WorldWideScience

Sample records for markovian individual-based model

  1. Markovian Building Blocks for Individual-Based Modelling

    DEFF Research Database (Denmark)

    Nilsson, Lars Anders Fredrik

    2007-01-01

    The present thesis consists of a summary report, four research articles, one technical report and one manuscript. The subject of the thesis is individual-based stochastic models. The summary report is composed of three parts and a brief history of some basic models in population biology....... This history is included in order to provide a reader that has no previous exposure to models in population biology with a sufficient background to understand some of the biological models that are mentioned in the thesis. The first part of the rest of the summary is a description of the dramatic changes...... in the degree of aggregation of sprat or herring in the Baltic during the day, with special focus on the dispersion of the fish from schools at dusk. The next part is a brief introduction to Markovian arrival processes, a type of stochastic processes with potential applications as sub-models in population...

  2. Markovian Building Blocks for Individual-Based Modelling

    OpenAIRE

    Nilsson, Lars Anders Fredrik; Nielsen, Bo Friis; Thygesen, Uffe Høgsbro; Beyer, Jan

    2007-01-01

    The present thesis consists of a summary report, four research articles, one technical report and one manuscript. The subject of the thesis is individual-based stochastic models. The summary report is composed of three parts and a brief history of some basic models in population biology. This history is included in order to provide a reader that has no previous exposure to models in population biology with a sufficient background to understand some of the biological models that are mentioned ...

  3. OVERLOAD ANALYSIS OF MARKOVIAN MODELS

    Institute of Scientific and Technical Information of China (English)

    Yiqiang Q. ZHAO

    1999-01-01

    A new procedure for computing stationary probabilities for an overloaded Markovian model is proposed interms of the rotated Markov chain.There are two advantages to use this procedure:i) This procedure allows us to approximate an overloaded finite model by using a stable infinite Markov chain. This will makethe study easier when the infinite model has a simpler solution.ii) Numerically, this procedure often significantly reduces the number of computations and the requirement of computer memory. By using different examples,we specifically demonstratethe process of implementing this rotating procedure.

  4. An optimal promotion cost control model for a markovian manpower ...

    African Journals Online (AJOL)

    An optimal promotion cost control model for a markovian manpower system. ... Log in or Register to get access to full text downloads. ... A theory concerning the existence of an optimal promotion control strategy for controlling a Markovian ...

  5. Formalisms for Specifying Markovian Population Models

    Science.gov (United States)

    Henzinger, Thomas A.; Jobstmann, Barbara; Wolf, Verena

    We compare several languages for specifying Markovian population models such as queuing networks and chemical reaction networks. These languages —matrix descriptions, stochastic Petri nets, stoichiometric equations, stochastic process algebras, and guarded command models— all describe continuous-time Markov chains, but they differ according to important properties, such as compositionality, expressiveness and succinctness, executability, ease of use, and the support they provide for checking the well-formedness of a model and for analyzing a model.

  6. Think continuous: Markovian Gaussian models in spatial statistics

    CERN Document Server

    Simpson, Daniel; Rue, Håvard

    2011-01-01

    Gaussian Markov random fields (GMRFs) are frequently used as computationally efficient models in spatial statistics. Unfortunately, it has traditionally been difficult to link GMRFs with the more traditional Gaussian random field models as the Markov property is difficult to deploy in continuous space. Following the pioneering work of Lindgren et al. (2011), we expound on the link between Markovian Gaussian random fields and GMRFs. In particular, we discuss the theoretical and practical aspects of fast computation with continuously specified Markovian Gaussian random fields, as well as the clear advantages they offer in terms of clear, parsimonious and interpretable models of anisotropy and non-stationarity.

  7. On stochastic Gilpin-Ayala population model with Markovian switching.

    Science.gov (United States)

    Settati, Adel; Lahrouz, Aadil

    2015-04-01

    In this paper, we analyze a stochastic Gilpin-Ayala population model with Markovian switching and white noise. The Gilpin-Ayala parameter is also allowed to switch. We establish the global stability of the trivial equilibrium state of the model. Verifiable sufficient conditions which guarantee the extinction and persistence are provided. Furthermore, we show the existence of a stationary distribution. The analytical results are illustrated by computer simulations.

  8. On a Markovian approach for modeling passive solar devices

    Energy Technology Data Exchange (ETDEWEB)

    Bottazzi, F.; Liebling, T.M. (Chaire de Recherche Operationelle, Ecole Polytechnique Federale de Lausanne (Switzerland)); Scartezzini, J.L.; Nygaard-Ferguson, M. (Lab. d' Energie Solaire et de Physique du Batiment, Ecole Polytechnique Federale de Lausanne (Switzerland))

    1991-01-01

    Stochastic models for the analysis of the energy and thermal comfort performances of passive solar devices have been increasingly studied for over a decade. A new approach to thermal building modeling, based on Markov chains, is proposed here to combine both the accuracy of traditional dynamic simulation with the practical advantages of simplified methods. A main difficulty of the Markovian approach is the discretization of the system variables. Efficient procedures have been developed to carry out this discretization and several numerical experiments have been performed to analyze the possibilities and limitations of the Markovian model. Despite its restrictive assumptions, it will be shown that accurate results are indeed obtained by this method. However, due to discretization, computer memory reqirements are more than inversely proportional to accuracy. (orig.).

  9. MODELS FOR NETWORK DYNAMICS - A MARKOVIAN FRAMEWORK

    NARCIS (Netherlands)

    LEENDERS, RTAJ

    1995-01-01

    A question not very often addressed in social network analysis relates to network dynamics and focuses on how networks arise and change. It alludes to the idea that ties do not arise or vanish randomly, but (partly) as a consequence of human behavior and preferences. Statistical models for modeling

  10. Objectivity in the non-Markovian spin-boson model

    Science.gov (United States)

    Lampo, Aniello; Tuziemski, Jan; Lewenstein, Maciej; Korbicz, Jarosław K.

    2017-07-01

    Objectivity constitutes one of the main features of the macroscopic classical world. An important aspect of the quantum-to-classical transition issue is to explain how such a property arises from the microscopic quantum theory. Recently, within the framework of open quantum systems, there has been proposed such a mechanism in terms of the so-called spectrum broadcast structures. These are multipartite quantum states of the system of interest and a part of its environment, assumed to be under an observation. This approach requires a departure from the standard open quantum systems methods, as the environment cannot be completely neglected. In the present paper we study the emergence of such a state structure in one of the canonical models of the condensed-matter theory: the spin-boson model, describing the dynamics of a two-level system coupled to an environment made up by a large number of harmonic oscillators. We pay much attention to the behavior of the model in the non-Markovian regime, in order to provide a testbed to analyze how the non-Markovian nature of the evolution affects the surfacing of a spectrum broadcast structure.

  11. Quantum correlations dynamics under different non-markovian environmental models

    CERN Document Server

    Zhang, Ying-Jie; Shan, Chuan-Jia; Xia, Yun-Jie

    2011-01-01

    We investigate the roles of different environmental models on quantum correlation dynamics of two-qubit composite system interacting with two independent environments. The most common environmental models (the single-Lorentzian model, the squared-Lorentzian model, the two-Lorentzian model and band-gap model) are analyzed. First, we note that for the weak coupling regime, the monotonous decay speed of the quantum correlation is mainly determined by the spectral density functions of these different environments. Then, by considering the strong coupling regime we find that, contrary to what is stated in the weak coupling regime, the dynamics of quantum correlation depends on the non-Markovianity of the environmental models, and is independent of the environmental spectrum density functions.

  12. A Markovian Process Modeling for Pickomino

    Science.gov (United States)

    Cardon, Stéphane; Chetcuti-Sperandio, Nathalie; Delorme, Fabien; Lagrue, Sylvain

    This paper deals with a nondeterministic game based on die rolls and on the "stop or continue" principle: Pickomino. During his turn, each participant has to make the best decisions first to choose the dice to keep, then to choose between continuing or stopping depending on the previous rolls and on the available resources. Markov Decision Processes (MDPs) offer the formal framework to model this game. The two main problems are first to determine the set of states, then to compute the transition probabilities.

  13. Alternatives to the Markovian Model for the Tubulent Refractive Index in Lightwave Propagation

    CERN Document Server

    Pérez, D G; Perez, Dario G.; Zunino, Luciano

    2003-01-01

    We discuss in this letter the markovian model and its limitations when applied to model the turbulent refractive index in lightwave propagation. Not being aware are these limitations usually leads to severe mistakes as we will point out here. It is widely known the index is a passive scalar field; moreover, with our actual knowledge about these quantities we will propose an alternative stochastic process to the markovian model.

  14. Super-Exponential Solution in Markovian Supermarket Models: Framework and Challenge

    OpenAIRE

    Li, Quan-Lin

    2011-01-01

    Marcel F. Neuts opened a key door in numerical computation of stochastic models by means of phase-type (PH) distributions and Markovian arrival processes (MAPs). To celebrate his 75th birthday, this paper reports a more general framework of Markovian supermarket models, including a system of differential equations for the fraction measure and a system of nonlinear equations for the fixed point. To understand this framework heuristically, this paper gives a detailed analysis for three importan...

  15. A non-Markovian model of rill erosion

    Science.gov (United States)

    Winter, C.; Damron, M.

    2009-12-01

    Stochastic processes with reinforcement are inherently non-Markovian and therefore may model geophysical processes with memory, for instance patterns of rill erosion, more realistically than Markovian models. Reinforcement provides a bias to a system that is equivalent to infinite memory, making a system more likely to occupy a given state the more often the state is visited. Some well-studied examples in applied mathematics include variations on the urn of P'olya and reinforced random walks. Many natural phenomena exhibit similar behavior: for instance, an overall pattern of rills is relatively stable once it is established, although small details of the pattern may change frequently and catastrophes that permanently alter it may occasionally occur. To model the phenomenology of rill erosion, we propose a simple discrete time, infinite-memory random process defined on the nodes and edges of an oriented diagonal lattice. Lattice models have often been used to investigate the morphology of natural drainage networks, but our focus is as much on the dynamics of network formation as it is on morphology. The lattice in our model starts out smooth in the sense that it has no edges initially, but it sprouts edges everywhere the instant the process starts, much as rain can start soil erosion everywhere on a hillslope at once. Exactly one edge (rill segment) descends from each node, and it points either left or right. Sediment loads travel along networks of edges and are accumulated at nodes. At every node and at every time step, a simple two parameter reinforcing law randomly determines the direction of the node’s output and then is updated. The degree of reinforcement is set by comparing the node's current sediment load to the load history of the entire network above it and is governed by two system parameters representing respectively rainfall intensity and the soil’s resistance to change. The current pattern of connections among nodes represents the present state of

  16. Markovian language model of the DNA and its information content

    CERN Document Server

    Srivastava, Shambhavi

    2015-01-01

    This work proposes a markovian memoryless model for the DNA that simplifies enormously the complexity of it. We encode nucleotide sequences into symbolic sequences, called words, from which we establish meaningful length of words and group of words that share symbolic similarities. Interpreting a node to represent a group of similar words and edges to represent their functional connectivity allows us to construct a network of the grammatical rules governing the appearance of group of words in the DNA. Our model allows to predict the transition between group of words in the DNA with unprecedented accuracy, and to easily calculate many informational quantities to better characterize the DNA. In addition, we reduce the DNA of known bacteria to a network of only tens of nodes, show how our model can be used to detect similar (or dissimilar) genes in different organisms, and which sequences of symbols are responsible for the most of the information content of the DNA. Therefore, the DNA can indeed be treated as a ...

  17. Non-Markovian Second-Order Quantum Master Equation and Its Markovian Limit: Electronic Energy Transfer in Model Photosynthetic Systems

    CERN Document Server

    Singh, Navinder

    2011-01-01

    A direct numerical algorithm for solving the time-nonlocal non-Markovian master equation in the second Born approximation is introduced and the range of utility of this approximation, and of the Markov approximation, is analyzed for the traditional dimer system that models excitation energy transfer in photosynthesis. Specifically, the coupled integro-differential equations for the reduced density matrix are solved by an efficient auxiliary function method in both the energy and site representations. In addition to giving exact results to this order, the approach allows us to computationally assess the range of the reorganization energy and decay rates of the phonon auto-correlation function for which the Markovian Redfield theory and the second order approximation is valid. For example, the use of Redfield theory for $\\lambda> 10 \\textrm{cm}^{-1}$ in systems like Fenna-Mathews-Olson (FMO) type systems is shown to be in error. In addition, analytic inequalities are obtained for the regime of validity of the M...

  18. An Individual-based Probabilistic Model for Fish Stock Simulation

    Directory of Open Access Journals (Sweden)

    Federico Buti

    2010-08-01

    Full Text Available We define an individual-based probabilistic model of a sole (Solea solea behaviour. The individual model is given in terms of an Extended Probabilistic Discrete Timed Automaton (EPDTA, a new formalism that is introduced in the paper and that is shown to be interpretable as a Markov decision process. A given EPDTA model can be probabilistically model-checked by giving a suitable translation into syntax accepted by existing model-checkers. In order to simulate the dynamics of a given population of soles in different environmental scenarios, an agent-based simulation environment is defined in which each agent implements the behaviour of the given EPDTA model. By varying the probabilities and the characteristic functions embedded in the EPDTA model it is possible to represent different scenarios and to tune the model itself by comparing the results of the simulations with real data about the sole stock in the North Adriatic sea, available from the recent project SoleMon. The simulator is presented and made available for its adaptation to other species.

  19. Individual based and mean-field modeling of direct aggregation

    KAUST Repository

    Burger, Martin

    2013-10-01

    We introduce two models of biological aggregation, based on randomly moving particles with individual stochasticity depending on the perceived average population density in their neighborhood. In the firstorder model the location of each individual is subject to a density-dependent random walk, while in the second-order model the density-dependent random walk acts on the velocity variable, together with a density-dependent damping term. The main novelty of our models is that we do not assume any explicit aggregative force acting on the individuals; instead, aggregation is obtained exclusively by reducing the individual stochasticity in response to higher perceived density. We formally derive the corresponding mean-field limits, leading to nonlocal degenerate diffusions. Then, we carry out the mathematical analysis of the first-order model, in particular, we prove the existence of weak solutions and show that it allows for measure-valued steady states. We also perform linear stability analysis and identify conditions for pattern formation. Moreover, we discuss the role of the nonlocality for well-posedness of the first-order model. Finally, we present results of numerical simulations for both the first- and second-order model on the individual-based and continuum levels of description. 2012 Elsevier B.V. All rights reserved.

  20. Non-Markovianity, coherence, and system-environment correlations in a long-range collision model

    Science.gov (United States)

    Ćakmak, B.; Pezzutto, M.; Paternostro, M.; Müstecaplıoǧlu, Ö. E.

    2017-08-01

    We consider the dynamics of a collisional model in which both the system and environment are embodied by spin-1 /2 particles. In order to include non-Markovian features in our model, we introduce interactions among the environmental qubits and investigate the effect that different models of such interaction have on the degree of non-Markovianity of the system's dynamics. By extending that interaction beyond the nearest neighbor, we enhance the degree of non-Markovianity in the system's dynamics. A further significant increase can be observed if a collective interaction with the forthcoming environmental qubits is considered. However, the observed degree of non-Markovianity in this case is nonmonotonic with the increasing number of qubits included in the interaction. Moreover, one can establish a connection between the degree of non-Markovianity in the evolution of the system and the fading behavior of quantum coherence in its state as the number of collisions grows. We complement our study with an investigation of system-environment correlations and present an example of their importance on a physical upper bound on the trace distance derivative.

  1. IBSEM: An Individual-Based Atlantic Salmon Population Model.

    Directory of Open Access Journals (Sweden)

    Marco Castellani

    Full Text Available Ecology and genetics can influence the fate of individuals and populations in multiple ways. However, to date, few studies consider them when modelling the evolutionary trajectory of populations faced with admixture with non-local populations. For the Atlantic salmon, a model incorporating these elements is urgently needed because many populations are challenged with gene-flow from non-local and domesticated conspecifics. We developed an Individual-Based Salmon Eco-genetic Model (IBSEM to simulate the demographic and population genetic change of an Atlantic salmon population through its entire life-cycle. Processes such as growth, mortality, and maturation are simulated through stochastic procedures, which take into account environmental variables as well as the genotype of the individuals. IBSEM is based upon detailed empirical data from salmon biology, and parameterized to reproduce the environmental conditions and the characteristics of a wild population inhabiting a Norwegian river. Simulations demonstrated that the model consistently and reliably reproduces the characteristics of the population. Moreover, in absence of farmed escapees, the modelled populations reach an evolutionary equilibrium that is similar to our definition of a 'wild' genotype. We assessed the sensitivity of the model in the face of assumptions made on the fitness differences between farm and wild salmon, and evaluated the role of straying as a buffering mechanism against the intrusion of farm genes into wild populations. These results demonstrate that IBSEM is able to capture the evolutionary forces shaping the life history of wild salmon and is therefore able to model the response of populations under environmental and genetic stressors.

  2. Improving Adaptive Importance Sampling Simulation of Markovian Queueing Models using Non-parametric Smoothing

    NARCIS (Netherlands)

    Woudt, Edwin; de Boer, Pieter-Tjerk; van Ommeren, Jan C.W.

    2007-01-01

    Previous work on state-dependent adaptive importance sampling techniques for the simulation of rare events in Markovian queueing models used either no smoothing or a parametric smoothing technique, which was known to be non-optimal. In this paper, we introduce the use of kernel smoothing in this con

  3. Reliability Analysis of Wireless Sensor Networks Using Markovian Model

    Directory of Open Access Journals (Sweden)

    Jin Zhu

    2012-01-01

    Full Text Available This paper investigates reliability analysis of wireless sensor networks whose topology is switching among possible connections which are governed by a Markovian chain. We give the quantized relations between network topology, data acquisition rate, nodes' calculation ability, and network reliability. By applying Lyapunov method, sufficient conditions of network reliability are proposed for such topology switching networks with constant or varying data acquisition rate. With the conditions satisfied, the quantity of data transported over wireless network node will not exceed node capacity such that reliability is ensured. Our theoretical work helps to provide a deeper understanding of real-world wireless sensor networks, which may find its application in the fields of network design and topology control.

  4. Modelling the effect of telegraph noise in the SIRS epidemic model using Markovian switching

    Science.gov (United States)

    Greenhalgh, D.; Liang, Y.; Mao, X.

    2016-11-01

    We discuss the effect of introducing telegraph noise, which is an example of an environmental noise, into the susceptible-infectious-recovered-susceptible (SIRS) model by examining the model using a finite-state Markov Chain (MC). First we start with a two-state MC and show that there exists a unique nonnegative solution and establish the conditions for extinction and persistence. We then explain how the results can be generalised to a finite-state MC. The results for the SIR (Susceptible-Infectious-Removed) model with Markovian Switching (MS) are a special case. Numerical simulations are produced to confirm our theoretical results.

  5. Doubly Exponential Solution for Randomized Load Balancing Models with Markovian Arrival Processes and PH Service Times

    OpenAIRE

    Li,Quan-Lin; Lui, John C. S.

    2010-01-01

    In this paper, we provide a novel matrix-analytic approach for studying doubly exponential solutions of randomized load balancing models (also known as supermarket models) with Markovian arrival processes (MAPs) and phase-type (PH) service times. We describe the supermarket model as a system of differential vector equations by means of density dependent jump Markov processes, and obtain a closed-form solution with a doubly exponential structure to the fixed point of the system of differential...

  6. Doubly Exponential Solution for Randomized Load Balancing Models with Markovian Arrival Processes and PH Service Times

    OpenAIRE

    Li, Quan-Lin; Lui, John C. S.

    2010-01-01

    In this paper, we provide a novel matrix-analytic approach for studying doubly exponential solutions of randomized load balancing models (also known as supermarket models) with Markovian arrival processes (MAPs) and phase-type (PH) service times. We describe the supermarket model as a system of differential vector equations by means of density dependent jump Markov processes, and obtain a closed-form solution with a doubly exponential structure to the fixed point of the system of differential...

  7. Non-Markovian coarse-grained modeling of polymeric fluids based on the Mori-Zwanzig formalism

    Science.gov (United States)

    Li, Zhen; Bian, Xin; Li, Xiantao; Karniadakis, George

    The Mori-Zwanzig formalism for coarse-graining a complex dynamical system typically introduces memory effects. The Markovian assumption of delta-correlated fluctuating forces is often employed to simplify the formulation of coarse-grained (CG) models and numerical implementations. However, when the time scales of a system are not clearly separated, the memory effects become strong and the Markovian assumption becomes inaccurate. To this end, we incorporate memory effects into CG modeling by preserving non-Markovian interactions between CG variables based on the Mori-Zwanzig formalism. For a specific example, molecular dynamics (MD) simulations of star polymer melts are performed while the corresponding CG system is defined by grouping many bonded atoms into single clusters. Then, the effective interactions between CG clusters as well as the memory kernel are obtained from the MD simulations. The constructed CG force field with a memory kernel leads to a non-Markovian dissipative particle dynamics (NM-DPD). Quantitative comparisons on both static and dynamic properties between the CG models with Markovian and non-Markovian approximations will be presented. Supported by the DOE Center on Mathematics for Mesoscopic Modeling of Materials (CM4) and an INCITE grant.

  8. A paradox in individual-based models of populations

    NARCIS (Netherlands)

    Van der Meer, J.

    2016-01-01

    The standard dynamic energy budget model is widely used to describe the physiology of individual animals. It assumes thatassimilation rate scales with body surface area, whereas maintenance rate scales with body volume. When the model is usedas the building block of a population model, only limited

  9. Individual-based modeling of fish: Linking to physical models and water quality.

    Energy Technology Data Exchange (ETDEWEB)

    Rose, K.A.

    1997-08-01

    The individual-based modeling approach for the simulating fish population and community dynamics is gaining popularity. Individual-based modeling has been used in many other fields, such as forest succession and astronomy. The popularity of the individual-based approach is partly a result of the lack of success of the more aggregate modeling approaches traditionally used for simulating fish population and community dynamics. Also, recent recognition that it is often the atypical individual that survives has fostered interest in the individual-based approach. Two general types of individual-based models are distribution and configuration. Distribution models follow the probability distributions of individual characteristics, such as length and age. Configuration models explicitly simulate each individual; the sum over individuals being the population. DeAngelis et al (1992) showed that, when distribution and configuration models were formulated from the same common pool of information, both approaches generated similar predictions. The distribution approach was more compact and general, while the configuration approach was more flexible. Simple biological changes, such as making growth rate dependent on previous days growth rates, were easy to implement in the configuration version but prevented simple analytical solution of the distribution version.

  10. Individual-based modeling of fish: Linking to physical models and water quality.

    Energy Technology Data Exchange (ETDEWEB)

    Rose, K.A.

    1997-08-01

    The individual-based modeling approach for the simulating fish population and community dynamics is gaining popularity. Individual-based modeling has been used in many other fields, such as forest succession and astronomy. The popularity of the individual-based approach is partly a result of the lack of success of the more aggregate modeling approaches traditionally used for simulating fish population and community dynamics. Also, recent recognition that it is often the atypical individual that survives has fostered interest in the individual-based approach. Two general types of individual-based models are distribution and configuration. Distribution models follow the probability distributions of individual characteristics, such as length and age. Configuration models explicitly simulate each individual; the sum over individuals being the population. DeAngelis et al (1992) showed that, when distribution and configuration models were formulated from the same common pool of information, both approaches generated similar predictions. The distribution approach was more compact and general, while the configuration approach was more flexible. Simple biological changes, such as making growth rate dependent on previous days growth rates, were easy to implement in the configuration version but prevented simple analytical solution of the distribution version.

  11. Exact non-Markovian master equation for the spin-boson and Jaynes-Cummings models

    Science.gov (United States)

    Ferialdi, L.

    2017-02-01

    We provide the exact non-Markovian master equation for a two-level system interacting with a thermal bosonic bath, and we write the solution of such a master equation in terms of the Bloch vector. We show that previous approximated results are particular limits of our exact master equation. We generalize these results to more complex systems involving an arbitrary number of two-level systems coupled to different thermal baths, providing the exact master equations also for these systems. As an example of this general case we derive the master equation for the Jaynes-Cummings model.

  12. Mixed H2/H∞ Pitch Control of Wind Turbine with a Markovian Jump Model

    DEFF Research Database (Denmark)

    Lin, Zhongwei; Liu, Jizhen; Wu, Qiuwei

    2016-01-01

    to guarantee both the disturbance rejection and the mechanical loads objectives, which can reduce the power volatility and the generator torque fluctuation of the whole transmission mechanism efficiently. Simulation results for a 2 MW wind turbine show the effectiveness of the proposed method.......This paper proposes a Markovian jump model and the corresponding H2 /H∞ control strategy for the wind turbine driven by the stochastic switching wind speed, which can be used to regulate the generator speed in order to harvest the rated power while reducing the fatigue loads on the mechanical side...

  13. Super-Exponential Solution in Markovian Supermarket Models: Framework and Challenge

    CERN Document Server

    Li, Quan-Lin

    2011-01-01

    Marcel F. Neuts opened a key door in numerical computation of stochastic models by means of phase-type (PH) distributions and Markovian arrival processes (MAPs). To celebrate his 75th birthday, this paper reports a more general framework of Markovian supermarket models, including a system of differential equations for the fraction measure and a system of nonlinear equations for the fixed point. To understand this framework heuristically, this paper gives a detailed analysis for three important supermarket examples: M/G/1 type, GI/M/1 type and multiple choices, explains how to derive the system of differential equations by means of density-dependent jump Markov processes, and shows that the fixed point may be simply super-exponential through solving the system of nonlinear equations. Note that supermarket models are a class of complicated queueing systems and their analysis can not apply popular queueing theory, it is necessary in the study of supermarket models to summarize such a more general framework which...

  14. Testing Markovianity in the three-state progressive model via future-past association.

    Science.gov (United States)

    Rodríguez-Girondo, Mar; de Uña-Álvarez, Jacobo

    2012-03-01

    The three-state progressive model is a special multi-state model with important applications in Survival Analysis. It provides a suitable representation of the individual's history when an intermediate event (with a possible influence on the survival prognosis) is experienced before the main event of interest. Estimation of transition probabilities in this and other multi-state models is usually performed through the Aalen-Johansen estimator. However, Aalen-Johansen may be biased when the underlying process is not Markov. In this paper, we provide a new approach for testing Markovianity in the three-state progressive model. The new method is based on measuring the future-past association along time. This results in a deep inspection of the process that often reveals a non-Markovian behaviour with different trends in the association measure. A test of significance for zero future-past association at each time point is introduced, and a significance trace is proposed accordingly. The finite sample performance of the test is investigated through simulations. We illustrate the new method through real data analysis. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Spatial capture-recapture models allowing Markovian transience or dispersal

    Science.gov (United States)

    Royle, J. Andrew; Fuller, Angela K.; Sutherland, Chris

    2016-01-01

    Spatial capture–recapture (SCR) models are a relatively recent development in quantitative ecology, and they are becoming widely used to model density in studies of animal populations using camera traps, DNA sampling and other methods which produce spatially explicit individual encounter information. One of the core assumptions of SCR models is that individuals possess home ranges that are spatially stationary during the sampling period. For many species, this assumption is unlikely to be met and, even for species that are typically territorial, individuals may disperse or exhibit transience at some life stages. In this paper we first conduct a simulation study to evaluate the robustness of estimators of density under ordinary SCR models when dispersal or transience is present in the population. Then, using both simulated and real data, we demonstrate that such models can easily be described in the BUGS language providing a practical framework for their analysis, which allows us to evaluate movement dynamics of species using capture–recapture data. We find that while estimators of density are extremely robust, even to pathological levels of movement (e.g., complete transience), the estimator of the spatial scale parameter of the encounter probability model is confounded with the dispersal/transience scale parameter. Thus, use of ordinary SCR models to make inferences about density is feasible, but interpretation of SCR model parameters in relation to movement should be avoided. Instead, when movement dynamics are of interest, such dynamics should be parameterized explicitly in the model.

  16. Preisach models of hysteresis driven by Markovian input processes

    Science.gov (United States)

    Schubert, Sven; Radons, Günter

    2017-08-01

    We study the response of Preisach models of hysteresis to stochastically fluctuating external fields. We perform numerical simulations, which indicate that analytical expressions derived previously for the autocorrelation functions and power spectral densities of the Preisach model with uncorrelated input, hold asymptotically also if the external field shows exponentially decaying correlations. As a consequence, the mechanisms causing long-term memory and 1 /f noise in Preisach models with uncorrelated inputs still apply in the presence of fast decaying input correlations. We collect additional evidence for the importance of the effective Preisach density previously introduced even for Preisach models with correlated inputs. Additionally, we present some results for the output of the Preisach model with uncorrelated input using analytical methods. It is found, for instance, that in order to produce the same long-time tails in the output, the elementary hysteresis loops of large width need to have a higher weight for the generic Preisach model than for the symmetric Preisach model. Further, we find autocorrelation functions and power spectral densities to be monotonically decreasing independently of the choice of input and Preisach density.

  17. Data-driven non-Markovian closure models

    Science.gov (United States)

    Kondrashov, Dmitri; Chekroun, Mickaël D.; Ghil, Michael

    2015-03-01

    This paper has two interrelated foci: (i) obtaining stable and efficient data-driven closure models by using a multivariate time series of partial observations from a large-dimensional system; and (ii) comparing these closure models with the optimal closures predicted by the Mori-Zwanzig (MZ) formalism of statistical physics. Multilayer stochastic models (MSMs) are introduced as both a generalization and a time-continuous limit of existing multilevel, regression-based approaches to closure in a data-driven setting; these approaches include empirical model reduction (EMR), as well as more recent multi-layer modeling. It is shown that the multilayer structure of MSMs can provide a natural Markov approximation to the generalized Langevin equation (GLE) of the MZ formalism. A simple correlation-based stopping criterion for an EMR-MSM model is derived to assess how well it approximates the GLE solution. Sufficient conditions are derived on the structure of the nonlinear cross-interactions between the constitutive layers of a given MSM to guarantee the existence of a global random attractor. This existence ensures that no blow-up can occur for a broad class of MSM applications, a class that includes non-polynomial predictors and nonlinearities that do not necessarily preserve quadratic energy invariants. The EMR-MSM methodology is first applied to a conceptual, nonlinear, stochastic climate model of coupled slow and fast variables, in which only slow variables are observed. It is shown that the resulting closure model with energy-conserving nonlinearities efficiently captures the main statistical features of the slow variables, even when there is no formal scale separation and the fast variables are quite energetic. Second, an MSM is shown to successfully reproduce the statistics of a partially observed, generalized Lotka-Volterra model of population dynamics in its chaotic regime. The challenges here include the rarity of strange attractors in the model's parameter

  18. Description of interacting channel gating using a stochastic Markovian model.

    Science.gov (United States)

    Manivannan, K; Mathias, R T; Gudowska-Nowak, E

    1996-01-01

    Single-channel recordings from membrane patches frequently exhibit multiple conductance levels. In some preparations, the steady-state probabilities of observing these levels do not follow a binomial distribution. This behavior has been reported in sodium channels, potassium channels, acetylcholine receptor channels and gap junction channels. A non-binomial distribution suggests interaction of the channels or the presence of channels or the presence of channels with different open probabilities. However, the current trace sometimes exhibits single transitions spanning several levels. Since the probability of simultaneous transitions of independent channels is infinitesimally small, such observations strongly suggest a cooperative gating behavior. We present a Markov model to describe the cooperative gating of channels using only the all-points current amplitude histograms for the probability of observing the various conductance levels. We investigate the steady-state (or equilibrium) properties of a system of N channels and provide a scheme to express all the probabilities in terms of just two parameters. The main feature of our model is that lateral interaction of channels gives rise to cooperative gating. Another useful feature is the introduction of the language of graph theory which can potentially provide a different avenue to study ion channel kinetics. We write down explicit expressions for systems of two, three and four channels and provide a procedure to describe the system of N channels.

  19. Doubly Exponential Solution for Randomized Load Balancing Models with Markovian Arrival Processes and PH Service Times

    CERN Document Server

    Li, Quan-Lin

    2010-01-01

    In this paper, we provide a novel matrix-analytic approach for studying doubly exponential solution of randomized load balancing models (also known as the supermarket models) with Markovian arrival processes (MAPs) and PH service times. We describe the supermarket model as a system of differential vector equations, and obtain a close-form solution: doubly exponential structure, for the fixed point of the system of differential vector equations. Based on this, we show that the fixed point is decomposited into two groups of information under a product form: the arrival information and the service information, and indicate that the doubly exponential solution to the fixed point is not always unique for more general supermarket models. Furthermore, we analyze the exponential convergence of the current location of the supermarket model to its fixed point, and study the Lipschitz condition in the Kurtz Theorem under MAP arrivals and PH service times. This paper gains a new understanding how the workload probing can...

  20. Monte Carlo markovian modeling of modal competition in dual-wavelength semiconductor lasers

    Science.gov (United States)

    Chusseau, Laurent; Philippe, Fabrice; Jean-Marie, Alain

    2014-03-01

    Monte Carlo markovian models of a dual-mode semiconductor laser with quantum well (QW) or quantum dot (QD) active regions are proposed. Accounting for carriers and photons as particles that may exchange energy in the course of time allows an ab initio description of laser dynamics such as the mode competition and intrinsic laser noise. We used these models to evaluate the stability of the dual-mode regime when laser characteristics are varied: mode gains and losses, non-radiative recombination rates, intraband relaxation time, capture time in QD, transfer of excitation between QD via the wetting layer. . . As a major result, a possible steady-sate dualmode regime is predicted for specially designed QD semiconductor lasers thereby acting as a CW microwave or terahertz-beating source whereas it does not occur for QW lasers.

  1. An individual-based simulation model for mottled sculpin (Cottus bairdi) in a southern Appalachian stream

    Science.gov (United States)

    Brenda Rashleigh; Gary D. Grossman

    2005-01-01

    We describe and analyze a spatially explicit, individual-based model for the local population dynamics of mottled sculpin (Cottus bairdi). The model simulated daily growth, mortality, movement and spawning of individuals within a reach of stream. Juvenile and adult growth was based on consumption bioenergetics of benthic macroinvertebrate prey;...

  2. Detection of exudates in fundus images using a Markovian segmentation model.

    Science.gov (United States)

    Harangi, Balazs; Hajdu, Andras

    2014-01-01

    Diabetic retinopathy (DR) is one of the most common causing of vision loss in developed countries. In early stage of DR, some signs like exudates appear in the retinal images. An automatic screening system must be capable to detect these signs properly so that the treatment of the patients may begin in time. The appearance of exudates shows a rich variety regarding their shape and size making automatic detection more challenging. We propose a way for the automatic segmentation of exudates consisting of a candidate extraction step followed by exact contour detection and region-wise classification. More specifically, we extract possible exudate candidates using grayscale morphology and their proper shape is determined by a Markovian segmentation model considering edge information. Finally, we label the candidates as true or false ones by an optimally adjusted SVM classifier. For testing purposes, we considered the publicly available database DiaretDB1, where the proposed method outperformed several state-of-the-art exudate detectors.

  3. Pricing Exotic Options under a High-Order Markovian Regime Switching Model

    Directory of Open Access Journals (Sweden)

    Wai-Ki Ching

    2007-01-01

    by a discrete-time Markovian regime-switching process driven by an observable, high-order Markov model (HOMM. We assume that the market interest rate, the drift, and the volatility of the underlying risky asset's return switch over time according to the states of the HOMM, which are interpreted as the states of an economy. We will then employ the well-known tool in actuarial science, namely, the Esscher transform to determine an equivalent martingale measure for option valuation. Moreover, we will also investigate the impact of the high-order effect of the states of the economy on the prices of some path-dependent exotic options, such as Asian options, lookback options, and barrier options.

  4. Non-Markovian Model for Transport and Reactions of Particles in Spiny Dendrites

    Science.gov (United States)

    Fedotov, Sergei; Méndez, Vicenç

    2008-11-01

    Motivated by the experiments [Santamaria , Neuron 52, 635 (2006)NERNET0896-627310.1016/j.neuron.2006.10.025] that indicated the possibility of subdiffusive transport of molecules along dendrites of cerebellar Purkinje cells, we develop a mesoscopic model for transport and chemical reactions of particles in spiny dendrites. The communication between spines and a parent dendrite is described by a non-Markovian random process and, as a result, the overall movement of particles can be subdiffusive. A system of integrodifferential equations is derived for the particles densities in dendrites and spines. This system involves the spine-dendrite interaction term which describes the memory effects and nonlocality in space. We consider the impact of power-law waiting time distributions on the transport of biochemical signals and mechanism of the accumulation of plasticity-inducing signals inside spines.

  5. Qubit Decoherence and Non-Markovian Dynamics at Low Temperatures via an Effective Spin-Boson Model

    CERN Document Server

    Shiokawa, K

    2004-01-01

    Quantum Brownian oscillator model (QBM), in the Fock-space representation, can be viewed as a multi-level spin-boson model. At sufficiently low temperature, the oscillator degrees of freedom are dynamically reduced to the lowest two levels and the system behaves effectively as a two-level (E2L) spin-boson model (SBM) in this limit. We discuss the physical mechanism of level reduction and analyze the behavior of E2L-SBM from the QBM solutions. The availability of close solutions for the QBM enables us to study the non-Markovian features of decoherence and leakage in a SBM in the non-perturbative regime (e.g. without invoking the Born approximation) in better details than before. Our result captures very well the characteristic non-Markovian short time low temperature behavior common in many models.

  6. Individual-based models of collective dynamics in socio-economic systems

    OpenAIRE

    Carro Patiño, Adrián

    2016-01-01

    The main purpose of this thesis is to contribute to the understanding of how complex collective behaviors emerge in social and economic systems. To this end, we use a combination of mathematical analysis and computational simulations along the lines of the agent- or individual-based modeling paradigm. In particular, we focus on three main topics: opinion dynamics, herding behavior in financial markets, and language competition. Opinion dynamics models focus on the processes of opinion for...

  7. Markovian risk process

    Institute of Scientific and Technical Information of China (English)

    WANG Han-xing; YAN Yun-zhi; ZHAO Fei; FANG Da-fan

    2007-01-01

    A Markovian risk process is considered in this paper, which is the generalization of the classical risk model. It is proper that a risk process with large claims is modelled as the Markovian risk model. In such a model, the occurrence of claims is described by a point process {N(t)}t≥o with N(t) being the number of jumps during the interval (0, t] for a Markov jump process. The ruin probability Ψ(u) of a company facing such a risk model is mainly studied. An integral equation satisfied by the ruin probability function Ψ(u) is obtained and the bounds for the convergence rate of the ruin probability Ψ(u) are given by using a generalized renewal technique developed in the paper.

  8. Coupling of an Individual-Based Model of Anchovy with Lower Trophic Level and Hydrodynamic Models

    Institute of Scientific and Technical Information of China (English)

    WANG Yuheng; WEI Hao; Michio J. Kishi

    2013-01-01

    Anchovy (Engraulisjaponicus),a small pelagic fish and food of other economic fishes,is a key species in the Yellow Sea ecosystem.Understanding the mechanisms of its recruitment and biomass variation is important for the prediction and management of fishery resources.Coupled with a hydrodynamic model (POM) and a lower trophic level ecosystem model (NEMURO),an individual-based model of anchovy is developed to study the influence of physical environment on anchovy's biomass variation.Seasonal variations of circulation,water temperature and mix-layer depth from POM are used as external forcing for NEMURO and the anchovy model.Biomasses of large zooplankton and predatory zooplankton which anchovy feeds on are output from NEMURO and are controlled by the consumption of anchovy on them.Survival fitness theory related to temperature and food is used to determine the swimming action of anchovy in the model.The simulation results agree well with observations and elucidate the influence of temperature in over-wintering migration and food in feeding migration.

  9. Predation and the phasing of sleep : an evolutionary individual-based model

    OpenAIRE

    Acerbi, Alberto; Nunn, Charles Lindsay

    2011-01-01

    All mammals thus far studied sleep, yet important questions remain concerning the ecological factors that influence sleep patterns. Here, we developed an evolutionary individual-based model to investigate the effect of predation pressure on prey sleep. We investigated three ecological conditions, including one that assumed a dynamic interaction between predator and prey behaviour. In condition 1, we found that monophasic predators (i.e. with one sleep bout per 24 h) select for monophasic prey...

  10. Calculation of the distribution of eigenvalues and eigenvectors in Markovian state models for molecular dynamics.

    Science.gov (United States)

    Hinrichs, Nina Singhal; Pande, Vijay S

    2007-06-28

    Markovian state models (MSMs) are a convenient and efficient means to compactly describe the kinetics of a molecular system as well as a formalism for using many short simulations to predict long time scale behavior. Building a MSM consists of grouping the conformations into states and estimating the transition probabilities between these states. In a previous paper, we described an efficient method for calculating the uncertainty due to finite sampling in the mean first passage time between two states. In this paper, we extend the uncertainty analysis to derive similar closed-form solutions for the distributions of the eigenvalues and eigenvectors of the transition matrix, quantities that have numerous applications when using the model. We demonstrate the accuracy of the distributions on a six-state model of the terminally blocked alanine peptide. We also show how to significantly reduce the total number of simulations necessary to build a model with a given precision using these uncertainty estimates for the blocked alanine system and for a 2454-state MSM for the dynamics of the villin headpiece.

  11. Non-Markovian Diffusive Unravellings of Entanglement

    CERN Document Server

    Corn, Brittany; Yu, Ting

    2011-01-01

    The fully quantized model of two qubits coupled to a common bath is solved using the quantum state diffusion (QSD) approach in the non-Markovian regime. We have established an explicit time-local non-Markovian QSD equation for the two-qubit dissipative model. Diffusive quantum trajectories are applied to the entanglement estimation of two-qubit systems in a non-Markovian regime. In another interesting example, we have also considered exact entanglement unravellings for a dephasing model. In both cases, non-Markovian features of entanglement evolution are revealed through quantum diffusive unravellings in the qubit state space.

  12. Modelling hen harrier dynamics to inform human-wildlife conflict resolution: a spatially-realistic, individual-based approach

    National Research Council Canada - National Science Library

    Heinonen, Johannes P M; Palmer, Stephen C F; Redpath, Steve M; Travis, Justin M J

    2014-01-01

    Individual-based models have gained popularity in ecology, and enable simultaneous incorporation of spatial explicitness and population dynamic processes to understand spatio-temporal patterns of populations...

  13. SIMULTANEOUS MULTI-BAND DETECTION OF LOW SURFACE BRIGHTNESS GALAXIES WITH MARKOVIAN MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Vollmer, B.; Bonnarel, F.; Louys, M. [CDS, Observatoire Astronomique, UMR 7550, 11 rue de l' universite, F-67000 Strasbourg (France); Perret, B.; Petremand, M.; Lavigne, F.; Collet, Ch. [LSIIT, Universite de Strasbourg, 7, Rue Rene Descartes, F-67084 Strasbourg (France); Van Driel, W. [GEPI, Observatoire de Paris, CNRS, Universite Paris Diderot, 5 place Jules Janssen, F-92190 Meudon (France); Sabatini, S. [INAF/IASF-Roma, via Fosso de Cavaliere 100, I-00133 Roma (Italy); MacArthur, L. A., E-mail: Bernd.Vollmer@astro.unistra.fr [Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, BC V9E 2E7 (Canada)

    2013-02-01

    We present to the astronomical community an algorithm for the detection of low surface brightness (LSB) galaxies in images, called MARSIAA (MARkovian Software for Image Analysis in Astronomy), which is based on multi-scale Markovian modeling. MARSIAA can be applied simultaneously to different bands. It segments an image into a user-defined number of classes, according to their surface brightness and surroundings-typically, one or two classes contain the LSB structures. We have developed an algorithm, called DetectLSB, which allows the efficient identification of LSB galaxies from among the candidate sources selected by MARSIAA. The application of the method to two and three bands simultaneously was tested on simulated images. Based on our tests, we are confident that we can detect LSB galaxies down to a central surface brightness level of only 1.5 times the standard deviation from the mean pixel value in the image background. To assess the robustness of our method, the method was applied to a set of 18 B- and I-band images (covering 1.3 deg{sup 2} in total) of the Virgo Cluster to which Sabatini et al. previously applied a matched-filter dwarf LSB galaxy search algorithm. We have detected all 20 objects from the Sabatini et al. catalog which we could classify by eye as bona fide LSB galaxies. Our method has also detected four additional Virgo Cluster LSB galaxy candidates undetected by Sabatini et al. To further assess the completeness of the results of our method, both MARSIAA, SExtractor, and DetectLSB were applied to search for (1) mock Virgo LSB galaxies inserted into a set of deep Next Generation Virgo Survey (NGVS) gri-band subimages and (2) Virgo LSB galaxies identified by eye in a full set of NGVS square degree gri images. MARSIAA/DetectLSB recovered {approx}20% more mock LSB galaxies and {approx}40% more LSB galaxies identified by eye than SExtractor/DetectLSB. With a 90% fraction of false positives from an entirely unsupervised pipeline, a completeness of

  14. Enzyme as catalytic wheel powered by a Markovian engine: conformational coupling and barrier surfing models

    Science.gov (United States)

    Tsong, Tian Yow; Chang, Cheng-Hung

    2005-05-01

    We examine a typical Michaelis-Menten Enzyme (MME) and redress it to form a transducer of free energy, and electric, acoustic, or other types of energy. This amendment and extension is necessary in lieu of recent experiments in which enzymes are shown to perform pump, motor, and locomotion functions resembling their macroscopic counterparts. Classical textbook depicts enzyme, or an MME, as biocatalyst which can enhance the rate of a chemical reaction by lowering the activation barrier but cannot shift the thermodynamic equilibrium of the biochemical reaction. An energy transducer, on the other hand, must also be able to harvest, store, or divert energy and in doing so alter the chemical equilibrium, change the energy form, fuel an energy consuming process, or perform all these functions stepwise in one catalytic turnover. The catalytic wheel presented in this communication is both a catalyst and an energy transducer and can perform all these tasks with ease. A Conformational Coupling Model for the rotary motors and a Barrier Surfing Model for the track-guided stepping motors and transporters, are presented and compared. It is shown that the core engine of the catalytic wheel, or a Brownian motor, is a Markovian engine. It remains to be seen if this core engine is the basic mechanism for a wide variety of bio-molecular energy transducers, as well as certain other dynamic systems, for example, the Parrondo's Games.

  15. An individual-based model of zebrafish population dynamics accounting for energy dynamics.

    Directory of Open Access Journals (Sweden)

    Rémy Beaudouin

    Full Text Available Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model was coupled to an individual based model of zebrafish population dynamics (IBM model. Next, we fitted the DEB model to new experimental data on zebrafish growth and reproduction thus improving existing models. We further analysed the DEB-model and DEB-IBM using a sensitivity analysis. Finally, the predictions of the DEB-IBM were compared to existing observations on natural zebrafish populations and the predicted population dynamics are realistic. While our zebrafish DEB-IBM model can still be improved by acquiring new experimental data on the most uncertain processes (e.g. survival or feeding, it can already serve to predict the impact of compounds at the population level.

  16. Non-Markovian closure models for large eddy simulations using the Mori-Zwanzig formalism

    Science.gov (United States)

    Parish, Eric J.; Duraisamy, Karthik

    2017-01-01

    This work uses the Mori-Zwanzig (M-Z) formalism, a concept originating from nonequilibrium statistical mechanics, as a basis for the development of coarse-grained models of turbulence. The mechanics of the generalized Langevin equation (GLE) are considered, and insight gained from the orthogonal dynamics equation is used as a starting point for model development. A class of subgrid models is considered which represent nonlocal behavior via a finite memory approximation [Stinis, arXiv:1211.4285 (2012)], the length of which is determined using a heuristic that is related to the spectral radius of the Jacobian of the resolved variables. The resulting models are intimately tied to the underlying numerical resolution and are capable of approximating non-Markovian effects. Numerical experiments on the Burgers equation demonstrate that the M-Z-based models can accurately predict the temporal evolution of the total kinetic energy and the total dissipation rate at varying mesh resolutions. The trajectory of each resolved mode in phase space is accurately predicted for cases where the coarse graining is moderate. Large eddy simulations (LESs) of homogeneous isotropic turbulence and the Taylor-Green Vortex show that the M-Z-based models are able to provide excellent predictions, accurately capturing the subgrid contribution to energy transfer. Last, LESs of fully developed channel flow demonstrate the applicability of M-Z-based models to nondecaying problems. It is notable that the form of the closure is not imposed by the modeler, but is rather derived from the mathematics of the coarse graining, highlighting the potential of M-Z-based techniques to define LES closures.

  17. Are individual based models a suitable approach to estimate population vulnerability? - a case study

    Directory of Open Access Journals (Sweden)

    Eva Maria Griebeler

    2011-04-01

    Full Text Available European populations of the Large Blue Butterfly Maculinea arion have experienced severe declines in the last decades, especially in the northern part of the species range. This endangered lycaenid butterfly needs two resources for development: flower buds of specific plants (Thymus spp., Origanum vulgare, on which young caterpillars briefly feed, and red ants of the genus Myrmica, whose nests support caterpillars during a prolonged final instar. I present an analytically solvable deterministic model to estimate the vulnerability of populations of M. arion. Results obtained from the sensitivity analysis of this mathematical model (MM are contrasted to the respective results that had been derived from a spatially explicit individual based model (IBM for this butterfly. I demonstrate that details in landscape configuration which are neglected by the MM but are easily taken into consideration by the IBM result in a different degree of intraspecific competition of caterpillars on flower buds and within host ant nests. The resulting differences in mortalities of caterpillars lead to erroneous estimates of the extinction risk of a butterfly population living in habitat with low food plant coverage and low abundance in host ant nests. This observation favors the use of an individual based modeling approach over the deterministic approach at least for the management of this threatened butterfly.

  18. Controlling chaos in ecology: from deterministic to individual-based models.

    Science.gov (United States)

    Solé, R V; Gamarra, J G; Ginovart, M; López, D

    1999-11-01

    The possibility of chaos control in biological systems has been stimulated by recent advances in the study of heart and brain tissue dynamics. More recently, some authors have conjectured that such a method might be applied to population dynamics and even play a nontrivial evolutionary role in ecology. In this paper we explore this idea by means of both mathematical and individual-based simulation models. Because of the intrinsic noise linked to individual behavior, controlling a noisy system becomes more difficult but, as shown here, it is a feasible task allowed to be experimentally tested.

  19. Self-optimization, community stability, and fluctuations in two individual-based models of biological coevolution

    CERN Document Server

    Rikvold, Per Arne

    2007-01-01

    We compare and contrast the long-time dynamical properties of two individual-based models of biological coevolution. Selection occurs via multispecies, stochastic population dynamics with reproduction probabilities that depend nonlinearly on the population densities of all species resident in the community. New species are introduced through mutation. Both models are amenable to exact linear stability analysis, and we compare the analytic results with large-scale kinetic Monte Carlo simulations, obtaining the population size as a function of an average interspecies interaction strength. Over time, the models self-optimize through mutation and selection to approximately maximize a community fitness function, subject only to constraints internal to the particular model. If the interspecies interactions are randomly distributed on an interval including positive values, the system evolves toward self-sustaining, mutualistic communities. In contrast, for the predator-prey case the matrix of interactions is antisym...

  20. Individual-based models for adaptive diversification in high-dimensional phenotype spaces.

    Science.gov (United States)

    Ispolatov, Iaroslav; Madhok, Vaibhav; Doebeli, Michael

    2016-02-07

    Most theories of evolutionary diversification are based on equilibrium assumptions: they are either based on optimality arguments involving static fitness landscapes, or they assume that populations first evolve to an equilibrium state before diversification occurs, as exemplified by the concept of evolutionary branching points in adaptive dynamics theory. Recent results indicate that adaptive dynamics may often not converge to equilibrium points and instead generate complicated trajectories if evolution takes place in high-dimensional phenotype spaces. Even though some analytical results on diversification in complex phenotype spaces are available, to study this problem in general we need to reconstruct individual-based models from the adaptive dynamics generating the non-equilibrium dynamics. Here we first provide a method to construct individual-based models such that they faithfully reproduce the given adaptive dynamics attractor without diversification. We then show that a propensity to diversify can be introduced by adding Gaussian competition terms that generate frequency dependence while still preserving the same adaptive dynamics. For sufficiently strong competition, the disruptive selection generated by frequency-dependence overcomes the directional evolution along the selection gradient and leads to diversification in phenotypic directions that are orthogonal to the selection gradient. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Is pertussis actually reemerging? Insights from an individual-based model.

    Science.gov (United States)

    Codeço, C T; Luz, P M

    2001-01-01

    In this paper, we introduce a spatially explicit, individual-based model developed to simulate the dynamics of pertussis in a small population. With this simulation approach, complex epidemic systems can be built using information on parasite population structure (strain diversity, virulence diversity, etc.), human population structure (individual risk, age structure, interaction matrices, immune response, etc.), as well as mechanisms of evolution and learning. We parameterized our model to describe pertussis in an age-structured community. Pertussis or whooping cough is an acute infection of the respiratory tract caused by Bordetella pertussis. Despite wide-scale vaccination in many countries, this disease is reemerging throughout the world in both adults and children. Emergence has been explained by many factors: wane of vaccine and natural immunity, increase of asymptomatic carriers, and/or natural selection of non-vaccine strains. Here, we model these hypotheses and analyze their potential impact on the observed increase of pertussis notification.

  2. Is pertussis actually reemerging? Insights from an individual-based model

    Directory of Open Access Journals (Sweden)

    Codeço Cláudia Torres

    2001-01-01

    Full Text Available In this paper, we introduce a spatially explicit, individual-based model developed to simulate the dynamics of pertussis in a small population. With this simulation approach, complex epidemic systems can be built using information on parasite population structure (strain diversity, virulence diversity, etc., human population structure (individual risk, age structure, interaction matrices, immune response, etc., as well as mechanisms of evolution and learning. We parameterized our model to describe pertussis in an age-structured community. Pertussis or whooping cough is an acute infection of the respiratory tract caused by Bordetella pertussis. Despite wide-scale vaccination in many countries, this disease is reemerging throughout the world in both adults and children. Emergence has been explained by many factors: wane of vaccine and natural immunity, increase of asymptomatic carriers, and/or natural selection of non-vaccine strains. Here, we model these hypotheses and analyze their potential impact on the observed increase of pertussis notification.

  3. Is pertussis actually reemerging? Insights from an individual-based model

    Directory of Open Access Journals (Sweden)

    Cláudia Torres Codeço

    2001-06-01

    Full Text Available In this paper, we introduce a spatially explicit, individual-based model developed to simulate the dynamics of pertussis in a small population. With this simulation approach, complex epidemic systems can be built using information on parasite population structure (strain diversity, virulence diversity, etc., human population structure (individual risk, age structure, interaction matrices, immune response, etc., as well as mechanisms of evolution and learning. We parameterized our model to describe pertussis in an age-structured community. Pertussis or whooping cough is an acute infection of the respiratory tract caused by Bordetella pertussis. Despite wide-scale vaccination in many countries, this disease is reemerging throughout the world in both adults and children. Emergence has been explained by many factors: wane of vaccine and natural immunity, increase of asymptomatic carriers, and/or natural selection of non-vaccine strains. Here, we model these hypotheses and analyze their potential impact on the observed increase of pertussis notification.

  4. An application of superpositions of two-state Markovian sources to the modelling of self-similar behaviour

    DEFF Research Database (Denmark)

    Andersen, Allan T.; Nielsen, Bo Friis

    1997-01-01

    We present a modelling framework and a fitting method for modelling second order self-similar behaviour with the Markovian arrival process (MAP). The fitting method is based on fitting to the autocorrelation function of counts a second order self-similar process. It is shown that with this fitting...... algorithm it is possible closely to match the autocorrelation function of counts for a second order self-similar process over 3-5 time-scales with 8-16 state MAPs with a very simple structure, i.e. a superposition of 3 and 4 interrupted Poisson processes (IPP) respectively and a Poisson process. The fitting...

  5. USING ECO-EVOLUTIONARY INDIVIDUAL-BASED MODELS TO INVESTIGATE SPATIALLY-DEPENDENT PROCESSES IN CONSERVATION GENETICS

    Science.gov (United States)

    Eco-evolutionary population simulation models are powerful new forecasting tools for exploring management strategies for climate change and other dynamic disturbance regimes. Additionally, eco-evo individual-based models (IBMs) are useful for investigating theoretical feedbacks ...

  6. USING ECO-EVOLUTIONARY INDIVIDUAL-BASED MODELS TO INVESTIGATE SPATIALLY-DEPENDENT PROCESSES IN CONSERVATION GENETICS

    Science.gov (United States)

    Eco-evolutionary population simulation models are powerful new forecasting tools for exploring management strategies for climate change and other dynamic disturbance regimes. Additionally, eco-evo individual-based models (IBMs) are useful for investigating theoretical feedbacks ...

  7. An individual-based predator-prey model for biological coevolution: Fluctuations, stability, and community structure

    CERN Document Server

    Rikvold, Per Arne

    2007-01-01

    We study an individual-based predator-prey model of biological coevolution, using linear stability analysis and large-scale kinetic Monte Carlo simulations. The model exhibits approximate 1/f noise in diversity and population-size fluctuations, and it generates a sequence of quasi-steady communities in the form of simple food webs. These communities are quite resilient toward the loss of one or a few species, which is reflected in different power-law exponents for the durations of communities and the lifetimes of species. The exponent for the former is near -1, while the latter is close to -2. Statistical characteristics of the evolving communities, including degree (predator and prey) distributions and proportions of basal, intermediate, and top species, compare reasonably with data for real food webs.

  8. An individual-based model of the krill Euphausia pacifica in the California Current

    Science.gov (United States)

    Dorman, Jeffrey G.; Sydeman, William J.; Bograd, Steven J.; Powell, Thomas M.

    2015-11-01

    Euphausia pacifica is an abundant and important prey resource for numerous predators of the California Current and elsewhere in the North Pacific. We developed an individual-based model (IBM) for E. pacifica to study its bioenergetics (growth, stage development, reproduction, and mortality) under constant/ideal conditions as well as under varying ocean conditions and food resources. To model E. pacifica under varying conditions, we coupled the IBM to an oceanographic-ecosystem model over the period 2000-2008 (9 years). Model results under constant/ideal food conditions compare favorably with experimental studies conducted under food unlimited conditions. Under more realistic variable oceanographic conditions, mean growth rates over the continental shelf were positive only when individuals migrated diurnally to the depth of maximum phytoplankton layer during nighttime feeding. Our model only used phytoplankton as prey and coastal growth rates were lower than expected (0.01 mm d-1), suggesting that a diverse prey base (zooplankton, protists, marine snow) may be required to facilitate growth and survival of modeled E. pacifica in the coastal environment. This coupled IBM-ROMS modeling framework and its parameters provides a tool for understanding the biology and ecology of E. pacifica and could be developed to further the understanding of climatic effects on this key prey species and enhance an ecosystem approach to fisheries and wildlife management in this region.

  9. Non-Markovian Persistence at the PC point of a 1d non-equilibrium kinetic Ising model

    CERN Document Server

    Menyhard, N; Menyhard, Nora; Odor, Geza

    1997-01-01

    One-dimensional non-equilibrium kinetic Ising models evolving under the competing effect of spin flips at zero temperature and nearest neighbour spin exchanges exhibiting a parity-conserving (PC) phase transition on the level of kinks are investigated here numerically from the point of view of the underlying spin system. The dynamical persistency exponent $\\Theta$ and the exponent $lambda$ characterising the two-time autocorrelation function of the total magnetization under non-equilibrium conditions are reported. It is found that the PC transition has strong effect: the process becomes non-Markovian and the above exponents exhibit drastic changes as compared to the Glauber-Ising case.

  10. Effects of landscape composition and configuration on migrating songbirds: inference from an individual-based model.

    Science.gov (United States)

    Cohen, Emily B; Pearson, Scott M; Moore, Frank R

    2014-01-01

    The behavior of long-distance migrants during stopover is constrained by the need to quickly and safely replenish energetic reserves. Replenishing fuel stores at stopover sites requires adjusting to unfamiliar landscapes with little to no information about the distribution of resources. Despite their critical importance to the success of songbird migration, the effects of landscape composition and configuration on fuel deposition rates (FDR [g/d]), the currency of migration, has not been tested empirically. Our objectives were to understand the effects of heterogeneous landscapes on FDR of forest-dwelling songbirds during spring migration. The results of field experiments were used to parameterize a spatially explicit, individual-based model of forest songbird movement and resulting FDR. Further field experiments were used to validate the results from the individual-based model. In simulation experiments, we altered a Gulf South landscape in a factorial design to predict the effects of future patterns under different scenarios of land use change in which the abundance of high-quality hardwood habitat and the spatial aggregation of habitat varied. Simulated FDR decreased as the amount of hardwood in the landscape decreased from 41% to 22% to 12%. Further, migrants that arrived in higher-quality habitat types gained more mass. Counter to our expectations, FDR was higher with lower spatial aggregation of habitat. Differences in refueling rates may be most influenced by whether or not an individual experiences an initial searching cost after landing in poor-quality habitat. Therefore, quickly locating habitat with sufficient food resources at each stopover may be the most important factor determining a successful migration. Our findings provide empirical evidence for the argument that hardwood forest cover is a primary determinant of the quality of a stopover site in this region. This study represents the first effort to empirically quantify FDRs based on the

  11. Speciation rates decline through time in individual-based models of speciation and extinction.

    Science.gov (United States)

    Wang, Shaopeng; Chen, Anping; Fang, Jingyun; Pacala, Stephen W

    2013-09-01

    A well-documented pattern in the fossil record is a long-term decline in the origination rate of new taxa after diversity rebounds from a mass extinction. The mechanisms for this pattern remain elusive. In this article, we investigate the macroevolutionary predictions of an individual-based birth-death model (BDI model) where speciation and extinction rates emerge from population dynamics. We start with the simplest neutral model in which every individual has the same per capita rates of birth, death, and speciation. Although the prediction of the simplest neutral model agrees qualitatively with the fossil pattern, the predicted decline in per-species speciation rates is too fast to explain the long-term trend in fossil data. We thus consider models with variation among species in per capita rates of speciation and a suite of alternative assumptions about the heritability of speciation rate. The results show that interspecific variation in per capita speciation rate can induce differences among species in their ability to resist extinction because a low speciation rate confers a small but important demographic advantage. As a consequence, the model predicts an appropriately slow temporal decline in speciation rates, which provides a mechanistic explanation for the fossil pattern.

  12. Individual-based model of yellow perch and walleye populations in Oneida Lake

    Energy Technology Data Exchange (ETDEWEB)

    Rose, K.A. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Rutherford, E.S. [Univ. of Michigan, Ann Arbor, MI (United States). Inst. for Fisheries Research; McDermot, D.S. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Ecology and Evolutionary Biology; Forney, J.L.; Mills, E.L. [Cornell Univ. Biological Station, Bridgeport, NY (United States)

    1999-05-01

    Predator-prey dynamics and density dependence are fundamental issues in ecology. The authors use a detailed, individual-based model of walleye and yellow perch to investigate the effects of alternative prey and compensatory responses on predator and prey population dynamics. The analyses focus on the numerical and developmental responses of the predator, rather than the traditional emphasis on functional responses. The extensive database for Oneida Lake, New York, USA was used to configure the model and ensure its realism. The model follows the daily growth, mortality, and spawning of individuals of each species through their lifetime. Three ecologically distinct periods in the history of Oneida Lake were simulated: baseline, high mayfly densities, and high forage fish densities. Mayflies and forage fish act as alternative prey for walleye. For model corroboration, the three periods were simulated sequentially as they occurred in Oneida Lake. Model predictions of abundances, size at age, and growth and survival rates compared favorably with Oneida Lake data. Three hypotheses suggested by the data were evaluated: alternative prey stabilizes yellow perch and walleye populations; alternative prey increases yellow perch and walleye recruitment; and density-dependent growth and survival compensate for changes in young-of-the-year mortality. Model simulations were performed under increased mayfly densities, increased forage fish densities, and increased egg mortality rates.

  13. The effects of tree species grouping in tropical rain forest modelling - simulations with the individual based model FORMIND

    OpenAIRE

    Köhler, Peter; Huth, A.

    1998-01-01

    Due to high biodiversity in tropical rainforests, tree species are aggregatedinto functional groups for modelling purposes. In this article the influencesof two different classifications of tropical tree species into functionalgroups on the output of a rainforest model are analysed. The FORMIND modelis documented. FORMIND simulates the tree growth of tropical rainforests.The model is individual-based and developed from the FORMIX3 model. In themodel, trees compete for light and space in plots...

  14. An individual-based growth and competition model for coastal redwood forest restoration

    Science.gov (United States)

    van Mantgem, Phillip J.; Das, Adrian J.

    2014-01-01

    Thinning treatments to accelerate coastal redwood forest stand development are in wide application, but managers have yet to identify prescriptions that might best promote Sequoia sempervirens (Lamb. ex D. Don) Endl. (redwood) growth. The creation of successful thinning prescriptions would be aided by identifying the underlying mechanisms governing how individual tree growth responds to competitive environments in coastal redwood forests. We created a spatially explicit individual-based model of tree competition and growth parameterized using surveys of upland redwood forests at Redwood National Park, California. We modeled competition for overstory trees (stems ≥ 20 cm stem diameter at breast height, 1.37 m (dbh)) as growth reductions arising from sizes, distances, and species identity of competitor trees. Our model explained up to half of the variation in individual tree growth, suggesting that neighborhood crowding is an important determinant of growth in this forest type. We used our model to simulate the effects of novel thinning prescriptions (e.g., 40% stand basal area removal) for redwood forest restoration, concluding that these treatments could lead to substantial growth releases, particularly for S. sempervirens. The results of this study, along with continued improvements to our model, will help to determine spacing and species composition that best encourage growth.

  15. Daphnias: from the individual based model to the large population equation

    CERN Document Server

    Metz, J A J

    2012-01-01

    The class of deterministic 'Daphnia' models treated by Diekmann et al. (J Math Biol 61: 277-318, 2010) has a long history going back to Nisbet and Gurney (Theor Pop Biol 23: 114-135, 1983) and Diekmann et al. (Nieuw Archief voor Wiskunde 4: 82-109, 1984). In this note, we formulate the individual based models (IBM) supposedly underlying those deterministic models. The models treat the interaction between a general size-structured consumer population ('Daphnia') and an unstructured resource ('algae'). The discrete, size and age-structured Daphnia population changes through births and deaths of its individuals and throught their aging and growth. The birth and death rates depend on the sizes of the individuals and on the concentration of the algae. The latter is supposed to be a continuous variable with a deterministic dynamics that depends on the Daphnia population. In this model setting we prove that when the Daphnia population is large, the stochastic differential equation describing the IBM can be approxima...

  16. Dynamical matrix for arbitrary quadratic fermionic bath Hamiltonians and non-Markovian dynamics of one and two qubits in an Ising model environment

    Science.gov (United States)

    Iemini, Fernando; da Silva Souza, Leonardo; Debarba, Tiago; Cesário, André T.; Maciel, Thiago O.; Vianna, Reinaldo O.

    2017-05-01

    We obtain the analytical expression for the Kraus decomposition of the quantum map of an environment modeled by an arbitrary quadratic fermionic Hamiltonian acting on one or two qubits, and derive simple functions to check the non-positivity of the intermediate map. These functions correspond to two different sufficient criteria for non-Markovianity. In the particular case of an environment represented by the Ising Hamiltonian, we discuss the two sources of non-Markovianity in the model, one due to the finite size of the lattice, and another due to the kind of interactions.

  17. Non-Markovianity during quantum Zeno effect

    CERN Document Server

    Thilagam, A

    2013-01-01

    We examine the Zeno and anti-Zeno effects in the context of non-Markovian dynamics in entangled spin-boson systems in contact with noninteracting reservoirs. We identify enhanced non-Markovian signatures in specific two-qubit partitions of a Bell-like initial state, with results showing that the intra-qubit Zeno effect or anti-Zeno effect occurs in conjunction with inter-qubit non-Markovian dynamics for a range of system parameters. The time domain of effective Zeno or anti-Zeno dynamics is about the same order of magnitude as the non-Markovian time scale of the reservoir correlation dynamics, and changes in decay rate due to the Zeno mechanism appears coordinated with information flow between specific two-qubit partitions. We extend our analysis to examine the Zeno mechanism-non-Markovianity link using the tripartite states arising from a donor-acceptor-sink model of photosynthetic biosystems.

  18. Continuous Markovian Logics

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian; Cardelli, Luca; Larsen, Kim Guldstrand

    2012-01-01

    Continuous Markovian Logic (CML) is a multimodal logic that expresses quantitative and qualitative properties of continuous-time labelled Markov processes with arbitrary (analytic) state-spaces, henceforth called continuous Markov processes (CMPs). The modalities of CML evaluate the rates...... characterizes stochastic bisimilarity and it supports the definition of a quantified extension of the satisfiability relation that measures the "compatibility" between a model and a property. In this context, the metaproperties allows us to prove two robustness theorems for the logic stating that one can...

  19. An individual-based model for population viability analysis of humpback chub in Grand Canyon

    Science.gov (United States)

    Pine, William Pine; Healy, Brian; Smith, Emily Omana; Trammell, Melissa; Speas, Dave; Valdez, Rich; Yard, Mike; Walters, Carl; Ahrens, Rob; Vanhaverbeke, Randy; Stone, Dennis; Wilson, Wade

    2013-01-01

    We developed an individual-based population viability analysis model (females only) for evaluating risk to populations from catastrophic events or conservation and research actions. This model tracks attributes (size, weight, viability, etc.) for individual fish through time and then compiles this information to assess the extinction risk of the population across large numbers of simulation trials. Using a case history for the Little Colorado River population of Humpback Chub Gila cypha in Grand Canyon, Arizona, we assessed extinction risk and resiliency to a catastrophic event for this population and then assessed a series of conservation actions related to removing specific numbers of Humpback Chub at different sizes for conservation purposes, such as translocating individuals to establish other spawning populations or hatchery refuge development. Our results suggested that the Little Colorado River population is generally resilient to a single catastrophic event and also to removals of larvae and juveniles for conservation purposes, including translocations to establish new populations. Our results also suggested that translocation success is dependent on similar survival rates in receiving and donor streams and low emigration rates from recipient streams. In addition, translocating either large numbers of larvae or small numbers of large juveniles has generally an equal likelihood of successful population establishment at similar extinction risk levels to the Little Colorado River donor population. Our model created a transparent platform to consider extinction risk to populations from catastrophe or conservation actions and should prove useful to managers assessing these risks for endangered species such as Humpback Chub.

  20. Asymptotic properties of a stochastic n-species Gilpin-Ayala competitive model with Lévy jumps and Markovian switching

    Science.gov (United States)

    Liu, Qun

    2015-09-01

    In this paper, a stochastic n-species Gilpin-Ayala competitive model with Lévy jumps and Markovian switching is proposed and studied. Some asymptotic properties are investigated and sufficient conditions for extinction, non-persistence in the mean and weak persistence are established. The threshold between extinction and weak persistence is obtained. The results illustrate that the asymptotic properties of the considered system have close relationships with Lévy jumps and the stationary distribution of the Markovian chain. Moreover, some simulation figures are presented to confirm our main results.

  1. Markovianity criteria for quantum evolution

    Science.gov (United States)

    Chruściński, Dariusz; Kossakowski, Andrzej

    2012-08-01

    We characterize a class of Markovian dynamics using the concept of a divisible dynamical map. Moreover, we provide a family of criteria which can distinguish Markovian and non-Markovian dynamics. These Markovianity criteria are based on a simple observation that Markovian dynamics implies monotonic behaviour of several well-known quantities such as distinguishability of states, fidelity, relative entropy and genuine entanglement measures.

  2. Markovianity criteria for quantum evolution

    CERN Document Server

    Chruściński, Dariusz

    2012-01-01

    We characterize a class of Markovian dynamics using the concept of divisible dynamical map. Moreover we provide a family of criteria which can distinguish Markovian and non-Markovian dynamics. These Markovianity criteria are based on a simple observation that Markovian dynamics implies monotonic behavior of several well known quantities like distinguishability of states, fidelity, relative entropy and genuine entanglement measures.

  3. Exact Closed Master Equation for Gaussian Non-Markovian Dynamics.

    Science.gov (United States)

    Ferialdi, L

    2016-03-25

    Non-Markovian master equations describe general open quantum systems when no approximation is made. We provide the exact closed master equation for the class of Gaussian, completely positive, trace preserving, non-Markovian dynamics. This very general result allows us to investigate a vast variety of physical systems. We show that the master equation for non-Markovian quantum Brownian motion is a particular case of our general result. Furthermore, we derive the master equation unraveled by a non-Markovian, dissipative stochastic Schrödinger equation, paving the way for the analysis of dissipative non-Markovian collapse models.

  4. On measures of non-Markovianity: divisibility vs. Markovianity

    CERN Document Server

    Chruściński, Dariusz

    2011-01-01

    We analyze two recently proposed measure of non-Markovianity: one based on the concept of divisibility of the dynamical map and the other one based on distinguishability of quantum states. We provide a toy model to show that these two measures need not agree. Finally, we discuss possible generalizations and intricate relations between these measures.

  5. Quantum Darwinism and non-Markovian dissipative dynamics from quantum phases of the spin-1/2 X X model

    Science.gov (United States)

    Giorgi, Gian Luca; Galve, Fernando; Zambrini, Roberta

    2015-08-01

    Quantum Darwinism explains the emergence of a classical description of objects in terms of the creation of many redundant registers in an environment containing their classical information. This amplification phenomenon, where only classical information reaches the macroscopic observer and through which different observers can agree on the objective existence of such object, has been revived lately for several types of situations, successfully explaining classicality. We explore quantum Darwinism in the setting of an environment made of two level systems which are initially prepared in the ground state of the XX model, which exhibits different phases; we find that the different phases have different abilities to redundantly acquire classical information about the system, the "ferromagnetic phase" being the only one able to complete quantum Darwinism. At the same time we relate this ability to how non-Markovian the system dynamics is, based on the interpretation that non-Markovian dynamics is associated with backflow of information from environment to system, thus spoiling the information transfer needed for Darwinism. Finally, we explore mixing of bath registers by allowing a small interaction among them, finding that this spoils the stored information as previously found in the literature.

  6. Discovering the Power of Individual-Based Modelling in Teaching and Learning: The Study of a Predator-Prey System

    Science.gov (United States)

    Ginovart, Marta

    2014-01-01

    The general aim is to promote the use of individual-based models (biological agent-based models) in teaching and learning contexts in life sciences and to make their progressive incorporation into academic curricula easier, complementing other existing modelling strategies more frequently used in the classroom. Modelling activities for the study…

  7. Maintenance of polygenic sex determination in a fluctuating environment: An individual-based model.

    Science.gov (United States)

    Bateman, Andrew W; Anholt, Bradley R

    2017-02-10

    R. A. Fisher predicted that individuals should invest equally in offspring of both sexes, and that the proportion of males and females produced (the primary sex ratio) should evolve towards 1:1 when unconstrained. For many species, sex determination is dependent on sex chromosomes, creating a strong tendency for balanced sex ratios, but in other cases multiple autosomal genes interact to determine sex. In such cases, the maintenance of multiple sex-determining alleles at multiple loci and the consequent between-family variability in sex ratios presents a puzzle, as theory predicts that such systems should be unstable. Theory also predicts that environmental influences on sex can complicate outcomes of genetic sex determination, and that population structure may play a role. Tigriopus californicus, a copepod that lives in splash-pool metapopulations and exhibits polygenic and environment-dependent sex determination, presents a test case for relevant theory. We use this species as a model for parameterizing an individual-based simulation to investigate conditions that could maintain polygenic sex determination. We find that metapopulation structure can delay the degradation of polygenic sex determination and that periods of alternating frequency-dependent selection, imposed by seasonal fluctuations in environmental conditions, can maintain polygenic sex determination indefinitely. This article is protected by copyright. All rights reserved.

  8. Application of Continuous-Time Batch Markovian Arrival Processes and Particle Tracking Model to Probabilistic Sediment Transport Modeling

    Science.gov (United States)

    Tsai, Christina; Hung, Serena

    2016-04-01

    To more precisely describe particle movement in surface water, both the random particle arrival process at the receiving water and the stochastic particle movement in the receiving water should be carefully considered in sediment transport modeling. In this study, a stochastic framework is developed for a probabilistic description of discrete particle transport through a probability density function of sediment concentrations and transport rates. In order to more realistically describe the particle arrivals into receiving waters at random times and with a probabilistic particle number in each arrival, the continuous-time batch Markovian arrival process is introduced. The particle tracking model (PTM) composed of physically based stochastic differential equations (SDEs) for particle trajectory is then used to depict the random movement of particles in the receiving water. Particle deposition and entrainment processes are considered in the model. It is expected that the particle concentrations in the receiving water and particle transport rates can be mathematically expressed as a stochastic process. Compared with deterministic modeling, the proposed approach has the advantage of capturing any randomly selected scenarios (or realizations) of flow and sediment properties. Availability of a more sophisticated stochastic process for random particle arrival processes can assist in quantifying the probabilistic characteristics of sediment transport rates and concentrations. In addition, for a given turbidity threshold, the risk of exceeding a pre-established water quality standard can be quantified as needed.

  9. An Individual-Based Diploid Model Predicts Limited Conditions Under Which Stochastic Gene Expression Becomes Advantageous

    KAUST Repository

    Matsumoto, Tomotaka

    2015-11-24

    Recent studies suggest the existence of a stochasticity in gene expression (SGE) in many organisms, and its non-negligible effect on their phenotype and fitness. To date, however, how SGE affects the key parameters of population genetics are not well understood. SGE can increase the phenotypic variation and act as a load for individuals, if they are at the adaptive optimum in a stable environment. On the other hand, part of the phenotypic variation caused by SGE might become advantageous if individuals at the adaptive optimum become genetically less-adaptive, for example due to an environmental change. Furthermore, SGE of unimportant genes might have little or no fitness consequences. Thus, SGE can be advantageous, disadvantageous, or selectively neutral depending on its context. In addition, there might be a genetic basis that regulates magnitude of SGE, which is often referred to as “modifier genes,” but little is known about the conditions under which such an SGE-modifier gene evolves. In the present study, we conducted individual-based computer simulations to examine these conditions in a diploid model. In the simulations, we considered a single locus that determines organismal fitness for simplicity, and that SGE on the locus creates fitness variation in a stochastic manner. We also considered another locus that modifies the magnitude of SGE. Our results suggested that SGE was always deleterious in stable environments and increased the fixation probability of deleterious mutations in this model. Even under frequently changing environmental conditions, only very strong natural selection made SGE adaptive. These results suggest that the evolution of SGE-modifier genes requires strict balance among the strength of natural selection, magnitude of SGE, and frequency of environmental changes. However, the degree of dominance affected the condition under which SGE becomes advantageous, indicating a better opportunity for the evolution of SGE in different genetic

  10. Individual based modeling and parameter estimation for a Lotka-Volterra system.

    Science.gov (United States)

    Waniewski, J; Jedruch, W

    1999-03-15

    Stochastic component, inevitable in biological systems, makes problematic the estimation of the model parameters from a single sequence of measurements, despite the complete knowledge of the system. We studied the problem of parameter estimation using individual-based computer simulations of a 'Lotka-Volterra world'. Two kinds (species) of particles--X (preys) and Y (predators)--moved on a sphere according to deterministic rules and at the collision (interaction) of X and Y the particle X was changed to a new particle Y. Birth of preys and death of predators were simulated by addition of X and removal of Y, respectively, according to exponential probability distributions. With this arrangement of the system, the numbers of particles of each kind might be described by the Lotka-Volterra equations. The simulations of the system with low (200-400 particles on average) number of individuals showed unstable oscillations of the population size. In some simulation runs one of the species became extinct. Nevertheless, the oscillations had some generic properties (e.g. mean, in one simulation run, oscillation period, mean ratio of the amplitudes of the consecutive maxima of X and Y numbers, etc.) characteristic for the solutions of the Lotka-Volterra equations. This observation made it possible to estimate the four parameters of the Lotka-Volterra model with high accuracy and good precision. The estimation was performed using the integral form of the Lotka-Volterra equations and two parameter linear regression for each oscillation cycle separately. We conclude that in spite of the irregular time course of the number of individuals in each population due to stochastic intraspecies component, the generic features of the simulated system evolution can provide enough information for quantitative estimation of the system parameters.

  11. A Simple Non-Markovian Computational Model of the Statistics of Soccer Leagues: Emergence and Scaling effects

    CERN Document Server

    da Silva, Roberto; Lamb, Luis; Prado, Sandra

    2012-01-01

    We propose a novel algorithm that outputs the final standings of a soccer league, based on a simple dynamics that mimics a soccer tournament. In our model, a team is created with a defined potential(ability) which is updated during the tournament according to the results of previous games. The updated potential modifies a teams' future winning/losing probabilities. We show that this evolutionary game is able to reproduce the statistical properties of final standings of actual editions of the Brazilian tournament (Brasileir\\~{a}o). However, other leagues such as the Italian and the Spanish tournaments have notoriously non-Gaussian traces and cannot be straightforwardly reproduced by this evolutionary non-Markovian model. A complete understanding of these phenomena deserves much more attention, but we suggest a simple explanation based on data collected in Brazil: Here several teams were crowned champion in previous editions corroborating that the champion typically emerges from random fluctuations that partly ...

  12. Development and validation of an individual based Daphnia magna population model: The influence of crowding on population dynamics

    NARCIS (Netherlands)

    Preuss, T.G.; Hammers-Wirtz, M.; Hommen, U.; Rubach, M.N.; Ratte, H.T.

    2009-01-01

    An individual-based model was developed to predict the population dynamics of Daphnia magna at laboratory conditions from individual life-history traits observed in experiments with different feeding conditions. Within the model, each daphnid passes its individual life cycle including feeding on alg

  13. Quantum Metrology in Non-Markovian Environments

    CERN Document Server

    Chin, Alex W; Plenio, Martin B

    2011-01-01

    We analyze optimal bounds for precision spectroscopy in the presence of general, non-Markovian phase noise. We demonstrate that the metrological equivalence of product and maximally entangled states that holds under Markovian dephasing fails in the non-Markovian case. Using an exactly solvable model of a physically realistic finite band-width dephasing environment, we show that the ensuing non-Markovian dynamics enables quantum correlated states to outperform metrological strategies based on uncorrelated states but otherwise identical resources. We show that this conclusion is a direct result of the coherent dynamics of the global state of the system and environment and, as a result, possesses general validity that goes beyond specific models.

  14. Modelling Holocene peatland dynamics with an individual-based dynamic vegetation model

    Science.gov (United States)

    Chaudhary, Nitin; Miller, Paul A.; Smith, Benjamin

    2017-05-01

    Dynamic global vegetation models (DGVMs) are designed for the study of past, present and future vegetation patterns together with associated biogeochemical cycles and climate feedbacks. However, most DGVMs do not yet have detailed representations of permafrost and non-permafrost peatlands, which are an important store of carbon, particularly at high latitudes. We demonstrate a new implementation of peatland dynamics in a customized Arctic version of the LPJ-GUESS DGVM, simulating the long-term evolution of selected northern peatland ecosystems and assessing the effect of changing climate on peatland carbon balance. Our approach employs a dynamic multi-layer soil with representation of freeze-thaw processes and litter inputs from a dynamically varying mixture of the main peatland plant functional types: mosses, shrubs and graminoids. The model was calibrated and tested for a sub-Arctic mire in Stordalen, Sweden, and validated at a temperate bog site in Mer Bleue, Canada. A regional evaluation of simulated carbon fluxes, hydrology and vegetation dynamics encompassed additional locations spread across Scandinavia. Simulated peat accumulation was found to be generally consistent with published data and the model was able to capture reported long-term vegetation dynamics, water table position and carbon fluxes. A series of sensitivity experiments were carried out to investigate the vulnerability of high-latitude peatlands to climate change. We found that the Stordalen mire may be expected to sequester more carbon in the first half of the 21st century due to milder and wetter climate conditions, a longer growing season, and the CO2 fertilization effect, turning into a carbon source after mid-century because of higher decomposition rates in response to warming soils.

  15. An Individual-based Model Approach for the Conservation of the Sumatran Tiger Panthera tigris sumatrae Population in Central Sumatra

    OpenAIRE

    Imron, Muhammad Ali

    2011-01-01

    This dissertation demonstrates the construction of the Panthera Population Persistence (PPP), an individual-based model for the Sumatran tiger (Panthera tigris sumatrae) which provides proper theoretical and application frameworks for the conservation of this tiger sub-species in central Sumatra. The PPP model was developed to gain insight into tiger-preyhabitat relationships as well as the effect of human impacts on the persistence of tiger populations. The model addresses three main problem...

  16. Discovering the Power of Individual-Based Modelling in Teaching and Learning: The Study of a Predator-Prey System

    Science.gov (United States)

    Ginovart, Marta

    2014-08-01

    The general aim is to promote the use of individual-based models (biological agent-based models) in teaching and learning contexts in life sciences and to make their progressive incorporation into academic curricula easier, complementing other existing modelling strategies more frequently used in the classroom. Modelling activities for the study of a predator-prey system for a mathematics classroom in the first year of an undergraduate program in biosystems engineering have been designed and implemented. These activities were designed to put two modelling approaches side by side, an individual-based model and a set of ordinary differential equations. In order to organize and display this, a system with wolves and sheep in a confined domain was considered and studied. With the teaching material elaborated and a computer to perform the numerical resolutions involved and the corresponding individual-based simulations, the students answered questions and completed exercises to achieve the learning goals set. Students' responses regarding the modelling of biological systems and these two distinct methodologies applied to the study of a predator-prey system were collected via questionnaires, open-ended queries and face-to-face dialogues. Taking into account the positive responses of the students when they were doing these activities, it was clear that using a discrete individual-based model to deal with a predator-prey system jointly with a set of ordinary differential equations enriches the understanding of the modelling process, adds new insights and opens novel perspectives of what can be done with computational models versus other models. The complementary views given by the two modelling approaches were very well assessed by students.

  17. CONSTRUCTION OF CONTINUOUS TIME MARKOVIAN ARRIVAL PROCESSES

    Institute of Scientific and Technical Information of China (English)

    Qi-Ming HE

    2010-01-01

    Markovian arrival processes were introduced by Neuts in 1979(Neuts 1979)and have been used extensively in the stochastic modeling of queueing,inventory,reliability,risk,and telecommunications systems.In this paper,we introduce a constructive approach to define continuous time Markovian arrival processes.The construction is based on Poisson processes,and is simple and intuitive.Such a construction makes it easy to interpret the parameters of Markovian arrival processes.The construction also makes it possible to establish rigorously basic equations,such as Kolmogorov differential equations,for Markovian arrival processes,using only elementary properties of exponential distributions and Poisson processes.In addition,the approach can be used to construct continuous time Markov chains with a finite number of states

  18. DISPLACE: a dynamic, individual-based model for spatial fishing planning and effort displacement: Integrating underlying fish population models

    DEFF Research Database (Denmark)

    Bastardie, Francois; Nielsen, J. Rasmus; Miethe, Tanja

    We previously developed a spatially explicit, individual-based model (IBM) evaluating the bio-economic efficiency of fishing vessel movements between regions according to the catching and targeting of different species based on the most recent high resolution spatial fishery data. The main purpose...... version couples the vessel model to selected size-based population models and considers the underlying resource dynamics in the distribution and density patterns of the targeted stocks for the cases of Danish and German vessels harvesting the North Sea and Baltic fish stocks. The stochastic fishing...... by vessels on the fish stocks, with resulting fishing mortality, and the vessels’ economic consequences are evaluated on high spatial and seasonal disaggregation levels by simulating different individual choices of vessel speed, fishing grounds and ports. All tested scenarios led to increased overall energy...

  19. Effect of memory in non-Markovian Boolean networks

    CERN Document Server

    Ebadi, Haleh; Ausloos, Marcel; Jafari, GholamReza

    2016-01-01

    One successful model of interacting biological systems is the Boolean network. The dynamics of a Boolean network, controlled with Boolean functions, is usually considered to be a Markovian (memory-less) process. However, both self organizing features of biological phenomena and their intelligent nature should raise some doubt about ignoring the history of their time evolution. Here, we extend the Boolean network Markovian approach: we involve the effect of memory on the dynamics. This can be explored by modifying Boolean functions into non-Markovian functions, for example, by investigating the usual non-Markovian threshold function, - one of the most applied Boolean functions. By applying the non-Markovian threshold function on the dynamical process of a cell cycle network, we discover a power law memory with a more robust dynamics than the Markovian dynamics.

  20. Information Spreading in Stationary Markovian Evolving Graphs

    CERN Document Server

    Clementi, Andrea; Pasquale, Francesco; Silvestri, Riccardo

    2011-01-01

    Markovian evolving graphs are dynamic-graph models where the links among a fixed set of nodes change during time according to an arbitrary Markovian rule. They are extremely general and they can well describe important dynamic-network scenarios. We study the speed of information spreading in the "stationary phase" by analyzing the completion time of the "flooding mechanism". We prove a general theorem that establishes an upper bound on flooding time in any stationary Markovian evolving graph in terms of its node-expansion properties. We apply our theorem in two natural and relevant cases of such dynamic graphs. "Geometric Markovian evolving graphs" where the Markovian behaviour is yielded by "n" mobile radio stations, with fixed transmission radius, that perform independent random walks over a square region of the plane. "Edge-Markovian evolving graphs" where the probability of existence of any edge at time "t" depends on the existence (or not) of the same edge at time "t-1". In both cases, the obtained upper...

  1. Evaluation of alternative PCB clean-up strategies using an individual-based population model of mink

    Energy Technology Data Exchange (ETDEWEB)

    Salice, Christopher J., E-mail: Chris.salice@ttu.edu [Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79410 (United States); Sample, Bradley E., E-mail: bsample@ecorisk.com [Ecological Risk Inc., Rancho Murieta, CA 95683 (United States); Miller Neilan, Rachael; Rose, Kenneth A.; Sable, Shaye [Department of Oceanography and Coastal Sciences, Energy, Coast and Environment Building, Louisiana State University, Baton Rouge, LA 70803 (United States)

    2011-12-15

    Population models can be used to place observed toxic effects into an assessment of the impacts on population-level endpoints, which are generally considered to provide greater ecological insight and relevance. We used an individual-based model of mink to evaluate the population-level effects of exposure to polychlorinated biphenyls (PCBs) and the impact that different remediation strategies had on mink population endpoints (population size and extinction risk). Our simulations indicated that the initial population size had a strong impact on mink population dynamics. In addition, mink populations were extremely responsive to clean-up scenarios that were initiated soon after the contamination event. In fact, the rate of PCB clean-up did not have as strong a positive effect on mink as did the initiation of clean-up (start time). We show that population-level approaches can be used to understand adverse effects of contamination and to also explore the potential benefits of various remediation strategies. - Highlights: > We used an individual-based model of mink to evaluate population-level impacts of PCB contamination. > The model was also used to explore the population responses to different PCB remediation strategies. > Population size had a large impact on whether mink populations persisted or went extinct. > Starting remediation sooner had a stronger positive effect on mink populations than did the rate of PCB clean-up. > Individual-based models are useful in understanding effects of contamination and different remediation strategies. - An individual-based model of mink showed strong population-level effects of PCB contamination and provided insight into optimal PCB remediation strategies.

  2. Modelling hen harrier dynamics to inform human-wildlife conflict resolution: a spatially-realistic, individual-based approach.

    Directory of Open Access Journals (Sweden)

    Johannes P M Heinonen

    Full Text Available Individual-based models have gained popularity in ecology, and enable simultaneous incorporation of spatial explicitness and population dynamic processes to understand spatio-temporal patterns of populations. We introduce an individual-based model for understanding and predicting spatial hen harrier (Circus cyaneus population dynamics in Great Britain. The model uses a landscape with habitat, prey and game management indices. The hen harrier population was initialised according to empirical census estimates for 1988/89 and simulated until 2030, and predictions for 1998, 2004 and 2010 were compared to empirical census estimates for respective years. The model produced a good qualitative match to overall trends between 1989 and 2010. Parameter explorations revealed relatively high elasticity in particular to demographic parameters such as juvenile male mortality. This highlights the need for robust parameter estimates from empirical research. There are clearly challenges for replication of real-world population trends, but this model provides a useful tool for increasing understanding of drivers of hen harrier dynamics and focusing research efforts in order to inform conflict management decisions.

  3. Equilibrium and non-equilibrium concepts in forest genetic modelling: population- and individually-based approaches

    NARCIS (Netherlands)

    Kramer, K.; Werf, van der D.C.

    2010-01-01

    The environment is changing and so are forests, in their functioning, in species composition, and in the species’ genetic composition. Many empirical and process-based models exist to support forest management. However, most of these models do not consider the impact of environmental changes and for

  4. An individual-based model of Zebrafish population dynamics accounting for energy dynamics

    DEFF Research Database (Denmark)

    Beaudouin, Remy; Goussen, Benoit; Piccini, Benjamin

    2015-01-01

    Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model......, the predictions of the DEB-IBM were compared to existing observations on natural zebrafish populations and the predicted population dynamics are realistic. While our zebrafish DEB-IBM model can still be improved by acquiring new experimental data on the most uncertain processes (e.g. survival or feeding), it can...

  5. Quantum metrology in non-Markovian environments.

    Science.gov (United States)

    Chin, Alex W; Huelga, Susana F; Plenio, Martin B

    2012-12-07

    We analyze precision bounds for a local phase estimation in the presence of general, non-Markovian phase noise. We demonstrate that the metrological equivalence of product and maximally entangled states that holds under strictly Markovian dephasing fails in the non-Markovian case. Using an exactly solvable model of a physically realistic finite bandwidth dephasing environment, we demonstrate that the ensuing non-Markovian dynamics enables quantum correlated states to outperform metrological strategies based on uncorrelated states using otherwise identical resources. We show that this conclusion is a direct result of the coherent dynamics of the global state of the system and environment and therefore the obtained scaling with the number of particles, which surpasses the standard quantum limit but does not achieve Heisenberg resolution, possesses general validity that goes beyond specific models. This is in marked contrast with the situation encountered under general Markovian noise, where an arbitrarily small amount of noise is enough to restore the scaling dictated by the standard quantum limit.

  6. An individual-based model for biofilm formation at liquid surfaces

    Science.gov (United States)

    Ardré, Maxime; Henry, Hervé; Douarche, Carine; Plapp, Mathis

    2015-12-01

    The bacterium Bacillus subtilis frequently forms biofilms at the interface between the culture medium and the air. We present a mathematical model that couples a description of bacteria as individual discrete objects to the standard advection-diffusion equations for the environment. The model takes into account two different bacterial phenotypes. In the motile state, bacteria swim and perform a run-and-tumble motion that is biased toward regions of high oxygen concentration (aerotaxis). In the matrix-producer state they excrete extracellular polymers, which allows them to connect to other bacteria and to form a biofilm. Bacteria are also advected by the fluid, and can trigger bioconvection. Numerical simulations of the model reproduce all the stages of biofilm formation observed in laboratory experiments. Finally, we study the influence of various model parameters on the dynamics and morphology of biofilms.

  7. Individual-based and continuum models of growing cell populations: a comparison.

    Science.gov (United States)

    Byrne, Helen; Drasdo, Dirk

    2009-04-01

    In this paper we compare two alternative theoretical approaches for simulating the growth of cell aggregates in vitro: individual cell (agent)-based models and continuum models. We show by a quantitative analysis of both a biophysical agent-based and a continuum mechanical model that for densely packed aggregates the expansion of the cell population is dominated by cell proliferation controlled by mechanical stress. The biophysical agent-based model introduced earlier (Drasdo and Hoehme in Phys Biol 2:133-147, 2005) approximates each cell as an isotropic, homogeneous, elastic, spherical object parameterised by measurable biophysical and cell-biological quantities and has been shown by comparison to experimental findings to explain the growth patterns of dense monolayers and multicellular spheroids. Both models exhibit the same growth kinetics, with initial exponential growth of the population size and aggregate diameter followed by linear growth of the diameter and power-law growth of the cell population size. Very sparse monolayers can be explained by a very small or absent cell-cell adhesion and large random cell migration. In this case the expansion speed is not controlled by mechanical stress but by random cell migration and can be modelled by the Fisher-Kolmogorov-Petrovskii-Piskounov (FKPP) reaction-diffusion equation. The growth kinetics differs from that of densely packed aggregates in that the initial spread, as quantified by the radius of gyration, is diffusive. Since simulations of the lattice-free agent-based model in the case of very large random migration are too long to be practical, lattice-based cellular automaton (CA) models have to be used for a quantitative analysis of sparse monolayers. Analysis of these dense monolayers leads to the identification of a critical parameter of the CA model so that eventually a hierarchy of three model types (a detailed biophysical lattice-free model, a rule-based cellular automaton and a continuum approach

  8. An equation-free computational approach for extracting population-level behavior from individual-based models of biological dispersal

    CERN Document Server

    Erban, R; Othmer, H G; Erban, Radek; Kevrekidis, Ioannis G.; Othmer, Hans G.

    2005-01-01

    The movement of many organisms can be described as a random walk at either or both the individual and population level. The rules for this random walk are based on complex biological processes and it may be difficult to develop a tractable, quantitatively-accurate, individual-level model. However, important problems in areas ranging from ecology to medicine involve large collections of individuals, and a further intellectual challenge is to model population-level behavior based on a detailed individual-level model. Because of the large number of interacting individuals and because the individual-level model is complex, classical direct Monte Carlo simulations can be very slow, and often of little practical use. In this case, an equation-free approach may provide effective methods for the analysis and simulation of individual-based models. In this paper we analyze equation-free coarse projective integration. For analytical purposes, we start with known partial differential equations describing biological rando...

  9. A Random Walk in the Park: An Individual-Based Null Model for Behavioral Thermoregulation.

    Science.gov (United States)

    Vickers, Mathew; Schwarzkopf, Lin

    2016-04-01

    Behavioral thermoregulators leverage environmental temperature to control their body temperature. Habitat thermal quality therefore dictates the difficulty and necessity of precise thermoregulation, and the quality of behavioral thermoregulation in turn impacts organism fitness via the thermal dependence of performance. Comparing the body temperature of a thermoregulator with a null (non-thermoregulating) model allows us to estimate habitat thermal quality and the effect of behavioral thermoregulation on body temperature. We define a null model for behavioral thermoregulation that is a random walk in a temporally and spatially explicit thermal landscape. Predicted body temperature is also integrated through time, so recent body temperature history, environmental temperature, and movement influence current body temperature; there is no particular reliance on an organism's equilibrium temperature. We develop a metric called thermal benefit that equates body temperature to thermally dependent performance as a proxy for fitness. We measure thermal quality of two distinct tropical habitats as a temporally dynamic distribution that is an ergodic property of many random walks, and we compare it with the thermal benefit of real lizards in both habitats. Our simple model focuses on transient body temperature; as such, using it we observe such subtleties as shifts in the thermoregulatory effort and investment of lizards throughout the day, from thermoregulators to thermoconformers.

  10. Decision-Theoretic Planning with non-Markovian Rewards

    CERN Document Server

    Gretton, C; Price, D; Slaney, J; Thiebaux, S

    2011-01-01

    A decision process in which rewards depend on history rather than merely on the current state is called a decision process with non-Markovian rewards (NMRDP). In decision-theoretic planning, where many desirable behaviours are more naturally expressed as properties of execution sequences rather than as properties of states, NMRDPs form a more natural model than the commonly adopted fully Markovian decision process (MDP) model. While the more tractable solution methods developed for MDPs do not directly apply in the presence of non-Markovian rewards, a number of solution methods for NMRDPs have been proposed in the literature. These all exploit a compact specification of the non-Markovian reward function in temporal logic, to automatically translate the NMRDP into an equivalent MDP which is solved using efficient MDP solution methods. This paper presents NMRDPP (Non-Markovian Reward Decision Process Planner), a software platform for the development and experimentation of methods for decision-theoretic planning...

  11. A simple non-Markovian computational model of the statistics of soccer leagues: Emergence and scaling effects

    Science.gov (United States)

    da Silva, Roberto; Vainstein, Mendeli H.; Lamb, Luis C.; Prado, Sandra D.

    2013-03-01

    We propose a novel probabilistic model that outputs the final standings of a soccer league, based on a simple dynamics that mimics a soccer tournament. In our model, a team is created with a defined potential (ability) which is updated during the tournament according to the results of previous games. The updated potential modifies a team future winning/losing probabilities. We show that this evolutionary game is able to reproduce the statistical properties of final standings of actual editions of the Brazilian tournament (Brasileirão) if the starting potential is the same for all teams. Other leagues such as the Italian (Calcio) and the Spanish (La Liga) tournaments have notoriously non-Gaussian traces and cannot be straightforwardly reproduced by this evolutionary non-Markovian model with simple initial conditions. However, we show that by setting the initial abilities based on data from previous tournaments, our model is able to capture the stylized statistical features of double round robin system (DRRS) tournaments in general. A complete understanding of these phenomena deserves much more attention, but we suggest a simple explanation based on data collected in Brazil: here several teams have been crowned champion in previous editions corroborating that the champion typically emerges from random fluctuations that partly preserve the Gaussian traces during the tournament. On the other hand, in the Italian and Spanish cases, only a few teams in recent history have won their league tournaments. These leagues are based on more robust and hierarchical structures established even before the beginning of the tournament. For the sake of completeness, we also elaborate a totally Gaussian model (which equalizes the winning, drawing, and losing probabilities) and we show that the scores of the Brazilian tournament “Brasileirão” cannot be reproduced. This shows that the evolutionary aspects are not superfluous and play an important role which must be considered in

  12. Effects of fishing effort allocation scenarios on energy efficiency and profitability: an individual-based model applied to Danish fisheries

    DEFF Research Database (Denmark)

    Bastardie, Francois; Nielsen, J. Rasmus; Andersen, Bo Sølgaard

    2010-01-01

    engine specifications, and fish and fuel prices. The outcomes of scenarios A and B indicate a trade-off between fuel savings and energy efficiency improvements when effort is displaced closer to the harbour compared to reductions in total landing amounts and profit. Scenario C indicates that historic...... efficiency (quantity of fish caught per litre of fuel used), and profitability are factors that we simulated in developing a spatially explicit individual-based model (IBM) for fishing vessel movements. The observed spatial and seasonal patterns of fishing effort for each fishing activity are evaluated...... to the harbour, and (C) allocating effort towards optimising the expected area-specific profit per trip. The model is informed by data from each Danish fishing vessel >15 m after coupling its high resolution spatial and temporal effort data (VMS) with data from logbook landing declarations, sales slips, vessel...

  13. An example of population-level risk assessments for small mammals using individual-based population models

    DEFF Research Database (Denmark)

    Schmitt, Walter; Auteri, Domenica; Bastiansen, Finn

    2016-01-01

    This article presents a case study demonstrating the application of 3 individual-based, spatially explicit population models (IBMs, also known as agent-based models) in ecological risk assessments to predict long-term effects of a pesticide to populations of small mammals. The 3 IBMs each used...... and structural complexity. The toxicological profile of FungicideX was defined so that the deterministic long-term first tier risk assessment would result in high risk to small mammals, thus providing the opportunity to use the IBMs for risk assessment refinement (i.e., higher tier risk assessment). Despite...... assessments for small mammals, including consistent and transparent direct links to specific protection goals, and the consideration of more realistic scenarios....

  14. Markovian Processes for Quantitative Information Leakage

    DEFF Research Database (Denmark)

    Biondi, Fabrizio

    and randomized processes with Markovian models and to compute their information leakage for a very general model of attacker. We present the QUAIL tool that automates such analysis and is able to compute the information leakage of an imperative WHILE language. Finally, we show how to use QUAIL to analyze some...

  15. Continuous Markovian Logics

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian; Cardelli, Luca; Larsen, Kim Guldstrand

    2012-01-01

    Continuous Markovian Logic (CML) is a multimodal logic that expresses quantitative and qualitative properties of continuous-time labelled Markov processes with arbitrary (analytic) state-spaces, henceforth called continuous Markov processes (CMPs). The modalities of CML evaluate the rates of the ...

  16. Consequences of cannibalism and competition for food in a smallmouth bass population: An individual-based modeling study

    Science.gov (United States)

    Dong, Q.; DeAngelis, D.L.

    1998-01-01

    We used an individual-based modeling approach to study the consequences of cannibalism and competition for food in a freshwater fish population. We simulated the daily foraging, growth, and survival of the age-0 fish and older juvenile individuals of a sample population to reconstruct patterns of density dependence in the age-0 fish during the growth season. Cannibalism occurs as a part of the foraging process. For age-0 fish, older juvenile fish are both potential cannibals and competitors of food. We found that competition and cannibalism produced intraclass and interclass density dependence. Our modeling results suggested the following. (1) With low density of juvenile fish and weak interclass interactions, the age-0 fish recruitment shows a Beverton-Holt type of density dependence. (2) With high density of juvenile fish and strong interclass interactions, the age-0 fish recruitment shows a Ricker type of density dependence, and overcompensation occurs. (3) Interclass competition of food is responsible for much of the overcompensation. (4) Cannibalism intensifies the changes in the recruitment that are brought about by competition. Cannibalism can (a) generally reduce the recruitment, (b) particularly reduce the maximum level of recruitment, (c) cause overcompensation to occur at lower densities, and (d) produce a stronger overcompensation. (5) Growth is also a function of density. Cannibalism generally improves average growth of cannibals. (6) Variation in the lengths of age-0 fish increases with density and with a decreased average growth. These results imply that cannibalism and competition for food could strongly affect recruitment dynamics. Our model also showed that the rate of cannibalism either could be fairly even through the whole season or could vary dramatically. The individual-based modeling approach can help ecologists understand the mechanistic connection between daily behavioral and physiological processes operating at the level of individual

  17. Population-level consequences of spatially heterogeneous exposure to heavy metals in soil: An individual-based model of springtails

    DEFF Research Database (Denmark)

    Meli, Mattia; Auclerc, Apolline; Palmqvist, Annemette

    2013-01-01

    Contamination of soil with toxic heavy metals poses a major threat to the environment and human health. Anthropogenic sources include smelting of ores, municipal wastes, fertilizers, and pesticides. In assessing soil quality and the environmental and ecological risk of contamination with heavy...... metals, often homogeneous contamination of the soil is assumed. However, soils are very heterogeneous environments. Consequently, both contamination and the response of soil organisms can be assumed to be heterogeneous. This might have consequences for the exposure of soil organisms...... and for the extrapolation of risk from the individual to the population level. Therefore, to explore how soil contamination of different spatial heterogeneity affects population dynamics of soil invertebrates, we developed a spatially explicit individual-based model of the springtail, Folsomia candida, a standard test...

  18. A Markovian approach for modeling packet traffic with long range dependence

    DEFF Research Database (Denmark)

    Andersen, Allan T.; Nielsen, Bo Friis

    1998-01-01

    -state Markov modulated Poisson processes (MMPPs). We illustrate that a superposition of four two-state MMPPs suffices to model second-order self-similar behavior over several time scales. Our modeling approach allows us to fit to additional descriptors while maintaining the second-order behavior...

  19. Individual-Based Spatially-Explicit Model of an Herbivore and Its Resource: The Effect of Habitat Reduction and Fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Kostova, T; Carlsen, T; Kercher, J

    2002-06-17

    We present an individual-based, spatially-explicit model of the dynamics of a small mammal and its resource. The life histories of each individual animal are modeled separately. The individuals can have the status of residents or wanderers and belong to behaviorally differing groups of juveniles or adults and males or females. Their territory defending and monogamous behavior is taken into consideration. The resource, green vegetation, grows depending on seasonal climatic characteristics and is diminished due to the herbivore's grazing. Other specifics such as a varying personal energetic level due to feeding and starvation of the individuals, mating preferences, avoidance of competitors, dispersal of juveniles, as a result of site overgrazing, etc. are included in the model. We determined model parameters from real data for the species Microtus ochrogaster (prairie vole). The simulations are done for a case of an enclosed habitat without predators or other species competitors. The goal of the study is to find the relation between size of habitat and population persistence. The experiments with the model show the populations go extinct due to severe overgrazing, but that the length of population persistence depends on the area of the habitat as well as on the presence of fragmentation. Additionally, the total population size of the vole population obtained during the simulations exhibits yearly fluctuations as well as multi-yearly peaks of fluctuations. This dynamics is similar to the one observed in prairie vole field studies.

  20. Modelling Hen Harrier Dynamics to Inform Human-Wildlife Conflict Resolution: A Spatially-Realistic, Individual-Based Approach: e112492

    National Research Council Canada - National Science Library

    Johannes P M Heinonen; Stephen C F Palmer; Steve M Redpath; Justin M J Travis

    2014-01-01

      Individual-based models have gained popularity in ecology, and enable simultaneous incorporation of spatial explicitness and population dynamic processes to understand spatio-temporal patterns of populations...

  1. Fermi’s golden rule, the origin and breakdown of Markovian master equations, and the relationship between oscillator baths and the random matrix model

    Science.gov (United States)

    Santra, Siddhartha; Cruikshank, Benjamin; Balu, Radhakrishnan; Jacobs, Kurt

    2017-10-01

    Fermi’s golden rule applies to a situation in which a single quantum state \\vert \\psi> is coupled to a near-continuum. This ‘quasi-continuum coupling’ structure results in a rate equation for the population of \\vert \\psi> . Here we show that the coupling of a quantum system to the standard model of a thermal environment, a bath of harmonic oscillators, can be decomposed into a ‘cascade’ made up of the quasi-continuum coupling structures of Fermi’s golden rule. This clarifies the connection between the physics of the golden rule and that of a thermal bath, and provides a non-rigorous but physically intuitive derivation of the Markovian master equation directly from the former. The exact solution to the Hamiltonian of the golden rule, known as the Bixon–Jortner model, generalized for an asymmetric spectrum, provides a window on how the evolution induced by the bath deviates from the master equation as one moves outside the Markovian regime. Our analysis also reveals the relationship between the oscillator bath and the ‘random matrix model’ (RMT) of a thermal bath. We show that the cascade structure is the one essential difference between the two models, and the lack of it prevents the RMT from generating transition rates that are independent of the initial state of the system. We suggest that the cascade structure is one of the generic elements of thermalizing many-body systems.

  2. Cost-effectiveness of adolescent pertussis vaccination for the Netherlands: using an individual-based dynamic model.

    Directory of Open Access Journals (Sweden)

    Robin de Vries

    Full Text Available BACKGROUND: Despite widespread immunization programs, a clear increase in pertussis incidence is apparent in many developed countries during the last decades. Consequently, additional immunization strategies are considered to reduce the burden of disease. The aim of this study is to design an individual-based stochastic dynamic framework to model pertussis transmission in the population in order to predict the epidemiologic and economic consequences of the implementation of universal booster vaccination programs. Using this framework, we estimate the cost-effectiveness of universal adolescent pertussis booster vaccination at the age of 12 years in the Netherlands. METHODS/PRINCIPAL FINDINGS: We designed a discrete event simulation (DES model to predict the epidemiological and economic consequences of implementing universal adolescent booster vaccination. We used national age-specific notification data over the period 1996-2000--corrected for underreporting--to calibrate the model assuming a steady state situation. Subsequently, booster vaccination was introduced. Input parameters of the model were derived from literature, national data sources (e.g. costing data, incidence and hospitalization data and expert opinions. As there is no consensus on the duration of immunity acquired by natural infection, we considered two scenarios for this duration of protection (i.e. 8 and 15 years. In both scenarios, total pertussis incidence decreased as a result of adolescent vaccination. From a societal perspective, the cost-effectiveness was estimated at €4418/QALY (range: 3205-6364 € per QALY and €6371/QALY (range: 4139-9549 € per QALY for the 8- and 15-year protection scenarios, respectively. Sensitivity analyses revealed that the outcomes are most sensitive to the quality of life weights used for pertussis disease. CONCLUSIONS/SIGNIFICANCE: To our knowledge we designed the first individual-based dynamic framework to model pertussis transmission in

  3. A Markovian model market—Akerlof's lemons and the asymmetry of information

    Science.gov (United States)

    Tilles, Paulo F. C.; Ferreira, Fernando F.; Francisco, Gerson; Pereira, Carlos de B.; Sarti, Flavia M.

    2011-07-01

    In this work we study an agent based model to investigate the role of asymmetric information degrees for market evolution. This model is quite simple and may be treated analytically since the consumers evaluate the quality of a certain good taking into account only the quality of the last good purchased plus her perceptive capacity β. As a consequence, the system evolves according to a stationary Markov chain. The value of a good offered by the firms increases along with quality according to an exponent α, which is a measure of the technology. It incorporates all the technological capacity of the production systems such as education, scientific development and techniques that change the productivity rates. The technological level plays an important role to explain how the asymmetry of information may affect the market evolution in this model. We observe that, for high technological levels, the market can detect adverse selection. The model allows us to compute the maximum asymmetric information degree before the market collapses. Below this critical point the market evolves during a limited period of time and then dies out completely. When β is closer to 1 (symmetric information), the market becomes more profitable for high quality goods, although high and low quality markets coexist. The maximum asymmetric information level is a consequence of an ergodicity breakdown in the process of quality evaluation.

  4. Detection of object motion regions in aerial image pairs with a multilayer markovian model.

    Science.gov (United States)

    Benedek, Csaba; Szirányi, Tamás; Kato, Zoltan; Zerubia, Josiane

    2009-10-01

    We propose a new Bayesian method for detecting the regions of object displacements in aerial image pairs. We use a robust but coarse 2-D image registration algorithm. Our main challenge is to eliminate the registration errors from the extracted change map. We introduce a three-layer Markov random field (L(3)MRF) model which integrates information from two different features, and ensures connected homogenous regions in the segmented images. Validation is given on real aerial photos.

  5. Underpinning the Polar Markovian Velocity Process (PMVP) Model with an Analytical Foundation

    Science.gov (United States)

    Meyer, D. W.

    2016-12-01

    Heterogeneous hydraulic conductivity fields are a key driver of complex non-Fickian transport in subsurface formations. Over the past years we have developed the PMVP model that provides probabilistic transport predictions at a tiny fraction of the computational costs of other approaches like polynomial chaos or Monte Carlo sampling [1,2,3]. Despite its success in challenging spatially non-stationary settings [2,3], so far the model formulation was based on empirical observations from idealized Monte Carlo simulations [1]. In this work, we analytically derive and verify the characteristics of the random processes that are at the heart of the PMVP model. Our derivation is enabled by classical perturbation theoery [4,5]. Thus, our present work spans an arc from classical macro-dispersion models to general state-of-the-art numerical methods for the prediction of subsurface flow, transport, mixing and chemical reaction in highly heterogeneous subsurface formations [6]. [1] Meyer, D.W. and H.A. Tchelepi, Water Resour. Res., 2010. 46(11): p. W11552.[2] Meyer, D.W., H.A. Tchelepi, and P. Jenny, Water Resources Research, 2013. 49(5): p. 2359-2379.[3] Dünser, S. and D.W. Meyer, Advances in Water Resources, 2016. 92: p. 271-283.[4] Rubin, Y., Water Resources Research, 1990. 26(1): p. 133-141.[5] Dagan, G., Water Resources Research, 1985. 21(1): p. 65-72.[6] Meyer, D.W., P. Jenny, and H.A. Tchelepi, Water Resour. Res., 2010. 46(12): p. W12522.

  6. Adiabatic markovian dynamics.

    Science.gov (United States)

    Oreshkov, Ognyan; Calsamiglia, John

    2010-07-30

    We propose a theory of adiabaticity in quantum markovian dynamics based on a decomposition of the Hilbert space induced by the asymptotic behavior of the Lindblad semigroup. A central idea of our approach is that the natural generalization of the concept of eigenspace of the Hamiltonian in the case of markovian dynamics is a noiseless subsystem with a minimal noisy cofactor. Unlike previous attempts to define adiabaticity for open systems, our approach deals exclusively with physical entities and provides a simple, intuitive picture at the Hilbert-space level, linking the notion of adiabaticity to the theory of noiseless subsystems. As two applications of our theory, we propose a general framework for decoherence-assisted computation in noiseless codes and a dissipation-driven approach to holonomic computation based on adiabatic dragging of subsystems that is generally not achievable by nondissipative means.

  7. Application of Markovian technique to modeling influences of inspection on pipe rupture frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, K.N. [ERIN Engineering and Research, Inc., Carlsbad, CA (United States); Gosselin, S. [Electric Power Research Inst., Charlotte, NC (United States). System and Component Integrity

    1997-10-01

    This paper presents the development and application of new reliability models to estimate the frequencies of piping failures in nuclear power plants. These models are developed as part of an effort to implement risk informed in-service inspection (RISI) strategies for piping systems. The technical approach to RISI adopted by EPRI is to take advantage of insights from service experience from over 2,000 reactor years of commercial LWR piping systems. This experience includes documented evidence of more than 1,500 pipe failures including about 100 that were severe enough to be classified as ruptures with leak flows in excess of 50 gpm, with the remaining failures involving smaller leak rates. These insights include the observation that essentially all the leaks and ruptures that have occurred in this experience are the result of a well defined set of failure mechanisms, whose causative factors have been determined. There are ongoing efforts sponsored by EPRI to update the database through a review of the base documents, correction of inconsistencies, and expansion of the information to include more experience and a larger set of pipe conditions. The more recent but as yet unpublished database includes over 6,000 records of flaws, cracks, challenges, leaks and ruptures. 8 refs, 3 figs, 2 tabs.

  8. Trait contributions to fish community assembly emerge from trophicinteractions in an individual-based model

    Science.gov (United States)

    Giacomini, Henrique C.; DeAngelis, Donald; Trexler, Joel C.; Petrere, Miguel

    2013-01-01

    Community ecology seeks to understand and predict the characteristics of communities that can develop under different environmental conditions, but most theory has been built on analytical models that are limited in the diversity of species traits that can be considered simultaneously. We address that limitation with an individual-based model to simulate assembly of fish communities characterized by life history and trophic interactions with multiple physiological tradeoffs as constraints on species performance. Simulation experiments were carried out to evaluate the distribution of 6 life history and 4 feeding traits along gradients of resource productivity and prey accessibility. These experiments revealed that traits differ greatly in importance for species sorting along the gradients. Body growth rate emerged as a key factor distinguishing community types and defining patterns of community stability and coexistence, followed by egg size and maximum body size. Dominance by fast-growing, relatively large, and fecund species occurred more frequently in cases where functional responses were saturated (i.e. high productivity and/or prey accessibility). Such dominance was associated with large biomass fluctuations and priority effects, which prevented richness from increasing with productivity and may have limited selection on secondary traits, such as spawning strategies and relative size at maturation. Our results illustrate that the distribution of species traits and the consequences for community dynamics are intimately linked and strictly dependent on how the benefits and costs of these traits are balanced across different conditions.

  9. Benefits of dispersed central-place foraging: an individual-based model of a polydomous ant colony.

    Science.gov (United States)

    Schmolke, Amelie

    2009-06-01

    Colonies of many ant species are not confined to a single nest but inhabit several dispersed nests, a colony organization referred to as polydomy. The benefits of polydomy are not well understood. It has been proposed that increased foraging efficiency promotes polydomy. In a spatially explicit individual-based model, I compare the foraging success of monodomous and polydomous colonies in environments with varying food distributions. Multiple nests increased the colony's foraging success if food sources were randomly scattered in the environment. Monodomous and polydomous colonies did not differ in foraging success if food sources were clustered in one or three locations. These results support the hypothesis that foraging success serves as a driver for polydomous colony organization. Because transport may occur between the dispersed nests of a polydomous colony, I tested the efficiency of a simple mechanism of food exchange between nests. This mechanism, as introduced previously in the literature, proves insufficient to equalize the level of food between nests. While the importance of transport between nests remains unclear, the model results indicate that polydomy may increase the foraging success of ant colonies and that this effect may be robust across a range of food distributions.

  10. Use of an individual-based simulation model to explore and evaluate potential insecticide resistance management strategies.

    Science.gov (United States)

    Slater, Russell; Stratonovitch, Pierre; Elias, Jan; Semenov, Mikhail A; Denholm, Ian

    2017-07-01

    Tools with the potential to predict risks of insecticide resistance and aid the evaluation and design of resistance management tactics are of value to all sectors of the pest management community. Here we describe use of a versatile individual-based model of resistance evolution to simulate how strategies employing single and multiple insecticides influence resistance development in the pollen beetle, Meligethes aeneus. Under repeated exposure to a single insecticide, resistance evolved faster to a pyrethroid (lambda-cyhalothrin) than to a pyridine azomethane (pymetrozine), due to difference in initial efficacy. A mixture of these compounds delayed resistance compared to use of single products. The effectiveness of rotations depended on the sequence in which compounds were applied in response to pest density thresholds. Effectiveness of a mixture strategy declined with reductions in grower compliance. At least 50% compliance was needed to cause some delay in resistance development. No single strategy meets all requirements for managing resistance. It is important to evaluate factors that prevail under particular pest management scenarios. The model used here provides operators with a valuable means for evaluating and extending sound resistance management advice, as well as understanding needs and opportunities offered by new control techniques. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Decoherence of Josephson charge qubit in non-Markovian environment

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Qing-Qian; Zhou, Xing-Fei; Liang, Xian-Ting, E-mail: liangxianting@nbu.edu.cn

    2016-05-15

    In this paper we investigate the decoherence of Josephson charge qubit (JCQ) by using a time-nonlocal (TNL) dynamical method. Three kinds of environmental models, described with Ohmic, super-Ohmic, and sub-Ohmic spectral density functions are considered. It is shown that the TNL method can effectively include the non-Markovian effects in the dynamical solutions. In particular, it is shown that the sub-Ohmic environment has longer correlation time than the Ohmic and super-Ohmic ones. And the Markovian and non-Markovian dynamics are obviously different for the qubit in sub-Ohmic environment.

  12. The Dynamics of Avian Influenza: Individual-Based Model with Intervention Strategies in Traditional Trade Networks in Phitsanulok Province, Thailand

    Science.gov (United States)

    Wilasang, Chaiwat; Wiratsudakul, Anuwat; Chadsuthi, Sudarat

    2016-01-01

    Avian influenza virus subtype H5N1 is endemic to Southeast Asia. In Thailand, avian influenza viruses continue to cause large poultry stock losses. The spread of the disease has a serious impact on poultry production especially among rural households with backyard chickens. The movements and activities of chicken traders result in the spread of the disease through traditional trade networks. In this study, we investigate the dynamics of avian influenza in the traditional trade network in Phitsanulok Province, Thailand. We also propose an individual-based model with intervention strategies to control the spread of the disease. We found that the dynamics of the disease mainly depend on the transmission probability and the virus inactivation period. This study also illustrates the appropriate virus disinfection period and the target for intervention strategies on traditional trade network. The results suggest that good hygiene and cleanliness among household traders and trader of trader areas and ensuring that any equipment used is clean can lead to a decrease in transmission and final epidemic size. These results may be useful to epidemiologists, researchers, and relevant authorities in understanding the spread of avian influenza through traditional trade networks. PMID:27110273

  13. The Dynamics of Avian Influenza: Individual-Based Model with Intervention Strategies in Traditional Trade Networks in Phitsanulok Province, Thailand

    Directory of Open Access Journals (Sweden)

    Chaiwat Wilasang

    2016-01-01

    Full Text Available Avian influenza virus subtype H5N1 is endemic to Southeast Asia. In Thailand, avian influenza viruses continue to cause large poultry stock losses. The spread of the disease has a serious impact on poultry production especially among rural households with backyard chickens. The movements and activities of chicken traders result in the spread of the disease through traditional trade networks. In this study, we investigate the dynamics of avian influenza in the traditional trade network in Phitsanulok Province, Thailand. We also propose an individual-based model with intervention strategies to control the spread of the disease. We found that the dynamics of the disease mainly depend on the transmission probability and the virus inactivation period. This study also illustrates the appropriate virus disinfection period and the target for intervention strategies on traditional trade network. The results suggest that good hygiene and cleanliness among household traders and trader of trader areas and ensuring that any equipment used is clean can lead to a decrease in transmission and final epidemic size. These results may be useful to epidemiologists, researchers, and relevant authorities in understanding the spread of avian influenza through traditional trade networks.

  14. How will predicted land-use change affect waterfowl spring stopover ecology? Inferences from an individual-based model

    Science.gov (United States)

    Beatty, William; Kesler, Dylan C.; Webb, Elisabeth B.; Naylor, Luke W.; Raedeke, Andrew H.; Humburg, Dale D.; Coluccy, John M.; Soulliere, Gregory J.

    2017-01-01

    Habitat loss, habitat fragmentation, overexploitation and climate change pose familiar and new challenges to conserving natural populations throughout the world. One approach conservation planners may use to evaluate the effects of these challenges on wildlife populations is scenario planning.We developed an individual-based model to evaluate the effects of future land use and land cover changes on spring-migrating dabbling ducks in North America. We assessed the effects of three Intergovernmental Panel on Climate Change emission scenarios (A1B, A2 and B1) on dabbling duck stopover duration, movement distances and mortality. We specifically focused on migration stopover duration because previous research has demonstrated that individuals arriving earlier on the nesting grounds exhibit increased reproductive fitness.Compared to present conditions, all three scenarios increased stopover duration and movement distances of agent ducks.Although all three scenarios presented migrating ducks with increased amounts of wetland habitat, scenarios also contained substantially less cropland, which decreased overall carrying capacity of the study area.Synthesis and applications. Land-use change may increase waterfowl spring migration stopover duration in the midcontinent region of North America due to reduced landscape energetic carrying capacity. Climate change will alter spatial patterns of crop distributions with corn and rice production areas shifting to different regions. Thus, conservation planners will have to address population-level energetic implications of shifting agricultural food resources and increased uncertainty in yearly precipitation patterns within the next 50 years.

  15. Evaluating impacts of fire management strategies on native and invasive plants using an individual-based model

    Science.gov (United States)

    Gangur, Alexander N.; Fill, Jennifer M.; Northfield, Tobin D.; van de Wiel, Marco

    2017-04-01

    The capacity for species to coexist and potentially exclude one another can broadly be attributed to drivers that influence fitness differences (such as competitive ability) and niche differences (such as environmental change). These drivers, and thus the determinants of coexistence they influence, can interact and fluctuate both spatially and temporally. Understanding the spatiotemporal variation in niche and fitness differences in systems prone to fluctuating drivers, such as fire, can help to inform the management of invasive species. In the Cape floristic region of South Africa, invasive Pinus pinaster seedlings are strong competitors in the post-burn environment of the fire-driven Fynbos vegetation. In this, system native Protea spp. are especially vulnerable to unseasonal burns, but seasonal prescribed (Summer) burns are thought to present a high safety risk. Together, these issues have limited the appeal of prescribed burn management as an alternative to costly manual eradication of P. pinaster. Using a spatially-explicit field-of-neighbourhood individual-based model, we represent the drivers of spatiotemporal variation in niche differences (driven by fire regimes) and fitness differences (driven by competitive ability). In doing so, we evaluate optimal fire management strategies to a) control invasive P. pinaster in the Cape floristic region of South Africa, while b) minimizing deleterious effects of management on native Protea spp. The scarcity of appropriate data for model calibration has been problematic for models in invasion biology, but we use recent advances in Approximate Bayesian Computing techniques to overcome this limitation. We present early conclusions on the viability of prescribed burn management to control P. pinaster in South Africa.

  16. Breaking functional connectivity into components: a novel approach using an individual-based model, and first outcomes.

    Directory of Open Access Journals (Sweden)

    Guy Pe'er

    Full Text Available Landscape connectivity is a key factor determining the viability of populations in fragmented landscapes. Predicting 'functional connectivity', namely whether a patch or a landscape functions as connected from the perspective of a focal species, poses various challenges. First, empirical data on the movement behaviour of species is often scarce. Second, animal-landscape interactions are bound to yield complex patterns. Lastly, functional connectivity involves various components that are rarely assessed separately. We introduce the spatially explicit, individual-based model FunCon as means to distinguish between components of functional connectivity and to assess how each of them affects the sensitivity of species and communities to landscape structures. We then present the results of exploratory simulations over six landscapes of different fragmentation levels and across a range of hypothetical bird species that differ in their response to habitat edges. i Our results demonstrate that estimations of functional connectivity depend not only on the response of species to edges (avoidance versus penetration into the matrix, the movement mode investigated (home range movements versus dispersal, and the way in which the matrix is being crossed (random walk versus gap crossing, but also on the choice of connectivity measure (in this case, the model output examined. ii We further show a strong effect of the mortality scenario applied, indicating that movement decisions that do not fully match the mortality risks are likely to reduce connectivity and enhance sensitivity to fragmentation. iii Despite these complexities, some consistent patterns emerged. For instance, the ranking order of landscapes in terms of functional connectivity was mostly consistent across the entire range of hypothetical species, indicating that simple landscape indices can potentially serve as valuable surrogates for functional connectivity. Yet such simplifications must be

  17. Integrating distributional, spatial prioritization, and individual-based models to evaluate potential critical habitat networks: A case study using the Northern Spotted Owl

    Science.gov (United States)

    As part of the northern spotted owl recovery planning effort, we evaluated a series of alternative critical habitat scenarios using a species-distribution model (MaxEnt), a conservation-planning model (Zonation), and an individual-based population model (HexSim). With this suite ...

  18. Non-markovian model of photon-assisted dephasing by electron-phonon interactions in a coupled quantum-dot-cavity system

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Nielsen, Torben Roland; Lodahl, Peter;

    2010-01-01

    We investigate the influence of electron-phonon interactions on the dynamical properties of a quantum-dot-cavity QED system. We show that non-Markovian effects in the phonon reservoir lead to strong changes in the dynamics, arising from photon-assisted dephasing processes, not present in Markovian...

  19. Witnessing non-Markovianity of quantum evolution

    Science.gov (United States)

    Chruściński, Dariusz; Kossakowski, Andrzej

    2014-01-01

    We provide further characterization of non-Markovian quantum dynamics based on the concept of divisible dynamical maps. In analogy to entanglement witness we propose a non-Markovianity witness and introduce the corresponding measure of non-Markovianity. We also provide characterization of non-Markovianity in terms of Wigner-Yanase-Dyson skew information.

  20. Non-Markovian diffusion equations and processes: analysis and simulations

    CERN Document Server

    Mura, Antonio; Mainardi, Francesco

    2007-01-01

    In this paper we introduce and analyze a class of diffusion type equations related to certain non-Markovian stochastic processes. We start from the forward drift equation which is made non-local in time by the introduction of a suitable chosen memory kernel K(t). The resulting non-Markovian equation can be interpreted in a natural way as the evolution equation of the marginal density function of a random time process l(t). We then consider the subordinated process Y(t)=X(l(t)) where X(t) is a Markovian diffusion. The corresponding time-evolution of the marginal density function of Y(t) is governed by a non-Markovian Fokker-Planck equation which involves the memory kernel K(t). We develop several applications and derive the exact solutions. We consider different stochastic models for the given equations providing path simulations.

  1. Life history and biogeography of Calanus copepods in the Arctic Ocean: An individual-based modeling study

    Science.gov (United States)

    Ji, Rubao; Ashjian, Carin J.; Campbell, Robert G.; Chen, Changsheng; Gao, Guoping; Davis, Cabell S.; Cowles, Geoffrey W.; Beardsley, Robert C.

    2012-04-01

    Calanus spp. copepods play a key role in the Arctic pelagic ecosystem. Among four congeneric species of Calanus found in the Arctic Ocean and its marginal seas, two are expatriates in the Arctic (Calanus finmarchicus and Calanus marshallae) and two are endemic (Calanus glacialis and Calanus hyperboreus). The biogeography of these species likely is controlled by the interactions of their life history traits and physical environment. A mechanistic understanding of these interactions is critical to predicting their future responses to a warming environment. Using a 3-D individual-based model that incorporates temperature-dependent and, for some cases, food-dependent development rates, we show that (1) C. finmarchicus and C. marshallae are unable to penetrate, survive, and colonize the Arctic Ocean under present conditions of temperature, food availability, and length of the growth season, mainly due to insufficient time to reach their diapausing stage and slow transport of the copepods into the Arctic Ocean during the growing season or even during the following winter at the depths the copepods are believed to diapause. (2) For the two endemic species, the model suggests that their capability of diapausing at earlier copepodite stages and utilizing ice-algae as a food source (thus prolonging the growth season length) contribute to the population sustainability in the Arctic Ocean. (3) The inability of C. hyperboreus to attain their first diapause stage in the central Arctic, as demonstrated by the model, suggests that the central Arctic population may be advected from the surrounding shelf regions along with multi-year successive development and diapausing, and/or our current estimation of the growth parameters and the growth season length (based on empirical assessment or literature) needs to be further evaluated. Increasing the length of the growth season or increasing water temperature by 2 °C, and therefore increasing development rates, greatly increased the area

  2. Markovian Dynamics on Complex Reaction Networks

    CERN Document Server

    Goutsias, John

    2012-01-01

    Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underling population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions, the computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating...

  3. Quantum non-Markovianity induced by Anderson localization

    Science.gov (United States)

    Lorenzo, Salvatore; Lombardo, Federico; Ciccarello, Francesco; Palma, G. Massimo

    2017-02-01

    As discovered by P. W. Anderson, excitations do not propagate freely in a disordered lattice, but, due to destructive interference, they localise. As a consequence, when an atom interacts with a disordered lattice, one indeed observes a non-trivial excitation exchange between atom and lattice. Such non-trivial atomic dynamics will in general be characterised also by a non-trivial quantum information backflow, a clear signature of non-Markovian dynamics. To investigate the above scenario, we consider a quantum emitter, or atom, weakly coupled to a uniform coupled-cavity array (CCA). If initially excited, in the absence of disorder, the emitter undergoes a Markovian spontaneous emission by releasing all its excitation into the CCA (initially in its vacuum state). By introducing static disorder in the CCA the field normal modes become Anderson-localized, giving rise to a non-Markovian atomic dynamics. We show the existence of a functional relationship between a rigorous measure of quantum non-Markovianity and the CCA localization. We furthermore show that the average non-Markovianity of the atomic dynamics is well-described by a phenomenological model in which the atom is coupled, at the same time, to a single mode and to a standard - Markovian - dissipative bath.

  4. Quantum non-Markovianity induced by Anderson localization

    Science.gov (United States)

    Lorenzo, Salvatore; Lombardo, Federico; Ciccarello, Francesco; Palma, G. Massimo

    2017-01-01

    As discovered by P. W. Anderson, excitations do not propagate freely in a disordered lattice, but, due to destructive interference, they localise. As a consequence, when an atom interacts with a disordered lattice, one indeed observes a non-trivial excitation exchange between atom and lattice. Such non-trivial atomic dynamics will in general be characterised also by a non-trivial quantum information backflow, a clear signature of non-Markovian dynamics. To investigate the above scenario, we consider a quantum emitter, or atom, weakly coupled to a uniform coupled-cavity array (CCA). If initially excited, in the absence of disorder, the emitter undergoes a Markovian spontaneous emission by releasing all its excitation into the CCA (initially in its vacuum state). By introducing static disorder in the CCA the field normal modes become Anderson-localized, giving rise to a non-Markovian atomic dynamics. We show the existence of a functional relationship between a rigorous measure of quantum non-Markovianity and the CCA localization. We furthermore show that the average non-Markovianity of the atomic dynamics is well-described by a phenomenological model in which the atom is coupled, at the same time, to a single mode and to a standard - Markovian - dissipative bath. PMID:28205542

  5. Non-Markovian Reactivation of Quantum Relays

    CERN Document Server

    Pirandola, Stefano; Jacobsen, Christian S; Spedalieri, Gaetana; Braunstein, Samuel L; Gehring, Tobias; Andersen, Ulrik L

    2015-01-01

    We consider a quantum relay which is used by two parties to perform several continuous-variable protocols: Entanglement swapping, distillation, quantum teleportation, and quantum key distribution. The theory of these protocols is extended to a non-Markovian model of decoherence characterized by correlated Gaussian noise. Even if bipartite entanglement is completely lost at the relay, we show that the various protocols can progressively be reactivated by the separable noise-correlations of the environment. In fact, above a critical amount, these correlations are able to restore the distribution of quadripartite entanglement, which can be localized into an exploitable bipartite form by the action of the relay. Our findings are confirmed by a proof-of-principle experiment and show the potential advantages of non-Markovian effects in a quantum network architecture.

  6. An individual-based modeling approach to spawning-potential per-recruit models: An application to blue crab (Callinectes sapidus) in Chesapeake Bay

    Science.gov (United States)

    Bunnell, D.B.; Miller, T.J.

    2005-01-01

    An individual-based modeling approach to estimate biological reference points for blue crabs (Callinectes sapidus) in Chesapeake Bay offered several advantages over conventional models: (i) known individual variation in size and growth rate could be incorporated, (ii) the underlying discontinuous growth pattern could be simulated, and (iii) the complexity of the fishery, where vulnerability is based on size, shell status (e.g., soft, hard), maturity, and sex could be accommodated. Across a range of natural mortality (M) scenarios (0.375-1.2??year-1), we determined the exploitation fraction (??) and fishing mortality (F) that protected 20% of the spawning potential of an unfished population, the current target. As M increased, ??20% and F-20% decreased. Assuming that M = 0.9??year-1, our models estimated ??20% = 0.45, which is greater than field-based estimates of ?? in 64% of the years since 1990. Hence, the commercial fishery has likely contributed to the recent population decline in Chesapeake Bay. Comparisons of our results with conventional per-recruit approaches indicated that incorporating the complexity of the fishery was the most important advantage in our individual-based modeling approach. ?? 2005 NRC.

  7. Markovian dynamics on complex reaction networks

    Energy Technology Data Exchange (ETDEWEB)

    Goutsias, J., E-mail: goutsias@jhu.edu; Jenkinson, G., E-mail: jenkinson@jhu.edu

    2013-08-10

    Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underlying population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions and the large size of the underlying state-spaces, computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples.

  8. Comparison of individual-based model output to data using a model of walleye pollock early life history in the Gulf of Alaska

    Science.gov (United States)

    Hinckley, Sarah; Parada, Carolina; Horne, John K.; Mazur, Michael; Woillez, Mathieu

    2016-10-01

    Biophysical individual-based models (IBMs) have been used to study aspects of early life history of marine fishes such as recruitment, connectivity of spawning and nursery areas, and marine reserve design. However, there is no consistent approach to validating the spatial outputs of these models. In this study, we hope to rectify this gap. We document additions to an existing individual-based biophysical model for Alaska walleye pollock (Gadus chalcogrammus), some simulations made with this model and methods that were used to describe and compare spatial output of the model versus field data derived from ichthyoplankton surveys in the Gulf of Alaska. We used visual methods (e.g. distributional centroids with directional ellipses), several indices (such as a Normalized Difference Index (NDI), and an Overlap Coefficient (OC), and several statistical methods: the Syrjala method, the Getis-Ord Gi* statistic, and a geostatistical method for comparing spatial indices. We assess the utility of these different methods in analyzing spatial output and comparing model output to data, and give recommendations for their appropriate use. Visual methods are useful for initial comparisons of model and data distributions. Metrics such as the NDI and OC give useful measures of co-location and overlap, but care must be taken in discretizing the fields into bins. The Getis-Ord Gi* statistic is useful to determine the patchiness of the fields. The Syrjala method is an easily implemented statistical measure of the difference between the fields, but does not give information on the details of the distributions. Finally, the geostatistical comparison of spatial indices gives good information of details of the distributions and whether they differ significantly between the model and the data. We conclude that each technique gives quite different information about the model-data distribution comparison, and that some are easy to apply and some more complex. We also give recommendations for

  9. Growth and survival of larval and early juvenile lesser sandeel in patchy prey field in the North Sea: An examination using individual-based modelling

    DEFF Research Database (Denmark)

    Gürkan, Zeren; Christensen, Asbjørn; Deurs, Mikael van;

    2012-01-01

    growth and survival of larvae and early juveniles of Lesser Sandeel (Ammodytes marinus) in the North Sea are influenced by availability and patchiness of the planktonic prey by adapting and applying a generic bioenergetic individual-based model for larval fish. Input food conditions were generated...... concentrations is regarded important for survival. Intense aggregations of zooplankton in near-surface waters provide these conditions for larval fish. Simulation studies by individual-based modeling can help understanding of the mechanisms for survival during early life-stages. In this study, we examined how...... by modeling copepod size spectra dynamics and patchiness based on particle count transects and Continuous Plankton Recorder time series data. The study analyzes the effects of larval hatching time, presence of zooplankton patchiness and within patch abundance on growth and survival of sandeel early life...

  10. Analyzing 2D THz-Raman spectroscopy using a non-Markovian Brownian oscillator model with nonlinear system-bath interactions

    CERN Document Server

    Ikeda, Tatsushi; Tanimura, Yoshitaka

    2015-01-01

    We explore and describe the roles of inter-molecular vibrations in terms of a Brownian oscillator (BO) model with linear-linear (LL) and square-linear (SL) system-bath interactions, which we use to analyze two-dimensional (2D) THz-Raman spectra obtained by means of molecular dynamics (MD) simulations. In addition to linear absorption (1D IR), we calculate 2D Raman-THz-THz, THz-Raman-THz, and THz-THz-Raman signals for liquid formamide, water, and methanol using an equilibrium non-equilibrium hybrid MD simulation. The calculated 1D IR and 2D THz-Raman signals are then accounted by the LL+SL BO model with the use of the hierarchal Fokker-Planck equations for a non-perturbative and non-Markovian noise. All of the characteristic 2D profiles of the simulated signals are reproduced using the LL+SL BO model, indicating that the present model captures the essential features of the inter-molecular motion. We analyze the fitted the 2D profiles in terms of anharmonicity, nonlinear polarizability, and dephasing time. The ...

  11. Interdiction of a Markovian evader

    Energy Technology Data Exchange (ETDEWEB)

    Hagberg, Aric [Los Alamos National Laboratory; Izraelevitz, David [Los Alamos National Laboratory; Pan, Feng [Los Alamos National Laboratory; Gutfraind, Alexander [CORNELL UNIV

    2008-01-01

    Network interdiction is a combinatorial optimization problem on an activity network arising in a number of important security-related applications. It is classically formulated as a bilevel maximin problem representing an 'interdictor' and an 'evader'. The evader tries to move from a source node to the target node along the shortest or safest path while the interdictor attempts to frustrate this motion by cutting edges or nodes. The interdiction objective is to find the optimal set of edges to cut given that there is a finite interdiction budget and the interdictor must move first. We reformulate the interdiction problem for stochastic evaders by introducing a model in which the evader follows a Markovian random walk guided by the least-cost path to the target. This model can represent incomplete knowledge about the evader and the graph as well as partial interdiction. We formulate the optimization problem for this model and show how, by exploiting topological ordering of the nodes, one can achieve an order-of-magnitude speedup in computing the objective function. We also introduce an evader-motion-based heuristic that can significantly improve solution quality by providing a global view of the network to approximation methods.

  12. Quantifying Population-Level Risks Using an Individual-Based Model: Sea Otters, Harlequin Ducks, and the Exxon Valdez Oil Spill

    OpenAIRE

    Harwell, Mark A.; JOHN H. GENTILE; Parker, Keith R.

    2012-01-01

    Ecological risk assessments need to advance beyond evaluating risks to individuals that are largely based on toxicity studies conducted on a few species under laboratory conditions, to assessing population-level risks to the environment, including considerations of variability and uncertainty. Two individual-based models (IBMs), recently developed to assess current risks to sea otters and seaducks in Prince William Sound more than 2 decades after the Exxon Valdez oil spill (EVOS), are used to...

  13. Understanding the effects of different HIV transmission models in individual-based microsimulation of HIV epidemic dynamics in people who inject drugs.

    Science.gov (United States)

    Monteiro, J F G; Escudero, D J; Weinreb, C; Flanigan, T; Galea, S; Friedman, S R; Marshall, B D L

    2016-06-01

    We investigated how different models of HIV transmission, and assumptions regarding the distribution of unprotected sex and syringe-sharing events ('risk acts'), affect quantitative understanding of HIV transmission process in people who inject drugs (PWID). The individual-based model simulated HIV transmission in a dynamic sexual and injecting network representing New York City. We constructed four HIV transmission models: model 1, constant probabilities; model 2, random number of sexual and parenteral acts; model 3, viral load individual assigned; and model 4, two groups of partnerships (low and high risk). Overall, models with less heterogeneity were more sensitive to changes in numbers risk acts, producing HIV incidence up to four times higher than that empirically observed. Although all models overestimated HIV incidence, micro-simulations with greater heterogeneity in the HIV transmission modelling process produced more robust results and better reproduced empirical epidemic dynamics.

  14. Perturbation-based Markovian transmission model for probing allosteric dynamics of large macromolecular assembling: a study of GroEL-GroES.

    Directory of Open Access Journals (Sweden)

    Hsiao-Mei Lu

    2009-10-01

    Full Text Available Large macromolecular assemblies are often important for biological processes in cells. Allosteric communications between different parts of these molecular machines play critical roles in cellular signaling. Although studies of the topology and fluctuation dynamics of coarse-grained residue networks can yield important insights, they do not provide characterization of the time-dependent dynamic behavior of these macromolecular assemblies. Here we develop a novel approach called Perturbation-based Markovian Transmission (PMT model to study globally the dynamic responses of the macromolecular assemblies. By monitoring simultaneous responses of all residues (>8,000 across many (>6 decades of time spanning from the initial perturbation until reaching equilibrium using a Krylov subspace projection method, we show that this approach can yield rich information. With criteria based on quantitative measurements of relaxation half-time, flow amplitude change, and oscillation dynamics, this approach can identify pivot residues that are important for macromolecular movement, messenger residues that are key to signal mediating, and anchor residues important for binding interactions. Based on a detailed analysis of the GroEL-GroES chaperone system, we found that our predictions have an accuracy of 71-84% judged by independent experimental studies reported in the literature. This approach is general and can be applied to other large macromolecular machineries such as the virus capsid and ribosomal complex.

  15. The probability of epidemic fade-out is non-monotonic in transmission rate for the Markovian SIR model with demography.

    Science.gov (United States)

    Ballard, P G; Bean, N G; Ross, J V

    2016-03-21

    Epidemic fade-out refers to infection elimination in the trough between the first and second waves of an outbreak. The number of infectious individuals drops to a relatively low level between these waves of infection, and if elimination does not occur at this stage, then the disease is likely to become endemic. For this reason, it appears to be an ideal target for control efforts. Despite this obvious public health importance, the probability of epidemic fade-out is not well understood. Here we present new algorithms for approximating the probability of epidemic fade-out for the Markovian SIR model with demography. These algorithms are more accurate than previously published formulae, and one of them scales well to large population sizes. This method allows us to investigate the probability of epidemic fade-out as a function of the effective transmission rate, recovery rate, population turnover rate, and population size. We identify an interesting feature: the probability of epidemic fade-out is very often greatest when the basic reproduction number, R0, is approximately 2 (restricting consideration to cases where a major outbreak is possible, i.e., R0>1). The public health implication is that there may be instances where a non-lethal infection should be allowed to spread, or antiviral usage should be moderated, to maximise the chance of the infection being eliminated before it becomes endemic.

  16. Network Congestion Control with Markovian Multipath Routing

    CERN Document Server

    Cominetti, Roberto

    2011-01-01

    In this paper we consider an integrated model for TCP/IP protocols with multipath routing. The model combines a Network Utility Maximization for rate control based on end-to-end queuing delays, with a Markovian Traffic Equilibrium for routing based on total expected delays. We prove the existence of a unique equilibrium state which is characterized as the solution of an unconstrained strictly convex program. A distributed algorithm for solving this optimization problem is proposed, with a brief discussion of how it can be implemented by adapting the current Internet protocols.

  17. Non-Markovian quantum Brownian motion of a harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.

    1994-02-01

    We apply the density-matrix method to the study of quantum Brownian motion of a harmonic oscillator coupled to a heat bath, a system investigated previously by Caldeira and Leggett using a different method. Unlike the earlier work, in our derivation of the master equation the non-Markovian terms are maintained. Although the same model of interaction is used, discrepancy is found between their results and our equation in the Markovian limit. We also point out that the particular interaction model used by both works cannot lead to the phenomenological generalized Langevin theory of Kubo.

  18. From Markovian semigroup to non-Markovian quantum evolution

    Science.gov (United States)

    Chruściński, D.; Kossakowski, A.

    2012-01-01

    We provided a class of legitimate memory kernels leading to completely positive trace-preserving dynamical maps. Our construction is based on a simple normalization procedure. Interestingly, when applied to a classical system it gives rise to semi-Markov evolution. Therefore, it may be considered as a quantum version of semi-Markov dynamics which is much more general than Markovian dynamics.

  19. From Markovian semigroup to non-Markovian quantum evolution

    CERN Document Server

    Chruscinski, Dariusz

    2010-01-01

    We provided a class of legitimate memory kernels leading to completely positive trace preserving dynamical maps. Our construction is based on a simple normalization procedure. Interestingly, when applied to the celebrated Wigner-Weisskopf theory it gives the standard Markovian evolution governed by the local master equation.

  20. Bacteria can form interconnected microcolonies when a self-excreted product reduces their surface motility: evidence from individual-based model simulations

    DEFF Research Database (Denmark)

    Mabrouk, Nabil; Deffuant, Guillaume; Tolker-Nielsen, Tim

    2010-01-01

    Recent experimental observations of Pseudomonas aeruginosa, a model bacterium in biofilm research, reveal that, under specific growth conditions, bacterial cells form patterns of interconnected microcolonies. In the present work, we use an individual-based model to assess the involvement...... of bacteria motility and self-produced extracellular substance in the formation of these patterns. In our simulations, the pattern of interconnected microcolonies appears only when bacteria motility is reduced by excreted extracellular macromolecules. Immotile bacteria form isolated microcolonies...... and constantly motile bacteria form flat biofilms. Based on experimental data and computer simulations, we suggest a mechanism that could be responsible for these interconnected microcolonies....

  1. Sandeel ( Ammodytes marinus ) larval transport patterns in the North Sea from an individual-based hydrodynamic egg and larval model

    DEFF Research Database (Denmark)

    Christensen, Asbjørn; Jensen, Henrik; Mosegaard, Henrik

    2008-01-01

    is modelled by a stochastic, nonlinear degree-day model describing the extended hatch period. The larval growth model is parameterized by individually back-tracking the local physical environment of larval survivors from their catch location and catch time. Using a detailed map of sandeel habitats...

  2. Non-white noise and a multiple-rate Markovian closure theory for turbulence

    CERN Document Server

    Hammett, G W; Hammett, Gregory W.; Bowman, John C.

    2002-01-01

    Markovian models of turbulence can be derived from the renormalized statistical closure equations of the direct-interaction approximation (DIA). Various simplifications are often introduced, including an assumption that the two-time correlation function is proportional to the renormalized infinitesimal propagator (Green's function), i.e. the decorrelation rate for fluctuations is equal to the decay rate for perturbations. While this is a rigorous result of the fluctuation--dissipation theorem for thermal equilibrium, it does not necessarily apply to all types of turbulence. Building on previous work on realizable Markovian closures, we explore a way to allow the decorrelation and decay rates to differ (which in some cases affords a more accurate treatment of effects such as non-white noise), while retaining the computational advantages of a Markovian approximation. Some Markovian approximations differ only in the initial transient phase, but the multiple-rate Markovian closure (MRMC) presented here could modi...

  3. Markovian quantum master equation beyond adiabatic regime

    Science.gov (United States)

    Yamaguchi, Makoto; Yuge, Tatsuro; Ogawa, Tetsuo

    2017-01-01

    By introducing a temporal change time scale τA(t ) for the time-dependent system Hamiltonian, a general formulation of the Markovian quantum master equation is given to go well beyond the adiabatic regime. In appropriate situations, the framework is well justified even if τA(t ) is faster than the decay time scale of the bath correlation function. An application to the dissipative Landau-Zener model demonstrates this general result. The findings are applicable to a wide range of fields, providing a basis for quantum control beyond the adiabatic regime.

  4. Non-Markovianity hinders Quantum Darwinism

    Science.gov (United States)

    Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina

    2016-01-01

    We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors.

  5. Linking life history theory, environmental setting, and individual-based modeling to compare responses of different fish species to environmental change

    Energy Technology Data Exchange (ETDEWEB)

    Van Winkle, W.; Rose, K.A.; Winemiller, K.O.; DeAngelis, D.L.; Christensen, S.W. (Oak Ridge National Lab., TN (United States)); Otto, R.G. (R.G. Otto Associates, Vienna, MD (United States)); Shuter, B.J. (Ontario Ministry of Natural Resurces, Onatario (Canada))

    1993-05-01

    We link life history theory, environmental setting, and individual-based modeling to compare the responses of two fish species to environmental change. Life history theory provides the framework for selecting representative species, and in combination with information on important environmental characteristics, it provides the framework for predicting the results of model simulations. Individual-based modeling offers a promising tool for integrating and extrapolating our mechanistic understanding of reproduction, growth, and mortality at the individual level to population-level responses such as size-frequency distributions and indices of year-class strength. Based on the trade-offs between life history characteristics of striped bass Morone saxatilis and smallmouth bass Micropterus dolomieu and differences in their respective environments, we predicted that young-of-year smallmouth bass are likely to demonstrate a greater compensatory change in growth and mortality than young-of-year striped bass in response to changes in density of early life stages and turnover rates of zooplankton prey. We tested this prediction with a simulation experiment. The pattern of model results was consistent with our expectations: by the end of the first growing season, compensatory changes in length and abundance of juveniles were more pronounced for smallmouth bass than for striped bass. The results also highlighted the dependence of model predictions on the interplay between density of larvae and juveniles and characteristics of their zooplankton prey.

  6. Modeling the population-level effects of hypoxia on a coastal fish: implications of a spatially-explicit individual-based model

    Science.gov (United States)

    Rose, K.; Creekmore, S.; Thomas, P.; Craig, K.; Neilan, R.; Rahman, S.; Wang, L.; Justic, D.

    2016-02-01

    The northwestern Gulf of Mexico (USA) currently experiences a large hypoxic area ("dead zone") during the summer. The population-level effects of hypoxia on coastal fish are largely unknown. We developed a spatially-explicit, individual-based model to analyze how hypoxia effects on reproduction, growth, and mortality of individual Atlantic croaker could lead to population-level responses. The model follows the hourly growth, mortality, reproduction, and movement of individuals on a 300 x 800 spatial grid of 1 km2 cells for 140 years. Chlorophyll-a concentration and water temperature were specified daily for each grid cell. Dissolved oxygen (DO) was obtained from a 3-D water quality model for four years that differed in their severity of hypoxia. A bioenergetics model was used to represent growth, mortality was assumed stage- and age-dependent, and movement behavior was based on temperature preferences and avoidance of low DO. Hypoxia effects were imposed using exposure-effects sub-models that converted time-varying exposure to DO to reductions in growth and fecundity, and increases in mortality. Using sequences of mild, intermediate, and severe hypoxia years, the model predicted a 20% decrease in population abundance. Additional simulations were performed under the assumption that river-based nutrients loadings that lead to more hypoxia also lead to higher primary production and more food for croaker. Twenty-five percent and 50% nutrient reduction scenarios were simulated by adjusting the cholorphyll-a concentrations used as food proxy for the croaker. We then incrementally increased the DO concentrations to determine how much hypoxia would need to be reduced to offset the lower food production resulting from reduced nutrients. We discuss the generality of our results, the hidden effects of hypoxia on fish, and our overall strategy of combining laboratory and field studies with modeling to produce robust predictions of population responses to stressors under

  7. GENERALIZED STOCHASTIC DURATION IN MARKOVIAN HEATH-JARROW-MORTON FRAMEWORK

    Institute of Scientific and Technical Information of China (English)

    简志宏; 李楚霖

    2002-01-01

    This paper focuses on how to measure the interest rate risk. The conventional measure methods of interest rate risk arc reviewed and the duration concept is generalized to stochastic duration in the Markovian HJM framework. The generalized stochastic duration of the coupon bond is defined as the time to maturity of a zero coupon bond having the same instantaneous variance as the coupon bond. According to this definition, the authors first present the framework of Markovian HJM model, then deduce the measures of stochastic duration in some special cases which cover some extant interest term structure.

  8. A generalised individual-based algorithm for modelling the evolution of quantitative herbicide resistance in arable weed populations.

    Science.gov (United States)

    Liu, Chun; Bridges, Melissa E; Kaundun, Shiv S; Glasgow, Les; Owen, Micheal Dk; Neve, Paul

    2017-02-01

    Simulation models are useful tools for predicting and comparing the risk of herbicide resistance in weed populations under different management strategies. Most existing models assume a monogenic mechanism governing herbicide resistance evolution. However, growing evidence suggests that herbicide resistance is often inherited in a polygenic or quantitative fashion. Therefore, we constructed a generalised modelling framework to simulate the evolution of quantitative herbicide resistance in summer annual weeds. Real-field management parameters based on Amaranthus tuberculatus (Moq.) Sauer (syn. rudis) control with glyphosate and mesotrione in Midwestern US maize-soybean agroecosystems demonstrated that the model can represent evolved herbicide resistance in realistic timescales. Sensitivity analyses showed that genetic and management parameters were impactful on the rate of quantitative herbicide resistance evolution, whilst biological parameters such as emergence and seed bank mortality were less important. The simulation model provides a robust and widely applicable framework for predicting the evolution of quantitative herbicide resistance in summer annual weed populations. The sensitivity analyses identified weed characteristics that would favour herbicide resistance evolution, including high annual fecundity, large resistance phenotypic variance and pre-existing herbicide resistance. Implications for herbicide resistance management and potential use of the model are discussed. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Carbon fluxes in tropical forest ecosystems: the value of Eddy-covariance data for individual-based dynamic forest gap models

    Science.gov (United States)

    Roedig, Edna; Cuntz, Matthias; Huth, Andreas

    2015-04-01

    The effects of climatic inter-annual fluctuations and human activities on the global carbon cycle are uncertain and currently a major issue in global vegetation models. Individual-based forest gap models, on the other hand, model vegetation structure and dynamics on a small spatial (1000 years). They are well-established tools to reproduce successions of highly-diverse forest ecosystems and investigate disturbances as logging or fire events. However, the parameterizations of the relationships between short-term climate variability and forest model processes are often uncertain in these models (e.g. daily variable temperature and gross primary production (GPP)) and cannot be constrained from forest inventories. We addressed this uncertainty and linked high-resolution Eddy-covariance (EC) data with an individual-based forest gap model. The forest model FORMIND was applied to three diverse tropical forest sites in the Amazonian rainforest. Species diversity was categorized into three plant functional types. The parametrizations for the steady-state of biomass and forest structure were calibrated and validated with different forest inventories. The parameterizations of relationships between short-term climate variability and forest model processes were evaluated with EC-data on a daily time step. The validations of the steady-state showed that the forest model could reproduce biomass and forest structures from forest inventories. The daily estimations of carbon fluxes showed that the forest model reproduces GPP as observed by the EC-method. Daily fluctuations of GPP were clearly reflected as a response to daily climate variability. Ecosystem respiration remains a challenge on a daily time step due to a simplified soil respiration approach. In the long-term, however, the dynamic forest model is expected to estimate carbon budgets for highly-diverse tropical forests where EC-measurements are rare.

  10. Effect of memory in non-Markovian Boolean networks illustrated with a case study: A cell cycling process

    Science.gov (United States)

    Ebadi, H.; Saeedian, M.; Ausloos, M.; Jafari, G. R.

    2016-11-01

    The Boolean network is one successful model to investigate discrete complex systems such as the gene interacting phenomenon. The dynamics of a Boolean network, controlled with Boolean functions, is usually considered to be a Markovian (memory-less) process. However, both self-organizing features of biological phenomena and their intelligent nature should raise some doubt about ignoring the history of their time evolution. Here, we extend the Boolean network Markovian approach: we involve the effect of memory on the dynamics. This can be explored by modifying Boolean functions into non-Markovian functions, for example, by investigating the usual non-Markovian threshold function —one of the most applied Boolean functions. By applying the non-Markovian threshold function on the dynamical process of the yeast cell cycle network, we discover a power-law-like memory with a more robust dynamics than the Markovian dynamics.

  11. Simulating tropical carbon stocks and fluxes in a changing world using an individual-based forest model.

    Science.gov (United States)

    Fischer, Rico; Huth, Andreas

    2014-05-01

    Large areas of tropical forests are disturbed due to climate change and human influence. Experts estimate that the last remaining rainforests could be destroyed in less than 100 years with strong consequences for both developing and industrial countries. Using a modelling approach we analyse how disturbances modify carbon stocks and carbon fluxes of African rainforests. In this study we use the process-based, individual-oriented forest model FORMIND. The main processes of this model are tree growth, mortality, regeneration and competition. The study regions are tropical rainforests in the Kilimanjaro region and Madagascar. Modelling above and below ground carbon stocks, we analyze the impact of disturbances and climate change on forest dynamics and forest carbon stocks. Droughts and fire events change the structure of tropical rainforests. Human influence like logging intensify this effect. With the presented results we could establish new allometric relationships between forest variables and above ground carbon stocks in tropical regions. Using remote sensing techniques, these relationships would offer the possibility for a global monitoring of the above ground carbon stored in the vegetation.

  12. Developing and Testing TernCOLONY 1.0: An Individual-based Model of Least Tern Reproduction

    Science.gov (United States)

    2013-06-01

    measurements funded by the U.S. Army Engineer District, Tulsa. The authors would like to thank Merrie Morrison, Danny Cunningham, and David Pashley of...2012] publication that provides many details about model inputs). It also references several tutorials that will help to get users started with...and Fancher (1989)- 67% were 7-9d. Maximum set to nine to get seven values. adultNestQualityRange 0.1 0.2 0.5 Nest site selection analysis

  13. Biologically Informed Individual-Based Network Model for Rift Valley Fever in the US and Evaluation of Mitigation Strategies

    Science.gov (United States)

    Scoglio, Caterina M.

    2016-01-01

    Rift Valley fever (RVF) is a zoonotic disease endemic in sub-Saharan Africa with periodic outbreaks in human and animal populations. Mosquitoes are the primary disease vectors; however, Rift Valley fever virus (RVFV) can also spread by direct contact with infected tissues. The transmission cycle is complex, involving humans, livestock, and multiple species of mosquitoes. The epidemiology of RVFV in endemic areas is strongly affected by climatic conditions and environmental variables. In this research, we adapt and use a network-based modeling framework to simulate the transmission of RVFV among hypothetical cattle operations in Kansas, US. Our model considers geo-located livestock populations at the individual level while incorporating the role of mosquito populations and the environment at a coarse resolution. Extensive simulations show the flexibility of our modeling framework when applied to specific scenarios to quantitatively evaluate the efficacy of mosquito control and livestock movement regulations in reducing the extent and intensity of RVF outbreaks in the United States. PMID:27662585

  14. Measures of non-Markovianity: Divisibility versus backflow of information

    Science.gov (United States)

    Chruściński, Dariusz; Kossakowski, Andrzej; Rivas, Ángel

    2011-05-01

    We analyze two recently proposed measures of non-Markovianity: one based on the concept of divisibility of the dynamical map and the other one based on distinguishability of quantum states. We provide a model to show that these two measures need not agree. In addition, we discuss possible generalizations and intricate relations between these measures.

  15. 地理信息系统与基于个体的空间直观景观模型%Geographic Information System and Individual-based Spatial Explicit Landscape Model

    Institute of Scientific and Technical Information of China (English)

    常禹; 布仁仓

    2001-01-01

    In this paper,the development of Individual-based SpatialExplicit Landscape Model was outlined at first.Then several issues,pertaining to develop Individual-based Spatial Explicit Landscape Models,were discussed in details.And at last,the application perspectives of such models were illustrated,including animal movement,plant competition and landscape change.This study has relatively important significance guiding roles in developing Individual-based Spatial Explicit Landscape Model in our country and in landscape management.

  16. An individual-based model of the evolution of pesticide resistance in heterogeneous environments: control of Meligethes aeneus population in oilseed rape crops.

    Science.gov (United States)

    Stratonovitch, Pierre; Elias, Jan; Denholm, Ian; Slater, Russell; Semenov, Mikhail A

    2014-01-01

    Preventing a pest population from damaging an agricultural crop and, at the same time, preventing the development of pesticide resistance is a major challenge in crop protection. Understanding how farming practices and environmental factors interact with pest characteristics to influence the spread of resistance is a difficult and complex task. It is extremely challenging to investigate such interactions experimentally at realistic spatial and temporal scales. Mathematical modelling and computer simulation have, therefore, been used to analyse resistance evolution and to evaluate potential resistance management tactics. Of the many modelling approaches available, individual-based modelling of a pest population offers most flexibility to include and analyse numerous factors and their interactions. Here, a pollen beetle (Meligethes aeneus) population was modelled as an aggregate of individual insects inhabiting a spatially heterogeneous landscape. The development of the pest and host crop (oilseed rape) was driven by climatic variables. The agricultural land of the landscape was managed by farmers applying a specific rotation and crop protection strategy. The evolution of a single resistance allele to the pyrethroid lambda cyhalothrin was analysed for different combinations of crop management practices and for a recessive, intermediate and dominant resistance allele. While the spread of a recessive resistance allele was severely constrained, intermediate or dominant resistance alleles showed a similar response to the management regime imposed. Calendar treatments applied irrespective of pest density accelerated the development of resistance compared to ones applied in response to prescribed pest density thresholds. A greater proportion of spring-sown oilseed rape was also found to increase the speed of resistance as it increased the period of insecticide exposure. Our study demonstrates the flexibility and power of an individual-based model to simulate how farming

  17. Quantum dynamical maps and Markovianity

    CERN Document Server

    Devi, A R Usha; Sudha,

    2011-01-01

    It is known that the time evolution of a subsystem from an initial state to two later times, t1, t2 (t2 > t1), are both completely positive (CP) but it is shown here that in the intermediate times between t1 and t2, in general, it need not be CP. This reveals the key to the Markov (if CP) and nonMarkov (if NCP) avataras of the intermediate dynamics. This is brought out based on A and B dynamical maps - without resorting to Master equation approach. The choice of tensor product form for the global initial state points towards the system-environment interaction dynamics as the sole cause for Markovianity/non-Markovianity. A succinct summary of the results is given in the form of a table.

  18. Potential effects of maternal contribution on egg and larva population dynamics of striped bass: Integrated individual-based model and directed field sampling

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, J.H., Jr. (Maryland Univ., Solomons, MD (United States). Chesapeake Biological Lab.); Rose, K.A. (Oak Ridge National Lab., TN (United States))

    1991-01-01

    We have used a bioenergetically-driven, individual-based model (IBM) of striped bass as a framework for synthesizing available information on population biology and quantifying, in a relative sense, factors that potentially affect year class success. The IBM has been configured to simulate environmental conditions experienced by several striped bass populations; i.e., in the Potomac River, MD; in Hudson River, NY; in the Santee-Cooper River System, SC, and; in the San Joaquin-Sacramento River System CA. These sites represent extremes in the geographic distribution and thus, environmental variability of striped bass spawning. At each location, data describing the physio-chemical and biological characteristics of the spawning population and nursery area are being collected and synthesized by means of a prioritized, directed field sampling program that is organized by the individual-based recruitment model. Here, we employ the striped bass IBM configured for the Potomac River, MD from spawning into the larval period to evaluate the potential for maternal contribution to affect larva survival and growth. Model simulations in which the size distribution and spawning day of females are altered indicate that larva survival is enhanced (3.3-fold increase) when a high fraction of females in the spawning population are large. Larva stage duration also is less ({bar X} = 18.4 d and 22.2 d) when large and small females, respectively, are mothers in simulations. Although inconclusive, these preliminary results for Potomac River striped bass suggest that the effects of female size, timing of spawning nad maternal contribution on recruitment dynamics potentially are important and illustrate our approach to the study of recruitment in striped bass. We hope to use the model, field collections and management alternatives that vary from site to site, in an iterative manner for some time to come. 54 refs., 4 figs., 1 tab.

  19. Potential effects of maternal contribution on egg and larva population dynamics of striped bass: Integrated individual-based model and directed field sampling

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, J.H., Jr. (Maryland Univ., Solomons, MD (United States). Chesapeake Biological Lab.); Rose, K.A. (Oak Ridge National Lab., TN (United States))

    1991-01-01

    We have used a bioenergetically-driven, individual-based model (IBM) of striped bass as a framework for synthesizing available information on population biology and quantifying, in a relative sense, factors that potentially affect year class success. The IBM has been configured to simulate environmental conditions experienced by several striped bass populations; i.e., in the Potomac River, MD; in Hudson River, NY; in the Santee-Cooper River System, SC, and; in the San Joaquin-Sacramento River System CA. These sites represent extremes in the geographic distribution and thus, environmental variability of striped bass spawning. At each location, data describing the physio-chemical and biological characteristics of the spawning population and nursery area are being collected and synthesized by means of a prioritized, directed field sampling program that is organized by the individual-based recruitment model. Here, we employ the striped bass IBM configured for the Potomac River, MD from spawning into the larval period to evaluate the potential for maternal contribution to affect larva survival and growth. Model simulations in which the size distribution and spawning day of females are altered indicate that larva survival is enhanced (3.3-fold increase) when a high fraction of females in the spawning population are large. Larva stage duration also is less ({bar X} = 18.4 d and 22.2 d) when large and small females, respectively, are mothers in simulations. Although inconclusive, these preliminary results for Potomac River striped bass suggest that the effects of female size, timing of spawning nad maternal contribution on recruitment dynamics potentially are important and illustrate our approach to the study of recruitment in striped bass. We hope to use the model, field collections and management alternatives that vary from site to site, in an iterative manner for some time to come. 54 refs., 4 figs., 1 tab.

  20. Non-Markovian character in human mobility: Online and offline

    Science.gov (United States)

    Zhao, Zhi-Dan; Cai, Shi-Min; Lu, Yang

    2015-06-01

    The dynamics of human mobility characterizes the trajectories that humans follow during their daily activities and is the foundation of processes from epidemic spreading to traffic prediction and information recommendation. In this paper, we investigate a massive data set of human activity, including both online behavior of browsing websites and offline one of visiting towers based mobile terminations. The non-Markovian character observed from both online and offline cases is suggested by the scaling law in the distribution of dwelling time at individual and collective levels, respectively. Furthermore, we argue that the lower entropy and higher predictability in human mobility for both online and offline cases may originate from this non-Markovian character. However, the distributions of individual entropy and predictability show the different degrees of non-Markovian character between online and offline cases. To account for non-Markovian character in human mobility, we apply a protype model with three basic ingredients, namely, preferential return, inertial effect, and exploration to reproduce the dynamic process of online and offline human mobilities. The simulations show that the model has an ability to obtain characters much closer to empirical observations.

  1. Non-Markovianity assisted Steady State Entanglement

    CERN Document Server

    Huelga, Susana F; Plenio, Martin B

    2011-01-01

    We analyze the dependence of steady state entanglement in a dimer system with a coherent exchange interaction and subject to local dephasing on the degree of Markovianity of the system-environment interaction. We demonstrate that non-Markovianity of the system-environment interaction is an essential resource that may support the formation of steady state entanglement whereas purely Markovian dynamics governed by Lindblad master equations results in separable steady states. This result illustrates possible mechanisms leading to long lived entanglement in purely decohering local environments. A feasible experimental demonstration of this non-Markovianity assisted steady state entanglement using a system of trapped ions is presented.

  2. Individual-Based Modeling of Tuberculosis in a User-Friendly Interface: Understanding the Epidemiological Role of Population Heterogeneity in a City.

    Science.gov (United States)

    Prats, Clara; Montañola-Sales, Cristina; Gilabert-Navarro, Joan F; Valls, Joaquim; Casanovas-Garcia, Josep; Vilaplana, Cristina; Cardona, Pere-Joan; López, Daniel

    2015-01-01

    For millennia tuberculosis (TB) has shown a successful strategy to survive, making it one of the world's deadliest infectious diseases. This resilient behavior is based not only on remaining hidden in most of the infected population, but also by showing slow evolution in most sick people. The course of the disease within a population is highly related to its heterogeneity. Thus, classic epidemiological approaches with a top-down perspective have not succeeded in understanding its dynamics. In the past decade a few individual-based models were built, but most of them preserved a top-down view that makes it difficult to study a heterogeneous population. We propose an individual-based model developed with a bottom-up approach to studying the dynamics of pulmonary TB in a certain population, considered constant. Individuals may belong to the following classes: healthy, infected, sick, under treatment, and treated with a probability of relapse. Several variables and parameters account for their age, origin (native or immigrant), immunodeficiency, diabetes, and other risk factors (smoking and alcoholism). The time within each infection state is controlled, and sick individuals may show a cavitated disease or not that conditions infectiousness. It was implemented in NetLogo because it allows non-modelers to perform virtual experiments with a user-friendly interface. The simulation was conducted with data from Ciutat Vella, a district of Barcelona with an incidence of 67 TB cases per 100,000 inhabitants in 2013. Several virtual experiments were performed to relate the disease dynamics with the structure of the infected subpopulation (e.g., the distribution of infected times). Moreover, the short-term effect of health control policies on modifying that structure was studied. Results show that the characteristics of the population are crucial for the local epidemiology of TB. The developed user-friendly tool is ready to test control strategies of disease in any city in the

  3. Individual-based modeling of tuberculosis in a user-friendly interface: understanding the epidemiological role of population heterogeneity in a city

    Directory of Open Access Journals (Sweden)

    Clara ePrats

    2016-01-01

    Full Text Available For millennia tuberculosis has shown a successful strategy to survive, making it one of the world’s deadliest infectious diseases. This resilient behavior is based not only on remaining hidden in most of the infected population, but also by showing slow evolution in most sick people. The course of the disease within a population is highly related to its heterogeneity. Thus, classic epidemiological approaches with a top-down perspective have not succeeded in understanding its dynamics. In the past decade a few individual-based models were built, but most of them preserved a top-down view that makes it difficult to study a heterogeneous population.We propose an individual-based model developed with a bottom-up approach to studying the dynamics of pulmonary tuberculosis in a certain population, considered constant. Individuals may belong to the following classes: healthy, infected, sick, under treatment, and treated with a probability of relapse. Several variables and parameters account for their age, origin (native or immigrant, immunodeficiency, diabetes, and other risk factors (smoking and alcoholism. The time within each infection state is controlled, and sick individuals may show a cavitated disease or not that conditions infectiousness. It was implemented in NetLogo because it allows non-modelers to perform virtual experiments with a user-friendly interface.The simulation was conducted with data from Ciutat Vella, a district of Barcelona with an incidence of 67 tuberculosis cases per 100,000 inhabitants in 2013. Several virtual experiments were performed to relate the disease dynamics with the structure of the infected subpopulation (e.g., the distribution of infected times. Moreover, the short-term effect of health control policies on modifying that structure was studied. Results show that the characteristics of the population are crucial for the local epidemiology of tuberculosis. The developed user-friendly tool is ready to test control

  4. Dynamical role of system-environment correlations in non-Markovian dynamics

    CERN Document Server

    Mazzola, Laura; Modi, Kavan; Paternostro, Mauro

    2012-01-01

    We analyse the role played by system-environment correlations in the emergence of non-Markovian dynamics. By working within the framework developed in Breuer et al., Phys. Rev. Lett. 103, 210401 (2009), we unveil a fundamental connection between non-Markovian behaviour and dynamics of system-environment correlations. We derive an upper bound to the derivative of rate of change of the distinguishability between different states of the system that explicitly depends on the development and establishment of correlations between system and environment. We illustrate our results using a fully solvable spin-chain model, which allows us to gain insight on the mechanisms triggering non-Markovian evolution.

  5. Quantum trajectories under frequent measurements in a non-Markovian environment

    Science.gov (United States)

    Xu, Luting; Li, Xin-Qi

    2016-09-01

    In this work we generalize the quantum trajectory (QT) theory from Markovian to non-Markovian environments. We model the non-Markovian environment by using a Lorentzian spectral density function with bandwidth (Λ ), and find a perfect "scaling" property with the measurement frequency (τ-1) in terms of the scaling variable x =Λ τ . Our result bridges the gap between the existing QT theory and the Zeno effect, by rendering them as two extremes corresponding to x →∞ and x →0 , respectively. This x -dependent criterion improves the idea of using τ alone and quantitatively identifies the validity condition of the conventional QT theory.

  6. Heterosexual Male Carriers Could Explain Persistence of Homosexuality in Men: Individual-Based Simulations of an X-Linked Inheritance Model.

    Science.gov (United States)

    Chaladze, Giorgi

    2016-10-01

    Homosexuality has been documented throughout history and is found in almost all human cultures. Twin studies suggest that homosexuality is to some extent heritable. However, from an evolutionary perspective, this poses a problem: Male homosexuals tend to have on average five times fewer children than heterosexual males, so how can a phenomenon associated with low reproductive success be maintained at relatively stable frequencies? Recent findings of increased maternal fecundity of male homosexuals suggest that the genes responsible for homosexuality in males increase fecundity in the females who carry them. Can an increase in maternal fecundity compensate for the fecundity reduction in homosexual men and produce a stable polymorphism? In the current study, this problem was addressed with an individual-based modeling (IBM) approach. IBM suggests that male homosexuality can be maintained in a population at low and stable frequencies if roughly more than half of the females and half of the males are carriers of genes that predispose the male to homosexuality.

  7. Analysis of the effect of inoculum characteristics on the first stages of a growing yeast population in beer fermentations by means of an individual-based model.

    Science.gov (United States)

    Ginovart, M; Prats, C; Portell, X; Silbert, M

    2011-01-01

    The yeast Saccharomyces cerevisiae has a limited replicative lifespan. The cell mass at division is partitioned unequally between a larger, old parent cell and a smaller, new daughter cell. Industrial beer fermentations maintain and reuse yeast. At the end of fermentation a portion of the yeast is 'cropped' from the vessel for 'serial repitching'. Harvesting yeast may select a population with an imbalance of young and aged individuals, but the output of any bioprocess is dependent on the physiology of each single cell in the population. Unlike continuous models, individual-based modelling is an approach that considers each microbe as an individual, a unique and discrete entity, with characteristics that change throughout its life. The aim of this contribution is to explore, by means of individual-based simulations, the effects of inoculum size and cell genealogical age on the dynamics of virtual yeast fermentation, focussing on: (1) the first stages of population growth, (2) the mean biomass evolution of the population, (3) the rate of glucose uptake and ethanol production, and (4) the biomass and genealogical age distributions. The ultimate goal is to integrate these results in order to make progress in the understanding of the composition of yeast populations and their temporal evolution in beer fermentations. Simulation results show that there is a clear influence of these initial features of the inocula on the subsequent growth dynamics. By contrasting both the individual and global properties of yeast cells and populations, we gain insight into the interrelation between these two types of data, which helps us to deal with the macroscopic behaviour observed in experimental research.

  8. Spatial Self-Organization of Vegetation Subject to Climatic Stress—Insights from a System Dynamics—Individual-Based Hybrid Model

    Science.gov (United States)

    Vincenot, Christian E.; Carteni, Fabrizio; Mazzoleni, Stefano; Rietkerk, Max; Giannino, Francesco

    2016-01-01

    In simulation models of populations or communities, individual plants have often been obfuscated in favor of aggregated vegetation. This simplification comes with a loss of biological detail and a smoothing out of the demographic noise engendered by stochastic individual-scale processes and heterogeneities, which is significant among others when studying the viability of small populations facing challenging fluctuating environmental conditions. This consideration has motivated the development of precise plant-centered models. The accuracy gained in the representation of plant biology has then, however, often been balanced by the disappearance in models of important plant-soil interactions (esp. water dynamics) due to the inability of most individual-based frameworks to simulate complex continuous processes. In this study, we used a hybrid modeling approach, namely integrated System Dynamics (SD)—Individual-based (IB), to illustrate the importance of individual plant dynamics to explain spatial self-organization of vegetation in arid environments. We analyzed the behavior of this model under different parameter sets either related to individual plant properties (such as seed dispersal distance and reproductive age) or the environment (such as intensity and yearly distribution of precipitation events). While the results of this work confirmed the prevailing theory on vegetation patterning, they also revealed the importance therein of plant-level processes that cannot be rendered by reaction-diffusion models. Initial spatial distribution of plants, reproductive age, and average seed dispersal distance, by impacting patch size and vegetation aggregation, affected pattern formation and population survival under climatic variations. Besides, changes in precipitation regime altered the demographic structure and spatial organization of vegetation patches by affecting plants differentially depending on their age and biomass. Water availability influenced non

  9. Spatial Self-Organization of Vegetation Subject to Climatic Stress-Insights from a System Dynamics-Individual-Based Hybrid Model.

    Science.gov (United States)

    Vincenot, Christian E; Carteni, Fabrizio; Mazzoleni, Stefano; Rietkerk, Max; Giannino, Francesco

    2016-01-01

    In simulation models of populations or communities, individual plants have often been obfuscated in favor of aggregated vegetation. This simplification comes with a loss of biological detail and a smoothing out of the demographic noise engendered by stochastic individual-scale processes and heterogeneities, which is significant among others when studying the viability of small populations facing challenging fluctuating environmental conditions. This consideration has motivated the development of precise plant-centered models. The accuracy gained in the representation of plant biology has then, however, often been balanced by the disappearance in models of important plant-soil interactions (esp. water dynamics) due to the inability of most individual-based frameworks to simulate complex continuous processes. In this study, we used a hybrid modeling approach, namely integrated System Dynamics (SD)-Individual-based (IB), to illustrate the importance of individual plant dynamics to explain spatial self-organization of vegetation in arid environments. We analyzed the behavior of this model under different parameter sets either related to individual plant properties (such as seed dispersal distance and reproductive age) or the environment (such as intensity and yearly distribution of precipitation events). While the results of this work confirmed the prevailing theory on vegetation patterning, they also revealed the importance therein of plant-level processes that cannot be rendered by reaction-diffusion models. Initial spatial distribution of plants, reproductive age, and average seed dispersal distance, by impacting patch size and vegetation aggregation, affected pattern formation and population survival under climatic variations. Besides, changes in precipitation regime altered the demographic structure and spatial organization of vegetation patches by affecting plants differentially depending on their age and biomass. Water availability influenced non-linearly total

  10. Reconstructing the 2003/2004 H3N2 influenza epidemic in Switzerland with a spatially explicit, individual-based model

    Directory of Open Access Journals (Sweden)

    Zinsstag Jakob

    2011-05-01

    Full Text Available Abstract Background Simulation models of influenza spread play an important role for pandemic preparedness. However, as the world has not faced a severe pandemic for decades, except the rather mild H1N1 one in 2009, pandemic influenza models are inherently hypothetical and validation is, thus, difficult. We aim at reconstructing a recent seasonal influenza epidemic that occurred in Switzerland and deem this to be a promising validation strategy for models of influenza spread. Methods We present a spatially explicit, individual-based simulation model of influenza spread. The simulation model bases upon (i simulated human travel data, (ii data on human contact patterns and (iii empirical knowledge on the epidemiology of influenza. For model validation we compare the simulation outcomes with empirical knowledge regarding (i the shape of the epidemic curve, overall infection rate and reproduction number, (ii age-dependent infection rates and time of infection, (iii spatial patterns. Results The simulation model is capable of reproducing the shape of the 2003/2004 H3N2 epidemic curve of Switzerland and generates an overall infection rate (14.9 percent and reproduction numbers (between 1.2 and 1.3, which are realistic for seasonal influenza epidemics. Age and spatial patterns observed in empirical data are also reflected by the model: Highest infection rates are in children between 5 and 14 and the disease spreads along the main transport axes from west to east. Conclusions We show that finding evidence for the validity of simulation models of influenza spread by challenging them with seasonal influenza outbreak data is possible and promising. Simulation models for pandemic spread gain more credibility if they are able to reproduce seasonal influenza outbreaks. For more robust modelling of seasonal influenza, serological data complementing sentinel information would be beneficial.

  11. Joint simulation of carbon and tree diversity dynamics in an Amazonian forest succession using TROLL, an individual-based forest dynamics model

    Science.gov (United States)

    Maréchaux, Isabelle; Chave, Jérôme

    2016-04-01

    Amazonian forests are critical for biogeochemical cycles and provide also key ecosystem services. One approach for modelling forest vegetation dynamics is to parameterize species using field-measured plant traits in individual-based forest growth simulators, a method that has been successfully implemented in temperate forests. Here we extend this approach to the tropics. We parameterized the forest dynamics simulator TROLL over a hundred species and simulated the first decades of an ecological succession with tree species encountered in the coastal zone of French Guiana. The model reproduced well the empirically measured values of gross and net primary productivities (GPP and NPP, obtained from eddy-flux measurements) as well as canopy structure (obtained from aerial LiDAR scanning). Modelled species trajectories compared well with empirically measured ones at a clear-cut site for the past four decades. Modelled carbon accumulation curves show that forests are not mature even after 100 years of regeneration. Finally, we discuss how plant hydrology and responses to drought can be integrated into this modelling scheme using data from leaf water potential at wilting point.

  12. Option Pricing with a Levy-Type Stochastic Dynamic Model for Stock Price Process Under Semi-Markovian Structural Perturbations

    Science.gov (United States)

    2015-11-30

    Scientific Publishing Company DOI : 10.1142/S0219024915500521 OPTION PRICING WITH A LEVY-TYPE STOCHASTIC DYNAMIC MODEL FOR STOCK PRICE PROCESS UNDER SEMI...Applebaum (2009) Levy Processes and Stochastic Calculus . Cambridge University Press. K. Back & S. R. Pliska (1991) On the fundamental theorem of asset

  13. The Impact of Early Time Behavior of Solute Transport at High Peclet Number on Upscaled Markovian Transport Models

    Science.gov (United States)

    Sund, N. L.; Bolster, D.; Benson, D. A.

    2015-12-01

    In order to predict transport of solutes, upscaling techniques are often applied. After the amount of time it takes the solute to sample all of the velocities in the system, the upscaling process is well understood and fairly simple to implement. But in highly heterogeneous velocity fields, this amount of time may be prohibitively long. When there is a need to predict transport at earlier times, the upscaling process is more difficult because the solute tends to stay on or near its initial streamline, inducing a correlation between its average velocity over fixed distances (or times), which must be accounted for. A Spatial Markov model was developed in 2008 that does just that[1]. It accounts for the velocity correlation by treating the transport process as a Markov Chain. This model has been successfully applied to predict solute transport in a large variety of complicated flow fields and is becoming increasing popular. It almost seems as though it works for every situation, but so far no rigorous study has gone into determining its limitations. So we have decided to take a step back and ask: when is this model valid? We understand the asymptotic behavior in the limit as t→ ∞, but what about in the limit as 1/t→ ∞ (or t→ 0)? Are the assumptions of the Spatial Markov model valid over all length (and time) scales? It turns out that the answer is no. At very early times, the transport process is diffusion dominated, leading to non-monotonic correlation between solute particles' average velocity over consecutive space and time steps. The assumptions of the Spatial Markov model only hold after this early diffusive regime ends and the correlation function peaks. We find the location of the peak in the correlation function for transport in simple stratified flows and show the effect of using the Spatial Markov model over length scales on either side of the peak.REFERENCES[1] T.L. Borgne, M. Dentz, J. Carrera: Spatial Markov processes for modeling Lagrangian

  14. Climate-change driven range shifts of anchovy biomass projected by bio-physical coupling individual based model in the marginal seas of East Asia

    Science.gov (United States)

    Jung, Sukgeun; Pang, Ig-Chan; Lee, Joon-ho; Lee, Kyunghwan

    2016-12-01

    Recent studies in the western North Pacific reported a declining standing stock biomass of anchovy ( Engraulis japonicus) in the Yellow Sea and a climate-driven southward shift of anchovy catch in Korean waters. We investigated the effects of a warming ocean on the latitudinal shift of anchovy catch by developing and applying individual-based models (IBMs) based on a regional ocean circulation model and an IPCC climate change scenario. Despite the greater uncertainty, our two IBMs projected that, by the 2030s, the strengthened Tsushima warm current in the Korea Strait and the East Sea, driven by global warming, and the subsequent confinement of the relatively cold water masses within the Yellow Sea will decrease larval anchovy biomass in the Yellow Sea, but will increase it in the Korea Strait and the East Sea. The decreasing trend of anchovy biomass in the Yellow Sea was reproduced by our models, but further validation and enhancement of the models is required together with extended ichthyoplankton surveys to understand and reliably project range shifts of anchovy and the impacts such range shifts will have on the marine ecosystems and fisheries in the region.

  15. Pursuit of food versus pursuit of information in a Markovian perception-action loop model of foraging.

    Science.gov (United States)

    Agarwala, Edward K; Chiel, Hillel J; Thomas, Peter J

    2012-07-07

    Efficient coding, redundancy reduction, and other information theoretic optimization principles have successfully explained the organization of many biological phenomena, from the physiology of sensory receptive fields to the variability of certain DNA sequence ensembles. Here we examine the hypothesis that behavioral strategies that are optimal for survival must necessarily involve efficient information processing, and ask whether there can be circumstances in which deliberately sacrificing some information can lead to higher utility? To this end, we present an analytically tractable model for a particular instance of a perception-action loop: a creature searching for a randomly moving food source confined to a 1D ring world. The model incorporates the statistical structure of the creature's world, the effects of the creature's actions on that structure, and the creature's strategic decision process. The underlying model takes the form of a Markov process on an infinite dimensional state space. To analyze it we construct an exact coarse graining that reduces the model to a Markov process on a finite number of "information states". This mathematical technique allows us to make quantitative comparisons between the performance of an information-theoretically optimal strategy with other candidate search strategies on a food gathering task. We find that 1. Information optimal search does not necessarily optimize utility (expected food gain). 2. The rank ordering of search strategies by information performance does not predict their ordering by expected food obtained. 3. The relative advantage of different strategies depends on the statistical structure of the environment, in particular the variability of motion of the source. We conclude that there is no simple relationship between information and utility. Even in the absence of information processing costs or bandwidth constraints, behavioral optimality does not imply information efficiency, nor is there a simple

  16. Equivalence of the measures of non-Markovianity for open two-level systems

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Haosheng; Tang Ning; Zheng Yanping; Wang Guoyou [Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081 (China)

    2011-09-15

    Different measures have been presented to depict the deviation of quantum time evolution in open systems from Markovian processes. We demonstrate that the measure proposed by Breuer, Laine, and Piilo [Phys. Rev. Lett. 103, 210401 (2009)] and the two measures proposed by Rivas, Huelga, and Plenio [Phys. Rev. Lett. 105, 050403 (2010)] have exactly the same non-Markovian time-evolution intervals and thus are really equivalent to each other when they are applied to open two-level systems coupled to environments via the Jaynes-Cummings or dephasing models. This equivalence implies that the three measures, in different ways, capture the intrinsic character of the non-Markovianity of quantum evolutional processes. We also show that the maximization in the definition of the first measure can be actually removed for the considered models without influencing the sensibility of the measure to detect non-Markovianity.

  17. Markovian Zero-Discord Classicality for Bipartite Quantum Systems

    CERN Document Server

    Arsenijevic, M; Dugic, M

    2012-01-01

    Recent observation that almost all quantum states bear nonclassical correlations [A. Ferraro et al, Phys. Rev. A 81, 052318 (2010)] distinguishes the zero-discord classicality essentially as a rareness of the Markovian bipartite systems realm. This seems to be in contrast with decoherence-theory established classicality where classical states are robust and unavoidable. Nevertheless, we formally construct such a classical model and its variant that represents a matter-of-principle formal proof, i.e. a sufficient condition for the, otherwise not obvious, existence of the Markovian zero-discord classicality. Rigorous analysis suggests there is no alternative to classical model, aside approximate model which follows from relaxing rigid quantum information constraints on classical model. A need for the more elaborate and more systematic search for the alternative such models (if there any) reveals we are still learning about the very meaning of "classicality" in the realm of open quantum systems.

  18. New dissipative non-Markovian model treatment of capture: the need for precise above-barrier cross sections

    Directory of Open Access Journals (Sweden)

    Chushnyakova Maria

    2013-12-01

    Full Text Available We performed quantitative theoretical analysis of the high precision data on the fusion excitation function in the reaction 16O + 144Sm involving spherical nuclei. For this purpose the model is developed in which the collision process is described by the stochastic dynamical equations with the retarding friction and colored noise. The friction force is supposed to be proportional to the squared derivative of nucleus-nucleus interaction potential. The latter is calculated within the framework of the double folding approach with the density-dependent M3Y NN-forces. Varying the radial dissipation strength KR and the matter diffuseness of 144Sm we reach χ2 per point equal to 5.4. However the values of KR and the friction retardation time τC appear to be strongly correlated. More high precision data are needed to make more definite conclusions about the values of KR and τC.

  19. New dissipative non-Markovian model treatment of capture: the need for precise above-barrier cross sections

    Science.gov (United States)

    Chushnyakova, Maria; Gontchar, Igor

    2013-12-01

    We performed quantitative theoretical analysis of the high precision data on the fusion excitation function in the reaction 16O + 144Sm involving spherical nuclei. For this purpose the model is developed in which the collision process is described by the stochastic dynamical equations with the retarding friction and colored noise. The friction force is supposed to be proportional to the squared derivative of nucleus-nucleus interaction potential. The latter is calculated within the framework of the double folding approach with the density-dependent M3Y NN-forces. Varying the radial dissipation strength KR and the matter diffuseness of 144Sm we reach χ2 per point equal to 5.4. However the values of KR and the friction retardation time τC appear to be strongly correlated. More high precision data are needed to make more definite conclusions about the values of KR and τC.

  20. Seasonal patterns in growth, blood consumption, and effects on hosts by parasitic-phase sea lampreys in the Great Lakes: an individual-based model approach

    Science.gov (United States)

    Madenjian, Charles P.; Cochran, Philip A.; Bergstedt, Roger A.

    2003-01-01

    An individual-based model (IBM) was developed for sea lamprey (Petromyzon marinus) populations in the Laurentian Great Lakes. The IBM was then calibrated to observed growth, by season, for sea lampreys in northern Lake Huron under two different water temperature regimes: a regime experienced by Seneca-strain lake trout (Salvelinus namaycush) and a regime experienced by Marquettestrain lake trout. Modeling results indicated that seasonal blood consumption under the Seneca regime was very similar to that under the Marquette regime. Simulated mortality of lake trout directly due to blood removal by sea lampreys occurred at nearly twice the rate during August and September under the Marquette regime than under the Seneca regime. However, cumulative sea lamprey-induced mortality on lake trout over the entire duration of the sea lamprey's parasitic phase was only 7% higher for the Marquette regime compared with the Seneca regime. Thus, these modeling results indicated that the strain composition of the host (lake trout) population was not important in determining total number of lake trout deaths or total blood consumption attributable to the sea lamprey population, given the sea lamprey growth pattern. Regardless of water temperature regime, both blood consumption rate by sea lampreys and rate of sea lamprey-induced mortality on lake trout peaked in late October. Elevated blood consumption in late October appeared to be unrelated to changes in water temperature. The IBM approach should prove useful in optimizing control of sea lampreys in the Laurentian Great Lakes.

  1. Modeling Behavior by Coastal River Otter (Lontra Canadensis) in Response to Prey Availability in Prince William Sound, Alaska: A Spatially-Explicit Individual-Based Approach.

    Science.gov (United States)

    Albeke, Shannon E; Nibbelink, Nathan P; Ben-David, Merav

    2015-01-01

    Effects of climate change on animal behavior and cascading ecosystem responses are rarely evaluated. In coastal Alaska, social river otters (Lontra Canadensis), largely males, cooperatively forage on schooling fish and use latrine sites to communicate group associations and dominance. Conversely, solitary otters, mainly females, feed on intertidal-demersal fish and display mutual avoidance via scent marking. This behavioral variability creates "hotspots" of nutrient deposition and affects plant productivity and diversity on the terrestrial landscape. Because the abundance of schooling pelagic fish is predicted to decline with climate change, we developed a spatially-explicit individual-based model (IBM) of otter behavior and tested six scenarios based on potential shifts to distribution patterns of schooling fish. Emergent patterns from the IBM closely mimicked observed otter behavior and landscape use in the absence of explicit rules of intraspecific attraction or repulsion. Model results were most sensitive to rules regarding spatial memory and activity state following an encounter with a fish school. With declining availability of schooling fish, the number of social groups and the time simulated otters spent in the company of conspecifics declined. Concurrently, model results suggested an elevation of defecation rate, a 25% increase in nitrogen transport to the terrestrial landscape, and significant changes to the spatial distribution of "hotspots" with declines in schooling fish availability. However, reductions in availability of schooling fish could lead to declines in otter density over time.

  2. Modeling Behavior by Coastal River Otter (Lontra Canadensis in Response to Prey Availability in Prince William Sound, Alaska: A Spatially-Explicit Individual-Based Approach.

    Directory of Open Access Journals (Sweden)

    Shannon E Albeke

    Full Text Available Effects of climate change on animal behavior and cascading ecosystem responses are rarely evaluated. In coastal Alaska, social river otters (Lontra Canadensis, largely males, cooperatively forage on schooling fish and use latrine sites to communicate group associations and dominance. Conversely, solitary otters, mainly females, feed on intertidal-demersal fish and display mutual avoidance via scent marking. This behavioral variability creates "hotspots" of nutrient deposition and affects plant productivity and diversity on the terrestrial landscape. Because the abundance of schooling pelagic fish is predicted to decline with climate change, we developed a spatially-explicit individual-based model (IBM of otter behavior and tested six scenarios based on potential shifts to distribution patterns of schooling fish. Emergent patterns from the IBM closely mimicked observed otter behavior and landscape use in the absence of explicit rules of intraspecific attraction or repulsion. Model results were most sensitive to rules regarding spatial memory and activity state following an encounter with a fish school. With declining availability of schooling fish, the number of social groups and the time simulated otters spent in the company of conspecifics declined. Concurrently, model results suggested an elevation of defecation rate, a 25% increase in nitrogen transport to the terrestrial landscape, and significant changes to the spatial distribution of "hotspots" with declines in schooling fish availability. However, reductions in availability of schooling fish could lead to declines in otter density over time.

  3. A Generic Individual-Based Spatially Explicit Model as a Novel Tool for Investigating Insect-Plant Interactions: A Case Study of the Behavioural Ecology of Frugivorous Tephritidae.

    Directory of Open Access Journals (Sweden)

    Ming Wang

    Full Text Available Computational modelling of mechanisms underlying processes in the real world can be of great value in understanding complex biological behaviours. Uptake in general biology and ecology has been rapid. However, it often requires specific data sets that are overly costly in time and resources to collect. The aim of the current study was to test whether a generic behavioural ecology model constructed using published data could give realistic outputs for individual species. An individual-based model was developed using the Pattern-Oriented Modelling (POM strategy and protocol, based on behavioural rules associated with insect movement choices. Frugivorous Tephritidae (fruit flies were chosen because of economic significance in global agriculture and the multiple published data sets available for a range of species. The Queensland fruit fly (Qfly, Bactrocera tryoni, was identified as a suitable individual species for testing. Plant canopies with modified architecture were used to run predictive simulations. A field study was then conducted to validate our model predictions on how plant architecture affects fruit flies' behaviours. Characteristics of plant architecture such as different shapes, e.g., closed-canopy and vase-shaped, affected fly movement patterns and time spent on host fruit. The number of visits to host fruit also differed between the edge and centre in closed-canopy plants. Compared to plant architecture, host fruit has less contribution to effects on flies' movement patterns. The results from this model, combined with our field study and published empirical data suggest that placing fly traps in the upper canopy at the edge should work best. Such a modelling approach allows rapid testing of ideas about organismal interactions with environmental substrates in silico rather than in vivo, to generate new perspectives. Using published data provides a saving in time and resources. Adjustments for specific questions can be achieved by

  4. A framework for the direct evaluation of large deviations in non-Markovian processes

    Science.gov (United States)

    Cavallaro, Massimo; Harris, Rosemary J.

    2016-11-01

    We propose a general framework to simulate stochastic trajectories with arbitrarily long memory dependence and efficiently evaluate large deviation functions associated to time-extensive observables. This extends the ‘cloning’ procedure of Giardiná et al (2006 Phys. Rev. Lett. 96 120603) to non-Markovian systems. We demonstrate the validity of this method by testing non-Markovian variants of an ion-channel model and the totally asymmetric exclusion process, recovering results obtainable by other means.

  5. Influence of Nutrient Availability and Quorum Sensing on the Formation of Metabolically Inactive Microcolonies Within Structurally Heterogeneous Bacterial Biofilms: An Individual-Based 3D Cellular Automata Model.

    Science.gov (United States)

    Machineni, Lakshmi; Rajapantul, Anil; Nandamuri, Vandana; Pawar, Parag D

    2017-03-01

    The resistance of bacterial biofilms to antibiotic treatment has been attributed to the emergence of structurally heterogeneous microenvironments containing metabolically inactive cell populations. In this study, we use a three-dimensional individual-based cellular automata model to investigate the influence of nutrient availability and quorum sensing on microbial heterogeneity in growing biofilms. Mature biofilms exhibited at least three structurally distinct strata: a high-volume, homogeneous region sandwiched between two compact sections of high heterogeneity. Cell death occurred preferentially in layers in close proximity to the substratum, resulting in increased heterogeneity in this section of the biofilm; the thickness and heterogeneity of this lowermost layer increased with time, ultimately leading to sloughing. The model predicted the formation of metabolically dormant cellular microniches embedded within faster-growing cell clusters. Biofilms utilizing quorum sensing were more heterogeneous compared to their non-quorum sensing counterparts, and resisted sloughing, featuring a cell-devoid layer of EPS atop the substratum upon which the remainder of the biofilm developed. Overall, our study provides a computational framework to analyze metabolic diversity and heterogeneity of biofilm-associated microorganisms and may pave the way toward gaining further insights into the biophysical mechanisms of antibiotic resistance.

  6. Sampled-Data Synchronization Analysis of Markovian Neural Networks With Generally Incomplete Transition Rates.

    Science.gov (United States)

    Zhang, Huaguang; Wang, Junyi; Wang, Zhanshan; Liang, Hongjing

    2017-03-01

    This paper investigates the problem of sampled-data synchronization for Markovian neural networks with generally incomplete transition rates. Different from traditional Markovian neural networks, each transition rate can be completely unknown or only its estimate value is known in this paper. Compared with most of existing Markovian neural networks, our model is more practical because the transition rates in Markovian processes are difficult to precisely acquire due to the limitations of equipment and the influence of uncertain factors. In addition, the time-dependent Lyapunov-Krasovskii functional is proposed to synchronize drive system and response system. By applying an extended Jensen's integral inequality and Wirtinger's inequality, new delay-dependent synchronization criteria are obtained, which fully utilize the upper bound of variable sampling interval and the sawtooth structure information of varying input delay. Moreover, the desired sampled-data controllers are obtained. Finally, two examples are provided to illustrate the effectiveness of the proposed method.

  7. Individual-based model of Chironomus riparius population dynamics over several generations to explore adaptation following exposure to uranium-spiked sediments.

    Science.gov (United States)

    Beaudouin, Rémy; Dias, Victor; Bonzom, Jean Marc; Péry, Alexandre

    2012-05-01

    Natural populations are chronically exposed to various pollutants over many generations. It is thus crucial to understand and quantify adaptive dynamics of stressed populations in order to increase the relevance of ecotoxicological risk assessment. However, long-term consequences to population exposure are not much studied yet. The present study investigated evolutionary responses of Chironomus riparius populations exposed to uranium (heavy metal pollutant) and to assess the underlying mechanisms. To fulfil our objective, we produced data with organisms exposed to four relevant concentrations of uranium through eight successive generations. We built an individual-based (IBM) model of C. riparius population dynamics to analyse these data and to test several assumptions about the mechanisms involved in the phenotypic changes. The IBM was based on a dynamic energy budget (DEB) model for C. riparius by Pery et al. (2002). DEB models account mathematically for the acquisition and use of energy to describe and predict growth, maintenance, development and reproduction of living organisms. The IBM accounted for the influence of the test conditions on the observations over eight generations and highlighted some trait evolution such as time to emergence and adult size in control conditions. The model was then used to analyse the exposed population data. Our results showed that exposure to uranium led to a phenotypic selection via a differential survival characterised by longer time to emergence and smaller larval maximal size. As a general conclusion, IBMs based on DEB-based modelling developed to analyse multi-generation experiments are very promising for understanding and quantifying long term selection and tolerance mechanisms in a population under toxic stress.

  8. An Individual Based Model of Arctic cod ( Boreogadus saida) early life in Arctic polynyas: II. Length-dependent and growth-dependent mortality

    Science.gov (United States)

    Thanassekos, Stéphane; Robert, Dominique; Fortier, Louis

    2012-05-01

    A bioenergetics individual based model (IBM) of early growth is used to investigate the relative importance of length-dependent and growth-dependent mortality during the early life (0-45 d) of Arctic cod in the Northeast Water (NEW) in 1993 and the North Water (NOW) in 1998. In the model, individual growth is forced by the observed temperature and prey concentration histories as prescribed by the hatch date of a larva. The IBM reproduced well the observed length-at-age and revealed large ontogenetic and interregional fluctuations in instantaneous growth. Four mortality scenarios were compared for each population: (1) constant mortality (estimated from catch-at-age data); (2) length-dependent mortality; (3) growth-dependent mortality; and (4) combined length- and growth-dependent mortality. Scenarios 2, 3, and 4 were parameterized to achieve the final survival produced by the constant mortality rates estimated from observations (scenario 1). Scenario 2 accounted well for declining mortality with size but not for the large variations in growth-dependent mortality. Scenario 3 failed to capture the decreasing vulnerability of surviving larvae to predation. Only scenario 4 accounted for both the large fluctuations in growth-dependent mortality and the progressive shift in dominance from length-dependent to growth-dependent mortality as the survivors increased in size. Sub-sampling the model output to reproduce the limited temporal resolution of sampling at sea improved the fit between observed and modeled frequencies-at-age, and pointed to the under-sampling of the smallest larvae as a major sampling bias.

  9. Annual variation in habitat-specific recruitment success: Implications from an individual-based model of Lake Michigan alewife (Alosa pseudoharengus)

    Science.gov (United States)

    Hook, T.O.; Rutherford, E.S.; Croley, T.E.; Mason, D.M.; Madenjian, C.P.

    2008-01-01

    The identification of important spawning and nursery habitats for fish stocks can aid fisheries management, but is complicated by various factors, including annual variation in recruitment success. The alewife (Alosa pseudoharengus) is an ecologically important species in Lake Michigan that utilizes a variety of habitats for spawning and early life growth. While productive, warm tributary mouths (connected to Lake Michigan) may contribute disproportionately more recruits (relative to their habitat volume) to the adult alewife population than cooler, less productive nearshore habitats, the extent of interannual variation in the relative contributions of recruits from these two habitat types remains unknown. We used an individual-based bioenergetics simulation model and input data on daily temperatures to estimate alewife recruitment to the adult population by these different habitat types. Simulations suggest that nearshore lake habitats typically produce the vast majority of young alewife recruits. However, tributary habitats may contribute the majority of alewife recruits during years of low recruitment. We suggest that high interannual variation in the relative importance of habitats for recruitment is a common phenomenon, which should be considered when developing habitat management plans for fish populations. ?? 2008 NRC.

  10. Individual-based model of young-of-the-year striped bass population dynamics. II. Factors affecting recruitment in the Potomac River, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, J.H. (Univ. of South Alabama, Mobile, AL (United States)); Rose, K.A. (Oak Ridge National Lab., TN (United States)); Rutherford, E.S.; Houde, E.D. (Univ. of Maryland System, Solomons, MD (United States))

    1993-05-01

    An individual-based model of the population dynamics of young-of-the-year striped bass Morone saxatilis in the Potomac River, Maryland, was used to test the hypothesis that historically high recruitment variability can be explained by changes in environmental and biological factors that result in relatively small changes in growth and mortality rates of striped bass larvae. The four factors examined were (1) size distribution of female parents, (2) zooplankton prey density during the development of striped bass larvae, (3) density of completing larval white perch M. americana, and (4) temperature during larval development. Simulation results suggest that variations in female size and in prey for larvae alone could cause 10-fold variability in recruitment. But no single factor alone caused changes in vital rates of age-0 fish that could account for the 145-fold variability in the Potomac River index of juvenile recruitment. However, combined positive or negative effects of two or more factors resulted in more than a 150-fold simulated recruitment variability, suggesting that combinations of factors can account for the high observed annual variability in striped bass recruitment success. Higher cumulative mortality of feeding larvae and younger life stages than of juveniles was common to all simulations. supporting the contention that striped bass year-class strength is determined prior to metamorphosis. 76 refs., 7 figs., 4 tabs.

  11. Legacy effects of wildfire on stream thermal regimes and rainbow trout ecology: an integrated analysis of observation and individual-based models

    Science.gov (United States)

    Rosenberger, Amanda E.; Dunham, Jason B.; Neuswanger, Jason R.; Railsback, Steven F.

    2015-01-01

    Management of aquatic resources in fire-prone areas requires understanding of fish species’ responses to wildfire and of the intermediate- and long-term consequences of these disturbances. We examined Rainbow Trout populations in 9 headwater streams 10 y after a major wildfire: 3 with no history of severe wildfire in the watershed (unburned), 3 in severely burned watersheds (burned), and 3 in severely burned watersheds subjected to immediate events that scoured the stream channel and eliminated streamside vegetation (burned and reorganized). Results of a previous study of this system suggested the primary lasting effects of this wildfire history on headwater stream habitat were differences in canopy cover and solar radiation, which led to higher summer stream temperatures. Nevertheless, trout were present throughout streams in burned watersheds. Older age classes were least abundant in streams draining watersheds with a burned and reorganized history, and individuals >1 y old were most abundant in streams draining watersheds with an unburned history. Burned history corresponded with fast growth, low lipid content, and early maturity of Rainbow Trout. We used an individual-based model of Rainbow Trout growth and demographic patterns to determine if temperature interactions with bioenergetics and competition among individuals could lead to observed phenotypic and ecological differences among populations in the absence of other plausible mechanisms. Modeling suggested that moderate warming associated with wildfire and channel disturbance history leads to faster individual growth, which exacerbates competition for limited food, leading to decreases in population densities. The inferred mechanisms from this modeling exercise suggest the transferability of ecological patterns to a variety of temperature-warming scenarios.

  12. Markovian Classicality from Zero Discord for Bipartite Quantum Systems

    CERN Document Server

    Arsenijevic, M; Dugic, M

    2012-01-01

    Modern quantum information theory provides new tools for investigating the decoherence-induced "classicality" of open quantum systems. Recent observation that almost all quantum states bear non-classical correlations [A. Ferraro {\\it et al}, Phys. Rev. A {\\bf 81}, 052318 (2010)] distinguishes the zero-discord classicality essentially as a pathology of the Markovian bipartite-systems realm. Nevertheless, we formally construct such a classical model and its variant that represents a matter-of-principle formal proof, i.e. a sufficient condition for the, otherwise not obvious, existence of the Markovian zero-discord classicality. A need for the more elaborate and more systematic search for the alternative such models reveals we are still learning about the very meaning of "classicality" in the realm of open quantum systems.

  13. Non-Markovianity-assisted steady state entanglement.

    Science.gov (United States)

    Huelga, Susana F; Rivas, Ángel; Plenio, Martin B

    2012-04-20

    We analyze the steady state entanglement generated in a coherently coupled dimer system subject to dephasing noise as a function of the degree of Markovianity of the evolution. By keeping fixed the effective noise strength while varying the memory time of the environment, we demonstrate that non-Markovianity is an essential, quantifiable resource that may support the formation of steady state entanglement whereas purely Markovian dynamics governed by Lindblad master equations lead to separable steady states. This result illustrates possible mechanisms leading to long-lived entanglement in purely decohering, possibly local, environments. We present a feasible experimental demonstration of this noise assisted phenomenon using a system of trapped ions.

  14. Markovian master equations: a critical study

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, Angel; Huelga, Susana F; B Plenio, Martin [Institut fuer Theoretische Physik, Universitaet Ulm, Albert-Einstein-Allee 11, D-89069 Ulm (Germany); K Plato, A Douglas, E-mail: angel.rivas@uni-ulm.d [Institute for Mathematical Sciences, Imperial College London, London SW7 2PG (United Kingdom)

    2010-11-15

    We derive Markovian master equations for single and interacting harmonic systems in different scenarios, including strong internal coupling. By comparing the dynamics resulting from the corresponding master equations with numerical simulations of the global system's evolution, we delimit their validity regimes and assess the robustness of the assumptions usually made in the process of deriving the reduced Markovian dynamics. The results of these illustrative examples serve to clarify the general properties of other open quantum system scenarios subject to treatment within a Markovian approximation.

  15. Non-Markovian linear response theory for quantum open systems and its applications.

    Science.gov (United States)

    Shen, H Z; Li, D X; Yi, X X

    2017-01-01

    The Kubo formula is an equation that expresses the linear response of an observable due to a time-dependent perturbation. It has been extended from closed systems to open systems in recent years under the Markovian approximation, but is barely explored for open systems in non-Markovian regimes. In this paper, we derive a formula for the linear response of an open system to a time-independent external field. This response formula is available for both Markovian and non-Markovian dynamics depending on parameters in the spectral density of the environment. As an illustration of the theory, the Hall conductance of a two-band system subjected to environments is derived and discussed. With the tight-binding model, we point out the Hall conductance changes from Markovian to non-Markovian dynamics by modulating the spectral density of the environment. Our results suggest a way to the controlling of the system response, which has potential applications for quantum statistical mechanics and condensed matter physics.

  16. The influence of agroforestry and other land-use types on the persistence of a Sumatran tiger (Panthera tigris sumatrae) population: an individual-based model approach.

    Science.gov (United States)

    Imron, Muhammad Ali; Herzog, Sven; Berger, Uta

    2011-08-01

    The importance of preserving both protected areas and their surrounding landscapes as one of the major conservation strategies for tigers has received attention over recent decades. However, the mechanism of how land-use surrounding protected areas affects the dynamics of tiger populations is poorly understood. We developed Panthera Population Persistence (PPP)--an individual-based model--to investigate the potential mechanism of the Sumatran tiger population dynamics in a protected area and under different land-use scenarios surrounding the reserve. We tested three main landscape compositions (single, combined and real land-uses of Tesso-Nilo National Park and its surrounding area) on the probability of and time to extinction of the Sumatran tiger over 20 years in Central Sumatra. The model successfully explains the mechanisms behind the population response of tigers under different habitat landscape compositions. Feeding and mating behaviours of tigers are key factors, which determined population persistence in a heterogeneous landscape. All single land-use scenarios resulted in tiger extinction but had a different probability of extinction within 20 years. If tropical forest was combined with other land-use types, the probability of extinction was smaller. The presence of agroforesty and logging concessions adjacent to protected areas encouraged the survival of tiger populations. However, with the real land-use scenario of Tesso-Nilo National Park, tigers could not survive for more than 10 years. Promoting the practice of agroforestry systems surrounding the park is probably the most reasonable way to steer land-use surrounding the Tesso-Nilo National Park to support tiger conservation.

  17. Formation of Plant Canopy Hierarchies and Consequences for Water Use: Insights From Field Experiments and Individual Based Modeling of Weed-Crop Interactions

    Science.gov (United States)

    Berger, A. G.; McDonald, A. J.; Riha, S. J.

    2008-12-01

    In an agricultural landscape, water use is tightly linked to the dynamics of canopy development. When weeds are present, the plant community may develop leaf area faster than crop monocultures and several hierarchies of plants may be formed. The position of each individual plant within these hierarchies depends on the spatial arrangement of the plants, the initial sizes, and the availability of resources as determined by management, soil properties, weather, and competition. Together, these factors establish a highly dynamic system with nonlinear responses to the availability of resources (e.g. soil water) that is reflected in high levels of site and regional variability in crop yield losses due to weed interference. We developed a spatially-explicit, individual based model of plant competition to evaluate dynamic outcomes of crop-weed interactions and implications for water use. The model simulates the growth of individual plants using the light interception algorithms of the forest model MAESTRA, and estimates photosynthesis through the Farquhar-vonCaemmerer method. Transpiration and photosynthesis are coupled through stomatal conductance. Maximum stomatal conductance is determined by the photosynthetic demand for CO2, but under water stress, actual transpiration per plant is used to estimate stomatal conductance and then the actual rate of photosynthesis. We also used a novel approach to estimate profile water uptake, scaling the root zone of influence (volume of soil exploited by each individual plant) to plant biomass. Additive field experiments with maize in monoculture and in combination with high-density stands of a common annual weed species (A. theophrasti M.) were established to test model performance. Despite exceptionally dry conditions in the field in some years, we found no evidence that the maize-weed mixtures had less total soil water or different rates of water extraction through the profile than the maize monocrop. Furthermore, time series

  18. On-line performance evaluation based on index of dispersion and Markovian fitted model%基于离差指数和马尔可夫拟合模型的在线性能分析方法

    Institute of Scientific and Technical Information of China (English)

    王秀文; 曲海平; 许鲁

    2011-01-01

    Aiming at the problem that under the condition of coarse monitoring granularity and burst workloads, simple parameterization of traditional queueing models in terms of mean service time of incoming requests does not apply to accurate performance evaluation, this paper, oriented to autonomic resource scheduling, proposes a method for online performance analysis that is suitable for coarse monitoring granularity. This method adopts the Markovian fitting method based on the index of dispersion for counts (IDC ) which characterizes the burstiness of service time, and based on the fitted Markovian model, develops the Markovian arrival process (MAP) queueing network to analyze the performance indexes online. The experimental results show that the proposed method is more accurate in performance analysis than that of solving traditional queueing networks by the Mean Value Analysis (MVA). Taking the response time and the throughput for example, compared with the traditional MVA method, the relative errors of the proposed method respectively lower 6.38% and 6.27% on the average. The maximum values can be 11.45% and 15.06%.%针对粗监控粒度和突发性负载的情况下传统的基于平均服务时间的排队模型的性能分析不准确的问题,提出了一种适用于粗监控粒度的在线性能分析方法.该方法采用基于请求数目离差指数( IDC)的马尔可夫拟合技术,利用IDC描述服务时间过程的突发性,在马尔可夫拟合模型的基础上构建有效的排队网络.试验结果表明,与传统的采用均值分析(MVA)方法求解的排队模型相比,该方法更准确.以性能参数响应时间和吞吐量为例,相对误差分别平均降低了6.38%和6.27%,最大可降低11.45%和15.06%.

  19. Control and filtering for semi-Markovian jump systems

    CERN Document Server

    Li, Fanbiao; Wu, Ligang

    2017-01-01

    This book presents up-to-date research developments and novel methodologies on semi-Markovian jump systems (S-MJS). It presents solutions to a series of problems with new approaches for the control and filtering of S-MJS, including stability analysis, sliding mode control, dynamic output feedback control, robust filter design, and fault detection. A set of newly developed techniques such as piecewise analysis method, positively invariant set approach, event-triggered method, and cone complementary linearization approaches are presented. Control and Filtering for Semi-Markovian Jump Systems is a comprehensive reference for researcher and practitioners working in control engineering, system sciences and applied mathematics, and is also a useful source of information for senior undergraduates and graduates in these areas. The readers will benefit from some new concepts, new models and new methodologies with practical significance in control engineering and signal processing.

  20. Finite-frequency counting statistics of electron transport: Markovian theory

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, D; Aguado, R [Departamento de Teoria y Simulacion de Materiales, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco 28049, Madrid (Spain); Emary, C; Brandes, T, E-mail: david.marcos@icmm.csic.es [Institut fuer Theoretische Physik, Hardenbergstrasse 36, TU Berlin, D-10623 Berlin (Germany)

    2010-12-15

    We present a theory of frequency-dependent counting statistics of electron transport through nanostructures within the framework of Markovian quantum master equations. Our method allows the calculation of finite-frequency current cumulants of arbitrary order, as we explicitly show for the second- and third-order cumulants. Our formulae generalize previous zero-frequency expressions in the literature and can be viewed as an extension of MacDonald's formula beyond shot noise. When combined with an appropriate treatment of tunneling using, e.g., the Liouvillian perturbation theory in Laplace space, our method can deal with arbitrary bias voltages and frequencies, as we illustrate with the paradigmatic example of transport through a single resonant level model. We discuss various interesting limits, including the recovery of the fluctuation-dissipation theorem near linear response, as well as some drawbacks inherent to the Markovian description arising from the neglect of quantum fluctuations.

  1. Comparisons of different witnesses of non-Markovianity

    Science.gov (United States)

    Zuo, Wei; Qian, Xiao-Qing; Liang, Xian-Ting

    2017-01-01

    In this paper, the evolutions of two kinds of witnesses of the non-Markovianity and their rates of changes with time are investigated and compared. Four definitions, the trace distance, fidelity, quantum relative entropy, and quantum Fisher information are used for the first kind of witnesses which are based on the completely positive maps (CPM). Three definitions, the quantum entanglement, quantum mutual information, and quantum discord are used for the second kind of witnesses, and they are based on the local completely positive maps (LCPM). An open two-level quantum system model and a numerically quantum dissipative dynamics method, hierarchy equation of motion (HEM) are used in the investigations. It is shown that the evolutions of the witnesses and their rates of the changes calculated with different definitions clearly show the characteristics of the non-Markovianity and they are in agreement with each other.

  2. The Influence of Agroforestry and Other Land-Use Types on the Persistence of a Sumatran Tiger ( Panthera tigris sumatrae) Population: An Individual-Based Model Approach

    Science.gov (United States)

    Imron, Muhammad Ali; Herzog, Sven; Berger, Uta

    2011-08-01

    The importance of preserving both protected areas and their surrounding landscapes as one of the major conservation strategies for tigers has received attention over recent decades. However, the mechanism of how land-use surrounding protected areas affects the dynamics of tiger populations is poorly understood. We developed Panthera Population Persistence (PPP)—an individual-based model—to investigate the potential mechanism of the Sumatran tiger population dynamics in a protected area and under different land-use scenarios surrounding the reserve. We tested three main landscape compositions (single, combined and real land-uses of Tesso-Nilo National Park and its surrounding area) on the probability of and time to extinction of the Sumatran tiger over 20 years in Central Sumatra. The model successfully explains the mechanisms behind the population response of tigers under different habitat landscape compositions. Feeding and mating behaviours of tigers are key factors, which determined population persistence in a heterogeneous landscape. All single land-use scenarios resulted in tiger extinction but had a different probability of extinction within 20 years. If tropical forest was combined with other land-use types, the probability of extinction was smaller. The presence of agroforesty and logging concessions adjacent to protected areas encouraged the survival of tiger populations. However, with the real land-use scenario of Tesso-Nilo National Park, tigers could not survive for more than 10 years. Promoting the practice of agroforestry systems surrounding the park is probably the most reasonable way to steer land-use surrounding the Tesso-Nilo National Park to support tiger conservation.

  3. A spatial individual-based model predicting a great impact of copious sugar sources and resting sites on survival of Anopheles gambiae and malaria parasite transmission

    Science.gov (United States)

    Zhu, Lin; Qualls, Whitney A.; Marshall, John M; Arheart, Kris L.; DeAngelis, Don; McManus, John W.; Traore, Sekou F.; Doumbia, Seydou; Schlein, Yosef; Muller, Gunter C.; Beier, John C.

    2015-01-01

    BackgroundAgent-based modelling (ABM) has been used to simulate mosquito life cycles and to evaluate vector control applications. However, most models lack sugar-feeding and resting behaviours or are based on mathematical equations lacking individual level randomness and spatial components of mosquito life. Here, a spatial individual-based model (IBM) incorporating sugar-feeding and resting behaviours of the malaria vector Anopheles gambiae was developed to estimate the impact of environmental sugar sources and resting sites on survival and biting behaviour.MethodsA spatial IBM containing An. gambiae mosquitoes and humans, as well as the village environment of houses, sugar sources, resting sites and larval habitat sites was developed. Anopheles gambiae behaviour rules were attributed at each step of the IBM: resting, host seeking, sugar feeding and breeding. Each step represented one second of time, and each simulation was set to run for 60 days and repeated 50 times. Scenarios of different densities and spatial distributions of sugar sources and outdoor resting sites were simulated and compared.ResultsWhen the number of natural sugar sources was increased from 0 to 100 while the number of resting sites was held constant, mean daily survival rate increased from 2.5% to 85.1% for males and from 2.5% to 94.5% for females, mean human biting rate increased from 0 to 0.94 bites per human per day, and mean daily abundance increased from 1 to 477 for males and from 1 to 1,428 for females. When the number of outdoor resting sites was increased from 0 to 50 while the number of sugar sources was held constant, mean daily survival rate increased from 77.3% to 84.3% for males and from 86.7% to 93.9% for females, mean human biting rate increased from 0 to 0.52 bites per human per day, and mean daily abundance increased from 62 to 349 for males and from 257 to 1120 for females. All increases were significant (P < 0.01). Survival was greater when sugar sources were randomly

  4. Colloquium: Non-Markovian dynamics in open quantum systems

    Science.gov (United States)

    Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano

    2016-04-01

    The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of

  5. Markovian and non-Markovian dynamics in quantum and classical systems

    CERN Document Server

    Vacchini, Bassano; Laine, Elsi-Mari; Piilo, Jyrki; Breuer, Heinz-Peter

    2011-01-01

    We discuss the conceptually different definitions used for the non-Markovianity of classical and quantum processes. The well-established definition for non-Markovianity of a classical stochastic process represents a condition on the Kolmogorov hierarchy of the n-point joint probability distributions. Since this definition cannot be transferred to the quantum regime, quantum non-Markovianity has recently been defined and quantified in terms of the underlying quantum dynamical map, using either its divisibility properties or the behavior of the trace distance between pairs of initial states. Here, we investigate and compare these definitions and their relations to the classical notion of non-Markovianity by employing a large class of non-Markovian processes, known as semi-Markov processes, which admit a natural extension to the quantum case. A number of specific physical examples is constructed which allow to study the basic features of the classical and the quantum definitions and to evaluate explicitly the me...

  6. Spatial pattern formation of microbes at the soil microscale affect soil C and N turnover in an individual-based microbial community model

    Science.gov (United States)

    Kaiser, Christina; Evans, Sarah; Dieckmann, Ulf; Widder, Stefanie

    2016-04-01

    At the μm-scale, soil is a highly structured and complex environment, both in physical as well as in biological terms, characterized by non-linear interactions between microbes, substrates and minerals. As known from mathematics and theoretical ecology, spatial structure significantly affects the system's behaviour by enabling synergistic dynamics, facilitating diversity, and leading to emergent phenomena such as self-organisation and self-regulation. Such phenomena, however, are rarely considered when investigating mechanisms of microbial soil organic matter turnover. Soil organic matter is the largest terrestrial reservoir for organic carbon (C) and nitrogen (N) and plays a pivotal role in global biogeochemical cycles. Still, the underlying mechanisms of microbial soil organic matter buildup and turnover remain elusive. We explored mechanisms of microbial soil organic matter turnover using an individual-based, stoichiometrically and spatially explicit computer model, which simulates the microbial de-composer system at the soil microscale (i.e. on a grid of 100 x 100 soil microsites). Soil organic matter dynamics in our model emerge as the result of interactions among individual microbes with certain functional traits (f.e. enzyme production rates, growth rates, cell stoichiometry) at the microscale. By degrading complex substrates, and releasing labile substances microbes in our model continusly shape their environment, which in turn feeds back to spatiotemporal dynamics of the microbial community. In order to test the effect of microbial functional traits and organic matter input rate on soil organic matter turnover and C and N storage, we ran the model into steady state using continuous inputs of fresh organic material. Surprisingly, certain parameter settings that induce resource limitation of microbes lead to regular spatial pattern formation (f.e. moving spiral waves) of microbes and substrate at the μm-scale at steady-state. The occurrence of these

  7. Variational Identification of Markovian Transition States

    Directory of Open Access Journals (Sweden)

    Linda Martini

    2017-09-01

    Full Text Available We present a method that enables the identification and analysis of conformational Markovian transition states from atomistic or coarse-grained molecular dynamics (MD trajectories. Our algorithm is presented by using both analytical models and examples from MD simulations of the benchmark system helix-forming peptide Ala_{5}, and of larger, biomedically important systems: the 15-lipoxygenase-2 enzyme (15-LOX-2, the epidermal growth factor receptor (EGFR protein, and the Mga2 fungal transcription factor. The analysis of 15-LOX-2 uses data generated exclusively from biased umbrella sampling simulations carried out at the hybrid ab initio density functional theory (DFT quantum mechanics/molecular mechanics (QM/MM level of theory. In all cases, our method automatically identifies the corresponding transition states and metastable conformations in a variationally optimal way, with the input of a set of relevant coordinates, by accurately reproducing the intrinsic slowest relaxation rate of each system. Our approach offers a general yet easy-to-implement analysis method that provides unique insight into the molecular mechanism and the rare but crucial (i.e., rate-limiting transition states occurring along conformational transition paths in complex dynamical systems such as molecular trajectories.

  8. Parameterized Metatheory for Continuous Markovian Logic

    Directory of Open Access Journals (Sweden)

    Kim G. Larsen

    2012-12-01

    Full Text Available This paper shows that a classic metalogical framework, including all Boolean operators, can be used to support the development of a metric behavioural theory for Markov processes. Previously, only intuitionistic frameworks or frameworks without negation and logical implication have been developed to fulfill this task. The focus of this paper is on continuous Markovian logic (CML, a logic that characterizes stochastic bisimulation of Markov processes with an arbitrary measurable state space and continuous-time transitions. For a parameter epsilon>0 interpreted as observational error, we introduce an epsilon-parameterized metatheory for CML: we define the concepts of epsilon-satisfiability and epsilon-provability related by a sound and complete axiomatization and prove a series of "parameterized" metatheorems including decidability, weak completeness and finite model property. We also prove results regarding the relations between metalogical concepts defined for different parameters. Using this framework, we can characterize both the stochastic bisimulation relation and various observational preorders based on behavioural pseudometrics. The main contribution of this paper is proving that all these analyses can actually be done using a unified complete Boolean framework. This extends the state of the art in this field, since the related works only propose intuitionistic contexts that limit, for instance, the use of the Boolean logical implication.

  9. Implications of non-Markovian quantum dynamics for the Landauer bound

    Science.gov (United States)

    Pezzutto, Marco; Paternostro, Mauro; Omar, Yasser

    2016-12-01

    We study the dynamics of a spin-1/2 particle interacting with a multi-spin environment, modelling the corresponding open system dynamics through a collision-based model. The environmental particles are prepared in individual thermal states, and we investigate the effects of a distribution of temperatures across the spin environment on the evolution of the system, particularly how thermalisation in the long-time limit is affected. We study the phenomenology of the heat exchange between system and environment and consider the information-to-energy conversion process, induced by the system-environment interaction and embodied by the Landauer principle. Furthermore, by considering an interacting-particles environment, we tune the dynamics of the system from an explicit Markovian evolution up to a strongly non-Markovian one, investigating the connections between non-Markovianity, the establishment of system-environment correlations, and the breakdown of the validity of Landauer principle.

  10. Robust finite-time event-triggered H∞ boundedness for network-based Markovian jump nonlinear systems.

    Science.gov (United States)

    Zhang, Honglu; Cheng, Jun; Wang, Hailing; Chen, Yiping; Xiang, Huili

    2016-07-01

    This paper investigates the problem of finite-time event-triggered H∞ boundedness for network-based Markovian jump nonlinear system. An improved model is introduced in terms of network-induced delay. By synthesizing the newly event-triggering conditions, the finite-time H∞ boundedness for networked Markovian jump nonlinear systems are guaranteed. At last, a numerical example is given to illustrate the effectiveness of proposed theoretical results.

  11. Markovian Master Equations: A Critical Study

    CERN Document Server

    Rivas, Ángel; Huelga, Susana F; Plenio, Martin B

    2010-01-01

    We derive Markovian master equations of single and interacting harmonic systems in different scenarios, including strong internal coupling. By comparing the dynamics resulting from the corresponding Markovian master equations with exact numerical simulations of the evolution of the global system, we precisely delimit their validity regimes and assess the robustness of the assumptions usually made in the process of deriving the reduced dynamics. The proposed method is sufficiently general to suggest that the conclusions made here are widely applicable to a large class of settings involving interacting chains subject to a weak interaction with an environment.

  12. Non-Markovian dynamics for bipartite systems

    OpenAIRE

    2008-01-01

    We analyze the appearance of non-Markovian effects in the dynamics of a bipartite system coupled to a reservoir, which can be described within a class of non-Markovian equations given by a generalized Lindblad structure. A novel master equation, which we term quantum Bloch-Boltzmann equation, is derived, describing both motional and internal states of a test particle in a quantum framework. When due to the preparation of the system or to decoherence effects one of the two degrees of freedom i...

  13. An individual-based modeling approach to simulate the effects of cellular nutrient competition on Escherichia coli K-12 MG1655 colony behavior and interactions in aerobic structured food systems.

    Science.gov (United States)

    Tack, Ignace L M M; Logist, Filip; Noriega Fernández, Estefanía; Van Impe, Jan F M

    2015-02-01

    Traditional kinetic models in predictive microbiology reliably predict macroscopic dynamics of planktonically-growing cell cultures in homogeneous liquid food systems. However, most food products have a semi-solid structure, where microorganisms grow locally in colonies. Individual colony cells exhibit strongly different and non-normally distributed behavior due to local nutrient competition. As a result, traditional models considering average population behavior in a homogeneous system do not describe colony dynamics in full detail. To incorporate local resource competition and individual cell differences, an individual-based modeling approach has been applied to Escherichia coli K-12 MG1655 colonies, considering the microbial cell as modeling unit. The first contribution of this individual-based model is to describe single colony growth under nutrient-deprived conditions. More specifically, the linear and stationary phase in the evolution of the colony radius, the evolution from a disk-like to branching morphology, and the emergence of a starvation zone in the colony center are simulated and compared to available experimental data. These phenomena occur earlier at more severe nutrient depletion conditions, i.e., at lower nutrient diffusivity and initial nutrient concentration in the medium. Furthermore, intercolony interactions have been simulated. Higher inoculum densities lead to stronger intercolony interactions, such as colony merging and smaller colony sizes, due to nutrient competition. This individual-based model contributes to the elucidation of characteristic experimentally observed colony behavior from mechanistic information about cellular physiology and interactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Quantum non-Markovianity: characterization, quantification and detection.

    Science.gov (United States)

    Rivas, Ángel; Huelga, Susana F; Plenio, Martin B

    2014-09-01

    We present a comprehensive and up-to-date review of the concept of quantum non-Markovianity, a central theme in the theory of open quantum systems. We introduce the concept of a quantum Markovian process as a generalization of the classical definition of Markovianity via the so-called divisibility property and relate this notion to the intuitive idea that links non-Markovianity with the persistence of memory effects. A detailed comparison with other definitions presented in the literature is provided. We then discuss several existing proposals to quantify the degree of non-Markovianity of quantum dynamics and to witness non-Markovian behavior, the latter providing sufficient conditions to detect deviations from strict Markovianity. Finally, we conclude by enumerating some timely open problems in the field and provide an outlook on possible research directions.

  15. Stationary two-dimensional turbulence statistics using a Markovian forcing scheme

    CERN Document Server

    San, Omer; 10.1016/j.compfluid.2012.10.002

    2012-01-01

    In this study we investigate the statistics of two-dimensional stationary turbulence using a Markovian forcing scheme, which correlates the forcing process in the current time step to the previous time step according to a defined memory coefficient. In addition to the Markovian forcing mechanism, the hyperviscous dissipation mechanism for small scales and the Ekman friction type of linear damping mechanism for the large scales are included in the model. We examine the effects of various dissipation and forcing parameters on the turbulence statistics in both wave space and physical space. Our analysis includes the effects of the effective forcing scale, the bandwidth of the forcing, the memory correlation coefficient, and the forcing amplitude, along with the large scale friction and small scale dissipation coefficients. Scaling exponents of structure functions and energy spectra are calculated, and the role of the parameters associated with the Markovian forcing is discussed. We found that the scaling exponen...

  16. Using non-Markovian measures to evaluate quantum master equations for photosynthesis

    Science.gov (United States)

    Chen, Hong-Bin; Lambert, Neill; Cheng, Yuan-Chung; Chen, Yueh-Nan; Nori, Franco

    2015-08-01

    When dealing with system-reservoir interactions in an open quantum system, such as a photosynthetic light-harvesting complex, approximations are usually made to obtain the dynamics of the system. One question immediately arises: how good are these approximations, and in what ways can we evaluate them? Here, we propose to use entanglement and a measure of non-Markovianity as benchmarks for the deviation of approximate methods from exact results. We apply two frequently-used perturbative but non-Markovian approximations to a photosynthetic dimer model and compare their results with that of the numerically-exact hierarchy equation of motion (HEOM). This enables us to explore both entanglement and non-Markovianity measures as means to reveal how the approximations either overestimate or underestimate memory effects and quantum coherence. In addition, we show that both the approximate and exact results suggest that non-Markonivity can, counter-intuitively, increase with temperature, and with the coupling to the environment.

  17. Observation of Non-Markovian Dynamics of a Single Quantum Dot in a Micropillar Cavity

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg; Ates, Serkan; Lund-Hansen, Toke;

    2011-01-01

    We measure the detuning-dependent dynamics of a quasiresonantly excited single quantum dot coupled to a micropillar cavity. The system is modeled with the dissipative Jaynes-Cummings model where all experimental parameters are determined by explicit measurements. We observe non-Markovian dynamics...

  18. On Non-Markovian Quantum Evolution

    Science.gov (United States)

    Chruściński, Dariusz; Kossakowski, Andrzej

    2013-01-01

    We analyze two measures of non-Markovianity: one based on the mathematical concept of divisibility of the dynamical map and the other one based on distinguishability of quantum states. We provide a simple example of qubit dynamic to show that these two measures need not agree. In addition, we discuss possible generalizations and intricate relations between these measures.

  19. Computing the non-Markovian coarse-grained interactions derived from the Mori-Zwanzig formalism in molecular systems: Application to polymer melts.

    Science.gov (United States)

    Li, Zhen; Lee, Hee Sun; Darve, Eric; Karniadakis, George Em

    2017-01-07

    Memory effects are often introduced during coarse-graining of a complex dynamical system. In particular, a generalized Langevin equation (GLE) for the coarse-grained (CG) system arises in the context of Mori-Zwanzig formalism. Upon a pairwise decomposition, GLE can be reformulated into its pairwise version, i.e., non-Markovian dissipative particle dynamics (DPD). GLE models the dynamics of a single coarse particle, while DPD considers the dynamics of many interacting CG particles, with both CG systems governed by non-Markovian interactions. We compare two different methods for the practical implementation of the non-Markovian interactions in GLE and DPD systems. More specifically, a direct evaluation of the non-Markovian (NM) terms is performed in LE-NM and DPD-NM models, which requires the storage of historical information that significantly increases computational complexity. Alternatively, we use a few auxiliary variables in LE-AUX and DPD-AUX models to replace the non-Markovian dynamics with a Markovian dynamics in a higher dimensional space, leading to a much reduced memory footprint and computational cost. In our numerical benchmarks, the GLE and non-Markovian DPD models are constructed from molecular dynamics (MD) simulations of star-polymer melts. Results show that a Markovian dynamics with auxiliary variables successfully generates equivalent non-Markovian dynamics consistent with the reference MD system, while maintaining a tractable computational cost. Also, transient subdiffusion of the star-polymers observed in the MD system can be reproduced by the coarse-grained models. The non-interacting particle models, LE-NM/AUX, are computationally much cheaper than the interacting particle models, DPD-NM/AUX. However, the pairwise models with momentum conservation are more appropriate for correctly reproducing the long-time hydrodynamics characterised by an algebraic decay in the velocity autocorrelation function.

  20. Mode suppression in the non-Markovian limit by time-gated stimulated photon echo

    NARCIS (Netherlands)

    de Boeij, W.P.; Pshenichnikov, M.S; Wiersma, D. A.

    1996-01-01

    It is demonstrated that enhanced mode suppression in stimulated photon echo experiments can be obtained by diagonal time gating of the echo. This technique is especially important when the optical dynamics of the system is non-Markovian. A two-mode Brownian oscillator model is used to analyze the ef

  1. Individual-based ecology of coastal birds.

    Science.gov (United States)

    Stillman, Richard A; Goss-Custard, John D

    2010-08-01

    Conservation objectives for non-breeding coastal birds (shorebirds and wildfowl) are determined from their population size at coastal sites. To advise coastal managers, models must predict quantitatively the effects of environmental change on population size or the demographic rates (mortality and reproduction) that determine it. As habitat association models and depletion models are not able to do this, we developed an approach that has produced such predictions thereby enabling policy makers to make evidence-based decisions. Our conceptual framework is individual-based ecology, in which populations are viewed as having properties (e.g. size) that arise from the traits (e.g. behaviour, physiology) and interactions of their constituent individuals. The link between individuals and populations is made through individual-based models (IBMs) that follow the fitness-maximising decisions of individuals and predict population-level consequences (e.g. mortality rate) from the fates of these individuals. Our first IBM was for oystercatchers Haematopus ostralegus and accurately predicted their density-dependent mortality. Subsequently, IBMs were developed for several shorebird and wildfowl species at several European sites, and were shown to predict accurately overwinter mortality, and the foraging behaviour from which predictions are derived. They have been used to predict the effect on survival in coastal birds of sea level rise, habitat loss, wind farm development, shellfishing and human disturbance. This review emphasises the wider applicability of the approach, and identifies other systems to which it could be applied. We view the IBM approach as a very useful contribution to the general problem of how to advance ecology to the point where we can routinely make meaningful predictions of how populations respond to environmental change.

  2. Long-time memory in non-Markovian evolutions

    Science.gov (United States)

    Chruściński, Dariusz; Kossakowski, Andrzej; Pascazio, Saverio

    2010-03-01

    If the dynamics of an open quantum system is non-Markovian, its asymptotic state strongly depends on the initial conditions, even if the dynamics possesses an invariant state. This is the very essence of memory effects. In particular, the asymptotic state can remember and partially preserve its initial entanglement. Interestingly, even if the non-Markovian evolution relaxes to an equilibrium state, this state needs not be invariant. Therefore, the noninvariance of equilibrium becomes a clear sign of non-Markovianity.

  3. Spatio-temporal dynamics of growth and survival of Lesser Sandeel early life-stages in the North Sea: Predictions from a coupled individual-based and hydrodynamic-biogeochemical model

    DEFF Research Database (Denmark)

    Gurkan, Zeren; Christensen, Asbjørn; Maar, Marie

    2013-01-01

    of larval and early juvenile Lesser Sandeel (Ammodytes marinus) in the North Sea to local feeding conditions by an adapted version of a generic bioenergetic individual-based model for larval fish describing growth and survival. Prey encounter and physiological processes are described explicitly in the model......, which allows analyzing the influence of prey on the growth and survival of sandeel. The model is coupled to a hydrodynamic-biogeochemical model with physical and prey fields and implemented in temporal and three-dimensional spatial settings. Zooplankton biomass simulated by the biogeochemical model...... is validated by Continuous Plankton Recorder survey time series data. Spatio-temporal dynamics of the sandeel cohorts are simulated by the integrated model framework for the period 2004-2006 and five major area divisions of suitable sandeel habitats in the North Sea. This allows obtaining insight...

  4. Markovian Time-Delay Sampling Policies.

    Science.gov (United States)

    1980-08-01

    Markovian sampling policy for water quality monitoring. Biometrics 33: 41-46. Wald , A. and Wolfowitz , J. (1945). Sampling inspection plans for...to remain in control. This idea is not new. Sampling plans for the percent defective were devised along these lines by Dodge (1943), Wald and... Wolfowitz (1945), and Dodge and Torrey (1951), who gave rules for switching from 100% sampling to sampling a fraction f. Multi-level inspec- tion plans having

  5. Non-Markovianity of Gaussian Channels.

    Science.gov (United States)

    Torre, G; Roga, W; Illuminati, F

    2015-08-14

    We introduce a necessary and sufficient criterion for the non-Markovianity of Gaussian quantum dynamical maps based on the violation of divisibility. The criterion is derived by defining a general vectorial representation of the covariance matrix which is then exploited to determine the condition for the complete positivity of partial maps associated with arbitrary time intervals. Such construction does not rely on the Choi-Jamiolkowski representation and does not require optimization over states.

  6. Validation of individual-based Markov-like stochastic process model of insect behaviour and a ‘virtual farm’ concept for enhancement of site-specific IPM

    Directory of Open Access Journals (Sweden)

    Slawomir Antoni Lux

    2016-08-01

    Full Text Available The paper reports application of a Markov-like stochastic process agent-based model and a ‘virtual farm’ concept for enhancement of site-specific Integrated Pest Management. Conceptually, the model represents a ‘bottom-up ethological’ approach and emulates behaviour of the ‘primary IPM actors’ - large cohorts of individual insects - within seasonally changing mosaics of spatiotemporally complex faming landscape, under the challenge of the local IPM actions. Algorithms of the proprietary PESTonFARM model were adjusted to reflect behaviour and ecology of R. cerasi. Model parametrization was based on compiled published information about R. cerasi and the results of auxiliary on-farm experiments. The experiments were conducted on sweet cherry farms located in Austria, Germany and Belgium. For each farm, a customised model-module was prepared, reflecting its spatiotemporal features. Historical data about pest monitoring, IPM treatments and fruit infestation were used to specify the model assumptions and calibrate it further. Finally, for each of the farms, virtual IPM experiments were simulated and the model-generated results were compared with the results of the real experiments conducted on the same farms. Implications of the findings for broader applicability of the model and the ‘virtual farm’ approach - were discussed.

  7. Integrating species distributional, conservation planning, and individual based population models: A case study in critical habitat evaluation for the Northern Spotted Owl

    Science.gov (United States)

    Background / Question / Methods As part of the ongoing northern spotted owl recovery planning effort, we evaluated a series of alternative potential critical habitat scenarios using a species-distribution model (MaxEnt), a conservation-planning model (Zonation), and an individua...

  8. Simulation of Nile tilapia (Oreochromis niloticus niloticus L.) culture in ponds, through individual-based modelling, using a population dynamic approach

    NARCIS (Netherlands)

    Graaf, de G.J.; Dekker, P.J.; Huisman, E.A.; Verreth, J.A.J.

    2005-01-01

    A simulation model for the production of the Nile tilapia (Oreochromis niloticus niloticus L.) for mixed- or mono-sex culture and for poly-culture with the African catfish (Clarias gariepinus Burchell 1822) or African snakehead (Parachanna obscura Günther 1861) is presented. The model is based on an

  9. Validation of Individual-Based Markov-Like Stochastic Process Model of Insect Behavior and a "Virtual Farm" Concept for Enhancement of Site-Specific IPM.

    Science.gov (United States)

    Lux, Slawomir A; Wnuk, Andrzej; Vogt, Heidrun; Belien, Tim; Spornberger, Andreas; Studnicki, Marcin

    2016-01-01

    The paper reports application of a Markov-like stochastic process agent-based model and a "virtual farm" concept for enhancement of site-specific Integrated Pest Management. Conceptually, the model represents a "bottom-up ethological" approach and emulates behavior of the "primary IPM actors"-large cohorts of individual insects-within seasonally changing mosaics of spatiotemporally complex faming landscape, under the challenge of the local IPM actions. Algorithms of the proprietary PESTonFARM model were adjusted to reflect behavior and ecology of R. cerasi. Model parametrization was based on compiled published information about R. cerasi and the results of auxiliary on-farm experiments. The experiments were conducted on sweet cherry farms located in Austria, Germany, and Belgium. For each farm, a customized model-module was prepared, reflecting its spatiotemporal features. Historical data about pest monitoring, IPM treatments and fruit infestation were used to specify the model assumptions and calibrate it further. Finally, for each of the farms, virtual IPM experiments were simulated and the model-generated results were compared with the results of the real experiments conducted on the same farms. Implications of the findings for broader applicability of the model and the "virtual farm" approach-were discussed.

  10. Equivalence of the measures of non-Markovianity for open two-level systems

    Science.gov (United States)

    Zeng, Hao-Sheng; Tang, Ning; Zheng, Yan-Ping; Wang, Guo-You

    2011-09-01

    Different measures have been presented to depict the deviation of quantum time evolution in open systems from Markovian processes. We demonstrate that the measure proposed by Breuer, Laine, and Piilo [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.210401 103, 210401 (2009)] and the two measures proposed by Rivas, Huelga, and Plenio [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.050403 105, 050403 (2010)] have exactly the same non-Markovian time-evolution intervals and thus are really equivalent to each other when they are applied to open two-level systems coupled to environments via the Jaynes-Cummings or dephasing models. This equivalence implies that the three measures, in different ways, capture the intrinsic character of the non-Markovianity of quantum evolutional processes. We also show that the maximization in the definition of the first measure can be actually removed for the considered models without influencing the sensibility of the measure to detect non-Markovianity.

  11. Entanglement and non-markovianity of quantum evolutions.

    Science.gov (United States)

    Rivas, Angel; Huelga, Susana F; Plenio, Martin B

    2010-07-30

    We address the problem of quantifying the non-markovian character of quantum time evolutions of general systems in contact with an environment. We introduce two different measures of non-markovianity that exploit the specific traits of quantum correlations and are suitable for opposite experimental contexts. When complete tomographic knowledge about the evolution is available, our measure provides a necessary and sufficient condition to quantify strictly the non-markovianity. In the opposite case, when no information whatsoever is available, we propose a sufficient condition for non-markovianity. Remarkably, no optimization procedure underlies our derivation, which greatly enhances the practical relevance of the proposed criteria.

  12. Simulation Study of the Vegetation Structure and Function in Eastern Siberian Larch Forests Using the Individual-Based Dynamic Vegetation Model SEIB-DGVM

    Science.gov (United States)

    Sato, H.; Kobayashi, H.; Delbart, N.

    2008-12-01

    The global ecosystem model SEIB-DGVM was adapted for an eastern Siberian larch forest through incorporation of empirical rules of allometry, allocation, and phenology developed for a larch stand at the Spasskaya-pad tower site. After calibration, the model reconstructed post-fire successional patterns of forest structure and carbon cycling. It also reconstructed seasonal changes in carbon, water, and energy cycling in a mature larch forest. When the model was applied to the entire larch-dominated region of eastern Siberia, the simulation was comparable to the latitudinal gradient of aboveground biomass. Sensitivity analysis showed that plant productivity and biomass were mainly limited by available water at Spasskaya-pad, where mean annual precipitation is only 257 mm. However, on a geographical scale encompassing all of eastern Siberia, productivity and biomass were limited mainly by temperature. These results suggest that the effects of global warming on Siberian larch forests depend on the adequacy of the water supply.

  13. An individual-based population dynamic model for estimating biomass yield and nutrient fluxes through an off-shore mussel ( Mytilus galloprovincialis) farm

    Science.gov (United States)

    Brigolin, Daniele; Maschio, Gabriele Dal; Rampazzo, Federico; Giani, Michele; Pastres, Roberto

    2009-04-01

    The fluxes of carbon, nitrogen and phosphorus through an off-shore long-line Mytilus galloprovincialis farm during a typical rearing cycle were estimated by combining a simple population dynamic model, based on a new individual model, and a set of field data, concerning the composition of the seston, as well as that of mussel meat and faeces. The individual model, based on an energy budget, was validated against a set of original field data, which were purposely collected from July 2006 to May 2007 in the North-Western Adriatic Sea (Italy) and was further tested using historical data. The model was upscaled to the population level by means of a set of Monte Carlo simulations, which were used for estimating the size structure of the population. The daily fluxes of C, N and P associated with mussel filtration, excretion and faeces and pseudo-faeces production were integrated over the 10-month-long rearing cycle and compared with the total amount of C, N and P removed by harvesting. The results indicate that the individual model compares well with an existing literature model and provides reliable estimations of the growth of mussel specimen over a range of trophic conditions which are typical of the Northern Adriatic Sea coastal area. The results of the budget calculation indicate that, even though the harvest represents a net removal of phosphorus and nitrogen from the ecosystem, the mussel farm increases the retention time of both nutrients in the coastal area, via the deposition of faeces and pseudo-faeces on the sea-bed. In fact, the amount of nitrogen associated with deposition is approximately twice the harvested one and the amount of phosphorus is approximately five times higher. These findings are in qualitative agreement with the results of literature budget and model calculations carried out in a temperate coastal embayment. This agreement suggests that the proper assessment of the overall effect of long-line mussel farming on both the benthic and pelagic

  14. Spatial self-organization of vegetation subject to climatic stress—insights from a system dynamics—individual-based hybrid model

    NARCIS (Netherlands)

    Vincenot, Christian E.; Carteni, Fabrizio; Mazzoleni, Stefano; Rietkerk, Max|info:eu-repo/dai/nl/175964866; Giannino, Francesco

    2016-01-01

    In simulation models of populations or communities, individual plants have often been obfuscated in favor of aggregated vegetation. This simplification comes with a loss of biological detail and a smoothing out of the demographic noise engendered by stochastic individual-scale processes and

  15. Spatial self-organization of vegetation subject to climatic stress—insights from a system dynamics—individual-based hybrid model

    NARCIS (Netherlands)

    Vincenot, Christian E.; Carteni, Fabrizio; Mazzoleni, Stefano; Rietkerk, Max; Giannino, Francesco

    2016-01-01

    In simulation models of populations or communities, individual plants have often been obfuscated in favor of aggregated vegetation. This simplification comes with a loss of biological detail and a smoothing out of the demographic noise engendered by stochastic individual-scale processes and heteroge

  16. Spatial Self-Organization of Vegetation Subject to Climatic Stress—Insights from a System Dynamics—Individual-Based Hybrid Model

    OpenAIRE

    Vincenot, Christian E.; Carteni, Fabrizio; Mazzoleni, Stefano; Rietkerk, Max; Giannino, Francesco

    2016-01-01

    In simulation models of populations or communities, individual plants have often been obfuscated in favor of aggregated vegetation. This simplification comes with a loss of biological detail and a smoothing out of the demographic noise engendered by stochastic individual-scale processes and heterogeneities, which is significant among others when studying the viability of small populations facing challenging fluctuating environmental conditions. This consideration has motivated the development...

  17. Post-Markovian dynamics of quantum correlations: entanglement versus discord

    Science.gov (United States)

    Mohammadi, Hamidreza

    2017-02-01

    Dynamics of an open two-qubit system is investigated in the post-Markovian regime, where the environments have a short-term memory. Each qubit is coupled to separate environment which is held in its own temperature. The inter-qubit interaction is modeled by XY-Heisenberg model in the presence of spin-orbit interaction and inhomogeneous magnetic field. The dynamical behavior of entanglement and discord has been considered. The results show that quantum discord is more robust than quantum entanglement, during the evolution. Also the asymmetric feature of quantum discord can be monitored by introducing the asymmetries due to inhomogeneity of magnetic field and temperature difference between the reservoirs. By employing proper parameters of the model, it is possible to maintain nonvanishing quantum correlation at high degree of temperature. The results can provide a useful recipe for studying dynamical behavior of two-qubit systems such as trapped spin electrons in coupled quantum dots.

  18. Random phase wave: a soluble non-Markovian system

    Energy Technology Data Exchange (ETDEWEB)

    Dewar, R.L.

    1977-12-01

    The averaged propagator and the corresponding mass operator (non-Markovian particle-wave collision operator) of a particle being accelerated by a random potential are constructed explicitly in a model system. The model consists of an ensemble of monochromatic waves of random phase, such as arises in narrow-bandwidth plasma turbulence, and is particularly interesting as a system exhibiting strong trapping. An essential simplifying feature is that the propagator is evaluated in oscillation-center picture, which greatly simplifies the momentum-space operators occurring in the problem, and leads to a remarkable factorization of the mass operator. General analyticity and symmetry properties are derived using a projection-operator method, and verified for the solution of the model system. The nature of the memory exhibited by the mass operator is briefly examined.

  19. CERAMIC: Case-Control Association Testing in Samples with Related Individuals, Based on Retrospective Mixed Model Analysis with Adjustment for Covariates.

    Directory of Open Access Journals (Sweden)

    Sheng Zhong

    2016-10-01

    Full Text Available We consider the problem of genetic association testing of a binary trait in a sample that contains related individuals, where we adjust for relevant covariates and allow for missing data. We propose CERAMIC, an estimating equation approach that can be viewed as a hybrid of logistic regression and linear mixed-effects model (LMM approaches. CERAMIC extends the recently proposed CARAT method to allow samples with related individuals and to incorporate partially missing data. In simulations, we show that CERAMIC outperforms existing LMM and generalized LMM approaches, maintaining high power and correct type 1 error across a wider range of scenarios. CERAMIC results in a particularly large power increase over existing methods when the sample includes related individuals with some missing data (e.g., when some individuals with phenotype and covariate information have missing genotype, because CERAMIC is able to make use of the relationship information to incorporate partially missing data in the analysis while correcting for dependence. Because CERAMIC is based on a retrospective analysis, it is robust to misspecification of the phenotype model, resulting in better control of type 1 error and higher power than that of prospective methods, such as GMMAT, when the phenotype model is misspecified. CERAMIC is computationally efficient for genomewide analysis in samples of related individuals of almost any configuration, including small families, unrelated individuals and even large, complex pedigrees. We apply CERAMIC to data on type 2 diabetes (T2D from the Framingham Heart Study. In a genome scan, 9 of the 10 smallest CERAMIC p-values occur in or near either known T2D susceptibility loci or plausible candidates, verifying that CERAMIC is able to home in on the important loci in a genome scan.

  20. A method to estimate the size and characteristics of HIV-positive populations using an individual-based stochastic simulation model

    DEFF Research Database (Denmark)

    Nakagawa, Fumiyo; van Sighem, Ard; Thiebaut, Rodolphe;

    2016-01-01

    . In 2013, 48,310 (90% plausibility range:39,900-45,560) MSM were estimated to be living with HIV in the UK, of whom 10,400 (6,160-17,350) were undiagnosed. There were an estimated 3,210 (1,730-5,350) infections per year on average between 2010 and 2013. 62% of the total HIV-positive population are thought...... to have viral load plausibility ranges and are closer to the true number, the greater the data availability to calibrate the model. We demonstrate that our method can be applied to settings with less data, however plausibility...

  1. Non-Markovian dynamics of open quantum systems

    Science.gov (United States)

    Fleming, Chris H.

    An open quantum system is a quantum system that interacts with some environment whose degrees of freedom have been coarse grained away. This model describes non-equilibrium processes more general than scattering-matrix formulations. Furthermore, the microscopically-derived environment provides a model of noise, dissipation and decoherence far more general than Markovian (white noise) models. The latter are fully characterized by Lindblad equations and can be motivated phenomenologically. Non-Markovian processes consistently account for backreaction with the environment and can incorporate effects such as finite temperature and spatial correlations. We consider linear systems with bilinear coupling to the environment, or quantum Brownian motion, and nonlinear systems with weak coupling to the environment. For linear systems we provide exact solutions with analytical results for a variety of spectral densities. Furthermore, we point out an important mathematical subtlety which led to incorrect master-equation coefficients in earlier derivations, given nonlocal dissipation. For nonlinear systems we provide perturbative solutions by translating the formalism of canonical perturbation theory into the context of master equations. It is shown that unavoidable degeneracy causes an unfortunate reduction in accuracy between perturbative master equations and their solutions. We also extend the famous theorem of Lindblad, Gorini, Kossakowski and Sudarshan on completely positivity to non-Markovian master equations. Our application is primarily to model atoms interacting via a common electromagnetic field. The electromagnetic field contains correlations in both space and time, which are related to its relativistic (photon-mediated) nature. As such, atoms residing in the same field experience different environmental effects depending upon their relative position and orientation. Our more accurate solutions were necessary to assess sudden death of entanglement at zero temperature

  2. 基于情绪感染的虚拟个体情绪模型%Emotion Model of Virtual Individual Based on Emotional Contagion

    Institute of Scientific and Technical Information of China (English)

    殷雁君; 唐卫清; 李蔚清

    2013-01-01

    The research of computable emotional contagion has important significant for understanding the behavior choice and decision-making of individuals in crowd.In order to make the behavior of virtual individual more believable,we proposed a method to simulate the process of emotional contagion happened in crowd based on the psychological theory.The proposed emotion model can reflect the dynamic process of individual in group on three factors:personality,the capability of emotional influence upon others,and the size of group,and can provide the way to calculated the level of the emotion induced by external stimulus,the emotional change caused by emotional contagion among individuals and the degree of emotional decay.Based on the individual's emotion model provided by us,some experiments have been carried out.And the results show that the emotion model is efficient to simulate the emotion of individuals in crowd.%研究情绪感染对于群体情境中个体情绪变化、行为选择与决策的研究有着十分重要的意义.为了使虚拟个体在群体环境中行为更真实可信,提出以社会心理学基本理论为研究基础,采用群体环境中个体情绪模型的构建方法.依据情绪感染机制的研究成果,从群体环境中人员个性、个体关注度、群体规模三方面反映群体环境中个体情绪的变化过程,提出了个体情绪强度、情绪感染程度及情绪衰减的计算方法.通过仿真分析,表明所提出的模型是合理的,在适用范围上相比较于其它模型更加广泛.

  3. Investigating the effect of recruitment variability on length-based recruitment indices for antarctic krill using an individual-based population dynamics model.

    Directory of Open Access Journals (Sweden)

    Stéphane Thanassekos

    Full Text Available Antarctic krill (Euphausia superba; herein krill is monitored as part of an on-going fisheries observer program that collects length-frequency data. A krill feedback management programme is currently being developed, and as part of this development, the utility of data-derived indices describing population level processes is being assessed. To date, however, little work has been carried out on the selection of optimum recruitment indices and it has not been possible to assess the performance of length-based recruitment indices across a range of recruitment variability. Neither has there been an assessment of uncertainty in the relationship between an index and the actual level of recruitment. Thus, until now, it has not been possible to take into account recruitment index uncertainty in krill stock management or when investigating relationships between recruitment and environmental drivers. Using length-frequency samples from a simulated population - where recruitment is known - the performance of six potential length-based recruitment indices is assessed, by exploring the index-to-recruitment relationship under increasing levels of recruitment variability (from ±10% to ±100% around a mean annual recruitment. The annual minimum of the proportion of individuals smaller than 40 mm (F40 min, % was selected because it had the most robust index-to-recruitment relationship across differing levels of recruitment variability. The relationship was curvilinear and best described by a power law. Model uncertainty was described using the 95% prediction intervals, which were used to calculate coverage probabilities and assess model performance. Despite being the optimum recruitment index, the performance of F40 min degraded under high (>50% recruitment variability. Due to the persistence of cohorts in the population over several years, the inclusion of F40 min values from preceding years in the relationship used to estimate recruitment in a given year

  4. Investigating the effect of recruitment variability on length-based recruitment indices for antarctic krill using an individual-based population dynamics model.

    Science.gov (United States)

    Thanassekos, Stéphane; Cox, Martin J; Reid, Keith

    2014-01-01

    Antarctic krill (Euphausia superba; herein krill) is monitored as part of an on-going fisheries observer program that collects length-frequency data. A krill feedback management programme is currently being developed, and as part of this development, the utility of data-derived indices describing population level processes is being assessed. To date, however, little work has been carried out on the selection of optimum recruitment indices and it has not been possible to assess the performance of length-based recruitment indices across a range of recruitment variability. Neither has there been an assessment of uncertainty in the relationship between an index and the actual level of recruitment. Thus, until now, it has not been possible to take into account recruitment index uncertainty in krill stock management or when investigating relationships between recruitment and environmental drivers. Using length-frequency samples from a simulated population - where recruitment is known - the performance of six potential length-based recruitment indices is assessed, by exploring the index-to-recruitment relationship under increasing levels of recruitment variability (from ±10% to ±100% around a mean annual recruitment). The annual minimum of the proportion of individuals smaller than 40 mm (F40 min, %) was selected because it had the most robust index-to-recruitment relationship across differing levels of recruitment variability. The relationship was curvilinear and best described by a power law. Model uncertainty was described using the 95% prediction intervals, which were used to calculate coverage probabilities and assess model performance. Despite being the optimum recruitment index, the performance of F40 min degraded under high (>50%) recruitment variability. Due to the persistence of cohorts in the population over several years, the inclusion of F40 min values from preceding years in the relationship used to estimate recruitment in a given year improved its

  5. Spatio-temporal dynamics of growth and survival of Lesser Sandeel early life-stages in the North Sea: Predictions from a coupled individual-based and hydrodynamic-biogeochemical model

    DEFF Research Database (Denmark)

    Gurkan, Zeren; Christensen, Asbjørn; Maar, Marie

    2013-01-01

    of larval and early juvenile Lesser Sandeel (Ammodytes marinus) in the North Sea to local feeding conditions by an adapted version of a generic bioenergetic individual-based model for larval fish describing growth and survival. Prey encounter and physiological processes are described explicitly in the model...... is validated by Continuous Plankton Recorder survey time series data. Spatio-temporal dynamics of the sandeel cohorts are simulated by the integrated model framework for the period 2004-2006 and five major area divisions of suitable sandeel habitats in the North Sea. This allows obtaining insight...... into the influence of temperature variation and zooplankton availability on the growth and survival. To determine areas promising for recruitment, area divisions are compared and optimal time of hatching for higher survival to recruitment due to match-mismatch with prey is determined by comparing different hatching...

  6. A 3D individual-based aquatic transport model for the assessment of the potential dispersal of planktonic larvae of an invasive bivalve.

    Science.gov (United States)

    Hoyer, Andrea B; Wittmann, Marion E; Chandra, Sudeep; Schladow, S Geoffrey; Rueda, Francisco J

    2014-12-01

    The unwanted impacts of non-indigenous species have become one of the major ecological and economic threats to aquatic ecosystems worldwide. Assessing the potential dispersal and colonization of non-indigenous species is necessary to prevent or reduce deleterious effects that may lead to ecosystem degradation and a range of economic impacts. A three dimensional (3D) numerical model has been developed to evaluate the local dispersal of the planktonic larvae of an invasive bivalve, Asian clam (Corbicula fluminea), by passive hydraulic transport in Lake Tahoe, USA. The probability of dispersal of Asian clam larvae from the existing high density populations to novel habitats is determined by the magnitude and timing of strong wind events. The probability of colonization of new near-shore areas outside the existing beds is low, but sensitive to the larvae settling velocity ws. High larvae mortality was observed due to settling in unsuitable deep habitats. The impact of UV-radiation during the pelagic stages, on the Asian clam mortality was low. This work provides a quantification of the number of propagules that may be successfully transported as a result of natural processes and in function of population size. The knowledge and understanding of the relative contribution of different dispersal pathways, may directly inform decision-making and resource allocation associated with invasive species management.

  7. The power-series algorithm for Markovian queueing networks

    NARCIS (Netherlands)

    van den Hout, W.B.; Blanc, J.P.C.

    1994-01-01

    A newversion of the Power-Series Algorithm is developed to compute the steady-state distribution of a rich class of Markovian queueing networks. The arrival process is a Multi-queue Markovian Arrival Process, which is a multi-queue generalization of the BMAP. It includes Poisson, fork and round-robi

  8. Tripartite entanglement dynamics in the presence of Markovian or non-Markovian environment

    Science.gov (United States)

    Park, DaeKil

    2016-08-01

    We study on the tripartite entanglement dynamics when each party is initially entangled with other parties, but they locally interact with their own Markovian or non-Markovian environment. First we consider three GHZ-type initial states, all of which have GHZ-symmetry provided that the parameters are chosen appropriately. However, this symmetry is broken due to the effect of environment. The corresponding π -tangles, one of the tripartite entanglement measures, are analytically computed at arbitrary time. For Markovian case while the tripartite entanglement for type I exhibits an entanglement sudden death, the dynamics for the remaining cases decays normally in time with the half-life rule. For non-Markovian case the revival phenomenon of entanglement occurs after complete disappearance of entanglement. We also consider two W-type initial states. For both cases the π -tangles are analytically derived. The revival phenomenon also occurs in this case. On the analytical ground the robustness or fragility issue against the effect of environment is examined for both GHZ-type and W-type initial states.

  9. Discrete Time Markovian Agents Interacting Through a Potential

    CERN Document Server

    Budhiraja, Amarjit; Rubenthaler, Sylvain

    2011-01-01

    A discrete time stochastic model for a multiagent system given in terms of a large collection of interacting Markov chains is studied. The evolution of the interacting particles is described through a time inhomogeneous transition probability kernel that depends on the 'gradient' of the potential field. The particles, in turn, dynamically modify the potential field through their cumulative input. Interacting Markov processes of the above form have been suggested as models for active biological transport in response to external stimulus such as a chemical gradient. One of the basic mathematical challenges is to develop a general theory of stability for such interacting Markovian systems and for the corresponding nonlinear Markov processes that arise in the large agent limit. Such a theory would be key to a mathematical understanding of the interactive structure formation that results from the complex feedback between the agents and the potential field. It will also be a crucial ingredient in developing simulat...

  10. General non-Markovian dynamics of open quantum systems.

    Science.gov (United States)

    Zhang, Wei-Min; Lo, Ping-Yuan; Xiong, Heng-Na; Tu, Matisse Wei-Yuan; Nori, Franco

    2012-10-26

    We present a general theory of non-Markovian dynamics for open systems of noninteracting fermions (bosons) linearly coupled to thermal environments of noninteracting fermions (bosons). We explore the non-Markovian dynamics by connecting the exact master equations with the nonequilibirum Green's functions. Environmental backactions are fully taken into account. The non-Markovian dynamics consists of nonexponential decays and dissipationless oscillations. Nonexponential decays are induced by the discontinuity in the imaginary part of the self-energy corrections. Dissipationless oscillations arise from band gaps or the finite band structure of spectral densities. The exact analytic solutions for various non-Markovian thermal environments show that non-Markovian dynamics can be largely understood from the environmental-modified spectra of open systems.

  11. Quantum Fisher information of the GHZ state due to classical phase noise lasers under non-Markovian environment

    Science.gov (United States)

    Chen, Yu; Zou, Jian; Yang, Zi-Yi; Li, Longwu; Li, Hai; Shao, Bin

    2016-08-01

    The dynamics of N-qubit GHZ state quantum Fisher information (QFI) under phase noise lasers (PNLs) driving is investigated in terms of non-Markovian master equation. We first investigate the non-Markovian dynamics of the QFI of N-qubit GHZ state and show that when the ratio of the PNL rate and the system-environment coupling strength is very small, the oscillations of the QFIs decay slower which corresponds to the non-Markovian region; yet when it becomes large, the QFIs monotonously decay which corresponds to the Markovian region. When the atom number N increases, QFIs in both regions decay faster. We further find that the QFI flow disappears suddenly followed by a sudden birth depending on the ratio of the PNL rate and the system-environment coupling strength and the atom number N, which unveil a fundamental connection between the non-Markovian behaviors and the parameters of system-environment couplings. We discuss two optimal positive operator-valued measures (POVMs) for two different strategies of our model and find the condition of the optimal measurement. At last, we consider the QFI of two atoms with qubit-qubit interaction under random telegraph noises (RTNs).

  12. Kinetics of self-induced aggregation of Brownian particles: non-Markovian and non-Gaussian features

    CERN Document Server

    Ghosh, Pulak Kumar; Bag, Bidhan Chandra

    2012-01-01

    In this paper we have studied a model for self-induced aggregation in Brownian particle incorporating the non-Markovian and non-Gaussian character of the associated random noise process. In this model the time evolution of each individual is guided by an over-damped Langevin equation of motion with a non-local drift resulting from the local unbalance distributions of the other individuals. Our simulation result shows that colored nose can induce the cluster formation even at large noise strength. Another observation is that critical noise strength grows very rapidly with increase of noise correlation time for Gaussian noise than non Gaussian one. However, at long time limit the cluster number in aggregation process decreases with time following a power law. The exponent in the power law increases remarkable for switching from Markovian to non Markovian noise process.

  13. Non-Markovian Dynamics of Quantum Systems

    Science.gov (United States)

    Chruściński, Dariusz; Kossakowski, Andrzej

    2011-01-01

    We analyze a local approach to the non-Markovian evolution of open quantum systems. It turns out that any dynamical map representing evolution of such a system may be described either by non-local master equation with memory kernel or equivalently by equation which is local in time. The price one pays for the local approach is that the corresponding generator might be highly singular and it keeps the memory about the starting point 't0'. Remarkably, singularities of generator may lead to interesting physical phenomena like revival of coherence or sudden death and revival of entanglement.

  14. Forgetfulness of continuous Markovian quantum channels

    CERN Document Server

    Lupo, Cosmo; Mancini, Stefano

    2009-01-01

    The notion of forgetfulness, used in discrete memory quantum channels, is slightly weakened in order to be applied to the case of continuous channels. This is done in the context of quantum memory channels with Markovian noise. As a case study, we apply the notion of weak-forgetfulness to a bosonic memory channel with additive noise. A suitable encoding and decoding unitary transformation allows us to unravel the effects of the memory, hence the channel capacities can be computed using known results from the memoryless setting.

  15. Perturbative approach to Markovian open quantum systems.

    Science.gov (United States)

    Li, Andy C Y; Petruccione, F; Koch, Jens

    2014-05-08

    The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical.

  16. Learning from history: Non-Markovian analyses of complex trajectories for extracting long-time behavior

    CERN Document Server

    Suarez, Ernesto

    2014-01-01

    A number of modern sampling methods probe long time behavior in complex biomolecules using a set of relatively short trajectory segments. Markov state models (MSMs) can be useful in analyzing such data sets, but in particularly complex landscapes, the available trajectory data may prove insufficient for constructing valid Markov models. Here, we explore the potential utility of history-dependent analyses applied to relatively poor decompositions of configuration space for which MSMs are inadequate. Our approaches build on previous work [Suarez et. al., JCTC 2014] showing that, with sufficient history information, unbiased equilibrium and non-equilibrium observables can be obtained even for arbitrary non-Markovian divisions of phase space. We explore a range of non-Markovian approximations using varying amounts of history information to model the finite length of trajectory segments, applying the analyses to toy models as well as several proteins previously studied by microsec-milisec scale atomistic simulatio...

  17. Sample efficient multiagent learning in the presence of Markovian agents

    CERN Document Server

    Chakraborty, Doran

    2014-01-01

    The problem of Multiagent Learning (or MAL) is concerned with the study of how intelligent entities can learn and adapt in the presence of other such entities that are simultaneously adapting. The problem is often studied in the stylized settings provided by repeated matrix games (a.k.a. normal form games). The goal of this book is to develop MAL algorithms for such a setting that achieve a new set of objectives which have not been previously achieved. In particular this book deals with learning in the presence of a new class of agent behavior that has not been studied or modeled before in a MAL context: Markovian agent behavior. Several new challenges arise when interacting with this particular class of agents. The book takes a series of steps towards building completely autonomous learning algorithms that maximize utility while interacting with such agents. Each algorithm is meticulously specified with a thorough formal treatment that elucidates its key theoretical properties.

  18. Linear Optics Simulation of Non-Markovian Quantum Dynamics

    CERN Document Server

    Chiuri, Andrea; Mazzola, Laura; Paternostro, Mauro; Mataloni, Paolo

    2012-01-01

    The simulation of quantum processes is a key goal for the grand programme aiming at grounding quantum technologies as the way to explore complex phenomena that are inaccessible through standard, classical calculators. Some interesting steps have been performed in this direction and this scenario has recently been extended to open quantum evolutions, marking the possibility to investigate important features of the way a quantum system interacts with its environment. Here we demonstrate experimentally the (non-)Markovianity of a process where system and environment are coupled through a simulated transverse Ising model. By engineering the evolution in a fully controlled photonic quantum simulator, we assess and demonstrate the role that system-environment correlations have in the emergence of memory effects.

  19. Solvent fluctuations induce non-Markovian kinetics in hydrophobic pocket-ligand binding

    CERN Document Server

    Weiß, R Gregor; Dzubiella, Joachim

    2016-01-01

    We investigate the impact of water fluctuations on the key-lock association kinetics of a hydrophobic ligand (key) binding to a hydrophobic pocket (lock) by means of a minimalistic stochastic model system. It describes the collective hydration behavior of the pocket by bimodal fluctuations of a water-pocket interface that dynamically couples to the diffusive motion of the approaching ligand via the hydrophobic interaction. This leads to a set of overdamped Langevin equations in 2D-coordinate-space, that is Markovian in each dimension. Numerical simulations demonstrate locally increased friction of the ligand, decelerated binding kinetics, and local non-Markovian (memory) effects in the ligand's reaction coordinate as found previously in explicit-water molecular dynamics studies of model hydrophobic pocket-ligand binding [1,2]. Our minimalistic model elucidates the origin of effectively enhanced friction in the process that can be traced back to long-time decays in the force-autocorrelation function induced by...

  20. The effect of area size and predation on the time to extinction of prairie vole populations. simulation studies via SERDYCA: a Spatially-Explicit Individual-Based Model of Rodent Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kostova, T; Carlsen, T

    2003-11-21

    We present a spatially-explicit individual-based computational model of rodent dynamics, customized for the prairie vole species, M. Ochrogaster. The model is based on trophic relationships and represents important features such as territorial competition, mating behavior, density-dependent predation and dispersal out of the modeled spatial region. Vegetation growth and vole fecundity are dependent on climatic components. The results of simulations show that the model correctly predicts the overall temporal dynamics of the population density. Time-series analysis shows a very good match between the periods corresponding to the peak population density frequencies predicted by the model and the ones reported in the literature. The model is used to study the relation between persistence, landscape area and predation. We introduce the notions of average time to extinction (ATE) and persistence frequency to quantify persistence. While the ATE decreases with decrease of area, it is a bell-shaped function of the predation level: increasing for 'small' and decreasing for 'large' predation levels.

  1. Numerical evidence for approximate consistency and Markovianity of some quantum histories in a class of finite closed spin systems.

    Science.gov (United States)

    Schmidtke, Daniel; Gemmer, Jochen

    2016-01-01

    Closed quantum systems obey the Schrödinger equation, whereas nonequilibrium behavior of many systems is routinely described in terms of classical, Markovian stochastic processes. Evidently, there are fundamental differences between those two types of behavior. We discuss the conditions under which the unitary dynamics may be mapped onto pertinent classical stochastic processes. This is first principally addressed based on the notions of "consistency" and "Markovianity." Numerical data are presented that show that the above conditions are to good approximation fulfilled for Heisenberg-type spin models comprising 12-20 spins. The accuracy to which these conditions are met increases with system size.

  2. Application of the hierarchic markovian decision processes in the decision making processes of pig keeping

    Directory of Open Access Journals (Sweden)

    Sándor Kovács

    2012-12-01

    Full Text Available In this study we discuss the Markovian chain-based decision processes and their developed variant called Hierarchic Markovian Processes. The optimizing possibilities of such processes are presented in detail. Moreover, we introduce a free available software based on these processes and developed by Danish researchers for supporting decisions in animal breeding. Among the several models the reduced sow model (with gestation were chosen for presentation. We describe the basic settings and parameters for running the software as well as we calculate the average net return over time and the series of decisions per sow in case of simulated sow herd data by applying the value iteration technique. We also present the results of decisions on keeping an animal in production as well as on determining the number of matings of a sow. We also give examples of the development of the relative utility values related to such decisions.

  3. Robust fuzzy control for stochastic Markovian jumping systems via sliding mode method

    Science.gov (United States)

    Chen, Bei; Jia, Tinggang; Niu, Yugang

    2016-07-01

    This paper considers the problem of sliding mode control for stochastic Markovian jumping systems by means of fuzzy method. The Takagi-Sugeno (T-S) fuzzy stochastic model subject to state-dependent noise is presented. A key feature in this work is to remove the restricted condition that each local system model had to share the same input channel, which is usually assumed in some existing results. The integral sliding surface is constructed for every mode and the connections among various sliding surfaces are established via a set of coupled matrices. Moreover, the present sliding mode controller including the transition rates of modes can cope with the effect of Markovian switching. It is shown that both the reachability of sliding surfaces and the stability of sliding mode dynamics can be ensured. Finally, numerical simulation results are given.

  4. Light with Tunable Non-Markovian Phase Imprint

    Science.gov (United States)

    Fischer, Robert; Vidal, Itamar; Gilboa, Doron; Correia, Ricardo R. B.; Ribeiro-Teixeira, Ana C.; Prado, Sandra D.; Hickman, Jandir; Silberberg, Yaron

    2015-08-01

    We introduce a simple and flexible method to generate spatially non-Markovian light with tunable coherence properties in one and two dimensions. The unusual behavior of this light is demonstrated experimentally by probing the far field and by recording its diffraction pattern after a double slit: In both cases we observe, instead of a central intensity maximum, a line- or cross-shaped dark region, whose width and profile depend on the non-Markovian coherence properties. Because these properties can be controlled and easily reproduced in experiment, the presented approach lends itself to serving as a test bed to study and gain a deeper understanding of non-Markovian processes.

  5. Light with tunable non-Markovian phase imprint

    CERN Document Server

    Fischer, Robert; Gilboa, Doron; Correia, Ricardo R B; Ribeiro-Teixeira, Ana C; Prado, Sandra D; Hickman, Jandir; Silberberg, Yaron

    2015-01-01

    We introduce a simple and flexible method to generate spatially non-Markovian light with tunable coherence properties in one and two dimensions. The unusual behavior of this light is demonstrated experimentally by probing the far field and recording its diffraction pattern after a double slit: In both cases we observe instead of a central intensity maximum a line or cross shaped dark region, whose width and profile depend on the non-Markovian coherence properties. Since these properties can be controlled and easily reproduced in experiment, the presented approach lends itself to serve as a testbed to gain a deeper understanding of non-Markovian processes.

  6. On Optimal Proportional Reinsurance and Investment in a Markovian Regime-Switching Economy

    Institute of Scientific and Technical Information of China (English)

    Xin ZHANG; Tak Kuen SIU

    2012-01-01

    In this paper,the surplus of an insurance company is modeled by a Markovian regimeswitching diffusion process.The insurer decides the proportional reinsurance and investment so as to increase revenue.The regime-switching economy consists of a fixed interest security and several risky shares. The optimal proportional reinsurance and investment strategies with no short-selling constraints for maximizing an exponential utility on terminal wealth are obtained.

  7. Reconstruction of the environmental correlation function from single emitter photon statistics: a non-Markovian approach

    CERN Document Server

    Shikerman, Faina; Pe'er, Avi

    2012-01-01

    We consider the two-level system approximation of a single emitter driven by a continuous laser pump and simultaneously coupled to the electromagnetic vacuum and to a thermal reservoir beyond the Markovian approximation. We discuss the connection between a rigorous microscopic theory and the phenomenological spectral diffusion approach, used to model the interaction of the emitter with the thermal bath, and obtained analytic expressions relating the thermal correlation function to the single emitter photon statistics.

  8. An Individual Based Model of Arctic cod ( Boreogadus saida) early life in Arctic polynyas: I. Simulated growth in relation to hatch date in the Northeast Water (Greenland Sea) and the North Water (Baffin Bay)

    Science.gov (United States)

    Thanassekos, Stéphane; Fortier, Louis

    2012-05-01

    A bioenergetics Individual Based Model (IBM) is developed to simulate the early growth (age 0 to 43 d) of Arctic cod hatched from mid-May to mid-July in the Northeast Water (NEW) in 1993 and the North Water (NOW) in 1998. In the model, the growth of a virtual larva is forced by observed temperature and prey concentrations as dictated by its hatch date. The functional response of food consumption to temperature in the range - 1.8 to + 1.6 °C was estimated based on the gut content of field-captured larvae. A sensitivity analysis indicated that high prey concentrations could compensate the depressing effect of low temperature on growth and vice-versa. The IBM reproduced well the observed differences in mean length-at-age between the two polynyas/years, in particular the poor growth in the North Water. In the NEW, a temporal match between yolk exhaustion and good feeding conditions occurred for early hatchers (abundant prey — medium temperature) and mid-season hatchers (medium prey — high temperature), which reached the largest sizes. In the NOW, prey concentrations were generally low at yolk exhaustion and variations in growth among cohorts depended essentially on temperature. Sub-sampling the model output to mimic the limited temporal resolution of sampling at sea reduced the variability in virtual growth and increased the match between simulated and observed variances in length-at-age. The IBM nevertheless underestimated the observed exceptional growth during match events.

  9. Non-Markovian Quantum State Diffusion

    CERN Document Server

    Diósi, L; Strunz, W T

    1998-01-01

    We present a nonlinear stochastic Schroedinger equation for pure states describing non-Markovian diffusion of quantum trajectories. It provides an unravelling of the evolution of a quantum system coupled to a finite or infinite number of harmonic oscillators, without any approximation. Its power is illustrated by several examples, including measurement-like situations, dissipation, and quantum Brownian motion. In some examples, we treat the environment phenomenologically as an infinite reservoir with fluctuations of arbitrary correlation. In other examples the environment consists of a finite number of oscillators. In these quasi-periodic cases we see the reversible decay of a `Schroedinger cat' state. Finally, our description of open systems is compatible with different positions of the `Heisenberg cut' between system and environment.

  10. Robust H ∞ control for uncertain Markovian jump systems with mixed delays

    Science.gov (United States)

    R, Saravanakumar; M Syed, Ali

    2016-07-01

    We scrutinize the problem of robust H ∞ control for a class of Markovian jump uncertain systems with interval time-varying and distributed delays. The Markovian jumping parameters are modeled as a continuous-time finite-state Markov chain. The main aim is to design a delay-dependent robust H ∞ control synthesis which ensures the mean-square asymptotic stability of the equilibrium point. By constructing a suitable Lyapunov-Krasovskii functional (LKF), sufficient conditions for delay-dependent robust H ∞ control criteria are obtained in terms of linear matrix inequalities (LMIs). The advantage of the proposed method is illustrated by numerical examples. The results are also compared with the existing results to show the less conservativeness. Project supported by Department of Science and Technology (DST) under research project No. SR/FTP/MS-039/2011.

  11. Critical assessment of two-qubit post-Markovian master equations

    CERN Document Server

    Campbell, S; Mazzola, L; Gullo, N Lo; Vacchini, B; Busch, Th; Paternostro, M

    2012-01-01

    A post-Markovian master equation has been recently proposed as a tool to describe the evolution of a system coupled to a memory-keeping environment [A. Shabani and D. A. Lidar, Phys. Rev. A 71, 020101 (R) (2005)]. For a single qubit affected by appropriately chosen environmental conditions, the corresponding dynamics is always legitimate and physical. Here we extend such situation to the case of two qubits, only one of which experiences the environmental effects. We show how, despite the innocence of such an extension, the introduction of the second qubit should be done cum grano salis to avoid consequences such as the breaking of the positivity of the associated dynamical map. This hints at the necessity of using care when adopting phenomenologically derived models for evolutions occurring outside the Markovian framework.

  12. Markovian nature, completeness, regularity and correlation properties of generalized Poisson-Kac processes

    Science.gov (United States)

    Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro

    2017-02-01

    We analyze some basic issues associated with generalized Poisson–Kac (GPK) stochastic processes, starting from the extended notion of the Markovian condition. The extended Markovian nature of GPK processes is established, and the implications of this property derived: the associated adjoint formalism for GPK processes is developed essentially in an analogous way as for the Fokker–Planck operator associated with Langevin equations driven by Wiener processes. Subsequently, the regularity of trajectories is addressed: the occurrence of fractality in the realizations of GPK is a long-term emergent property, and its implication in thermodynamics is discussed. The concept of completeness in the stochastic description of GPK is also introduced. Finally, some observations on the role of correlation properties of noise sources and their influence on the dynamic properties of transport phenomena are addressed, using a Wiener model for comparison.

  13. Robust H∞control for uncertain Markovian jump systems with mixed delays

    Institute of Scientific and Technical Information of China (English)

    R Saravanakumar; M Syed Ali‡

    2016-01-01

    We scrutinize the problem of robust H∞control for a class of Markovian jump uncertain systems with interval time-varying and distributed delays. The Markovian jumping parameters are modeled as a continuous-time finite-state Markov chain. The main aim is to design a delay-dependent robust H∞control synthesis which ensures the mean-square asymptotic stability of the equilibrium point. By constructing a suitable Lyapunov–Krasovskii functional (LKF), sufficient conditions for delay-dependent robust H∞control criteria are obtained in terms of linear matrix inequalities (LMIs). The advantage of the proposed method is illustrated by numerical examples. The results are also compared with the existing results to show the less conservativeness.

  14. Sete motivações teóricas para o uso da modelagem baseada no indivíduo em ecologia Seven theoretical reasons for using individual-based modeling in Ecology

    Directory of Open Access Journals (Sweden)

    Henrique C. Giacomini

    2007-01-01

    Full Text Available A modelagem baseada no indivíduo tem sido crescentemente empregada para analisar processos ecológicos, desenvolver e avaliar teorias, bem como para fins de manejo da vida silvestre e conservação. Os modelos baseados no indivíduo (MBI são bastante flexíveis, permitem o uso detalhado de parâmetros com maior significado biológico, sendo portanto mais realistas do que modelos populacionais clássicos, mais presos dentro de um rígido formalismo matemático. O presente artigo apresenta e discute sete razões para a adoção dos MBI em estudos de simulação na Ecologia: (1 a inerente complexidade de sistemas ecológicos, impassíveis de uma análise matemática formal; (2 processos populacionais são fenômenos emergentes, resultando das interações entre seus elementos constituintes (indivíduos e destes com o meio; (3 poder de predição; (4 a adoção definitiva, por parte da Ecologia, de uma visão evolutiva; (5 indivíduos são entidades discretas; (6 interações são localizadas no espaço e (7 indivíduos diferem entre si.Individual-based modeling has been increasingly used to analyze ecological processes, to develop and to evaluate theories, as well as to the management of wild life and conservation. The individual-based models (IBM are quite flexible, allowing a detailed inclusion of parameters with greater biological meaning, therefore being more realistic than classical population models, which are too constrained inside mathematical formalisms. The present paper discuss seven reasons for IBM to be adopted in simulation studies inside Ecology: (1 ecological systems are inherently complex, being not open to a complete formal mathematical analysis; (2 population processes are emergent outputs from the interactions among individuals and the environment; (3 predictive power; (4 the evolutive view as a definitive guide for ecological studies; (5 individuals are discrete entities; (6 interactions are localized in space and (7

  15. Non-Markovian expansion in quantum Brownian motion

    Science.gov (United States)

    Fraga, Eduardo S.; Krein, Gastão; Palhares, Letícia F.

    2014-01-01

    We consider the non-Markovian Langevin evolution of a dissipative dynamical system in quantum mechanics in the path integral formalism. After discussing the role of the frequency cutoff for the interaction of the system with the heat bath and the kernel and noise correlator that follow from the most common choices, we derive an analytic expansion for the exact non-Markovian dissipation kernel and the corresponding colored noise in the general case that is consistent with the fluctuation-dissipation theorem and incorporates systematically non-local corrections. We illustrate the modifications to results obtained using the traditional (Markovian) Langevin approach in the case of the exponential kernel and analyze the case of the non-Markovian Brownian motion. We present detailed results for the free and the quadratic cases, which can be compared to exact solutions to test the convergence of the method, and discuss potentials of a general nonlinear form.

  16. Non-Markovian expansion in quantum dissipative systems

    CERN Document Server

    Fraga, E S; Palhares, L F

    2009-01-01

    We consider the non-Markovian Langevin evolution of a dissipative dynamical system in quantum mechanics in the path integral formalism. After discussing the role of the frequency cutoff for the interaction of the system with the heat bath and the kernel and noise correlator that follow from the most common choices, we derive an analytic expansion for the exact non-Markovian dissipation kernel and the corresponding colored noise in the general case that is consistent with the fluctuation-dissipation theorem and incorporates systematically non-local corrections. We illustrate the modifications to results obtained using the traditional (Markovian) Langevin approach in the case of the exponential kernel and analyze the case of the non-Markovian Brownian motion.

  17. On Non-Markovian Time Evolution in Open Quantum Systems

    Science.gov (United States)

    Kossakowski, Andrzej; Rebolledo, Rolando

    2008-03-01

    Non-Markovian reduced dynamics of an open system is investigated. In the case the initial state of the reservoir is the vacuum state, an approximation is introduced which makes possible to construct a reduced dynamics which is completely positive.

  18. Non-Markovian spontaneous emission from a single quantum dot

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg; Ates, Serkan; Lund-Hansen, Toke;

    2011-01-01

    We observe non-Markovian dynamics of a single quantum dot when tuned into resonance with a cavity mode. Excellent agreement between experiment and theory is observed providing the first quantitative description of such a system....

  19. Non-Markovian Quantum Jumps in Excitonic Energy Transfer

    CERN Document Server

    Rebentrost, Patrick; Aspuru-Guzik, Alan

    2009-01-01

    We utilize the novel non-Markovian quantum jump (NMQJ) approach to stochastically simulate exciton dynamics derived from a time-convolutionless master equation. For relevant parameters and time scales, the time-dependent, oscillatory decoherence rates can have negative regions, a signature of non-Markovian behavior and of the revival of coherences. This can lead to non-Markovian population beatings for a dimer system at room temperature. We show that strong exciton-phonon coupling to low frequency modes can considerably modify transport properties. We observe increased exciton transport, which can be seen as an extension of recent environment-assisted quantum transport (ENAQT) concepts to the non-Markovian regime. Within the NMQJ method, the Fenna-Matthew-Olson protein is investigated as a prototype for larger photosynthetic complexes.

  20. Two-dimensional spectroscopy for harmonic vibrational modes with nonlinear system-bath interactions. II. Gaussian-Markovian case

    NARCIS (Netherlands)

    Tanimura, Y; Steffen, T

    2000-01-01

    The relaxation processes in a quantum system nonlinearly coupled to a harmonic Gaussian-Markovian heat bath are investigated by the quantum Fokker-Planck equation in the hierarchy form. This model describes frequency fluctuations in the quantum system with an arbitrary correlation time and thus

  1. Properties of quantum Markovian master equations. [Semigroup law, detailed balance

    Energy Technology Data Exchange (ETDEWEB)

    Gorini, V.; Frigerio, A.; Verri, M.; Kossakowski, A.; Sudarshan, E.C.G.

    1976-11-01

    An essentially self-contained account is given of some general structural properties of the dynamics of quantum open Markovian systems. Some recent results regarding the problem of the classification of quantum Markovian master equations and the limiting conditions under which the dynamical evolution of a quantum open system obeys an exact semigroup law (weak coupling limit and singular coupling limit are reviewed). A general form of quantum detailed balance and its relation to thermal relaxation and to microreversibility is discussed.

  2. Nonlinear H∞ filtering for interconnected Markovian jump systems

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaomei; Zheng Yufan

    2006-01-01

    The problem of nonlinear H∞ filtering for interconnected Markovian jump systems is discussed. The aim of this note is the design of a nonlinear Markovian jump filter such that the resulting error system is exponentially meansquare stable and ensures a prescribed H∞ performance. A sufficient condition for the solvability of this problem is given in terms of linear matrix inequalities(LMIs). A simulation example is presented to demonstrate the effectiveness of the proposed design approach.

  3. Entanglement and non-Markovianity of quantum evolutions

    CERN Document Server

    Rivas, Ángel; Plenio, Martin B

    2009-01-01

    We address the problem of quantifying the non-Markovian character of quantum time-evolutions of general systems in contact with an environment. We introduce two different measures of non-Markovianity that exploit the specific traits of quantum correlations and are suitable for opposite experimental contexts, one requiring complete tomographic knowledge about the evolution and the other one requiring no knowledge at all. Remarkably, no optimization procedure underlies our derivation, which greatly enhances the practical relevance of the proposed criteria.

  4. The small breathing amplitude at the upper lobes favours the attraction of polymorphonuclear neutrophils to Mycobacterium tuberculosis lesions and helps to understand the evolution towards active disease in an individual-based model

    Directory of Open Access Journals (Sweden)

    Pere-Joan eCardona

    2016-03-01

    Full Text Available Infection with Mycobacterium tuberculosis (Mtb can induce two kinds of lesions, namely proliferative and exudative. The former are based on the presence of macrophages with controlled induction of intragranulomatous necrosis, and are even able to stop its physical progression, thus avoiding the induction of active tuberculosis (TB. In contrast, the most significant characteristic of exudative lesions is their massive infiltration with polymorphonuclear neutrophils (PMNs, which favour enlargement of the lesions and extracellular growth of the bacilli. We have built an individual-based model (IBM (known as TBPATCH using the NetLogo interface to better understand the progression from Mtb infection to TB. We have tested four main factors previously identified as being able to favour the infiltration of Mtb-infected lesions with PMNs, namely the tolerability of infected macrophages to the bacillary load; the capacity to modulate the Th17 response; the breathing amplitude (large or small in the lower and upper lobes respectively, which influences bacillary drainage at the alveoli; and the encapsulation of Mtb-infected lesions by the interlobular septae that structure the pulmonary parenchyma into secondary lobes. Overall, although all the factors analysed play some role, the small breathing amplitude is the major factor determining whether Mtb-infected lesions become exudative, and thus induce TB, thereby helping to understand why this usually takes place in the upper lobes. This information will be very useful for the design of future prophylactic and therapeutic approaches against TB.

  5. Quantum Monte Carlo method applied to non-Markovian barrier transmission

    Science.gov (United States)

    Hupin, Guillaume; Lacroix, Denis

    2010-01-01

    In nuclear fusion and fission, fluctuation and dissipation arise because of the coupling of collective degrees of freedom with internal excitations. Close to the barrier, quantum, statistical, and non-Markovian effects are expected to be important. In this work, a new approach based on quantum Monte Carlo addressing this problem is presented. The exact dynamics of a system coupled to an environment is replaced by a set of stochastic evolutions of the system density. The quantum Monte Carlo method is applied to systems with quadratic potentials. In all ranges of temperature and coupling, the stochastic method matches the exact evolution, showing that non-Markovian effects can be simulated accurately. A comparison with other theories, such as Nakajima-Zwanzig or time-convolutionless, shows that only the latter can be competitive if the expansion in terms of coupling constant is made at least to fourth order. A systematic study of the inverted parabola case is made at different temperatures and coupling constants. The asymptotic passing probability is estimated by different approaches including the Markovian limit. Large differences with an exact result are seen in the latter case or when only second order in the coupling strength is considered, as is generally assumed in nuclear transport models. In contrast, if fourth order in the coupling or quantum Monte Carlo method is used, a perfect agreement is obtained.

  6. Using non-Markovian measures to evaluate quantum master equations for photosynthesis

    Science.gov (United States)

    Chen, Hong-Bin; Lambert, Neill; Cheng, Yuan-Chung; Chen, Yueh-Nan; Nori, Franco

    2015-01-01

    When dealing with system-reservoir interactions in an open quantum system, such as a photosynthetic light-harvesting complex, approximations are usually made to obtain the dynamics of the system. One question immediately arises: how good are these approximations, and in what ways can we evaluate them? Here, we propose to use entanglement and a measure of non-Markovianity as benchmarks for the deviation of approximate methods from exact results. We apply two frequently-used perturbative but non-Markovian approximations to a photosynthetic dimer model and compare their results with that of the numerically-exact hierarchy equation of motion (HEOM). This enables us to explore both entanglement and non-Markovianity measures as means to reveal how the approximations either overestimate or underestimate memory effects and quantum coherence. In addition, we show that both the approximate and exact results suggest that non-Markonivity can, counter-intuitively, increase with temperature, and with the coupling to the environment. PMID:26238479

  7. Hard decoding algorithm for optimizing thresholds under general Markovian noise

    Science.gov (United States)

    Chamberland, Christopher; Wallman, Joel; Beale, Stefanie; Laflamme, Raymond

    2017-04-01

    Quantum error correction is instrumental in protecting quantum systems from noise in quantum computing and communication settings. Pauli channels can be efficiently simulated and threshold values for Pauli error rates under a variety of error-correcting codes have been obtained. However, realistic quantum systems can undergo noise processes that differ significantly from Pauli noise. In this paper, we present an efficient hard decoding algorithm for optimizing thresholds and lowering failure rates of an error-correcting code under general completely positive and trace-preserving (i.e., Markovian) noise. We use our hard decoding algorithm to study the performance of several error-correcting codes under various non-Pauli noise models by computing threshold values and failure rates for these codes. We compare the performance of our hard decoding algorithm to decoders optimized for depolarizing noise and show improvements in thresholds and reductions in failure rates by several orders of magnitude. Our hard decoding algorithm can also be adapted to take advantage of a code's non-Pauli transversal gates to further suppress noise. For example, we show that using the transversal gates of the 5-qubit code allows arbitrary rotations around certain axes to be perfectly corrected. Furthermore, we show that Pauli twirling can increase or decrease the threshold depending upon the code properties. Lastly, we show that even if the physical noise model differs slightly from the hypothesized noise model used to determine an optimized decoder, failure rates can still be reduced by applying our hard decoding algorithm.

  8. On Markovian traffic with applications to TES processes

    Directory of Open Access Journals (Sweden)

    David L. Jagerman

    1994-01-01

    Full Text Available Markov processes are an important ingredient in a variety of stochastic applications. Notable instances include queueing systems and traffic processes offered to them. This paper is concerned with Markovian traffic, i.e., traffic processes whose inter-arrival times (separating the time points of discrete arrivals form a real-valued Markov chain. As such this paper aims to extend the classical results of renewal traffic, where interarrival times are assumed to be independent, identically distributed. Following traditional renewal theory, three functions are addressed: the probability of the number of arrivals in a given interval, the corresponding mean number, and the probability of the times of future arrivals. The paper derives integral equations for these functions in the transform domain. These are then specialized to a subclass, TES+, of a versatile class of random sequences, called TES (Transform-Expand-Sample, consisting of marginally uniform autoregressive schemes with modulo-1 reduction, followed by various transformations. TES models are designed to simultaneously capture both first-order and second-order statistics of empirical records, and consequently can produce high-fidelity models. Two theoretical solutions for TES+ traffic functions are derived: an operator-based solution and a matric solution, both in the transform domain. A special case, permitting the conversion of the integral equations to differential equations, is illustrated and solved. Finally, the results are applied to obtain instructive closed-form representations for two measures of traffic burstiness: peakedness and index of dispersion, elucidating the relationship between them.

  9. Is pertussis actually reemerging? Insights from an individual-based model A coqueluche realmente está reermegindo? Reflexões a partir de um modelo baseado no indivíduo

    Directory of Open Access Journals (Sweden)

    Cláudia Torres Codeço

    2001-06-01

    Full Text Available In this paper, we introduce a spatially explicit, individual-based model developed to simulate the dynamics of pertussis in a small population. With this simulation approach, complex epidemic systems can be built using information on parasite population structure (strain diversity, virulence diversity, etc., human population structure (individual risk, age structure, interaction matrices, immune response, etc., as well as mechanisms of evolution and learning. We parameterized our model to describe pertussis in an age-structured community. Pertussis or whooping cough is an acute infection of the respiratory tract caused by Bordetella pertussis. Despite wide-scale vaccination in many countries, this disease is reemerging throughout the world in both adults and children. Emergence has been explained by many factors: wane of vaccine and natural immunity, increase of asymptomatic carriers, and/or natural selection of non-vaccine strains. Here, we model these hypotheses and analyze their potential impact on the observed increase of pertussis notification.Neste trabalho, nós apresentamos um modelo de indivíduos, cuja representação espacial é explícita, para simular a dinâmica da coqueluche numa pequena população. Utilizando esta abordagem de simulação, podemos construir modelos complexos utilizando informações sobre a estrutura populacional dos parasitas (diversidade fenotípica, de virulência, etc sobre a estrutura populacional humana (risco individual, estrutura etária, matrizes de interação, resposta imunológica, etc assim como processos evolutivos e de aprendizagem. Nós parametrizamos este modelo para representar a dinâmica da coqueluche numa população com estrutura etária. Coqueluche é uma infecção aguda do trato respiratório, causada por Bordetella pertussis. Apesar da vacinação em larga escala em vários países, esta infecção está reemergindo por todo o mundo, atacando adultos e crianças. Reemergência tem sido

  10. POISSON LIMIT THEOREM FOR COUNTABLE MARKOV CHAINS IN MARKOVIAN ENVIRONMENTS

    Institute of Scientific and Technical Information of China (English)

    方大凡; 王汉兴; 唐矛宁

    2003-01-01

    A countable Markov chain in a Markovian environment is considered. A Poisson limit theorem for the chain recurring to small cylindrical sets is mainly achieved. In order to prove this theorem, the entropy function h is introduced and the Shannon-McMillan-Breiman theorem for the Markov chain in a Markovian environment is shown. It' s well-known that a Markov process in a Markovian environment is generally not a standard Markov chain, so an example of Poisson approximation for a process which is not a Markov process is given. On the other hand, when the environmental process degenerates to a constant sequence, a Poisson limit theorem for countable Markov chains, which is the generalization of Pitskel's result for finite Markov chains is obtained.

  11. New delay-dependent stability of Markovian jump neutral stochastic systems with general unknown transition rates

    Science.gov (United States)

    Kao, Yonggui; Wang, Changhong; Xie, Jing; Karimi, Hamid Reza

    2016-08-01

    This paper investigates the delay-dependent stability problem for neutral Markovian jump systems with generally unknown transition rates (GUTRs). In this neutral GUTR model, each transition rate is completely unknown or only its estimate value is known. Based on the study of expectations of the stochastic cross-terms containing the ? integral, a new stability criterion is derived in terms of linear matrix inequalities. In the mathematical derivation process, bounding stochastic cross-terms, model transformation and free-weighting matrix are not employed for less conservatism. Finally, an example is provided to demonstrate the effectiveness of the proposed results.

  12. Programmable entanglement oscillations in a non Markovian channel

    CERN Document Server

    Cialdi, Simone; Tesio, Enrico; Paris, Matteo G A

    2010-01-01

    We suggest and demonstrate an all-optical experimental setup to observe and engineer entanglement oscillations of a pair of polarization qubits in a non-Markovian channel. We generate entangled photon pairs by spontaneous parametric downconversion (SPDC), and then insert a programmable spatial light modulator in order to impose a polarization dependent phase-shift on the spatial domain of the SPDC output and to create an effective non-Markovian environment. Modulation of the enviroment spectrum is obtained by inserting a spatial grating on the signal arm. In our experiment, programmable oscillations of entanglement are achieved, with the maximally revived state that violates Bell's inequality by 17 standard deviations.

  13. Dynamics and protection of entanglement in n -qubit systems within Markovian and non-Markovian environments

    Science.gov (United States)

    Nourmandipour, A.; Tavassoly, M. K.; Rafiee, M.

    2016-02-01

    We provide an analytical investigation of the pairwise entanglement dynamics for a system, consisting of an arbitrary number of qubits dissipating into a common and non-Markovian environment for both weak- and strong-coupling regimes. In the latter case, a revival of pairwise entanglement due to the memory depth of the environment is observed. The leakage of photons into a continuum state is assumed to be the source of dissipation. We show that for an initially Werner state, the environment washes out the pairwise entanglement, but a series of nonselective measurements can protect the relevant entanglement. On the other hand, by limiting the number of qubits initially in the superposition of single excitation, a stationary entanglement can be created between qubits initially in the excited and ground states. Finally, we determine the stationary distribution of the entanglement versus the total number of qubits in the system.

  14. Replacement policy in a system under shocks following a Markovian arrival process

    Energy Technology Data Exchange (ETDEWEB)

    Montoro-Cazorla, Delia [Department of Statistics and Operational Research, University of Jaen (Spain); Perez-Ocon, Rafael [Department of Statistics and Operational Research, University of Granada, Granada (Spain)], E-mail: rperezo@ugr.es; Carmen Segovia, Maria del [Departamento de Estadistica e I.O., University of Granada, Granada (Spain)

    2009-02-15

    We present a system subject to shocks that arrive following a Markovian arrival process. The system is minimally repaired. It is replaced when a certain number of shocks arrive. A general model where the replacements are governed by a discrete phase-type distribution is studied. For this system, the Markov process governing the system is constructed, and the interarrival times between replacements and the number of replacements are calculated. A special case of this system is when it can stand a prefixed number of shocks. For this new system, the same performance measures are calculated. The systems are considered in transient and stationary regime.

  15. (Batch) Markovian arrival processes: the identifiability issue and other applied aspects

    OpenAIRE

    Rodríguez César, Joanna Virginia

    2015-01-01

    Mención Internacional en el título de doctor This dissertation is mainly motivated by the problem of statistical modeling via a specific point process, namely, the Batch Markovian arrival processes. Point processes arise in a wide range of situations of our daily activities, such as people arriving to a bank, claims of an insurance company or failures in a system. They are defined by the occurrence of an event at a specific time, where the event occurrences may be understood from different...

  16. Non-Markovian random walks and nonlinear reactions: Subdiffusion and propagating fronts

    Science.gov (United States)

    Fedotov, Sergei

    2010-01-01

    The main aim of the paper is to incorporate the nonlinear kinetic term into non-Markovian transport equations described by a continuous time random walk (CTRW) with nonexponential waiting time distributions. We consider three different CTRW models with reactions. We derive nonlinear Master equations for the mesoscopic density of reacting particles corresponding to CTRW with arbitrary jump and waiting time distributions. We apply these equations to the problem of front propagation in the reaction-transport systems with Kolmogorov-Petrovskii-Piskunov kinetics and anomalous diffusion. We have found an explicit expression for the speed of a propagating front in the case of subdiffusive transport.

  17. Long-time memory in non-Markovian evolutions

    CERN Document Server

    Chruściński, Dariusz; Pascazio, Saverio

    2009-01-01

    If the dynamics of an open quantum systems is non-Markovian, its asymptotic state strongly depends on the initial conditions, even if the dynamics possesses an invariant state. This is the very essence of memory effects. In particular, the asymptotic state can remember and partially preserve its initial entanglement.

  18. Counting statistics of non-markovian quantum stochastic processes

    DEFF Research Database (Denmark)

    Flindt, Christian; Novotny, T.; Braggio, A.

    2008-01-01

    We derive a general expression for the cumulant generating function (CGF) of non-Markovian quantum stochastic transport processes. The long-time limit of the CGF is determined by a single dominating pole of the resolvent of the memory kernel from which we extract the zero-frequency cumulants of t...

  19. Non-Markovian time evolution of an accelerated qubit

    CERN Document Server

    Moustos, Dimitris

    2016-01-01

    We present a new method for evaluating the response of a moving qubit detector interacting with a scalar field in Minkowski spacetime. We treat the detector as an open quantum system, but we do not invoke the Markov approximation. The evolution equations for the qubit density matrix are valid at all times, for all qubit trajectories and they incorporate non-Markovian effects. We analyze in detail the case of uniform acceleration, providing a detailed characterization of all regimes where non-Markovian effects are significant. We argue that the most stable characterization of acceleration temperature refers to the late time behavior of the detector, because interaction with the field vacuum brings the qubit to a thermal state at the Unruh temperature. In contrast, the early-time transition rate, that is invoked in most discussions of acceleration temperature, does not exhibit a thermal behavior when non-Markovian effects are taken into account. Finally, we note that the non-Markovian evolution derived here als...

  20. Importance Sampling Simulations of Markovian Reliability Systems using Cross Entropy

    NARCIS (Netherlands)

    Ridder, Ad

    2004-01-01

    This paper reports simulation experiments, applying the cross entropy method suchas the importance sampling algorithm for efficient estimation of rare event probabilities in Markovian reliability systems. The method is compared to various failurebiasing schemes that have been proved to give estimato

  1. Importance Sampling Simulations of Markovian Reliability Systems using Cross Entropy

    NARCIS (Netherlands)

    Ridder, Ad

    2004-01-01

    This paper reports simulation experiments, applying the cross entropy method suchas the importance sampling algorithm for efficient estimation of rare event probabilities in Markovian reliability systems. The method is compared to various failurebiasing schemes that have been proved to give estimato

  2. A MARKOVIAN APPROACH TO DETERMINING PROCESS MEANS WITH DUAL QUALITY CHARACTERISTICS

    Institute of Scientific and Technical Information of China (English)

    Mohammad T.KHASAWNEH; Shannon R.BOWLING; Byung Rae CHO

    2008-01-01

    This paper studies a production system where products are produced continuously and whose specification limits are specified for screening inspection.In this paper,we consider dual quality characteristics and different costs associated with each quality characteristic that falls below a lower specification limit or above an upper specification limit.Due to these different costs,the expected total profit will greatly depend on the process parameters,especially a process mean.This paper develops a Markovian.based model for determining the optimum process means with the consideration of dual quality characteristics in a single-stage system.The proposed model is then illustrated through a numerical example and sensitivity analysis is performed to validate the model.The results showed that the optimum process mean for both quality characteristics have a significant effect on the performance of tlle system.Since the literature survey shows that dealing with multi-quality characteristics is extremely limited,the proposed model,coupled with the Markovian approach,provides a unique contribution to this field.

  3. Robust Guaranteed Cost Observer Design for Singular Markovian Jump Time-Delay Systems with Generally Incomplete Transition Probability

    Directory of Open Access Journals (Sweden)

    Yanbo Li

    2014-01-01

    Full Text Available This paper is devoted to the investigation of the design of robust guaranteed cost observer for a class of linear singular Markovian jump time-delay systems with generally incomplete transition probability. In this singular model, each transition rate can be completely unknown or only its estimate value is known. Based on stability theory of stochastic differential equations and linear matrix inequality (LMI technique, we design an observer to ensure that, for all uncertainties, the resulting augmented system is regular, impulse free, and robust stochastically stable with the proposed guaranteed cost performance. Finally, a convex optimization problem with LMI constraints is formulated to design the suboptimal guaranteed cost filters for linear singular Markovian jump time-delay systems with generally incomplete transition probability.

  4. Robust fault detection for discrete-time Markovian jump systems with mode-dependent time-delays

    Institute of Scientific and Technical Information of China (English)

    Hongru WANG; Changhong WANG; Shaoshuai MOU; Huijun GAO

    2007-01-01

    This paper investigates a fault detection problem for a class of discrete-time Markovian jump systems with norm-bounded uncertainties and mode-dependent time-delays. Attention is focused on constructing the residual generator based on the filter of which its parameters matrices are dependent on the system mode, that is, the fault detection filter is a Markovian jump system as well. The design of fault detection filter is reduced to H-infinity filtering problem by using H-infinity control theory, which can guarantee the difference between the residual and the fault (or, more generally weighted fault) as small as possible in the context of enhancing the robustness of residual to modeling errors, control inputs and unknown inputs. Sufficient condition for the existence of the above filters is established by means of linear matrix inequalities, which can be readily solved by using standard numerical software. A numerical example is given to illustrate the feasibility of the proposed method.

  5. Excitation energy transfer efficiency: equivalence of transient and stationary setting and the absence of non-Markovian effects

    CERN Document Server

    Jesenko, Simon

    2013-01-01

    We analyze efficiency of excitation energy transfer in photosynthetic complexes in transient and stationary setting. In the transient setting the absorption process is modeled as an individual event resulting in a subsequent relaxation dynamics. In the stationary setting the absorption is a continuous stationary process, leading to the nonequilibrium steady state. We show that, as far as the efficiency is concerned, both settings can be considered to be the same, as they result in almost identical efficiency. We also show that non-Markovianity has no effect on the resulting efficiency, i.e., corresponding Markovian dynamics results in identical efficiency. Even more, if one maps dynamics to appropriate classical rate equations, the same efficiency as in quantum case is obtained.

  6. Reveal non-Markovianity of open quantum systems via local operations

    CERN Document Server

    Yang, Huan; Chen, Yanbei

    2011-01-01

    Non-Markovianity, as an important feature of general open quantum systems, is usually difficult to quantify with limited knowledge of how the plant that we are interested in interacts with its environment-the bath. It often happens that the reduced dynamics of the plant attached to a non-Markovian bath becomes indistinguishable from the one with a Markovian bath, if we left the entire system freely evolve. Here we show that non-Markovianity can be revealed via applying local unitary operations on the plant-they will influence the plant evolution at later times due to memory of the bath. This not only provides a new criterion for non-Markovianity, but also sheds light on protecting and recovering quantum coherence in non-Markovian systems, which will be useful for quantum-information processing.

  7. Individual based population inference using tagging data

    DEFF Research Database (Denmark)

    Pedersen, Martin Wæver; Thygesen, Uffe Høgsbro; Baktoft, Henrik

    A hierarchical framework for simultaneous analysis of multiple related individual datasets is presented. The approach is very similar to mixed effects modelling as known from statistical theory. The model used at the individual level is, in principle, irrelevant as long as a maximum likelihood es...... telemetry data from pike illustrates how the framework can identify individuals that deviate from the remaining population....

  8. Open system dynamics with non-Markovian quantum trajectories

    CERN Document Server

    Strunz, W T; Gisin, Nicolas; Strunz, Walter T; Diosi, Lajos; Gisin, Nicolas

    1999-01-01

    A non-Markovian stochastic Schroedinger equation for a quantum system coupled to an environment of harmonic oscillators is presented. Its solutions, when averaged over the noise, reproduce the standard reduced density operator without any approximation. We illustrate the power of this approach with several examples, including exponentially decaying bath correlations and extreme non-Markovian cases, where the `environment' consists of only a single oscillator. The latter case shows the decay and revival of a `Schroedinger cat' state. For strong coupling to a dissipative environment with memory, the asymptotic state can be reached in a finite time. Our description of open systems is compatible with different positions of the `Heisenberg cut' between system and environment.

  9. Katz Centrality of Markovian Temporal Networks: Analysis and Optimization

    CERN Document Server

    Ogura, Masaki

    2016-01-01

    Identifying important nodes in complex networks is a fundamental problem in network analysis. Although a plethora of measures has been proposed to identify important nodes in static (i.e., time-invariant) networks, there is a lack of tools in the context of temporal networks (i.e., networks whose connectivity dynamically changes over time). The aim of this paper is to propose a system-theoretic approach for identifying important nodes in temporal networks. In this direction, we first propose a generalization of the popular Katz centrality measure to the family of Markovian temporal networks using tools from the theory of Markov jump linear systems. We then show that Katz centrality in Markovian temporal networks can be efficiently computed using linear programming. Finally, we propose a convex program for optimizing the Katz centrality of a given node by tuning the weights of the temporal network in a cost-efficient manner. Numerical simulations illustrate the effectiveness of the obtained results.

  10. Non-Markovian Quantum Dynamics: Local versus Nonlocal

    Science.gov (United States)

    Chruściński, Dariusz; Kossakowski, Andrzej

    2010-02-01

    We analyze non-Markovian evolution of open quantum systems. It is shown that any dynamical map representing the evolution of such a system may be described either by a nonlocal master equation with a memory kernel or equivalently by an equation which is local in time. These two descriptions are complementary: if one is simple, the other is quite involved, or even singular, and vice versa. The price one pays for the local approach is that the corresponding generator keeps the memory about the starting point “t0.” This is the very essence of non-Markovianity. Interestingly, this generator might be highly singular; nevertheless, the corresponding dynamics is perfectly regular. Remarkably, the singularities of the generator may lead to interesting physical phenomena such as the revival of coherence or sudden death and revival of entanglement.

  11. Non-Markovian quantum dynamics: local versus non-local

    CERN Document Server

    Chruscinski, Dariusz

    2009-01-01

    We analyze non-Markovian evolution of open quantum systems. It is shown that any dynamical map representing evolution of such a system may be described either by non-local master equation with memory kernel or equivalently by equation which is local in time. Theses two descriptions are complementary: if one is simple the other is quite involved, or even singular, and vice versa. The price one pays for the local approach is that the corresponding generator keeps the memory about the starting point `t_0'. This is the very essence of non-Markovianity. Interestingly, this generator might be highly singular, nevertheless, the corresponding dynamics is perfectly regular. Remarkably, singularities of generator may lead to interesting physical phenomena like revival of coherence or sudden death and revival of entanglement.

  12. The Entropy Production Distribution in Non-Markovian Thermal Baths

    Directory of Open Access Journals (Sweden)

    José Inés Jiménez-Aquino

    2014-03-01

    Full Text Available In this work we study the distribution function for the total entropy production of a Brownian particle embedded in a non-Markovian thermal bath. The problem is studied in the overdamped approximation of the generalized Langevin equation, which accounts for a friction memory kernel characteristic of a Gaussian colored noise. The problem is studied in two physical situations: (i when the particle in the harmonic trap is subjected to an arbitrary time-dependent driving force; and (ii when the minimum of the harmonic trap is arbitrarily dragged out of equilibrium by an external force. By assuming a natural non Markovian canonical distribution for the initial conditions, the distribution function for the total entropy production becomes a non Gaussian one. Its characterization is then given through the first three cumulants.

  13. Non-Markovian entanglement dynamics in coupled superconducting qubit systems

    CERN Document Server

    Cui, Wei; Pan, Yu

    2010-01-01

    We theoretically analyze the entanglement generation and dynamics by coupled Josephson junction qubits. Considering a current-biased Josephson junction (CBJJ), we generate maximally entangled states. In particular, the entanglement dynamics is considered as a function of the decoherence parameters, such as the temperature, the ratio $r\\equiv\\omega_c/\\omega_0$ between the reservoir cutoff frequency $\\omega_c$ and the system oscillator frequency $\\omega_0$, % between $\\omega_0$ the characteristic frequency of the %quantum system of interest, and $\\omega_c$ the cut-off frequency of %Ohmic reservoir and the energy levels split of the superconducting circuits in the non-Markovian master equation. We analyzed the entanglement sudden death (ESD) and entanglement sudden birth (ESB) by the non-Markovian master equation. Furthermore, we find that the larger the ratio $r$ and the thermal energy $k_BT$, the shorter the decoherence. In this superconducting qubit system we find that the entanglement can be controlled and t...

  14. Non-Markovian Quantum Fluctuations and Superradiance Near a Photonic Band Edge

    CERN Document Server

    Vats, N; Vats, Nipun; John, Sajeev

    1998-01-01

    We discuss a point model for the collective emission of light from N two-level atoms in a photonic bandgap material, each with an atomic resonant frequency near the edge of the gap. In the limit of a low initial occupation of the excited atomic state, our system is shown to possess novel atomic spectra and population statistics. For a high initial excited state population, mean field theory suggests a fractionalized inversion and a macroscopic polarization for the atoms in the steady state, both of which can be controlled by an external d.c. field. This atomic steady state is accompanied by a non--zero expectation value of the electric field operators for field modes located in the vicinity of the atoms. The nature of homogeneous broadening near the band edge is shown to differ markedly from that in free space due to non-Markovian memory effects in the radiation dynamics. Non-Markovian vacuum fluctuations are shown to yield a partially coherent steady state polarization with a random phase. In contrast with t...

  15. A single-server Markovian queuing system with discouraged arrivals and retention of reneged customers

    Directory of Open Access Journals (Sweden)

    Kumar Rakesh

    2014-01-01

    Full Text Available Customer impatience has a very negative impact on the queuing system under investigation. If we talk from business point of view, the firms lose their potential customers due to customer impatience, which affects their business as a whole. If the firms employ certain customer retention strategies, then there are chances that a certain fraction of impatient customers can be retained in the queuing system. A reneged customer may be convinced to stay in the queuing system for his further service with some probability, say q and he may abandon the queue without receiving the service with a probability p(=1− q. A finite waiting space Markovian single-server queuing model with discouraged arrivals, reneging and retention of reneged customers is studied. The steady state solution of the model is derived iteratively. The measures of effectiveness of the queuing model are also obtained. Some important queuing models are derived as special cases of this model.

  16. EXPONENTIAL ESTIMATES FOR STOCHASTIC DELAY HYBRID SYSTEMS WITH MARKOVIAN SWITCHING

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper deals with the problem of norm bounds for the solutions of stochastic hybrid systems with Markovian switching and time delay. Based on Lyapunov-Krasovskii theory for functional differential equations and the linear matrix inequality (LMI) approach, mean square exponential estimates for the solutions of this class of linear stochastic hybrid systems are derived. Finally, An example is illustrated to show the applicability and effectiveness of our method.

  17. Non-Markovian Quantum Evolution: Time-Local Generators and Memory Kernels

    Science.gov (United States)

    Chruściński, Dariusz; Należyty, Paweł

    2016-06-01

    In this paper we provide a basic introduction to the topic of quantum non-Markovian evolution presenting both time-local and memory kernel approach to the evolution of open quantum systems. We start with the standard notion of a classical Markovian stochastic process and generalize it to classical Markovian stochastic evolution which in turn becomes a starting point of the quantum setting. Our approach is based on the notion of P-divisible, CP-divisible maps and their refinements to k-divisible maps. Basic methods enabling one to detect non-Markovianity of the quantum evolution are also presented. Our analysis is illustrated by several simple examples.

  18. Markovian evolution of quantum coherence under symmetric dynamics

    Science.gov (United States)

    Lostaglio, Matteo; Korzekwa, Kamil; Milne, Antony

    2017-09-01

    Both conservation laws and practical restrictions impose symmetry constraints on the dynamics of open quantum systems. In the case of time-translation symmetry, which arises naturally in many physically relevant scenarios, the quantum coherence between energy eigenstates becomes a valuable resource for quantum information processing. In this work, we identify the minimum amount of decoherence compatible with this symmetry for a given population dynamics. This yields a generalization to higher-dimensional systems of the relation T2≤2 T1 for qubit decoherence and relaxation times. It also enables us to witness and assess the role of non-Markovianity as a resource for coherence preservation and transfer. Moreover, we discuss the relationship between ergodicity and the ability of Markovian dynamics to indefinitely sustain a superposition of different energy states. Finally, we establish a formal connection between the resource-theoretic and the master equation approaches to thermodynamics, with the former being a non-Markovian generalization of the latter. Our work thus brings the abstract study of quantum coherence as a resource towards the realm of actual physical applications.

  19. Reliability importance analysis of Markovian systems at steady state using perturbation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Phuc Do Van [Institut Charles Delaunay - FRE CNRS 2848, Systems Modeling and Dependability Group, Universite de technologie de Troyes, 12, rue Marie Curie, BP 2060-10010 Troyes cedex (France); Barros, Anne [Institut Charles Delaunay - FRE CNRS 2848, Systems Modeling and Dependability Group, Universite de technologie de Troyes, 12, rue Marie Curie, BP 2060-10010 Troyes cedex (France)], E-mail: anne.barros@utt.fr; Berenguer, Christophe [Institut Charles Delaunay - FRE CNRS 2848, Systems Modeling and Dependability Group, Universite de technologie de Troyes, 12, rue Marie Curie, BP 2060-10010 Troyes cedex (France)

    2008-11-15

    Sensitivity analysis has been primarily defined for static systems, i.e. systems described by combinatorial reliability models (fault or event trees). Several structural and probabilistic measures have been proposed to assess the components importance. For dynamic systems including inter-component and functional dependencies (cold spare, shared load, shared resources, etc.), and described by Markov models or, more generally, by discrete events dynamic systems models, the problem of sensitivity analysis remains widely open. In this paper, the perturbation method is used to estimate an importance factor, called multi-directional sensitivity measure, in the framework of Markovian systems. Some numerical examples are introduced to show why this method offers a promising tool for steady-state sensitivity analysis of Markov processes in reliability studies.

  20. Dark matter halo assembly bias: environmental dependence in the non-Markovian excursion set theory

    CERN Document Server

    Zhang, Jun; Riotto, Antonio

    2013-01-01

    In the standard excursion set model for the growth of structure, the statistical properties of haloes are governed by the halo mass and are independent of the larger scale environment in which the haloes reside. Numerical simulations, however, have found the spatial distributions of haloes to depend not only on their mass but also on the details of their assembly history and environment. Here we present a theoretical framework for incorporating this "assembly bias" into the excursion set model. Our derivations are based on modifications of the path integral approach of Maggiore & Riotto (2010) that models halo formation as a non-Markovian random walk process. The perturbed density field is assumed to evolve stochastically with the smoothing scale and exhibits correlated walks in the presence of a density barrier. We write down conditional probabilities for multiple barrier crossings, and derive from them analytic expressions for descendant and progenitor halo mass functions and halo merger rates as a func...

  1. Non-Markovian dynamics in the theory of full counting statistics

    DEFF Research Database (Denmark)

    Flindt, Christian; Braggio, A.; Novotny, Tomas

    2007-01-01

    generating function corresponding to the resulting non-Markovian rate equation and find that the measured current cumulants behave significantly differently compared to those of a Markovian transport process. Our findings provide a novel interpretation of noise suppression found in a number of systems....

  2. Non-Markovian Quantum Error Deterrence by Dynamical Decoupling in a General Environment

    CERN Document Server

    Shiokawa, K

    2005-01-01

    A dynamical decoupling scheme for the deterrence of errors in the non-Markovian (usually corresponding to low temperature, short time, and strong coupling) regimes suitable for qubits constructed out of a multilevel structure is studied. We use the effective spin-boson model (ESBM) introduced recently [K. Shiokawa and B. L. Hu, Phys. Rev. A70, 062106 (2004)] as a low temperature limit of the quantum Brownian oscillator model, where one can obtain exact solutions for a general environment with colored noises. In our decoupling scheme a train of pairs of strong pulses are used to evolve the interaction Hamiltonian instantaneously. Using this scheme we show that the dynamical decoupling method can suppress $1/f$ noise with slower and hence more accessible pulses than previously studied, but it still fails to decouple super-Ohmic types of environments.

  3. Reliable Sampled-Data Control of Fuzzy Markovian Systems with Partly Known Transition Probabilities

    Science.gov (United States)

    Sakthivel, R.; Kaviarasan, B.; Kwon, O. M.; Rathika, M.

    2016-08-01

    This article presents a fuzzy dynamic reliable sampled-data control design for nonlinear Markovian jump systems, where the nonlinear plant is represented by a Takagi-Sugeno fuzzy model and the transition probability matrix for Markov process is permitted to be partially known. In addition, a generalised as well as more practical consideration of the real-world actuator fault model which consists of both linear and nonlinear fault terms is proposed to the above-addressed system. Then, based on the construction of an appropriate Lyapunov-Krasovskii functional and the employment of convex combination technique together with free-weighting matrices method, some sufficient conditions that promising the robust stochastic stability of system under consideration and the existence of the proposed controller are derived in terms of linear matrix inequalities, which can be easily solved by any of the available standard numerical softwares. Finally, a numerical example is provided to illustrate the validity of the proposed methodology.

  4. Relaxation Process of Interacting Two-mode System Influenced by Markovian Thermal Reservoirs

    Science.gov (United States)

    Ban, Masashi

    2016-11-01

    Two different models of a relaxation process are considered for a linearly interacting two-mode system under the influence of independent Markovian thermal reservoirs. One is to describe the relaxation process of bare particles and the other is to describe the one of quasi particles which are derived from bare particles by the Bogoliubov transformation. The difference is that the former does not includes the effect of the inter-mode interaction on the damping operator while the latter does. The equations of motion are solved algebraically by making use of non-equilibrium thermo field dynamics. The relaxation processes in the two models are investigated in detail. The results are applied for investigating a non-ideal beam splitter with photon loss and noise addition.

  5. Connecting two jumplike unravelings for non-Markovian open quantum systems

    CERN Document Server

    Luoma, Kimmo; Piilo, Jyrki

    2011-01-01

    The development and use of Monte Carlo algorithms plays a visible role in the study of non-Markovian quantum dynamics due to the provided insight and powerful numerical methods for solving the system dynamics. In the Markovian case, the connections between the various types of methods are fairly well-understood while for non-Markovian case there has so far been only a few studies. We focus here on two jumplike unravelings of non-Markovian dynamics, the non-Markovian quantum jump (NMQJ) method and the property state method by Gambetta, Askerud, and Wiseman (GAW). The results for simple quantum optical systems illustrate the connections between the realizations of the two methods and also highlight how the probability currents between the system and environment, or between the property states of the total system, associate to the decay rates of time-local master equations, and consequently to the jump rates of the NMQJ method.

  6. MARKOVIAN QUEUES WITH CORRELATED ARRIVAL PROCESSES

    OpenAIRE

    Hunter, Jeffrey J.

    2007-01-01

    In an attempt to examine the effect of dependencies in the arrival process on the steady state queue length process in single server queueing models with exponential service time distribution, four different models for the arrival process, each with marginally distributed exponential inter-arrivals to the queueing system, are considered. Two of these models are based upon the upper and lower bounding joint distribution functions given by the Fréchet bounds for bivariate distributions with spe...

  7. A two-echelon(S-1,S)inventory model for repairable items based on markovian arrival process%基于马尔可夫到达过程的两级可修备件(S-1,S)库存优化模型

    Institute of Scientific and Technical Information of China (English)

    陈童; 黎放; 狄鹏

    2015-01-01

    本文以两级可修备件库存系统为研究对象,采用马尔可夫到达过程(MAP)描述备件需求规律,考虑有限维修设施的情况,假设故障件维修时间、备件运输时间以及采购时间均服从phase-type(PH)分布,建立了一种描述能力更强、解析计算性更好的(S-1,S)库存优化模型,并推导出系统缺货量分布函数;然后通过算例演示了模型的优化效果,验证了模型的正确性和适用性.%This paper investigates a two-echolon inventory system with(S-1,S)policy that consists of several same repairable items and single repair facility,and assumes that the item de-mand occur according to a markovian arrival process(MAP),the repair time,ship time and procurement time follow the general distribution which is represented by phase-type(PH)dis-tribution. Then a inventory optimization model with better description ability and analytical per-formance is given,and the probability distribution of backorder is obtained. Finally,a numeri-cal example was given to illustrate the effectiveness of the model.

  8. Efficient simulation of non-Markovian system-environment interaction

    CERN Document Server

    Rosenbach, Robert; Huelga, Susana F; Cao, Jianshu; Plenio, Martin Bodo

    2015-01-01

    In this work, we combine an established method for open quantum systems -- the time evolving density matrix using orthogonal polynomials algorithm (TEDOPA) -- with the transfer tensors formalism (TTM), a new tool for the analysis, compression and propagation of non-Markovian processes. This enables the investigation of previously inaccessible long-time dynamics, such as those ensuing from low temperature regimes with arbitrary, possibly highly structured, spectral densities. We briefly introduce both methods, followed by a benchmark to prove viability and combination synergies. Subsequently we illustrate the capabilities of this approach at the hand of specific examples and conclude our analysis by highlighting possible further applications of our method.

  9. Analysis and design of singular Markovian jump systems

    CERN Document Server

    Wang, Guoliang; Yan, Xinggang

    2014-01-01

    This monograph is an up-to-date presentation of the analysis and design of singular Markovian jump systems (SMJSs) in which the transition rate matrix of the underlying systems is generally uncertain, partially unknown and designed. The problems addressed include stability, stabilization, H∞ control and filtering, observer design, and adaptive control. applications of Markov process are investigated by using Lyapunov theory, linear matrix inequalities (LMIs), S-procedure and the stochastic Barbalat's Lemma, among other techniques.Features of the book include:·???????? study of the stability pr

  10. Stochastic Stability Analysis for Markovian Jump Neutral Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2012-10-01

    Full Text Available In this paper, the stability problem is studied for a class of Markovian jump neutral nonlinear systems with time-varying delay. By Lyapunov-Krasovskii function approach, a novel mean-square exponential stability criterion is derived for the situations that the system's transition rates are completely accessible, partially accessible and non-accessible, respectively. Moreover, the developed stability criterion is extended to the systems with different bounded sector nonlinear constraints. Finally, some numerical examples are provided to illustrate the effectiveness of the proposed methods.

  11. Characterization of the degree of Musical non-Markovianity

    CERN Document Server

    Mannone, Maria

    2013-01-01

    Musical compositions could be characterized by a certain degree of memory, that takes into account repetitions and similarity of sequences of pitches, durations and intensities (the patterns). The higher the quantity of variations, the lower the degree of memory. This degree has never quantitatively been defined and measured. In physics, mathematical tools to quantify memory (defined as non-Markovianity) in quantum systems have been developed. The aim of this paper is to extend these mathematical tools to music, defining a general method to measure the degree of memory in musical compositions. Applications to some musical scores give results that agree with the expectations.

  12. Non- Markovian Quantum Stochastic Equation For Two Coupled Oscillators

    CERN Document Server

    Alpomishev, E X

    2016-01-01

    The system of nonlinear Langevin equations was obtained by using Hamiltonian's operator of two coupling quantum oscillators which are interacting with heat bath. By using the analytical solution of these equations, the analytical expressions for transport coefficients was found. Generalized Langevin equations and fluctuation-dissipation relations are derived for the case of a nonlinear non-Markovian noise. The explicit expressions for the time-dependent friction and diffusion coefficients are presented for the case of linear couplings in the coordinate between the collective two coupled harmonic oscillators and heat bath.

  13. A note on the stability of multiclass Markovian queueing networks

    CERN Document Server

    Kompalli, Sayee C

    2010-01-01

    In this paper we show that in a multiclass Markovian network with unit rate servers, the condition that the average load $\\rho$ at every server is less than unity is indeed sufficient for the stability or positive recurrence for \\emph{any} work conserving scheduling policy and \\emph{class-independent} routing. We use a variation of the positive recurrence criterion for multidimensional discrete-time Markov chains over countable state spaces due to Rosberg (JAP, Vol.~17, No.~3, 1980) and a monotonicity argument to establish this assertion.

  14. Wavelet domain hidden markovian bayesian document segmentation

    Institute of Scientific and Technical Information of China (English)

    Sun Junxi; Xiao Changyan; Zhang Su; Chen Yazhu

    2005-01-01

    A novel algorithm for Bayesian document segmentation is proposed based on the wavelet domain hidden Markov tree (HMT) model. Once the parameters of model are known, according to the sequential maximum a posterior probability (SMAP) rule, firstly, the likelihood probability of HMT model for each pattern is computed from fine to coarse procedure. Then, the interscale state transition probability is solved using Expectation Maximum (EM) algorithm based on hybrid-quadtree and multiscale context information is fused from coarse to fine procedure. In order to get pixellevel segmentation, the redundant wavelet domain Gaussian mixture model (GMM) is employed to formulate pixel-level statistical property. The experiment results show that the proposed scheme is feasible and robust.

  15. Multilevel Approximations of Markovian Jump Processes with Applications in Communication Networks

    KAUST Repository

    Vilanova, Pedro

    2015-05-04

    This thesis focuses on the development and analysis of efficient simulation and inference techniques for Markovian pure jump processes with a view towards applications in dense communication networks. These techniques are especially relevant for modeling networks of smart devices —tiny, abundant microprocessors with integrated sensors and wireless communication abilities— that form highly complex and diverse communication networks. During 2010, the number of devices connected to the Internet exceeded the number of people on Earth: over 12.5 billion devices. By 2015, Cisco’s Internet Business Solutions Group predicts that this number will exceed 25 billion. The first part of this work proposes novel numerical methods to estimate, in an efficient and accurate way, observables from realizations of Markovian jump processes. In particular, hybrid Monte Carlo type methods are developed that combine the exact and approximate simulation algorithms to exploit their respective advantages. These methods are tailored to keep a global computational error below a prescribed global error tolerance and within a given statistical confidence level. Indeed, the computational work of these methods is similar to the one of an exact method, but with a smaller constant. Finally, the methods are extended to systems with a disparity of time scales. The second part develops novel inference methods to estimate the parameters of Markovian pure jump process. First, an indirect inference approach is presented, which is based on upscaled representations and does not require sampling. This method is simpler than dealing directly with the likelihood of the process, which, in general, cannot be expressed in closed form and whose maximization requires computationally intensive sampling techniques. Second, a forward-reverse Monte Carlo Expectation-Maximization algorithm is provided to approximate a local maximum or saddle point of the likelihood function of the parameters given a set of

  16. Sliding Mode Control for Discrete-Time Systems With Markovian Packet Dropouts.

    Science.gov (United States)

    Song, Heran; Chen, Shih-Chi; Yam, Yeung

    2016-07-09

    This paper presents the design of a sliding mode controller for networked control systems subject to successive Markovian packet dropouts. This paper adopts the Gilbert-Elliott channel model to describe the temporal correlation among packet losses, and proposes an update scheme to select the assumed available states for use in a sliding mode control law. A technique used in the theory of discrete-time Markov jump linear systems is applied to tackle the effect of the packet losses. This involves introducing a couple of Lyapunov functions dependent on the indicator functions of the instantaneous packet loss, and proving that the sliding mode controller is able to drive the system state trajectories into the neighborhood of the designed integral sliding surface in mean-square sense given that the corresponding Lyapunov inequalities are satisfied. The system is guaranteed thereafter to remain inside the neighborhood of the sliding surface. Simulated case studies are presented to illustrate the effectiveness of the control law.

  17. Work distribution for a particle moving in an optical trap and non-Markovian bath

    Indian Academy of Sciences (India)

    Alok Samanta; K Srinivasu; Swapan K Ghosh

    2009-09-01

    We propose a simple approach to derive an exact analytical expression of work distribution for a system consisting of a colloidal particle trapped in an optical harmonic potential well, which is being pulled at a constant velocity through a solution represented by a non-Markovian bath. The thermal environment is represented by a bath composed of an infinite set of harmonic oscillators, and a model Hamiltonian for the trapped colloidal particle is constructed by representing the interaction with the bathvia linear dissipative mechanism. We have studied the effects of pulling time, pulling speed, and the adiabatic limit. It is also observed that only at long time the total work is completely converted into dissipative work.

  18. Dynamical Topological Symmetry Breaking as the Origin of Turbulence, Non-Markovianity, and Self-Similarity

    CERN Document Server

    Ovchinnikov, Igor V

    2012-01-01

    Here it is shown that the most general Parisi-Sourlas-Wu stochastic quantization procedure applied to any stochastic differential equation (SDE) leads to a Witten-type topological field theory - a model with a global topological Becchi-Rouet-Stora-Tyutin supersymmetry (Q-symmetry). Q-symmetry can be dynamically broken only by (anti-)instantons - ultimately nonlinear sudden tunneling processes of (creation)annihilation of solitons, e.g., avalanches in self-organized criticality (SOC) or (creation)annihilation of vortices in turbulent water. The phases with unbroken Q-symmetry are essentially markovian and can be understood solely in terms of the conventional Fokker-Plank evolution of the probability density. For these phases, Ito interpretation of SDEs and/or Martin-Siggia-Rose approximation of the stochastic quantization are applicable. SOC, turbulence, glasses, quenches etc. constitute the "generalized turbulence" category of stochastic phases with broken Q-symmetry. In this category, (anti-)instantons conde...

  19. Robust H-Infinity Filtering for Networked Control Systems with Markovian Jumps and Packet Dropouts

    Directory of Open Access Journals (Sweden)

    Fangwen Li

    2014-07-01

    Full Text Available This paper deals with the H-Infinity filtering problem for uncertain networked control systems. In the study, network-induced delays, limited communication capacity due to signal quantization and packet dropout are all taken into consideration. The finite distributed delays with probability of occurrence in a random way is introduced in the network.The packet dropout is described by a Bernoulli process. The system is modeled as Markovian jumps system with partially known transition probabilities. A full-order filter is designed to estimate the system state. By linear inequality approach, a sufficient condition is derived for the resulting filtering error system to be mean square stable with a prescribed H-Infinity performance level. Finally, a numerical example is given to illustrate the effectiveness and efficiency of the proposed design method.

  20. Extending the applicability of Redfield theories into highly non-Markovian regimes

    CERN Document Server

    Montoya-Castillo, Andrés; Reichman, David R

    2015-01-01

    We present a new, computationally inexpensive method for the calculation of reduced density matrix dynamics for systems with a potentially large number of subsystem degrees of freedom coupled to a generic bath. The approach consists of propagation of weak-coupling Redfield-like equations for the high frequency bath degrees of freedom only, while the low frequency bath modes are dynamically arrested but statistically sampled. We examine the improvements afforded by this approximation by comparing with exact results for the spin-boson model over a wide range of parameter space. The results from the method are found to dramatically improve Redfield dynamics in highly non--Markovian regimes, at a similar computational cost. Relaxation of the mode-freezing approximation via classical (Ehrenfest) evolution of the low frequency modes results in a dynamical hybrid method. We find that this Redfield-based dynamical hybrid approach, which is computationally more expensive than bare Redfield dynamics, yields only a marg...

  1. Exponential Stability of Neutral Stochastic Functional Differential Equations with Two-Time-Scale Markovian Switching

    Directory of Open Access Journals (Sweden)

    Junhao Hu

    2014-01-01

    Full Text Available We develop exponential stability of neutral stochastic functional differential equations with two-time-scale Markovian switching modeled by a continuous-time Markov chain which has a large state space. To overcome the computational effort and the complexity, we split the large-scale system into several classes and lump the states in each class into one class by the different states of changes of the subsystems; then, we give a limit system to effectively “replace” the large-scale system. Under suitable conditions, using the stability of the limit system as a bridge, the desired asymptotic properties of the large-scale system with Brownian motion and Poisson jump are obtained by utilizing perturbed Lyapunov function methods and Razumikhin-type criteria. Two examples are provided to demonstrate our results.

  2. H∞ Filtering for Networked Markovian Jump Systems with Multiple Stochastic Communication Delays

    Directory of Open Access Journals (Sweden)

    Hui Dong

    2015-01-01

    Full Text Available This paper is concerned with the H∞ filtering for a class of networked Markovian jump systems with multiple communication delays. Due to the existence of communication constraints, the measurement signal cannot arrive at the filter completely on time, and the stochastic communication delays are considered in the filter design. Firstly, a set of stochastic variables is introduced to model the occurrence probabilities of the delays. Then based on the stochastic system approach, a sufficient condition is obtained such that the filtering error system is stable in the mean-square sense and with a prescribed H∞ disturbance attenuation level. The optimal filter gain parameters can be determined by solving a convex optimization problem. Finally, a simulation example is given to show the effectiveness of the proposed filter design method.

  3. A finite capacity queue with Markovian arrivals and two servers with group services

    Directory of Open Access Journals (Sweden)

    S. Chakravarthy

    1994-01-01

    Full Text Available In this paper we consider a finite capacity queuing system in which arrivals are governed by a Markovian arrival process. The system is attended by two exponential servers, who offer services in groups of varying sizes. The service rates may depend on the number of customers in service. Using Markov theory, we study this finite capacity queuing model in detail by obtaining numerically stable expressions for (a the steady-state queue length densities at arrivals and at arbitrary time points; (b the Laplace-Stieltjes transform of the stationary waiting time distribution of an admitted customer at points of arrivals. The stationary waiting time distribution is shown to be of phase type when the interarrival times are of phase type. Efficient algorithmic procedures for computing the steady-state queue length densities and other system performance measures are discussed. A conjecture on the nature of the mean waiting time is proposed. Some illustrative numerical examples are presented.

  4. Markovian architectural bias of recurrent neural networks.

    Science.gov (United States)

    Tino, Peter; Cernanský, Michal; Benusková, Lubica

    2004-01-01

    In this paper, we elaborate upon the claim that clustering in the recurrent layer of recurrent neural networks (RNNs) reflects meaningful information processing states even prior to training [1], [2]. By concentrating on activation clusters in RNNs, while not throwing away the continuous state space network dynamics, we extract predictive models that we call neural prediction machines (NPMs). When RNNs with sigmoid activation functions are initialized with small weights (a common technique in the RNN community), the clusters of recurrent activations emerging prior to training are indeed meaningful and correspond to Markov prediction contexts. In this case, the extracted NPMs correspond to a class of Markov models, called variable memory length Markov models (VLMMs). In order to appreciate how much information has really been induced during the training, the RNN performance should always be compared with that of VLMMs and NPMs extracted before training as the "null" base models. Our arguments are supported by experiments on a chaotic symbolic sequence and a context-free language with a deep recursive structure. Index Terms-Complex symbolic sequences, information latching problem, iterative function systems, Markov models, recurrent neural networks (RNNs).

  5. Unifying ecology and macroevolution with individual-based theory.

    Science.gov (United States)

    Rosindell, James; Harmon, Luke J; Etienne, Rampal S

    2015-05-01

    A contemporary goal in both ecology and evolutionary biology is to develop theory that transcends the boundary between the two disciplines, to understand phenomena that cannot be explained by either field in isolation. This is challenging because macroevolution typically uses lineage-based models, whereas ecology often focuses on individual organisms. Here, we develop a new parsimonious individual-based theory by adding mild selection to the neutral theory of biodiversity. We show that this model generates realistic phylogenies showing a slowdown in diversification and also improves on the ecological predictions of neutral theory by explaining the occurrence of very common species. Moreover, we find the distribution of individual fitness changes over time, with average fitness increasing at a pace that depends positively on community size. Consequently, large communities tend to produce fitter species than smaller communities. These findings have broad implications beyond biodiversity theory, potentially impacting, for example, invasion biology and paleontology. © 2015 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  6. Non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems with applications to quantum information theory of continuous variable systems; Nicht-Markovsche Dynamik, Dekohaerenz und Verschraenkung in dissipativen Quantensystemen mit Anwendung in der Quanteninformationstheorie von Systemen kontinuierlicher Variablen

    Energy Technology Data Exchange (ETDEWEB)

    Hoerhammer, C.

    2007-11-26

    In this thesis, non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems are studied. In particular, applications to quantum information theory of continuous variable systems are considered. The non-Markovian dynamics are described by the Hu-Paz-Zhang master equation of quantum Brownian motion. In this context the focus is on non-Markovian effects on decoherence and separability time scales of various single- mode and two-mode continuous variable states. It is verified that moderate non-Markovian influences slow down the decay of interference fringes and quantum correlations, while strong non-Markovian effects resulting from an out-of-resonance bath can even accelerate the loss of coherence, compared to predictions of Markovian approximations. Qualitatively different scenarios including exponential, Gaussian or algebraic decay of the decoherence function are analyzed. It is shown that partial recurrence of coherence can occur in case of non-Lindblad-type dynamics. The time evolution of quantum correlations of entangled two-mode continuous variable states is examined in single-reservoir and two-reservoir models, representing noisy correlated or uncorrelated non-Markovian quantum channels. For this purpose the model of quantum Brownian motion is extended. Various separability criteria for Gaussian and non-Gaussian continuous variable systems are applied. In both types of reservoir models moderate non-Markovian effects prolong the separability time scales. However, in these models the properties of the stationary state may differ. In the two-reservoir model the initial entanglement is completely lost and both modes are finally uncorrelated. In a common reservoir both modes interact indirectly via the coupling to the same bath variables. Therefore, new quantum correlations may emerge between the two modes. Below a critical bath temperature entanglement is preserved even in the steady state. A separability criterion is derived, which depends

  7. Non-Markovianity Measure Based on Brukner–Zeilinger Invariant Information for Unital Quantum Dynamical Maps

    Science.gov (United States)

    He, Zhi; Zhu, Lie-Qiang; Li, Li

    2017-03-01

    A non-Markovianity measure based on Brukner–Zeilinger invariant information to characterize non-Markovian effect of open systems undergoing unital dynamical maps is proposed. The method takes advantage of non-increasing property of the Brukner–Zeilinger invariant information under completely positive and trace-preserving unital maps. The simplicity of computing the Brukner–Zeilinger invariant information is the advantage of the proposed measure because of mainly depending on the purity of quantum state. The measure effectively captures the characteristics of non-Markovianity of unital dynamical maps. As some concrete application, we consider two typical non-Markovian noise channels, i.e., the phase damping channel and the random unitary channel to show the sensitivity of the proposed measure. By investigation, we find that the conditions of detecting the non-Markovianity for the phase damping channel are consistent with the results of existing measures for non-Markovianity, i.e., information flow, divisibility and quantum mutual information. However, for the random unitary channel non-Markovian conditions are same to that of the information flow, but is different from that of the divisibility and quantum mutual information. Supported by the National Natural Science Foundation of China under Grant No. 61505053, the Natural Science Foundation of Hunan Province under Grant No. 2015JJ3092, the Research Foundation of Education Bureau of Hunan Province, China under Grant No. 16B177, the School Foundation from the Hunan University of Arts and Science under Grant No. 14ZD01

  8. On the Stability of Jump-Linear Systems Driven by Finite-State Machines with Markovian Inputs

    Science.gov (United States)

    Patilkulkarni, Sudarshan; Herencia-Zapana, Heber; Gray, W. Steven; Gonzalez, Oscar R.

    2004-01-01

    This paper presents two mean-square stability tests for a jump-linear system driven by a finite-state machine with a first-order Markovian input process. The first test is based on conventional Markov jump-linear theory and avoids the use of any higher-order statistics. The second test is developed directly using the higher-order statistics of the machine s output process. The two approaches are illustrated with a simple model for a recoverable computer control system.

  9. Stabilization of Semi-Markovian Jump Systems with Uncertain Probability Intensities and Its Extension to Quantized Control

    Directory of Open Access Journals (Sweden)

    Ngoc Hoai An Nguyen

    2016-01-01

    Full Text Available This paper concentrates on the issue of stability analysis and control synthesis for semi-Markovian jump systems (S-MJSs with uncertain probability intensities. Here, to construct a more applicable transition model for S-MJSs, the probability intensities are taken to be uncertain, and this property is totally reflected in the stabilization condition via a relaxation process established on the basis of time-varying transition rates. Moreover, an extension of the proposed approach is made to tackle the quantized control problem of S-MJSs, where the infinitesimal operator of a stochastic Lyapunov function is clearly discussed with consideration of input quantization errors.

  10. Relationships between migration rates and landscape resistance assessed using individual-based simulations

    Science.gov (United States)

    E. L. Landguth; S. A. Cushman; M. A. Murphy; G. Luikart

    2010-01-01

    Linking landscape effects on gene flow to processes such as dispersal and mating is essential to provide a conceptual foundation for landscape genetics. It is particularly important to determine how classical population genetic models relate to recent individual-based landscape genetic models when assessing individual movement and its influence on population genetic...

  11. Optimal interdiction of unreactive Markovian evaders

    Energy Technology Data Exchange (ETDEWEB)

    Hagberg, Aric [Los Alamos National Laboratory; Pan, Feng [Los Alamos National Laboratory; Gutfraind, Alex [CORNELL UNIV.

    2009-01-01

    The interdiction problem arises in a variety of areas including military logistics, infectious disease control, and counter-terrorism. In the typical formulation of network interdiction. the task of the interdictor is to find a set of edges in a weighted network such that the removal of those edges would increase the cost to an evader of traveling on a path through the network. Our work is motivated by cases in which the evader has incomplete information about the network or lacks planning time or computational power, e.g. when authorities set up roadblocks to catch bank robbers, the criminals do not know all the roadblock locations or the best path to use for their escape. We introduce a model of network interdiction in which the motion of one or more evaders is described by Markov processes on a network and the evaders are assumed not to react to interdiction decisions. The interdiction objective is to find a node or set. of size at most B, that maximizes the probability of capturing the evaders. We prove that similar to the classical formulation this interdiction problem is NP-hard. But unlike the classical problem our interdiction problem is submodular and the optimal solution can be approximated within 1-lie using a greedy algorithm. Additionally. we exploit submodularity to introduce a priority evaluation strategy that speeds up the greedy algorithm by orders of magnitude. Taken together the results bring closer the goal of finding realistic solutions to the interdiction problem on global-scale networks.

  12. Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective.

    Science.gov (United States)

    Bylicka, B; Chruściński, D; Maniscalco, S

    2014-07-21

    Quantum technologies rely on the ability to coherently transfer information encoded in quantum states along quantum channels. Decoherence induced by the environment sets limits on the efficiency of any quantum-enhanced protocol. Generally, the longer a quantum channel is the worse its capacity is. We show that for non-Markovian quantum channels this is not always true: surprisingly the capacity of a longer channel can be greater than of a shorter one. We introduce a general theoretical framework linking non-Markovianity to the capacities of quantum channels and demonstrate how harnessing non-Markovianity may improve the efficiency of quantum information processing and communication.

  13. Full-State Linearization and Stabilization of SISO Markovian Jump Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Zhongwei Lin

    2013-01-01

    Full Text Available This paper investigates the linearization and stabilizing control design problems for a class of SISO Markovian jump nonlinear systems. According to the proposed relative degree set definition, the system can be transformed into the canonical form through the appropriate coordinate changes followed with the Markovian switchings; that is, the system can be full-state linearized in every jump mode with respect to the relative degree set n,…,n. Then, a stabilizing control is designed through applying the backstepping technique, which guarantees the asymptotic stability of Markovian jump nonlinear systems. A numerical example is presented to illustrate the effectiveness of our results.

  14. Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective

    Science.gov (United States)

    Bylicka, B.; Chruściński, D.; Maniscalco, S.

    2014-01-01

    Quantum technologies rely on the ability to coherently transfer information encoded in quantum states along quantum channels. Decoherence induced by the environment sets limits on the efficiency of any quantum-enhanced protocol. Generally, the longer a quantum channel is the worse its capacity is. We show that for non-Markovian quantum channels this is not always true: surprisingly the capacity of a longer channel can be greater than of a shorter one. We introduce a general theoretical framework linking non-Markovianity to the capacities of quantum channels and demonstrate how harnessing non-Markovianity may improve the efficiency of quantum information processing and communication. PMID:25043763

  15. Optimal interdiction of unreactive Markovian evaders

    Energy Technology Data Exchange (ETDEWEB)

    Gutfraind, Alexander [Los Alamos National Laboratory; Hagberg, Aric [Los Alamos National Laboratory; Pan, Feng [Los Alamos National Laboratory

    2008-01-01

    The network interdiction problem arises in a wide variety of areas including military logistics, infectious disease control and counter-terrorism. In the classical formulation one is given a weighted network G(N, E) and the task is to find b nodes (or edges) whose removal would maximally increase the least-cost path from a source node s to a target node r. In practical applications. G represenLs a transportation or activity network; node/edge removal is done by an agent, the 'interdictor' against another agent the 'evader' who wants to traverse G from s to t along the least-cost route. Our work is motivated by cases in which both agents have bounded rationality: e.g. when the authorities set up road blocks to catch bank robbers, neither party can plot its actions with full information about the other. We introduce a novel model of network interdiction in which the motion of (possibly) several evaders i. described by a Markov pr cess on G.We further suppose that the evaden; do not respond to interdiction decisions because of time, knowledge or computational constraint . We prove that this interdiction problem is NP-hard, like the classical formulation, but unlike the classical problem the objective function is submodular. This implies that the solution could be approximated within 1-lie using a greedy algorithm. Exploiting submodularity again. we demonstrate that a 'priority' (or 'lazy') evaluation algorithm can improve performance by orders of magnitude. Taken together, the results bring closer realistic solutions to the interdiction problem on global-scale networks.

  16. Polymer length distributions for catalytic polymerization within mesoporous materials: non-Markovian behavior associated with partial extrusion.

    Science.gov (United States)

    Liu, Da-Jiang; Chen, Hung-Ting; Lin, Victor S-Y; Evans, J W

    2010-04-21

    We analyze a model for polymerization at catalytic sites distributed within parallel linear pores of a mesoporous material. Polymerization occurs primarily by reaction of monomers diffusing into the pores with the ends of polymers near the pore openings. Monomers and polymers undergo single-file diffusion within the pores. Model behavior, including the polymer length distribution, is determined by kinetic Monte Carlo simulation of a suitable atomistic-level lattice model. While the polymers remain within the pore, their length distribution during growth can be described qualitatively by a Markovian rate equation treatment. However, once they become partially extruded, the distribution is shown to exhibit non-Markovian scaling behavior. This feature is attributed to the long-tail in the "return-time distribution" for the protruding end of the partially extruded polymer to return to the pore, such return being necessary for further reaction and growth. The detailed form of the scaled length distribution is elucidated by application of continuous-time random walk theory.

  17. Closing the hierarchy for non-Markovian magnetization dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tranchida, J., E-mail: julien.tranchida@cea.fr [CEA/DAM/Le Ripault, BP 16, F-37260 Monts (France); CNRS-Laboratoire de Mathématiques et Physique Théorique (UMR 7350), Fédération de Recherche “Denis Poisson” (FR2964), Département de Physique, Université de Tours, Parc de Grandmont, F-37200 Tours (France); Thibaudeau, P., E-mail: pascal.thibaudeau@cea.fr [CEA/DAM/Le Ripault, BP 16, F-37260 Monts (France); Nicolis, S., E-mail: stam.nicolis@lmpt.univ-tours.fr [CNRS-Laboratoire de Mathématiques et Physique Théorique (UMR 7350), Fédération de Recherche “Denis Poisson” (FR2964), Département de Physique, Université de Tours, Parc de Grandmont, F-37200 Tours (France)

    2016-04-01

    We propose a stochastic approach for the description of the time evolution of the magnetization of nanomagnets, that interpolates between the Landau–Lifshitz–Gilbert and the Landau–Lifshitz–Bloch approximations, by varying the strength of the noise. In addition, we take into account the autocorrelation time of the noise and explore the consequences, when it is finite, on the scale of the response of the magnetization, i.e. when it may be described as colored, rather than white, noise and non-Markovian features become relevant. We close the hierarchy for the moments of the magnetization, by introducing a suitable truncation scheme, whose validity is tested by direct numerical solution of the moment equations and compared to the average deduced from a numerical solution of the corresponding stochastic Langevin equation. In this way we establish a general framework that allows both coarse-graining simulations and faster calculations beyond the truncation approximation used here.

  18. On the Thermal Symmetry of Markovian Master Equation

    CERN Document Server

    Tay, B A

    2007-01-01

    The quantum Markovian master equation of the reduced dynamics of a harmonic oscillator coupled to a thermal reservoir is shown to possess a thermal symmetry. This symmetry is a Bogoliubov transformation that can be represented by a hyperbolic rotation acting in the Liouville space of the reduced dynamics. The Liouville space is obtained as an extension from the Hilbert space by introducing tilde variables as carried out in thermofield dynamics formalism. The angle of rotation depends on the temperature of the reservoir, or the value of Planck's constant. The symmetry connects the thermal states of the system between any temperature, including absolute zero that contains a purely quantum effect. The Caldeira-Leggett equation and the classical Fokker-Planck equation also possess a thermal symmetry. We discuss how the thermal symmetry affects the change in the shape of a Gaussian wave packet. We also construct temperature dependent density states of a harmonic oscillator, which contain thermal ground states as w...

  19. Fermionic-mode entanglement in non-Markovian environment

    Science.gov (United States)

    Cheng, Jiong; Han, Yan; An, Qing-zhi; Zhou, Ling

    2015-03-01

    We evaluate the non-Markovian effects on the entanglement dynamics of a fermionic system interacting with two dissipative vacuum reservoirs. The exact solution of density matrix is derived by utilizing the Feynman-Vernon influence functional theory in the fermionic coherent state representation and the Grassmann calculus, which are valid for both the fermionic and bosonic baths, and their difference lies in the dependence of the parity of the initial states. The fermionic entanglement dynamics is presented by adding an additional restriction to the density matrix known as the superselection rules. Our analysis shows that the usual decoherence suppression schemes implemented in qubits systems can also be achieved for systems of identical fermions, and the initial state proves its importance in the evolution of fermionic entanglement. Our results provide a potential way to decoherence controlling of identical fermions.

  20. Entanglement and non-Markovianity of a multi-level atom decaying in a cavity

    Science.gov (United States)

    Zi-Long, Fan; Yu-Kun, Ren; Hao-Sheng, Zeng

    2016-01-01

    We present a paradigmatic method for exactly studying non-Markovian dynamics of a multi-level V-type atom interacting with a zero-temperature bosonic bath. Special attention is paid to the entanglement evolution and the dynamical non-Markovianity of a three-level V-type atom. We find that the entanglement negativity decays faster and non-Markovianity is smaller in the resonance regions than those in the non-resonance regions. More importantly, the quantum interference between the dynamical non-Markovianities induced by different transition channels is manifested, and the frequency domains for constructive and destructive interferences are found. Project supported by the National Natural Science Foundation of China (Grant Nos. 11275064 and 11075050), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20124306110003), and the Construct Program of the National Key Discipline, China.

  1. Individual-based lattice model for spatial spread of epidemics

    Directory of Open Access Journals (Sweden)

    Henryk Fuks

    2001-01-01

    Full Text Available We present a lattice gas cellular automaton (LGCA to study spatial and temporal dynamics of an epidemic of SIR (susceptible-infected-removed type. The automaton is fully discrete, i.e., space, time and number of individuals are discrete variables. The automaton can be applied to study spread of epidemics in both human and animal populations. We investigate effects of spatial inhomogeneities in initial distribution of infected and vaccinated populations on the dynamics of epidemic of SIR type. We discuss vaccination strategies which differ only in spatial distribution of vaccinated individuals. Also, we derive an approximate, mean-field type description of the automaton, and discuss differences between the mean-field dynamics and the results ofLGCA simulation.

  2. Integrating Individual-Based Indices of Contaminant Effects

    Directory of Open Access Journals (Sweden)

    Christopher L. Rowe

    2001-01-01

    contaminants for long periods of time, research focused on one or few sublethal responses could substantially underestimate overall effects on individuals. We suggest that investigators adopt a more integrated perspective on contaminant-induced biological changes so that studies of individual-based effects can be better integrated into analyses of mechanisms of population change.

  3. Violation of the scaling relation and non-Markovian nature of earthquake aftershocks

    CERN Document Server

    Abe, Sumiyoshi

    2008-01-01

    The statistical properties of earthquake aftershocks are studied. The scaling relation for the exponents of the Omori law and the power-law calm time distribution (i.e., the interoccurrence time distribution), which is valid if a sequence of aftershocks is a singular Markovian process, is carefully examined. Data analysis shows significant violation of the scaling relation, implying the non-Markovian nature of aftershocks.

  4. Sojourn time distributions in a Markovian G-queue with batch arrival and batch removal

    OpenAIRE

    1999-01-01

    We consider a single server Markovian queue with two types of customers; positive and negative, where positive customers arrive in batches and arrivals of negative customers remove positive customers in batches. Only positive customers form a queue and negative customers just reduce the system congestion by removing positive ones upon their arrivals. We derive the LSTs of sojourn time distributions for a single server Markovian queue with positive customers and negative custom...

  5. Reliable Mixed H∞ and Passivity-Based Control for Fuzzy Markovian Switching Systems With Probabilistic Time Delays and Actuator Failures.

    Science.gov (United States)

    Sakthivel, Rathinasamy; Selvi, Subramaniam; Mathiyalagan, Kalidass; Shi, Peng

    2015-12-01

    This paper is concerned with the problem of reliable mixed H ∞ and passivity-based control for a class of stochastic Takagi-Sugeno (TS) fuzzy systems with Markovian switching and probabilistic time varying delays. Different from the existing works, the H∞ and passivity control problem with probabilistic occurrence of time-varying delays and actuator failures is considered in a unified framework, which is more general in some practical situations. The main aim of this paper is to design a reliable mixed H∞ and passivity-based controller such that the stochastic TS fuzzy system with Markovian switching is stochastically stable with a prescribed mixed H∞ and passivity performance level γ > 0 . Based on the Lyapunov-Krasovskii functional (LKF) involving lower and upper bound of probabilistic time delay and convex combination technique, a new set of delay-dependent sufficient condition in terms of linear matrix inequalities (LMIs) is established for obtaining the required result. Finally, a numerical example based on the modified truck-trailer model is given to demonstrate the effectiveness and applicability of the proposed design techniques.

  6. Non-Markovian Dynamics for a Two-Atom-Coupled System Interacting with Local Reservoir at Finite Temperature

    Science.gov (United States)

    Jiang, Li; Zhang, Guo-Feng

    2017-03-01

    By using the effective non-Markovian measure (Breuer et al., Phys. Rev. Lett. 103, 210401 2009) we investigate non-Markovian dynamics of a pair of two-level atoms (TLAs) system, each of which interacting with a local reservoir. We show that subsystem dynamics can be controlled by manipulating the coupling between TLAs, temperature and relaxation rate of the atoms. Moreover, the correlation between non-Markovianity of subsystem and entanglement between the subsystem and the structured bath is investigated, the results show that the emergence of non-Markovianity has a negative effect on the entanglement.

  7. Non-Markovian dissipative quantum mechanics with stochastic trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Werner

    2010-09-09

    All fields of physics - be it nuclear, atomic and molecular, solid state, or optical - offer examples of systems which are strongly influenced by the environment of the actual system under investigation. The scope of what is called ''the environment'' may vary, i.e., how far from the system of interest an interaction between the two does persist. Typically, however, it is much larger than the open system itself. Hence, a fully quantum mechanical treatment of the combined system without approximations and without limitations of the type of system is currently out of reach. With the single assumption of the environment to consist of an internally thermalized set of infinitely many harmonic oscillators, the seminal work of Stockburger and Grabert [Chem. Phys., 268:249-256, 2001] introduced an open system description that captures the environmental influence by means of a stochastic driving of the reduced system. The resulting stochastic Liouville-von Neumann equation describes the full non-Markovian dynamics without explicit memory but instead accounts for it implicitly through the correlations of the complex-valued noise forces. The present thesis provides a first application of the Stockburger-Grabert stochastic Liouville-von Neumann equation to the computation of the dynamics of anharmonic, continuous open systems. In particular, it is demonstrated that trajectory based propagators allow for the construction of a numerically stable propagation scheme. With this approach it becomes possible to achieve the tremendous increase of the noise sample count necessary to stochastically converge the results when investigating such systems with continuous variables. After a test against available analytic results for the dissipative harmonic oscillator, the approach is subsequently applied to the analysis of two different realistic, physical systems. As a first example, the dynamics of a dissipative molecular oscillator is investigated. Long time

  8. Role of conditional probability in multiscale stationary markovian processes.

    Science.gov (United States)

    Miccichè, Salvatore

    2010-07-01

    The aim of the paper is to understand how the inclusion of more and more time scales into a stochastic stationary markovian process affects its conditional probability. To this end, we consider two gaussian processes: (i) a short-range correlated process with an infinite set of time scales bounded from above and (ii) a power-law correlated process with an infinite and unbounded set of time scales. For these processes we investigate the equal position conditional probability P(x,t∣x,0) and the mean first passage time Tx(Λ). The function P(x,t∣x,0) can be considered as a proxy of the persistence, i.e., the fact that when a process reaches a position x then it spends some time around that position value. The mean first passage time can be considered as a proxy of how fast is the process in reaching a position at distance Λ starting from position x . In the first investigation we show that the more time scales the process includes, the larger is the persistence. Specifically, we show that the power-law correlated process shows a slow power-law decay of P(x,t∣x,0) to the stationary probability density function. By contrast, the short-range correlated process shows a decay dominated by an exponential cutoff. Moreover, we also show that the existence of an infinite and unbounded set of time scales is a necessary but not sufficient condition for observing a slow power-law decay of P(x,t∣x,0). In fact, in the context of stationary markovian processes such a form of persistence seems to be associated with the existence of an algebraic decay of the autocorrelation function. In the second investigation, we show that for large values of Λ the more time scales the process includes, the larger is the mean first passage time, i.e., the slower is the process. On the other hand, for small values of Λ, the more time scales the process includes, the smaller is the mean first passage time, i.e., when a process statistically spends more time in a given position the

  9. 基于个体的空间显性模型和遥感技术模拟入侵植物扩张机制%The dispersal mechanism of invasive plants based on a spatially explicit individual-based model and Remote sensing technology:a case study of Spartina alterniflora

    Institute of Scientific and Technical Information of China (English)

    刘会玉; 林振山; 齐相贞; 刘金雪; 许晓娟

    2015-01-01

    基于个体的空间显性模型和遥感技术,以互花米草为例,模拟了自1997到2010年的种群扩张动态,揭示了土地利用变化与潮间带高程的影响;并通过全局敏感性分析揭示了种子扩散、成体存活率、有性和无性繁殖等种群统计学特征对互花米草种群扩张的相对重要性。研究结果发现:1)有性繁殖与无性繁殖共同决定互花米草种群快速扩张;2)潮间带高程和土地利用变化显著影响模型预测的精度,对互花米草种群扩张有非常重要的影响;3)成体存活率与种子长距离扩散是影响互花米草种群扩张速度最重要的因素;无性繁殖比有性繁殖对种群扩张的影响更大;种子长距离扩散比本地扩散更为重要,同时,小概率的种子长距离扩散事件对种群扩张有非常重要的影响。为了经济有效地控制外来入侵植物的扩张,应该抑制种子的长距离扩散和移除种子长距离扩散形成的位于入侵前沿的小斑块。%Biological invasion is a major cause of biodiversity loss, and poses a growing threat to human health. Therefore, it is necessary to reveal the dispersal mechanisms of invasive plants for biological conservation. Spatially explicit individual-based models account for the life history of a target species, in addition to its dispersal ability;thus, abiotic factors, such as landscape heterogeneity and changes, are widely used for simulating population dynamics. Remote sensing ( RS) is an important tool for elucidating changing vegetation patterns associated with broad-scale plant invasions. Therefore, by combining spatially explicit individual-based models with RS and GIS ( Geographic Information System) information, it is possible to simulate the population expansion of invasive species accurately in realistic landscapes and to understand their invasive mechanisms. However, few spatially explicit, individual-based models have used RS to investigate

  10. Versatile Markovian models for networks with asymmetric TCP sources

    NARCIS (Netherlands)

    Foreest, van N.D.; Haverkort, B.R.; Mandjes, M.R.H.; Scheinhardt, W.R.W.

    2004-01-01

    In this paper we use Stochastic Petri Nets (SPNs) to study the interaction of multiple TCP sources that share one or two buffers, thereby considerably extending earlier work. We first consider two sources sharing a buffer and investigate the consequences of two popular assumptions for the loss proce

  11. An exact relationship between invasion probability and endemic prevalence for Markovian SIS dynamics on networks.

    Science.gov (United States)

    Wilkinson, Robert R; Sharkey, Kieran J

    2013-01-01

    Understanding models which represent the invasion of network-based systems by infectious agents can give important insights into many real-world situations, including the prevention and control of infectious diseases and computer viruses. Here we consider Markovian susceptible-infectious-susceptible (SIS) dynamics on finite strongly connected networks, applicable to several sexually transmitted diseases and computer viruses. In this context, a theoretical definition of endemic prevalence is easily obtained via the quasi-stationary distribution (QSD). By representing the model as a percolation process and utilising the property of duality, we also provide a theoretical definition of invasion probability. We then show that, for undirected networks, the probability of invasion from any given individual is equal to the (probabilistic) endemic prevalence, following successful invasion, at the individual (we also provide a relationship for the directed case). The total (fractional) endemic prevalence in the population is thus equal to the average invasion probability (across all individuals). Consequently, for such systems, the regions or individuals already supporting a high level of infection are likely to be the source of a successful invasion by another infectious agent. This could be used to inform targeted interventions when there is a threat from an emerging infectious disease.

  12. An exact relationship between invasion probability and endemic prevalence for Markovian SIS dynamics on networks.

    Directory of Open Access Journals (Sweden)

    Robert R Wilkinson

    Full Text Available Understanding models which represent the invasion of network-based systems by infectious agents can give important insights into many real-world situations, including the prevention and control of infectious diseases and computer viruses. Here we consider Markovian susceptible-infectious-susceptible (SIS dynamics on finite strongly connected networks, applicable to several sexually transmitted diseases and computer viruses. In this context, a theoretical definition of endemic prevalence is easily obtained via the quasi-stationary distribution (QSD. By representing the model as a percolation process and utilising the property of duality, we also provide a theoretical definition of invasion probability. We then show that, for undirected networks, the probability of invasion from any given individual is equal to the (probabilistic endemic prevalence, following successful invasion, at the individual (we also provide a relationship for the directed case. The total (fractional endemic prevalence in the population is thus equal to the average invasion probability (across all individuals. Consequently, for such systems, the regions or individuals already supporting a high level of infection are likely to be the source of a successful invasion by another infectious agent. This could be used to inform targeted interventions when there is a threat from an emerging infectious disease.

  13. An analysis of non-normal Markovian extremal droughts

    Science.gov (United States)

    Sharma, T. C.

    1998-03-01

    In many arid and semi-arid environments of the world, years of extended droughts are not uncommon. The occurrence of a drought can be reflected by the deficiency of the rainfall or stream flow sequences below the long-term mean value, which is generally taken as the truncation level for the identification of the droughts. The commonly available statistics for the above processes are mean, coefficient of variation and the lag-one serial correlation coefficient, and at times some indication of the probability distribution function (pdf) of the sequences. The important elements of a drought phenomenon are the longest duration and the largest severity for a desired return period, which form a basis for designing facilities to meet exigencies arising as a result of droughts. The sequences of drought variable, such as annual rainfall or stream flow, may follow normal, log-normal or gamma distributions, and may evolve in a Markovian fashion and are bound to influence extremal values of the duration and severity. The effect of the aforesaid statistical parameters on the extremal drought durations and severity have been analysed in the present paper. A formula in terms of the extremal severity and the return period T in years has been suggested in parallel to the flood frequency formula, commonly cited in the hydrological texts.

  14. Evolutionary Markovian Strategies in 2 x 2 Spatial Games

    CERN Document Server

    Fort, H; Fort, Hugo; Sicardi, Estrella

    2006-01-01

    Evolutionary spatial 2 x 2 games between heterogeneous agents are analyzed using different variants of cellular automata (CA). Agents play repeatedly against their nearest neighbors 2 x 2 games specified by a rescaled payoff matrix with two parameteres. Each agent is governed by a binary Markovian strategy (BMS) specified by 4 conditional probabilities [p_R, p_S, p_T, p_P] that take values 0 or 1. The initial configuration consists in a random assignment of "strategists" among the 2^4= 16 possible BMS. The system then evolves within strategy space according to the simple standard rule: each agent copies the strategy of the neighbor who got the highest payoff. Besides on the payoff matrix, the dominant strategy -and the degree of cooperation- depend on i) the type of the neighborhood (von Neumann or Moore); ii) the way the cooperation state is actualized (deterministically or stochastichally); and iii) the amount of noise measured by a parameter epsilon. However a robust winner strategy is [1,0,1,1].

  15. A Bohmian approach to the non-Markovian non-linear Schrödinger–Langevin equation

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Andrés F.; Morales-Durán, Nicolás; Bargueño, Pedro, E-mail: p.bargueno@uniandes.edu.co

    2015-05-15

    In this work, a non-Markovian non-linear Schrödinger–Langevin equation is derived from the system-plus-bath approach. After analyzing in detail previous Markovian cases, Bohmian mechanics is shown to be a powerful tool for obtaining the desired generalized equation.

  16. Non-Markovian dynamics in pulsed and continuous wave atom lasers

    CERN Document Server

    Breuer, H P; Kappler, B; Petruccione, F

    1999-01-01

    The dynamics of atom lasers with a continuous output coupler based on two-photon Raman transitions is investigated. With the help of the time-convolutionless projection operator technique the quantum master equations for pulsed and continuous wave (cw) atom lasers are derived. In the case of the pulsed atom laser the power of the time-convolutionless projection operator technique is demonstrated through comparison with the exact solution. It is shown that in an intermediate coupling regime where the Born-Markov approximation fails the results of this algorithm agree with the exact solution. To study the dynamics of a continuous wave atom laser a pump mechanism is included in the model. Whereas the pump mechanism is treated within the Born-Markov approximation, the output coupling leads to non-Markovian effects. The solution of the master equation resulting from the time-convolutionless projection operator technique exhibits strong oscillations in the occupation number of the Bose-Einstein condensate. These os...

  17. Robust H∞ Finite-Time Control for Discrete Markovian Jump Systems with Disturbances of Probabilistic Distributions

    Directory of Open Access Journals (Sweden)

    Haiyang Chen

    2015-01-01

    Full Text Available This paper is concerned with the robust H∞ finite-time control for discrete delayed nonlinear systems with Markovian jumps and external disturbances. It is usually assumed that the disturbance affects the system states and outputs with the same influence degree of 100%, which is not evident enough to reflect the situation where the disturbance affects these two parts by different influence degrees. To tackle this problem, a probabilistic distribution denoted by binomial sequences is introduced to describe the external disturbance. Throughout the paper, the definitions of the finite-time boundedness (FTB and the H∞ FTB are firstly given respectively. To extend the results further, a model which combines a linear dynamic system and a static nonlinear operator is referred to describe the system under discussion. Then by virtue of state feedback control method, some new sufficient criteria are derived which guarantee the FTB and H∞ FTB performances for the considered system. Finally, an example is provided to demonstrate the effectiveness of the developed control laws.

  18. Non-Markovian property of afterpulsing effect in single-photon avalanche detector

    CERN Document Server

    Wang, Fang-Xiang; Li, Ya-Ping; He, De-Yong; Wang, Chao; Han, Yun-Guang; Wang, Shuang; Yin, Zhen-Qiang; Han, Zheng-Fu

    2016-01-01

    The single-photon avalanche photodiode(SPAD) has been widely used in research on quantum optics. The afterpulsing effect, which is an intrinsic character of SPAD, affects the system performance in most experiments and needs to be carefully handled. For a long time, afterpulsing has been presumed to be determined by the pre-ignition avalanche. We studied the afterpulsing effect of a commercial InGaAs/InP SPAD (The avalanche photodiode model is: Princeton Lightwave PGA-300) and demonstrated that its afterpulsing is non-Markovian, with a memory effect in the avalanching history. Theoretical analysis and experimental results clearly indicate that the embodiment of this memory effect is the afterpulsing probability, which increases as the number of ignition-avalanche pulses increase. This conclusion makes the principle of the afterpulsing effect clearer and is instructive to the manufacturing processes and afterpulsing evaluation of high-count-rate SPADs. It can also be regarded as a fundamental premise to handle ...

  19. Unification of witnessing initial system-environment correlations and witnessing non-Markovianity

    CERN Document Server

    Rodríguez-Rosario, César A; Mazzola, Laura; Aspuru-Guzik, Alán

    2012-01-01

    We show the connection between a witness that detects dynamical maps with initial system-environment correlations and a witness that detects non-Markovian open quantum systems. Our analysis is based on studying the role that state preparation plays in witnessing violations of contractivity of open quantum system dynamics. Contractivity is a property of some quantum processes where the trace distance of density matrices decrease with time. From this, we show how a witness of initial-correlations is an upper bound to a witness of non-Markovianity. We discuss how this relationship shows further connections between initial system-environment correlations and non-Markovianity at an instance of time in open quantum systems.

  20. Steady-state analysis of delay-locked loops tracking binary Markovian sequences

    Science.gov (United States)

    Nagata, Keisuke; Fujisaka, Hisato; Kamio, Takeshi; Ahn, Chang-Jun; Haeiwa, Kazuhisa

    We analyze stationary phase tracking error of delay-locked loops (DLL) in direct spread code division multiple access (DS-CDMA) using Markovian spreading sequences. The phase tracking error is caused by noise generated inside of DLLs by multiple access interferences. When binary Markovian sequences are used, the noise is not considered as white Gaussian noise. This makes analysis of the tracking error difficult. In this paper, we describe DLLs by stochastic difference equations and derive forward evolutional equations of the probability distribution of the states of DLLs. Applying path integral analysis to the evolutional equations, we obtained stationary distribution. We found from the distribution that Markovian spreading sequences with negative eigenvalue were effective in decreasing stationary phase tracking error of not only a type of DLL in asynchronous CDMA but also DLLs in chip-synchronous CDMA.

  1. Dynamics of interacting qubits coupled to a common bath: Non-Markovian quantum state diffusion approach

    CERN Document Server

    Zhao, Xinyu; Corn, Brittany; Yu, Ting; 10.1103/PhysRevA.84.032101

    2011-01-01

    Non-Markovian dynamics is studied for two interacting quibts strongly coupled to a dissipative bosonic environment. For the first time, we have derived the non-Markovian quantum state diffusion (QSD) equation for the coupled two-qubit system without any approximations, and in particular, without the Markov approximation. As an application and illustration of our derived time-local QSD equation, we investigate the temporal behavior of quantum coherence dynamics. In particular, we find a strongly non-Markovian regime where entanglement generation is significantly modulated by the environmental memory. Additionally, we studied the residual entanglement in the steady state by analyzing the steady state solution of the QSD equation. Finally, we have discussed an approximate QSD equation.

  2. Non-Markovian properties and multiscale hidden Markovian network buried in single molecule time series

    Science.gov (United States)

    Sultana, Tahmina; Takagi, Hiroaki; Morimatsu, Miki; Teramoto, Hiroshi; Li, Chun-Biu; Sako, Yasushi; Komatsuzaki, Tamiki

    2013-12-01

    We present a novel scheme to extract a multiscale state space network (SSN) from single-molecule time series. The multiscale SSN is a type of hidden Markov model that takes into account both multiple states buried in the measurement and memory effects in the process of the observable whenever they exist. Most biological systems function in a nonstationary manner across multiple timescales. Combined with a recently established nonlinear time series analysis based on information theory, a simple scheme is proposed to deal with the properties of multiscale and nonstationarity for a discrete time series. We derived an explicit analytical expression of the autocorrelation function in terms of the SSN. To demonstrate the potential of our scheme, we investigated single-molecule time series of dissociation and association kinetics between epidermal growth factor receptor (EGFR) on the plasma membrane and its adaptor protein Ash/Grb2 (Grb2) in an in vitro reconstituted system. We found that our formula successfully reproduces their autocorrelation function for a wide range of timescales (up to 3 s), and the underlying SSNs change their topographical structure as a function of the timescale; while the corresponding SSN is simple at the short timescale (0.033-0.1 s), the SSN at the longer timescales (0.1 s to ˜3 s) becomes rather complex in order to capture multiscale nonstationary kinetics emerging at longer timescales. It is also found that visiting the unbound form of the EGFR-Grb2 system approximately resets all information of history or memory of the process.

  3. Feller Property for a Special Hybrid Jump-Diffusion Model

    Directory of Open Access Journals (Sweden)

    Jinying Tong

    2014-01-01

    Full Text Available We consider the stochastic stability for a hybrid jump-diffusion model, where the switching here is a phase semi-Markovian process. We first transform the process into a corresponding jump-diffusion with Markovian switching by the supplementary variable technique. Then we prove the Feller and strong Feller properties of the model under some assumptions.

  4. Quantum Discord Dynamics in Two Different Non-Markovian Reservoirs

    Institute of Scientific and Technical Information of China (English)

    DING Bang-Fu; WANG Xiao-Yun; LIU Jing-Feng; YAN Lin; ZHAO He-Ping

    2011-01-01

    The quantum discord dynamics of two non-coupled two-level atoms independently interacting with their reservoir is studied under two kinds of non-Markovian conditions,namely,an off-resonant case with atomic transition frequency and a photonic band gap.In the first case,the phenomenon of the quantum discord loss and the oscillatory behavior of the quantum discord can occur by changing the detuning quantity and reducing the spectral coupling width for any initial Bell state.Under the second condition,the trapping phenomenon of the quantum discord can be presented by adjusting the width of gap,that is,the quantum discord of two atoms keep a nonzero constant for a long time.Entanglement,as a kind of quantum correlation without a classical counterpart,plays an important role in quantum information and communication theory,[1,2] quantum teleportation,[3] quantum cryptography[4,5] and universal quantum computing.[6]%We report the first implementation of transparent electrodes in bottom-gate graphene transistors used for photo detection. Compared to conventional nontransparent electrodes, the transparent electrodes allow photons to transmit through to the graphene beneath, providing an enlarged absorption area and thereby giving rise to an enhancement of photocurrent generation. The devices are fabricated with an asymmetric metallization scheme and the experimental results show that the maximum photocurrent density using the transparent electrodes (ITO and Pd/ITO) is over two times higher than that using the nontransparent electrodes (Ti and Pd), indicating a significant enhancement in the performance of graphene photo sensors.

  5. Memory kernel approach to generalized Pauli channels: Markovian, semi-Markov, and beyond

    Science.gov (United States)

    Siudzińska, Katarzyna; Chruściński, Dariusz

    2017-08-01

    In this paper we analyze the evolution of generalized Pauli channels governed by the memory kernel master equation. We provide necessary and sufficient conditions for the memory kernel to give rise to legitimate (completely positive and trace-preserving) quantum evolution. In particular, we analyze a class of kernels generating the quantum semi-Markov evolution, which is a natural generalization of the Markovian semigroup. Interestingly, the convex combination of Markovian semigroups goes beyond the semi-Markov case. Our analysis is illustrated with several examples.

  6. New Results on Stability and Stabilization of Markovian Jump Systems with Time Delay

    Directory of Open Access Journals (Sweden)

    Hongwei Xia

    2014-01-01

    Full Text Available This technical paper deals with the problem of stochastic stability and stabilization for a class of linear Markovian jumping systems with discrete time-varying delay. A novel delay-dependent stochastic stability criterion for Markovian delay systems is established based on new augmented Lyapunov-Krasovskii functional and delay fractioning techniques. Then a state feedback controller is designed to guarantee the stochastic stability of the resulting closed-loop system. Numerical examples are provided to illustrate the effectiveness of the proposed design approach in this paper.

  7. Non-markovian effects in semiconductor cavity QED: Role of phonon-mediated processes

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Nielsen, Torben Roland; Lodahl, Peter;

    We show theoretically that the non-Markovian nature of the carrier-phonon interaction influences the dynamical properties of a semiconductor cavity QED system considerably, leading to asymmetries with respect to detuning in carrier lifetimes. This pronounced phonon effect originates from the pola......We show theoretically that the non-Markovian nature of the carrier-phonon interaction influences the dynamical properties of a semiconductor cavity QED system considerably, leading to asymmetries with respect to detuning in carrier lifetimes. This pronounced phonon effect originates from...

  8. Sojourn time distributions in a Markovian G-queue with batch arrival and batch removal

    Directory of Open Access Journals (Sweden)

    Yang Woo Shin

    1999-01-01

    Full Text Available We consider a single server Markovian queue with two types of customers; positive and negative, where positive customers arrive in batches and arrivals of negative customers remove positive customers in batches. Only positive customers form a queue and negative customers just reduce the system congestion by removing positive ones upon their arrivals. We derive the LSTs of sojourn time distributions for a single server Markovian queue with positive customers and negative customers by using the first passage time arguments for Markov chains.

  9. Optical signatures of non-Markovian behavior in open quantum systems

    DEFF Research Database (Denmark)

    McCutcheon, Dara

    2016-01-01

    for the correlation functions, making only a second-order expansion in the system-environment coupling strength and invoking the Born approximation at a fixed initial time. The results are used to investigate a driven semiconductor quantum dot coupled to an acoustic phonon bath, where we find the non-Markovian nature......We derive an extension to the quantum regression theorem which facilitates the calculation of two-time correlation functions and emission spectra for systems undergoing non-Markovian evolution. The derivation exploits projection operator techniques, with which we obtain explicit equations of motion...

  10. Markovian reliability analysis under uncertainty with an application on the shutdown system of the Clinch River Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Papazoglou, I A; Gyftopoulos, E P

    1978-09-01

    A methodology for the assessment of the uncertainties about the reliability of nuclear reactor systems described by Markov models is developed, and the uncertainties about the probability of loss of coolable core geometry (LCG) of the Clinch River Breeder Reactor (CRBR) due to shutdown system failures, are assessed. Uncertainties are expressed by assuming the failure rates, the repair rates and all other input variables of reliability analysis as random variables, distributed according to known probability density functions (pdf). The pdf of the reliability is then calculated by the moment matching technique. Two methods have been employed for the determination of the moments of the reliability: the Monte Carlo simulation; and the Taylor-series expansion. These methods are adopted to Markovian problems and compared for accuracy and efficiency.

  11. Construction of individual-based ecological model for Scomber japonicas at its early growth stages in East China Sea%基于个体的东海鲐鱼生长初期生态模型的构建

    Institute of Scientific and Technical Information of China (English)

    李曰嵩; 陈新军; 杨红

    2012-01-01

    By adopting FVCOM-simulated 3-D physical field and based on the biological processes of chub mackerel (Scomber japonicas) in its early life history from the individual-based biological model, the individual-based ecological model for S. japonicas at its early growth stages in the East China Sea was constructed through coupling the physical field in March-July with the biological model by the method of Lagrange particle tracking. The model constructed could well simulate the transport process and abundance distribution of S. japonicas eggs and larvae. The Taiwan Warm Current, Kuroshio, and Tsushima Strait Warm Current directly affected the transport process and distribution of the eggs and larvae, and indirectly affected the growth and survive of the eggs and larvae through the transport to the nursery grounds with different water temperature and foods. The spawning grounds in southern East China Sea made more contributions to the recruitment to the fishing grounds in northeast East China Sea, but less to the Yangtze estuary and Zhoushan Island. The northwestern and southwestern parts of spawning grounds had strong connectivity with the nursery grounds of Cheju and Tsushima Straits, whereas the northeastern and southeastern parts of the spawning ground had strong connectivity with the nursery grounds of Kyushu and Pacific Ocean.%采用FVCOM物理模型生成三维物理场,基于个体模型参数化东海鲐鱼早期生物过程,通过拉格朗日质点的方法将模拟生成的3-7月物理场和生物模型进行耦合,构建了基于个体的东海鲐鱼早期生态模型.结果表明:所构建模型可很好地模拟东海鲐鱼鱼卵和仔鱼的输运过程和丰度分布,台湾暖流、黑潮和对马暖流直接影响鱼卵和仔鱼的输运和分布,通过输运到不同育肥场的温度和食物差异间接地影响鱼卵和仔鱼的生长、生存.东海南部产卵场对东海东北部渔场有很大的补充量,但对长江口和舟山外海渔场的

  12. Intrinsic noise induces critical behavior in leaky Markovian networks leading to avalanching.

    Directory of Open Access Journals (Sweden)

    Garrett Jenkinson

    2014-01-01

    Full Text Available The role intrinsic statistical fluctuations play in creating avalanches--patterns of complex bursting activity with scale-free properties--is examined in leaky Markovian networks. Using this broad class of models, we develop a probabilistic approach that employs a potential energy landscape perspective coupled with a macroscopic description based on statistical thermodynamics. We identify six important thermodynamic quantities essential for characterizing system behavior as a function of network size: the internal potential energy, entropy, free potential energy, internal pressure, pressure, and bulk modulus. In agreement with classical phase transitions, these quantities evolve smoothly as a function of the network size until a critical value is reached. At that value, a discontinuity in pressure is observed that leads to a spike in the bulk modulus demarcating loss of thermodynamic robustness. We attribute this novel result to a reallocation of the ground states (global minima of the system's stationary potential energy landscape caused by a noise-induced deformation of its topographic surface. Further analysis demonstrates that appreciable levels of intrinsic noise can cause avalanching, a complex mode of operation that dominates system dynamics at near-critical or subcritical network sizes. Illustrative examples are provided using an epidemiological model of bacterial infection, where avalanching has not been characterized before, and a previously studied model of computational neuroscience, where avalanching was erroneously attributed to specific neural architectures. The general methods developed here can be used to study the emergence of avalanching (and other complex phenomena in many biological, physical and man-made interaction networks.

  13. Behavior analysis of convective and stratiform rain using Markovian approach over Mediterranean region from meteorological radar data

    Directory of Open Access Journals (Sweden)

    M. Lazri

    2012-05-01

    Full Text Available The aim of this study is to analyze the chronological behavior of precipitation in the north of Algeria using a Markovian approach. The probabilistic approach presented here proposes to study the evolution of the rainfall phenomenon in two distinct study areas, one located in sea and other located in ground. The data that we have used are provided by the National Office of Meteorology in Algiers (ONM. They are a series of images collected by the meterological radar of Setif during the rainy season 2001/2002. A decision criterion is established and based on radar reflectivity in order to classify the precipitation events located in both areas. At each radar observation, a state of precipitations is classified, either convective (heavy precipitation or stratiform (average precipitation both for the "sea" and for the "ground". On the whole, a time series of precipitations composed of three states; S0 (no raining, S1 (stratiform precipitation and S2 (convective precipitation, is obtained for each of the two areas. Thereby, we studied and characterized the behavior of precipitation in time by a Markov chain of order one with three states. Transition probabilities Pij of state Si to state Sj are calculated. The results show that rainfall is well described by a Markov chain of order one with three states. Indeed, the stationary probabilities, which are calculated by using the Markovian model, and the actual probabilities are almost identical.

  14. Error Distributions on Large Entangled States with Non-Markovian Dynamics

    DEFF Research Database (Denmark)

    McCutcheon, Dara; Lindner, Netanel H.; Rudolph, Terry

    2014-01-01

    We investigate the distribution of errors on a computationally useful entangled state generated via the repeated emission from an emitter undergoing strongly non-Markovian evolution. For emitter-environment coupling of pure-dephasing form, we show that the probability that a particular patten of ...

  15. Non-Markovian signatures in the current noise of a charge qubit

    DEFF Research Database (Denmark)

    Braggio, A.; Flindt, Christian; Novotny, T.

    2008-01-01

    We investigate the current noise of a charge qubit coupled to a phonon bath in different parameter regimes. We find, using the theory of Full Counting Statistics of non-Markovian systems, that the current fluctuations are strongly influenced by memory effects generated from the interplay between ...

  16. Non-Markovian Dynamics in Chiral Quantum Networks with Spins and Photons

    CERN Document Server

    Ramos, Tomás; Hauke, Philipp; Pichler, Hannes; Zoller, Peter

    2016-01-01

    We study the dynamics of chiral quantum networks consisting of nodes coupled by unidirectional or asymmetric bidirectional quantum channels. In contrast to the familiar photonic networks consisting of driven two-level atoms exchanging photons via 1D photonic nanostructures, we propose and study a setup where interactions between the atoms are mediated by spin excitations (magnons) in 1D XX-spin chains representing a spin waveguide. While Markovian quantum network theory eliminates quantum channels as structureless reservoirs in a Born-Markov approximation to obtain a master equation for the nodes, we are interested in non-Markovian dynamics. This arises from the nonlinear character of the dispersion with band-edge effects, and from finite spin propagation velocities leading to time delays in interactions. To account for the non-Markovian dynamics we treat the quantum degrees of freedom of the nodes and connecting channel as a composite spin system with the surrounding of the quantum network as a Markovian bat...

  17. Transient Behaviour in Highly Dependable Markovian Systems: New Regimes, Multiple Paths

    NARCIS (Netherlands)

    Reijsbergen, Daniël; Boer, de Pieter-Tjerk; Scheinhardt, Werner

    2010-01-01

    In recent years, probabilistic analysis of highly dependable Markovian systems has received considerable attention. Such systems typically consist of several component types, subject to failures, with spare components for replacement while repair is taking place. System failure occurs when all (spar

  18. Stationary in Distributions of Numerical Solutions for Stochastic Partial Differential Equations with Markovian Switching

    Directory of Open Access Journals (Sweden)

    Yi Shen

    2013-01-01

    Full Text Available We investigate a class of stochastic partial differential equations with Markovian switching. By using the Euler-Maruyama scheme both in time and in space of mild solutions, we derive sufficient conditions for the existence and uniqueness of the stationary distributions of numerical solutions. Finally, one example is given to illustrate the theory.

  19. STATIONARY SOLUTION FOR A STOCHASTIC LI(E)NARD EQUATION WITH MARKOVIAN SWITCHING

    Institute of Scientific and Technical Information of China (English)

    Xi Fubao; Zhao Liqin

    2005-01-01

    This paper considers a stochastic Lienard equation with Markovian switching.The Feller continuity of its solution is proved by the coupling method and a truncation argument. The existence of a stationary solution for the equation is also proved under the Foster-Lyapunov drift condition.

  20. Non-markovianity and CHSH-Bell inequality violation in multipartite dissipative systems

    CERN Document Server

    Thilagam, A

    2012-01-01

    We examine the non-Markovian dynamics in a multipartite system of two initially correlated atomic qubits, each located in a single-mode leaky cavity and interacting with its own bosonic reservoir. We show the dominance of non-Markovian features, as quantified by the difference in fidelity of the evolved system with its density matrix at an earlier time, in three specific two-qubit partitions associated with the cavity-cavity and atom-reservoir density matrices within the same subsystem, and the cavity-reservoir reduced matrix across the two subsystems. The non-Markovianity in the cavity-cavity subsystem is seen to be optimized in the vicinity of the exceptional point. The CHSH-Bell inequality computed for various two-qubit partitions show that high non-locality present in a specific subsystem appears in conjunction with enhanced non-Markovian dynamics in adjacent subsystems. This is in contrast to the matching existence of non-locality and quantum correlations in regions spanned by time t and the cavity decay...

  1. Dynamics of non-Markovianity in the presence of a driving field

    Indian Academy of Sciences (India)

    Mandani Somayeh; Sarbishaei Mohsen; Javidan Kurosh

    2016-03-01

    We investigate a two-level system in a cavity QED by considering the effects ofamplitude damping, phase damping and driving field. We have studied the non-Markovianity in resonance and non-resonance limits in the presence of these effects using Breuer–Laine–Piilo (BLP) non-Markovianity measure ($N_{\\rm BLP}$). The evolution of the system is derived using the time convolutionless (TCL) master equation. In some conditions, it is shown that in the presence of a driving field, the $N_{\\rm BLP} increases in the resonance and non-resonance limits. We have also found the exact solution of the master equation in order to investigate the effect of temperature- and environment excited states. We have shown that the behaviour of non-Markovianity is very different from what one can see from the TCL approach. We have also presented some explanation about the behaviour of non-Markovianity in the exact solution using quantum discord (QD).

  2. Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines

    Science.gov (United States)

    Kato, Akihito; Tanimura, Yoshitaka

    2016-12-01

    We consider a quantum system strongly coupled to multiple heat baths at different temperatures. Quantum heat transport phenomena in this system are investigated using two definitions of the heat current: one in terms of the system energy and the other in terms of the bath energy. When we consider correlations among system-bath interactions (CASBIs)—which have a purely quantum mechanical origin—the definition in terms of the bath energy becomes different. We found that CASBIs are necessary to maintain the consistency of the heat current with thermodynamic laws in the case of strong system-bath coupling. However, within the context of the quantum master equation approach, both of these definitions are identical. Through a numerical investigation, we demonstrate this point for a non-equilibrium spin-boson model and a three-level heat engine model using the reduced hierarchal equations of motion approach under the strongly coupled and non-Markovian conditions. We observe the cyclic behavior of the heat currents and the work performed by the heat engine, and we find that their phases depend on the system-bath coupling strength. Through consideration of the bath heat current, we show that the efficiency of the heat engine decreases as the strength of the system-bath coupling increases, due to the CASBI contribution. In the case of a large system-bath coupling, the efficiency decreases further if the bath temperature is increased, even if the ratio of the bath temperatures is fixed, due to the discretized nature of energy eigenstates. This is also considered to be a unique feature of quantum heat engines.

  3. Perpetual extraction of work from a nonequilibrium dynamical system under Markovian feedback control

    Science.gov (United States)

    Kosugi, Taichi

    2013-09-01

    By treating both control parameters and dynamical variables as probabilistic variables, we develop a succinct theory of perpetual extraction of work from a generic classical nonequilibrium system subject to a heat bath via repeated measurements under a Markovian feedback control. It is demonstrated that a problem for perpetual extraction of work in a nonequilibrium system is reduced to a problem of Markov chain in the higher-dimensional phase space. We derive a version of the detailed fluctuation theorem, which was originally derived for classical nonequilibrium systems by Horowitz and Vaikuntanathan [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.82.061120 82, 061120 (2010)], in a form suitable for the analyses of perpetual extraction of work. Since our theory is formulated for generic dynamics of probability distribution function in phase space, its application to a physical system is straightforward. As simple applications of the theory, two exactly solvable models are analyzed. The one is a nonequilibrium two-state system and the other is a particle confined to a one-dimensional harmonic potential in thermal equilibrium. For the former example, it is demonstrated that the observer on the transitory steps to the stationary state can lose energy and that work larger than that achieved in the stationary state can be extracted. For the latter example, it is demonstrated that the optimal protocol for the extraction of work via repeated measurements can differ from that via a single measurement. The validity of our version of the detailed fluctuation theorem, which determines the upper bound of the expected work in the stationary state, is also confirmed for both examples. These observations provide useful insights into exploration for realistic modeling of a machine that extracts work from its environment.

  4. Perpetual extraction of work from a nonequilibrium dynamical system under Markovian feedback control.

    Science.gov (United States)

    Kosugi, Taichi

    2013-09-01

    By treating both control parameters and dynamical variables as probabilistic variables, we develop a succinct theory of perpetual extraction of work from a generic classical nonequilibrium system subject to a heat bath via repeated measurements under a Markovian feedback control. It is demonstrated that a problem for perpetual extraction of work in a nonequilibrium system is reduced to a problem of Markov chain in the higher-dimensional phase space. We derive a version of the detailed fluctuation theorem, which was originally derived for classical nonequilibrium systems by Horowitz and Vaikuntanathan [Phys. Rev. E 82, 061120 (2010)], in a form suitable for the analyses of perpetual extraction of work. Since our theory is formulated for generic dynamics of probability distribution function in phase space, its application to a physical system is straightforward. As simple applications of the theory, two exactly solvable models are analyzed. The one is a nonequilibrium two-state system and the other is a particle confined to a one-dimensional harmonic potential in thermal equilibrium. For the former example, it is demonstrated that the observer on the transitory steps to the stationary state can lose energy and that work larger than that achieved in the stationary state can be extracted. For the latter example, it is demonstrated that the optimal protocol for the extraction of work via repeated measurements can differ from that via a single measurement. The validity of our version of the detailed fluctuation theorem, which determines the upper bound of the expected work in the stationary state, is also confirmed for both examples. These observations provide useful insights into exploration for realistic modeling of a machine that extracts work from its environment.

  5. Individual based simulations of bacterial growth on agar plates

    Science.gov (United States)

    Ginovart, M.; López, D.; Valls, J.; Silbert, M.

    2002-03-01

    The individual based simulator, INDividual DIScrete SIMulations (INDISIM) has been used to study the behaviour of the growth of bacterial colonies on a finite dish. The simulations reproduce the qualitative trends of pattern formation that appear during the growth of Bacillus subtilis on an agar plate under different initial conditions of nutrient peptone concentration, the amount of agar on the plate, and the temperature. The simulations are carried out by imposing closed boundary conditions on a square lattice divided into square spatial cells. The simulator studies the temporal evolution of the bacterial population possible by setting rules of behaviour for each bacterium, such as its uptake, metabolism and reproduction, as well as rules for the medium in which the bacterial cells grow, such as concentration of nutrient particles and their diffusion. The determining factors that characterize the structure of the bacterial colony patterns in the presents simulations, are the initial concentrations of nutrient particles, that mimic the amount of peptone in the experiments, and the set of values for the microscopic diffusion parameter related, in the experiments, to the amount of the agar medium.

  6. Vibrational mode suppression in the non-Markovian limit : Diagonal time-gating of the stimulated photon echo

    NARCIS (Netherlands)

    De Boeij, W. P.; Pshenichnikov, M. S.; Wiersma, D. A.

    1996-01-01

    We demonstrate a novel technique for efficient vibrational mode suppression in stimulated photon echo by diagonal time-gating. This is especially important if the system exhibits non-Markovian optical dynamics.

  7. Existence and Uniqueness of Stochastic Differential Equations with Random Impulses and Markovian Switching under Non-Lipschitz Conditions

    Institute of Scientific and Technical Information of China (English)

    Shu Jin WU; Bin ZHOU

    2011-01-01

    In the paper, stochastic differential equations with random impulses and Markovian switching are brought forward, where the so-called random impulse means that impulse ranges are driven by a series of random variables and impulse times are a random sequence, so these equations extend stochastic differential equations with jumps and Markovian switching. Then the existence and uniqueness of solutions to such equations are investigated by employing the Bihari inequality under non-Lipschtiz conditions.

  8. Exact master equation for a spin interacting with a spin bath: Non-Markovianity and negative entropy production rate

    Science.gov (United States)

    Bhattacharya, Samyadeb; Misra, Avijit; Mukhopadhyay, Chiranjib; Pati, Arun Kumar

    2017-01-01

    An exact canonical master equation of the Lindblad form is derived for a central spin interacting uniformly with a sea of completely unpolarized spins. The Kraus operators for the dynamical map are also derived. The non-Markovianity of the dynamics in terms of the divisibility breaking of the dynamical map and the increase of the trace distance fidelity between quantum states is shown. Moreover, it is observed that the irreversible entropy production rate is always negative (for a fixed initial state) whenever the dynamics exhibits non-Markovian behavior. In continuation with the study of witnessing non-Markovianity, it is shown that the positive rate of change of the purity of the central qubit is a faithful indicator of the non-Markovian information backflow. Given the experimental feasibility of measuring the purity of a quantum state, a possibility of experimental demonstration of non-Markovianity and the negative irreversible entropy production rate is addressed. This gives the present work considerable practical importance for detecting the non-Markovianity and the negative irreversible entropy production rate.

  9. A large Markovian linear program to optimize replacement policies and dairy herd net income for diets and nitrogen excretion.

    Science.gov (United States)

    Cabrera, V E

    2010-01-01

    The purpose of the study was 2-fold: 1) to propose a novel modeling framework using Markovian linear programming to optimize dairy farmer-defined goals under different decision schemes and 2) to illustrate the model with a practical application testing diets for entire lactations. A dairy herd population was represented by cow state variables defined by parity (1 to 15), month in lactation (1 to 24), and pregnancy status (0 nonpregnant and 1 to 9 mo of pregnancy). A database of 326,000 lactations of Holsteins from AgSource Dairy Herd Improvement service (http://agsource.crinet.com/page249/DHI) was used to parameterize reproduction, mortality, and involuntary culling. The problem was set up as a Markovian linear program model containing 5,580 decision variables and 8,731 constraints. The model optimized the net revenue of the steady state dairy herd population having 2 options in each state: keeping or replacing an animal. Five diets were studied to assess economic, environmental, and herd structural outcomes. Diets varied in proportions of alfalfa silage (38 to 98% of dry matter), high-moisture ear corn (0 to 42% of dry matter), and soybean meal (0 to 18% of dry matter) within and between lactations, which determined dry matter intake, milk production, and N excretion. Diet ingredient compositions ranged from one of high concentrates to alfalfa silage only. Hence, the model identified the maximum net revenue that included the value of nutrient excretion and the cost of manure disposal associated with the optimal policy. Outcomes related to optimal solutions included the herd population structure, the replacement policy, and the amount of N excreted under each diet experiment. The problem was solved using the Excel Risk Solver Platform with the Standard LP/Quadratic Engine. Consistent replacement policies were to (1) keep pregnant cows, (2) keep primiparous cows longer than multiparous cows, and (3) decrease replacement rates when milk and feed prices are favorable

  10. Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism

    Science.gov (United States)

    Li, Zhen; Bian, Xin; Li, Xiantao; Karniadakis, George Em

    2015-12-01

    The Mori-Zwanzig formalism for coarse-graining a complex dynamical system typically introduces memory effects. The Markovian assumption of delta-correlated fluctuating forces is often employed to simplify the formulation of coarse-grained (CG) models and numerical implementations. However, when the time scales of a system are not clearly separated, the memory effects become strong and the Markovian assumption becomes inaccurate. To this end, we incorporate memory effects into CG modeling by preserving non-Markovian interactions between CG variables, and the memory kernel is evaluated directly from microscopic dynamics. For a specific example, molecular dynamics (MD) simulations of star polymer melts are performed while the corresponding CG system is defined by grouping many bonded atoms into single clusters. Then, the effective interactions between CG clusters as well as the memory kernel are obtained from the MD simulations. The constructed CG force field with a memory kernel leads to a non-Markovian dissipative particle dynamics (NM-DPD). Quantitative comparisons between the CG models with Markovian and non-Markovian approximations indicate that including the memory effects using NM-DPD yields similar results as the Markovian-based DPD if the system has clear time scale separation. However, for systems with small separation of time scales, NM-DPD can reproduce correct short-time properties that are related to how the system responds to high-frequency disturbances, which cannot be captured by the Markovian-based DPD model.

  11. Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhen; Bian, Xin; Karniadakis, George Em, E-mail: george-karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912 (United States); Li, Xiantao [Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-12-28

    The Mori-Zwanzig formalism for coarse-graining a complex dynamical system typically introduces memory effects. The Markovian assumption of delta-correlated fluctuating forces is often employed to simplify the formulation of coarse-grained (CG) models and numerical implementations. However, when the time scales of a system are not clearly separated, the memory effects become strong and the Markovian assumption becomes inaccurate. To this end, we incorporate memory effects into CG modeling by preserving non-Markovian interactions between CG variables, and the memory kernel is evaluated directly from microscopic dynamics. For a specific example, molecular dynamics (MD) simulations of star polymer melts are performed while the corresponding CG system is defined by grouping many bonded atoms into single clusters. Then, the effective interactions between CG clusters as well as the memory kernel are obtained from the MD simulations. The constructed CG force field with a memory kernel leads to a non-Markovian dissipative particle dynamics (NM-DPD). Quantitative comparisons between the CG models with Markovian and non-Markovian approximations indicate that including the memory effects using NM-DPD yields similar results as the Markovian-based DPD if the system has clear time scale separation. However, for systems with small separation of time scales, NM-DPD can reproduce correct short-time properties that are related to how the system responds to high-frequency disturbances, which cannot be captured by the Markovian-based DPD model.

  12. Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism.

    Science.gov (United States)

    Li, Zhen; Bian, Xin; Li, Xiantao; Karniadakis, George Em

    2015-12-28

    The Mori-Zwanzig formalism for coarse-graining a complex dynamical system typically introduces memory effects. The Markovian assumption of delta-correlated fluctuating forces is often employed to simplify the formulation of coarse-grained (CG) models and numerical implementations. However, when the time scales of a system are not clearly separated, the memory effects become strong and the Markovian assumption becomes inaccurate. To this end, we incorporate memory effects into CG modeling by preserving non-Markovian interactions between CG variables, and the memory kernel is evaluated directly from microscopic dynamics. For a specific example, molecular dynamics (MD) simulations of star polymer melts are performed while the corresponding CG system is defined by grouping many bonded atoms into single clusters. Then, the effective interactions between CG clusters as well as the memory kernel are obtained from the MD simulations. The constructed CG force field with a memory kernel leads to a non-Markovian dissipative particle dynamics (NM-DPD). Quantitative comparisons between the CG models with Markovian and non-Markovian approximations indicate that including the memory effects using NM-DPD yields similar results as the Markovian-based DPD if the system has clear time scale separation. However, for systems with small separation of time scales, NM-DPD can reproduce correct short-time properties that are related to how the system responds to high-frequency disturbances, which cannot be captured by the Markovian-based DPD model.

  13. Optimal exploitation strategies for an animal population in a Markovian environment: A theory and an example

    Science.gov (United States)

    Anderson, D.R.

    1975-01-01

    Optimal exploitation strategies were studied for an animal population in a Markovian (stochastic, serially correlated) environment. This is a general case and encompasses a number of important special cases as simplifications. Extensive empirical data on the Mallard (Anas platyrhynchos) were used as an example of general theory. The number of small ponds on the central breeding grounds was used as an index to the state of the environment. A general mathematical model was formulated to provide a synthesis of the existing literature, estimates of parameters developed from an analysis of data, and hypotheses regarding the specific effect of exploitation on total survival. The literature and analysis of data were inconclusive concerning the effect of exploitation on survival. Therefore, two hypotheses were explored: (1) exploitation mortality represents a largely additive form of mortality, and (2) exploitation mortality is compensatory with other forms of mortality, at least to some threshold level. Models incorporating these two hypotheses were formulated as stochastic dynamic programming models and optimal exploitation strategies were derived numerically on a digital computer. Optimal exploitation strategies were found to exist under the rather general conditions. Direct feedback control was an integral component in the optimal decision-making process. Optimal exploitation was found to be substantially different depending upon the hypothesis regarding the effect of exploitation on the population. If we assume that exploitation is largely an additive force of mortality in Mallards, then optimal exploitation decisions are a convex function of the size of the breeding population and a linear or slight concave function of the environmental conditions. Under the hypothesis of compensatory mortality forces, optimal exploitation decisions are approximately linearly related to the size of the Mallard breeding population. Dynamic programming is suggested as a very general

  14. Nonlinear H{sub {infinity}} control of stochastic time-delay systems with Markovian switching

    Energy Technology Data Exchange (ETDEWEB)

    Wei Guoliang [School of Information Sciences and Technology, Donghua University, Shanghai 200051 (China); Wang Zidong [School of Information Sciences and Technology, Donghua University, Shanghai 200051 (China); Department of Information Systems and Computing, Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom)], E-mail: Zidong.Wang@brunel.ac.uk; Shu Huisheng [Department of Applied Mathematics, Donghua University, Shanghai 200051 (China)

    2008-02-15

    In this paper, the stabilization and H{sub {infinity}} control problems are investigated for a class of stochastic time-delay systems with both nonlinear disturbances and Markovian jumping parameters. The purpose of the stochastic stabilization problem is to design a memoryless state feedback controller such that, for the addressed nonlinear disturbances as well as Markovian jumping parameters, the closed-loop system is stochastically exponentially stable in the mean square, independent of the time delay. In the H{sub {infinity}} control problem, in addition to the mean-square exponential stability requirement, a prescribed H{sub {infinity}} performance index is required to be achieved. By using Ito's differential formula and the Lyapunov stability theory, sufficient conditions for the solvability of these problems are derived in term of linear matrix inequalities, which can be easily checked by resorting to available software packages. A numerical example is exploited to demonstrate the effectiveness of the proposed results.

  15. Robust H∞ Filtering for a Class of Uncertain Markovian Jump Systems with Time Delays

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2013-01-01

    Full Text Available This paper studies the problem of robust H∞ filtering for a class of uncertain time-delay systems with Markovian jumping parameters. The system under consideration is subject to norm-bounded time-varying parameter uncertainties. The problem to be addressed is the design of a Markovian jump filter such that the filter error dynamics are stochastically stable and a prescribed bound on the ℒ2-induced gain from the noise signals to the filter error is guaranteed for all admissible uncertainties. A sufficient condition for the existence of the desired robust H∞ filter is given in terms of two sets of coupled algebraic Riccati inequalities. When these algebraic Riccati inequalities are feasible, the expression of a desired H∞ filter is also presented. Finally, an illustrative numerical example is provided.

  16. Analysis of non-Markovian coupling of a lattice-trapped atom to free space

    Science.gov (United States)

    Stewart, Michael; Krinner, Ludwig; Pazmiño, Arturo; Schneble, Dominik

    2017-01-01

    Behavior analogous to that of spontaneous emission in photonic band-gap materials has been predicted for an atom-optical system consisting of an atom confined in a well of a state-dependent optical lattice that is coupled to free space through an internal-state transition [de Vega et al., Phys. Rev. Lett. 101, 260404 (2008), 10.1103/PhysRevLett.101.260404]. Using the Weisskopf-Wigner approach and considering a one-dimensional geometry, we analyze the properties of this system in detail, including the evolution of the lattice-trapped population, the momentum distribution of emitted matter waves, and the detailed structure of an evanescent matter-wave state below the continuum boundary. We compare and contrast our findings for the transition from Markovian to non-Markovian behaviors to those previously obtained for three dimensions.

  17. Solving non-Markovian open quantum systems with multi-channel reservoir coupling

    CERN Document Server

    Broadbent, Curtis J; Yu, Ting; Eberly, Joseph H

    2011-01-01

    We extend the non-Markovian quantum state diffusion (QSD) equation to open quantum systems which exhibit multi-channel coupling to a harmonic oscillator reservoir. Open quantum systems which have multi-channel reservoir coupling are those in which canonical transformation of reservoir modes cannot reduce the number of reservoir operators appearing in the interaction Hamiltonian to one. We show that the non-Markovian QSD equation for multi-channel reservoir coupling can, in some cases, lead to an exact master equation which we derive. We then derive the exact master equation for the three-level system in a vee-type configuration which has multi-channel reservoir coupling and give the analytical solution. Finally, we examine the evolution of the three-level vee-type system with generalized Ornstein-Uhlenbeck reservoir correlations numerically.

  18. Solving non-Markovian open quantum systems with multi-channel reservoir coupling

    Science.gov (United States)

    Broadbent, Curtis J.; Jing, Jun; Yu, Ting; Eberly, Joseph H.

    2012-08-01

    We extend the non-Markovian quantum state diffusion (QSD) equation to open quantum systems which exhibit multi-channel coupling to a harmonic oscillator reservoir. Open quantum systems which have multi-channel reservoir coupling are those in which canonical transformation of reservoir modes cannot reduce the number of reservoir operators appearing in the interaction Hamiltonian to one. We show that the non-Markovian QSD equation for multi-channel reservoir coupling can, in some cases, lead to an exact master equation which we derive. We then derive the exact master equation for the three-level system in a vee-type configuration which has multi-channel reservoir coupling and give the analytical solution. Finally, we examine the evolution of the three-level vee-type system with generalized Ornstein-Uhlenbeck reservoir correlations numerically.

  19. Non-Markovian Brownian motion in a magnetic field and time-dependent force fields

    Science.gov (United States)

    Hidalgo-Gonzalez, J. C.; Jiménez-Aquino, J. I.; Romero-Bastida, M.

    2016-11-01

    This work focuses on the derivation of the velocity and phase-space generalized Fokker-Planck equations for a Brownian charged particle embedded in a memory thermal bath and under the action of force fields: a constant magnetic field and arbitrary time-dependent force fields. To achieve the aforementioned goal we use a Gaussian but non-Markovian generalized Langevin equation with an arbitrary friction memory kernel. In a similar way, the generalized diffusion equation in the zero inertia limit is also derived. Additionally we show, in the absence of the time-dependent external forces, that, if the fluctuation-dissipation relation of the second kind is valid, then the generalized Langevin dynamics associated with the charged particle reaches a stationary state in the large-time limit. The consistency of our theoretical results is also verified when they are compared with those derived in the absence of the force fields and in the Markovian case.

  20. Delay-dependent stability analysis for continuous-time BAM neural networks with Markovian jumping parameters.

    Science.gov (United States)

    Liu, Hongyang; Ou, Yan; Hu, Jun; Liu, Tingting

    2010-04-01

    This paper investigates the problem of stability analysis for bidirectional associative memory (BAM) neural networks with Markovian jumping parameters. Some new delay-dependent stochastic stability criteria are derived based on a novel Lyapunov-Krasovskii functional (LKF) approach. These new criteria based on the delay partitioning idea prove to be less conservative, since the conservatism could be notably reduced by thinning the delay partitioning. It is shown that the addressed stochastic BAM neural networks with Markovian jumping parameters are stochastically stable if three linear matrix inequalities (LMIs) are feasible. The feasibility of the LMIs can be readily checked by the Matlab LMI toolbox. A numerical example is provided to show the effectiveness and advantage of the proposed technique.

  1. Markovian Process and Novel Secure Algorithm for Big Data in Two-Hop Wireless Networks

    Directory of Open Access Journals (Sweden)

    K. Thiagarajan

    2015-06-01

    Full Text Available This paper checks the correctness of our novel algorithm for secure, reliable and flexible transmission of big data in two-hop wireless networks using cooperative jamming scheme of attacker location unknown through Markovian process. Big data has to transmit in two-hop from source-to-relay and relay-to-destination node by deploying security in physical layer. Based on our novel algorithm, the nodes of the network can be identifiable, the probability value of the data absorbing nodes namely capture node C, non-capture node NC, eavesdropper node E, in each level depends upon the present level to the next level, the probability of transition between two nodes is same at all times in a given time slot to ensure more secure transmission of big data. In this paper, maximum probability for capture nodes is considered to justify the efficient transmission of big data through Markovian process.

  2. Comparison between Poissonian and Markovian Primary Traffics in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Abdelaali Chaoub

    2012-03-01

    Full Text Available Cognitive Radio generates a big interest as a key cost-effective solution for the underutilization of frequency spectrum in legacy communication networks. The objective of this work lies in conducting a performance evaluation of the end-to-end message delivery under both Markovian and Poissonian primary traffics in lossy Cognitive Radio networks. We aim at inferring the most appropriate conditions for an efficient secondary service provision according to the Cognitive Radio network characteristics. Meanwhile, we have performed a general analysis for many still open issues in Cognitive Radio, but at the end only two critical aspects have been considered, namely, the unforeseen primary reclaims in addition to the collided cognitive transmissions due to the Opportunistic Spectrum Sharing. Some graphs, in view of the average Spectral Efficiency, have been computed and plotted to report some comparative results for a given video transmission under the Markovian and the Poissonian primary interruptions.

  3. Non-Markovian effect on the geometric phase of a dissipative qubit

    CERN Document Server

    Chen, Juan-Juan; Tong, Qing-Jun; Luo, Hong-Gang; Oh, C H

    2010-01-01

    We study the geometric phase of a two-level atom coupled to an environment with Lorentzian spectral density. The non-Markovian effect on the geometric phase is explored analytically and numerically. In the weak coupling limit the lowest-order correction to the geometric phase is derived analytically and the general case is calculated numerically. It is found that the correction to the geometric phase is significantly large if the spectral width is small and in this case the non-Markovian dynamics has a significant impact to the geometric phase. When the spectral width increases, the correction to the geometric phase becomes negligible, which shows the robustness of the geometric phase to the environmental white noises. The result is significant to the quantum information processing based on the geometric phase.

  4. Comparison principle and stability criteria for stochastic differential delay equations with Markovian switching

    Institute of Scientific and Technical Information of China (English)

    罗交晚; 邹捷中; 侯振挺

    2003-01-01

    In the present paper we first obtain the comparison principle for the nonlinear stochastic differentialdelay equations with Markovian switching. Later, using this comparison principle, we obtain some stabilitycriteria, including stability in probability, asymptotic stability in probability, stability in the pth mean, asymptoticstability in the pth mean and the pth moment exponential stability of such equations. Finally, an example isgiven to illustrate the effectiveness of our results.

  5. Stochastic stability of linear time-delay system with Markovian jumping parameters

    Directory of Open Access Journals (Sweden)

    K. Benjelloun

    1997-01-01

    Full Text Available This paper deals with the class of linear time-delay systems with Markovian jumping parameters (LTDSMJP. We mainly extend the stability results of the deterministic class of linear systems with time-delay to this class of systems. A delay-independent necessary condition and sufficient conditions for checking the stochastic stability are established. A sufficient condition is also given. Some numerical examples are provided to show the usefulness of the proposed theoretical results.

  6. Guaranteed control performance robust LQG regulator for discrete-time Markovian jump systems with uncertain noise

    Institute of Scientific and Technical Information of China (English)

    Zhu Jin; Xi Hongsheng; Xiao Xiaobo; Ji Haibo

    2007-01-01

    Robust LQG problems of discrete-time Markovian jump systems with uncertain noises are investigated.The problem addressed is the construction of perturbation upper bounds on the uncertain noise covariances so as to guarantee that the deviation of the control performance remains within the precision prescribed in actual problems.Furthermore, this regulator is capable of minimizing the worst performance in an uncertain case. A numerical example is exploited to show the validity of the method.

  7. Design of robust controller for linear systems with Markovian jumping parameters

    Directory of Open Access Journals (Sweden)

    Benjelloun K.

    1998-01-01

    Full Text Available This paper deals with the robustness of the class of uncertain linear systems with Markovian jumping parameters (ULSMJP. The uncertainty is taken to be time-varying norm bounded. Under the assumptions of the boundedness of the uncertainties and the complete access to the system's state and its modes, a sufficient condition for stochastic stabilizability of this class of systems is established. An example is provided to demonstrate the usefulness of the proposed theoretical results.

  8. Delay-Dependent Exponential Stability of Stochastic Delayed Recurrent Neural Networks with Markovian Switching

    Institute of Scientific and Technical Information of China (English)

    LIU Hai-feng; WANG Chun-hua; WEI Guo-liang

    2008-01-01

    The exponential stability problem is investigated fora class of stochastic recurrent neural networks with time delay and Markovian switching.By using It(o)'s differential formula and the Lyapunov stabifity theory,sufficient condition for the solvability of this problem is derived in telm of linear matrix inequalities,which can be easily checked by resorting to available software packages.A numerical example and the simulation are exploited to demonstrate the effectiveness of the proposed results.

  9. Adaptive Asymptotical Synchronization for Stochastic Complex Networks with Time-Delay and Markovian Switching

    Directory of Open Access Journals (Sweden)

    Xueling Jiang

    2014-01-01

    Full Text Available The problem of adaptive asymptotical synchronization is discussed for the stochastic complex dynamical networks with time-delay and Markovian switching. By applying the stochastic analysis approach and the M-matrix method for stochastic complex networks, several sufficient conditions to ensure adaptive asymptotical synchronization for stochastic complex networks are derived. Through the adaptive feedback control techniques, some suitable parameters update laws are obtained. Simulation result is provided to substantiate the effectiveness and characteristics of the proposed approach.

  10. Solving non-Markovian open quantum systems with multi-channel reservoir coupling

    Energy Technology Data Exchange (ETDEWEB)

    Broadbent, Curtis J., E-mail: curtis.broadbent@rochester.edu [Rochester Theory Center, and Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Jing, Jun; Yu, Ting [Center for Controlled Quantum Systems, and the Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Eberly, Joseph H. [Rochester Theory Center, and Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States)

    2012-08-15

    We extend the non-Markovian quantum state diffusion (QSD) equation to open quantum systems which exhibit multi-channel coupling to a harmonic oscillator reservoir. Open quantum systems which have multi-channel reservoir coupling are those in which canonical transformation of reservoir modes cannot reduce the number of reservoir operators appearing in the interaction Hamiltonian to one. We show that the non-Markovian QSD equation for multi-channel reservoir coupling can, in some cases, lead to an exact master equation which we derive. We then derive the exact master equation for the three-level system in a vee-type configuration which has multi-channel reservoir coupling and give the analytical solution. Finally, we examine the evolution of the three-level vee-type system with generalized Ornstein-Uhlenbeck reservoir correlations numerically. - Highlights: Black-Right-Pointing-Pointer The concept of multi-channel vs. single-channel reservoir coupling is rigorously defined. Black-Right-Pointing-Pointer The non-Markovian quantum state diffusion equation for arbitrary multi-channel reservoir coupling is derived. Black-Right-Pointing-Pointer An exact time-local master equation is derived under certain conditions. Black-Right-Pointing-Pointer The analytical solution to the three-level system in a vee-type configuration is found. Black-Right-Pointing-Pointer The evolution of the three-level system under generalized Ornstein-Uhlenbeck noise is plotted for many parameter regimes.

  11. Non-Markovian dynamics of quantum coherence of two-level system driven by classical field

    Science.gov (United States)

    Huang, Zhiming; Situ, Haozhen

    2017-09-01

    In this paper, we study the quantum coherence dynamics of two-level atom system embedded in non-Markovian reservoir in the presence of classical driving field. We analyze the influence of memory effects, classical driving, and detuning on the quantum coherence. It is found that the quantum coherence has different behaviors in resonant case and non-resonant case. In the resonant case, in stark contrast with previous results, the strength of classical driving plays a negative effect on quantum coherence, while detuning parameter has the opposite effect. However, in non-resonant case through a long time, classical driving and detuning parameter have a different influence on quantum coherence compared with resonant case. Due to the memory effect of environment, in comparison with Markovian regime, quantum coherence presents vibrational variations in non-Markovian regime. In the resonant case, all quantum coherence converges to a fixed maximum value; in the non-resonant case, quantum coherence evolves to different stable values. For zero-coherence initial states, quantum coherence can be generated with evolution time. Our discussions and results should be helpful in manipulating and preserving the quantum coherence in dissipative environment with classical driving field.

  12. Haplotyping a single triploid individual based on genetic algorithm.

    Science.gov (United States)

    Wu, Jingli; Chen, Xixi; Li, Xianchen

    2014-01-01

    The minimum error correction model is an important combinatorial model for haplotyping a single individual. In this article, triploid individual haplotype reconstruction problem is studied by using the model. A genetic algorithm based method GTIHR is presented for reconstructing the triploid individual haplotype. A novel coding method and an effectual hill-climbing operator are introduced for the GTIHR algorithm. This relatively short chromosome code can lead to a smaller solution space, which plays a positive role in speeding up the convergence process. The hill-climbing operator ensures algorithm GTIHR converge at a good solution quickly, and prevents premature convergence simultaneously. The experimental results prove that algorithm GTIHR can be implemented efficiently, and can get higher reconstruction rate than previous algorithms.

  13. Unifying ecology and macroevolution with individual-based theory

    NARCIS (Netherlands)

    Rosindell, James; Harmon, Luke J.; Etienne, Rampal S.

    2015-01-01

    A contemporary goal in both ecology and evolutionary biology is to develop theory that transcends the boundary between the two disciplines, to understand phenomena that cannot be explained by either field in isolation. This is challenging because macroevolution typically uses lineage-based models, w

  14. CDFISH: an individual-based, spatially-explicit, landscape genetics simulator for aquatic species in complex riverscapes

    Science.gov (United States)

    Erin L. Landguth,; Muhlfeld, Clint C.; Luikart, Gordon

    2012-01-01

    We introduce Cost Distance FISHeries (CDFISH), a simulator of population genetics and connectivity in complex riverscapes for a wide range of environmental scenarios of aquatic organisms. The spatially-explicit program implements individual-based genetic modeling with Mendelian inheritance and k-allele mutation on a riverscape with resistance to movement. The program simulates individuals in subpopulations through time employing user-defined functions of individual migration, reproduction, mortality, and dispersal through straying on a continuous resistance surface.

  15. Direct observation of markovian behavior of the mechanical unfolding of individual proteins.

    Science.gov (United States)

    Cao, Yi; Kuske, Rachel; Li, Hongbin

    2008-07-01

    Single-molecule force-clamp spectroscopy is a valuable tool to analyze unfolding kinetics of proteins. Previous force-clamp spectroscopy experiments have demonstrated that the mechanical unfolding of ubiquitin deviates from the generally assumed Markovian behavior and involves the features of glassy dynamics. Here we use single molecule force-clamp spectroscopy to study the unfolding kinetics of a computationally designed fast-folding mutant of the small protein GB1, which shares a similar beta-grasp fold as ubiquitin. By treating the mechanical unfolding of polyproteins as the superposition of multiple identical Poisson processes, we developed a simple stochastic analysis approach to analyze the dwell time distribution of individual unfolding events in polyprotein unfolding trajectories. Our results unambiguously demonstrate that the mechanical unfolding of NuG2 fulfills all criteria of a memoryless Markovian process. This result, in contrast with the complex mechanical unfolding behaviors observed for ubiquitin, serves as a direct experimental demonstration of the Markovian behavior for the mechanical unfolding of a protein and reveals the complexity of the unfolding dynamics among structurally similar proteins. Furthermore, we extended our method into a robust and efficient pseudo-dwell-time analysis method, which allows one to make full use of all the unfolding events obtained in force-clamp experiments without categorizing the unfolding events. This method enabled us to measure the key parameters characterizing the mechanical unfolding energy landscape of NuG2 with improved precision. We anticipate that the methods demonstrated here will find broad applications in single-molecule force-clamp spectroscopy studies for a wide range of proteins.

  16. Delay-dependent stabilization of singular Markovian jump systems with state delay

    Institute of Scientific and Technical Information of China (English)

    Zhengguang WU; Hongye SU; Jian CHU

    2009-01-01

    This paper deals with the delay-dependent stabilization problem for singular systems with Markovian jump parameters and time delays.A delay-dependent condition is established for the considered system to be regular,impulse free and stochastically stable.Based on the condition,a design algorithm of the desired state feedback controller which guarantees the resultant closed-loop system to be regular,impulse free and stochastically stable is proposed in terms of a set of strict linear matrix inequalities (LMIs).Numerical examples show the effectiveness of the proposed methods.

  17. Aftershocks in Modern Perspectives: Complex Earthquake Network, Aging, and Non-Markovianity

    CERN Document Server

    Abe, Sumiyoshi

    2012-01-01

    The phenomenon of aftershocks is studied in view of science of complexity. In particular, three different concepts are examined: (i) the complex-network representation of seismicity, (ii) the event-event correlations, and (iii) the effects of long-range memory. Regarding (i), it is shown the clustering coefficient of the complex earthquake network exhibits a peculiar behavior at and after main shocks. Regarding (ii), it is found that aftershocks experience aging, and the associated scaling holds. And regarding (iii), the scaling relation to be satisfied by a class of singular Markovian processes is violated, implying the existence of the long-range memory in processes of aftershocks.

  18. H∞control for uncertain Markovian jump systems with mode-dependent mixed delays

    Institute of Scientific and Technical Information of China (English)

    Yingchun Wang; Huaguang Zhang

    2008-01-01

    We study the problem of H∞ control for a class of Markovian jump systems with norm-bounded parameter uncertainties and mode-dependent mixed delays including discrete delays and distributed delays in this paper. Our aim is to present a new delay-dependent control approach such that the resulting closed-loop system is robust mean-square (MS) exponentially stable and satisfies a prescribed H∞ performance level, irrespective of the parameter uncertainties. Such delay-dependent approach does not require system transformation or free-weighting matrix. A numerical example shows that the results are less conservative and more effective.

  19. A unified Lie systems theory for closed and open Markovian dynamical quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Schulte-Herbrueggen, Thomas [Technical University of Munich (TUM) (Germany); Dirr, Gunther [University of Wuerzburg (Germany)

    2016-07-01

    Lie groups and Lie semigroups with their symmetries provide a unified framework to pinpoint the dynamic behaviour of closed and open quantum systems under all kinds of controls. Recently, we showed that all Markovian quantum maps can be represented by Lie semigroups. These semigroups come with the geometry of affine maps, whose translational parts determine the respective fixed points. We exploit this geometry for dissipative fixed-point engineering of unique target states be they pure or mixed. We extend capabilities by combining coherent control with simplest noise controls. Particular light is shed on reachability and open-loop versus closed-loop control design.

  20. On a random walk with memory and its relation with Markovian processes

    Energy Technology Data Exchange (ETDEWEB)

    Turban, Loic, E-mail: turban@lpm.u-nancy.f [Groupe de Physique Statistique, Departement Physique de la Matiere et des Materiaux, Institut Jean Lamour (Laboratoire associe au CNRS UMR 7198), CNRS-Nancy Universite-UPV Metz, BP 70239, F-54506 Vandoeuvre les Nancy Cedex (France)

    2010-07-16

    We study a one-dimensional random walk with memory in which the step lengths to the left and to the right evolve at each step in order to reduce the wandering of the walker. The feedback is quite efficient and leads to a non-diffusive walk. The time evolution of the displacement is given by an equivalent Markovian dynamical process. The probability density for the position of the walker is the same at any time as for a random walk with shrinking steps, although the two-time correlation functions are quite different.

  1. L1/ℓ1-Gain analysis and synthesis of Markovian jump positive systems with time delay.

    Science.gov (United States)

    Zhang, Junfeng; Zhao, Xudong; Zhu, Fubo; Han, Zhengzhi

    2016-07-01

    This paper is concerned with stability analysis and control synthesis of Markovian jump positive systems with time delay. The notions of stochastic stability with L1- and ℓ1-gain performances are introduced for continuous- and discrete-time contexts, respectively. Using a stochastic copositive Lyapunov function, sufficient conditions for the stability with L1/ℓ1-gain performance of the systems are established. Furthermore, mode-dependent controllers are designed to achieve the stabilization with L1/ℓ1-gain of the resulting closed-loop systems. All proposed conditions are formulated in terms of linear programming. Numerical examples are provided to verify the effectiveness of the findings of theory.

  2. Robust H∞ Filtering for Uncertain Neutral Stochastic Systems with Markovian Jumping Parameters and Time Delay

    Directory of Open Access Journals (Sweden)

    Yajun Li

    2015-01-01

    Full Text Available This paper deals with the robust H∞ filter design problem for a class of uncertain neutral stochastic systems with Markovian jumping parameters and time delay. Based on the Lyapunov-Krasovskii theory and generalized Finsler Lemma, a delay-dependent stability condition is proposed to ensure not only that the filter error system is robustly stochastically stable but also that a prescribed H∞ performance level is satisfied for all admissible uncertainties. All obtained results are expressed in terms of linear matrix inequalities which can be easily solved by MATLAB LMI toolbox. Numerical examples are given to show that the results obtained are both less conservative and less complicated in computation.

  3. Robust H∞ Control for Uncertain Markovian Jump Linear Time-Delay Systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper studies the robust stochastic stabilization and robust H∞ control for linear time-delay systems with both Markovian jump parameters and unknown norm-bounded parameter uncertainties. This problem can be solved on the basis of stochastic Lyapunov approach and linear matrix inequality (LMI) technique. Sufficient conditions for the existence of stochastic stabilization and robust H∞ state feedback controller are presented in terms of a set of solutions of coupled LMIs. Finally, a numerical example is included to demonstrate the practicability of the proposed methods.

  4. On Optimal Fault Detection for Discrete-time Markovian Jump Linear Systems

    Institute of Scientific and Technical Information of China (English)

    LI Yue-Yang; ZHONG Mai-Ying

    2013-01-01

    This paper deals with the problem of fault detection for discrete-time Markovian jump linear systems (MJLS).Using an observer-based fault detection filter (FDF) as a residual generator,the design of the FDF is formulated as an optimization problem for maximizing stochastic H_/H∞ or H∞/H∞ performance index.With the aid of an operator optimization method,it is shown that a unified optimal solution can be derived by solving a coupled Riccati equation.Numerical examples are given to show the effectiveness of the proposed method.

  5. Delay-dependent finite-time boundedness of a class of Markovian switching neural networks with time-varying delays.

    Science.gov (United States)

    Zhong, Qishui; Cheng, Jun; Zhao, Yuqing

    2015-07-01

    In this paper, a novel method is developed for delay-dependent finite-time boundedness of a class of Markovian switching neural networks with time-varying delays. New sufficient condition for stochastic boundness of Markovian jumping neural networks is presented and proved by an newly augmented stochastic Lyapunov-Krasovskii functional and novel activation function conditions, the state trajectory remains in a bounded region of the state space over a given finite-time interval. Finally, a numerical example is given to illustrate the efficiency and less conservative of the proposed method.

  6. Quality Evaluation in Flexible Manufacturing Systems: A Markovian Approach

    Directory of Open Access Journals (Sweden)

    Jingshan Li

    2007-01-01

    to illustrate the applicability of the method. The results of this study suggest a possible approach to investigate the impact of flexibility on product quality and, finally, with extensions and enrichment of the model, may lead to provide production engineers and managers a better understanding of the quality implications and to summarize some general guidelines of operation management in flexible manufacturing systems.

  7. TCP Congestion Control for the Networks with Markovian Jump Parameters

    Directory of Open Access Journals (Sweden)

    MOMENI, H. R.

    2011-05-01

    Full Text Available This paper is concerned with the problem of TCP congestion control for the class of communication networks with random parameters. The linear dynamic model of TCP New Reno in congestion avoidance mode is considered which contains round trip delays in both state and input. The randomness of link capacity, round trip time delay and the number of TCP sessions is modeled with a continuous-time finite state Markov process. An Active Queue Management (AQM technique is then used to adjust the queue level of the congested link to a predefined value. For this purpose, a dynamic output feedback controller with mode dependent parameters is synthesized to stochastically stabilize the TCP/AQM dynamics. The procedure of the control synthesis is implemented by solving a linear matrix inequality (LMI. The results are tested within a simulation example and the effectiveness of the proposed design method is verified.

  8. CARMA: Collective Adaptive Resource-sharing Markovian Agents

    Directory of Open Access Journals (Sweden)

    Luca Bortolussi

    2015-09-01

    Full Text Available In this paper we present CARMA, a language recently defined to support specification and analysis of collective adaptive systems. CARMA is a stochastic process algebra equipped with linguistic constructs specifically developed for modelling and programming systems that can operate in open-ended and unpredictable environments. This class of systems is typically composed of a huge number of interacting agents that dynamically adjust and combine their behaviour to achieve specific goals. A CARMA model, termed a collective, consists of a set of components, each of which exhibits a set of attributes. To model dynamic aggregations, which are sometimes referred to as ensembles, CARMA provides communication primitives that are based on predicates over the exhibited attributes. These predicates are used to select the participants in a communication. Two communication mechanisms are provided in the CARMA language: multicast-based and unicast-based. In this paper, we first introduce the basic principles of CARMA and then we show how our language can be used to support specification with a simple but illustrative example of a socio-technical collective adaptive system.

  9. Non-Markovian spiking statistics of a neuron with delayed feedback in presence of refractoriness.

    Science.gov (United States)

    Kravchuk, Kseniia; Vidybida, Alexander

    2014-02-01

    Spiking statistics of a self-inhibitory neuron is considered. The neuron receives excitatory input from a Poisson stream and inhibitory impulses through a feedback line with a delay. After triggering, the neuron is in the refractory state for a positive period of time. Recently, [35,6], it was proven for a neuron with delayed feedback and without the refractory state, that the output stream of interspike intervals (ISI) cannot be represented as a Markov process. The refractory state presence, in a sense limits the memory range in the spiking process, which might restore Markov property to the ISI stream. Here we check such a possibility. For this purpose, we calculate the conditional probability density P (tn+1 l tn,...,t1,t0), and prove exactly that it does not reduce to P (tn+1 l tn,...,t1) for any n ⋝0. That means, that activity of the system with refractory state as well cannot be represented as a Markov process of any order. We conclude that it is namely the delayed feedback presence which results in non-Markovian statistics of neuronal firing. As delayed feedback lines are common for any realistic neural network, the non-Markovian statistics of the network activity should be taken into account in processing of experimental data.

  10. A prospective study of SCA3 gait ataxia described through a Markovian method.

    Science.gov (United States)

    Camey, Suzi; Jardim, Laura Bannach; Kieling, Christian; Saute, Jonas Alex Morales; Vigo, Alvaro

    2010-01-01

    Studies on the natural history of rare, chronic diseases like spinocerebellar ataxia 3 (SCA3) are hard to be done, since patients enter the study with variable disease durations and are followed up at irregular intervals. Our purpose was to use all the available data to describe the progression of gait ataxia in a long-term cohort of patients with SCA3 through a markovian method. SCA3 patients were recruited between 1998 and 2005 and were invited to annual neurological follow-ups until 2007. Gait ataxia was described through a mean score graph and a mean trajectory graph. We followed up 105 patients; at baseline, the mean age and disease duration were, 40.5 (SD = 12.6) and 7.7 (SD = 5.8) years, respectively. The mean time to reach stages 1, 2, 3 and 4 of gait ataxia were 3, 5.4, 10.8 and 19.4 years of disease duration. The mean score graph was unsmooth, showing several unlikely ups and downs. The mean trajectory graph produced a continuous curve. The markovian method described the natural history of gait ataxia without any a posteriori adjustment of data and allowed statistical comparisons between subgroups. This method will be useful in future clinical trials in this and in other chronic degenerative diseases. 2010 S. Karger AG, Basel.

  11. Adaptive Sliding Mode Control of Mobile Manipulators with Markovian Switching Joints

    Directory of Open Access Journals (Sweden)

    Liang Ding

    2012-01-01

    Full Text Available The hybrid joints of manipulators can be switched to either active (actuated or passive (underactuated mode as needed. Consider the property of hybrid joints, the system switches stochastically between active and passive systems, and the dynamics of the jump system cannot stay on each trajectory errors region of subsystems forever; therefore, it is difficult to determine whether the closed-loop system is stochastically stable. In this paper, we consider stochastic stability and sliding mode control for mobile manipulators using stochastic jumps switching joints. Adaptive parameter techniques are adopted to cope with the effect of Markovian switching and nonlinear dynamics uncertainty and follow the desired trajectory for wheeled mobile manipulators. The resulting closed-loop system is bounded in probability and the effect due to the external disturbance on the tracking errors can be attenuated to any preassigned level. It has been shown that the adaptive control problem for the Markovian jump nonlinear systems is solvable if a set of coupled linear matrix inequalities (LMIs have solutions. Finally, a numerical example is given to show the potential of the proposed techniques.

  12. Consensus of Multiagent Systems Subject to Partially Accessible and Overlapping Markovian Network Topologies.

    Science.gov (United States)

    Ge, Xiaohua; Han, Qing-Long

    2016-06-07

    This paper addresses the consensus problem for a continuous-time multiagent system (MAS) with Markovian network topologies and external disturbance. Different from some existing results, global jumping modes of the Markovian network topologies are not required to be completely available for consensus protocol design. A network topology mode regulator (NTMR) is first developed to decompose unavailable global modes into several overlapping groups, where overlapping groups refer to the scenario that there exist commonly shared local modes between any two distinct groups. The NTMR schedules which group modes each agent may access at every time step. Then a new group mode-dependent distributed consensus protocol on the basis of relative measurement outputs of neighboring agents is delicately constructed. In this sense, the proposed consensus protocol relies only on group and partial modes and eliminates the need for complete knowledge of global modes. Sufficient conditions on the existence of desired distributed consensus protocols are derived to ensure consensus of the MAS with a prescribed H∞ performance level. Two examples are provided to show the effectiveness of the proposed consensus protocol.

  13. Quantum Monte-Carlo method applied to Non-Markovian barrier transmission

    CERN Document Server

    Hupin, G

    2010-01-01

    In nuclear fusion and fission, fluctuation and dissipation arise due to the coupling of collective degrees of freedom with internal excitations. Close to the barrier, both quantum, statistical and non-Markovian effects are expected to be important. In this work, a new approach based on quantum Monte-Carlo addressing this problem is presented. The exact dynamics of a system coupled to an environment is replaced by a set of stochastic evolutions of the system density. The quantum Monte-Carlo method is applied to systems with quadratic potentials. In all range of temperature and coupling, the stochastic method matches the exact evolution showing that non-Markovian effects can be simulated accurately. A comparison with other theories like Nakajima-Zwanzig or Time-ConvolutionLess ones shows that only the latter can be competitive if the expansion in terms of coupling constant is made at least to fourth order. A systematic study of the inverted parabola case is made at different temperatures and coupling constants....

  14. Non-Markovian transmission through two quantum dots connected by a continuum

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yunshan [School of Physics, Peking University, Beijing 100871 (China); Department of Physics, Beijing Normal University, Beijing 100875 (China); Xu, Luting; Meng, Jianyu [Department of Physics, Beijing Normal University, Beijing 100875 (China); Li, Xin-Qi, E-mail: lixinqi@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China)

    2012-10-01

    We consider a transport setup that contains a double-dot connected by a continuum. Via an exact solution of the time-dependent Schrödinger equation, we demonstrate a highly non-Markovian quantum-coherence-mediated transport through this dot–continuum–dot (DCD) system, which is in contrast with the common premise since in typical case a quantum particle does not reenter the system of interest once it irreversibly decayed into a continuum (such as the spontaneous emission of a photon). We also find that this DCD system supports an unusual steady state with unequal source and drain currents, owing to electrons irreversibly entering the continuum and floating there. -- Highlights: ► We analyze the non-Markovian transmission through a double-dot connected by a continuum. ► We convert the many-electron problem into a single-particle approach and find an exact solution. ► We reveal some interesting behaviors associated with quantum-coherence-assisted transmission through a continuum.

  15. A Markovian analysis of bacterial genome sequence constraints

    Directory of Open Access Journals (Sweden)

    Aaron D. Skewes

    2013-08-01

    Full Text Available The arrangement of nucleotides within a bacterial chromosome is influenced by numerous factors. The degeneracy of the third codon within each reading frame allows some flexibility of nucleotide selection; however, the third nucleotide in the triplet of each codon is at least partly determined by the preceding two. This is most evident in organisms with a strong G + C bias, as the degenerate codon must contribute disproportionately to maintaining that bias. Therefore, a correlation exists between the first two nucleotides and the third in all open reading frames. If the arrangement of nucleotides in a bacterial chromosome is represented as a Markov process, we would expect that the correlation would be completely captured by a second-order Markov model and an increase in the order of the model (e.g., third-, fourth-…order would not capture any additional uncertainty in the process. In this manuscript, we present the results of a comprehensive study of the Markov property that exists in the DNA sequences of 906 bacterial chromosomes. All of the 906 bacterial chromosomes studied exhibit a statistically significant Markov property that extends beyond second-order, and therefore cannot be fully explained by codon usage. An unrooted tree containing all 906 bacterial chromosomes based on their transition probability matrices of third-order shares ∼25% similarity to a tree based on sequence homologies of 16S rRNA sequences. This congruence to the 16S rRNA tree is greater than for trees based on lower-order models (e.g., second-order, and higher-order models result in diminishing improvements in congruence. A nucleotide correlation most likely exists within every bacterial chromosome that extends past three nucleotides. This correlation places significant limits on the number of nucleotide sequences that can represent probable bacterial chromosomes. Transition matrix usage is largely conserved by taxa, indicating that this property is likely

  16. Evolution of entropy in different types of non-Markovian three-level systems: Single reservoir vs. two independent reservoirs

    Indian Academy of Sciences (India)

    JAGHOURI HAKIMEH; SARBISHAEI MOHSEN; JAVIDAN KUROSH

    2016-05-01

    We solve the Nakajima–Zwanzig (NZ) non-Markovian master equation to study the dynamics of different types of three-level atomic systems interacting with bosonic Lorentzian reservoirs at zero temperature. Von Neumann entropy (S) is used to show the evolution of the degree of entanglement of the subsystems. The results presented are also compared with some recently published reports.

  17. Non-Markovian dynamics for an open two-level system without rotating wave approximation: indivisibility versus backflow of information

    Science.gov (United States)

    Zeng, H. S.; Tang, N.; Zheng, Y. P.; Xu, T. T.

    2012-10-01

    By use of the recently presented two measures, the indivisibility and the backflow of information, we study the non-Markovianity of the dynamics for a two-level system interacting with a zero-temperature structured environment without using rotating wave approximation (RWA). In the limit of weak coupling between the system and its reservoir, and by expanding the time-convolutionless (TCL) generator to the forth order with respect to the coupling strength, the time-local non-Markovian master equation for the reduced state of the system is derived. Under the secular approximation, the exact analytic solution is obtained and the sufficient and necessary conditions for the indivisibility and the backflow of information for the system dynamics are presented. In the more general case, we investigate numerically the properties of the two measures for the case of Lorentzian reservoir. Our results show the importance of the counter-rotating terms to the short-time-scale non-Markovian behavior of the system dynamics, further expose the relation between the two measures and their rationality as non-Markovian measures. Finally, the complete positivity of the dynamics of the considered system is discussed.

  18. On the statistical implications of certain Random permutations in Markovian Arrival Processes (MAPs) and second order self-similar processes

    DEFF Research Database (Denmark)

    Andersen, Allan T.; Nielsen, Bo Friis

    2000-01-01

    . The implications for the correlation structure when shuffling an exactly second-order self-similar process are examined. We apply the Markovian arrival process (MAP) as a tool to investigate whether general conclusions can be made with regard to the statistical implications of the shuffling experiments...

  19. Non-Markovian barotropic-type and Hall-type fluctuation relations in crossed electric and magnetic fields

    Science.gov (United States)

    Jiménez-Aquino, J. I.; Romero-Bastida, M.

    2016-09-01

    In this paper we derive the non-Markovian barotropic-type and Hall-type fluctuation relations for noninteracting charged Brownian particles embedded in a memory heat bath and under the action of crossed electric and magnetic fields. We first obtain a more general non-Markovian fluctuation relation formulated within the context of a generalized Langevin equation with arbitrary friction memory kernel and under the action of a constant magnetic field and an arbitrary time-dependent electric field. It is shown that this fluctuation relation is related to the total amount of an effective work done on the charged particle as it is driven out of equilibrium by the applied time-dependent electric field. Both non-Markovian barotropic- and Hall-type fluctuation relations are then derived when the electric field is assumed to be also a constant vector pointing along just one axis. In the Markovian limit, we show explicitly that they reduce to the same results reported in the literature.

  20. Ultrafast dynamics of laser-pulse excited semiconductors: non-Markovian quantum kinetic equations with nonequilibrium correlations

    Directory of Open Access Journals (Sweden)

    V.V.Ignatyuk

    2004-01-01

    Full Text Available Non-Markovian kinetic equations in the second Born approximation are derived for a two-zone semiconductor excited by a short laser pulse. Both collision dynamics and running nonequilibrium correlations are taken into consideration. The energy balance and relaxation of the system to equilibrium are discussed. Results of numerical solution of the kinetic equations for carriers and phonons are presented.

  1. Probabilistic Analysis of Buffer Starvation in Markovian Queues

    CERN Document Server

    Xu, Yuedong; El-Azouzi, Rachid; Haddad, Majed; Elayoubi, Salaheddine; Jimenez, Tania

    2011-01-01

    Our purpose in this paper is to obtain the exact distribution of the number of buffer starvations within a sequence of $N$ consecutive packet arrivals. The buffer is modeled as an M/M/1 queue, plus the consideration of bursty arrivals characterized by an interrupted Poisson process. When the buffer is empty, the service restarts after a certain amount of packets are prefetched. With this goal, we propose two approaches, one of which is based on Ballot theorem, and the other uses recursive equations. The Ballot theorem approach gives an explicit solution, but at the cost of the high complexity order in certain circumstances. The recursive approach, though not offering an explicit result, needs fewer computations. We further propose a fluid analysis of starvation probability on the file level, given the distribution of file size and the traffic intensity. The starvation probabilities of this paper have many potential applications. We apply them to optimize the quality of experience (QoE) of media streaming serv...

  2. Phenomena of limit cycle oscillations for non-Markovian dissipative systems undergoing long-time evolution%非马尔科夫耗散系统长时演化下的极限环振荡现象∗

    Institute of Scientific and Technical Information of China (English)

    游波; 岑理相

    2015-01-01

    Understanding the non-Markovian dynamics of dissipative processes induced by memory effects of the environment is a fundamental subject of open quantum systems. Because of the complexity of open quantum systems, e.g., the multiple energy scales involving that of the system, the environment, and their mutual coupling, it is generally a challenging task to characterize the relationship among the parameters of the system dynamics and the reservoir spectra. For the two-level spontaneous emission model within structured environments, it was shown in a recent literature (Opt. Lett. 38, 3650) that a functional relation could be established between the asymptotically non-decaying population and the spectral density of the reservoir as the system undergoes a long-time evolution. It hence renders a distinct perspective to look into the character of long-lived quantum coherence in the corresponding non-Markovian process. This article is devoted to further investigate the phenomena of limit cycle oscillations possibly occurring in such non-Markovian dissipative systems in a long-time evolution. For a two-level system subjected to an environment with Ohmic class spectra, due to the presence of a unique bound-state mode of the system, the evolution trajectory of the given initial states will converge to a limit cycle in the Bloch space. The dependence of the radius and the location of the limit cycle on the spectral density function of the reservoir are manifested by virtue of the described functional relation. For the model subjected to a photonic crystal environment with multiple bands, our studies reveal that, owing to the presence of two or more bound states, the evolution trajectory of the system will converge to a toric curve of a paraboloid in the Bloch space and the phenomena of periodic or quasi-periodic oscillations could exhibit. While the equation of the parabolic curve is fully determined by the initial values of the state vector in the Bloch space, our results

  3. Optical texture analysis for automatic cytology and histology: a Markovian approach

    Energy Technology Data Exchange (ETDEWEB)

    Pressman, N.J.

    1976-10-12

    Markovian analysis is a method to measure optical texture based on gray-level transition probabilities in digitized images. The experiments described in this dissertation investigate the classification performance of parameters generated by this method. Three types of data sets are used: images of (1) human blood leukocytes (nuclei of monocytes, neutrophils, and lymphocytes; Wright stain; (0.125 ..mu..m)/sup 2//picture point), (2) cervical exfoliative cells (nuclei of normal intermediate squamous cells and dysplastic and carcinoma in situ cells; azure-A/Feulgen stain; (0.125 ..mu..m)/sup 2//picture point), and (3) lymph-node tissue sections (6-..mu..m thick sections from normal, acute lymphadenitis, and Hodgkin lymph nodes; hematoxylin and eosin stain; (0.625 ..mu..m)/sup 2/ picture point). Each image consists of 128 x 128 picture points originally scanned with a 256 gray-level resolution. Each image class is defined by 75 images.

  4. Non-Markovian Quantum State Diffusion for Temperature-Dependent Linear Spectra of Light Harvesting Aggregates

    CERN Document Server

    Ritschel, Gerhard; Möbius, Sebastian; Strunz, Walter T; Eisfeld, Alexander

    2014-01-01

    Non-Markovian Quantum State Diffusion (NMQSD) has turned out to be an effective method to calculate excitonic properties of aggregates composed of organic chromophores, taking into account the strong coupling of electronic transitions to vibrational modes of the chromophores. In this paper we show how to calculate linear optical spectra at finite temperatures in an efficient way. To this end we map a finite temperature environment to the zero temperature case using the so-called thermofield method. The zero temperature case equations can then be solved efficiently by standard integrators. As an example we calculate absorption and circular dichroism spectra of a linear aggregate. The formalism developed can be applied to calculate arbitrary correlation functions.

  5. Suppressing non-Markovian noises by coupling the qubit to a chaotic device

    CERN Document Server

    Zhang, Jing; Zhang, Wei-Min; Wu, Re-Bing; Tarn, Tzyh-Jong

    2011-01-01

    To suppress decoherence of solid-state qubits which are coupled to the non-Markovian noises, we propose a strategy to couple the qubit with a chaotic device, of which the broad power distribution in the high-frequency domain can be used to freeze the noises just like the dynamical decoupling control (DDC) method. Compared with the DDC, high-frequency components can be generated by the chaotic device even driven by a low-frequency field and we do not need to optimize the control fields to generate complex control pulses. As an application to superconducting circuits, we find that various noises in a wide frequency domain, including low-frequency $1/f$, high-frequency Ohmic, sub-Ohmic, and super-Ohmic noises, can be efficiently suppressed by coupling the qubit to a Duffing oscillator, and the decoherence rate of the qubit is efficiently decreased for about $100$ times in magnitude.

  6. A discrete single server queue with Markovian arrivals and phase type group services

    Directory of Open Access Journals (Sweden)

    Attahiru Sule Alfa

    1995-01-01

    Full Text Available We consider a single-server discrete queueing system in which arrivals occur according to a Markovian arrival process. Service is provided in groups of size no more than M customers. The service times are assumed to follow a discrete phase type distribution, whose representation may depend on the group size. Under a probabilistic service rule, which depends on the number of customers waiting in the queue, this system is studied as a Markov process. This type of queueing system is encountered in the operations of an automatic storage retrieval system. The steady-state probability vector is shown to be of (modified matrix-geometric type. Efficient algorithmic procedures for the computation of the rate matrix, steady-state probability vector, and some important system performance measures are developed. The steady-state waiting time distribution is derived explicitly. Some numerical examples are presented.

  7. Open system quantum dynamics with correlated initial states, not completely positive maps and non-Markovianity

    CERN Document Server

    Devi, A R Usha; Sudha,

    2010-01-01

    Dynamical A and B maps have been employed extensively by Sudarshan and co-workers to investigate open system evolution of quantum systems. A canonical structure of the A-map is introduced here. It is shown that this canonical A-map enables us to investigate if the dynamics is completely positive (CP) or non-completely positive (NCP) in an elegant way and hence, it subsumes the basic results on open system dynamics. Identifying memory effects in open system evolution is gaining increasing importance recently and here, a criterion of non-Markovianity, based on the relative entropy of the dynamical state is proposed. The relative entropy difference of the dynamical system serves as a complementary characterization - though not related directly - to the fidelity difference criterion proposed recently. Three typical examples of open system evolution of a qubit, prepared initially in a correlated state with another qubit (environment), and evolving jointly under a specific unitary dynamics - which corresponds to a ...

  8. Noise spectrum of quantum transport through double quantum dots: Renormalization and non-Markovian effects

    Directory of Open Access Journals (Sweden)

    Pengqin Shi

    2016-09-01

    Full Text Available Based on the time-nonlocal particle number-resolved master equation, we investigate the sequential electron transport through the interacting double quantum dots. Our calculations show that there exists the effect of energy renormalization in the dispersion of the bath interaction spectrum and it is sensitive to the the bandwidth of the bath. This effect would strongly affect the stationary current and its zero-frequency shot noise for weak inter-dot coherent coupling strength, but for strong inter-dot coupling regime, it is negligible due to the strong intrinsic Rabi coherent dynamics. Moreover, the possible observable effects of the energy renormalization in the noise spectrum are also investigated through the Rabi coherence signal. Finally, the non-Markovian effect is manifested in the finite-frequency noise spectrum with the appearance of quasisteps, and the magnitude of these quasisteps are modified by the dispersion function.

  9. Optimal Investment-Consumption Strategy under Inflation in a Markovian Regime-Switching Market

    Directory of Open Access Journals (Sweden)

    Huiling Wu

    2016-01-01

    Full Text Available This paper studies an investment-consumption problem under inflation. The consumption price level, the prices of the available assets, and the coefficient of the power utility are assumed to be sensitive to the states of underlying economy modulated by a continuous-time Markovian chain. The definition of admissible strategies and the verification theory corresponding to this stochastic control problem are presented. The analytical expression of the optimal investment strategy is derived. The existence, boundedness, and feasibility of the optimal consumption are proven. Finally, we analyze in detail by mathematical and numerical analysis how the risk aversion, the correlation coefficient between the inflation and the stock price, the inflation parameters, and the coefficient of utility affect the optimal investment and consumption strategy.

  10. Non-Markovian dynamics of a superconducting qubit in an open multimode resonator

    Science.gov (United States)

    Malekakhlagh, Moein; Petrescu, Alexandru; Türeci, Hakan E.

    2016-12-01

    We study the dynamics of a transmon qubit that is capacitively coupled to an open multimode superconducting resonator. Our effective equations are derived by eliminating resonator degrees of freedom while encoding their effect in the Green's function of the electromagnetic background. We account for the dissipation of the resonator exactly by employing a spectral representation for the Green's function in terms of a set of non-Hermitian modes and show that it is possible to derive effective Heisenberg-Langevin equations without resorting to the rotating-wave, two-level, Born, or Markov approximations. A well-behaved time-domain perturbation theory is derived to systematically account for the nonlinearity of the transmon. We apply this method to the problem of spontaneous emission, capturing accurately the non-Markovian features of the qubit dynamics, valid for any qubit-resonator coupling strength.

  11. Noise spectrum of quantum transport through double quantum dots: Renormalization and non-Markovian effects

    Science.gov (United States)

    Shi, Pengqin; Hu, Menghan; Ying, Yaofeng; Jin, Jinshuang

    2016-09-01

    Based on the time-nonlocal particle number-resolved master equation, we investigate the sequential electron transport through the interacting double quantum dots. Our calculations show that there exists the effect of energy renormalization in the dispersion of the bath interaction spectrum and it is sensitive to the the bandwidth of the bath. This effect would strongly affect the stationary current and its zero-frequency shot noise for weak inter-dot coherent coupling strength, but for strong inter-dot coupling regime, it is negligible due to the strong intrinsic Rabi coherent dynamics. Moreover, the possible observable effects of the energy renormalization in the noise spectrum are also investigated through the Rabi coherence signal. Finally, the non-Markovian effect is manifested in the finite-frequency noise spectrum with the appearance of quasisteps, and the magnitude of these quasisteps are modified by the dispersion function.

  12. Synchronization of Markovian jumping inertial neural networks and its applications in image encryption.

    Science.gov (United States)

    Prakash, M; Balasubramaniam, P; Lakshmanan, S

    2016-11-01

    This study is mainly concerned with the problem on synchronization criteria for Markovian jumping time delayed bidirectional associative memory neural networks and their applications in secure image communications. Based on the variable transformation method, the addressed second order differential equations are transformed into first order differential equations. Then, by constructing a suitable Lyapunov-Krasovskii functional and based on integral inequalities, the criteria which ensure the synchronization between the uncontrolled system and controlled system are established through designed feedback controllers and linear matrix inequalities. Further, the proposed results proved that the error system is globally asymptotically stable in the mean square. Moreover, numerical illustrations are provided to validate the effectiveness of the derived analytical results. Finally, the application of addressed system is explored via image encryption/decryption process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics.

    Science.gov (United States)

    Orieux, Adeline; D'Arrigo, Antonio; Ferranti, Giacomo; Lo Franco, Rosario; Benenti, Giuliano; Paladino, Elisabetta; Falci, Giuseppe; Sciarrino, Fabio; Mataloni, Paolo

    2015-02-25

    In many applications entanglement must be distributed through noisy communication channels that unavoidably degrade it. Entanglement cannot be generated by local operations and classical communication (LOCC), implying that once it has been distributed it is not possible to recreate it by LOCC. Recovery of entanglement by purely local control is however not forbidden in the presence of non-Markovian dynamics, and here we demonstrate in two all-optical experiments that such entanglement restoration can even be achieved on-demand. First, we implement an open-loop control scheme based on a purely local operation, without acquiring any information on the environment; then, we use a closed-loop scheme in which the environment is measured, the outcome controling the local operations on the system. The restored entanglement is a manifestation of "hidden" quantum correlations resumed by the local control. Relying on local control, both schemes improve the efficiency of entanglement sharing in distributed quantum networks.

  14. Multiple-time correlation functions for non-Markovian interaction: Beyond the Quantum Regression Theorem

    CERN Document Server

    Alonso, D; Alonso, Daniel; Vega, In\\'es de

    2004-01-01

    Multiple time correlation functions are found in the dynamical description of different phenomena. They encode and describe the fluctuations of the dynamical variables of a system. In this paper we formulate a theory of non-Markovian multiple-time correlation functions (MTCF) for a wide class of systems. We derive the dynamical equation of the {\\it reduced propagator}, an object that evolve state vectors of the system conditioned to the dynamics of its environment, which is not necessarily at the vacuum state at the initial time. Such reduced propagator is the essential piece to obtain multiple-time correlation functions. An average over the different environmental histories of the reduced propagator permits us to obtain the evolution equations of the multiple-time correlation functions. We also study the evolution of MTCF within the weak coupling limit and it is shown that the multiple-time correlation function of some observables satisfy the Quantum Regression Theorem (QRT), whereas other correlations do no...

  15. Non-Markovian Decay and Lasing Condition in an Optical Microcavity Coupled to a Structured Reservoir

    CERN Document Server

    Longhi, S

    2006-01-01

    The decay dynamics of the classical electromagnetic field in a leaky optical resonator supporting a single mode coupled to a structured continuum of modes (reservoir) is theoretically investigated, and the issue of threshold condition for lasing in presence of an inverted medium is comprehensively addressed. Specific analytical results are given for a single-mode microcavity resonantly coupled to a coupled resonator optical waveguide (CROW), which supports a band of continuous modes acting as decay channels. For weak coupling, the usual exponential Weisskopf-Wigner (Markovian) decay of the field in the bare resonator is found, and the threshold for lasing increases linearly with the coupling strength. As the coupling between the microcavity and the structured reservoir increases, the field decay in the passive cavity shows non exponential features, and correspondingly the threshold for lasing ceases to increase, reaching a maximum and then starting to decrease as the coupling strength is further increased. A ...

  16. Passivity analysis of uncertain stochastic neural networks with time-varying delays and Markovian jumping parameters.

    Science.gov (United States)

    Ali, M Syed; Rani, M Esther

    2015-01-01

    This paper investigates the problem of robust passivity of uncertain stochastic neural networks with time-varying delays and Markovian jumping parameters. To reflect most of the dynamical behaviors of the system, both parameter uncertainties and stochastic disturbances are considered; stochastic disturbances are given in the form of a Brownian motion. By utilizing the Lyapunov functional method, the Itô differential rule, and matrix analysis techniques, we establish a sufficient criterion such that, for all admissible parameter uncertainties and stochastic disturbances, the stochastic neural network is robustly passive in the sense of expectation. A delay-dependent stability condition is formulated, in which the restriction of the derivative of the time-varying delay should be less than 1 is removed. The derived criteria are expressed in terms of linear matrix inequalities that can be easily checked by using the standard numerical software. Illustrative examples are presented to demonstrate the effectiveness and usefulness of the proposed results.

  17. Non-Markovian Quantum State Diffusion for temperature-dependent linear spectra of light harvesting aggregates

    Science.gov (United States)

    Ritschel, Gerhard; Suess, Daniel; Möbius, Sebastian; Strunz, Walter T.; Eisfeld, Alexander

    2015-01-01

    Non-Markovian Quantum State Diffusion (NMQSD) has turned out to be an efficient method to calculate excitonic properties of aggregates composed of organic chromophores, taking into account the coupling of electronic transitions to vibrational modes of the chromophores. NMQSD is an open quantum system approach that incorporates environmental degrees of freedom (the vibrations in our case) in a stochastic way. We show in this paper that for linear optical spectra (absorption, circular dichroism), no stochastics is needed, even for finite temperatures. Thus, the spectra can be obtained by propagating a single trajectory. To this end, we map a finite temperature environment to the zero temperature case using the so-called thermofield method. The resulting equations can then be solved efficiently by standard integrators.

  18. Experimental measurement of non-Markovian dynamics and self-diffusion in a strongly coupled plasma

    CERN Document Server

    Strickler, T S; McQuillen, P; Daligault, J; Killian, T C

    2015-01-01

    We present a study of the collisional relaxation of ion velocities in a strongly coupled, ultracold neutral plasma on short timescales compared to the inverse collision rate. Non-exponential decay towards equilibrium for the average velocity of a tagged population of ions heralds non-Markovian dynamics and a breakdown of assumptions underlying standard kinetic theory. We prove the equivalence of the average-velocity curve to the velocity autocorrelation function, a fundamental statistical quantity that provides access to equilibrium transport coefficients and aspects of individual particle trajectories in a regime where experimental measurements have been lacking. From our data, we calculate the ion self-diffusion constant. This demonstrates the utility of ultracold neutral plasmas for isolating the effects of strong coupling on collisional processes, which is of interest for dense laboratory and astrophysical plasmas.

  19. Exploring the free energy gain of phase separation via Markov state modeling

    Science.gov (United States)

    Biedermann, Myra; Heuer, Andreas

    2017-07-01

    The gain of free energy upon unmixing is determined via application of Markov state modeling (MSM), using an Ising model with a fixed number of up- and down-spins. MSM yields reasonable estimates of the free energies. However, a closer look reveals significant differences that point to residual non-Markovian effects. These non-Markovian effects are rather unexpected since the typical criteria to study the quality of Markovianity indicate complete Markovian behavior. We identify the sparse connectivity between different Markov states as a likely reason for the observed bias. By studying a simple five state model system, we can analytically elucidate different sources of the bias and thus explain the different deviations that were observed for the Ising model. Based on this insight, we can modify the determination of the count matrix in the MSM approach. In this way, the estimation of the free energy is significantly improved.

  20. Stability and Linear Quadratic Differential Games of Discrete-Time Markovian Jump Linear Systems with State-Dependent Noise

    Directory of Open Access Journals (Sweden)

    Huiying Sun

    2014-01-01

    Full Text Available We mainly consider the stability of discrete-time Markovian jump linear systems with state-dependent noise as well as its linear quadratic (LQ differential games. A necessary and sufficient condition involved with the connection between stochastic Tn-stability of Markovian jump linear systems with state-dependent noise and Lyapunov equation is proposed. And using the theory of stochastic Tn-stability, we give the optimal strategies and the optimal cost values for infinite horizon LQ stochastic differential games. It is demonstrated that the solutions of infinite horizon LQ stochastic differential games are concerned with four coupled generalized algebraic Riccati equations (GAREs. Finally, an iterative algorithm is presented to solve the four coupled GAREs and a simulation example is given to illustrate the effectiveness of it.