Liu, Hongyang; Ou, Yan; Hu, Jun; Liu, Tingting
2010-04-01
This paper investigates the problem of stability analysis for bidirectional associative memory (BAM) neural networks with Markovian jumping parameters. Some new delay-dependent stochastic stability criteria are derived based on a novel Lyapunov-Krasovskii functional (LKF) approach. These new criteria based on the delay partitioning idea prove to be less conservative, since the conservatism could be notably reduced by thinning the delay partitioning. It is shown that the addressed stochastic BAM neural networks with Markovian jumping parameters are stochastically stable if three linear matrix inequalities (LMIs) are feasible. The feasibility of the LMIs can be readily checked by the Matlab LMI toolbox. A numerical example is provided to show the effectiveness and advantage of the proposed technique.
Stochastic stability of linear time-delay system with Markovian jumping parameters
Directory of Open Access Journals (Sweden)
K. Benjelloun
1997-01-01
Full Text Available This paper deals with the class of linear time-delay systems with Markovian jumping parameters (LTDSMJP. We mainly extend the stability results of the deterministic class of linear systems with time-delay to this class of systems. A delay-independent necessary condition and sufficient conditions for checking the stochastic stability are established. A sufficient condition is also given. Some numerical examples are provided to show the usefulness of the proposed theoretical results.
Design of robust controller for linear systems with Markovian jumping parameters
Directory of Open Access Journals (Sweden)
Benjelloun K.
1998-01-01
Full Text Available This paper deals with the robustness of the class of uncertain linear systems with Markovian jumping parameters (ULSMJP. The uncertainty is taken to be time-varying norm bounded. Under the assumptions of the boundedness of the uncertainties and the complete access to the system's state and its modes, a sufficient condition for stochastic stabilizability of this class of systems is established. An example is provided to demonstrate the usefulness of the proposed theoretical results.
TCP Congestion Control for the Networks with Markovian Jump Parameters
Directory of Open Access Journals (Sweden)
MOMENI, H. R.
2011-05-01
Full Text Available This paper is concerned with the problem of TCP congestion control for the class of communication networks with random parameters. The linear dynamic model of TCP New Reno in congestion avoidance mode is considered which contains round trip delays in both state and input. The randomness of link capacity, round trip time delay and the number of TCP sessions is modeled with a continuous-time finite state Markov process. An Active Queue Management (AQM technique is then used to adjust the queue level of the congested link to a predefined value. For this purpose, a dynamic output feedback controller with mode dependent parameters is synthesized to stochastically stabilize the TCP/AQM dynamics. The procedure of the control synthesis is implemented by solving a linear matrix inequality (LMI. The results are tested within a simulation example and the effectiveness of the proposed design method is verified.
Directory of Open Access Journals (Sweden)
Yajun Li
2015-01-01
Full Text Available This paper deals with the robust H∞ filter design problem for a class of uncertain neutral stochastic systems with Markovian jumping parameters and time delay. Based on the Lyapunov-Krasovskii theory and generalized Finsler Lemma, a delay-dependent stability condition is proposed to ensure not only that the filter error system is robustly stochastically stable but also that a prescribed H∞ performance level is satisfied for all admissible uncertainties. All obtained results are expressed in terms of linear matrix inequalities which can be easily solved by MATLAB LMI toolbox. Numerical examples are given to show that the results obtained are both less conservative and less complicated in computation.
Ali, M Syed; Rani, M Esther
2015-01-01
This paper investigates the problem of robust passivity of uncertain stochastic neural networks with time-varying delays and Markovian jumping parameters. To reflect most of the dynamical behaviors of the system, both parameter uncertainties and stochastic disturbances are considered; stochastic disturbances are given in the form of a Brownian motion. By utilizing the Lyapunov functional method, the Itô differential rule, and matrix analysis techniques, we establish a sufficient criterion such that, for all admissible parameter uncertainties and stochastic disturbances, the stochastic neural network is robustly passive in the sense of expectation. A delay-dependent stability condition is formulated, in which the restriction of the derivative of the time-varying delay should be less than 1 is removed. The derived criteria are expressed in terms of linear matrix inequalities that can be easily checked by using the standard numerical software. Illustrative examples are presented to demonstrate the effectiveness and usefulness of the proposed results.
Robust guaranteed cost filtering for uncertain time-delay systems with Markovian jumping parameters
Institute of Scientific and Technical Information of China (English)
Fu Yanming; Zhang Ying; Duan Guangren; Chai Qingxuan
2005-01-01
The robust guaranteed cost filtering problem for a class of linear uncertain stochastic systems with time delays is investigated. The system under study involves time delays, jumping parameters and Brownian motions. The transition of the jumping parameters in systems is governed by a finite-state Markov process. The objective is to design linear memoryless filters such that for all uncertainties, the resulting augmented system is robust stochastically stable independent of delays and satisfies the proposed guaranteed cost performance. Based on stability theory in stochastic differential equations, a sufficient condition on the existence of robust guaranteed cost filters is derived. Robust guaranteed cost filters are designed in terms of linear matrix inequalities. A convex optimization problem with LMI constraints is formulated to design the suboptimal guaranteed cost filters.
Non-Markovian Quantum Jumps in Excitonic Energy Transfer
Rebentrost, Patrick; Aspuru-Guzik, Alan
2009-01-01
We utilize the novel non-Markovian quantum jump (NMQJ) approach to stochastically simulate exciton dynamics derived from a time-convolutionless master equation. For relevant parameters and time scales, the time-dependent, oscillatory decoherence rates can have negative regions, a signature of non-Markovian behavior and of the revival of coherences. This can lead to non-Markovian population beatings for a dimer system at room temperature. We show that strong exciton-phonon coupling to low frequency modes can considerably modify transport properties. We observe increased exciton transport, which can be seen as an extension of recent environment-assisted quantum transport (ENAQT) concepts to the non-Markovian regime. Within the NMQJ method, the Fenna-Matthew-Olson protein is investigated as a prototype for larger photosynthetic complexes.
Nonlinear H∞ filtering for interconnected Markovian jump systems
Institute of Scientific and Technical Information of China (English)
Zhang Xiaomei; Zheng Yufan
2006-01-01
The problem of nonlinear H∞ filtering for interconnected Markovian jump systems is discussed. The aim of this note is the design of a nonlinear Markovian jump filter such that the resulting error system is exponentially meansquare stable and ensures a prescribed H∞ performance. A sufficient condition for the solvability of this problem is given in terms of linear matrix inequalities(LMIs). A simulation example is presented to demonstrate the effectiveness of the proposed design approach.
Control and filtering for semi-Markovian jump systems
Li, Fanbiao; Wu, Ligang
2017-01-01
This book presents up-to-date research developments and novel methodologies on semi-Markovian jump systems (S-MJS). It presents solutions to a series of problems with new approaches for the control and filtering of S-MJS, including stability analysis, sliding mode control, dynamic output feedback control, robust filter design, and fault detection. A set of newly developed techniques such as piecewise analysis method, positively invariant set approach, event-triggered method, and cone complementary linearization approaches are presented. Control and Filtering for Semi-Markovian Jump Systems is a comprehensive reference for researcher and practitioners working in control engineering, system sciences and applied mathematics, and is also a useful source of information for senior undergraduates and graduates in these areas. The readers will benefit from some new concepts, new models and new methodologies with practical significance in control engineering and signal processing.
Robust H∞ Filtering for a Class of Uncertain Markovian Jump Systems with Time Delays
Directory of Open Access Journals (Sweden)
Yi Yang
2013-01-01
Full Text Available This paper studies the problem of robust H∞ filtering for a class of uncertain time-delay systems with Markovian jumping parameters. The system under consideration is subject to norm-bounded time-varying parameter uncertainties. The problem to be addressed is the design of a Markovian jump filter such that the filter error dynamics are stochastically stable and a prescribed bound on the ℒ2-induced gain from the noise signals to the filter error is guaranteed for all admissible uncertainties. A sufficient condition for the existence of the desired robust H∞ filter is given in terms of two sets of coupled algebraic Riccati inequalities. When these algebraic Riccati inequalities are feasible, the expression of a desired H∞ filter is also presented. Finally, an illustrative numerical example is provided.
Robust H ∞ control for uncertain Markovian jump systems with mixed delays
R, Saravanakumar; M Syed, Ali
2016-07-01
We scrutinize the problem of robust H ∞ control for a class of Markovian jump uncertain systems with interval time-varying and distributed delays. The Markovian jumping parameters are modeled as a continuous-time finite-state Markov chain. The main aim is to design a delay-dependent robust H ∞ control synthesis which ensures the mean-square asymptotic stability of the equilibrium point. By constructing a suitable Lyapunov-Krasovskii functional (LKF), sufficient conditions for delay-dependent robust H ∞ control criteria are obtained in terms of linear matrix inequalities (LMIs). The advantage of the proposed method is illustrated by numerical examples. The results are also compared with the existing results to show the less conservativeness. Project supported by Department of Science and Technology (DST) under research project No. SR/FTP/MS-039/2011.
Robust H∞control for uncertain Markovian jump systems with mixed delays
Institute of Scientific and Technical Information of China (English)
R Saravanakumar; M Syed Ali‡
2016-01-01
We scrutinize the problem of robust H∞control for a class of Markovian jump uncertain systems with interval time-varying and distributed delays. The Markovian jumping parameters are modeled as a continuous-time finite-state Markov chain. The main aim is to design a delay-dependent robust H∞control synthesis which ensures the mean-square asymptotic stability of the equilibrium point. By constructing a suitable Lyapunov–Krasovskii functional (LKF), sufficient conditions for delay-dependent robust H∞control criteria are obtained in terms of linear matrix inequalities (LMIs). The advantage of the proposed method is illustrated by numerical examples. The results are also compared with the existing results to show the less conservativeness.
Analysis and design of singular Markovian jump systems
Wang, Guoliang; Yan, Xinggang
2014-01-01
This monograph is an up-to-date presentation of the analysis and design of singular Markovian jump systems (SMJSs) in which the transition rate matrix of the underlying systems is generally uncertain, partially unknown and designed. The problems addressed include stability, stabilization, H∞ control and filtering, observer design, and adaptive control. applications of Markov process are investigated by using Lyapunov theory, linear matrix inequalities (LMIs), S-procedure and the stochastic Barbalat's Lemma, among other techniques.Features of the book include:·???????? study of the stability pr
Stochastic Stability Analysis for Markovian Jump Neutral Nonlinear Systems
Directory of Open Access Journals (Sweden)
Bo Wang
2012-10-01
Full Text Available In this paper, the stability problem is studied for a class of Markovian jump neutral nonlinear systems with time-varying delay. By Lyapunov-Krasovskii function approach, a novel mean-square exponential stability criterion is derived for the situations that the system's transition rates are completely accessible, partially accessible and non-accessible, respectively. Moreover, the developed stability criterion is extended to the systems with different bounded sector nonlinear constraints. Finally, some numerical examples are provided to illustrate the effectiveness of the proposed methods.
Full-State Linearization and Stabilization of SISO Markovian Jump Nonlinear Systems
Directory of Open Access Journals (Sweden)
Zhongwei Lin
2013-01-01
Full Text Available This paper investigates the linearization and stabilizing control design problems for a class of SISO Markovian jump nonlinear systems. According to the proposed relative degree set definition, the system can be transformed into the canonical form through the appropriate coordinate changes followed with the Markovian switchings; that is, the system can be full-state linearized in every jump mode with respect to the relative degree set n,…,n. Then, a stabilizing control is designed through applying the backstepping technique, which guarantees the asymptotic stability of Markovian jump nonlinear systems. A numerical example is presented to illustrate the effectiveness of our results.
H∞control for uncertain Markovian jump systems with mode-dependent mixed delays
Institute of Scientific and Technical Information of China (English)
Yingchun Wang; Huaguang Zhang
2008-01-01
We study the problem of H∞ control for a class of Markovian jump systems with norm-bounded parameter uncertainties and mode-dependent mixed delays including discrete delays and distributed delays in this paper. Our aim is to present a new delay-dependent control approach such that the resulting closed-loop system is robust mean-square (MS) exponentially stable and satisfies a prescribed H∞ performance level, irrespective of the parameter uncertainties. Such delay-dependent approach does not require system transformation or free-weighting matrix. A numerical example shows that the results are less conservative and more effective.
Robust H∞ Control for Uncertain Markovian Jump Linear Time-Delay Systems
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
This paper studies the robust stochastic stabilization and robust H∞ control for linear time-delay systems with both Markovian jump parameters and unknown norm-bounded parameter uncertainties. This problem can be solved on the basis of stochastic Lyapunov approach and linear matrix inequality (LMI) technique. Sufficient conditions for the existence of stochastic stabilization and robust H∞ state feedback controller are presented in terms of a set of solutions of coupled LMIs. Finally, a numerical example is included to demonstrate the practicability of the proposed methods.
Delay-dependent stabilization of singular Markovian jump systems with state delay
Institute of Scientific and Technical Information of China (English)
Zhengguang WU; Hongye SU; Jian CHU
2009-01-01
This paper deals with the delay-dependent stabilization problem for singular systems with Markovian jump parameters and time delays.A delay-dependent condition is established for the considered system to be regular,impulse free and stochastically stable.Based on the condition,a design algorithm of the desired state feedback controller which guarantees the resultant closed-loop system to be regular,impulse free and stochastically stable is proposed in terms of a set of strict linear matrix inequalities (LMIs).Numerical examples show the effectiveness of the proposed methods.
Stabilization of stochastic systems with hidden Markovian jumps
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper considers the adaptive control of discrete-time hybrid stochastic systems with unknown randomly jumping parameters described by a finite-state hidden Markov chain. An intuitive yet longstanding conjecture in this area is that such hybrid systems can be adaptively stabilized whenever the rate of transition of the hidden Markov chain is small enough. This paper provides a rigorous positive answer to this conjecture by establishing the global stability of a gradient-algorithm-based adaptive linear-quadratic control.
Robust fault detection for discrete-time Markovian jump systems with mode-dependent time-delays
Institute of Scientific and Technical Information of China (English)
Hongru WANG; Changhong WANG; Shaoshuai MOU; Huijun GAO
2007-01-01
This paper investigates a fault detection problem for a class of discrete-time Markovian jump systems with norm-bounded uncertainties and mode-dependent time-delays. Attention is focused on constructing the residual generator based on the filter of which its parameters matrices are dependent on the system mode, that is, the fault detection filter is a Markovian jump system as well. The design of fault detection filter is reduced to H-infinity filtering problem by using H-infinity control theory, which can guarantee the difference between the residual and the fault (or, more generally weighted fault) as small as possible in the context of enhancing the robustness of residual to modeling errors, control inputs and unknown inputs. Sufficient condition for the existence of the above filters is established by means of linear matrix inequalities, which can be readily solved by using standard numerical software. A numerical example is given to illustrate the feasibility of the proposed method.
Multilevel Approximations of Markovian Jump Processes with Applications in Communication Networks
Vilanova, Pedro
2015-05-04
This thesis focuses on the development and analysis of efficient simulation and inference techniques for Markovian pure jump processes with a view towards applications in dense communication networks. These techniques are especially relevant for modeling networks of smart devices —tiny, abundant microprocessors with integrated sensors and wireless communication abilities— that form highly complex and diverse communication networks. During 2010, the number of devices connected to the Internet exceeded the number of people on Earth: over 12.5 billion devices. By 2015, Cisco’s Internet Business Solutions Group predicts that this number will exceed 25 billion. The first part of this work proposes novel numerical methods to estimate, in an efficient and accurate way, observables from realizations of Markovian jump processes. In particular, hybrid Monte Carlo type methods are developed that combine the exact and approximate simulation algorithms to exploit their respective advantages. These methods are tailored to keep a global computational error below a prescribed global error tolerance and within a given statistical confidence level. Indeed, the computational work of these methods is similar to the one of an exact method, but with a smaller constant. Finally, the methods are extended to systems with a disparity of time scales. The second part develops novel inference methods to estimate the parameters of Markovian pure jump process. First, an indirect inference approach is presented, which is based on upscaled representations and does not require sampling. This method is simpler than dealing directly with the likelihood of the process, which, in general, cannot be expressed in closed form and whose maximization requires computationally intensive sampling techniques. Second, a forward-reverse Monte Carlo Expectation-Maximization algorithm is provided to approximate a local maximum or saddle point of the likelihood function of the parameters given a set of
H∞ Filtering for Networked Markovian Jump Systems with Multiple Stochastic Communication Delays
Directory of Open Access Journals (Sweden)
Hui Dong
2015-01-01
Full Text Available This paper is concerned with the H∞ filtering for a class of networked Markovian jump systems with multiple communication delays. Due to the existence of communication constraints, the measurement signal cannot arrive at the filter completely on time, and the stochastic communication delays are considered in the filter design. Firstly, a set of stochastic variables is introduced to model the occurrence probabilities of the delays. Then based on the stochastic system approach, a sufficient condition is obtained such that the filtering error system is stable in the mean-square sense and with a prescribed H∞ disturbance attenuation level. The optimal filter gain parameters can be determined by solving a convex optimization problem. Finally, a simulation example is given to show the effectiveness of the proposed filter design method.
New Results on Stability and Stabilization of Markovian Jump Systems with Time Delay
Directory of Open Access Journals (Sweden)
Hongwei Xia
2014-01-01
Full Text Available This technical paper deals with the problem of stochastic stability and stabilization for a class of linear Markovian jumping systems with discrete time-varying delay. A novel delay-dependent stochastic stability criterion for Markovian delay systems is established based on new augmented Lyapunov-Krasovskii functional and delay fractioning techniques. Then a state feedback controller is designed to guarantee the stochastic stability of the resulting closed-loop system. Numerical examples are provided to illustrate the effectiveness of the proposed design approach in this paper.
Zhang, Honglu; Cheng, Jun; Wang, Hailing; Chen, Yiping; Xiang, Huili
2016-07-01
This paper investigates the problem of finite-time event-triggered H∞ boundedness for network-based Markovian jump nonlinear system. An improved model is introduced in terms of network-induced delay. By synthesizing the newly event-triggering conditions, the finite-time H∞ boundedness for networked Markovian jump nonlinear systems are guaranteed. At last, a numerical example is given to illustrate the effectiveness of proposed theoretical results.
Institute of Scientific and Technical Information of China (English)
Zhu Jin; Xi Hongsheng; Xiao Xiaobo; Ji Haibo
2007-01-01
Robust LQG problems of discrete-time Markovian jump systems with uncertain noises are investigated.The problem addressed is the construction of perturbation upper bounds on the uncertain noise covariances so as to guarantee that the deviation of the control performance remains within the precision prescribed in actual problems.Furthermore, this regulator is capable of minimizing the worst performance in an uncertain case. A numerical example is exploited to show the validity of the method.
Robust fuzzy control for stochastic Markovian jumping systems via sliding mode method
Chen, Bei; Jia, Tinggang; Niu, Yugang
2016-07-01
This paper considers the problem of sliding mode control for stochastic Markovian jumping systems by means of fuzzy method. The Takagi-Sugeno (T-S) fuzzy stochastic model subject to state-dependent noise is presented. A key feature in this work is to remove the restricted condition that each local system model had to share the same input channel, which is usually assumed in some existing results. The integral sliding surface is constructed for every mode and the connections among various sliding surfaces are established via a set of coupled matrices. Moreover, the present sliding mode controller including the transition rates of modes can cope with the effect of Markovian switching. It is shown that both the reachability of sliding surfaces and the stability of sliding mode dynamics can be ensured. Finally, numerical simulation results are given.
L1/ℓ1-Gain analysis and synthesis of Markovian jump positive systems with time delay.
Zhang, Junfeng; Zhao, Xudong; Zhu, Fubo; Han, Zhengzhi
2016-07-01
This paper is concerned with stability analysis and control synthesis of Markovian jump positive systems with time delay. The notions of stochastic stability with L1- and ℓ1-gain performances are introduced for continuous- and discrete-time contexts, respectively. Using a stochastic copositive Lyapunov function, sufficient conditions for the stability with L1/ℓ1-gain performance of the systems are established. Furthermore, mode-dependent controllers are designed to achieve the stabilization with L1/ℓ1-gain of the resulting closed-loop systems. All proposed conditions are formulated in terms of linear programming. Numerical examples are provided to verify the effectiveness of the findings of theory.
Kao, Yonggui; Wang, Changhong; Xie, Jing; Karimi, Hamid Reza
2016-08-01
This paper investigates the delay-dependent stability problem for neutral Markovian jump systems with generally unknown transition rates (GUTRs). In this neutral GUTR model, each transition rate is completely unknown or only its estimate value is known. Based on the study of expectations of the stochastic cross-terms containing the ? integral, a new stability criterion is derived in terms of linear matrix inequalities. In the mathematical derivation process, bounding stochastic cross-terms, model transformation and free-weighting matrix are not employed for less conservatism. Finally, an example is provided to demonstrate the effectiveness of the proposed results.
On Optimal Fault Detection for Discrete-time Markovian Jump Linear Systems
Institute of Scientific and Technical Information of China (English)
LI Yue-Yang; ZHONG Mai-Ying
2013-01-01
This paper deals with the problem of fault detection for discrete-time Markovian jump linear systems (MJLS).Using an observer-based fault detection filter (FDF) as a residual generator,the design of the FDF is formulated as an optimization problem for maximizing stochastic H_/H∞ or H∞/H∞ performance index.With the aid of an operator optimization method,it is shown that a unified optimal solution can be derived by solving a coupled Riccati equation.Numerical examples are given to show the effectiveness of the proposed method.
Mixed H2/H∞ Pitch Control of Wind Turbine with a Markovian Jump Model
DEFF Research Database (Denmark)
Lin, Zhongwei; Liu, Jizhen; Wu, Qiuwei
2016-01-01
to guarantee both the disturbance rejection and the mechanical loads objectives, which can reduce the power volatility and the generator torque fluctuation of the whole transmission mechanism efficiently. Simulation results for a 2 MW wind turbine show the effectiveness of the proposed method.......This paper proposes a Markovian jump model and the corresponding H2 /H∞ control strategy for the wind turbine driven by the stochastic switching wind speed, which can be used to regulate the generator speed in order to harvest the rated power while reducing the fatigue loads on the mechanical side...
Directory of Open Access Journals (Sweden)
Jin Zhu
2009-01-01
Full Text Available Switching controller design for a class of Markovian jump nonlinear systems with unmodeled dynamics is considered in this paper. Based on the differential equation and infinitesimal generator of jump systems, the concept of Jump Input-to-State practical Stability (JISpS in probability and stochastic Lyapunov stability criterion are put forward. By using backsetpping technology and stochastic small-gain theorem, a switching controller is proposed which ensures JISpS in probability for the jump nonlinear system. A simulation example illustrates the validity of this design.
Robust H-Infinity Filtering for Networked Control Systems with Markovian Jumps and Packet Dropouts
Directory of Open Access Journals (Sweden)
Fangwen Li
2014-07-01
Full Text Available This paper deals with the H-Infinity filtering problem for uncertain networked control systems. In the study, network-induced delays, limited communication capacity due to signal quantization and packet dropout are all taken into consideration. The finite distributed delays with probability of occurrence in a random way is introduced in the network.The packet dropout is described by a Bernoulli process. The system is modeled as Markovian jumps system with partially known transition probabilities. A full-order filter is designed to estimate the system state. By linear inequality approach, a sufficient condition is derived for the resulting filtering error system to be mean square stable with a prescribed H-Infinity performance level. Finally, a numerical example is given to illustrate the effectiveness and efficiency of the proposed design method.
Prakash, M; Balasubramaniam, P; Lakshmanan, S
2016-11-01
This study is mainly concerned with the problem on synchronization criteria for Markovian jumping time delayed bidirectional associative memory neural networks and their applications in secure image communications. Based on the variable transformation method, the addressed second order differential equations are transformed into first order differential equations. Then, by constructing a suitable Lyapunov-Krasovskii functional and based on integral inequalities, the criteria which ensure the synchronization between the uncontrolled system and controlled system are established through designed feedback controllers and linear matrix inequalities. Further, the proposed results proved that the error system is globally asymptotically stable in the mean square. Moreover, numerical illustrations are provided to validate the effectiveness of the derived analytical results. Finally, the application of addressed system is explored via image encryption/decryption process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Huiying Sun
2014-01-01
Full Text Available We mainly consider the stability of discrete-time Markovian jump linear systems with state-dependent noise as well as its linear quadratic (LQ differential games. A necessary and sufficient condition involved with the connection between stochastic Tn-stability of Markovian jump linear systems with state-dependent noise and Lyapunov equation is proposed. And using the theory of stochastic Tn-stability, we give the optimal strategies and the optimal cost values for infinite horizon LQ stochastic differential games. It is demonstrated that the solutions of infinite horizon LQ stochastic differential games are concerned with four coupled generalized algebraic Riccati equations (GAREs. Finally, an iterative algorithm is presented to solve the four coupled GAREs and a simulation example is given to illustrate the effectiveness of it.
Directory of Open Access Journals (Sweden)
Yanbo Li
2014-01-01
Full Text Available This paper is devoted to the investigation of the design of robust guaranteed cost observer for a class of linear singular Markovian jump time-delay systems with generally incomplete transition probability. In this singular model, each transition rate can be completely unknown or only its estimate value is known. Based on stability theory of stochastic differential equations and linear matrix inequality (LMI technique, we design an observer to ensure that, for all uncertainties, the resulting augmented system is regular, impulse free, and robust stochastically stable with the proposed guaranteed cost performance. Finally, a convex optimization problem with LMI constraints is formulated to design the suboptimal guaranteed cost filters for linear singular Markovian jump time-delay systems with generally incomplete transition probability.
Xinghua Liu; Hongsheng Xi
2013-01-01
The exponential stability of neutral Markovian jump systems with interval mode-dependent time-varying delays, nonlinear perturbations, and partially known transition rates is investigated. A novel augmented stochastic Lyapunov functional is constructed, which employs the improved bounding technique and contains triple-integral terms to reduce conservativeness; then the delay-range-dependent and rate-dependent exponential stability criteria are developed by Lyapunov stability theory, reciproca...
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
This paper deals with the problem of H-infinity filter design for uncertain time-delay singular stochastic systems with Markovian jump.Based on the extended It(o) stochastic differential formula,sufficient conditions for the solvability of these problems are obtained.Furthermore,It is shown that a desired filter can be constructed by solving a set of linear matrix inequalities.Finally,a simulation example is given to demonstrate the effectiveness of the proposed method.
On the Stability of Jump-Linear Systems Driven by Finite-State Machines with Markovian Inputs
Patilkulkarni, Sudarshan; Herencia-Zapana, Heber; Gray, W. Steven; Gonzalez, Oscar R.
2004-01-01
This paper presents two mean-square stability tests for a jump-linear system driven by a finite-state machine with a first-order Markovian input process. The first test is based on conventional Markov jump-linear theory and avoids the use of any higher-order statistics. The second test is developed directly using the higher-order statistics of the machine s output process. The two approaches are illustrated with a simple model for a recoverable computer control system.
Directory of Open Access Journals (Sweden)
Haiyang Chen
2015-01-01
Full Text Available This paper is concerned with the robust H∞ finite-time control for discrete delayed nonlinear systems with Markovian jumps and external disturbances. It is usually assumed that the disturbance affects the system states and outputs with the same influence degree of 100%, which is not evident enough to reflect the situation where the disturbance affects these two parts by different influence degrees. To tackle this problem, a probabilistic distribution denoted by binomial sequences is introduced to describe the external disturbance. Throughout the paper, the definitions of the finite-time boundedness (FTB and the H∞ FTB are firstly given respectively. To extend the results further, a model which combines a linear dynamic system and a static nonlinear operator is referred to describe the system under discussion. Then by virtue of state feedback control method, some new sufficient criteria are derived which guarantee the FTB and H∞ FTB performances for the considered system. Finally, an example is provided to demonstrate the effectiveness of the developed control laws.
Filtering and control of stochastic jump hybrid systems
Yao, Xiuming; Zheng, Wei Xing
2016-01-01
This book presents recent research work on stochastic jump hybrid systems. Specifically, the considered stochastic jump hybrid systems include Markovian jump Ito stochastic systems, Markovian jump linear-parameter-varying (LPV) systems, Markovian jump singular systems, Markovian jump two-dimensional (2-D) systems, and Markovian jump repeated scalar nonlinear systems. Some sufficient conditions are first established respectively for the stability and performances of those kinds of stochastic jump hybrid systems in terms of solution of linear matrix inequalities (LMIs). Based on the derived analysis conditions, the filtering and control problems are addressed. The book presents up-to-date research developments and novel methodologies on stochastic jump hybrid systems. The contents can be divided into two parts: the first part is focused on robust filter design problem, while the second part is put the emphasis on robust control problem. These methodologies provide a framework for stability and performance analy...
State Estimation for Time-Delay Systems with Markov Jump Parameters and Missing Measurements
Directory of Open Access Journals (Sweden)
Yushun Tan
2014-01-01
Full Text Available This paper is concerned with the state estimation problem for a class of time-delay systems with Markovian jump parameters and missing measurements, considering the fact that data missing may occur in the process of transmission and its failure rates are governed by random variables satisfying certain probabilistic distribution. By employing a new Lyapunov function and using the convexity property of the matrix inequality, a sufficient condition for the existence of the desired state estimator for Markovian jump systems with missing measurements can be achieved by solving some linear matrix inequalities, which can be easily facilitated by using the standard numerical software. Furthermore, the gain of state estimator can also be derived based on the known conditions. Finally, a numerical example is exploited to demonstrate the effectiveness of the proposed method.
H2 control of discrete-time periodic systems with Markovian jumps and multiplicative noise
Ma, Hongji; Jia, Yingmin
2013-10-01
This paper addresses the problem of optimal and robust H2 control for discrete-time periodic systems with Markov jump parameters and multiplicative noise. To analyse the system performance in the presence of exogenous random disturbance, an H2 norm is firstly established on the basis of Gramian matrices. Further, under the condition of exact observability, a necessary and sufficient condition is presented for the solvability of H2 optimal control problem by means of a generalised Riccati equation. When the transition probabilities of jump parameter are incompletely measurable, an H2-guaranteed cost norm is exploited and the robust H2 controller is designed through a linear matrix inequality (LMI) optimisation approach. An example of a networked control system is supplied to illustrate the proposed results.
M. Syed, Ali
2014-06-01
In this paper, the global asymptotic stability problem of Markovian jumping stochastic Cohen—Grossberg neural networks with discrete and distributed time-varying delays (MJSCGNNs) is considered. A novel LMI-based stability criterion is obtained by constructing a new Lyapunov functional to guarantee the asymptotic stability of MJSCGNNs. Our results can be easily verified and they are also less restrictive than previously known criteria and can be applied to Cohen—Grossberg neural networks, recurrent neural networks, and cellular neural networks. Finally, the proposed stability conditions are demonstrated with numerical examples.
Directory of Open Access Journals (Sweden)
Ngoc Hoai An Nguyen
2016-01-01
Full Text Available This paper concentrates on the issue of stability analysis and control synthesis for semi-Markovian jump systems (S-MJSs with uncertain probability intensities. Here, to construct a more applicable transition model for S-MJSs, the probability intensities are taken to be uncertain, and this property is totally reflected in the stabilization condition via a relaxation process established on the basis of time-varying transition rates. Moreover, an extension of the proposed approach is made to tackle the quantized control problem of S-MJSs, where the infinitesimal operator of a stochastic Lyapunov function is clearly discussed with consideration of input quantization errors.
Directory of Open Access Journals (Sweden)
Xin-Gang Zhao
2013-01-01
Full Text Available For a class of continuous-time Markovian jump linear uncertain systems with partly known transition rates and input quantization, the H2 state-feedback control design is considered. The elements in the transition rates matrix include completely known, boundary known, and completely unknown ones. First, an H2 cost index for Markovian jump linear uncertain systems is introduced; then by introducing a new matrix inequality condition, sufficient conditions are formulated in terms of linear matrix inequalities (LMIs for the H2 control of the Markovian jump linear uncertain systems. Less conservativeness is achieved than the result obtained with the existing technique. Finally, a numerical example is given to verify the validity of the theoretical results.
Liu, Qun
2015-09-01
In this paper, a stochastic n-species Gilpin-Ayala competitive model with Lévy jumps and Markovian switching is proposed and studied. Some asymptotic properties are investigated and sufficient conditions for extinction, non-persistence in the mean and weak persistence are established. The threshold between extinction and weak persistence is obtained. The results illustrate that the asymptotic properties of the considered system have close relationships with Lévy jumps and the stationary distribution of the Markovian chain. Moreover, some simulation figures are presented to confirm our main results.
Chandrasekar, A; Rakkiyappan, R; Cao, Jinde
2015-10-01
This paper studies the impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach. The array of neural networks are coupled in a random fashion which is governed by Bernoulli random variable. The aim of this paper is to obtain the synchronization criteria, which is suitable for both exactly known and partly unknown transition probabilities such that the coupled neural network is synchronized with mixed time-delay. The considered impulsive effects can be synchronized at partly unknown transition probabilities. Besides, a multiple integral approach is also proposed to strengthen the Markovian jumping randomly coupled neural networks with partly unknown transition probabilities. By making use of Kronecker product and some useful integral inequalities, a novel Lyapunov-Krasovskii functional was designed for handling the coupled neural network with mixed delay and then impulsive synchronization criteria are solvable in a set of linear matrix inequalities. Finally, numerical examples are presented to illustrate the effectiveness and advantages of the theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Institute of Scientific and Technical Information of China (English)
付艳明; 段广仁
2005-01-01
This paper investigates the design of robust guaranteed cost observer for a class of lineardescriptor time-delay systems with jumping parameters. The system under study involves time de-lays, jumping parameters and uncertainties. The transition of the jumping parameters in systems isgoverned by a finite-state Markov process. The objective is to design linear memoryless observers suchthat for all uncertainties, the resulting augmented system is regular, impulse free, robust stochasti-cally stable independent of delays and satisfies the proposed guaranteed cost performance. Based onstability theory in stochastic differential equations, a sufficient condition on the existence of robustguaranteed cost observers is derived. Robust guaranteed cost observers are designed in terms of linearmatrix inequalities. A convex optimization problem with LMI constraints is formulated to design thesuboptimal guaranteed cost filters.
Directory of Open Access Journals (Sweden)
Dan Ye
2013-01-01
Full Text Available This paper is concerned with delay-dependent stochastic stability for time-delay Markovian jump systems (MJSs with sector-bounded nonlinearities and more general transition probabilities. Different from the previous results where the transition probability matrix is completely known, a more general transition probability matrix is considered which includes completely known elements, boundary known elements, and completely unknown ones. In order to get less conservative criterion, the state and transition probability information is used as much as possible to construct the Lyapunov-Krasovskii functional and deal with stability analysis. The delay-dependent sufficient conditions are derived in terms of linear matrix inequalities to guarantee the stability of systems. Finally, numerical examples are exploited to demonstrate the effectiveness of the proposed method.
Directory of Open Access Journals (Sweden)
Yang Fang
2016-01-01
Full Text Available The robust exponential stability problem for a class of uncertain impulsive stochastic neural networks of neutral-type with Markovian parameters and mixed time-varying delays is investigated. By constructing a proper exponential-type Lyapunov-Krasovskii functional and employing Jensen integral inequality, free-weight matrix method, some novel delay-dependent stability criteria that ensure the robust exponential stability in mean square of the trivial solution of the considered networks are established in the form of linear matrix inequalities (LMIs. The proposed results do not require the derivatives of discrete and distributed time-varying delays to be 0 or smaller than 1. Moreover, the main contribution of the proposed approach compared with related methods lies in the use of three types of impulses. Finally, two numerical examples are worked out to verify the effectiveness and less conservativeness of our theoretical results over existing literature.
Cheng, Jun; Zhu, Hong; Zhong, Shouming; Zeng, Yong; Dong, Xiucheng
2013-11-01
This paper is concerned with the problem of finite-time H∞ control for a class of Markovian jump systems with mode-dependent time-varying delays via new Lyapunov functionals. In order to reduce conservatism, a new Lyapunov-Krasovskii functional is constructed. Based on the derived condition, the reliable H∞ control problem is solved, and the system trajectory stays within a prescribed bound during a specified time interval. Finally, numerical examples are given to demonstrate the proposed approach is more effective than some existing ones.
Xu, Yong; Lu, Renquan; Shi, Peng; Tao, Jie; Xie, Shengli
2017-01-24
This paper studies the issue of robust state estimation for coupled neural networks with parameter uncertainty and randomly occurring distributed delays, where the polytopic model is employed to describe the parameter uncertainty. A set of Bernoulli processes with different stochastic properties are introduced to model the randomly occurrences of the distributed delays. Novel state estimators based on the local coupling structure are proposed to make full use of the coupling information. The augmented estimation error system is obtained based on the Kronecker product. A new Lyapunov function, which depends both on the polytopic uncertainty and the coupling information, is introduced to reduce the conservatism. Sufficient conditions, which guarantee the stochastic stability and the l₂-l∞ performance of the augmented estimation error system, are established. Then, the estimator gains are further obtained on the basis of these conditions. Finally, a numerical example is used to prove the effectiveness of the results.
Institute of Scientific and Technical Information of China (English)
冉华军; 张涛
2011-01-01
The problem of non-fragile H∞ control for a class of discrete-time singular Markovian jump system is studied. Considering nominal system with controller in the presence of parameter variation, a sufficient condition is first established in terms of some coupled matrix inequalities on robust stochastical admissibility and H∞ disturbance attenuation property for resulting closed-loop uncertain system. Then the sufficient condition on non-fragile state feedback H∞ controller is presented. It is shown that non-fragile state feedback H∞ controller can be constructed through numerical solusion of a set of coupled linear matrix inequalities. Finally,the result with repect to nominal system is extended to robust non-fragile H∞ controller design for uncertain discrete-time singular Markovian jump system.%本文研究了一类离散奇异Markovian跳变系统的非脆弱H∞问题.首先针对标称离散奇异Markovian跳变系统,得到考虑控制器参数摄动后不确定闭环系统的关于鲁棒随机可容许性及H∞扰动衰减性能分析的结论;然后推导出标称离散奇异Markovian跳变系统非脆弱H∞控制器的设计方法,该方法表明可通过求解一组耦合线性矩阵不等式来构建非脆弱H∞控制器;最后将标称系统的结果进一步推广到考虑系统不确定性的鲁棒非脆弱H∞控制器设计.
Institute of Scientific and Technical Information of China (English)
M.Kalpana; P.Balasubramaniam
2013-01-01
We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete,unbounded distributed delays,and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach.The Lyapunov-Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous.Restrictions (e.g.,time derivative is smaller than one) are removed to obtain a proposed sampled-data controller.Finally,a numerical example is provided to demonstrate the reliability of the derived results.
Institute of Scientific and Technical Information of China (English)
Zhang Hua-Guang; Fu Jie; Ma Tie-Dong; Tong Shao-Cheng
2009-01-01
This paper is concerned with the problem of robust stability for a class of Markovian jumping stochastic neural networks (MJSNNs) subject to mode-dependent time-varying interval delay and state-multiplicative noise.Based on the Lyapunov-Krasovskii functional and a stochastic analysis approach,some new delay-dependent sufficient conditions are obtained in the linear matrix inequality (LMI) format such that delayed MJSNNs are globally asymptotically stable in the mean-square sense for all admissible uncertainties.An important feature of the results is that the stability criteria are dependent on not only the lower bound and upper bound of delay for all modes but also the covariance matrix consisting of the correlation coefficient.Numerical examples are given to illustrate the effectiveness.
Ramlan, Roszaidi; Brennan, Michael J.; Kovacic, Ivana; Mace, Brian R.; Burrow, Stephen G.
2016-08-01
This work concerns the application of certain non-linear phenomena - jump frequencies in a base-excited Duffing oscillator - to the estimation of the parameters of the system. First, approximate analytical expressions are derived for the relationships between the jump-up and jump-down frequencies, the damping ratio and the cubic stiffness coefficient. Then, experimental results, together with the results of numerical simulations, are presented to show how knowledge of these frequencies can be exploited.
Directory of Open Access Journals (Sweden)
Ruofeng Rao
2013-01-01
Full Text Available The robust exponential stability of delayed fuzzy Markovian-jumping Cohen-Grossberg neural networks (CGNNs with nonlinear p-Laplace diffusion is studied. Fuzzy mathematical model brings a great difficulty in setting up LMI criteria for the stability, and stochastic functional differential equations model with nonlinear diffusion makes it harder. To study the stability of fuzzy CGNNs with diffusion, we have to construct a Lyapunov-Krasovskii functional in non-matrix form. But stochastic mathematical formulae are always described in matrix forms. By way of some variational methods in W1,p(Ω, Itô formula, Dynkin formula, the semi-martingale convergence theorem, Schur Complement Theorem, and LMI technique, the LMI-based criteria on the robust exponential stability and almost sure exponential robust stability are finally obtained, the feasibility of which can efficiently be computed and confirmed by computer MatLab LMI toolbox. It is worth mentioning that even corollaries of the main results of this paper improve some recent related existing results. Moreover, some numerical examples are presented to illustrate the effectiveness and less conservatism of the proposed method due to the significant improvement in the allowable upper bounds of time delays.
Directory of Open Access Journals (Sweden)
Jun Zhang
2015-06-01
Full Text Available Jumping-height-and-distance (JHD active adjustment capability is important for jumping robots to overcome different sizes of obstacle. This paper proposes a new structural parameter-based JHD active adjustment approach for our previous jumping robot. First, the JHD adjustments, modifying the lengths of different legs of the robot, are modelled and simulated. Then, three mechanisms for leg-length adjustment are proposed and compared, and the screw-and-nut mechanism is selected. And for adjusting of different structural parameters using this mechanism, the one with the best JHD adjusting performance and the lowest mechanical complexity is adopted. Thirdly, an obstacle-distance-and-height (ODH detection method using only one infrared sensor is designed. Finally, the performances of the proposed methods are tested. Experimental results show that the jumping-height-and distance adjustable ranges are 0.11 m and 0.96 m, respectively, which validates the effectiveness of the proposed JHD adjustment method.
Kale, Mehmet; Aşçi, Alper; Bayrak, Coşkun; Açikada, Caner
2009-11-01
The purpose of this study was to investigate the relationships among jumping performances and speed parameters during maximum speed phase in sprinters. Twenty-one men sprinters volunteered to participate at the beginning of the preparation training phase. All tests-including 100-m sprint running, squat jump (SJ), countermovement jump (CMJ), drop jump (DJ), 60-second repetitive jump (RJ), standing long jump (SLJ), standing triple jump (STJ), standing quintuple jump (SQJ), and standing 10-stride jump (STENJ)-were done on switching mats. Flight (FT) and contact times (CT) during the vertical jump tests and 10-m split times during 100-m sprint running were measured by a 2-channel precision timing system (PTS) connected to the mats. The trace marking method was used for measuring the stride length (SL) through 60 m in 100-m sprint running. Stride frequency (SF), maximum velocity (Vmax), jump height for all vertical jumps, and lower-body power in DJ and RJ were calculated. Statistical analysis showed that the highest significant correlation was found between Vmax and DJ height (r = 0.69; p sprint running and SJ (r = 0.39; p sprint running than the other vertical and horizontal jump tests at the beginning of the preparation training phase.
Institute of Scientific and Technical Information of China (English)
WANG Han-xing; YAN Yun-zhi; ZHAO Fei; FANG Da-fan
2007-01-01
A Markovian risk process is considered in this paper, which is the generalization of the classical risk model. It is proper that a risk process with large claims is modelled as the Markovian risk model. In such a model, the occurrence of claims is described by a point process {N(t)}t≥o with N(t) being the number of jumps during the interval (0, t] for a Markov jump process. The ruin probability Ψ(u) of a company facing such a risk model is mainly studied. An integral equation satisfied by the ruin probability function Ψ(u) is obtained and the bounds for the convergence rate of the ruin probability Ψ(u) are given by using a generalized renewal technique developed in the paper.
Mechanical parameters and flight phase characteristics in aquatic plyometric jumping.
Louder, Talin J; Searle, Cade J; Bressel, Eadric
2016-09-01
Plyometric jumping is a commonly prescribed method of training focused on the development of reactive strength and high-velocity concentric power. Literature suggests that aquatic plyometric training may be a low-impact, effective supplement to land-based training. The purpose of the present study was to quantify acute, biomechanical characteristics of the take-off and flight phase for plyometric movements performed in the water. Kinetic force platform data from 12 young, male adults were collected for counter-movement jumps performed on land and in water at two different immersion depths. The specificity of jumps between environmental conditions was assessed using kinetic measures, temporal characteristics, and an assessment of the statistical relationship between take-off velocity and time in the air. Greater peak mechanical power was observed for jumps performed in the water, and was influenced by immersion depth. Additionally, the data suggest that, in the water, the statistical relationship between take-off velocity and time in air is quadratic. Results highlight the potential application of aquatic plyometric training as a cross-training tool for improving mechanical power and suggest that water immersion depth and fluid drag play key roles in the specificity of the take-off phase for jumping movements performed in the water.
Ache-Dias, Jonathan; Dellagrana, Rodolfo A; Teixeira, Anderson S; Dal Pupo, Juliano; Moro, Antônio R P
2016-01-01
This study analyzed the effect of 4 weeks of jumping interval training (JIT), included in endurance training, on neuromuscular and physiological parameters. Eighteen recreational runners, randomized in control and experimental groups, performed 40 min of running at 70% of velocity at peak oxygen uptake, for 3 times per week. Additionally, the experimental group performed the JIT twice per week, which consisted of 4 to 6 bouts of continuous vertical jumps (30 s) with 5-min intervals. Three days before and after the training period, the countermovement (CMJ) and continuous jump (CJ30), isokinetic and isometric evaluation of knee extensors/flexors, progressive maximal exercise, and submaximal constant-load exercise were performed. The JIT provoked improvement in neuromuscular performance, indicated by (i) increased jump height (4.7%; effect size (ES) = 0.99) and power output (≈ 3.7%; ES ≈ 0.82) of CMJ and rate of torque development of knee extensors in isometric contraction (29.5%; ES = 1.02); (ii) anaerobic power and capacity, represented by the mean of jump height (7.4%; ES = 0.8), and peak power output (PPO) (5.6%; ES = 0.73) of the first jumps of CJ30 and the mean of jump height (10.2%, ES = 1.04) and PPO (9.5%, ES = 1.1), considering all jumps of CJ30; and (iii) aerobic power and capacity, represented by peak oxygen uptake (9.1%, ES = 1.28), velocity at peak oxygen uptake (2.7%, ES = 1.11), and velocity corresponding to the onset of blood lactate accumulation (9.7%, ES = 1.23). These results suggest that the JIT included in traditional endurance training induces moderate to large effects on neuromuscular and physiological parameters.
Nonlinear H{sub {infinity}} control of stochastic time-delay systems with Markovian switching
Energy Technology Data Exchange (ETDEWEB)
Wei Guoliang [School of Information Sciences and Technology, Donghua University, Shanghai 200051 (China); Wang Zidong [School of Information Sciences and Technology, Donghua University, Shanghai 200051 (China); Department of Information Systems and Computing, Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom)], E-mail: Zidong.Wang@brunel.ac.uk; Shu Huisheng [Department of Applied Mathematics, Donghua University, Shanghai 200051 (China)
2008-02-15
In this paper, the stabilization and H{sub {infinity}} control problems are investigated for a class of stochastic time-delay systems with both nonlinear disturbances and Markovian jumping parameters. The purpose of the stochastic stabilization problem is to design a memoryless state feedback controller such that, for the addressed nonlinear disturbances as well as Markovian jumping parameters, the closed-loop system is stochastically exponentially stable in the mean square, independent of the time delay. In the H{sub {infinity}} control problem, in addition to the mean-square exponential stability requirement, a prescribed H{sub {infinity}} performance index is required to be achieved. By using Ito's differential formula and the Lyapunov stability theory, sufficient conditions for the solvability of these problems are derived in term of linear matrix inequalities, which can be easily checked by resorting to available software packages. A numerical example is exploited to demonstrate the effectiveness of the proposed results.
JUMPING PARAMETER ANALYSIS OVER A TRIPLE BAR IN YOUNG SPORT HORSES
Directory of Open Access Journals (Sweden)
Flavia Bochis
2013-10-01
Full Text Available There are a lot of obstacles type used in jumping competitions. Normally, for every kind of fence, there is a different type of approaching and cross over. The most used obstacles are the vertical fence, the oxer fence and the triple bar. For crossing over the vertical, which is a high fence, the horse must jump only in report to the height of the bar. In the large obstacles case (oxer or triple bar, the horse must jump related to the height and the largeness of it indeed. The triple bar is an even greater obstacle than the oxer. It consists of three verticals and has a spread between each of the verticals. That is why the triple bar is the widest obstacle of the three types described. Many riders don't like this horse jump because it can look intimidating, but the fact is that most horses find it to be fairly easy. The investigation was made on a triple bar jumped in two schedules. The purpose was to measure four parameters for every jump: the taking-off distance, the landing distance, and the distance between bar and legs for the front limbs and for the hind limbs looking to some training aspects, and their influence indeed.
Parameters estimation using the first passage times method in a jump-diffusion model
Khaldi, K.; Meddahi, S.
2016-06-01
The main purposes of this paper are two contributions: (1) it presents a new method, which is the first passage time (FPT method) generalized for all passage times (GPT method), in order to estimate the parameters of stochastic Jump-Diffusion process. (2) it compares in a time series model, share price of gold, the empirical results of the estimation and forecasts obtained with the GPT method and those obtained by the moments method and the FPT method applied to the Merton Jump-Diffusion (MJD) model.
Effect of squat depth on performance and biomechanical parameters of countermovement vertical jump
Directory of Open Access Journals (Sweden)
Rodrigo Ghedini Gheller
2014-10-01
Full Text Available The aim of this study was to analyze the effect of different squat depths in the performance and biomechanical parameters at counter movement jump (CMJ. Twenty-two male volleyball or basketball players volunteered to participate in this study and all were currently competing at the college level. The CMJ was performed in three different conditions: 1 with relative knee flexion at the end of counter movement phase smaller than 90° (90°, and; 3 preferred position (PREF. During the CMJ, kinematic, kinetic, and electromyography parameters were assessed. ANOVA for repeated measures with post-hoc Bonferroni´s test was used for variables comparison, with a significance level set at p≤0.05. The higher performance was on PREF and 90°. Average and peak power, as well as absolute and normalized peak forces, were higher in >90° CMJ. The peak velocity of CG and angular velocities of hip and knee were higher in the 90°. Recuts femoris and biceps femoris did not show difference in any jump phases. In conclusion, the knee flexion interferes the performance and the biomechanical variables at the CMJ. The highest jumps were got at a deeper squat, so this technique could be used for athletes in order to optimize the vertical jump performance in the training and competitions.
Brunner, J; Liesegang, A; Weiss, S; Wichert, B
2015-08-01
The aim of this study was to compare the nutritional management of show jumping horses in practice with recommendations from the literature. Additionally, the effects of these feeding practices on several blood metabolic parameters before and after exercise were studied. Blood samples were collected in the field from 27 different horses at 71 trials on the level M1 to S2 show jumping competitions in Switzerland and questionnaires on feeding practice of the studied horses were evaluated. The questionnaires revealed that during training and on tournament days horses received on average 3.1 kg of concentrate per day (min. 2.0 kg, max. 6.6 kg) divided into two to three meals. The horses were fed on average 6.9 kg of roughage per day (min. 4.0 kg, max. 13.0 kg). Additionally, it was observed that the horses received the last meal on average 6 h 10 min (min. 1 h 50 min, max. 12 h 30 min) before the start of the first show jumping turn, respectively, 7 h 30 min (min 1 h 50 min, max. 13 h 0 min) before the second turn. Seven horses (35%) had access to hay waiting in the trailer between two turns. The statistical analysis revealed no significant influence of the concentrate feeding time point on lactate, triglyceride and insulin levels, but a significant influence on free fatty acids (FFA) and blood glucose concentrations. Roughage feeding of the show jumping horses 2-4 h prior to exercise revealed the most remarkable changes in blood parameters during the show jumping course. These results received under field conditions should be approved in future under standardized conditions.
Directory of Open Access Journals (Sweden)
Yingwei Li
2014-01-01
properties, the existence and uniqueness of the equilibrium point for SNNs without noise perturbations are proved. Secondly, by applying the Lyapunov-Krasovskii functional approach, stochastic analysis theory, and linear matrix inequality (LMI technique, new delay-dependent sufficient criteria are achieved in terms of LMIs to ensure the SNNs with noise perturbations to be globally exponentially stable in the mean square. Finally, two simulation examples are provided to demonstrate the validity of the theoretical results.
Feller Property for a Special Hybrid Jump-Diffusion Model
Directory of Open Access Journals (Sweden)
Jinying Tong
2014-01-01
Full Text Available We consider the stochastic stability for a hybrid jump-diffusion model, where the switching here is a phase semi-Markovian process. We first transform the process into a corresponding jump-diffusion with Markovian switching by the supplementary variable technique. Then we prove the Feller and strong Feller properties of the model under some assumptions.
Non-Markovianity during quantum Zeno effect
Thilagam, A
2013-01-01
We examine the Zeno and anti-Zeno effects in the context of non-Markovian dynamics in entangled spin-boson systems in contact with noninteracting reservoirs. We identify enhanced non-Markovian signatures in specific two-qubit partitions of a Bell-like initial state, with results showing that the intra-qubit Zeno effect or anti-Zeno effect occurs in conjunction with inter-qubit non-Markovian dynamics for a range of system parameters. The time domain of effective Zeno or anti-Zeno dynamics is about the same order of magnitude as the non-Markovian time scale of the reservoir correlation dynamics, and changes in decay rate due to the Zeno mechanism appears coordinated with information flow between specific two-qubit partitions. We extend our analysis to examine the Zeno mechanism-non-Markovianity link using the tripartite states arising from a donor-acceptor-sink model of photosynthetic biosystems.
Markovianity criteria for quantum evolution
Chruściński, Dariusz; Kossakowski, Andrzej
2012-08-01
We characterize a class of Markovian dynamics using the concept of a divisible dynamical map. Moreover, we provide a family of criteria which can distinguish Markovian and non-Markovian dynamics. These Markovianity criteria are based on a simple observation that Markovian dynamics implies monotonic behaviour of several well-known quantities such as distinguishability of states, fidelity, relative entropy and genuine entanglement measures.
Markovianity criteria for quantum evolution
Chruściński, Dariusz
2012-01-01
We characterize a class of Markovian dynamics using the concept of divisible dynamical map. Moreover we provide a family of criteria which can distinguish Markovian and non-Markovian dynamics. These Markovianity criteria are based on a simple observation that Markovian dynamics implies monotonic behavior of several well known quantities like distinguishability of states, fidelity, relative entropy and genuine entanglement measures.
Order parameter anisotropy of MgB2 using speciﬁc heat jump of layered superconductors
Indian Academy of Sciences (India)
I N Askerzade
2003-12-01
The recently obtained analytical result [1] for renormalization of the jump of the heat capacity (S-N)/N by anisotropy of the order parameter is applied to the layered superconductors. The graph of (S-N)/N vs. the anisotropy of the order parameter allows a direct determination of the gap anisotropy in MgB2 using available experimental data.
Adaptive Sliding Mode Control of Mobile Manipulators with Markovian Switching Joints
Directory of Open Access Journals (Sweden)
Liang Ding
2012-01-01
Full Text Available The hybrid joints of manipulators can be switched to either active (actuated or passive (underactuated mode as needed. Consider the property of hybrid joints, the system switches stochastically between active and passive systems, and the dynamics of the jump system cannot stay on each trajectory errors region of subsystems forever; therefore, it is difficult to determine whether the closed-loop system is stochastically stable. In this paper, we consider stochastic stability and sliding mode control for mobile manipulators using stochastic jumps switching joints. Adaptive parameter techniques are adopted to cope with the effect of Markovian switching and nonlinear dynamics uncertainty and follow the desired trajectory for wheeled mobile manipulators. The resulting closed-loop system is bounded in probability and the effect due to the external disturbance on the tracking errors can be attenuated to any preassigned level. It has been shown that the adaptive control problem for the Markovian jump nonlinear systems is solvable if a set of coupled linear matrix inequalities (LMIs have solutions. Finally, a numerical example is given to show the potential of the proposed techniques.
CONSTRUCTION OF CONTINUOUS TIME MARKOVIAN ARRIVAL PROCESSES
Institute of Scientific and Technical Information of China (English)
Qi-Ming HE
2010-01-01
Markovian arrival processes were introduced by Neuts in 1979(Neuts 1979)and have been used extensively in the stochastic modeling of queueing,inventory,reliability,risk,and telecommunications systems.In this paper,we introduce a constructive approach to define continuous time Markovian arrival processes.The construction is based on Poisson processes,and is simple and intuitive.Such a construction makes it easy to interpret the parameters of Markovian arrival processes.The construction also makes it possible to establish rigorously basic equations,such as Kolmogorov differential equations,for Markovian arrival processes,using only elementary properties of exponential distributions and Poisson processes.In addition,the approach can be used to construct continuous time Markov chains with a finite number of states
Kinetic parameters as determinants of vertical jump performance. DOI: 10.5007/1980-0037.2012v14n1p41
Directory of Open Access Journals (Sweden)
Saray Giovana dos Santos
2012-01-01
Full Text Available The aim of this study was to identify force and velocity parameters related to vertical jump performance in counter movement jump (CMJ and squat jump (SJ, and to compare these parameters between sprint runners and volleyball players. Twenty-four male athletes (12 regional/national-level sprint runners and 12 national-level volleyball players participated in this study. The athletes performed CMJ and SJ on a force platform. The following variables were analyzed: jump performance (jump height and power, peak velocity (PV, absolute and relative maximum force (Fmax, rate of force development (RFD, and time to reach maximum force (TFmax. In CMJ, jump height was correlated with PV (r=0.97 and normalized Fmax (r=0.47, whereas jump power was significantly correlated with all variables, except for Fmax (r=0.12. In SJ, PV and normalized Fmax were significantly correlated with jump height (r=0.95 and r=0.51, respectively and power (r=0.80 and r=0.87, respectively. In addition, TFmax was inversely correlated with power (r=-0.49. Runners presented higher performance variables (height and power, normalized Fmax and PV than volleyball players in both CMJ and SJ. In conclusion, velocity and maximum force were the main determinants of height and power in the two types of vertical jump. However, explosive force (RFD and TFmax was also important for power production in vertical jumps. Finally, runners presented a better vertical jump performance than volleyball players.
Measurement of L(III) Subshell Absorption Jump Parameters of Hafnium.
Cengiz, E; Saritas, N; Dogan, M; Koksal, O K; Karabulut, K; Apaydin, G; Tirasoglu, E
2015-12-01
The L(III) subshell absorption jump ratio and jump factor of hafnium have been measured using two different ways which are X-ray attenuation method and Energy Dispersive X-ray Fluorescence technique. The results obtained both ways have been compared with theoretical values. They are in good agreement with each other.
Connecting two jumplike unravelings for non-Markovian open quantum systems
Luoma, Kimmo; Piilo, Jyrki
2011-01-01
The development and use of Monte Carlo algorithms plays a visible role in the study of non-Markovian quantum dynamics due to the provided insight and powerful numerical methods for solving the system dynamics. In the Markovian case, the connections between the various types of methods are fairly well-understood while for non-Markovian case there has so far been only a few studies. We focus here on two jumplike unravelings of non-Markovian dynamics, the non-Markovian quantum jump (NMQJ) method and the property state method by Gambetta, Askerud, and Wiseman (GAW). The results for simple quantum optical systems illustrate the connections between the realizations of the two methods and also highlight how the probability currents between the system and environment, or between the property states of the total system, associate to the decay rates of time-local master equations, and consequently to the jump rates of the NMQJ method.
DEFF Research Database (Denmark)
Sannino, Francesco
2013-01-01
We propose an alternative paradigm to the conjectured Miransky scaling potentially underlying the physics describing the transition from the conformally broken to the conformally restored phase when tuning certain parameters such as the number of flavors in gauge theories. According to the new...... paradigm the physical scale and henceforth also the massive spectrum of the theory jump at the lower boundary of the conformal window. In particular we propose that a theory can suddenly jump from a Quantum Chromodynamics type spectrum, at the lower boundary of the conformal window, to a conformal one...... without particle interpretation. The jumping scenario, therefore, does not support a near-conformal dynamics of walking type. We will also discuss the impact of jumping dynamics on the construction of models of dynamical electroweak symmetry breaking....
DEFF Research Database (Denmark)
Mardare, Radu Iulian; Cardelli, Luca; Larsen, Kim Guldstrand
2012-01-01
Continuous Markovian Logic (CML) is a multimodal logic that expresses quantitative and qualitative properties of continuous-time labelled Markov processes with arbitrary (analytic) state-spaces, henceforth called continuous Markov processes (CMPs). The modalities of CML evaluate the rates of the ...
Directory of Open Access Journals (Sweden)
İbrahim
2015-01-01
Full Text Available The basic purpose of this study was to investigate of the relationships with sprint and jump performance of power parameters during propulsive phase of full back squat exercise and to determine which variable was associated with which loading loading. For this purpose, thirty-two men amateur athletes (age: 20.4 ± 1.98 years; height: 179.3 ± 7.23 cm; weight: 73.5 ± 9.85 kg who actively involved in sports and have a basic level of force participated in voluntarily to this study. In the study, one repetition maximum (1RM full back squat (SQ strength test, vertical jump test, 5 meters and 30 meters sprint test were applied. The descriptive statistics and pearson correlation analysis was used for statistical evaluation of datas. According to statistical analysis results; It was concluded that there are mean level, negative and statistically a significant relationship between mean propulsive power (MPP values (r = - ,607, p 0.05.
Oreshkov, Ognyan; Calsamiglia, John
2010-07-30
We propose a theory of adiabaticity in quantum markovian dynamics based on a decomposition of the Hilbert space induced by the asymptotic behavior of the Lindblad semigroup. A central idea of our approach is that the natural generalization of the concept of eigenspace of the Hamiltonian in the case of markovian dynamics is a noiseless subsystem with a minimal noisy cofactor. Unlike previous attempts to define adiabaticity for open systems, our approach deals exclusively with physical entities and provides a simple, intuitive picture at the Hilbert-space level, linking the notion of adiabaticity to the theory of noiseless subsystems. As two applications of our theory, we propose a general framework for decoherence-assisted computation in noiseless codes and a dissipation-driven approach to holonomic computation based on adiabatic dragging of subsystems that is generally not achievable by nondissipative means.
Effect of potentiating exercise volume on vertical jump parameters in recreationally trained men.
Khamoui, Andy V; Brown, Lee E; Coburn, Jared W; Judelson, Daniel A; Uribe, Brandon P; Nguyen, Diamond; Tran, Tai; Eurich, Alea D; Noffal, Guillermo J
2009-08-01
High-force activities have demonstrated postactivation potentiation (PAP) and may enhance performance in athletes; however, the efficacy of high-force activities to generate PAP in recreationally trained men remains unclear. The purpose of this study was to investigate the effect of high-force back squat volume on vertical jump (VJ) height, ground reaction force (GRF), impulse (IMP), and takeoff velocity (TOV) in recreationally trained men. Sixteen recreationally trained men (age 24.56 +/- 2.10 years, height 174.53 +/- 8.54 cm, mass 84.59 +/- 14.75 kg, and 1 repetition maximum [1RM] back squat 124.71 +/- 17.58 kg) with at least 1 year of back squat experience completed 5 testing sessions separated by a minimum of 72 hours' rest. On session 1, subjects completed VJ testing without a potentiating exercise intervention (control condition) in a test-retest fashion (3 VJs, 5 minutes seated rest, and 3 more VJs) and performed 1RM back squat testing. Subjects completed the subsequent 4 testing sessions in a test-retest fashion (3 VJs, experimental condition, 5 minutes seated rest, and 3 more VJs) in random order. The 4 experimental conditions required subjects to perform the back squat using a load of 85% 1RM with volumes of 1 x 2, 1 x 3, 1 x 4, or 1 x 5. Analysis of variance revealed no significant (p > 0.05) condition by time interactions for any dependent variable; however, there were significant (p post 2,094.53 +/- 390.99 N) and IMP (pre 210.88 +/- 100.97 Nxs, > post 204.63 +/- 106.14 Nxs) but not for VJ or TOV. These results suggest that 85% 1RM back squat volume assignments do not produce a VJ potentiation response in recreationally trained men.
DEFF Research Database (Denmark)
Mardare, Radu Iulian; Cardelli, Luca; Larsen, Kim Guldstrand
2012-01-01
Continuous Markovian Logic (CML) is a multimodal logic that expresses quantitative and qualitative properties of continuous-time labelled Markov processes with arbitrary (analytic) state-spaces, henceforth called continuous Markov processes (CMPs). The modalities of CML evaluate the rates...... characterizes stochastic bisimilarity and it supports the definition of a quantified extension of the satisfiability relation that measures the "compatibility" between a model and a property. In this context, the metaproperties allows us to prove two robustness theorems for the logic stating that one can...
Witnessing non-Markovianity of quantum evolution
Chruściński, Dariusz; Kossakowski, Andrzej
2014-01-01
We provide further characterization of non-Markovian quantum dynamics based on the concept of divisible dynamical maps. In analogy to entanglement witness we propose a non-Markovianity witness and introduce the corresponding measure of non-Markovianity. We also provide characterization of non-Markovianity in terms of Wigner-Yanase-Dyson skew information.
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
In this paper a stochastic volatility model is considered. That is, a log price process Y whichis given in terms of a volatility process V is studied. The latter is defined such that the logprice possesses some of the properties empirically observed by Barndorff-Nielsen & Jiang[6]. Inthe model there are two sets of unknown parameters, one set corresponding to the marginaldistribution of V and one to autocorrelation of V. Based on discrete time observations ofthe log price the authors discuss how to estimate the parameters appearing in the marginaldistribution and find the asymptotic properties.
Institute of Scientific and Technical Information of China (English)
Shu Jin WU; Bin ZHOU
2011-01-01
In the paper, stochastic differential equations with random impulses and Markovian switching are brought forward, where the so-called random impulse means that impulse ranges are driven by a series of random variables and impulse times are a random sequence, so these equations extend stochastic differential equations with jumps and Markovian switching. Then the existence and uniqueness of solutions to such equations are investigated by employing the Bihari inequality under non-Lipschtiz conditions.
Tripartite entanglement dynamics in the presence of Markovian or non-Markovian environment
Park, DaeKil
2016-08-01
We study on the tripartite entanglement dynamics when each party is initially entangled with other parties, but they locally interact with their own Markovian or non-Markovian environment. First we consider three GHZ-type initial states, all of which have GHZ-symmetry provided that the parameters are chosen appropriately. However, this symmetry is broken due to the effect of environment. The corresponding π -tangles, one of the tripartite entanglement measures, are analytically computed at arbitrary time. For Markovian case while the tripartite entanglement for type I exhibits an entanglement sudden death, the dynamics for the remaining cases decays normally in time with the half-life rule. For non-Markovian case the revival phenomenon of entanglement occurs after complete disappearance of entanglement. We also consider two W-type initial states. For both cases the π -tangles are analytically derived. The revival phenomenon also occurs in this case. On the analytical ground the robustness or fragility issue against the effect of environment is examined for both GHZ-type and W-type initial states.
Katz Centrality of Markovian Temporal Networks: Analysis and Optimization
Ogura, Masaki
2016-01-01
Identifying important nodes in complex networks is a fundamental problem in network analysis. Although a plethora of measures has been proposed to identify important nodes in static (i.e., time-invariant) networks, there is a lack of tools in the context of temporal networks (i.e., networks whose connectivity dynamically changes over time). The aim of this paper is to propose a system-theoretic approach for identifying important nodes in temporal networks. In this direction, we first propose a generalization of the popular Katz centrality measure to the family of Markovian temporal networks using tools from the theory of Markov jump linear systems. We then show that Katz centrality in Markovian temporal networks can be efficiently computed using linear programming. Finally, we propose a convex program for optimizing the Katz centrality of a given node by tuning the weights of the temporal network in a cost-efficient manner. Numerical simulations illustrate the effectiveness of the obtained results.
Zheng, Cheng-De; Shan, Qi-He; Zhang, Huaguang; Wang, Zhanshan
2013-05-01
The globally exponential stabilization problem is investigated for a general class of stochastic Cohen-Grossberg neural networks with both Markovian jumping parameters and mixed mode-dependent time-delays. The mixed time-delays consist of both discrete and distributed delays. This paper aims to design a memoryless state feedback controller such that the closed-loop system is stochastically exponentially stable in the mean square sense. By introducing a new Lyapunov-Krasovskii functional that accounts for the mode-dependent mixed delays, stochastic analysis is conducted in order to derive delay-dependent criteria for the exponential stabilization problem. Three numerical examples are carried out to demonstrate the feasibility of our delay-dependent stabilization criteria.
Non-Markovianity hinders Quantum Darwinism
Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina
2016-01-01
We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors.
Institute of Scientific and Technical Information of China (English)
康宇; 奚宏生; 张大力; 季海波
2006-01-01
This paper describes the synthesis of robust and non-fragile H∞ state feedback controllers for a class of uncertain jump linear systems with Markovian jumping parameters and state multiplicative noises. Under the assumption of a complete access to the norm-bounds of the system uncertainties and controller gain variations, sufficient conditions on the existence of robust stochastic stability and γ-disturbanee attenuation H∞ property are presented. A key feature of this scheme is that the gain matrices of controller are only based on lt, the observed projection of the current regime rt.
From Markovian semigroup to non-Markovian quantum evolution
Chruściński, D.; Kossakowski, A.
2012-01-01
We provided a class of legitimate memory kernels leading to completely positive trace-preserving dynamical maps. Our construction is based on a simple normalization procedure. Interestingly, when applied to a classical system it gives rise to semi-Markov evolution. Therefore, it may be considered as a quantum version of semi-Markov dynamics which is much more general than Markovian dynamics.
On measures of non-Markovianity: divisibility vs. Markovianity
Chruściński, Dariusz
2011-01-01
We analyze two recently proposed measure of non-Markovianity: one based on the concept of divisibility of the dynamical map and the other one based on distinguishability of quantum states. We provide a toy model to show that these two measures need not agree. Finally, we discuss possible generalizations and intricate relations between these measures.
From Markovian semigroup to non-Markovian quantum evolution
Chruscinski, Dariusz
2010-01-01
We provided a class of legitimate memory kernels leading to completely positive trace preserving dynamical maps. Our construction is based on a simple normalization procedure. Interestingly, when applied to the celebrated Wigner-Weisskopf theory it gives the standard Markovian evolution governed by the local master equation.
Li,Quan-Lin; Lui, John C. S.
2010-01-01
In this paper, we provide a novel matrix-analytic approach for studying doubly exponential solutions of randomized load balancing models (also known as supermarket models) with Markovian arrival processes (MAPs) and phase-type (PH) service times. We describe the supermarket model as a system of differential vector equations by means of density dependent jump Markov processes, and obtain a closed-form solution with a doubly exponential structure to the fixed point of the system of differential...
Li, Quan-Lin; Lui, John C. S.
2010-01-01
In this paper, we provide a novel matrix-analytic approach for studying doubly exponential solutions of randomized load balancing models (also known as supermarket models) with Markovian arrival processes (MAPs) and phase-type (PH) service times. We describe the supermarket model as a system of differential vector equations by means of density dependent jump Markov processes, and obtain a closed-form solution with a doubly exponential structure to the fixed point of the system of differential...
基于加速度信号的纵跳力学参数计算%Calculation of Longitudinal Jump Parameters Based on Acceleration Signals
Institute of Scientific and Technical Information of China (English)
贾菲菲; 宾光宇; 吴水才; 师玉涛
2015-01-01
目的：使用加速度传感器信号计算纵跳的离地速度、纵跳高度，并对纵跳高度与爆发力进行回归分析。方法嘱受试者佩戴爆发力测试仪和含有加速度传感器模块的仪器纵跳10次，记录其纵跳过程中的离地速度、纵跳高度、爆发力以及加速度信号，使用加速度信号积分计算离地速度、腾空时间，使用时域积分计算纵跳高度及纵跳高度非线性拟合爆发力。结果使用积分法计算离地速度的误差为5.9%，使用腾空法和积分法计算纵跳高度的误差为14.0%和8.2%。对纵跳高度与爆发力进行回归分析，误差为6.2%。结论使用加速度传感器信号计算和拟合人体运动参数，结果误差较小，可以用于人体运动的检测，也可以为日常人体锻炼监测设备的设计提供参考。%Objective Using the acceleration sensor signals to calculate the off-ground speed and height of the vertical jump and to make regression analysis of its height and the explosive force. Methods The experimenter was required to wear an explosive force tester and an instrument containing an acceleration sensor module andvertically jump 10 times. The off-ground speed, height, explosive force and acceleration signals were recorded during the vertical jump process. Then, the acceleration signal integral was adopted to calculate the off-ground speed and duration of passage;the height of vertical jump and its nonlinear fitting explosive force were calculated by using the time-domain integral. Results The integral method produced a 5.9% error in calculation of the off-round speed; while, the time-domain integral method produced a 8.2% error versus the jump method’s 14.0% in calculation of the height of jumping. Through regression analysis of the height and the explosive force of the vertical jump, the error of the regression model was 6.2%. Conclusion Using the sensor signal of the acceleration sensor to calculate and ift body
Quantum dynamical maps and Markovianity
Devi, A R Usha; Sudha,
2011-01-01
It is known that the time evolution of a subsystem from an initial state to two later times, t1, t2 (t2 > t1), are both completely positive (CP) but it is shown here that in the intermediate times between t1 and t2, in general, it need not be CP. This reveals the key to the Markov (if CP) and nonMarkov (if NCP) avataras of the intermediate dynamics. This is brought out based on A and B dynamical maps - without resorting to Master equation approach. The choice of tensor product form for the global initial state points towards the system-environment interaction dynamics as the sole cause for Markovianity/non-Markovianity. A succinct summary of the results is given in the form of a table.
Non-Markovianity assisted Steady State Entanglement
Huelga, Susana F; Plenio, Martin B
2011-01-01
We analyze the dependence of steady state entanglement in a dimer system with a coherent exchange interaction and subject to local dephasing on the degree of Markovianity of the system-environment interaction. We demonstrate that non-Markovianity of the system-environment interaction is an essential resource that may support the formation of steady state entanglement whereas purely Markovian dynamics governed by Lindblad master equations results in separable steady states. This result illustrates possible mechanisms leading to long lived entanglement in purely decohering local environments. A feasible experimental demonstration of this non-Markovianity assisted steady state entanglement using a system of trapped ions is presented.
Non-Markovian Diffusive Unravellings of Entanglement
Corn, Brittany; Yu, Ting
2011-01-01
The fully quantized model of two qubits coupled to a common bath is solved using the quantum state diffusion (QSD) approach in the non-Markovian regime. We have established an explicit time-local non-Markovian QSD equation for the two-qubit dissipative model. Diffusive quantum trajectories are applied to the entanglement estimation of two-qubit systems in a non-Markovian regime. In another interesting example, we have also considered exact entanglement unravellings for a dephasing model. In both cases, non-Markovian features of entanglement evolution are revealed through quantum diffusive unravellings in the qubit state space.
Directory of Open Access Journals (Sweden)
Flavia Bochiş
2010-05-01
Full Text Available The multiliniar regression model introduced the variables control and estimated the contribution of every independent variable in the explication of the dependent variable variance, in a standard situation, when all independent had constant values. The taken into study independent variables were 12 morphological characters. The dependent value was represented by the entire length of the jump over the vertical fence and the bar-limbs distance in the same obstacle. The obtained value, for the multiple determination coefficients, nearby 1.00, in most of the cases in the high performance levels (B and C showed the efficiency of the model and a good selection for the included factors. The obtained result focusing on the ensemble reports, in fact a result which can lead us to think that this kind of modeling can be applied freely to the horse height.
Zhong, Qishui; Cheng, Jun; Zhao, Yuqing
2015-07-01
In this paper, a novel method is developed for delay-dependent finite-time boundedness of a class of Markovian switching neural networks with time-varying delays. New sufficient condition for stochastic boundness of Markovian jumping neural networks is presented and proved by an newly augmented stochastic Lyapunov-Krasovskii functional and novel activation function conditions, the state trajectory remains in a bounded region of the state space over a given finite-time interval. Finally, a numerical example is given to illustrate the efficiency and less conservative of the proposed method.
Dorobantu, V
2012-01-01
When the laws of Physics are taken seriously, the sports can benefit in getting better results, as was the case of the high jump in Flop style, so that the athlete sprints diagonally towards the bar,then curve and leap backwards over it. The jumper, in this case, has the center of mass under the bar, fact which allows improvement of the performance.
On stochastic Gilpin-Ayala population model with Markovian switching.
Settati, Adel; Lahrouz, Aadil
2015-04-01
In this paper, we analyze a stochastic Gilpin-Ayala population model with Markovian switching and white noise. The Gilpin-Ayala parameter is also allowed to switch. We establish the global stability of the trivial equilibrium state of the model. Verifiable sufficient conditions which guarantee the extinction and persistence are provided. Furthermore, we show the existence of a stationary distribution. The analytical results are illustrated by computer simulations.
Towards Stability Analysis of Jump Linear Systems with State-Dependent and Stochastic Switching
Tejada, Arturo; Gonzalez, Oscar R.; Gray, W. Steven
2004-01-01
This paper analyzes the stability of hierarchical jump linear systems where the supervisor is driven by a Markovian stochastic process and by the values of the supervised jump linear system s states. The stability framework for this class of systems is developed over infinite and finite time horizons. The framework is then used to derive sufficient stability conditions for a specific class of hybrid jump linear systems with performance supervision. New sufficient stochastic stability conditions for discrete-time jump linear systems are also presented.
OVERLOAD ANALYSIS OF MARKOVIAN MODELS
Institute of Scientific and Technical Information of China (English)
Yiqiang Q. ZHAO
1999-01-01
A new procedure for computing stationary probabilities for an overloaded Markovian model is proposed interms of the rotated Markov chain.There are two advantages to use this procedure:i) This procedure allows us to approximate an overloaded finite model by using a stable infinite Markov chain. This will makethe study easier when the infinite model has a simpler solution.ii) Numerically, this procedure often significantly reduces the number of computations and the requirement of computer memory. By using different examples,we specifically demonstratethe process of implementing this rotating procedure.
Non-Markovian linear response theory for quantum open systems and its applications.
Shen, H Z; Li, D X; Yi, X X
2017-01-01
The Kubo formula is an equation that expresses the linear response of an observable due to a time-dependent perturbation. It has been extended from closed systems to open systems in recent years under the Markovian approximation, but is barely explored for open systems in non-Markovian regimes. In this paper, we derive a formula for the linear response of an open system to a time-independent external field. This response formula is available for both Markovian and non-Markovian dynamics depending on parameters in the spectral density of the environment. As an illustration of the theory, the Hall conductance of a two-band system subjected to environments is derived and discussed. With the tight-binding model, we point out the Hall conductance changes from Markovian to non-Markovian dynamics by modulating the spectral density of the environment. Our results suggest a way to the controlling of the system response, which has potential applications for quantum statistical mechanics and condensed matter physics.
Non-Markovian entanglement dynamics in coupled superconducting qubit systems
Cui, Wei; Pan, Yu
2010-01-01
We theoretically analyze the entanglement generation and dynamics by coupled Josephson junction qubits. Considering a current-biased Josephson junction (CBJJ), we generate maximally entangled states. In particular, the entanglement dynamics is considered as a function of the decoherence parameters, such as the temperature, the ratio $r\\equiv\\omega_c/\\omega_0$ between the reservoir cutoff frequency $\\omega_c$ and the system oscillator frequency $\\omega_0$, % between $\\omega_0$ the characteristic frequency of the %quantum system of interest, and $\\omega_c$ the cut-off frequency of %Ohmic reservoir and the energy levels split of the superconducting circuits in the non-Markovian master equation. We analyzed the entanglement sudden death (ESD) and entanglement sudden birth (ESB) by the non-Markovian master equation. Furthermore, we find that the larger the ratio $r$ and the thermal energy $k_BT$, the shorter the decoherence. In this superconducting qubit system we find that the entanglement can be controlled and t...
Pricing Participating Products under a Generalized Jump-Diffusion Model
Directory of Open Access Journals (Sweden)
Tak Kuen Siu
2008-01-01
Full Text Available We propose a model for valuing participating life insurance products under a generalized jump-diffusion model with a Markov-switching compensator. It also nests a number of important and popular models in finance, including the classes of jump-diffusion models and Markovian regime-switching models. The Esscher transform is employed to determine an equivalent martingale measure. Simulation experiments are conducted to illustrate the practical implementation of the model and to highlight some features that can be obtained from our model.
Non-Markovianity-assisted steady state entanglement.
Huelga, Susana F; Rivas, Ángel; Plenio, Martin B
2012-04-20
We analyze the steady state entanglement generated in a coherently coupled dimer system subject to dephasing noise as a function of the degree of Markovianity of the evolution. By keeping fixed the effective noise strength while varying the memory time of the environment, we demonstrate that non-Markovianity is an essential, quantifiable resource that may support the formation of steady state entanglement whereas purely Markovian dynamics governed by Lindblad master equations lead to separable steady states. This result illustrates possible mechanisms leading to long-lived entanglement in purely decohering, possibly local, environments. We present a feasible experimental demonstration of this noise assisted phenomenon using a system of trapped ions.
Markovian master equations: a critical study
Energy Technology Data Exchange (ETDEWEB)
Rivas, Angel; Huelga, Susana F; B Plenio, Martin [Institut fuer Theoretische Physik, Universitaet Ulm, Albert-Einstein-Allee 11, D-89069 Ulm (Germany); K Plato, A Douglas, E-mail: angel.rivas@uni-ulm.d [Institute for Mathematical Sciences, Imperial College London, London SW7 2PG (United Kingdom)
2010-11-15
We derive Markovian master equations for single and interacting harmonic systems in different scenarios, including strong internal coupling. By comparing the dynamics resulting from the corresponding master equations with numerical simulations of the global system's evolution, we delimit their validity regimes and assess the robustness of the assumptions usually made in the process of deriving the reduced Markovian dynamics. The results of these illustrative examples serve to clarify the general properties of other open quantum system scenarios subject to treatment within a Markovian approximation.
Quantum Metrology in Non-Markovian Environments
Chin, Alex W; Plenio, Martin B
2011-01-01
We analyze optimal bounds for precision spectroscopy in the presence of general, non-Markovian phase noise. We demonstrate that the metrological equivalence of product and maximally entangled states that holds under Markovian dephasing fails in the non-Markovian case. Using an exactly solvable model of a physically realistic finite band-width dephasing environment, we show that the ensuing non-Markovian dynamics enables quantum correlated states to outperform metrological strategies based on uncorrelated states but otherwise identical resources. We show that this conclusion is a direct result of the coherent dynamics of the global state of the system and environment and, as a result, possesses general validity that goes beyond specific models.
Parameterized Metatheory for Continuous Markovian Logic
Directory of Open Access Journals (Sweden)
Kim G. Larsen
2012-12-01
Full Text Available This paper shows that a classic metalogical framework, including all Boolean operators, can be used to support the development of a metric behavioural theory for Markov processes. Previously, only intuitionistic frameworks or frameworks without negation and logical implication have been developed to fulfill this task. The focus of this paper is on continuous Markovian logic (CML, a logic that characterizes stochastic bisimulation of Markov processes with an arbitrary measurable state space and continuous-time transitions. For a parameter epsilon>0 interpreted as observational error, we introduce an epsilon-parameterized metatheory for CML: we define the concepts of epsilon-satisfiability and epsilon-provability related by a sound and complete axiomatization and prove a series of "parameterized" metatheorems including decidability, weak completeness and finite model property. We also prove results regarding the relations between metalogical concepts defined for different parameters. Using this framework, we can characterize both the stochastic bisimulation relation and various observational preorders based on behavioural pseudometrics. The main contribution of this paper is proving that all these analyses can actually be done using a unified complete Boolean framework. This extends the state of the art in this field, since the related works only propose intuitionistic contexts that limit, for instance, the use of the Boolean logical implication.
Information Spreading in Stationary Markovian Evolving Graphs
Clementi, Andrea; Pasquale, Francesco; Silvestri, Riccardo
2011-01-01
Markovian evolving graphs are dynamic-graph models where the links among a fixed set of nodes change during time according to an arbitrary Markovian rule. They are extremely general and they can well describe important dynamic-network scenarios. We study the speed of information spreading in the "stationary phase" by analyzing the completion time of the "flooding mechanism". We prove a general theorem that establishes an upper bound on flooding time in any stationary Markovian evolving graph in terms of its node-expansion properties. We apply our theorem in two natural and relevant cases of such dynamic graphs. "Geometric Markovian evolving graphs" where the Markovian behaviour is yielded by "n" mobile radio stations, with fixed transmission radius, that perform independent random walks over a square region of the plane. "Edge-Markovian evolving graphs" where the probability of existence of any edge at time "t" depends on the existence (or not) of the same edge at time "t-1". In both cases, the obtained upper...
Stationary two-dimensional turbulence statistics using a Markovian forcing scheme
San, Omer; 10.1016/j.compfluid.2012.10.002
2012-01-01
In this study we investigate the statistics of two-dimensional stationary turbulence using a Markovian forcing scheme, which correlates the forcing process in the current time step to the previous time step according to a defined memory coefficient. In addition to the Markovian forcing mechanism, the hyperviscous dissipation mechanism for small scales and the Ekman friction type of linear damping mechanism for the large scales are included in the model. We examine the effects of various dissipation and forcing parameters on the turbulence statistics in both wave space and physical space. Our analysis includes the effects of the effective forcing scale, the bandwidth of the forcing, the memory correlation coefficient, and the forcing amplitude, along with the large scale friction and small scale dissipation coefficients. Scaling exponents of structure functions and energy spectra are calculated, and the role of the parameters associated with the Markovian forcing is discussed. We found that the scaling exponen...
Markovian and non-Markovian dynamics in quantum and classical systems
Vacchini, Bassano; Laine, Elsi-Mari; Piilo, Jyrki; Breuer, Heinz-Peter
2011-01-01
We discuss the conceptually different definitions used for the non-Markovianity of classical and quantum processes. The well-established definition for non-Markovianity of a classical stochastic process represents a condition on the Kolmogorov hierarchy of the n-point joint probability distributions. Since this definition cannot be transferred to the quantum regime, quantum non-Markovianity has recently been defined and quantified in terms of the underlying quantum dynamical map, using either its divisibility properties or the behavior of the trace distance between pairs of initial states. Here, we investigate and compare these definitions and their relations to the classical notion of non-Markovianity by employing a large class of non-Markovian processes, known as semi-Markov processes, which admit a natural extension to the quantum case. A number of specific physical examples is constructed which allow to study the basic features of the classical and the quantum definitions and to evaluate explicitly the me...
Non-Markovian random walks and nonlinear reactions: Subdiffusion and propagating fronts
Fedotov, Sergei
2010-01-01
The main aim of the paper is to incorporate the nonlinear kinetic term into non-Markovian transport equations described by a continuous time random walk (CTRW) with nonexponential waiting time distributions. We consider three different CTRW models with reactions. We derive nonlinear Master equations for the mesoscopic density of reacting particles corresponding to CTRW with arbitrary jump and waiting time distributions. We apply these equations to the problem of front propagation in the reaction-transport systems with Kolmogorov-Petrovskii-Piskunov kinetics and anomalous diffusion. We have found an explicit expression for the speed of a propagating front in the case of subdiffusive transport.
An optimal promotion cost control model for a markovian manpower ...
African Journals Online (AJOL)
An optimal promotion cost control model for a markovian manpower system. ... Log in or Register to get access to full text downloads. ... A theory concerning the existence of an optimal promotion control strategy for controlling a Markovian ...
Kinematics and Kinetics of Squats, Drop Jumps and Imitation Jumps of Ski Jumpers.
Pauli, Carole A; Keller, Melanie; Ammann, Fabian; Hübner, Klaus; Lindorfer, Julia; Taylor, William R; Lorenzetti, Silvio
2016-03-01
Squats, drop jumps, and imitation jumps are commonly used training exercises in ski jumping to enhance maximum force, explosive force, and sport-specific skills. The purpose of this study was to evaluate the kinetics and kinematics of training exercises in ski jumping and to find objective parameters in training exercises that most correlate with the competition performance of ski jumpers. To this end, barbell squats, drop jumps, and imitation jumps were measured in a laboratory environment for 10 elite ski jumpers. Force and motion data were captured, and the influence of maximum vertical force, force difference, vertical take-off velocity, knee moments, knee joint power, and a knee valgus/varus index was evaluated and correlated with their season jump performance. The results indicate that, especially for the imitation jumps, a good correlation exists between the vertical take-off velocity and the personal jump performance on the hill (R = 0.718). Importantly, however, the more the athletes tended toward a valgus knee alignment during the measured movements, the worse their performance (R = 0.729 imitation jumps; R = 0.685 squats). Although an evaluation of the athletes' lower limb alignment during competitive jumping on the hill is still required, these preliminary data suggest that performance training should additionally concentrate on improving knee alignment to increase ski jumping performance.
Interdiction of a Markovian evader
Energy Technology Data Exchange (ETDEWEB)
Hagberg, Aric [Los Alamos National Laboratory; Izraelevitz, David [Los Alamos National Laboratory; Pan, Feng [Los Alamos National Laboratory; Gutfraind, Alexander [CORNELL UNIV
2008-01-01
Network interdiction is a combinatorial optimization problem on an activity network arising in a number of important security-related applications. It is classically formulated as a bilevel maximin problem representing an 'interdictor' and an 'evader'. The evader tries to move from a source node to the target node along the shortest or safest path while the interdictor attempts to frustrate this motion by cutting edges or nodes. The interdiction objective is to find the optimal set of edges to cut given that there is a finite interdiction budget and the interdictor must move first. We reformulate the interdiction problem for stochastic evaders by introducing a model in which the evader follows a Markovian random walk guided by the least-cost path to the target. This model can represent incomplete knowledge about the evader and the graph as well as partial interdiction. We formulate the optimization problem for this model and show how, by exploiting topological ordering of the nodes, one can achieve an order-of-magnitude speedup in computing the objective function. We also introduce an evader-motion-based heuristic that can significantly improve solution quality by providing a global view of the network to approximation methods.
Quantum metrology in non-Markovian environments.
Chin, Alex W; Huelga, Susana F; Plenio, Martin B
2012-12-07
We analyze precision bounds for a local phase estimation in the presence of general, non-Markovian phase noise. We demonstrate that the metrological equivalence of product and maximally entangled states that holds under strictly Markovian dephasing fails in the non-Markovian case. Using an exactly solvable model of a physically realistic finite bandwidth dephasing environment, we demonstrate that the ensuing non-Markovian dynamics enables quantum correlated states to outperform metrological strategies based on uncorrelated states using otherwise identical resources. We show that this conclusion is a direct result of the coherent dynamics of the global state of the system and environment and therefore the obtained scaling with the number of particles, which surpasses the standard quantum limit but does not achieve Heisenberg resolution, possesses general validity that goes beyond specific models. This is in marked contrast with the situation encountered under general Markovian noise, where an arbitrarily small amount of noise is enough to restore the scaling dictated by the standard quantum limit.
Non-Markovian signatures in the current noise of a charge qubit
DEFF Research Database (Denmark)
Braggio, A.; Flindt, Christian; Novotny, T.
2008-01-01
We investigate the current noise of a charge qubit coupled to a phonon bath in different parameter regimes. We find, using the theory of Full Counting Statistics of non-Markovian systems, that the current fluctuations are strongly influenced by memory effects generated from the interplay between ...
Observation of Non-Markovian Dynamics of a Single Quantum Dot in a Micropillar Cavity
DEFF Research Database (Denmark)
Madsen, Kristian Høeg; Ates, Serkan; Lund-Hansen, Toke;
2011-01-01
We measure the detuning-dependent dynamics of a quasiresonantly excited single quantum dot coupled to a micropillar cavity. The system is modeled with the dissipative Jaynes-Cummings model where all experimental parameters are determined by explicit measurements. We observe non-Markovian dynamics...
Markovian Master Equations: A Critical Study
Rivas, Ángel; Huelga, Susana F; Plenio, Martin B
2010-01-01
We derive Markovian master equations of single and interacting harmonic systems in different scenarios, including strong internal coupling. By comparing the dynamics resulting from the corresponding Markovian master equations with exact numerical simulations of the evolution of the global system, we precisely delimit their validity regimes and assess the robustness of the assumptions usually made in the process of deriving the reduced dynamics. The proposed method is sufficiently general to suggest that the conclusions made here are widely applicable to a large class of settings involving interacting chains subject to a weak interaction with an environment.
Non-Markovian dynamics for bipartite systems
2008-01-01
We analyze the appearance of non-Markovian effects in the dynamics of a bipartite system coupled to a reservoir, which can be described within a class of non-Markovian equations given by a generalized Lindblad structure. A novel master equation, which we term quantum Bloch-Boltzmann equation, is derived, describing both motional and internal states of a test particle in a quantum framework. When due to the preparation of the system or to decoherence effects one of the two degrees of freedom i...
Exact Closed Master Equation for Gaussian Non-Markovian Dynamics.
Ferialdi, L
2016-03-25
Non-Markovian master equations describe general open quantum systems when no approximation is made. We provide the exact closed master equation for the class of Gaussian, completely positive, trace preserving, non-Markovian dynamics. This very general result allows us to investigate a vast variety of physical systems. We show that the master equation for non-Markovian quantum Brownian motion is a particular case of our general result. Furthermore, we derive the master equation unraveled by a non-Markovian, dissipative stochastic Schrödinger equation, paving the way for the analysis of dissipative non-Markovian collapse models.
Quantum non-Markovianity: characterization, quantification and detection.
Rivas, Ángel; Huelga, Susana F; Plenio, Martin B
2014-09-01
We present a comprehensive and up-to-date review of the concept of quantum non-Markovianity, a central theme in the theory of open quantum systems. We introduce the concept of a quantum Markovian process as a generalization of the classical definition of Markovianity via the so-called divisibility property and relate this notion to the intuitive idea that links non-Markovianity with the persistence of memory effects. A detailed comparison with other definitions presented in the literature is provided. We then discuss several existing proposals to quantify the degree of non-Markovianity of quantum dynamics and to witness non-Markovian behavior, the latter providing sufficient conditions to detect deviations from strict Markovianity. Finally, we conclude by enumerating some timely open problems in the field and provide an outlook on possible research directions.
On Non-Markovian Quantum Evolution
Chruściński, Dariusz; Kossakowski, Andrzej
2013-01-01
We analyze two measures of non-Markovianity: one based on the mathematical concept of divisibility of the dynamical map and the other one based on distinguishability of quantum states. We provide a simple example of qubit dynamic to show that these two measures need not agree. In addition, we discuss possible generalizations and intricate relations between these measures.
Markovian Processes for Quantitative Information Leakage
DEFF Research Database (Denmark)
Biondi, Fabrizio
and randomized processes with Markovian models and to compute their information leakage for a very general model of attacker. We present the QUAIL tool that automates such analysis and is able to compute the information leakage of an imperative WHILE language. Finally, we show how to use QUAIL to analyze some...
Risk, Jumps, and Diversification
DEFF Research Database (Denmark)
Bollerslev, Tim; Law, Tzuo Hann; Tauchen, George
We test for price discontinuities, or jumps, in a panel of high-frequency intraday returns for forty large-cap stocks and an equiweighted index from these same stocks. Jumps are naturally classified into two types: common and idiosyncratic. Common jumps affect all stocks, albeit to varying degree...
Visser, Albert
2014-01-01
In this paper we study a new relation between sentences: the jump relation. The idea of the jump relation is based on an analysis of Feferman's Theorem that the inconsistency of a theory U is interpretable over U. The jump relation is based on a converse of Feferman's Theorem: if a sentence is inter
Stochastic stability properties of jump linear systems
Feng, Xiangbo; Loparo, Kenneth A.; Ji, Yuandong; Chizeck, Howard J.
1992-01-01
Jump linear systems are defined as a family of linear systems with randomly jumping parameters (usually governed by a Markov jump process) and are used to model systems subject to failures or changes in structure. The authors study stochastic stability properties in jump linear systems and the relationship among various moment and sample path stability properties. It is shown that all second moment stability properties are equivalent and are sufficient for almost sure sample path stability, and a testable necessary and sufficient condition for second moment stability is derived. The Lyapunov exponent method for the study of almost sure sample stability is discussed, and a theorem which characterizes the Lyapunov exponents of jump linear systems is presented.
Effect of memory in non-Markovian Boolean networks
Ebadi, Haleh; Ausloos, Marcel; Jafari, GholamReza
2016-01-01
One successful model of interacting biological systems is the Boolean network. The dynamics of a Boolean network, controlled with Boolean functions, is usually considered to be a Markovian (memory-less) process. However, both self organizing features of biological phenomena and their intelligent nature should raise some doubt about ignoring the history of their time evolution. Here, we extend the Boolean network Markovian approach: we involve the effect of memory on the dynamics. This can be explored by modifying Boolean functions into non-Markovian functions, for example, by investigating the usual non-Markovian threshold function, - one of the most applied Boolean functions. By applying the non-Markovian threshold function on the dynamical process of a cell cycle network, we discover a power law memory with a more robust dynamics than the Markovian dynamics.
Advances in the control of markov jump linear systems with no mode observation
Vargas, Alessandro N; do Val, João B R
2016-01-01
This brief broadens readers’ understanding of stochastic control by highlighting recent advances in the design of optimal control for Markov jump linear systems (MJLS). It also presents an algorithm that attempts to solve this open stochastic control problem, and provides a real-time application for controlling the speed of direct current motors, illustrating the practical usefulness of MJLS. Particularly, it offers novel insights into the control of systems when the controller does not have access to the Markovian mode.
Long-time memory in non-Markovian evolutions
Chruściński, Dariusz; Kossakowski, Andrzej; Pascazio, Saverio
2010-03-01
If the dynamics of an open quantum system is non-Markovian, its asymptotic state strongly depends on the initial conditions, even if the dynamics possesses an invariant state. This is the very essence of memory effects. In particular, the asymptotic state can remember and partially preserve its initial entanglement. Interestingly, even if the non-Markovian evolution relaxes to an equilibrium state, this state needs not be invariant. Therefore, the noninvariance of equilibrium becomes a clear sign of non-Markovianity.
Markovian Dynamics on Complex Reaction Networks
Goutsias, John
2012-01-01
Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underling population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions, the computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating...
Non-Markovian Reactivation of Quantum Relays
Pirandola, Stefano; Jacobsen, Christian S; Spedalieri, Gaetana; Braunstein, Samuel L; Gehring, Tobias; Andersen, Ulrik L
2015-01-01
We consider a quantum relay which is used by two parties to perform several continuous-variable protocols: Entanglement swapping, distillation, quantum teleportation, and quantum key distribution. The theory of these protocols is extended to a non-Markovian model of decoherence characterized by correlated Gaussian noise. Even if bipartite entanglement is completely lost at the relay, we show that the various protocols can progressively be reactivated by the separable noise-correlations of the environment. In fact, above a critical amount, these correlations are able to restore the distribution of quadripartite entanglement, which can be localized into an exploitable bipartite form by the action of the relay. Our findings are confirmed by a proof-of-principle experiment and show the potential advantages of non-Markovian effects in a quantum network architecture.
Markovian Time-Delay Sampling Policies.
1980-08-01
Markovian sampling policy for water quality monitoring. Biometrics 33: 41-46. Wald , A. and Wolfowitz , J. (1945). Sampling inspection plans for...to remain in control. This idea is not new. Sampling plans for the percent defective were devised along these lines by Dodge (1943), Wald and... Wolfowitz (1945), and Dodge and Torrey (1951), who gave rules for switching from 100% sampling to sampling a fraction f. Multi-level inspec- tion plans having
Non-Markovianity of Gaussian Channels.
Torre, G; Roga, W; Illuminati, F
2015-08-14
We introduce a necessary and sufficient criterion for the non-Markovianity of Gaussian quantum dynamical maps based on the violation of divisibility. The criterion is derived by defining a general vectorial representation of the covariance matrix which is then exploited to determine the condition for the complete positivity of partial maps associated with arbitrary time intervals. Such construction does not rely on the Choi-Jamiolkowski representation and does not require optimization over states.
Formalisms for Specifying Markovian Population Models
Henzinger, Thomas A.; Jobstmann, Barbara; Wolf, Verena
We compare several languages for specifying Markovian population models such as queuing networks and chemical reaction networks. These languages —matrix descriptions, stochastic Petri nets, stoichiometric equations, stochastic process algebras, and guarded command models— all describe continuous-time Markov chains, but they differ according to important properties, such as compositionality, expressiveness and succinctness, executability, ease of use, and the support they provide for checking the well-formedness of a model and for analyzing a model.
Entanglement and non-markovianity of quantum evolutions.
Rivas, Angel; Huelga, Susana F; Plenio, Martin B
2010-07-30
We address the problem of quantifying the non-markovian character of quantum time evolutions of general systems in contact with an environment. We introduce two different measures of non-markovianity that exploit the specific traits of quantum correlations and are suitable for opposite experimental contexts. When complete tomographic knowledge about the evolution is available, our measure provides a necessary and sufficient condition to quantify strictly the non-markovianity. In the opposite case, when no information whatsoever is available, we propose a sufficient condition for non-markovianity. Remarkably, no optimization procedure underlies our derivation, which greatly enhances the practical relevance of the proposed criteria.
Markovian dynamics on complex reaction networks
Energy Technology Data Exchange (ETDEWEB)
Goutsias, J., E-mail: goutsias@jhu.edu; Jenkinson, G., E-mail: jenkinson@jhu.edu
2013-08-10
Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underlying population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions and the large size of the underlying state-spaces, computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples.
Steerable Miniature Jumping Robot
Kovac, Mirko; Schlegel, Manuel; Zufferey, Jean-Christophe; Floreano, Dario
2010-01-01
Jumping is used in nature by many small animals to locomote in cluttered environments or in rough terrain. It offers small systems the benefit of overcoming relatively large obstacles at a low energetic cost. In order to be able to perform repetitive jumps in a given direction, it is important to be able to upright after landing, steer and jump again. In this article, we review and evaluate the uprighting and steering principles of existing jumping robots and present a novel spherical robot w...
Chen, Yu; Zou, Jian; Yang, Zi-Yi; Li, Longwu; Li, Hai; Shao, Bin
2016-08-01
The dynamics of N-qubit GHZ state quantum Fisher information (QFI) under phase noise lasers (PNLs) driving is investigated in terms of non-Markovian master equation. We first investigate the non-Markovian dynamics of the QFI of N-qubit GHZ state and show that when the ratio of the PNL rate and the system-environment coupling strength is very small, the oscillations of the QFIs decay slower which corresponds to the non-Markovian region; yet when it becomes large, the QFIs monotonously decay which corresponds to the Markovian region. When the atom number N increases, QFIs in both regions decay faster. We further find that the QFI flow disappears suddenly followed by a sudden birth depending on the ratio of the PNL rate and the system-environment coupling strength and the atom number N, which unveil a fundamental connection between the non-Markovian behaviors and the parameters of system-environment couplings. We discuss two optimal positive operator-valued measures (POVMs) for two different strategies of our model and find the condition of the optimal measurement. At last, we consider the QFI of two atoms with qubit-qubit interaction under random telegraph noises (RTNs).
Post-Markovian dynamics of quantum correlations: entanglement versus discord
Mohammadi, Hamidreza
2017-02-01
Dynamics of an open two-qubit system is investigated in the post-Markovian regime, where the environments have a short-term memory. Each qubit is coupled to separate environment which is held in its own temperature. The inter-qubit interaction is modeled by XY-Heisenberg model in the presence of spin-orbit interaction and inhomogeneous magnetic field. The dynamical behavior of entanglement and discord has been considered. The results show that quantum discord is more robust than quantum entanglement, during the evolution. Also the asymmetric feature of quantum discord can be monitored by introducing the asymmetries due to inhomogeneity of magnetic field and temperature difference between the reservoirs. By employing proper parameters of the model, it is possible to maintain nonvanishing quantum correlation at high degree of temperature. The results can provide a useful recipe for studying dynamical behavior of two-qubit systems such as trapped spin electrons in coupled quantum dots.
Directory of Open Access Journals (Sweden)
Xueling Jiang
2014-01-01
Full Text Available The problem of adaptive asymptotical synchronization is discussed for the stochastic complex dynamical networks with time-delay and Markovian switching. By applying the stochastic analysis approach and the M-matrix method for stochastic complex networks, several sufficient conditions to ensure adaptive asymptotical synchronization for stochastic complex networks are derived. Through the adaptive feedback control techniques, some suitable parameters update laws are obtained. Simulation result is provided to substantiate the effectiveness and characteristics of the proposed approach.
Rebilas, Krzysztof
2013-01-01
Consider a skier who goes down a takeoff ramp, attains a speed "V", and jumps, attempting to land as far as possible down the hill below (Fig. 1). At the moment of takeoff the angle between the skier's velocity and the horizontal is [alpha]. What is the optimal angle [alpha] that makes the jump the longest possible for the fixed magnitude of the…
Nye, Susan B.
2010-01-01
Jumping rope is an activity that can be fun and enjoyable for all students. It requires minimal activity space, can be performed individually or in small groups, and is an inexpensive way to engage students in a lifelong physical activity. Jumping rope is commonly used by coaches and athletes for training purposes to improve aerobic endurance,…
Nye, Susan B.
2010-01-01
Jumping rope is an activity that can be fun and enjoyable for all students. It requires minimal activity space, can be performed individually or in small groups, and is an inexpensive way to engage students in a lifelong physical activity. Jumping rope is commonly used by coaches and athletes for training purposes to improve aerobic endurance,…
DEFF Research Database (Denmark)
Bollerslev, Tim; Todorov, Victor
We propose a new and flexible non-parametric framework for estimating the jump tails of Itô semimartingale processes. The approach is based on a relatively simple-to-implement set of estimating equations associated with the compensator for the jump measure, or its "intensity", that only utilizes ...
The power-series algorithm for Markovian queueing networks
van den Hout, W.B.; Blanc, J.P.C.
1994-01-01
A newversion of the Power-Series Algorithm is developed to compute the steady-state distribution of a rich class of Markovian queueing networks. The arrival process is a Multi-queue Markovian Arrival Process, which is a multi-queue generalization of the BMAP. It includes Poisson, fork and round-robi
Super-Exponential Solution in Markovian Supermarket Models: Framework and Challenge
Li, Quan-Lin
2011-01-01
Marcel F. Neuts opened a key door in numerical computation of stochastic models by means of phase-type (PH) distributions and Markovian arrival processes (MAPs). To celebrate his 75th birthday, this paper reports a more general framework of Markovian supermarket models, including a system of differential equations for the fraction measure and a system of nonlinear equations for the fixed point. To understand this framework heuristically, this paper gives a detailed analysis for three important supermarket examples: M/G/1 type, GI/M/1 type and multiple choices, explains how to derive the system of differential equations by means of density-dependent jump Markov processes, and shows that the fixed point may be simply super-exponential through solving the system of nonlinear equations. Note that supermarket models are a class of complicated queueing systems and their analysis can not apply popular queueing theory, it is necessary in the study of supermarket models to summarize such a more general framework which...
Ge, Xiaohua; Han, Qing-Long
2016-06-07
This paper addresses the consensus problem for a continuous-time multiagent system (MAS) with Markovian network topologies and external disturbance. Different from some existing results, global jumping modes of the Markovian network topologies are not required to be completely available for consensus protocol design. A network topology mode regulator (NTMR) is first developed to decompose unavailable global modes into several overlapping groups, where overlapping groups refer to the scenario that there exist commonly shared local modes between any two distinct groups. The NTMR schedules which group modes each agent may access at every time step. Then a new group mode-dependent distributed consensus protocol on the basis of relative measurement outputs of neighboring agents is delicately constructed. In this sense, the proposed consensus protocol relies only on group and partial modes and eliminates the need for complete knowledge of global modes. Sufficient conditions on the existence of desired distributed consensus protocols are derived to ensure consensus of the MAS with a prescribed H∞ performance level. Two examples are provided to show the effectiveness of the proposed consensus protocol.
General non-Markovian dynamics of open quantum systems.
Zhang, Wei-Min; Lo, Ping-Yuan; Xiong, Heng-Na; Tu, Matisse Wei-Yuan; Nori, Franco
2012-10-26
We present a general theory of non-Markovian dynamics for open systems of noninteracting fermions (bosons) linearly coupled to thermal environments of noninteracting fermions (bosons). We explore the non-Markovian dynamics by connecting the exact master equations with the nonequilibirum Green's functions. Environmental backactions are fully taken into account. The non-Markovian dynamics consists of nonexponential decays and dissipationless oscillations. Nonexponential decays are induced by the discontinuity in the imaginary part of the self-energy corrections. Dissipationless oscillations arise from band gaps or the finite band structure of spectral densities. The exact analytic solutions for various non-Markovian thermal environments show that non-Markovian dynamics can be largely understood from the environmental-modified spectra of open systems.
Decision-Theoretic Planning with non-Markovian Rewards
Gretton, C; Price, D; Slaney, J; Thiebaux, S
2011-01-01
A decision process in which rewards depend on history rather than merely on the current state is called a decision process with non-Markovian rewards (NMRDP). In decision-theoretic planning, where many desirable behaviours are more naturally expressed as properties of execution sequences rather than as properties of states, NMRDPs form a more natural model than the commonly adopted fully Markovian decision process (MDP) model. While the more tractable solution methods developed for MDPs do not directly apply in the presence of non-Markovian rewards, a number of solution methods for NMRDPs have been proposed in the literature. These all exploit a compact specification of the non-Markovian reward function in temporal logic, to automatically translate the NMRDP into an equivalent MDP which is solved using efficient MDP solution methods. This paper presents NMRDPP (Non-Markovian Reward Decision Process Planner), a software platform for the development and experimentation of methods for decision-theoretic planning...
Sliding Mode Control for Discrete-Time Systems With Markovian Packet Dropouts.
Song, Heran; Chen, Shih-Chi; Yam, Yeung
2016-07-09
This paper presents the design of a sliding mode controller for networked control systems subject to successive Markovian packet dropouts. This paper adopts the Gilbert-Elliott channel model to describe the temporal correlation among packet losses, and proposes an update scheme to select the assumed available states for use in a sliding mode control law. A technique used in the theory of discrete-time Markov jump linear systems is applied to tackle the effect of the packet losses. This involves introducing a couple of Lyapunov functions dependent on the indicator functions of the instantaneous packet loss, and proving that the sliding mode controller is able to drive the system state trajectories into the neighborhood of the designed integral sliding surface in mean-square sense given that the corresponding Lyapunov inequalities are satisfied. The system is guaranteed thereafter to remain inside the neighborhood of the sliding surface. Simulated case studies are presented to illustrate the effectiveness of the control law.
Reliable Sampled-Data Control of Fuzzy Markovian Systems with Partly Known Transition Probabilities
Sakthivel, R.; Kaviarasan, B.; Kwon, O. M.; Rathika, M.
2016-08-01
This article presents a fuzzy dynamic reliable sampled-data control design for nonlinear Markovian jump systems, where the nonlinear plant is represented by a Takagi-Sugeno fuzzy model and the transition probability matrix for Markov process is permitted to be partially known. In addition, a generalised as well as more practical consideration of the real-world actuator fault model which consists of both linear and nonlinear fault terms is proposed to the above-addressed system. Then, based on the construction of an appropriate Lyapunov-Krasovskii functional and the employment of convex combination technique together with free-weighting matrices method, some sufficient conditions that promising the robust stochastic stability of system under consideration and the existence of the proposed controller are derived in terms of linear matrix inequalities, which can be easily solved by any of the available standard numerical softwares. Finally, a numerical example is provided to illustrate the validity of the proposed methodology.
Directory of Open Access Journals (Sweden)
Junhao Hu
2014-01-01
Full Text Available We develop exponential stability of neutral stochastic functional differential equations with two-time-scale Markovian switching modeled by a continuous-time Markov chain which has a large state space. To overcome the computational effort and the complexity, we split the large-scale system into several classes and lump the states in each class into one class by the different states of changes of the subsystems; then, we give a limit system to effectively “replace” the large-scale system. Under suitable conditions, using the stability of the limit system as a bridge, the desired asymptotic properties of the large-scale system with Brownian motion and Poisson jump are obtained by utilizing perturbed Lyapunov function methods and Razumikhin-type criteria. Two examples are provided to demonstrate our results.
Non-Markovian Dynamics of Quantum Systems
Chruściński, Dariusz; Kossakowski, Andrzej
2011-01-01
We analyze a local approach to the non-Markovian evolution of open quantum systems. It turns out that any dynamical map representing evolution of such a system may be described either by non-local master equation with memory kernel or equivalently by equation which is local in time. The price one pays for the local approach is that the corresponding generator might be highly singular and it keeps the memory about the starting point 't0'. Remarkably, singularities of generator may lead to interesting physical phenomena like revival of coherence or sudden death and revival of entanglement.
Forgetfulness of continuous Markovian quantum channels
Lupo, Cosmo; Mancini, Stefano
2009-01-01
The notion of forgetfulness, used in discrete memory quantum channels, is slightly weakened in order to be applied to the case of continuous channels. This is done in the context of quantum memory channels with Markovian noise. As a case study, we apply the notion of weak-forgetfulness to a bosonic memory channel with additive noise. A suitable encoding and decoding unitary transformation allows us to unravel the effects of the memory, hence the channel capacities can be computed using known results from the memoryless setting.
Markovian quantum master equation beyond adiabatic regime
Yamaguchi, Makoto; Yuge, Tatsuro; Ogawa, Tetsuo
2017-01-01
By introducing a temporal change time scale τA(t ) for the time-dependent system Hamiltonian, a general formulation of the Markovian quantum master equation is given to go well beyond the adiabatic regime. In appropriate situations, the framework is well justified even if τA(t ) is faster than the decay time scale of the bath correlation function. An application to the dissipative Landau-Zener model demonstrates this general result. The findings are applicable to a wide range of fields, providing a basis for quantum control beyond the adiabatic regime.
Perturbative approach to Markovian open quantum systems.
Li, Andy C Y; Petruccione, F; Koch, Jens
2014-05-08
The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical.
Network Congestion Control with Markovian Multipath Routing
Cominetti, Roberto
2011-01-01
In this paper we consider an integrated model for TCP/IP protocols with multipath routing. The model combines a Network Utility Maximization for rate control based on end-to-end queuing delays, with a Markovian Traffic Equilibrium for routing based on total expected delays. We prove the existence of a unique equilibrium state which is characterized as the solution of an unconstrained strictly convex program. A distributed algorithm for solving this optimization problem is proposed, with a brief discussion of how it can be implemented by adapting the current Internet protocols.
Directory of Open Access Journals (Sweden)
Sándor Kovács
2012-12-01
Full Text Available In this study we discuss the Markovian chain-based decision processes and their developed variant called Hierarchic Markovian Processes. The optimizing possibilities of such processes are presented in detail. Moreover, we introduce a free available software based on these processes and developed by Danish researchers for supporting decisions in animal breeding. Among the several models the reduced sow model (with gestation were chosen for presentation. We describe the basic settings and parameters for running the software as well as we calculate the average net return over time and the series of decisions per sow in case of simulated sow herd data by applying the value iteration technique. We also present the results of decisions on keeping an animal in production as well as on determining the number of matings of a sow. We also give examples of the development of the relative utility values related to such decisions.
Non-Markovian dynamics of quantum coherence of two-level system driven by classical field
Huang, Zhiming; Situ, Haozhen
2017-09-01
In this paper, we study the quantum coherence dynamics of two-level atom system embedded in non-Markovian reservoir in the presence of classical driving field. We analyze the influence of memory effects, classical driving, and detuning on the quantum coherence. It is found that the quantum coherence has different behaviors in resonant case and non-resonant case. In the resonant case, in stark contrast with previous results, the strength of classical driving plays a negative effect on quantum coherence, while detuning parameter has the opposite effect. However, in non-resonant case through a long time, classical driving and detuning parameter have a different influence on quantum coherence compared with resonant case. Due to the memory effect of environment, in comparison with Markovian regime, quantum coherence presents vibrational variations in non-Markovian regime. In the resonant case, all quantum coherence converges to a fixed maximum value; in the non-resonant case, quantum coherence evolves to different stable values. For zero-coherence initial states, quantum coherence can be generated with evolution time. Our discussions and results should be helpful in manipulating and preserving the quantum coherence in dissipative environment with classical driving field.
Robust Stabilization for Uncertain Linear Delay Markow Jump System
Institute of Scientific and Technical Information of China (English)
钟麦英; 汤兵勇; 黄小原
2001-01-01
Markov jump linear systems are defined as a family of linear systems with randomly Markov jumping parameters and are used to model systems subject to failures or changes in structure. The robust stabilization problem of jump linear delay system with umcerratnty was studied. By using of linear matrix inequalities, the existence conditions of robust stabilizing and the state feedback controller designing methods are also presented and proved. Finally, an illustrated example shows the effectiveness of this approach.
Energy Technology Data Exchange (ETDEWEB)
Tejedor, V; Benichou, O; Voituriez, R [Laboratoire de Physique Theorique de la Matiere Condensee (UMR 7600), Universite Pierre et Marie Curie, 4 Place Jussieu, 75255 Paris Cedex (France); Metzler, Ralf, E-mail: voiturie@lptmc.jussieu.fr [Physics Department, Technical University of Munich, James Franck Strasse, 85747 Garching (Germany)
2011-06-24
We derive a functional equation for the mean first-passage time (MFPT) of a generic self-similar Markovian continuous process to a target in a one-dimensional domain and obtain its exact solution. We show that the obtained expression of the MFPT for continuous processes is actually different from the large system size limit of the MFPT for discrete jump processes allowing leapovers. In the case considered here, the asymptotic MFPT admits non-vanishing corrections, which we call residual MFPT. The case of Levy flights with diverging variance of jump lengths is investigated in detail, in particular, with respect to the associated leapover behavior. We also show numerically that our results apply with good accuracy to fractional Brownian motion, despite its non-Markovian nature.
Lavička, H; Kiss, T; Lutz, E; Jex, I
2011-01-01
We analyze a special class of 1-D quantum walks (QWs) realized using optical multi-ports. We assume non-perfect multi-ports showing errors in the connectivity, i.e. with a small probability the multi- ports can connect not to their nearest neighbor but to another multi-port at a fixed distance - we call this a jump. We study two cases of QW with jumps where multiple displacements can emerge at one timestep. The first case assumes time-correlated jumps (static disorder). In the second case, we choose the positions of jumps randomly in time (dynamic disorder). The probability distributions of position of the QW walker in both instances differ significantly: dynamic disorder leads to a Gaussian-like distribution, while for static disorder we find two distinct behaviors depending on the parity of jump size. In the case of even-sized jumps, the distribution exhibits a three-peak profile around the position of the initial excitation, whereas the probability distribution in the odd case follows a Laplace-like discre...
Kim, Ho-Young
2016-11-01
Water striders can jump on water as high as they can jump on land. Quick jumps allow them to avoid sudden dangers such as predators' attacks, and therefore understanding how they make such a dramatic motion for survival can shed light on the ultimate level of semi-aquatic motility achievable through evolution. However, the mechanism of their vertical jumping from a water surface has eluded hydrodynamic explanations so far. By observing movements of water strider legs and theoretically analyzing their dynamic interactions with deforming liquid-air interface, we have recently found that different species of jumping striders always tune their leg rotation speed with a force just below that required to break the water surface to reach the maximum take-off velocity. Here, we start with discussing the fundamental theories of dynamics of floating and sinking of small objects. The theories then enable us to analyze forces acting on a water strider while it presses down the water surface to fully exploit the capillary force. We further introduce a 68-milligram at-scale robotic insect capable of jumping on water without splash, strikingly similar to the real strider, by utilizing the water surface just as a trampoline.
Decoherence of Josephson charge qubit in non-Markovian environment
Energy Technology Data Exchange (ETDEWEB)
Qiu, Qing-Qian; Zhou, Xing-Fei; Liang, Xian-Ting, E-mail: liangxianting@nbu.edu.cn
2016-05-15
In this paper we investigate the decoherence of Josephson charge qubit (JCQ) by using a time-nonlocal (TNL) dynamical method. Three kinds of environmental models, described with Ohmic, super-Ohmic, and sub-Ohmic spectral density functions are considered. It is shown that the TNL method can effectively include the non-Markovian effects in the dynamical solutions. In particular, it is shown that the sub-Ohmic environment has longer correlation time than the Ohmic and super-Ohmic ones. And the Markovian and non-Markovian dynamics are obviously different for the qubit in sub-Ohmic environment.
Light with Tunable Non-Markovian Phase Imprint
Fischer, Robert; Vidal, Itamar; Gilboa, Doron; Correia, Ricardo R. B.; Ribeiro-Teixeira, Ana C.; Prado, Sandra D.; Hickman, Jandir; Silberberg, Yaron
2015-08-01
We introduce a simple and flexible method to generate spatially non-Markovian light with tunable coherence properties in one and two dimensions. The unusual behavior of this light is demonstrated experimentally by probing the far field and by recording its diffraction pattern after a double slit: In both cases we observe, instead of a central intensity maximum, a line- or cross-shaped dark region, whose width and profile depend on the non-Markovian coherence properties. Because these properties can be controlled and easily reproduced in experiment, the presented approach lends itself to serving as a test bed to study and gain a deeper understanding of non-Markovian processes.
Light with tunable non-Markovian phase imprint
Fischer, Robert; Gilboa, Doron; Correia, Ricardo R B; Ribeiro-Teixeira, Ana C; Prado, Sandra D; Hickman, Jandir; Silberberg, Yaron
2015-01-01
We introduce a simple and flexible method to generate spatially non-Markovian light with tunable coherence properties in one and two dimensions. The unusual behavior of this light is demonstrated experimentally by probing the far field and recording its diffraction pattern after a double slit: In both cases we observe instead of a central intensity maximum a line or cross shaped dark region, whose width and profile depend on the non-Markovian coherence properties. Since these properties can be controlled and easily reproduced in experiment, the presented approach lends itself to serve as a testbed to gain a deeper understanding of non-Markovian processes.
Solving non-Markovian open quantum systems with multi-channel reservoir coupling
Energy Technology Data Exchange (ETDEWEB)
Broadbent, Curtis J., E-mail: curtis.broadbent@rochester.edu [Rochester Theory Center, and Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Jing, Jun; Yu, Ting [Center for Controlled Quantum Systems, and the Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Eberly, Joseph H. [Rochester Theory Center, and Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States)
2012-08-15
We extend the non-Markovian quantum state diffusion (QSD) equation to open quantum systems which exhibit multi-channel coupling to a harmonic oscillator reservoir. Open quantum systems which have multi-channel reservoir coupling are those in which canonical transformation of reservoir modes cannot reduce the number of reservoir operators appearing in the interaction Hamiltonian to one. We show that the non-Markovian QSD equation for multi-channel reservoir coupling can, in some cases, lead to an exact master equation which we derive. We then derive the exact master equation for the three-level system in a vee-type configuration which has multi-channel reservoir coupling and give the analytical solution. Finally, we examine the evolution of the three-level vee-type system with generalized Ornstein-Uhlenbeck reservoir correlations numerically. - Highlights: Black-Right-Pointing-Pointer The concept of multi-channel vs. single-channel reservoir coupling is rigorously defined. Black-Right-Pointing-Pointer The non-Markovian quantum state diffusion equation for arbitrary multi-channel reservoir coupling is derived. Black-Right-Pointing-Pointer An exact time-local master equation is derived under certain conditions. Black-Right-Pointing-Pointer The analytical solution to the three-level system in a vee-type configuration is found. Black-Right-Pointing-Pointer The evolution of the three-level system under generalized Ornstein-Uhlenbeck noise is plotted for many parameter regimes.
Non-Markovian Quantum State Diffusion
Diósi, L; Strunz, W T
1998-01-01
We present a nonlinear stochastic Schroedinger equation for pure states describing non-Markovian diffusion of quantum trajectories. It provides an unravelling of the evolution of a quantum system coupled to a finite or infinite number of harmonic oscillators, without any approximation. Its power is illustrated by several examples, including measurement-like situations, dissipation, and quantum Brownian motion. In some examples, we treat the environment phenomenologically as an infinite reservoir with fluctuations of arbitrary correlation. In other examples the environment consists of a finite number of oscillators. In these quasi-periodic cases we see the reversible decay of a `Schroedinger cat' state. Finally, our description of open systems is compatible with different positions of the `Heisenberg cut' between system and environment.
Non-Markovian expansion in quantum Brownian motion
Fraga, Eduardo S.; Krein, Gastão; Palhares, Letícia F.
2014-01-01
We consider the non-Markovian Langevin evolution of a dissipative dynamical system in quantum mechanics in the path integral formalism. After discussing the role of the frequency cutoff for the interaction of the system with the heat bath and the kernel and noise correlator that follow from the most common choices, we derive an analytic expansion for the exact non-Markovian dissipation kernel and the corresponding colored noise in the general case that is consistent with the fluctuation-dissipation theorem and incorporates systematically non-local corrections. We illustrate the modifications to results obtained using the traditional (Markovian) Langevin approach in the case of the exponential kernel and analyze the case of the non-Markovian Brownian motion. We present detailed results for the free and the quadratic cases, which can be compared to exact solutions to test the convergence of the method, and discuss potentials of a general nonlinear form.
Non-Markovian expansion in quantum dissipative systems
Fraga, E S; Palhares, L F
2009-01-01
We consider the non-Markovian Langevin evolution of a dissipative dynamical system in quantum mechanics in the path integral formalism. After discussing the role of the frequency cutoff for the interaction of the system with the heat bath and the kernel and noise correlator that follow from the most common choices, we derive an analytic expansion for the exact non-Markovian dissipation kernel and the corresponding colored noise in the general case that is consistent with the fluctuation-dissipation theorem and incorporates systematically non-local corrections. We illustrate the modifications to results obtained using the traditional (Markovian) Langevin approach in the case of the exponential kernel and analyze the case of the non-Markovian Brownian motion.
On Non-Markovian Time Evolution in Open Quantum Systems
Kossakowski, Andrzej; Rebolledo, Rolando
2008-03-01
Non-Markovian reduced dynamics of an open system is investigated. In the case the initial state of the reservoir is the vacuum state, an approximation is introduced which makes possible to construct a reduced dynamics which is completely positive.
Non-Markovian diffusion equations and processes: analysis and simulations
Mura, Antonio; Mainardi, Francesco
2007-01-01
In this paper we introduce and analyze a class of diffusion type equations related to certain non-Markovian stochastic processes. We start from the forward drift equation which is made non-local in time by the introduction of a suitable chosen memory kernel K(t). The resulting non-Markovian equation can be interpreted in a natural way as the evolution equation of the marginal density function of a random time process l(t). We then consider the subordinated process Y(t)=X(l(t)) where X(t) is a Markovian diffusion. The corresponding time-evolution of the marginal density function of Y(t) is governed by a non-Markovian Fokker-Planck equation which involves the memory kernel K(t). We develop several applications and derive the exact solutions. We consider different stochastic models for the given equations providing path simulations.
Non-Markovian spontaneous emission from a single quantum dot
DEFF Research Database (Denmark)
Madsen, Kristian Høeg; Ates, Serkan; Lund-Hansen, Toke;
2011-01-01
We observe non-Markovian dynamics of a single quantum dot when tuned into resonance with a cavity mode. Excellent agreement between experiment and theory is observed providing the first quantitative description of such a system....
A non-Markovian model of rill erosion
Winter, C.; Damron, M.
2009-12-01
Stochastic processes with reinforcement are inherently non-Markovian and therefore may model geophysical processes with memory, for instance patterns of rill erosion, more realistically than Markovian models. Reinforcement provides a bias to a system that is equivalent to infinite memory, making a system more likely to occupy a given state the more often the state is visited. Some well-studied examples in applied mathematics include variations on the urn of P'olya and reinforced random walks. Many natural phenomena exhibit similar behavior: for instance, an overall pattern of rills is relatively stable once it is established, although small details of the pattern may change frequently and catastrophes that permanently alter it may occasionally occur. To model the phenomenology of rill erosion, we propose a simple discrete time, infinite-memory random process defined on the nodes and edges of an oriented diagonal lattice. Lattice models have often been used to investigate the morphology of natural drainage networks, but our focus is as much on the dynamics of network formation as it is on morphology. The lattice in our model starts out smooth in the sense that it has no edges initially, but it sprouts edges everywhere the instant the process starts, much as rain can start soil erosion everywhere on a hillslope at once. Exactly one edge (rill segment) descends from each node, and it points either left or right. Sediment loads travel along networks of edges and are accumulated at nodes. At every node and at every time step, a simple two parameter reinforcing law randomly determines the direction of the node’s output and then is updated. The degree of reinforcement is set by comparing the node's current sediment load to the load history of the entire network above it and is governed by two system parameters representing respectively rainfall intensity and the soil’s resistance to change. The current pattern of connections among nodes represents the present state of
Properties of quantum Markovian master equations. [Semigroup law, detailed balance
Energy Technology Data Exchange (ETDEWEB)
Gorini, V.; Frigerio, A.; Verri, M.; Kossakowski, A.; Sudarshan, E.C.G.
1976-11-01
An essentially self-contained account is given of some general structural properties of the dynamics of quantum open Markovian systems. Some recent results regarding the problem of the classification of quantum Markovian master equations and the limiting conditions under which the dynamical evolution of a quantum open system obeys an exact semigroup law (weak coupling limit and singular coupling limit are reviewed). A general form of quantum detailed balance and its relation to thermal relaxation and to microreversibility is discussed.
Entanglement and non-Markovianity of quantum evolutions
Rivas, Ángel; Plenio, Martin B
2009-01-01
We address the problem of quantifying the non-Markovian character of quantum time-evolutions of general systems in contact with an environment. We introduce two different measures of non-Markovianity that exploit the specific traits of quantum correlations and are suitable for opposite experimental contexts, one requiring complete tomographic knowledge about the evolution and the other one requiring no knowledge at all. Remarkably, no optimization procedure underlies our derivation, which greatly enhances the practical relevance of the proposed criteria.
Quantum non-Markovianity induced by Anderson localization
Lorenzo, Salvatore; Lombardo, Federico; Ciccarello, Francesco; Palma, G. Massimo
2017-02-01
As discovered by P. W. Anderson, excitations do not propagate freely in a disordered lattice, but, due to destructive interference, they localise. As a consequence, when an atom interacts with a disordered lattice, one indeed observes a non-trivial excitation exchange between atom and lattice. Such non-trivial atomic dynamics will in general be characterised also by a non-trivial quantum information backflow, a clear signature of non-Markovian dynamics. To investigate the above scenario, we consider a quantum emitter, or atom, weakly coupled to a uniform coupled-cavity array (CCA). If initially excited, in the absence of disorder, the emitter undergoes a Markovian spontaneous emission by releasing all its excitation into the CCA (initially in its vacuum state). By introducing static disorder in the CCA the field normal modes become Anderson-localized, giving rise to a non-Markovian atomic dynamics. We show the existence of a functional relationship between a rigorous measure of quantum non-Markovianity and the CCA localization. We furthermore show that the average non-Markovianity of the atomic dynamics is well-described by a phenomenological model in which the atom is coupled, at the same time, to a single mode and to a standard - Markovian - dissipative bath.
Quantum non-Markovianity induced by Anderson localization
Lorenzo, Salvatore; Lombardo, Federico; Ciccarello, Francesco; Palma, G. Massimo
2017-01-01
As discovered by P. W. Anderson, excitations do not propagate freely in a disordered lattice, but, due to destructive interference, they localise. As a consequence, when an atom interacts with a disordered lattice, one indeed observes a non-trivial excitation exchange between atom and lattice. Such non-trivial atomic dynamics will in general be characterised also by a non-trivial quantum information backflow, a clear signature of non-Markovian dynamics. To investigate the above scenario, we consider a quantum emitter, or atom, weakly coupled to a uniform coupled-cavity array (CCA). If initially excited, in the absence of disorder, the emitter undergoes a Markovian spontaneous emission by releasing all its excitation into the CCA (initially in its vacuum state). By introducing static disorder in the CCA the field normal modes become Anderson-localized, giving rise to a non-Markovian atomic dynamics. We show the existence of a functional relationship between a rigorous measure of quantum non-Markovianity and the CCA localization. We furthermore show that the average non-Markovianity of the atomic dynamics is well-described by a phenomenological model in which the atom is coupled, at the same time, to a single mode and to a standard - Markovian - dissipative bath. PMID:28205542
Nonstandard analysis and jump conditions for converging shock waves
Baty, Roy S.; Farassat, F.; Tucker, Don H.
2008-06-01
Nonstandard analysis is an area of modern mathematics that studies abstract number systems containing both infinitesimal and infinite numbers. This article applies nonstandard analysis to derive jump conditions for one-dimensional, converging shock waves in a compressible, inviscid, perfect gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. Predistributions of the Heaviside function and the Dirac delta measure are introduced to model the flow parameters across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the flow parameters.
Abderrahmane, Hamid; Kasimov, Aslan
2013-11-01
We report an experimental observation of a new symmetry breaking of circular hydraulic jump into a self-organized structure that consists of a spinning polygonal jump and logarithmic-spiral waves of fluid elevation downstream. The waves are strikingly similar to spiral density waves in galaxies. The fluid flow exhibits counterparts of salient morphological features of galactic flows, in particular the outflow from the center, jets, circum-nuclear rings, gas inflows toward the galactic center, and vortices. The hydrodynamic instability revealed here may have a counterpart that plays a role in the formation and sustainability of spiral arms in galaxies.
Non-Markovian dissipative quantum mechanics with stochastic trajectories
Energy Technology Data Exchange (ETDEWEB)
Koch, Werner
2010-09-09
propagation - until thermalization is reached - is shown to be possible with the presented approach. The properties of the thermalized density are determined and they are ascertained to be independent of the system's initial state. Furthermore, the dependence on the bath's temperature and coupling strength is analyzed and it is demonstrated how a change of the bath parameters can be used to tune the system from the dissociative to the bound regime. A second investigation is conducted for a dissipative tunneling scenario in which a wave packet impinges on a barrier. The dependence of the transmission probability on the initial state's kinetic energy as well as the bath's temperature and coupling strength is computed. For both systems, a comparison with the high-temperature Markovian quantum Brownian limit is performed. The importance of a full non- Markovian treatment is demonstrated as deviations are shown to exist between the two descriptions both in the low temperature cases where they are expected and in some of the high temperature cases where their appearance might not be anticipated as easily. (orig.)
Farr, Will M
2011-01-01
Selection among alternative theoretical models given an observed data set is an important challenge in many areas of physics and astronomy. Reversible-jump Markov chain Monte Carlo (RJMCMC) is an extremely powerful technique for performing Bayesian model selection, but it suffers from a fundamental difficulty: it requires jumps between model parameter spaces, but cannot retain a memory of the favored locations in more than one parameter space at a time. Thus, a naive jump between parameter spaces is unlikely to be accepted in the MCMC algorithm and convergence is correspondingly slow. Here we demonstrate an interpolation technique that uses samples from single-model MCMCs to propose inter-model jumps from an approximation to the single-model posterior of the target parameter space. The interpolation technique, based on a kD-tree data structure, is adaptive and efficient in arbitrary dimensions. We show that our technique leads to dramatically improved convergence over naive jumps in an RJMCMC, and compare it ...
Farr, W M; Mandel, I; Stevens, D
2015-06-01
Selection among alternative theoretical models given an observed dataset is an important challenge in many areas of physics and astronomy. Reversible-jump Markov chain Monte Carlo (RJMCMC) is an extremely powerful technique for performing Bayesian model selection, but it suffers from a fundamental difficulty and it requires jumps between model parameter spaces, but cannot efficiently explore both parameter spaces at once. Thus, a naive jump between parameter spaces is unlikely to be accepted in the Markov chain Monte Carlo (MCMC) algorithm and convergence is correspondingly slow. Here, we demonstrate an interpolation technique that uses samples from single-model MCMCs to propose intermodel jumps from an approximation to the single-model posterior of the target parameter space. The interpolation technique, based on a kD-tree data structure, is adaptive and efficient in modest dimensionality. We show that our technique leads to improved convergence over naive jumps in an RJMCMC, and compare it to other proposals in the literature to improve the convergence of RJMCMCs. We also demonstrate the use of the same interpolation technique as a way to construct efficient 'global' proposal distributions for single-model MCMCs without prior knowledge of the structure of the posterior distribution, and discuss improvements that permit the method to be used in higher dimensional spaces efficiently.
An analysis of non-normal Markovian extremal droughts
Sharma, T. C.
1998-03-01
In many arid and semi-arid environments of the world, years of extended droughts are not uncommon. The occurrence of a drought can be reflected by the deficiency of the rainfall or stream flow sequences below the long-term mean value, which is generally taken as the truncation level for the identification of the droughts. The commonly available statistics for the above processes are mean, coefficient of variation and the lag-one serial correlation coefficient, and at times some indication of the probability distribution function (pdf) of the sequences. The important elements of a drought phenomenon are the longest duration and the largest severity for a desired return period, which form a basis for designing facilities to meet exigencies arising as a result of droughts. The sequences of drought variable, such as annual rainfall or stream flow, may follow normal, log-normal or gamma distributions, and may evolve in a Markovian fashion and are bound to influence extremal values of the duration and severity. The effect of the aforesaid statistical parameters on the extremal drought durations and severity have been analysed in the present paper. A formula in terms of the extremal severity and the return period T in years has been suggested in parallel to the flood frequency formula, commonly cited in the hydrological texts.
Evolutionary Markovian Strategies in 2 x 2 Spatial Games
Fort, H; Fort, Hugo; Sicardi, Estrella
2006-01-01
Evolutionary spatial 2 x 2 games between heterogeneous agents are analyzed using different variants of cellular automata (CA). Agents play repeatedly against their nearest neighbors 2 x 2 games specified by a rescaled payoff matrix with two parameteres. Each agent is governed by a binary Markovian strategy (BMS) specified by 4 conditional probabilities [p_R, p_S, p_T, p_P] that take values 0 or 1. The initial configuration consists in a random assignment of "strategists" among the 2^4= 16 possible BMS. The system then evolves within strategy space according to the simple standard rule: each agent copies the strategy of the neighbor who got the highest payoff. Besides on the payoff matrix, the dominant strategy -and the degree of cooperation- depend on i) the type of the neighborhood (von Neumann or Moore); ii) the way the cooperation state is actualized (deterministically or stochastichally); and iii) the amount of noise measured by a parameter epsilon. However a robust winner strategy is [1,0,1,1].
Variational Identification of Markovian Transition States
Directory of Open Access Journals (Sweden)
Linda Martini
2017-09-01
Full Text Available We present a method that enables the identification and analysis of conformational Markovian transition states from atomistic or coarse-grained molecular dynamics (MD trajectories. Our algorithm is presented by using both analytical models and examples from MD simulations of the benchmark system helix-forming peptide Ala_{5}, and of larger, biomedically important systems: the 15-lipoxygenase-2 enzyme (15-LOX-2, the epidermal growth factor receptor (EGFR protein, and the Mga2 fungal transcription factor. The analysis of 15-LOX-2 uses data generated exclusively from biased umbrella sampling simulations carried out at the hybrid ab initio density functional theory (DFT quantum mechanics/molecular mechanics (QM/MM level of theory. In all cases, our method automatically identifies the corresponding transition states and metastable conformations in a variationally optimal way, with the input of a set of relevant coordinates, by accurately reproducing the intrinsic slowest relaxation rate of each system. Our approach offers a general yet easy-to-implement analysis method that provides unique insight into the molecular mechanism and the rare but crucial (i.e., rate-limiting transition states occurring along conformational transition paths in complex dynamical systems such as molecular trajectories.
Robust reliable H∞ control for discrete-time Markov jump linear systems with actuator failures
Institute of Scientific and Technical Information of China (English)
Chen Jiaorong; Liu Fei
2008-01-01
The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied.A more practical model of actuator failures than outage is considered.Based on the state feedback method,the resulting closed-loop systems are reliable in that they remain robust stochastically stable and satisfy a certain level of Hex disturbance attenuation not only when all actuators are operational,but also in case of some actuator failures.The solvability condition of controllers can be equivalent to a feasibility problem of coupled linear matrix inequalities (LMIs).A numerical example is also given to illustrate the design procedures and their effectiveness.
The hydraulic jump and ripples in liquid helium
Energy Technology Data Exchange (ETDEWEB)
Rolley, E. [Laboratoire de Physique Statistique de l' ENS, associe au CNRS et aux Universites Paris 6 et Paris 7, 24 rue Lhomond, 75005 Paris (France)]. E-mail: rolley@lps.ens.fr; Guthmann, C. [Laboratoire de Physique Statistique de l' ENS, associe au CNRS et aux Universites Paris 6 et Paris 7, 24 rue Lhomond, 75005 Paris (France); Pettersen, M.S. [Washington and Jefferson College, 60 S. Lincoln St., Washington, PA 15301 (United States)
2007-05-01
We have studied the characteristics of the circular hydraulic jump using liquid helium. Surprisingly, the radius of the jump does not change at the superfluid transition. We think that the flow is still dissipative below the lambda point because the velocity exceeds the critical one. The jump radius R{sub j} is compared with various models. In our parameter range, we find that the jump can be treated as a shock, and that capillary effects are important. Below the superfluid transition, we observed a standing capillary wave between the impact of the jet and the jump. Assuming that the superfluid flow can be described with an effective viscosity, we calculate the wave vector and thus obtain the value of the liquid thickness, which is in reasonable agreement with predictions. However, the spatial variation of the wave amplitude depends much more strongly on temperature than we calculate.
POISSON LIMIT THEOREM FOR COUNTABLE MARKOV CHAINS IN MARKOVIAN ENVIRONMENTS
Institute of Scientific and Technical Information of China (English)
方大凡; 王汉兴; 唐矛宁
2003-01-01
A countable Markov chain in a Markovian environment is considered. A Poisson limit theorem for the chain recurring to small cylindrical sets is mainly achieved. In order to prove this theorem, the entropy function h is introduced and the Shannon-McMillan-Breiman theorem for the Markov chain in a Markovian environment is shown. It' s well-known that a Markov process in a Markovian environment is generally not a standard Markov chain, so an example of Poisson approximation for a process which is not a Markov process is given. On the other hand, when the environmental process degenerates to a constant sequence, a Poisson limit theorem for countable Markov chains, which is the generalization of Pitskel's result for finite Markov chains is obtained.
Directory of Open Access Journals (Sweden)
Oscar Castro-Orgaz
2015-04-01
Full Text Available The transition from subcritical to supercritical flow when the inflow Froude number Fo is close to unity appears in the form of steady state waves called undular hydraulic jump. The characterization of the undular hydraulic jump is complex due to the existence of a non-hydrostatic pressure distribution that invalidates the gradually-varied flow theory, and supercritical shock waves. The objective of this work is to present a mathematical model for the undular hydraulic jump obtained from an approximate integration of the Reynolds equations for turbulent flow assuming that the Reynolds number R is high. Simple analytical solutions are presented to reveal the physics of the theory, and a numerical model is used to integrate the complete equations. The limit of application of the theory is discussed using a wave breaking condition for the inception of a surface roller. The validity of the mathematical predictions is critically assessed using physical data, thereby revealing aspects on which more research is needed
GENERALIZED STOCHASTIC DURATION IN MARKOVIAN HEATH-JARROW-MORTON FRAMEWORK
Institute of Scientific and Technical Information of China (English)
简志宏; 李楚霖
2002-01-01
This paper focuses on how to measure the interest rate risk. The conventional measure methods of interest rate risk arc reviewed and the duration concept is generalized to stochastic duration in the Markovian HJM framework. The generalized stochastic duration of the coupon bond is defined as the time to maturity of a zero coupon bond having the same instantaneous variance as the coupon bond. According to this definition, the authors first present the framework of Markovian HJM model, then deduce the measures of stochastic duration in some special cases which cover some extant interest term structure.
Programmable entanglement oscillations in a non Markovian channel
Cialdi, Simone; Tesio, Enrico; Paris, Matteo G A
2010-01-01
We suggest and demonstrate an all-optical experimental setup to observe and engineer entanglement oscillations of a pair of polarization qubits in a non-Markovian channel. We generate entangled photon pairs by spontaneous parametric downconversion (SPDC), and then insert a programmable spatial light modulator in order to impose a polarization dependent phase-shift on the spatial domain of the SPDC output and to create an effective non-Markovian environment. Modulation of the enviroment spectrum is obtained by inserting a spatial grating on the signal arm. In our experiment, programmable oscillations of entanglement are achieved, with the maximally revived state that violates Bell's inequality by 17 standard deviations.
Non-Markovian quantum Brownian motion of a harmonic oscillator
Energy Technology Data Exchange (ETDEWEB)
Tang, J.
1994-02-01
We apply the density-matrix method to the study of quantum Brownian motion of a harmonic oscillator coupled to a heat bath, a system investigated previously by Caldeira and Leggett using a different method. Unlike the earlier work, in our derivation of the master equation the non-Markovian terms are maintained. Although the same model of interaction is used, discrepancy is found between their results and our equation in the Markovian limit. We also point out that the particular interaction model used by both works cannot lead to the phenomenological generalized Langevin theory of Kubo.
Think continuous: Markovian Gaussian models in spatial statistics
Simpson, Daniel; Rue, Håvard
2011-01-01
Gaussian Markov random fields (GMRFs) are frequently used as computationally efficient models in spatial statistics. Unfortunately, it has traditionally been difficult to link GMRFs with the more traditional Gaussian random field models as the Markov property is difficult to deploy in continuous space. Following the pioneering work of Lindgren et al. (2011), we expound on the link between Markovian Gaussian random fields and GMRFs. In particular, we discuss the theoretical and practical aspects of fast computation with continuously specified Markovian Gaussian random fields, as well as the clear advantages they offer in terms of clear, parsimonious and interpretable models of anisotropy and non-stationarity.
Direct observation of markovian behavior of the mechanical unfolding of individual proteins.
Cao, Yi; Kuske, Rachel; Li, Hongbin
2008-07-01
Single-molecule force-clamp spectroscopy is a valuable tool to analyze unfolding kinetics of proteins. Previous force-clamp spectroscopy experiments have demonstrated that the mechanical unfolding of ubiquitin deviates from the generally assumed Markovian behavior and involves the features of glassy dynamics. Here we use single molecule force-clamp spectroscopy to study the unfolding kinetics of a computationally designed fast-folding mutant of the small protein GB1, which shares a similar beta-grasp fold as ubiquitin. By treating the mechanical unfolding of polyproteins as the superposition of multiple identical Poisson processes, we developed a simple stochastic analysis approach to analyze the dwell time distribution of individual unfolding events in polyprotein unfolding trajectories. Our results unambiguously demonstrate that the mechanical unfolding of NuG2 fulfills all criteria of a memoryless Markovian process. This result, in contrast with the complex mechanical unfolding behaviors observed for ubiquitin, serves as a direct experimental demonstration of the Markovian behavior for the mechanical unfolding of a protein and reveals the complexity of the unfolding dynamics among structurally similar proteins. Furthermore, we extended our method into a robust and efficient pseudo-dwell-time analysis method, which allows one to make full use of all the unfolding events obtained in force-clamp experiments without categorizing the unfolding events. This method enabled us to measure the key parameters characterizing the mechanical unfolding energy landscape of NuG2 with improved precision. We anticipate that the methods demonstrated here will find broad applications in single-molecule force-clamp spectroscopy studies for a wide range of proteins.
Liu, Xiaoyang; Yu, Wenwu; Cao, Jinde; Chen, Shun
2015-08-01
This paper is concerned with the sampled-data state estimation and H(∞) filtering for a class of Markovian jump systems with the discontinuous Lyapunov approach. The system measurements are sampled and then transmitted to the estimator and filter in order to estimate the state of the jumped system under consideration. The corresponding error dynamics is represented by a system with two types of delays: one is from the system itself, and the other from the sampling period. As the delay due to sampling is discontinuous, a corresponding discontinuous Lyapunov functional is constructed, and sufficient conditions are established so as to guarantee both the asymptotic mean-square stability and the H(∞) performance for the filtering error systems. The explicit expressions of the desired estimator and filter are further provided. Finally, two simulation examples are given to illustrate the design procedures and performances of the proposed method.
Nourmandipour, A.; Tavassoly, M. K.; Rafiee, M.
2016-02-01
We provide an analytical investigation of the pairwise entanglement dynamics for a system, consisting of an arbitrary number of qubits dissipating into a common and non-Markovian environment for both weak- and strong-coupling regimes. In the latter case, a revival of pairwise entanglement due to the memory depth of the environment is observed. The leakage of photons into a continuum state is assumed to be the source of dissipation. We show that for an initially Werner state, the environment washes out the pairwise entanglement, but a series of nonselective measurements can protect the relevant entanglement. On the other hand, by limiting the number of qubits initially in the superposition of single excitation, a stationary entanglement can be created between qubits initially in the excited and ground states. Finally, we determine the stationary distribution of the entanglement versus the total number of qubits in the system.
Quantum jumps induced by matter-wave fluctuations
Torres, J M; Zippilli, S; Morigi, G
2010-01-01
We theoretically study the occurrence of quantum jumps in the resonance fluorescence of a trapped atom. Here, the atom is laser cooled in a configuration of level such that the occurrence of a quantum jump is associated to a change of the vibrational center-of-mass motion by one phonon. The statistics of the occurrence of the dark fluorescence period is studied as a function of the physical parameters and the corresponding features in the spectrum of resonance fluorescence are identified. We discuss the information which can be extracted on the atomic motion from the observation of a quantum jump in the considered setup.
Garcia, Sebastian
2010-01-01
Eastward ridge jumps bring the volcanic zones of Iceland back to the centre of the hotspot in response to the absolute westward drift of the Mid-Atlantic Ridge. Mantellic pulses triggers these ridge jumps. One of them is occurring in Southern Iceland, whereas the exact conditions of the last ridge jump in Northern Iceland remain controversial. The diachronous evolution of these two parts of Iceland may be related to the asymmetric plume-ridge interaction when comparing Northern and Southern I...
Directory of Open Access Journals (Sweden)
Struzik Artur
2016-04-01
Full Text Available Study aim: The elastic potential energy accumulated in the musculotendinous units during the countermovement phase of a jump adds up to the energy supplied by the contracting muscles used in the take-off phase. Consequently, the total mechanical energy used during the jump may reach higher values. Stiffness represents a quantitative measure of a body’s elastic properties. Therefore, the aim of this study was to establish the relationship between leg stiffness and the countermovement jump height.
Long-time memory in non-Markovian evolutions
Chruściński, Dariusz; Pascazio, Saverio
2009-01-01
If the dynamics of an open quantum systems is non-Markovian, its asymptotic state strongly depends on the initial conditions, even if the dynamics possesses an invariant state. This is the very essence of memory effects. In particular, the asymptotic state can remember and partially preserve its initial entanglement.
Measures of non-Markovianity: Divisibility versus backflow of information
Chruściński, Dariusz; Kossakowski, Andrzej; Rivas, Ángel
2011-05-01
We analyze two recently proposed measures of non-Markovianity: one based on the concept of divisibility of the dynamical map and the other one based on distinguishability of quantum states. We provide a model to show that these two measures need not agree. In addition, we discuss possible generalizations and intricate relations between these measures.
Non-Markovian character in human mobility: Online and offline
Zhao, Zhi-Dan; Cai, Shi-Min; Lu, Yang
2015-06-01
The dynamics of human mobility characterizes the trajectories that humans follow during their daily activities and is the foundation of processes from epidemic spreading to traffic prediction and information recommendation. In this paper, we investigate a massive data set of human activity, including both online behavior of browsing websites and offline one of visiting towers based mobile terminations. The non-Markovian character observed from both online and offline cases is suggested by the scaling law in the distribution of dwelling time at individual and collective levels, respectively. Furthermore, we argue that the lower entropy and higher predictability in human mobility for both online and offline cases may originate from this non-Markovian character. However, the distributions of individual entropy and predictability show the different degrees of non-Markovian character between online and offline cases. To account for non-Markovian character in human mobility, we apply a protype model with three basic ingredients, namely, preferential return, inertial effect, and exploration to reproduce the dynamic process of online and offline human mobilities. The simulations show that the model has an ability to obtain characters much closer to empirical observations.
Counting statistics of non-markovian quantum stochastic processes
DEFF Research Database (Denmark)
Flindt, Christian; Novotny, T.; Braggio, A.
2008-01-01
We derive a general expression for the cumulant generating function (CGF) of non-Markovian quantum stochastic transport processes. The long-time limit of the CGF is determined by a single dominating pole of the resolvent of the memory kernel from which we extract the zero-frequency cumulants of t...
Non-Markovian time evolution of an accelerated qubit
Moustos, Dimitris
2016-01-01
We present a new method for evaluating the response of a moving qubit detector interacting with a scalar field in Minkowski spacetime. We treat the detector as an open quantum system, but we do not invoke the Markov approximation. The evolution equations for the qubit density matrix are valid at all times, for all qubit trajectories and they incorporate non-Markovian effects. We analyze in detail the case of uniform acceleration, providing a detailed characterization of all regimes where non-Markovian effects are significant. We argue that the most stable characterization of acceleration temperature refers to the late time behavior of the detector, because interaction with the field vacuum brings the qubit to a thermal state at the Unruh temperature. In contrast, the early-time transition rate, that is invoked in most discussions of acceleration temperature, does not exhibit a thermal behavior when non-Markovian effects are taken into account. Finally, we note that the non-Markovian evolution derived here als...
Importance Sampling Simulations of Markovian Reliability Systems using Cross Entropy
Ridder, Ad
2004-01-01
This paper reports simulation experiments, applying the cross entropy method suchas the importance sampling algorithm for efficient estimation of rare event probabilities in Markovian reliability systems. The method is compared to various failurebiasing schemes that have been proved to give estimato
Importance Sampling Simulations of Markovian Reliability Systems using Cross Entropy
Ridder, Ad
2004-01-01
This paper reports simulation experiments, applying the cross entropy method suchas the importance sampling algorithm for efficient estimation of rare event probabilities in Markovian reliability systems. The method is compared to various failurebiasing schemes that have been proved to give estimato
Optimizing the Distribution of Leg Muscles for Vertical Jumping.
Wong, Jeremy D; Bobbert, Maarten F; van Soest, Arthur J; Gribble, Paul L; Kistemaker, Dinant A
2016-01-01
A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas-which determine the maximum force deliverable by the muscles-constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal
Optimizing the Distribution of Leg Muscles for Vertical Jumping.
Directory of Open Access Journals (Sweden)
Jeremy D Wong
Full Text Available A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas-which determine the maximum force deliverable by the muscles-constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of
Importance sampling for jump processes and applications to finance
Badouraly Kassim, Laetitia; Lelong, Jérôme; Loumrhari, Imane
2013-01-01
International audience; Adaptive importance sampling techniques are widely known for the Gaussian setting of Brownian driven diffusions. In this work, we want to extend them to jump processes. Our approach relies on a change of the jump intensity combined with the standard exponential tilting for the Brownian motion. The free parameters of our framework are optimized using sample average approximation techniques. We illustrate the efficiency of our method on the valuation of financial derivat...
Exploring Lightning Jump Characteristics
Chronis, Themis; Carey, Larry D.; Schultz, Christopher J.; Schultz, Elise; Calhoun, Kristin; Goodman, Steven J.
2014-01-01
This study is concerned with the characteristics of storms exhibiting an abrupt temporal increase in the total lightning flash rate (i.e., lightning jump, LJ). An automated storm tracking method is used to identify storm "clusters" and total lightning activity from three different lightning detection systems over Oklahoma, northern Alabama and Washington, D.C. On average and for different employed thresholds, the clusters that encompass at least one LJ (LJ1) last longer, relate to higher Maximum Expected Size of Hail, Vertical Integrated Liquid and lightning flash rates (area-normalized) than the clusters that did not exhibit any LJ (LJ0). The respective mean values for LJ1 (LJ0) clusters are 80 min (35 min), 14 mm (8 mm), 25 kg per square meter (18 kg per square meter) and 0.05 flash per min per square kilometer (0.01 flash per min per square kilometer). Furthermore, the LJ1 clusters are also characterized by slower decaying autocorrelation functions, a result that implies a less "random" behavior in the temporal flash rate evolution. In addition, the temporal occurrence of the last LJ provides an estimate of the time remaining to the storm's dissipation. Depending of the LJ strength (i.e., varying thresholds), these values typically range between 20-60 min, with stronger jumps indicating more time until storm decay. This study's results support the hypothesis that the LJ is a proxy for the storm's kinematic and microphysical state rather than a coincidental value.
Attari, Babak; Weislogel, Mark; Wollman, Andrew; Chen, Yongkang; Snyder, Trevor
2016-11-01
Large droplets and puddles jump spontaneously from sufficiently hydrophobic surfaces during routine drop tower tests. The simple low-cost passive mechanism can in turn be used as an experimental device to investigate dynamic droplet phenomena for drops up to 10,000 times larger than their normal terrestrial counterparts. We provide or confirm quick and qualitative design guides for such 'drop shooters' as employed in drop tower tests including relationships to predict droplet ejection durations and velocities as functions of drop volume, surface texture, surface contour, wettability pattern, drop volume, and fluid properties including contact angle. The latter are determined via profile image comparisons with numerical equilibrium interface computations. Water drop volumes of 0.04 to 400 mL at ejection speeds of -0.007 to 0.12 m/s are demonstrated. An example application of the puddle jump method is made to the classic problem of regime mapping for low-gravity phase change heat transfer for large impinging drops. Many other candidate problems might be identified.
A MARKOVIAN APPROACH TO DETERMINING PROCESS MEANS WITH DUAL QUALITY CHARACTERISTICS
Institute of Scientific and Technical Information of China (English)
Mohammad T.KHASAWNEH; Shannon R.BOWLING; Byung Rae CHO
2008-01-01
This paper studies a production system where products are produced continuously and whose specification limits are specified for screening inspection.In this paper,we consider dual quality characteristics and different costs associated with each quality characteristic that falls below a lower specification limit or above an upper specification limit.Due to these different costs,the expected total profit will greatly depend on the process parameters,especially a process mean.This paper develops a Markovian.based model for determining the optimum process means with the consideration of dual quality characteristics in a single-stage system.The proposed model is then illustrated through a numerical example and sensitivity analysis is performed to validate the model.The results showed that the optimum process mean for both quality characteristics have a significant effect on the performance of tlle system.Since the literature survey shows that dealing with multi-quality characteristics is extremely limited,the proposed model,coupled with the Markovian approach,provides a unique contribution to this field.
DEFF Research Database (Denmark)
Bonn, D.; Andersen, Anders Peter; Bohr, Tomas
2009-01-01
We present a study of hydraulic jumps with flow predominantly in one direction, created either by confining the flow to a narrow channel with parallel walls or by providing an inflow in the form of a narrow sheet. In the channel flow, we find a linear height profile upstream of the jump as expected...
Hydraulic jumps within pyroclastic density currents and their sedimentary record
Douillet, G.; Mueller, S.; Kueppers, U.; Dingwell, D. B.
2013-12-01
This contribution presents a complete and comprehensive formulation of the hydraulic jump phenomenon and reviews sedimentary structures that may be associated with them. Beginning from the general fluid phenomenon, we then focus on examples from pyroclastic density currents in order to infer dynamic parameters on the parent flows. A hydraulic jump is a fluid dynamics phenomenon that corresponds to the sudden increase of the thickness of a flow accompanied by a decrease of its velocity and/or density. A hydraulic jump is the expression of the transition of the flow from two different flow regimes: supercritical to subcritical. This entrains a change in the energy balance between kinetic energy and gravity potential energy. Recently, the terms of 'pneumatic jumps' have been used for similar phenomenon driven within a gas phase, and granular jumps for dense granular flows. It is thought that such strong changes in the flow conditions may leave characteristic structures in the sedimentary record. Indeed, the main variables influencing the sedimentation rate are the flow velocity, particle concentration and turbulence level, all of them strongly affected by a hydraulic jump. Structures deposited by hydraulic/pneumatic jumps have been called cyclic steps and chute and pool structures. Chute and pools represent the record of a single supercritical to subcritical transition, whereas cyclic steps are produced by stable trains of hydraulic jumps and subsequent re-accelerations. Pyroclastic density currents (PDCs) are gas and pyroclasts flows. As such, they can be subjected to granular and pneumatic jumps and their deposit have often been interpreted as containing records of jumps. Steep sided truncations covered by lensoidal layers have been interpreted as the record of internal jumps within density stratified flows. Fines-depleted breccias at breaks in slope are thought to result from the enhanced turbulence at a jump of the entire flow. Sudden increases in thickness of
Electrostatic charging of jumping droplets
Miljkovic, Nenad; Preston, Daniel J.; Enright, Ryan; Wang, Evelyn N.
2013-09-01
With the broad interest in and development of superhydrophobic surfaces for self-cleaning, condensation heat transfer enhancement and anti-icing applications, more detailed insights on droplet interactions on these surfaces have emerged. Specifically, when two droplets coalesce, they can spontaneously jump away from a superhydrophobic surface due to the release of excess surface energy. Here we show that jumping droplets gain a net positive charge that causes them to repel each other mid-flight. We used electric fields to quantify the charge on the droplets and identified the mechanism for the charge accumulation, which is associated with the formation of the electric double layer at the droplet-surface interface. The observation of droplet charge accumulation provides insight into jumping droplet physics as well as processes involving charged liquid droplets. Furthermore, this work is a starting point for more advanced approaches for enhancing jumping droplet surface performance by using external electric fields to control droplet jumping.
Jump conditions in transonic equilibria
Energy Technology Data Exchange (ETDEWEB)
Guazzotto, L.; Betti, R. [Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States); Jardin, S. C. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)
2013-04-15
In the present paper, the numerical calculation of transonic equilibria, first introduced with the FLOW code in Guazzotto et al.[Phys. Plasmas 11, 604 (2004)], is critically reviewed. In particular, the necessity and effect of imposing explicit jump conditions at the transonic discontinuity are investigated. It is found that 'standard' (low-{beta}, large aspect ratio) transonic equilibria satisfy the correct jump condition with very good approximation even if the jump condition is not explicitly imposed. On the other hand, it is also found that high-{beta}, low aspect ratio equilibria require the correct jump condition to be explicitly imposed. Various numerical approaches are described to modify FLOW to include the jump condition. It is proved that the new methods converge to the correct solution even in extreme cases of very large {beta}, while they agree with the results obtained with the old implementation of FLOW in lower-{beta} equilibria.
Jump-Down Performance Alterations after Space Flight
Reschke, M. F.; Kofman, I. S.; Cerisano, J. M.; Fisher, E. A.; Peters, B. T.; Miller, C. A.; Harm, D. L.; Bloomberg, J. J.
2011-01-01
INTRODUCTION: Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares jump strategies used by astronauts before and after flight, changes to those strategies within a test session, and recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS: Seven astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high onto a force plate that measured the ground reaction forces and center-of-pressure displacement from the landings. Neuromuscular activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS: Postural settling time was significantly increased on the first postflight test session and many of the astronauts tested were unable to maintain balance on their first jump landing but recovered by the third jump, showing a learning progression in which performance improvements could be attributed to adjustments in takeoff or landing strategy. Jump strategy changes were evident in reduced air time (time between takeoff and landing) and also in increased asymmetry in foot latencies on takeoff. CONCLUSIONS: The test results revealed significant decrements
DEFF Research Database (Denmark)
Ravn, Susanne; Voigt, M; Simonsen, Erik Bruun
1999-01-01
Six male subjects, three professional ballet dancers and three elite volleyball players, performed maximal vertical jumps from 1) a static preparatory position (squat jump), 2) starting with a countermovement (countermovement jump) and 3) a specific jump for ballet and for volleyball, respectively....... The jumps were recorded on highspeed film (500 Hz) combined with registration of ground reaction forces, and net joint moments were calculated by inverse dynamics. The purpose was to investigate the choice of strategy in two standard jumps, squat jump and countermovement jump. The volleyball jump...... was performed with a sequential strategy and the ballet jump was performed with a simultaneous strategy. In the two standard jumps, the choice of strategy was individual and not related to training background. This was additionally confirmed in a test of seven ballet dancers and seven volleyball players....
Directory of Open Access Journals (Sweden)
Ferran Antoni Rodriguez
2013-01-01
Full Text Available Gymnastics floor exercises are composed of a set of four to five successive acrobatic jumps usually called a �series�. The aims of the study were: 1 to relate the acrobatic gymnastics performance of these series with a repeated jumps test of similar duration (R60, 2 to study the relation between R60 and physiological parameters (heart rate and blood lactate, and the performance obtained in different kinds of jumps, 3 to confirm whether R60, executed without a damped jumping technique, can be considered an anaerobic lactic power test. Twenty male and twenty-four female gymnasts performed three repeated jumps tests for 5 s (R5, 10 s (R10 and 60 s (R60 and vertical jumps, such as drop jumps (DJ, squat jumps (SJ and countermovement jumps (CMJ. We assessed heart rate (HR and blood lactate during R10 and R60. The average values of the maximal blood lactate concentration (Lmax after R10 (males = 2.5±0.6 mmol.l-1; females = 2.1±0.8 mmol.l-1 confirm that anaerobic glycolysis is not activated to a high level. In R60, the Lmax (males = 7.5±1.7 mmol.l-1; females = 5.9±2.1 mmol.l-1 that was recorded does not validate R60 as an anaerobic lactic power test. We confirmed the relation between the average power obtained in R60 (R60Wm and the acrobatic performance on the floor. The inclusion in the multiple regression equation of the best power in DJ and the best flight-contact ratio (FC in R5 confirms the influence of other non-metabolic components on the variability in R60 performance, at least in gymnasts.
Reveal non-Markovianity of open quantum systems via local operations
Yang, Huan; Chen, Yanbei
2011-01-01
Non-Markovianity, as an important feature of general open quantum systems, is usually difficult to quantify with limited knowledge of how the plant that we are interested in interacts with its environment-the bath. It often happens that the reduced dynamics of the plant attached to a non-Markovian bath becomes indistinguishable from the one with a Markovian bath, if we left the entire system freely evolve. Here we show that non-Markovianity can be revealed via applying local unitary operations on the plant-they will influence the plant evolution at later times due to memory of the bath. This not only provides a new criterion for non-Markovianity, but also sheds light on protecting and recovering quantum coherence in non-Markovian systems, which will be useful for quantum-information processing.
Frequency Jump Detection and Analysis
2008-12-01
CUMULATIVE SUM JUMP DETECTION The Cumulative Sum ( CUSUM ) is a classic change-point analysis technique that uses the cumulative sum of the...sum and y is the average of the data. The CUSUM slope indicates the value of the data with respect to the overall average. A flat cumulative sum...sudden change in the CUSUM slope indicates a jump in the data. The CUSUM plot for a data set having a single jump will have a V or inverted V shape
Open system dynamics with non-Markovian quantum trajectories
Strunz, W T; Gisin, Nicolas; Strunz, Walter T; Diosi, Lajos; Gisin, Nicolas
1999-01-01
A non-Markovian stochastic Schroedinger equation for a quantum system coupled to an environment of harmonic oscillators is presented. Its solutions, when averaged over the noise, reproduce the standard reduced density operator without any approximation. We illustrate the power of this approach with several examples, including exponentially decaying bath correlations and extreme non-Markovian cases, where the `environment' consists of only a single oscillator. The latter case shows the decay and revival of a `Schroedinger cat' state. For strong coupling to a dissipative environment with memory, the asymptotic state can be reached in a finite time. Our description of open systems is compatible with different positions of the `Heisenberg cut' between system and environment.
Non-Markovian Quantum Dynamics: Local versus Nonlocal
Chruściński, Dariusz; Kossakowski, Andrzej
2010-02-01
We analyze non-Markovian evolution of open quantum systems. It is shown that any dynamical map representing the evolution of such a system may be described either by a nonlocal master equation with a memory kernel or equivalently by an equation which is local in time. These two descriptions are complementary: if one is simple, the other is quite involved, or even singular, and vice versa. The price one pays for the local approach is that the corresponding generator keeps the memory about the starting point “t0.” This is the very essence of non-Markovianity. Interestingly, this generator might be highly singular; nevertheless, the corresponding dynamics is perfectly regular. Remarkably, the singularities of the generator may lead to interesting physical phenomena such as the revival of coherence or sudden death and revival of entanglement.
Non-Markovian quantum dynamics: local versus non-local
Chruscinski, Dariusz
2009-01-01
We analyze non-Markovian evolution of open quantum systems. It is shown that any dynamical map representing evolution of such a system may be described either by non-local master equation with memory kernel or equivalently by equation which is local in time. Theses two descriptions are complementary: if one is simple the other is quite involved, or even singular, and vice versa. The price one pays for the local approach is that the corresponding generator keeps the memory about the starting point `t_0'. This is the very essence of non-Markovianity. Interestingly, this generator might be highly singular, nevertheless, the corresponding dynamics is perfectly regular. Remarkably, singularities of generator may lead to interesting physical phenomena like revival of coherence or sudden death and revival of entanglement.
Finite-frequency counting statistics of electron transport: Markovian theory
Energy Technology Data Exchange (ETDEWEB)
Marcos, D; Aguado, R [Departamento de Teoria y Simulacion de Materiales, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco 28049, Madrid (Spain); Emary, C; Brandes, T, E-mail: david.marcos@icmm.csic.es [Institut fuer Theoretische Physik, Hardenbergstrasse 36, TU Berlin, D-10623 Berlin (Germany)
2010-12-15
We present a theory of frequency-dependent counting statistics of electron transport through nanostructures within the framework of Markovian quantum master equations. Our method allows the calculation of finite-frequency current cumulants of arbitrary order, as we explicitly show for the second- and third-order cumulants. Our formulae generalize previous zero-frequency expressions in the literature and can be viewed as an extension of MacDonald's formula beyond shot noise. When combined with an appropriate treatment of tunneling using, e.g., the Liouvillian perturbation theory in Laplace space, our method can deal with arbitrary bias voltages and frequencies, as we illustrate with the paradigmatic example of transport through a single resonant level model. We discuss various interesting limits, including the recovery of the fluctuation-dissipation theorem near linear response, as well as some drawbacks inherent to the Markovian description arising from the neglect of quantum fluctuations.
Markovian Classicality from Zero Discord for Bipartite Quantum Systems
Arsenijevic, M; Dugic, M
2012-01-01
Modern quantum information theory provides new tools for investigating the decoherence-induced "classicality" of open quantum systems. Recent observation that almost all quantum states bear non-classical correlations [A. Ferraro {\\it et al}, Phys. Rev. A {\\bf 81}, 052318 (2010)] distinguishes the zero-discord classicality essentially as a pathology of the Markovian bipartite-systems realm. Nevertheless, we formally construct such a classical model and its variant that represents a matter-of-principle formal proof, i.e. a sufficient condition for the, otherwise not obvious, existence of the Markovian zero-discord classicality. A need for the more elaborate and more systematic search for the alternative such models reveals we are still learning about the very meaning of "classicality" in the realm of open quantum systems.
Markovian Zero-Discord Classicality for Bipartite Quantum Systems
Arsenijevic, M; Dugic, M
2012-01-01
Recent observation that almost all quantum states bear nonclassical correlations [A. Ferraro et al, Phys. Rev. A 81, 052318 (2010)] distinguishes the zero-discord classicality essentially as a rareness of the Markovian bipartite systems realm. This seems to be in contrast with decoherence-theory established classicality where classical states are robust and unavoidable. Nevertheless, we formally construct such a classical model and its variant that represents a matter-of-principle formal proof, i.e. a sufficient condition for the, otherwise not obvious, existence of the Markovian zero-discord classicality. Rigorous analysis suggests there is no alternative to classical model, aside approximate model which follows from relaxing rigid quantum information constraints on classical model. A need for the more elaborate and more systematic search for the alternative such models (if there any) reveals we are still learning about the very meaning of "classicality" in the realm of open quantum systems.
The Entropy Production Distribution in Non-Markovian Thermal Baths
Directory of Open Access Journals (Sweden)
José Inés Jiménez-Aquino
2014-03-01
Full Text Available In this work we study the distribution function for the total entropy production of a Brownian particle embedded in a non-Markovian thermal bath. The problem is studied in the overdamped approximation of the generalized Langevin equation, which accounts for a friction memory kernel characteristic of a Gaussian colored noise. The problem is studied in two physical situations: (i when the particle in the harmonic trap is subjected to an arbitrary time-dependent driving force; and (ii when the minimum of the harmonic trap is arbitrarily dragged out of equilibrium by an external force. By assuming a natural non Markovian canonical distribution for the initial conditions, the distribution function for the total entropy production becomes a non Gaussian one. Its characterization is then given through the first three cumulants.
On a Markovian approach for modeling passive solar devices
Energy Technology Data Exchange (ETDEWEB)
Bottazzi, F.; Liebling, T.M. (Chaire de Recherche Operationelle, Ecole Polytechnique Federale de Lausanne (Switzerland)); Scartezzini, J.L.; Nygaard-Ferguson, M. (Lab. d' Energie Solaire et de Physique du Batiment, Ecole Polytechnique Federale de Lausanne (Switzerland))
1991-01-01
Stochastic models for the analysis of the energy and thermal comfort performances of passive solar devices have been increasingly studied for over a decade. A new approach to thermal building modeling, based on Markov chains, is proposed here to combine both the accuracy of traditional dynamic simulation with the practical advantages of simplified methods. A main difficulty of the Markovian approach is the discretization of the system variables. Efficient procedures have been developed to carry out this discretization and several numerical experiments have been performed to analyze the possibilities and limitations of the Markovian model. Despite its restrictive assumptions, it will be shown that accurate results are indeed obtained by this method. However, due to discretization, computer memory reqirements are more than inversely proportional to accuracy. (orig.).
Comparisons of different witnesses of non-Markovianity
Zuo, Wei; Qian, Xiao-Qing; Liang, Xian-Ting
2017-01-01
In this paper, the evolutions of two kinds of witnesses of the non-Markovianity and their rates of changes with time are investigated and compared. Four definitions, the trace distance, fidelity, quantum relative entropy, and quantum Fisher information are used for the first kind of witnesses which are based on the completely positive maps (CPM). Three definitions, the quantum entanglement, quantum mutual information, and quantum discord are used for the second kind of witnesses, and they are based on the local completely positive maps (LCPM). An open two-level quantum system model and a numerically quantum dissipative dynamics method, hierarchy equation of motion (HEM) are used in the investigations. It is shown that the evolutions of the witnesses and their rates of the changes calculated with different definitions clearly show the characteristics of the non-Markovianity and they are in agreement with each other.
EXPONENTIAL ESTIMATES FOR STOCHASTIC DELAY HYBRID SYSTEMS WITH MARKOVIAN SWITCHING
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
This paper deals with the problem of norm bounds for the solutions of stochastic hybrid systems with Markovian switching and time delay. Based on Lyapunov-Krasovskii theory for functional differential equations and the linear matrix inequality (LMI) approach, mean square exponential estimates for the solutions of this class of linear stochastic hybrid systems are derived. Finally, An example is illustrated to show the applicability and effectiveness of our method.
Colloquium: Non-Markovian dynamics in open quantum systems
Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano
2016-04-01
The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of
Non-Markovian Quantum Evolution: Time-Local Generators and Memory Kernels
Chruściński, Dariusz; Należyty, Paweł
2016-06-01
In this paper we provide a basic introduction to the topic of quantum non-Markovian evolution presenting both time-local and memory kernel approach to the evolution of open quantum systems. We start with the standard notion of a classical Markovian stochastic process and generalize it to classical Markovian stochastic evolution which in turn becomes a starting point of the quantum setting. Our approach is based on the notion of P-divisible, CP-divisible maps and their refinements to k-divisible maps. Basic methods enabling one to detect non-Markovianity of the quantum evolution are also presented. Our analysis is illustrated by several simple examples.
Markovian evolution of quantum coherence under symmetric dynamics
Lostaglio, Matteo; Korzekwa, Kamil; Milne, Antony
2017-09-01
Both conservation laws and practical restrictions impose symmetry constraints on the dynamics of open quantum systems. In the case of time-translation symmetry, which arises naturally in many physically relevant scenarios, the quantum coherence between energy eigenstates becomes a valuable resource for quantum information processing. In this work, we identify the minimum amount of decoherence compatible with this symmetry for a given population dynamics. This yields a generalization to higher-dimensional systems of the relation T2≤2 T1 for qubit decoherence and relaxation times. It also enables us to witness and assess the role of non-Markovianity as a resource for coherence preservation and transfer. Moreover, we discuss the relationship between ergodicity and the ability of Markovian dynamics to indefinitely sustain a superposition of different energy states. Finally, we establish a formal connection between the resource-theoretic and the master equation approaches to thermodynamics, with the former being a non-Markovian generalization of the latter. Our work thus brings the abstract study of quantum coherence as a resource towards the realm of actual physical applications.
Rensing, N; Westermann, A; Möller, D; von Piekartz, H
2015-12-01
Studies have shown changes in the technical and physical demands in modern handball. The game has increased considerably in speed, power and dynamics. Jump training has, therefore, become ever more important in the training of the athletes. These developments contribute to the fact that handball is now one of the most injury-prone types of sport, with the lower extremities being most frequently affected. Reactive jump training is not only used in training by now, but also increasingly in injury prevention. The aim of this study was to investigate the effectiveness of reactive jump training with handball players. 21 regional league handball players were randomly divided into an intervention group (n = 12) and a control group (n = 9). The intervention group completed a six-week reactive jump training programme while the control group went through a non-specific training programme. Jump height (squat and counter movement jump), isokinetic and isometric maximum power as well as muscle activity served as measuring parameters. A comparison of the intervention and control groups revealed that the reactive jump training led to significant improvements in jump height. The isometric and isokinetic maximum power measurements and the electromyographic activities of the triceps surae muscle demonstrated an improvement in the values within the intervention group. However, this improvement was not significant compared with the control group. Likewise both jumps correlated with the muscle activity of the soleus muscle as shown by electromyography. A moderate correlation was noticed between the isokinetic maximum power measurement and the electromyographic activity of the soleus and gastrocnemius medialis muscles. Furthermore, the correlations of the isometric and isokinetic maximum power meas-urements resulted in a strong correlation coefficient. This study revealed a significant increase in jump height after reactive jump training. There was no significant difference in
Realized Jump Risk and Equity Return in China
Guojin Chen; Xiaoqun Liu; Peilin Hsieh; Xiangqin Zhao
2014-01-01
We utilize the realized jump components to explore a new jump (including nonsystematic jump and systematic jump) risk factor model. After estimating daily realized jumps from high-frequency transaction data of the Chinese A-share stocks, we calculate monthly jump size, monthly jump standard deviation, and monthly jump arrival rate and then use those monthly jump factors to explain the return of the following month. Our empirical results show that the jump tail risk can explain the equity retu...
Rook Jumping Maze Design Considerations
Neller, Todd W.; Fisher, Adrian; Choga, Munyaradzi T.; Lalvani, Samir M.; McCarty, Kyle D.
We define the Rook Jumping Maze, provide historical perspective, and describe a generation method for such mazes. When applying stochastic local search algorithms to maze design, most creative effort concerns the definition of an objective function that rates maze quality. We define and discuss several maze features to consider in such a function definition. Finally, we share our preferred design choices, make design process observations, and note the applicability of these techniques to variations of the Rook Jumping Maze.
Kinematic structure at the early flight position in ski jumping.
Vodičar, Janez; Coh, Milan; Jošt, Bojan
2012-12-01
The purpose of our research was to establish the variability of correlation between the length of the jumps and selected multi-item kinematic variables (n=9) in the early flight phase technique of ski jumping. This study was conducted on a sample of elite Slovenian ski jumpers (N=29) who participated in the experiment on a jumping hill in Hinterzarten, Germany (HS95m) on the 20(th) of August, 2008. The highest and most significant correlations (p=0.01) with the length of the ski jump were found in the multi-item variable height of flying, which was also expressed with the highest level of stability of the explained total variance (TV) on the first factor (TV=69.13%). The most important characteristic of the aerodynamic aspect of early flight was the variable angle between the body chord and the horizontal axis with significantly high correlations (pski and left leg (TV=50.13%), had an explained common variance on the first factor greater than 50% of total variance. The results indicated that some kinematic parameters of ski jumping early flight technique were more important for success considering the length of the jump.
The Effect of Depth Jumps and Weight Training on Leg Strength and Vertical Jump.
Clutch, David; And Others
1983-01-01
Two experiments examined the results of depth jumping programs to determine: (1) whether certain depth jumping routines, when combined with weight training, are better than others; and (2) the effect of depth jumping on athletes already in training. Results indicated that depth jumping is effective, but no more so than regular jumping routines.…
Optical texture analysis for automatic cytology and histology: a Markovian approach
Energy Technology Data Exchange (ETDEWEB)
Pressman, N.J.
1976-10-12
Markovian analysis is a method to measure optical texture based on gray-level transition probabilities in digitized images. The experiments described in this dissertation investigate the classification performance of parameters generated by this method. Three types of data sets are used: images of (1) human blood leukocytes (nuclei of monocytes, neutrophils, and lymphocytes; Wright stain; (0.125 ..mu..m)/sup 2//picture point), (2) cervical exfoliative cells (nuclei of normal intermediate squamous cells and dysplastic and carcinoma in situ cells; azure-A/Feulgen stain; (0.125 ..mu..m)/sup 2//picture point), and (3) lymph-node tissue sections (6-..mu..m thick sections from normal, acute lymphadenitis, and Hodgkin lymph nodes; hematoxylin and eosin stain; (0.625 ..mu..m)/sup 2/ picture point). Each image consists of 128 x 128 picture points originally scanned with a 256 gray-level resolution. Each image class is defined by 75 images.
Optimal Investment-Consumption Strategy under Inflation in a Markovian Regime-Switching Market
Directory of Open Access Journals (Sweden)
Huiling Wu
2016-01-01
Full Text Available This paper studies an investment-consumption problem under inflation. The consumption price level, the prices of the available assets, and the coefficient of the power utility are assumed to be sensitive to the states of underlying economy modulated by a continuous-time Markovian chain. The definition of admissible strategies and the verification theory corresponding to this stochastic control problem are presented. The analytical expression of the optimal investment strategy is derived. The existence, boundedness, and feasibility of the optimal consumption are proven. Finally, we analyze in detail by mathematical and numerical analysis how the risk aversion, the correlation coefficient between the inflation and the stock price, the inflation parameters, and the coefficient of utility affect the optimal investment and consumption strategy.
Extending the applicability of Redfield theories into highly non-Markovian regimes
Montoya-Castillo, Andrés; Reichman, David R
2015-01-01
We present a new, computationally inexpensive method for the calculation of reduced density matrix dynamics for systems with a potentially large number of subsystem degrees of freedom coupled to a generic bath. The approach consists of propagation of weak-coupling Redfield-like equations for the high frequency bath degrees of freedom only, while the low frequency bath modes are dynamically arrested but statistically sampled. We examine the improvements afforded by this approximation by comparing with exact results for the spin-boson model over a wide range of parameter space. The results from the method are found to dramatically improve Redfield dynamics in highly non--Markovian regimes, at a similar computational cost. Relaxation of the mode-freezing approximation via classical (Ehrenfest) evolution of the low frequency modes results in a dynamical hybrid method. We find that this Redfield-based dynamical hybrid approach, which is computationally more expensive than bare Redfield dynamics, yields only a marg...
Zhou, Wuneng; Tong, Dongbing; Gao, Yan; Ji, Chuan; Su, Hongye
2012-04-01
In this brief, the analysis problem of the mode and delay-dependent adaptive exponential synchronization in th moment is considered for stochastic delayed neural networks with Markovian switching. By utilizing a new nonnegative function and the -matrix approach, several sufficient conditions to ensure the mode and delay-dependent adaptive exponential synchronization in th moment for stochastic delayed neural networks are derived. Via the adaptive feedback control techniques, some suitable parameters update laws are found. To illustrate the effectiveness of the -matrix-based synchronization conditions derived in this brief, a numerical example is provided finally.
Mechanography during the vertical jump test allows for evaluation of force-time variables reflecting jump execution, which may enhance screening for functional deficits that reduce physical performance and determining mechanistic causes underlying performance changes. However, utility of jump mechan...
Non-Markovian dynamics in the theory of full counting statistics
DEFF Research Database (Denmark)
Flindt, Christian; Braggio, A.; Novotny, Tomas
2007-01-01
generating function corresponding to the resulting non-Markovian rate equation and find that the measured current cumulants behave significantly differently compared to those of a Markovian transport process. Our findings provide a novel interpretation of noise suppression found in a number of systems....
Gravity current jump conditions, revisited
Ungarish, Marius; Hogg, Andrew J.
2016-11-01
Consider the flow of a high-Reynolds-number gravity current of density ρc in an ambient fluid of density ρa in a horizontal channel z ∈ [ 0 , H ] , with gravity in - z direction. The motion is often modeled by a two-layer formulation which displays jumps (shocks) in the height of the interface, in particular at the leading front of the dense layer. Various theoretical models have been advanced to predict the dimensionless speed of the jump, Fr = U /√{g' h } ; g' , h are reduced gravity and jump height. We revisit this problem and using the Navier-Stokes equations, integrated over a control volume embedding the jump, derive balances of mass and momentum fluxes. We focus on understanding the closures needed to complete this model and we show the vital need to understand the pressure head losses over the jump, which we show can be related to the vorticity fluxes at the boundaries of the control volume. Our formulation leads to two governing equations for three dimensionless quantities. Closure requires one further assumption, depending on which we demonstrate that previous models for gravity current fronts and internal bores can be recovered. This analysis yield new insights into existing results, and also provides constraints for potential new formulae.
Coalescence-induced nanodroplet jumping
Cha, Hyeongyun; Xu, Chenyu; Sotelo, Jesus; Chun, Jae Min; Yokoyama, Yukihiro; Enright, Ryan; Miljkovic, Nenad
2016-10-01
Water vapor condensation on superhydrophobic surfaces has received much attention in recent years due to the ability of such surfaces to shed microscale water droplets via coalescence-induced droplet jumping, resulting in heat transfer, anti-icing, and self-cleaning performance enhancement. Here we report the coalescence-induced removal of water nanodroplets (R ≈500 nm ) from superhydrophobic carbon nanotube (CNT) surfaces. The two-droplet coalescence time is measured for varying droplet Ohnesorge numbers, confirming that coalescence prior to jumping is governed by capillary-inertial dynamics. By varying the conformal hydrophobic coating thickness on the CNT surface, the minimum jumping droplet radius is shown to increase with increasing solid fraction and decreasing apparent advancing contact angle, allowing us to explore both hydrodynamic limitations stemming from viscous dissipation and surface adhesion limitations. We find that, even for the smallest nanostructure length scale (≤100 nm) and lowest surface adhesions, nonideal surface interactions and the evolved droplet morphology play defining roles in limiting the minimum size for jumping on real surfaces. The outcomes of this work demonstrate the ability to passively shed nanometric water droplets, which has the potential to further increase the efficiency of systems that can harness jumping droplets for a wide range of energy and water applications.
Institute of Scientific and Technical Information of China (English)
马俊明; 周巧玲; 朱咏贤
2003-01-01
目的中国优秀男子跳远运动员起跳中不同时相速度变化特征的研究 ,对提高跳远成绩提供理论价值.方法采用现场定点高速摄影、影片分析以及数理统计等方法,通过对 8名优秀男子跳远运动员 A, B两组起跳阶段不同时相身体重心水平速度和垂直速度的变化与着板角、起跳缓冲和蹬伸阶段膝角变化的比较分析.结果成绩较好时,缓冲阶段身体重心水平速度的减小和垂直速度的增加相对较大;蹬伸阶段身体重心水平速度略有回升、垂直速度保持增加的态势,而且,离板瞬间身体重心水平速度和垂直速度都呈现出相对较大的趋势.结论中国优秀男子跳远运动员起跳缓冲阶段身体重心水平速度减小和垂直速度增加之间存在着密切关系.%Aim To study the velocity variations of take-off phase of Chinese male elite broad jump athletes so as to lay a theoretical basis for the improvement of broad jump results.Methods High-speed camera photography and method of film analysis were used to record and analyze the jumping results of 7 male elite Chinese broad jump athletes. The optimal results of these 8 athletes were included in group A,and the worst results in group B.The variations of the body center gravity horizontal velocity and vertical velocity, and the variations of the landing board angle of the jumping foot, buffer and knee angle during the taking off phase were compared and analyzed between A and B groups.Results The decrease of the horizontal velocity and the increase of the vertical velocity were more remarkable in the group A than in the group B during the buffer phase.The Chinese male elite long jumpers tended to incline to a small landing angle when the taking-off foot touched the board coordinated with obvious knee angle variations during the buffer and taking-off phases The horizontal velocity and vertical velocity of the athletes' body center gravity inclined to the tendency of
Non-white noise and a multiple-rate Markovian closure theory for turbulence
Hammett, G W; Hammett, Gregory W.; Bowman, John C.
2002-01-01
Markovian models of turbulence can be derived from the renormalized statistical closure equations of the direct-interaction approximation (DIA). Various simplifications are often introduced, including an assumption that the two-time correlation function is proportional to the renormalized infinitesimal propagator (Green's function), i.e. the decorrelation rate for fluctuations is equal to the decay rate for perturbations. While this is a rigorous result of the fluctuation--dissipation theorem for thermal equilibrium, it does not necessarily apply to all types of turbulence. Building on previous work on realizable Markovian closures, we explore a way to allow the decorrelation and decay rates to differ (which in some cases affords a more accurate treatment of effects such as non-white noise), while retaining the computational advantages of a Markovian approximation. Some Markovian approximations differ only in the initial transient phase, but the multiple-rate Markovian closure (MRMC) presented here could modi...
A New Class of Backward Stochastic Partial Differential Equations with Jumps and Applications
Dai, Wanyang
2011-01-01
We formulate a new class of stochastic partial differential equations (SPDEs), named high-order vector backward SPDEs (B-SPDEs) with jumps, which allow the high-order integral-partial differential operators into both drift and diffusion coefficients. Under certain type of Lipschitz and linear growth conditions, we develop a method to prove the existence and uniqueness of adapted solution to these B-SPDEs with jumps. Comparing with the existing discussions on conventional backward stochastic (ordinary) differential equations (BSDEs), we need to handle the differentiability of adapted triplet solution to the B-SPDEs with jumps, which is a subtle part in justifying our main results due to the inconsistency of differential orders on two sides of the B-SPDEs and the partial differential operator appeared in the diffusion coefficient. In addition, we also address the issue about the B-SPDEs under certain Markovian random environment and employ a B-SPDE with strongly nonlinear partial differential operator in the dr...
Ai, Qing; Jin, Bih-Yaw; Cheng, Yuan-Chung
2014-01-01
We present a non-Markovian quantum jump approach for simulating coherent energy transfer dynamics in molecular systems in the presence of laser fields. By combining a coherent modified Redfield theory (CMRT) and a non-Markovian quantum jump (NMQJ) method, this new approach inherits the broad-range validity from the CMRT and highly efficient propagation from the NMQJ. To implement NMQJ propagation of CMRT, we show that the CMRT master equation can be casted into a generalized Lindblad form. Moreover, we extend the NMQJ approach to treat time-dependent Hamiltonian, enabling the description of excitonic systems under coherent laser fields. As a benchmark of the validity of this new method, we show that the CMRT-NMQJ method accurately describes the energy transfer dynamics in a prototypical photosynthetic complex. Finally, we apply this new approach to simulate the quantum dynamics of a dimer system coherently excited to coupled single-excitation states under the influence of laser fields, which allows us to inve...
Shima, Hiroyuki
2012-11-01
The tree-based rope swing is a popular recreational facility, often installed in outdoor areas. Hanging from a rope, users drop from a high platform and then swing at great speed like ‘Tarzan’, finally jumping ahead to land on the ground. The question naturally arises, how far can Tarzan jump using the swing? In this paper, I present an introductory analysis of the mechanics of the Tarzan swing, a large pendulum-like swing with Tarzan himself attached as weight. This enables determination of how much further forward Tarzan can jump using a given swing apparatus. The discussion is based on elementary mechanics and is, therefore, expected to provide rich opportunities for investigations using analytic and numerical methods.
Shima, Hiroyuki
2012-01-01
The tree-based rope swing is a popular recreation facility, often installed in outdoor areas, giving pleasure to thrill-seekers. In the setting, one drops down from a high platform, hanging from a rope, then swings at a great speed like "Tarzan", and finally jumps ahead to land on the ground. The question now arises: How far can Tarzan jump by the swing? In this article, I present an introductory analysis of the Tarzan swing mechanics, a big pendulum-like swing with Tarzan himself attached as weight. The analysis enables determination of how farther forward Tarzan can jump using a given swing apparatus. The discussion is based on elementary mechanics and, therefore, expected to provide rich opportunities for investigations using analytic and numerical methods.
Efficient simulation of non-Markovian system-environment interaction
Rosenbach, Robert; Huelga, Susana F; Cao, Jianshu; Plenio, Martin Bodo
2015-01-01
In this work, we combine an established method for open quantum systems -- the time evolving density matrix using orthogonal polynomials algorithm (TEDOPA) -- with the transfer tensors formalism (TTM), a new tool for the analysis, compression and propagation of non-Markovian processes. This enables the investigation of previously inaccessible long-time dynamics, such as those ensuing from low temperature regimes with arbitrary, possibly highly structured, spectral densities. We briefly introduce both methods, followed by a benchmark to prove viability and combination synergies. Subsequently we illustrate the capabilities of this approach at the hand of specific examples and conclude our analysis by highlighting possible further applications of our method.
Characterization of the degree of Musical non-Markovianity
Mannone, Maria
2013-01-01
Musical compositions could be characterized by a certain degree of memory, that takes into account repetitions and similarity of sequences of pitches, durations and intensities (the patterns). The higher the quantity of variations, the lower the degree of memory. This degree has never quantitatively been defined and measured. In physics, mathematical tools to quantify memory (defined as non-Markovianity) in quantum systems have been developed. The aim of this paper is to extend these mathematical tools to music, defining a general method to measure the degree of memory in musical compositions. Applications to some musical scores give results that agree with the expectations.
Non- Markovian Quantum Stochastic Equation For Two Coupled Oscillators
Alpomishev, E X
2016-01-01
The system of nonlinear Langevin equations was obtained by using Hamiltonian's operator of two coupling quantum oscillators which are interacting with heat bath. By using the analytical solution of these equations, the analytical expressions for transport coefficients was found. Generalized Langevin equations and fluctuation-dissipation relations are derived for the case of a nonlinear non-Markovian noise. The explicit expressions for the time-dependent friction and diffusion coefficients are presented for the case of linear couplings in the coordinate between the collective two coupled harmonic oscillators and heat bath.
A note on the stability of multiclass Markovian queueing networks
Kompalli, Sayee C
2010-01-01
In this paper we show that in a multiclass Markovian network with unit rate servers, the condition that the average load $\\rho$ at every server is less than unity is indeed sufficient for the stability or positive recurrence for \\emph{any} work conserving scheduling policy and \\emph{class-independent} routing. We use a variation of the positive recurrence criterion for multidimensional discrete-time Markov chains over countable state spaces due to Rosberg (JAP, Vol.~17, No.~3, 1980) and a monotonicity argument to establish this assertion.
Gender differences in triple jump phase ratios and arm swing motion of international level athletes
Directory of Open Access Journals (Sweden)
Vassilios Panoutsakopoulos
2016-12-01
Full Text Available Background: Female triple jumping is a relatively new athletics event. A limited number of researchers have focused on comparing male and female jumpers competing in international events, resulting in scarce findings in the literature regarding gender differences of the determinants of triple jump performance. Objective: The aim of the study was to examine the possible gender differences in the approach step characteristics, the spatiotemporal parameters of the separate phases of the triple jump as performed by athletes participating in sub-elite international events. Methods: The male and female participants of the 2015 European Team Championships triple jump event were recorded with a panning video camera. Approach speed was measured using photocells. Kinematical parameters were extracted using the APAS WIZARD 13.3.0.3 software. The relationships between the examined parameters and the actual triple jump performance were examined with Pearson's correlation analysis. Repeated measures ANOVA and chi-square statistical tests were run to examine the significance of the differences between genders. Results: Approach speed significantly correlated with the actual jumping distance in both males and females (p < .05. Significant gender differences (p < .05 existed concerning basic kinematical parameters. Men were found to have larger average horizontal speed of the 11 m to 1 m segment of the final approach, step length of the final six steps of the approach, step frequency of the final two steps, actual phase distances and percentage distribution of the step. Women, unlike men, used solely single arm swing techniques. No athlete executed the jump using a jump dominated technique. Conclusions: Gender differences in triple jump performance lies upon the kinematical parameters of the final two steps of the approach, the length of the step phase and the support time for the jump. The technique elements of the penultimate step are suggested to
Structural estimation of jump-diffusion processes in macroeconomics
DEFF Research Database (Denmark)
Posch, Olaf
2009-01-01
This paper shows how to solve and estimate a continuous-time dynamic stochastic general equilibrium (DSGE) model with jumps. It also shows that a continuous-time formulation can make it simpler (relative to its discrete-time version) to compute and estimate the deep parameters using the likelihoo...
Wavelet domain hidden markovian bayesian document segmentation
Institute of Scientific and Technical Information of China (English)
Sun Junxi; Xiao Changyan; Zhang Su; Chen Yazhu
2005-01-01
A novel algorithm for Bayesian document segmentation is proposed based on the wavelet domain hidden Markov tree (HMT) model. Once the parameters of model are known, according to the sequential maximum a posterior probability (SMAP) rule, firstly, the likelihood probability of HMT model for each pattern is computed from fine to coarse procedure. Then, the interscale state transition probability is solved using Expectation Maximum (EM) algorithm based on hybrid-quadtree and multiscale context information is fused from coarse to fine procedure. In order to get pixellevel segmentation, the redundant wavelet domain Gaussian mixture model (GMM) is employed to formulate pixel-level statistical property. The experiment results show that the proposed scheme is feasible and robust.
Markov Jump Linear Systems-Based Position Estimation for Lower Limb Exoskeletons
Directory of Open Access Journals (Sweden)
Samuel L. Nogueira
2014-01-01
Full Text Available In this paper, we deal with Markov Jump Linear Systems-based filtering applied to robotic rehabilitation. The angular positions of an impedance-controlled exoskeleton, designed to help stroke and spinal cord injured patients during walking rehabilitation, are estimated. Standard position estimate approaches adopt Kalman filters (KF to improve the performance of inertial measurement units (IMUs based on individual link configurations. Consequently, for a multi-body system, like a lower limb exoskeleton, the inertial measurements of one link (e.g., the shank are not taken into account in other link position estimation (e.g., the foot. In this paper, we propose a collective modeling of all inertial sensors attached to the exoskeleton, combining them in a Markovian estimation model in order to get the best information from each sensor. In order to demonstrate the effectiveness of our approach, simulation results regarding a set of human footsteps, with four IMUs and three encoders attached to the lower limb exoskeleton, are presented. A comparative study between the Markovian estimation system and the standard one is performed considering a wide range of parametric uncertainties.
Markov jump linear systems-based position estimation for lower limb exoskeletons.
Nogueira, Samuel L; Siqueira, Adriano A G; Inoue, Roberto S; Terra, Marco H
2014-01-22
In this paper, we deal with Markov Jump Linear Systems-based filtering applied to robotic rehabilitation. The angular positions of an impedance-controlled exoskeleton, designed to help stroke and spinal cord injured patients during walking rehabilitation, are estimated. Standard position estimate approaches adopt Kalman filters (KF) to improve the performance of inertial measurement units (IMUs) based on individual link configurations. Consequently, for a multi-body system, like a lower limb exoskeleton, the inertial measurements of one link (e.g., the shank) are not taken into account in other link position estimation (e.g., the foot). In this paper, we propose a collective modeling of all inertial sensors attached to the exoskeleton, combining them in a Markovian estimation model in order to get the best information from each sensor. In order to demonstrate the effectiveness of our approach, simulation results regarding a set of human footsteps, with four IMUs and three encoders attached to the lower limb exoskeleton, are presented. A comparative study between the Markovian estimation system and the standard one is performed considering a wide range of parametric uncertainties.
Alzheimer's Deaths Jump 55 Percent: CDC
... page: https://medlineplus.gov/news/fullstory_165941.html Alzheimer's Deaths Jump 55 Percent: CDC More patients also ... News) -- As more baby boomers age, deaths from Alzheimer's disease have jumped 55 percent, and in a ...
Inherent enumerability of strong jump-traceability
Diamondstone, David; Turetsky, Daniel
2011-01-01
We show that every strongly jump-traceable set obeys every benign cost function. Moreover, we show that every strongly jump-traceable set is computable from a computably enumerable strongly jump-traceable set. This allows us to generalise properties of c.e.\\ strongly jump-traceable sets to all such sets. For example, the strongly jump-traceable sets induce an ideal in the Turing degrees; the strongly jump-traceable sets are precisely those that are computable from all superlow Martin-L\\"{o}f random sets; the strongly jump-traceable sets are precisely those that are a base for $\\text{Demuth}_{\\text{BLR}}$-randomness; and strong jump-traceability is equivalent to strong superlowness.
Volatility Forecasting: Downside Risk, Jumps and Leverage Effect
Directory of Open Access Journals (Sweden)
Francesco Audrino
2016-02-01
Full Text Available We provide empirical evidence of volatility forecasting in relation to asymmetries present in the dynamics of both return and volatility processes. Using recently-developed methodologies to detect jumps from high frequency price data, we estimate the size of positive and negative jumps and propose a methodology to estimate the size of jumps in the quadratic variation. The leverage effect is separated into continuous and discontinuous effects, and past volatility is separated into “good” and “bad”, as well as into continuous and discontinuous risks. Using a long history of the S & P500 price index, we find that the continuous leverage effect lasts about one week, while the discontinuous leverage effect disappears after one day. “Good” and “bad” continuous risks both characterize the volatility persistence, while “bad” jump risk is much more informative than “good” jump risk in forecasting future volatility. The volatility forecasting model proposed is able to capture many empirical stylized facts while still remaining parsimonious in terms of the number of parameters to be estimated.
Objectivity in the non-Markovian spin-boson model
Lampo, Aniello; Tuziemski, Jan; Lewenstein, Maciej; Korbicz, Jarosław K.
2017-07-01
Objectivity constitutes one of the main features of the macroscopic classical world. An important aspect of the quantum-to-classical transition issue is to explain how such a property arises from the microscopic quantum theory. Recently, within the framework of open quantum systems, there has been proposed such a mechanism in terms of the so-called spectrum broadcast structures. These are multipartite quantum states of the system of interest and a part of its environment, assumed to be under an observation. This approach requires a departure from the standard open quantum systems methods, as the environment cannot be completely neglected. In the present paper we study the emergence of such a state structure in one of the canonical models of the condensed-matter theory: the spin-boson model, describing the dynamics of a two-level system coupled to an environment made up by a large number of harmonic oscillators. We pay much attention to the behavior of the model in the non-Markovian regime, in order to provide a testbed to analyze how the non-Markovian nature of the evolution affects the surfacing of a spectrum broadcast structure.
Model for polygonal hydraulic jumps
DEFF Research Database (Denmark)
Martens, Erik Andreas; Watanabe, Shinya; Bohr, Tomas
2012-01-01
) near the free surface in the jump region. The model consists of mass conservation and radial force balance between hydrostatic pressure and viscous stresses on the roller surface. In addition, we consider the azimuthal force balance, primarily between pressure and viscosity, but also including...
Jumping property of Lyapunov values
Institute of Scientific and Technical Information of China (English)
毛锐; 王铎
1996-01-01
A sufficient condition for fcth Lyapunov value to be zero for planar polynomial vector fields is given, which extends the result of "jumping property’ of Lyapunov values obtained by Wang Duo to more general cases. A concrete example that the origin cannot be weak focus of order 1, 2, 4, 5, 8 is presented.
He, Zhi; Zhu, Lie-Qiang; Li, Li
2017-03-01
A non-Markovianity measure based on Brukner–Zeilinger invariant information to characterize non-Markovian effect of open systems undergoing unital dynamical maps is proposed. The method takes advantage of non-increasing property of the Brukner–Zeilinger invariant information under completely positive and trace-preserving unital maps. The simplicity of computing the Brukner–Zeilinger invariant information is the advantage of the proposed measure because of mainly depending on the purity of quantum state. The measure effectively captures the characteristics of non-Markovianity of unital dynamical maps. As some concrete application, we consider two typical non-Markovian noise channels, i.e., the phase damping channel and the random unitary channel to show the sensitivity of the proposed measure. By investigation, we find that the conditions of detecting the non-Markovianity for the phase damping channel are consistent with the results of existing measures for non-Markovianity, i.e., information flow, divisibility and quantum mutual information. However, for the random unitary channel non-Markovian conditions are same to that of the information flow, but is different from that of the divisibility and quantum mutual information. Supported by the National Natural Science Foundation of China under Grant No. 61505053, the Natural Science Foundation of Hunan Province under Grant No. 2015JJ3092, the Research Foundation of Education Bureau of Hunan Province, China under Grant No. 16B177, the School Foundation from the Hunan University of Arts and Science under Grant No. 14ZD01
A jump forwards with mathematics and physics
A. Heck; P. Uylings
2011-01-01
We jump on human body motions such as bouncing on a jumping stick, hopping, and making kangaroo jumps. Students can record the movements with a digital camera and use their video clips to investigate the motions with suitable video analysis and modelling software. We discuss some mathematical models
Strawberry Shortcake and Other Jumping Rope Ideas.
Adams, Polly K.; Taylor, Michaell K.
Information, guidelines, and activities for jumping rope are given. A short history of jumping rope explains how it evolved from a spring ritual for men to a play activity involving mostly young girls. Physical and cultural reasons are given as to why jumping rope has been more a sport for girls than for boys. Research studies are noted which show…
Strawberry Shortcake and Other Jumping Rope Ideas.
Adams, Polly K.; Taylor, Michaell K.
Information, guidelines, and activities for jumping rope are given. A short history of jumping rope explains how it evolved from a spring ritual for men to a play activity involving mostly young girls. Physical and cultural reasons are given as to why jumping rope has been more a sport for girls than for boys. Research studies are noted which show…
Mesopause jumps at Antarctic latitudes
Lübken, Franz-Josef; Höffner, Josef; Becker, Erich; Latteck, Ralph; Murphy, Damian
2016-04-01
Recent high resolution temperature measurements by resonance lidar at Davis (69°S) occasionally showed a sudden mesopause altitude increase by ˜5 km and an associated mesopause temperature decrease by ˜10 K. We present further observations which are closely related to this 'mesopause jump', namely the increase of mean height of polar mesospheric summer echoes (PMSE) observed by a VHF radar, very strong westward winds in the upper mesosphere measured by an MF radar, and relatively large eastward winds in the stratosphere taken from reanalysis. We compare to similar observations in the Northern Hemisphere, namely at ALOMAR (69°N) where such mesopause jumps have never been observed. We present a detailed explanation of mesopause jumps. They occur only when stratospheric winds are moderately eastward and mesospheric winds are very large (westward). Under these conditions, gravity waves with comparatively large eastward phase Speeds can pass the stratosphere and propagate to the lower thermosphere because their vertical wavelengths in the mesosphere are rather large which implies reduced dynamical stability. When finally breaking in the lower thermosphere, these waves drive an enhanced residual circulation that causes a cold and high-altitude mesopause. The conditions for a mesopause jump occur only in the Southern Hemisphere (SH) and are associated with the late breakdown of the polar vortex. Mesopause jumps are primarily, but not only, observed prior and close to solstice. We also show that during the onset of PMSE in the SH, stratospheric zonal winds are still eastward (up to 30 m/s), and that the onset is not closely related to the Transition of the stratospheric circulation.
Singh, Navinder
2011-01-01
A direct numerical algorithm for solving the time-nonlocal non-Markovian master equation in the second Born approximation is introduced and the range of utility of this approximation, and of the Markov approximation, is analyzed for the traditional dimer system that models excitation energy transfer in photosynthesis. Specifically, the coupled integro-differential equations for the reduced density matrix are solved by an efficient auxiliary function method in both the energy and site representations. In addition to giving exact results to this order, the approach allows us to computationally assess the range of the reorganization energy and decay rates of the phonon auto-correlation function for which the Markovian Redfield theory and the second order approximation is valid. For example, the use of Redfield theory for $\\lambda> 10 \\textrm{cm}^{-1}$ in systems like Fenna-Mathews-Olson (FMO) type systems is shown to be in error. In addition, analytic inequalities are obtained for the regime of validity of the M...
Directory of Open Access Journals (Sweden)
Giuseppe Marcolin
2017-06-01
Full Text Available Kinesiologic elastic tape is widely used for both clinical and sport applications although its efficacy in enhancing agonistic performance is still controversial. Aim of the study was to verify in a group of healthy basketball players whether a neuromuscular taping application (NMT on ankle and knee joints could affect the kinematic and the kinetic parameters of the jump, either by enhancing or inhibiting the functional performance. Fourteen healthy male basketball players without any ongoing pathologies at upper limbs, lower limbs and trunk volunteered in the study. They randomly performed 2 sets of 5 counter movement jumps (CMJ with and without application of Kinesiologic tape. The best 3 jumps of each set were considered for the analysis. The Kinematics parameters analyzed were: knees maximal flexion and ankles maximal dorsiflexion during the push off phase, jump height and take off velocity. Vertical ground reaction force and maximal power expressed in the push off phase of the jump were also investigated. The NMT application in both knees and ankles showed no statistically significant differences in the kinematic and kinetic parameters and did not interfere with the CMJ performance. Bilateral NMT application in the group of healthy male basketball players did not change kinematics and kinetics jump parameters, thus suggesting that its routine use should have no negative effect on functional performance. Similarly, the combined application of the tape on both knees and ankles did not affect in either way jump performance.
Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective.
Bylicka, B; Chruściński, D; Maniscalco, S
2014-07-21
Quantum technologies rely on the ability to coherently transfer information encoded in quantum states along quantum channels. Decoherence induced by the environment sets limits on the efficiency of any quantum-enhanced protocol. Generally, the longer a quantum channel is the worse its capacity is. We show that for non-Markovian quantum channels this is not always true: surprisingly the capacity of a longer channel can be greater than of a shorter one. We introduce a general theoretical framework linking non-Markovianity to the capacities of quantum channels and demonstrate how harnessing non-Markovianity may improve the efficiency of quantum information processing and communication.
Dynamical role of system-environment correlations in non-Markovian dynamics
Mazzola, Laura; Modi, Kavan; Paternostro, Mauro
2012-01-01
We analyse the role played by system-environment correlations in the emergence of non-Markovian dynamics. By working within the framework developed in Breuer et al., Phys. Rev. Lett. 103, 210401 (2009), we unveil a fundamental connection between non-Markovian behaviour and dynamics of system-environment correlations. We derive an upper bound to the derivative of rate of change of the distinguishability between different states of the system that explicitly depends on the development and establishment of correlations between system and environment. We illustrate our results using a fully solvable spin-chain model, which allows us to gain insight on the mechanisms triggering non-Markovian evolution.
Quantum trajectories under frequent measurements in a non-Markovian environment
Xu, Luting; Li, Xin-Qi
2016-09-01
In this work we generalize the quantum trajectory (QT) theory from Markovian to non-Markovian environments. We model the non-Markovian environment by using a Lorentzian spectral density function with bandwidth (Λ ), and find a perfect "scaling" property with the measurement frequency (τ-1) in terms of the scaling variable x =Λ τ . Our result bridges the gap between the existing QT theory and the Zeno effect, by rendering them as two extremes corresponding to x →∞ and x →0 , respectively. This x -dependent criterion improves the idea of using τ alone and quantitatively identifies the validity condition of the conventional QT theory.
Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective
Bylicka, B.; Chruściński, D.; Maniscalco, S.
2014-01-01
Quantum technologies rely on the ability to coherently transfer information encoded in quantum states along quantum channels. Decoherence induced by the environment sets limits on the efficiency of any quantum-enhanced protocol. Generally, the longer a quantum channel is the worse its capacity is. We show that for non-Markovian quantum channels this is not always true: surprisingly the capacity of a longer channel can be greater than of a shorter one. We introduce a general theoretical framework linking non-Markovianity to the capacities of quantum channels and demonstrate how harnessing non-Markovianity may improve the efficiency of quantum information processing and communication. PMID:25043763
Non-Markovian dynamics of open quantum systems
Fleming, Chris H.
An open quantum system is a quantum system that interacts with some environment whose degrees of freedom have been coarse grained away. This model describes non-equilibrium processes more general than scattering-matrix formulations. Furthermore, the microscopically-derived environment provides a model of noise, dissipation and decoherence far more general than Markovian (white noise) models. The latter are fully characterized by Lindblad equations and can be motivated phenomenologically. Non-Markovian processes consistently account for backreaction with the environment and can incorporate effects such as finite temperature and spatial correlations. We consider linear systems with bilinear coupling to the environment, or quantum Brownian motion, and nonlinear systems with weak coupling to the environment. For linear systems we provide exact solutions with analytical results for a variety of spectral densities. Furthermore, we point out an important mathematical subtlety which led to incorrect master-equation coefficients in earlier derivations, given nonlocal dissipation. For nonlinear systems we provide perturbative solutions by translating the formalism of canonical perturbation theory into the context of master equations. It is shown that unavoidable degeneracy causes an unfortunate reduction in accuracy between perturbative master equations and their solutions. We also extend the famous theorem of Lindblad, Gorini, Kossakowski and Sudarshan on completely positivity to non-Markovian master equations. Our application is primarily to model atoms interacting via a common electromagnetic field. The electromagnetic field contains correlations in both space and time, which are related to its relativistic (photon-mediated) nature. As such, atoms residing in the same field experience different environmental effects depending upon their relative position and orientation. Our more accurate solutions were necessary to assess sudden death of entanglement at zero temperature
Kim, Seyoung; Park, Sukyung; Choi, Sangkyu
2014-09-22
In this study, we developed a curve-fit model of countermovement dynamics and examined whether the characteristics of a countermovement jump can be quantified using the model parameter and its scaling; we expected that the model-based analysis would facilitate an understanding of the basic mechanisms of force reduction and propulsion with a simplified framework of the center of mass (CoM) mechanics. Ten healthy young subjects jumped straight up to five different levels ranging from approximately 10% to 35% of their body heights. The kinematic and kinetic data on the CoM were measured using a force plate system synchronized with motion capture cameras. All subjects generated larger vertical forces compared with their body weights from the countermovement and sufficiently lowered their CoM position to support the work performed by push-off as the vertical elevations became more challenging. The model simulation reasonably reproduced the trajectories of vertical force during the countermovement, and the model parameters were replaced by linear and polynomial regression functions in terms of the vertical jump height. Gradual scaling trends of the individual model parameters were observed as a function of the vertical jump height with different degrees of scaling, depending on the subject. The results imply that the subjects may be aware of the jumping dynamics when subjected to various vertical jump heights and may select their countermovement strategies to effectively accommodate biomechanical constraints, i.e., limited force generation for the standing vertical jump. Copyright © 2014 Elsevier Ltd. All rights reserved.
Markovian Building Blocks for Individual-Based Modelling
DEFF Research Database (Denmark)
Nilsson, Lars Anders Fredrik
2007-01-01
The present thesis consists of a summary report, four research articles, one technical report and one manuscript. The subject of the thesis is individual-based stochastic models. The summary report is composed of three parts and a brief history of some basic models in population biology....... This history is included in order to provide a reader that has no previous exposure to models in population biology with a sufficient background to understand some of the biological models that are mentioned in the thesis. The first part of the rest of the summary is a description of the dramatic changes...... in the degree of aggregation of sprat or herring in the Baltic during the day, with special focus on the dispersion of the fish from schools at dusk. The next part is a brief introduction to Markovian arrival processes, a type of stochastic processes with potential applications as sub-models in population...
Random phase wave: a soluble non-Markovian system
Energy Technology Data Exchange (ETDEWEB)
Dewar, R.L.
1977-12-01
The averaged propagator and the corresponding mass operator (non-Markovian particle-wave collision operator) of a particle being accelerated by a random potential are constructed explicitly in a model system. The model consists of an ensemble of monochromatic waves of random phase, such as arises in narrow-bandwidth plasma turbulence, and is particularly interesting as a system exhibiting strong trapping. An essential simplifying feature is that the propagator is evaluated in oscillation-center picture, which greatly simplifies the momentum-space operators occurring in the problem, and leads to a remarkable factorization of the mass operator. General analyticity and symmetry properties are derived using a projection-operator method, and verified for the solution of the model system. The nature of the memory exhibited by the mass operator is briefly examined.
Sample efficient multiagent learning in the presence of Markovian agents
Chakraborty, Doran
2014-01-01
The problem of Multiagent Learning (or MAL) is concerned with the study of how intelligent entities can learn and adapt in the presence of other such entities that are simultaneously adapting. The problem is often studied in the stylized settings provided by repeated matrix games (a.k.a. normal form games). The goal of this book is to develop MAL algorithms for such a setting that achieve a new set of objectives which have not been previously achieved. In particular this book deals with learning in the presence of a new class of agent behavior that has not been studied or modeled before in a MAL context: Markovian agent behavior. Several new challenges arise when interacting with this particular class of agents. The book takes a series of steps towards building completely autonomous learning algorithms that maximize utility while interacting with such agents. Each algorithm is meticulously specified with a thorough formal treatment that elucidates its key theoretical properties.
Quantum correlations dynamics under different non-markovian environmental models
Zhang, Ying-Jie; Shan, Chuan-Jia; Xia, Yun-Jie
2011-01-01
We investigate the roles of different environmental models on quantum correlation dynamics of two-qubit composite system interacting with two independent environments. The most common environmental models (the single-Lorentzian model, the squared-Lorentzian model, the two-Lorentzian model and band-gap model) are analyzed. First, we note that for the weak coupling regime, the monotonous decay speed of the quantum correlation is mainly determined by the spectral density functions of these different environments. Then, by considering the strong coupling regime we find that, contrary to what is stated in the weak coupling regime, the dynamics of quantum correlation depends on the non-Markovianity of the environmental models, and is independent of the environmental spectrum density functions.
Closing the hierarchy for non-Markovian magnetization dynamics
Energy Technology Data Exchange (ETDEWEB)
Tranchida, J., E-mail: julien.tranchida@cea.fr [CEA/DAM/Le Ripault, BP 16, F-37260 Monts (France); CNRS-Laboratoire de Mathématiques et Physique Théorique (UMR 7350), Fédération de Recherche “Denis Poisson” (FR2964), Département de Physique, Université de Tours, Parc de Grandmont, F-37200 Tours (France); Thibaudeau, P., E-mail: pascal.thibaudeau@cea.fr [CEA/DAM/Le Ripault, BP 16, F-37260 Monts (France); Nicolis, S., E-mail: stam.nicolis@lmpt.univ-tours.fr [CNRS-Laboratoire de Mathématiques et Physique Théorique (UMR 7350), Fédération de Recherche “Denis Poisson” (FR2964), Département de Physique, Université de Tours, Parc de Grandmont, F-37200 Tours (France)
2016-04-01
We propose a stochastic approach for the description of the time evolution of the magnetization of nanomagnets, that interpolates between the Landau–Lifshitz–Gilbert and the Landau–Lifshitz–Bloch approximations, by varying the strength of the noise. In addition, we take into account the autocorrelation time of the noise and explore the consequences, when it is finite, on the scale of the response of the magnetization, i.e. when it may be described as colored, rather than white, noise and non-Markovian features become relevant. We close the hierarchy for the moments of the magnetization, by introducing a suitable truncation scheme, whose validity is tested by direct numerical solution of the moment equations and compared to the average deduced from a numerical solution of the corresponding stochastic Langevin equation. In this way we establish a general framework that allows both coarse-graining simulations and faster calculations beyond the truncation approximation used here.
Linear Optics Simulation of Non-Markovian Quantum Dynamics
Chiuri, Andrea; Mazzola, Laura; Paternostro, Mauro; Mataloni, Paolo
2012-01-01
The simulation of quantum processes is a key goal for the grand programme aiming at grounding quantum technologies as the way to explore complex phenomena that are inaccessible through standard, classical calculators. Some interesting steps have been performed in this direction and this scenario has recently been extended to open quantum evolutions, marking the possibility to investigate important features of the way a quantum system interacts with its environment. Here we demonstrate experimentally the (non-)Markovianity of a process where system and environment are coupled through a simulated transverse Ising model. By engineering the evolution in a fully controlled photonic quantum simulator, we assess and demonstrate the role that system-environment correlations have in the emergence of memory effects.
Discrete Time Markovian Agents Interacting Through a Potential
Budhiraja, Amarjit; Rubenthaler, Sylvain
2011-01-01
A discrete time stochastic model for a multiagent system given in terms of a large collection of interacting Markov chains is studied. The evolution of the interacting particles is described through a time inhomogeneous transition probability kernel that depends on the 'gradient' of the potential field. The particles, in turn, dynamically modify the potential field through their cumulative input. Interacting Markov processes of the above form have been suggested as models for active biological transport in response to external stimulus such as a chemical gradient. One of the basic mathematical challenges is to develop a general theory of stability for such interacting Markovian systems and for the corresponding nonlinear Markov processes that arise in the large agent limit. Such a theory would be key to a mathematical understanding of the interactive structure formation that results from the complex feedback between the agents and the potential field. It will also be a crucial ingredient in developing simulat...
On the Thermal Symmetry of Markovian Master Equation
Tay, B A
2007-01-01
The quantum Markovian master equation of the reduced dynamics of a harmonic oscillator coupled to a thermal reservoir is shown to possess a thermal symmetry. This symmetry is a Bogoliubov transformation that can be represented by a hyperbolic rotation acting in the Liouville space of the reduced dynamics. The Liouville space is obtained as an extension from the Hilbert space by introducing tilde variables as carried out in thermofield dynamics formalism. The angle of rotation depends on the temperature of the reservoir, or the value of Planck's constant. The symmetry connects the thermal states of the system between any temperature, including absolute zero that contains a purely quantum effect. The Caldeira-Leggett equation and the classical Fokker-Planck equation also possess a thermal symmetry. We discuss how the thermal symmetry affects the change in the shape of a Gaussian wave packet. We also construct temperature dependent density states of a harmonic oscillator, which contain thermal ground states as w...
Fermionic-mode entanglement in non-Markovian environment
Cheng, Jiong; Han, Yan; An, Qing-zhi; Zhou, Ling
2015-03-01
We evaluate the non-Markovian effects on the entanglement dynamics of a fermionic system interacting with two dissipative vacuum reservoirs. The exact solution of density matrix is derived by utilizing the Feynman-Vernon influence functional theory in the fermionic coherent state representation and the Grassmann calculus, which are valid for both the fermionic and bosonic baths, and their difference lies in the dependence of the parity of the initial states. The fermionic entanglement dynamics is presented by adding an additional restriction to the density matrix known as the superselection rules. Our analysis shows that the usual decoherence suppression schemes implemented in qubits systems can also be achieved for systems of identical fermions, and the initial state proves its importance in the evolution of fermionic entanglement. Our results provide a potential way to decoherence controlling of identical fermions.
Reliability Analysis of Wireless Sensor Networks Using Markovian Model
Directory of Open Access Journals (Sweden)
Jin Zhu
2012-01-01
Full Text Available This paper investigates reliability analysis of wireless sensor networks whose topology is switching among possible connections which are governed by a Markovian chain. We give the quantized relations between network topology, data acquisition rate, nodes' calculation ability, and network reliability. By applying Lyapunov method, sufficient conditions of network reliability are proposed for such topology switching networks with constant or varying data acquisition rate. With the conditions satisfied, the quantity of data transported over wireless network node will not exceed node capacity such that reliability is ensured. Our theoretical work helps to provide a deeper understanding of real-world wireless sensor networks, which may find its application in the fields of network design and topology control.
Entanglement and non-Markovianity of a multi-level atom decaying in a cavity
Zi-Long, Fan; Yu-Kun, Ren; Hao-Sheng, Zeng
2016-01-01
We present a paradigmatic method for exactly studying non-Markovian dynamics of a multi-level V-type atom interacting with a zero-temperature bosonic bath. Special attention is paid to the entanglement evolution and the dynamical non-Markovianity of a three-level V-type atom. We find that the entanglement negativity decays faster and non-Markovianity is smaller in the resonance regions than those in the non-resonance regions. More importantly, the quantum interference between the dynamical non-Markovianities induced by different transition channels is manifested, and the frequency domains for constructive and destructive interferences are found. Project supported by the National Natural Science Foundation of China (Grant Nos. 11275064 and 11075050), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20124306110003), and the Construct Program of the National Key Discipline, China.
Equivalence of the measures of non-Markovianity for open two-level systems
Energy Technology Data Exchange (ETDEWEB)
Zeng Haosheng; Tang Ning; Zheng Yanping; Wang Guoyou [Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081 (China)
2011-09-15
Different measures have been presented to depict the deviation of quantum time evolution in open systems from Markovian processes. We demonstrate that the measure proposed by Breuer, Laine, and Piilo [Phys. Rev. Lett. 103, 210401 (2009)] and the two measures proposed by Rivas, Huelga, and Plenio [Phys. Rev. Lett. 105, 050403 (2010)] have exactly the same non-Markovian time-evolution intervals and thus are really equivalent to each other when they are applied to open two-level systems coupled to environments via the Jaynes-Cummings or dephasing models. This equivalence implies that the three measures, in different ways, capture the intrinsic character of the non-Markovianity of quantum evolutional processes. We also show that the maximization in the definition of the first measure can be actually removed for the considered models without influencing the sensibility of the measure to detect non-Markovianity.
Zhang, Huaguang; Wang, Junyi; Wang, Zhanshan; Liang, Hongjing
2017-03-01
This paper investigates the problem of sampled-data synchronization for Markovian neural networks with generally incomplete transition rates. Different from traditional Markovian neural networks, each transition rate can be completely unknown or only its estimate value is known in this paper. Compared with most of existing Markovian neural networks, our model is more practical because the transition rates in Markovian processes are difficult to precisely acquire due to the limitations of equipment and the influence of uncertain factors. In addition, the time-dependent Lyapunov-Krasovskii functional is proposed to synchronize drive system and response system. By applying an extended Jensen's integral inequality and Wirtinger's inequality, new delay-dependent synchronization criteria are obtained, which fully utilize the upper bound of variable sampling interval and the sawtooth structure information of varying input delay. Moreover, the desired sampled-data controllers are obtained. Finally, two examples are provided to illustrate the effectiveness of the proposed method.
Farber, M S; Farber, Michael S.; Levine, Jerome P.
1994-01-01
We study the eta-invariant, defined by Atiyah-Patodi-Singer a real valued invariant of an oriented odd-dimensional Riemannian manifold equipped with a unitary representation of its fundamental group. When the representation varies analytically, the corresponding eta-invariant may have an integral jump, known also as the spectral flow. The main result of the paper establishes a formula for this spectral jump in terms of the signatures of some homological forms, defined naturally by the path of representations. These signatures may also be computed by means of a spectral sequence of Hermitian forms,defined by the deformation data. Our theorem on the spectral jump has a generalization to arbitrary analytic families of self-adjoint elliptic operators. As an application we consider the problem of homotopy invariance of the rho-invariant. We give an intrinsic homotopy theoretic definition of the rho-invariant, up to indeterminacy in the form of a locally constant function on the space of unitary representations. In...
Hébert-Losier, Kim; Beaven, C Martyn
2014-07-01
Jump tests are often used to assess the effect of interventions because their outcomes are reported valid indicators of functional performance. In this study, we examined the reproducibility of performance parameters from 3 common jump tests obtained using the commercially available Kistler Measurement, Analysis and Reporting Software (MARS). On 2 separate days, 32 men performed 3 squat jumps (SJs), 3 countermovement jumps (CMJs), and 3 standing long jumps (LJs) on a Kistler force-plate. On both days, the performance measures from the best jump of each series were extracted using the MARS. Changes in the mean scores, intraclass correlation coefficients (ICCs), and coefficients of variations (CVs) were computed to quantify the between-day reproducibility of each parameter. Moreover, the reproducibility quantifiers specific to the 3 separate jumps were compared using nonparametric tests. Overall, an acceptable between-day reproducibility (mean ± SD, ICC, and CV) of SJ (0.88 ± 0.06 and 7.1 ± 3.8%), CMJ (0.84 ± 0.17 and 5.9 ± 4.1%), and LJ (0.80 ± 0.13 and 8.1 ± 4.1%) measures was found using the MARS, except for parameters directly relating to the rate of force development (i.e., time to maximal force) and change in momentum during countermovement (i.e., negative force impulse) where reproducibility was lower. A greater proportion of the performance measures from the standing LJs had low ICCs and/or high CVs values most likely owing to the complex nature of the LJ test. Practitioners and researchers can use most of the jump test parameters from the MARS with confidence to quantify changes in the functional ability of individuals over time, except for those relating to the rate of force development or change in momentum during countermovement phases of jumps.
Gheller, Rodrigo G; Dal Pupo, Juliano; Ache-Dias, Jonathan; Detanico, Daniele; Padulo, Johnny; dos Santos, Saray G
2015-08-01
This study aimed to analyze the effect of different knee starting angles on jump performance, kinetic parameters, and intersegmental coupling coordination during a squat jump (SJ) and a countermovement jump (CMJ). Twenty male volleyball and basketball players volunteered to participate in this study. The CMJ was performed with knee flexion at the end of the countermovement phase smaller than 90° (CMJ(90)), and in a preferred position (CMJ(PREF)), while the SJ was performed from a knee angle of 70° (SJ(70)), 90° (SJ(90)), 110° (SJ(110)), and in a preferred position (SJ(PREF)). The best jump performance was observed in jumps that started from a higher squat depth (CMJ(power was observed in the SJ(110) and CMJ(>90). Analysis of continuous relative phase showed that thigh-trunk coupling was more in-phase in the jumps (CMJ and SJ) performed with a higher squat depth, while the leg-thigh coupling was more in-phase in the CMJ(>90) and SJ(PREF). Jumping from a position with knees more flexed seems to be the best strategy to achieve the best performance. Intersegmental coordination and jump performance (CMJ and SJ) were affected by different knee starting angles.
Inertia Matching Manipulability and Load Matching Optimization for Humanoid Jumping Robot
Directory of Open Access Journals (Sweden)
Zhaohong Xu
2008-11-01
Full Text Available Human jumping motion includes stance phase, flight phase and landing impact phase. Jumping robot belongs to a variable constraints system because every phase has different constraint conditions. An unified dynamics equation during stance phase and flight phase is established based on floated-basis space. Inertia matching is used to analyze actuator/gear systems and select the optimum gear ratio based on the transmission performance between the torque produced at the actuator and the torque applied to the load. Load matching is an important index which affects jumping performance and reflects the capability of supporting a weight or mass. It also affects the distributing of the center of gravity (COG. Regarding jumping robot as a redundant manipulator with a load at end-effector, inertia matching can be applied to optimize load matching for jumping robot. Inertia matching manipulability and directional manipulability are easy to analyze and optimize the load matching parameters. A 5th order polynomial function is defined to plan COG trajectory of jumping motion, taking into account the constraint conditions of both velocity and acceleration. Finally, the numerical simulation of vertical jumping and experimental results show inertia matching is in direct proportion to jumping height, and inertia matching manipulability is a valid method to load matching optimization and conceptual design of robot.
Violation of the scaling relation and non-Markovian nature of earthquake aftershocks
Abe, Sumiyoshi
2008-01-01
The statistical properties of earthquake aftershocks are studied. The scaling relation for the exponents of the Omori law and the power-law calm time distribution (i.e., the interoccurrence time distribution), which is valid if a sequence of aftershocks is a singular Markovian process, is carefully examined. Data analysis shows significant violation of the scaling relation, implying the non-Markovian nature of aftershocks.
A framework for the direct evaluation of large deviations in non-Markovian processes
Cavallaro, Massimo; Harris, Rosemary J.
2016-11-01
We propose a general framework to simulate stochastic trajectories with arbitrarily long memory dependence and efficiently evaluate large deviation functions associated to time-extensive observables. This extends the ‘cloning’ procedure of Giardiná et al (2006 Phys. Rev. Lett. 96 120603) to non-Markovian systems. We demonstrate the validity of this method by testing non-Markovian variants of an ion-channel model and the totally asymmetric exclusion process, recovering results obtainable by other means.
Alternatives to the Markovian Model for the Tubulent Refractive Index in Lightwave Propagation
Pérez, D G; Perez, Dario G.; Zunino, Luciano
2003-01-01
We discuss in this letter the markovian model and its limitations when applied to model the turbulent refractive index in lightwave propagation. Not being aware are these limitations usually leads to severe mistakes as we will point out here. It is widely known the index is a passive scalar field; moreover, with our actual knowledge about these quantities we will propose an alternative stochastic process to the markovian model.
Super-Exponential Solution in Markovian Supermarket Models: Framework and Challenge
Li, Quan-Lin
2011-01-01
Marcel F. Neuts opened a key door in numerical computation of stochastic models by means of phase-type (PH) distributions and Markovian arrival processes (MAPs). To celebrate his 75th birthday, this paper reports a more general framework of Markovian supermarket models, including a system of differential equations for the fraction measure and a system of nonlinear equations for the fixed point. To understand this framework heuristically, this paper gives a detailed analysis for three importan...
Sojourn time distributions in a Markovian G-queue with batch arrival and batch removal
1999-01-01
We consider a single server Markovian queue with two types of customers; positive and negative, where positive customers arrive in batches and arrivals of negative customers remove positive customers in batches. Only positive customers form a queue and negative customers just reduce the system congestion by removing positive ones upon their arrivals. We derive the LSTs of sojourn time distributions for a single server Markovian queue with positive customers and negative custom...
Price jumps on European stock markets
Directory of Open Access Journals (Sweden)
Jan Hanousek
2014-03-01
Full Text Available We analyze the dynamics of price jumps and the impact of the European debt crisis using the high-frequency data reported by selected stock exchanges on the European continent during the period January 2008 to June 2012. We employ two methods to identify price jumps: Method 1 minimizes the probability of false jump detection (the Type-II Error-Optimal price jump indicator and Method 2 maximizes the probability of successful jump detection (the Type-I Error-Optimal price jump indicator. We show that individual stock markets exhibited differences in price jump intensity before and during the crisis. We also show that in general the variance of price jump intensity could not be distinguished as different in the pre-crisis period from that during the crisis. Our results indicate that, contrary to common belief, the intensity of price jumps does not uniformly increase during a period of financial distress. However, there do exist differences in price jump dynamics across stock markets and investors have to model emerging and mature markets differently to properly reflect their individual dynamics.
Ebadi, H.; Saeedian, M.; Ausloos, M.; Jafari, G. R.
2016-11-01
The Boolean network is one successful model to investigate discrete complex systems such as the gene interacting phenomenon. The dynamics of a Boolean network, controlled with Boolean functions, is usually considered to be a Markovian (memory-less) process. However, both self-organizing features of biological phenomena and their intelligent nature should raise some doubt about ignoring the history of their time evolution. Here, we extend the Boolean network Markovian approach: we involve the effect of memory on the dynamics. This can be explored by modifying Boolean functions into non-Markovian functions, for example, by investigating the usual non-Markovian threshold function —one of the most applied Boolean functions. By applying the non-Markovian threshold function on the dynamical process of the yeast cell cycle network, we discover a power-law-like memory with a more robust dynamics than the Markovian dynamics.
Bionic Mechanism and Kinematics Analysis of Hopping Robot Inspired by Locust Jumping
Institute of Scientific and Technical Information of China (English)
Diansheng Chen; Junmao Yin; Kai Zhao; Wanjun Zheng; Tianmiao Wang
2011-01-01
A flexible-rigid hopping mechanism which is inspired by the locust jumping was proposed,and its kinematic characteristics were analyzed.A series of experiments were conducted to observe locust morphology and jumping process.According to classic mechanics,the jumping process analysis was conducted to build the relationship of the locust jumping parameters.The take-off phase was divided into four stages in detail.Based on the biological observation and kinematics analysis,a mechanical model was proposed to simulate locust jumping.The forces of the flexible-rigid hopping mechanism at each stage were analyzed.The kinematic analysis using pseudo-rigid-body model was described by D-H method.It is confirmed that the proposed bionic mechanism has the similar performance as the locust hind leg in hopping.Moreover,the jumping angle which decides the jumping process was discussed,and its relation with other parameters was established.A calculation case analysis corroborated the method.The results of this paper show that the proposed bionic mechanism which is inspired by the locust hind limb has an excellent kinematics performance,which can provide a foundation for design and motion planning of the hopping robot.
Jiang, Li; Zhang, Guo-Feng
2017-03-01
By using the effective non-Markovian measure (Breuer et al., Phys. Rev. Lett. 103, 210401 2009) we investigate non-Markovian dynamics of a pair of two-level atoms (TLAs) system, each of which interacting with a local reservoir. We show that subsystem dynamics can be controlled by manipulating the coupling between TLAs, temperature and relaxation rate of the atoms. Moreover, the correlation between non-Markovianity of subsystem and entanglement between the subsystem and the structured bath is investigated, the results show that the emergence of non-Markovianity has a negative effect on the entanglement.
Directory of Open Access Journals (Sweden)
Santosh N. Kabadi
2005-01-01
Full Text Available The concept of Δ-matroid is a nontrivial, proper generalization of the concept of matroid and has been further generalized to the concept of jump system. In this paper, we show that jump systems are, in some sense, equivalent to Δ-matroids. Using this equivalence and the Δ-matroid theory, we give simple proofs and extensions of many of the results on jump systems.
Time change, jumping measure and Feller measure
He, Ping
2007-01-01
In this paper, we shall investigate some potential theory for time change of Markov processes. Under weak duality, it is proved that the jumping measure and Feller measure are actually independent of time change, and the jumping measure of a time changed process induced by a PCAF supported on $V$ coincides with the sum of the Feller measure on $V$ and the trace of the original jumping measure on $V$.
The aerodynamics of jumping rope
Aristoff, Jeffrey; Stone, Howard
2011-03-01
We present the results of a combined theoretical and experimental investigation of the motion of a rotating string that is held at both ends (i.e. a jump rope). In particular, we determine how the surrounding fluid affects the shape of the string at high Reynolds numbers: the string bends toward the axis of rotation, thereby reducing its total drag. We derive a pair of coupled non-linear differential equations that describe the shape, the numerical solution of which compares well with asymptotic approximations and experiments. Implications for successful skipping will be discussed.
Dynamic jump intensities and risk premiums
DEFF Research Database (Denmark)
Christoffersen, Peter; Ornthanalai, Chayawat; Jacobs, Kris
2012-01-01
We build a new class of discrete-time models that are relatively easy to estimate using returns and/or options. The distribution of returns is driven by two factors: dynamic volatility and dynamic jump intensity. Each factor has its own risk premium. The models significantly outperform standard...... models without jumps when estimated on S&P500 returns. We find very strong support for time-varying jump intensities. Compared to the risk premium on dynamic volatility, the risk premium on the dynamic jump intensity has a much larger impact on option prices. We confirm these findings using joint...... estimation on returns and large option samples....
Laminar circular hydraulic jumps without separation
Dasgupta, Ratul; Tomar, Gaurav; Govindarajan, Rama
2009-11-01
The traditional inviscid criterion for the occurrence of a planar, standing hydraulic jump is to have the Froude number decrease downstream and go through a value of 1 at some location. Here, upstream propagating, small-amplitude, long, non-dispersive gravity waves are trapped, and non-linear steepening is said to result in a near-discontinuous height profile, but it is not clear how. Such a condition on the Froude number is shown in the present axisymmetric Navier-Stokes computations to hold for a circular jump as well. The relevance of non-linear steepening to a circular jump is therefore a question we wish to answer. In circular jumps, moreover, a region of recirculation is usually observed underneath the jump, underlining the importance of viscosity in this process. This led Tani (J. Phys. Soc. Japan, 1949) to hypothesise that boundary-layer separation was the cause of the circular jump. This hypothesis has been debated extensively and the possibility of circular jumps without separation hinted at. In our simulations, we are able to obtain circular hydraulic jumps without any flow separation. This, and the necessity or otherwise of viscosity in jump formation will be discussed.
A Molecular Jump Mechanism of Water Reorientation
National Research Council Canada - National Science Library
Damien Laage; James T. Hynes
2006-01-01
.... This water reorientation mechanism involves large-amplitude angular jumps, rather than the commonly accepted sequence of small diffusive steps, and therefore calls for reinterpretation of many...
Role of conditional probability in multiscale stationary markovian processes.
Miccichè, Salvatore
2010-07-01
The aim of the paper is to understand how the inclusion of more and more time scales into a stochastic stationary markovian process affects its conditional probability. To this end, we consider two gaussian processes: (i) a short-range correlated process with an infinite set of time scales bounded from above and (ii) a power-law correlated process with an infinite and unbounded set of time scales. For these processes we investigate the equal position conditional probability P(x,t∣x,0) and the mean first passage time Tx(Λ). The function P(x,t∣x,0) can be considered as a proxy of the persistence, i.e., the fact that when a process reaches a position x then it spends some time around that position value. The mean first passage time can be considered as a proxy of how fast is the process in reaching a position at distance Λ starting from position x . In the first investigation we show that the more time scales the process includes, the larger is the persistence. Specifically, we show that the power-law correlated process shows a slow power-law decay of P(x,t∣x,0) to the stationary probability density function. By contrast, the short-range correlated process shows a decay dominated by an exponential cutoff. Moreover, we also show that the existence of an infinite and unbounded set of time scales is a necessary but not sufficient condition for observing a slow power-law decay of P(x,t∣x,0). In fact, in the context of stationary markovian processes such a form of persistence seems to be associated with the existence of an algebraic decay of the autocorrelation function. In the second investigation, we show that for large values of Λ the more time scales the process includes, the larger is the mean first passage time, i.e., the slower is the process. On the other hand, for small values of Λ, the more time scales the process includes, the smaller is the mean first passage time, i.e., when a process statistically spends more time in a given position the
JUMP LANDING CHARACTERISTICS IN ELITE SOCCER PLAYERS WITH CEREBRAL PALSY
Directory of Open Access Journals (Sweden)
Jesús Cámara
2013-04-01
Full Text Available The aim of the present study was to analyse the parameters that characterize the vertical ground reaction force during the landing phase of a jump, and to determine the relationship among these parameters in elite soccer players with cerebral palsy (CP. Thirteen male members of the Spanish national soccer team for people with CP (mean age: 27.1 ± 4.7 years volunteered for the study. Each participant performed three counter movement jumps. The characteristics of the first peak of the vertical ground reaction force during the landing phase of a jump, which corresponds to the forefoot contact with the ground, were similar to the results obtained in previous studies. However, a higher magnitude of rearfoot contact with the ground (F2 was observed in participants with CP than in participants without CP. Furthermore, a significant correlation between F2 magnitude and the elapsed time until its production (T2 was not observed (r = -0.474 for p = 0.102. This result implies that a landing technique based on a delay in the production of F2 might not be effective to reduce its magnitude, contrary to what has been observed in participants without CP. The absence of a significant correlation between these two parameters in the present study, and the high magnitude of F2, suggest that elite soccer players with CP should use footwear with proper cushioning characteristics.
Hard decoding algorithm for optimizing thresholds under general Markovian noise
Chamberland, Christopher; Wallman, Joel; Beale, Stefanie; Laflamme, Raymond
2017-04-01
Quantum error correction is instrumental in protecting quantum systems from noise in quantum computing and communication settings. Pauli channels can be efficiently simulated and threshold values for Pauli error rates under a variety of error-correcting codes have been obtained. However, realistic quantum systems can undergo noise processes that differ significantly from Pauli noise. In this paper, we present an efficient hard decoding algorithm for optimizing thresholds and lowering failure rates of an error-correcting code under general completely positive and trace-preserving (i.e., Markovian) noise. We use our hard decoding algorithm to study the performance of several error-correcting codes under various non-Pauli noise models by computing threshold values and failure rates for these codes. We compare the performance of our hard decoding algorithm to decoders optimized for depolarizing noise and show improvements in thresholds and reductions in failure rates by several orders of magnitude. Our hard decoding algorithm can also be adapted to take advantage of a code's non-Pauli transversal gates to further suppress noise. For example, we show that using the transversal gates of the 5-qubit code allows arbitrary rotations around certain axes to be perfectly corrected. Furthermore, we show that Pauli twirling can increase or decrease the threshold depending upon the code properties. Lastly, we show that even if the physical noise model differs slightly from the hypothesized noise model used to determine an optimized decoder, failure rates can still be reduced by applying our hard decoding algorithm.
Markovian language model of the DNA and its information content
Srivastava, Shambhavi
2015-01-01
This work proposes a markovian memoryless model for the DNA that simplifies enormously the complexity of it. We encode nucleotide sequences into symbolic sequences, called words, from which we establish meaningful length of words and group of words that share symbolic similarities. Interpreting a node to represent a group of similar words and edges to represent their functional connectivity allows us to construct a network of the grammatical rules governing the appearance of group of words in the DNA. Our model allows to predict the transition between group of words in the DNA with unprecedented accuracy, and to easily calculate many informational quantities to better characterize the DNA. In addition, we reduce the DNA of known bacteria to a network of only tens of nodes, show how our model can be used to detect similar (or dissimilar) genes in different organisms, and which sequences of symbols are responsible for the most of the information content of the DNA. Therefore, the DNA can indeed be treated as a ...
On Markovian traffic with applications to TES processes
Directory of Open Access Journals (Sweden)
David L. Jagerman
1994-01-01
Full Text Available Markov processes are an important ingredient in a variety of stochastic applications. Notable instances include queueing systems and traffic processes offered to them. This paper is concerned with Markovian traffic, i.e., traffic processes whose inter-arrival times (separating the time points of discrete arrivals form a real-valued Markov chain. As such this paper aims to extend the classical results of renewal traffic, where interarrival times are assumed to be independent, identically distributed. Following traditional renewal theory, three functions are addressed: the probability of the number of arrivals in a given interval, the corresponding mean number, and the probability of the times of future arrivals. The paper derives integral equations for these functions in the transform domain. These are then specialized to a subclass, TES+, of a versatile class of random sequences, called TES (Transform-Expand-Sample, consisting of marginally uniform autoregressive schemes with modulo-1 reduction, followed by various transformations. TES models are designed to simultaneously capture both first-order and second-order statistics of empirical records, and consequently can produce high-fidelity models. Two theoretical solutions for TES+ traffic functions are derived: an operator-based solution and a matric solution, both in the transform domain. A special case, permitting the conversion of the integral equations to differential equations, is illustrated and solved. Finally, the results are applied to obtain instructive closed-form representations for two measures of traffic burstiness: peakedness and index of dispersion, elucidating the relationship between them.
Optimisation of phase ratio in the triple jump using computer simulation.
Allen, Sam J; King, Mark A; Yeadon, M R Fred
2016-04-01
The triple jump is an athletic event comprising three phases in which the optimal proportion of each phase to the total distance jumped, termed the phase ratio, is unknown. This study used a whole-body torque-driven computer simulation model of all three phases of the triple jump to investigate optimal technique. The technique of the simulation model was optimised by varying torque generator activation parameters using a Genetic Algorithm in order to maximise total jump distance, resulting in a hop-dominated technique (35.7%:30.8%:33.6%) and a distance of 14.05m. Optimisations were then run with penalties forcing the model to adopt hop and jump phases of 33%, 34%, 35%, 36%, and 37% of the optimised distance, resulting in total distances of: 13.79m, 13.87m, 13.95m, 14.05m, and 14.02m; and 14.01m, 14.02m, 13.97m, 13.84m, and 13.67m respectively. These results indicate that in this subject-specific case there is a plateau in optimum technique encompassing balanced and hop-dominated techniques, but that a jump-dominated technique is associated with a decrease in performance. Hop-dominated techniques are associated with higher forces than jump-dominated techniques; therefore optimal phase ratio may be related to a combination of strength and approach velocity.
Battaglia, Claudia; D'Artibale, Emanuele; Fiorilli, Giovanni; Piazza, Marina; Tsopani, Despina; Giombini, Arrigo; Calcagno, Giuseppe; di Cagno, Alessandra
2014-12-01
The aim of this study was to evaluate whether a mental training protocol could improve gymnastic jumping performance. Seventy-two rhythmic gymnasts were randomly divided into an experimental and control group. At baseline, experimental group completed the Movement Imagery Questionnaire Revised (MIQ-R) to assess the gymnast ability to generate movement imagery. A repeated measures design was used to compare two different types of training aimed at improving jumping performance: (a) video observation and PETTLEP mental training associated with physical practice, for the experimental group, and (b) physical practice alone for the control group. Before and after six weeks of training, their jumping performance was measured using the Hopping Test (HT), Drop Jump (DJ), and Counter Movement Jump (CMJ). Results revealed differences between jumping parameters F(1,71)=11.957; p<.01, and between groups F(1,71)=10.620; p<.01. In the experimental group there were significant correlations between imagery ability and the post-training Flight Time of the HT, r(34)=-.295, p<.05 and the DJ, r(34)=-.297, p<.05. The application of the protocol described herein was shown to improve jumping performance, thereby preserving the elite athlete's energy for other tasks. Copyright © 2014 Elsevier B.V. All rights reserved.
pH-jump induced α-helix folding of poly-L-glutamic acid
Energy Technology Data Exchange (ETDEWEB)
Donten, Mateusz L. [Institute of Physical Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Hamm, Peter, E-mail: phamm@pci.uzh.ch [Institute of Physical Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland)
2013-08-30
Highlights: ► pH-jump as truly biomimetic tool to initiate non-equilibrium dynamics of biomolecules. ► Design criteria to widen the applicability of pH-jumps are developed. ► Folding of poly-L-Glu in dependence of starting pH, pH jump size and helix length. ► Length dependence provides strong evidence for a nucleation–propagation scenario. - Abstract: pH jumps are a truly biomimetic technique to initiate non-equilibrium dynamics of biomolecules. In this work, the pH jump induced α-helix folding of poly-L-glutamic acid is investigated upon proton release from o-nitrobenzaldehyde. The aim of this work is twofold: On the one hand, design criteria of pH jump experiments are discussed, on the other hand, the folding mechanism of poly-L-glutamic acid is clarified by probing the IR response of the amide I band. Its folding kinetics is studied in dependence of the starting pD, the size of the pD jump and the length of the helix. While no dependence on the first two parameters could be detected, the folding time varies from 0.6 μs to 1.8 μs for helix lengths of 20 residue to 440 residue, respectively. It converges to a long-length limit at about 50 residue, a result which is attributed to a nucleation–propagation mechanism.
Electroencephalographic recordings during parachute jump sessions.
Gauthier, P; Jouffray, L; Rodi, M; Gottesmann, C
1980-04-01
Electroencephalographic (EEG) recordings of experienced parachutists were done by means of telemetry before, during, and after jumps of up to 3500m. During free-fall and after stabilization, alpha rhythm was recorded from several alpha reactive subjects when they closed their eyes. No pathological EEG recordings were obtained during the different phases of the jump.
Jump Detection in the Danish Stock Market
DEFF Research Database (Denmark)
Høg, Esben
2002-01-01
It is well known in financial economics that stock market return data are often modelled by a diffusion process with some regular drift function. Occasionally, however, sudden changes or jumps occur in the return data. Wavelet scaling methods are used to detect jumps and cusps in stock market...
Rope Jumping: A Preliminary Developmental Study.
Wickstrom, Ralph L.
The basic movement pattern used in skilled individual rope jumping performance was determined and used as a model against which to evaluate the rope jumping form used by children at various levels of skills development. The techniques of adults and nursery school children were filmed and analyzed. The specific causes of unsuccessful attempts were…
Separation and pattern formation in hydraulic jumps
DEFF Research Database (Denmark)
Bohr, Tomas; Ellegaard, C.; Hansen, A. Espe;
1998-01-01
We present theory and experiments on the circular hydraulic jump in the stationary regime. The theory can handle the situation in which the fluid flows over an edge far away from the jump. In the experiments the external height is controlled, and a series of transitions in the flow structure appe...
Internal hydraulic jumps with large upstream shear
Ogden, Kelly; Helfrich, Karl
2015-11-01
Internal hydraulic jumps in approximately two-layered flows with large upstream shear are investigated using numerical simulations. The simulations allow continuous density and velocity profiles, and a jump is forced to develop by downstream topography, similar to the experiments conducted by Wilkinson and Wood (1971). High shear jumps are found to exhibit significantly more entrainment than low shear jumps. Furthermore, the downstream structure of the flow has an important effect on the jump properties. Jumps with a slow upper (inactive) layer exhibit a velocity minimum downstream of the jump, resulting in a sub-critical downstream state, while flows with the same upstream vertical shear and a larger barotropic velocity remain super-critical downstream of the jump. A two-layer theory is modified to account for the vertical structure of the downstream density and velocity profiles and entrainment is allowed through a modification of the approach of Holland et al. (2002). The resulting theory can be matched reasonably well with the numerical simulations. However, the results are very sensitive to how the downstream vertical profiles of velocity and density are incorporated into the layered model, highlighting the difficulty of the two layer approximation when the shear is large.
Strong jump traceability and Demuth randomness
Greenberg, Noam
2011-01-01
We solve the covering problem for Demuth randomness, showing that a computably enumerable set is computable from a Demuth random set if and only if it is strongly jump-traceable. We show that on the other hand, the class of sets which form a base for Demuth randomness is a proper subclass of the class of strongly jump-traceable sets.
Non-Markovianity, coherence, and system-environment correlations in a long-range collision model
Ćakmak, B.; Pezzutto, M.; Paternostro, M.; Müstecaplıoǧlu, Ö. E.
2017-08-01
We consider the dynamics of a collisional model in which both the system and environment are embodied by spin-1 /2 particles. In order to include non-Markovian features in our model, we introduce interactions among the environmental qubits and investigate the effect that different models of such interaction have on the degree of non-Markovianity of the system's dynamics. By extending that interaction beyond the nearest neighbor, we enhance the degree of non-Markovianity in the system's dynamics. A further significant increase can be observed if a collective interaction with the forthcoming environmental qubits is considered. However, the observed degree of non-Markovianity in this case is nonmonotonic with the increasing number of qubits included in the interaction. Moreover, one can establish a connection between the degree of non-Markovianity in the evolution of the system and the fading behavior of quantum coherence in its state as the number of collisions grows. We complement our study with an investigation of system-environment correlations and present an example of their importance on a physical upper bound on the trace distance derivative.
A review on the basketball jump shot.
Okazaki, Victor H A; Rodacki, André L F; Satern, Miriam N
2015-06-01
The ability to shoot an effective jump shot in the sport of basketball is critical to a player's success. In an attempt to better understand the aspects related to expert performance, researchers have investigated successful free throws and jump shots of various basketball players and identified movement variables that contribute to their success. The purpose of this study was to complete a systematic review of the scientific literature on the basketball free throw and jump shot for the purpose of revealing the critical components of shooting that coaches, teachers, and players should focus on when teaching, learning, practising, and performing a jump shot. The results of this review are presented in three sections: (a) variables that affect ball trajectory, (b) phases of the jump shot, and
Dynamical approach to displacement jumps in nanoindentation experiments
K, Srikanth; Ananthakrishna, G.
2017-01-01
The load-controlled mode is routinely used in nanoindentation experiments. Yet there are no simulations or models that predict the generic features of force-displacement F -z curves, in particular, the existence of several displacement jumps of decreasing magnitude. Here, we show that the recently developed dislocation dynamical model predicts all the generic features when the model is appropriately coupled to an equation defining the load rate. Since jumps in the indentation depth result from the plastic deformation occurring inside the sample, we devise a method for calculating this contribution by setting up a system of coupled nonlinear time evolution equations for the mobile and forest dislocation densities. The equations are then coupled to the force rate equation. We include nucleation, multiplication, and propagation threshold mechanisms for the mobile dislocations apart from other well known dislocation transformation mechanisms between the mobile and forest dislocations. The commonly used Berkovitch indenter is considered. The ability of the approach is illustrated by adopting experimental parameters such as the indentation rate, the geometrical quantities defining the Berkovitch indenter including the nominal tip radius, and other parameters. We identify specific dislocation mechanisms contributing to different regions of the F -z curve as a first step for obtaining a good fit to a given experimental F -z curve. This is done by studying the influence of the parameters on the model F -z curves. In addition, the study demonstrates that the model predicts all the generic features of nanoindentation such as the existence of an initial elastic branch followed by several displacement jumps of decreasing magnitude, and residual plasticity after unloading for a range of model parameter values. Further, an optimized set of parameter values can be easily determined that gives a good fit to the experimental force-displacement curve for Al single crystals of (110
Directory of Open Access Journals (Sweden)
Sandipkumar Parekh
2014-12-01
Full Text Available Background: The ability to jump plays an effective and important role in volleyball, Because jump skills are greatly complicated that it is nearly the outcome of vertical force and horizontal speed besides harmony and synchronization of the work of arms and feet. There is also total harmony related to the skill and plan achievement during attack and block. The purpose of this study was to examine the Effect of Plyometric VS. Pilates Exercises on the Muscular Ability and Components of Jumping in Volleyball Players. Study Design: Experimental design. Methods: 30 subjects were selected randomly from the population using simple random sampling procedure and were divided into two equal groups. Group A was given plyomeric training and Group B was given Pilate training. Outcome measures were taken before and after the Program Schedule of 3 Sessions alternately in 1 week for 6week. Outcome measures: Vertical Jump height, Block jump, and the attack jump, Agility T test, Results: In Group-A (plyometric and Group-B (Pilate, all data was expressed as mean ± , SD and was statistically analyzed using paired ‘t’ test and independent ‘t’ test to determine the statistical difference among the parameters at 0.5% level of significance. Statistical data of agility t test, vertical jump height, the Block jump, and the attack jump in volley ball players showed that, there was no significantly difference between groups. And both were effective with p<0.05; i.e 95% of significance. Conclusion: In this study, we concluded that both groups (A & B were effective in agility t test, improving vertical jump height, the Block jump, and the attack jump in volley ball players. But we recommend use of plyomertic training in volleyball players.
Usefulness of the jump-and-reach test in assessment of vertical jump performance.
Menzel, Hans-Joachim; Chagas, Mauro H; Szmuchrowski, Leszek A; Araujo, Silvia R; Campos, Carlos E; Giannetti, Marcus R
2010-02-01
The objective was to estimate the reliability and criterion-related validity of the Jump-and-Reach Test for the assessment of squat, countermovement, and drop jump performance of 32 male Brazilian professional volleyball players. Performance of squat, countermovement, and drop jumps with different dropping heights was assessed on the Jump-and-Reach Test and the measurement of flight time, then compared across different jump trials. The very high reliability coefficients of both assessment methods and the lower correlation coefficients between scores on the assessments indicate a very high consistency of each method but only moderate covariation, which means that they measure partly different items. As a consequence, the Jump-and-Reach Test has good ecological validity in situations when reaching height during the flight phase is critical for performance (e.g., basketball and volleyball) but only limited accuracy for the assessment of vertical impulse production with different jump techniques and conditions.
Jumping from the Brooklyn Bridge.
Kurtz, R J; Pizzi, W F; Richman, H; Tiefenbrun, J
1987-07-01
In an attempt to identify factors contributing to survival of free fall and impact, we evaluated the records of four patients who survived a jump from the Brooklyn Bridge into the East River in New York Harbor between 1977 and 1985. All four patients were male and ranged in age from 22 to 67 years. They had free falls of between 41.0 and 48.8 meters. All of the patients were brought to the hospital within 24 minutes of entering the water. Three of the four had emergency surgical treatment and the fourth patient had only minor injuries. All four patients survived the suicide attempts. The length of the hospital stay ranged from two to 26 days.
A Bohmian approach to the non-Markovian non-linear Schrödinger–Langevin equation
Energy Technology Data Exchange (ETDEWEB)
Vargas, Andrés F.; Morales-Durán, Nicolás; Bargueño, Pedro, E-mail: p.bargueno@uniandes.edu.co
2015-05-15
In this work, a non-Markovian non-linear Schrödinger–Langevin equation is derived from the system-plus-bath approach. After analyzing in detail previous Markovian cases, Bohmian mechanics is shown to be a powerful tool for obtaining the desired generalized equation.
Implications of non-Markovian quantum dynamics for the Landauer bound
Pezzutto, Marco; Paternostro, Mauro; Omar, Yasser
2016-12-01
We study the dynamics of a spin-1/2 particle interacting with a multi-spin environment, modelling the corresponding open system dynamics through a collision-based model. The environmental particles are prepared in individual thermal states, and we investigate the effects of a distribution of temperatures across the spin environment on the evolution of the system, particularly how thermalisation in the long-time limit is affected. We study the phenomenology of the heat exchange between system and environment and consider the information-to-energy conversion process, induced by the system-environment interaction and embodied by the Landauer principle. Furthermore, by considering an interacting-particles environment, we tune the dynamics of the system from an explicit Markovian evolution up to a strongly non-Markovian one, investigating the connections between non-Markovianity, the establishment of system-environment correlations, and the breakdown of the validity of Landauer principle.
Unification of witnessing initial system-environment correlations and witnessing non-Markovianity
Rodríguez-Rosario, César A; Mazzola, Laura; Aspuru-Guzik, Alán
2012-01-01
We show the connection between a witness that detects dynamical maps with initial system-environment correlations and a witness that detects non-Markovian open quantum systems. Our analysis is based on studying the role that state preparation plays in witnessing violations of contractivity of open quantum system dynamics. Contractivity is a property of some quantum processes where the trace distance of density matrices decrease with time. From this, we show how a witness of initial-correlations is an upper bound to a witness of non-Markovianity. We discuss how this relationship shows further connections between initial system-environment correlations and non-Markovianity at an instance of time in open quantum systems.
Steady-state analysis of delay-locked loops tracking binary Markovian sequences
Nagata, Keisuke; Fujisaka, Hisato; Kamio, Takeshi; Ahn, Chang-Jun; Haeiwa, Kazuhisa
We analyze stationary phase tracking error of delay-locked loops (DLL) in direct spread code division multiple access (DS-CDMA) using Markovian spreading sequences. The phase tracking error is caused by noise generated inside of DLLs by multiple access interferences. When binary Markovian sequences are used, the noise is not considered as white Gaussian noise. This makes analysis of the tracking error difficult. In this paper, we describe DLLs by stochastic difference equations and derive forward evolutional equations of the probability distribution of the states of DLLs. Applying path integral analysis to the evolutional equations, we obtained stationary distribution. We found from the distribution that Markovian spreading sequences with negative eigenvalue were effective in decreasing stationary phase tracking error of not only a type of DLL in asynchronous CDMA but also DLLs in chip-synchronous CDMA.
Zhao, Xinyu; Corn, Brittany; Yu, Ting; 10.1103/PhysRevA.84.032101
2011-01-01
Non-Markovian dynamics is studied for two interacting quibts strongly coupled to a dissipative bosonic environment. For the first time, we have derived the non-Markovian quantum state diffusion (QSD) equation for the coupled two-qubit system without any approximations, and in particular, without the Markov approximation. As an application and illustration of our derived time-local QSD equation, we investigate the temporal behavior of quantum coherence dynamics. In particular, we find a strongly non-Markovian regime where entanglement generation is significantly modulated by the environmental memory. Additionally, we studied the residual entanglement in the steady state by analyzing the steady state solution of the QSD equation. Finally, we have discussed an approximate QSD equation.
Using non-Markovian measures to evaluate quantum master equations for photosynthesis
Chen, Hong-Bin; Lambert, Neill; Cheng, Yuan-Chung; Chen, Yueh-Nan; Nori, Franco
2015-08-01
When dealing with system-reservoir interactions in an open quantum system, such as a photosynthetic light-harvesting complex, approximations are usually made to obtain the dynamics of the system. One question immediately arises: how good are these approximations, and in what ways can we evaluate them? Here, we propose to use entanglement and a measure of non-Markovianity as benchmarks for the deviation of approximate methods from exact results. We apply two frequently-used perturbative but non-Markovian approximations to a photosynthetic dimer model and compare their results with that of the numerically-exact hierarchy equation of motion (HEOM). This enables us to explore both entanglement and non-Markovianity measures as means to reveal how the approximations either overestimate or underestimate memory effects and quantum coherence. In addition, we show that both the approximate and exact results suggest that non-Markonivity can, counter-intuitively, increase with temperature, and with the coupling to the environment.
Directory of Open Access Journals (Sweden)
Gal Ribak
Full Text Available To return to their feet, inverted click-beetles (Elateridae jump without using their legs. When a beetle is resting on its dorsal side, a hinge mechanism is locked to store elastic energy in the body and releases it abruptly to launch the beetle into the air. While the functional morphology of the jumping mechanism is well known, the level of control that the beetle has over this jumping technique and the mechanical constraints governing the jumps are not entirely clear. Here we show that while body rotations in air are highly variable, the jumps are morphologically constrained to a constant "takeoff" angle (79.9°±1.56°, n = 9 beetles that directs 98% of the jumping force vertically against gravity. A physical-mathematical model of the jumping action, combined with measurements from live beetle, imply that the beetle may control the speed at takeoff but not the jumping angle. In addition, the model shows that very subtle changes in the exact point of contact with the ground can explain the vigorous rotations of the body seen while the beetle is airborne. These findings suggest that the evolution of this unique non-legged jumping mechanism resulted in a jumping technique that is capable of launching the body high into the air but it is too constrained and unstable to allow control of body orientation at landing.
Quantum Discord Dynamics in Two Different Non-Markovian Reservoirs
Institute of Scientific and Technical Information of China (English)
DING Bang-Fu; WANG Xiao-Yun; LIU Jing-Feng; YAN Lin; ZHAO He-Ping
2011-01-01
The quantum discord dynamics of two non-coupled two-level atoms independently interacting with their reservoir is studied under two kinds of non-Markovian conditions,namely,an off-resonant case with atomic transition frequency and a photonic band gap.In the first case,the phenomenon of the quantum discord loss and the oscillatory behavior of the quantum discord can occur by changing the detuning quantity and reducing the spectral coupling width for any initial Bell state.Under the second condition,the trapping phenomenon of the quantum discord can be presented by adjusting the width of gap,that is,the quantum discord of two atoms keep a nonzero constant for a long time.Entanglement,as a kind of quantum correlation without a classical counterpart,plays an important role in quantum information and communication theory,[1,2] quantum teleportation,[3] quantum cryptography[4,5] and universal quantum computing.[6]%We report the first implementation of transparent electrodes in bottom-gate graphene transistors used for photo detection. Compared to conventional nontransparent electrodes, the transparent electrodes allow photons to transmit through to the graphene beneath, providing an enlarged absorption area and thereby giving rise to an enhancement of photocurrent generation. The devices are fabricated with an asymmetric metallization scheme and the experimental results show that the maximum photocurrent density using the transparent electrodes (ITO and Pd/ITO) is over two times higher than that using the nontransparent electrodes (Ti and Pd), indicating a significant enhancement in the performance of graphene photo sensors.
Realized Jump Risk and Equity Return in China
Directory of Open Access Journals (Sweden)
Guojin Chen
2014-01-01
Full Text Available We utilize the realized jump components to explore a new jump (including nonsystematic jump and systematic jump risk factor model. After estimating daily realized jumps from high-frequency transaction data of the Chinese A-share stocks, we calculate monthly jump size, monthly jump standard deviation, and monthly jump arrival rate and then use those monthly jump factors to explain the return of the following month. Our empirical results show that the jump tail risk can explain the equity return. For the large capital-size stocks, large cap stock portfolios, and index, one-month lagged jump risk factor significantly explains the asset return variation. Our results remain the same even when we add the size and value factors in the robustness tests.
The hydraulic jump in radially spreading flow: A new model and new experimental data
Blackford, B. L.
1996-02-01
A new model for the hydraulic jump in radially spreading flow is presented. The equation of motion for a liquid annulus spreading out under the influence of hydrostatic pressure gradient and Frictional drag is developed. The resulting nonlinear differential equation for the liquid depth, h(r), is solved by computer simulation. The jump is assumed to begin when the laminar flow is engulfed by the underlying boundary layer liquid, as suggested recently in the literature. This complicated mixing process is crudely modeled by a drag term which slows the flow and initiates a positive feedback mechanism culminating at a new critical depth, beyond which the depth increases asymptotically to a final value. The model predicts a new relationship between the laminar flow depth just before the jump and the final depth. An experimental apparatus was built to make detailed measurements of the depth h(r), both in the region before the jump and beyond the jump. The theoretical predictions were compared to the experimental data, and gave surprisingly good agreement by suitable adjustment of the two parameters k and C of the model. The parameter k determines the growth rate of the boundary layer thickness, and C determines the drag force. The results suggest that the usual textbook assumption of zero momentum loss across the jump is not appropriate for this type of hydraulic jump. The case of a hydraulic jump in the absence of gravity is considered also and a much different behavior is predicted, which could be tested by experiment in a microgravity environment.
Memory kernel approach to generalized Pauli channels: Markovian, semi-Markov, and beyond
Siudzińska, Katarzyna; Chruściński, Dariusz
2017-08-01
In this paper we analyze the evolution of generalized Pauli channels governed by the memory kernel master equation. We provide necessary and sufficient conditions for the memory kernel to give rise to legitimate (completely positive and trace-preserving) quantum evolution. In particular, we analyze a class of kernels generating the quantum semi-Markov evolution, which is a natural generalization of the Markovian semigroup. Interestingly, the convex combination of Markovian semigroups goes beyond the semi-Markov case. Our analysis is illustrated with several examples.
Non-markovian effects in semiconductor cavity QED: Role of phonon-mediated processes
DEFF Research Database (Denmark)
Nielsen, Per Kær; Nielsen, Torben Roland; Lodahl, Peter;
We show theoretically that the non-Markovian nature of the carrier-phonon interaction influences the dynamical properties of a semiconductor cavity QED system considerably, leading to asymmetries with respect to detuning in carrier lifetimes. This pronounced phonon effect originates from the pola......We show theoretically that the non-Markovian nature of the carrier-phonon interaction influences the dynamical properties of a semiconductor cavity QED system considerably, leading to asymmetries with respect to detuning in carrier lifetimes. This pronounced phonon effect originates from...
Sojourn time distributions in a Markovian G-queue with batch arrival and batch removal
Directory of Open Access Journals (Sweden)
Yang Woo Shin
1999-01-01
Full Text Available We consider a single server Markovian queue with two types of customers; positive and negative, where positive customers arrive in batches and arrivals of negative customers remove positive customers in batches. Only positive customers form a queue and negative customers just reduce the system congestion by removing positive ones upon their arrivals. We derive the LSTs of sojourn time distributions for a single server Markovian queue with positive customers and negative customers by using the first passage time arguments for Markov chains.
Optical signatures of non-Markovian behavior in open quantum systems
DEFF Research Database (Denmark)
McCutcheon, Dara
2016-01-01
for the correlation functions, making only a second-order expansion in the system-environment coupling strength and invoking the Born approximation at a fixed initial time. The results are used to investigate a driven semiconductor quantum dot coupled to an acoustic phonon bath, where we find the non-Markovian nature......We derive an extension to the quantum regression theorem which facilitates the calculation of two-time correlation functions and emission spectra for systems undergoing non-Markovian evolution. The derivation exploits projection operator techniques, with which we obtain explicit equations of motion...
Bubble visualization in a simulated hydraulic jump
Witt, Adam; Shen, Lian
2013-01-01
This is a fluid dynamics video of two- and three-dimensional computational fluid dynamics simulations carried out at St. Anthony Falls Laboratory. A transient hydraulic jump is simulated using OpenFOAM, an open source numerical solver. A Volume of Fluid numerical method is employed with a realizable k-epsilon turbulence model. The goal of this research is to model the void fraction and bubble size in a transient hydraulic jump. This fluid dynamics video depicts the air entrainment characteristics and bubble behavior within a hydraulic jump of Froude number 4.82.
Aerodynamics of ski jumping flight and its control: II. Simulations
Lee, Jungil; Lee, Hansol; Kim, Woojin; Choi, Haecheon
2015-11-01
In a ski jumping competition, it is essential to analyze the effect of various posture parameters of a ski jumper to achieve a longer flight distance. For this purpose, we conduct a large eddy simulation (LES) of turbulent flow past a model ski jumper which is obtained by 3D scanning a ski jumper's body (Mr. Chil-Ku Kang, member of the Korean national team). The angle of attack of the jump ski is 30° and the Reynolds number based on the length of the jump ski is 540,000. The flow statistics including the drag and lift coefficients in flight are in good agreements with our own experimental data. We investigate the flow characteristics such as the flow separation and three-dimensional vortical structures and their effects on the drag and lift. In addition to LES, we construct a simple geometric model of a ski jumper where each part of the ski jumper is modeled as a canonical bluff body such as the sphere, cylinder and flat plate, to find its optimal posture. The results from this approach will be compared with those by LES and discussed. Supported by NRF program (2014M3C1B1033848, 2014R1A1A1002671).
Perpetual extraction of work from a nonequilibrium dynamical system under Markovian feedback control
Kosugi, Taichi
2013-09-01
By treating both control parameters and dynamical variables as probabilistic variables, we develop a succinct theory of perpetual extraction of work from a generic classical nonequilibrium system subject to a heat bath via repeated measurements under a Markovian feedback control. It is demonstrated that a problem for perpetual extraction of work in a nonequilibrium system is reduced to a problem of Markov chain in the higher-dimensional phase space. We derive a version of the detailed fluctuation theorem, which was originally derived for classical nonequilibrium systems by Horowitz and Vaikuntanathan [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.82.061120 82, 061120 (2010)], in a form suitable for the analyses of perpetual extraction of work. Since our theory is formulated for generic dynamics of probability distribution function in phase space, its application to a physical system is straightforward. As simple applications of the theory, two exactly solvable models are analyzed. The one is a nonequilibrium two-state system and the other is a particle confined to a one-dimensional harmonic potential in thermal equilibrium. For the former example, it is demonstrated that the observer on the transitory steps to the stationary state can lose energy and that work larger than that achieved in the stationary state can be extracted. For the latter example, it is demonstrated that the optimal protocol for the extraction of work via repeated measurements can differ from that via a single measurement. The validity of our version of the detailed fluctuation theorem, which determines the upper bound of the expected work in the stationary state, is also confirmed for both examples. These observations provide useful insights into exploration for realistic modeling of a machine that extracts work from its environment.
Kosugi, Taichi
2013-09-01
By treating both control parameters and dynamical variables as probabilistic variables, we develop a succinct theory of perpetual extraction of work from a generic classical nonequilibrium system subject to a heat bath via repeated measurements under a Markovian feedback control. It is demonstrated that a problem for perpetual extraction of work in a nonequilibrium system is reduced to a problem of Markov chain in the higher-dimensional phase space. We derive a version of the detailed fluctuation theorem, which was originally derived for classical nonequilibrium systems by Horowitz and Vaikuntanathan [Phys. Rev. E 82, 061120 (2010)], in a form suitable for the analyses of perpetual extraction of work. Since our theory is formulated for generic dynamics of probability distribution function in phase space, its application to a physical system is straightforward. As simple applications of the theory, two exactly solvable models are analyzed. The one is a nonequilibrium two-state system and the other is a particle confined to a one-dimensional harmonic potential in thermal equilibrium. For the former example, it is demonstrated that the observer on the transitory steps to the stationary state can lose energy and that work larger than that achieved in the stationary state can be extracted. For the latter example, it is demonstrated that the optimal protocol for the extraction of work via repeated measurements can differ from that via a single measurement. The validity of our version of the detailed fluctuation theorem, which determines the upper bound of the expected work in the stationary state, is also confirmed for both examples. These observations provide useful insights into exploration for realistic modeling of a machine that extracts work from its environment.
The Crown Bite Jumping Herbst.
Owen, Reuel
2003-01-01
The Crown Bite Jumping Herbst Appliance is evaluated and combined with Straight Wire Arch Fixed Orthodontics in treatment of Class II, Division I malocclusions. This article will evaluate a combined orthodontic approach of "straightening teeth" and an orthognathic approach of "moving jaws or making skeletal changes." Orthodontic treatment cannot be accomplished well without establishing a healthy temporomandibular joint. This is defined by Keller as a joint that is "noiseless, painless and has a normal range of motion without deviation and deflection." It is not prudent to separate orthodontic treatment as its own entity without being aware of the changes in the temporomandibular joint before, during and after treatment. In other words, "If you're doing orthodontics you're doing TMJ treatment." One should treat toward a healthy, beautiful face asking, "Will proposed treatment achieve this goal?" Treatment should be able to be carried out in an efficient manner, minimizing treatment time, be comfortable and affordable for the patient, and profitable for the dentist. The finished treatment should meet Andrews' Six Keys of Occlusion, or Loudon's Twelve Commandments. Above all, do no harm to the patient. We think that a specific treatment plan can embrace these tenets. The focus will be to show Class II treatment using a modified Herbst Appliance and fixed straight wire orthodontics.
Volatility jumps and their economic determinants
DEFF Research Database (Denmark)
Caporin, Massimiliano; Rossi, Eduardo; Santucci de Magistris, Paolo
that there is a positive probability of jumps in volatility. A common factor in the volatility jumps is shown to be related to a set of financial covariates (such as variance risk premium, S&P500 volume, credit-default swap, and federal fund rates). The credit-default swap on US banks and variance risk premium have...... predictive power on expected jump moves, thus confirming the common interpretation that sudden and large increases in equity volatility can be anticipated by credit deterioration of the US bank sector as well as changes in the market expectations of future risks. Finally, the model is extended to incorporate...... the credit-default swap and the variance risk premium in the dynamics of the jump size and intensity....
Ruse, Karen; Davison, Aidan; Bridle, Kerry
2015-10-22
Thoroughbred jump racing sits in the spotlight of contemporary welfare and ethical debates about horse racing. In Australia, jump racing comprises hurdle and steeplechase races and has ceased in all but two states, Victoria and South Australia. This paper documents the size, geography, composition, and dynamics of Australian jump racing for the 2012, 2013, and 2014 seasons with a focus on debate about risks to horses. We found that the majority of Australian jump racing is regional, based in Victoria, and involves a small group of experienced trainers and jockeys. Australian jump horses are on average 6.4 years of age. The jump career of the majority of horses involves participating in three or less hurdle races and over one season. Almost one quarter of Australian jump horses race only once. There were ten horse fatalities in races over the study period, with an overall fatality rate of 5.1 fatalities per 1000 horses starting in a jump race (0.51%). There was significant disparity between the fatality rate for hurdles, 0.75 fatalities per 1000 starts (0.075%) and steeplechases, 14 fatalities per 1000 starts (1.4%). Safety initiatives introduced by regulators in 2010 appear to have significantly decreased risks to horses in hurdles but have had little or no effect in steeplechases. Our discussion considers these Animals 2015, 5 1073 data in light of public controversy, political debate, and industry regulation related to jump horse safety.
Jump Horse Safety: Reconciling Public Debate and Australian Thoroughbred Jump Racing Data, 2012–2014
Directory of Open Access Journals (Sweden)
Karen Ruse
2015-10-01
Full Text Available Thoroughbred jump racing sits in the spotlight of contemporary welfare and ethical debates about horse racing. In Australia, jump racing comprises hurdle and steeplechase races and has ceased in all but two states, Victoria and South Australia. This paper documents the size, geography, composition, and dynamics of Australian jump racing for the 2012, 2013, and 2014 seasons with a focus on debate about risks to horses. We found that the majority of Australian jump racing is regional, based in Victoria, and involves a small group of experienced trainers and jockeys. Australian jump horses are on average 6.4 years of age. The jump career of the majority of horses involves participating in three or less hurdle races and over one season. Almost one quarter of Australian jump horses race only once. There were ten horse fatalities in races over the study period, with an overall fatality rate of 5.1 fatalities per 1000 horses starting in a jump race (0.51%. There was significant disparity between the fatality rate for hurdles, 0.75 fatalities per 1000 starts (0.075% and steeplechases, 14 fatalities per 1000 starts (1.4%. Safety initiatives introduced by regulators in 2010 appear to have significantly decreased risks to horses in hurdles but have had little or no effect in steeplechases. Our discussion considers these Animals 2015, 5 1073 data in light of public controversy, political debate, and industry regulation related to jump horse safety.
Ducro, B.J.; Koenen, E.P.C.; Tartwijk, van J.M.F.M.; Bovenhuis, H.
2007-01-01
Genetic parameters for traits evaluated at the studbook entry inspection and genetic correlations with dressage and show-jumping performance in competition were estimated. Data comprised 36,649 Warmblood horses that entered the studbook between 1992 and 2002. The genetic analyses were performed usin
Portfolio Selection with Jumps under Regime Switching
Directory of Open Access Journals (Sweden)
Lin Zhao
2010-01-01
Full Text Available We investigate a continuous-time version of the mean-variance portfolio selection model with jumps under regime switching. The portfolio selection is proposed and analyzed for a market consisting of one bank account and multiple stocks. The random regime switching is assumed to be independent of the underlying Brownian motion and jump processes. A Markov chain modulated diffusion formulation is employed to model the problem.
Directory of Open Access Journals (Sweden)
Mills Chris
2015-06-01
Full Text Available The buoyant forces of water during aquatic exercise may provide a form of ‘natural’ breast support and help to minimise breast motion and alleviate exercise induced breast pain. Six larger-breasted females performed standing vertical land and water-based jumps, whilst wearing three breast support conditions. Underwater video cameras recorded the motion of the trunk and right breast. Trunk and relative breast kinematics were calculated as well as exercised induced breast pain scores. Key results showed that the swimsuit and sports bra were able to significantly reduce the superioinferior breast range of motion by 0.04 and 0.05 m, respectively, and peak velocity by 0.23 and 0.33 m/s, respectively, during land-based jumping when compared to the bare-breasted condition, but were ineffective at reducing breast kinematics during water-based jumping. Furthermore, the magnitude of the swimsuit superioinferior breast range of motion during water-based jumping was significantly greater than land-based jumping (0.13 m and 0.06 m, yet there were no significant differences in exercise induced breast pain, thus contradicting previously published relationships between these parameters on land. Furthermore, the addition of an external breast support garment was able to reduce breast kinematics on land but not in water, suggesting the swimsuit and sports bras were ineffective and improvements in swimwear breast support garments may help to reduce excessive breast motion during aqua aerobic jumping exercises.
Preschool-aged children's jumps: imitation performances.
Labiadh, Lazhar; Ramanantsoa, Marie-Martine; Golomer, Eveline
2010-04-01
Imitative behavior underlaid by perception and action links during children's development in complex locomotor skills has been the object of relatively few studies. In order to explore children's motor coordination modes, 130 children divided into five age groups from 3.5 to 7.5 years were instructed to imitate jumping tasks in spontaneous motor situation and in various imitative contexts by an adult providing verbal orders and gestural demonstrations. Their conformity to the model, stability and variability scores were coded from a video analysis when they performed jumps with obstacles. To evaluate their postural-motor control level, the durations of the preparatory phase and jumping flights were also timed. Results showed that all age groups generated the demonstrator's goal but not necessarily the same coordination modes of jumping. In imitation with temporal proximity, the model helped the youngest age groups to adopt his coordination modes and stabilized only the oldest age groups' performances starting from 5.5 years old, without effect on learning imitation. Differences between the youngest and oldest children in the jump duration suggested that the reproduction of a complex motor activity such as jumping with a one foot take-off would require resolution and adjustment of main postural stability.
Error Distributions on Large Entangled States with Non-Markovian Dynamics
DEFF Research Database (Denmark)
McCutcheon, Dara; Lindner, Netanel H.; Rudolph, Terry
2014-01-01
We investigate the distribution of errors on a computationally useful entangled state generated via the repeated emission from an emitter undergoing strongly non-Markovian evolution. For emitter-environment coupling of pure-dephasing form, we show that the probability that a particular patten of ...
Equivalence of the measures of non-Markovianity for open two-level systems
Zeng, Hao-Sheng; Tang, Ning; Zheng, Yan-Ping; Wang, Guo-You
2011-09-01
Different measures have been presented to depict the deviation of quantum time evolution in open systems from Markovian processes. We demonstrate that the measure proposed by Breuer, Laine, and Piilo [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.210401 103, 210401 (2009)] and the two measures proposed by Rivas, Huelga, and Plenio [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.050403 105, 050403 (2010)] have exactly the same non-Markovian time-evolution intervals and thus are really equivalent to each other when they are applied to open two-level systems coupled to environments via the Jaynes-Cummings or dephasing models. This equivalence implies that the three measures, in different ways, capture the intrinsic character of the non-Markovianity of quantum evolutional processes. We also show that the maximization in the definition of the first measure can be actually removed for the considered models without influencing the sensibility of the measure to detect non-Markovianity.
Non-Markovian Dynamics in Chiral Quantum Networks with Spins and Photons
Ramos, Tomás; Hauke, Philipp; Pichler, Hannes; Zoller, Peter
2016-01-01
We study the dynamics of chiral quantum networks consisting of nodes coupled by unidirectional or asymmetric bidirectional quantum channels. In contrast to the familiar photonic networks consisting of driven two-level atoms exchanging photons via 1D photonic nanostructures, we propose and study a setup where interactions between the atoms are mediated by spin excitations (magnons) in 1D XX-spin chains representing a spin waveguide. While Markovian quantum network theory eliminates quantum channels as structureless reservoirs in a Born-Markov approximation to obtain a master equation for the nodes, we are interested in non-Markovian dynamics. This arises from the nonlinear character of the dispersion with band-edge effects, and from finite spin propagation velocities leading to time delays in interactions. To account for the non-Markovian dynamics we treat the quantum degrees of freedom of the nodes and connecting channel as a composite spin system with the surrounding of the quantum network as a Markovian bat...
Woudt, Edwin; de Boer, Pieter-Tjerk; van Ommeren, Jan C.W.
2007-01-01
Previous work on state-dependent adaptive importance sampling techniques for the simulation of rare events in Markovian queueing models used either no smoothing or a parametric smoothing technique, which was known to be non-optimal. In this paper, we introduce the use of kernel smoothing in this con
Transient Behaviour in Highly Dependable Markovian Systems: New Regimes, Multiple Paths
Reijsbergen, Daniël; Boer, de Pieter-Tjerk; Scheinhardt, Werner
2010-01-01
In recent years, probabilistic analysis of highly dependable Markovian systems has received considerable attention. Such systems typically consist of several component types, subject to failures, with spare components for replacement while repair is taking place. System failure occurs when all (spar
Directory of Open Access Journals (Sweden)
Yi Shen
2013-01-01
Full Text Available We investigate a class of stochastic partial differential equations with Markovian switching. By using the Euler-Maruyama scheme both in time and in space of mild solutions, we derive sufficient conditions for the existence and uniqueness of the stationary distributions of numerical solutions. Finally, one example is given to illustrate the theory.
STATIONARY SOLUTION FOR A STOCHASTIC LI(E)NARD EQUATION WITH MARKOVIAN SWITCHING
Institute of Scientific and Technical Information of China (English)
Xi Fubao; Zhao Liqin
2005-01-01
This paper considers a stochastic Lienard equation with Markovian switching.The Feller continuity of its solution is proved by the coupling method and a truncation argument. The existence of a stationary solution for the equation is also proved under the Foster-Lyapunov drift condition.
Non-markovianity and CHSH-Bell inequality violation in multipartite dissipative systems
Thilagam, A
2012-01-01
We examine the non-Markovian dynamics in a multipartite system of two initially correlated atomic qubits, each located in a single-mode leaky cavity and interacting with its own bosonic reservoir. We show the dominance of non-Markovian features, as quantified by the difference in fidelity of the evolved system with its density matrix at an earlier time, in three specific two-qubit partitions associated with the cavity-cavity and atom-reservoir density matrices within the same subsystem, and the cavity-reservoir reduced matrix across the two subsystems. The non-Markovianity in the cavity-cavity subsystem is seen to be optimized in the vicinity of the exceptional point. The CHSH-Bell inequality computed for various two-qubit partitions show that high non-locality present in a specific subsystem appears in conjunction with enhanced non-Markovian dynamics in adjacent subsystems. This is in contrast to the matching existence of non-locality and quantum correlations in regions spanned by time t and the cavity decay...
Mode suppression in the non-Markovian limit by time-gated stimulated photon echo
de Boeij, W.P.; Pshenichnikov, M.S; Wiersma, D. A.
1996-01-01
It is demonstrated that enhanced mode suppression in stimulated photon echo experiments can be obtained by diagonal time gating of the echo. This technique is especially important when the optical dynamics of the system is non-Markovian. A two-mode Brownian oscillator model is used to analyze the ef
Dynamics of non-Markovianity in the presence of a driving field
Indian Academy of Sciences (India)
Mandani Somayeh; Sarbishaei Mohsen; Javidan Kurosh
2016-03-01
We investigate a two-level system in a cavity QED by considering the effects ofamplitude damping, phase damping and driving field. We have studied the non-Markovianity in resonance and non-resonance limits in the presence of these effects using Breuer–Laine–Piilo (BLP) non-Markovianity measure ($N_{\\rm BLP}$). The evolution of the system is derived using the time convolutionless (TCL) master equation. In some conditions, it is shown that in the presence of a driving field, the $N_{\\rm BLP} increases in the resonance and non-resonance limits. We have also found the exact solution of the master equation in order to investigate the effect of temperature- and environment excited states. We have shown that the behaviour of non-Markovianity is very different from what one can see from the TCL approach. We have also presented some explanation about the behaviour of non-Markovianity in the exact solution using quantum discord (QD).
Performance analysis of jump-gliding locomotion for miniature robotics.
Vidyasagar, A; Zufferey, Jean-Christohphe; Floreano, Dario; Kovač, M
2015-03-26
Recent work suggests that jumping locomotion in combination with a gliding phase can be used as an effective mobility principle in robotics. Compared to pure jumping without a gliding phase, the potential benefits of hybrid jump-gliding locomotion includes the ability to extend the distance travelled and reduce the potentially damaging impact forces upon landing. This publication evaluates the performance of jump-gliding locomotion and provides models for the analysis of the relevant dynamics of flight. It also defines a jump-gliding envelope that encompasses the range that can be achieved with jump-gliding robots and that can be used to evaluate the performance and improvement potential of jump-gliding robots. We present first a planar dynamic model and then a simplified closed form model, which allow for quantification of the distance travelled and the impact energy on landing. In order to validate the prediction of these models, we validate the model with experiments using a novel jump-gliding robot, named the 'EPFL jump-glider'. It has a mass of 16.5 g and is able to perform jumps from elevated positions, perform steered gliding flight, land safely and traverse on the ground by repetitive jumping. The experiments indicate that the developed jump-gliding model fits very well with the measured flight data using the EPFL jump-glider, confirming the benefits of jump-gliding locomotion to mobile robotics. The jump-glide envelope considerations indicate that the EPFL jump-glider, when traversing from a 2 m height, reaches 74.3% of optimal jump-gliding distance compared to pure jumping without a gliding phase which only reaches 33.4% of the optimal jump-gliding distance. Methods of further improving flight performance based on the models and inspiration from biological systems are presented providing mechanical design pathways to future jump-gliding robot designs.
Jump Horse Safety: Reconciling Public Debate and Australian Thoroughbred Jump Racing Data, 2012–2014
Ruse, Karen; Davison, Aidan; Bridle, Kerry
2015-01-01
Simple Summary This paper documents the dynamics of Australian thoroughbred jump racing in the 2012, 2013, and 2014 seasons with the aim of informing debate about risks to horses and the future of this activity. We conclude that the safety of Australian jump racing has improved in recent years but that steeplechases are considerably riskier for horses than hurdle races. Abstract Thoroughbred jump racing sits in the spotlight of contemporary welfare and ethical debates about horse racing. In Australia, jump racing comprises hurdle and steeplechase races and has ceased in all but two states, Victoria and South Australia. This paper documents the size, geography, composition, and dynamics of Australian jump racing for the 2012, 2013, and 2014 seasons with a focus on debate about risks to horses. We found that the majority of Australian jump racing is regional, based in Victoria, and involves a small group of experienced trainers and jockeys. Australian jump horses are on average 6.4 years of age. The jump career of the majority of horses involves participating in three or less hurdle races and over one season. Almost one quarter of Australian jump horses race only once. There were ten horse fatalities in races over the study period, with an overall fatality rate of 5.1 fatalities per 1000 horses starting in a jump race (0.51%). There was significant disparity between the fatality rate for hurdles, 0.75 fatalities per 1000 starts (0.075%) and steeplechases, 14 fatalities per 1000 starts (1.4%). Safety initiatives introduced by regulators in 2010 appear to have significantly decreased risks to horses in hurdles but have had little or no effect in steeplechases. Our discussion considers these data in light of public controversy, political debate, and industry regulation related to jump horse safety. PMID:26506396
Jumping to conclusions in schizophrenia
Directory of Open Access Journals (Sweden)
Evans SL
2015-07-01
Full Text Available Simon L Evans,1 Bruno B Averbeck,2 Nicholas Furl31School of Psychology, University of Sussex, Brighton, East Sussex, UK; 2Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; 3Department of Psychology, Royal Holloway, University of London, Egham, Surrey, UKAbstract: Schizophrenia is a mental disorder associated with a variety of symptoms, including hallucinations, delusions, social withdrawal, and cognitive dysfunction. Impairments on decision-making tasks are routinely reported: evidence points to a particular deficit in learning from and revising behavior following feedback. In addition, patients tend to make hasty decisions when probabilistic judgments are required. This is known as “jumping to conclusions” (JTC and has typically been demonstrated by presenting participants with colored beads drawn from one of two “urns” until they claim to be sure which urn the beads are being drawn from (the proportions of colors vary in each urn. Patients tend to make early decisions on this task, and there is evidence to suggest that a hasty decision-making style might be linked to delusion formation and thus be of clinical relevance. Various accounts have been proposed regarding what underlies this behavior. In this review, we briefly introduce the disorder and the decision-making deficits associated with it. We then explore the evidence for each account of JTC in the context of a wider decision-making deficit and then go on to summarize work exploring JTC in healthy controls using pharmacological manipulations and functional imaging. Finally, we assess whether JTC might have a role in therapy.Keywords: ketamine, decision making, delusions, fMRI, urn task
Exponential stability for uncertain neutral systems with Markov jumps
Institute of Scientific and Technical Information of China (English)
Shuping HE; Fei LIU
2009-01-01
This paper deals with the global exponential stability problems for stochastic neutral Markov jump sys-tems(MJSs) with uncertain parameters and multiple time-delays,The delays are respectively considered as constant and time varying cases,and the uncertainties are assumed to be norm bounded.By selecting appropriate Lyapunov-Krasovskii functions,it gives the sufficient condition such that the uncertain neutral MJSs are globally exponentially stochastically stable for all admissible uncertainties.The stability criteria are formulated in the form of linear matrix inequalities(LMIs),which can be easily checked in practice.Finally,two numerical examples are exploited to illustrate the effectiveness of the developed techniques.
European option pricing under the Student's t noise with jumps
Wang, Xiao-Tian; Li, Zhe; Zhuang, Le
2017-03-01
In this paper we present a new approach to price European options under the Student's t noise with jumps. Through the conditional delta hedging strategy and the minimal mean-square-error hedging, a closed-form solution of the European option value is obtained under the incomplete information case. In particular, we propose a Value-at-Risk-type procedure to estimate the volatility parameter σ such that the pricing error is in accord with the risk preferences of investors. In addition, the numerical results of us show that options are not priced in some cases in an incomplete information market.
Acute fatigue effects on ground reaction force of lower limbs during countermovement jumps
Directory of Open Access Journals (Sweden)
Carlos Gabriel Fábrica
2013-12-01
Full Text Available Parameters associated with the performance of countermovement jumps were identified from vertical ground reaction force recordings during fatigue and resting conditions. Fourteen variables were defined, dividing the vertical ground reaction force into negative and positive external working times and times in which the vertical ground reaction force values were lower and higher than the participant's body weight. We attempted to explain parameter variations by considering the relationship between the set of contractile and elastic components of the lower limbs. We determined that jumping performance is based on impulsion optimization and not on instantaneous ground reaction force value: the time in which the ground reaction force was lower than the body weight, and negative external work time was lower under fatigue. The results suggest that, during fatigue, there is less contribution from elastic energy and from overall active state. However, the participation of contractile elements could partially compensate for the worsening of jumping performance.
Joint power contribution during jumping and sidecutting in young female elite handball players
DEFF Research Database (Denmark)
Bencke, Jesper; Lauridsen, Hanne B.; Sørensen, Rikke S.
2014-01-01
: 0.21, β=0.47, p=0.001). Conclusions The results show that different muscle groups may be performance dependant in different handball specific movements. While vertical jumping is mostly depending on high knee joint power, peak concentric ankle joint power is the most important parameter during...... sidecutting. This may indicate need of specific power training of the plantar flexors to improve sidecutting in handball, and power training of the knee extensors for improving vertical jump performance.......Introduction One game-changing parameter in handball is explosive power during jumping or sidecutting. In order to improve game performance, more knowledge about the physical demands of the different joints and muscle groups during sports specific movements may help trainers to implement specific...
A biomechanical comparison of the vertical jump, power clean, and jump squat.
MacKenzie, Sasho James; Lavers, Robert J; Wallace, Brendan B
2014-01-01
The purpose of this study was to compare the kinetics, kinematics, and muscle activation patterns of the countermovement jump, the power clean, and the jump squat with the expectation of gaining a better understanding of the mechanism of transfer from the power clean to the vertical jump. Ground reaction forces, electromyography, and joint angle data were collected from 20 trained participants while they performed the three movements. Relative to the power clean, the kinematics of the jump squat were more similar to those of the countermovement jump. The order in which the ankle, knee, and hip began extending, as well as the subsequent pattern of extension, was different between the power clean and countermovement jump. The electromyography data demonstrated significant differences in the relative timing of peak activations in all muscles, the maximum activation of the rectus femoris and biceps femoris, and in the activation/deactivation patterns of the vastus medialis and rectus femoris. The greatest rate of force development during the upward phase of these exercises was generated during the power clean (17,254 [Formula: see text]), which was significantly greater than both the countermovement jump (3836 [Formula: see text]) and jump squat (3517 [Formula: see text]) conditions (P < .001, [Formula: see text]).
Aerodynamics of ski jumping flight and its control: I. Experiments
Jung, Daehan; Bang, Kyeongtae; Kim, Heesu; Ahn, Eunhye; Choi, Haecheon
2015-11-01
In a ski jumping competition, it is essential to analyze the effect of various posture parameters of a ski jumper to achieve a longer flight distance. For this purpose, we construct a model of a ski jumper by using three-dimensional surface data obtained by scanning a ski jumper's body (Mr. Chil-Ku Kang, member of the Korean national team). An experiment on this model is conducted in a wind tunnel. We consider four posture parameters (forward leaning angle, ski opening angle, ski rolling angle, and ski spacing) and measure the drag and lift forces for various flight postures at various angles of attack (α = 0° - 40°) and Reynolds numbers (Re = 5.4 × 105 - 1.6 × 106) based on the length of the jump ski. Then, we derive optimum values of posture parameters for maximum lift-to-drag ratio using a response surface method. We also conduct a full-scale wind tunnel experiment with members of the Korean national team and confirm the results obtained from the experiment on the model. Supported by the NRF program (2014M3C1B1033848).
The effect of wind on jumping distance in ski jumping--fairness assessed.
Virmavirta, Mikko; Kivekäs, Juha
2012-09-01
The special wind compensation system recently adopted by Fédération Internationale de Ski (FIS; International Ski Federation) to consider the effects of changing wind conditions has caused some controversy. Here, the effect of wind on jumping distance in ski jumping was studied by means of computer simulation and compared with the wind compensation factors used by FIS during the World Cup season 2009/2010. The results showed clearly that the effect of increasing head/tail wind on jumping distance is not linear: +17.4 m/-29.1 m, respectively, for a wind speed of 3 m/s. The linear formula used in the trial period of the wind compensation system was found to be appropriate only for a limited range of jumping distances as the gradient of the landing slope slows down the rate of distance change in long jumps.
The effect of continuous natural roughness onhydraulic jump characteristics on the stone ramps
Directory of Open Access Journals (Sweden)
M. F. Maghrebi
2017-01-01
Full Text Available Introduction: The hydraulic jump happens when flow transfers from supercritical regime to subcritical regime. The hydraulic jump on smooth bed is called the classic hydraulic jump. One way to increase the energy dissipation in a hydraulic jump is to roughen the bed. Elements including stabilizers and baffle blocks are commonly used as the energy dissipators in stilling basins to stabilize the location and decrease the length and conjugate depths of the hydraulic jumps. If roughness elements are placed uniformly on the bed and orthogonal to the flow direction, the formed jump is addressed as the hydraulic jump on rough bed. Recently, implementing short energy dissipaters and environment friendly rough beds have attracted attention and justify more research in these fields. Recent studies have addressed hydraulic jump on rough beds ([14], [5], and [12]. Relative roughness parameter first defined by Rajaratnam to investigate the jump characteristics and other researchers then used this parameter to investigate the characteristics of jump on rough bed. In this research, similar experiments to Pagliara et al (5 are designed to study continuous and natural rough beds. Materials and Methods: All the experiments have been arranged and carried out in the hydraulic laboratory of Ferdowsi University, Mashhad Iran. Hydraulic jump characteristicswere measured in a horizontal rectangular flume, 0.30 m wide, 0.50 m deep, and 11 m long, with smooth glass side walls.The rough bed was simulated by gluing a layer of uniform gravel material with middle diameter 3.5mm and 11mm on a glass plate which was placed on the flume, throughout its length .In the physical model, to simulate a supercritical flow with three constant initial depths including , 1.5 and ,a steel sluice gate is installed. Furthermore, to stabilize the location ofhydraulic jump and create a free-surface jump, a sharp-crested weir with the same width as the channel width is installed at the end of
Nonstandard Analysis and Shock Wave Jump Conditions in a One-Dimensional Compressible Gas
Energy Technology Data Exchange (ETDEWEB)
Roy S. Baty, F. Farassat, John A. Hargreaves
2007-05-25
Nonstandard analysis is a relatively new area of mathematics in which infinitesimal numbers can be defined and manipulated rigorously like real numbers. This report presents a fairly comprehensive tutorial on nonstandard analysis for physicists and engineers with many examples applicable to generalized functions. To demonstrate the power of the subject, the problem of shock wave jump conditions is studied for a one-dimensional compressible gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. To use conservations laws, smooth pre-distributions of the Dirac delta measure are applied whose supports are contained within the shock thickness. Furthermore, smooth pre-distributions of the Heaviside function are applied which vary from zero to one across the shock wave. It is shown that if the equations of motion are expressed in nonconservative form then the relationships between the jump functions for the flow parameters may be found unambiguously. The analysis yields the classical Rankine-Hugoniot jump conditions for an inviscid shock wave. Moreover, non-monotonic entropy jump conditions are obtained for both inviscid and viscous flows. The report shows that products of generalized functions may be defined consistently using nonstandard analysis; however, physically meaningful products of generalized functions must be determined from the physics of the problem and not the mathematical form of the governing equations.
Passive states as optimal inputs for single-jump lossy quantum channels
De Palma, Giacomo; Mari, Andrea; Lloyd, Seth; Giovannetti, Vittorio
2016-06-01
The passive states of a quantum system minimize the average energy among all the states with a given spectrum. We prove that passive states are the optimal inputs of single-jump lossy quantum channels. These channels arise from a weak interaction of the quantum system of interest with a large Markovian bath in its ground state, such that the interaction Hamiltonian couples only consecutive energy eigenstates of the system. We prove that the output generated by any input state ρ majorizes the output generated by the passive input state ρ0 with the same spectrum of ρ . Then, the output generated by ρ can be obtained applying a random unitary operation to the output generated by ρ0. This is an extension of De Palma et al. [IEEE Trans. Inf. Theory 62, 2895 (2016)], 10.1109/TIT.2016.2547426, where the same result is proved for one-mode bosonic Gaussian channels. We also prove that for finite temperature this optimality property can fail already in a two-level system, where the best input is a coherent superposition of the two energy eigenstates.
A locust-inspired miniature jumping robot.
Zaitsev, Valentin; Gvirsman, Omer; Ben Hanan, Uri; Weiss, Avi; Ayali, Amir; Kosa, Gabor
2015-11-25
Unmanned ground vehicles are mostly wheeled, tracked, or legged. These locomotion mechanisms have a limited ability to traverse rough terrain and obstacles that are higher than the robot's center of mass. In order to improve the mobility of small robots it is necessary to expand the variety of their motion gaits. Jumping is one of nature's solutions to the challenge of mobility in difficult terrain. The desert locust is the model for the presented bio-inspired design of a jumping mechanism for a small mobile robot. The basic mechanism is similar to that of the semilunar process in the hind legs of the locust, and is based on the cocking of a torsional spring by wrapping a tendon-like wire around the shaft of a miniature motor. In this study we present the jumping mechanism design, and the manufacturing and performance analysis of two demonstrator prototypes. The most advanced jumping robot demonstrator is power autonomous, weighs 23 gr, and is capable of jumping to a height of 3.35 m, covering a distance of 1.37 m.
Mechanical jumping power in young athletes.
Viitasalo, J T; Osterback, L; Alen, M; Rahkila, P; Havas, E
1987-09-01
Mechanical jumping power was determined for 286 young male athletes representing six sports events and ranging in calendar and skeletal ages from 8.8 to 17.1 and from 7.8 to 18.1 years, respectively. The subjects performed successive maximal vertical jumps on a contact mat for 30 s. The number of jumps and their cumulative flight time after 15 and 30 s were used for calculations of mechanical power. The jumping performances of the young athletes were found to be reproducible from the age of 10-12 years in respect to the angular displacement of the knee and duration of contact. Absolute mechanical power, as well as power related to body weight, increased with calendar and skeletal ages. Of the anthropometric characteristics, the circumference of the thigh and body weight showed the highest correlation with mechanical power; subjects with the greatest thigh circumference and body weight having the lowest mechanical power. The subjects were divided into 'power' (track and field, gymnastics) and 'endurance' (skiing, orienteering) groups. The former reached higher mechanical power values than the latter. Mechanical power for the second 15-s jumping period was on average 4.7% lower than for the first. The events did not differ from each other in respect of the decrease in power.
Assessment of musculoskeletal system in women with jumping mechanography
Directory of Open Access Journals (Sweden)
Yannis Dionyssiotis
2009-08-01
Full Text Available Yannis Dionyssiotis1,2, Antonios Galanos1, Georgios Michas1, Georgios Trovas1, Georgios P Lyritis11Laboratory for Research of the Musculoskeletal System, University of Athens, KAT Hospital, Kifissia, Greece; 2Rehabilitation Department, Rhodes General Hospital, Rhodes, GreeceAbstract: The purpose of this study was to investigate and add reference data about the musculoskeletal system in women. The mechanography system of the Leonardo™ platform (Novotec, Germany was used to measure parameters of movement (velocity, force, power in 176 healthy Greek women aged 20–79 years, separated according to age decade in six groups: group 1 (n = 12, 20–29 years; group 2 (n = 14, 30–39 years; group 3 (n = 33, 40–49 years; group 4 (n = 59, 50–59 years including 21 postmenopausal; group 5 (n = 31, 60–69 years including 12 postmenopausal; and group 6 (n = 27, 70–79 years all postmenopausal. This system measures forces applied to the plate over time, calculates through acceleration the vertical velocity of center of gravity and using force and velocity it calculates power of vertical movements. All women performed a counter-movement jump (brief squat before the jump with freely moving arms. Weight was recorded on the platform before the jump and height was measured with a wall-mounted ruler. Body weight and body mass index were gradually increased; on the contrary height and all movement parameters except force (velocity, power were statistically decreased during aging and after menopause.Keywords: biomechanics, ground reaction force, power, women, menopause
De Boeij, W. P.; Pshenichnikov, M. S.; Wiersma, D. A.
1996-01-01
We demonstrate a novel technique for efficient vibrational mode suppression in stimulated photon echo by diagonal time-gating. This is especially important if the system exhibits non-Markovian optical dynamics.
Nonlinear regimes on polygonal hydraulic jumps
Rojas, Nicolas
2016-11-01
This work extends previous leading and higher order results on the polygonal hydraulic jump in the framework of inertial lubrication theory. The rotation of steady polygonal jumps is observed in the transition from one wavenumber to the next one, induced by a change in height of an external obstacle near the outer edge. In a previous publication, the study of stationary polygons is considered under the assumption that the reference frame rotates with the polygons when the number of corners change, in order to preserve their orientation. In this research work I provide a Hamiltonian approach and the stability analysis of the nonlinear oscillator that describe the polygonal structures at the jump interface, in addition to a perturbation method that enables to explain, for instance, the diversity of patterns found in experiments. GRASP, Institute of Physics, University of Liege, Belgium.
Aerodynamic Jump for Long Rod Penetrators
Directory of Open Access Journals (Sweden)
Mark L. Bundy
2000-04-01
Full Text Available Aerodynamic jump for a non-spinning kinetic energy penetrator is neither a discontinuous change in the ,direction of motion at the origin of free night, nor is it the converse, i.e. a cumulativer~direc4on over a domain of infinite extent. Rather aerodynamic jump, for such a projectile, is a localised redirection of the centre of gravity motion, caused ~ the force of lift due to yaw over ther4latively short region from entry into free flight until the yaw reaches its first maximum. The primary objective of this paper is to provide answtfrs to the questions like what is aerodynamic jump, what liauses it, !lnd wh~t aspects df the flight trajectory does it refer to, or account for .
Institute of Scientific and Technical Information of China (English)
魏二玲; 刘颜佩
2004-01-01
For a graph G of size ε≥1 and its edge-induced subgraphs H1 and H2 of size γ(1 < γ < ε), H1 is said to be obtained from H2 by an edge jump if there exist four distinct vertices u, v, ω and x in G such that (u,v)∈E(H2), (ω,x)∈E(G) - E(H2) and H1=H2 - (u, v) + (ω, x). In this article, the γ-jump graphs(r≥3) are discussed. A graph H is said to be an γ-jump graph of G if its vertices correspond to the edge induced graph of size γ in G and two vertices are adjacent if and only if one of the two corresponding subgraphs can be obtained from the other by an edge jump. For k≥2, the k-th iterated γ-jump graph Jrk(G) is defined as Jγ(Jγk-1 (G)), where Jγ1 (G) = Jγ(G). An infinite sequence {Gi} of graphs is planar if every graph Gi is planar. It is shown that there does not exist a graph G for which the sequence {J3k(G)} is planar, where k is any positive integer. Meanwhile, lim gen(J3k(G)) =∞, where gen(G) denotes the genus of a graph G, if the sequence k→∞J3k(G) is defined for every positive integer k. As for the 4-jump graph of a graph G,{J4k(G)} is planar if and only if G = C5. For γ≥5, whether the fix graph of the sequence {Jγk(G))exists is determined.
Bhattacharya, Samyadeb; Misra, Avijit; Mukhopadhyay, Chiranjib; Pati, Arun Kumar
2017-01-01
An exact canonical master equation of the Lindblad form is derived for a central spin interacting uniformly with a sea of completely unpolarized spins. The Kraus operators for the dynamical map are also derived. The non-Markovianity of the dynamics in terms of the divisibility breaking of the dynamical map and the increase of the trace distance fidelity between quantum states is shown. Moreover, it is observed that the irreversible entropy production rate is always negative (for a fixed initial state) whenever the dynamics exhibits non-Markovian behavior. In continuation with the study of witnessing non-Markovianity, it is shown that the positive rate of change of the purity of the central qubit is a faithful indicator of the non-Markovian information backflow. Given the experimental feasibility of measuring the purity of a quantum state, a possibility of experimental demonstration of non-Markovianity and the negative irreversible entropy production rate is addressed. This gives the present work considerable practical importance for detecting the non-Markovianity and the negative irreversible entropy production rate.
Non-Markovian coarse-grained modeling of polymeric fluids based on the Mori-Zwanzig formalism
Li, Zhen; Bian, Xin; Li, Xiantao; Karniadakis, George
The Mori-Zwanzig formalism for coarse-graining a complex dynamical system typically introduces memory effects. The Markovian assumption of delta-correlated fluctuating forces is often employed to simplify the formulation of coarse-grained (CG) models and numerical implementations. However, when the time scales of a system are not clearly separated, the memory effects become strong and the Markovian assumption becomes inaccurate. To this end, we incorporate memory effects into CG modeling by preserving non-Markovian interactions between CG variables based on the Mori-Zwanzig formalism. For a specific example, molecular dynamics (MD) simulations of star polymer melts are performed while the corresponding CG system is defined by grouping many bonded atoms into single clusters. Then, the effective interactions between CG clusters as well as the memory kernel are obtained from the MD simulations. The constructed CG force field with a memory kernel leads to a non-Markovian dissipative particle dynamics (NM-DPD). Quantitative comparisons on both static and dynamic properties between the CG models with Markovian and non-Markovian approximations will be presented. Supported by the DOE Center on Mathematics for Mesoscopic Modeling of Materials (CM4) and an INCITE grant.
Spectral Analysis of Diffusions with Jump Boundary
Kolb, Martin
2011-01-01
In this paper we consider one-dimensional diffusions with constant coefficients in a finite interval with jump boundary and a certain deterministic jump distribution. We use coupling methods in order to identify the spectral gap in the case of a large drift and prove that that there is a threshold drift above which the bottom of the spectrum no longer depends on the drift. As a Corollary to our result we are able to answer two questions concerning elliptic eigenvalue problems with non-local boundary conditions formulated previously by Iddo Ben-Ari and Ross Pinsky.
Aerodynamic Jump for Long Rod Penetrators
Mark L. Bundy
2000-01-01
Aerodynamic jump for a non-spinning kinetic energy penetrator is neither a discontinuous change in the ,direction of motion at the origin of free night, nor is it the converse, i.e. a cumulativer~direc4on over a domain of infinite extent. Rather aerodynamic jump, for such a projectile, is a localised redirection of the centre of gravity motion, caused ~ the force of lift due to yaw over ther4latively short region from entry into free flight until the yaw reaches its first maximum. The primary...
Analyzing quantum jumps of one and two atoms strongly coupled to an optical cavity
DEFF Research Database (Denmark)
Reick, Sebastian; Mølmer, Klaus; Alt, Wolfgang;
2010-01-01
We induce quantum jumps between the hyperfine ground states of one and two cesium atoms, strongly coupled to the mode of a high-finesse optical resonator, and analyze the resulting random telegraph signals. We identify experimental parameters to deduce the atomic spin state nondestructively from ...
Nadein, Konstantin; Betz, Oliver
2016-07-01
The present study analyses the anatomy, mechanics and functional morphology of the jumping apparatus, the performance and the kinematics of the natural jump of flea beetles (Coleoptera: Chrysomelidae: Galerucinae: Alticini). The kinematic parameters of the initial phase of the jump were calculated for five species from five genera (average values from minimum to maximum): acceleration 0.91-2.25 (×10(3)) m s(-2), velocity 1.48-2.80 m s(-1), time to take-off 1.35-2.25 ms, kinetic energy 2.43-16.5 µJ, G: -force 93-230. The jumping apparatus is localized in the hind legs and formed by the femur, tibia, femoro-tibial joint, modified metafemoral extensor tendon, extensor ligament, tibial flexor sclerite, and extensor and flexor muscles. The primary role of the metafemoral extensor tendon is seen in the formation of an increased attachment site for the extensor muscles. The rubber-like protein resilin was detected in the extensor ligament, i.e. a short, elastic element connecting the extensor tendon with the tibial base. The calculated specific joint power (max. 0.714 W g(-1)) of the femoro-tibial joint during the jumping movement and the fast full extension of the hind tibia (1-3 ms) suggest that jumping is performed via a catapult mechanism releasing energy that has beforehand been stored in the extensor ligament during its stretching by the extensor muscles. In addition, the morphology of the femoro-tibial joint suggests that the co-contraction of the flexor and the extensor muscles in the femur of the jumping leg is involved in this process.
Zhang, Peng; Maeda, Yota; Lv, Fengyong; Takata, Yasuyuki; Orejon, Daniel
2017-09-19
Superhydrophobic surfaces are receiving increasing attention due to the enhanced condensation heat transfer, self-cleaning and anti-icing properties by easing droplet self-removal. Despite the extensive research carried out in this topic, the presence or absence of microstructures on droplet adhesion during condensation has not been addressed yet. In this work we, therefore, address the condensation behavior on engineered superhydrophobic copper oxide surfaces with different structural finishes. More specifically, we investigate the coalescence-induced droplet-jumping performance on superhydrophobic surfaces with structures varying from the micro- to the nano-scale. The different structural roughness is possible due to the specific etching parameters adopted during the fabrication process. A custom-built optical microscopy setup inside a temperature and relative humidity controlled environmental chamber was used for the experimental observations. By varying the structural roughness, from the micro- to the nano-scale, important differences on the number of droplets involved in the jumps, on the frequency of the jumps and on the size distribution of the jumping droplets were found. In the absence of microstructures, we report an enhancement of the droplet-jumping performance of small droplets with sizes in the same order of magnitude as the microstructures. Microstructures induce the droplet angular deviation from the main surface normal increasing the droplet adhesion. As a consequence, upon coalescence, there is a decrease in the net momentum in the out-of-plane direction and the jump does not ensue. We demonstrate that the absence of micro-structures has therefore a positive impact on the coalescence-induced droplet-jumping and on the heat transfer performance. Microstructures are then rule out for the optimum design of superhydrophobic surfaces with enhanced droplet mobility of micrometer droplets.
Alterations of Vertical Jump Mechanics after a Half-Marathon Mountain Running Race
Directory of Open Access Journals (Sweden)
Elissavet N. Rousanoglou, Konstantinos Noutsos, Achilleas Pappas, Gregory Bogdanis, Georgios Vagenas, Ioannis A. Bayios, Konstantinos D. Boudolos
2016-06-01
Full Text Available The fatiguing effect of long-distance running has been examined in the context of a variety of parameters. However, there is scarcity of data regarding its effect on the vertical jump mechanics. The purpose of this study was to investigate the alterations of countermovement jump (CMJ mechanics after a half-marathon mountain race. Twenty-seven runners performed CMJs before the race (Pre, immediately after the race (Post 1 and five minutes after Post 1 (Post 2. Instantaneous and ensemble-average analysis focused on jump height and, the maximum peaks and time-to-maximum peaks of: Displacement, vertical force (Fz, anterior-posterior force (Fx, Velocity and Power, in the eccentric (tECC and concentric (tCON phase of the jump, respectively. Repeated measures ANOVAs were used for statistical analysis (p ≤ 0.05. The jump height decrease was significant in Post 2 (-7.9% but not in Post 1 (-4.1%. Fx and Velocity decreased significantly in both Post 1 (only in tECC and Post 2 (both tECC and tCON. Α timing shift of the Fz peaks (earlier during tECC and later during tCON and altered relative peak times (only in tECC were also observed. Ensemble-average analysis revealed several time intervals of significant post-race alterations and a timing shift in the Fz-Velocity loop. An overall trend of lowered post-race jump output and mechanics was characterised by altered jump timing, restricted anterior-posterior movement and altered force-velocity relations. The specificity of mountain running fatigue to eccentric muscle work, appears to be reflected in the different time order of the post-race reductions, with the eccentric phase reductions preceding those of the concentric one. Thus, those who engage in mountain running should particularly consider downhill training to optimise eccentric muscular action.
Institute of Scientific and Technical Information of China (English)
Shi Jingtao; Wu Zhen
2011-01-01
A stochastic maximum principle for the risk-sensitive optimal control prob- lem of jump diffusion processes with an exponential-of-integral cost functional is derived assuming that the value function is smooth, where the diffusion and jump term may both depend on the control. The form of the maximum principle is similar to its risk-neutral counterpart. But the adjoint equations and the maximum condition heavily depend on the risk-sensitive parameter. As applications, a linear-quadratic risk-sensitive control problem is solved by using the maximum principle derived and explicit optimal control is obtained.
Robust guaranteed cost observer design for linear uncertain jump systems with state delays
Institute of Scientific and Technical Information of China (English)
FU Yan-ming; ZHANG Bo; DUAN Guang-ren
2008-01-01
This paper deals with the robust guaranteed cost observer with guaranteed cost performance for a class of linear uncertain jump systems with state delay. The transition of the jumping parameters in systems is governed by a finite-state Markov process. Based on the stability theory in stochastic differential equations, a sufficient condition on the existence of the proposed robust guaranteed cost observer is derived. Robust guaran-teed cost observers are designed in terms of a set of linear coupled matrix inequalities. A convex optimization problem with LMI constraints is formulated to design the suboptimal guaranteed cost observers.
Suarez, Ernesto
2014-01-01
A number of modern sampling methods probe long time behavior in complex biomolecules using a set of relatively short trajectory segments. Markov state models (MSMs) can be useful in analyzing such data sets, but in particularly complex landscapes, the available trajectory data may prove insufficient for constructing valid Markov models. Here, we explore the potential utility of history-dependent analyses applied to relatively poor decompositions of configuration space for which MSMs are inadequate. Our approaches build on previous work [Suarez et. al., JCTC 2014] showing that, with sufficient history information, unbiased equilibrium and non-equilibrium observables can be obtained even for arbitrary non-Markovian divisions of phase space. We explore a range of non-Markovian approximations using varying amounts of history information to model the finite length of trajectory segments, applying the analyses to toy models as well as several proteins previously studied by microsec-milisec scale atomistic simulatio...
Critical assessment of two-qubit post-Markovian master equations
Campbell, S; Mazzola, L; Gullo, N Lo; Vacchini, B; Busch, Th; Paternostro, M
2012-01-01
A post-Markovian master equation has been recently proposed as a tool to describe the evolution of a system coupled to a memory-keeping environment [A. Shabani and D. A. Lidar, Phys. Rev. A 71, 020101 (R) (2005)]. For a single qubit affected by appropriately chosen environmental conditions, the corresponding dynamics is always legitimate and physical. Here we extend such situation to the case of two qubits, only one of which experiences the environmental effects. We show how, despite the innocence of such an extension, the introduction of the second qubit should be done cum grano salis to avoid consequences such as the breaking of the positivity of the associated dynamical map. This hints at the necessity of using care when adopting phenomenologically derived models for evolutions occurring outside the Markovian framework.
Analysis of non-Markovian coupling of a lattice-trapped atom to free space
Stewart, Michael; Krinner, Ludwig; Pazmiño, Arturo; Schneble, Dominik
2017-01-01
Behavior analogous to that of spontaneous emission in photonic band-gap materials has been predicted for an atom-optical system consisting of an atom confined in a well of a state-dependent optical lattice that is coupled to free space through an internal-state transition [de Vega et al., Phys. Rev. Lett. 101, 260404 (2008), 10.1103/PhysRevLett.101.260404]. Using the Weisskopf-Wigner approach and considering a one-dimensional geometry, we analyze the properties of this system in detail, including the evolution of the lattice-trapped population, the momentum distribution of emitted matter waves, and the detailed structure of an evanescent matter-wave state below the continuum boundary. We compare and contrast our findings for the transition from Markovian to non-Markovian behaviors to those previously obtained for three dimensions.
Solving non-Markovian open quantum systems with multi-channel reservoir coupling
Broadbent, Curtis J; Yu, Ting; Eberly, Joseph H
2011-01-01
We extend the non-Markovian quantum state diffusion (QSD) equation to open quantum systems which exhibit multi-channel coupling to a harmonic oscillator reservoir. Open quantum systems which have multi-channel reservoir coupling are those in which canonical transformation of reservoir modes cannot reduce the number of reservoir operators appearing in the interaction Hamiltonian to one. We show that the non-Markovian QSD equation for multi-channel reservoir coupling can, in some cases, lead to an exact master equation which we derive. We then derive the exact master equation for the three-level system in a vee-type configuration which has multi-channel reservoir coupling and give the analytical solution. Finally, we examine the evolution of the three-level vee-type system with generalized Ornstein-Uhlenbeck reservoir correlations numerically.
Solving non-Markovian open quantum systems with multi-channel reservoir coupling
Broadbent, Curtis J.; Jing, Jun; Yu, Ting; Eberly, Joseph H.
2012-08-01
We extend the non-Markovian quantum state diffusion (QSD) equation to open quantum systems which exhibit multi-channel coupling to a harmonic oscillator reservoir. Open quantum systems which have multi-channel reservoir coupling are those in which canonical transformation of reservoir modes cannot reduce the number of reservoir operators appearing in the interaction Hamiltonian to one. We show that the non-Markovian QSD equation for multi-channel reservoir coupling can, in some cases, lead to an exact master equation which we derive. We then derive the exact master equation for the three-level system in a vee-type configuration which has multi-channel reservoir coupling and give the analytical solution. Finally, we examine the evolution of the three-level vee-type system with generalized Ornstein-Uhlenbeck reservoir correlations numerically.
Non-Markovian Brownian motion in a magnetic field and time-dependent force fields
Hidalgo-Gonzalez, J. C.; Jiménez-Aquino, J. I.; Romero-Bastida, M.
2016-11-01
This work focuses on the derivation of the velocity and phase-space generalized Fokker-Planck equations for a Brownian charged particle embedded in a memory thermal bath and under the action of force fields: a constant magnetic field and arbitrary time-dependent force fields. To achieve the aforementioned goal we use a Gaussian but non-Markovian generalized Langevin equation with an arbitrary friction memory kernel. In a similar way, the generalized diffusion equation in the zero inertia limit is also derived. Additionally we show, in the absence of the time-dependent external forces, that, if the fluctuation-dissipation relation of the second kind is valid, then the generalized Langevin dynamics associated with the charged particle reaches a stationary state in the large-time limit. The consistency of our theoretical results is also verified when they are compared with those derived in the absence of the force fields and in the Markovian case.
Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro
2017-02-01
We analyze some basic issues associated with generalized Poisson–Kac (GPK) stochastic processes, starting from the extended notion of the Markovian condition. The extended Markovian nature of GPK processes is established, and the implications of this property derived: the associated adjoint formalism for GPK processes is developed essentially in an analogous way as for the Fokker–Planck operator associated with Langevin equations driven by Wiener processes. Subsequently, the regularity of trajectories is addressed: the occurrence of fractality in the realizations of GPK is a long-term emergent property, and its implication in thermodynamics is discussed. The concept of completeness in the stochastic description of GPK is also introduced. Finally, some observations on the role of correlation properties of noise sources and their influence on the dynamic properties of transport phenomena are addressed, using a Wiener model for comparison.
Markovian Process and Novel Secure Algorithm for Big Data in Two-Hop Wireless Networks
Directory of Open Access Journals (Sweden)
K. Thiagarajan
2015-06-01
Full Text Available This paper checks the correctness of our novel algorithm for secure, reliable and flexible transmission of big data in two-hop wireless networks using cooperative jamming scheme of attacker location unknown through Markovian process. Big data has to transmit in two-hop from source-to-relay and relay-to-destination node by deploying security in physical layer. Based on our novel algorithm, the nodes of the network can be identifiable, the probability value of the data absorbing nodes namely capture node C, non-capture node NC, eavesdropper node E, in each level depends upon the present level to the next level, the probability of transition between two nodes is same at all times in a given time slot to ensure more secure transmission of big data. In this paper, maximum probability for capture nodes is considered to justify the efficient transmission of big data through Markovian process.
Comparison between Poissonian and Markovian Primary Traffics in Cognitive Radio Networks
Directory of Open Access Journals (Sweden)
Abdelaali Chaoub
2012-03-01
Full Text Available Cognitive Radio generates a big interest as a key cost-effective solution for the underutilization of frequency spectrum in legacy communication networks. The objective of this work lies in conducting a performance evaluation of the end-to-end message delivery under both Markovian and Poissonian primary traffics in lossy Cognitive Radio networks. We aim at inferring the most appropriate conditions for an efficient secondary service provision according to the Cognitive Radio network characteristics. Meanwhile, we have performed a general analysis for many still open issues in Cognitive Radio, but at the end only two critical aspects have been considered, namely, the unforeseen primary reclaims in addition to the collided cognitive transmissions due to the Opportunistic Spectrum Sharing. Some graphs, in view of the average Spectral Efficiency, have been computed and plotted to report some comparative results for a given video transmission under the Markovian and the Poissonian primary interruptions.
Solvent fluctuations induce non-Markovian kinetics in hydrophobic pocket-ligand binding
Weiß, R Gregor; Dzubiella, Joachim
2016-01-01
We investigate the impact of water fluctuations on the key-lock association kinetics of a hydrophobic ligand (key) binding to a hydrophobic pocket (lock) by means of a minimalistic stochastic model system. It describes the collective hydration behavior of the pocket by bimodal fluctuations of a water-pocket interface that dynamically couples to the diffusive motion of the approaching ligand via the hydrophobic interaction. This leads to a set of overdamped Langevin equations in 2D-coordinate-space, that is Markovian in each dimension. Numerical simulations demonstrate locally increased friction of the ligand, decelerated binding kinetics, and local non-Markovian (memory) effects in the ligand's reaction coordinate as found previously in explicit-water molecular dynamics studies of model hydrophobic pocket-ligand binding [1,2]. Our minimalistic model elucidates the origin of effectively enhanced friction in the process that can be traced back to long-time decays in the force-autocorrelation function induced by...
Non-Markovian effect on the geometric phase of a dissipative qubit
Chen, Juan-Juan; Tong, Qing-Jun; Luo, Hong-Gang; Oh, C H
2010-01-01
We study the geometric phase of a two-level atom coupled to an environment with Lorentzian spectral density. The non-Markovian effect on the geometric phase is explored analytically and numerically. In the weak coupling limit the lowest-order correction to the geometric phase is derived analytically and the general case is calculated numerically. It is found that the correction to the geometric phase is significantly large if the spectral width is small and in this case the non-Markovian dynamics has a significant impact to the geometric phase. When the spectral width increases, the correction to the geometric phase becomes negligible, which shows the robustness of the geometric phase to the environmental white noises. The result is significant to the quantum information processing based on the geometric phase.
Anderson, D.R.
1975-01-01
Optimal exploitation strategies were studied for an animal population in a Markovian (stochastic, serially correlated) environment. This is a general case and encompasses a number of important special cases as simplifications. Extensive empirical data on the Mallard (Anas platyrhynchos) were used as an example of general theory. The number of small ponds on the central breeding grounds was used as an index to the state of the environment. A general mathematical model was formulated to provide a synthesis of the existing literature, estimates of parameters developed from an analysis of data, and hypotheses regarding the specific effect of exploitation on total survival. The literature and analysis of data were inconclusive concerning the effect of exploitation on survival. Therefore, two hypotheses were explored: (1) exploitation mortality represents a largely additive form of mortality, and (2) exploitation mortality is compensatory with other forms of mortality, at least to some threshold level. Models incorporating these two hypotheses were formulated as stochastic dynamic programming models and optimal exploitation strategies were derived numerically on a digital computer. Optimal exploitation strategies were found to exist under the rather general conditions. Direct feedback control was an integral component in the optimal decision-making process. Optimal exploitation was found to be substantially different depending upon the hypothesis regarding the effect of exploitation on the population. If we assume that exploitation is largely an additive force of mortality in Mallards, then optimal exploitation decisions are a convex function of the size of the breeding population and a linear or slight concave function of the environmental conditions. Under the hypothesis of compensatory mortality forces, optimal exploitation decisions are approximately linearly related to the size of the Mallard breeding population. Dynamic programming is suggested as a very general
Recovery Outline: New Mexico Jumping Mouse (Zapus hudsonius luteus)
US Fish and Wildlife Service, Department of the Interior — The purpose of this recovery outline is to provide an interim strategy to guide the conservation and recovery of the New Mexico meadow jumping mouse (jumping mouse)...
Energy Technology Data Exchange (ETDEWEB)
Lagasse, R.R. (Sandia National Labs., Albuquerque, NM); Cohen, R.E.; Letton, A.
1982-03-01
This article proposes a temperature-jump (T-jump) approach for characterizing the kinetics of volume recovery in glassy materials. The kinetic characterization is based on the Kovacs-Aklonis model. This incorporates a retardation-time spectrum which shifts according to both the temperature and the instantaneous volume. The proposed experiments involve measuring the change in recovery rate caused by an abrupt temperature jump. Although an analogous procedure has been used to determine the activation energy for linear viscoelastic creep, the analysis for volume recovery is complicated by its inherent nonlinearity. Nevertheless, accounting for the nonlinearity by a reduction of the time scale permits the T-jump results to be analyzed. In particular, the T-jump approach can be used to: (i) test a particular functional form for the shift factor; and (ii) determine the previously unmeasurable parameter x, which defines the relative importance of the temperature dependence and the volume dependence in this function. In addition, numerical simulations indicate that the proposed method can be implemented in the laboratory. 7 figures.
Aouadi, R; Jlid, M C; Khalifa, R; Hermassi, S; Chelly, M S; Van Den Tillaar, R; Gabbett, T
2012-02-01
The objective of this study was to examine the association between physical and anthropometric profiles and vertical jump performance in elite volleyball players. Thirty-three elite male volleyball players (21±1 y, 76.9±5.2 kg, 186.5±5 cm) were studied. Several anthropometric measurements (body mass, stature, body mass index, lower limb length and sitting height) together with jumping height anaerobic power of counter movement jump with arm swing (CMJarm) were obtained from all subjects. Forward stepwise multiple linear regression analysis was performed to determine if any of the anthropometric parameters were predictive of CMJarm. Anaerobic power was significantly higher (P≤0.05) in the tallest players relative to their shorter counterparts. A significant relationship was observed between CMJarm and lower limb length (r2=0.69; P0.05) predictors of CMJarm performance. This study demonstrates that lower limb length is correlated with CMJarm in elite male volleyball players. The players with longer lower limbs have the better vertical jump performances and their anaerobic power is higher. These results could be of importance for trained athletes in sports relying on jumping performance, such as basketball, handball or volleyball. Thus, the measurement of anthropometric characteristics, such as stature and lower limb length may assist coaches in the early phases of talent identification in volleyball.
Low-intensity cycling affects the muscle activation pattern of consequent countermovement jumps.
Marquez, Gonzalo J; Mon, Javier; Acero, Rafael M; Sanchez, Jose A; Fernandez-del-Olmo, Miguel
2009-08-01
Players (eg, basketball, soccer, and football) often use a static bicycle during a game to maintain warming. However, the effectiveness of this procedure has not been addressed in the literature. Thus, it remains unknown whether low-intensity cycling movement can affect explosive movement performance. In this study, 10 male subjects performed countermovement jumps before and after a 15-minutes cycling bout at 35% of their maximal power output. Three sessions were tested for 3 different cadences of cycling: freely chosen cadence, 20% lower than freely chosen cadence (FCC-20%), and 20% higher than freely chosen cadence (FCC+20%). Jump height, kinematics, and electromyogram were recorded simultaneously during the countermovement jumps. The results showed a significant decreasing in the height of countermovement jump after cycling at freely chosen cadence and FCC-20% (p = 0.03 and p = 0.04, respectively), but not for FCC+20% cadences. The electromyographic parameters suggest that changes in the countermovement jump after cycling can be attributed to alteration of the pattern of activation and may be modulated by the preceding cycling cadence. Our study indicates that to avoid a possible negative effect of the cycling in the subsequent explosive movements, a cadence 20% higher than the preferred cadence must be used.
FUNCTIONAL AND NEUROMUSCULAR CHANGES IN THE HAMSTRINGS AFTER DROP JUMPS AND LEG CURLS
Directory of Open Access Journals (Sweden)
Nejc Sarabon
2013-09-01
Full Text Available The purpose of this study was to use a holistic approach to investigate changes in jumping performance, kinaesthesia, static balance, isometric strength and fast stepping on spot during a 5-day recovery period, following an acute bout of damaging exercise consisted of drop jumps and leg curls, where specific emphasis was given on the hamstring muscles. Eleven young healthy subjects completed a series of highly intensive damaging exercises for their hamstring muscles. Prior to the exercise, and during the 5-day recovery period, the subjects were tested for biochemical markers (creatine kinase, aspartate aminotransferase, and lactate dehydrogenase, perceived pain sensation, physical performance (squat jump, counter movement jump, maximal frequency leg stamping, maximal isometric torque production and maximally explosive isometric torque production, kinaesthesia (active torque tracking and static balance. We observed significant decreases in maximal isometric knee flexion torque production, the rate of torque production, and majority of the parameters for vertical jump performance. No alterations were found in kinaesthesia, static balance and fast stepping on spot. The highest drop in performance and increase in perceived pain sensation generally occurred 24 or 48 hours after the exercise. Damaging exercise substantially alters the neuromuscular functions of the hamstring muscles, which is specifically relevant for sports and rehabilitation experts, as the hamstrings are often stretched to significant lengths, in particular when the knee is extended and hip flexed. These findings are practically important for recovery after high-intensity trainings for hamstring muscles
Institute of Scientific and Technical Information of China (English)
Akram ABBASPOUR; Davood FARSADIZADEH; Mohammad Ali GHORBANI
2013-01-01
Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for the estimation of hydraulic data. In this study, they were used as alternative tools to estimate the characteristics of hydraulic jumps, such as the free surface location and energy dissipation. The dimensionless hydraulic parameters, including jump depth, jump length, and energy dissipation, were determined as functions of the Froude number and the height and length of corrugations. The estimations of the ANN and GP models were found to be in good agreement with the measured data. The results of the ANN model were compared with those of the GP model, showing that the proposed ANN models are much more accurate than the GP models.
A practical geometrical comparison between free-repelled hydraulic jumps within inclined channels
Institute of Scientific and Technical Information of China (English)
John; Demetriou; Eugene; Retsinis
2009-01-01
In this experimental study a practical geometrical comparison between inclined (angle φ) free and repelled hydraulic jumps (the latter in non prismatic but abruptly expanding channels) is presented, analysed and discussed. For repelled hydraulic jumps a considerable parameter is the expansion ratio r (=channels’ width ratio), which here is changing from r =0.5 to r =0.7. The comparison is made with the free jump (in prismatic channel, r =1), in the same ranges of angles φ (0°≤φ≤8°) and Froude numbers (2≤Fr1≤8). A practical arithmetic example is presented to show the behavioral change of conjugate depths, lengths L and depths at 0.5L, in order to receive a comparison among all pertinent geometrical quantities. The present results may be useful for the hydraulic engineering when designing open channels.
Kinematic characteristics of the ski jump inrun: a 10-year longitudinal study.
Janura, Miroslav; Cabell, Lee; Elfmark, Milan; Vaverka, Frantisek
2010-05-01
The athlete's inrun position affects the outcome for take-off in ski jumping. The purpose of this study was to examine the kinematic parameters between skiers' adjacent body segments during their first straight path of the inrun. Elite ski jumpers participated in the study at the World Cup events in Innsbruck, Austria, during the years 1992 through 2001. A video image was taken at a right angle to the tracks of the K-110 (meter) jumping hill. Kinematic data were collected from the lower extremities and trunk of the athletes. Findings indicated that jumpers had diminished ankle and knee joint angles and increased trunk and hip angles over the 10 years. In recent years, the best athletes achieved a further length of their jumps, while they experienced slower inrun average velocity. These results are perhaps explained by several possible contributing factors, such as new technique of the jumper's body kinematics, advancements in equipment technology, and somatotype of the jumpers.
Institute of Scientific and Technical Information of China (English)
罗交晚; 邹捷中; 侯振挺
2003-01-01
In the present paper we first obtain the comparison principle for the nonlinear stochastic differentialdelay equations with Markovian switching. Later, using this comparison principle, we obtain some stabilitycriteria, including stability in probability, asymptotic stability in probability, stability in the pth mean, asymptoticstability in the pth mean and the pth moment exponential stability of such equations. Finally, an example isgiven to illustrate the effectiveness of our results.
On Optimal Proportional Reinsurance and Investment in a Markovian Regime-Switching Economy
Institute of Scientific and Technical Information of China (English)
Xin ZHANG; Tak Kuen SIU
2012-01-01
In this paper,the surplus of an insurance company is modeled by a Markovian regimeswitching diffusion process.The insurer decides the proportional reinsurance and investment so as to increase revenue.The regime-switching economy consists of a fixed interest security and several risky shares. The optimal proportional reinsurance and investment strategies with no short-selling constraints for maximizing an exponential utility on terminal wealth are obtained.
Shikerman, Faina; Pe'er, Avi
2012-01-01
We consider the two-level system approximation of a single emitter driven by a continuous laser pump and simultaneously coupled to the electromagnetic vacuum and to a thermal reservoir beyond the Markovian approximation. We discuss the connection between a rigorous microscopic theory and the phenomenological spectral diffusion approach, used to model the interaction of the emitter with the thermal bath, and obtained analytic expressions relating the thermal correlation function to the single emitter photon statistics.
Institute of Scientific and Technical Information of China (English)
LIU Hai-feng; WANG Chun-hua; WEI Guo-liang
2008-01-01
The exponential stability problem is investigated fora class of stochastic recurrent neural networks with time delay and Markovian switching.By using It(o)'s differential formula and the Lyapunov stabifity theory,sufficient condition for the solvability of this problem is derived in telm of linear matrix inequalities,which can be easily checked by resorting to available software packages.A numerical example and the simulation are exploited to demonstrate the effectiveness of the proposed results.
Understanding the Physics of Bungee Jumping
Heck, Andre; Uylings, Peter; Kedzierska, Ewa
2010-01-01
Changing mass phenomena like the motion of a falling chain, the behaviour of a falling elastic bar or spring, and the motion of a bungee jumper surprise many a physicist. In this article we discuss the first phase of bungee jumping, when the bungee jumper falls, but the bungee rope is still slack. In instructional material this phase is often…
2005-01-01
Sarah Dastugue, 11, leaps in the air as Libby Knox, 9, swings a jump rope. The children were participants in Nickelodeon's Worldwide Day of Play celebration at Stennis Space Center (SSC) on Oct. 1. On the day of the event, children all over the world participate in physical activities as part of the celebration.
Understanding the physics of bungee jumping
Heck, A.; Uylings, P.; Kędzierska, E.
2010-01-01
Changing mass phenomena like the motion of a falling chain, the behaviour of a falling elastic bar or spring, and the motion of a bungee jumper surprise many a physicist. In this article we discuss the first phase of bungee jumping, when the bungee jumper falls, but the bungee rope is still slack.
Jumping on the Social Media Bandwagon
Blakeslee, Lori
2012-01-01
Should a school district jump on the social media bandwagon? Yes! Social media provide a low-cost way to communicate school district priorities, influence decision makers, and tell its story without filters. Equally important, social media are where constituents are spending a lot of their time. With more than 800 million members, Facebook is an…
Jumping on the Social Media Bandwagon
Blakeslee, Lori
2012-01-01
Should a school district jump on the social media bandwagon? Yes! Social media provide a low-cost way to communicate school district priorities, influence decision makers, and tell its story without filters. Equally important, social media are where constituents are spending a lot of their time. With more than 800 million members, Facebook is an…
Jumping-droplet electrostatic energy harvesting
Miljkovic, Nenad; Preston, Daniel J.; Enright, Ryan; Wang, Evelyn N.
2014-07-01
Micro- and nanoscale wetting phenomena have been an active area of research due to its potential for improving engineered system performance involving phase change. With the recent advancements in micro/nanofabrication techniques, structured surfaces can now be designed to allow condensing coalesced droplets to spontaneously jump off the surface due to the conversion of excess surface energy into kinetic energy. In addition to being removed at micrometric length scales (˜10 μm), jumping water droplets also attain a positive electrostatic charge (˜10-100 fC) from the hydrophobic coating/condensate interaction. In this work, we take advantage of this droplet charging to demonstrate jumping-droplet electrostatic energy harvesting. The charged droplets jump between superhydrophobic copper oxide and hydrophilic copper surfaces to create an electrostatic potential and generate power during formation of atmospheric dew. We demonstrated power densities of ˜15 pW/cm2, which, in the near term, can be improved to ˜1 μW/cm2. This work demonstrates a surface engineered platform that promises to be low cost and scalable for atmospheric energy harvesting and electric power generation.
DISCONTINUOUS FLOW OF TURBID DENSITY CURRENTS Ⅱ. INTERNAL HYDRAULIC JUMP
Institute of Scientific and Technical Information of China (English)
Jiahua FAN
2005-01-01
Traveling and stationary internal hydraulic jumps in density currents with positive or negative entrainment coefficients were analyzed based on simple assumptions. An expression of internal hydraulic jumps with entrainment coefficients was derived. Experimental data, published in literature, of stationary internal hydraulic jumps in turbid, thermal and saline density currents including measured values of water entrainment were used to compare with theory. Comparison was also made of traveling internal hydraulic jumps between measured data and theory.
Quantum Monte Carlo method applied to non-Markovian barrier transmission
Hupin, Guillaume; Lacroix, Denis
2010-01-01
In nuclear fusion and fission, fluctuation and dissipation arise because of the coupling of collective degrees of freedom with internal excitations. Close to the barrier, quantum, statistical, and non-Markovian effects are expected to be important. In this work, a new approach based on quantum Monte Carlo addressing this problem is presented. The exact dynamics of a system coupled to an environment is replaced by a set of stochastic evolutions of the system density. The quantum Monte Carlo method is applied to systems with quadratic potentials. In all ranges of temperature and coupling, the stochastic method matches the exact evolution, showing that non-Markovian effects can be simulated accurately. A comparison with other theories, such as Nakajima-Zwanzig or time-convolutionless, shows that only the latter can be competitive if the expansion in terms of coupling constant is made at least to fourth order. A systematic study of the inverted parabola case is made at different temperatures and coupling constants. The asymptotic passing probability is estimated by different approaches including the Markovian limit. Large differences with an exact result are seen in the latter case or when only second order in the coupling strength is considered, as is generally assumed in nuclear transport models. In contrast, if fourth order in the coupling or quantum Monte Carlo method is used, a perfect agreement is obtained.
Using non-Markovian measures to evaluate quantum master equations for photosynthesis
Chen, Hong-Bin; Lambert, Neill; Cheng, Yuan-Chung; Chen, Yueh-Nan; Nori, Franco
2015-01-01
When dealing with system-reservoir interactions in an open quantum system, such as a photosynthetic light-harvesting complex, approximations are usually made to obtain the dynamics of the system. One question immediately arises: how good are these approximations, and in what ways can we evaluate them? Here, we propose to use entanglement and a measure of non-Markovianity as benchmarks for the deviation of approximate methods from exact results. We apply two frequently-used perturbative but non-Markovian approximations to a photosynthetic dimer model and compare their results with that of the numerically-exact hierarchy equation of motion (HEOM). This enables us to explore both entanglement and non-Markovianity measures as means to reveal how the approximations either overestimate or underestimate memory effects and quantum coherence. In addition, we show that both the approximate and exact results suggest that non-Markonivity can, counter-intuitively, increase with temperature, and with the coupling to the environment. PMID:26238479
Elephants can always remember: Exact long-range memory effects in a non-Markovian random walk
Schütz, Gunter M.; Trimper, Steffen
2004-10-01
We consider a discrete-time random walk where the random increment at time step t depends on the full history of the process. We calculate exactly the mean and variance of the position and discuss its dependence on the initial condition and on the memory parameter p . At a critical value pc(1)=1/2 where memory effects vanish there is a transition from a weakly localized regime [where the walker (elephant) returns to its starting point] to an escape regime. Inside the escape regime there is a second critical value where the random walk becomes superdiffusive. The probability distribution is shown to be governed by a non-Markovian Fokker-Planck equation with hopping rates that depend both on time and on the starting position of the walk. On large scales the memory organizes itself into an effective harmonic oscillator potential for the random walker with a time-dependent spring constant k=(2p-1)/t . The solution of this problem is a Gaussian distribution with time-dependent mean and variance which both depend on the initiation of the process.
Option Valuation with Observable Volatility and Jump Dynamics
DEFF Research Database (Denmark)
Christoffersen, Peter; Feunou, Bruno; Jeon, Yoontae
Under very general conditions, the total quadratic variation of a jump-diffusion process can be decomposed into diffusive volatility and squared jump variation. We use this result to develop a new option valuation model in which the underlying asset price exhibits volatility and jump intensity dy...
Determination of jumps for functions via derivative Gabor series
Institute of Scientific and Technical Information of China (English)
ZHOU Ying-ying; SHI Xian-liang
2009-01-01
Recently, Shi Xianliang and Hu Lan published the method of concentration factors for determination of jumps of functions via MCM conjugate wavelets. Usually, it is difficult to calculate the Hilbert transform of general window functions. The aim of this paper is to discuss determination of jumps for functions based on derivative Gabor series. The results will simplify the calculation of jump values.
Yu, Min; Fang, Mao-Fa
2017-09-01
The dynamic properties of the quantum-memory-assisted entropic uncertainty relation for a system comprised of a qubit to be measured and a memory qubit are investigated. We explore the behaviors of the entropic uncertainty and its lower bound in three different cases: Only one of the two qubits interacts with an external environment and subjects to quantum-jump-based feedback control, or both of the two qubits independently experience their own environments and local quantum-jump-based feedback control. Our results reveal that the quantum-jump-based feedback control with an appropriate feedback parameter can reduce the entropic uncertainty and its lower bound, and for the three different scenarios, the reduction in the uncertainty relates to different physical quantities. Besides, we find out that the quantum-jump-based feedback control not only can remarkably decrease the entropic uncertainty, but also can make the uncertainty reach its lower bound where the dynamical map becomes unital.
Ozer, D; Duzgun, I; Baltaci, G; Karacan, S; Colakoglu, F
2011-06-01
The aim was to assess the effects of a 12-week "rope jumping" and "weighted rope jumping" training programs on functional parameters including multi-joint coordination and proprioception, strength, endurance in adolescent female volleyball players. Pretest posttest experimental design. Weighted Rope Training group (N.=9; 15±1 years), Rope Training group (N.=9; 14.1±1.3 years) and Controls (N.=7; 14.4±1.3 years). Motor coordination, proprioception, strength and endurance of the lower extremities with concentric and eccentric performances in closed kinetic chain on multi joint system assessed by the Monitorized Squat system. Absolute average error (cm) and the standard deviation for coordination and proprioception, Peak Force (N), Total Work (Nm), Average Power (Nm/s), Maximal Speed for strength and endurance tests were calculated. Kruskal-Wallis and Mann Whitney U test were utilized. Weighted rope jump group had significant decrease for the deviation results of coordination on the concentric and eccentric phases for both legs (PRope jump and weighted rope jump groups had significantly lower results on non visible second movement deviation (PRope Training group in comparison to controls (PRope Training and control groups improved in concentric maximal speed (PRope Training group (Prope jump to training programs improves joint repositioning and coordination. Weighted Rope Training group got greater gains for coordination and eccentric endurance parameters for lower extremities in a closed kinetic chain.
Alterations of Vertical Jump Mechanics after a Half-Marathon Mountain Running Race.
Rousanoglou, Elissavet N; Noutsos, Konstantinos; Pappas, Achilleas; Bogdanis, Gregory; Vagenas, Georgios; Bayios, Ioannis A; Boudolos, Konstantinos D
2016-06-01
The fatiguing effect of long-distance running has been examined in the context of a variety of parameters. However, there is scarcity of data regarding its effect on the vertical jump mechanics. The purpose of this study was to investigate the alterations of countermovement jump (CMJ) mechanics after a half-marathon mountain race. Twenty-seven runners performed CMJs before the race (Pre), immediately after the race (Post 1) and five minutes after Post 1 (Post 2). Instantaneous and ensemble-average analysis focused on jump height and, the maximum peaks and time-to-maximum peaks of: Displacement, vertical force (Fz), anterior-posterior force (Fx), Velocity and Power, in the eccentric (tECC) and concentric (tCON) phase of the jump, respectively. Repeated measures ANOVAs were used for statistical analysis (p ≤ 0.05). The jump height decrease was significant in Post 2 (-7.9%) but not in Post 1 (-4.1%). Fx and Velocity decreased significantly in both Post 1 (only in tECC) and Post 2 (both tECC and tCON). Α timing shift of the Fz peaks (earlier during tECC and later during tCON) and altered relative peak times (only in tECC) were also observed. Ensemble-average analysis revealed several time intervals of significant post-race alterations and a timing shift in the Fz-Velocity loop. An overall trend of lowered post-race jump output and mechanics was characterised by altered jump timing, restricted anterior-posterior movement and altered force-velocity relations. The specificity of mountain running fatigue to eccentric muscle work, appears to be reflected in the different time order of the post-race reductions, with the eccentric phase reductions preceding those of the concentric one. Thus, those who engage in mountain running should particularly consider downhill training to optimise eccentric muscular action. Key pointsThe 4.1% reduction of jump height immediately after the race is not statistically significantThe eccentric phase alterations of jump mechanics precede
Wen, Kai; Sakata, Fumihiko; Li, Zhu-Xia; Wu, Xi-Zhen; Zhang, Ying-Xun; Zhou, Shan-Gui
2013-07-05
Macroscopic parameters as well as precise information on the random force characterizing the Langevin-type description of the nuclear fusion process around the Coulomb barrier are extracted from the microscopic dynamics of individual nucleons by exploiting the numerical simulation of the improved quantum molecular dynamics. It turns out that the dissipation dynamics of the relative motion between two fusing nuclei is caused by a non-Gaussian distribution of the random force. We find that the friction coefficient as well as the time correlation function of the random force takes particularly large values in a region a little bit inside of the Coulomb barrier. A clear non-Markovian effect is observed in the time correlation function of the random force. It is further shown that an emergent dynamics of the fusion process can be described by the generalized Langevin equation with memory effects by appropriately incorporating the microscopic information of individual nucleons through the random force and its time correlation function.
Acute fatigue effects on ground reaction force of lower limbs during countermovement jumps
Carlos Gabriel Fábrica; González,Paula V.; Jefferson Fagundes Loss
2013-01-01
Parameters associated with the performance of countermovement jumps were identified from vertical ground reaction force recordings during fatigue and resting conditions. Fourteen variables were defined, dividing the vertical ground reaction force into negative and positive external working times and times in which the vertical ground reaction force values were lower and higher than the participant's body weight. We attempted to explain parameter variations by considering the relationship betw...
Lift-off dynamics in a simple jumping robot
Aguilar, Jeffrey; Wiesenfeld, Kurt; Goldman, Daniel I
2012-01-01
We study vertical jumping in a simple robot comprising an actuated mass-spring arrangement. The actuator frequency and phase are systematically varied to find optimal performance. Optimal jumps occur above and below (but not at) the robot's resonant frequency $f_0$. Two distinct jumping modes emerge: a simple jump which is optimal above $f_0$ is achievable with a squat maneuver, and a peculiar stutter jump which is optimal below $f_0$ is generated with a counter-movement. A simple dynamical model reveals how optimal lift-off results from non-resonant transient dynamics.
Dynamics of Coalescence-Induced Jumping Water Droplets
Miljkovic, Nenad; Enright, Ryan; Wang, Evelyn N
2013-01-01
This fluid dynamics video shows the different interaction mechanisms of coalescence-induced droplet jumping during condensation on a nanostructured superhydrophobic surface. High speed imaging was used to show jumping behavior on superhydrophobic copper oxide and carbon nanotube surfaces. Videos demonstrating multi-jumping droplets, jumping droplet return to the surface, and droplet-droplet electrostatic repulsions were analyzed. Experiments using external electric fields in conjunction with high speed imaging in a custom built experimental chamber were used to show that all coalescence-induced jumping droplets on superhydrophobic surfaces become positively charged upon leaving the surface, which is detailed in the video.
Guo, Chengjie; Zheng, Liancun; Zhang, Chaoli; Chen, Xuehui; Zhang, Xinxin
2016-05-01
In this study, the generalised velocity slip and the generalised temperature jump of nanofluid in the flow over a stretching sheet with variable thickness are investigated. Because of the non-adherence of the fluid to a solid boundary, the velocity slip and the temperature jump between fluid and moving sheet may happen in industrial process, so taking velocity slip and temperature jump into account is indispensable. It is worth mentioning that the analysis of the velocity v, which has not been seen in the previous references related to the variable thickness sheet, is presented. The thermophoresis and the Brownian motion, which are the two very important physical parameters, are fully studied. The governing equations are simplified into ordinary differential equations by the proper transformations. The homotopy analysis method (HAM) is applied to solve the reduced equations for general conditions. In addition, the effects of involved parameters such as velocity slip parameter, temperature jump parameter, Prandtl number, magnetic field parameter, permeable parameter, Lewis number, thermophoresis parameter, and Brownian motion parameter are investigated and analysed graphically.
Effect of early training on the jumping technique of horses.
Santamaría, Susana; Bobbert, Maarten F; Back, Willem; Barneveld, Ab; van Weeren, P Rene
2005-03-01
To investigate the effects of early training for jumping by comparing the jumping technique of horses that had received early training with that of horses raised conventionally. 40 Dutch Warmblood horses. The horses were analyzed kinematically during free jumping at 6 months of age. Subsequently, they were allocated into a control group that was raised conventionally and an experimental group that received 30 months of early training starting at 6 months of age. At 4 years of age, after a period of rest in pasture and a short period of training with a rider, both groups were analyzed kinematically during free jumping. Subsequently, both groups started a 1-year intensive training for jumping, and at 5 years of age, they were again analyzed kinematically during free jumping. In addition, the horses competed in a puissance competition to test maximal performance. Whereas there were no differences in jumping technique between experimental and control horses at 6 months of age, at 4 years, the experimental horses jumped in a more effective manner than the control horses; they raised their center of gravity less yet cleared more fences successfully than the control horses. However, at 5 years of age, these differences were not detected. Furthermore, the experimental horses did not perform better than the control horses in the puissance competition. Specific training for jumping of horses at an early age is unnecessary because the effects on jumping technique and jumping capacity are not permanent.
Biomechanical Analysis of the Jump Shot in Basketball
Directory of Open Access Journals (Sweden)
Struzik Artur
2014-10-01
Full Text Available Basketball players usually score points during the game using the jump shot. For this reason, the jump shot is considered to be the most important element of technique in basketball and requires a high level of performance. The aim of this study was to compare the biomechanical characteristics of the lower limbs during a jump shot without the ball and a countermovement jump without an arm swing. The differences between variables provide information about the potential that an athlete can utilise during a game when performing a jump shot. The study was conducted among 20 second-league basketball players by means of a Kistler force plate and the BTS SMART system for motion analysis. The variables measured included the take-off time, mean power, peak power, relative mean power, jump height, maximum landing force and calculated impact ratio. Surprisingly, more advantageous variables were found for the jump shot. This finding suggests a very high performance level in the jump shot in the studied group and a maximum utilisation of their motor abilities. Both types of jumps were characterised by high mean and peak power values and average heights. The high forces at landing, which result in considerable impact ratios, may have prompted the studied group to land softly. Use of the countermovement jump without an arm swing is recommended to assess and predict the progression of player’s jumping ability
Scaled Jump in Gravity-Reduced Virtual Environments.
Kim, MyoungGon; Cho, Sunglk; Tran, Tanh Quang; Kim, Seong-Pil; Kwon, Ohung; Han, JungHyun
2017-04-01
The reduced gravity experienced in lunar or Martian surfaces can be simulated on the earth using a cable-driven system, where the cable lifts a person to reduce his or her weight. This paper presents a novel cable-driven system designed for the purpose. It is integrated with a head-mounted display and a motion capture system. Focusing on jump motion within the system, this paper proposes to scale the jump and reports the experiments made for quantifying the extent to which a jump can be scaled without the discrepancy between physical and virtual jumps being noticed by the user. With the tolerable range of scaling computed from these experiments, an application named retargeted jump is developed, where a user can jump up onto virtual objects while physically jumping in the real-world flat floor. The core techniques presented in this paper can be extended to develop extreme-sport simulators such as parasailing and skydiving.
Aili, Abulimiti; Li, Hongxia; Alhosani, Mohamed H; Zhang, TieJun
2016-08-24
Superhydrophobic nanostructured surfaces have demonstrated outstanding capability in energy and water applications by promoting dropwise condensation, where fast droplet growth and efficient condensate removal are two key parameters. However, these parameters remain contradictory. Although efficient droplet removal is easily obtained through coalescence jumping on uniform superhydrophobic surfaces, simultaneously achieving fast droplet growth is still challenging. Also, on such surfaces droplets can grow to larger sizes without restriction if there is no coalescence. In this work, we show that superhydrophobic nanostructured microporous surfaces can manipulate the droplet growth and jumping. Microporous surface morphology effectively enhances the growth of droplets in pores owing to large solid-liquid contact area. At low supersaturations, the upward growth rate (1-1.5 μm/s) of these droplets in pores is observed to be around 15-25 times that of the droplets outside the pores. Meanwhile, their top curvature radius increases relatively slowly (∼0.25 μm/s) due to pore confinement, which results in a highly stretched droplet surface. We also observed forced jumping of stretched droplets in pores either through coalescence with spherical droplets outside pores or through self-pulling without coalescence. Both experimental observation and theoretical modeling reveal that excess surface free energy stored in the stretched droplet surface and micropore confinement are responsible for this pore-scale-forced jumping. These findings reveal the insightful physics of stretched droplet dynamics and offer guidelines for the design and fabrication of novel super-repellent surfaces with microporous morphology.
Kinematic description of elite vs. Low level players in team-handball jump throw.
Wagner, Herbert; Buchecker, Michael; von Duvillard, Serge P; Müller, Erich
2010-01-01
The jump throw is the most applied throwing technique in team- handball (Wagner et al., 2008); however, a comprehensive analysis of 3D-kinematics of the team-handball jump throw is lacking. Therefore, the purpose of our study was: 1) to measure differences in ball release speed in team- handball jump throw and anthropometric parameters between groups of different levels of performance and (2) to analyze upper body 3D-kinematics (flexion/extension and rotation) to determine significant differences between these groups. Three-dimensional kinematic data was analyzed via the Vicon MX 13 motion capturing system (Vicon Peak, Oxford, UK) from 26 male team-handball players of different performance levels (mean age: 21.2 ± 5.0 years). The participants were instructed to throw the ball (IHF Size 3) onto a target at 8 m distance, and to hit the center of a square of 1 × 1 m at about eye level (1.75 m), with maximum ball release speed. Significant differences between elite vs. low level players were found in the ball release speed (p handball players who were taller and of greater body weight have the ability to achieve a higher ball release speed in the jump throw, and that an increase in trunk flexion and rotation angular velocity improve the performance in team-handball jump throw that should result in an increase of ball release speed. Key pointsTeam-handball players who were taller and of greater body weight have the ability to achieve a higher ball release speed.An increase in trunk flexion, trunk rotation and shoulder internal rotation angular velocity should result in an increase of ball release speed.Trunk movements are normally well observable for experienced coaches, easy correctable and therefore practical to improve the performance in team-handball jump throw of low level players during training without using complex measurement devices.
Capture of Trojans by Jumping Jupiter
Nesvorny, David; Morbidelli, Alessandro
2013-01-01
Jupiter Trojans are thought to be survivors of a much larger population of planetesimals that existed in the planetary region when planets formed. They can provide important constraints on the mass and properties of the planetesimal disk, and its dispersal during planet migration. Here we tested a possibility that the Trojans were captured during the early dynamical instability among the outer planets (aka the Nice model), when the semimajor axis of Jupiter was changing as a result of scattering encounters with an ice giant. The capture occurs in this model when Jupiter's orbit and its Lagrange points become radially displaced in a scattering event and fall into a region populated by planetesimals (that previously evolved from their natal transplanetary disk to ~5 AU during the instability). Our numerical simulations of the new capture model, hereafter jump capture, satisfactorily reproduce the orbital distribution of the Trojans and their total mass. The jump capture is potentially capable of explaining the ...
Sex Differences in Countermovement Jump Phase Characteristics
Directory of Open Access Journals (Sweden)
John J. McMahon
2017-01-01
Full Text Available The countermovement jump (CMJ is commonly used to explore sex differences in neuromuscular function, but previous studies have only reported gross CMJ measures or have partly examined CMJ phase characteristics. The purpose of this study was to explore differences in CMJ phase characteristics between male and female athletes by comparing the force-, power-, velocity-, and displacement-time curves throughout the entire CMJ, in addition to gross measures. Fourteen men and fourteen women performed three CMJs on a force platform from which a range of kinetic and kinematic variables were calculated via forward dynamics. Jump height (JH, reactive strength index modified, relative peak concentric power, and eccentric and concentric displacement, velocity, and relative impulse were all greater for men (g = 0.58–1.79. Relative force-time curves were similar between sexes, but relative power-, velocity-, and displacement-time curves were greater for men at 90%–95% (immediately before and after peak power, 47%–54% (start of eccentric phase and 85%–100% (latter half of concentric phase, and 65%–87% (bottom of countermovement and initial concentric phase of normalized jump time, respectively. The CMJ distinguished between sexes, with men demonstrating greater JH through applying a larger concentric impulse and, thus, achieving greater velocity throughout most of the concentric phase, including take-off.
Quantum jumps of a fluxonium qubit
Vool, U.; Pop, I. M.; Sliwa, K.; Abdo, B.; Brecht, T.; Shankar, S.; Hatridge, M.; Schoelkopf, R. J.; Mirrahimi, M.; Glazman, L.; Devoret, M. H.
2014-03-01
The fluxonium qubit has recently been shown to have energy relaxation time (T1) of the order of 1 ms, limited by quasiparticle dissipation. With the addition of a Josephson Parametric Converter (JPC) to the experiment, trajectories corresponding to quantum jumps between the ground and 1st excited state can be measured, thus allowing the observation of the qubit decay in real time instead of that of an ensemble average. Our measurement fidelity with the JPC is in excess of 98% for an acquisition time of 5 us and we can thus continuously monitor the quantum jumps of the qubit in equilibrium with its environment in a time much shorter than its average relaxation time. We observe in our sample a jump statistics that varies from being completely Poissonian with a long (500 us) mean time in the ground state to being highly non-Poissonian with short (100 us) mean time in the ground state. The changes between these regimes occur on time scales of seconds, minutes and even hours. We have studied this effect and its relation to quasiparticle dynamics by injecting quasiparticles with a short intense microwave pulse and by seeding quasiparticle-trapping vortices with magnetic field. Work supported by: IARPA, ARO, and NSF.
DEFF Research Database (Denmark)
Nielsen, Per Kær; Nielsen, Torben Roland; Lodahl, Peter;
2010-01-01
We investigate the influence of electron-phonon interactions on the dynamical properties of a quantum-dot-cavity QED system. We show that non-Markovian effects in the phonon reservoir lead to strong changes in the dynamics, arising from photon-assisted dephasing processes, not present in Markovian...
POTENTIAL FOR NON-CONTACT ACL INJURY BETWEEN STEP-CLOSE-JUMP AND HOP-JUMP TASKS
Directory of Open Access Journals (Sweden)
Li-I Wang
2010-03-01
Full Text Available This study aimed to compare the kinematics and kinetics during the landing of hop-jump and step-close-jump movements in order to provide further inferring that the potential risk of ACL injuries. Eleven elite male volleyball players were recruited to perform hop-jump and step-close-jump tasks. Lower extremity kinematics and ground reaction forces during landing in stop-jump tasks were recorded. Lower extremity kinetics was calculated by using an inverse dynamic process. Step-close-jump tasks demonstrated smaller peak proximal tibia anterior shear forces during the landing phase. In step-close-jump tasks, increasing hip joint angular velocity during initial foot-ground contact decreased peak posterior ground reaction force during the landing phase, which theoretically could reduce the risk of ACL injury
Spatial capture-recapture models allowing Markovian transience or dispersal
Royle, J. Andrew; Fuller, Angela K.; Sutherland, Chris
2016-01-01
Spatial capture–recapture (SCR) models are a relatively recent development in quantitative ecology, and they are becoming widely used to model density in studies of animal populations using camera traps, DNA sampling and other methods which produce spatially explicit individual encounter information. One of the core assumptions of SCR models is that individuals possess home ranges that are spatially stationary during the sampling period. For many species, this assumption is unlikely to be met and, even for species that are typically territorial, individuals may disperse or exhibit transience at some life stages. In this paper we first conduct a simulation study to evaluate the robustness of estimators of density under ordinary SCR models when dispersal or transience is present in the population. Then, using both simulated and real data, we demonstrate that such models can easily be described in the BUGS language providing a practical framework for their analysis, which allows us to evaluate movement dynamics of species using capture–recapture data. We find that while estimators of density are extremely robust, even to pathological levels of movement (e.g., complete transience), the estimator of the spatial scale parameter of the encounter probability model is confounded with the dispersal/transience scale parameter. Thus, use of ordinary SCR models to make inferences about density is feasible, but interpretation of SCR model parameters in relation to movement should be avoided. Instead, when movement dynamics are of interest, such dynamics should be parameterized explicitly in the model.
Energy Technology Data Exchange (ETDEWEB)
Yin, Chenguang; Zheng, Liancun [Univ. of Science and Technology Beijing (China). School of Mathematics and Physics; Zhang, Chaoli [Univ. of Science and Technology Beijing (China). School of Mathematics and Physics; Univ. of Science and Technology Beijing (China). School of Mechanical Engineering; Zhang, Xinxin [Univ. of Science and Technology Beijing (China). School of Mechanical Engineering
2015-09-01
In this article, we discuss the flow and heat transfer of nanofluids over a rotating porous disk with velocity slip and temperature jump. Three types of nanoparticles - Cu, Al{sub 2}O{sub 3}, and CuO - are considered with water as the base fluid. The nonlinear governing equations are reduced into ordinary differential equations by Von Karman transformations and solved using homotopy analysis method (HAM), which is verified in good agreement with numerical ones. The effects of involved parameters such as porous parameter, velocity slip, temperature jump, as well as the types of nanofluids on velocity and temperature fields are presented graphically and analysed.
Kinetics of self-induced aggregation of Brownian particles: non-Markovian and non-Gaussian features
Ghosh, Pulak Kumar; Bag, Bidhan Chandra
2012-01-01
In this paper we have studied a model for self-induced aggregation in Brownian particle incorporating the non-Markovian and non-Gaussian character of the associated random noise process. In this model the time evolution of each individual is guided by an over-damped Langevin equation of motion with a non-local drift resulting from the local unbalance distributions of the other individuals. Our simulation result shows that colored nose can induce the cluster formation even at large noise strength. Another observation is that critical noise strength grows very rapidly with increase of noise correlation time for Gaussian noise than non Gaussian one. However, at long time limit the cluster number in aggregation process decreases with time following a power law. The exponent in the power law increases remarkable for switching from Markovian to non Markovian noise process.
The Mechanics and Trajectory Control in Locust Jumping
Institute of Scientific and Technical Information of China (English)
Longbao Han; Zhouyi Wang; Aihong Ji; Zhendong Dai
2013-01-01
Locusts (Locusta migratoria manilensis) are characterised by their flying ability and abiding jump ability.Research on the jumping mechanics and behavior of locusts plays an important role in elucidating the mechanism of hexapod locomotion.The jump gestures of locusts were observed using high-speed video camera at 250 fps.The reaction forces of the hindlegs were measured using two three-dimensional sensors,in case the two hindlegs attached on separated sensor plates.The jump gestures and reaction forces were used to illustrate the locust jumping mechanism.Results show that the trajectory control is achieved by rapid rolling and yawing movements of the locust body,caused by the forelegs,midlegs and hindlegs in different jumping phases.The final jump trajectory was not determined until hind tarsi left platform.The horizontal co-impulse between two hindlegs might play a key role in jump stability and accuracy.Besides,the angle between two hindlegs affects the control of jump trajectory but has a little effect on the elevation angle of a jump,which is controlled mechanically by the initial position of the hindlegs.This research lays the groundwork for the probable design and development of biomimetic robotics.
Repeat ridge jumps associated with plume-ridge interaction, melt transport, and ridge migration
Mittelstaedt, Eric; Ito, Garrett; van Hunen, Jeroen
2011-01-01
Repeated shifts, or jumps, of mid-ocean ridge segments toward nearby hot spots can produce large, long-term changes to the geometry and location of the tectonic plate boundaries. Ridge jumps associated with hot spot-ridge interaction are likely caused by several processes including shear on the base of the plate due to expanding plume material as well as reheating of lithosphere as magma passes through it to feed off-axis volcanism. To study how these processes influence ridge jumps, we use numerical models to simulate 2-D (in cross section) viscous flow of the mantle, viscoplastic deformation of the lithosphere, and melt migration upward from the asthenospheric melting zone, laterally along the base of the lithosphere, and vertically through the lithosphere. The locations and rates that magma penetrates and heats the lithosphere are controlled by the time-varying accumulation of melt beneath the plate and the depth-averaged lithospheric porosity. We examine the effect of four key parameters: magmatic heating rate of the lithosphere, plate spreading rate, age of the seafloor overlying the plume, and the plume-ridge migration rate. Results indicate that the minimum value of the magmatic heating rate needed to initiate a ridge jump increases with plate age and spreading rate. The time required to complete a ridge jump decreases with larger values of magmatic heating rate, younger plate age, and faster spreading rate. For cases with migrating ridges, models predict a range of behaviors including repeating ridge jumps, much like those exhibited on Earth. Repeating ridge jumps occur at moderate magmatic heating rates and are the result of changes in the hot spot magma flux in response to magma migration along the base of an evolving lithosphere. The tendency of slow spreading to promote ridge jumps could help explain the observed clustering of hot spots near the Mid-Atlantic Ridge. Model results also suggest that magmatic heating may significantly thin the lithosphere
Aftershocks in Modern Perspectives: Complex Earthquake Network, Aging, and Non-Markovianity
Abe, Sumiyoshi
2012-01-01
The phenomenon of aftershocks is studied in view of science of complexity. In particular, three different concepts are examined: (i) the complex-network representation of seismicity, (ii) the event-event correlations, and (iii) the effects of long-range memory. Regarding (i), it is shown the clustering coefficient of the complex earthquake network exhibits a peculiar behavior at and after main shocks. Regarding (ii), it is found that aftershocks experience aging, and the associated scaling holds. And regarding (iii), the scaling relation to be satisfied by a class of singular Markovian processes is violated, implying the existence of the long-range memory in processes of aftershocks.
A unified Lie systems theory for closed and open Markovian dynamical quantum systems
Energy Technology Data Exchange (ETDEWEB)
Schulte-Herbrueggen, Thomas [Technical University of Munich (TUM) (Germany); Dirr, Gunther [University of Wuerzburg (Germany)
2016-07-01
Lie groups and Lie semigroups with their symmetries provide a unified framework to pinpoint the dynamic behaviour of closed and open quantum systems under all kinds of controls. Recently, we showed that all Markovian quantum maps can be represented by Lie semigroups. These semigroups come with the geometry of affine maps, whose translational parts determine the respective fixed points. We exploit this geometry for dissipative fixed-point engineering of unique target states be they pure or mixed. We extend capabilities by combining coherent control with simplest noise controls. Particular light is shed on reachability and open-loop versus closed-loop control design.
On a random walk with memory and its relation with Markovian processes
Energy Technology Data Exchange (ETDEWEB)
Turban, Loic, E-mail: turban@lpm.u-nancy.f [Groupe de Physique Statistique, Departement Physique de la Matiere et des Materiaux, Institut Jean Lamour (Laboratoire associe au CNRS UMR 7198), CNRS-Nancy Universite-UPV Metz, BP 70239, F-54506 Vandoeuvre les Nancy Cedex (France)
2010-07-16
We study a one-dimensional random walk with memory in which the step lengths to the left and to the right evolve at each step in order to reduce the wandering of the walker. The feedback is quite efficient and leads to a non-diffusive walk. The time evolution of the displacement is given by an equivalent Markovian dynamical process. The probability density for the position of the walker is the same at any time as for a random walk with shrinking steps, although the two-time correlation functions are quite different.
Replacement policy in a system under shocks following a Markovian arrival process
Energy Technology Data Exchange (ETDEWEB)
Montoro-Cazorla, Delia [Department of Statistics and Operational Research, University of Jaen (Spain); Perez-Ocon, Rafael [Department of Statistics and Operational Research, University of Granada, Granada (Spain)], E-mail: rperezo@ugr.es; Carmen Segovia, Maria del [Departamento de Estadistica e I.O., University of Granada, Granada (Spain)
2009-02-15
We present a system subject to shocks that arrive following a Markovian arrival process. The system is minimally repaired. It is replaced when a certain number of shocks arrive. A general model where the replacements are governed by a discrete phase-type distribution is studied. For this system, the Markov process governing the system is constructed, and the interarrival times between replacements and the number of replacements are calculated. A special case of this system is when it can stand a prefixed number of shocks. For this new system, the same performance measures are calculated. The systems are considered in transient and stationary regime.
Exact non-Markovian master equation for the spin-boson and Jaynes-Cummings models
Ferialdi, L.
2017-02-01
We provide the exact non-Markovian master equation for a two-level system interacting with a thermal bosonic bath, and we write the solution of such a master equation in terms of the Bloch vector. We show that previous approximated results are particular limits of our exact master equation. We generalize these results to more complex systems involving an arbitrary number of two-level systems coupled to different thermal baths, providing the exact master equations also for these systems. As an example of this general case we derive the master equation for the Jaynes-Cummings model.
(Batch) Markovian arrival processes: the identifiability issue and other applied aspects
Rodríguez César, Joanna Virginia
2015-01-01
Mención Internacional en el título de doctor This dissertation is mainly motivated by the problem of statistical modeling via a specific point process, namely, the Batch Markovian arrival processes. Point processes arise in a wide range of situations of our daily activities, such as people arriving to a bank, claims of an insurance company or failures in a system. They are defined by the occurrence of an event at a specific time, where the event occurrences may be understood from different...
Modelling the effect of telegraph noise in the SIRS epidemic model using Markovian switching
Greenhalgh, D.; Liang, Y.; Mao, X.
2016-11-01
We discuss the effect of introducing telegraph noise, which is an example of an environmental noise, into the susceptible-infectious-recovered-susceptible (SIRS) model by examining the model using a finite-state Markov Chain (MC). First we start with a two-state MC and show that there exists a unique nonnegative solution and establish the conditions for extinction and persistence. We then explain how the results can be generalised to a finite-state MC. The results for the SIR (Susceptible-Infectious-Removed) model with Markovian Switching (MS) are a special case. Numerical simulations are produced to confirm our theoretical results.
Schmidtke, Daniel; Gemmer, Jochen
2016-01-01
Closed quantum systems obey the Schrödinger equation, whereas nonequilibrium behavior of many systems is routinely described in terms of classical, Markovian stochastic processes. Evidently, there are fundamental differences between those two types of behavior. We discuss the conditions under which the unitary dynamics may be mapped onto pertinent classical stochastic processes. This is first principally addressed based on the notions of "consistency" and "Markovianity." Numerical data are presented that show that the above conditions are to good approximation fulfilled for Heisenberg-type spin models comprising 12-20 spins. The accuracy to which these conditions are met increases with system size.
Schultz, Christopher J.; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte
2012-01-01
The lightning jump algorithm has a robust history in correlating upward trends in lightning to severe and hazardous weather occurrence. The algorithm uses the correlation between the physical principles that govern an updraft's ability to produce microphysical and kinematic conditions conducive for electrification and its role in the development of severe weather conditions. Recent work has demonstrated that the lightning jump algorithm concept holds significant promise in the operational realm, aiding in the identification of thunderstorms that have potential to produce severe or hazardous weather. However, a large amount of work still needs to be completed in spite of these positive results. The total lightning jump algorithm is not a stand-alone concept that can be used independent of other meteorological measurements, parameters, and techniques. For example, the algorithm is highly dependent upon thunderstorm tracking to build lightning histories on convective cells. Current tracking methods show that thunderstorm cell tracking is most reliable and cell histories are most accurate when radar information is incorporated with lightning data. In the absence of radar data, the cell tracking is a bit less reliable but the value added by the lightning information is much greater. For optimal application, the algorithm should be integrated with other measurements that assess storm scale properties (e.g., satellite, radar). Therefore, the recent focus of this research effort has been assessing the lightning jump's relation to thunderstorm tracking, meteorological parameters, and its potential uses in operational meteorology. Furthermore, the algorithm must be tailored for the optically-based GOES-R Geostationary Lightning Mapper (GLM), as what has been observed using Very High Frequency Lightning Mapping Array (VHF LMA) measurements will not exactly translate to what will be observed by GLM due to resolution and other instrument differences. Herein, we present some of
Promoting balance and jumping skills in children with Down syndrome.
Wang, Wai-Yi; Ju, Yun-Huei
2002-04-01
The purpose of this study was to investigate the changes in balance and qualitative and quantitative jumping performances by 20 children with Down syndrome (3 to 6 years) on jumping lessons. 30 typical children ages 3 to 6 years were recruited as a comparison group. Before the jumping lesson, a pretest was given subjects for balance and jumping skill measures based on the Motor Proficiency and Motor Skill Inventory, respectively. Subjects with Down syndrome received 3 sessions on jumping per week for 6 weeks but not the typical children. Then, a posttest was administered to all subjects. Analysis of covariance showed the pre- and posttest differences on scores for floor walk, beam walk, and horizontal and vertical jumping by subjects with Down syndrome were significantly greater than those for the typical children.
Theoretical Modeling of Internal Hydraulic Jump in Density Currents
Firoozabadi, Bahar; Aryanfar, Asghar; Afshin, Hossein
2013-01-01
In this paper, we propose an analytical framework for internal hydraulic jumps. Density jumps or internal hydraulic jumps occur when a supper critical flow of water discharges into a stagnant layer of water with slightly different density. The approach used here is control volume method which is also used to analyze ordinary hydraulic jumps. The important difference here is that entrainment is taken into account. Using conservation equations with the aid of some simplifying assumptions we come to an equation that gives jump downstream height as function of jump upstream characteristics and the entrainment. To determine the magnitude of downstream height we use an experimental equation for calculating the entrainment. Finally we verify our framework by comparing the height that we gain from the derived equation with some experimental data.
A-jump in horizontal inverted semicircular open channels
Directory of Open Access Journals (Sweden)
I.M.H. Rashwan
2013-12-01
Full Text Available The hydraulic jump is a transitional state from supercritical to subcritical flow. The phenomenon of the hydraulic jump has been widely studied because of its frequent occurrence in nature and because of its uses in many practical applications. In the present study the momentum principle is used to derive an equation expressed the hydraulic jump (A-jump occurred in a short horizontal reach of an inverted semicircular open channel. The derived equation indicates that the initial water depth and the tail water depth (conjugate depths are functions of the critical water depth. Various elements of the hydraulic jump are expressed in dimensionless case. The procedure of dimensionless ratios described in the present paper can be used to determine various elements of A-jump in an inverted semicircular channel when either the discharge and the relative initial depth (or tail water depth is known or the discharge and the relative dissipated energy are known.
A Jump-Diffusion Model with Stochastic Volatility and Durations
DEFF Research Database (Denmark)
Wei, Wei; Pelletier, Denis
Market microstructure theories suggest that the durations between transactions carry information about volatility. This paper puts forward a model featuring stochastic volatility, stochastic conditional duration, and jumps to analyze high frequency returns and durations. Durations affect price...... jumps in two ways: as exogenous sampling intervals, and through the interaction with volatility. We adopt a bivariate Ornstein-Ulenbeck process to model intraday volatility and conditional duration. We develop a MCMC algorithm for the inference on irregularly spaced multivariate processes with jumps....... The algorithm provides smoothed estimates of the latent variables such as spot volatility, conditional duration, jump times, and jump sizes. We apply this model to IBM data and find that volatility and conditional duration are interdependent. We also find that jumps play an important role in return variation...
Dharmawan, Komang
2017-03-01
It has been claimed in many literatures that the prices of some agriculture commodities tend to follow mean reversion. However, when dealing with the prices of agriculture commodities, is mean-reversion realistic enough without incorporating seasonality and jump diffusion? This research tries to answer the question. The combination between mean-reversion feature, jump and seasonal components are applied to model the behavior of agriculture commodity prices. A jump and seasonal components are added to the standard mean-reverting process in order to reproduce the spiky or jump behaviors. This model has been well applied on simulating the electricity prices but it has not been applied to investigate the behavior of agriculture commodity prices yet. This paper discusses the performance of the model when it is used to price European call options. First, the deterministic seasonality part is calibrated using the least square method. The second stage is to calibrate the stochastic part based on historical prices. The parameters are calibrated by discretizing the model. Hence, the discretized model allows us to perform Monte Carlo simulation on the commodity price under real-word probability. The analysis is conducted using 2 future price of Crude Palm Oil and Coffee Bean on standard payoff functions, a Basket, a Spread, Best of Call, and Worst of Call Options.
Pure Electron Equilibrium and Transport Jumps in the Columbia Non-neutral Torus
Hahn, M.; Pedersen, T. Sunn; Marksteiner, Q.; Berkery, J.; Brenner, P. W.
2008-11-01
CNT is a simple stellarator being used to study pure electron plasmas. The dependence of the equilibrium on the location of the electron source has been studied. When the emitter is displaced from the magnetic axis the equilibrium on the inner surfaces is consistent with a global thermal equilibrium, as demonstrated by comparing measurements with the results of a numerical equilibrium solver. The equilibrium of a pure electron plasma depends on electrostatic boundary conditions. Recently a conducting boundary conforming to the last closed flux surface was installed. Experimental studies have been done to characterize the equilibrium with this new boundary condition and compare it to the results with the non-conforming boundary. For an internal emitter in a steady state plasma the loss rate of electrons is the same as the total emission current. As parameters are varied to increase transport abrupt jumps in the emission current occur at particular currents. The jumps imply discontinuous changes in the confinement time and are accompanied by measureable changes in the equilibrium. Using multiple emitters it has been shown that the jumps occur at the local emission current not the total transport rate, which strongly suggests that the jumps are caused by a cathode instability. Supported by NSF-DOE grant NSF-PHY-04-49813.
pH-jump induced α-helix folding of poly-L-glutamic acid
Donten, Mateusz L.; Hamm, Peter
2013-08-01
pH jumps are a truly biomimetic technique to initiate non-equilibrium dynamics of biomolecules. In this work, the pH jump induced α-helix folding of poly-L-glutamic acid is investigated upon proton release from o-nitrobenzaldehyde. The aim of this work is twofold: On the one hand, design criteria of pH jump experiments are discussed, on the other hand, the folding mechanism of poly-L-glutamic acid is clarified by probing the IR response of the amide I band. Its folding kinetics is studied in dependence of the starting pD, the size of the pD jump and the length of the helix. While no dependence on the first two parameters could be detected, the folding time varies from 0.6 μs to 1.8 μs for helix lengths of 20 residue to 440 residue, respectively. It converges to a long-length limit at about 50 residue, a result which is attributed to a nucleation-propagation mechanism.
Approximation of Jump Diffusions in Finance and Economics
Nicola Bruti-Liberati; Eckhard Platen
2006-01-01
In finance and economics the key dynamics are often specified via stochastic differential equations (SDEs) of jump-diffusion type. The class of jump-diffusion SDEs that admits explicit solutions is rather limited. Consequently, discrete time approximations are required. In this paper we give a survey of strong and weak numerical schemes for SDEs with jumps. Strong schemes provide pathwise approximations and therefore can be employed in scenario analysis, filtering or hedge simulation. Weak sc...
Times and Sizes of Jumps in the Mexican Interest Rate
José Antonio Núñez Mora; Arturo Lorenzo Valdés
2008-01-01
This paper examines the role of jumps in a continuous-time short-term interest rate model for Mexico. A filtering algorithm provides estimates of jumps times and sizes in the time series of Mexican cetes for the 1998-2006 period. The empirical results indicate that the inclusion of jumps in the diffusion model represents a better alternative than not to include them.
ABC of SV: Limited Information Likelihood Inference in Stochastic Volatility Jump-Diffusion Models
DEFF Research Database (Denmark)
Creel, Michael; Kristensen, Dennis
We develop novel methods for estimation and filtering of continuous-time models with stochastic volatility and jumps using so-called Approximate Bayesian Computation which build likelihoods based on limited information. The proposed estimators and filters are computationally attractive relative...... to standard likelihood-based versions since they rely on low-dimensional auxiliary statistics and so avoid computation of high-dimensional integrals. Despite their computational simplicity, we find that estimators and filters perform well in practice and lead to precise estimates of model parameters...... stochastic volatility model for the dynamics of the S&P 500 equity index. We find evidence of the presence of a dynamic jump rate and in favor of a structural break in parameters at the time of the recent financial crisis. We find evidence that possible measurement error in log price is small and has little...
Multiobjective Optimization Methodology A Jumping Gene Approach
Tang, KS
2012-01-01
Complex design problems are often governed by a number of performance merits. These markers gauge how good the design is going to be, but can conflict with the performance requirements that must be met. The challenge is reconciling these two requirements. This book introduces a newly developed jumping gene algorithm, designed to address the multi-functional objectives problem and supplies a viably adequate solution in speed. The text presents various multi-objective optimization techniques and provides the technical know-how for obtaining trade-off solutions between solution spread and converg
Planar jumping-drop thermal diodes
Boreyko, Jonathan B.; Zhao, Yuejun; Chen, Chuan-Hua
2011-12-01
Phase-change thermal diodes rectify heat transport much more effectively than solid-state ones, but are limited by either the gravitational orientation or one-dimensional configuration. Here, we report a planar phase-change diode scalable to large areas with an orientation-independent diodicity of over 100, in which water/vapor is enclosed by parallel superhydrophobic and superhydrophilic plates. The thermal rectification is enabled by spontaneously jumping dropwise condensate which only occurs when the superhydrophobic surface is colder than the superhydrophilic surface.
Understanding the physics of bungee jumping
Heck, A; Uylings, P.; Kędzierska, E.
2010-01-01
Changing mass phenomena like the motion of a falling chain, the behaviour of a falling elastic bar or spring, and the motion of a bungee jumper surprise many a physicist. In this article we discuss the first phase of bungee jumping, when the bungee jumper falls, but the bungee rope is still slack. In instructional material this phase is often considered a free fall, but when the mass of the bungee rope is taken into account, the bungee jumper reaches acceleration greater than g. This result i...
Description of interacting channel gating using a stochastic Markovian model.
Manivannan, K; Mathias, R T; Gudowska-Nowak, E
1996-01-01
Single-channel recordings from membrane patches frequently exhibit multiple conductance levels. In some preparations, the steady-state probabilities of observing these levels do not follow a binomial distribution. This behavior has been reported in sodium channels, potassium channels, acetylcholine receptor channels and gap junction channels. A non-binomial distribution suggests interaction of the channels or the presence of channels or the presence of channels with different open probabilities. However, the current trace sometimes exhibits single transitions spanning several levels. Since the probability of simultaneous transitions of independent channels is infinitesimally small, such observations strongly suggest a cooperative gating behavior. We present a Markov model to describe the cooperative gating of channels using only the all-points current amplitude histograms for the probability of observing the various conductance levels. We investigate the steady-state (or equilibrium) properties of a system of N channels and provide a scheme to express all the probabilities in terms of just two parameters. The main feature of our model is that lateral interaction of channels gives rise to cooperative gating. Another useful feature is the introduction of the language of graph theory which can potentially provide a different avenue to study ion channel kinetics. We write down explicit expressions for systems of two, three and four channels and provide a procedure to describe the system of N channels.
Quantifying show jumping horse rider expertise using IMUs.
Patterson, M; Doyle, J; Cahill, E; Caulfield, B; McCarthy Persson, U
2010-01-01
Horse rider ability has long been measured using horse performance, competition results and visual observation. Scientific methods of measuring rider ability on the flat are emerging such as measuring position angles and harmony of the horse-rider system. To date no research has quantified rider ability in show jumping. Kinematic analysis and motion sensors have been used in sports other than show jumping to measure the quality of motor control patterns in humans. The aim of this study was to quantify rider ability in show jumping using body-mounted IMUs. Preliminary results indicate that there are clear differences in experienced and novice riders during show jumping.
Distance perception in the spiny mouse Acomys cahirinus: vertical jumping.
Goldman, M; Skolnick, A J; Hernandez, T P; Tobach, E
1992-12-01
Acomys cahirinus, a precocial muroid, that has shown precise jumping in the natural habitat, did not jump from 25 cm in a laboratory situation. To investigate this further, A. cahirinus were observed jumping from platforms at two different heights, onto different sized checkered substrates and from a visual cliff. Adult animals discriminated between platforms that were 6.4 cm and 25.4 cm above the substrate and between small and large checkered patterns on the floor. Most adult animals and neonates jumped down on the shallow side of the visual cliff. Animals developed individual patterns of jumping over a series of trials, with some jumping often, some rarely, and others jumping only from the low platform. Good distance perception was indicated when they did not jump from heights, and by their making appropriate postural adjustment when they did jump from heights and landed without mishap. Different spacing of trials indicated that height was a more effective stimulus for animals which had all four conditions on the same day, while floor pattern was more effective for animals with each of the four conditions on a separate day.
Long memory behavior of returns after intraday financial jumps
Behfar, Stefan Kambiz
2016-11-01
In this paper, characterization of intraday financial jumps and time dynamics of returns after jumps is investigated, and will be analytically and empirically shown that intraday jumps are power-law distributed with the exponent 1 finance, it is important to be able to distinguish between jumps and continuous sample path price movements, and this can be achieved by introducing a statistical test via calculating sums of products of returns over small period of time. In the case of having jump, the null hypothesis for normality test is rejected; this is based on the idea that returns are composed of mixture of normally-distributed and power-law distributed data (∼ 1 /r 1 + μ). Probability of rejection of null hypothesis is a function of μ, which is equal to one for 1 high returns after jumps are the effect; we show that returns caused by jump decay as power-law distribution. To test this idea empirically, we average over the time dynamics of all days; therefore the superposed time dynamics after jump represent a power-law, which indicates that there is a long memory with a power-law distribution of return after jump.
Biomechanics research in ski jumping, 1991-2006.
Schwameder, Hermann
2008-01-01
In this paper, I review biomechanics research in ski jumping with a specific focus on publications presented between 1991 and 2006 on performance enhancement, limiting factors of the take-off, specific training and conditioning, aerodynamics, and safety. The first section presents a brief description of ski jumping phases (in-run, take-off, early flight, stable flight, and landing) regarding the biomechanical and functional fundamentals. The most important and frequently used biomechanical methods in ski jumping (kinematics, ground reaction force analyses, muscle activation patterns, aerodynamics) are summarized in the second section. The third section focuses on ski jumping articles and research findings published after the establishment of the V-technique in 1991, as the introduction of this technique has had a major influence on performance enhancement, ski jumping regulations, and the construction of hill profiles. The final section proposes topics for future research in the biomechanics of ski jumping, including: take-off and early flight and the relative roles of vertical velocity and forward somersaulting angular momentum; optimal jumping patterns utilizing the capabilities of individual athletes; development of kinematic and kinetic feedback systems for hill jumps; comparisons of simulated and hill jumps; effect of equipment modifications on performance and safety enhancement.
Competitive Lotka-Volterra Population Dynamics with Jumps
Bao, Jianhai; Yin, Geroge; Yuan, Chenggui
2011-01-01
This paper considers competitive Lotka-Volterra population dynamics with jumps. The contributions of this paper are as follows. (a) We show stochastic differential equation (SDE) with jumps associated with the model has a unique global positive solution; (b) We discuss the uniform boundedness of $p$th moment with $p>0$ and reveal the sample Lyapunov exponents; (c) Using a variation-of-constants formula for a class of SDEs with jumps, we provide explicit solution for 1-dimensional competitive Lotka-Volterra population dynamics with jumps, and investigate the sample Lyapunov exponent for each component and the extinction of our $n$-dimensional model.
pH jump induced α-helix folding.
Directory of Open Access Journals (Sweden)
Donten M. L.
2013-03-01
Full Text Available pH can be used to impact the folding equilibrium of peptides and proteins. This fact is utilized, similarly to temperature jumps, in pH jump experiments employing laser time-resolved spectroscopy to study the function and structural dynamics of these molecules. Here the application of pH jumps in folding experiments was investigated. Experiments with poly-L-glutamic acid alpha-helix formation shown the critical aspects of pH jump experiments and yielded direct information about the folding kinetics monitored with the amide I IR band.
Effect of drop jump technique on the reactive strength index
Directory of Open Access Journals (Sweden)
Struzik Artur
2016-09-01
Full Text Available The basic drill of plyometric training aimed at improving lower limb power and jump height is a drop jump. This exercise can be performed using different techniques, which substantially affects jump variables. Therefore, the aim of this study was to compare the values of the reactive strength index (RSI for countermovement drop jumps (CDJs and bounce drop jumps (BDJs. The study was carried out in a group of 8 male youth basketball players. The tests were conducted using the AMTI BP600900 force plate to measure ground reaction forces and the Noraxon MyoMotion system to record kinematic data. Each player performed two CDJs and two BDJs from the height of 15, 30, 45 and 60 cm. The RSI was calculated as a ratio of jump height and contact time. Moreover, the RSI was determined for the amortization and take-off phases separately. Significant differences (p < 0.05 between RSI values for CDJs and BDJs were recorded for jumps from 30, 45 and 60 cm. Differences in RSI values for jumps from 15 cm were not significant. Furthermore, CDJ height values were significantly higher (p < 0.05 than the values recorded for BDJs. Times of contact, amortization and take-off during BDJs were significantly shorter (p < 0.05 than the respective values obtained for CDJs. Therefore, the use of the RSI to monitor plyometric training should be based on the drop jump technique that is commonly performed by basketball players.
Development of a Minimally Actuated Jumping-Rolling Robot
Directory of Open Access Journals (Sweden)
Thanhtam Ho
2015-04-01
Full Text Available This paper presents development of a hybrid mobile robot in order to take advantage of both rolling and jumping locomotion on the ground. According to the unique design of the mechanism, the robot is able to execute both jumping and rolling skilfully by using only one DC motor. Changing the centre of gravity enables rolling of the robot and storage of energy is utilized for jumping. Mechanism design and control logic are validated by computer simulation. Simulation results show that the robot can jump nearly 1.3 times its diameter and roll at the speed of 3.3 times its diameter per second.
Effects of Gender, Load, and Backpack on Easy Standing and Vertical Jump Performance. Volume 2
1982-03-01
OOVT ACCESSION NO. 3. RECIPIENT’S CATALOO NUMBER «. TITLE (md Subtitl.) VOLUME II, EFFECTS OF GENDER, LOAD, AND BACKPACK ON EASY STANDING AND...worn or carried and the type of backpack used on parameters of the easy standing and vertical jumping performance of men ajnd women. Fourteen men and...3 - combat gear (Load 2 plus PASGT helmet, PASGT armor vest, simulated M16 rifle); Load A - combat gear and 20-lb backpack oo,; JAM 7» 1473
Non-Markovian spiking statistics of a neuron with delayed feedback in presence of refractoriness.
Kravchuk, Kseniia; Vidybida, Alexander
2014-02-01
Spiking statistics of a self-inhibitory neuron is considered. The neuron receives excitatory input from a Poisson stream and inhibitory impulses through a feedback line with a delay. After triggering, the neuron is in the refractory state for a positive period of time. Recently, [35,6], it was proven for a neuron with delayed feedback and without the refractory state, that the output stream of interspike intervals (ISI) cannot be represented as a Markov process. The refractory state presence, in a sense limits the memory range in the spiking process, which might restore Markov property to the ISI stream. Here we check such a possibility. For this purpose, we calculate the conditional probability density P (tn+1 l tn,...,t1,t0), and prove exactly that it does not reduce to P (tn+1 l tn,...,t1) for any n ⋝0. That means, that activity of the system with refractory state as well cannot be represented as a Markov process of any order. We conclude that it is namely the delayed feedback presence which results in non-Markovian statistics of neuronal firing. As delayed feedback lines are common for any realistic neural network, the non-Markovian statistics of the network activity should be taken into account in processing of experimental data.