival (p<0.0007 and p<0.0009 respectively beyond 25 days. Transplantation of enriched myeloid and non-myeloid fractions failed to improve survival. BMASCT induced ISC regeneration, restitution of the ISC niche and xylose absorption. Serum levels of intestinal radioprotective factors, such as, R-Spondin1, KGF, PDGF and FGF2, and anti-inflammatory cytokines were elevated, while inflammatory cytokines were down regulated.Mitigation of lethal intestinal injury, following high doses of irradiation, can be achieved by intravenous transplantation of marrow-derived stromal cells, including mesenchymal, endothelial and macrophage cell population. BMASCT increases blood levels of intestinal growth factors and induces regeneration of the irradiated

  5. Retrovirus-mediated gene transfer of a human c-fos cDNA into mouse bone marrow stromal cells.

    Science.gov (United States)

    Roux, P; Verrier, B; Klein, B; Niccolino, M; Marty, L; Alexandre, C; Piechaczyk, M

    1991-11-01

    A cDNA encoding a complete human c-fos protein was isolated and inserted into two different murine MoMuLV-derived recombinant retroviruses allowing expression of c-fos protein in different cell types. One c-fos-expressing retrovirus, chosen for its ability to express high levels of proteins in fibroblast-like cells, was shown to potentiate long-term cultures of mouse bone marrow stromal cells in vitro and therefore constitutes a potential tool for immortalizing such cells. Moreover, when tested in an in vitro differentiation assay, stromal cells constitutively expressing c-fos favor the granulocyte differentiation of hematopoietic precursors. Interestingly, retroviruses expressing v-src and v-abl oncogenes, included as controls in our experiments, do not produce any detectable effects, whereas those expressing polyoma virus middle T antigen facilitate long-term growth in vitro of stromal cells that favor the macrophage differentiation pathway of bone marrow stem cells. Our observation supports the idea that constitutive expression of some oncogenes, including c-fos and polyoma virus middle T antigen, may influence cytokine production by bone marrow stromal cells.

  6. Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Silva, Johnatas D; Lopes-Pacheco, Miquéias; Paz, Ana H R; Cruz, Fernanda F; Melo, Elga B; de Oliveira, Milena V; Xisto, Débora G; Capelozzi, Vera L; Morales, Marcelo M; Pelosi, Paolo; Cirne-Lima, Elizabeth; Rocco, Patricia R M

    2018-02-01

    Mesenchymal stem cells-based therapies have shown promising effects in experimental acute respiratory distress syndrome. Different mesenchymal stem cells sources may result in diverse effects in respiratory diseases; however, there is no information regarding the best source of mesenchymal stem cells to treat pulmonary acute respiratory distress syndrome. We tested the hypothesis that mesenchymal stem cells derived from bone marrow, adipose tissue, and lung tissue would lead to different beneficial effects on lung and distal organ damage in experimental pulmonary acute respiratory distress syndrome. Animal study and primary cell culture. Laboratory investigation. Seventy-five Wistar rats. Wistar rats received saline (control) or Escherichia coli lipopolysaccharide (acute respiratory distress syndrome) intratracheally. On day 2, acute respiratory distress syndrome animals were further randomized to receive saline or bone marrow, adipose tissue, or lung tissue mesenchymal stem cells (1 × 10 cells) IV. Lung mechanics, histology, and protein levels of inflammatory mediators and growth factors were analyzed 5 days after mesenchymal stem cells administration. RAW 264.7 cells (a macrophage cell line) were incubated with lipopolysaccharide followed by coculture or not with bone marrow, adipose tissue, and lung tissue mesenchymal stem cells (10 cells/mL medium). Regardless of mesenchymal stem cells source, cells administration improved lung function and reduced alveolar collapse, tissue cellularity, collagen, and elastic fiber content in lung tissue, as well as decreased apoptotic cell counts in liver. Bone marrow and adipose tissue mesenchymal stem cells administration also reduced levels of tumor necrosis factor-α, interleukin-1β, keratinocyte-derived chemokine, transforming growth factor-β, and vascular endothelial growth factor, as well as apoptotic cell counts in lung and kidney, while increasing expression of keratinocyte growth factor in lung tissue

  7. Bone marrow origin of decidual cell precursors in the pseudopregnant mouse uterus

    International Nuclear Information System (INIS)

    Kearns, M.; Lala, P.K.

    1982-01-01

    Decidual cells are considered to be the endproduct of a hormonally induced transformation of endometrial stromal cells of the uterus. However, the source of these precursors remains unknown. This study of evaluated the possibility of their bone marrow origin by an examination of the H-2 phenotype of decidual cells in pseudopregnant bone marrow chimeras. These chimeras were produced by repopulating lethally irradiated CBA/J female (H-2k) mice with bone marrow from (CBA/J x C57BL/6J) F1 female (H-2kb) mice. Pseudopregnancy was produced with a hormonal regimen followed by an oil-induced decidual stimulus. Chimerism was evaluated radioautographically by an identification of the donor-specific Kb phenotype on cells with an immunolabeling technique with monospecific anti-H-2 serum followed by radioiodinated protein A. The extent of chimerism as indicated by the degree of Kb labeling on decidual cells as well as macrophages contained within the decidual nodules was quantitatively compared with that seen on splenic lymphocytes. Fair to good chimerism, as reflected by labeling for the donor-specific marker (Kb), was seen on splenic lymphocytes and macrophages within the decidual nodules in 6 out of 11 animals. A similar level of chimerism was detected on decidual cells in all but one of these six, in which case this was low. One animal showed low chimerism in the spleen but good chimerism on the decidual cells. The remaining four mice were nonchimeric for all three cell types. These results indicate that decidual cells and macrophages appearing within the decidual nodules of pseudopregnant mice are ultimate descendants of bone marrow cells

  8. Of macrophages and red blood cells; a complex love story.

    Science.gov (United States)

    de Back, Djuna Z; Kostova, Elena B; van Kraaij, Marian; van den Berg, Timo K; van Bruggen, Robin

    2014-01-01

    Macrophages tightly control the production and clearance of red blood cells (RBC). During steady state hematopoiesis, approximately 10(10) RBC are produced per hour within erythroblastic islands in humans. In these erythroblastic islands, resident bone marrow macrophages provide erythroblasts with interactions that are essential for erythroid development. New evidence suggests that not only under homeostasis but also under stress conditions, macrophages play an important role in promoting erythropoiesis. Once RBC have matured, these cells remain in circulation for about 120 days. At the end of their life span, RBC are cleared by macrophages residing in the spleen and the liver. Current theories about the removal of senescent RBC and the essential role of macrophages will be discussed as well as the role of macrophages in facilitating the removal of damaged cellular content from the RBC. In this review we will provide an overview on the role of macrophages in the regulation of RBC production, maintenance and clearance. In addition, we will discuss the interactions between these two cell types during transfer of immune complexes and pathogens from RBC to macrophages.

  9. Immunohistochemical localization of host and donor-derived cells in the regenerating thymus of radiation bone marrow chimeras

    International Nuclear Information System (INIS)

    Ceredig, R.; Schreyer, M.

    1984-01-01

    The anatomical distribution of CBA (Thy-1.2) host and AKR (Thy-1.1) donor-derived cells in the regenerating thymus of AKR → CBA radiation bone marrow chimeras was investigated. Cryostat sections of chimeric thymuses were incubated with biotin-conjugated monoclonal anti-Thy-1 antibodies specific for host and donor-derived cells and the distribution of the corresponding Thy-1 antigen revealed by the immunoperoxidase staining technique. The thymus was initially repopulated by Thy-1.2 + host-derived cells, but by 28 days following bone marrow reconstitution the few remaining host cells were found mostly in the thymus medulla. However, occasional Thy-1.2 + cells were still present in extramedullary, primarily cortical, sites. Donor-derived (Thy-1.1 + ) cells were first seen in the 11-day chimeric thymus as single cells frequently closely associated with blood vessels in medullary areas. By 17 days, the cortex contained many Thy-1.1 + cells, although occasional single positive cells were still present in the medulla. Changes in the anatomical distribution of host and donor-derived cells in the regenerating chimeric thymus appeared to correlate with changes in their Thy-1 fluorescence profile as determined by flow microfluorometry. (Auth.)

  10. Ciclosporin Does Not Influence Bone Marrow-Derived Cell Differentiation to Myofibroblasts Early after Renal Ischemia/Reperfusion

    NARCIS (Netherlands)

    Broekema, Martine; Harmsen, Martin C.; Koerts, Jasper A.; van Kooten, Theo G.; Uges, Donald R. A.; Petersen, Arjen H.; van Luyn, Marja J. A.; Navis, Gerjan; Popa, Eliane R.

    2009-01-01

    Background: Ischemia/reperfusion injury (IRI) is a risk factor for the development of interstitial fibrosis. Previously we had shown that after renal IRI, bone marrow-derived cells (BMDC) can differentiate to interstitial myofibroblasts. Here we hypothesized that the immunosuppressant ciclosporin A

  11. Active Targeted Macrophage-mediated Delivery of Catalase to Affected Brain Regions in Models of Parkinson's Disease.

    Science.gov (United States)

    Zhao, Yuling; Haney, Matthew J; Mahajan, Vivek; Reiner, Benjamin C; Dunaevsky, Anna; Mosley, R Lee; Kabanov, Alexander V; Gendelman, Howard E; Batrakova, Elena V

    2011-09-10

    We previously demonstrated that monocyte-macrophage based drug delivery can be applied to a spectrum of infectious, neoplastic, and degenerative disorders. In particular, bone marrow-derived macrophages (BMM) loaded with nano formulated catalase, "nanozyme", were shown to attenuate neuro inflammation and nigrostriatal degeneration in rodent models of Parkinson's disease (PD). Nonetheless, the pharmacokinetics and biodistribution of BMM-incorporated nanozyme has not been explored. To this end, we now demonstrate that BMM, serving as a "depot" for nanozyme, increased area under the curve(AUC), half-life, and mean residence time in blood circulation of the protein when compared to the nanozyme administered alone. Accordingly, bioavailability of the nanozyme for the brain, spleen, kidney, and liver was substantially increased. Importantly, nanozyme-loaded BMM targeted diseased sites and improved transport across the blood brain barrier. This was seen specifically in affected brain subregions in models of PD. Engaging natural immune cells such as monocyte-macrophages as drug carriers provides a new perspective for therapeutic delivery for PD and also likely a range of other inflammatory and degenerative diseases.

  12. Neural stem cells induce bone-marrow-derived mesenchymal stem cells to generate neural stem-like cells via juxtacrine and paracrine interactions

    International Nuclear Information System (INIS)

    Alexanian, Arshak R.

    2005-01-01

    Several recent reports suggest that there is far more plasticity that previously believed in the developmental potential of bone-marrow-derived cells (BMCs) that can be induced by extracellular developmental signals of other lineages whose nature is still largely unknown. In this study, we demonstrate that bone-marrow-derived mesenchymal stem cells (MSCs) co-cultured with mouse proliferating or fixed (by paraformaldehyde or methanol) neural stem cells (NSCs) generate neural stem cell-like cells with a higher expression of Sox-2 and nestin when grown in NS-A medium supplemented with N2, NSC conditioned medium (NSCcm) and bFGF. These neurally induced MSCs eventually differentiate into β-III-tubulin and GFAP expressing cells with neuronal and glial morphology when grown an additional week in Neurobasal/B27 without bFGF. We conclude that juxtacrine interaction between NSCs and MSCs combined with soluble factors released from NSCs are important for generation of neural-like cells from bone-marrow-derived adherent MSCs

  13. GABA and Topiramate Inhibit the Formation of Human Macrophage-Derived Foam Cells by Modulating Cholesterol-Metabolism-Associated Molecules

    Directory of Open Access Journals (Sweden)

    Ying Yang

    2014-04-01

    Full Text Available Aims: γ-aminobutyric acid (GABA, the principal inhibitory neurotransmitter, acts on GABA receptors to play an important role in the modulation of macrophage functions. The present study examined the effects of GABA and a GABA receptor agonist on modulating cholesterol-metabolism-associated molecules in human monocyte-derived macrophages (HMDMs. Methods: ORO stain, HPLC, qRT-PCR, Western blot and EMSA were carried out using HMDMs exposed to ox-LDL with or without GABAergic agents as the experimental model. Results: GABA and topiramate reduced the percentage of cholesterol ester in lipid-laden HMDMs by down-regulating SR-A, CD36 and LOX-1 expression and up-regulating ABCA1, ABCG1 and SR-BI expression in lipid-laden HMDMs. The production of TNF-a was decreased in GABA-and topiramate-treated lipid-laden HMDMs, and levels of interleukin (IL-6 did not change. The activation of two signaling pathways, p38MAPK and NF-γB, was repressed by GABA and topiramate in lipid-laden HMDMs. Conclusion: GABA and topiramate inhibit the formation of human macrophage-derived foam cells and may be a possibility for macrophage targeted therapy of atherosclerotic lesions.

  14. The macrophage CD163 surface glycoprotein is an erythroblast adhesion receptor

    DEFF Research Database (Denmark)

    Fabriek, Babs O; Polfliet, Machteld M J; Vloet, Rianka P M

    2007-01-01

    Erythropoiesis occurs in erythroblastic islands, where developing erythroblasts closely interact with macrophages. The adhesion molecules that govern macrophage-erythroblast contact have only been partially defined. Our previous work has implicated the rat ED2 antigen, which is highly expressed...... on the surface of macrophages in erythroblastic islands, in erythroblast binding. In particular, the monoclonal antibody ED2 was found to inhibit erythroblast binding to bone marrow macrophages. Here, we identify the ED2 antigen as the rat CD163 surface glycoprotein, a member of the group B scavenger receptor...... that it enhanced erythroid proliferation and/or survival, but did not affect differentiation. These findings identify CD163 on macrophages as an adhesion receptor for erythroblasts in erythroblastic islands, and suggest a regulatory role for CD163 during erythropoiesis....

  15. Establishing porcine monocyte-derived macrophage and dendritic cell systems for studying the interaction with PRRSV-1

    Directory of Open Access Journals (Sweden)

    Helen eSingleton

    2016-06-01

    Full Text Available Monocyte-derived macrophages (MoMØ and monocyte-derived dendritic cells (MoDC are two model systems well established in human and rodent systems that can be used to study the interaction of pathogens with host cells. Porcine reproductive and respiratory syndrome virus (PRRSV is known to infect myeloid cells, such as macrophages (MØ and dendritic cells (DC. Therefore, this study aimed to establish systems for the differentiation and characterization of MoMØ and MoDC for subsequent infection with PRRSV-1. M-CSF differentiated monocyte-derived macrophages (MoMØ were stimulated with activators for classical (M1 or alternative (M2 activation. GM-CSF and IL-4 generated monocyte-derived dendritic cells (MoDC were activated with the well established maturation cocktail containing PAMPs and cytokines. In addition, MoMØ and MoDC were treated with dexamethasone and IL-10, which are known immuno-suppressive reagents. Cells were characterized by morphology, phenotype and function and porcine MØ subsets highlighted some divergence from described human counterparts, while MoDC, appeared more similar to mouse and human DCs. The infection with PRRSV-1 strain Lena demonstrated different replication kinetics between MoMØ and MoDC and within subsets of each cell type. While MoMØ susceptibility was significantly increased by dexamethasone and IL-10 with an accompanying increase in CD163/CD169 expression, MoDC supported only a minimal replication of PRRSV These findings underline the high variability in the susceptibility of porcine myeloid cells towards PRRSV-1 infection.

  16. The influence of macrophage growth factors on Theiler's Murine Encephalomyelitis Virus (TMEV) infection and activation of macrophages.

    Science.gov (United States)

    Schneider, Karin M; Watson, Neva B; Minchenberg, Scott B; Massa, Paul T

    2018-02-01

    Macrophages are common targets for infection and innate immune activation by many pathogenic viruses including the neurotropic Theiler's Murine Encephalomyelitis Virus (TMEV). As both infection and innate activation of macrophages are key determinants of viral pathogenesis especially in the central nervous system (CNS), an analysis of macrophage growth factors on these events was performed. C3H mouse bone-marrow cells were differentiated in culture using either recombinant macrophage colony stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF), inoculated with TMEV (BeAn) and analyzed at various times thereafter. Cytokine RNA and protein analysis, virus titers, and flow cytometry were performed to characterize virological parameters under these culture conditions. GM-CSF-differentiated macrophages showed higher levels of TMEV viral RNA and proinflammatory molecules compared to infected M-CSF-differentiated cells. Thus, GM-CSF increases both TMEV infection and TMEV-induced activation of macrophages compared to that seen with M-CSF. Moreover, while infectious viral particles decreased from a peak at 12h to undetectable levels at 48h post infection, TMEV viral RNA remained higher in GM-CSF- compared to M-CSF-differentiated macrophages in concert with increased proinflammatory gene expression. Analysis of a possible basis for these differences determined that glycolytic rates contributed to heightened virus replication and proinflammatory cytokine secretion in GM-CSF compared to M-CSF-differentiated macrophages. In conclusion, we provide evidence implicating a role for GM-CSF in promoting virus replication and proinflammatory cytokine expression in macrophages, indicating that GM-CSF may be a key factor for TMEV infection and the induction of chronic TMEV-induced immunopathogenesis in the CNS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Genome-wide association study identifies single nucleotide polymorphism in DYRK1A associated with replication of HIV-1 in monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Sebastiaan M Bol

    2011-02-01

    Full Text Available HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART, macrophages keep producing virus because tissue penetration of antiretrovirals is suboptimal and the efficacy of some is reduced. Thus, to cure HIV-1 infection with antiretrovirals we will also need to efficiently inhibit viral replication in macrophages. The majority of the current drugs block the action of viral enzymes, whereas there is an abundance of yet unidentified host factors that could be targeted. We here present results from a genome-wide association study identifying novel genetic polymorphisms that affect in vitro HIV-1 replication in macrophages.Monocyte-derived macrophages from 393 blood donors were infected with HIV-1 and viral replication was determined using Gag p24 antigen levels. Genomic DNA from individuals with macrophages that had relatively low (n = 96 or high (n = 96 p24 production was used for SNP genotyping with the Illumina 610 Quad beadchip. A total of 494,656 SNPs that passed quality control were tested for association with HIV-1 replication in macrophages, using linear regression. We found a strong association between in vitro HIV-1 replication in monocyte-derived macrophages and SNP rs12483205 in DYRK1A (p = 2.16 × 10(-5. While the association was not genome-wide significant (p<1 × 10(-7, we could replicate this association using monocyte-derived macrophages from an independent group of 31 individuals (p = 0.0034. Combined analysis of the initial and replication cohort increased the strength of the association (p = 4.84 × 10(-6. In addition, we found this SNP to be associated with HIV-1 disease progression in vivo in two independent cohort studies (p = 0.035 and p = 0.0048.These findings suggest that the kinase DYRK1A is involved in the replication of HIV-1, in vitro in macrophages

  18. Oligosaccharide modification by N-acetylglucosaminyltransferase-V in macrophages are involved in pathogenesis of bleomycin-induced scleroderma.

    Science.gov (United States)

    Kato, Arisa; Yutani, Mizuki; Terao, Mika; Kimura, Akihiro; Itoi, Saori; Murota, Hiroyuki; Miyoshi, Eiji; Katayama, Ichiro

    2015-08-01

    Oligosaccharide modification by N-acetylglucosaminyltransferase-V (GnT-V), which catalyses the formation of β1,6 GlcNAc (N-acetylglucosamine) branches on N-glycans, is associated with various pathologies, such as cancer metastasis, multiple sclerosis and liver fibrosis. In this study, we demonstrated the involvement of GnT-V in the pathophysiology of scleroderma. High expression of GnT-V was observed in infiltrating cells in skin section samples from systemic and localized patients with scleroderma. Most of the infiltrating cells were T cells and macrophages, most of which were CD163(+) M2 macrophages. To determine the role of GnT-V in scleroderma, we next investigated skin sclerosis in GnT-V knockout (MGAT5(-/-) ) mice. Expression of GnT-V was also elevated in bleomycin (BLM)-injected sclerotic skin, and MGAT5(-/-) mice were resistant to BLM-induced skin sclerosis with reduced collagen type 1 α1 content, suggesting the biological significance of GnT-V in skin sclerosis. Furthermore, the number of CD163(+) M2 macrophages and CD3-positive T cells in BLM-induced skin sclerosis was significantly fewer in MGAT5(-/-) mice. In bone marrow-derived macrophages (BMDMs), IL-4-induced expressions of Fizz1 and Ym1 were significantly reduced in MGAT5(-/-) mice-derived BMDMs. Taken together, these results suggest the induction of GnT-V in skin sclerosis progression is possibly dependent on increased numbers of M2 macrophages in the skin, which are important for tissue fibrosis and remodelling. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Interaction with extracellular matrix proteins influences Lsh/Ity/Bcg (candidate Nramp) gene regulation of macrophage priming/activation for tumour necrosis factor-alpha and nitrite release.

    Science.gov (United States)

    Formica, S; Roach, T I; Blackwell, J M

    1994-05-01

    The murine resistance gene Lsh/Ity/Bcg regulates activation of macrophages for tumour necrosis factor-alpha (TNF-alpha)-dependent production of nitric oxide mediating antimicrobial activity against Leishmania, Salmonella and Mycobacterium. As Lsh is differentially expressed in macrophages from different tissue sites, experiments were performed to determine whether interaction with extracellular matrix (ECM) proteins would influence the macrophage TNF-alpha response. Plating of bone marrow-derived macrophages onto purified fibrinogen or fibronectin-rich L929 cell-derived matrices, but not onto mannan, was itself sufficient to stimulate TNF-alpha release, with significantly higher levels released from congenic B10.L-Lshr compared to C57BL/10ScSn (Lshs) macrophages. Only macrophages plated onto fibrinogen also released measurable levels of nitrites, again higher in Lshr compared to Lshs macrophages. Addition of interferon-gamma (IFN-gamma), but not bacterial lipopolysaccharide or mycobacterial lipoarabinomannan, as a second signal enhanced the TNF-alpha and nitrite responses of macrophages plated onto fibrinogen, particularly in the Lshr macrophages. Interaction with fibrinogen and fibronectin also primed macrophages for an enhanced TNF-alpha response to leishmanial parasites, but this was only translated into enhanced nitrite responses in the presence of IFN-gamma. In these experiments, Lshr macrophages remained superior in their TNF-alpha responses throughout, but to a degree which reflected the magnitude of the difference observed on ECM alone. Hence, the specificity for the enhanced TNF-alpha responses of Lshr macrophages lay in their interaction with fibrinogen and fibronectin ECM, while a differential nitrite response was only observed with fibrinogen and/or IFN-gamma. The results are discussed in relation to the possible function of the recently cloned candidate gene Nramp, which has structural identity to eukaryote transporters and an N-terminal cytoplasmic

  20. Influence of intensity of bone marrow erythropoietic activity on radiosensitivity of mice

    International Nuclear Information System (INIS)

    Kwiek, S. Jr.

    1985-01-01

    Hypererythropoiesis was induced in mice by exposure to carbon monoxide. They became polycythemic after transfer to normal air. Mice irradiated with 550-650 R of X-rays in the state of polycythemia had higher 30-day survival than controls. Bone marrow levels of multipotential haemopoietic stem cells (CFU-S) were found to be elevated by 50% in polycythemic mice and after whole body sublethal irradiation (200 R) substantially faster regeneration of bone marrow was noted in them. It was estimated by renewal of bone marrow cellularity, content of CFU-S and ability to growth in diffusion chambers. Bone marrow from polycythemic mice was found to yield considerably less macrophages than the ones from hypererythropoietic and normal donors. 27 refs., 5 tabs. (author)

  1. Recent progress in the differentiation of bone marrow derived ...

    African Journals Online (AJOL)

    ONOS

    2010-08-09

    Aug 9, 2010 ... Bone marrow mesenchymal stem cells (BMMSCs) are one of the cells found in bone marrow stromal. A large number of ..... BMMSCs and myocardial cells using biomimetic electrical ... effect ventricular remodeling after infarction. Meyern et al. ... to small sample sizes and different experimental con- ditions.

  2. Histone Deacetylase 7 Promotes Toll-like Receptor 4-dependent Proinflammatory Gene Expression in Macrophages*

    Science.gov (United States)

    Shakespear, Melanie R.; Hohenhaus, Daniel M.; Kelly, Greg M.; Kamal, Nabilah A.; Gupta, Praveer; Labzin, Larisa I.; Schroder, Kate; Garceau, Valerie; Barbero, Sheila; Iyer, Abishek; Hume, David A.; Reid, Robert C.; Irvine, Katharine M.; Fairlie, David P.; Sweet, Matthew J.

    2013-01-01

    Broad-spectrum inhibitors of histone deacetylases (HDACs) constrain Toll-like receptor (TLR)-inducible production of key proinflammatory mediators. Here we investigated HDAC-dependent inflammatory responses in mouse macrophages. Of the classical Hdacs, Hdac7 was expressed at elevated levels in inflammatory macrophages (thioglycollate-elicited peritoneal macrophages) as compared with bone marrow-derived macrophages and the RAW264 cell line. Overexpression of a specific, alternatively spliced isoform of Hdac7 lacking the N-terminal 22 amino acids (Hdac7-u), but not the Refseq Hdac7 (Hdac7-s), promoted LPS-inducible expression of Hdac-dependent genes (Edn1, Il-12p40, and Il-6) in RAW264 cells. A novel class IIa-selective HDAC inhibitor reduced recombinant human HDAC7 enzyme activity as well as TLR-induced production of inflammatory mediators in thioglycollate-elicited peritoneal macrophages. Both LPS and Hdac7-u up-regulated the activity of the Edn1 promoter in an HDAC-dependent fashion in RAW264 cells. A hypoxia-inducible factor (HIF) 1 binding site in this promoter was required for HDAC-dependent TLR-inducible promoter activity and for Hdac7- and HIF-1α-mediated trans-activation. Coimmunoprecipitation assays showed that both Hdac7-u and Hdac7-s interacted with HIF-1α, whereas only Hdac7-s interacted with the transcriptional repressor CtBP1. Thus, Hdac7-u positively regulates HIF-1α-dependent TLR signaling in macrophages, whereas an interaction with CtBP1 likely prevents Hdac7-s from exerting this effect. Hdac7 may represent a potential inflammatory disease target. PMID:23853092

  3. Histone deacetylase 7 promotes Toll-like receptor 4-dependent proinflammatory gene expression in macrophages.

    Science.gov (United States)

    Shakespear, Melanie R; Hohenhaus, Daniel M; Kelly, Greg M; Kamal, Nabilah A; Gupta, Praveer; Labzin, Larisa I; Schroder, Kate; Garceau, Valerie; Barbero, Sheila; Iyer, Abishek; Hume, David A; Reid, Robert C; Irvine, Katharine M; Fairlie, David P; Sweet, Matthew J

    2013-08-30

    Broad-spectrum inhibitors of histone deacetylases (HDACs) constrain Toll-like receptor (TLR)-inducible production of key proinflammatory mediators. Here we investigated HDAC-dependent inflammatory responses in mouse macrophages. Of the classical Hdacs, Hdac7 was expressed at elevated levels in inflammatory macrophages (thioglycollate-elicited peritoneal macrophages) as compared with bone marrow-derived macrophages and the RAW264 cell line. Overexpression of a specific, alternatively spliced isoform of Hdac7 lacking the N-terminal 22 amino acids (Hdac7-u), but not the Refseq Hdac7 (Hdac7-s), promoted LPS-inducible expression of Hdac-dependent genes (Edn1, Il-12p40, and Il-6) in RAW264 cells. A novel class IIa-selective HDAC inhibitor reduced recombinant human HDAC7 enzyme activity as well as TLR-induced production of inflammatory mediators in thioglycollate-elicited peritoneal macrophages. Both LPS and Hdac7-u up-regulated the activity of the Edn1 promoter in an HDAC-dependent fashion in RAW264 cells. A hypoxia-inducible factor (HIF) 1 binding site in this promoter was required for HDAC-dependent TLR-inducible promoter activity and for Hdac7- and HIF-1α-mediated trans-activation. Coimmunoprecipitation assays showed that both Hdac7-u and Hdac7-s interacted with HIF-1α, whereas only Hdac7-s interacted with the transcriptional repressor CtBP1. Thus, Hdac7-u positively regulates HIF-1α-dependent TLR signaling in macrophages, whereas an interaction with CtBP1 likely prevents Hdac7-s from exerting this effect. Hdac7 may represent a potential inflammatory disease target.

  4. Alternatively Activated (M2) Macrophage Phenotype Is Inducible by Endothelin-1 in Cultured Human Macrophages.

    Science.gov (United States)

    Soldano, Stefano; Pizzorni, Carmen; Paolino, Sabrina; Trombetta, Amelia Chiara; Montagna, Paola; Brizzolara, Renata; Ruaro, Barbara; Sulli, Alberto; Cutolo, Maurizio

    2016-01-01

    Alternatively activated (M2) macrophages are phenotypically characterized by the expression of specific markers, mainly macrophage scavenger receptors (CD204 and CD163) and mannose receptor-1 (CD206), and participate in the fibrotic process by over-producing pro-fibrotic molecules, such as transforming growth factor-beta1 (TGFbeta1) and metalloproteinase (MMP)-9. Endothelin-1 (ET-1) is implicated in the fibrotic process, exerting its pro-fibrotic effects through the interaction with its receptors (ETA and ETB). The study investigated the possible role of ET-1 in inducing the transition from cultured human macrophages into M2 cells. Cultured human monocytes (THP-1 cell line) were activated into macrophages (M0 macrophages) with phorbol myristate acetate and subsequently maintained in growth medium (M0-controls) or treated with either ET-1 (100nM) or interleukin-4 (IL-4, 10ng/mL, M2 inducer) for 72 hours. Similarly, primary cultures of human peripheral blood monocyte (PBM)-derived macrophages obtained from healthy subjects, were maintained in growth medium (untreated cells) or treated with ET-1 or IL-4 for 6 days. Both M0 and PBM-derived macrophages were pre-treated with ET receptor antagonist (ETA/BRA, bosentan 10-5M) for 1 hour before ET-1 stimulation. Protein and gene expression of CD204, CD206, CD163, TGFbeta1 were analysed by immunocytochemistry, Western blotting and quantitative real time polymerase chain reaction (qRT-PCR). Gene expression of interleukin(IL)-10 and macrophage derived chemokine (CCL-22) was evaluated by qRT-PCR. MMP-9 production was investigated by gel zymography. ET-1 significantly increased the expression of M2 phenotype markers CD204, CD206, CD163, IL-10 and CCL-22, and the production of MMP-9 in both cultures of M0 and PBM-derived macrophages compared to M0-controls and untreated cells. In cultured PBM-derived macrophages, ET-1 increased TGFbeta1 protein and gene expression compared to untreated cells. The ET-1-mediated effects were

  5. Recent progress in the differentiation of bone marrow derived ...

    African Journals Online (AJOL)

    Bone marrow mesenchymal stem cells (BMMSCs) are one of the cells found in bone marrow stromal. A large number of studies have shown that BMMSCs cannot only differentiate into hematopoietic stromal cells, but can migrate and position themselves in multiple non-hematopoietic organizations and differentiate into the ...

  6. An Autologous Bone Marrow Mesenchymal Stem Cell–Derived Extracellular Matrix Scaffold Applied with Bone Marrow Stimulation for Cartilage Repair

    Science.gov (United States)

    Tang, Cheng; Jin, Chengzhe; Du, Xiaotao; Yan, Chao; Min, Byoung-Hyun; Xu, Yan

    2014-01-01

    Purpose: It is well known that implanting a bioactive scaffold into a cartilage defect site can enhance cartilage repair after bone marrow stimulation (BMS). However, most of the current scaffolds are derived from xenogenous tissue and/or artificial polymers. The implantation of these scaffolds adds risks of pathogen transmission, undesirable inflammation, and other immunological reactions, as well as ethical issues in clinical practice. The current study was undertaken to evaluate the effectiveness of implanting autologous bone marrow mesenchymal stem cell–derived extracellular matrix (aBMSC-dECM) scaffolds after BMS for cartilage repair. Methods: Full osteochondral defects were performed on the trochlear groove of both knees in 24 rabbits. One group underwent BMS only in the right knee (the BMS group), and the other group was treated by implantation of the aBMSC-dECM scaffold after BMS in the left knee (the aBMSC-dECM scaffold group). Results: Better repair of cartilage defects was observed in the aBMSC-dECM scaffold group than in the BMS group according to gross observation, histological assessments, immunohistochemistry, and chemical assay. The glycosaminoglycan and DNA content, the distribution of proteoglycan, and the distribution and arrangement of type II and I collagen fibers in the repaired tissue in the aBMSC-dECM scaffold group at 12 weeks after surgery were similar to that surrounding normal hyaline cartilage. Conclusions: Implanting aBMSC-dECM scaffolds can enhance the therapeutic effect of BMS on articular cartilage repair, and this combination treatment is a potential method for successful articular cartilage repair. PMID:24666429

  7. Survival of Free and Encapsulated Human and Rat Islet Xenografts Transplanted into the Mouse Bone Marrow

    Science.gov (United States)

    Meier, Raphael P. H.; Seebach, Jörg D.; Morel, Philippe; Mahou, Redouan; Borot, Sophie; Giovannoni, Laurianne; Parnaud, Geraldine; Montanari, Elisa; Bosco, Domenico; Wandrey, Christine; Berney, Thierry; Bühler, Leo H.; Muller, Yannick D.

    2014-01-01

    Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow) and 10 days (kidney capsule). Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation. PMID:24625569

  8. Survival of free and encapsulated human and rat islet xenografts transplanted into the mouse bone marrow.

    Directory of Open Access Journals (Sweden)

    Raphael P H Meier

    Full Text Available Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow and 10 days (kidney capsule. Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation.

  9. Bone-marrow-derived mesenchymal stem cells inhibit gastric aspiration lung injury and inflammation in rats.

    Science.gov (United States)

    Zhou, Jing; Jiang, Liyan; Long, Xuan; Fu, Cuiping; Wang, Xiangdong; Wu, Xiaodan; Liu, Zilong; Zhu, Fen; Shi, Jindong; Li, Shanqun

    2016-09-01

    Gastric aspiration lung injury is one of the most common clinical events. This study investigated the effects of bone-marrow-derived mesenchymal stem cells (BMSCs) on combined acid plus small non-acidified particle (CASP)-induced aspiration lung injury. Enhanced green fluorescent protein (EGFP(+) ) or EGFP(-) BMSCs or 15d-PGJ2 were injected via the tail vein into rats immediately after CASP-induced aspiration lung injury. Pathological changes in lung tissues, blood gas analysis, the wet/dry weight ratio (W/D) of the lung, levels of total proteins and number of total cells and neutrophils in bronchoalveolar lavage fluid (BALF) were determined. The cytokine levels were measured using ELISA. Protein expression was determined by Western blot. Bone-marrow-derived mesenchymal stem cells treatment significantly reduced alveolar oedema, exudation and lung inflammation; increased the arterial partial pressure of oxygen; and decreased the W/D of the lung, the levels of total proteins and the number of total cells and neutrophils in BALF in the rats with CASP-induced lung injury. Bone-marrow-derived mesenchymal stem cells treatment decreased the levels of tumour necrosis factor-α and Cytokine-induced neutrophil chemoattractant (CINC)-1 and the expression of p-p65 and increased the levels of interleukin-10 and 15d-PGJ2 and the expression of peroxisome proliferator-activated receptor (PPAR)-γ in the lung tissue in CASP-induced rats. Tumour necrosis factor-α stimulated BMSCs to secrete 15d-PGJ2 . A tracking experiment showed that EGFP(+) BMSCs were able to migrate to local lung tissues. Treatment with 15d-PGJ2 also significantly inhibited CASP-induced lung inflammation and the production of pro-inflammatory cytokines. Our results show that BMSCs can protect lung tissues from gastric aspiration injury and inhibit lung inflammation in rats. A beneficial effect might be achieved through BMSC-derived 15d-PGJ2 activation of the PPAR-γ receptor, reducing the production of

  10. Cardiosphere-Derived Cells Facilitate Heart Repair by Modulating M1/M2 Macrophage Polarization and Neutrophil Recruitment

    Science.gov (United States)

    Hasan, Al Shaimaa; Luo, Lan; Yan, Chen; Zhang, Tian-Xia; Urata, Yoshishige; Goto, Shinji; Mangoura, Safwat A.; Abdel-Raheem, Mahmoud H.; Zhang, Shouhua; Li, Tao-Sheng

    2016-01-01

    Cardiosphere-derived cells (CDCs), one of the promising stem cell sources for myocardial repair, have been tested in clinical trials and resulted in beneficial effects; however, the relevant mechanisms are not fully understood. In this study, we examined the hypothesis that CDCs favor heart repair by switching the macrophages from a pro-inflammatory phenotype (M1) into a regulatory anti-inflammatory phenotype (M2). Macrophages from mice were cultured with CDCs-conditioned medium or with fibroblasts-conditioned medium as a control. Immunostaining showed that CDCs-conditioned medium significantly enhanced the expression of CD206 (a marker for M2 macrophages), but decreased the expression of CD86 (a marker for M1 macrophages) 3 days after culture. For animal studies, we used an acute myocardial infarction model of mice. We injected CDCs, fibroblasts, or saline only into the border zone of infarction. Then we collected the heart tissues for histological analysis 5 and 14 days after treatment. Compared with control animals, CDCs treatment significantly decreased M1 macrophages and neutrophils but increased M2 macrophages in the infarcted heart. Furthermore, CDCs-treated mice had reduced infarct size and fewer apoptotic cells compared to the controls. Our data suggest that CDCs facilitate heart repair by modulating M1/M2 macrophage polarization and neutrophil recruitment, which may provide a new insight into the mechanisms of stem cell-based myocardial repair. PMID:27764217

  11. In utero transplantation of human bone marrow-derived multipotent mesenchymal stem cells in mice.

    Science.gov (United States)

    Chou, Shiu-Huey; Kuo, Tom K; Liu, Ming; Lee, Oscar K

    2006-03-01

    Mesenchymal stem cells (MSCs) are multipotent cells that can be isolated from human bone marrow and possess the potential to differentiate into progenies of embryonic mesoderm. However, current evidence is based predominantly on in vitro experiments. We used a murine model of in utero transplantation (IUT) to study the engraftment capabilities of human MSCs. MSCs were obtained from bone marrow by negative immunoselection and limiting dilution, and were characterized by flow cytometry and by in vitro differentiation into osteoblasts, chondrocytes, and adipocytes. MSCs were transplanted into fetal mice at a gestational age of 14 days. Engraftment of human MSCs was determined by flow cytometry, polymerase chain reaction, and fluorescence in situ hybridization (FISH). MSCs engrafted into tissues originating from all three germ layers and persisted for up to 4 months or more after delivery, as evidenced by the expression of the human-specific beta-2 microglobulin gene and by FISH for donor-derived cells. Donor-derived CD45+ cells were detectable in the peripheral blood of recipients, suggesting the participation of MSCs in hematopoiesis at the fetal stage. This model can further serve to evaluate possible applications of MSCs. Copyright 2006 Orthopaedic Research Society.

  12. Inflammatory Macrophage Phenotype in BTBR T+tf/J Mice

    Directory of Open Access Journals (Sweden)

    Paul eAshwood

    2013-09-01

    Full Text Available Although autism is a behaviorally defined disorder, many studies report an association with increased pro-inflammatory cytokine production. Recent characterization of the BTBR T+tf/J (BTBR inbred mouse strain has revealed several behavioral characteristics including social deficits, repetitive behavior, and atypical vocalizations which may be relevant to autism. We therefore hypothesized that asocial BTBR mice, which exhibit autism-like behaviors, may have an inflammatory immune profile similar to that observed in children with autism. The objectives of this study were to characterize the myeloid immune profile of BTBR mice and to explore their associations with autism-relevant behaviors. C57BL/6J (C57 mice and BTBR mice were tested for social interest and repetitive self-grooming behavior. Cytokine production was measured in bone-marrow derived macrophages incubated for 24 hours in either growth media alone, LPS, IL-4/ LPS, or IFNγ/ LPS to ascertain any M1/M2 skewing. After LPS stimulation, BTBR macrophages produced higher levels of IL-6, MCP-1, and MIP-1α and lower IL-10 (p<0.01 that C57 mice, suggesting an exaggerated inflammatory profile. After exposure to IL-4/LPS BTBR macrophages produced less IL-10 than C57 macrophages and more IL-12p40 (p<0.01 suggesting poor M2 polarization. Levels of IL-12(p70 (p<0.05 were higher in BTBR macrophages after IFNγ/LPS stimulation, suggesting enhanced M1 polarization. We further observed a positive correlation between grooming frequency, and production of IL-12(p40, IL-12p70, IL-6, and TNFα (p<0.05 after treatment with IFNγ/LPS across both strains. Collectively, these data suggest that the asocial BTBR mouse strain exhibits a more inflammatory, or M1, macrophage profile in comparison to social C57 strain. We have further demonstrated a relationship between this relative increase in inflammation and repetitive grooming behavior, which may have relevance to repetitive and stereotyped behavior of autism.

  13. Recruitment of mesenchymal stem cells and macrophages by dual release of stromal cell-derived factor-1 and a macrophage recruitment agent enhances wound closure.

    Science.gov (United States)

    Kim, Yang-Hee; Tabata, Yasuhiko

    2016-04-01

    In this study, the wound closure of mouse skin defects was examined in terms of recruitment of mesenchymal stem cells (MSC) and macrophages. For the cells recruitment, stromal derived factor-1 (SDF-1) of a MSC recruitment agent and sphingosine-1 phosphate agonist (SEW2871) of a macrophages recruitment agent were incorporated into gelatin hydrogels, and then released in a controlled fashion. When applied to a skin wound defect of mice, gelatin hydrogels incorporating mixed 500 ng SDF-1 and 0.4, 0.8, or 1.6 mg SEW2871-micelles recruited a higher number of both MSC and macrophages than those incorporating SDF-1 or phosphate buffered saline. However, the number of M1 phenotype macrophages for the hydrogel incorporating mixed SDF-1 and SEW2871-micelles recruited was remarkably low to a significant extent compared with that for those hydrogel incorporating 0.4, 0.8, or 1.6 mg SEW2871-micelles. On the other hand, the number of M2 macrophages 3 days after the implantation of the hydrogels incorporating SDF-1 and 0.4 mg SEW2871-micelles significantly increased compared with that for other hydrogels. In vivo experiments revealed the hydrogels incorporating SDF-1 and 0.4 mg SEW2871-micelles promoted the wound closure of skin defect to a significant stronger extent than those incorporating SEW2871-micelles, SDF-1, and a mixture of SDF-1 and higher doses of SEW2871-micelles. It is concluded that the in vivo recruitment of MSC and macrophages to the defects may contribute to the tissue regeneration of skin wound. © 2016 Wiley Periodicals, Inc.

  14. Of macrophages and red blood cells; a complex love story.

    Directory of Open Access Journals (Sweden)

    Djuna Zoe de Back

    2014-01-01

    Full Text Available Macrophages tightly control the production and clearance of red blood cells (RBC. During steady state haematopoiesis, approximately 1010 red blood cells are produced per hour within erythroblastic islands in humans. In these erythroblastic islands, resident bone marrow macrophages provide erythroblasts with interactions that are essential for erythroid development. New evidence suggests that not only under homeostasis but also under stress conditions, macrophages play an important role in promoting erythropoiesis. Once RBC have matured, these cells remain in circulation for about 120 days. At the end of their life span, RBC are cleared by macrophages residing in the spleen and the liver. Current theories about the removal of senescent RBC and the essential role of macrophages will be discussed as well as the role of macrophages in facilitating the removal of damaged cellular content from the RBC. In this review we will provide an overview on the role of macrophages in the regulation of RBC production, maintenance and clearance. In addition, we will discuss the interactions between these two cell types during transfer of immune complexes and pathogens from RBC to macrophages.

  15. Biomimetic collagenous scaffold to tune inflammation by targeting macrophages

    Directory of Open Access Journals (Sweden)

    Francesca Taraballi

    2016-02-01

    Full Text Available The inflammatory response following implantation of a biomaterial is one of the major regulatory aspects of the overall regenerative process. The progress of inflammation determines whether functional tissue is restored or if nonfunctional fibrotic tissue is formed. This delicate balance is directed by the activity of different cells. Among these, macrophages and their different phenotypes, the inflammatory M1 to anti-inflammatory M2, are considered key players in the process. Recent approaches exploit macrophage’s regenerative potential in tissue engineering. Here, we propose a collagen scaffold functionalized with chondroitin sulfate (CSCL, a glycosaminoglycan known to be able to tune inflammation. We studied CSCL effects on bone-marrow-derived macrophages in physiological, and lipopolysaccharides-inflamed, conditions in vitro. Our data demonstrate that CSCL is able to modulate macrophage phenotype by inhibiting the LPS/CD44/NF-kB cascade. As a consequence, an upregulation of anti-inflammatory markers (TGF-β, Arg, MRC1, and IL-10 was found concomitantly with a decrease in the expression of pro-inflammatory markers (iNOS, TNF-α, IL-1β, IL-12β. We then implanted CSCL subcutaneously in a rat model to test whether the same molecular mechanism could be maintained in an in vivo environment. In vivo data confirmed the in vitro studies. A significant reduction in the number of infiltrating cells around and within the implants was observed at 72 h, with a significant downregulation of pro-inflammatory genes expression. The present work provides indications regarding the immunomodulatory potential of molecules used for the development of biomimetic materials and suggests their use to direct macrophage immune modulation for tissue repair.

  16. Hematopoietic microenvironment. Origin, lineage, and transplantability of the stromal cells in long-term bone marrow cultures from chimeric mice

    International Nuclear Information System (INIS)

    Perkins, S.; Fleischman, R.A.

    1988-01-01

    Studies of bone marrow transplant patients have suggested that the stromal cells of the in vitro hematopoietic microenvironment are transplantable into conditioned recipients. Moreover, in patients with myeloproliferative disorders, all of the stromal cells, which include presumptive endothelial cells, appear to be derived from hematopoietic precursors. To confirm these findings, we have constructed two chimeric mouse models: (a) traditional radiation chimeras, and (b) fetal chimeras, produced by placental injection of bone marrow into genetically anemic Wx/Wv fetuses, a technique that essentially precludes engraftment of nonhematopoietic cells. Using two-color indirect immunofluorescence, the stromal cells in long-term bone marrow culture derived from these chimeras were analyzed for donor or host origin by strain-specific H-2 antigens, and for cell lineage by a variety of other specific markers. 75-95% of the stromal cells were shown to be hematopoietic cells of the monocyte-macrophage lineage, based upon donor origin, phagocytosis, and expression of specific hematopoietic surface antigens. The remaining 5-25% of the stromal cells were exclusively host in origin. Apart from occasional fat cells, these cells uniformly expressed collagen type IV, laminin, and a surface antigen associated with endothelial cells. Since these endothelial-like cells are not transplantable into radiation or fetal chimeras, they are not derived from hematopoietic stem cells. The contrast between our findings and human studies suggests either unexpected species differences in the origin of stromal lineages or limitations in the previous methodology used to detect nonhematopoietic stromal cells

  17. Role of bone marrow-derived CD11c+ dendritic cells in systolic overload-induced left ventricular inflammation, fibrosis and hypertrophy.

    Science.gov (United States)

    Wang, Huan; Kwak, Dongmin; Fassett, John; Liu, Xiaohong; Yao, Wu; Weng, Xinyu; Xu, Xin; Xu, Yawei; Bache, Robert J; Mueller, Daniel L; Chen, Yingjie

    2017-05-01

    Inflammatory responses play an important role in the development of left ventricular (LV) hypertrophy and dysfunction. Recent studies demonstrated that increased T-cell infiltration and T-cell activation contribute to LV hypertrophy and dysfunction. Dendritic cells (DCs) are professional antigen-presenting cells that orchestrate immune responses, especially by modulating T-cell function. In this study, we investigated the role of bone marrow-derived CD11c + DCs in transverse aortic constriction (TAC)-induced LV fibrosis and hypertrophy in mice. We observed that TAC increased the number of CD11c + cells and the percentage of CD11c + MHCII + (major histocompatibility complex class II molecule positive) DCs in the LV, spleen and peripheral blood in mice. Using bone marrow chimeras and an inducible CD11c + DC ablation model, we found that depletion of bone marrow-derived CD11c + DCs significantly attenuated LV fibrosis and hypertrophy in mice exposed to 24 weeks of moderate TAC. CD11c + DC ablation significantly reduced TAC-induced myocardial inflammation as indicated by reduced myocardial CD45 + cells, CD11b + cells, CD8 + T cells and activated effector CD8 + CD44 + T cells in LV tissues. Moreover, pulsing of autologous DCs with LV homogenates from TAC mice promoted T-cell proliferation. These data indicate that bone marrow-derived CD11c + DCs play a maladaptive role in hemodynamic overload-induced cardiac inflammation, hypertrophy and fibrosis through the presentation of cardiac self-antigens to T cells.

  18. Scavenger receptor B1 facilitates macrophage uptake of silver nanoparticles and cellular activation

    Energy Technology Data Exchange (ETDEWEB)

    Aldossari, Abdullah A.; Shannahan, Jonathan H. [The University of Colorado Anschutz Medical Campus, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (United States); Podila, Ramakrishna [Clemson University, Department of Physics and Astronomy (United States); Brown, Jared M., E-mail: jared.brown@ucdenver.edu [The University of Colorado Anschutz Medical Campus, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (United States)

    2015-07-15

    Due to increased use of silver nanoparticles (AgNPs) for their antimicrobial activity, concerns have risen regarding potential adverse human health effects. Scavenger receptor B1 (SR-B1), a major receptor for high-density lipoprotein (HDL), is expressed by macrophages and has also been reported to play a role in recognition of negatively charged particles. We, therefore, hypothesized that SR-B1 mediates macrophage uptake of AgNPs and inflammatory activation. To test this hypothesis, we exposed a mouse macrophage cell line RAW264.7 (RAW) and bone marrow-derived macrophages (BMDM) to 20 nm citrate-suspended AgNPs. To verify the role of the SR-B1 receptor, we utilized a SR-B1 inhibitor (Blt2). In vitro studies demonstrated uptake of AgNPs and HDL-coated AgNPs by macrophages which were significantly reduced following pretreatment with Blt2. Inflammatory cytokine arrays revealed that macrophages exposed to AgNPs up-regulated expression of Tnf-α, Oncostatin m (OSM), Ccl4, Il17f, Ccl7, and Ccl2, whereas Il16 was found to be down-regulated. Macrophage activation was observed following AgNP and HDL-coated AgNP exposure as measured by OSM protein production and increased surface expression of CD86. These markers of activation were reduced with Blt2 pretreatment. The in vitro findings were confirmed in vivo through pulmonary instillation of AgNPs in mice. Pulmonary instillation of AgNPs resulted in a recruitment of inflammatory cells that were reduced in SR-B1-deficient mice or following Blt2 pretreatment. This study suggests that SR-B1 plays a major role in cellular recognition of AgNPs and the induction of cell responses that could contribute to inflammation caused by AgNP exposure.

  19. Scavenger receptor B1 facilitates macrophage uptake of silver nanoparticles and cellular activation

    Science.gov (United States)

    Aldossari, Abdullah A.; Shannahan, Jonathan H.; Podila, Ramakrishna; Brown, Jared M.

    2015-07-01

    Due to increased use of silver nanoparticles (AgNPs) for their antimicrobial activity, concerns have risen regarding potential adverse human health effects. Scavenger receptor B1 (SR-B1), a major receptor for high-density lipoprotein (HDL), is expressed by macrophages and has also been reported to play a role in recognition of negatively charged particles. We, therefore, hypothesized that SR-B1 mediates macrophage uptake of AgNPs and inflammatory activation. To test this hypothesis, we exposed a mouse macrophage cell line RAW264.7 (RAW) and bone marrow-derived macrophages (BMDM) to 20 nm citrate-suspended AgNPs. To verify the role of the SR-B1 receptor, we utilized a SR-B1 inhibitor (Blt2). In vitro studies demonstrated uptake of AgNPs and HDL-coated AgNPs by macrophages which were significantly reduced following pretreatment with Blt2. Inflammatory cytokine arrays revealed that macrophages exposed to AgNPs up-regulated expression of Tnf- α, Oncostatin m (OSM), Ccl4, Il17f, Ccl7, and Ccl2, whereas Il16 was found to be down-regulated. Macrophage activation was observed following AgNP and HDL-coated AgNP exposure as measured by OSM protein production and increased surface expression of CD86. These markers of activation were reduced with Blt2 pretreatment. The in vitro findings were confirmed in vivo through pulmonary instillation of AgNPs in mice. Pulmonary instillation of AgNPs resulted in a recruitment of inflammatory cells that were reduced in SR-B1-deficient mice or following Blt2 pretreatment. This study suggests that SR-B1 plays a major role in cellular recognition of AgNPs and the induction of cell responses that could contribute to inflammation caused by AgNP exposure.

  20. Transplant of stem cells derived from bone marrow and granulocytic growth factor in acute and chronic ischemic myocardiopathy

    International Nuclear Information System (INIS)

    Senior Juan M; Cuellar Francisco; Velasquez Oscar; Velasquez Margarita; Navas Claudia M; Ortiz Sergio; Delgado Juan A; Guillerrno, Blanco; Londono Juan L; Coronado Manuel A; Gomez Francisco; Alzate, Fernando Leon; Zuluaga Alejandra

    2007-01-01

    Recent studies have shown the safety and efficacy of the stem cells derived from bone marrow (BMC) implant with concomitant administration of stimulating factor of granulocyte colonies in patients with acute myocardial infarction with ST segment elevation and in chronic ischemic cardiopathy. An open prospective (before and after) design was made to evaluate the safety and efficacy of cell therapy associated to growth factor administration. The first experience with this kind of therapy is reported. Methodology: this is a 6 months follow-up report of patients with acute and chronic ischemic cardiopathy to who transplant of stem cells derived from bone marrow mobilized with granulocyte colonies growth stimulating factor via coronary arteries or epicardium was realized. Two groups of patients were included: Ten patients with anterior wall infarct and 2. Five patients with chronic ischemic cardiopathy, all with extensive necrosis demonstrated by absence of myocardial viability through nuclear medicine and ejection fraction of less than 40%. Results: significant improvement of ejection fraction from 29.44 ± 3.36 to 37.6 ± 5.3 with p<0.001 and decrease of ventricular systolic and diastolic volume without statistical significance (p =0.31 and 0.4 respectively) were demonstrated. Exercise capacity evidenced by increment in the six minutes test, exercise time and the MET number achieved, increased in a significant way. There were significant changes in the perfusion defect from the second follow-up month and no complications directly related to the stem cells derived from bone marrow transplant or the use of stimulating granulocyte colony factor were presented. Conclusions: this is the first experience of stem cells derived from bone marrow transplant associated to the administration of stimulating granulocyte growth colony factor in which recovery of left ventricular function was demonstrated, as well as improvement in exercise capacity and in the perfusion defect

  1. CCR2+ Monocyte-Derived Infiltrating Macrophages Are Required for Adverse Cardiac Remodeling During Pressure Overload

    Directory of Open Access Journals (Sweden)

    Bindiya Patel, PhD

    2018-04-01

    Full Text Available Summary: Although chronic inflammation is a central feature of heart failure (HF, the immune cell profiles differ with different underlying causes. This suggests that for immunomodulatory therapy in HF to be successful, it needs to be tailored to the specific etiology. Here, the authors demonstrate that monocyte-derived C-C chemokine receptor 2 (CCR2+ macrophages infiltrate the heart early during pressure overload in mice, and that blocking this response either pharmacologically or with antibody-mediated CCR2+ monocyte depletion alleviates late pathological left ventricular remodeling and dysfunction, T-cell expansion, and cardiac fibrosis. Hence, suppression of CCR2+ monocytes/macrophages may be an important immunomodulatory therapeutic target to ameliorate pressure-overload HF. Key Words: cardiac remodeling, heart failure, inflammation, macrophages, T cells

  2. Postprandial triglyceride-rich lipoproteins regulate perilipin-2 and perilipin-3 lipid-droplet-associated proteins in macrophages.

    Science.gov (United States)

    Varela, Lourdes M; López, Sergio; Ortega-Gómez, Almudena; Bermúdez, Beatriz; Buers, Insa; Robenek, Horst; Muriana, Francisco J G; Abia, Rocío

    2015-04-01

    Lipid accumulation in macrophages contributes to atherosclerosis. Within macrophages, lipids are stored in lipid droplets (LDs); perilipin-2 and perilipin-3 are the main LD-associated proteins. Postprandial triglyceride (TG)-rich lipoproteins induce LD accumulation in macrophages. The role of postprandial lipoproteins in perilipin-2 and perilipin-3 regulation was studied. TG-rich lipoproteins (TRLs) induced the levels of intracellular TGs, LDs and perilipin-2 protein expression in THP-1 macrophages and in Apoe(-/-) mice bone-marrow-derived macrophages with low and high basal levels of TGs. Perilipin-3 was only synthesized in mice macrophages with low basal levels of TGs. The regulation was dependent on the fatty acid composition of the lipoproteins; monounsaturated and polyunsaturated fatty acids (PUFAs) more strongly attenuated these effects compared with saturated fatty acids. In THP-1 macrophages, immunofluorescence microscopy and freeze-fracture immunogold labeling indicated that the lipoproteins translocated perilipin-3 from the cytoplasm to the LD surface; only the lipoproteins that were rich in PUFAs suppressed this effect. Chemical inhibition showed that lipoproteins induced perilipin-2 protein expression through the peroxisome proliferator-activated nuclear receptor (PPAR) PPARα and PPARγ pathways. Overall, our data indicate that postprandial TRLs may be involved in atherosclerotic plaque formation through the regulation of perilipin-2 and perilipin-3 proteins in macrophages. Because the fatty acid composition of the lipoproteins is dependent on the type of fat consumed, the ingestion of olive oil, which is rich in monounsaturated fatty acids, and fish oil, which is rich in omega-3 fatty acids, can be considered a good nutritional strategy to reduce the risk of atherosclerosis by LD-associated proteins decrease. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Role of bone marrow transplantation for correcting hemophilia A in mice

    Science.gov (United States)

    Follenzi, Antonia; Raut, Sanj; Merlin, Simone; Sarkar, Rita

    2012-01-01

    To better understand cellular basis of hemophilia, cell types capable of producing FVIII need to be identified. We determined whether bone marrow (BM)–derived cells would produce cells capable of synthesizing and releasing FVIII by transplanting healthy mouse BM into hemophilia A mice. To track donor-derived cells, we used genetic reporters. Use of multiple coagulation assays demonstrated whether FVIII produced by discrete cell populations would correct hemophilia A. We found that animals receiving healthy BM cells survived bleeding challenge with correction of hemophilia, although donor BM-derived hepatocytes or endothelial cells were extremely rare, and these cells did not account for therapeutic benefits. By contrast, donor BM-derived mononuclear and mesenchymal stromal cells were more abundant and expressed FVIII mRNA as well as FVIII protein. Moreover, injection of healthy mouse Kupffer cells (liver macrophage/mononuclear cells), which predominantly originate from BM, or of healthy BM-derived mesenchymal stromal cells, protected hemophilia A mice from bleeding challenge with appearance of FVIII in blood. Therefore, BM transplantation corrected hemophilia A through donor-derived mononuclear cells and mesenchymal stromal cells. These insights into FVIII synthesis and production in alternative cell types will advance studies of pathophysiological mechanisms and therapeutic development in hemophilia A. PMID:22368271

  4. Paracrine effects and heterogeneity of marrow-derived stem/progenitor cells: relevance for the treatment of respiratory diseases.

    Science.gov (United States)

    Conese, Massimo; Carbone, Annalucia; Castellani, Stefano; Di Gioia, Sante

    2013-01-01

    Stem cell-based treatment may represent a hope for the treatment of acute lung injury and pulmonary fibrosis, and other chronic lung diseases, such as cystic fibrosis, asthma and chronic obstructive pulmonary disease (COPD). It is well established in preclinical models that bone marrow-derived stem and progenitor cells exert beneficial effects on inflammation, immune responses and repairing of damage in virtually all lung-borne diseases. While it was initially thought that the positive outcome was due to a direct engraftment of these cells into the lung as endothelial and epithelial cells, paracrine factors are now considered the main mechanism through which stem and progenitor cells exert their therapeutic effect. This knowledge has led to the clinical use of marrow cells in pulmonary hypertension with endothelial progenitor cells (EPCs) and in COPD with mesenchymal stromal (stem) cells (MSCs). Bone marrow-derived stem cells, including hematopoietic stem/progenitor cells, MSCs, EPCs and fibrocytes, encompass a wide array of cell subsets with different capacities of engraftment and injured tissue-regenerating potential. The characterization/isolation of the stem cell subpopulations represents a major challenge to improve the efficacy of transplantation protocols used in regenerative medicine and applied to lung disorders. Copyright © 2013 S. Karger AG, Basel.

  5. Do chondroitin sulfates with different structures have different activities on chondrocytes and macrophages?

    Science.gov (United States)

    da Cunha, André L; Aguiar, Jair A K; Correa da Silva, Flavio S; Michelacci, Yara M

    2017-10-01

    The aim of the present study was to investigate the activities of natural chondroitin sulfates (CS) with different structures on cultured chondrocytes and macrophages. CS were isolated from cartilages of bovine trachea (BT), porcine trachea (PT), chicken sternum (Ch) and skate (Sk). The preparations were 90-98% pure, with ∼1% proteins, nucleic acids and keratan sulfate contaminants. Structural analysis of these CS and of commercial chondroitin 4- and 6-sulfate (C4S, C6S) have shown that most of their disaccharides are monosulfated, with varying proportions of 4- and 6-sulfation, and 2-7% non-sulfated disaccharides. Sk-CS and C6S contained detectable amounts of disulfated disaccharides. All the CS were polydisperse, with modal molecular weights of 26-135kDa. These CS had anti-inflammatory activities on both chondrocytes and macrophages, but with different efficiencies. On horse and human chondrocytes, they reduced the IL-1β-induced liberation of NO and PGE 2 , and on RAW 264.7 immortalized macrophage-like cell line, C4S, C6S, Ch and Sk-CS decreased the LPS-induced liberation of TNF-α, but did not affect IL-6. In contrast, on bone marrow derived macrophages, C4S, C6S, BT and PT-CS reduced the LPS-induced liberation of TNF-α, IL-6, IL-1β and NO, indicating that the RAW response to CS was different from that of primary macrophages. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. ECM microenvironment unlocks brown adipogenic potential of adult human bone marrow-derived MSCs.

    Science.gov (United States)

    Lee, Michelle H; Goralczyk, Anna G; Kriszt, Rókus; Ang, Xiu Min; Badowski, Cedric; Li, Ying; Summers, Scott A; Toh, Sue-Anne; Yassin, M Shabeer; Shabbir, Asim; Sheppard, Allan; Raghunath, Michael

    2016-02-17

    Key to realizing the diagnostic and therapeutic potential of human brown/brite adipocytes is the identification of a renewable, easily accessible and safe tissue source of progenitor cells, and an efficacious in vitro differentiation protocol. We show that macromolecular crowding (MMC) facilitates brown adipocyte differentiation in adult human bone marrow mesenchymal stem cells (bmMSCs), as evidenced by substantially upregulating uncoupling protein 1 (UCP1) and uncoupled respiration. Moreover, MMC also induced 'browning' in bmMSC-derived white adipocytes. Mechanistically, MMC creates a 3D extracellular matrix architecture enshrouding maturing adipocytes in a collagen IV cocoon that is engaged by paxillin-positive focal adhesions also at the apical side of cells, without contact to the stiff support structure. This leads to an enhanced matrix-cell signaling, reflected by increased phosphorylation of ATF2, a key transcription factor in UCP1 regulation. Thus, tuning the dimensionality of the microenvironment in vitro can unlock a strong brown potential dormant in bone marrow.

  7. Isolation of Mature (Peritoneum-Derived Mast Cells and Immature (Bone Marrow-Derived Mast Cell Precursors from Mice.

    Directory of Open Access Journals (Sweden)

    Steffen K Meurer

    Full Text Available Mast cells (MCs are a versatile cell type playing key roles in tissue morphogenesis and host defence against bacteria and parasites. Furthermore, they can enhance immunological danger signals and are implicated in inflammatory disorders like fibrosis. This granulated cell type originates from the myeloid lineage and has similarities to basophilic granulocytes, both containing large quantities of histamine and heparin. Immature murine mast cells mature in their destination tissue and adopt either the connective tissue (CTMC or mucosal (MMC type. Some effector functions are executed by activation/degranulation of MCs which lead to secretion of a typical set of MC proteases (MCPT and of the preformed or newly synthesized mediators from its granules into the local microenvironment. Due to the potential accumulation of mutations in key signalling pathway components of corresponding MC cell-lines, primary cultured MCs are an attractive mean to study general features of MC biology and aspects of MC functions relevant to human disease. Here, we describe a simple protocol for the simultaneous isolation of mature CTMC-like murine MCs from the peritoneum (PMCs and immature MC precursors from the bone marrow (BM. The latter are differentiated in vitro to yield BM-derived MCs (BMMC. These cells display the typical morphological and phenotypic features of MCs, express the typical MC surface markers, and can be propagated and kept in culture for several weeks. The provided protocol allows simple amplification of large quantities of homogenous, non-transformed MCs from the peritoneum and bone marrow-derived mast cells for cell- and tissue-based biomedical research.

  8. A stimulator of proliferation of spleen colony-forming cells (CFU-S) in the bone marrow of irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Ivanovic, Z.; Milenkovic, P.; Stojanovic, N.; Lukic, M.; Kataranovski, M.

    1993-07-01

    The presence and activity of a spleen colony - forming cell (CFU-S) proliferation stimulator was investigated in rat bone marrow after irradiation. The dose dependent increase in cytosine arabinoside induced cell dealth of normal mouse bone marrow. The results demonstrate the existence of a CFU-S proliferation stimulator in rat bone marrow similar to that originally found as a macrophage product in regenarating mouse bone marrow. The CFU-S proliferation stimulator activity was not associated with the presence of interleukin - 1,2, or 6 like activities in the material tested.

  9. Intractable Diseases Treated with Intra-Bone Marrow-Bone Marrow Transplantation

    Directory of Open Access Journals (Sweden)

    Ming eLi

    2014-09-01

    Full Text Available Bone marrow transplantation (BMT is used to treat hematological disorders, autoimmune diseases and lymphoid cancers. Intra bone marrow-BMT (IBM-BMT has been proven to be a powerful strategy for allogeneic BMT due to the rapid hematopoietic recovery and the complete restoration of T cell functions. IBM-BMT not only replaces hematopoietic stem cells but also mesenchymal stem cells (MSMCs. MSMCs are multi-potent stem cells that can be isolated from bone marrow, umbilical cord blood, and adipose tissue. MSMCs play an important role in the support of hematopoiesis, and modify and influence the innate and adaptive immune systems. MSMCs also differentiate into mesodermal, endodermal and ectodermal lineage cells to repair tissues. This review aims to summarize the functions of bone marrow-derived- MSMCs, and the treatment of intractable diseases such as rheumatoid arthritis and malignant tumors with IBM-BMT.

  10. Genome-Wide Association Study Identifies Single Nucleotide Polymorphism in DYRK1A Associated with Replication of HIV-1 in Monocyte-Derived Macrophages

    Science.gov (United States)

    Bol, Sebastiaan M.; Moerland, Perry D.; Limou, Sophie; van Remmerden, Yvonne; Coulonges, Cédric; van Manen, Daniëlle; Herbeck, Joshua T.; Fellay, Jacques; Sieberer, Margit; Sietzema, Jantine G.; van 't Slot, Ruben; Martinson, Jeremy; Zagury, Jean-François; Schuitemaker, Hanneke; van 't Wout, Angélique B.

    2011-01-01

    Background HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART), macrophages keep producing virus because tissue penetration of antiretrovirals is suboptimal and the efficacy of some is reduced. Thus, to cure HIV-1 infection with antiretrovirals we will also need to efficiently inhibit viral replication in macrophages. The majority of the current drugs block the action of viral enzymes, whereas there is an abundance of yet unidentified host factors that could be targeted. We here present results from a genome-wide association study identifying novel genetic polymorphisms that affect in vitro HIV-1 replication in macrophages. Methodology/Principal Findings Monocyte-derived macrophages from 393 blood donors were infected with HIV-1 and viral replication was determined using Gag p24 antigen levels. Genomic DNA from individuals with macrophages that had relatively low (n = 96) or high (n = 96) p24 production was used for SNP genotyping with the Illumina 610 Quad beadchip. A total of 494,656 SNPs that passed quality control were tested for association with HIV-1 replication in macrophages, using linear regression. We found a strong association between in vitro HIV-1 replication in monocyte-derived macrophages and SNP rs12483205 in DYRK1A (p = 2.16×10−5). While the association was not genome-wide significant (p<1×10−7), we could replicate this association using monocyte-derived macrophages from an independent group of 31 individuals (p = 0.0034). Combined analysis of the initial and replication cohort increased the strength of the association (p = 4.84×10−6). In addition, we found this SNP to be associated with HIV-1 disease progression in vivo in two independent cohort studies (p = 0.035 and p = 0.0048). Conclusions/Significance These findings suggest that

  11. AUTOLOGOUS Marrow-Derived Stem Cell-Seeded Gene-Supplemented Collagen Scaffolds for Spinal Cord Regeneration as a Treatment for Paralysis

    National Research Council Canada - National Science Library

    Spector, Myron

    2006-01-01

    .... Moreover, the authors will be investigating the effects of incorporating genes from nerve growth factors into the collagen scaffolds and seeding the scaffolds with marrow-derived mesenchymal stem cells...

  12. Cardiosphere-Derived Cells Facilitate Heart Repair by Modulating M1/M2 Macrophage Polarization and Neutrophil Recruitment.

    Directory of Open Access Journals (Sweden)

    Al Shaimaa Hasan

    Full Text Available Cardiosphere-derived cells (CDCs, one of the promising stem cell sources for myocardial repair, have been tested in clinical trials and resulted in beneficial effects; however, the relevant mechanisms are not fully understood. In this study, we examined the hypothesis that CDCs favor heart repair by switching the macrophages from a pro-inflammatory phenotype (M1 into a regulatory anti-inflammatory phenotype (M2. Macrophages from mice were cultured with CDCs-conditioned medium or with fibroblasts-conditioned medium as a control. Immunostaining showed that CDCs-conditioned medium significantly enhanced the expression of CD206 (a marker for M2 macrophages, but decreased the expression of CD86 (a marker for M1 macrophages 3 days after culture. For animal studies, we used an acute myocardial infarction model of mice. We injected CDCs, fibroblasts, or saline only into the border zone of infarction. Then we collected the heart tissues for histological analysis 5 and 14 days after treatment. Compared with control animals, CDCs treatment significantly decreased M1 macrophages and neutrophils but increased M2 macrophages in the infarcted heart. Furthermore, CDCs-treated mice had reduced infarct size and fewer apoptotic cells compared to the controls. Our data suggest that CDCs facilitate heart repair by modulating M1/M2 macrophage polarization and neutrophil recruitment, which may provide a new insight into the mechanisms of stem cell-based myocardial repair.

  13. Coxsackievirus B4 Can Infect Human Peripheral Blood-Derived Macrophages

    Directory of Open Access Journals (Sweden)

    Enagnon Kazali Alidjinou

    2015-11-01

    Full Text Available Beyond acute infections, group B coxsackieviruses (CVB are also reported to play a role in the development of chronic diseases, like type 1 diabetes. The viral pathogenesis mainly relies on the interplay between the viruses and innate immune response in genetically-susceptible individuals. We investigated the interaction between CVB4 and macrophages considered as major players in immune response. Monocyte-derived macrophages (MDM generated with either M-CSF or GM-CSF were inoculated with CVB4, and infection, inflammation, viral replication and persistence were assessed. M-CSF-induced MDM, but not GM-CSF-induced MDM, can be infected by CVB4. In addition, enhancing serum was not needed to infect MDM in contrast with parental monocytes. The expression of viral receptor (CAR mRNA was similar in both M-CSF and GM-CSF MDM. CVB4 induced high levels of pro-inflammatory cytokines (IL-6 and TNFα in both MDM populations. CVB4 effectively replicated and persisted in M-CSF MDM, but IFNα was produced in the early phase of infection only. Our results demonstrate that CVB4 can replicate and persist in MDM. Further investigations are required to determine whether the interaction between the virus and MDM plays a role in the pathogenesis of CVB-induced chronic diseases.

  14. Exosomes Derived from Human Bone Marrow Mesenchymal Stem Cells Promote Tumor Growth Through Hedgehog Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jin Qi

    2017-08-01

    Full Text Available Background/Aims: Mesenchymal stem/stromal cells (MSCs are known to home to sites of tumor microenvironments where they participate in the formation of the tumor microenvironment and to interplay with tumor cells. However, the potential functional effects of MSCs on tumor cell growth are controversial. Here, we, from the view of bone marrow MSC-derived exosomes, study the molecular mechanism of MSCs on the growth of human osteosarcoma and human gastric cancer cells. Methods: MSCs derived from human bone marrow (hBMSCs were isolated and cultured in complete DMEM/F12 supplemented with 10% exosome-depleted fetal bovine serum and 1% penicillin-streptomycin, cell culture supernatants containing exosomes were harvested and exosome purification was performed by ultracentrifugation. Osteosarcoma (MG63 and gastric cancer (SGC7901 cells, respectively, were treated with hBMSC-derived exosomes in the presence or absence of a small molecule inhibitor of Hedgehog pathway. Cell viability was measured by transwell invasion assay, scratch migration assay and CCK-8 test. The expression of the signaling molecules Smoothened, Patched-1, Gli1 and the ligand Shh were tested by western blot and RT-PCR. Results: In this study, we found that hBMSC-derived exosomes promoted MG63 and SGC7901 cell growth through the activation of Hedgehog signaling pathway. Inhibition of Hedgehog signaling pathway significantly suppressed the process of hBMSC-derived exosomes on tumor growth. Conclusion: Our findings demonstrated the new roles of hedgehog signaling pathway in the hBMSCs-derived exosomes induced tumor progression.

  15. A Catalytic Role for Proangiogenic Marrow-Derived Cells in Tumor Neovascularization

    Science.gov (United States)

    Seandel, Marco; Butler, Jason; Lyden, David; Rafii, Shahin

    2010-01-01

    Small numbers of proangiogenic bone marrow-derived cells (BMDCs) can play pivotal roles in tumor progression. In this issue of Cancer Cell, two papers, utilizing different tumor angiogenesis models, both find that activated MMP-9 delivered by BMDCs modulates neovessel remodeling, thereby promoting tumor growth. The changes in microvascular anatomy induced by MMP-9-expressing BMDCs are strikingly different between the preirradiated tumor vascular bed model employed by Ahn and Brown and the invasive glioblastoma model utilized by Du et al., likely mirroring the complexity of the real tumor microenvironment and the intricacy of roles of different BMDC populations in mediating tumor neoangiogenesis. PMID:18328420

  16. Strain specific transcriptional response in Mycobacterium tuberculosis infected macrophages

    Directory of Open Access Journals (Sweden)

    Koo Mi-Sun

    2012-01-01

    Full Text Available Abstract Background Tuberculosis (TB, a bacterial infection caused by Mycobacterium tuberculosis (Mtb remains a significant health problem worldwide with a third of the world population infected and nearly nine million new cases claiming 1.1 million deaths every year. The outcome following infection by Mtb is determined by a complex and dynamic host-pathogen interaction in which the phenotype of the pathogen and the immune status of the host play a role. However, the molecular mechanism by which Mtb strains induce different responses during intracellular infection of the host macrophage is not fully understood. To explore the early molecular events triggered upon Mtb infection of macrophages, we studied the transcriptional responses of murine bone marrow-derived macrophages (BMM to infection with two clinical Mtb strains, CDC1551 and HN878. These strains have previously been shown to differ in their virulence/immunogenicity in the mouse and rabbit models of pulmonary TB. Results In spite of similar intracellular growth rates, we observed that compared to HN878, infection by CDC1551 of BMM was associated with an increased global transcriptome, up-regulation of a specific early (6 hours immune response network and significantly elevated nitric oxide production. In contrast, at 24 hours post-infection of BMM by HN878, more host genes involved in lipid metabolism, including cholesterol metabolism and prostaglandin synthesis were up-regulated, compared to infection with CDC1551. In association with the differences in the macrophage responses to infection with the 2 Mtb strains, intracellular CDC1551 expressed higher levels of stress response genes than did HN878. Conclusions In association with the early and more robust macrophage activation, intracellular CDC1551 cells were exposed to a higher level of stress leading to increased up-regulation of the bacterial stress response genes. In contrast, sub-optimal activation of macrophages and induction of

  17. Improved gene expression in resting macrophages using an oligopeptide derived from Vpr of human immunodeficiency virus type-1

    International Nuclear Information System (INIS)

    Mizoguchi, Izuru; Ooe, Yoshihiro; Hoshino, Shigeki; Shimura, Mari; Kasahara, Tadashi; Kano, Shigeyuki; Ohta, Toshiko; Takaku, Fumimaro; Nakayama, Yasuhide; Ishizaka, Yukihito

    2005-01-01

    Vpr, an accessory gene product of human immunodeficiency virus type-1, is thought to transport a viral DNA from the cytoplasm to the nucleus in resting macrophages. Previously, we reported that a peptide encompassing amino acids 52-78 of Vpr (C45D18) promotes the nuclear trafficking of recombinant proteins that are conjugated with C45D18. Here, we present evidence that C45D18, when conjugated with a six-branched cationic polymer of poly(N,N-dimethylaminopropylacrylamide)-block-oligo(4-aminostyrene) (SV: star vector), facilitates gene expression in resting macrophages. Although there was no difference between SV alone and C45D18-SV with respect to gene transduction into growing cells, C45D18-SV resulted in more than 40-fold greater expression of the exogenous gene upon transduction into chemically differentiated macrophages and human quiescent monocyte-derived macrophages. The data suggest that C45D18 contributes to improving the ability of a non-viral vector to transduce macrophages with exogenous genes and we discuss its further application

  18. Cysteamine re-establishes the clearance of Pseudomonas aeruginosa by macrophages bearing the cystic fibrosis-relevant F508del-CFTR mutation.

    Science.gov (United States)

    Ferrari, Eleonora; Monzani, Romina; Villella, Valeria R; Esposito, Speranza; Saluzzo, Francesca; Rossin, Federica; D'Eletto, Manuela; Tosco, Antonella; De Gregorio, Fabiola; Izzo, Valentina; Maiuri, Maria C; Kroemer, Guido; Raia, Valeria; Maiuri, Luigi

    2017-01-12

    Cystic fibrosis (CF), the most common lethal monogenic disease in Caucasians, is characterized by recurrent bacterial infections and colonization, mainly by Pseudomonas aeruginosa, resulting in unresolved airway inflammation. CF is caused by mutations in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, which functions as a chloride channel in epithelial cells, macrophages, and other cell types. Impaired bacterial handling by macrophages is a feature of CF airways, although it is still debated how defective CFTR impairs bacterial killing. Recent evidence indicates that a defective autophagy in CF macrophages leads to alterations of bacterial clearance upon infection. Here we use bone marrow-derived macrophages from transgenic mice to provide the genetic proof that defective CFTR compromises both uptake and clearance of internalized Pseudomonas aeruginosa. We demonstrate that the proteostasis regulator cysteamine, which rescues the function of the most common F508del-CFTR mutant and hence reduces lung inflammation in CF patients, can also repair the defects of CF macrophages, thus restoring both bacterial internalization and clearance through a process that involves upregulation of the pro-autophagic protein Beclin 1 and re-establishment of the autophagic pathway. Altogether these results indicate that cysteamine restores the function of several distinct cell types, including that of macrophages, which might contribute to its beneficial effects on CF.

  19. Amelioration of hypertriglyceridemia with hypo-alpha-cholesterolemia in LPL deficient mice by hematopoietic cell-derived LPL.

    Directory of Open Access Journals (Sweden)

    Yinyuan Ding

    Full Text Available BACKGROUND: Macrophage-derived lipoprotein lipase (LPL has been shown uniformly to promote atherosclerotic lesion formation while the extent to which it affects plasma lipid and lipoprotein levels varies in wild-type and hypercholesterolemic mice. It is known that high levels of LPL in the bulk of adipose tissue and skeletal muscle would certainly mask the contribution of macrophage LPL to metabolism of plasma lipoprotein. Therefore, we chose LPL deficient (LPL⁻/⁻ mice with severe hypertriglyceridemia as an alternative model to assess the role of macrophage LPL in plasma lipoprotein metabolism via bone marrow transplant, through which LPL will be produced mainly by hematopoietic cell-derived macrophages. METHODS AND RESULTS: Hypertriglyceridemic LPL⁻/⁻ mice were lethally irradiated, then transplanted with bone marrow from wild-type (LPL⁺/⁺ or LPL⁻/⁻ mice, respectively. Sixteen weeks later, LPL⁺/⁺ →LPL⁻/⁻ mice displayed significant reduction in plasma levels of triglyceride and cholesterol (408±44.9 vs. 2.7±0.5×10³ and 82.9±7.1 vs. 229.1±30.6 mg/dl, p<0.05, respectively, while a 2.7-fold increase in plasma high density lipoprotein- cholesterol (p<0.01 was observed, compared with LPL⁻/⁻→LPL⁻/⁻ control mice. The clearance rate for the oral fat load test in LPL⁺/⁺ →LPL⁻/⁻ mice was faster than that in LPL⁻/⁻→LPL⁻/⁻ mice, but slower than that in wild-type mice. Liver triglyceride content in LPL⁺/⁺→LPL⁻/⁻ mice was also significantly increased, compared with LPL⁻/⁻→LPL⁻/⁻ mice (6.8±0.7 vs. 4.6±0.5 mg/g wet tissue, p<0.05, n = 6. However, no significant change was observed in the expression levels of genes involved in hepatic lipid metabolism between the two groups. CONCLUSIONS: Hematopoietic cell-derived LPL could efficiently ameliorate severe hypertriglyceridemia and hypo-alpha-cholesterolemia at the compensation of increased triglyceride content of liver in LPL

  20. Route of delivery influences biodistribution of human bone marrow-derived mesenchymal stromal cells following experimental bone marrow transplantation

    Directory of Open Access Journals (Sweden)

    Wang FJ

    2015-12-01

    Full Text Available Mesenchymal stromal cells (MSCs have shown promise as treatment for graft-versus-host disease (GvHD following allogeneic bone marrow transplantation (alloBMT. Mechanisms mediating in vivo effects of MSCs remain largely unknown, including their biodistribution following infusion. To this end, human bone-marrow derived MSCs (hMSCs were injected via carotid artery (IA or tail vein (TV into allogeneic and syngeneic BMT recipient mice. Following xenogeneic transplantation, MSC biodistribution was measured by bioluminescence imaging (BLI using hMSCs transduced with a reporter gene system containing luciferase and by scintigraphic imaging using hMSCs labeled with [99mTc]-HMPAO. Although hMSCs initially accumulated in the lungs in both transplant groups, more cells migrated to organs in alloBMT recipient as measured by in vivo BLI and scintigraphy and confirmed by ex vivo BLI imaging, immunohistochemistry and quantitative RT-PCR. IA injection resulted in persistent whole–body hMSC distribution in alloBMT recipients, while hMSCs were rapidly cleared in the syngeneic animals within one week. In contrast, TV-injected hMSCs were mainly seen in the lungs with fewer cells traveling to other organs. Summarily, these results demonstrate the potential use of IA injection to alter hMSC biodistribution in order to more effectively deliver hMSCs to targeted tissues and microenvironments.

  1. Delivery of Adipose-Derived Stem Cells Attenuates Adipose Tissue Inflammation and Insulin Resistance in Obese Mice Through Remodeling Macrophage Phenotypes.

    Science.gov (United States)

    Shang, Qianwen; Bai, Yang; Wang, Guannan; Song, Qiang; Guo, Chun; Zhang, Lining; Wang, Qun

    2015-09-01

    Adipose-derived stem cells (ADSCs) have been used to control several autoimmune or inflammatory diseases due to immunosuppressive properties, but their role in obesity-associated inflammation remains unestablished. This study aims to evaluate the effects of ADSCs on obesity-induced white adipose tissue (WAT) inflammation and insulin resistance. We found that diet-induced obesity caused a remarkable reduction of ADSC fraction in mouse WAT. Delivery of lean mouse-derived ADSCs, which could successfully locate into WAT of obese mice, substantially improved insulin action and metabolic homeostasis of obese mice. ADSC treatment not only reduced adipocyte hypertrophy but also attenuated WAT inflammation by reducing crown-like structures of macrophages and tumor necrosis factor (TNF)-α secretion. Importantly, ADSC treatment remodeled the phenotypes of adipose-resident macrophages from proinflammatory M1 toward anti-inflammatory M2-like subtypes, as characterized by decreased MHC class II-expressing but increased interleukin (IL)-10-producing macrophages together with low expression of TNF-α and IL-12. Coculture of ADSCs through the transwell or conditional medium with induced M1 macrophages also reproduced the phenotypic switch toward M2-like macrophages, which was substantiated by elevated arginase 1, declined inducible nitric oxide synthase, inhibition of NF-κB activity, and activation of STAT3/STAT6. Taken together, our data support that ADSC supplement in obese mice could sustain IL-10-producing M2-like macrophages in WAT through paracrine action, thereby suggesting the crucial role of ADSCs in resolving WAT inflammation, maintaining adipose homeostasis, and proposing a potential ADSC-based approach for the treatment of obesity-related diseases.

  2. Multiple Pseudomonas species secrete exolysin-like toxins and provoke Caspase-1-dependent macrophage death.

    Science.gov (United States)

    Basso, Pauline; Wallet, Pierre; Elsen, Sylvie; Soleilhac, Emmanuelle; Henry, Thomas; Faudry, Eric; Attrée, Ina

    2017-10-01

    Pathogenic bacteria secrete protein toxins that provoke apoptosis or necrosis of eukaryotic cells. Here, we developed a live-imaging method, based on incorporation of a DNA-intercalating dye into membrane-damaged host cells, to study the kinetics of primary bone marrow-derived macrophages (BMDMs) mortality induced by opportunistic pathogen Pseudomonas aeruginosa expressing either Type III Secretion System (T3SS) toxins or the pore-forming toxin, Exolysin (ExlA). We found that ExlA promotes the activation of Caspase-1 and maturation of interleukin-1β. BMDMs deficient for Caspase-1 and Caspase-11 were resistant to ExlA-induced death. Furthermore, by using KO BMDMs, we determined that the upstream NLRP3/ASC complex leads to the Caspase-1 activation. We also demonstrated that Pseudomonas putida and Pseudomonas protegens and the Drosophila pathogen Pseudomonas entomophila, which naturally express ExlA-like toxins, are cytotoxic toward macrophages and provoke the same type of pro-inflammatory death as does ExlA + P. aeruginosa. These results demonstrate that ExlA-like toxins of two-partner secretion systems from diverse Pseudomonas species activate the NLRP3 inflammasome and provoke inflammatory pyroptotic death of macrophages. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Comparative study of adipose-derived stem cells and bone marrow-derived stem cells in similar microenvironmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Guneta, Vipra [Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Tan, Nguan Soon [School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); KK Research Centre, KK Women' s and Children Hospital, 100 Bukit Timah Road, Singapore 229899 (Singapore); Institute of Molecular and Cell Biology, Agency for Science Technology & Research - A*STAR, 61 Biopolis Drive, Proteos, Singapore 138673 (Singapore); Chan, Soon Kiat Jeremy [School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Tanavde, Vivek [Bioinformatics Institute, Agency for Science Technology & Research - A*STAR, 30 Biopolis Street, Matrix, Singapore 138671 (Singapore); Lim, Thiam Chye [Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, National University Hospital (NUH) and National University of Singapore (NUS), Kent Ridge Wing, Singapore 119074 (Singapore); Wong, Thien Chong Marcus [Plastic, Reconstructive and Aesthetic Surgery Section, Tan Tock Seng Hospital (TTSH), 11, Jalan Tan Tock Seng, Singapore 308433 (Singapore); Choong, Cleo, E-mail: cleochoong@ntu.edu.sg [Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); KK Research Centre, KK Women' s and Children Hospital, 100 Bukit Timah Road, Singapore 229899 (Singapore)

    2016-11-01

    Mesenchymal stem cells (MSCs), which were first isolated from the bone marrow, are now being extracted from various other tissues in the body, including the adipose tissue. The current study presents systematic evidence of how the adipose tissue-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (Bm-MSCs) behave when cultured in specific pro-adipogenic microenvironments. The cells were first characterized and identified as MSCs in terms of their morphology, phenotypic expression, self-renewal capabilities and multi-lineage potential. Subsequently, the proliferation and gene expression profiles of the cell populations cultured on two-dimensional (2D) adipose tissue extracellular matrix (ECM)-coated tissue culture plastic (TCP) and in three-dimensional (3D) AlgiMatrix® microenvironments were analyzed. Overall, it was found that adipogenesis was triggered in both cell populations due to the presence of adipose tissue ECM. However, in 3D microenvironments, ASCs and Bm-MSCs were predisposed to the adipogenic and osteogenic lineages respectively. Overall, findings from this study will contribute to ongoing efforts in adipose tissue engineering as well as provide new insights into the role of the ECM and cues provided by the immediate microenvironment for stem cell differentiation. - Highlights: • Native adipose tissue ECM coated on 2D TCP triggers adipogenesis in both ASCs and Bm-MSCs. • A 3D microenvironment with similar stiffness to adipose tissue induces adipogenic differentiation of ASCs. • ASCs cultured in 3D alginate scaffolds exhibit predisposition to adipogenesis. • Bm-MSCs cultured in 3D alginate scaffolds exhibit predisposition to osteogenesis. • The native microenvironment of the cells affects their differentiation behaviour in vitro.

  4. Comparative study of adipose-derived stem cells and bone marrow-derived stem cells in similar microenvironmental conditions

    International Nuclear Information System (INIS)

    Guneta, Vipra; Tan, Nguan Soon; Chan, Soon Kiat Jeremy; Tanavde, Vivek; Lim, Thiam Chye; Wong, Thien Chong Marcus; Choong, Cleo

    2016-01-01

    Mesenchymal stem cells (MSCs), which were first isolated from the bone marrow, are now being extracted from various other tissues in the body, including the adipose tissue. The current study presents systematic evidence of how the adipose tissue-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (Bm-MSCs) behave when cultured in specific pro-adipogenic microenvironments. The cells were first characterized and identified as MSCs in terms of their morphology, phenotypic expression, self-renewal capabilities and multi-lineage potential. Subsequently, the proliferation and gene expression profiles of the cell populations cultured on two-dimensional (2D) adipose tissue extracellular matrix (ECM)-coated tissue culture plastic (TCP) and in three-dimensional (3D) AlgiMatrix® microenvironments were analyzed. Overall, it was found that adipogenesis was triggered in both cell populations due to the presence of adipose tissue ECM. However, in 3D microenvironments, ASCs and Bm-MSCs were predisposed to the adipogenic and osteogenic lineages respectively. Overall, findings from this study will contribute to ongoing efforts in adipose tissue engineering as well as provide new insights into the role of the ECM and cues provided by the immediate microenvironment for stem cell differentiation. - Highlights: • Native adipose tissue ECM coated on 2D TCP triggers adipogenesis in both ASCs and Bm-MSCs. • A 3D microenvironment with similar stiffness to adipose tissue induces adipogenic differentiation of ASCs. • ASCs cultured in 3D alginate scaffolds exhibit predisposition to adipogenesis. • Bm-MSCs cultured in 3D alginate scaffolds exhibit predisposition to osteogenesis. • The native microenvironment of the cells affects their differentiation behaviour in vitro.

  5. Transcriptomic signature of Leishmania infected mice macrophages: a metabolic point of view.

    Directory of Open Access Journals (Sweden)

    Imen Rabhi

    Full Text Available We analyzed the transcriptional signatures of mouse bone marrow-derived macrophages at different times after infection with promastigotes of the protozoan parasite Leishmania major. Ingenuity Pathway Analysis revealed that the macrophage metabolic pathways including carbohydrate and lipid metabolisms were among the most altered pathways at later time points of infection. Indeed, L. major promastiogtes induced increased mRNA levels of the glucose transporter and almost all of the genes associated with glycolysis and lactate dehydrogenase, suggesting a shift to anaerobic glycolysis. On the other hand, L. major promastigotes enhanced the expression of scavenger receptors involved in the uptake of Low-Density Lipoprotein (LDL, inhibited the expression of genes coding for proteins regulating cholesterol efflux, and induced the synthesis of triacylglycerides. These data suggested that Leishmania infection disturbs cholesterol and triglycerides homeostasis and may lead to cholesterol accumulation and foam cell formation. Using Filipin and Bodipy staining, we showed cholesterol and triglycerides accumulation in infected macrophages. Moreover, Bodipy-positive lipid droplets accumulated in close proximity to parasitophorous vacuoles, suggesting that intracellular L. major may take advantage of these organelles as high-energy substrate sources. While the effect of infection on cholesterol accumulation and lipid droplet formation was independent on parasite development, our data indicate that anaerobic glycolysis is actively induced by L. major during the establishment of infection.

  6. Dexamethasone palmitate ameliorates macrophages-rich graft-versus-host disease by inhibiting macrophage functions.

    Science.gov (United States)

    Nishiwaki, Satoshi; Nakayama, Takayuki; Murata, Makoto; Nishida, Tetsuya; Terakura, Seitaro; Saito, Shigeki; Kato, Tomonori; Mizuno, Hiroki; Imahashi, Nobuhiko; Seto, Aika; Ozawa, Yukiyasu; Miyamura, Koichi; Ito, Masafumi; Takeshita, Kyosuke; Kato, Hidefumi; Toyokuni, Shinya; Nagao, Keisuke; Ueda, Ryuzo; Naoe, Tomoki

    2014-01-01

    Macrophage infiltration of skin GVHD lesions correlates directly with disease severity, but the mechanisms underlying this relationship remain unclear and GVHD with many macrophages is a therapeutic challenge. Here, we characterize the macrophages involved in GVHD and report that dexamethasone palmitate (DP), a liposteroid, can ameliorate such GVHD by inhibiting macrophage functions. We found that host-derived macrophages could exacerbate GVHD in a mouse model through expression of higher levels of pro-inflammatory TNF-α and IFN-γ, and lower levels of anti-inflammatory IL-10 than resident macrophages in mice without GVHD. DP significantly decreased the viability and migration capacity of primary mouse macrophages compared to conventional dexamethasone in vitro. DP treatment on day 7 and day 14 decreased macrophage number, and attenuated GVHD score and subsequent mortality in a murine model. This is the first study to provide evidence that therapy for GVHD should be changed on the basis of infiltrating cell type.

  7. Provocation of skin graft rejection across murine class II differences by non--bone-marrow-derived cells

    International Nuclear Information System (INIS)

    Stuart, P.M.; Beck-Maier, B.; Melvold, R.W.

    1984-01-01

    We have evaluated the relative contribution of bone-marrow-derived cells to skin allograft immunogenicity in mice differing only at class II major histocompatibility genes by using bone marrow radiation chimeras as donors. The mouse strains used were C57BL/6Kh (B6) and B6.C-H-2bm12 (bm12), which differ only at at A beta gene of the I region of the mouse H-2 complex. Our results demonstrated that skin from (B6----bm12) chimeras was accepted by bm12 recipients and rejected by B6 mice in a manner indistinguishable from that of normal bm12 skin. Likewise, naive bm12 mice rejected (bm12----B6) chimeric skin and normal B6 skin equally well, and B6 animals accepted both types of skin grafts. Our data argues that the donor cell-type leading to graft rejection across limited I region differences is not of bone marrow origin, and that these cells must--at least under certain circumstances--express class II antigens

  8. Dynamic of distribution of human bone marrow-derived mesenchymal stem cells after transplantation into adult unconditioned mice.

    Science.gov (United States)

    Allers, Carolina; Sierralta, Walter D; Neubauer, Sonia; Rivera, Francisco; Minguell, José J; Conget, Paulette A

    2004-08-27

    The use of mesenchymal stem cells (MSC) for cell therapy relies on their capacity to engraft and survive long-term in the appropriate target tissue(s). Animal models have demonstrated that the syngeneic or xenogeneic transplantation of MSC results in donor engraftment into the bone marrow and other tissues of conditioned recipients. However, there are no reliable data showing the fate of human MSC infused into conditioned or unconditioned adult recipients. In the present study, the authors investigated, by using imaging, polymerase chain reaction (PCR), and in situ hybridization, the biodistribution of human bone marrow-derived MSC after intravenous infusion into unconditioned adult nude mice. As assessed by imaging (gamma camera), PCR, and in situ hybridization analysis, the authors' results demonstrate the presence of human MSC in bone marrow, spleen, and mesenchymal tissues of recipient mice. These results suggest that human MSC transplantation into unconditioned recipients represents an option for providing cellular therapy and avoids the complications associated with drugs or radiation conditioning.

  9. Design and implementation of the TRACIA: intracoronary autologous transplant of bone marrow-derived stem cells for acute ST elevation myocardial infarction

    OpenAIRE

    Peña-Duque, Marco A.; Martínez-Ríos, Marco A.; Calderón G, Eva; Mejía, Ana M.; Gómez, Enrique; Martínez-Sánchez, Carlos; Figueroa, Javier; Gaspar, Jorge; González, Héctor; Bialoztosky, David; Meave, Aloha; Uribe-González, Jhonathan; Alexánderson, Erick; Ochoa, Victor; Masso, Felipe

    2011-01-01

    Objective: To describe the design of a protocol of intracoronary autologous transplant of bone marrow-derived stem cells for acute ST-elevation myocardial infarction (STEMI) and to report the safety of the procedure in the first patients included. Methods: The TRACIA study was implemented following predetermined inclusion and exclusion criteria. The protocol includes procedures such as randomization, bone marrow retrieval, stem cells processing, intracoronary infusion of stem cells in the inf...

  10. Treatment with at Homeopathic Complex Medication Modulates Mononuclear Bone Marrow Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Beatriz Cesar

    2011-01-01

    Full Text Available A homeopathic complex medication (HCM, with immunomodulatory properties, is recommended for patients with depressed immune systems. Previous studies demonstrated that the medication induces an increase in leukocyte number. The bone marrow microenvironment is composed of growth factors, stromal cells, an extracellular matrix and progenitor cells that differentiate into mature blood cells. Mice were our biological model used in this research. We now report in vivo immunophenotyping of total bone marrow cells and ex vivo effects of the medication on mononuclear cell differentiation at different times. Cells were examined by light microscopy and cytokine levels were measured in vitro. After in vivo treatment with HCM, a pool of cells from the new marrow microenvironment was analyzed by flow cytometry to detect any trend in cell alteration. The results showed decreases, mainly, in CD11b and TER-119 markers compared with controls. Mononuclear cells were used to analyze the effects of ex vivo HCM treatment and the number of cells showing ring nuclei, niche cells and activated macrophages increased in culture, even in the absence of macrophage colony-stimulating factor. Cytokines favoring stromal cell survival and differentiation in culture were induced in vitro. Thus, we observe that HCM is immunomodulatory, either alone or in association with other products.

  11. Macrophage activation syndrome associated with griscelli syndrome type 2: case report and review of literature

    Science.gov (United States)

    Sefsafi, Zakia; Hasbaoui, Brahim El; Kili, Amina; Agadr, Aomar; Khattab, Mohammed

    2018-01-01

    Abstract Macrophage activation syndrome (MAS) is a severe and potentially fatal life-threatening condition associated with excessive activation and expansion of T cells with macrophages and a high expression of cytokines, resulting in an uncontrolled inflammatory response, with high levels of macrophage colony-stimulating factor and causing multiorgan damage. This syndrome is classified into primary (genetic/familial) or secondary forms to several etiologies, such as infections, neoplasias mainly hemopathies or autoimmune diseases. It is characterised clinically by unremitting high fever, pancytopaenia, hepatosplenomegaly, hepatic dysfunction, encephalopathy, coagulation abnormalities and sharply increased levels of ferritin. The pathognomonic feature of the syndrome is seen on bone marrow examination, which frequently, though not always, reveals numerous morphologically benign macrophages exhibiting haemophagocytic activity. Because MAS can follow a rapidly fatal course, prompt recognition of its clinical and laboratory features and immediate therapeutic intervention are essential. However, it is difficult to distinguish underlying disease flare, infectious complications or medication side effects from MAS. Although, the pathogenesis of MAS is unclear, the hallmark of the syndrome is an uncontrolled activation and proliferation of T lymphocytes and macrophages, leading to massive hypersecretion of pro-inflammatory cytokines. Mutations in cytolytic pathway genes are increasingly being recognised in children who develop MAS in his secondary form. We present here a case of Macrophage activation syndrome associated with Griscelli syndrome type 2 in a 3-years-old boy who had been referred due to severe sepsis with non-remitting high fever, generalized lymphoadenopathy and hepato-splenomegaly. Laboratory data revealed pancytopenia with high concentrations of triglycerides, ferritin and lactic dehydrogenase while the bone marrow revealed numerous morphologically benign

  12. Lead effects on development and function of bone marrow-derived dendritic cells promote Th2 immune responses

    International Nuclear Information System (INIS)

    Gao Donghong; Mondal, Tapan K.; Lawrence, David A.

    2007-01-01

    Although lead (Pb) has significant effects on the development and function of macrophages, B cells, and T cells and has been suggested to promote allergic asthma in mice and humans, Pb modulation of bone marrow (BM)-derived dendritic cells (DCs) and the resultant DC effects on Th1 and Th2 development have not been examined. Accordingly, we cultured BM cells with murine granulocyte macrophage-colony stimulating factor (mGM-CSF) ± PbCl 2 . At day 10, culture supernatant (SN) and non-adherent cells were harvested for analysis. Additionally, day 10 non-adherent BM-DCs were harvested and recultured with mGM-CSF + LPS ± Pb for 2 days. The day 10 Pb exposure significantly inhibited BM-DC generation, based on CD11c expression. Although fewer DCs were generated with Pb, the existing Pb-exposed DCs had significantly greater MHC-II expression than did the non-Pb-exposed DCs. However, these differences diminished upon LPS stimulation. After LPS stimulation, CD80, CD86, CD40, CD54, and MHC-II were all up-regulated on both Pb-DCs and DCs, but Pb-DCs expressed significantly less CD80 than did DCs. The CD86:CD80 ratio suggests a Pb-DC potential for Th2 cell development. After LPS stimulation, IL-6, IL-10, IL-12 (p70), and TNF-α levels significantly increased with both Pb-DCs and DCs, but Pb-DCs produced significantly less cytokines than did DCs, except for IL-10, which further supports Pb-DC preferential skewing toward type-2 immunity. In vitro studies confirm that Pb-DCs have the ability to polarize antigen-specific T cells to Th2 cells. Pb-DCs also enhanced allogeneic and autologous T cell proliferation in vitro, and in vivo studies suggested that Pb-DCs inhibited Th1 effects on humoral and cell-mediated immunity. The Pb effect was mainly on DCs, rather than on T cells, and Pb's modification of DC function appears to be the main cause of Pb's promotion of type-2-related immunity, which may relate to Pb's enhanced activation of the Erk/MAP kinase pathway

  13. Macrophage recruitment by fibrocystin-defective biliary epithelial cells promotes portal fibrosis in congenital hepatic fibrosis.

    Science.gov (United States)

    Locatelli, Luigi; Cadamuro, Massimiliano; Spirlì, Carlo; Fiorotto, Romina; Lecchi, Silvia; Morell, Carola Maria; Popov, Yury; Scirpo, Roberto; De Matteis, Maria; Amenduni, Mariangela; Pietrobattista, Andrea; Torre, Giuliano; Schuppan, Detlef; Fabris, Luca; Strazzabosco, Mario

    2016-03-01

    Congenital hepatic fibrosis (CHF) is a disease of the biliary epithelium characterized by bile duct changes resembling ductal plate malformations and by progressive peribiliary fibrosis, in the absence of overt necroinflammation. Progressive liver fibrosis leads to portal hypertension and liver failure; however, the mechanisms leading to fibrosis in CHF remain elusive. CHF is caused by mutations in PKHD1, a gene encoding for fibrocystin, a ciliary protein expressed in cholangiocytes. Using a fibrocystin-defective (Pkhd1(del4/del4)) mouse, which is orthologous of CHF, we show that Pkhd1(del4/del4) cholangiocytes are characterized by a β-catenin-dependent secretion of a range of chemokines, including chemokine (C-X-C motif) ligands 1, 10, and 12, which stimulate bone marrow-derived macrophage recruitment. We also show that Pkhd1(del4/del4) cholangiocytes, in turn, respond to proinflammatory cytokines released by macrophages by up-regulating αvβ6 integrin, an activator of latent local transforming growth factor-β1. While the macrophage infiltrate is initially dominated by the M1 phenotype, the profibrogenic M2 phenotype increases with disease progression, along with the number of portal myofibroblasts. Consistent with these findings, clodronate-induced macrophage depletion results in a significant reduction of portal fibrosis and portal hypertension as well as of liver cysts. Fibrosis can be initiated by an epithelial cell dysfunction, leading to low-grade inflammation, macrophage recruitment, and collagen deposition; these findings establish a new paradigm for biliary fibrosis and represent a model to understand the relationship between cell dysfunction, parainflammation, liver fibrosis, and macrophage polarization over time. © 2015 by the American Association for the Study of Liver Diseases.

  14. The in vitro GcMAF effects on endocannabinoid system transcriptionomics, receptor formation, and cell activity of autism-derived macrophages

    OpenAIRE

    Siniscalco, Dario; Bradstreet, James Jeffrey; Cirillo, Alessandra; Antonucci, Nicola

    2014-01-01

    Background Immune system dysregulation is well-recognized in autism and thought to be part of the etiology of this disorder. The endocannabinoid system is a key regulator of the immune system via the cannabinoid receptor type 2 (CB2R) which is highly expressed on macrophages and microglial cells. We have previously published significant differences in peripheral blood mononuclear cell CB2R gene expression in the autism population. The use of the Gc protein-derived Macrophage Activating Factor...

  15. Extracellular polysaccharides produced by Ganoderma formosanum stimulate macrophage activation via multiple pattern-recognition receptors

    Directory of Open Access Journals (Sweden)

    Wang Cheng-Li

    2012-08-01

    Full Text Available Abstract Background The fungus of Ganoderma is a traditional medicine in Asia with a variety of pharmacological functions including anti-cancer activities. We have purified an extracellular heteropolysaccharide fraction, PS-F2, from the submerged mycelia culture of G. formosanum and shown that PS-F2 exhibits immunostimulatory activities. In this study, we investigated the molecular mechanisms of immunostimulation by PS-F2. Results PS-F2-stimulated TNF-α production in macrophages was significantly reduced in the presence of blocking antibodies for Dectin-1 and complement receptor 3 (CR3, laminarin, or piceatannol (a spleen tyrosine kinase inhibitor, suggesting that PS-F2 recognition by macrophages is mediated by Dectin-1 and CR3 receptors. In addition, the stimulatory effect of PS-F2 was attenuated in the bone marrow-derived macrophages from C3H/HeJ mice which lack functional Toll-like receptor 4 (TLR4. PS-F2 stimulation triggered the phosphorylation of mitogen-activated protein kinases JNK, p38, and ERK, as well as the nuclear translocation of NF-κB, which all played essential roles in activating TNF-α expression. Conclusions Our results indicate that the extracellular polysaccharides produced by G. formosanum stimulate macrophages via the engagement of multiple pattern-recognition receptors including Dectin-1, CR3 and TLR4, resulting in the activation of Syk, JNK, p38, ERK, and NK-κB and the production of TNF-α.

  16. Macrophage-derived insulin-like growth factor-1 affects influenza vaccine efficacy through the regulation of immune cell homeostasis.

    Science.gov (United States)

    Yoon, Il-Sub; Park, Hyelim; Kwak, Hye-Won; Woo Jung, Yong; Nam, Jae-Hwan

    2017-08-24

    The level of antibody production induced by a vaccine involves a variety of host factors. One of these, insulin-like growth factor-1 (IGF-1), plays an important role in lymphocyte maturation and antibody expression. Here, we investigated the role of macrophage-derived IGF-1 in the induction of influenza vaccine-specific antibodies using macrophage-derived IGF-1 gene knockout (MIKO) mice. The titers of vaccine-specific total immunoglobulin G (IgG) and IgG1 after immunization were about two- to fourfold lower in MIKO mice than in WT mice. Moreover, MIKO mice showed a relatively weak booster effect of repeated immunization. In contrast, antigen-nonspecific total IgG was about threefold higher in MIKO mice than in WT mice. After viral challenge, the viral titer and the pathological damage in lungs of MIKO mice were higher than those in WT mice despite vaccination. Interestingly, the proportions of proinflammatory immune cells including M1 macrophages, Th1 and Th17 cells was higher in unvaccinated MIKO mice than in unvaccinated WT mice. This suggests that nonspecific activation of immune cells may paradoxically impair the response to the vaccine. In addition, although the proportions of T follicular helper (Tfh) cells and GL-7 + germinal center (GC) B cells were higher in MIKO mice than in WT mice, the population of CD138 + B220 + antibody-secreting plasmablasts was lower in MIKO mice, which may be a cause of the low influenza-specific antibody titer in MIKO mice. Taken together, these results suggest that macrophage-derived IGF-1 might play an important role in the vaccine-triggered immune response by regulating immune cell homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Radiological protection effect on vanillin derivative VND3207 radiation-induced cytogenetic damage in mouse bone marrow cells

    International Nuclear Information System (INIS)

    Wang Chuangao; Wang Li; Zhou Pingkun; Wang Zhongwen; Hu Yongzhe; Jin Haiming; Zhang Xueqing; Chen Ying

    2010-01-01

    Objective: To study the protection of vanillin derivative VND3207 on the cytogenetic damage of mouse bone marrow cell induced by ionizing radiation. Methods: BALB/c mice were randomly divided into five groups: normal control group, 2 Gy dose irradiation group, and three groups of 2 Gy irradiation with VND3207 protection at doses of 10, 50 and 100 mg/kg, respectively. VND3207 was given by intragastric administration once a day for five days. Two hours after the last drug administration, the mice were irradiated with 2 Gy γ-rays. The changes of polychromatophilic erythroblasts micronuclei (MN), chromosome aberration (CA) and mitosis index (MI) of mouse bone marrow cells were observed at 24 and 48 h after irradiation. Results: Under the protection of VND3207 at the dosages 10, 50, 100 μmg/kg, the yields of poly-chromatophilic erythroblasts MN and CA of bone marrow cells were significantly decreased (t=2.36-4.26, P<0.05), and the marrow cells MI remained much higher level compared with the irradiated mice without drug protection (t=2.58, 2.01, P<0.05). The radiological protection effect was drug dose-dependent, and the administration of VND3207 at the dosage of 100 mg/kg resulted in reduction by 50 % and 65% in the yields of MN and CA, respectively. Conclusions: VND3207 had a good protection effect of on γ-ray induced cytogentic damage of mouse bone marrow cells. (authors)

  18. Macrophage ABCA2 deletion modulates intracellular cholesterol deposition, affects macrophage apoptosis, and decreases early atherosclerosis in LDL receptor knockout mice.

    Science.gov (United States)

    Calpe-Berdiel, Laura; Zhao, Ying; de Graauw, Marjo; Ye, Dan; van Santbrink, Peter J; Mommaas, A Mieke; Foks, Amanda; Bot, Martine; Meurs, Illiana; Kuiper, Johan; Mack, Jody T; Van Eck, Miranda; Tew, Kenneth D; van Berkel, Theo J C

    2012-08-01

    The ABCA2 transporter shares high structural homology to ABCA1, which is crucial for the removal of excess cholesterol from macrophages and, by extension, in atherosclerosis. It has been suggested that ABCA2 sequesters cholesterol inside the lysosomes, however, little is known of the macrophage-specific role of ABCA2 in regulating lipid homeostasis in vivo and in modulating susceptibility to atherosclerosis. Chimeras with dysfunctional macrophage ABCA2 were generated by transplantation of bone marrow from ABCA2 knockout (KO) mice into irradiated LDL receptor (LDLr) KO mice. Interestingly, lack of ABCA2 in macrophages resulted in a diminished lesion size in the aortic root (-24.5%) and descending thoracic aorta (-36.6%) associated with a 3-fold increase in apoptotic cells, as measured by both caspase 3 and TUNEL. Upon oxidized LDL exposure, macrophages from wildtype (WT) transplanted animals developed filipin-positive droplets in lysosomal-like compartments, corresponding to free cholesterol (FC) accumulation. In contrast, ABCA2-deficient macrophages displayed an abnormal diffuse distribution of FC over peripheral regions. The accumulation of neutral sterols in lipid droplets was increased in ABCA2-deficient macrophages, but primarily in cytoplasmic clusters and not in lysosomes. Importantly, apoptosis of oxLDL loaded macrophages lacking ABCA2 was increased 2.7-fold, probably as a consequence of the broad cellular distribution of FC. Lack of functional ABCA2 generates abnormalities in intracellular lipid distribution/trafficking in macrophages consistent with its lysosomal sequestering role, leading to an increased susceptibility to apoptosis in response to oxidized lipids and reduced atherosclerotic lesion development. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. GC protein-derived macrophage-activating factor decreases ?-N-acetylgalactosaminidase levels in advanced cancer patients

    OpenAIRE

    Thyer, Lynda; Ward, Emma; Smith, Rodney; Branca, Jacopo JV; Morucci, Gabriele; Gulisano, Massimo; Noakes, David; Eslinger, Robert; Pacini, Stefania

    2013-01-01

    ?-N-acetylgalactosaminidase (nagalase) accumulates in the serum of cancer patients and its activity correlates with tumor burden, aggressiveness and clinical disease progression. The administration of GC protein-derived macrophage-activating factor (GcMAF) to cancer patients with elevated levels of nagalase has been associated with a decrease of serum nagalase activity and with significant clinical benefits. Here, we report the results of the administration of GcMAF to a heterogeneous cohort ...

  20. Radioprotection against radiation induced bone marrow syndrome by a semi-synthetic derivative of chlorophyll

    International Nuclear Information System (INIS)

    Suryavanshi, Shweta; Sharma, Deepak; Checker, Rahul; Santosh Kumar, S.; Sainis, Krishna B.

    2014-01-01

    A plethora of biological properties have been attributed to chlorophyllin (CHL), the water soluble derivative of the green plant pigment chlorophyll. Several studies are available describing its ability to modify genotoxic effects. It has been shown that administration CHL to human lymphopenic individuals led to the recovery and restoration of the immune system and also inhibited aflatoxin B1-DNA binding in individuals residing in high risk exposure to this liver carcinogen. The present study is aimed at establishing radioprotective efficacy of CHL against ionizing radiation induced hematopoietic syndrome. CHL offered complete protection against whole body irradiation (WBI, 7 Gy) induced mortality in mice. This observation was supported by increase in the number of macroscopic endogenous colonies enumerated on the surface of the spleens taken from CHL+WBI group as compared to WBI group. Radioprotection by CHL was found to be mediated by increasing the frequency of hematopoietic stem cells (HSCs) as evaluated by side population assay. Administration of CHL induced G1 arrest in bone marrow cells, increased number of granulocytes and neutrophils in the peripheral blood. At the molecular level, activation of ERK was observed in bone marrow cells obtained from CHL administered mice. In conclusion, CHL mediated radioprotection was attributed to increased stem cell numbers, G1 arrest in bone marrow cells, increased neutrophil numbers and ERK activation. (author)

  1. Reactive microgliosis engages distinct responses by microglial subpopulations after minor central nervous system injury

    DEFF Research Database (Denmark)

    Wirenfeldt, Martin; Babcock, Alicia Anne; Ladeby, Rune

    2005-01-01

    Microglia are bone marrow-derived cells that constitute a facultative macrophage population when activated by trauma or pathology in the CNS. Endogenous CNS-resident microglia as well as exogenous (immigrant) bone marrow-derived cells contribute to reactive microgliosis, raising fundamental quest...

  2. Adoptive transfer of M2 macrophages reduces neuropathic pain via opioid peptides.

    Science.gov (United States)

    Pannell, Maria; Labuz, Dominika; Celik, Melih Ö; Keye, Jacqueline; Batra, Arvind; Siegmund, Britta; Machelska, Halina

    2016-10-07

    During the inflammation which occurs following nerve damage, macrophages are recruited to the site of injury. Phenotypic diversity is a hallmark of the macrophage lineage and includes pro-inflammatory M1 and anti-inflammatory M2 populations. Our aim in this study was to investigate the ability of polarized M0, M1, and M2 macrophages to secrete opioid peptides and to examine their relative contribution to the modulation of neuropathic pain. Mouse bone marrow-derived cells were cultured as unstimulated M0 macrophages or were stimulated into an M1 phenotype using lipopolysaccharide and interferon-γ or into an M2 phenotype using interleukin-4. The macrophage phenotypes were verified using flow cytometry for surface marker analysis and cytokine bead array for cytokine profile assessment. Opioid peptide levels were measured by radioimmunoassay and enzyme immunoassay. As a model of neuropathic pain, a chronic constriction injury (CCI) of the sciatic nerve was employed. Polarized M0, M1, and M2 macrophages (5 × 10 5 cells) were injected perineurally twice, on days 14 and 15 following CCI or sham surgery. Mechanical and heat sensitivity were measured using the von Frey and Hargreaves tests, respectively. To track the injected macrophages, we also transferred fluorescently stained polarized cells and analyzed the surface marker profile of endogenous and injected cells in the nerves ex vivo. Compared to M0 and M1 cells, M2 macrophages contained and released higher amounts of opioid peptides, including Met-enkephalin, dynorphin A (1-17), and β-endorphin. M2 cells transferred perineurally at the nerve injury site reduced mechanical, but not heat hypersensitivity following the second injection. The analgesic effect was reversed by the perineurally applied opioid receptor antagonist naloxone methiodide. M2 cells did not affect sensitivity following sham surgery. Neither M0 nor M1 cells altered mechanical and heat sensitivity in CCI or sham-operated animals. Tracing the

  3. Epidermis–dermis junction as a novel location for bone marrow-derived cells to reside in response to ionizing radiation

    International Nuclear Information System (INIS)

    Okano, Junko; Kojima, Hideto; Katagi, Miwako; Nakae, Yuki; Terashima, Tomoya; Nakagawa, Takahiko; Kurakane, Takeshi; Okamoto, Naoki; Morohashi, Keita; Maegawa, Hiroshi; Udagawa, Jun

    2015-01-01

    Bone marrow-derived cells (BMDCs) can migrate into the various organs in the mice irradiated by ionizing radiation (IR). However, it may not be the case in the skin. While IR is used for bone marrow (BM) transplantation, studying with the epidermal sheets demonstrated that the BMDC recruitment is extraordinarily rare in epidermis in the mouse. Herein, using the chimera mice with BM from green fluorescent protein (GFP) transgenic mice, we simply examined if BMDCs migrate into any layers in the total skin, as opposed to the epidermal sheets, in response to IR. Interestingly, we identified the presence of GFP-positive (GFP + ) cells in the epidermis-dermis junction in the total skin sections although the epidermal cell sheets failed to have any GFP cells. To examine a possibility that the cells in the junction could be mechanically dissociated during separating epidermal sheets, we then salvaged such dissociated cells and examined its characteristics. Surprisingly, some GFP + cells were found in the salvaged cells, indicating that these cells could be derived from BM. In addition, such BMDCs were also associated with inflammation in the junction. In conclusion, BMDCs can migrate to and reside in the epidermis-dermis junction after IR. - Highlights: • Bone marrow-derived cells (BMDCs) migrate in the epidermis due to ionizing radiation (IR). • BMDCs dissociate from the epidermis-dermis junction in preparing epidermal sheets. • The doses of IR determine the location and the number of migrating BMDCs in the skin

  4. Epidermis–dermis junction as a novel location for bone marrow-derived cells to reside in response to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Okano, Junko, E-mail: jokano@belle.shiga-med.ac.jp [Division of Anatomy and Cell Biology, Shiga University of Medical Science, Shiga (Japan); Kojima, Hideto; Katagi, Miwako [Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga (Japan); Nakae, Yuki [Department of Internal Medicine, Shiga University of Medical Science, Shiga (Japan); Terashima, Tomoya [Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga (Japan); Nakagawa, Takahiko [TMK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto (Japan); Kurakane, Takeshi; Okamoto, Naoki; Morohashi, Keita [Division of Anatomy and Cell Biology, Shiga University of Medical Science, Shiga (Japan); Maegawa, Hiroshi [Department of Internal Medicine, Shiga University of Medical Science, Shiga (Japan); Udagawa, Jun [Division of Anatomy and Cell Biology, Shiga University of Medical Science, Shiga (Japan)

    2015-06-12

    Bone marrow-derived cells (BMDCs) can migrate into the various organs in the mice irradiated by ionizing radiation (IR). However, it may not be the case in the skin. While IR is used for bone marrow (BM) transplantation, studying with the epidermal sheets demonstrated that the BMDC recruitment is extraordinarily rare in epidermis in the mouse. Herein, using the chimera mice with BM from green fluorescent protein (GFP) transgenic mice, we simply examined if BMDCs migrate into any layers in the total skin, as opposed to the epidermal sheets, in response to IR. Interestingly, we identified the presence of GFP-positive (GFP{sup +}) cells in the epidermis-dermis junction in the total skin sections although the epidermal cell sheets failed to have any GFP cells. To examine a possibility that the cells in the junction could be mechanically dissociated during separating epidermal sheets, we then salvaged such dissociated cells and examined its characteristics. Surprisingly, some GFP{sup +} cells were found in the salvaged cells, indicating that these cells could be derived from BM. In addition, such BMDCs were also associated with inflammation in the junction. In conclusion, BMDCs can migrate to and reside in the epidermis-dermis junction after IR. - Highlights: • Bone marrow-derived cells (BMDCs) migrate in the epidermis due to ionizing radiation (IR). • BMDCs dissociate from the epidermis-dermis junction in preparing epidermal sheets. • The doses of IR determine the location and the number of migrating BMDCs in the skin.

  5. Human bone-marrow-derived mesenchymal stem cells

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Abdallah, Basem M

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of cells present in bone-marrow stroma and the stroma of various organs with the capacity for mesoderm-like cell differentiation into, for example, osteoblasts, adipocytes, and chondrocytes. MSC are being introduced in the clinic for the treatment...

  6. Commensal Bacteria-Induced Inflammasome Activation in Mouse and Human Macrophages Is Dependent on Potassium Efflux but Does Not Require Phagocytosis or Bacterial Viability.

    Directory of Open Access Journals (Sweden)

    Kejie Chen

    Full Text Available Gut commensal bacteria contribute to the pathogenesis of inflammatory bowel disease, in part by activating the inflammasome and inducing secretion of interleukin-1ß (IL-1ß. Although much has been learned about inflammasome activation by bacterial pathogens, little is known about how commensals carry out this process. Accordingly, we investigated the mechanism of inflammasome activation by representative commensal bacteria, the Gram-positive Bifidobacterium longum subspecies infantis and the Gram-negative Bacteroides fragilis. B. infantis and B. fragilis induced IL-1ß secretion by primary mouse bone marrow-derived macrophages after overnight incubation. IL-1ß secretion also occurred in response to heat-killed bacteria and was only partly reduced when phagocytosis was inhibited with cytochalasin D. Similar results were obtained with a wild-type immortalized mouse macrophage cell line but neither B. infantis nor B. fragilis induced IL-1ß secretion in a mouse macrophage line lacking the nucleotide-binding/leucine-rich repeat pyrin domain containing 3 (NLRP3 inflammasome. IL-1ß secretion in response to B. infantis and B. fragilis was significantly reduced when the wild-type macrophage line was treated with inhibitors of potassium efflux, either increased extracellular potassium concentrations or the channel blocker ruthenium red. Both live and heat-killed B. infantis and B. fragilis also induced IL-1ß secretion by human macrophages (differentiated THP-1 cells or primary monocyte-derived macrophages after 4 hours of infection, and the secretion was inhibited by raised extracellular potassium and ruthenium red but not by cytochalasin D. Taken together, our findings indicate that the commensal bacteria B. infantis and B. fragilis activate the NLRP3 inflammasome in both mouse and human macrophages by a mechanism that involves potassium efflux and that does not require bacterial viability or phagocytosis.

  7. The osteo-inductive activity of bone-marrow-derived mononuclear cells resides within the CD14+ population and is independent of the CD34+ population.

    Science.gov (United States)

    Henrich, D; Seebach, C; Verboket, R; Schaible, A; Marzi, I; Bonig, H

    2018-03-06

    Bone marrow mononuclear cells (BMC) seeded on a scaffold of β-tricalcium phosphate (β-TCP) promote bone healing in a critical-size femur defect model. Being BMC a mixed population of predominantly mature haematopoietic cells, which cell type(s) is(are) instrumental for healing remains elusive. Although clinical therapies using BMC are often dubbed as stem cell therapies, whether stem cells are relevant for the therapeutic effects is unclear and, at least in the context of bone repair, seems dubious. Instead, in light of the critical contribution of monocytes and macrophages to tissue development, homeostasis and injury repair, in the current study it was hypothesised that BMC-mediated bone healing derived from the stem cell population. To test this hypothesis, bone remodelling studies were performed in an established athymic rats critical-size femoral defect model, with β-TCP scaffolds augmented with complete BMC or BMC immunomagnetically depleted of stem cells (CD34+) or monocytes/macrophages (CD14+). Bone healing was assessed 8 weeks after transplantation. Compared to BMC-augmented controls, when CD14- BMC, but not CD34- BMC were transplanted into the bone defect, femora possessed dramatically decreased biomechanical stability and new bone formation was markedly reduced, as measured by histology. The degree of vascularisation did not differ between the two groups. It was concluded that the monocyte fraction within the BMC provided critical osteo-inductive cues during fracture healing. Which factors were responsible at the molecular levels remained elusive. However, this study marked a significant progress towards elucidating the mechanisms by which BMC elicit their therapeutic effects, at least in bone regeneration.

  8. Continuous Lymphoid Cell Lines with Characteristics of B Cells (Bone-Marrow-Derived), Lacking the Epstein-Barr Virus Genome and Derived from Three Human Lymphomas

    Science.gov (United States)

    Klein, George; Lindahl, Tomas; Jondal, Mikael; Leibold, Wolfgang; Menézes, José; Nilsson, Kenneth; Sundström, Christer

    1974-01-01

    Three exceptional cell lines have been tested for the presence of the Epstein-Barr virus genome by nucleic acid hybridization (complementary RNA·DNA) and Epstein-Barr virus-determined nuclear antigen tests. Two lines were derived from Swedish lymphoma cases and one from an African Burkitt-like lymphoma biopsy that was negative for Epstein-Barr virus DNA and the virus-determined nuclear antigen. All three lines apparently lacked the viral genome. Two of the three lines clearly had characteristics of B-cells (bone-marrow-derived). PMID:4369887

  9. Mesenchymal stem cells ameliorate rhabdomyolysis-induced acute kidney injury via the activation of M2 macrophages

    Science.gov (United States)

    2014-01-01

    Introduction The mortality of rhabdomyolysis-induced acute kidney injury (AKI) is still high, as there is no effective therapy. It has been shown that bone marrow-derived mesenchymal stem cells (MSCs) can induce M2 macrophages, which mediate MSC protection in other experimental inflammation-related organ injury. This study was designed to investigate the protective effects of macrophage activation in MSC therapy of rhabdomyolysis-induced AKI. Methods MSCs were injected into glycerol-induced rhabdomyolysis mice. Renal injury was evaluated using the serum creatinine, urea nitrogen, renal pathology and acute tubular necrosis score. The distribution of MSCs was detected using two-photon fluorescence confocal imaging. Immunofluorescence of anti-F4/80 and anti-CD206 was performed to determine macrophages and M2 macrophages in the tissues of the kidney, and M2 macrophage infiltration was also evaluated using western blotting analyses. After depletion of macrophages using clodronate liposomes at the phase of kidney repair, renal injury was re-evaluated. RAW 264.7 macrophages were incubated with lipopolysaccharide and co-cultured with MSCs and subsequently visualised using immunofluorescence staining and flow cytometry analysis. Finally, disparate phenotype macrophages, including normal macrophages (M0), lipopolysaccharide-stimulated macrophages (M1), and MSC-co-cultured macrophages (M2), were infused into mice with AKI, which were pre-treated with liposomal clodronate. Results In vivo infusion of MSCs protected AKI mice from renal function impairment and severe tubular injury, which was accompanied by a time-dependent increase in CD206-positive M2 macrophage infiltration. In addition, depleting macrophages with clodronate delayed restoration of AKI. In vitro, macrophages co-cultured with MSCs acquired an anti-inflammatory M2 phenotype, which was characterised by an increased expression of CD206 and the secretory cytokine interleukin (IL)-10. The concentrations of IL-10, IL

  10. Characteristics of adipose tissue macrophages and macrophage-derived insulin-like growth factor-1 in virus-induced obesity.

    Science.gov (United States)

    Park, S; Park, H-L; Lee, S-Y; Nam, J-H

    2016-03-01

    Various pathogens are implicated in the induction of obesity. Previous studies have confirmed that human adenovirus 36 (Ad36) is associated with increased adiposity, improved glycemic control and induction of inflammation. The Ad36-induced inflammation is reflected in the infiltration of macrophages into adipose tissue. However, the characteristics and role of adipose tissue macrophages (ATMs) and macrophage-secreted factors in virus-induced obesity (VIO) are unclear. Although insulin-like growth factor-1 (IGF-1) is involved in obesity metabolism, the contribution of IGF secreted by macrophages in VIO has not been studied. Four-week-old male mice were studied 1 week and 12 weeks after Ad36 infection for determining the characteristics of ATMs in VIO and diet-induced obesity (DIO). In addition, macrophage-specific IGF-1-deficient (MIKO) mice were used to study the involvement of IGF-1 in VIO. In the early stage of VIO (1 week after Ad36 infection), the M1 ATM sub-population increased, which increased the M1/M2 ratio, whereas DIO did not cause this change. In the late stage of VIO (12 weeks after Ad36 infection), the M1/M2 ratio did not change because the M1 and M2 ATM sub-populations increased to a similar extent, despite an increase in adiposity. By contrast, DIO increased the M1/M2 ratio. In addition, VIO in wild-type mice upregulated angiogenesis in adipose tissue and improved glycemic control. However, MIKO mice showed no increase in adiposity, angiogenesis, infiltration of macrophages into adipose tissue, or improvement in glycemic control after Ad36 infection. These data suggest that IGF-1 secreted by macrophages may contribute to hyperplasia and hypertrophy in adipose tissue by increasing angiogenesis, which helps to maintain the 'adipose tissue robustness'.

  11. Galectin-3 disruption impaired tumoral angiogenesis by reducing VEGF secretion from TGFβ1-induced macrophages

    International Nuclear Information System (INIS)

    Machado, Camila Maria Longo; Andrade, Luciana Nogueira Sousa; Teixeira, Verônica Rodrigues; Costa, Fabrício Falconi; Melo, Camila Morais; Santos, Sofia Nascimento dos; Nonogaki, Suely; Liu, Fu-Tong; Bernardes, Emerson Soares; Camargo, Anamaria Aranha; Chammas, Roger

    2014-01-01

    In order to study the role of galectin-3 in tumor angiogenesis associated with tumor-associated macrophages (TAM) and tumor parenchyma, the galectin-3 expression was reconstituted in Tm1 melanoma cell line that lacks this protein. Galectin-3-expressing cells (Tm1G3) and mock-vector transfected cells (Tm1N3) were injected into wild-type (WT) and galectin-3 knockout (KO) C57Bl/6 mice. Tumors originated from Tm1G3 were larger in tumor volume with enlarged functional vessels, decreased necrotic areas, and increased vascular endothelial growth factor (VEGF) protein levels. Galectin-3-nonexpressing-cells injected into WT and KO showed increased levels of transforming growth factor beta 1 (TGFβ1) and, in WT animals this feature was also accompanied by increased VEGFR2 expression and its phosphorylation. In KO animals, tumors derived from galectin-3-expressing cells were infiltrated by CD68 + -cells, whereas in tumors derived from galectin-3-nonexpressing-cells, CD68 + cells failed to infiltrate tumors and accumulated in the periphery of the tumor mass. In vitro studies showed that Tm1G3 secreted more VEGF than Tm1N3 cells. In the latter case, TGFβ1 induced VEGF production. Basal secretion of VEGF was higher in WT-bone marrow-derived macrophages (BMDM) than in KO-BMDM. TGFβ1 induced secretion of VEGF only in WT-BMDM. Tm1G3-induced tumors had the Arginase I mRNA increased, which upregulated alternative macrophage (M2)/TAM induction. M2 stimuli, such as interleukin-4 (IL4) and TGFβ1, increased Arginase I protein levels and galectin-3 expression in WT- BMDM, but not in cells from KO mice. Hence, we report that galectin-3 disruption in tumor stroma and parenchyma decreases angiogenesis through interfering with the responses of macrophages to the interdependent VEGF and TGFβ1 signaling pathways

  12. Macrophage-derived Wnt opposes notch signaling to specify hepatic progenitor cell fate in chronic liver disease

    NARCIS (Netherlands)

    Boulter, L.; Govaere, O.; Bird, T.G.; Radulescu, S.; Ramachandran, P.; Pellicoro, A.; Ridgway, R.; Seo, S.S.; Spee, B.|info:eu-repo/dai/nl/304830925; van Rooijen, N.; Sansom, O.J.; Iredale, J.P.; Lowell, S.; Roskams, T.A.; Forbes, S.J.

    2012-01-01

    Nat Med. 2012 Mar 4;18(4):572-9. doi: 10.1038/nm.2667. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Boulter L, Govaere O, Bird TG, Radulescu S, Ramachandran P, Pellicoro A, Ridgway RA, Seo SS, Spee B, Van Rooijen N, Sansom OJ,

  13. Xylitol, an anticaries agent, exhibits potent inhibition of inflammatory responses in human THP-1-derived macrophages infected with Porphyromonas gingivalis.

    Science.gov (United States)

    Park, Eunjoo; Na, Hee Sam; Kim, Sheon Min; Wallet, Shannon; Cha, Seunghee; Chung, Jin

    2014-06-01

    Xylitol is a well-known anticaries agent and has been used for the prevention and treatment of dental caries. In this study, the anti-inflammatory effects of xylitol are evaluated for possible use in the prevention and treatment of periodontal infections. Cytokine expression was stimulated in THP-1 (human monocyte cell line)-derived macrophages by live Porphyromonas gingivalis, and enzyme-linked immunosorbent assay and a commercial multiplex assay kit were used to determine the effects of xylitol on live P. gingivalis-induced production of cytokine. The effects of xylitol on phagocytosis and the production of nitric oxide were determined using phagocytosis assay, viable cell count, and Griess reagent. The effects of xylitol on P. gingivalis adhesion were determined by immunostaining, and costimulatory molecule expression was examined by flow cytometry. Live P. gingivalis infection increased the production of representative proinflammatory cytokines, such as tumor necrosis factor-α and interleukin (IL)-1β, in a multiplicity of infection- and time-dependent manner. Live P. gingivalis also enhanced the release of cytokines and chemokines, such as IL-12 p40, eotaxin, interferon γ-induced protein 10, monocyte chemotactic protein-1, and macrophage inflammatory protein-1. The pretreatment of xylitol significantly inhibited the P. gingivalis-induced cytokines production and nitric oxide production. In addition, xylitol inhibited the attachment of live P. gingivalis on THP-1-derived macrophages. Furthermore, xylitol exerted antiphagocytic activity against both Escherichia coli and P. gingivalis. These findings suggest that xylitol acts as an anti-inflammatory agent in THP-1-derived macrophages infected with live P. gingivalis, which supports its use in periodontitis.

  14. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide

    International Nuclear Information System (INIS)

    Genin, Marie; Clement, Francois; Fattaccioli, Antoine; Raes, Martine; Michiels, Carine

    2015-01-01

    Tumor associated macrophages (TAMs) are present in high density in solid tumors. TAMs share many characteristics with alternatively activated macrophages, also called M2. They have been shown to favor tumor development and a role in chemoresistance has also been suggested. Here, we investigated the effects of M2 in comparison to M1 macrophages on cancer cell sensitivity to etoposide. We set up a model of macrophage polarization, starting from THP-1 monocytes differentiated into macrophages using PMA (Phorbol 12-myristate 13-acetate). Once differentiated (M0 macrophages), they were incubated with IL-4 and IL-13 in order to obtain M2 polarized macrophages or with IFN-gamma and LPS for classical macrophage activation (M1). To mimic the communication between cancer cells and TAMs, M0, M1 or M2 macrophages and HepG2 or A549 cancer cells were co-cultured during respectively 16 (HepG2) or 24 (A549) hours, before etoposide exposure for 24 (HepG2) or 16 (A549) hours. After the incubation, the impact of etoposide on macrophage polarization was studied and cancer cell apoptosis was assessed by western-blot for cleaved caspase-3 and cleaved PARP-1 protein, caspase activity assay and FACS analysis of Annexin V and PI staining. mRNA and protein expression of M1 and M2 markers confirmed the polarization of THP-1-derived macrophages, which provide a new, easy and well-characterized model of polarized human macrophages. Etoposide-induced cancer cell apoptosis was markedly reduced in the presence of THP-1 M2 macrophages, while apoptosis was increased in cells co-cultured with M1 macrophages. On the other hand, etoposide did not influence M1 or M2 polarization. These results evidence for the first time a clear protective effect of M2 on the contrary to M1 macrophages on etoposide-induced cancer cell apoptosis

  15. Investigation of Macrophage Differentiation and Cytokine Production in an Undergraduate Immunology Laboratory

    Science.gov (United States)

    Berkes, Charlotte; Chan, Leo Li-Ying

    2015-01-01

    We have developed a semester-long laboratory project for an undergraduate immunology course in which students study multiple aspects of macrophage biology including differentiation from progenitors in the bone marrow, activation upon stimulation with microbial ligands, expression of cell surface markers, and modulation of cytokine production. In…

  16. Active spice-derived components can inhibit inflammatory responses of adipose tissue in obesity by suppressing inflammatory actions of macrophages and release of monocyte chemoattractant protein-1 from adipocytes.

    Science.gov (United States)

    Woo, Hae-Mi; Kang, Ji-Hye; Kawada, Teruo; Yoo, Hoon; Sung, Mi-Kyung; Yu, Rina

    2007-02-13

    Inflammation plays a key role in obesity-related pathologies such as cardiovascular disease, type II diabetes, and several types of cancer. Obesity-induced inflammation entails the enhancement of the recruitment of macrophages into adipose tissue and the release of various proinflammatory proteins from fat tissue. Therefore, the modulation of inflammatory responses in obesity may be useful for preventing or ameliorating obesity-related pathologies. Some spice-derived components, which are naturally occurring phytochemicals, elicit antiobesity and antiinflammatory properties. In this study, we investigated whether active spice-derived components can be applied to the suppression of obesity-induced inflammatory responses. Mesenteric adipose tissue was isolated from obese mice fed a high-fat diet and cultured to prepare an adipose tissue-conditioned medium. Raw 264.7 macrophages were treated with the adipose tissue-conditioned medium with or without active spice-derived components (i.e., diallyl disulfide, allyl isothiocyanate, piperine, zingerone and curcumin). Chemotaxis assay was performed to measure the degree of macrophage migration. Macrophage activation was estimated by measuring tumor necrosis factor-alpha (TNF-alpha), nitric oxide, and monocyte chemoattractant protein-1 (MCP-1) concentrations. The active spice-derived components markedly suppressed the migration of macrophages induced by the mesenteric adipose tissue-conditioned medium in a dose-dependent manner. Among the active spice-derived components studied, allyl isothiocyanate, zingerone, and curcumin significantly inhibited the cellular production of proinflammatory mediators such as TNF-alpha and nitric oxide, and significantly inhibited the release of MCP-1 from 3T3-L1 adipocytes. Our findings suggest that the spice-derived components can suppress obesity-induced inflammatory responses by suppressing adipose tissue macrophage accumulation or activation and inhibiting MCP-1 release from adipocytes

  17. Interleukin 17 receptor A modulates monocyte subsets and macrophage generation in vivo.

    Directory of Open Access Journals (Sweden)

    Shuwang Ge

    Full Text Available Interleukin (IL-17A signaling via Interleukin 17 receptor A (Il17ra contributes to the inflammatory host response by inducing recruitment of innate immune cells, but also plays a role in homeostatic neutrophilic granulocyte regulation. Monocytes, the other main innate immune cell, have a longer life span and can pursue multiple differentiation pathways towards tissue macrophages. Monocytes are divided into two subpopulations by expression of the Ly6C/Gr1 surface marker in mice. We here investigated the role of Il17ra in monocyte homeostasis and macrophage generation. In Il17ra(-/- and in mixed bone marrow chimeric wt/Il17ra(-/- mice, the concentrations of circulating Il17ra(-/- Gr1(low monocytes were significantly decreased compared to wt cells. Pulmonary, splenic and resident peritoneal Il17ra(-/- macrophages were significantly fewer than of wt origin. Bone marrow progenitor and monocyte numbers were equal, but the proportion of Il17ra(-/- Gr1(low monocytes was already decreased at bone marrow level. After monocyte depletion, initial Gr1(high and Gr1(low monocyte regeneration of Il17ra(-/- and wt cells was very similar. However, Il17ra(-/- Gr1(low counts were not sustained. After labeling with either fluorescent beads or BrdU, Il17ra(-/- Gr1(high monocyte transition to Gr1(low cells was not detectable unlike wt cells. Monocyte recruitment in acute peritonitis, which is known to be largely due to Gr1(high cell migration, was unaffected in an identical environment. Unilateral ureteral obstruction induces a less acute inflammatory and fibrotic kidney injury. Compared to wt cells in the same environment, Il17ra(-/- macrophage accumulation in the kidney was decreased. In the absence of Il17ra on all myeloid cells, renal fibrosis was significantly attenuated. Our data show that Il17ra modulates Gr1(low monocyte counts and suggest defective Gr1(high to Gr1(low monocyte transition as an underlying mechanism. Lack of Il17ra altered homeostatic tissue

  18. Targeting arginase-II protects mice from high-fat-diet-induced hepatic steatosis through suppression of macrophage inflammation.

    Science.gov (United States)

    Liu, Chang; Rajapakse, Angana G; Riedo, Erwin; Fellay, Benoit; Bernhard, Marie-Claire; Montani, Jean-Pierre; Yang, Zhihong; Ming, Xiu-Fen

    2016-02-05

    Nonalcoholic fatty liver disease (NAFLD) associates with obesity and type 2 diabetes. Hypoactive AMP-activated protein kinase (AMPK), hyperactive mammalian target of rapamycin (mTOR) signaling, and macrophage-mediated inflammation are mechanistically linked to NAFLD. Studies investigating roles of arginase particularly the extrahepatic isoform arginase-II (Arg-II) in obesity-associated NAFLD showed contradictory results. Here we demonstrate that Arg-II(-/-) mice reveal decreased hepatic steatosis, macrophage infiltration, TNF-α and IL-6 as compared to the wild type (WT) littermates fed high fat diet (HFD). A higher AMPK activation (no difference in mTOR signaling), lower levels of lipogenic transcription factor SREBP-1c and activity/expression of lipogenic enzymes were observed in the Arg-II(-/-) mice liver. Moreover, release of TNF-α and IL-6 from bone marrow-derived macrophages (BMM) of Arg-II(-/-) mice is decreased as compared to WT-BMM. Conditioned medium from Arg-II(-/-)-BMM exhibits weaker activity to facilitate triglyceride synthesis paralleled with lower expression of SREBP-1c and SCD-1 and higher AMPK activation in hepatocytes as compared to that from WT-BMM. These effects of BMM conditioned medium can be neutralized by neutralizing antibodies against TNF-α and IL-6. Thus, Arg-II-expressing macrophages facilitate diet-induced NAFLD through TNF-α and IL-6 in obesity.

  19. Bone Marrow-Derived, Neural-Like Cells Have the Characteristics of Neurons to Protect the Peripheral Nerve in Microenvironment

    Directory of Open Access Journals (Sweden)

    Shi-lei Guo

    2015-01-01

    Full Text Available Effective repair of peripheral nerve defects is difficult because of the slow growth of new axonal growth. We propose that “neural-like cells” may be useful for the protection of peripheral nerve destructions. Such cells should prolong the time for the disintegration of spinal nerves, reduce lesions, and improve recovery. But the mechanism of neural-like cells in the peripheral nerve is still unclear. In this study, bone marrow-derived neural-like cells were used as seed cells. The cells were injected into the distal end of severed rabbit peripheral nerves that were no longer integrated with the central nervous system. Electromyography (EMG, immunohistochemistry, and transmission electron microscopy (TEM were employed to analyze the development of the cells in the peripheral nerve environment. The CMAP amplitude appeared during the 5th week following surgery, at which time morphological characteristics of myelinated nerve fiber formation were observed. Bone marrow-derived neural-like cells could protect the disintegration and destruction of the injured peripheral nerve.

  20. From the Cradle to the Grave: The Role of Macrophages in erythropoiesis and erythrophagocytosis

    NARCIS (Netherlands)

    Klei, Thomas R. L.; Meinderts, Sanne M.; van den Berg, Timo K.; van Bruggen, Robin

    2017-01-01

    Erythropoiesis is a highly regulated process where sequential events ensure the proper differentiation of hematopoietic stem cells into, ultimately, red blood cells (RBCs). Macrophages in the bone marrow play an important role in hematopoiesis by providing signals that induce differentiation and

  1. Transcriptomic analysis of monocytes and macrophages derived from CLL patients which display differing abilities to respond to therapeutic antibody immune complexes

    Directory of Open Access Journals (Sweden)

    M. Burgess

    2016-03-01

    Full Text Available Chronic lymphocytic leukemia (CLL is the most common adult leukemia. While therapeutic antibodies show clinical activity in CLL patients, resistance inevitably develops resulting in treatment failure. Identifying mechanisms of antibody resistance and methods to reduce resistance would be valuable in managing CLL. Monocyte derived cells (MDCs, also known as nurse like cells (NLCs in CLL [1,2], are known to be crucial components of the CLL microenvironment network and following “maturation” in in vitro culture systems are able to provide support for the survival of the malignant B cells from CLL patients. In addition to their protective role, MDCs are key effector cells in mediating responses to therapeutic antibody therapies [3]. We have determined that macrophages from patients with early stable CLL are able to elicit superior cytotoxic response to therapeutic antibodies than macrophages derived from patients with progressive CLL. We have exploited this unique finding to gain insight into antibody resistance. Thus, we have profiled monocytes on day 0 and MDCs on day 7 from antibody sensitive and antibody resistant CLL patients (GEO accession number GEO: GSE71409. We show that there are no significant differences in transcriptomes from the monocytes or MDCs derived from sensitive or resistant patient samples. However, we show that MDCs acquire an M2-like macrophage transcriptomic signature following 7 days culture regardless of whether they were derived from sensitive or resistant patient samples. Keywords: Chronic lymphocytic leukemia, Monocyte derived cells, Antibody resistance, Microarray

  2. Functional expression of P2X family receptors in macrophages is affected by microenvironment in mouse T cell acute lymphoblastic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shayan; Feng, Wenli; Yang, Xiao; Yang, Wanzhu; Ru, Yongxin; Liao, Jinfeng; Wang, Lina; Lin, Yongmin; Ren, Qian [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020 (China); Zheng, Guoguang, E-mail: zhengggtjchn@aliyun.com [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020 (China); Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730 (China)

    2014-04-18

    Highlights: • We study the impact of leukemic microenvironment on P2X family receptors in Mφs. • Bone marrow and spleen Mφs are studied in Notch1-induced mouse leukemia model. • Increased expression of P2X7R is found in Mφs during the development of leukemia. • Elevated P2X7R-mediated calcium response is found in Mφs at late stage of leukemia. • More apoptotic Mφs are found in bone marrow and spleen at late stage of leukemia. - Abstract: Nucleotides are important players in intercellular signaling communication network. P2X family receptors (P2XRs) are ATP-gated plasma membrane ion channels with diverse biological functions. Macrophages are important components in the microenvironment of hematopoiesis participating in both physiological and pathological processes. However, the role of P2XRs in macrophages in leukemia has not been established. Here we investigated expression pattern and functions of P2XRs in macrophages from bone marrow (BM) and spleen of Notch1-induced T-ALL mice. Real-time PCR showed that P2XRs except P2X5R were expressed in BM and spleen macrophages. Furthermore, with the development of leukemia, the expression of P2X7R increased in both BM and spleen macrophages whereas expression of P2X1R increased in spleen macrophages. Live cell imaging recoding the Ca{sup 2+} response demonstrated that P2X7R expressed in macrophages was functional. TUNEL and electron microscopy analysis found that apoptotic macrophages were frequently observed in BM and spleen at late stage of leukemia, which was partly contributed by the activation of overexpressed P2X7R. Our results suggested that the intercellular communication mediated by nucleotides might orchestrate in the pathological process of leukemia and could be a potential target for the treatment of leukemia.

  3. Functional expression of P2X family receptors in macrophages is affected by microenvironment in mouse T cell acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Chen, Shayan; Feng, Wenli; Yang, Xiao; Yang, Wanzhu; Ru, Yongxin; Liao, Jinfeng; Wang, Lina; Lin, Yongmin; Ren, Qian; Zheng, Guoguang

    2014-01-01

    Highlights: • We study the impact of leukemic microenvironment on P2X family receptors in Mφs. • Bone marrow and spleen Mφs are studied in Notch1-induced mouse leukemia model. • Increased expression of P2X7R is found in Mφs during the development of leukemia. • Elevated P2X7R-mediated calcium response is found in Mφs at late stage of leukemia. • More apoptotic Mφs are found in bone marrow and spleen at late stage of leukemia. - Abstract: Nucleotides are important players in intercellular signaling communication network. P2X family receptors (P2XRs) are ATP-gated plasma membrane ion channels with diverse biological functions. Macrophages are important components in the microenvironment of hematopoiesis participating in both physiological and pathological processes. However, the role of P2XRs in macrophages in leukemia has not been established. Here we investigated expression pattern and functions of P2XRs in macrophages from bone marrow (BM) and spleen of Notch1-induced T-ALL mice. Real-time PCR showed that P2XRs except P2X5R were expressed in BM and spleen macrophages. Furthermore, with the development of leukemia, the expression of P2X7R increased in both BM and spleen macrophages whereas expression of P2X1R increased in spleen macrophages. Live cell imaging recoding the Ca 2+ response demonstrated that P2X7R expressed in macrophages was functional. TUNEL and electron microscopy analysis found that apoptotic macrophages were frequently observed in BM and spleen at late stage of leukemia, which was partly contributed by the activation of overexpressed P2X7R. Our results suggested that the intercellular communication mediated by nucleotides might orchestrate in the pathological process of leukemia and could be a potential target for the treatment of leukemia

  4. Matrix metalloproteinase-12 gene regulation by a PPAR alpha agonist in human monocyte-derived macrophages

    International Nuclear Information System (INIS)

    Souissi, Imen Jguirim; Billiet, Ludivine; Cuaz-Perolin, Clarisse; Slimane, Mohamed-Naceur; Rouis, Mustapha

    2008-01-01

    MMP-12, a macrophage-specific matrix metalloproteinase with large substrate specificity, has been reported to be highly expressed in mice, rabbits and human atherosclerotic lesions. Increased MMP-12 from inflammatory macrophages is associated with several degenerative diseases such as atherosclerosis. In this manuscript, we show that IL-1β, a proinflammatory cytokine found in atherosclerotic plaques, increases both mRNA and protein levels of MMP-12 in human monocyte-derived macrophages (HMDM). Since peroxisome proliferator-activated receptors (PPARs), such as PPARα and PPARγ, are expressed in macrophages and because PPAR activation exerts an anti-inflammatory effect on vascular cells, we have investigated the effect of PPARα and γ isoforms on MMP-12 regulation in HMDM. Our results show that MMP-12 expression (mRNA and protein) is down regulated in IL-1β-treated macrophages only in the presence of a specific PPARα agonist, GW647, in a dose-dependent manner. In contrast, this inhibitory effect was abolished in IL-1β-stimulated peritoneal macrophages isolated from PPARα -/- mice and treated with the PPARα agonist, GW647. Moreover, reporter gene transfection experiments using different MMP-12 promoter constructs showed a reduction of the promoter activities by ∼ 50% in IL-1β-stimulated PPARα-pre-treated cells. However, MMP-12 promoter analysis did not reveal the presence of a PPRE response element. The IL-1β effect is known to be mediated through the AP-1 binding site. Mutation of the AP-1 site, located at - 81 in the MMP-12 promoter region relative to the transcription start site, followed by transfection analysis, gel shift and ChIP experiments revealed that the inhibitory effect was the consequence of the protein-protein interaction between GW 647-activated PPARα and c-Fos or c-Jun transcription factors, leading to inhibition of their binding to the AP-1 motif. These studies suggest that PPARα agonists may be used therapeutically, not only for lipid

  5. A Liver Capsular Network of Monocyte-Derived Macrophages Restricts Hepatic Dissemination of Intraperitoneal Bacteria by Neutrophil Recruitment.

    Science.gov (United States)

    Sierro, Frederic; Evrard, Maximilien; Rizzetto, Simone; Melino, Michelle; Mitchell, Andrew J; Florido, Manuela; Beattie, Lynette; Walters, Shaun B; Tay, Szun Szun; Lu, Bo; Holz, Lauren E; Roediger, Ben; Wong, Yik Chun; Warren, Alessandra; Ritchie, William; McGuffog, Claire; Weninger, Wolfgang; Le Couteur, David G; Ginhoux, Florent; Britton, Warwick J; Heath, William R; Saunders, Bernadette M; McCaughan, Geoffrey W; Luciani, Fabio; MacDonald, Kelli P A; Ng, Lai Guan; Bowen, David G; Bertolino, Patrick

    2017-08-15

    The liver is positioned at the interface between two routes traversed by pathogens in disseminating infection. Whereas blood-borne pathogens are efficiently cleared in hepatic sinusoids by Kupffer cells (KCs), it is unknown how the liver prevents dissemination of peritoneal pathogens accessing its outer membrane. We report here that the hepatic capsule harbors a contiguous cellular network of liver-resident macrophages phenotypically distinct from KCs. These liver capsular macrophages (LCMs) were replenished in the steady state from blood monocytes, unlike KCs that are embryonically derived and self-renewing. LCM numbers increased after weaning in a microbiota-dependent process. LCMs sensed peritoneal bacteria and promoted neutrophil recruitment to the capsule, and their specific ablation resulted in decreased neutrophil recruitment and increased intrahepatic bacterial burden. Thus, the liver contains two separate and non-overlapping niches occupied by distinct resident macrophage populations mediating immunosurveillance at these two pathogen entry points to the liver. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Preparation of Gc protein-derived macrophage activating factor (GcMAF) and its structural characterization and biological activities.

    Science.gov (United States)

    Mohamad, Saharuddin Bin; Nagasawa, Hideko; Uto, Yoshihiro; Hori, Hitoshi

    2002-01-01

    Gc protein has been reported to be a precursor of Gc protein-derived macrophage activation factor (GcMAF) in the inflammation-primed macrophage activation cascade. An inducible beta-galactosidase of B cells and neuraminidase of T cells convert Gc protein to GcMAF. Gc protein from human serum was purified using 25(OH)D3 affinity column chromatography and modified to GcMAF using immobilized glycosidases (beta-galactosidase and neuraminidase) The sugar moiety structure of GcMAF was characterized by lectin blotting by Helix pomatia agglutinin. The biological activities of GcMAF were evaluated by a superoxide generation assay and a phagocytosis assay. We successfully purified Gc protein from human serum. GcMAF was detected by lectin blotting and showed a high biological activity. Our results support the importance of the terminal N-acetylgalactosamine moiety in the GcMAF-mediated macrophage activation cascade, and the existence of constitutive GcMAF in human serum. These preliminary data are important for designing small molecular GcMAF mimics.

  7. Nicotinamide: a vitamin able to shift macrophage differentiation toward macrophages with restricted inflammatory features.

    Science.gov (United States)

    Weiss, Ronald; Schilling, Erik; Grahnert, Anja; Kölling, Valeen; Dorow, Juliane; Ceglarek, Uta; Sack, Ulrich; Hauschildt, Sunna

    2015-11-01

    The differentiation of human monocytes into macrophages is influenced by environmental signals. Here we asked in how far nicotinamide (NAM), a vitamin B3 derivative known to play a major role in nicotinamide adenine dinucleotide (NAD)-mediated signaling events, is able to modulate monocyte differentiation into macrophages developed in the presence of granulocyte macrophage colony-stimulating factor (GM-MØ) or macrophage colony-stimulating factor (M-MØ). We found that GM-MØ undergo biochemical, morphological and functional modifications in response to NAM, whereas M-MØ were hardly affected. GM-MØ exposed to NAM acquired an M-MØ-like structure while the LPS-induced production of pro-inflammatory cytokines and COX-derived eicosanoids were down-regulated. In contrast, NAM had no effect on the production of IL-10 or the cytochrome P450-derived eicosanoids. Administration of NAM enhanced intracellular NAD concentrations; however, it did not prevent the LPS-mediated drain on NAD pools. In search of intracellular molecular targets of NAM known to be involved in LPS-induced cytokine and eicosanoid synthesis, we found NF-κB activity to be diminished. In conclusion, our data show that vitamin B3, when present during the differentiation of monocytes into GM-MØ, interferes with biochemical pathways resulting in strongly reduced pro-inflammatory features. © The Author(s) 2015.

  8. Human bone marrow-derived and umbilical cord-derived mesenchymal stem cells for alleviating neuropathic pain in a spinal cord injury model

    OpenAIRE

    Yousefifard, Mahmoud; Nasirinezhad, Farinaz; Shardi Manaheji, Homa; Janzadeh, Atousa; Hosseini, Mostafa; Keshavarz, Mansoor

    2016-01-01

    Background Stem cell therapy can be used for alleviating the neuropathic pain induced by spinal cord injuries (SCIs). However, survival and differentiation of stem cells following their transplantation vary depending on the host and intrinsic factors of the cell. Therefore, the present study aimed to determine the effect of stem cells derived from bone marrow (BM-MSC) and umbilical cord (UC-MSC) on neuropathic pain relief. Methods A compression model was used to induce SCI in a rat model. A w...

  9. The in vitro GcMAF effects on endocannabinoid system transcriptionomics, receptor formation, and cell activity of autism-derived macrophages

    Science.gov (United States)

    2014-01-01

    Background Immune system dysregulation is well-recognized in autism and thought to be part of the etiology of this disorder. The endocannabinoid system is a key regulator of the immune system via the cannabinoid receptor type 2 (CB2R) which is highly expressed on macrophages and microglial cells. We have previously published significant differences in peripheral blood mononuclear cell CB2R gene expression in the autism population. The use of the Gc protein-derived Macrophage Activating Factor (GcMAF), an endogenous glycosylated vitamin D binding protein responsible for macrophage cell activation has demonstrated positive effects in the treatment of autistic children. In this current study, we investigated the in vitro effects of GcMAF treatment on the endocannabinoid system gene expression, as well as cellular activation in blood monocyte-derived macrophages (BMDMs) from autistic patients compared to age-matched healthy developing controls. Methods To achieve these goals, we used biomolecular, biochemical and immunocytochemical methods. Results GcMAF treatment was able to normalize the observed differences in dysregulated gene expression of the endocannabinoid system of the autism group. GcMAF also down-regulated the over-activation of BMDMs from autistic children. Conclusions This study presents the first observations of GcMAF effects on the transcriptionomics of the endocannabinoid system and expression of CB2R protein. These data point to a potential nexus between endocannabinoids, vitamin D and its transporter proteins, and the immune dysregulations observed with autism. PMID:24739187

  10. The in vitro GcMAF effects on endocannabinoid system transcriptionomics, receptor formation, and cell activity of autism-derived macrophages.

    Science.gov (United States)

    Siniscalco, Dario; Bradstreet, James Jeffrey; Cirillo, Alessandra; Antonucci, Nicola

    2014-04-17

    Immune system dysregulation is well-recognized in autism and thought to be part of the etiology of this disorder. The endocannabinoid system is a key regulator of the immune system via the cannabinoid receptor type 2 (CB2R) which is highly expressed on macrophages and microglial cells. We have previously published significant differences in peripheral blood mononuclear cell CB2R gene expression in the autism population. The use of the Gc protein-derived Macrophage Activating Factor (GcMAF), an endogenous glycosylated vitamin D binding protein responsible for macrophage cell activation has demonstrated positive effects in the treatment of autistic children. In this current study, we investigated the in vitro effects of GcMAF treatment on the endocannabinoid system gene expression, as well as cellular activation in blood monocyte-derived macrophages (BMDMs) from autistic patients compared to age-matched healthy developing controls. To achieve these goals, we used biomolecular, biochemical and immunocytochemical methods. GcMAF treatment was able to normalize the observed differences in dysregulated gene expression of the endocannabinoid system of the autism group. GcMAF also down-regulated the over-activation of BMDMs from autistic children. This study presents the first observations of GcMAF effects on the transcriptionomics of the endocannabinoid system and expression of CB2R protein. These data point to a potential nexus between endocannabinoids, vitamin D and its transporter proteins, and the immune dysregulations observed with autism.

  11. Analyzing the cellular contribution of bone marrow to fracture healing using bone marrow transplantation in mice

    International Nuclear Information System (INIS)

    Colnot, C.; Huang, S.; Helms, J.

    2006-01-01

    The bone marrow is believed to play important roles during fracture healing such as providing progenitor cells for inflammation, matrix remodeling, and cartilage and bone formation. Given the complex nature of bone repair, it remains difficult to distinguish the contributions of various cell types. Here we describe a mouse model based on bone marrow transplantation and genetic labeling to track cells originating from bone marrow during fracture healing. Following lethal irradiation and engraftment of bone marrow expressing the LacZ transgene constitutively, wild type mice underwent tibial fracture. Donor bone marrow-derived cells, which originated from the hematopoietic compartment, did not participate in the chondrogenic and osteogenic lineages during fracture healing. Instead, the donor bone marrow contributed to inflammatory and bone resorbing cells. This model can be exploited in the future to investigate the role of inflammation and matrix remodeling during bone repair, independent from osteogenesis and chondrogenesis

  12. Karyotype of cryopreserved bone marrow cells

    Directory of Open Access Journals (Sweden)

    M.L.L.F. Chauffaille

    2003-07-01

    Full Text Available The analysis of chromosomal abnormalities is important for the study of hematological neoplastic disorders since it facilitates classification of the disease. The ability to perform chromosome analysis of cryopreserved malignant marrow or peripheral blast cells is important for retrospective studies. In the present study, we compared the karyotype of fresh bone marrow cells (20 metaphases to that of cells stored with a simplified cryopreservation method, evaluated the effect of the use of granulocyte-macrophage colony-stimulating factor (GM-CSF as an in vitro mitotic index stimulator, and compared the cell viability and chromosome morphology of fresh and cryopreserved cells whenever possible (sufficient metaphases for analysis. Twenty-five bone marrow samples from 24 patients with hematological disorders such as acute myeloid leukemia, acute lymphoblastic leukemia, myelodysplastic syndrome, chronic myeloid leukemia, megaloblastic anemia and lymphoma (8, 3, 3, 8, 1, and 1 patients, respectively were selected at diagnosis, at relapse or during routine follow-up and one sample was obtained from a bone marrow donor after informed consent. Average cell viability before and after freezing was 98.8 and 78.5%, respectively (P < 0.05. Cytogenetic analysis was successful in 76% of fresh cell cultures, as opposed to 52% of cryopreserved samples (P < 0.05. GM-CSF had no proliferative effect before or after freezing. The morphological aspects of the chromosomes in fresh and cryopreserved cells were subjectively the same. The present study shows that cytogenetic analysis of cryopreserved bone marrow cells can be a reliable alternative when fresh cell analysis cannot be done, notwithstanding the reduced viability and lower percent of successful analysis that are associated with freezing.

  13. Karyotype of cryopreserved bone marrow cells.

    Science.gov (United States)

    Chauffaille, M L L F; Pinheiro, R F; Stefano, J T; Kerbauy, J

    2003-07-01

    The analysis of chromosomal abnormalities is important for the study of hematological neoplastic disorders since it facilitates classification of the disease. The ability to perform chromosome analysis of cryopreserved malignant marrow or peripheral blast cells is important for retrospective studies. In the present study, we compared the karyotype of fresh bone marrow cells (20 metaphases) to that of cells stored with a simplified cryopreservation method, evaluated the effect of the use of granulocyte-macrophage colony-stimulating factor (GM-CSF) as an in vitro mitotic index stimulator, and compared the cell viability and chromosome morphology of fresh and cryopreserved cells whenever possible (sufficient metaphases for analysis). Twenty-five bone marrow samples from 24 patients with hematological disorders such as acute myeloid leukemia, acute lymphoblastic leukemia, myelodysplastic syndrome, chronic myeloid leukemia, megaloblastic anemia and lymphoma (8, 3, 3, 8, 1, and 1 patients, respectively) were selected at diagnosis, at relapse or during routine follow-up and one sample was obtained from a bone marrow donor after informed consent. Average cell viability before and after freezing was 98.8 and 78.5%, respectively (P < 0.05). Cytogenetic analysis was successful in 76% of fresh cell cultures, as opposed to 52% of cryopreserved samples (P < 0.05). GM-CSF had no proliferative effect before or after freezing. The morphological aspects of the chromosomes in fresh and cryopreserved cells were subjectively the same. The present study shows that cytogenetic analysis of cryopreserved bone marrow cells can be a reliable alternative when fresh cell analysis cannot be done, notwithstanding the reduced viability and lower percent of successful analysis that are associated with freezing.

  14. Treatment of Mycobacterium tuberculosis-Infected Macrophages with Poly(Lactic-Co-Glycolic Acid) Microparticles Drives NFκB and Autophagy Dependent Bacillary Killing.

    LENUS (Irish Health Repository)

    Lawlor, Ciaran

    2016-01-01

    The emergence of multiple-drug-resistant tuberculosis (MDR-TB) has pushed our available repertoire of anti-TB therapies to the limit of effectiveness. This has increased the urgency to develop novel treatment modalities, and inhalable microparticle (MP) formulations are a promising option to target the site of infection. We have engineered poly(lactic-co-glycolic acid) (PLGA) MPs which can carry a payload of anti-TB agents, and are successfully taken up by human alveolar macrophages. Even without a drug cargo, MPs can be potent immunogens; yet little is known about how they influence macrophage function in the setting of Mycobacterium tuberculosis (Mtb) infection. To address this issue we infected THP-1 macrophages with Mtb H37Ra or H37Rv and treated with MPs. In controlled experiments we saw a reproducible reduction in bacillary viability when THP-1 macrophages were treated with drug-free MPs. NFκB activity was increased in MP-treated macrophages, although cytokine secretion was unaltered. Confocal microscopy of immortalized murine bone marrow-derived macrophages expressing GFP-tagged LC3 demonstrated induction of autophagy. Inhibition of caspases did not influence the MP-induced restriction of bacillary growth, however, blockade of NFκB or autophagy with pharmacological inhibitors reversed this MP effect on macrophage function. These data support harnessing inhaled PLGA MP-drug delivery systems as an immunotherapeutic in addition to serving as a vehicle for targeted drug delivery. Such "added value" could be exploited in the generation of inhaled vaccines as well as inhaled MDR-TB therapeutics when used as an adjunct to existing treatments.

  15. Acute exposure to crystalline silica reduces macrophage activation in response to bacterial lipoproteins

    Directory of Open Access Journals (Sweden)

    Gillian Lee Beamer

    2016-02-01

    Full Text Available Numerous studies have examined the relationship between alveolar macrophages (AM and crystalline silica (SiO2 using in vitro and in vivo immunotoxicity models; however, exactly how exposure to SiO2 alters the functionality of AM and the potential consequences for immunity to respiratory pathogens remains largely unknown. Because recognition and clearance of inhaled particulates and microbes is largely mediated by pattern recognition receptors (PRR on the surface of AM, we hypothesized that exposure to SiO2 limits the ability of AM to respond to bacterial challenge by altering PRR expression. Alveolar and bone marrow-derived macrophages downregulate TLR2 expression following acute SiO2 exposure (e.g. 4 hours. Interestingly, these responses were dependent upon interactions between SiO2 and the class A scavenger receptor CD204, but not MARCO. Furthermore, SiO2 exposure decreased uptake of fluorescently labeled Pam2CSK4 and Pam3CSK4, resulting in reduced secretion of IL-1β, but not IL-6. Collectively, our data suggest that SiO2 exposure alters AM phenotype, which in turn affects their ability to uptake and respond to bacterial lipoproteins.

  16. Macrophage origin limits functional plasticity in helminth-bacterial co-infection.

    Directory of Open Access Journals (Sweden)

    Dominik Rückerl

    2017-03-01

    Full Text Available Rapid reprogramming of the macrophage activation phenotype is considered important in the defense against consecutive infection with diverse infectious agents. However, in the setting of persistent, chronic infection the functional importance of macrophage-intrinsic adaptation to changing environments vs. recruitment of new macrophages remains unclear. Here we show that resident peritoneal macrophages expanded by infection with the nematode Heligmosomoides polygyrus bakeri altered their activation phenotype in response to infection with Salmonella enterica ser. Typhimurium in vitro and in vivo. The nematode-expanded resident F4/80high macrophages efficiently upregulated bacterial induced effector molecules (e.g. MHC-II, NOS2 similarly to newly recruited monocyte-derived macrophages. Nonetheless, recruitment of blood monocyte-derived macrophages to Salmonella infection occurred with equal magnitude in co-infected animals and caused displacement of the nematode-expanded, tissue resident-derived macrophages from the peritoneal cavity. Global gene expression analysis revealed that although nematode-expanded resident F4/80high macrophages made an anti-bacterial response, this was muted as compared to newly recruited F4/80low macrophages. However, the F4/80high macrophages adopted unique functional characteristics that included enhanced neutrophil-stimulating chemokine production. Thus, our data provide important evidence that plastic adaptation of MΦ activation does occur in vivo, but that cellular plasticity is outweighed by functional capabilities specific to the tissue origin of the cell.

  17. A macrophage activation switch (MAcS)-index for assessment of monocyte/macrophage activation

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Lauridsen, Mette; Knudsen, Troels Bygum

    2008-01-01

    , simplified by the M1-M2 dichotomy of classically activated (M1), pro-inflammatory cells and alternatively activated (M2), anti-inflammatory cells. Macrophages, however, display a large degree of flexibility and are able to switch between activation states (1). The hemoglobin scavenger receptor CD163...... is expressed exclusively on monocytes and macrophages, and its expression is strongly induced by anti-inflammatory stimuli like IL10 and glucocorticoid, making CD163 an ideal M2 macrophage marker (2). Furthermore a soluble variant of CD163 (sCD163) is shed from the cell surface to plasma by protease mediated.......058-5139) (panti-inflammatory state.   CONCLUSION: We present a CD163-derived macrophage activation switch (MAcS)-index, which seems able to differentiate between (predominantly) pro-inflammatory and anti-inflammatory macrophage activation. The index needs...

  18. Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice

    International Nuclear Information System (INIS)

    Gao Xiaodong; Song Lujun; Shen Kuntang; Wang Hongshan; Niu Weixin; Qin Xinyu

    2008-01-01

    The transplantation of bone marrow (BM) derived cells to initiate pancreatic regeneration is an attractive but as-yet unrealized strategy. Presently, BM derived cells from green fluorescent protein transgenic mice were transplanted into diabetic mice. Repair of diabetic islets was evidenced by reduction of hyperglycemia, increase in number of islets, and altered pancreatic histology. Cells in the pancreata of recipient mice co-expressed BrdU and insulin. Double staining revealed β cells were in the process of proliferation. BrdU + insulin - PDX-1 + cells, Ngn3 + cells and insulin + glucagon + cells, which showed stem cells, were also found during β-cell regeneration. The majority of transplanted cells were mobilized to the islet and ductal regions. In recipient pancreas, transplanted cells simultaneously expressed CD34 but did not express insulin, PDX-1, Ngn3, Nkx2.2, Nkx6.1, Pax4, Pax6, and CD45. It is concluded that BM derived cells especially CD34 + cells can promote repair of pancreatic islets. Moreover, both proliferation of β cells and differentiation of pancreatic stem cells contribute to the regeneration of β cells

  19. Specific profiles of ion channels and ionotropic receptors define adipose- and bone marrow derived stromal cells.

    Czech Academy of Sciences Publication Activity Database

    Forostyak, Oksana; Butenko, Olena; Anděrová, Miroslava; Forostyak, Serhiy; Syková, Eva; Verkhratsky, A.; Dayanithi, Govindan

    2016-01-01

    Roč. 16, č. 3 (2016), s. 622-634 ISSN 1873-5061 R&D Projects: GA ČR(CZ) GA14-34077S; GA ČR(CZ) GAP304/11/2373; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:68378041 Keywords : adipose derived stromal cells * bone marrow stromal cell * Ca(2+) signaling * Ion channels Subject RIV: FH - Neurology Impact factor: 3.494, year: 2016

  20. Increase in a distinct pulmonary macrophage subset possessing an antigen-presenting cell phenotype and in vitro APC activity following silica exposure

    International Nuclear Information System (INIS)

    Migliaccio, Christopher T.; Hamilton, Raymond F.; Holian, Andrij

    2005-01-01

    Silica inhalation results in chronic lung inflammation and fibrosis. While the role of the alveolar macrophage (AM) is considered key to the effects of silica on lung pathology, the etiology is not completely understood. Evidence suggests an increase in antigen presenting cell (APC) activity as a contributing factor to this process, as well as potential roles for both AM and interstitial macrophages (IM) in silicosis. In order to study the effects of crystalline silica on the APC activity of pulmonary macrophages, mice were exposed intranasally and changes in pulmonary macrophage populations were assessed using flow cytometry. Following intranasal instillation of silica, a significant increase in the APC activity of AM was observed, as well as a significant increase in a subset of IM expressing classic APC markers (MHC class II, CD11c). In addition, an in vitro system using bone marrow-derived macrophages (BMDM) was generated to assess the effects of silica on the APC activity of macrophages in vitro. Data using BMDM in the in vitro APC assay demonstrated a significant increase in APC activity following silica exposure, but not following exposure to saline or a control particle (TiO 2 ). Using a combination of in vivo and in vitro experiments, the current study describes a significant increase in an interstitial macrophage subset with an APC phenotype, as well as an increase in the APC activity of both AM and BMDM, as a direct result of exposure to crystalline silica. These studies suggest a specific mechanism, macrophage subset activation, by which crystalline silica exposure results in chronic pulmonary inflammation and, eventually, fibrosis

  1. Quantitative GPCR and ion channel transcriptomics in primary alveolar macrophages and macrophage surrogates

    Directory of Open Access Journals (Sweden)

    Groot-Kormelink Paul J

    2012-10-01

    Full Text Available Abstract Background Alveolar macrophages are one of the first lines of defence against invading pathogens and play a central role in modulating both the innate and acquired immune systems. By responding to endogenous stimuli within the lung, alveolar macrophages contribute towards the regulation of the local inflammatory microenvironment, the initiation of wound healing and the pathogenesis of viral and bacterial infections. Despite the availability of protocols for isolating primary alveolar macrophages from the lung these cells remain recalcitrant to expansion in-vitro and therefore surrogate cell types, such as monocyte derived macrophages and phorbol ester-differentiated cell lines (e.g. U937, THP-1, HL60 are frequently used to model macrophage function. Methods The availability of high throughput gene expression technologies for accurate quantification of transcript levels enables the re-evaluation of these surrogate cell types for use as cellular models of the alveolar macrophage. Utilising high-throughput TaqMan arrays and focussing on dynamically regulated families of integral membrane proteins, we explore the similarities and differences in G-protein coupled receptor (GPCR and ion channel expression in alveolar macrophages and their widely used surrogates. Results The complete non-sensory GPCR and ion channel transcriptome is described for primary alveolar macrophages and macrophage surrogates. The expression of numerous GPCRs and ion channels whose expression were hitherto not described in human alveolar macrophages are compared across primary macrophages and commonly used macrophage cell models. Several membrane proteins known to have critical roles in regulating macrophage function, including CXCR6, CCR8 and TRPV4, were found to be highly expressed in macrophages but not expressed in PMA-differentiated surrogates. Conclusions The data described in this report provides insight into the appropriate choice of cell models for

  2. Bone marrow-derived cells in the population of spinal microglia after peripheral nerve injury

    Science.gov (United States)

    Tashima, Ryoichi; Mikuriya, Satsuki; Tomiyama, Daisuke; Shiratori-Hayashi, Miho; Yamashita, Tomohiro; Kohro, Yuta; Tozaki-Saitoh, Hidetoshi; Inoue, Kazuhide; Tsuda, Makoto

    2016-01-01

    Accumulating evidence indicates that peripheral nerve injury (PNI) activates spinal microglia that are necessary for neuropathic pain. Recent studies using bone marrow (BM) chimeric mice have reported that after PNI, circulating BM-derived cells infiltrate into the spinal cord and differentiate into microglia-like cells. This raises the possibility that the population of spinal microglia after PNI may be heterogeneous. However, the infiltration of BM cells in the spinal cord remains controversial because of experimental adverse effects of strong irradiation used for generating BM chimeric mice. In this study, we evaluated the PNI-induced spinal infiltration of BM-derived cells not only by irradiation-induced myeloablation with various conditioning regimens, but also by parabiosis and mice with genetically labelled microglia, models without irradiation and BM transplantation. Results obtained from these independent approaches provide compelling evidence indicating little contribution of circulating BM-derived cells to the population of spinal microglia after PNI. PMID:27005516

  3. Macrophage Efferocytosis and Prostate Cancer Bone Metastasis

    Science.gov (United States)

    2018-03-01

    E) ELISA for total CXCL1 and CXCL5 levels in supernatants of MΦs alone or cocultured with RM1(HA) or PC3(HA). (F) Transcriptional activ- ity cell...marrow macrophages (Fig- ure 1D). ELISA evaluation for CXCL1 and CXCL5 proteins in the coculture media for apoptotic cancer cells (Figure 1E) confirmed... ELISA analysis of total pro- tein lysates from VEH- (n = 10) and AP-treated (n = 11) tumor vossicles. (G) Graphs depicting the correlation between

  4. miR-223 is upregulated in monocytes from patients with tuberculosis and regulates function of monocyte-derived macrophages.

    Science.gov (United States)

    Liu, Yanhua; Wang, Ruo; Jiang, Jing; Yang, Bingfen; Cao, Zhihong; Cheng, Xiaoxing

    2015-10-01

    Tuberculosis (TB) is a serious infectious disease that most commonly affects the lungs. Macrophages are among the first line defenders against establishment of Mycobacterium tuberculosis infection in the lungs. In this study, we found that activation and cytokine production in monocyte-derived macrophages (MDM) from patients with active TB was impaired. miR-223 expression was significantly elevated in monocytes and MDM from patients with TB compared with healthy controls. To determine the functional role of miR-223 in macrophages, stable miR-223-expressing and miR-223 antisense-expressing U937 cells were established. Compared with empty vector controls, expression of IL-1β, IL-6, TNF-α and IL-12p40 genes was significantly higher in miR-223 antisense-expressing U937 cells, but lower in miR-223-expressing U937 cells. miR-223 can negatively regulate activation of NF-κB by inhibition of p65 phosphorylation and nuclear translocation. It is concluded that miR-223 can regulate macrophage function by inhibition of cytokine production and NF-κB activation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Dominance and persistence of donor marrow in long-lived allogeneic radiation chimeras obtained with unmanipulated bone marrow

    International Nuclear Information System (INIS)

    Pierpaoli, W.; Maestroni, G.J.M.

    1983-01-01

    Allogeneic, H-2-incompatible irradiation chimeras (H-2sup(d) → H-2sup(b)) constructed with normal, unmanipulated bone marrow and with marrow-derived factors live long and do not manifest a GvH disease. Their response to primary immunization is deficient but their alloreactivity is normal. This chimeric allotolerance cannot be passively transferred from chimeric donors to normal irradiated recipients. Passive transfer of both donor- or recipient-type immuno-competent T-cells into the chimeric mice does not lead to syngeneic reconstitution, rejection of the engrafted marrow or GvH disease, and the mice maintain permanently their chimerism. This new model demonstrates that chimerism is not eradicable in long-lived chimeras reconstituted with unmanipulated bone marrow, and that the bone marrow itself plays a dominant role in maintenance of chimerism. (Auth.)

  6. Hepatocyte growth factor is constitutively produced by donor-derived bone marrow cells and promotes regeneration of pancreatic β-cells

    International Nuclear Information System (INIS)

    Izumida, Yoshihiko; Aoki, Takeshi; Yasuda, Daisuke; Koizumi, Tomotake; Suganuma, Chisaki; Saito, Koji; Murai, Noriyuki; Shimizu, Yoshinori; Hayashi, Ken; Odaira, Masanori; Kusano, Tomokazu; Kushima, Miki; Kusano, Mitsuo

    2005-01-01

    Recent studies have demonstrated that the transplantation of bone marrow cells following diabetes induced by streptozotocin can support the recovery of pancreatic β-cell mass and a partial reversal of hyperglycemia. To address this issue, we examined whether the c-Met/hepatocyte growth factor (HGF) signaling pathway was involved in the recovery of β-cell injury after bone marrow transplantation (BMT). In this model, donor-derived bone marrow cells were positive for HGF immunoreactivity in the recipient spleen, liver, lung, and pancreas as well as in the host hepatocytes. Indeed, plasma HGF levels were maintained at a high value. The frequency of c-Met expression and its proliferative activity and differentiative response in the pancreatic ductal cells in the BMT group were greater than those in the PBS-treated group, resulting in an elevated number of endogenous insulin-producing cells. The induction of the c-Met/HGF signaling pathway following BMT promotes pancreatic regeneration in diabetic rats

  7. Removing the cells from adult bone marrow derived stem cell therapy does not eliminate cardioprotection.

    Science.gov (United States)

    Yasin, Mohammed

    2013-04-01

    The debate as to whether adult stem cell therapy is regenerative or not continues. The non-regenerative benefits of adult bone marrow-derived stem cell therapy were investigated by testing whether the supernatant derived from unfractionated bone marrow mononuclear cells might be cardioprotective in an animal model of myocardial ischaemia-reperfusion injury. Regional myocardial reperfusion injury was acquired by 25 min reversible left anterior descending coronary artery (LAD) occlusion followed by 2 h reperfusion, in anaesthetized Wistar male rats. Unfractionated bone marrow mononuclear cells (BMMNC) isolated from sibling Wistar male rat whole bone marrow were phenotyped by fluorescence activated cell sorting flowcytometry for the haematopoietic stem cell surface markers c-kit, CD34, CD45 and CD133. Animals subjected to regional myocardial reperfusion injury received either 10 million BMMNC or BMMNC supernatant (BMS); both were collected in 0.5 ml phosphate-buffered saline and delivered by intravenous bolus at the onset of reperfusion. The left ventricular region distal to the LAD occlusion point was excised for measurement of myocardial infarct size and proteomic analysis, which was used to identify whether there were any differences in myocardial proteins associated with intravenous injection of either BMMNC or BMS. BMMNC were phenotyped to be c-kit(+) (7 ± 1%), CD34(+) (7 ± 1%), CD45(+) (54 ± 6%), CD133(+) (15 ± 1%). The supernatant reduced myocardial infarct size (BMS 34 ± 2%, n = 15 vs control 57 ± 2%, n = 7, P < 0.0001), which was comparable to the reduction in infarct size afforded by the injection of cells (BMMNC 33 ± 3% vs control 57 ± 2%, n = 10, P < 0.0001). Proteomics of hearts treated with either BMS or BMMNC demonstrated higher expression of (i) anti-apoptotic signal transduction protein: 14-3-3-epsilon (1.5-fold); (ii) anti-oxidants: peroxiredoxin-6 (2.1-fold); (iii) heat shock proteins: alpha B-crystallin (1.7-fold), heat shock protein 72 (2

  8. Identification of a subpopulation of marrow MSC-derived medullary adipocytes that express osteoclast-regulating molecules: marrow adipocytes express osteoclast mediators.

    Directory of Open Access Journals (Sweden)

    Vance Holt

    Full Text Available Increased marrow medullary adipogenesis and an associated decrease in bone mineral density, usually observed in elderly individuals, is a common characteristic in senile osteoporosis. In this study we investigated whether cells of the medullary adipocyte lineage have the potential to directly support the formation of osteoclasts, whose activity in bone leads to bone degradation. An in vitro mesenchymal stem cell (MSC-derived medullary adipocyte lineage culture model was used to study the expression of the important osteoclast mediators RANKL, M-CSF, SDF-1, and OPG. We further assessed whether adipocytes at a specific developmental stage were capable of supporting osteoclast-like cell formation in culture. In vitro MSC-derived medullary adipocytes showed an mRNA and protein expression profile of M-CSF, RANKL, and OPG that was dependent on its developmental/metabolic stage. Furthermore, RANKL expression was observed in MSC-derived adipocytes that were at a distinct lineage stage and these cells were also capable of supporting osteoclast-like cell formation in co-cultures with peripheral blood mononuclear cells. These results suggest a connection between medullary adipocytes and osteoclast formation in vivo and may have major significance in regards to the mechanisms of decreased bone density in senile osteoporosis.

  9. Chronic Iron Overload Results in Impaired Bacterial Killing of THP-1 Derived Macrophage through the Inhibition of Lysosomal Acidification

    Science.gov (United States)

    Kao, Jun-Kai; Wang, Shih-Chung; Ho, Li-Wei; Huang, Shi-Wei; Chang, Shu-Hao; Yang, Rei-Cheng; Ke, Yu-Yuan; Wu, Chun-Ying; Wang, Jiu-Yao; Shieh, Jeng-Jer

    2016-01-01

    Iron is essential for living organisms and the disturbance of iron homeostasis is associated with altered immune function. Additionally, bacterial infections can cause major complications in instances of chronic iron overload, such as patients with transfusion-dependent thalassemia. Monocytes and macrophages play important roles in maintaining systemic iron homoeostasis and in defense against invading pathogens. However, the effect of iron overload on the function of monocytes and macrophages is unclear. We elucidated the effects of chronic iron overload on human monocytic cell line (THP-1) and THP-1 derived macrophages (TDM) by continuously exposing them to high levels of iron (100 μM) to create I-THP-1 and I-TDM, respectively. Our results show that iron overload did not affect morphology or granularity of I-THP-1, but increased the granularity of I-TDM. Bactericidal assays for non-pathogenic E. coli DH5α, JM109 and pathogenic P. aeruginosa all revealed decreased efficiency with increasing iron concentration in I-TDM. The impaired P. aeruginosa killing ability of human primary monocyte derived macrophages (hMDM) was also found when cells are cultured in iron contained medium. Further studies on the bactericidal activity of I-TDM revealed lysosomal dysfunction associated with the inhibition of lysosomal acidification resulting in increasing lysosomal pH, the impairment of post-translational processing of cathepsins (especially cathepsin D), and decreased autophagic flux. These findings may explain the impaired innate immunity of thalassemic patients with chronic iron overload, suggesting the manipulation of lysosomal function as a novel therapeutic approach. PMID:27244448

  10. Culture of equine bone marrow mononuclear fraction and adipose tissue-derived stromal vascular fraction cells in different media

    Directory of Open Access Journals (Sweden)

    Gesiane Ribeiro

    2013-12-01

    Full Text Available The objective of this study was to evaluate the culture of equine bone marrow mononuclear fraction and adipose tissue - derived stromal vascular fraction cells in two different cell culture media. Five adult horses were submitted to bone marrow aspiration from the sternum, and then from the adipose tissue of the gluteal region near the base of the tail. Mononuclear fraction and stromal vascular fraction were isolated from the samples and cultivated in DMEM medium supplemented with 10% fetal bovine serum or in AIM-V medium. The cultures were observed once a week with an inverted microscope, to perform a qualitative analysis of the morphology of the cells as well as the general appearance of the cell culture. Colony-forming units (CFU were counted on days 5, 15 and 25 of cell culture. During the first week of culture, differences were observed between the samples from the same source maintained in different culture media. The number of colonies was significantly higher in samples of bone marrow in relation to samples of adipose tissue.

  11. Macrophage immunoregulatory pathways in tuberculosis.

    Science.gov (United States)

    Rajaram, Murugesan V S; Ni, Bin; Dodd, Claire E; Schlesinger, Larry S

    2014-12-01

    Macrophages, the major host cells harboring Mycobacterium tuberculosis (M.tb), are a heterogeneous cell type depending on their tissue of origin and host they are derived from. Significant discord in macrophage responses to M.tb exists due to differences in M.tb strains and the various types of macrophages used to study tuberculosis (TB). This review will summarize current concepts regarding macrophage responses to M.tb infection, while pointing out relevant differences in experimental outcomes due to the use of divergent model systems. A brief description of the lung environment is included since there is increasing evidence that the alveolar macrophage (AM) has immunoregulatory properties that can delay optimal protective host immune responses. In this context, this review focuses on selected macrophage immunoregulatory pattern recognition receptors (PRRs), cytokines, negative regulators of inflammation, lipid mediators and microRNAs (miRNAs). Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Regulation of the arachidonic acid mobilization in macrophages by combustion-derived particles

    Directory of Open Access Journals (Sweden)

    Weiss Carsten

    2011-08-01

    Full Text Available Abstract Background Acute exposure to elevated levels of environmental particulate matter (PM is associated with increasing morbidity and mortality rates. These adverse health effects, e.g. culminating in respiratory and cardiovascular diseases, have been demonstrated by a multitude of epidemiological studies. However, the underlying mechanisms relevant for toxicity are not completely understood. Especially the role of particle-induced reactive oxygen species (ROS, oxidative stress and inflammatory responses is of particular interest. In this in vitro study we examined the influence of particle-generated ROS on signalling pathways leading to activation of the arachidonic acid (AA cascade. Incinerator fly ash particles (MAF02 were used as a model for real-life combustion-derived particulate matter. As macrophages, besides epithelial cells, are the major targets of particle actions in the lung murine RAW264.7 macrophages and primary human macrophages were investigated. Results The interaction of fly ash particles with macrophages induced both the generation of ROS and as part of the cellular inflammatory responses a dose- and time-dependent increase of free AA, prostaglandin E2/thromboxane B2 (PGE2/TXB2, and 8-isoprostane, a non-enzymatically formed oxidation product of AA. Additionally, increased phosphorylation of the mitogen-activated protein kinases (MAPK JNK1/2, p38 and ERK1/2 was observed, the latter of which was shown to be involved in MAF02-generated AA mobilization and phosphorylation of the cytosolic phospolipase A2. Using specific inhibitors for the different phospolipase A2 isoforms the MAF02-induced AA liberation was shown to be dependent on the cytosolic phospholipase A2, but not on the secretory and calcium-independent phospholipase A2. The initiation of the AA pathway due to MAF02 particle exposure was demonstrated to depend on the formation of ROS since the presence of the antioxidant N-acetyl-cysteine (NAC prevented the MAF02

  13. Cervical Cancer Cell Supernatants Induce a Phenotypic Switch from U937-Derived Macrophage-Activated M1 State into M2-Like Suppressor Phenotype with Change in Toll-Like Receptor Profile

    Directory of Open Access Journals (Sweden)

    Karina Sánchez-Reyes

    2014-01-01

    Full Text Available Cervical cancer (CC is the second most common cancer among women worldwide. Infection with human papillomavirus (HPV is the main risk factor for developing CC. Macrophages are important immune effector cells; they can be differentiated into two phenotypes, identified as M1 (classically activated and M2 (alternatively activated. Macrophage polarization exerts profound effects on the Toll-like receptor (TLR profile. In this study, we evaluated whether the supernatant of human CC cells HeLa, SiHa, and C-33A induces a shift of M1 macrophage toward M2 macrophage in U937-derived macrophages. Results. The results showed that soluble factors secreted by CC cells induce a change in the immunophenotype of macrophages from macrophage M1 into macrophage M2. U937-derived macrophages M1 released proinflammatory cytokines and nitric oxide; however, when these cells were treated with the supernatant of CC cell lines, we observed a turnover of M1 toward M2. These cells increased CD163 and IL-10 expression. The expression of TLR-3, -7, and -9 is increased when the macrophages were treated with the supernatant of CC cells. Conclusions. Our result strongly suggests that CC cells may, through the secretion of soluble factors, induce a change of immunophenotype M1 into M2 macrophages.

  14. Blastema from rabbit ear contains progenitor cells comparable to marrow derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Mohamadreza Baghaban Eslaminejad

    2012-09-01

    Full Text Available Rabbits have the capacity to regenerate holes in their ears by forming a blastema, a tissue that is made up of a group of undifferentiated cells. The purpose of the present study was to isolate and characterize blastema progenitor cells and compare them with marrow mesenchymal stem cells (MSCs. Five New Zealand white male rabbits were used in the present study. A 2-mm hole was created in the animal ears. After 4 days, the blastema ring formed in the periphery of the hole was removed and cultivated. The cells were expanded through several subcultures and compared with the MSCs derived from the marrow of same animal in terms of in vitro differentiation capacity, growth kinetics and culture requirements for optimal proliferation. The primary cultures from both cells tended to be heterogeneous. Fibroblastic cells became progressively dominant with advancing passages. Similar to MSCs blastema passaged-3 cells succeeded to differentiate into bone, cartilage and adipose cell lineages. Even lineage specific genes tended to express in higher level in blastema cells compared to MSCs (p < 0.05. Moreover blastema cells appeared more proliferative; producing more colonies (p < 0.05. While blastema cells showed extensive proliferation in 15% fetal bovine serum (FBS, MSCs displayed higher expansion rate at 10% FBS. In conclusion, blastema from rabbit ear contains a population of fibroblastic cells much similar in characteristic to bone marrow mesenchymal stem cells. However, the two cells were different in the level of lineage-specific gene expression, the growth curve characteristics and the culture requirements.

  15. Beneficial Effects of Autologous Bone Marrow-Derived Mesenchymal Stem Cells in Naturally Occurring Tendinopathy

    Science.gov (United States)

    Smith, Roger Kenneth Whealands; Werling, Natalie Jayne; Dakin, Stephanie Georgina; Alam, Rafiqul; Goodship, Allen E.; Dudhia, Jayesh

    2013-01-01

    Tendon injuries are a common age-related degenerative condition where current treatment strategies fail to restore functionality and normal quality of life. This disease also occurs naturally in horses, with many similarities to human tendinopathy making it an ideal large animal model for human disease. Regenerative approaches are increasingly used to improve outcome involving mesenchymal stem cells (MSCs), supported by clinical data where injection of autologous bone marrow derived MSCs (BM-MSCs) suspended in marrow supernatant into injured tendons has halved the re-injury rate in racehorses. We hypothesized that stem cell therapy induces a matrix more closely resembling normal tendon than the fibrous scar tissue formed by natural repair. Twelve horses with career-ending naturally-occurring superficial digital flexor tendon injury were allocated randomly to treatment and control groups. 1X107 autologous BM-MSCs suspended in 2 ml of marrow supernatant were implanted into the damaged tendon of the treated group. The control group received the same volume of saline. Following a 6 month exercise programme horses were euthanized and tendons assessed for structural stiffness by non-destructive mechanical testing and for morphological and molecular composition. BM-MSC treated tendons exhibited statistically significant improvements in key parameters compared to saline-injected control tendons towards that of normal tendons and those in the contralateral limbs. Specifically, treated tendons had lower structural stiffness (ptendon repair in enhancing normalisation of biomechanical, morphological, and compositional parameters. These data in natural disease, with no adverse findings, support the use of this treatment for human tendon injuries. PMID:24086616

  16. The role of HFE genotype in macrophage phenotype.

    Science.gov (United States)

    Nixon, Anne M; Neely, Elizabeth; Simpson, Ian A; Connor, James R

    2018-02-01

    Iron regulation is essential for cellular energy production. Loss of cellular iron homeostasis has critical implications for both normal function and disease progression. The H63D variant of the HFE gene is the most common gene variant in Caucasians. The resulting mutant protein alters cellular iron homeostasis and is associated with a number of neurological diseases and cancer. In the brain, microglial and infiltrating macrophages are critical to maintaining iron homeostasis and modulating inflammation associated with the pathogenic process in multiple diseases. This study addresses whether HFE genotype affects macrophage function and the implications of these findings for disease processes. Bone marrow macrophages were isolated from wildtype and H67D HFE knock-in mice. The H67D gene variant in mice is the human equivalent of the H63D variant. Upon differentiation, the macrophages were used to analyze iron regulatory proteins, cellular iron release, migration, phagocytosis, and cytokine expression. The results of this study demonstrate that the H67D HFE genotype significantly impacts a number of critical macrophage functions. Specifically, fundamental activities such as proliferation in response to iron exposure, L-ferritin expression in response to iron loading, secretion of BMP6 and cytokines, and migration and phagocytic activity were all found to be impacted by genotype. Furthermore, we demonstrated that exposure to apo-Tf (iron-poor transferrin) can increase the release of iron from macrophages. In normal conditions, 70% of circulating transferrin is unsaturated. Therefore, the ability of apo-Tf to induce iron release could be a major regulatory mechanism for iron release from macrophages. These studies demonstrate that the HFE genotype impacts fundamental components of macrophage phenotype that could alter their role in degenerative and reparative processes in neurodegenerative disorders.

  17. Destiny of autologous bone marrow-derived stromal cells implanted in the vocal fold.

    Science.gov (United States)

    Kanemaru, Shin-ichi; Nakamura, Tatsuo; Yamashita, Masaru; Magrufov, Akhmar; Kita, Tomoko; Tamaki, Hisanobu; Tamura, Yoshihiro; Iguchi, Fuku-ichiro; Kim, Tae Soo; Kishimoto, Masanao; Omori, Koichi; Ito, Juichi

    2005-12-01

    The aim of this study was to investigate the destiny of implanted autologous bone marrow-derived stromal cells (BSCs) containing mesenchymal stem cells. We previously reported the successful regeneration of an injured vocal fold through implantation of BSCs in a canine model. However, the fate of the implanted BSCs was not examined. In this study, implanted BSCs were traced in order to determine the type of tissues resulting at the injected site of the vocal fold. After harvest of bone marrow from the femurs of green fluorescent transgenic mice, adherent cells were cultured and selectively amplified. By means of a fluorescence-activated cell sorter, it was confirmed that some cells were strongly positive for mesenchymal stem cell markers, including CD29, CD44, CD49e, and Sca-1. These cells were then injected into the injured vocal fold of a nude rat. Immunohistologic examination of the resected vocal folds was performed 8 weeks after treatment. The implanted cells were alive in the host tissues and showed positive expression for keratin and desmin, markers for epithelial tissue and muscle, respectively. The implanted BSCs differentiated into more than one tissue type in vivo. Cell-based tissue engineering using BSCs may improve the quality of the healing process in vocal fold injuries.

  18. Regulation of alternative macrophage activation in the liver following acetaminophen intoxication by stem cell-derived tyrosine kinase

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Carol R., E-mail: cgardner@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Hankey, Pamela [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Mishin, Vladimir; Francis, Mary [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Yu, Shan [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States)

    2012-07-15

    Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK{sup −/−} mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6 h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK{sup −/−} mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK{sup −/−} mice. Whereas F4/80{sup +} macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK{sup −/−} mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK{sup −/−} mice

  19. Epigenetic Regulation of Inflammatory Gene Expression in Macrophages by Selenium

    Science.gov (United States)

    Narayan, Vivek; Ravindra, Kodihalli C.; Liao, Chang; Kaushal, Naveen; Carlson, Bradley A.; Prabhu, K. Sandeep

    2014-01-01

    Acetylation of histone and non-histone proteins by histone acetyltransferases plays a pivotal role in the expression of pro-inflammatory genes. Given the importance of dietary selenium in mitigating inflammation, we hypothesized that selenium supplementation may regulate inflammatory gene expression at the epigenetic level. The effect of selenium towards histone acetylation was examined in both in vitro and in vivo models of inflammation by chromatin immunoprecipitation (ChIP) assays and immunoblotting. Our results indicated that selenium supplementation, as selenite, decreased acetylation of histone H4 at K12 and K16 in COX-2 and TNF promoters, and of the p65 subunit of the redox sensitive transcription factor NFκB in primary and immortalized macrophages. On the other hand, selenomethionine had a much weaker effect. Selenite treatment of HIV-1 infected human monocytes also significantly decreased the acetylation of H4 at K12 and K16 on the HIV-1 promoter, supporting the downregulation of proviral expression by selenium. A similar decrease in histone acetylation was also seen in the colonic extracts of mice treated with dextran sodium sulfate that correlated well with the levels of selenium in the diet. Bone marrow-derived macrophages from Trspfl/flCreLysM mice that lack expression of selenoproteins in macrophages confirmed the important role of selenoproteins in the inhibition of histone H4 acetylation. Our studies suggest that the ability of selenoproteins to skew the metabolism of arachidonic acid to contribute, in part, to their ability to inhibit histone acetylation. In summary, our studies suggest a new role for selenoproteins in the epigenetic modulation of pro-inflammatory genes. PMID:25458528

  20. Macrophages inhibit human osteosarcoma cell growth after activation with the bacterial cell wall derivative liposomal muramyl tripeptide in combination with interferon-γ.

    Science.gov (United States)

    Pahl, Jens H W; Kwappenberg, Kitty M C; Varypataki, Eleni M; Santos, Susy J; Kuijjer, Marieke L; Mohamed, Susan; Wijnen, Juul T; van Tol, Maarten J D; Cleton-Jansen, Anne-Marie; Egeler, R Maarten; Jiskoot, Wim; Lankester, Arjan C; Schilham, Marco W

    2014-03-10

    In osteosarcoma, the presence of tumor-infiltrating macrophages positively correlates with patient survival in contrast to the negative effect of tumor-associated macrophages in patients with other tumors. Liposome-encapsulated muramyl tripeptide (L-MTP-PE) has been introduced in the treatment of osteosarcoma patients, which may enhance the potential anti-tumor activity of macrophages. Direct anti-tumor activity of human macrophages against human osteosarcoma cells has not been described so far. Hence, we assessed osteosarcoma cell growth after co-culture with human macrophages. Monocyte-derived M1-like and M2-like macrophages were polarized with LPS + IFN-γ, L-MTP-PE +/- IFN-γ or IL-10 and incubated with osteosarcoma cells. Two days later, viable tumor cell numbers were analyzed. Antibody-dependent effects were investigated using the therapeutic anti-EGFR antibody cetuximab. M1-like macrophages inhibited osteosarcoma cell growth when activated with LPS + IFN-γ. Likewise, stimulation of M1-like macrophages with liposomal muramyl tripeptide (L-MTP-PE) inhibited tumor growth, but only when combined with IFN-γ. Addition of the tumor-reactive anti-EGFR antibody cetuximab did not further improve the anti-tumor activity of activated M1-like macrophages. The inhibition was mediated by supernatants of activated M1-like macrophages, containing TNF-α and IL-1β. However, specific blockage of these cytokines, nitric oxide or reactive oxygen species did not inhibit the anti-tumor effect, suggesting the involvement of other soluble factors released upon macrophage activation. While LPS + IFN-γ-activated M2-like macrophages had low anti-tumor activity, IL-10-polarized M2-like macrophages were able to reduce osteosarcoma cell growth in the presence of the anti-EGFR cetuximab involving antibody-dependent tumor cell phagocytosis. This study demonstrates that human macrophages can be induced to exert direct anti-tumor activity against osteosarcoma cells. Our

  1. Potential of Osteoblastic Cells Derived from Bone Marrow and Adipose Tissue Associated with a Polymer/Ceramic Composite to Repair Bone Tissue.

    Science.gov (United States)

    Freitas, Gileade P; Lopes, Helena B; Almeida, Adriana L G; Abuna, Rodrigo P F; Gimenes, Rossano; Souza, Lucas E B; Covas, Dimas T; Beloti, Marcio M; Rosa, Adalberto L

    2017-09-01

    One of the tissue engineering strategies to promote bone regeneration is the association of cells and biomaterials. In this context, the aim of this study was to evaluate if cell source, either from bone marrow or adipose tissue, affects bone repair induced by osteoblastic cells associated with a membrane of poly(vinylidene-trifluoroethylene)/barium titanate (PVDF-TrFE/BT). Mesenchymal stem cells (MSC) were isolated from rat bone marrow and adipose tissue and characterized by detection of several surface markers. Also, both cell populations were cultured under osteogenic conditions and it was observed that MSC from bone marrow were more osteogenic than MSC from adipose tissue. The bone repair was evaluated in rat calvarial defects implanted with PVDF-TrFE/BT membrane and locally injected with (1) osteoblastic cells differentiated from MSC from bone marrow, (2) osteoblastic cells differentiated from MSC from adipose tissue or (3) phosphate-buffered saline. Luciferase-expressing osteoblastic cells derived from bone marrow and adipose tissue were detected in bone defects after cell injection during 25 days without difference in luciferin signal between cells from both sources. Corroborating the in vitro findings, osteoblastic cells from bone marrow combined with the PVDF-TrFE/BT membrane increased the bone formation, whereas osteoblastic cells from adipose tissue did not enhance the bone repair induced by the membrane itself. Based on these findings, it is possible to conclude that, by combining a membrane with cells in this rat model, cell source matters and that bone marrow could be a more suitable source of cells for therapies to engineer bone.

  2. Macrophage imaging by USPIO-enhanced MR for the differentiation of infectious osteomyelitis and aseptic vertebral inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Bierry, Guillaume [University Hospital, Department of Radiology, Strasbourg (France); University Louis Pasteur, EA 3432, Strasbourg (France); Jehl, Francois [University Hospital of Strasbourg, Department of Bacteriology, Strasbourg (France); University Louis Pasteur, EA 3432, Strasbourg (France); Boehm, Nelly [University Louis Pasteur, Institute of Histology, Faculty of Medicine, Strasbourg (France); University Louis Pasteur, INSERM U666, Strasbourg (France); Robert, Philippe [Guerbet Research, Roissy (France); Dietemann, Jean-Louis; Kremer, Stephane [University Hospital, Department of Radiology, Strasbourg (France)

    2009-07-15

    The purpose of this study was to prospectively evaluate USPIO-enhanced MR imaging for the differentiation of vertebral infectious osteomyelitis and sterile inflammation. Vertebral osteomyelitis and sterile vertebral inflammation were induced in two groups of six rabbits each. MRI examinations were performed including unenhanced and gadolinium-enhanced fat-saturated SE T1w sequences. Once endplate enhancement was observed on the T1 gadolinium-enhanced MR sequence, a second MRI examination (SE T1w sequence) was performed 24 h after USPIO administration (45 {mu}mol Fe/kg). MR imaging was correlated with histopathological findings (macrophage immunostaining and Perls Prussian blue staining). On gadolinium-enhanced T1 sequences, a significant SNR increase in vertebral endplates was present in both groups without significant difference between the two groups (P = 0.26). On USPIO-enhanced T1 sequences, a significant SNR increase was only observed in the infection group (P = 0.03) with a significant difference in SNR between the infection and the sterile-inflammation groups (P = 0.002). Infected areas presented replacement of bone marrow by an intense macrophage infiltration, some being iron-loaded. Sterile inflammation showed a replacement of bone marrow by inflammatory tissue with only rare macrophages without any Perls blue staining. USPIO-enhanced MR imaging can distinguish infectious osteomyelitis from sterile vertebral inflammation due to different macrophage distributions in the two lesions. (orig.)

  3. Anti-WASP intrabodies inhibit inflammatory responses induced by Toll-like receptors 3, 7, and 9, in macrophages

    International Nuclear Information System (INIS)

    Sakuma, Chisato; Sato, Mitsuru; Oshima, Takuma; Takenouchi, Takato; Chiba, Joe; Kitani, Hiroshi

    2015-01-01

    Wiskott-Aldrich syndrome protein (WASP) is an adaptor molecule in immune cells. Recently, we showed that the WASP N-terminal domain interacted with the SH3 domain of Bruton's tyrosine kinase (Btk), and that the complex formed by WASP and Btk was important for TLR2 and TLR4 signaling in macrophages. Several other studies have shown that Btk played important roles in modulating innate immune responses through TLRs in immune cells. Here, we evaluated the significance of the interaction between WASP and Btk in TLR3, TLR7, and TLR9 signaling. We established bone marrow–derived macrophage cell lines from transgenic (Tg) mice that expressed intracellular antibodies (intrabodies) that specifically targeted the WASP N-terminal domain. One intrabody comprised the single-chain variable fragment and the other comprised the light-chain variable region single domain of an anti-WASP N-terminal monoclonal antibody. Both intrabodies inhibited the specific interaction between WASP and Btk, which impaired the expression of TNF-α, IL-6, and IL-1β in response to TLR3, TLR7, or TLR9 stimulation. Furthermore, the intrabodies inhibited the phosphorylation of both nuclear factor (NF)-κB and WASP in response to TLR3, TLR7, or TLR9 stimulation, in the Tg bone marrow-derived macrophages. These results suggested that WASP plays important roles in TLR3, TLR7, and TLR9 signaling by associating with Btk in macrophages. - Highlights: • The interaction between WASP and Btk is critical for TLR3, TLR7, and TLR9 signaling. • Anti-WASP intrabodies inhibited several TLR pathways that led to cytokine expression. • Phosphorylation of NF-κB via TLR signaling was inhibited by anti-WASP intrabodies. • WASP phosphorylation via several TLR ligands was inhibited by anti-WASP intrabodies

  4. Anti-WASP intrabodies inhibit inflammatory responses induced by Toll-like receptors 3, 7, and 9, in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, Chisato [Animal Immune and Cell Biology Research Unit, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634 (Japan); Sato, Mitsuru, E-mail: mitsuru.sato@affrc.go.jp [Animal Immune and Cell Biology Research Unit, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634 (Japan); Oshima, Takuma [Department of Biological Science and Technology, Graduate School of Faculty of Industrial Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510 (Japan); Takenouchi, Takato [Animal Immune and Cell Biology Research Unit, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634 (Japan); Chiba, Joe [Department of Biological Science and Technology, Graduate School of Faculty of Industrial Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510 (Japan); Kitani, Hiroshi [Animal Immune and Cell Biology Research Unit, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634 (Japan)

    2015-02-27

    Wiskott-Aldrich syndrome protein (WASP) is an adaptor molecule in immune cells. Recently, we showed that the WASP N-terminal domain interacted with the SH3 domain of Bruton's tyrosine kinase (Btk), and that the complex formed by WASP and Btk was important for TLR2 and TLR4 signaling in macrophages. Several other studies have shown that Btk played important roles in modulating innate immune responses through TLRs in immune cells. Here, we evaluated the significance of the interaction between WASP and Btk in TLR3, TLR7, and TLR9 signaling. We established bone marrow–derived macrophage cell lines from transgenic (Tg) mice that expressed intracellular antibodies (intrabodies) that specifically targeted the WASP N-terminal domain. One intrabody comprised the single-chain variable fragment and the other comprised the light-chain variable region single domain of an anti-WASP N-terminal monoclonal antibody. Both intrabodies inhibited the specific interaction between WASP and Btk, which impaired the expression of TNF-α, IL-6, and IL-1β in response to TLR3, TLR7, or TLR9 stimulation. Furthermore, the intrabodies inhibited the phosphorylation of both nuclear factor (NF)-κB and WASP in response to TLR3, TLR7, or TLR9 stimulation, in the Tg bone marrow-derived macrophages. These results suggested that WASP plays important roles in TLR3, TLR7, and TLR9 signaling by associating with Btk in macrophages. - Highlights: • The interaction between WASP and Btk is critical for TLR3, TLR7, and TLR9 signaling. • Anti-WASP intrabodies inhibited several TLR pathways that led to cytokine expression. • Phosphorylation of NF-κB via TLR signaling was inhibited by anti-WASP intrabodies. • WASP phosphorylation via several TLR ligands was inhibited by anti-WASP intrabodies.

  5. Diminished Adherence and/or Ingestion of Virulent Mycobacterium tuberculosis by Monocyte-Derived Macrophages from Patients with Tuberculosis

    Science.gov (United States)

    Zabaleta, J.; Arias, M.; Maya, J. R.; García, L. F.

    1998-01-01

    The interaction between the macrophage and Mycobacterium tuberculosis is mediated by a variety of macrophage membrane-associated proteins. Complement receptors have been implicated in the adherence of M. tuberculosis to macrophages. In the present work, the adherence and/or ingestion of M. tuberculosis H37Rv to human monocyte-derived macrophages (MDM) from patients with tuberculosis (TB) and healthy controls was measured by microscopical examination, [3H]uracil incorporation, and CFU. The adherence and/or ingestion was enhanced by fresh serum and inhibited by heat inactivation, EDTA treatment, and anti-CR1 and anti-CR3 antibodies. Comparison of MDM from TB patients and healthy controls showed that the former exhibited a significantly decreased capacity to adhere and/or ingest M. tuberculosis, as determined by the number of CFU and 3H incorporation. The expression of CR1 (CD35) and CR3 (CD11b/CD18) on MDM from TB patients and healthy controls, as determined by flow cytometry, did not show significant differences. These results suggest that the lower ingestion of M. tuberculosis by MDM from TB patients is not due to defects in complement receptors, and therefore, there might be other molecules involved in the adherence and/or ingestion process that render MDM from TB patients ingest less mycobacteria than those from healthy controls. PMID:9729537

  6. Bone marrow-derived stromal cells are more beneficial cell sources for tooth regeneration compared with adipose-derived stromal cells.

    Science.gov (United States)

    Ye, Lanfeng; Chen, Lin; Feng, Fan; Cui, Junhui; Li, Kaide; Li, Zhiyong; Liu, Lei

    2015-10-01

    Tooth loss is presently a global epidemic and tooth regeneration is thought to be a feasible and ideal treatment approach. Choice of cell source is a primary concern in tooth regeneration. In this study, the odontogenic differentiation potential of two non-dental-derived stem cells, adipose-derived stromal cells (ADSCs) and bone marrow-derived stromal cells (BMSCs), were evaluated both in vitro and in vivo. ADSCs and BMSCs were induced in vitro in the presence of tooth germ cell-conditioned medium (TGC-CM) prior to implantation into the omentum majus of rats, in combination with inactivated dentin matrix (IDM). Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the mRNA expression levels of odontogenic-related genes. Immunofluorescence and immunohistochemical assays were used to detect the protein levels of odontogenic-specific genes, such as DSP and DMP-1 both in vitro and in vivo. The results suggest that both ADSCs and BMSCs have odontogenic differentiation potential. However, the odontogenic potential of BMSCs was greater compared with ADSCs, showing that BMSCs are a more appropriate cell source for tooth regeneration. © 2015 International Federation for Cell Biology.

  7. Enhanced uptake of multiple sclerosis-derived myelin by THP-1 macrophages and primary human microglia.

    Science.gov (United States)

    Hendrickx, Debbie A E; Schuurman, Karianne G; van Draanen, Michael; Hamann, Jörg; Huitinga, Inge

    2014-03-31

    The pathological hallmark of multiple sclerosis (MS) is myelin phagocytosis. It remains unclear why microglia and macrophages demyelinate axons in MS, but previously found or yet-unknown changes in the myelin of MS patients could contribute to this process. We therefore studied whether myelin from normal-appearing white matter (NAWM) of MS donors is phagocytosed more efficiently than myelin from control donors. Myelin was isolated from 11 MS and 12 control brain donors and labeled with the pH-sensitive fluorescent dye pHrodo to quantify uptake in lysosomes. Phagocytosis by differentiated THP-1 macrophages and by primary human microglia was quantified with flow cytometry. Whereas myelin uptake by THP-1 macrophages reached a plateau after approximately 24 hours, uptake by primary human microglia showed an almost linear increase over a 72-hour period. Data were statistically analyzed with the Mann-Whitney U test. MS-derived myelin was phagocytosed more efficiently by THP-1 macrophages after 6-hour incubation (P = 0.001 for the percentage of myelin-phagocytosing cells and P = 0.0005 for total myelin uptake) and after 24-hour incubation (P = 0.0006 and P = 0.0001, respectively), and by microglia after 24-hour incubation (P = 0.0106 for total myelin uptake). This enhanced uptake was not due to differences in the oxidation status of the myelin. Interestingly, myelin phagocytosis correlated negatively with the age of myelin donors, whereas the age of microglia donors showed a positive trend with myelin phagocytosis. Myelin isolated from normal-appearing white matter of MS donors was phagocytosed more efficiently than was myelin isolated from control brain donors by both THP-1 macrophages and primary human microglia. These data indicate that changes in MS myelin might precede phagocyte activation and subsequent demyelination in MS. Identifying these myelin changes responsible for enhancing phagocytic ability could be an interesting therapeutic target to

  8. Bone marrow-derived osteoblast progenitor cells in circulating blood contribute to ectopic bone formation in mice

    International Nuclear Information System (INIS)

    Otsuru, Satoru; Tamai, Katsuto; Yamazaki, Takehiko; Yoshikawa, Hideki; Kaneda, Yasufumi

    2007-01-01

    Recent studies have suggested the existence of osteoblastic cells in the circulation, but the origin and role of these cells in vivo are not clear. Here, we examined how these cells contribute to osteogenesis in a bone morphogenetic protein (BMP)-induced model of ectopic bone formation. Following lethal dose-irradiation and subsequent green fluorescent protein-transgenic bone marrow cell-transplantation (GFP-BMT) in mice, a BMP-2-containing collagen pellet was implanted into muscle. Three weeks later, a significant number of GFP-positive osteoblastic cells were present in the newly generated ectopic bone. Moreover, peripheral blood mononuclear cells (PBMNCs) from the BMP-2-implanted mouse were then shown to include osteoblast progenitor cells (OPCs) in culture. Passive transfer of the PBMNCs isolated from the BMP-2-implanted GFP-mouse to the BMP-2-implanted nude mouse led to GFP-positive osteoblast accumulation in the ectopic bone. These data provide new insight into the mechanism of ectopic bone formation involving bone marrow-derived OPCs in circulating blood

  9. The comparison of knee osteoarthritis treatment with single-dose bone marrow-derived mononuclear cells vs. hyaluronic acid injections

    Directory of Open Access Journals (Sweden)

    Valdis Goncars

    2017-01-01

    Conclusions: The intra-articular injection of bone marrow-derived mononuclear cells is a safe manipulation with no side effects during the 12-month period. This treatment provides statistically significant clinical improvement between the starting point and 1, 3, 6, and 12 months after. When compared to hyaluronic acid treatment, better pain relief in the long-term period of mononuclear cell group was observed.

  10. Macrophage models of Gaucher disease for evaluating disease pathogenesis and candidate drugs.

    Science.gov (United States)

    Aflaki, Elma; Stubblefield, Barbara K; Maniwang, Emerson; Lopez, Grisel; Moaven, Nima; Goldin, Ehud; Marugan, Juan; Patnaik, Samarjit; Dutra, Amalia; Southall, Noel; Zheng, Wei; Tayebi, Nahid; Sidransky, Ellen

    2014-06-11

    Gaucher disease is caused by an inherited deficiency of glucocerebrosidase that manifests with storage of glycolipids in lysosomes, particularly in macrophages. Available cell lines modeling Gaucher disease do not demonstrate lysosomal storage of glycolipids; therefore, we set out to develop two macrophage models of Gaucher disease that exhibit appropriate substrate accumulation. We used these cellular models both to investigate altered macrophage biology in Gaucher disease and to evaluate candidate drugs for its treatment. We generated and characterized monocyte-derived macrophages from 20 patients carrying different Gaucher disease mutations. In addition, we created induced pluripotent stem cell (iPSC)-derived macrophages from five fibroblast lines taken from patients with type 1 or type 2 Gaucher disease. Macrophages derived from patient monocytes or iPSCs showed reduced glucocerebrosidase activity and increased storage of glucocerebroside and glucosylsphingosine in lysosomes. These macrophages showed efficient phagocytosis of bacteria but reduced production of intracellular reactive oxygen species and impaired chemotaxis. The disease phenotype was reversed with a noninhibitory small-molecule chaperone drug that enhanced glucocerebrosidase activity in the macrophages, reduced glycolipid storage, and normalized chemotaxis and production of reactive oxygen species. Macrophages differentiated from patient monocytes or patient-derived iPSCs provide cellular models that can be used to investigate disease pathogenesis and facilitate drug development. Copyright © 2014, American Association for the Advancement of Science.

  11. Carbon monoxide induced PPARγ SUMOylation and UCP2 block inflammatory gene expression in macrophages.

    Directory of Open Access Journals (Sweden)

    Arvand Haschemi

    Full Text Available Carbon monoxide (CO dampens pro-inflammatory responses in a peroxisome proliferator-activated receptor-γ (PPARγ and p38 mitogen-activated protein kinase (MAPK dependent manner. Previously, we demonstrated that CO inhibits lipopolysaccharide (LPS-induced expression of the proinflammatory early growth response-1 (Egr-1 transcription factor in macrophages via activation of PPARγ. Here, we further characterize the molecular mechanisms by which CO modulates the activity of PPARγ and Egr-1 repression. We demonstrate that CO enhances SUMOylation of PPARγ which we find was attributed to mitochondrial ROS generation. Ectopic expression of a SUMOylation-defective PPARγ-K365R mutant partially abolished CO-mediated suppression of LPS-induced Egr-1 promoter activity. Expression of a PPARγ-K77R mutant did not impair the effect of CO. In addition to PPARγ SUMOylation, CO-activated p38 MAPK was responsible for Egr-1 repression. Blocking both CO-induced PPARγ SUMOylation and p38 activation, completely reversed the effects of CO on inflammatory gene expression. In primary macrophages isolated form C57/BL6 male mice, we identify mitochondrial ROS formation by CO as the upstream trigger for the observed effects on Egr-1 in part through uncoupling protein 2 (UCP2. Macrophages derived from bone marrow isolated from Ucp2 gene Knock-Out C57/BL6 mice (Ucp2(-/-, produced significantly less ROS with CO exposure versus wild-type macrophages. Moreover, absence of UCP2 resulted in a complete loss of CO mediated Egr-1 repression. Collectively, these results indentify p38 activation, PPARγ-SUMOylation and ROS formation via UCP2 as a cooperative system by which CO impacts the inflammatory response.

  12. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice.

    Science.gov (United States)

    Shechter, Ravid; London, Anat; Varol, Chen; Raposo, Catarina; Cusimano, Melania; Yovel, Gili; Rolls, Asya; Mack, Matthias; Pluchino, Stefano; Martino, Gianvito; Jung, Steffen; Schwartz, Michal

    2009-07-01

    Although macrophages (MPhi) are known as essential players in wound healing, their contribution to recovery from spinal cord injury (SCI) is a subject of debate. The difficulties in distinguishing between different MPhi subpopulations at the lesion site have further contributed to the controversy and led to the common view of MPhi as functionally homogenous. Given the massive accumulation in the injured spinal cord of activated resident microglia, which are the native immune occupants of the central nervous system (CNS), the recruitment of additional infiltrating monocytes from the peripheral blood seems puzzling. A key question that remains is whether the infiltrating monocyte-derived MPhi contribute to repair, or represent an unavoidable detrimental response. The hypothesis of the current study is that a specific population of infiltrating monocyte-derived MPhi is functionally distinct from the inflammatory resident microglia and is essential for recovery from SCI. We inflicted SCI in adult mice, and tested the effect of infiltrating monocyte-derived MPhi on the recovery process. Adoptive transfer experiments and bone marrow chimeras were used to functionally distinguish between the resident microglia and the infiltrating monocyte-derived MPhi. We followed the infiltration of the monocyte-derived MPhi to the injured site and characterized their spatial distribution and phenotype. Increasing the naïve monocyte pool by either adoptive transfer or CNS-specific vaccination resulted in a higher number of spontaneously recruited cells and improved recovery. Selective ablation of infiltrating monocyte-derived MPhi following SCI while sparing the resident microglia, using either antibody-mediated depletion or conditional ablation by diphtheria toxin, impaired recovery. Reconstitution of the peripheral blood with monocytes resistant to ablation restored the lost motor functions. Importantly, the infiltrating monocyte-derived MPhi displayed a local anti

  13. Effect of silica particle size on macrophage inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Toshimasa Kusaka

    Full Text Available Amorphous silica particles, such as nanoparticles (<100 nm diameter particles, are used in a wide variety of products, including pharmaceuticals, paints, cosmetics, and food. Nevertheless, the immunotoxicity of these particles and the relationship between silica particle size and pro-inflammatory activity are not fully understood. In this study, we addressed the relationship between the size of amorphous silica (particle dose, diameter, number, and surface area and the inflammatory activity (macrophage phagocytosis, inflammasome activation, IL-1β secretion, cell death and lung inflammation. Irrespective of diameter size, silica particles were efficiently internalized by mouse bone marrow-derived macrophages via an actin cytoskeleton-dependent pathway, and induced caspase-1, but not caspase-11, activation. Of note, 30 nm-1000 nm diameter silica particles induced lysosomal destabilization, cell death, and IL-1β secretion at markedly higher levels than did 3000 nm-10000 nm silica particles. Consistent with in vitro results, intra-tracheal administration of 30 nm silica particles into mice caused more severe lung inflammation than that of 3000 nm silica particles, as assessed by measurement of pro-inflammatory cytokines and neutrophil infiltration in bronchoalveolar lavage fluid of mice, and by the micro-computed tomography analysis. Taken together, these results suggest that silica particle size impacts immune responses, with submicron amorphous silica particles inducing higher inflammatory responses than silica particles over 1000 nm in size, which is ascribed not only to their ability to induce caspase-1 activation but also to their cytotoxicity.

  14. Effects of vitamin D(3)-binding protein-derived macrophage activating factor (GcMAF) on angiogenesis.

    Science.gov (United States)

    Kanda, Shigeru; Mochizuki, Yasushi; Miyata, Yasuyoshi; Kanetake, Hiroshi; Yamamoto, Nobuto

    2002-09-04

    The vitamin D(3)-binding protein (Gc protein)-derived macrophage activating factor (GcMAF) activates tumoricidal macrophages against a variety of cancers indiscriminately. We investigated whether GcMAF also acts as an antiangiogenic factor on endothelial cells. The effects of GcMAF on angiogenic growth factor-induced cell proliferation, chemotaxis, and tube formation were examined in vitro by using cultured endothelial cells (murine IBE cells, porcine PAE cells, and human umbilical vein endothelial cells [HUVECs]) and in vivo by using a mouse cornea micropocket assay. Blocking monoclonal antibodies to CD36, a receptor for the antiangiogenic factor thrombospondin-1, which is also a possible receptor for GcMAF, were used to investigate the mechanism of GcMAF action. GcMAF inhibited the endothelial cell proliferation, chemotaxis, and tube formation that were all stimulated by fibroblast growth factor-2 (FGF-2), vascular endothelial growth factor-A, or angiopoietin 2. FGF-2-induced neovascularization in murine cornea was also inhibited by GcMAF. Monoclonal antibodies against murine and human CD36 receptor blocked the antiangiogenic action of GcMAF on the angiogenic factor stimulation of endothelial cell chemotaxis. In addition to its ability to activate tumoricidal macrophages, GcMAF has direct antiangiogenic effects on endothelial cells independent of tissue origin. The antiangiogenic effects of GcMAF may be mediated through the CD36 receptor.

  15. Therapeutic potential of regulatory macrophages generated from peritoneal dialysate in adriamycin nephropathy.

    Science.gov (United States)

    Cao, Qi; Wang, Yiping; Wang, Changqi; Wang, Xin M; Lee, Vincent W S; Zheng, Guoping; Zhao, Ye; Alexander, Stephen I; Harris, David C H

    2018-04-01

    Cell therapy using macrophages requires large amounts of cells, which are difficult to collect from patients. Patients undergoing peritoneal dialysis (PD) discard huge numbers of peritoneal macrophages in dialysate daily. Macrophages can be modulated to become regulatory macrophages, which have shown great promise as a therapeutic strategy in experimental kidney disease and human kidney transplantation. This study aimed to examine the potential of using peritoneal macrophages (PMs) from peritoneal dialysate to treat kidney disease. Monocytes/macrophages accounted for >40% of total peritoneal leukocytes in both patients and mice undergoing PD. PMs from patients and mice undergoing PD were more mature than peripheral monocytes/macrophages, as shown by low expression of C-C motif chemokine receptor 2 (CCR2) and morphological changes during in vitro culture. PMs from patients and mice undergoing PD displayed normal macrophage function and could be modulated into a regulatory (M2) phenotype. In vivo, adoptive transfer of peritoneal M2 macrophages derived from PD mice effectively protected against kidney injury in mice with adriamycin nephropathy (AN). Importantly, the transfused peritoneal M2 macrophages maintained their M2 phenotype in kidney of AN mice. In conclusion, PMs derived from patients and mice undergoing PD exhibited conventional macrophage features. Peritoneal M2 macrophages derived from PD mice are able to reduce kidney injury in AN, suggesting that peritoneal macrophages from patients undergoing PD may have the potential for clinical therapeutic application.

  16. Green Brazilian Propolis Action on Macrophages and Lymphoid Organs of Chronically Stressed Mice

    Directory of Open Access Journals (Sweden)

    Fabiane Missima

    2008-01-01

    Full Text Available Stress is a generic term that summarizes how psychosocial and environmental factors influence physical and mental well-being. The interaction between stress and immunity has been widely investigated, involving the neuroendocrine system and several organs. Assays using natural products in stress models deserve further investigation. Propolis immunomodulatory action has been mentioned and it has been the subject of scientific investigation in our laboratory. The aim of this study was to evaluate if and how propolis activated macrophages in BALB/c mice submitted to immobilization stress, as well as the histopathological analysis of the thymus, bone marrow, spleen and adrenal glands. Stressed mice showed a higher hydrogen peroxide (H2O2 generation by peritoneal macrophages, and propolis treatment potentiated H2O2 generation and inhibited nitric oxide (NO production by these cells. Histopathological analysis showed no alterations in the thymus, bone marrow and adrenal glands, but increased germinal centers in the spleen. Propolis treatment counteracted the alterations found in the spleen of stressed mice. New research is being carried out in order to elucidate propolis immunomodulatory action during stress.

  17. Paracrine effects of bone marrow-derived endothelial progenitor cells: cyclooxygenase-2/prostacyclin pathway in pulmonary arterial hypertension.

    Directory of Open Access Journals (Sweden)

    Dong-Mei Jiang

    Full Text Available BACKGROUND: Endothelial dysfunction is the pathophysiological characteristic of pulmonary arterial hypertension (PAH. Some paracrine factors secreted by bone marrow-derived endothelial progenitor cells (BMEPCs have the potential to strengthen endothelial integrity and function. This study investigated whether BMEPCs have the therapeutic potential to improve monocrotaline (MCT-induced PAH via producing vasoprotective substances in a paracrine fashion. METHODS AND RESULTS: Bone marrow-derived mononuclear cells were cultured for 7 days to yield BMEPCs. 24 hours or 3 weeks after exposure to BMEPCs in vitro or in vivo, the vascular reactivity, cyclooxygenase-2 (COX-2 expression, prostacyclin (PGI2 and cAMP release in isolated pulmonary arteries were examined respectively. Treatment with BMEPCs could improve the relaxation of pulmonary arteries in MCT-induced PAH and BMEPCs were grafted into the pulmonary bed. The COX-2/prostacyclin synthase (PGIS and its progenies PGI2/cAMP were found to be significantly increased in BMEPCs treated pulmonary arteries, and this action was reversed by a selective COX-2 inhibitor, NS398. Moreover, the same effect was also observed in conditioned medium obtained from BMEPCs culture. CONCLUSIONS: Implantation of BMEPCs effectively ameliorates MCT-induced PAH. Factors secreted in a paracrine fashion from BMEPCs promote vasoprotection by increasing the release of PGI2 and level of cAMP.

  18. Inhibitory effect of vitamin D-binding protein-derived macrophage activating factor on DMBA-induced hamster cheek pouch carcinogenesis and its derived carcinoma cell line.

    Science.gov (United States)

    Toyohara, Yukiyo; Hashitani, Susumu; Kishimoto, Hiromitsu; Noguchi, Kazuma; Yamamoto, Nobuto; Urade, Masahiro

    2011-07-01

    This study investigated the inhibitory effect of vitamin D-binding protein-derived macrophage-activating factor (GcMAF) on carcinogenesis and tumor growth, using a 9,10-dimethyl-1,2-benzanthracene (DMBA)-induced hamster cheek pouch carcinogenesis model, as well as the cytocidal effect of activated macrophages against HCPC-1, a cell line established from DMBA-induced cheek pouch carcinoma. DMBA application induced squamous cell carcinoma in all 15 hamsters of the control group at approximately 10 weeks, and all 15 hamsters died of tumor burden within 20 weeks. By contrast, 2 out of the 14 hamsters with GcMAF administration did not develop tumors and the remaining 12 hamsters showed a significant delay of tumor development for approximately 3.5 weeks. The growth of tumors formed was significantly suppressed and none of the hamsters died within the 20 weeks during which they were observed. When GcMAF administration was stopped at the 13th week of the experiment in 4 out of the 14 hamsters in the GcMAF-treated group, tumor growth was promoted, but none of the mice died within the 20-week period. On the other hand, when GcMAF administration was commenced after the 13th week in 5 out of the 15 hamsters in the control group, tumor growth was slightly suppressed and all 15 hamsters died of tumor burden. However, the mean survival time was significantly extended. GcMAF treatment activated peritoneal macrophages in vitro and in vivo, and these activated macrophages exhibited a marked cytocidal effect on HCPC-1 cells. Furthermore, the cytocidal effect of activated macrophages was enhanced by the addition of tumor-bearing hamster serum. These findings indicated that GcMAF possesses an inhibitory effect on tumor development and growth in a DMBA-induced hamster cheek pouch carcinogenesis model.

  19. Phenotypic and functional properties of murine thymocytes. II. Quantitation of host- and donor-derived cytolytic T lymphocyte precursors in regenerating radiation bone marrow chimeras

    International Nuclear Information System (INIS)

    Ceredig, R.; McDonald, H.R.

    1982-01-01

    Thymocytes from radiation bone marrow chimeras, in which donor bone marrow and irradiated recipient differed at the Thy-1 locus, were stained by indirect immunofluorescence with monoclonal anti-Thy-1 antibodies and analyzed by flow microfluorometry (FMF). Kinetic studies indicated an early appearance of host-derived (CBA, Thy-1.2 + ) thymocytes, which reaches maximum number of 10 to 20 x 10 6 cells at 12 to 16 days after bone marrow reconstitution. Donor-derived (AKR, Thy-1.1 + ) cells were not detectable until 10 to 12 days after reconstitution; subsequently, they increased exponentially in number until 28 days, when they accounted for essentially all cells in the thymus (50 x 10 6 ). Concomitant with the appearance and disappearance of host-derived cells was a change in their Thy-1 surface phenotype. In particular, the proportion of host cells having a ''mature'' phenotype (weakly Thy-1.2 staining) increased progressively with time after irradiation. Functional studies using a sensitive mixed leukocyte microculture system to quantitate cytolytic T lymphocyte precursors (CTL-P) were also carried out in regenerating chimeric thymuses. Initially, the regenerating thymus contained few CTL-P, but by 4 wk after reconstitution, frequencies similar to control adult thymuses were obtained. Analysis of the CTL-P content of host and donor-derived subpopulations, separated either by appropriate anti-Thy-1 antibody plus complement or by direct cell sorting, indicated that both host- and donor-derived cells contained appreciable numbers of CTL-P. Furthermore, increases in CTL-P frequency of both host and donor subpopulations correlated with changes in their surface Thy-1 phenotype

  20. Human-induced pluripotent stem cell-derived macrophages and their immunological function in response to tuberculosis infection.

    Science.gov (United States)

    Hong, Danping; Ding, Jiongyan; Li, Ouyang; He, Quan; Ke, Minxia; Zhu, Mengyi; Liu, Lili; Ou, Wen-Bin; He, Yulong; Wu, Yuehong

    2018-02-26

    Induced pluripotent stem cells (iPS) represent an innovative source for the standardized in vitro generation of macrophages (Mφ). Mφ show great promise in disease pathogenesis, particularly tuberculosis. However, there is no information about human iPS-derived (hiPS) macrophages (hiPS-Mφ) in response to tuberculosis infection. In the present study, macrophages derived from hiPS were established via embryoid body (EB) formation by using feeder-free culture conditions, and the human monocyte cell line THP-1 (THP-1-Mφ) was used as control. iPS-Mφ were characterized by using morphology, Giemsa staining, nonspecific esterase staining (α-NAE), phagocytosis, and surface phenotype. Additionally, after treatment with Bacillus Calmette-Guérin (BCG) for 24 h, cell apoptosis was detected by using an Annexin V-FITC Apoptosis Detection assay. The production of nitric oxide (NO), expression of tumor necrosis factor alpha (TNF-α), activity of apoptosis-related protein cysteine-3 (Caspase-3) and expression of B-cell lymphoma-2 (Bcl-2) were analyzed. With respect to morphology, surface phenotype, and function, the iPS-Mφ closely resembled their counterparts generated in vitro from a human monocyte cell line. iPS-Mφ exhibited the typically morphological characteristics of macrophages, such as round, oval, fusiform and irregular characteristics. The cells were Giemsa-stained-positive, α-NAE-positive, and possessed phagocytic ability. iPS-Mφ express high levels of CD14, CD11b, CD40, CD68, and major histocompatibility complex II (MHC-II). Moreover, with regard to the apoptotic rate, the production of NO, expression of TNF-α, and activity of Caspase-3 and Bcl-2, iPS-Mφ closely resemble that of their counterparts generated in vitro from human monocyte cell line in response to BCG infection. The rate of apoptosis of BCG-treated iPS-Mφ was 37.77 ± 7.94% compared to that of the untreated group at 4.97 ± 1.60% (P immunological function in response to Bacillus Calmette

  1. Macrophage diversity in renal injury and repair

    NARCIS (Netherlands)

    Ricardo, Sharon D.; van Goor, Harry; Eddy, Allison A.

    Monocyte-derived macrophages can determine the outcome of the immune response and whether this response contributes to tissue repair or mediates tissue destruction. In addition to their important role in immune-mediated renal disease and host defense, macrophages play a fundamental role in tissue

  2. Evaluation of Functional Marrow Irradiation Based on Skeletal Marrow Composition Obtained Using Dual-Energy Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Magome, Taiki [Department of Radiological Sciences, Faculty of Health Sciences, Komazawa University, Tokyo (Japan); Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota (United States); Department of Radiology, The University of Tokyo Hospital, Tokyo (Japan); Froelich, Jerry [Department of Radiology, University of Minnesota, Minneapolis, Minnesota (United States); Takahashi, Yutaka [Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota (United States); Department of Radiation Oncology, Osaka University, Osaka (Japan); Arentsen, Luke [Department of Therapeutic Radiology, University of Minnesota, Minneapolis, Minnesota (United States); Holtan, Shernan; Verneris, Michael R. [Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota (United States); Brown, Keenan [Mindways Software Inc, Austin, Texas (United States); Haga, Akihiro; Nakagawa, Keiichi [Department of Radiology, The University of Tokyo Hospital, Tokyo (Japan); Holter Chakrabarty, Jennifer L. [College of Medicine, Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Giebel, Sebastian [Department of Bone Marrow Transplantation, Comprehensive Cancer Center M. Curie-Sklodowska Memorial Institute, Gliwice (Poland); Wong, Jeffrey [Department of Radiation Oncology, Beckman Research Institute, City of Hope, Duarte, California (United States); Dusenbery, Kathryn [Department of Therapeutic Radiology, University of Minnesota, Minneapolis, Minnesota (United States); Storme, Guy [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Brussels (Belgium); Hui, Susanta K., E-mail: shui@coh.org [Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota (United States); Department of Therapeutic Radiology, University of Minnesota, Minneapolis, Minnesota (United States); Department of Radiation Oncology, Beckman Research Institute, City of Hope, Duarte, California (United States)

    2016-11-01

    Purpose: To develop an imaging method to characterize and map marrow composition in the entire skeletal system, and to simulate differential targeted marrow irradiation based on marrow composition. Methods and Materials: Whole-body dual energy computed tomography (DECT) images of cadavers and leukemia patients were acquired, segmented to separate bone marrow components, namely, bone, red marrow (RM), and yellow marrow (YM). DECT-derived marrow fat fraction was validated using histology of lumbar vertebrae obtained from cadavers. The fractions of RM (RMF = RM/total marrow) and YMF were calculated in each skeletal region to assess the correlation of marrow composition with sites and ages. Treatment planning was simulated to target irradiation differentially at a higher dose (18 Gy) to either RM or YM and a lower dose (12 Gy) to the rest of the skeleton. Results: A significant correlation between fat fractions obtained from DECT and cadaver histology samples was observed (r=0.861, P<.0001, Pearson). The RMF decreased in the head, neck, and chest was significantly inversely correlated with age but did not show any significant age-related changes in the abdomen and pelvis regions. Conformity of radiation to targets (RM, YM) was significantly dependent on skeletal sites. The radiation exposure was significantly reduced (P<.05, t test) to organs at risk (OARs) in RM and YM irradiation compared with standard total marrow irradiation (TMI). Conclusions: Whole-body DECT offers a new imaging technique to visualize and measure skeletal-wide marrow composition. The DECT-based treatment planning offers volumetric and site-specific precise radiation dosimetry of RM and YM, which varies with aging. Our proposed method could be used as a functional compartment of TMI for further targeted radiation to specific bone marrow environment, dose escalation, reduction of doses to OARs, or a combination of these factors.

  3. The pancreas anatomy conditions the origin and properties of resident macrophages.

    Science.gov (United States)

    Calderon, Boris; Carrero, Javier A; Ferris, Stephen T; Sojka, Dorothy K; Moore, Lindsay; Epelman, Slava; Murphy, Kenneth M; Yokoyama, Wayne M; Randolph, Gwendalyn J; Unanue, Emil R

    2015-09-21

    We examine the features, origin, turnover, and gene expression of pancreatic macrophages under steady state. The data distinguish macrophages within distinct intrapancreatic microenvironments and suggest how macrophage phenotype is imprinted by the local milieu. Macrophages in islets of Langerhans and in the interacinar stroma are distinct in origin and phenotypic properties. In islets, macrophages are the only myeloid cells: they derive from definitive hematopoiesis, exchange to a minimum with blood cells, have a low level of self-replication, and depend on CSF-1. They express Il1b and Tnfa transcripts, indicating classical activation, M1, under steady state. The interacinar stroma contains two macrophage subsets. One is derived from primitive hematopoiesis, with no interchange by blood cells and alternative, M2, activation profile, whereas the second is derived from definitive hematopoiesis and exchanges with circulating myeloid cells but also shows an alternative activation profile. Complete replacement of islet and stromal macrophages by donor stem cells occurred after lethal irradiation with identical profiles as observed under steady state. The extraordinary plasticity of macrophages within the pancreatic organ and the distinct features imprinted by their anatomical localization sets the base for examining these cells in pathological conditions. © 2015 Calderon et al.

  4. Alcohol Enhances HIV Infection of Cord Blood Monocyte-Derived Macrophages

    Science.gov (United States)

    Mastrogiannis, Dimitrios S.; Wang, Xu; Dai, Min; Li, Jieliang; Wang, Yizhong; Zhou, Yu; Sakarcan, Selin; Peña, Juliet Crystal; Ho, Wenzhe

    2014-01-01

    Alcohol consumption or alcohol abuse is common among pregnant HIV+ women and has been identified as a potential behavioral risk factor for the transmission of HIV. In this study, we examined the impact of alcohol on HIV infection of cord blood monocyte-derived macrophages (CBMDM). We demonstrated that alcohol treatment of CBMDM significantly enhanced HIV infection of CBMDM. Investigation of the mechanisms of alcohol action on HIV demonstrated that alcohol inhibited the expression of several HIV restriction factors, including anti-HIV microRNAs, APOBEC3G and APOBEC3H. Additionally, alcohol also suppressed the expression of IFN regulatory factor 7 (IRF-7) and retinoic acid-inducible gene I (RIG-I), an intracellular sensor of viral infection. The suppression of these IFN regulatory factors was associated with reduced expression of type I IFN. These experimental findings suggest that maternal alcohol consumption may facilitate HIV infection, promoting vertical transmission of HIV. PMID:25053361

  5. Experimental Stroke Differentially Affects Discrete Subpopulations of Splenic Macrophages

    Directory of Open Access Journals (Sweden)

    Laura McCulloch

    2018-05-01

    Full Text Available Changes to the immune system after stroke are complex and can result in both pro-inflammatory and immunosuppressive consequences. Following ischemic stroke, brain resident microglia are activated and circulating monocytes are recruited to the injury site. In contrast, there is a systemic deactivation of monocytes/macrophages that may contribute to immunosuppression and the high incidence of bacterial infection experienced by stroke patients. The manipulation of macrophage subsets may be a useful therapeutic strategy to reduce infection and improve outcome in patients after stroke. Recent research has enhanced our understanding of the heterogeneity of macrophages even within the same tissue. The spleen is the largest natural reservoir of immune cells, many of which are mobilized to the site of injury after ischemic stroke and is notable for the diversity of its functionally distinct macrophage subpopulations associated with specific micro-anatomical locations. Here, we describe the effects of experimental stroke in mice on these distinct splenic macrophage subpopulations. Red pulp (RP and marginal zone macrophages (MZM specifically showed increases in density and alterations in micro-anatomical location. These changes were not due to increased recruitment from the bone marrow but may be associated with increases in local proliferation. Genes associated with phagocytosis and proteolytic processing were upregulated in the spleen after stroke with increased expression of the lysosome-associated protein lysosomal-associated membrane proteins specifically increased in RP and MZM subsets. In contrast, MHC class II expression was reduced specifically in these populations. Furthermore, genes associated with macrophage ability to communicate with other immune cells, such as co-stimulatory molecules and inflammatory cytokine production, were also downregulated in the spleen after stroke. These findings suggest that selective splenic macrophage functions

  6. Advanced glycation end-product (AGE)-albumin from activated macrophage is critical in human mesenchymal stem cells survival and post-ischemic reperfusion injury.

    Science.gov (United States)

    Son, Myeongjoo; Kang, Woong Chol; Oh, Seyeon; Bayarsaikhan, Delger; Ahn, Hyosang; Lee, Jaesuk; Park, Hyunjin; Lee, Sojung; Choi, Junwon; Lee, Hye Sun; Yang, Phillip C; Byun, Kyunghee; Lee, Bonghee

    2017-09-14

    Post-ischemic reperfusion injury (PIRI) triggers an intense inflammatory response which is essential for repair but is also implicated in pathogenesis of post-ischemic remodeling in several organs in human. Stem cell therapy has recently emerged as a promising method for treatment of PIRI in human. However, satisfactory results have not been reported due to severe loss of injected stem cells in PIRI including critical limb ischemia (CLI). For investigating the advanced glycation end-product-albumin (AGE-albumin) from activated macrophages is critical in both muscle cell and stem cell death, we evaluated the recovery of PIRI-CLI by injection of human bone marrow derived mesenchymal stem cells (hBD-MSCs) with or without soluble receptor for AGEs (sRAGE). Our results showed that activated M1 macrophages synthesize and secrete AGE-albumin, which induced the skeletal muscle cell death and injected hBD-MSCs in PIRI-CLI through RAGE increase. Combined injection of sRAGE and hBD-MSCs resulted in enhanced survival of hBD-MSCs and angiogenesis in PIRI-CLI mice. Taken together, AGE-albumin from activated macrophages is critical for both skeletal muscle cell and hBD-MSCs death in PIRI-CLI. Therefore, the inhibition of AGE-albumin from activated macrophages could be a successful therapeutic strategy for treatment of PIRI including CLI with or without stem cell therapy.

  7. The absence of MyD88 has no effect on the induction of alternatively activated macrophage during Fasciola hepatica infection

    Directory of Open Access Journals (Sweden)

    Luo HongLin

    2011-11-01

    Full Text Available Abstract Background Alternatively activated macrophages (AAMϕ play important roles in allergies and responses to parasitic infections. However, whether signaling through toll-like receptors (TLRs plays any role in AAMϕ induction when young Fasciola hepatica penetrates the liver capsule and migrates through the liver tissue is still unclear. Results The data show that the lack of myeloid differentiation factor 88 (MyD88 has no effect on the AAMϕ derived from the bone marrow (BMMϕ in vitro and does not impair the mRNA expression of arginase-1, resistin-like molecule (RELMα, and Ym1 in BMMϕs. The Th2 cytokine production bias in splenocytes was not significantly altered in F. hepatica-infected mice in the absence of MyD88 in vitro and in the pleural cavity lavage in vivo. In addition, MyD88-deficiency has no effect on the arginase production of the F. hepatica elicited macrophages (Fe Mϕs, production of RELMα and Ym1 proteins and mRNA expression of Ym1 and RELMα of macrophages in the peritoneal cavity 6 weeks post F. hepatica infection. Conclusions The absence of MyD88 has no effect on presence of AAMϕ 6 weeks post F. hepatica infection.

  8. Virulent and avirulent strains of equine arteritis virus induce different quantities of TNF-α and other proinflammatory cytokines in alveolar and blood-derived equine macrophages

    International Nuclear Information System (INIS)

    Moore, Brian D.; Balasuriya, Udeni B.R.; Watson, Johanna L.; Bosio, Catharine M.; MacKay, Robert J.; MacLachlan, N. James

    2003-01-01

    Equine arteritis virus (EAV) infects endothelial cells (ECs) and macrophages in horses, and many of the clinical manifestations of equine viral arteritis (EVA) reflect vascular injury. To further evaluate the potential role of EAV-induced, macrophage-derived cytokines in the pathogenesis of EVA, we infected cultured equine alveolar macrophages (AMphi), blood monocyte-derived macrophages (BMphi), and pulmonary artery ECs with either a virulent (KY84) or an avirulent (CA95) strain of EAV. EAV infection of equine AMphi, BMphi, and ECs resulted in their activation with increased transcription of genes encoding proinflammatory mediators, including interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α. Furthermore, the virulent KY84 strain of EAV induced significantly higher levels of mRNA encoding proinflammatory cytokines in infected AMphi and BMphi than did the avirulent CA95 strain. Treatment of equine ECs with the culture supernatants of EAV-infected AMphi and BMphi also resulted in EC activation with cell surface expression of E-selectin, whereas infection of ECs with purified EAV alone caused only minimal expression of E-selectin. The presence of TNF-α in the culture supernatants of EAV-infected equine AMphi, BMphi, and ECs was confirmed by bioassay, and the virulent KY84 strain of EAV induced significantly more TNF-α in all cell types than did the avirulent CA95 strain. Thus, the data indicate that EAV-induced, macrophage-derived cytokines may contribute to the pathogenesis of EVA in horses, and that the magnitude of the cytokine response of equine AMphi, BMphi, and ECs to EAV infection reflects the virulence of the infecting virus strain

  9. Anthocyanins and phenolic acids from a wild blueberry (Vaccinium angustifolium) powder counteract lipid accumulation in THP-1-derived macrophages

    DEFF Research Database (Denmark)

    Del Bo', Cristian; Cao, Yi; Roursgaard, Martin

    2016-01-01

    PURPOSE: Blueberries are a rich source of anthocyanins (ACNs) and phenolic acids (PA), which are hypothesized to protect against development of atherosclerosis. The present study examined the effect of an ACN- and PA-rich fractions, obtained from a wild blueberry powder, on the capacity...... to counteract lipid accumulation in macrophages derived from monocytic THP-1 cells. In addition, we tested the capacity of pure ACNs and their metabolites to alter lipid accumulation. METHODS: THP-1-derived macrophages were incubated with fatty acids (500 μM oleic/palmitic acid, 2:1 ratio) and different...... concentrations (from 0.05 to 10 μg mL(-1)) of ACN- and PA-rich fractions, pure ACN standards (malvidin, delphinidin and cyanidin 3-glucoside), and metabolites (syringic, gallic and protocatechuic acids). Lipid accumulation was quantified with the fluorescent dye Nile red. RESULTS: Lipid accumulation was reduced...

  10. Development of ostrich thrombocytes and monocyte-derived macrophages in culture and the control of Toxoplasma gondii reproduction after macrophage activation.

    Science.gov (United States)

    Miranda, Farlen J B; Damasceno-Sá, João Cláudio; DaMatta, Renato A

    2016-01-01

    Raising ostriches became an important economic activity after their products became commodities. The health of farm animals is of paramount importance, so assessing basic immunological responses is necessary to better understand health problems. We developed a method to obtain ostrich thrombocytes and macrophages. The thrombocytes died by apoptosis after 48 h in culture, and the macrophages expanded in size and increased the number of acidic compartments. Macrophages were activated by chicken interferon-γ, producing high levels of nitric oxide. Toxoplasma gondii was able to infect these macrophages, and activation controlled parasitic reproduction. T. gondii, however, persisted in these cells, and infection reduced the production of nitric oxide. These results are important for the future assessment of the basic cellular and immunobiology of ostriches and demonstrate T. gondii suppression of nitric oxide production. © 2016 Poultry Science Association Inc.

  11. Inhibitory effects of Piper betle on production of allergic mediators by bone marrow-derived mast cells and lung epithelial cells.

    Science.gov (United States)

    Wirotesangthong, Mali; Inagaki, Naoki; Tanaka, Hiroyuki; Thanakijcharoenpath, Witchuda; Nagai, Hiroichi

    2008-03-01

    The leaves of the Piper betle Linn. (Piperaceae) are used in traditional medicine and possess anti-oxidant, anti-bacterial, anti-fungal, anti-diabetic and radioprotective activities. However, little is known about their anti-allergic activity. Therefore, the effects of P. betle ethanolic extract (PE) on the production of histamine and granulocyte macrophage-colony-stimulating factor (GM-CSF) by murine bone marrow mast cells (BMMCs) and on the secretion of eotaxin and IL-8 by the human lung epithelial cell line, BEAS-2B, were investigated in vitro. PE significantly decreased histamine and GM-CSF produced by an IgE-mediated hypersensitive reaction, and inhibited eotaxin and IL-8 secretion in a TNF-alpha and IL-4-induced allergic reaction. The results suggest that P. betle may offer a new therapeutic approach for the control of allergic diseases through inhibition of production of allergic mediators.

  12. Mobilization of endogenous bone marrow derived endothelial progenitor cells and therapeutic potential of parathyroid hormone after ischemic stroke in mice.

    Directory of Open Access Journals (Sweden)

    Li-Li Wang

    Full Text Available Stroke is a major neurovascular disorder threatening human life and health. Very limited clinical treatments are currently available for stroke patients. Stem cell transplantation has shown promising potential as a regenerative treatment after ischemic stroke. The present investigation explores a new concept of mobilizing endogenous stem cells/progenitor cells from the bone marrow using a parathyroid hormone (PTH therapy after ischemic stroke in adult mice. PTH 1-34 (80 µg/kg, i.p. was administered 1 hour after focal ischemia and then daily for 6 consecutive days. After 6 days of PTH treatment, there was a significant increase in bone marrow derived CD-34/Fetal liver kinase-1 (Flk-1 positive endothelial progenitor cells (EPCs in the peripheral blood. PTH treatment significantly increased the expression of trophic/regenerative factors including VEGF, SDF-1, BDNF and Tie-1 in the brain peri-infarct region. Angiogenesis, assessed by co-labeled Glut-1 and BrdU vessels, was significantly increased in PTH-treated ischemic brain compared to vehicle controls. PTH treatment also promoted neuroblast migration from the subventricular zone (SVZ and increased the number of newly formed neurons in the peri-infarct cortex. PTH-treated mice showed significantly better sensorimotor functional recovery compared to stroke controls. Our data suggests that PTH therapy improves endogenous repair mechanisms after ischemic stroke with functional benefits. Mobilizing endogenous bone marrow-derived stem cells/progenitor cells using PTH and other mobilizers appears an effective and feasible regenerative treatment after ischemic stroke.

  13. Genetic control of eosinophilia in mice: gene(s) expressed in bone marrow-derived cells control high responsiveness

    International Nuclear Information System (INIS)

    Vadas, M.A.

    1982-01-01

    A heterogeneity in the capacity of strains of mice to mount eosinophilia is described. BALB/c and C3H are eosinophil high responder strains (EO-HR) and CBA and A/J are eosinophil low responder strains (EO-LR), judged by the response of blood eosinophils to Ascaris suum, and the response of blood, bone marrow, and spleen eosinophils to keyhole limpet hemocyanin given 2 days after 150 mg/kg cyclophosphamide. Some of the gene(s) for high responsiveness appear to be dominant because (EO-HR x EO-LR)F 1 mice were intermediate to high responders. This gene is expressed in bone marrow-derived cells because radiation chimeras of the type EO-HR→F 1 were high responders and EO-LR→F 1 were low responders. This description of a genetic control of eosinophilia in mice may be useful in understanding the role of this cell in parasite immunity and allergy

  14. Phenotypic and functional properties of murine thymocytes. II. Quantitation of host- and donor-derived cytolytic T lymphocyte precursors in regenerating radiation bone marrow chimeras

    Energy Technology Data Exchange (ETDEWEB)

    Ceredig, R.; McDonald, H.R.

    1982-02-01

    Thymocytes from radiation bone marrow chimeras, in which donor bone marrow and irradiated recipient differed at the Thy-1 locus, were stained by indirect immunofluorescence with monoclonal anti-Thy-1 antibodies and analyzed by flow microfluorometry (FMF). Kinetic studies indicated an early appearance of host-derived (CBA, Thy-1.2/sup +/) thymocytes, which reaches maximum number of 10 to 20 x 10/sup 6/ cells at 12 to 16 days after bone marrow reconstitution. Donor-derived (AKR, Thy-1.1/sup +/) cells were not detectable until 10 to 12 days after reconstitution; subsequently, they increased exponentially in number until 28 days, when they accounted for essentially all cells in the thymus (50 x 10/sup 6/). Concomitant with the appearance and disappearance of host-derived cells was a change in their Thy-1 surface phenotype. In particular, the proportion of host cells having a ''mature'' phenotype (weakly Thy-1.2 staining) increased progressively with time after irradiation. Functional studies using a sensitive mixed leukocyte microculture system to quantitate cytolytic T lymphocyte precursors (CTL-P) were also carried out in regenerating chimeric thymuses. Initially, the regenerating thymus contained few CTL-P, but by 4 wk after reconstitution, frequencies similar to control adult thymuses were obtained. Analysis of the CTL-P content of host and donor-derived subpopulations, separated either by appropriate anti-Thy-1 antibody plus complement or by direct cell sorting, indicated that both host- and donor-derived cells contained appreciable numbers of CTL-P. Furthermore, increases in CTL-P frequency of both host and donor subpopulations correlated with changes in their surface Thy-1 phenotype.

  15. Macrophage-Mediated Lymphangiogenesis: The Emerging Role of Macrophages as Lymphatic Endothelial Progenitors

    International Nuclear Information System (INIS)

    Ran, Sophia; Montgomery, Kyle E.

    2012-01-01

    It is widely accepted that macrophages and other inflammatory cells support tumor progression and metastasis. During early stages of neoplastic development, tumor-infiltrating macrophages (TAMs) mount an immune response against transformed cells. Frequently, however, cancer cells escape the immune surveillance, an event that is accompanied by macrophage transition from an anti-tumor to a pro-tumorigenic type. The latter is characterized by high expression of factors that activate endothelial cells, suppress immune response, degrade extracellular matrix, and promote tumor growth. Cumulatively, these products of TAMs promote tumor expansion and growth of both blood and lymphatic vessels that facilitate metastatic spread. Breast cancers and other epithelial malignancies induce the formation of new lymphatic vessels (i.e., lymphangiogenesis) that leads to lymphatic and subsequently, to distant metastasis. Both experimental and clinical studies have shown that TAMs significantly promote tumor lymphangiogenesis through paracrine and cell autonomous modes. The paracrine effect consists of the expression of a variety of pro-lymphangiogenic factors that activate the preexisting lymphatic vessels. The evidence for cell-autonomous contribution is based on the observed tumor mobilization of macrophage-derived lymphatic endothelial cell progenitors (M-LECP) that integrate into lymphatic vessels prior to sprouting. This review will summarize the current knowledge of macrophage-dependent growth of new lymphatic vessels with specific emphasis on an emerging role of macrophages as lymphatic endothelial cell progenitors (M-LECP)

  16. Biocompatibility of Poly-ε-caprolactone-hydroxyapatite composite on mouse bone marrow-derived osteoblasts and endothelial cells

    Directory of Open Access Journals (Sweden)

    Wooley Paul H

    2009-02-01

    Full Text Available Abstract Background Tissue-engineered bone may be developed by seeding the cells capable of both osteogenesis and vascularization on biocompatible composite scaffolds. The current study investigated the performance of mice bone marrow-derived osteogenic cells and endothelial cells as seeded on hydroxyapatite (HA and poly-ε-caprolactone (PCL composite scaffolds. Methods Mononuclear cells were induced to osteoblasts and endothelial cells respectively, which were defined by the expression of osteocalcin, alkaline phosphatase (ALP, and deposits of calcium-containing crystal for osteoblasts, or by the expression of vascular endothelial growth factor receptor-2 (VEGFR-2 and von Willebrand factor (vWF, and the formation of a capillary network in Matrigel™ for endothelial cells. Both types of cell were seeded respectively on PCL-HA scaffolds at HA to PCL weight ratio of 1:1, 1:4, or 0:1 and were evaluated using scanning electron microscopy, ALP activity (of osteoblasts and nitric oxide production (of endothelial cells plus the assessment of cell viability. Results The results indicated that HA led to a positive stimulation of osteoblasts viability and ALP activity, while HA showed less influence on endothelial cells viability. An elevated nitric oxide production of endothelial cells was observed in HA-containing group. Conclusion Supplement of HA into PCL improved biocompatible for bone marrow-derived osteoblasts and endothelial cells. The PCL-HA composite integrating with two types of cells may provide a useful system for tissue-engineered bone grafts with vascularization.

  17. Adipocyte-Macrophage Cross-Talk in Obesity.

    Science.gov (United States)

    Engin, Ayse Basak

    2017-01-01

    Obesity is characterized by the chronic low-grade activation of the innate immune system. In this respect, macrophage-elicited metabolic inflammation and adipocyte-macrophage interaction has a primary importance in obesity. Large amounts of macrophages are accumulated by different mechanisms in obese adipose tissue. Hypertrophic adipocyte-derived chemotactic monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2) pathway also promotes more macrophage accumulation into the obese adipose tissue. However, increased local extracellular lipid concentrations is a final mechanism for adipose tissue macrophage accumulation. A paracrine loop involving free fatty acids and tumor necrosis factor-alpha (TNF-alpha) between adipocytes and macrophages establishes a vicious cycle that aggravates inflammatory changes in the adipose tissue. Adipocyte-specific caspase-1 and production of interleukin-1beta (IL-1beta) by macrophages; both adipocyte and macrophage induction by toll like receptor-4 (TLR4) through nuclear factor-kappaB (NF-kappaB) activation; free fatty acid-induced and TLR-mediated activation of c-Jun N-terminal kinase (JNK)-related pro-inflammatory pathways in CD11c+ immune cells; are effective in macrophage accumulation and in the development of adipose tissue inflammation. Old adipocytes are removed by macrophages through trogocytosis or sending an "eat me" signal. The obesity-induced changes in adipose tissue macrophage numbers are mainly due to increases in the triple-positive CD11b+ F4/80+ CD11c+ adipose tissue macrophage subpopulation. The ratio of M1-to-M2 macrophages is increased in obesity. Furthermore, hypoxia along with higher concentrations of free fatty acids exacerbates macrophage-mediated inflammation in obesity. The metabolic status of adipocytes is a major determinant of macrophage inflammatory output. Macrophage/adipocyte fatty-acid-binding proteins act at the interface of metabolic and inflammatory pathways. Both macrophages and

  18. Characterization of a resident population of adventitial macrophage progenitor cells in postnatal vasculature.

    Science.gov (United States)

    Psaltis, Peter J; Puranik, Amrutesh S; Spoon, Daniel B; Chue, Colin D; Hoffman, Scott J; Witt, Tyra A; Delacroix, Sinny; Kleppe, Laurel S; Mueske, Cheryl S; Pan, Shuchong; Gulati, Rajiv; Simari, Robert D

    2014-07-18

    Macrophages regulate blood vessel structure and function in health and disease. The origins of tissue macrophages are diverse, with evidence for local production and circulatory renewal. We identified a vascular adventitial population containing macrophage progenitor cells and investigated their origins and fate. Single-cell disaggregates from adult C57BL/6 mice were prepared from different tissues and tested for their capacity to form hematopoietic colony-forming units. Aorta showed a unique predilection for generating macrophage colony-forming units. Aortic macrophage colony-forming unit progenitors coexpressed stem cell antigen-1 and CD45 and were adventitially located, where they were the predominant source of proliferating cells in the aortic wall. Aortic Sca-1(+)CD45(+) cells were transcriptionally and phenotypically distinct from neighboring cells lacking stem cell antigen-1 or CD45 and contained a proliferative (Ki67(+)) Lin(-)c-Kit(+)CD135(-)CD115(+)CX3CR1(+)Ly6C(+)CD11b(-) subpopulation, consistent with the immunophenotypic profile of macrophage progenitors. Adoptive transfer studies revealed that Sca-1(+)CD45(+) adventitial macrophage progenitor cells were not replenished via the circulation from bone marrow or spleen, nor was their prevalence diminished by depletion of monocytes or macrophages by liposomal clodronate treatment or genetic deficiency of macrophage colony-stimulating factor. Rather adventitial macrophage progenitor cells were upregulated in hyperlipidemic ApoE(-/-) and LDL-R(-/-) mice, with adventitial transfer experiments demonstrating their durable contribution to macrophage progeny particularly in the adventitia, and to a lesser extent the atheroma, of atherosclerotic carotid arteries. The discovery and characterization of resident vascular adventitial macrophage progenitor cells provides new insight into adventitial biology and its participation in atherosclerosis and provokes consideration of the broader existence of local macrophage

  19. F11R is a novel monocyte prognostic biomarker for malignant glioma.

    Directory of Open Access Journals (Sweden)

    Winnie W Pong

    Full Text Available Brain tumors (gliomas contain large populations of infiltrating macrophages and recruited microglia, which in experimental murine glioma models promote tumor formation and progression. Among the barriers to understanding the contributions of these stromal elements to high-grade glioma (glioblastoma; GBM biology is the relative paucity of tools to characterize infiltrating macrophages and resident microglia. In this study, we leveraged multiple RNA analysis platforms to identify new monocyte markers relevant to GBM patient outcome.High-confidence lists of mouse resident microglia- and bone marrow-derived macrophage-specific transcripts were generated using converging RNA-seq and microarray technologies and validated using qRT-PCR and flow cytometry. Expression of select cell surface markers was analyzed in brain-infiltrating macrophages and resident microglia in an induced GBM mouse model, while allogeneic bone marrow transplantation was performed to trace the origins of infiltrating and resident macrophages. Glioma tissue microarrays were examined by immunohistochemistry, and the Gene Expression Omnibus (GEO database was queried to determine the prognostic value of identified microglia biomarkers in human GBM.We generated a unique catalog of differentially-expressed bone marrow-derived monocyte and resident microglia transcripts, and demonstrated that brain-infiltrating macrophages acquire F11R expression in GBM and following bone-marrow transplantation. Moreover, mononuclear cell F11R expression positively correlates with human high-grade glioma and additionally serves as a biomarker for GBM patient survival, regardless of GBM molecular subtype.These studies establish F11R as a novel monocyte prognostic marker for GBM critical for defining a subpopulation of stromal cells for future potential therapeutic intervention.

  20. Colonic macrophage polarization in homeostasis, inflammation, and cancer

    Science.gov (United States)

    Appleyard, Caroline B.

    2016-01-01

    Our review focuses on the colonic macrophage, a monocyte-derived, tissue-resident macrophage, and the role it plays in health and disease, specifically in inflammatory conditions such as inflammatory bowel disease and cancer of the colon and rectum. We give special emphasis to macrophage polarization, or phenotype, in these different states. We focus on macrophages because they are one of the most numerous leukocytes in the colon, and because they normally contribute to homeostasis through an anti-inflammatory phenotype. However, in conditions such as inflammatory bowel disease, proinflammatory macrophages are increased in the colon and have been linked to disease severity and progression. In colorectal cancer, tumor cells may employ anti-inflammatory macrophages to promote tumor growth and dissemination, whereas proinflammatory macrophages may antagonize tumor growth. Given the key roles that this cell type plays in homeostasis, inflammation, and cancer, the colonic macrophage is an intriguing therapeutic target. As such, potential macrophage-targeting strategies are discussed. PMID:27229123

  1. 15-Deoxy-Δ12,14-prostaglandin J2 inhibits macrophage colonization by Salmonella enterica serovar Typhimurium.

    Directory of Open Access Journals (Sweden)

    Michelle M C Buckner

    Full Text Available 15-deoxy-Δ(12,14-prostaglandin J2 (15d-PGJ2 is an anti-inflammatory downstream product of the cyclooxygenase enzymes. It has been implicated to play a protective role in a variety of inflammatory mediated diseases, including rheumatoid arthritis, neural damage, and myocardial infarctions. Here we show that 15d-PGJ2 also plays a role in Salmonella infection. Salmonella enterica Typhimurium is a Gram-negative facultative intracellular pathogen that is able to survive and replicate inside phagocytic immune cells, allowing for bacterial dissemination to systemic sites. Salmonella species cause a wide range of morbidity and mortality due to gastroenteritis and typhoid fever. Previously we have shown that in mouse models of typhoid fever, Salmonella infection causes a major perturbation in the prostaglandin pathway. Specifically, we saw that 15d-PGJ2 production was significantly increased in both liver and feces. In this work we show that 15d-PGJ2 production is also significantly increased in macrophages infected with Salmonella. Furthermore, we show that the addition of 15d-PGJ2 to Salmonella infected RAW264.7, J774, and bone marrow derived macrophages is sufficient to significantly reduce bacterial colonization. We also show evidence that 15d-PGJ2 is reducing bacterial uptake by macrophages. 15d-PGJ2 reduces the inflammatory response of these infected macrophages, as evidenced by a reduction in the production of cytokines and reactive nitrogen species. The inflammatory response of the macrophage is important for full Salmonella virulence, as it can give the bacteria cues for virulence. The reduction in bacterial colonization is independent of the expression of Salmonella virulence genes SPI1 and SPI2, and is independent of the 15d-PGJ2 ligand PPAR-γ. 15d-PGJ2 also causes an increase in ERK1/2 phosphorylation in infected macrophages. In conclusion, we show here that 15d-PGJ2 mediates the outcome of bacterial infection, a previously unidentified

  2. Identification of Protein Targets of 12/15-Lipoxygenase-Derived Lipid Electrophiles in Mouse Peritoneal Macrophages Using Omega-Alkynyl Fatty Acid.

    Science.gov (United States)

    Isobe, Yosuke; Kawashima, Yusuke; Ishihara, Tomoaki; Watanabe, Kenji; Ohara, Osamu; Arita, Makoto

    2018-04-20

    The 12/15-lipoxygenase (12/15-LOX) enzyme introduces peroxyl groups, in a position-specific manner, into polyunsaturated fatty acids to form various kinds of bioactive lipid metabolites, including lipid-derived electrophiles (LDE). The resident peritoneal macrophage is the site of highest 12/15-LOX expression in the mouse. However, the role of the enzyme in the regulation of resident macrophages is not fully understood. Here, we describe a chemoproteomic method to identify the targets of enzymatically generated LDE. By treating mouse peritoneal macrophages with omega-alkynyl arachidonic acid (aAA), we identified a series of proteins adducted by LDE generated through a 12/15-LOX catalyzed reaction. Pathway analysis revealed a dramatic enrichment of proteins involved in energy metabolism and found that glycolytic flux and mitochondrial respiration were significantly affected by the expression of 12/15-LOX. Our findings thus highlight the utility of chemoproteomics using aAA for identifying intracellular targets of enzymatically generated LDE.

  3. Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression.

    Science.gov (United States)

    Ma, Ruihua; Ji, Tiantian; Chen, Degao; Dong, Wenqian; Zhang, Huafeng; Yin, Xiaonan; Ma, Jingwei; Liang, Xiaoyu; Zhang, Yi; Shen, Guanxin; Qin, Xiaofeng; Huang, Bo

    2016-04-01

    Despite identification of macrophages in tumors (tumor-associated macrophages, TAM) as potential targets for cancer therapy, the origin and function of TAM in the context of malignancy remain poorly characterized. Here, we show that microparticles (MPs), as a by-product, released by tumor cells act as a general mechanism to mediate M2 polarization of TAM. Taking up tumor MPs by macrophages is a very efficient process, which in turn results in the polarization of macrophages into M2 type, not only leading to promoting tumor growth and metastasis but also facilitating cancer stem cell development. Moreover, we demonstrate that the underlying mechanism involves the activation of the cGAS/STING/TBK1/STAT6 pathway by tumor MPs. Finally, in addition to murine tumor MPs, we show that human counterparts also possess consistent effect on human M2 polarization. These findings provide new insights into a critical role of tumor MPs in remodeling of tumor microenvironment and better understanding of the communications between tumors and macrophages.

  4. Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure

    DEFF Research Database (Denmark)

    Mathiasen, Anders Bruun; Qayyum, Abbas Ali; Jørgensen, Erik

    2015-01-01

    AIMS: Regenerative treatment with mesenchymal stromal cells (MSCs) has been promising in patients with ischaemic heart failure but needs confirmation in larger randomized trials. We aimed to study effects of intra-myocardial autologous bone marrow-derived MSC treatment in patients with severe isc...... identified. CONCLUSION: Intra-myocardial injections of autologous culture expanded MSCs were safe and improved myocardial function in patients with severe ischaemic heart failure. STUDY REGISTRATION NUMBER: NCT00644410 (ClinicalTrials.gov)....... ischaemic heart failure. METHODS AND RESULTS: The MSC-HF trial is a randomized, double-blind, placebo-controlled trial. Patients were randomized 2 : 1 to intra-myocardial injections of MSC or placebo, respectively. The primary endpoint was change in left ventricular end-systolic volume (LVESV), measured...

  5. Role of bone marrow-derived stem cells, renal progenitor cells and stem cell factor in chronic renal allograft nephropathy

    OpenAIRE

    Hayam Abdel Meguid El Aggan; Mona Abdel Kader Salem; Nahla Mohamed Gamal Farahat; Ahmad Fathy El-Koraie; Ghaly Abd Al-Rahim Mohammed Kotb

    2013-01-01

    Introduction: Chronic allograft nephropathy (CAN) is a poorly understood clinico-pathological entity associated with chronic allograft loss due to immunologic and non-immunologic causes. It remains the leading cause of late allograft loss. Bone marrow derived stem cells are undifferentiated cells typically characterized by their capacity for self renewal, ability to give rise to multiple differentiated cellular population, including hematopoietic (HSCs) and mesenchymal stem cells (MSCs). Char...

  6. Dioscorin isolated from Dioscorea alata activates TLR4-signaling pathways and induces cytokine expression in macrophages.

    Science.gov (United States)

    Fu, Shu-Ling; Hsu, Ya-Hui; Lee, Pei-Yeh; Hou, Wen-Chi; Hung, Ling-Chien; Lin, Chao-Hsiung; Chen, Chiu-Ming; Huang, Yu-Jing

    2006-01-06

    The Toll-like receptor 4 (TLR4)-signaling pathway is crucial for activating both innate and adaptive immunity. TLR4 is a promising molecular target for immune-modulating drugs, and TLR4 agonists are of therapeutic potential for treating immune diseases and cancers. Several medicinal herb-derived components have recently been reported to act via TLR4-dependent pathways, suggesting that medicinal plants are potential resources for identifying TLR4 activators. We have applied a screening procedure to systematically identify herbal constituents that activate TLR4. To exclude possible LPS contamination in these plant-derived components, a LPS inhibitor, polymyxin B, was added during screening. One of the plant components we identified from the screening was dioscorin, the glycoprotein isolated from Dioscorea alata. It induced TLR4-downstream cytokine expression in bone marrow cells isolated from TLR4-functional C3H/HeN mice but not from TLR4-defective C3H/HeJ mice. Dioscorin also stimulated multiple signaling molecules (NF-kappaB, ERK, JNK, and p38) and induced the expression of cytokines (TNF-alpha, IL-1beta, and IL-6) in murine RAW 264.7 macrophages. Furthermore, the ERK, p38, JNK, and NF-kappaB-mediated pathways are all involved in dioscorin-mediated TNF-alpha production. In summary, our results demonstrate that dioscorin is a novel TLR4 activator and induces macrophage activation via typical TLR4-signaling pathways.

  7. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells

    OpenAIRE

    Zhang, Xiaowei; Wu, Shili; Naccarato, Ty; Prakash-Damani, Manan; Chou, Yuan; Chu, Cong-Qiu; Zhu, Yong

    2017-01-01

    Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC) to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9) is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrat...

  8. Thermo-responsive cell culture carrier: Effects on macrophage functionality and detachment efficiency.

    Science.gov (United States)

    Rennert, Knut; Nitschke, Mirko; Wallert, Maria; Keune, Natalie; Raasch, Martin; Lorkowski, Stefan; Mosig, Alexander S

    2017-01-01

    Harvesting cultivated macrophages for tissue engineering purposes by enzymatic digestion of cell adhesion molecules can potentially result in unintended activation, altered function, or behavior of these cells. Thermo-responsive polymer is a promising tool that allows for gentle macrophage detachment without artificial activation prior to subculture within engineered tissue constructs. We therefore characterized different species of thermo-responsive polymers for their suitability as cell substrate and to mediate gentle macrophage detachment by temperature shift. Primary human monocyte- and THP-1-derived macrophages were cultured on thermo-responsive polymers and characterized for phagocytosis and cytokine secretion in response to lipopolysaccharide stimulation. We found that both cell types differentially respond in dependence of culture and stimulation on thermo-responsive polymers. In contrast to THP-1 macrophages, primary monocyte-derived macrophages showed no signs of impaired viability, artificial activation, or altered functionality due to culture on thermo-responsive polymers compared to conventional cell culture. Our study demonstrates that along with commercially available UpCell carriers, two other thermo-responsive polymers based on poly(vinyl methyl ether) blends are attractive candidates for differentiation and gentle detachment of primary monocyte-derived macrophages. In summary, we observed similar functionality and viability of primary monocyte-derived macrophages cultured on thermo-responsive polymers compared to standard cell culture surfaces. While this first generation of custom-made thermo-responsive polymers does not yet outperform standard culture approaches, our results are very promising and provide the basis for exploiting the unique advantages offered by custom-made thermo-responsive polymers to further improve macrophage culture and recovery in the future, including the covalent binding of signaling molecules and the reduction of

  9. Bone Marrow Stem Cell Derived Paracrine Factors for Regenerative Medicine: Current Perspectives and Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Tom J. Burdon

    2011-01-01

    Full Text Available During the past several years, there has been intense research in the field of bone marrow-derived stem cell (BMSC therapy to facilitate its translation into clinical setting. Although a lot has been accomplished, plenty of challenges lie ahead. Furthermore, there is a growing body of evidence showing that administration of BMSC-derived conditioned media (BMSC-CM can recapitulate the beneficial effects observed after stem cell therapy. BMSCs produce a wide range of cytokines and chemokines that have, until now, shown extensive therapeutic potential. These paracrine mechanisms could be as diverse as stimulating receptor-mediated survival pathways, inducing stem cell homing and differentiation or regulating the anti-inflammatory effects in wounded areas. The current review reflects the rapid shift of interest from BMSC to BMSC-CM to alleviate many logistical and technical issues regarding cell therapy and evaluates its future potential as an effective regenerative therapy.

  10. Macrophage Phenotype and Function in Different Stages of Atherosclerosis

    Science.gov (United States)

    Tabas, Ira; Bornfeldt, Karin E.

    2016-01-01

    The remarkable plasticity and plethora of biological functions performed by macrophages have enticed scientists to study these cells in relation to atherosclerosis for more than 50 years, and major discoveries continue to be made today. It is now understood that macrophages play important roles in all stages of atherosclerosis, from initiation of lesions and lesion expansion, to necrosis leading to rupture and the clinical manifestations of atherosclerosis, to resolution and regression of atherosclerotic lesions. Lesional macrophages are derived primarily from blood monocytes, although recent research has shown that lesional macrophage-like cells can also be derived from smooth muscle cells. Lesional macrophages take on different phenotypes depending on their environment and which intracellular signaling pathways are activated. Rather than a few distinct populations of macrophages, the phenotype of the lesional macrophage is more complex and likely changes during the different phases of atherosclerosis and with the extent of lipid and cholesterol loading, activation by a plethora of receptors, and metabolic state of the cells. These different phenotypes allow the macrophage to engulf lipids, dead cells, and other substances perceived as danger signals; efflux cholesterol to HDL; proliferate and migrate; undergo apoptosis and death; and secrete a large number of inflammatory and pro-resolving molecules. This review article, part of the Compendium on Atherosclerosis, discusses recent advances in our understanding of lesional macrophage phenotype and function in different stages of atherosclerosis. With the increasing understanding of the roles of lesional macrophages, new research areas and treatment strategies are beginning to emerge. PMID:26892964

  11. Lentiviral vectors containing mouse Csf1r control elements direct macrophage-restricted expression in multiple species of birds and mammals

    Directory of Open Access Journals (Sweden)

    Clare Pridans

    2014-01-01

    Full Text Available The development of macrophages requires signaling through the lineage-restricted receptor Csf1r. Macrophage-restricted expression of transgenic reporters based upon Csf1r requires the highly conserved Fms-intronic regulatory element (FIRE. We have created a lentiviral construct containing mouse FIRE and promoter. The lentivirus is capable of directing macrophage-restricted reporter gene expression in mouse, rat, human, pig, cow, sheep, and even chicken. Rat bone marrow cells transduced with the lentivirus were capable of differentiating into macrophages expressing the reporter gene in vitro. Macrophage-restricted expression may be desirable for immunization or immune response modulation, and for gene therapy for lysosomal storage diseases and some immunodeficiencies. The small size of the Csf1r transcription control elements will allow the insertion of large “cargo” for applications in gene therapy and vaccine delivery.

  12. G-CSF treatment after myocardial infarction: impact on bone marrow-derived vs cardiac progenitor cells.

    Science.gov (United States)

    Brunner, Stefan; Huber, Bruno C; Fischer, Rebekka; Groebner, Michael; Hacker, Marcus; David, Robert; Zaruba, Marc-Michael; Vallaster, Marcus; Rischpler, Christoph; Wilke, Andrea; Gerbitz, Armin; Franz, Wolfgang-Michael

    2008-06-01

    Besides its classical function in the field of autologous and allogenic stem cell transplantation, granulocyte colony-stimulating factor (G-CSF) was shown to have protective effects after myocardial infarction (MI) by mobilization of bone marrow-derived progenitor cells (BMCs) and in addition by activation of multiple signaling pathways. In the present study, we focused on the impact of G-CSF on migration of BMCs and the impact on resident cardiac cells after MI. Mice (C57BL/6J) were sublethally irradiated, and BM from green fluorescent protein (GFP)-transgenic mice was transplanted. Coronary artery ligation was performed 10 weeks later. G-CSF (100 microg/kg) was daily injected for 6 days. Subpopulations of enhanced GFP(+) cells in peripheral blood, bone marrow, and heart were characterized by flow cytometry. Growth factor expression in the heart was analyzed by quantitative real-time polymerase chain reaction. Perfusion was investigated in vivo by gated single photon emission computed tomography (SPECT). G-CSF-treated animals revealed a reduced migration of c-kit(+) and CXCR-4(+) BMCs associated with decreased expression levels of the corresponding growth factors, namely stem cell factor and stromal-derived factor-1 alpha in ischemic myocardium. In contrast, the number of resident cardiac Sca-1(+) cells was significantly increased. However, SPECT-perfusion showed no differences in infarct size between G-CSF-treated and control animals 6 days after MI. Our study shows that G-CSF treatment after MI reduces migration capacity of BMCs into ischemic tissue, but increases the number of resident cardiac cells. To optimize homing capacity a combination of G-CSF with other agents may optimize cytokine therapy after MI.

  13. Impact of starting material (fresh versus cryopreserved marrow) on mesenchymal stem cell culture.

    Science.gov (United States)

    Kaplan, Alesia; Sackett, Katie; Sumstad, Darin; Kadidlo, Dianne; McKenna, David H

    2017-09-01

    Mesenchymal stem cells (MSCs) continue to be investigated in multiple clinical trials as potential therapy for different disorders. There is ongoing controversy surrounding the clinical use of cryopreserved versus fresh MSCs. However, little is known about how cryopreservation affects marrow as starting material. The growth kinetics of MSC cultures derived from fresh versus cryopreserved marrow were compared. Data were reviewed on the growth kinetics of MSCs derived from fresh versus cryopreserved marrow of nine donors. Marrow harvested from each donor was separated into four aliquots (one fresh and three cryopreserved for culture). Data on the date of mononuclear cell cryopreservation/thaw, MSC counts at Passages 1 and 2, MSC doubling, MSC fold expansion, viability (of mononuclear cells and final MSCs), and on flow cytometry markers of mononuclear cells and final MSCs were analyzed for the fresh and cryopreserved marrow groups. In total, 21 MSC lots (seven fresh and 14 cryopreserved) were obtained. The average age of cryopreserved mononuclear cell product was 295 days (range, 18-1241 days). There were no significant differences between MSC numbers at Passage 1 (p = 0.1), final MSC numbers (p = 0.5), MSC doubling (p = 0.7), or MSC fold expansion (p = 0.7). A significant difference was observed in viability by flow cytometry for both mononuclear cells (p = 0.002) and final MSCs (p = 0.009), with higher viability in the fresh marrow group. This study demonstrates that MSCs derived from cryopreserved marrow have the same growth characteristics as fresh marrow-derived MSCs. Further studies are needed to explore potential differences in clinical efficacy. © 2017 AABB.

  14. Legionella pneumophila-Derived Outer Membrane Vesicles Promote Bacterial Replication in Macrophages.

    Directory of Open Access Journals (Sweden)

    Anna Lena Jung

    2016-04-01

    Full Text Available The formation and release of outer membrane vesicles (OMVs is a phenomenon of Gram-negative bacteria. This includes Legionella pneumophila (L. pneumophila, a causative agent of severe pneumonia. Upon its transmission into the lung, L. pneumophila primarily infects and replicates within macrophages. Here, we analyzed the influence of L. pneumophila OMVs on macrophages. To this end, differentiated THP-1 cells were incubated with increasing doses of Legionella OMVs, leading to a TLR2-dependent classical activation of macrophages with the release of pro-inflammatory cytokines. Inhibition of TLR2 and NF-κB signaling reduced the induction of pro-inflammatory cytokines. Furthermore, treatment of THP-1 cells with OMVs prior to infection reduced replication of L. pneumophila in THP-1 cells. Blocking of TLR2 activation or heat denaturation of OMVs restored bacterial replication in the first 24 h of infection. With prolonged infection-time, OMV pre-treated macrophages became more permissive for bacterial replication than untreated cells and showed increased numbers of Legionella-containing vacuoles and reduced pro-inflammatory cytokine induction. Additionally, miRNA-146a was found to be transcriptionally induced by OMVs and to facilitate bacterial replication. Accordingly, IRAK-1, one of miRNA-146a's targets, showed prolonged activation-dependent degradation, which rendered THP-1 cells more permissive for Legionella replication. In conclusion, L. pneumophila OMVs are initially potent pro-inflammatory stimulators of macrophages, acting via TLR2, IRAK-1, and NF-κB, while at later time points, OMVs facilitate L. pneumophila replication by miR-146a-dependent IRAK-1 suppression. OMVs might thereby promote spreading of L. pneumophila in the host.

  15. Effects of everolimus on macrophage-derived foam cell behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Steven, E-mail: steven.hsu@av.abbott.com [Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054 (United States); Koren, Eugen; Chan, Yen; Koscec, Mirna; Sheehy, Alexander [Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054 (United States); Kolodgie, Frank; Virmani, Renu [CVPath Institute, Inc., 19 Firstfield Road, Gaithersburg, MD 20878 (United States); Feder, Debra [Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054 (United States)

    2014-07-15

    Purpose: The purpose of this study was to investigate the effects of everolimus on foam cell (FC) viability, mRNA levels, and inflammatory cytokine production to better understand its potential inhibitory effects on atheroma progression. Methods and materials: Human THP1 macrophage-derived FC were formed using acetylated LDL (acLDL, 100 μg/mL) for 72 hours, followed by everolimus treatment (10{sup -5}–10{sup -11} M) for 24 hours. FC viability was quantified using fluorescent calcein AM/DAPI staining. FC lysates and media supernatants were analyzed for apoptosis and necrosis using a Cell Death ELISA{sup PLUS} assay. FC lysates and media supernatants were also analyzed for inflammatory cytokine (IL1β, IL8, MCP1, TNFα) mRNA levels and protein expression using quantitative reverse transcription real-time polymerase chain reaction (QPCR) and a Procarta® immunoassay, respectively. mRNA levels of autophagy (MAP1LC3), apoptosis (survivin, clusterin), and matrix degradation (MMP1, MMP9) markers were evaluated by Quantigene® Plex assay and verified with QPCR. Additionally, hypercholesterolemic rabbits received everolimus-eluting stents (EES) for 28 or 60 days. RAM-11 immunohistochemical staining was performed to compare %RAM-11 positive area between stented sections and unstented proximal sections. Statistical significance was calculated using one-way ANOVA (p ≤ 0.05). Results: Calcein AM/DAPI staining showed that FC exposed to everolimus (10{sup -5} M) had significantly decreased viability compared to control. FC apoptosis was significantly increased at a high dose of everolimus (10{sup -5} M), with no necrotic effects at any dose tested. Everolimus did not affect endothelial (HUVEC) and smooth muscle (HCASMC) cell apoptosis or necrosis. Everolimus (10{sup -5} M) significantly increased MAP1LC3, caused an increased trend in clusterin (p = 0.10), and significantly decreased survivin and MMP1 mRNA levels in FC. MCP1 cytokine mRNA levels and secreted protein

  16. Effects of everolimus on macrophage-derived foam cell behavior

    International Nuclear Information System (INIS)

    Hsu, Steven; Koren, Eugen; Chan, Yen; Koscec, Mirna; Sheehy, Alexander; Kolodgie, Frank; Virmani, Renu; Feder, Debra

    2014-01-01

    Purpose: The purpose of this study was to investigate the effects of everolimus on foam cell (FC) viability, mRNA levels, and inflammatory cytokine production to better understand its potential inhibitory effects on atheroma progression. Methods and materials: Human THP1 macrophage-derived FC were formed using acetylated LDL (acLDL, 100 μg/mL) for 72 hours, followed by everolimus treatment (10 -5 –10 -11 M) for 24 hours. FC viability was quantified using fluorescent calcein AM/DAPI staining. FC lysates and media supernatants were analyzed for apoptosis and necrosis using a Cell Death ELISA PLUS assay. FC lysates and media supernatants were also analyzed for inflammatory cytokine (IL1β, IL8, MCP1, TNFα) mRNA levels and protein expression using quantitative reverse transcription real-time polymerase chain reaction (QPCR) and a Procarta® immunoassay, respectively. mRNA levels of autophagy (MAP1LC3), apoptosis (survivin, clusterin), and matrix degradation (MMP1, MMP9) markers were evaluated by Quantigene® Plex assay and verified with QPCR. Additionally, hypercholesterolemic rabbits received everolimus-eluting stents (EES) for 28 or 60 days. RAM-11 immunohistochemical staining was performed to compare %RAM-11 positive area between stented sections and unstented proximal sections. Statistical significance was calculated using one-way ANOVA (p ≤ 0.05). Results: Calcein AM/DAPI staining showed that FC exposed to everolimus (10 -5 M) had significantly decreased viability compared to control. FC apoptosis was significantly increased at a high dose of everolimus (10 -5 M), with no necrotic effects at any dose tested. Everolimus did not affect endothelial (HUVEC) and smooth muscle (HCASMC) cell apoptosis or necrosis. Everolimus (10 -5 M) significantly increased MAP1LC3, caused an increased trend in clusterin (p = 0.10), and significantly decreased survivin and MMP1 mRNA levels in FC. MCP1 cytokine mRNA levels and secreted protein expression was significantly decreased

  17. Bone marrow stromal cell : mediated neuroprotection for spinal cord repair

    NARCIS (Netherlands)

    Ritfeld, Gaby Jane

    2014-01-01

    Currently, there is no treatment available that restores anatomy and function after spinal cord injury. This thesis explores transplantation of bone marrow-derived mesenchymal stem cells (bone marrow stromal cells; BMSCs) as a therapeutic approach for spinal cord repair. BMSCs secrete neurotrophic

  18. Maintenance of Macrophage Redox Status by ChREBP Limits Inflammation and Apoptosis and Protects against Advanced Atherosclerotic Lesion Formation

    Directory of Open Access Journals (Sweden)

    Vincent Sarrazy

    2015-10-01

    Full Text Available Enhanced glucose utilization can be visualized in atherosclerotic lesions and may reflect a high glycolytic rate in lesional macrophages, but its causative role in plaque progression remains unclear. We observe that the activity of the carbohydrate-responsive element binding protein ChREBP is rapidly downregulated upon TLR4 activation in macrophages. ChREBP inactivation refocuses cellular metabolism to a high redox state favoring enhanced inflammatory responses after TLR4 activation and increased cell death after TLR4 activation or oxidized LDL loading. Targeted deletion of ChREBP in bone marrow cells resulted in accelerated atherosclerosis progression in Ldlr−/− mice with increased monocytosis, lesional macrophage accumulation, and plaque necrosis. Thus, ChREBP-dependent macrophage metabolic reprogramming hinders plaque progression and establishes a causative role for leukocyte glucose metabolism in atherosclerosis.

  19. Bone Marrow?Derived Mesenchymal Stem Cells Enhance Bacterial Clearance and Preserve Bioprosthetic Integrity in a Model of Mesh Infection

    OpenAIRE

    Criman, Erik T.; Kurata, Wendy E.; Matsumoto, Karen W.; Aubin, Harry T.; Campbell, Carmen E.; Pierce, Lisa M.

    2016-01-01

    Background: The reported incidence of mesh infection in contaminated operative fields is as high as 30% regardless of the material used. Recently, mesenchymal stem cells (MSCs) have been shown to possess favorable immunomodulatory properties and improve tissue incorporation when seeded onto bioprosthetics. The aim of this study was to evaluate whether seeding noncrosslinked bovine pericardium (Veritas Collagen Matrix) with allogeneic bone marrow?derived MSCs improves infection resistance in v...

  20. Biomaterials Influence Macrophage-Mesenchymal Stem Cell Interaction In Vitro

    NARCIS (Netherlands)

    N. Grotenhuis (Nienke); S.F. De Witte (Samantha Fh); G.J.V.M. van Osch (Gerjo); Y. Bayon (Yves); J.F. Lange (Johan); Y.M. Bastiaansen-Jenniskens (Yvonne)

    2016-01-01

    textabstractBackground: Macrophages and mesenchymal stem cells (MSCs) are important cells in wound healing. We hypothesized that the cross-talk between macrophages and adipose tissue-derived MSCs (ASCs) is biomaterial dependent, thereby influencing processes involved in wound healing. Materials and

  1. Nfkb1 inhibits LPS-induced IFN-β and IL-12 p40 production in macrophages by distinct mechanisms.

    Directory of Open Access Journals (Sweden)

    Xixing Zhao

    Full Text Available Nfkb1-deficient murine macrophages express higher levels of IFN-β and IL-12 p40 following LPS stimulation than control macrophages, but the molecular basis for this phenomenon has not been completely defined. Nfkb1 encodes several gene products including the NF-κB subunit p50 and its precursor p105. p50 is derived from the N-terminal of 105, and p50 homodimers can exhibit suppressive activity when overexpressed. The C-terminal region of p105 is necessary for LPS-induced ERK activation and it has been suggested that ERK activity inhibits both IFN-β and IL-12 p40 following LPS stimulation. However, the contributions of p50 and the C-terminal domain of p105 in regulating endogenous IFN-β(Ifnb and IL-12 p40 (Il12b gene expression in macrophages following LPS stimulation have not been directly compared.We have used recombinant retroviruses to express p105, p50, and the C-terminal domain of p105 (p105ΔN in Nfkb1-deficient murine bone marrow-derived macrophages at near endogenous levels. We found that both p50 and p105ΔN inhibited expression of Ifnb, and that inhibition of Ifnb by p105ΔN depended on ERK activation, because a mutant of p105ΔN (p105ΔNS930A that lacks a key serine necessary to support ERK activation failed to inhibit. In contrast, only p105ΔN but not p50 inhibited Il12b expression. Surprisingly, p105ΔNS930A retained inhibitory activity for Il12b, indicating that ERK activation was not necessary for inhibition. The differential effects of p105ΔNS930A on Ifnb and Il12b expression inversely correlated with the function of one of its binding partners, c-Rel. This raised the possibility that p105ΔNS930A influences gene expression by interfering with the function of c-Rel.These results demonstrate that Nfkb1 exhibits multiple gene-specific inhibitory functions following TLR stimulation of murine macrophages.

  2. Neopterin negatively regulates expression of ABCA1 and ABCG1 by the LXRα signaling pathway in THP-1 macrophage-derived foam cells.

    Science.gov (United States)

    Yan, Jin-quan; Tan, Chun-zhi; Wu, Jin-hua; Zhang, Dong-cui; Chen, Ji-ling; Zeng, Bin-yuan; Jiang, Yu-ping; Nie, Jin; Liu, Wei; Liu, Qin; Dai, Hao

    2013-07-01

    To investigate the effects of neopterin on ABCA1 expression and cholesterol efflux in human THP-1 macrophage-derived foam cells, and to explore the role of the liver X receptor alpha (LXRα) involved. In the present study, THP-1 cells were pre-incubated with ox-LDL to become foam cells. The protein and mRNA expression were examined by Western blot assays and real-time quantitative PCR, respectively. Liquid scintillation counting and high performance liquid chromatography assays were used to test cellular cholesterol efflux and cholesterol content. Neopterin decreased ABCA1 expression and cholesterol efflux in a time- and concentration-dependent manner in THP-1 macrophage-derived foam cells, and the LXRα siRNA can reverse the inhibitory effects induced by neopterin. Neoterin has a negative regulation on ABCA1 expression via the LXRα signaling pathway, which suggests the aggravated effects of neopterin on atherosclerosis.

  3. Mechanism of stimulation of antibody-forming ability of bone marrow cells of mice immunized with staphylococci

    International Nuclear Information System (INIS)

    Lyashchenko, K.P.; Golovanova, T.A.; Bobrovnik, S.A.

    1987-01-01

    The purpose of this paper is to study the formation of the ability of the bone marrow cells of mice immunized with staphylococci to create antibodies to this antigen. The research includes a study of the effect of the irradiation in vitro of the bone marrow cells on their stimulating activity and the role played by the thymus and spleen in the formation of this activity. Experiments were carried out on CBA and BALB/c mice as well as on mice with congenital absence of the thymus. The bone marrow cell donors were immunized intravenously with staphylococcal corpuscular antigen. Receptor mice were irradiated with cobalt 60 gamma radiation and injected intravenously with bone marrow cell extract from the immunized donors and were immunized with the antigen. Spleen cells were labelled with chromium 51 and injected intravenously into intact syngeneic recipients together with as well as without the antigen. Three days later the level of radioactivity in the spleen and femora of the animals was determined by scintillation counting. Total radioactivity of the bone marrow was calculated. Irradiation of the bone marrow cells of immunized animals was shown to abolish their stimulating effect on the humoral immune response of intact syngeneic recipients to the staphylococcal corpuscular antigen. Consequently, the immunostimulating effect of bone marrow cells is realized through the proliferating and radiosensitive lymphoid cells rather than through the macrophages

  4. Role of whole bone marrow, whole bone marrow cultured cells, and mesenchymal stem cells in chronic wound healing.

    Science.gov (United States)

    Rodriguez-Menocal, Luis; Shareef, Shahjahan; Salgado, Marcela; Shabbir, Arsalan; Van Badiavas, Evangelos

    2015-03-13

    Recent evidence has shown that bone marrow cells play critical roles during the inflammatory, proliferative and remodeling phases of cutaneous wound healing. Among the bone marrow cells delivered to wounds are stem cells, which can differentiate into multiple tissue-forming cell lineages to effect, healing. Gaining insight into which lineages are most important in accelerating wound healing would be quite valuable in designing therapeutic approaches for difficult to heal wounds. In this report we compared the effect of different bone marrow preparations on established in vitro wound healing assays. The preparations examined were whole bone marrow (WBM), whole bone marrow (long term initiating/hematopoietic based) cultured cells (BMC), and bone marrow derived mesenchymal stem cells (BM-MSC). We also applied these bone marrow preparations in two murine models of radiation induced delayed wound healing to determine which had a greater effect on healing. Angiogenesis assays demonstrated that tube formation was stimulated by both WBM and BMC, with WBM having the greatest effect. Scratch wound assays showed higher fibroblast migration at 24, 48, and 72 hours in presence of WBM as compared to BM-MSC. WBM also appeared to stimulate a greater healing response than BMC and BM-MSC in a radiation induced delayed wound healing animal model. These studies promise to help elucidate the role of stem cells during repair of chronic wounds and reveal which cells present in bone marrow might contribute most to the wound healing process.

  5. Long-Term Results of Cartilage Repair after Allogeneic Transplantation of Cartilaginous Aggregates Formed from Bone Marrow-Derived Cells for Large Osteochondral Defects in Rabbit Knees.

    Science.gov (United States)

    Yoshioka, Tomokazu; Mishima, Hajime; Sakai, Shinsuke; Uemura, Toshimasa

    2013-10-01

    The purpose of this study was to evaluate the long-term results of cartilage repair after allogeneic transplantation of cartilaginous aggregates formed from bone marrow-derived cells. Bone marrow cells were harvested from 12-day-old rabbits. The cells were subjected to a monolayer culture, and the spindle-shaped cells attached to the flask surface were defined as bone marrow-derived mesenchymal cells. After the monolayer culture, a 3-dimensional cartilaginous aggregate was formed using a bioreactor with chondrogenesis. We created osteochondral defects, measuring 5 mm in diameter and 4 mm in depth, at the femoral trochlea of 10-week-old rabbits. Two groups were established, the transplanted group in which the cartilaginous aggregate was transplanted into the defect, and the control group in which the defect was left untreated. Twenty-six and 52 weeks after surgery, the rabbits were sacrificed and their tissue repair status was evaluated macroscopically (International Cartilage Repair Society [ICRS] score) and histologically (O'Driscoll score). The ICRS scores were as follows: at week 26, 7.2 ± 0.5 and 7.6 ± 0.8; at week 52, 7.6 ± 1.1 and 9.7 ± 0.7, for the transplanted and control groups, respectively. O'Driscoll scores were as follows: at week 26, 12.6 ± 1.9 and 10.1 ± 1.9; at week 52, 9.6 ± 3.0 and 14.0 ± 1.4, each for transplanted and control groups, respectively. No significant differences were observed between the groups. This study demonstrates that allogeneic transplantation of cartilaginous aggregates formed from bone marrow-derived cells produces comparable long-term results based on macroscopic and histological outcome measures when compared with osteochondral defects that are left untreated.

  6. Analysis of the activation profile of dendritic cells derived from the bone marrow of interleukin-12/interleukin-23-deficient mice

    Science.gov (United States)

    Bastos, Karina R B; de Deus Vieira de Moraes, Luciana; Zago, Cláudia A; Marinho, Cláudio R F; Russo, Momtchilo; Alvarez, José M M; D'Império Lima, Maria R

    2005-01-01

    We have previously shown that macrophages from interleukin (IL)-12p40 gene knockout (IL-12/IL-23−/−) mice have a bias towards the M2 activation profile, spontaneously secreting large quantities of transforming growth factor-β1 (TGF-β1) and producing low levels of nitric oxide (NO) in response to lipopolysaccharide (LPS) and interferon-γ (IFN-γ). To verify whether the activation profile of dendritic cells (DCs) is also influenced by the absence of IL-12/IL-23, bone marrow-derived DCs from IL-12/IL-23−/− and C57BL/6 mice were evaluated. At first we noticed that ≈ 50% of the C57BL/6 DCs were dead after LPS-induced maturation, whereas the mortality of IL-12/IL-23−/− DCs was < 10%, a protective effect that diminished when recombinant IL-12 (rIL-12) was added during maturation. Similarly to macrophages, mature IL-12/IL-23−/− DCs (mDCs) produced higher levels of TGF-β1 and lower levels of NO than C57BL/6 mDCs. NO release was IFN-γ-dependent, as evidenced by the poor response of IFN-γ−/− and IL-12/IL-23−/−IFN-γ−/− mDCs. Nevertheless, IFN-γ deficiency was not the sole reason for the weak NO response observed in the absence of IL-12/IL-23. The high level of TGF-β1 secretion by IL-12/IL-23−/− mDCs could explain why exogenous IFN-γ partially restored the NO production of IFN-γ−/− mDCs, while IL-12/IL-23−/− IFN-γ−/− mDCs remained unresponsive. We also showed that CD4+ T-cell proliferation was inhibited by C57BL/6 mDCs, but not by IL-12/IL-23−/− mDCs. IFN-γ and NO appear to mediate this antiproliferative effect because this effect was not observed in the presence of mDCs from IFN-γ−/− or IL-12/IL-23−/− IFN-γ−/− mice and it was attenuated by aminoguanidine. We conclude that the presence of IL-12/IL-23 during LPS-induced maturation influences the activation profile of DCs by a mechanism that is, only in part, IFN-γ dependent. PMID:15804287

  7. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Xiaowei Zhang

    Full Text Available Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9 is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrating recombinant SOX9 protein in regeneration of hyaline cartilage in situ at the site of cartilage injury. We generated a recombinant SOX9 protein which was fused with super positively charged green fluorescence protein (GFP (scSOX9 to facilitate cell penetration. scSOX9 was able to induce chondrogenesis of bone marrow derived MSC in vitro. In a rabbit cartilage injury model, scSOX9 in combination with microfracture significantly improved quality of repaired cartilage as shown by macroscopic appearance. Histological analysis revealed that the reparative tissue induced by microfracture with scSOX9 had features of hyaline cartilage; and collagen type II to type I ratio was similar to that in normal cartilage. This short term in vivo study demonstrated that when administered at the site of microfracture, scSOX9 was able to induce reparative tissue with features of hyaline cartilage.

  8. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Zhang, Xiaowei; Wu, Shili; Naccarato, Ty; Prakash-Damani, Manan; Chou, Yuan; Chu, Cong-Qiu; Zhu, Yong

    2017-01-01

    Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC) to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9) is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrating recombinant SOX9 protein in regeneration of hyaline cartilage in situ at the site of cartilage injury. We generated a recombinant SOX9 protein which was fused with super positively charged green fluorescence protein (GFP) (scSOX9) to facilitate cell penetration. scSOX9 was able to induce chondrogenesis of bone marrow derived MSC in vitro. In a rabbit cartilage injury model, scSOX9 in combination with microfracture significantly improved quality of repaired cartilage as shown by macroscopic appearance. Histological analysis revealed that the reparative tissue induced by microfracture with scSOX9 had features of hyaline cartilage; and collagen type II to type I ratio was similar to that in normal cartilage. This short term in vivo study demonstrated that when administered at the site of microfracture, scSOX9 was able to induce reparative tissue with features of hyaline cartilage.

  9. Improved survival of mesenchymal stem cells by macrophage migration inhibitory factor

    OpenAIRE

    Xia, Wenzheng; Xie, Congying; Jiang, Miaomiao; Hou, Meng

    2015-01-01

    Macrophage migration inhibitory factor (MIF) is a critical inflammatory cytokine that was recently associated with progenitor cell survival and potently inhibits apoptosis. We examined the protective effect of MIF on hypoxia/serum deprivation (SD)-induced apoptosis of mesenchymal stem cells (MSCs), as well as the possible mechanisms. MSCs were obtained from rat bone marrow and cultured in vitro. Apoptosis was induced by culturing MSCs under hypoxia/SD conditions for up to 24?h and assessed by...

  10. Bone marrow transplantations to study gene function in hematopoietic cells

    NARCIS (Netherlands)

    de Winther, Menno P. J.; Heeringa, Peter

    2011-01-01

    Immune cells are derived from hematopoietic stem cells in the bone marrow. Experimental replacement of bone marrow offers the unique possibility to replace immune cells, to study gene function in mouse models of disease. Over the past decades, this technique has been used extensively to study, for

  11. M2 polarization enhances silica nanoparticle uptake by macrophages

    Directory of Open Access Journals (Sweden)

    Jessica eHoppstädter

    2015-03-01

    Full Text Available While silica nanoparticles have enabled numerous industrial and medical applications, their toxicological safety requires further evaluation. Macrophages are the major cell population responsible for nanoparticle clearance in vivo. The prevailing macrophage phenotype largely depends on the local immune status of the host. Whereas M1-polarized macrophages are considered as pro-inflammatory macrophages involved in host defense, M2 macrophages exhibit anti-inflammatory and wound-healing properties, but also promote tumor growth.We employed different models of M1 and M2 polarization: GM-CSF/LPS/IFN-gamma was used to generate primary human M1 cells and M-CSF/IL-10 to differentiate M2 monocyte-derived macrophages. PMA-differentiated THP-1 cells were polarized towards an M1 type by LPS/IFN-gamma and towards M2 by IL-10. Uptake of fluorescent silica nanoparticles (Ø 26 and 41 nm and microparticles (Ø 1.75 µm was quantified. At the concentration used (50 µg/ml, silica nanoparticles did not influence cell viability as assessed by MTT assay. Nanoparticle uptake was enhanced in M2-polarized primary human monocyte-derived macrophages compared with M1 cells, as shown by flow cytometric and microscopic approaches. In contrast, the uptake of microparticles did not differ between M1 and M2 phenotypes. M2 polarization was also associated with increased nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in vivo polarized M2-like primary human tumor-associated macrophages (TAM obtained from lung tumors took up more nanoparticles than M1-like alveolar macrophages isolated from the surrounding lung tissue.In summary, our data indicate that the M2 polarization of macrophages promotes nanoparticle internalization. Therefore, the phenotypical differences between macrophage subsets should be taken into consideration in future investigations on nanosafety, but might also open up therapeutic perspectives allowing to specifically target M2

  12. Bone marrow-derived CD13+ cells sustain tumor progression: A potential non-malignant target for anticancer therapy.

    Science.gov (United States)

    Dondossola, Eleonora; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2014-01-01

    Non-malignant cells found within neoplastic lesions express alanyl (membrane) aminopeptidase (ANPEP, best known as CD13), and CD13-null mice exhibit limited tumor growth and angiogenesis. We have recently demonstrated that a subset of bone marrow-derived CD11b + CD13 + myeloid cells accumulate within neoplastic lesions in several murine models of transplantable cancer to promote angiogenesis. If these findings were confirmed in clinical settings, CD11b + CD13 + myeloid cells could become a non-malignant target for the development of novel anticancer regimens.

  13. Nanoparticles as Antituberculosis Drugs Carriers: Effect on Activity Against Mycobacterium tuberculosis in Human Monocyte-Derived Macrophages

    International Nuclear Information System (INIS)

    Anisimova, Y.V.; Gelperina, S.I.; Peloquin, C.A.; Heifets, L.B.

    2000-01-01

    This is the first report evaluating the nanoparticle delivery system for three antituberculosis drugs: isoniazid, rifampin, and streptomycin. The typical particle size is 250 nm. We studied accumulation of these drugs in human monocytes as well as their antimicrobial activity against Mycobacterium tuberculosis residing in human monocyte-derived macrophages. Nanoparticle encapsulation increased the intracellular accumulation (cell-association) of all three tested drugs, but it enhanced the antimicrobial activity of isoniazid and streptomycin only. On the other hand, the activity of encapsulated rifampin against intracellular bacteria was not higher than that of the free drug

  14. Effect of human scavenger receptor class A overexpression in bone marrow-derived cells on cholesterol levels and atherosclerosis in ApoE-deficient mice

    NARCIS (Netherlands)

    van Eck, M.; de Winther, M. P.; Herijgers, N.; Havekes, L. M.; Hofker, M. H.; Groot, P. H.; van Berkel, T. J.

    2000-01-01

    In the arterial wall, scavenger receptor class A (SRA) is implicated in pathological lipid deposition. In contrast, in the liver, SRA is suggested to remove modified lipoproteins from the circulation, thereby protecting the body from their pathological action. The role of SRA on bone marrow-derived

  15. Effect of human scavenger receptor class A overexpression in bone marrow-derived cells on cholesterol levels and atherosclerosis in apoE-deficient mice

    NARCIS (Netherlands)

    Eck, M. van; Winther, M.P.J. de; Herijgers, N.; Havekes, L.M.; Hofker, M.H.; Groot, P.H.E.; Berkel, T.J.C. van

    2000-01-01

    In the arterial wall, scavenger receptor class A (SRA) is implicated in pathological lipid deposition. In contrast, in the liver, SRA is suggested to remove modified lipoproteins from the circulation, thereby protecting the body from their pathological action. The role of SRA on bone marrow-derived

  16. Regulated proliferation of primitive hematopoietic progenitor cells in long-term human marrow cultures

    International Nuclear Information System (INIS)

    Cashman, J.; Eaves, A.C.; Eaves, C.J.

    1985-01-01

    We have examined the cycling status of various classes of erythroid and granulopoietic progenitor populations maintained for many weeks in standard normal long-term human marrow cultures. These were initiated with a single inoculum of marrow aspirate and were routinely fed by weekly removal of half of the nonadherent cells and replacement of half of the growth medium. Progenitors of large erythroid colonies (more than eight erythroblast clusters) present in the nonadherent fraction and progenitors of small granulocyte/macrophage colonies (fewer than 500 cells) present in both the nonadherent and adherent fractions were found to be actively cycling at all times examined (28% to 63% kill following a 20-minute exposure to 20 microCi/mL of high specific activity 3 H-thymidine). In contrast, progenitors of large granulocyte/macrophage colonies (more than 500 cells) and progenitors of large erythroid colonies (more than eight erythroblast clusters), present in the adherent layer, consistently alternated between a quiescent state at the time of each weekly medium change and a proliferating state two to three days later (0% to 13% kill and 21% to 49% kill, respectively). Additional experiments revealed that the activation of primitive progenitors in the adherent layer was not dependent on the addition of fresh glutamine or hydrocortisone, nor on the physical manipulations involved in changing the growth medium. These studies provide the first direct evidence that normal long-term human marrow cultures support the continued turnover of a variety of early hematopoietic progenitor cell types. Further, they indicate that the proliferative activity of the most primitive of these progenitors is regulated by stage-specific cell-cell interactions that are subject to manipulation

  17. A fragment of alpha-actinin promotes monocyte/macrophage maturation in vitro.

    Science.gov (United States)

    Luikart, S; Wahl, D; Hinkel, T; Masri, M; Oegema, T

    1999-02-01

    Conditioned media (CM) from cultures of HL-60 myeloid leukemia cells grown on extracellular bone marrow matrix contains a factor that induces macrophage-like maturation of HL-60 cells. This factor was purified from the CM of HL-60 cells grown on bone marrow stroma by ammonium sulfate precipitation, then sequential chromatography on DEAE, affi-gel blue affinity, gel exclusion, and wheat germ affinity columns, followed by C-4 reverse phase HPLC, and SDS-PAGE. The maturation promoting activity of the CM was identified in a single 31 kD protein. Amino acid sequence analysis of four internal tryptic peptides of this protein confirmed significant homology with amino acid residues 48-60, 138-147, 215-220, and 221-236 of human cytoskeletal alpha-actinin. An immunoaffinity purified rabbit polyclonal anti-chicken alpha-actinin inhibited the activity of HL-60 conditioned media. A 27 kD amino-terminal fragment of alpha-actinin produced by thermolysin digestion of chicken gizzard alpha-actinin, but not intact alpha-actinin, had maturation promoting activity on several cell types, including blood monocytes, as measured by lysozyme secretion and tartrate-resistant acid phosphatase staining. We conclude that an extracellular alpha-actinin fragment can promote monocyte/macrophage maturation. This represents the first example of a fragment of a cytoskeletal component, which may be released during tissue remodeling and repair, playing a role in phagocyte maturation.

  18. Volcanic ash activates the NLRP3 inflammasome in murine and human macrophages

    Science.gov (United States)

    Damby, David; Horwell, Claire J.; Baxter, Peter J.; Kueppers, Ulrich; Schnurr, Max; Dingwell, Donald B.; Duewell, Peter

    2018-01-01

    Volcanic ash is a heterogeneous mineral dust that is typically composed of a mixture of amorphous (glass) and crystalline (mineral) fragments. It commonly contains an abundance of the crystalline silica (SiO2) polymorph cristobalite. Inhalation of crystalline silica can induce inflammation by stimulating the NLRP3 inflammasome, a cytosolic receptor complex that plays a critical role in driving inflammatory immune responses. Ingested material results in the assembly of NLRP3, ASC, and caspase-1 with subsequent secretion of the interleukin-1 family cytokine IL-1β. Previous toxicology work suggests that cristobalite-bearing volcanic ash is minimally reactive, calling into question the reactivity of volcanically derived crystalline silica, in general. In this study, we target the NLRP3 inflammasome as a crystalline silica responsive element to clarify volcanic cristobalite reactivity. We expose immortalized bone marrow-derived macrophages of genetically engineered mice and primary human peripheral blood mononuclear cells (PBMCs) to ash from the Soufrière Hills volcano as well as representative, pure-phase samples of its primary componentry (volcanic glass, feldspar, cristobalite) and measure NLRP3 inflammasome activation. We demonstrate that respirable Soufrière Hills volcanic ash induces the activation of caspase-1 with subsequent release of mature IL-1β in a NLRP3 inflammasome-dependent manner. Macrophages deficient in NLRP3 inflammasome components are incapable of secreting IL-1β in response to volcanic ash ingestion. Cellular uptake induces lysosomal destabilization involving cysteine proteases. Furthermore, the response involves activation of mitochondrial stress pathways leading to the generation of reactive oxygen species. Considering ash componentry, cristobalite is the most reactive pure-phase with other components inducing only low-level IL-1β secretion. Inflammasome activation mediated by inhaled ash and its potential relevance in chronic pulmonary

  19. Analysis of the bovine monocyte-derived macrophage response to Mycobacterium avium subspecies paratuberculosis infection using RNA-seq

    Directory of Open Access Journals (Sweden)

    Maura E Casey

    2015-02-01

    Full Text Available Johne’s disease, caused by infection with Mycobacterium avium subsp. paratuberculosis, (MAP, is a chronic intestinal disease of ruminants with serious economic consequences for cattle production in the United States and elsewhere. During infection, MAP bacilli are phagocytosed and subvert host macrophage processes, resulting in subclinical infections that can lead to immunopathology and dissemination of disease. Analysis of the host macrophage transcriptome during infection can therefore shed light on the molecular mechanisms and host-pathogen interplay associated with Johne’s disease. Here we describe results of an in vitro study of the bovine monocyte-derived macrophage (MDM transcriptome response during MAP infection using RNA-seq. MDM were obtained from seven age- and sex-matched Holstein-Friesian cattle and were infected with MAP across a six-hour infection time course with non-infected controls. We observed 245 and 574 differentially expressed genes in MAP-infected versus non-infected control samples (adjusted P value ≤ 0.05 at 2 and 6 hours post-infection, respectively. Functional analyses of these differentially expressed genes, including biological pathway enrichment, highlighted potential functional roles for genes that have not been previously described in the host response to infection with MAP bacilli. In addition, differential expression of pro- and anti-inflammatory cytokine genes, such as those associated with the IL-10 signaling pathway, and other immune-related genes that encode proteins involved in the bovine macrophage response to MAP infection emphasize the balance between protective host immunity and bacilli survival and proliferation. Systematic comparisons of RNA-seq gene expression results with Affymetrix® microarray data generated from the same experimental samples also demonstrated that RNA-seq represents a superior technology for studying host transcriptional responses to intracellular infection.

  20. Significance of bone marrow edema in pathogenesis of rheumatoid arthritis

    International Nuclear Information System (INIS)

    Sudoł-Szopińska, Iwona; Kontny, Ewa; Maśliński, Włodzimierz; Prochorec-Sobieszek, Monika; Warczyńska, Agnieszka; Kwiatkowska, Brygida

    2013-01-01

    Assessing the pathology of the synovium, its thickening and increased vascularity through ultrasound and magnetic resonance examinations (more often an ultrasound study alone) is still considered a sensitive parameter in the diagnosis of rheumatoid arthritis and in monitoring of treatment efficacy. Magnetic resonance studies showed that, aside from the joint pannus, the subchondral bone tissue constitutes an essential element in the development of rheumatoid arthritis. Bone marrow edema correlates with inflammation severity, joint destruction, clinical signs and symptoms of rheumatoid arthritis, and thus is considered a predictor of rapid radiological progression of the disease. The newest studies reveal that bone marrow edema may be a more sensitive indicator of the response to therapy than appearance of the synovium. Bone marrow edema presents with increased signal in T2-weighted images, being most visible in fat saturation or IR sequences (STIR, TIRM). On the other hand, it is hypointense and less evident in T1-weighted images. It becomes enhanced (hyperintense) after contrast administration. Histopathological studies confirmed that it is a result of bone inflammation (osteitis/osteomyelitis), i.e. replacememt of bone marrow fat by inflammatory infiltrates containing macrophages, T lymphocytes, B lymphocytes, plasma cells and osteoclasts. Bone marrow edema appears after a few weeks from occurrence of symptoms and therefore is considered an early marker of inflammation. It correlates with clinical assessment of disease activity and elevated markers of acute inflammatory phase, i.e. ESR and CRP. It is a reversible phenomenon and may become attenuated due to biological treatment. It is considered a “herald” of erosions, as the risk of their formation is 6-fold higher in sites where BME was previously noted

  1. Human umbilical cord blood-derived f-macrophages retain pluripotentiality after thrombopoietin expansion

    International Nuclear Information System (INIS)

    Zhao Yong; Mazzone, Theodore

    2005-01-01

    We have previously characterized a new type of stem cell from human peripheral blood, termed fibroblast-like macrophage (f-MΦ). Here, using umbilical cord blood as a source, we identified cells with similar characteristics including expression of surface markers (CD14, CD34, CD45, CD117, and CD163), phagocytosis, and proliferative capacity. Further, thrombopoietin (TPO) significantly stimulated the proliferation of cord blood-derived f-MΦ (CB f-MΦ) at low dosage without inducing a megakaryocytic phenotype. Additional experiments demonstrated that TPO-expanded cord blood-derived f-MΦ (TCB f-MΦ) retained their surface markers and differentiation ability. Treatment with vascular endothelial cell growth factor (VEGF) gave rise to endothelial-like cells, expressing Flt-1, Flk-1, von Willebrand Factor (vWF), CD31, acetylated low density lipoprotein internalization, and the ability to form endothelial-like cell chains. In the presence of lipopolyssacharide (LPS) and 25 mM glucose, the TCB f-MΦ differentiated to express insulin mRNA, C-peptide, and insulin. In vitro functional analysis demonstrated that these insulin-positive cells could release insulin in response to glucose and other secretagogues. These findings demonstrate a potential use of CB f-MΦ and may lead to develop new therapeutic strategy for treating dominant disease

  2. Modulation of mouse macrophage polarization in vitro using IL-4 delivery by osmotic pumps.

    Science.gov (United States)

    Pajarinen, Jukka; Tamaki, Yasunobu; Antonios, Joseph K; Lin, Tzu-Hua; Sato, Taishi; Yao, Zhenyu; Takagi, Michiaki; Konttinen, Yrjö T; Goodman, Stuart B

    2015-04-01

    Modulation of macrophage polarization is emerging as promising means to mitigate wear particle-induced inflammation and periprosthetic osteolysis. As a model for continuous local drug delivery, we used miniature osmotic pumps to deliver IL-4 in order to modulate macrophage polarization in vitro from nonactivated M0 and inflammatory M1 phenotypes towards a tissue regenerative M2 phenotype. Pumps delivered IL-4 into vials containing mouse bone marrow macrophage (mBMM) media. This conditioned media (CM) was collected at seven day intervals up to four weeks (week 1 to week 4 samples). IL-4 concentration in the CM was determined by ELISA and its biological activity was assayed by exposing M0 and M1 mBMMs to week 1 or week 4 CM. The IL-4 concentration in the CM approximated the mathematically calculated amount, and its biological activity was well retained, as both M0 and M1 macrophages exposed to either the week 1 or week 4 CM assumed M2-like phenotype as determined by qRT-PCR, ELISA, and immunocytochemistry. The results show that IL-4 can be delivered using osmotic pumps and that IL-4 delivered can modulate macrophage phenotype. Results build a foundation for in vivo studies using our previously validated animal models and provide possible strategies to locally mitigate wear particle-induced macrophage activation and periprosthetic osteolysis. © 2014 Wiley Periodicals, Inc.

  3. A Role of RIP3-Mediated Macrophage Necrosis in Atherosclerosis Development

    OpenAIRE

    Lin, Juan; Li, Hanjie; Yang, Min; Ren, Junming; Huang, Zhe; Han, Felicia; Huang, Jian; Ma, Jianhui; Zhang, Duanwu; Zhang, Zhirong; Wu, Jianfeng; Huang, Deli; Qiao, Muzhen; Jin, Guanghui; Wu, Qiao

    2013-01-01

    Necrotic death of macrophages has long been known to be present in atherosclerotic lesions but has not been studied. We examined the role of receptor interacting protein (RIP) 3, a mediator of necrotic cell death, in atherosclerosis and found that RIP3−/−;Ldlr−/− mice were no different from RIP3+/+;Ldlr−/− mice in early atherosclerosis but had significant reduction in advanced atherosclerotic lesions. Similar results were observed in Apoe−/− background mice. Bone marrow transplantation reveal...

  4. Use of bone marrow derived stem cells in a fracture non-union

    Directory of Open Access Journals (Sweden)

    Binod C. Raulo

    2012-01-01

    Full Text Available This is an attempt of using in vitro cultured mesenchymal stem cells (MSCs from bone marrow in joining of a fracture non-union. Bone marrow cells were obtained and differentially centrifuged for MSCs that were grown in vitro in mesenchymal stem cell basal medium aseptically, for 10 d. The cell mass was injected around the fracture non-union. Healthy conditions of development of tissue regeneration at the trauma site and due bone joining were recorded. It is concluded that in vitro cultured MSCs had a blithesome effect on the fracture non-union.

  5. Bioactive lipid coating of bone allografts directs engraftment and fate determination of bone marrow-derived cells in rat GFP chimeras

    OpenAIRE

    Das, Anusuya; Segar, Claire E.; Chu, Yihsuan; Wang, Tiffany W.; Lin, Yong; Yang, Chunxi; Du, Xeujun; Ogle, Roy C.; Cui, Quanjun; Botchwey, Edward A.

    2015-01-01

    Bone grafting procedures are performed to treat wounds incurred during wartime trauma, accidents, and tumor resections. Endogenous mechanisms of repair are often insufficient to ensure integration between host and donor bone and subsequent restoration of function. We investigated the role that bone marrow-derived cells play in bone regeneration and sought to increase their contributions by functionalizing bone allografts with bioactive lipid coatings. Polymer-coated allografts were used to lo...

  6. In vitro formation of osteoclasts from long-term cultures of bone marrow mononuclear phagocytes

    International Nuclear Information System (INIS)

    Burger, E.H.; Van der Meer, J.W.; van de Gevel, J.S.; Gribnau, J.C.; Thesingh, G.W.; van Furth, R.

    1982-01-01

    The origin of osteoclasts was studied in an in vitro model using organ cultures of periosteum-free embryonic mouse long-bone primordia, which were co-cultured with various cell populations. The bone rudiments were freed of their periosteum-perichondrium by collagenase treatment in a stage before cartilage erosion and osteoclast formation, and co-cultured for 7 d with either embryonic liver or mononuclear phagocytes from various sources. Light and electron microscopic examination of the cultures showed that mineralized matrix-resorbing osteoclasts developed only in bones co-cultured with embryonic liver or with cultured bone marrow mononuclear phagocytes but not when co-cultured with blood monocytes or resident or exudate peritoneal macrophages. Osteoclasts developed from the weakly adherent, but not from the strongly adherent cells of bone marrow cultures, whereas 1,000 rad irradiation destroyed the capacity of such cultures to form osteoclasts. In bone cultures to which no other cells were added, osteoclasts were virtually absent. Bone-resorbing activity of in vitro formed osteoclasts was demonstrated by 45 Ca release studies. These studies demonstrate that osteoclasts develop from cells present in cultures of proliferating mononuclear phagocytes and that, at least in our system, monocytes and macrophages are unable to form osteoclasts. The most likely candidates for osteoclast precursor cells seem to be monoblasts and promonocytes

  7. Mitogen-activated protein kinase phosphatase 1 (MKP-1) in macrophage biology and cardiovascular disease. A redox-regulated master controller of monocyte function and macrophage phenotype.

    Science.gov (United States)

    Kim, Hong Seok; Asmis, Reto

    2017-08-01

    MAPK pathways play a critical role in the activation of monocytes and macrophages by pathogens, signaling molecules and environmental cues and in the regulation of macrophage function and plasticity. MAPK phosphatase 1 (MKP-1) has emerged as the main counter-regulator of MAPK signaling in monocytes and macrophages. Loss of MKP-1 in monocytes and macrophages in response to metabolic stress leads to dysregulation of monocyte adhesion and migration, and gives rise to dysfunctional, proatherogenic monocyte-derived macrophages. Here we review the properties of this redox-regulated dual-specificity MAPK phosphatase and the role of MKP-1 in monocyte and macrophage biology and cardiovascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Migration of bone marrow cells to the thymus in sublethally irradiated mice

    International Nuclear Information System (INIS)

    Varlet, Andree; Lenaerts, Patrick; Houben-Defresne, M.P.; Boniver, Jacques

    1982-01-01

    In sublethally irradiated mice, thymus repopulation is due first to the proliferation of surviving thymocytes followed by the multiplication of bone marrow derived prothymocytes. The migration of bone marrow cells to the thymus after a single sublethal whole-body X irradiation was studied by using fluorescein isothiocyanate as a cell marker. Irradiation increases the permissiveness of the thymus to the immigration of bone marrow cells. Furthermore, the post-Rx regenerating bone marrow cells exhibit migration capacities greater than the normal ones. The radiation induced changes in the bone marrow thymus interaction might play an important role in thymus regeneration after sublethal irradiation [fr

  9. Hedgehog-mediated paracrine interaction between hepatic stellate cells and marrow-derived mesenchymal stem cells

    International Nuclear Information System (INIS)

    Lin Nan; Tang Zhaofeng; Deng Meihai; Zhong Yuesi; Lin Jizong; Yang Xuhui; Xiang Peng; Xu Ruiyun

    2008-01-01

    During liver injury, bone marrow-derived mesenchymal stem cells (MSCs) can migrate and differentiate into hepatocytes. Hepatic stellate cell (SC) activation is a pivotal event in the development of liver fibrosis. Therefore, we hypothesized that SCs may play an important role in regulating MSC proliferation and differentiation through the paracrine signaling pathway. We demonstrate that MSCs and SCs both express hedgehog (Hh) pathway components, including its ligands, receptors, and target genes. Transwell co-cultures of SCs and MSCs showed that the SCs produced sonic hedgehog (Shh), which enhanced the proliferation and differentiation of MSCs. These findings demonstrate that SCs indirectly modulate the activity of MSCs in vitro via the Hh pathway, and provide a plausible explanation for the mechanisms of transplanted MSCs in the treatment of liver fibrosis

  10. The proteomic dataset for bone marrow derived human mesenchymal stromal cells: Effect of in vitro passaging

    Directory of Open Access Journals (Sweden)

    Samuel T. Mindaye

    2015-12-01

    Full Text Available Bone-marrow derived mesenchymal stromal cells (BMSCs have been in clinical trials for therapy. One major bottleneck in the advancement of BMSC-based products is the challenge associated with cell isolation, characterization, and ensuring cell fitness over the course of in vitro cell propagation steps. The data in this report is part of publications that explored the proteomic changes following in vitro passaging of BMSCs [4] and the molecular heterogeneity in cultures obtained from different human donors [5,6].The methodological details involving cell manufacturing, proteome harvesting, protein identification and quantification as well as the bioinformatic analyses were described to ensure reproducibility of the results.

  11. Modulation of macrophage Ia expression by lipopolysaccharide: Stem cell requirements, accessory lymphocyte involvement, and IA-inducing factor production

    International Nuclear Information System (INIS)

    Wentworth, P.A.; Ziegler, H.K.

    1989-01-01

    The mechanism of induction of murine macrophage Ia expression by lipopolysaccharide (LPS) was studied. Intraperitoneal injection of 1 microgram of LPS resulted in a 3- to 10-fold increase in the number of IA-positive peritoneal macrophages (flow cytometry and immunofluorescence) and a 6-to 16-fold increase by radioimmunoassay. The isolated lipid A moiety of LPS was a potent inducer of macrophage Ia expression. Ia induction required a functional myelopoietic system as indicated by the finding that the response to LPS was eliminated in irradiated (900 rads) mice and reinstated by reconstitution with bone marrow cells. Comparison of LPS-induced Ia expression in normal and LPS-primed mice revealed a faster secondary response to LPS. The memory response could be adoptively transferred to normal mice with nonadherent spleen cells prepared 60 days after LPS injection. Spleen cells prepared 5 days after LPS injection caused Ia induction in LPS-nonresponder mice; such induction was not observed in irradiated (900 rads) recipients. The cell responsible for this phenomenon was identified as a Thy-1+, immunoglobulin-negative nonadherent cell. The biosynthesis and expression of Ia were not increased by direct exposure of macrophages to LPS in vitro. Small amounts of LPS inhibited Ia induction by gamma interferon. LPS showed positive regulatory effects on Ia expression by delaying the loss of Ia expression on cultured macrophages and by stimulating the production of Ia-inducing factors. Supernatants from cultured spleen cells stimulated with LPS in vitro contained antiviral and Ia-inducing activity that was acid labile, indicating that the active factor is gamma interferon. We conclude that induction of Ia expression by LPS in vivo is a bone-marrow-dependent, radiation-sensitive process which involves the stimulation of a gamma interferon-producing accessory lymphocyte and a delay in Ia turnover

  12. The role of Hibiscus sabdariffa L. (Roselle) in maintenance of ex vivo murine bone marrow-derived hematopoietic stem cells.

    Science.gov (United States)

    Abdul Hamid, Zariyantey; Lin Lin, Winnie Hii; Abdalla, Basma Jibril; Bee Yuen, Ong; Latif, Elda Surhaida; Mohamed, Jamaludin; Rajab, Nor Fadilah; Paik Wah, Chow; Wak Harto, Muhd Khairul Akmal; Budin, Siti Balkis

    2014-01-01

    Hematopoietic stem cells- (HSCs-) based therapy requires ex vivo expansion of HSCs prior to therapeutic use. However, ex vivo culture was reported to promote excessive production of reactive oxygen species (ROS), exposing HSCs to oxidative damage. Efforts to overcome this limitation include the use of antioxidants. In this study, the role of Hibiscus sabdariffa L. (Roselle) in maintenance of cultured murine bone marrow-derived HSCs was investigated. Aqueous extract of Roselle was added at varying concentrations (0-1000 ng/mL) for 24 hours to the freshly isolated murine bone marrow cells (BMCs) cultures. Effects of Roselle on cell viability, reactive oxygen species (ROS) production, glutathione (GSH) level, superoxide dismutase (SOD) activity, and DNA damage were investigated. Roselle enhanced the survival (P Roselle increased (P Roselle showed significant cellular genoprotective potency against H2O2-induced DNA damage. Conclusively, Roselle shows novel property as potential supplement and genoprotectant against oxidative damage to cultured HSCs.

  13. Enhancement of distribution of dermal multipotent stem cells to bone marrow in rats of total body irradiation by platelet-derived growth factor-AA treatment

    International Nuclear Information System (INIS)

    Zong Zhaowen; Ren Yongchuan; Shen Yue; Chen Yonghua; Ran Xinze; Shi Chunmeng; Cheng Tianmin

    2011-01-01

    Objective: To observe whether dermal multipotent stem cells (dMSCs) treated with platelet-derived growth factor-AA (PDGF-AA) could distribute more frequently to the bone marrow in rats of total body irradiation (TBI). Methods: Male dMSCs were isolated and 10 μg/L PDGF-AA was added to the culture medium and further cultured for 2 h. Then the expression of tenascin-C were examined by Western blot, and the migration ability of dMSCs was assessed in transwell chamber. The pre-treated dMSCs were transplanted by tail vein injection into female rats administered with total body irradiation, and 2 weeks after transplantation, real-time PCR was employed to measure the amount of dMSCs in bone marrow. Non-treated dMSCs served as control.Results PDGF-AA treatment increased the expression of tenascin-C in dMSCs, made (1.79 ± 0.13) × 10 5 cells migrate to the lower chamber under the effect of bone marrow extract, and distributed to bone marrow in TBI rats, significantly more than (1.24 ± 0.09) ×10 5 in non-treated dMSCs (t=8.833, P<0.01). Conclusions: PDGF-AA treatment could enhance the migration ability of dMSCs and increase the amount of dMSCs in bone marrow of TBI rats after transplantation. (authors)

  14. Human bone marrow-derived mesenchymal cell reactions to 316L stainless steel : An in vitro study on cell viability and interleukin-6 expression

    NARCIS (Netherlands)

    Anwar, I.B.; Santoso, A.; Saputra, E.; Ismail, R.; Jamari, J.; van der Heide, E.

    2017-01-01

    Purpose: Human bone marrow-derived mesenchymal cell (hBMC) reactions to 316L stainless steel (316L-SS) have never been evaluated. The objective of this study was to assess cell viability and interleukin-6 expression of hBMC cultures upon treatment with a 316L-SS implant. Methods: A cytotoxicity

  15. Evaluating effects of L-carnitine on human bone-marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Fujisawa, Koichi; Takami, Taro; Fukui, Yumi; Quintanilha, Luiz Fernando; Matsumoto, Toshihiko; Yamamoto, Naoki; Sakaida, Isao

    2017-05-01

    Mesenchymal stem cells (MSCs) are multipotent cells showing potential for use in regenerative medicine. Culture techniques that are more stable and methods for the more efficient production of MSCs with therapeutic efficacy are needed. We evaluate the effects of growing bone marrow (Bm)-derived MSCs in the presence of L-carnitine, which is believed to promote lipid metabolism and to suppress apoptosis. The presence of L-carnitine decreased the degree of drug-induced apoptosis and suppressed adipogenic differentiation. Metabolomic analysis by means of the exhaustive investigation of metabolic products showed that, in addition to increased β-oxidation and the expression of all carnitine derivatives other than deoxycarnitine (an intermediate in carnitine synthesis), polysaturated and polyunsaturated acids were down-regulated. An integrated analysis incorporating both serial analysis of gene expression and metabolomics revealed increases in cell survival, suggesting the utility of carnitine. The addition of carnitine elevated the oxygen consumption rate by BmMSCs that had been cultured for only a few generations and those that had become senescent following repeated replication indicating that mitochondrial activation occurred. Our exhaustive analysis of the effects of various carnitine metabolites thus suggests that the addition of L-carnitine to BmMSCs during expansion enables efficient cell production.

  16. Toll-like receptor 4-positive macrophages protect mice from Pasteurella pneumotropica-induced pneumonia

    Science.gov (United States)

    Hart, Marcia L.; Mosier, Derek A.; Chapes, Stephen K.

    2003-01-01

    This study investigates Toll-like receptor 4 (TLR4)-positive macrophages in early recognition and clearance of pulmonary bacteria. TLR4 is a trans-membrane receptor that is the primary recognition molecule for lipopolysaccharide of gram-negative bacteria. The TLR4(Lps-del) mouse strains C57BL10/ScN (B10) and STOCK Abb(tm1) TLR4(Lps-del) Slc11a1(s)(B10 x C2D) are susceptible to pulmonary infections and develop pneumonia when naturally or experimentally infected by the opportunistic bacterium Pasteurella pneumotropica. Since these mice have the TLR4(Lps-del) genotype, we hypothesized that reconstitution of mice with TLR4-positive macrophages would provide resistance to this bacterium. A cultured macrophage cell line (C2D macrophages) and bone marrow cells from C2D mice were adoptively transferred to B10 and B10 x C2D mice by intraperitoneal injection. C2D macrophages increased B10 and B10 x C2D mouse resistance to P. pneumotropica. In C2D-recipient mice there was earlier transcription of tumor necrosis factor alpha and chemokines JE and macrophage inflammatory protein 2 (MIP-2) in the lungs of B10 and B10 x C2D mice, and there was earlier transcription of KC and MIP-1alpha in B10 x C2D mice. In addition, the course of inflammation following experimental Pasteurella challenge was altered in C2D recipients. C2D macrophages also protected B10 x C2D mice, which lack CD4(+) T cells. These data indicate that macrophages are critical for pulmonary immunity and can provide host resistance to P. pneumotropica. This study indicates that TLR4-positive macrophages are important for early recognition and clearance of pulmonary bacterial infections.

  17. Nicotine Impairs Macrophage Control of Mycobacterium tuberculosis.

    Science.gov (United States)

    Bai, Xiyuan; Stitzel, Jerry A; Bai, An; Zambrano, Cristian A; Phillips, Matthew; Marrack, Philippa; Chan, Edward D

    2017-09-01

    Pure nicotine impairs macrophage killing of Mycobacterium tuberculosis (MTB), but it is not known whether the nicotine component in cigarette smoke (CS) plays a role. Moreover, the mechanisms by which nicotine impairs macrophage immunity against MTB have not been explored. To neutralize the effects of nicotine in CS extract, we used a competitive inhibitor to the nicotinic acetylcholine receptor (nAChR)-mecamylamine-as well as macrophages derived from mice with genetic disruption of specific subunits of nAChR. We also determined whether nicotine impaired macrophage autophagy and whether nicotine-exposed T regulatory cells (Tregs) could subvert macrophage anti-MTB immunity. Mecamylamine reduced the CS extract increase in MTB burden by 43%. CS extract increase in MTB was also significantly attenuated in macrophages from mice with genetic disruption of either the α7, β2, or β4 subunit of nAChR. Nicotine inhibited autophagosome formation in MTB-infected THP-1 cells and primary murine alveolar macrophages, as well as increased the intracellular MTB burden. Nicotine increased migration of THP-1 cells, consistent with the increased number of macrophages found in the lungs of smokers. Nicotine induced Tregs to produce transforming growth factor-β. Naive mouse macrophages co-cultured with nicotine-exposed Tregs had significantly greater numbers of viable MTB recovered with increased IL-10 production and urea production, but no difference in secreted nitric oxide as compared with macrophages cocultured with unexposed Tregs. We conclude that nicotine in CS plays an important role in subverting macrophage control of MTB infection.

  18. Immortalized porcine mesenchymal cells derived from nasal mucosa, lungs, lymph nodes, spleen and bone marrow retain their stemness properties and trigger the expression of siglec-1 in co-cultured blood monocytic cells.

    Science.gov (United States)

    Garba, Abubakar; Desmarets, Lowiese M B; Acar, Delphine D; Devriendt, Bert; Nauwynck, Hans J

    2017-01-01

    Mesenchymal stromal cells have been isolated from different sources. They are multipotent cells capable of differentiating into many different cell types, including osteocytes, chondrocytes and adipocytes. They possess a therapeutic potential in the management of immune disorders and the repair of damaged tissues. Previous work in our laboratory showed an increase of the percentages of CD172a+, CD14+, CD163+, Siglec-1+, CD4+ and CD8+ hematopoietic cells, when co-cultured with immortalized mesenchymal cells derived from bone marrow. The present work aimed to demonstrate the stemness properties of SV40-immortalized mesenchymal cells derived from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow and their immunomodulatory effect on blood monocytes. Mesenchymal cells from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow were isolated and successfully immortalized using simian virus 40 large T antigen (SV40LT) and later, co-cultured with blood monocytes, in order to examine their differentiation stage (expression of Siglec-1). Flow cytometric analysis revealed that the five mesenchymal cell lines were positive for mesenchymal cell markers CD105, CD44, CD90 and CD29, but lacked the expression of myeloid cell markers CD16 and CD11b. Growth analysis of the cells demonstrated that bone marrow derived-mesenchymal cells proliferated faster compared with those derived from the other tissues. All five mesenchymal cell lines co-cultured with blood monocytes for 1, 2 and 7 days triggered the expression of siglec-1 in the monocytes. In contrast, no siglec-1+ cells were observed in monocyte cultures without mesenchymal cell lines. Mesenchymal cells isolated from nasal mucosa, lungs, spleen, lymph nodes and bone marrow were successfully immortalized and these cell lines retained their stemness properties and displayed immunomodulatory effects on blood monocytes.

  19. Cytotoxicity of lambda-cyhalothrin on the macrophage cell line RAW 264.7.

    Science.gov (United States)

    Zhang, Quan; Wang, Cui; Sun, Liwei; Li, Ling; Zhao, Meirong

    2010-01-01

    The wide use and wide-spectrum toxicity of synthetic pyrethroids (SPs) insecticides make them an emerging ecotoxicological concern. Some previous studies showed that SPs possessed cytotoxicity in some immune cells such as human lymphocytes and rat bone marrow. However, the cytotoxicity of SPs to macrophages, which are crucial to innate immunity, has not been explored. In the present report, we investigated a new pyrethroid insecticide, lambda-cyhalothrin (LCT), which may increase the generation of reactive oxygen species (ROS) and DNA damage levels and cause cytotoxicity in RAW 264.7 cells in dose- and time-dependent manners. The results for the first time implicated increased endogenous ROS and DNA damage as co-mediators of LCT-induced cytotoxicity in macrophages. Our results also suggested that macrophages were involved in synthetic pyrethroid-induced adverse immune effects. Considering the ubiquitous environmental presence of SPs, this study provided new information relative to the potential long-term physiological and immunological effects associated with chronic exposure to SPs. Hence, the potential immunotoxicity of SPs should be considered in assessing the safety of these compounds in sensitive environmental compartments.

  20. Impaired Hematopoiesis and Disrupted Monocyte/Macrophage Homeostasis in Mucopolysaccharidosis Type I Mice.

    Science.gov (United States)

    Viana, Gustavo Monteiro; Buri, Marcus Vinícius; Paredes-Gamero, Edgar Julian; Martins, Ana Maria; D'Almeida, Vânia

    2016-03-01

    Mucopolysaccharidosis type I (MPS I) is a rare autosomal recessive disease caused by alpha-L-iduronidase deficiency in which heparan and dermatan sulfate degradation is compromised. Besides primary lysosomal glycosaminoglycan accumulation, further changes in cellular functions have also been described in several murine MPS models. Herein, we evaluated alterations in hematopoiesis and its implications on the production of mature progeny in a MPS I murine model. Despite the significant increase in hematopoietic stem cells, a reduction in common myeloid progenitors and granulocyte-macrophage progenitor cells was observed in Idua -/- mice bone marrow. Furthermore, no alterations in number, viability nor activation of cell death mechanisms were observed in Idua -/- mice mature macrophages but they presented higher sensitivity to apoptotic induction after staurosporine treatment. In addition, changes in Ca(2+) signaling and a reduction in phagocytosis ability were also found. In summary, our results revealed significant intracellular changes in mature Idua -/- macrophages related to alterations in Idua -/- mice hematopoiesis, revealing a disruption in cell homeostasis. These results provide new insights into physiopathology of MPS I. © 2015 Wiley Periodicals, Inc.

  1. Enhancement of Bone Marrow-Derived Mesenchymal Stem Cell Osteogenesis and New Bone Formation in Rats by Obtusilactone A

    Directory of Open Access Journals (Sweden)

    Yi-Hsiung Lin

    2017-11-01

    Full Text Available The natural pure compound obtusilactone A (OA was identified in Cinnamomum kotoense Kanehira & Sasaki, and shows effective anti-cancer activity. We studied the effect of OA on osteogenesis of bone marrow-derived mesenchymal stem cells (BMSCs. OA possesses biocompatibility, stimulates Alkaline Phosphatase (ALP activity and facilitates mineralization of BMSCs. Expression of osteogenesis markers BMP2, Runx2, Collagen I, and Osteocalcin was enhanced in OA-treated BMSCs. An in vivo rat model with local administration of OA via needle implantation to bone marrow-residing BMSCs revealed that OA increased the new bone formation and trabecular bone volume in tibias. Micro-CT images and H&E staining showed more trabecular bone at the needle-implanted site in the OA group than the normal saline group. Thus, OA confers an osteoinductive effect on BMSCs via induction of osteogenic marker gene expression, such as BMP2 and Runx2 expression and subsequently elevates ALP activity and mineralization, followed by enhanced trabecular bone formation in rat tibias. Therefore, OA is a potential osteoinductive drug to stimulate new bone formation by BMSCs.

  2. Development of a rapid culture method to induce adipocyte differentiation of human bone marrow-derived mesenchymal stem cells

    International Nuclear Information System (INIS)

    Ninomiya, Yuichi; Sugahara-Yamashita, Yzumi; Nakachi, Yutaka; Tokuzawa, Yoshimi; Okazaki, Yasushi; Nishiyama, Masahiko

    2010-01-01

    Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time for the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor γ agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-β1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.

  3. Chemical structure of carbamoylating groups and their relationship to bone marrow toxicity and antiglioma activity of bifunctionally alkylating and carbamoylating nitrosoureas.

    Science.gov (United States)

    Ali-Osman, F; Giblin, J; Berger, M; Murphy, M J; Rosenblum, M L

    1985-09-01

    Although the antitumor effects of chloroethylnitrosoureas have been shown to be due primarily to DNA-DNA cross-linking by the alkylating moieties of these agents, the basis of the often accompanying bone marrow toxicity has been more controversial. We report on the relative bone marrow toxicity of four model nitrosoureas with different alkylating and carbamoylating activities: 1,3-bis(2-chloroethyl)-1-nitrosourea; 1,3-bis(trans-4-hydroxycyclohexyl)-1-nitrosourea; chlorozotozin, (2-[3-(2-chloroethyl)-3 -nitrosoureido]-2-deoxy-D-glucopyranose); and -3-(beta-D-glucopyranosyl)-1-nitrosourea. Inhibitions of DNA, RNA, and protein synthesis in murine bone marrow cells and of colony growth of myeloid precursor cells (granulocyte-macrophage colony-forming units) were used as in vitro end points of myelotoxicity. Further, we determined the antiglioma activity of the four nitrosoureas on two human gliomas in a clonogenic tumor cell assay and studied the effect of the non-nitrosourea carbamoylators potassium cyanate, chloroethyl isocyanate, cyclohexyl isocyanate, ethyl isocyanate, and ethyl isothiocyanate on granulocyte-macrophage colony-forming units. The results show that, at equivalent drug exposures, clonogenic glioma cell kill was significant and comparative for 1,3-bis(2-chloroethyl)-1-nitrosourea, 1-(2-chloroethyl)-3-(beta-D-glucopyranosyl)-1-nitrosourea, and chlorozotocin; 1,3-bis(trans-4-hydroxycyclohexyl)-1-nitrosourea showed little activity. In contrast, granulocyte-macrophage colony-forming unit toxicity was low with chlorozotocin and 1-(2-chloroethyl)-3-(beta-D-glucopyranosyl)-1-nitrosourea and very high with 1,3-bis(2-chloroethyl)-1-nitrosourea and 1,3-bis(trans-4-hydroxycyclohexyl)-1-nitrosourea. Of the isocyanates, bone marrow toxicity was highest with chloroethyl isocyanate and cyclohexyl isocyanate, intermediate with ethyl isocyanate, and lowest with KOCN and ethyl isothiocyanate. Our results indicate that (a) bifunctional alkylation is essential for

  4. {sup 111}In-anti-F4/80-A3-1 antibody: a novel tracer to image macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Terry, Samantha Y.A. [Radboud University Medical Center, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands); King' s College London, St Thomas' Hospital, Department of Imaging Chemistry and Biology, London (United Kingdom); Boerman, Otto C.; Gerrits, Danny; Franssen, Gerben M.; Oyen, Wim J.G. [Radboud University Medical Center, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands); Metselaar, Josbert M. [University of Twente, Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, Enschede (Netherlands); Lehmann, Steffi; Gerdes, Christian A. [Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Zurich (Switzerland); Abiraj, Keelara [Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development (pRED), Basel (Switzerland)

    2015-08-15

    Here, the expression of F4/80 on the cell surface of murine macrophages was exploited to develop a novel imaging tracer that could visualize macrophages in vivo. The immunoreactive fraction and IC{sub 50} of anti-F4/80-A3-1, conjugated with diethylenetriaminepentaacetic acid (DTPA) and radiolabelled with {sup 111}In, were determined in vitro using murine bone marrow-derived macrophages. In vivo biodistribution studies were performed with {sup 111}In-anti-F4/80-A3-1 and isotype-matched control antibody {sup 111}In-rat IgG2b at 24 and 72 h post-injection (p.i.) in SCID/Beige mice bearing orthotopic MDA-MB-231 xenografts. In some studies mice were also treated with liposomal clodronate. Macrophage content in tissues was determined immunohistochemically. Micro-single photon emission computed tomography (SPECT)/CT images were also acquired. In vitro binding assays showed that {sup 111}In-anti-F4/80-A3-1 specifically binds F4/80 receptor-positive macrophages. The immunoreactivity of anti-F4/80-A3-1 was 75 % and IC{sub 50} was 0.58 nM. In vivo, injection of 10 or 100 μg {sup 111}In-anti-F4/80-A3-1 resulted in splenic uptake of 78 %ID/g and 31 %ID/g, respectively, and tumour uptake of 1.38 %ID/g and 4.08 %ID/g, respectively (72 h p.i.). Liposomal clodronate treatment reduced splenic uptake of 10 μg {sup 111}In-anti-F4/80-A3-1 from 248 %ID/g to 114 %ID/g and reduced {sup 111}In-anti-F4/80-A3-1 uptake in the liver and femur (24 h p.i.). Tracer retention in the blood and tumour uptake increased (24 h p.i.). Tumour uptake of {sup 111}In-anti-F4/80-A3-1 was visualized by microSPECT/CT. Macrophage density in the spleen and liver decreased in mice treated with liposomal clodronate. Uptake of {sup 111}In-rat IgG2b was lower in the spleen, liver and femur when compared to {sup 111}In-anti-F4/80-A3-1. Radiolabelled anti-F4/80-A3-1 antibodies specifically localize in tissues infiltrated by macrophages in mice and can be used to visualize tumours. The liver and spleen act as antigen

  5. Contribution of different bone marrow-derived cell types in endometrial regeneration using an irradiated murine model.

    Science.gov (United States)

    Gil-Sanchis, Claudia; Cervelló, Irene; Khurana, Satish; Faus, Amparo; Verfaillie, Catherine; Simón, Carlos

    2015-06-01

    To study the involvement of seven types of bone marrow-derived cells (BMDCs) in the endometrial regeneration in mice after total body irradiation. Prospective experimental animal study. University research laboratories. β-Actin-green fluorescent protein (GFP) transgenic C57BL/6-Tg (CAG-EGFP) and C57BL/6J female mice. The BMDCs were isolated from CAG-EGFP mice: unfractionated bone marrow cells, hematopoietic progenitor cells, endothelial progenitor cells (EPCs), and mesenchymal stem cells (MSCs). In addition three murine GFP(+) cell lines were used: mouse Oct4 negative BMDC multipotent adult progenitor cells (mOct4(-)BM-MAPCs), BMDC hypoblast-like stem cells (mOct4(+) BM-HypoSCs), and MSCs. All cell types were injected through the tail vein of 9 Gy-irradiated C57BL/6J female mice. Flow cytometry, cell culture, bone marrow transplantation assays, histologic evaluation, immunohistochemistry, proliferation, apoptosis, and statistical analysis. After 12 weeks, histologic analysis revealed that uteri of mice with mOct4(-)BM-MAPCs and MSC line were significantly smaller than uteri of mice with uncultured BMDCs or mOct4(+) BM-HypoSCs. The percentage of engrafted GFP(+) cells ranged from 0.13%-4.78%. Expression of Ki-67 was lower in all uteri from BMDCs treated mice than in the control, whereas TUNEL(+) cells were increased in the EPCs and mOct4(+)BM-HypoSCs groups. Low number of some BMDCs can be found in regenerating endometrium, including stromal, endotelial, and epithelial compartments. Freshly isolated MSCs and EPCs together with mOct4(+) BM-HypoSCs induced the greatest degree of regeneration, whereas culture isolated MSCs and mOct4(-)BM-MAPCs transplantation may have an inhibitory effect on endometrial regeneration. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. Transplantation of bone marrow-derived mesenchymal stem cells rescues partially rachitic phenotypes induced by 1,25-Dihydroxyvitamin D deficiency in mice

    OpenAIRE

    Zhang, Zengli; Yin, Shaomeng; Xue, Xian; Ji, Ji; Tong, Jian; Goltzman, David; Miao, Dengshun

    2016-01-01

    To determine whether the transplantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) can improve the 1,25(OH)2D deficiency-induced rachitic phenotype, 2×106 BM-MSCs from wild-type mice or vehicle were transplanted by tail vein injection into mice deficient in 1,25(OH)2D due to targeted deletion of 1α(OH)ase (1α(OH)ase-/-). Our results show that 1α(OH)ase mRNA was expressed in the BM-MSCs derived from wild-type mice, and was detected in long bone, kidney and intestine from BM-MSC-t...

  7. Tolerance to MHC class II disparate allografts through genetic modification of bone marrow

    Science.gov (United States)

    Jindra, Peter T.; Tripathi, Sudipta; Tian, Chaorui; Iacomini, John; Bagley, Jessamyn

    2012-01-01

    Induction of molecular chimerism through genetic modification of bone marrow is a powerful tool for the induction of tolerance. Here we demonstrate for the first time that expression of an allogeneic MHC class II gene in autologous bone marrow cells, resulting in a state of molecular chimerism, induces tolerance to MHC class II mismatched skin grafts, a stringent test of transplant tolerance. Reconstitution of recipients with syngeneic bone marrow transduced with retrovirus encoding H-2I-Ab (I-Ab) resulted the long-term expression of the retroviral gene product on the surface of MHC class II-expressing bone marrow derived cell types. Mechanistically, tolerance was maintained by the presence of regulatory T cells, which prevented proliferation and cytokine production by alloreactive host T cells. Thus, the introduction of MHC class II genes into bone marrow derived cells through genetic engineering results in tolerance. These results have the potential to extend the clinical applicability of molecular chimerism for tolerance induction. PMID:22833118

  8. The V1-V3 region of a brain-derived HIV-1 envelope glycoprotein determines macrophage tropism, low CD4 dependence, increased fusogenicity and altered sensitivity to entry inhibitors

    Directory of Open Access Journals (Sweden)

    Martín-García Julio

    2008-10-01

    Full Text Available Abstract Background HIV-1 infects macrophages and microglia in the brain and can cause neurological disorders in infected patients. We and others have shown that brain-derived envelope glycoproteins (Env have lower CD4 dependence and higher avidity for CD4 than those from peripheral isolates, and we have also observed increased fusogenicity and reduced sensitivity to the fusion inhibitor T-1249. Due to the genetic differences between brain and spleen env from one individual throughout gp120 and in gp41's heptad repeat 2 (HR2, we investigated the viral determinants for the phenotypic differences by performing functional studies with chimeric and mutant Env. Results Chimeric Env showed that the V1/V2-C2-V3 region in brain's gp120 determines the low CD4 dependence and high avidity for CD4, as well as macrophage tropism and reduced sensitivity to the small molecule BMS-378806. Changes in brain gp41's HR2 region did not contribute to the increased fusogenicity or to the reduced sensitivity to T-1249, since a T-1249-based peptide containing residues found in brain's but not in spleen's HR2 had similar potency than T-1249 and interacted similarly with an immobilized heptad repeat 1-derived peptide in surface plasmon resonance analysis. However, the increased fusogenicity and reduced T-1249 sensitivity of brain and certain chimeric Env mostly correlated with the low CD4 dependence and high avidity for CD4 determined by brain's V1-V3 region. Remarkably, most but not all of these low CD4-dependent, macrophage tropic envelopes glycoproteins also had increased sensitivity to the novel allosteric entry inhibitor HNG-105. The gp120's C2 region asparagine 283 (N283 has been previously associated with macrophage tropism, brain infection, lower CD4 dependence and higher CD4 affinity. Therefore, we introduced the N283T mutation into an env clone from a brain-derived isolate and into a brain tissue-derived env clone, and the T283N change into a spleen-derived env

  9. Macrophages in intestinal homeostasis and inflammation

    Science.gov (United States)

    Bain, Calum C; Mowat, Allan McI

    2014-01-01

    The intestine contains the largest pool of macrophages in the body which are essential for maintaining mucosal homeostasis in the face of the microbiota and the constant need for epithelial renewal but are also important components of protective immunity and are involved in the pathology of inflammatory bowel disease (IBD). However, defining the biological roles of intestinal macrophages has been impeded by problems in defining the phenotype and origins of different populations of myeloid cells in the mucosa. Here, we discuss how multiple parameters can be used in combination to discriminate between functionally distinct myeloid cells and discuss the roles of macrophages during homeostasis and how these may change when inflammation ensues. We also discuss the evidence that intestinal macrophages do not fit the current paradigm that tissue-resident macrophages are derived from embryonic precursors that self-renew in situ, but require constant replenishment by blood monocytes. We describe our recent work demonstrating that classical monocytes constantly enter the intestinal mucosa and how the environment dictates their subsequent fate. We believe that understanding the factors that drive intestinal macrophage development in the steady state and how these may change in response to pathogens or inflammation could provide important insights into the treatment of IBD. PMID:24942685

  10. Bone marrow aspiration

    Science.gov (United States)

    Iliac crest tap; Sternal tap; Leukemia - bone marrow aspiration; Aplastic anemia - bone marrow aspiration; Myelodysplastic syndrome - bone marrow aspiration; Thrombocytopenia - bone marrow aspiration; Myelofibrosis - bone marrow aspiration

  11. Modulation of human macrophage activity by Ascaris antigens is dependent on macrophage polarization state

    DEFF Research Database (Denmark)

    Almeida, Sara; Nejsum, Peter; Williams, Andrew R.

    2018-01-01

    Parasitic worms (helminths) are known to actively modulate host immune responses and inflammation. The aim of this study was to investigate if adult body fluid (ABF) from the helminth Ascaris suum has immunomodulatory effects on different subtypes of human monocyte-derived macrophages (Mɸ) in vitro...

  12. Unraveling Macrophage Heterogeneity in Erythroblastic Islands

    Directory of Open Access Journals (Sweden)

    Katie Giger Seu

    2017-09-01

    Full Text Available Mammalian erythropoiesis occurs within erythroblastic islands (EBIs, niches where maturing erythroblasts interact closely with a central macrophage. While it is generally accepted that EBI macrophages play an important role in erythropoiesis, thorough investigation of the mechanisms by which they support erythropoiesis is limited largely by inability to identify and isolate the specific macrophage sub-population that constitute the EBI. Early studies utilized immunohistochemistry or immunofluorescence to study EBI morphology and structure, while more recent efforts have used flow cytometry for high-throughput quantitative characterization of EBIs and their central macrophages. However, these approaches based on the expectation that EBI macrophages are a homogeneous population (F4/80+/CD169+/VCAM-1+ for example provide an incomplete picture and potentially overlook critical information about the nature and biology of the islands and their central macrophages. Here, we present a novel method for analysis of EBI macrophages from hematopoietic tissues of mice and rats using multispectral imaging flow cytometry (IFC, which combines the high-throughput advantage of flow cytometry with the morphological and fluorescence features derived from microscopy. This method provides both quantitative analysis of EBIs, as well as structural and morphological details of the central macrophages and associated cells. Importantly, the images, combined with quantitative software features, can be used to evaluate co-expression of phenotypic markers which is crucial since some antigens used to identify macrophages (e.g., F4/80 and CD11b can be expressed on non-erythroid cells associated with the islands instead of, or in addition to the central macrophage itself. We have used this method to analyze native EBIs from different hematopoietic tissues and evaluated the expression of several markers that have been previously reported to be expressed on EBI macrophages. We

  13. The Phagocytic Function of Macrophage-Enforcing Innate Immunity and Tissue Homeostasis

    Directory of Open Access Journals (Sweden)

    Daisuke Hirayama

    2017-12-01

    Full Text Available Macrophages are effector cells of the innate immune system that phagocytose bacteria and secrete both pro-inflammatory and antimicrobial mediators. In addition, macrophages play an important role in eliminating diseased and damaged cells through their programmed cell death. Generally, macrophages ingest and degrade dead cells, debris, tumor cells, and foreign materials. They promote homeostasis by responding to internal and external changes within the body, not only as phagocytes, but also through trophic, regulatory, and repair functions. Recent studies demonstrated that macrophages differentiate from hematopoietic stem cell-derived monocytes and embryonic yolk sac macrophages. The latter mainly give rise to tissue macrophages. Macrophages exist in all vertebrate tissues and have dual functions in host protection and tissue injury, which are maintained at a fine balance. Tissue macrophages have heterogeneous phenotypes in different tissue environments. In this review, we focused on the phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis for a better understanding of the role of tissue macrophages in several pathological conditions.

  14. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yingbin [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); School of Life Science, Southwest University, Chongqing 400715 (China); Cai, Shaoxi, E-mail: sxcai@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Yang, Li [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); College of Pharmacy, Jinan University, Guangzhou 510632 (China); Yu, Shuhui [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Library of Southwest University, Chongqing 400715 (China); Jiang, Jiahuan; Yan, Xiaoqing [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Zhang, Haoxing [School of Life Science, Southwest University, Chongqing 400715 (China); Liu, Lan [Department of Laboratory of Medicine, Children' s Hospital of Chongqin Medical University, Chongqing 400014 (China); Liu, Qun [College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041 (China); Du, Jun [Center of Microbiology, Biochemistry, and Pharmacology, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510080 (China); Cai, Shaohui [College of Pharmacy, Jinan University, Guangzhou 510632 (China); Sung, K.L. Paul [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Departments of Orthopaedic Surgery and Bioengineering, University of California, SD 0412 (United States)

    2010-12-10

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  15. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    International Nuclear Information System (INIS)

    Yang, Yingbin; Cai, Shaoxi; Yang, Li; Yu, Shuhui; Jiang, Jiahuan; Yan, Xiaoqing; Zhang, Haoxing; Liu, Lan; Liu, Qun; Du, Jun; Cai, Shaohui; Sung, K.L. Paul

    2010-01-01

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  16. Comparative effects on type 2 diabetes of mesenchymal stem cells derived from bone marrow and adipose tissue

    Directory of Open Access Journals (Sweden)

    Li ZANG

    2016-08-01

    Full Text Available Objective  To compare the effects on type 2 diabetes of mesenchymal stem cells (MSCs derived from bone marrow and adipose tissue. Methods  Thirty type 2 diabetic rat models were established by an eight weeks high-fat diet (HFD with a low dose streptozotocin (STZ, 25mg/kg, and randomly assigned into three groups (10 each: diabetes group (T2DM, bone marrow MSCs transplantation group (BMSC and adipose tissue MSCs transplantation group (ADSC. Ten normal rats were set as control. MSCs were isolated from bone marrow or inguinal adipose tissue of normal rats. One week after STZ injection, 3×10 6 MSCs suspended in 1ml PBS were infused into rats via tail vein. The blood glucose was measured every day after MSCs transplantation, the intraperitoneal glucose tolerance test (IPGTT and intraperitoneal insulin tolerance test (IPITT were performed the 7th day after transplantation to evaluate the effects of MSCs on diabetic rats. Pancreatic tissues were collected for insulin/glucagon immunofluorescence staining. Results  After MSCs transplantation, the blood glucose decreased gradually and continuously in type 2 diabetic rats, with glucose tolerance and insulin sensitivity improved greatly. The improved insulin sensitivity was further confirmed by a decreased HOMA-IR (homeostasis model of assessment for insulin resistance index and increased pancreas islet β-cells (P<0.05. However, no significant differences were observed between BMSC and ADSC group. Conclusion  Both BMSC and ADSC have the same effect on type 2 diabetic rats, so the ADSC will be the ideal stem cells for treatment of type 2 diabetes. DOI: 10.11855/j.issn.0577-7402.2016.07.03

  17. Lithium Chloride Modulates Adipogenesis and Osteogenesis of Human Bone Marrow-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Linjun Tang

    2015-08-01

    Full Text Available Background/Aims: Lithium chloride (LiCl has long been used as a psychiatric medication; however, its role in the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs remains largely unknown. The aim of this study is to explore the effect of LiCl on the differentiation of BMSCs. Methods: The roles of LiCl in osteogenic and adipogenic processes were observed using alizarin red staining and oil red O staining, respectively. The effects of LiCl on the Wnt and Hedgehog (Hh pathways were investigated. Results: Our data showed that LiCl effectively promoted osteogenesis and inhibited adipogenesis by simultaneously affecting the Wnt and Hh pathways. Conclusion: These results suggest that LiCl influences the differentiation of BMSCs directly through the Wnt and Hh pathways and thus may be a candidate drug for the treatment of osteoporosis.

  18. Proliferation differentiation and therapeutic effect of short-term cultured murine bone marrow cells

    International Nuclear Information System (INIS)

    Zhao Zekun; Cong Jianbo

    1986-01-01

    Murine bone marrow cells were cultured in conditioned medium of muscle. After 24 hours of culture, both adherent and suspended cells appeared in the culture. The adherent cells mainly consisted of macrophages and the suspended cells were predominantly granulocytes. After 6 days, the total number of nucleated cells and CFU-C in the culture increased about 400% and 600% respectively, but CFU-S reduced to 21% approximately. Lymphocytes persisted only for 4 days. The stem cells (CFU-S) from 6-day culture were injected into the lethally irradiated syngenic mice. The 30 day survival rate of the treated mice was 89% whereas that of the controls was only 7%. The bone marrow cells in 2/8 of recipients sacrificed at 30 or 60 days were of donor type and 6/8 of the recipients were chimeras

  19. Rhinovirus infection induces distinct transcriptome profiles in polarized human macrophages.

    Science.gov (United States)

    Rajput, Charu; Walsh, Megan P; Eder, Breanna N; Metitiri, Ediri E; Popova, Antonia P; Hershenson, Marc B

    2018-05-01

    Infections with rhinovirus (RV) cause asthma exacerbations. Recent studies suggest that macrophages play a role in asthmatic airway inflammation and the innate immune response to RV infection. Macrophages exhibit phenotypes based on surface markers and gene expression. We hypothesized that macrophage polarization state alters gene expression in response to RV infection. Cells were derived from human peripheral blood derived monocytes. M1 and M2 polarization was carried out by using IFN-γ and IL-4, respectively, and RNA was extracted for Affymetrix Human Gene ST2.1 exon arrays. Selected genes were validated by quantitative (q)PCR. Treatment of nonactivated (M0) macrophages with IFN-γ and IL-4 induced the expression of 252 and 153 distinct genes, respectively, including previously-identified M1 and M2 markers. RV infection of M0 macrophages induced upregulation of 232 genes; pathway analysis showed significant overrepresentation of genes involved in IFN-α/β signaling and cytokine signaling in the immune system. RV infection induced differential expression of 195 distinct genes in M1-like macrophages but only seven distinct genes in M2-like-polarized cells. In a secondary analysis, comparison between M0-, RV-infected, and M1-like-polarized, RV-infected macrophages revealed differential expression of 227 genes including those associated with asthma and its exacerbation. qPCR demonstrated increased expression of CCL8, CXCL10, TNFSF10, TNFSF18, IL6, NOD2, and GSDMD and reduced expression of VNN1, AGO1, and AGO2. Together, these data show that, in contrast to M2-like-polarized macrophages, gene expression of M1-like macrophages is highly regulated by RV.

  20. Characterization of human erythroid burst-promoting activity derived from bone marrow conditioned media

    International Nuclear Information System (INIS)

    Porter, P.N.; Ogawa, M.

    1982-01-01

    Bone marrow conditioned media (BMCM) increases burst number and the incorporation of 59 Fe into heme by bursts when peripheral blood or bone marrow cells are cultured at limiting serum concentrations. Burst-promoting activity (BPA) has now been purified approximately 300-fold from this source by ion-exchange chromatography on DEAE-Sephadex and absorption chromatography on hydroxyapatite agarose gel. Marrow BPA increased burst number and hemoglobin (Hb) synthesis in a dose-dependent manner. A larger increase in Hb synthesis than in burst number was consistently observed, which was probably a consequence of the increase in the number of cells per burst that occurs in the presence of BPA. The role of BPA in culture could be distinguished from erythropoietin (Ep), since no bursts grew in the absence of Ep, whether or not BPA was present, and since it had no effect on the growth of erythroid colonies scored at day 5 of culture. Our purified fraction did not support the growth of CFU-C in culture. Activity was stable at temperatures of 70 degrees C or lower for 10 min; exposure to 80 degrees C resulted in approximately 50% loss of activity. BPA was completely inactivated by treatment at 100 degrees C for 10 min. Thus, human bone marrow cells produce a heat-sensitive factor that specifically promotes the growth of early erythroid progenitors in culture

  1. A novel role for a major component of the vitamin D axis: vitamin D binding protein-derived macrophage activating factor induces human breast cancer cell apoptosis through stimulation of macrophages.

    Science.gov (United States)

    Thyer, Lynda; Ward, Emma; Smith, Rodney; Fiore, Maria Giulia; Magherini, Stefano; Branca, Jacopo J V; Morucci, Gabriele; Gulisano, Massimo; Ruggiero, Marco; Pacini, Stefania

    2013-07-08

    The role of vitamin D in maintaining health appears greater than originally thought, and the concept of the vitamin D axis underlines the complexity of the biological events controlled by biologically active vitamin D (1,25(OH)(2)D3), its two binding proteins that are the vitamin D receptor (VDR) and the vitamin D-binding protein-derived macrophage activating factor (GcMAF). In this study we demonstrate that GcMAF stimulates macrophages, which in turn attack human breast cancer cells, induce their apoptosis and eventually phagocytize them. These results are consistent with the observation that macrophages infiltrated implanted tumors in mice after GcMAF injections. In addition, we hypothesize that the last 23 hydrophobic amino acids of VDR, located at the inner part of the plasma membrane, interact with the first 23 hydrophobic amino acids of the GcMAF located at the external part of the plasma membrane. This allows 1,25(OH)(2)D3 and oleic acid to become sandwiched between the two vitamin D-binding proteins, thus postulating a novel molecular mode of interaction between GcMAF and VDR. Taken together, these results support and reinforce the hypothesis that GcMAF has multiple biological activities that could be responsible for its anti-cancer effects, possibly through molecular interaction with the VDR that in turn is responsible for a multitude of non-genomic as well as genomic effects.

  2. Influence of Bisphosphonate Treatment on Medullary Macrophages and Osteoclasts: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Natalia Daniela Escudero

    2012-01-01

    Full Text Available Nitrogen-containing bisphosphonates are widely used for treating diverse bone pathologies. They are anticatabolic drugs that act on osteoclasts inhibiting bone resorption. It remains unknown whether the mechanism of action is by decreasing osteoclast number, impairing osteoclast function, or whether they continue to effectively inhibit bone resorption despite the increase in osteoclast number. There is increasing evidence that bisphosphonates also act on bone marrow cells like macrophages and monocytes. The present work sought to evaluate the dynamics of preosteoclast fusion and possible changes in medullary macrophage number in bisphosphonate-treated animals. Healthy female Wistar rats received olpadronate, alendronate, or vehicle during 5 weeks, and 5-bromo-2-deoxyuridine (BrdU on day 7, 28, or 34 of the experiment. Histomorphometric studies were performed to study femurs and evaluate: number of nuclei per osteoclast (N.Nu/Oc; number of BrdU-positive nuclei (N.Nu BrdU+/Oc; percentage of BrdU-positive nuclei per osteoclast (%Nu.BrdU+/Oc; medullary macrophage number (mac/mm2 and correlation between N.Nu/Oc and mac/mm2. Results showed bisphosphonate-treated animals exhibited increased N.Nu/Oc, caused by an increase in preosteoclast fusion rate and evidenced by higher N.Nu BrdU+/Oc, and significantly decreased mac/mm2. Considering the common origin of osteoclasts and macrophages, the increased demand for precursors of the osteoclast lineage may occur at the expense of macrophage lineage precursors.

  3. Macrophage heterogeneity and cholesterol homeostasis: classically-activated macrophages are associated with reduced cholesterol accumulation following treatment with oxidized LDL.

    Science.gov (United States)

    Chu, Eugene M; Tai, Daven C; Beer, Jennifer L; Hill, John S

    2013-02-01

    Macrophages are centrally involved during atherosclerosis development and are the predominant cell type that accumulates cholesterol in the plaque. Macrophages however, are heterogeneous in nature reflecting a variety of microenvironments and different phenotypes may be more prone to contribute towards atherosclerosis progression. Using primary human monocyte-derived macrophages, we sought to evaluate one aspect of atherogenic potential of different macrophage phenotypes by determining their propensity to associate with and accumulate oxidized low density lipoprotein (oxLDL). Classically-activated macrophages treated simultaneously with interferon γ (IFNγ) and tumor necrosis factor α (TNFα) associated with less oxLDL and accumulated less cholesterol compared to untreated controls. The combined treatment of IFNγ and TNFα reduced the mRNA expression of CD36 and the expression of both cell surface CD36 and macrophage scavenger receptor 1 (MSR1) protein. Under oxLDL loaded conditions, IFNγ and TNFα did not reduce macrophage protein expression of the transcription factor peroxisome proliferator-actived receptor γ (PPARγ) which is known to positively regulate CD36 expression. However, macrophages treated with IFNγ attenuated the ability of the PPARγ-specific agonist rosiglitazone from upregulating cell surface CD36 protein expression. Our results demonstrate that the observed reduction of cholesterol accumulation in macrophages treated with IFNγ and TNFα following oxLDL treatment was due at least in part to reduced cell surface CD36 and MSR1 protein expression. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Systemic sarcoidosis with bone marrow involvement responding to therapy with adalimumab: a case report

    Directory of Open Access Journals (Sweden)

    Patel Supen R

    2009-07-01

    Full Text Available Abstract Introduction Sarcoidosis is an inflammatory disorder characterized by the presence of non-caseating granulomas in affected organs. The presence of CD4-positive T lymphocytes and macrophages in affected organs suggests an ongoing immune response. Systemic corticosteroids remain the mainstay of treatment, but therapy is often limited by adverse effects. This is the first report of the use of adalimumab (HUMIRA®, Abbott Laboratories, North Chicago, IL, USA, an anti-tumor necrosis factor monoclonal antibody, in a patient with systemic sarcoidosis with bone marrow involvement. Case presentation A 42-year-old African-American man with a medical history significant for hypertension and diabetes mellitus presented with anemia and thrombocytopenia of two months duration. The patient underwent physical examination, bone marrow aspiration and biopsy, chest X-ray, acid-fast bacilli stain, computed tomography with contrast, and additional laboratory tests. He was diagnosed with systemic sarcoidosis with splenomegaly and bone marrow involvement. Drug therapy included prednisone, which had to be discontinued owing to adverse effects, and adalimumab. Conclusion This is the first report describing the use of adalimumab in a patient with systemic sarcoidosis with bone marrow involvement. Tumor necrosis factor antagonism with adalimumab was efficacious and well-tolerated in this patient and may be considered as a treatment option for similar cases.

  5. Systemic sarcoidosis with bone marrow involvement responding to therapy with adalimumab: a case report.

    Science.gov (United States)

    Patel, Supen R

    2009-07-29

    Sarcoidosis is an inflammatory disorder characterized by the presence of non-caseating granulomas in affected organs. The presence of CD4-positive T lymphocytes and macrophages in affected organs suggests an ongoing immune response. Systemic corticosteroids remain the mainstay of treatment, but therapy is often limited by adverse effects. This is the first report of the use of adalimumab (HUMIRA((R)), Abbott Laboratories, North Chicago, IL, USA), an anti-tumor necrosis factor monoclonal antibody, in a patient with systemic sarcoidosis with bone marrow involvement. A 42-year-old African-American man with a medical history significant for hypertension and diabetes mellitus presented with anemia and thrombocytopenia of two months duration. The patient underwent physical examination, bone marrow aspiration and biopsy, chest X-ray, acid-fast bacilli stain, computed tomography with contrast, and additional laboratory tests. He was diagnosed with systemic sarcoidosis with splenomegaly and bone marrow involvement. Drug therapy included prednisone, which had to be discontinued owing to adverse effects, and adalimumab. This is the first report describing the use of adalimumab in a patient with systemic sarcoidosis with bone marrow involvement. Tumor necrosis factor antagonism with adalimumab was efficacious and well-tolerated in this patient and may be considered as a treatment option for similar cases.

  6. Lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes

    Science.gov (United States)

    Naphade, Swati; Sharma, Jay; Chevronnay, Héloïse P. Gaide; Shook, Michael A.; Yeagy, Brian A.; Rocca, Celine J.; Ur, Sarah N.; Lau, Athena J.; Courtoy, Pierre J.; Cherqui, Stephanie

    2014-01-01

    Despite controversies on the potential of hematopoietic stem cells (HSCs) to promote tissue repair, we previously showed that HSC transplantation could correct cystinosis, a multi-systemic lysosomal storage disease, caused by a defective lysosomal membrane cystine transporter, cystinosin (CTNS). Addressing the cellular mechanisms, we here report vesicular cross-correction after HSC differentiation into macrophages. Upon co-culture with cystinotic fibroblasts, macrophages produced tunneling nanotubes (TNTs) allowing transfer of cystinosin-bearing lysosomes into Ctns-deficient cells, which exploited the same route to retrogradely transfer cystine-loaded lysosomes to macrophages, providing a bidirectional correction mechanism. TNT formation was enhanced by contact with diseased cells. In vivo, HSCs grafted to cystinotic kidneys also generated nanotubular extensions resembling invadopodia that crossed the dense basement membranes and delivered cystinosin into diseased proximal tubular cells. This is the first report of correction of a genetic lysosomal defect by bidirectional vesicular exchange via TNTs and suggests broader potential for HSC transplantation for other disorders due to defective vesicular proteins. PMID:25186209

  7. ¹¹¹In-anti-F4/80-A3-1 antibody: a novel tracer to image macrophages.

    Science.gov (United States)

    Terry, Samantha Y A; Boerman, Otto C; Gerrits, Danny; Franssen, Gerben M; Metselaar, Josbert M; Lehmann, Steffi; Oyen, Wim J G; Gerdes, Christian A; Abiraj, Keelara

    2015-08-01

    Here, the expression of F4/80 on the cell surface of murine macrophages was exploited to develop a novel imaging tracer that could visualize macrophages in vivo. The immunoreactive fraction and IC50 of anti-F4/80-A3-1, conjugated with diethylenetriaminepentaacetic acid (DTPA) and radiolabelled with (111)In, were determined in vitro using murine bone marrow-derived macrophages. In vivo biodistribution studies were performed with (111)In-anti-F4/80-A3-1 and isotype-matched control antibody (111)In-rat IgG2b at 24 and 72 h post-injection (p.i.) in SCID/Beige mice bearing orthotopic MDA-MB-231 xenografts. In some studies mice were also treated with liposomal clodronate. Macrophage content in tissues was determined immunohistochemically. Micro-single photon emission computed tomography (SPECT)/CT images were also acquired. In vitro binding assays showed that (111)In-anti-F4/80-A3-1 specifically binds F4/80 receptor-positive macrophages. The immunoreactivity of anti-F4/80-A3-1 was 75 % and IC50 was 0.58 nM. In vivo, injection of 10 or 100 μg (111)In-anti-F4/80-A3-1 resulted in splenic uptake of 78 %ID/g and 31 %ID/g, respectively, and tumour uptake of 1.38 %ID/g and 4.08 %ID/g, respectively (72 h p.i.). Liposomal clodronate treatment reduced splenic uptake of 10 μg (111)In-anti-F4/80-A3-1 from 248 %ID/g to 114 %ID/g and reduced (111)In-anti-F4/80-A3-1 uptake in the liver and femur (24 h p.i.). Tracer retention in the blood and tumour uptake increased (24 h p.i.). Tumour uptake of (111)In-anti-F4/80-A3-1 was visualized by microSPECT/CT. Macrophage density in the spleen and liver decreased in mice treated with liposomal clodronate. Uptake of (111)In-rat IgG2b was lower in the spleen, liver and femur when compared to (111)In-anti-F4/80-A3-1. Radiolabelled anti-F4/80-A3-1 antibodies specifically localize in tissues infiltrated by macrophages in mice and can be used to visualize tumours. The liver and spleen act as antigen sink organs for macrophage-specific tracers.

  8. Thermo-radiosensitivity of the granulocyte and macrophage precursor cells of mice. I.-Development of the in vivo culture and effects induced by the hyperthermia

    International Nuclear Information System (INIS)

    Bueren, J. A.; Nieto, M.

    1983-01-01

    The present report shows the agar diffusion chamber technique for culturing granulocyte- macrophage precursor cells, obtained from mice bone marrow. Diffusion chambers containing the bone marrow suspension are implanted intraperitoneally Into mice and constitute a compartment which avoids the migration of cells, but allows the transit of the mouse biological fluxes, necessary for the cellular proliferation. By means of this technique, we studied the lethal effects of the hyperthermia on the precursors and their capacity to repair sublethal damage. (Author) 129 refs

  9. Immunomodulatory effects of hydroxyethylated Hericium erinaceus polysaccharide on macrophages RAW264.7.

    Science.gov (United States)

    Ren, Zhe; Qin, Tao; Qiu, Fuan; Song, Yulong; Lin, Dandan; Ma, Yufang; Li, Jian; Huang, Yifan

    2017-12-01

    Hericium erinaceus polysaccharide (HEP) has been shown to possess a variety of biological activities. In present study, HEP was successfully modified to obtain its hydroxyethylated derivative hHEP. Its potential immunomodulatory activities on RAW264.7 macrophages were investigated. Results showed that the hHEP were significantly stronger than that of the corresponding unmodified polysaccharide, HEP. Meanwhile, the NO, IL-6 and TNF-α production activities of macrophages were enhanced in the RAW264.7 macrophages by stimulation of hHEP. In addition, the hHEP increase significantly higher iNOS expression than HEP. These results indicated that the hydroxyethylated derivative hHEP could enhance the activation of peritoneal macrophages, and hydroxyethylation modification can enhance the immunomodulation function of HEP. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Good manufacturing practice-compliant expansion of marrow-derived stem and progenitor cells for cell therapy.

    Science.gov (United States)

    Gastens, Martin H; Goltry, Kristin; Prohaska, Wolfgang; Tschöpe, Diethelm; Stratmann, Bernd; Lammers, Dirk; Kirana, Stanley; Götting, Christian; Kleesiek, Knut

    2007-01-01

    Ex vivo expansion is being used to increase the number of stem and progenitor cells for autologous cell therapy. Initiation of pivotal clinical trials testing the efficacy of these cells for tissue repair has been hampered by the challenge of assuring safe and high-quality cell production. A strategy is described here for clinical-scale expansion of bone marrow (BM)-derived stem cells within a mixed cell population in a completely closed process from cell collection through postculture processing using sterile connectable devices. Human BM mononuclear cells (BMMNC) were isolated, cultured for 12 days, and washed postharvest using either standard open procedures in laminar flow hoods or using automated closed systems. Conditions for these studies were similar to long-term BM cultures in which hematopoietic and stromal components are cultured together. Expansion of marrow-derived stem and progenitor cells was then assessed. Cell yield, number of colony forming units (CFU), phenotype, stability, and multilineage differentiation capacity were compared from the single pass perfusion bioreactor and standard flask cultures. Purification of BMMNC using a closed Ficoll gradient process led to depletion of 98% erythrocytes and 87% granulocytes, compared to 100% and 70%, respectively, for manual processing. After closed system culture, mesenchymal progenitors, measured as CD105+CD166+CD14-CD45- and fibroblastic CFU, expanded 317- and 364-fold, respectively, while CD34+ hematopoietic progenitors were depleted 10-fold compared to starting BMMNC. Cultured cells exhibited multilineage differentiation by displaying adipogenic, osteogenic, and endothelial characteristics in vitro. No significant difference was observed between manual and bioreactor cultures. Automated culture and washing of the cell product resulted in 181 x 10(6) total cells that were viable and contained fibroblastic CFU for at least 24 h of storage. A combination of closed, automated technologies enabled

  11. CD34 defines an osteoprogenitor cell population in mouse bone marrow stromal cells

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Al-Shammary, Asma; Skagen, Peter

    2015-01-01

    Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) and their progenitors have been identified based on retrospective functional criteria. CD markers are employed to define cell populations with distinct functional characteristics. However, defining and pro...

  12. Amplification of the spleen macrophage population in malaria: possible role of a factor chemotactic for blood mononuclear cells

    International Nuclear Information System (INIS)

    Wyler, D.J.; Gallin, J.I.

    1976-01-01

    The mechanism of amplification of the splenic macrophages' population was investigated using mice infected with malaria as a model of an obligate intravascular infection. It was observed that these macrophages derived from blood monocytes rather than by local proliferation in the spleen. A factor, chemotactic for blood mononuclear cells, was present in spleen cells shortly after infection and preceded detectable increases in spleen macrophage number by 48 hours. This factor, in concert with spleen derived macrophage migration inhibition factor, may be important in the amplification of splenic macrophage population in intravascular infections

  13. Mesenchymal stem cells derived from adipose tissue vs bone marrow: in vitro comparison of their tropism towards gliomas.

    Directory of Open Access Journals (Sweden)

    Courtney Pendleton

    Full Text Available INTRODUCTION: Glioblastoma is the most common primary malignant brain tumor, and is refractory to surgical resection, radiation, and chemotherapy. Human mesenchymal stem cells (hMSC may be harvested from bone marrow (BMSC and adipose (AMSC tissue. These cells are a promising avenue of investigation for the delivery of adjuvant therapies. Despite extensive research into putative mechanisms for the tumor tropism of MSCs, there remains no direct comparison of the efficacy and specificity of AMSC and BMSC tropism towards glioma. METHODS: Under an IRB-approved protocol, intraoperative human Adipose MSCs (hAMSCs were established and characterized for cell surface markers of mesenchymal stem cell origin in conjunction with the potential for tri-lineage differentiation (adipogenic, chondrogenic, and osteogenic. Validated experimental hAMSCs were compared to commercially derived hBMSCs (Lonza and hAMSCs (Invitrogen for growth responsiveness and glioma tropism in response to glioma conditioned media obtained from primary glioma neurosphere cultures. RESULTS: Commercial and primary culture AMSCs and commercial BMSCs demonstrated no statistically significant difference in their migration towards glioma conditioned media in vitro. There was statistically significant difference in the proliferation rate of both commercial AMSCs and BMSCs as compared to primary culture AMSCs, suggesting primary cultures have a slower growth rate than commercially available cell lines. CONCLUSIONS: Adipose- and bone marrow-derived mesenchymal stem cells have similar in vitro glioma tropism. Given the well-documented ability to harvest larger numbers of AMSCs under local anesthesia, adipose tissue may provide a more efficient source of MSCs for research and clinical applications, while minimizing patient morbidity during cell harvesting.

  14. Bone Marrow-derived Myofibroblasts Are the Providers of Pro-invasive Matrix Metalloproteinase 13 in Primary Tumor

    Directory of Open Access Journals (Sweden)

    Julie Lecomte

    2012-10-01

    Full Text Available Carcinoma-associated fibroblasts are key contributors of the tumor microenvironment that regulates carcinoma progression. They consist of a heterogeneous cell population with diverse origins, phenotypes, and functions. In the present report, we have explored the contribution of bone marrow (BM-derived cells to generate different fibroblast subsets that putatively produce the matrix metalloproteinase 13 (MMP13 and affect cancer cell invasion. A murine model of skin carcinoma was applied to mice, irradiated, and engrafted with BM isolated from green fluorescent protein (GFP transgenic mice. We provide evidence that one third of BM-derived GFP+ cells infiltrating the tumor expressed the chondroitin sulfate proteoglycan NG2 (pericytic marker or α-smooth muscle actin (α-SMA, myofibroblast marker, whereas almost 90% of Thy1+ fibroblasts were originating from resident GFP-negative cells. MMP13producing cells were exclusively α-SMA+ cells and derived from GFP+ BM cells. To investigate their impact on tumor invasion, we isolated mesenchymal stem cells (MSCs from the BM of wild-type and MMP13-deficient mice. Wild-type MSC promoted cancer cell invasion in a spheroid assay, whereas MSCs obtained from MMP13-deficient mice failed to. Our data support the concept of fibroblast subset specialization with BM-derived α-SMA+ cells being the main source of MMP13, a stromal mediator of cancer cell invasion.

  15. Cholesterol Oxidase Binds TLR2 and Modulates Functional Responses of Human Macrophages

    Directory of Open Access Journals (Sweden)

    Katarzyna Bednarska

    2014-01-01

    Full Text Available Cholesterol oxidase (ChoD is considered to be an important virulence factor for Mycobacterium tuberculosis (Mtb, but its influence on macrophage activity is unknown. Here we used Nocardia erythropolis ChoD, which is very similar to the Mtb enzyme (70% identity at the amino-acid level, to evaluate the impact of bacterial ChoD on the activity of THP-1-derived macrophages in vitro. We found that ChoD decreased the surface expression of Toll-like receptor type 2 (TLR2 and complement receptor 3 (CR3 on these macrophages. Flow cytometry and confocal microscopy showed that ChoD competed with lipoteichoic acid for ligand binding sites on TLR2 but not on CR3, suggesting that ChoD signaling is mediated via TLR2. Binding of ChoD to the membrane of macrophages had diverse effects on the activity of macrophages, activating p38 mitogen activated kinase and stimulating production of a large amount of interleukin-10. Moreover, ChoD primed macrophages to enhance the production of reactive oxygen species in response to the phorbol myristate acetate, which was reduced by “switching off” TLR-derived signaling through interleukin-1 receptor-associated kinases 1 and 4 inhibition. Our study revealed that ChoD interacts directly with macrophages via TLR2 and influences the biological activity of macrophages during the development of the initial response to infection.

  16. Acquisition of repertoires of suppressor T cells under the influence of macrophages

    International Nuclear Information System (INIS)

    Soejima, T.; Nagayama, A.; Sado, T.; Taniguchi, M.

    1988-01-01

    Acquisition of repertoires and genetic restriction specificities of suppressor T cells (Ts) and their factors were studied by using full allogeneic radiation bone marrow chimera and H-2 congenic pairs, B10.A(3R) and B10.A(5R), which received conventional or cloned macrophages by cell transfer. Suppressor T-cell factor (TsF) from C3H----C57BL/6 or C57BL/6----C3H chimera suppressed only donor but not host-type responses of either C3H or C57BL/6, in an antigen-specific fashion. However, if chimera mice were given conventional or cloned macrophages of the host type, the chimera TsF in turn suppressed both the responses of C3H and C57BL/6 mice but not those of the third party, BALB/c, indicating that macrophages are responsible for the acquisition of host restriction specificity. Similarly, B10.A(5R) mice developed I-Jb restricted Ts or TsF when the B10.A(3R) macrophage cell line was injected at the time of antigen priming. The reverse was also true. B10.A(3R) mice did generate I-Jk restricted Ts when they received the B10.A(5R) macrophage cell line. Thus, the results clearly demonstrated that B10.A(3R) or B10.A(5R) mice potentially possessed their ability to express both I-Jk and I-Jb determinants and that repertoires and genetic restriction specificity of Ts and their TsF were acquired at a macrophage level at the time of antigen-priming

  17. Deficiency of ABCA1 and ABCG1 in Macrophages Increases Inflammation and Accelerates Atherosclerosis in Mice

    Science.gov (United States)

    Westerterp, Marit; Murphy, Andrew J.; Wang, Mi; Pagler, Tamara A.; Vengrenyuk, Yuliya; Kappus, Mojdeh S.; Gorman, Darren J.; Nagareddy, Prabhakara R.; Zhu, Xuewei; Abramowicz, Sandra; Parks, John S.; Welch, Carrie; Fisher, Edward A.; Wang, Nan; Yvan-Charvet, Laurent; Tall, Alan R.

    2013-01-01

    Rationale Plasma HDL levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is due to the ability of HDL to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking. Objective To assess the role of macrophage cholesterol efflux pathways in atherogenesis. Methods and Results We developed MAC-ABCDKO mice with efficient deletion of the ATP Binding Cassette Transporters A1 and G1 (ABCA1 and ABCG1) in macrophages but not in hematopoietic stem or progenitor populations. MAC-ABCDKO bone marrow (BM) was transplanted into Ldlr-/- recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared to controls. On the Western type diet (WTD), MAC-ABCDKO BM transplanted Ldlr-/- mice had disproportionate atherosclerosis, considering they also had lower VLDL/LDL cholesterol levels than controls. ABCA1/G1 deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, WTD-fed MAC-ABCDKO BM transplanted Ldlr-/- mice displayed monocytosis and neutrophilia in the absence of HSPC proliferation. Mechanistic studies revealed increased expression of M-CSF and G-CSF in splenic macrophage foam cells, driving BM monocyte and neutrophil production. Conclusion These studies 1) show that macrophage deficiency of ABCA1/G1 is pro-atherogenic likely by promoting plaque inflammation and 2) uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways. PMID:23572498

  18. Macrophages are critical effectors of antibody therapies for cancer.

    Science.gov (United States)

    Weiskopf, Kipp; Weissman, Irving L

    2015-01-01

    Macrophages are innate immune cells that derive from circulating monocytes, reside in all tissues, and participate in many states of pathology. Macrophages play a dichotomous role in cancer, where they promote tumor growth but also serve as critical immune effectors of therapeutic antibodies. Macrophages express all classes of Fcγ receptors, and they have immense potential to destroy tumors via the process of antibody-dependent phagocytosis. A number of studies have demonstrated that macrophage phagocytosis is a major mechanism of action of many antibodies approved to treat cancer. Consequently, a number of approaches to augment macrophage responses to therapeutic antibodies are under investigation, including the exploration of new targets and development of antibodies with enhanced functions. For example, the interaction of CD47 with signal-regulatory protein α (SIRPα) serves as a myeloid-specific immune checkpoint that limits the response of macrophages to antibody therapies, and CD47-blocking agents overcome this barrier to augment phagocytosis. The response of macrophages to antibody therapies can also be enhanced with engineered Fc variants, bispecific antibodies, or antibody-drug conjugates. Macrophages have demonstrated success as effectors of cancer immunotherapy, and further investigation will unlock their full potential for the benefit of patients.

  19. Myeloid DLL4 Does Not Contribute to the Pathogenesis of Non-Alcoholic Steatohepatitis in Ldlr-/- Mice.

    Directory of Open Access Journals (Sweden)

    Mike L J Jeurissen

    Full Text Available Non-alcoholic steatohepatitis (NASH is characterized by liver steatosis and inflammation. Currently, the underlying mechanisms leading to hepatic inflammation are not fully understood and consequently, therapeutic options are poor. Non-alcoholic steatohepatitis (NASH and atherosclerosis share the same etiology whereby macrophages play a key role in disease progression. Macrophage function can be modulated via activation of receptor-ligand binding of Notch signaling. Relevantly, global inhibition of Notch ligand Delta-Like Ligand-4 (DLL4 attenuates atherosclerosis by altering the macrophage-mediated inflammatory response. However, the specific contribution of macrophage DLL4 to hepatic inflammation is currently unknown. We hypothesized that myeloid DLL4 deficiency in low-density lipoprotein receptor knock-out (Ldlr-/- mice reduces hepatic inflammation. Irradiated Ldlr-/- mice were transplanted (tp with bone marrow from wild type (Wt or DLL4f/fLysMCre+/0 (DLL4del mice and fed either chow or high fat, high cholesterol (HFC diet for 11 weeks. Additionally, gene expression was assessed in bone marrow-derived macrophages (BMDM of DLL4f/fLysMCreWT and DLL4f/fLysMCre+/0 mice. In contrast to our hypothesis, inflammation was not decreased in HFC-fed DLL4del-transplanted mice. In line, in vitro, there was no difference in the expression of inflammatory genes between DLL4-deficient and wildtype bone marrow-derived macrophages. These results suggest that myeloid DLL4 deficiency does not contribute to hepatic inflammation in vivo. Since, macrophage-DLL4 expression in our model was not completely suppressed, it can't be totally excluded that complete DLL4 deletion in macrophages might lead to different results. Nevertheless, the contribution of non-myeloid Kupffer cells to notch signaling with regard to the pathogenesis of steatohepatitis is unknown and as such it is possible that, DLL4 on Kupffer cells promote the pathogenesis of steatohepatitis.

  20. Differential effects of chronic monocyte depletion on macrophage populations

    International Nuclear Information System (INIS)

    Volkman, A.; Chang, N.C.; Strausbauch, P.H.; Morahan, P.S.

    1983-01-01

    The administration of the bone-seeking isotope, 89 Sr, to mice results in severe monocytopenia without any apparent effect on the numbers of resident peritoneal macrophages (M luminal diameter). An explanation for this dichotomy was sought by determining whether the residual blood monocytes were still an effective source of M luminal diameter after 89 Sr treatment. Stem cell enumeration showed that a 90% fall in bone marrow macrophage colony-forming cells after 89 Sr was accompanied by a 10-fold rise in splenic M-CFC. Splenectomy performed before 89 Sr treatment, however, resulted in little additional monocytopenia and had no affect on the numbers of resident peritoneal M luminal diameter even when sampling was extended to 31 days, an interval beyond the accepted half-time for peritoneal M luminal diameter. Intraperitoneal injections of thioglycollate or Corynebacterium parvum elicited few or no monocyte-M luminal diameter during respective intervals of 4 and 7 days. Elicitation with thioglycollate was attempted in tritiated thymidine-labeled mice 26 days after 89 Sr. Four days later only a 2-fold increase in labeled peritoneal M luminal diameter was found in the 89 Sr-treated mice compared with a 150-fold increase in the controls. Studies of the ectoenzymes 5'-nucleotidase, alkaline phosphodiesterase I, and leucine aminopeptidase in such elicitation experiments suggested that the observed changes in activities reflected the direct stimulation of resident M luminal diameter rather than monocyte immigration. Overall, the results indicate that treatment with 89 Sr distinguishes two large populations of M luminal diameter on the basis of their dependence on bone marrow. M luminal diameter of inflammation reflect the monocytopenia and are severely and rapidly depleted by such treatment