WorldWideScience

Sample records for market le bioethanol

  1. Bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Charles; Larsen, Jan; Morgan, K. [DONG Energy, Fredericia (Denmark)

    2007-05-15

    Security of supply, sustainability and the market are controlling parameters for developing the energy system. Bioethanol is part of the solution to the question about security of supply and the demand for a sustainable development, and all over Europe 1st generation bioethanol plants are being established. Market demands on existing power plants and the simultaneous wish for establishing a capacity for the production of bioethanol with at first 1st generation technology and starchy biomass and then with 2nd generation technology and lignocellulose is the reason for DONG Energy's development of the concept IBUS (Integrated Biomass Utilisation System). In the IBUS concept the production of bioethanol with 1st and 2nd generation technology has been joined and integrated with the power and heat production of the central power plant. Until the summer of 2006 the IBUS straw plant at Skaerbaekvaerket was established by means of a EURO 15 mill. EU project. In addition to being a demonstration facility the plant is being upscaled to a 4 tonne straw per hour plant in preparation for demonstrating the process at a size which forms the basis of upscaling to fullscale 20 tonne per hour in 2008. The process includes continued hydrothermal pre-treatment, enzymatic hydrolysis at high dry matter concentrations, fermentation and distillation. The raw materials are wheat and maize straw. The perspective for DONG Energy is that the IBUS concept, in which bioethanol and CHP production are to be joined, is a step towards materialising the vision that a central power plant can be developed into an energy refinery. The presented development work within 2nd generation bioethanol technology will be carried out in cooperation with leading international players and Danish universities and knowledge centres Risoe National Laboratory, The Royal Veterinary and Agricultural University, Technical University of Denmark (DTU) and Novozymes. (au)

  2. Bioethanol

    NARCIS (Netherlands)

    Groenestijn, J.W. van; Abubackar, H.N.; Veiga, M.C.; Kennes, C.

    2013-01-01

    Production of bioethanol from cellulosic biomass plays an important role to support energy policies. To produce cellulosic ethanol via fermentation it is required to first break the lignocellulosic complex. Numerous technologies for such pretreatment are under development or in a pilot plant stage.

  3. Bioethanol

    International Nuclear Information System (INIS)

    Poitrat, Etienne

    1994-01-01

    Bioethanol or its deriviatives (ethers), are mixed with petrol for use in combustion engines. Suitably adapted diesel or spark ignition engines can be used with pure ethanol. Several years of experience, in the USA (since 1978) and in France, have proved that bioethanol can be added to gasoline up to 5-10% without modification of engines or of their performances. In France, ethyl alcohol or ethanol is obtained mainly by fermentation of farm crops which have a high sugar content (beet) or starch content (cereals, potatoes). In future, it will be possible to obtain ethanol by using the whole plant (wood and straw) and transforming the cellulose and hemicellulose into elementary sugars (C5,C6) by enzymatic hydrolysis. Research work is underway in this field. The ether considered here is ETBE (ethyl-tertio-butyl-ether), obtained from the reaction between isobutylene and ethanol. (author)

  4. Bioethanol: industrial world perspectives

    International Nuclear Information System (INIS)

    Grassi, G.

    2000-01-01

    An overview of the production of bioethanol from biomass is presented, and the future for bioethanol in the transport, cogeneration, domestic appliances, and chemicals markets are examined. Bioethanol economics are considered, and yields and estimated prices for bioethanol produced from different crops are tabulated. Specific uses of bioethanol in the different markets are highlighted including the blending of ethanol with petrol in the transport market, the use of bioethanol for cooking in the domestic market, and the production of chemicals from bioethanol

  5. Stabilisation of the grain market by the flexible use of grain for bioethanol

    NARCIS (Netherlands)

    Helming, J.F.M.; Pronk, A.; Woltjer, I.

    2010-01-01

    This report reviews whether the grain market and grain price can be stabilised by the variation of the use of grain in the EU-27's production of bioethanol. The time horizon of this study is 2020, whereby account is taken of the minimum 10% obligation for biofuel use in the EU-27. An economic

  6. Stabilization of cereal markets by flexible use of cereals for bio-ethanol

    International Nuclear Information System (INIS)

    Helming, J.F.M.; Pronk, A.; Woltjer, G.

    2010-05-01

    This report addresses the question if it is possible to stabilize the grain market and the grain price by means of variation in the deployment of grain for producing bio-ethanol in the Eu-27. The time horizon of this study is 2020, taking into account the blending obligation for biofuels of minimal 10% in the Eu-27. A basic scenarios and several alternative scenarios are developed by means of an economic calculation model. In the alternative scenarios more or less grain is used for own production of bio-ethanol in the Eu-27. The variation depends on the volume of the grain production compared to the basic scenario. The effect of the additional own production of bio-ethanol on the grain price is subsequently addressed. [nl

  7. Dynamic impacts of high oil prices on the bioethanol and feedstock markets

    International Nuclear Information System (INIS)

    Cha, Kyung Soo; Bae, Jeong Hwan

    2011-01-01

    This study investigates the impacts of high international oil prices on the bioethanol and corn markets in the US. Between 2007 and 2008, the prices of major grain crops had increased sharply, reflecting the rise in international oil prices. These dual price shocks had caused substantial harm to the global economy. Employing a structural vector auto-regression model (SVAR), we analyze how increases in international oil prices could impact the prices of and demand for corn, which is used as a major bioethanol feedstock in the US. The results indicate that an increase in the oil price would increase bioethanol demand for corn and corn prices in the short run and that corn prices would stabilize in the long run as corn exports and feedstock demand for corn decline. Consequently, policies supporting biofuels should encourage the use of bioethanol co-products for feed and the development of marginal land to mitigate increases in the feedstock price. - Research highlights: → World economy experienced 'dual shocks', which were caused by skyrocketed oil prices and grain prices between 2007 and 2008. → Sharp increases in ethanol production in response to high oil prices were considered as a major driving force to 'ag-flation' in the United States. → Applying a time series econometric tool, called the 'structural vector auto-regression model', we evaluated relationship between ethanol production and corn prices. → The result shows that ethanol production affects corn prices in the short run, while corn prices are lowered as other corn demands (feed for livestock or export demand) decline in the long run.

  8. Technological trends, global market, and challenges of bio-ethanol production.

    Science.gov (United States)

    Mussatto, Solange I; Dragone, Giuliano; Guimarães, Pedro M R; Silva, João Paulo A; Carneiro, Lívia M; Roberto, Inês C; Vicente, António; Domingues, Lucília; Teixeira, José A

    2010-01-01

    Ethanol use as a fuel additive or directly as a fuel source has grown in popularity due to governmental regulations and in some cases economic incentives based on environmental concerns as well as a desire to reduce oil dependency. As a consequence, several countries are interested in developing their internal market for use of this biofuel. Currently, almost all bio-ethanol is produced from grain or sugarcane. However, as this kind of feedstock is essentially food, other efficient and economically viable technologies for ethanol production have been evaluated. This article reviews some current and promising technologies for ethanol production considering aspects related to the raw materials, processes, and engineered strains development. The main producer and consumer nations and future perspectives for the ethanol market are also presented. Finally, technological trends to expand this market are discussed focusing on promising strategies like the use of microalgae and continuous systems with immobilized cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. The Marketing 6 Conference; Le congres Marketing 6

    Energy Technology Data Exchange (ETDEWEB)

    Jego, H. [Gaz de France (GDF), 75 - Paris (France)

    1995-12-01

    The Marketing 6 congress has taken place in Cannes (France) from May 31 to June 2, 1995, with 600 participants from about 20 countries. It was organized by the Intergas Marketing Organization which concerns 19 member countries distributed worldwide. This paper is a report of this congress and is organized as a series of articles. The first article gives a first overview of the congress and a synthesis of the oral communications from natural gas industry personalities. The following articles are summaries of the talks given in each theme: the residential sector (customers services and information, heat and apparatus selling, safety control, improvement and optimization of natural gas use); the tertiary sector (stakes, engineering, market, and assets of natural gas, weaknesses, strategies and action plans); the industrial sector (technical assistance, customers service, wastes valorization and elimination, environment protection, low-power gas turbines); natural gas propulsion systems (vehicle refueling system), cogeneration and power production (gas turbine and fuel cells). Four round-tables were also organized on the following topics: communication (opportunities, targets, threats); environment (air quality, noise, wastes, soils and ground waters quality, materials recycling, apparatus adjustments and performances, new products, counsels); natural gas marketing in Central Europe countries; marketing studies. (J.S.). 1 fig. 15 photos.

  10. Bio-ethanol: from the Brazilian experience to the formation of a global market

    International Nuclear Information System (INIS)

    Poppe, M.; Horta Nogueira, L.A.

    2009-01-01

    Almost a century of regular use as a car fuel and a few decades of significant technical progress have now made sugar cane bio ethanol a viable option to replace efficiently fossil fuels. This article sets out the main steps of the development of Brazil's bio ethanol industry as well as the growth of demand, while underlining the role of public policies that have been gradually introduced to help reach economic competitiveness, at the same time favouring sustainable development. Currently, 33 million cars made locally or imported into Brazil run on pure bio ethanol, or mixed with gasoline (E25) and a significant part of Brazil's electricity is produced by cogeneration systems that use sugar cane bagasse. This positive experience stands a good chance of spreading, thus extending the contribution of renewable energies to meeting global energy demand. This, on condition that a global bio fuel market emerges, stimulating trade between producing countries, located in the humid tropics, and consumer countries, which have a sufficient number of suitably adapted vehicles in use, with environmental, economic and social benefits for all concerned and for the planet. (authors)

  11. Elaboration et Suivi des Budgets de Marketing Industriel: le Système ADVISOR

    OpenAIRE

    Choffray, Jean-Marie; Delabre, Gilles

    1982-01-01

    Cet article revoit les problèmes posés par l'élaboration et le suivi des budgets de marketing dans un environnement industriel. Il présente le système ADVISOR pour lequel nous avons développé un programme interactif adapté aux besoins des entreprises Françaises.

  12. Le mixed price bundling, une stratégie marketing alternative ? Le cas bancaire des « offres jeunes »

    OpenAIRE

    Lambey-Checchin, Christine

    2013-01-01

    International audience; Pratique courante notamment chez les prestataires de service, le mixed price bundling consiste à vendre ensemble des produits ou services complémentaires à un prix spécial. La littérature a montré la supériorité de cette forme de bundling en étudiant ses effets sur les comportements des consommateurs. Le papier l'envisage comme une stratégie marketing et examine ses caractéristiques d'offre et de prix. Les résultats d'une analyse comparative des packages proposés par l...

  13. Magic turtle dans le canton du Jura: concept marketing

    OpenAIRE

    Hauser, Magali; Perruchoud-Massy, Marie-Françoise

    2012-01-01

    Depuis juin 2009, Saint-Ursanne/Clos du Doubs est une région pilote du Projet Enjoy Switzerland/ASM ayant pour but d’intervenir sur le développement et la sensibilisation du tourisme dans la région. En parallèle, la Maison du Tourisme, entreprise proposant principalement des offres touristiques dans la région, a ouvert ses portes l’année dernière. Ces deux entités ont travaillé ensemble afin de développer une nouvelle offre touristique intitulée « Magic turtle ». Le Magic turtle, pensé par de...

  14. Haeme bioethanol and biogasification plant

    Energy Technology Data Exchange (ETDEWEB)

    Kymaelaeinen, M.; Laine, V.; Kautola, H. (HAMK University of Applied Sciences, Degree Programme in Biotechnology and Food Engineering, Haemeenlinna (Finland)); Siukola, K.; Naesi, J. (Suomen Biojalostus Oy, Renko (Finland)); Enwald, H. (Insinoeoeritoimisto Valcon Oy, Valkeakoski (Finland))

    2007-07-01

    In Haeme, located in southern part of Finland, local possibilities of bioethanol production have been studied since 2002. The study, initiated by local farmers, was first aimed to find out alternative use of the sugar beet which was unprofitable to utilize in sugar production. Later on, the study extended to cover the use of barley and to find out a sustainable and cost effective solution for the utilization of agro based raw materials in the bioethanol fuel production. The Haeme plant, according to present plans, utilizes barley and sugar beet (optional) as raw materials. The plant has been designed without feed dryers thus achieving considerable savings both in investment and operational (energy) costs compared to conventional grain based bioethanol plant with DDGS (Distillers Dried Grains with Solubles) as a predominant by product. Local markets for wet feed fractions wet distillers grains (DWG) and wet condensed distillers solubles (CDS) - have been found to be ready. The capacity of the plant, around 50-60 000 tons of ethanol per year, has been adjusted for local raw material supply, as well as for the local feed markets. In addition to production of wet feed fractions, another special feature of the plant is the integration with biogasification. A part of the stillage (distillation residue) can be utilized in the production of biogas which in turn is used to increase the energy self sufficiency of the plant. In overall, the Haeme plant has been designed to fit into local circumstances, aiming to improve the energy balance and reduce GHG-emissions of agro based bioethanol production. (orig.)

  15. Introduction: perspectives of bioethanol at the market of liquid fuels for light vehicles; Introducao: perspectivas do bioetanol no mercado de combustiveis liquidos para veiculos leves

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-15

    A significant expansion of the bioethanol production in Brazil could be a national developing project. As a matter of fact, aiming to reduce the dependence upon the fossil fuels, various countries have been incremented the use of bioethanol in their energetic matrix, not only to add directly to the gasoline but also to the fabrication of carburan. Many countries programs are specially highlighted, which have fixed goals of participation of biofuels in their matrixes to terms less than 20 years. In this book, the necessary conditions will be examined in order the Brazil to attend to sugar cane bioethanol world demand for replacing approximately 10% of the gasoline global consumption in the year 2025, which could correspond to a production of 205 billions of bioethanol liters per year, requiring an additional area of 24 Mha for the sugar cane cultivation.

  16. Bioethanol: fuel or feedstock?

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Falsig, Hanne; Jørgensen, Betina

    2007-01-01

    Increasing amounts of bioethanol are being produced from fermentation of biomass, mainly to counteract the continuing depletion of fossil resources and the consequential escalation of oil prices. Today, bioethanol is mainly utilized as a fuel or fuel additive in motor vehicles, but it could also...

  17. Production of Hydrogen from Bio-ethanol

    International Nuclear Information System (INIS)

    Fabrice Giroudiere; Christophe Boyer; Stephane His; Robert Sanger; Kishore Doshi; Jijun Xu

    2006-01-01

    IFP and HyRadix are collaborating in the development of a new hydrogen production system from liquid feedstock such as bio-ethanol. Reducing greenhouse gas (GHG) emissions along with high hydrogen yield are the key objectives. Market application of the system will be hydrogen refueling stations as well as medium scale hydrogen consumers including the electronics, metals processing, and oils hydrogenation industries. The conversion of bio-ethanol to hydrogen will be performed within a co-developed process including an auto-thermal reformer working under pressure. The technology will produce high-purity hydrogen with ultralow CO content. The catalytic auto-thermal reforming technology combines the exothermic and endothermic reaction and leads to a highly efficient heat integration. The development strategy to reach a high hydrogen yield target with the bio-ethanol hydrogen generator is presented. (authors)

  18. Bioethanol from lignocellulosics: Status and perspectives in Canada.

    Science.gov (United States)

    Mabee, W E; Saddler, J N

    2010-07-01

    Canada has invested significantly in the development of a domestic bioethanol industry, and it is expected that bioethanol from lignocellulosics will become more desirable to the industry as it expands. Development of the Canadian industry to date is described in this paper, as are examples of domestic research programs focused on both bioconversion and thermochemical conversion to generate biofuels from lignocellulosic biomass. The availability of lignocellulosic residues from agricultural and forestry operations, and the potential biofuel production associated with these residues, is described. The policy tools used to develop the domestic bioethanol industry are explored. A residue-based process could greatly extend the potential of the bioethanol industry in Canada. It is estimated that bioethanol production from residual lignocellulosic feedstocks could provide up to 50% of Canada's 2006 transportation fuel demand, given ideal conversion and full access to these feedstocks. Utilizing lignocellulosic biomass will extend the geographic range of the bioethanol industry, and increase the stability and security of this sector by reducing the impact of localized disruptions in supply. Use of disturbance crops could add 9% to this figure, but not in a sustainable fashion. If pursued aggressively, energy crops ultimately could contribute bioethanol at a volume double that of Canada's gasoline consumption in 2006. This would move Canada towards greater transportation fuel independence and a larger role in the export of bioethanol to the global market. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Lele de la culpabilité dans le marketing de la collecte de fonds : influence sur le don des particuliers

    OpenAIRE

    Chédotal, Camille

    2011-01-01

    This dissertation falls within the scope of social marketing. The aim is to analyze the effects of guilt induction in fundraising campaigns. After a literature review on charitable giving and guilt in marketing, psychology and social sciences, we focus on guilt triggering, on stimulus intensity and on the reactions of individuals exposed to a guilt-loaded message. Based on three exploratory qualitative studies, we identified how guilt is induced and collected reactions from participants expos...

  20. Le marketing d'un pays : Label Suède

    OpenAIRE

    Olsson, Erik; Gustavsson, Anna

    2006-01-01

    Résumé L’objet de ce mémoire est d’analyser la composition du label « Suède » et si c'est possible d'utiliser les méthodes de marketing traditionnel quand un pays est commercialisé. Nous centrons l‘attention sur l’office suédois du tourisme et des voyages qui est responsable pour le marketing de la Suède comme destination touristique. Comment travaillent-ils pour commercialiser la Suède en général et particulièrement vers la France? Nous avons commencé par étudier des différentes théories du ...

  1. Bioethanol development in China and the potential impacts on its agricultural economy

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Huanguang; Huang, Jikun; Yang, Jun [Center for Chinese Agricultural Policy, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Jia 11, Datun Road, Anwai, Beijing 100101 (China); Rozelle, Scott [Shorenstein Asia Pacific Research Center, Stanford University, Stanford, California 95305 (United States); Zhang, Yuhua; Zhang, Yanli [Institute of Rural Energy and Environmental Protection, Chinese Academy of Agricultural Engineering, No. 41, Maizidian Street, Chaoyang, Beijing 100026 (China); Zhang, Yahui [Center of International Cooperative, Ministry of Agriculture of China, No. 55, Nongzhan Beilu, Chaoyang, Beijing 100026 (China)

    2010-01-15

    China is now the third largest bioethanol producer in the world after the United State and Brazil. The overall goals of this paper are to provide an overview of China's current bioethanol program, its future trend, and the likely impacts on its agricultural economy in the future. The analysis shows that China has developed an ambitious long-run biofuel program with a series of financial and institutional supports. While there are several potential feedstock crops available for bioethanol production, lack of land for feedstock production is one of major constraints in China's bioethanol expansion. The results show that although China's bioethanol expansion will have little impacts on overall agricultural prices in international markets, it will have significant impacts on the prices, productions, and trade of those energy crops being used for bioethanol production in China. (author)

  2. Bio-ethanol

    DEFF Research Database (Denmark)

    Wenzel, Henrik

    2007-01-01

    , there is not enough biomass for 'everyone', not physically and not in terms of money to promote its use. This leads to the conclusion that any use of biomass for energy purposes will have to compare to the lost opportunity of using it for something else. In this perspective, the choice to use biomass for bio......-ethanol production will not lead to reduction but to increase in CO2 emission and fossil fuel dependency. Both first and second generation bio-ethanol suffer from a biomass-to-ethanol energy conversion efficiency as low as 30-40 %, and moreover external fossil fuels are used to run the conversion. There is only......, but they do not improve the energy balance enough for bio-ethanol to compete with alternative uses of the biomass. When using biomass to substitute fossil fuels in heat & power production, a close to 100% substitution efficiency is achieved. The best alternative for CO2 reduction and oil saving is, therefore...

  3. Sport et éthique: enjeux et outils pour le marketing sportif - Sport and ethics: stakes and tools for marketing of sport

    OpenAIRE

    Emmanuel Bayle; Samuel Mercier

    2008-01-01

    (VF)Dans un contexte général d’une demande sociétale d’éthique, d’appel à la responsabilité sociale des entreprises et face aux attaques (dopage, violences, corruption…) que connaît aujourd’hui le mythe de l’éthique sportive, comment les organisations présentes dans le secteur du sport adaptent-elles leurs stratégies marketing ? Cet article propose une typologie des enjeux stratégiques de l’instrumentalisation de l’éthique sportive selon quatre types d’organisations. A partir de ce cadre conc...

  4. Improvement of bioethanol yield by pervaporation

    OpenAIRE

    Nongauza, Sinethemba Aubrey

    2010-01-01

    Due to the depletion of petroleum reserves and environmental concerns, bioethanol has been identified as an alternative fuel to petrol. Bioethanol is a fuel of bio-origin derived from renewable biomass. Starch and sugar containing materials are the primary sources of carbon for bioethanol production. Starch is firstly hydrolysed into simple sugars which are later fermented to bioethanol using Saccharomyces cerevisiae (S. cerevisiae). The fermentation of sugars to bioethanol is however limited...

  5. Análisis del modelo ‘Mezcla de Marketing’ de la industria del bioetanol en Colombia Analysis of marketing mix model of the bioethanol industry in Colombia

    Directory of Open Access Journals (Sweden)

    Alejandro Ramírez-Velásquez

    2012-04-01

    Full Text Available La búsqueda de alternativas de producción y consumo energético permite una nueva perspectiva para la industria de los combustibles biológicos como el bioetanol, tema central del presente trabajo, ya que sus ventajas competitivas frente a otras fuentes primarias de energía constituye una alternativa energética que permite superar los problemas generados por los métodos tradicionales de producción y consumo. A partir de la evaluación de la industria del bioetanol desde un análisis global, como el que se plantea en la mezcla de marketing, se expone qué tan atractiva o competitiva puede llegar a ser esta industria en la actualidad. Es sin duda de gran importancia señalar el reto que enfrenta la sociedad actual al intentar mantener un elevado nivel de vida sin que éste represente un peligro contra el medio ambiente o el bienestar humano. El principal desafío se centra en encontrar alternativas ecológicas y económicas que permitan cubrir las necesidades de energía, mediante el uso eficiente de fuentes alternativas y, a su vez, reducir la extrema dependencia y vulnerabilidad frente a los combustibles fósiles.The search for alternative energy production and supply, allow a new perspective on the biofuels industry as bioethanol, the focus of this work, as an alternative energy that enables to overcome the disadvantages generated by the traditional methods of production and consumption, by generating competitive advantages over other primary energy sources. The evaluation of the bioethanol industry from a global analysis such as that posed by the Marketing Mix, and exposed how attractive or competitive can become your industry today. It is certainly of great importance to note the challenge facing today’s society while trying to maintain a high standard of living without this represents a danger to the environment or to human welfare. The main challenge lies in finding alternatives that allow ecological and economic energy needs

  6. Le marketing au concret Marketing Looked at Concretely. The Case of the “Social Drama of Work” of Marketing Studies Experts in Large Companies

    Directory of Open Access Journals (Sweden)

    Gérald Gaglio

    2010-10-01

    Full Text Available Le terme “marketing” suscite généralement la méfiance, car il est spontanément associé à l’idée de manipulation. Au-delà, que font, concrètement, les “gens du marketing” ? Afin d’apporter des pistes de réponse à cette question, nous nous penchons dans cet article sur les enjeux relatifs à un matériau censé alimenter les réflexions et décisions des marketeurs : les études qualitatives de marketing research réalisées dans le cadre de réunions de consommateurs. Cette approche nous conduit à explorer les relations existant entre les chargés d’études marketing internes en grandes entreprises (CEI et leurs commanditaires issus de services de marketing. Plus précisément, nous étudions la professionnalité des CEI et les ramifications du drame social de leur travail, ce dernier étant conditionné par un rapport asymétrique avec leurs commanditaires. À partir de l’examen de cette tension dynamique, révélatrice des relations entre ces deux groupes professionnels, nous décrivons un volet de l’exercice réel du marketing en milieu organisé. Nos analyses, qui selon nous, peuvent être généralisées à d’autres catégories professionnelles, se basent sur une observation participante menée chez un opérateur de téléphonie mobile français et sur une campagne d’entretiens semi-directifs.The term “marketing” generally arouses mistrust, for it is immediately associated with the idea of manipulation. But, beyond that, what, concretely, do “people in marketing” do ? In order to provide some leads to answering this question, in this article we concentrate on the issues involved in material supposed to nourish the marketers’ reflections and decision-making : qualitative marketing research studies, carried out in the context of consumer meetings. This approach leads us to explore the relationships existing between internal marketing studies experts in large companies and their backers from

  7. Bio-Ethanol Production from Poultry Manure

    African Journals Online (AJOL)

    john

    ethanol. Fuel ethanol is known as bio-ethanol, since it is produced from plant materials by biological processes. Bioethanol is mainly produced by fermentation of sugar containing crops like corn, maize, wheat, sugar cane, sugar beet, potatoes, ...

  8. « Le marketing, ou la ruse de l'économie »

    OpenAIRE

    Cochoy , Franck

    2001-01-01

    National audience; The paper discusses the possible contribution of marketers and marketing to the functioning of the market economy. Through the gathering of the managers' various forms of know-how and the reformulation of them as a science of real markets, the deviant economists who pioneered the marketing field at the beginning of the century succeeded in building bridges between the science of markets and their practice. In the interwar period, the application of industrial taylorism to t...

  9. Bioethanol Production from Indigenous Algae

    Directory of Open Access Journals (Sweden)

    Madhuka Roy

    2015-02-01

    Full Text Available Enhanced rate of fossil fuel extraction is likely to deplete limited natural resources over short period of time. So search for alternative fuel is only the way to overcome this problem of upcoming energy crisis. In this aspect biofuel is a sustainable option. Agricultural lands cannot be compromised for biofuel production due to the requirement of food for the increasing population. Certain species of algae can produce ethanol during anaerobic fermentation and thus serve as a direct source for bioethanol production. The high content of complex carbohydrates entrapped in the cell wall of the microalgae makes it essential to incorporate a pre-treatment stage to release and convert these complex carbohydrates into simple sugars prior to the fermentation process. There have been researches on production of bioethanol from a particular species of algae, but this work was an attempt to produce bioethanol from easily available indigenous algae. Acid hydrolysis was carried out as pre-treatment. Gas Chromatographic analysis showed that 5 days’ fermentation by baker’s yeast had yielded 93% pure bioethanol. The fuel characterization of the bioethanol with respect to gasoline showed comparable and quite satisfactory results for its use as an alternative fuel.DOI: http://dx.doi.org/10.3126/ije.v4i1.12182International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15, page: 112-120  

  10. FOOD VS. FUEL – A TURNING POINT FOR BIOETHANOL?

    Directory of Open Access Journals (Sweden)

    Katharina Harlander

    2008-09-01

    Full Text Available Recently concerns have been raised that biofuels would affect food prices. Bioethanol is made from sugar or starch containing plants that are also used in food production. In public perception this led to an emotional resistance against biofuels that in real terms is not substantiated. Generally, biofuels are a political product. Triggered by the oil crisis in the early 1970ies national fuel ethanol programmes were first launched in Brazil and in the United States. Concerns regarding energy security and sustainability together with the option of new markets for surplus agricultural production in recent years led to similar policy measures in the European Union and in numerous countries around the globe. Accordingly the industry invested heavily in new bioethanol plants - especially in the US – and created an additional demand for corn and wheat with some record-breaking prices noted in late 2007. A look back into statistics shows a drastic decline of real prices for decades and by now they are only back at the level of 30 years ago. One important detail is the real portion of grain used for bioethanol, which is still only 1.6 percent in the EU and therefore unlikely to be the real driver for the price development. Moreover the share of raw material is up to 70% of bioethanol production cost that makes the bioethanol industry itself a victim of price increases. Subsequently investor interest in this field slowed down, a development also watched in the US. The prospects of the agricultural markets of the European Commission conclude that Europe can do both, nutrition and biofuels.

  11. Biodiesel from microalgae beats bioethanol.

    Science.gov (United States)

    Chisti, Yusuf

    2008-03-01

    Renewable biofuels are needed to displace petroleum-derived transport fuels, which contribute to global warming and are of limited availability. Biodiesel and bioethanol are the two potential renewable fuels that have attracted the most attention. As demonstrated here, biodiesel and bioethanol produced from agricultural crops using existing methods cannot sustainably replace fossil-based transport fuels, but there is an alternative. Biodiesel from microalgae seems to be the only renewable biofuel that has the potential to completely displace petroleum-derived transport fuels without adversely affecting supply of food and other crop products. Most productive oil crops, such as oil palm, do not come close to microalgae in being able to sustainably provide the necessary amounts of biodiesel. Similarly, bioethanol from sugarcane is no match for microalgal biodiesel.

  12. Th european market of the electric power; Le marche europeen de l'electricite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This document presents the CRE (commission of the Electric power Control) progress report concerning the first july 2000 to the 30 june 2001. Three main subjects are discussed, illustrated by economic data and graphs: the electric power european market, the french market control and the CRE. A special interest is given to the deregulation of the market and its consequences. (A.L.B.)

  13. Th european market of the electric power; Le marche europeen de l'electricite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This document presents the CRE (commission of the Electric power Control) progress report concerning the first july 2000 to the 30 june 2001. Three main subjects are discussed, illustrated by economic data and graphs: the electric power european market, the french market control and the CRE. A special interest is given to the deregulation of the market and its consequences. (A.L.B.)

  14. Les opportunités marketing de Twitter : dépasser le discours « SoLoMo »

    Directory of Open Access Journals (Sweden)

    Jean-Claude Domenget

    2012-03-01

    Full Text Available La démarche sociotechnique suivie dans cet article permet d’évaluer les réelles opportunités marketing de Twitter. Elle part d’une analyse du discours “SoLoMo” (pour Social, Local and Mobile, intégrant les logiques sociales en jeu, analysant les incitations du dispositif ainsi que les limites rencontrées. Une cartographie est ensuite présentée distinguant les espaces propices à des actions marketing sur le Web social. Elle amène à souligner les avantages de Twitter, en tant que dispositif de visibilité “phare”, centré sur le partage de contenu autour de centres d’intérêts. Néanmoins, malgré les opportunités touchant notamment, à la fidélisation des clients, à la prescription ordinaire ou encore au suivi de l’e-réputation de l’entreprise ; plusieurs limites sont abordées. L’ensemble conduit à s’interroger sur la tendance de fond actuelle à l’industrialisation de la présence en ligne des entreprises et des marques.

  15. Assessing the sustainability of bioethanol production in Nepal

    Energy Technology Data Exchange (ETDEWEB)

    Khatiwada, Dilip

    2010-10-15

    Access to modern energy services derived from renewable sources is a prerequisite, not only for economic growth, rural development and sustainable development, but also for energy security and climate change mitigation. The least developed countries (LDCs) primarily use traditional biomass and have little access to commercial energy sources. They are more vulnerable to problems relating to energy security, air pollution, and the need for hard-cash currency to import fossil fuels. This thesis evaluates sugarcane-molasses bioethanol, a renewable energy source with the potential to be used as a transport fuel in Nepal. Sustainability aspects of molasses-based ethanol have been analyzed. Two important indicators for sustainability, viz. net energy and greenhouse gas (GHG) balances have been used to assess the appropriateness of bioethanol in the life cycle assessment (LCA) framework. This thesis has found that the production of bioethanol is energy-efficient in terms of the fossil fuel inputs required to produce it. Life cycle greenhouse gas (GHG) emissions from production and combustion are also lower than those of gasoline. The impacts of important physical and market parameters, such as sugar cane productivity, the use of fertilizers, energy consumption in different processes, and price have been observed in evaluating the sustainability aspects of bioethanol production. The production potential of bioethanol has been assessed. Concerns relating to the fuel vs. food debate, energy security, and air pollution have also been discussed. The thesis concludes that the major sustainability indicators for molasses ethanol in Nepal are in line with the goals of sustainable development. Thus, Nepal could be a good example for other LDCs when favorable governmental policy, institutional set-ups, and developmental cooperation from donor partners are in place to strengthen the development of renewable energy technologies

  16. The world nuclear market and its prospects; Le marche mondial du nucleaire et ses perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-07-15

    This market study of the nuclear industry presents: 1 - the dynamics of nuclear markets: organisation of the nuclear industry (fuel cycle, reactors), market analysis and key figures (uranium production, conversion and enrichment, fuel fabrication, reactor manufacturing, spent fuel reprocessing), strengths in presence and competition structure (companies ranking, market shares, positioning); 2 - nuclear renaissance and its basis: a suitable answer to the present day energy and environmental challenges (carbon-free energy and low volatility of fuel price), conjunction of favourable conditions (security of fuel supplies, political support, necessity of plants renewal), three main uncertainties (waste management, safety aspect, public opinion weight); 3 - perspectives of development at the 2030 prospects: data (scope of renaissance, market size), sector reconfiguration scenarios (evolution of competition, reconfiguration paths, concentration trend); 4 - analysis of the strategy of 13 companies, suppliers of the nuclear industry, with their key figures, positioning and strategy (production capacity, partnerships, external growth investments, new technical developments etc.). (J.S.)

  17. The photovoltaic: channels, markets and outlooks; Le photovoltaique: les filieres, les marches, les perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Jourde, P. [CEA Cadarache (GENEC), 13 - Saint-Paul-lez-Durance (France)

    2005-07-01

    The photovoltaic market is in expansion with a good energy, political and environmental context. It needs meanwhile to realize developments in the storage domain and in the cost of connexion to the network. To illustrate these conclusions this paper discusses the following chapters: the solar energy, the principle and the channels of the photovoltaic, the applications (autonomous electrification and houses connected to the network) and the markets, a state of the art and the outlooks. (A.L.B.)

  18. Bioethanol from poplar: a commercially viable alternative to fossil fuel in the European Union.

    Science.gov (United States)

    Littlewood, Jade; Guo, Miao; Boerjan, Wout; Murphy, Richard J

    2014-01-01

    The European Union has made it a strategic objective to develop its biofuels market in order to minimize greenhouse gas (GHG) emissions, to help mitigate climate change and to address energy insecurity within the transport sector. Despite targets set at national and supranational levels, lignocellulosic bioethanol production has yet to be widely commercialized in the European Union. Here, we use techno-economic modeling to compare the price of bioethanol produced from short rotation coppice (SRC) poplar feedstocks under two leading processing technologies in five European countries. Our evaluation shows that the type of processing technology and varying national costs between countries results in a wide range of bioethanol production prices (€0.275 to 0.727/l). The lowest production prices for bioethanol were found in countries that had cheap feedstock costs and high prices for renewable electricity. Taxes and other costs had a significant influence on fuel prices at the petrol station, and therefore the presence and amount of government support for bioethanol was a major factor determining the competitiveness of bioethanol with conventional fuel. In a forward-looking scenario, genetically engineering poplar with a reduced lignin content showed potential to enhance the competitiveness of bioethanol with conventional fuel by reducing overall costs by approximately 41% in four out of the five countries modeled. However, the possible wider phenotypic traits of advanced poplars needs to be fully investigated to ensure that these do not unintentionally negate the cost savings indicated. Through these evaluations, we highlight the key bottlenecks within the bioethanol supply chain from the standpoint of various stakeholders. For producers, technologies that are best suited to the specific feedstock composition and national policies should be optimized. For policymakers, support schemes that benefit emerging bioethanol producers and allow renewable fuel to be

  19. Bioethanol production from Asphodelus aestivus

    Energy Technology Data Exchange (ETDEWEB)

    Polycarpou, Polycarpos [Agricultural Research Institute, Soils Science Department, P.O. Box 22016, 1516 Lefkosia (Cyprus)

    2009-12-15

    The increase on the price of fossil fuels and the need to protect the environment from greenhouse gases urge the investigation of the possibility of using biofuels to replace them. Cyprus is faced with severe water shortage and unavailability of agricultural land that limit the cultivation of energy crops that supply the feedstock for biofuel production. A possibility would be to use Asphodelus aestivus L. that is encountered in Cyprus and other Mediterranean countries, growing wild in pastures. Its tubers contain starch that was measured to be 10.1%. The bioethanol is produced by fermentation of the mash produced by crashing the tubers of the plant. The first stage of the process was cooking the mash at a temperature of 95 C, combined by liquefaction and saccharification of the starch using enzymes, like alpha-amylase and glucoamylase. The process was followed by fermentation of the mash for three days and finally distillation of bioethanol. The alcohol yield per kilogram tubers was 49.52 ml/kg, compared to the theoretical value of 83.72 ml/kg, mainly due to the incomplete fermentation of the sugars. The plant seems to be a potential energy plant for bioethanol production in arid regions cultivated on degraded land. (author)

  20. Gas market is today strategical; Le marche du gaz est aujourd'hui strategique

    Energy Technology Data Exchange (ETDEWEB)

    Darricarrere, Y.L. [Total, 92 - Courbevoie (France)

    2006-07-01

    The energy market, and in particular the gas market, is today seething with excitement. In France, in Europe and in the rest of the world, the energy stakes are in the center of preoccupations. This article is an interview of Y.L. Darricarrere, general director of the gas and electricity division of Total group, who explains his opinions about the opening of European and French energy markets, presents the ambitions of Total group on these markets, and comments some recent events of the European energy scene: concentration between gas and electric utilities, the Suez and Gaz de France (GdF) project of merger, the risks linked with the coming in of national companies from producing countries, like Gazprom and Sonatrach, on the European market, the restriction of access of foreign companies to hydrocarbon reserves in Russia and Latin America (come back of the 'energy nationalism'), Total's policy for anticipating the increase of the world energy demand and the depletion of fossil fuel reserves. (J.S.)

  1. The European market of renewable energies; Le marche europeen des energies renouvelables

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2011-09-15

    This market study on renewable energies presents: 1 - the different renewable energy industries for power generation: the field of renewable energies (hydropower, wind power, solar energy, geothermal energy and biomass power plants) and their common points, their characteristics, advantages and constraints; 2 - the political and regulatory context with its ambitious goals: main steps of worldwide negotiations, Europe and the management of CO{sub 2} emissions, stiffening of the environmental regulation, the energy/climate package and the efforts to be borne by the different member states; 3 - Economy of the sector and the necessary public support: investment and production costs by industry, wholesale prices and competitiveness of the different power generation means, government's incentives for projects profitability; 4 - dynamics of the European market of renewable energies: energy-mix and evolution of the renewable energies contribution in the world and in the European Union, key-figures by country and by industry (installed capacity, production, turnover, employment); 5 - medium-term development perspectives: 2020 prospect scenarios, evolution of the energy mix, perspectives of development for each industry; 6 - the strengths in presence in the domain of facilities: main manufacturers, market shares, innovations, vertical integration, external growth; 7 - the strengths in presence in the domain of power facilities operation: main European operators, position and ranking, installed capacities, projects portfolio; 8 - medium-term perspectives of reconfiguration: best-positioned operators in a developing market, future of European manufacturers with respect to Asian ones, inevitable concentration in the operation sector. (J.S.)

  2. Comparative study of bioethanol production from sugarcane ...

    African Journals Online (AJOL)

    The study was designed to compare the bioethanol production from Zymomonas mobilis and Saccharomyces cerevisiae using molasses as production medium. The focus was on the retention time at lab scale. Bioethanol and petroleum blend can be used in existing gasoline engines. Present study showed a more ...

  3. Sugarcane for Bioethanol: Soil and Environmental Issues

    NARCIS (Netherlands)

    Hartemink, A.E.

    2008-01-01

    Cultivation of sugarcane for bioethanol is increasing and the area under sugarcane is expanding. Much of the sugar for bioethanol comes from large plantations where it is grown with relatively high inputs. Sugarcane puts a high demands on the soil because of the use of heavy machinery and because

  4. Techno-economic analysis of bioethanol production from rice straw by liquid-state fermentation

    Science.gov (United States)

    Hidayata, M. H. M.; Salleh, S. F.; Riayatsyahb, T. M. I.; Aditiyac, H. B.; Mahliaa, T. M. I.; Shamsuddina, A. H.

    2016-03-01

    Renewable energy is the latest approach of the Malaysian government in an effort to find sustainable alternative energy sources and to fulfill the ever increasing energy demand. Being a country that thrives in the service and agricultural sector, bioethanol production from lignocellulosic biomass presents itself as a promising option. However, the lack of technical practicality and complexity in the operation system hinder it from being economically viable. Hence, this research acquired multiple case studies in order to provide an insight on the process involved and its implication on production as well as to obtain a cost analysis of bioethanol production. The energy input and cost of three main components of the bioethanol production which are the collection, logistics, and pretreatment of rice straw were evaluated extensively. The theoretical bioethanol yield and conversion efficiency obtained were 250 L/t and 60% respectively. The findings concluded that bioethanol production from rice straw is currently not economically feasible in Malaysia’s market due to lack of efficiency in the pretreatment phase and overbearing logistics and pretreatment costs. This work could serve as a reference to future studies of biofuel commercialization in Malaysia.

  5. Upgrading of lignocellulosic biorefinery to value-added chemicals: Sustainability and economics of bioethanol-derivatives

    DEFF Research Database (Denmark)

    Cheali, Peam; Posada, John A.; Gernaey, Krist

    2015-01-01

    with a sustainability assessment method is used as evaluation tool. First, an existing superstructure representing the lignocellulosic biorefinery design network is extended to include the options for catalytic conversion of bioethanol to value-added derivatives. Second, the optimization problem for process upgrade...... of operating profit for biorefineries producing bioethanol-derived chemicals (247 MM$/a and 241 MM$/a for diethyl ether and 1,3-butadiene, respectively). Second, the optimal designs for upgrading bioethanol (i.e. production of 1,3-butadiene and diethyl ether) performed also better with respect...... to sustainability compared with the petroleum-based processes. In both cases, the effects of the market price uncertainties were also analyzed by performing quantitative economic risk analysis and presented a significant risk of investment for a lignocellulosic biorefinery (12 MM$/a and 92 MM$/a for diethyl ether...

  6. Marine Enzymes and Microorganisms for Bioethanol Production.

    Science.gov (United States)

    Swain, M R; Natarajan, V; Krishnan, C

    Bioethanol is a potential alternative fuel to fossil fuels. Bioethanol as a fuel has several economic and environmental benefits. Though bioethanol is produced using starch and sugarcane juice, these materials are in conflict with food availability. To avoid food-fuel conflict, the second-generation bioethanol production by utilizing nonfood lignocellulosic materials has been extensively investigated. However, due to the complexity of lignocellulose architecture, the process is complicated and not economically competitive. The cultivation of lignocellulosic energy crops indirectly affects the food supplies by extensive land use. Marine algae have attracted attention to replace the lignocellulosic feedstock for bioethanol production, since the algae grow fast, do not use land, avoid food-fuel conflict and have several varieties to suit the cultivation environment. The composition of algae is not as complex as lignocellulose due to the absence of lignin, which renders easy hydrolysis of polysaccharides to fermentable sugars. Marine organisms also produce cold-active enzymes for hydrolysis of starch, cellulose, and algal polysaccharides, which can be employed in bioethanol process. Marine microoorganisms are also capable of fermenting sugars under high salt environment. Therefore, marine biocatalysts are promising for development of efficient processes for bioethanol production. © 2017 Elsevier Inc. All rights reserved.

  7. Radiopharmaceutical: options to marketing authorization; Le medicament radiopharmaceutique: les alternatives a l'AMM

    Energy Technology Data Exchange (ETDEWEB)

    Guilloteau, D.; Valat, Ch. [Centre Hospitalier Regional Universitaire, Service Medecine Nucleaire In Vitro, INSERM U 619, 37 - Tours (France); Verbruggen, A. [University Hospital Gasthuisberg, Lab. of Radiopharmaceutical Chemistry, Leuven (Belgium)

    2005-04-15

    In France, since the law 92-1279 (December 1992) the tracer used in nuclear medicine are considered as medicines, and all the regulations applicable to general medicines have to be followed for radiopharmaceuticals. The best situation in order to use radiopharmaceutical in nuclear medicine center is to use a tracer with a marketing authorization. However due to the very high cost to obtain this authorization, many tracers validated by scientific community will never been sold by pharmaceutical companies. However in respect with legal rules, it is possible to prepare these tracers in the hospital radiopharmacy, under the responsibility of the radio-pharmacist. We discuss here these different possibilities (magistral preparation...) and the conditions for these preparations. (author)

  8. Phytochemical analysis and assessment of bioethanol production ...

    African Journals Online (AJOL)

    , all having fuel potential and are good source of gasoline. These are produced as a result of fermentation and enzymatic activities of the organic compound present in the biomass sample. Keywords: Bioethanol, Cymbopogon schoenanthus, ...

  9. phytochemical analysis and assessment of bioethanol production

    African Journals Online (AJOL)

    userpc

    Bioethanol was produced using enzymatic hydrolysis ... tolerance, less cost and biofuel potential same ..... industries for the production of biofuel would play a greater role in boosting the nation's economy, reduce over reliance on fossil fuel,.

  10. Optimization of bioethanol production from simultaneous ...

    African Journals Online (AJOL)

    ADOWIE PERE

    fermentation of pineapple peels using Saccharomyces cerevisiae ... ABSTRACT: In this study, bioethanol production from the simultaneous ... in turn has resulted in the need to find a source of ... fruit in the world after Banana and Citrus and.

  11. Tax exemption for bio fuels in Germany: is bio-ethanol really an option for climate policy?

    International Nuclear Information System (INIS)

    Henke, J.M.; Klepper, G.; Schmitz, N.

    2005-01-01

    In 2002 the German Parliament decided to exempt biofuels from the gasoline tax to increase their competitiveness compared to conventional gasoline. The policy to promote biofuels is being justified by their allegedly positive effects on climate, energy, and agricultural policy goals. An increased use of biofuels would contribute to sustainable development by reducing greenhouse-gas emissions and the use of non-renewable resources. The paper takes a closer look at bio-ethanol as a substitute for gasoline. It analyzes the underlying basic German, European, and worldwide conditions that provide the setting for the production and promotion of biofuels. It is shown that the production of bio-ethanol in Germany is not competitive and that imports are likely to increase. Using energy and greenhouse-gas balances we then demonstrate that the promotion and a possible increased use of bio-ethanol to reduce greenhouse-gas emissions are economically inefficient and that there are preferred alternative strategies. In addition, scenarios of the future development of the bio-ethanol market are derived from a model that allows for variations in all decisive variables and reflects the entire production and trade chain of bio-ethanol, from the agricultural production of wheat and sugar beet to the consumption of bio-ethanol in the fuel sector. (author)

  12. Tax exemption for bio fuels in Germany: is bio-ethanol really an option for climate policy?

    Energy Technology Data Exchange (ETDEWEB)

    Henke, J.M.; Klepper, G. [Kiel Institute for World Economics, Kiel (Germany); Schmitz, N. [Meo Consulting Team, Koeln (Germany)

    2005-11-01

    In 2002 the German Parliament decided to exempt biofuels from the gasoline tax to increase their competitiveness compared to conventional gasoline. The policy to promote biofuels is being justified by their allegedly positive effects on climate, energy, and agricultural policy goals. An increased use of biofuels would contribute to sustainable development by reducing greenhouse-gas emissions and the use of non-renewable resources. The paper takes a closer look at bio-ethanol as a substitute for gasoline. It analyzes the underlying basic German, European, and worldwide conditions that provide the setting for the production and promotion of biofuels. It is shown that the production of bio-ethanol in Germany is not competitive and that imports are likely to increase. Using energy and greenhouse-gas balances we then demonstrate that the promotion and a possible increased use of bio-ethanol to reduce greenhouse-gas emissions are economically inefficient and that there are preferred alternative strategies. In addition, scenarios of the future development of the bio-ethanol market are derived from a model that allows for variations in all decisive variables and reflects the entire production and trade chain of bio-ethanol, from the agricultural production of wheat and sugar beet to the consumption of bio-ethanol in the fuel sector. (author)

  13. Bioethanol Quality Improvement of Coffee Fruit Leather

    Directory of Open Access Journals (Sweden)

    Edahwati Luluk

    2016-01-01

    Full Text Available Recently, Indonesia’s dependence on petroleum is to be reduced and even eliminated. To overcome the problem of finding the needed alternative materials that can produce ethanol, in this case as a substitute material or a transport fuel mix, boosting the octane number, and gasoline ethanol (gasohol can be conducted. In the red coffee processing (cooking that will produce 65% and 35% of coffee beans, coffee leather waste is a source of organic material with fairly high cellulose content of 46.82%, 3.01% of pectin and 7.68% of lignin. In this case, its existence is abundant in Indonesia and optimally utilized. During the coffee fruit peeling, the peel waste is only used as a mixture of animal feed or simply left to rot. The purpose of this study was to produce and improve the quality of the fruit skin of bioethanol from coffee cellulose. However, to improve the quality of bioethanol, the production of the lignin content in the skin of the coffee fruit should be eliminated or reduced. Hydrolysis process using organosolve method is expected to improve the quality of bioethanol produced. In particular, the use of enzyme Saccharomyces and Zymmomonas will change the resulting sugar into bioethanol. On one hand, by using batch distillation process for 8 hours with Saccharomyces, bioethanol obtains high purity which is 39.79%; on the other hand, by using the same batch distillation process with Zymmomonas, the bioethanol obtains 38.78%.

  14. Performance indicators of bioethanol distillation

    International Nuclear Information System (INIS)

    Marriaga, Nilson

    2009-01-01

    The increase of biofuels demand accelerates the construction of new production plants and technological improvements in the process so the development of versatile tools for evaluating alternatives becomes an undeniable challenge. It was established through heuristic rules, thermodynamic analysis and simulation computer the energy consumption and performance indicators that govern, from fermented mash (ethanol 8.5 % v/v), the distillation of various capacities for bioethanol production: 20, 60, 100 and 150 KLD (kiloliters / day) through Aspen PlusTM simulator. It was found that the distillation demand nearly 30% of heat that would be obtained by burning alcohol fuel produced thus it is necessary the use of raw materials that generate enough biomass to produce the steam required. In addition, correlations were found to allow for easy diameters of distillation columns in terms of production capacity.

  15. Innovation subject to sustainability: the European policy on biofuels and its effects on innovation in the Brazilian bioethanol industry

    Directory of Open Access Journals (Sweden)

    Henrique Pacini

    2012-08-01

    Full Text Available Biofuels are a suitable complement for fossil energy in the transport sector and bioethanol is the main biofuel traded worldwide. Based on the assumption that innovation can be influenced by regulation, the Brazilian bioethanol industry is facing new requirements from external actors while reaching for international markets. Until 2010, national environmental laws were the main sustainability instrument that the biofuel industry faced. With the introduction of sustainability criteria for biofuels in the European Fuels Quality Directive (FQD and Renewable Energy Directive (RED of 2009, bioethanol producers have been pressured to innovate in respect of the requirements of future markets. Here, the aim is to analyse the case of Brazil, given the potential exports of sugarcane-based ethanol from this country to the EU. Brazil provides an interesting overview of how a bioethanol industry innovated while facing sustainability requirements in the past. A comparison between the European requirements and the industry´s status quo is then explored. The EU criteria are likely to have effects on the Brazilian bioethanol industry and incremental improvements in sustainability levels might take place based on the sustainability requirements. In addition, the industry could follow two other paths, namely risk diversification by engaging in multi-output models; and market leakage towards less-regulated markets. At the same time, an environmental overregulation of the biofuel market may make it more difficult for emerging biofuel industries in other countries, especially in Africa, by creating a barrier rather than contributing to its expansion. The results of this analysis show the main challenges to be addressed and the potential positive and negative impacts of the European Union biofuels policy on the Brazilian bioethanol industry.

  16. Sugar beet for bioethanol production: An approach based on environmental agricultural outputs

    International Nuclear Information System (INIS)

    Salazar-Ordóñez, Melania; Pérez-Hernández, Pedro P.; Martín-Lozano, José M.

    2013-01-01

    The EU imports both bioethanol and the raw material needed to produce it. Thirty percent of bioethanol is produced from sugar beets in the EU. However, sugar beet cultivated area and yields have fallen due to the 2006 sugar regime reform. Given the potential uncertainty about the future for sugar beet farmers, biofuels may represent an alternative market. This paper analyses potential contribution to the efficiency, in terms of environmental output, of the sugar beet crop both when production is oriented toward bioethanol and regarding the use of input. An empirical application is performed in Spain by Data Envelopment Analysis (DEA). The results show that 4% of farms have full technical efficiency, while the rest have an average efficiency of 55.9%. The figures show that inputs can be reduced over 40%, and also show the low average level of input-use efficiency. In addition, it cannot be said that there is a relationship between efficiency and farm scale. The consideration of aspects such as the environmental advantages of using sugar beet production for bioethanol can open new lines of action to support this crop in the EU. In addition, boosting sugar beet production may reduce potential dependency on importation. - Highlights: ► Analysing environmental outputs from agricultural input use and production orientation to bioethanol. ► DEA is applied to model farms’ efficiency in GHG emission and nitrous oxides emissions. ► A very low level of efficiency is found in sugar beet farms. ► Efficiency increase should be supported to reduce fertilizers and pesticides. ► Environmental advantages of addressing sugar beet to bioethanol open new lines to support crops

  17. Bioethanol production from cassava peels using different microbial ...

    African Journals Online (AJOL)

    Bioethanol production from cassava peels using different microbial inoculants. ... Log in or Register to get access to full text downloads. ... Abstract. The potential of bioethanol production using different microbial inoculants for the simultaneous ...

  18. Recent trends in bioethanol production

    Directory of Open Access Journals (Sweden)

    Semenčenko Valentina V.

    2011-01-01

    Full Text Available The rapid depletion of the world petroleum supply and the increasing problem of greenhouse gas effects have strenghtened the worldwide interest in alternative, nonpetroleum sources of energy. Bioethanol accounts for the majority of biofuel use worldwide, either as a fuel or a gasoline enhancer. Utilization of bioethanol can significantly reduce petroleum use and exhaust greenhouse gas emission. The production of this fuel is increasing over the years, and has reached the level of 73.9 billion liters during the year 2009. Even though ethanol production for decades mainly depended on energy crops containing starch and sugar (corn, sugar cane etc., new technologies for converting lignocellulosic biomass into ethanol are under development today. The use of lignocellulosic biomass, such as agricultural residues, forest and municipial waste, for the production of biofuels will be unavoidable if liquid fossil fuels are to be replaced by renewable and sustainable alternatives. For biological conversion of lignocellulosic biomass, pretreatment plays a central role affecting all unit operations in the process and is also an important cost deterrent to the comercial viability of the process. The key obstacles are: pretreatment selection and optimization; decreasing the cost of the enzymatic hydrolysis; maximizing the conversion of sugars (including pentoses to ethanol; process scale-up and integration to minimize energy and water demand; characterization and evaluation of the lignin co-product; and lastly, the use of the representative and reliable data for cost estimation, and the determination of environmental and socio-economic impacts. Currently, not all pretreatments are capable of producing biomass that can be converted to sugars in high enough yield and concentration, while being economically viable. For the three main types of feedstocks, the developement of effective continuous fermentation technologies with near to 100% yields and elevated

  19. Optimization of Bioethanol Production from Coffee Mucilage

    Directory of Open Access Journals (Sweden)

    Antonio De León-Rodríguez

    2015-05-01

    Full Text Available A response surface methodology with 2k full factorial design was applied to obtain optimum conditions for bioethanol production using coffee mucilage (CM as the substrate and Saccharomyces cerevisiae NRRL Y-2034 as the inoculum. CM is an agro-industrial residue mainly composed of simple sugars; the product yield and productivity process were analyzed with respect to the fermentation, pH, temperature, and the initial sugar concentration. Employing the following predicted optimum operational conditions attained the highest bioethanol production: pH 5.1, temperature 32 °C, and initial sugar concentration 61.8 g/L. The estimated bioethanol production was 15.02 g/L, and the experimental production was 16.29 g/L ± 0.39 g/L, with a bioethanol yield of 0.27 g/L and a productivity process of 0.34 g/Lh. Glycerol was the predominant byproduct of the fermentative metabolism of S. cerevisiae. The response surface methodology was successfully employed to optimize CM fermentation. In the fermentative processes with yeast, optimizing the conditions of the culture medium is needed to fully exploit the potential of the strains and maximize the production of bioethanol.

  20. Second-generation bioethanol from industrial wood waste of South American species

    Directory of Open Access Journals (Sweden)

    María E. Vallejos

    2017-09-01

    Full Text Available There is a global interest in replacing fossil fuels with renewable sources of energy. The present review evaluates the significance of South-American wood industrial wastes for bioethanol production. Four countries have been chosen for this review, i.e., Argentina, Brazil, Chile, and Uruguay, based on their current or potential forestry industry. It should be noted that although Brazil has a global bioethanol market share of 25%, its production is mainly first-generation bioethanol from sugarcane. The situation in the other countries is even worse, in spite of the fact that they have regulatory frameworks in place already allowing the substitution of a percentage of gasoline by ethanol. Pines and eucalyptus are the usually forested plants in these countries, and their industrial wastes, as chips and sawdust, could serve as promising raw materials to produce second-generation bioethanol in the context of a forest biorefinery. The process to convert woody biomass involves three stages: pretreatment, enzymatic saccharification, and fermentation. The operational conditions of the pretreatment method used are generally defined according to the physical and chemical characteristics of the raw materials and subsequently determine the characteristics of the treated substrates. This article also reviews and discusses the available pretreatment technologies for eucalyptus and pines applicable to South-American industrial wood wastes, their enzymatic hydrolysis yields, and the feasibility of implementing such processes in the mentioned countries in the frame of a biorefinery.

  1. Thermodynamic and economic analysis of integrating lignocellulosic bioethanol production in a Danish combined heat and power unit

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst; Haglind, Fredrik; Clausen, Lasse Røngaard

    bioethanol production in the Danish CHP unit Avedøreværket 1. Numerical models of the plants were developed, and feasible integration solutions were identified and optimised using exergy analysis. Hour-wise production simulations were run over a reference year, and market prices and economic parameters from...

  2. Bioethanol production from crops - recent developments

    International Nuclear Information System (INIS)

    Dalton, Colin

    1992-01-01

    The author notes much higher rates of ethanol production in Brazil and the United States of America than in the European Economic Community. While bioethanol from arable crops makes environmental sense there is, at present, a sizeable difference between the value of fuel ethanol (Pound 100-130/t) and the cost of producing it (Pound 236-Pound 450/t). This gap could be remedied using excise duty. Farmers would like to change crop production but await a political initiative. The technology for bioethanol production still needs some fine tuning, with ETBE (an ether produced from reacting isobutylene with ethanol) being preferred to other methods. (UK)

  3. Sugarcane bioethanol and the sustainable development; Alcool combustivel derivado da cana-de-acucar e o desenvolvimento sustentavel

    Energy Technology Data Exchange (ETDEWEB)

    Leme, Rodrigo Marcelo [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Programa de Pos-graduacao em Planejamento de Sistemas Energeticos

    2004-07-01

    The use of the sugarcane bioethanol in Brazil was strongly boosted during the 1970 's and 1980 's, with the advent of the National Alcohol Programme (PROALCOOL). Following this period a decade of uncertainties came up, when the decline in the Program results were noticeable. Nowadays, it seems that new and good perspectives arise, due to the emergent external and internal markets. In this paper the evolution of the sugarcane bioethanol use in Brazil is addressed, stressing the importance and legacy of the PROALCOOL. The future perspectives of the alcohol are also discussed. (author)

  4. Use of extremophilic bacteria for second generation bioethanol production

    DEFF Research Database (Denmark)

    Tomás, Ana Faria; Karakashev, Dimitar Borisov; Angelidaki, Irini

    production from food crops, such as corn (starch) or sugar cane (sucrose) is already an established process, with the USA and Brazil supplying 86% of the market. The major challenge remains in the use of different waste sources – agricultural, forestry, animal and household waste - as a feedstock....... The recalcitrance of these materials and their diverse sugar composition make the industrial yeast strains currently used unsuitable for a second generation bioethanol production process. One of the alternative strategies is the use of extreme thermophilic microorganisms. Currently, selected members from the genera...... Clostridium, Thermoanaerobacter, Geobacillus and Thermoanaerobacterium are among the best candidates. A new strain of Thermoanaerobacter, closely related to T. italicus and T. mathranii, has achieved 0.43 gethanol/gxylose, which is 83% of the theoretical yield of ethanol based on xylose and the highest value...

  5. PRODUCTION OF BIOETHAN niger UCTION OF BIOETHANOL ...

    African Journals Online (AJOL)

    userpc

    call by government and other organizations fo conversion of waste to wealth. MATERIALS AND METHODS. Collection of Samples. Rice husk (fito rice) was collected from rice processer at Dawanau, Dawakin tofa loc. , November, 2017 urnal of Pure and Applied Sciences: 10(1): 280 - 284. UCTION OF BIOETHANOL FROM ...

  6. Bioethanol produced from Moringa oleifera seeds husk

    Science.gov (United States)

    Ali, E. N.; Kemat, S. Z.

    2017-06-01

    This paper presents the potential of bioethanol production from Moringa oleifera seeds husk which contains lignocellulosic through Simultaneous Saccharification and Fermentation (SSF) process by using Saccharomyces cerevisiae. This paper investigates the parameters which produce optimum bioethanol yield. The husk was hydrolyzed using NaOH and fermented using Saccharomyces cerevisiae yeast. Batch fermentation was performed with different yeast dosage of 1, 3, and 5 g/L, pH value was 4.5, 5.0 and 5.5, and fermentation time of 3, 6, 9 and 12 hours. The temperature of fermentation process in incubator shaker is kept constant at 32ºC. The samples are then filtered using a 0.20 μm nylon filter syringe. The yield of bioethanol produced was analysed using High Performance Liquid Chromatography (HPLC). The results showed that the highest yield of 29.69 g/L was obtained at 3 hours of fermentation time at pH of 4.5 and using 1g/L yeast. This research work showed that Moringa oleifera seeds husk can be considered to produce bioethanol.

  7. Yeasts in sustainable bioethanol production: A review.

    Science.gov (United States)

    Mohd Azhar, Siti Hajar; Abdulla, Rahmath; Jambo, Siti Azmah; Marbawi, Hartinie; Gansau, Jualang Azlan; Mohd Faik, Ainol Azifa; Rodrigues, Kenneth Francis

    2017-07-01

    Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.

  8. Scientific challenges of bioethanol production in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Henrique V.; Lopes, Mario Lucio [Fermentec, Piracicaba, SP (Brazil); Castro Oliveira, Juliana Velasco de [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Sao Paulo (Brazil); Buckeridge, Marcos S. [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Sao Paulo (Brazil); Universidade de Sao Paulo, INCT do Bioetanol (Brazil). Dept. de Botanica; Goldman, Gustavo Henrique [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Sao Paulo (Brazil); Universidade de Sao Paulo, INCT do Bioetanol (Brazil). Dept. de Ciencias Farmaceuticas

    2011-09-15

    Bioethanol (fuel alcohol) has been produced by industrial alcoholic fermentation processes in Brazil since the beginning of the twentieth century. Currently, 432 mills and distilleries crush about 625 million tons of sugarcane per crop, producing about 27 billion liters of ethanol and 38.7 million tons of sugar. The production of bioethanol from sugarcane represents a major large-scale technology capable of producing biofuel efficiently and economically, providing viable substitutes to gasoline. The combination of immobilization of CO{sub 2} by sugarcane crops by photosynthesis into biomass together with alcoholic fermentation of this biomass has allowed production of a clean and high-quality liquid fuel that contains 93% of the original energy found in sugar. Over the last 30 years, several innovations have been introduced to Brazilian alcohol distilleries resulting in the improvement of plant efficiency and economic competitiveness. Currently, the main scientific challenges are to develop new technologies for bioethanol production from first and second generation feedstocks that exhibit positive energy balances and appropriately meet environmental sustainability criteria. This review focuses on these aspects and provides special emphasis on the selection of new yeast strains, genetic breeding, and recombinant DNA technology, as applied to bioethanol production processes. (orig.)

  9. Yeasts in sustainable bioethanol production: A review

    Directory of Open Access Journals (Sweden)

    Siti Hajar Mohd Azhar

    2017-07-01

    Full Text Available Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.

  10. New competition in the world market of nuclear reactors; La nouvelle concurrence sur le marche mondial des reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Finon, D. [Centre National de la Recherche Scientifique (CNRS), CIRED (EHESS et CNRS), 75 - Paris (France)

    2005-06-01

    As nuclear orders are picking up a little, there are strengths competing against one another in the world industry of reactors, an industry that has been deeply affected for twenty years, by the smallness of the market and the reorganization of the electromechanical industry. Competition remains particularly difficult, even though, in terms of exports, national markets in industrialized countries such as the American market and European market are now open to foreign newcomers. One of the reasons of the difficulty is the increased commercial competition based on advanced reactor techniques untested due to strong faith in technology leading to forget the learning difficulties of older reactor types. On a narrow market, demanding and with very specific political interference, the reasoning is not like on an ordinary capital equipment market. Each builder tries to sell by relying on the assets it has in addition to the offered price and related services: industrial reputation and experience that play confusedly when untested advanced reactors are competing with one another, credit terms offered by the State and the government's influence on the market of emerging economies, the backing o the State's financial insurance in the event of risks taken in the sale of turnkey untested reactors. In the competition of the five manufacturers in the export market, American builders do not seem to have the best place, though even the leading position of Framatome ANP shows some limits. (author)

  11. The characteristics of bioethanol fuel made of vegetable raw materials

    Science.gov (United States)

    Muhaji; Sutjahjo, D. H.

    2018-01-01

    The aim of this research is to identify the most potential vegetable raw as the material to make a bioethanol fuel as the alternative energy for gasoline. This study used experimental method. The high-level bioethanol was obtained through the process of saccharification, fermentation and stratified distillation. ASTM standards were used as the method of testing the chemical element (D 5501, D 1744, D 1688, D 512, D 2622, D 381), and physical test (D 1613, D 240, D 1298-99, D 445, and D 93). The result of the analysis showed that from the seven bioethanols being studied there is one bioethanol from Saccharum of icinarum linn that has physical and chemical properties close to the standard of bioethanol. Meanwhile, the others only meet some of the physical and chemical properties of the standard bioethanol.

  12. Integrated furfural and first generation bioethanol production: process simulation and techno-economic analysis

    Directory of Open Access Journals (Sweden)

    J. F. L. Silva

    Full Text Available Abstract Furfural is a base chemical with a wide range of applications and with a great opportunity for market growth in the near term. Derived from biomass, its production may be incorporated to the Brazilian chemical industry using sugarcane bagasse as feedstock. In this context, the integration of a furfural plant to a first generation bioethanol facility, within the biorefinery concept, was simulated considering different scenarios compared to an autonomous bioethanol distillery. The economic analysis of the different scenarios showed that the revenues from furfural commercialization increase the internal rate of return of the project for maximum furfural production (22.0% in comparison to a conventional ethanol distillery (13.5%, despite the decrease in electricity output. Moreover, the economic analysis of the results pointed out the possibility of lowering furfural prices to levels that could lead to its use as a precursor for biofuels.

  13. Designing optimal bioethanol networks with purification for integrated biorefineries

    International Nuclear Information System (INIS)

    Shenoy, Akshay U.; Shenoy, Uday V.

    2014-01-01

    Highlights: • An analytical method is devised for bioethanol network integration with purification. • Minimum fresh bioethanol flow and pinch are found by the Unified Targeting Algorithm. • Optimal bioethanol networks are then synthesized by the Nearest Neighbors Algorithm. • Continuous targets and networks are developed over the purifier inlet flowrate range. • Case study of a biorefinery producing bioethanol from wheat shows large savings. - Abstract: Bioethanol networks with purification for processing pathways in integrated biorefineries are targeted and designed in this work by an analytical approach not requiring graphical constructions. The approach is based on six fundamental equations involving eight variables: two balance equations for the stream flowrate and the bioethanol load over the total network system; one equation for the above-pinch bioethanol load being picked up by the minimum fresh resource and the purified stream; and three equations for the purification unit. A solution strategy is devised by specifying the two variables associated with the purifier inlet stream. Importantly, continuous targeting is then possible over the entire purifier inlet flowrate range on deriving elegant formulae for the remaining six variables. The Unified Targeting Algorithm (UTA) is utilized to establish the minimum fresh bioethanol resource flowrate and identify the pinch purity. The fresh bioethanol resource flowrate target is shown to decrease linearly with purifier inlet flowrate provided the pinch is held by the same point. The Nearest Neighbors Algorithm (NNA) is used to methodically synthesize optimal networks matching bioethanol demands and sources. A case study of a biorefinery producing bioethanol from wheat with arabinoxylan (AX) coproduction is presented. It illustrates the versatility of the approach in generating superior practical designs with up to nearly 94% savings for integrated bioethanol networks, both with and without process

  14. Alkaline pretreatment of Mexican pine residues for bioethanol ...

    African Journals Online (AJOL)

    Alkaline pretreatment of Mexican pine residues for bioethanol production. ... Keywords: Lignocellulosic biomass, alkaline pretreatment, enzymatic hydrolysis, fermentable sugars, fermentation. African Journal of Biotechnology Vol. 12(31), pp.

  15. Le déploiement d'une capacité d'Open Marketing dans une organisation marketing : analyse selon une approche par les ressources, les capacités et les compétences marketing

    OpenAIRE

    Moraux, Hélène

    2014-01-01

    Marketing has been given a strong interface and connection role within the literature, creating the assumption of a naturally “open” marketing. However, specifically, the opening of the marketing organization is not so obvious. In a theoretical paper, Day (2011) introduces the Open Marketing concept, defined as a capability to open the marketing organization to partners’ networks so as to gain marketing insights and capabilities in order to enrich the firm’s marketing. The concept is interest...

  16. Evaluation of thermostable enzymes for bioethanol processing

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia

    of fermentable sugars (glucose) as cellulose is tightly linked to hemicellulose and lignin. Lignocellulose is disrupted during pretreatment, but to degrade cellulose to single sugars, lignocellulolytic enzymes such as cellulases and hemicellulases are needed. Lignocellulolytic enzymes are costly...... for the ioethanol production, but the expenses can be reduced by using thermostable enzymes, which are known for their increased stability and inhibitor olerance. However, the advantage of using thermostable enzymes has not been studied thoroughly and more knowledge is needed for development of bioethanol processes....... Enzymes are added to the bioethanol process after pretreatment. For an efficient sugar and ethanol yield, the solids content of biomass is normally increased, which results in highly viscous slurries that are difficult to mix. Therefore, the first enzymatic challenge is to ensure rapid reduction...

  17. Bioethanol Fuel Production Concept Study: Topline Report

    Energy Technology Data Exchange (ETDEWEB)

    Marketing Horizons, Inc.

    2001-11-19

    The DOE is in the process of developing technologies for converting plant matter other than feed stock, e.g., corn stover, into biofuels. The goal of this research project was to determine what the farming community thinks of ethanol as a fuel source, and specifically what they think of bioethanol produced from corn stover. This project also assessed the image of the DOE and the biofuels program and determined the perceived barriers to ethanol-from-stover production.

  18. Catalytic valorization of bioethanol to biobutanol

    Energy Technology Data Exchange (ETDEWEB)

    Riittonen, Toni [Abo Akademi Univ., Turku (Finland). Lab. of Industrial Chemistry and Reaction Engineering; Mikkola, Jyri-Pekka [Umea Univ. (Sweden). Chemical-Biological Center

    2010-07-01

    Bioethanol, or ethyl alcohol, has several physico-chemical disadvantages as engine fuel, such as it's corrosiveness and low energy content. One way to overcome these shortcomings is to upgrade it to higher bioalcohols like 1-butanol. Several catalysts were screened in isobaric minireactors and the most promising ones were subject to further experiments in a high-pressure autoclave batch-reactor setup. (orig.)

  19. Thermotolerant Yeasts for Bioethanol Production Using Lignocellulosic Substrates

    Science.gov (United States)

    Pasha, Chand; Rao, L. Venkateswar

    No other sustainable option for production of transportation fuels can match ethanol made from lignocellulosic biomass with respect to its dramatic environmental, economic, strategic and infrastructure advantages. Substantial progress has been made in advancing biomass ethanol (bioethanol) production technology to the point that it now has commercial potential, and several firms are engaged in the demanding task of introducing first-of-a-kind technology into the marketplace to make bioethanol a reality in existing fuel-blending markets. In order to lower pollution India has a long-term goal to use biofuels (bioethanol and biodiesel). Ethanol may be used either in pure form, or as a blend in petrol in different proportions. Since the cost of raw materials, which can account up to 50 % of the total production cost, is one of the most significant factors affecting the economy of alcohol, nowadays efforts are more concentrated on using cheap and abundant raw materials. Several forms of biomass resources exist (starch or sugar crops, weeds, oil plants, agricultural, forestry and municipal wastes) but of all biomass cellulosic resources represent the most abundant global source. The lignocellulosic materials include agricultural residues, municipal solid wastes (MSW), pulp mill refuse, switchgrass and lawn, garden wastes. Lignocellulosic materials contain two types of polysaccharides, cellulose and hemicellulose, bound together by a third component lignin. The principal elements of the lignocellulosic research include: i) evaluation and characterization of the waste feedstock; ii) pretreatment including initial clean up or dewatering of the feedstock; and iii) development of effective direct conversion bioprocessing to generate ethanol as an end product. Pre-treatment of lignocellulosic materials is a step in which some of the hemicellulose dissolves in water, either as monomeric sugars or as oligomers and polymers. The cellulose cannot be enzymatically hydrolyzed to

  20. Power exchanges in the German market: an initial assessment; Bourses d'electricite sur le marche Allemand - premieres evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Dinko, Raytchev [Universite de Montesquieu Bordeaux-4, Lab. d' Analyse et de Recherche en Economie-Economie et Finance Internationales LAREefi, 33 (France)

    2002-11-01

    The emergence of power exchanges is one of the key phenomena accompanying the liberation of the electricity industry. Apart from the Nordic countries, this is a recent event, especially for the countries of continental Europe. In this study, we will be focusing on the German electricity market for several reasons. Firstly, Germany has the largest market for electrical power in Europe. As the electricity sector is in the process of opening up to competition, this country is one of the 'good pupils' in the field of electrical deregulation. Next, it is a good idea to draw up an initial overview of the German experience following the launch on 27.11.2001 of an organised market in France (the PowerNext exchange). Currently, there are three exchanges able to negotiate contracts in the German hub: the Amsterdam Power Exchange (APX), the European Energy (EEX) and the Leipzig Power Exchange (LPX). The exchanges were created between May 1999 (APX) and August 2000 (EEX). They are in a situation of direct competition in the German market. This competition is particularly keen since the three players are well aware of the challenge at stake: becoming the leading exchange for the German market and (possibly) in a future integrated European market. The announcement of a merger between LPX and EEX in 2002 (published on 26.10.2001 on the sites of both exchanges) underlines the importance of these strategic issues. The purpose of this work is to carry out an assessment of the three exchanges during their first months in existence. Using an econometric analysis, we offer conclusions concerning the capacity of these exchanges to supply a reference price. The opportunities for arbitration are also examined. Despite the difficulties of the market launches, the exchanges have successfully maintained a certain degree of coherence in their prices and may now sit back a little and plan their expansion. It is difficult at this stage to see who the eventual 'winner' will

  1. Emerging bio-ethanol projects in Nigeria. Their opportunities and challenges

    International Nuclear Information System (INIS)

    Ohimain, Elijah I.

    2010-01-01

    Despite being a major petroleum producing and exporting country, Nigeria has for a long time imported refined petroleum products for domestic consumption. The country has recently made an entrance into the bio-energy sector by seeding the market with imported ethanol until enough capability exists for the domestic production of ethanol. The Nigerian Biofuel Policy was released in 2007 calling for the domestic production of bio-ethanol to meet the national demand of 5.14 billion litres/year. Some investors have responded by investing over $3.86 billion for the construction of 19 ethanol bio-refineries, 10,000 units of mini-refineries and feedstock plantations for the production of over 2.66 billion litres of fuel grade ethanol per annum. Also, another 14 new projects are in the offing. Of the 20 pioneer projects, 4 are at the conception phase, 8 are in the planning phase, and 7 are under construction with only 1 operational. The potential benefits of the emerging bio-ethanol projects include investment in the economy, employment, energy security and boost rural infrastructure, while the major challenge is land take (859,561 ha). This is the first time an attempt is been made to document the emerging bio-ethanol projects in Nigeria. (author)

  2. Hydrogen-based power generation from bioethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, Postal code: 400028, Cluj-Napoca (Romania)

    2015-12-23

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  3. Hydrogen-based power generation from bioethanol steam reforming

    International Nuclear Information System (INIS)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-01-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO 2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint

  4. Hydrogen-based power generation from bioethanol steam reforming

    Science.gov (United States)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  5. Modeling of China's cassava-based bioethanol supply chain operation and coordination

    International Nuclear Information System (INIS)

    Ye, Fei; Li, Yina; Lin, Qiang; Zhan, Yuanzhu

    2017-01-01

    As a useful alternative to petroleum-based fuel, biofuels are playing an increasingly important role due to their economic, environmental, and social benefits. Cassava is viewed as an important and highly attractive nonedible feedstock for the production of biofuels. In this paper, a game-theoretic approach is proposed to explore decision behavior within a cassava-based bioethanol supply chain under the condition of yield uncertainty. In addition, a production cost sharing contract is proposed to overcome the double marginalization effect due to competition between supply chain players. With data from China's cassava-based bioethanol industry, the paper analyzes the effects of the farmer's capacity, risk aversion, yield uncertainty, the conversion ratio, the bioethanol's market price and ethanol plant's operation cost on optimal decisions within the supply chain and its overall performance. In addition, the effectiveness of the proposed production cost sharing contract is tested, and the results show that it can enhance the supply of cassava, increase the utility of the whole supply chain and reduce the level of greenhouse gas (GHG) emissions. The implications are set out for policy makers regarding how to promote the development of the biofuel industry, to guarantee the supply of feedstock, to reduce GHG emissions and to promote rural development. - Highlights: • Decision behavior within the cassava-based bioethanol supply chain is modeled. • Yield uncertainty and farmers' capacity and risk aversion are considered. • A production cost sharing contract is proposed to coordinate the supply chain. • The cassava supply, the utility and reduction on GHG emissions are increased. • Policy implications regarding how to promote biofuel supply chains are set out.

  6. Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil

    International Nuclear Information System (INIS)

    Luo, Lin; Van der Voet, Ester; Huppes, Gjalt

    2009-01-01

    Brazil has always been the pioneer in the application of bioethanol as a main fuel for automobiles, hence environmental and economic analyses of the Brazilian ethanol industries are of crucial importance. This study presents a comparative life cycle assessment (LCA) on gasoline and ethanol as fuels, and with two types of blends of gasoline with bioethanol, all used in a midsize car. The focus is on a main application in Brazil, sugarcane based ethanol. The results of two cases are presented: base case - bioethanol production from sugarcane and electricity generation from bagasse; future case - bioethanol production from both sugarcane and bagasse and electricity generation from wastes. In both cases sugar is co-produced. The life cycles of fuels include gasoline production, agricultural production of sugarcane, ethanol production, sugar and electricity co-production, blending ethanol with gasoline to produce E10 (10% of ethanol) and E85 (85%), and finally the use of gasoline, E10, E85 and pure ethanol. Furthermore, a life cycle costing (LCC) was conducted to give an indication on fuel economy in both cases. The results show that in the base case less GHG is emitted; while the overall evaluation of these fuel options depends on the importance attached to different impacts. The future case is certainly more economically attractive, which has been the driving force for development in the ethanol industry in Brazil. Nevertheless, the outcomes depend very much on the assumed price for crude oil. In LCC a steady-state cost model was used and only the production cost was taken into account. In the real market the prices of fuels are very much dependent on the taxes and subsidies. Technological development can help in lowering both the environmental impact and the prices of the ethanol fuels. (author)

  7. Pretreatment Technologies of Lignocellulosic Materials in Bioethanol Production Process

    Directory of Open Access Journals (Sweden)

    Mohamad Rusdi Hidayat

    2013-06-01

    Full Text Available Bioethanol is one type of biofuel that developed significantly. The utilization of bioethanol is not only limited for fuel, but also could be used as material for various industries such as pharmaceuticals, cosmetics, and food. With wide utilization and relatively simple production technology has made bioethanol as the most favored biofuel currently. The use of lignocellulosic biomass, microalgae, seaweeds, even GMO (Genetically modified organisms as substrates for bioethanol production has been widely tested. Differences in the materials eventually led to change in the production technology used. Pretreatment technology in the bioethanol production using lignocellulosic currently experiencing rapid development. It is a key process and crucial for the whole next steps. Based on the advantages and disadvantages from all methods, steam explotion and liquid hot water methods are the most promising  pretreatment technology available.

  8. Biotechnological Strategies to Improve Plant Biomass Quality for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Julián Mario Peña-Castro

    2017-01-01

    Full Text Available The transition from an economy dependent on nonrenewable energy sources to one with higher diversity of renewables will not be a simple process. It requires an important research effort to adapt to the dynamics of the changing energy market, sort costly processes, and avoid overlapping with social interest markets such as food and livestock production. In this review, we analyze the desirable traits of raw plant materials for the bioethanol industry and the molecular biotechnology strategies employed to improve them, in either plants already under use (as maize or proposed species (large grass families. The fundamentals of these applications can be found in the mechanisms by which plants have evolved different pathways to manage carbon resources for reproduction or survival in unexpected conditions. Here, we review the means by which this information can be used to manipulate these mechanisms for commercial uses, including saccharification improvement of starch and cellulose, decrease in cell wall recalcitrance through lignin modification, and increase in plant biomass.

  9. Biotechnological Strategies to Improve Plant Biomass Quality for Bioethanol Production

    Science.gov (United States)

    del Moral, Sandra; Núñez-López, Lizeth; Barrera-Figueroa, Blanca E.; Amaya-Delgado, Lorena

    2017-01-01

    The transition from an economy dependent on nonrenewable energy sources to one with higher diversity of renewables will not be a simple process. It requires an important research effort to adapt to the dynamics of the changing energy market, sort costly processes, and avoid overlapping with social interest markets such as food and livestock production. In this review, we analyze the desirable traits of raw plant materials for the bioethanol industry and the molecular biotechnology strategies employed to improve them, in either plants already under use (as maize) or proposed species (large grass families). The fundamentals of these applications can be found in the mechanisms by which plants have evolved different pathways to manage carbon resources for reproduction or survival in unexpected conditions. Here, we review the means by which this information can be used to manipulate these mechanisms for commercial uses, including saccharification improvement of starch and cellulose, decrease in cell wall recalcitrance through lignin modification, and increase in plant biomass. PMID:28951875

  10. Bioethanol, the rest of the breakfast; Bioethanol: Was vom Fruehstueck uebrig bleibt

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, A.

    2007-11-30

    Maize, wheat and sugar cane are raw materials for producing cornflakes, bread and sugar but also bioethanol. The fuel is competing with foods for growth areas and water. On the other hand, it could also be produced from residues, e.g. dairy residues or orange peels. (orig.)

  11. Potential of bioethanol as a chemical building block for biorefineries: Preliminary sustainability assessment of 12 bioethanol-based products

    NARCIS (Netherlands)

    Posada Duque, J.A.; Patel, A.D.; Roes, A.L.; Blok, K.; Faaij, A.P.C.; Patel, M.K.

    2013-01-01

    The aim of this study is to present and apply a quick screening method and to identify the most promising bioethanol derivatives using an early-stage sustainability assessment method that compares a bioethanol-based conversion route to its respective petrochemical counterpart. The method combines,

  12. European municipalities and the liberalized energy market; Les municipalites europeennes et le marche liberalise de l'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    Municipalities are directly affected by the liberalization of the energy markets. Because they all consume or even produce energy, whether it be for their own consumption or to resell it, they often distribute gas, electricity or heat, they plan urban areas and organize the energy networks on their territory, while in addition citizens expect municipalities to inform them and even protect them against the possible excesses of energy salesmen. Elected representatives administrations, local agencies, municipal companies, citizens' associations etc., all have to innovate. This supplement to Energie-Cites INFO is intended to provide you with practical information and further analyses of the liberalization process. (authors)

  13. Marketing de los candidatos a la gubernatura de Nuevo León en las redes sociales durante el proceso electoral de 2015

    Directory of Open Access Journals (Sweden)

    Gladys Y. Berumen Villarruel

    2016-01-01

    Full Text Available En Nuevo León, se tiene por primera vez un candidato independiente a la gubernatura del estado en el proceso electoral de 2015. Este hecho inédito fue producido principalmente por la reforma electoral de 2013-2014, que incluyó esta figura para competir por cargos de elección popular. Sin embargo, las condiciones iniciales en la contienda fueron desventajosas para el candidato independiente, sobre todo en lo relativo al financiamiento y acceso a los medios de comunicación, por lo que éste basó su estrategia de campaña en las redes sociales, enfatizando el uso del marketing de emociones con mayor ventaja que sus contrincantes principales del Partido Revolucionario Institucional (PRI y del Partido Acción Nacional (PAN. El análisis que aquí se muestra está enfocado a medir el impacto que se tuvo de las campañas en redes sociales en la interacción con los usuarios, aunque no pueda ser todavía concluyente para inferir que esta variable fue la más determinante en la victoria del candidato independiente. / The state of Nuevo León for the first time saw an independent candidate running in the 2015 gubernatorial race. This unprecedented circumstance resulted mainly from the 2013-2014 electoral reform, which included the category of independent candidates for elected posts. However, conditions at the beginning of the race were disadvantageous for the independent candidate, above all with regard to financing and media access. That is why he based his campaign strategy on social networks, emphasizing the use of marketing emotions to better effect than his main opponents from the Institutional Revolutionary Party (PRI and the National Action Party (PAN. The analysis presented here focuses on measuring the impact the social network campaigns had on the interaction with users, although it is still too early to conclude that this variable was the determining factor in the independent candidate’s victory.

  14. Marketing de los candidatos a la gubernatura de Nuevo León en las redes sociales durante el proceso electoral de 2015

    Directory of Open Access Journals (Sweden)

    Gladys Y. Berumen Villarruel

    2016-08-01

    Full Text Available En Nuevo León, se tiene por primera vez un candidato independiente a la gubernatura del estado en el proceso electoral de 2015. Este hecho inédito fue producido principalmente por la reforma electoral de 2013-2014, que incluyó esta figura para competir por cargos de elección popular. Sin embargo, las condiciones iniciales en la contienda fueron desventajosas para el candidato independiente, sobre todo en lo relativo al financiamiento y acceso a los medios de comunicación, por lo que éste basó su estrategia de campaña en las redes sociales, enfatizando el uso del marketing de emociones con mayor ventaja que sus contrincantes principales del Partido Revolucionario Institucional (PRI y del Partido Acción Nacional (PAN. El análisis que aquí se muestra está enfocado a medir el impacto que se tuvo de las campañas en redes sociales en la interacción con los usuarios, aunque no pueda ser todavía concluyente para inferir que esta variable fue la más determinante en la victoria del candidato independiente. / The state of Nuevo León for the first time saw an independent candidate running in the 2015 gubernatorial race. This unprecedented circumstance resulted mainly from the 2013-2014 electoral reform, which included the category of independent candidates for elected posts. However, conditions at the beginning of the race were disadvantageous for the independent candidate, above all with regard to financing and media access. That is why he based his campaign strategy on social networks, emphasizing the use of marketing emotions to better effect than his main opponents from the Institutional Revolutionary Party (PRI and the National Action Party (PAN. The analysis presented here focuses on measuring the impact the social network campaigns had on the interaction with users, although it is still too early to conclude that this variable was the determining factor in the independent candidate’s victory.

  15. Potential development of bioethanol production in Vojvodina

    Energy Technology Data Exchange (ETDEWEB)

    Dodic, Sinisa N.; Popov, Stevan D.; Dodic, Jelena M.; Rankovic, Jovana A.; Zavargo, Zoltan Z. [Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology, University of Novi Sad, Bul. cara Lazara 1, Novi Sad 21000, Vojvodina (RS)

    2009-12-15

    The Autonomous Province of Vojvodina is an Autonomous Province in Serbia, containing about 27% of its total population according to the 2002 Census. Contribution of renewable energy sources in total energy consumption of Vojvodina contemporary amounts to less than 1%, apropos 280 GWh/year. By combining of methods of introduction of new and renewable sources, systematic application of methods for increasing of energetic efficacy, as well as of introduction of the new technologies, percentage of contribution of the non-conventional energy sources in Vojvodina could be increased to as much as 20%. This paper presents the potential of development of bioethanol production in Vojvodina. Production of bioethanol on small farms can be successfully applied for processing of only 30 kg of corn per day, with obtaining of crude ethanol in the so-called 'brandy ladle' and use of lygnocellulosic agricultural wastes as an energy source. In a case of construction of a larger number of such plants, the only possible solution is seen in the principle of construction of the so-called 'satellite plants', which will on small farm produce crude ethanol, with obtaining and consumption of stillage for animal feeding, and consumption of agricultural wastes as energetic fuels. If stillage is to be used as feed in wet feeding, it is estimated that, because of restrictions established by the magnitude of animal farm, the upper limit of capacity of such enterprises that process is at some 10-15 tons of corn per day, and production of 3000-3500 hL of absolute ethanol per day. In such a case, for animal feeding necessary is to have herd with 1300-1700 of milking cows or 5000-25,000 heads of sheep and/or pigs. Technological model of separate grain processing ad bioethanol production from dextrose hydrolysates of starch is interesting for countries possessing plants for bioethanol production from molasses and plants for cereals processing into starch and dextrose hydrolysates

  16. Production of olefins from bioethanol. Catalysts, mechanism

    Directory of Open Access Journals (Sweden)

    Kusman Dossumov

    2012-12-01

    Full Text Available This review describes methods of catalytic obtaining from bioethanol of valuable industrial products – olefins, particularly ethylene. Аmong olefins, ethylene is the most popular key raw material of petrochemical synthesis. The scope of appllication of ethylene is almost unlimited in petrochemical products: polyethylene, ethylbenzene, styrene, ethylene dichloride, vinyl chloride etc. It also examines catalysts for the production of olefins and their properties. The most promising and commercially advantageous process of ethylene production by catalytic dehydration of ethanol on catalysts based on modified alumina. And this review discusses the mechanisms of catalytic conversion of ethanol to ethylene.

  17. Lele des chefs traditionnels au Ghana : un modèle inspirant ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    8 févr. 2011 ... Ray est également coordonnateur international du Traditional Authority ... Marketing social : le chef traditionnel acquiert une certaine expertise et ... Nadine Robitaille est rédactrice à la Division des communications du CRDI .

  18. The bio-ethanol production with the thin stillage recirculation

    Directory of Open Access Journals (Sweden)

    M. Rakin

    2009-01-01

    Full Text Available In this paper, the bioethanol production with the thin stillage recirculation in mashing was investigated. The mashing was performed with recirculation of: 0, 10, 20 and 30 % of the thin stillage. The thin stillage recirculation was repeated six times. In the experiment without the thin stillage, the recirculation bioethanol yield (compared to the theoretical yield was 97.96 %, which implicates that the experiment conditions were chosen and performed well. With the addition of the thin stillage, the bioethanol yield increased and was above 100 %. Higher bioethanol yield than 100 % can be explained by the fact that the thin stillage contains carbohydrates, amino acids and yeast cells degradation products. The bioethanol yield increased with the increased number of thin stillage recirculation cycles. Dry matter content in fermenting slurry increased with the increased thin stillage quantity and the number of the thin stillage recirculation cycles (8.04 % for the first and 9.40 % for the sixth cycle. Dry matter content in thin stillage increased with the increased thin stillage quantity and the number of thin stillage recirculation cycles. Based on the obtained results it can be concluded that thin stillage recirculation increased the bioethanol yield. The highest bioethanol yields were obtained with recirculation of 10% thin stillage.

  19. Utilizing thermophilic microbe in lignocelluloses based bioethanol production: Review

    Science.gov (United States)

    Sriharti, Agustina, Wawan; Ratnawati, Lia; Rahman, Taufik; Salim, Takiyah

    2017-01-01

    The utilization of thermophilic microbe has attracted many parties, particularly in producing an alternative fuel like ethanol. Bioethanol is one of the alternative energy sources substituting for earth oil in the future. The advantage of using bioethanol is that it can reduce pollution levels and global warming because the result of bioethanol burning doesn't bring in a net addition of CO2 into environment. Moreover, decrease in the reserves of earth oil globally has also contributed to the notion on searching renewable energy resources such as bioethanol. Indonesia has a high biomass potential and can be used as raw material for bioethanol. The utilization of these raw materials will reduce fears of competition foodstuffs for energy production. The enzymes that play a role in degrading lignocelluloses are cellulolytic, hemicellulolytic, and lignolytic in nature. The main enzyme with an important role in bioethanol production is a complex enzyme capable of degrading lignocelluloses. The enzyme can be produced by the thermophilik microbes of the groups of bacteria and fungi such as Trichoderma viride, Clostridium thermocellum, Bacillus sp. Bioethanol production is heavily affected by raw material composition, microorganism type, and the condition of fermentation used.

  20. National market of leaded gasoline. Technical aspects; Le marche national de l'essence plombee. Les aspects techniques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-02-18

    The French market of leaded gasoline which decreases annually since 1993 by about 10% still amounts at present (April 1999) about 4.5 million tons/yr, i.e., 31% of the whole gasoline market. By 1. of January 2000, the stock of private and service light vehicles constrained to use leaded gasoline will be of about 1.1 million; taking into account other additional uses, by that time the essential needs of leaded gasoline are expected to amount up to 1.5 million tons/yr. By 2003 the number of these vehicles are expected to decrease down to 300,000. Thus, it appears that since January 2000 up to probably 2003 the distribution pumps have to be provided with the fuel specific to the old vehicles. To prepare the cessation of leaded gasoline, already forbidden in certain countries since many years, the petroleum industry and additive manufacturers have carried out research to develop anti-detonation additives to replace the leaded additives. Potassium-based additives appears to be efficient for health of both engines and people and as such a proposal with validity starting since 1. 2000 was issued, complying with the EN228 Standard, for which the provisions of the Standard 98/70/CE are adapted to the French regulations. Thus, to comply with the European regulations concerning unleaded fuels the refineries will manufacture the SP 95 and SP 98, the latter being better adapted to be treated with unleaded additives. The document gives details concerning the logistics, supply and characteristics of the replacement fuels. Evolution of the super-fuel selling since January 1994 to January 1999 is plotted.

  1. The contribution of bioethanol to sustainable development in Serbia

    Directory of Open Access Journals (Sweden)

    Popov Stevan D.

    2013-01-01

    Full Text Available The pollution caused by the use of fossil fuels for the production of mechanical or electrical energy is one of the most important environmental issues nowa­days. In this respect, biofuels represent a viable source of energy. Bioethanol as a renewable energy source is derived from organic material of plant origin, so-called biomass, thus reducing environmental pollution. The aim of this study was to analyze the potential of bioethanol in meeting future energy demands in the Republic of Serbia. [Projekat Ministarstva nauke Republike SRbije, br. TR31002: The improvement of bioethanol production from sugar beet processing products

  2. The world petroleum market in 2007. DIREM analysis; Le marche petrolier mondial en 2007. Analyse de la DIREM

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    2007: the world is becoming used to a high oil price. With an average price of 72.6 US$ per barrel for the ICE Brent, the crude rates show a 9.8% rise with respect to the 2006 ones (66.11 US$/b) following the 20% rise observed in 2006. Price rates show a sawtooth evolution but with a general rise over the full year. Thanks to a US$ change rate favorable to the euro, the 2007 average is of 52.76 euro/b with respect to 52.65 euro/b in 2006. At the end of the year 2007 the barrel price reached 93.85 US$/b with respect to 60.86 US$/b at the end of 2006. The document analyses the impact of these high prices on the economies of oil-consuming and oil-producing countries. It presents the 2007 highlights of the main OPEC countries (Saudi Arabia, Iran, Venezuela, Iraq, Nigeria, Angola), and then analyses the international quotations of petroleum products on the Rotterdam market and the prices of petroleum products in France. (J.S.)

  3. Promoting bioethanol production through clean development mechanism: Findings and lessons learnt from ASIATIC project

    Energy Technology Data Exchange (ETDEWEB)

    Gnansounou, Edgard; Bedniaguine, Denis; Dauriat, Arnaud

    2005-12-15

    Global climate change mitigation policies call for increasing use of biomass fuels as renewable substitutes to fossil energy resources. Quantified targets for biofuels introduction in to the market exist in the United States, the European Union, and a number of developing countries. In this context, mixing biologically produced ethanol with conventional gasoline represents an attractive technical option allowing for reducing emissions of greenhouse gases and lessening the dependence on non-renewable petrol in the transportation sector. This paper investigates technological and socio-economic aspects of ethanol production in developing countries, particularly in China, with special focus on determining eligibility of bioethanol projects for Clean Development Mechanism. Basing on the findings of the ASIATIC study (Agriculture and Small to Medium Scale Industries in Peri-urban Areas through Ethanol Production for Transport In China), we analyse how alcohol fuels can be produced in a sustainable way with mutual benefits between rural and urban people. The bioethanol production cost and life cycle CO2 eq. emissions were calculated for six different types of feedstock: sugarcane, sugarcane molasses, sweet sorghum juice, cassava, corn, and sorghum bagasse. Implications of the CDM rules and procedures for bioethanol industry were examined under the angles of environmental and economical additionality, and conformity with the principles of sustainable development. It is found that the starch-based (cassava) ethanol production path has the greatest potential for market penetration in China, followed by the conversion route using sugar-based feedstock (sorghum juice, sugarcane molasses). Meanwhile, the lignocelluloses biomass - to - ethanol technology may represent the highest interest for implementation as Clean Development Mechanism project. (Author)

  4. Steam reforming of technical bioethanol for hydrogen production

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Johansson, Roger; Møller, Martin Hulbek

    2008-01-01

    Essentially all work on ethanol steam reforming so far has been carried out using simulated bioethanol feedstocks, which means pure ethanol mixed with water. However, technical bioethanol consists of a lot of different components including sugars, which cannot be easily vaporized and steam reformed....... For ethanol steam reforming to be of practical interest, it is important to avoid the energy-intensive purification steps to fuel grade ethanol. Therefore, it is imperative to analyze how technical bioethanol, with the relevant impurities, reacts during the steam reforming process. We show how three different...... bioethanol will result in a faster catalyst deactivation than what is observed when using pure ethanol-water mixtures because of contaminants remaining in the feed. However, the initial activity of the catalysts are not affected by this, hence it is important to not only focus on catalyst activity but rather...

  5. Bioethanol sources in Pakistan: A renewable energy resource

    African Journals Online (AJOL)

    ajl yemi

    2011-12-30

    Dec 30, 2011 ... Biofuel in form of bioethanol can be produced using agricultural wastes by the use of enzymes, and hence the main objective of this approach is to get benefit of the agricultural wastes. .... mango peels, beans and banana.

  6. Bioethanol fuel production from rambutan fruit biomass as reducing ...

    African Journals Online (AJOL)

    Administrator

    2011-09-05

    Sep 5, 2011 ... bioethanol from rotten rambutan was to manage rambutan wastes, cleaning the ... regarding rambutan, mango, banana and pineapple for the ethanol production ... small pieces together with their skin and blended in a Philips.

  7. The bio-ethanol production with the thin stillage recirculation

    OpenAIRE

    M. Rakin; J. Pejin; O. Grujić; Lj. Mojović; D. Pejin

    2009-01-01

    In this paper, the bioethanol production with the thin stillage recirculation in mashing was investigated. The mashing was performed with recirculation of: 0, 10, 20 and 30 % of the thin stillage. The thin stillage recirculation was repeated six times. In the experiment without the thin stillage, the recirculation bioethanol yield (compared to the theoretical yield) was 97.96 %, which implicates that the experiment conditions were chosen and performed well. With the addition of the thin still...

  8. Marketing.

    Science.gov (United States)

    Chambers, David W

    2010-01-01

    There is not enough marketing of dentistry; but there certainly is too much selling of poor quality service that is being passed off as dentistry. The marketing concept makes the patient and the patients' needs the ultimate criteria of marketing efforts. Myths and good practices for effective marketing that will promote oral health are described under the traditional four "Ps" categories of "product" (best dental care), "place" (availability), "promotion" (advertising and other forms of making patients aware of available services and how to use them), and "price" (the total cost to patients of receiving care).

  9. Environmental sustainability assessment of bio-ethanol production in Thailand

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.

    2009-01-01

    Bio-ethanol is playing an important role in renewable energy for transport according to Thai government policy. This study aims to evaluate the energy efficiency and renewability of bio-ethanol system and identify the current significant environmental risks and availability of feedstocks in Thailand. Four of the seven existing ethanol plants contributing 53% of the total ethanol fuel production in Thailand have been assessed by the net energy balance method and Life Cycle Assessment (LCA). A renewability and net energy ratio portfolio has been used to indicate whether existing bio-ethanol production systems have net energy gain and could help reduce dependency on fossil energy. In addition, LCA has been conducted to identify and evaluate the environmental hotspots of 'cradle to gate' bio-ethanol production. The results show that there are significant differences of energy and environmental performance among the four existing production systems even for the same feedstock. The differences are dependent on many factors such as farming practices, feedstock transportion, fuel used in ethanol plants, operation practices and technology of ethanol conversion and waste management practices. Recommendations for improving the overall energy and environmental performance of the bio-ethanol system are suggested in order to direct the bio-ethanol industry in Thailand towards environmental sustainability.

  10. Effect of wheat gluten proteins on bioethanol yield from grain

    Energy Technology Data Exchange (ETDEWEB)

    Buresova, Iva [Agrotest Fyto, Ltd., Havlickova 2787/121, 767 01 Kromeriz (Czech Republic); Hrivna, Ludek [Mendel University in Brno, Zemedelska 1, 613 00 Brno (Czech Republic)

    2011-04-15

    Bioethanol can be used as motor fuel and/or as a gasoline enhancer. A high yield feedstock for bioethanol production is cereal grain. Cereal grains containing less gluten proteins (glutenin and gliadin), but high starch, are favoured by distillers because they increase the bioethanol conversion. The direct effect of wheat gluten proteins on bioethanol yield was studied on triticale grain. Examined triticale Presto 1R.1D{sub 5+10}-2 and Presto Valdy were developed by introducing selected segments of wheat chromosome 1D into triticale chromosome 1R. Even if the samples analysed in this study do not afford to make definitive assumptions, it can be noticed that in analysed cases the presence of gliadin had more significant effect on investigated parameters than the presence of glutenin. Despite the presence of glutenin subunits did not significantly decrease the investigated parameters - specific weight, Hagberg falling number and starch content in grain met the requirements for grain for bioethanol production - protein content was higher than is optimal. The fermentation experiments demonstrated good bioethanol yields but depression in grain yields caused by the presence of wheat gliadin and glutenin decreased the energy balance of Presto Valdy and Presto 1R.1D{sub 5+10}-2. (author)

  11. Focus sul digital marketing

    OpenAIRE

    S. Vianello; G. Randisi

    2011-01-01

    Il marketing impatta o meno sulle performance aziendali? L’investimento in competenze di Marketing & Sales genera ritorni per le imprese? La risposta che emerge da questo volume è certa. Il marketing conta davvero, perché guida le scelte strategiche delle imprese e perché impatta direttamente sui loro indicatori economico-finanziari, attraverso competenze e metriche adeguate.

  12. Production of Bioethanol from Waste Potato

    Directory of Open Access Journals (Sweden)

    Merve Duruyurek

    2015-02-01

    Full Text Available Using primary energy sources in World as fossil fuels, causes air pollution and climate change. Because of these reasons, people looking for renewable energy suppliers which has less carbondioxide and less pollution. Carbon in biofuels is producing from photosynthesis. For this, burning biofuels don’t increase carbondioxide in atmosphere. Scientists predict that plants with high carbonhydrate and protein contents are 21. centuries biofuels. Potatoes are producing over 280 million in whole world and Turkey is 6th potato producer. Turkey produces 5250000 tonne of potatoes. Approximately 20% of potatoes are waste in Niğde. Our study aimed to produce bioethanol from Solanum tuberosum by using the yeast Saccharomyces cerevisiae. As a result renewable energy sources can be produced from natural wastes.

  13. DSMZ 24726 for second generation bioethanol production

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to a novel anaerobic, extreme thermophilic, ethanol high- yielding bacterium. The invention is based on the isolation of the bacterial strain referred to herein as "DTU01", which produces ethanol as the main fermentation product, followed by acetate and lactate. The ....... The isolated organism is an extremely interesting and very promising organism for the establishment of a sustainable bioethanol production process. The invention further relates to a method for producing a fermentation product such as ethanol.......The present invention relates to a novel anaerobic, extreme thermophilic, ethanol high- yielding bacterium. The invention is based on the isolation of the bacterial strain referred to herein as "DTU01", which produces ethanol as the main fermentation product, followed by acetate and lactate...

  14. Bioethanol as a major source of energy

    International Nuclear Information System (INIS)

    Anagha, Phani

    2009-01-01

    Full text: Achieving sustainability in agriculture requires taking into account many different factors: global climate, pollution, better use of industrial water, options regarding the use of fertilizers, pesticides, and herbicides, and also economic sustainability in terms of costs, competitiveness, and the number and quality of jobs created. The sugarcane industry is a good example of the integration of such concerns. It also illustrates what can be attained when people in developing countries receive the training they need to develop their own technologies. Bioethanol has taken precedence as Prime Biofuel after lot of controversy erupted on international food shortages and spiraling food prices. In spite of all the controversy Shrouding Biofuels, there has been universal acceptance and understanding that we need to continually look at alternate sources of fuels and feed stock's which are non food and this has seen visible interest for Sugarcane based Bioethanol to wheat, Maize and other food crops. In July 2008 alone, big investments in sugarcane/ethanol production were announced across the globe in sugar producing countries in the order of over 500 million dollars. The preceding months saw planned investment in the billions of dollars in the sector. The International Energy Agency sees world Biofuels production rising from 1.35 million barrels a day in 2008 to 1.95 million barrels a day in 2013- only five years away- and it is a safe bet that most of this increase will come from sugarcane ethanol. Dow Jones notes the sector seems impervious to the liquidity crunch with new investment being announced in Brazil despite high levels of existing debt. Pressure is also mounting on the developed countries to free up current import. (author)

  15. Pinch analysis for bioethanol production process from lignocellulosic biomass

    International Nuclear Information System (INIS)

    Fujimoto, S.; Yanagida, T.; Nakaiwa, M.; Tatsumi, H.; Minowa, T.

    2011-01-01

    Bioethanol produced from carbon neutral and renewable biomass resources is an attractive process for the mitigation of greenhouse gases from vehicle exhaust. This study investigated energy utilization during bioethanol production from lignocellulose while avoiding competition with food production from corn and considering the potential mitigation of greenhouse gases. Process design and simulations were performed for bioethanol production using concentrated sulfuric acid. Mass and heat balances were obtained by process simulations, and the heat recovery ratio was determined by pinch analysis. An energy saving of 38% was achieved. However, energy supply and demand were not effectively utilized in the temperature range from 95 to 100 o C. Therefore, a heat pump was used to improve the temperature range of efficient energy supply and demand. Results showed that the energy required for the process could be supplied by heat released during the process. Additionally, the power required was supplied by surplus power generated during the process. Thus, pinch analysis was used to improve the energy efficiency of the process. - Highlights: → Effective energy utilization of bioethanol production was studied by using pinch analysis. → It was found that energy was not effectively utilized in the temperature range from 95 to 100 o C. → Use of a heat pump was considered to improve the ineffective utilization. → Then, remarkable energy savings could be achieved by it. → Pinch analysis effectively improved the energy efficiency of the bioethanol production.

  16. Construction of technological scenarios on the bioethanol production in Brazil, evaluation of the macroeconomic impacts and the risks of the forecast market not to concretize; Construcao de cenarios tecnologicos sobre a producao do bioetanol no Brasil, avaliacao dos impactos macroeconomicos e riscos do mercado previsto nao se concretizar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-15

    This chapter gives a view of the transformations that should occur as functions of the sugar cane culture expansion. In the first part, it is shown how it should behavior the bioethanol demand and the offer of sugar cane and the bio ethanol in the Brazil. The objective of the first part is to demonstrate that there exist full conditions for the brazilian cultivation industry to reach exportation goals and attends to other necessities of the economy. In the second part, it is analysed what would be the possible expansions of these scenarios on the brazilian economy, including the viewpoint of the regional perspective.

  17. Bioethanol production from coconut husk fiber

    Directory of Open Access Journals (Sweden)

    Mirelle Márcio Santos Cabral

    Full Text Available ABSTRACT: Population growth and the increasing search for healthy foods have led to a major consumption of coconut water and, hence, to an environmental impact caused by the inappropriate disposal of green coconut husks. This lignocellulosic biomass has deserved attention of researchers concerning the seeking of new usages, as, for example, in renewable fuels production technologies. This study examines the potential of green coconut husk fibers as a feedstock for the production of bioethanol. The coconut fibers were pretreated through an alkaline method, hydrolyzed enzymatically and submitted to ethanol fermentation with commercial yeasts of Saccharomyces cerevisiae. Despite the significant loss of cellulose (4.42% in relation to the fiber and 17.9% concerning the original cellulose content, the alkaline pretreatment promoted an efficient solubilization of lignin (80%, turning the coconut fibers into a feasible raw material for 2G ethanol production studies. Enzymatic hydrolysis converted 87% of the sugars and the ethanolic fermentation consumed 81% of the substrate in the hydrolyzate, leading to a sugar to ethanol convertion efficiency of 59.6%. These results points out that green coconut husks are a promising alternative to the production of renewable energy.

  18. Bioethanol production from dried sweet sorghum stalk

    Energy Technology Data Exchange (ETDEWEB)

    Almodares, A.; Etemadifar, Z.; Ghoreishi, F.; Yosefi, F. [Biology Dept. Univ. of Isfahan, Isfahan (Iran, Islamic Republic of)], e-mail: aalmodares@yahoo.com

    2012-11-01

    Bioethanol as a renewable transportation fuel has a great potential for energy and clean environment. Among crops sweet sorghum is one of the best feedstock for ethanol production under hot and dry climatic conditions. Because it has higher tolerance to salt and drought comparing to sugarcane and corn that are currently used for bio-fuel production in the world. Generally mills are used to extract the juice from sweet sorghum stalks. Three roller mills extract around nearly 50 percent of the juice and more mills is needed to extract higher percentage of the juice. More over under cold weather the stalks become dry and juice is not extracted from the stalk, therefore reduce harvesting period. In this study stalks were harvested, leaves were stripped from the stalks and the stalks were chopped to nearly 4 mm length and sun dried. The dry stalks were grounded to 60 mesh powder by a mill. Fermentation medium consists of 15-35% (w/w) sweet sorghum powder, micronutrients and active yeast inoculum from 0.5-1% (w/w) by submerge fermentation method. The fermentation time and temperature were 48-72 hours and 30 deg, respectively. The results showed the highest amount of ethanol (14.5 % w/w sorghum) was produced with 10% sweet sorghum powder and 1% of yeast inoculum, three day fermentation at 30 deg.

  19. Pressurized liquid extraction of ginger (Zingiber officinale Roscoe) with bioethanol:

    DEFF Research Database (Denmark)

    Hu, Jiajin; Guo, Zheng; Glasius, Marianne

    2011-01-01

    To develop an efficient green extraction approach for recovery of bioactive compounds from natural plants, we examined the potential of pressurized liquid extraction (PLE) of ginger (Zingiber officinale Roscoe) with bioethanol/water as solvents. The advantages of PLE over other extraction...... approaches, in addition to reduced time/solvent cost, the extract of PLE showed a distinct constituent profile from that of Soxhlet extraction, with significantly improved recovery of diarylheptanoids, etc. Among the pure solvents tested for PLE, bioethanol yield the highest efficiency for recovering most...... constituents of gingerol-related compounds; while for a broad concentration spectrum of ethanol aqueous solutions, 70% ethanol gave the best performance in terms of yield of total extract, complete constituent profile and recovery of most gingerol-related components. PLE with 70% bioethanol operated at 1500...

  20. Review of China's bioethanol development and a case study of fuel supply, demand and distribution of bioethanol expansion by national application of E10

    International Nuclear Information System (INIS)

    Tao, Jing; Yu, Suiran; Wu, Tianxing

    2011-01-01

    The increasing dependence on imported oil and tremendous greenhouse gases (GHG) emission is making the diversification of primary fuel such as petroleum a critical vital energy and environmental issue in China. China is promoting bioethanol by mandatory use in nine provinces and the expansion is on agenda. This paper first reviews China's bioethanol development. Next, suitable feedstock crops for expanded ethanol production are discussed. Particularly, bioethanol expansion by national application of E10 is investigated from perspectives of potential in bioethanol supply, projected ethanol demand, and the possible cost-effective bioethanol distribution system. It is calculated that by making use of un-used land for feedstock planting and introduction of improved feedstock varieties, potential bioethanol production capacity in China will be up to 25.33 million tons per year. Ethanol demand for national application of E10 is projected to be around 7 million tons per year. A linear optimization model is used to consider the economic costs of distributing bioethanol in China. The optimization result suggests that development of bioethanol industry may focus on Henan, Jilin, Anhui, Jiangxi and Sichuan basin. It also estimates 53.79 RMB per ton of bioethanol for downstream rail or truck transportation remain a relatively small fraction of total fuel cost. Thanks to the well developed railway network in China, more bioethanol can be distributed at a relatively modest premium distribution costs and with low environmental influences. -- Highlights: → China's bioethanol development is reviewed. → Ethanol potential, projected demand and efficient distribution system are studied. → We find that nationwide bioethanol application can be commercially viable. → Impacts of oil and feedstock prices on ethanol expansion are discussed. → Ecological impacts of large scale feedstock crop plantation should be inspected.

  1. Analysis and decrease of the energy demand of bioethanol-production by process integration

    Energy Technology Data Exchange (ETDEWEB)

    Pfeffer, Martin; Wukovits, Walter; Beckmann, Georg; Friedl, Anton [Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna (Austria)

    2007-11-15

    Process simulation was used to decrease the external heat demand during the production of bioethanol by integration in a network of facilities for heat and power generation. Models for bioethanol fermentation and purification process, the production of DDGS as well as production and utilization of biogas were developed to calculate the heat demand of bioethanol-production and the amount of heat and power generated from residues of the bioethanol process. Depending on the form of biogas utilization (CHP-plant, biogas fired boiler) and the capacity of the bioethanol plant, the conversion of stillage from the bioethanol process to biogas covers a considerable amount of the heat demand necessary for bioethanol-production and purification. (author)

  2. Comment les différences entre consommateurs francophones et néerlandophones sont-elles perçues et prises en compte par les professionnels du marketing en Belgique, dans le domaine du B2C ?

    OpenAIRE

    Willems, Robin

    2015-01-01

    L'objectif du mémoire est de comprendre comment les différences entre les consommateurs francophones et néerlandophones de Belgique sont perçues et prises en compte par les professionnels du marketing dans le domaine du B2C. La méthodologie d'étude consiste premièrement en une revue de la littérature sur les thèmes du marketing multiculturel et des différences entre francophones et néerlandophones de Belgique. Sur base de cette revue de littérature et d'interviews, des hypothèses de recherche...

  3. Microwave pretreatment of switchgrass for bioethanol production

    Science.gov (United States)

    Keshwani, Deepak Radhakrishin

    Lignocellulosic materials are promising alternative feedstocks for bioethanol production. These materials include agricultural residues, cellulosic waste such as newsprint and office paper, logging residues, and herbaceous and woody crops. However, the recalcitrant nature of lignocellulosic biomass necessitates a pretreatment step to improve the yield of fermentable sugars. The overall goal of this dissertation is to expand the current state of knowledge on microwave-based pretreatment of lignocellulosic biomass. Existing research on bioenergy and value-added applications of switchgrass is reviewed in Chapter 2. Switchgrass is an herbaceous energy crop native to North America and has high biomass productivity, potentially low requirements for agricultural inputs and positive environmental impacts. Based on results from test plots, yields in excess of 20 Mg/ha have been reported. Environmental benefits associated with switchgrass include the potential for carbon sequestration, nutrient recovery from run-off, soil remediation and provision of habitats for grassland birds. Published research on pretreatment of switchgrass reported glucose yields ranging from 70-90% and xylose yields ranging from 70-100% after hydrolysis and ethanol yields ranging from 72-92% after fermentation. Other potential value-added uses of switchgrass include gasification, bio-oil production, newsprint production and fiber reinforcement in thermoplastic composites. Research on microwave-based pretreatment of switchgrass and coastal bermudagrass is presented in Chapter 3. Pretreatments were carried out by immersing the biomass in dilute chemical reagents and exposing the slurry to microwave radiation at 250 watts for residence times ranging from 5 to 20 minutes. Preliminary experiments identified alkalis as suitable chemical reagents for microwave-based pretreatment. An evaluation of different alkalis identified sodium hydroxide as the most effective alkali reagent. Under optimum pretreatment

  4. Le Sanskrit

    CERN Document Server

    Balbir, Nalini

    2013-01-01

    Cet ouvrage est destiné à tous ceux qui souhaitent se mettre ou se remettre à l'étude du sanskrit et ne peuvent y consacrer que quelques minutes par jour. En suivant le principe de la méthode quotidienne Assimil, vous acquerrez progressivement le vocabulaire et la grammaire de base qui sont nécessaires à la lecture des textes de la littérature sanskrite classique. Vous trouverez dans cette méthode une approche vivante de la langue et de la culture sanskrite classique à travers des textes d'abord adaptés pour le débutant puis authentiques. En quelques mois, vous manierez la langue sans efforts ni hésitation, de manière très naturelle. Les enregistrements reprennent l'intégralité des textes en sanskrit des leçons et des exercices de traduction du livre. Ils sont interprétés, à un rythme progressif, par des locuteurs natifs professionnels.

  5. Liquid Biofuels: Vegetable Oils and Bioethanol; Biocombustibles Liquidos: aceites Vegetales y Bioetanol

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, M.; Ballesteros, I.; Oliva, J.M.; Navarro, A.A.

    1998-12-01

    The European energy policy has defined clear objectives to reduce the high dependency on fossil petroleum imports, and to increase the security of sustainable energy supply for the transport sector. Moreover, the European environmental policy is requesting clean fuels that reduce environmental risks. Liquid Biofuels (vegetable oils and bioethanol) appear to be in a good position to contribute to achieve these goals expressed by the established objective of European Union to reach for biofuels a market share of 5% of motor vehicle consumption. This work presents the current state and perspectives of the production and utilisation of liquid fuels from agricultural sources by reviewing agricultural feedstocks for energy sector, conversion technologies and different ways to use biofuels. Environmental and economical aspects are also briefly analysed. (Author) 10 refs.

  6. The potential for second generation bio-ethanol production from ...

    African Journals Online (AJOL)

    A review of possible bio-sources that can be used for bioethanol production with emphasis on those that have potential of replacing conventional fuels with little or minor modification of existing biomass production capacity and trend is presented. Data analysis indicates that the straw from maize, sorghum and wheat can ...

  7. Microalgal biomass pretreatment for bioethanol production: a review

    Directory of Open Access Journals (Sweden)

    Jesús Velazquez-Lucio

    2018-03-01

    Full Text Available Biofuels derived from microalgae biomass have received a great deal of attention owing to their high potentials as sustainable alternatives to fossil fuels. Microalgae have a high capacity of CO2 fixation and depending on their growth conditions, they can accumulate different quantities of lipids, proteins, and carbohydrates. Microalgal biomass can, therefore, represent a rich source of fermentable sugars for third generation bioethanol production. The utilization of microalgal carbohydrates for bioethanol production follows three main stages: i pretreatment, ii saccharification, and iii fermentation. One of the most important stages is the pretreatment, which is carried out to increase the accessibility to intracellular sugars, and thus plays an important role in improving the overall efficiency of the bioethanol production process. Diverse types of pretreatments are currently used including chemical, thermal, mechanical, biological, and their combinations, which can promote cell disruption, facilitate extraction, and result in the modification the structure of carbohydrates as well as the production of fermentable sugars. In this review, the different pretreatments used on microalgae biomass for bioethanol production are presented and discussed. Moreover, the methods used for starch and total carbohydrates quantification in microalgae biomass are also briefly presented and compared.

  8. Bioethanol productions from rice polish by optimization of dilute acid ...

    African Journals Online (AJOL)

    Lignocellulose materials are abundant renewable resource for the production of biofuel from fermentative organism (Sacchromyces cervesiae). Rice polish is cheapest and abundant lignocelluloses resource and has potential to produce bioethanol. The main steps for the conversion of biomass into glucose required dilute ...

  9. The water footprint of sweeteners and bio-ethanol

    NARCIS (Netherlands)

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert

    2012-01-01

    An increasing demand for food together with a growing demand for energy crops result in an increasing demand for and competition over water. Sugar cane, sugar beet and maize are not only essential food crops, but also important feedstock for bio-ethanol. Crop growth requires water, a scarce

  10. Study of Wastewaters Contaminated with Heavy Metals in Bioethanol Production

    Science.gov (United States)

    Bartošová, Alica; Blinová, Lenka

    2017-06-01

    Bioethanol as a substitute for traditional sources of energy, especially oil transport, is currently one of the most researched alternative motor fuels. Normally, bioethanol is produced from agricultural crops such as sugar cane or corn. However, this is counter-productive, because agriculture is primarily serving to ensure enough food for the people. It is therefore necessary to look for new production of appropriate non-food crops or find an added value to this process. Utilisation of contaminated water from metal industry could be one of them. Based on the hypothesis of reduction of some toxic metals with higher oxidation number is opening the possibility of using this wastewater in alcohol fermentation of any kind of biomass. In this study, hexavalent chromium Cr(VI) was used as a model contaminant in the process of aerobic fermentation of corn to bioethanol. To determine the reduction potential of glucose to Cr(VI), and to quantitatively determinate the glucose content after saccharification, UV/VIS spectrophotometry was used. As a method of qualitative determination of fermentation product, gas chromatography with mass detection was used. Infrared spectrometry was used for qualitative analyses of produced ethanol. Based on the established results shown in this paper, we can conclude that the presence of hexavalent chromium in the fermentation process does not have a significant negative impact, while offering the opportunity of using the industrial wastewaters for the production of bioethanol fuel.

  11. Thermodynamic evaluation of hydrogen production via bioethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Tasnadi-Asztalos, Zsolt; Cormos, Ana-Maria; Imre-Lucaci, Árpád; Cormos, Călin C. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Arany Janos 11, RO-400028, Cluj-Napoca (Romania)

    2013-11-13

    In this article, a thermodynamic analysis for bioethanol steam reforming for hydrogen production is presented. Bioethanol is a newly proposed renewable energy carrier mainly produced from biomass fermentation. Reforming of bioethanol provides a promising method for hydrogen production from renewable resources. Steam reforming of ethanol (SRE) takes place under the action of a metal catalyst capable of breaking C-C bonds into smaller molecules. A large domain for the water/bioethanol molar ratio as well as the temperature and average pressure has been used in the present work. The interval of investigated temperature was 100-800°C, the pressure was in the range of 1-10 bar and the molar ratio was between 3-25. The variations of gaseous species concentration e.g. H{sub 2}, CO, CO{sub 2}, CH{sub 4} were analyzed. The concentrations of the main products (H{sub 2} and CO) at lower temperature are smaller than the ones at higher temperature due to by-products formation (methane, carbon dioxide, acetylene etc.). The concentration of H2 obtained in the process using high molar ratio (>20) is higher than the one at small molar ratio (near stoichiometric). When the pressure is increased the hydrogen concentration decreases. The results were compared with literature data for validation purposes.

  12. Recent Advances on Bioethanol Dehydration using Zeolite Membrane

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Dharmawijaya, P. T.; Wenten, I. G.

    2017-07-01

    Renewable energy has gained increasing attention throughout the world. Bioethanol has the potential to replace existing fossil fuel usage without much modification in existing facilities. Bioethanol which generally produced from fermentation route produces low ethanol concentration. However, fuel grade ethanol requires low water content to avoid engine stall. Dehydration process has been increasingly important in fuel grade ethanol production. Among all dehydration processes, pervaporation is considered as the most promising technology. Zeolite possesses high potential in pervaporation of bioethanol into fuel grade ethanol. Zeolite membrane can either remove organic (ethanol) from aqueous mixture or water from the mixture, depending on the framework used. Hydrophilic zeolite membrane, e.g. LTA, can easily remove water from the mixture leaving high ethanol concentration. On the other hand, hydrophobic zeolite membrane, e.g. silicate-1, can remove ethanol from aqueous solution. This review presents the concept of bioethanol dehydration using zeolite membrane. Special attention is given to the performance of selected pathway related to framework selection.

  13. Study of Wastewaters Contaminated with Heavy Metals in Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Bartošová Alica

    2017-06-01

    Full Text Available Bioethanol as a substitute for traditional sources of energy, especially oil transport, is currently one of the most researched alternative motor fuels. Normally, bioethanol is produced from agricultural crops such as sugar cane or corn. However, this is counter-productive, because agriculture is primarily serving to ensure enough food for the people. It is therefore necessary to look for new production of appropriate non-food crops or find an added value to this process. Utilisation of contaminated water from metal industry could be one of them. Based on the hypothesis of reduction of some toxic metals with higher oxidation number is opening the possibility of using this wastewater in alcohol fermentation of any kind of biomass. In this study, hexavalent chromium Cr(VI was used as a model contaminant in the process of aerobic fermentation of corn to bioethanol. To determine the reduction potential of glucose to Cr(VI, and to quantitatively determinate the glucose content after saccharification, UV/VIS spectrophotometry was used. As a method of qualitative determination of fermentation product, gas chromatography with mass detection was used. Infrared spectrometry was used for qualitative analyses of produced ethanol. Based on the established results shown in this paper, we can conclude that the presence of hexavalent chromium in the fermentation process does not have a significant negative impact, while offering the opportunity of using the industrial wastewaters for the production of bioethanol fuel.

  14. Bioethanol production from date palm fruit waste fermentation using ...

    African Journals Online (AJOL)

    CDPW is a renewable and sustainable resource of energy that is not greatly used in industries. The date is rich in biodegradable sugars, providing bioethanol after fermentation during 72 h at 30°C in the presence of Saccharomyces cerevisiae yeast and the distillation of date's juice obtained. In the first experience, a solar ...

  15. Sugar beet genotype effect on potential of bioethanol production ...

    African Journals Online (AJOL)

    Variation on ethanol production were intensively related to the chemical composition of root, especially sugar content, potassium impurity, syrup purity and some characteristics such as root dry matter and root length. Bioethanol production was enhanced by increasing the sugar content and root yield in sugar beet. Sugar ...

  16. Bioethanol production from Curcubita pepo and Opilia amentacea ...

    African Journals Online (AJOL)

    Subsequently, the highest outputs of 60.72 ± 0.68 and 50.93 ± 1.61 g ethanol/kg were obtained respectively with O. amentacea and C. pepo. In the same time, 460.97 ± 8.66 g ethanol/kg were got as maximum output from sucrose (NG). Keywords: Fruit juices, enrichment, Saccharomyces cerevisiae, fermentation, bioethanol

  17. Energy Efficient Bioethanol Purification by Heat Pump Assisted Extractive Distillation

    NARCIS (Netherlands)

    Kiss, Anton A.; Luo, Hao; Bildea, Costin Sorin

    2015-01-01

    The purification of bioethanol fuel requires an energy demanding separation process to concentrate the diluted streams obtained in the fermentation stage and to overcome the azeotropic behaviour of ethanol-water mixture. The classic separation sequence consists of three distillation columns that

  18. Novel heat-pump-assisted extractive distillation for bioethanol purification

    NARCIS (Netherlands)

    Luo, Hao; Bildea, Costin Sorin; Kiss, Anton A.

    2015-01-01

    The purification of bioethanol fuel involves an energy-intensive separation process to concentrate the diluted streams obtained in the fermentation stage and to overcome the azeotropic behavior of the ethanol-water mixture. The conventional separation sequence employs three distillation columns that

  19. Integrated decision making for the optimal bioethanol supply chain

    International Nuclear Information System (INIS)

    Corsano, Gabriela; Fumero, Yanina; Montagna, Jorge M.

    2014-01-01

    Highlights: • Optimal allocation, design and production planning of integrated ethanol plants is considered. • Mixed Integer Programming model is presented for solving the integration problem. • Different tradeoffs can be assessed and analyzed. • The modeling framework represents an useful tool for guiding decision making. - Abstract: Bioethanol production poses different challenges that require an integrated approach. Usually previous works have focused on specific perspectives of the global problem. On the contrary, bioethanol, in particular, and biofuels, in general, requires an integrated decision making framework that takes into account the needs and concerns of the different members involved in its supply chain. In this work, a Mixed Integer Linear Programming (MILP) model for the optimal allocation, design and production planning of integrated ethanol/yeast plants is considered. The proposed formulation addresses the relations between different aspects of the bioethanol supply chain and provides an efficient tool to assess the global operation of the supply chain taking into account different points of view. The model proposed in this work simultaneously determines the structure of a three-echelon supply chain (raw material sites, production facilities and customer zones), the design of each installed plant and operational considerations through production campaigns. Yeast production is considered in order to reduce the negative environmental impact caused by bioethanol residues. Several cases are presented in order to assess the approach capabilities and to evaluate the tradeoffs among all the decisions

  20. Evaluation and Modification of Processes for Bioethanol Separation and Production

    Directory of Open Access Journals (Sweden)

    Johnner P Sitompul

    2012-04-01

    Full Text Available This paper concerns on process evaluation and modification for bioethanol separation and production by applying pinch technology. Further, the paper is also focused on obtaining a most energy-efficient process among several processes. Three basic process configurations of bioethanol separation and production were selected for this study. The three separations and production systems are Othmer process, Barbet process and a separation process that operates under vacuum condition. Basically, each process is combination of Danish Distilleries process with a separation system yielding 95% (v/v bioethanol. The production capacity of the plant is estimated about 4 x 107 litre of bioethanol 95% (v/v per year. The result of the studies shows that the most energy efficient process among the three processes evaluated is the Othmer process, followed by the Barbet process and the process involving vacuum operation. The evaluation also shows that further energy saving can be carried for Barbet and Othmer process configuration when Tmin = 10oC for heat exchange possible.

  1. Autohydrolysis Pretreatment of Lignocellulosic Biomass for Bioethanol Production

    Science.gov (United States)

    Han, Qiang

    Autohydrolysis, a simple and environmental friendly process, has long been studied but often abandoned as a financially viable pretreatment for bioethanol production due to the low yields of fermentable sugars at economic enzyme dosages. The introduction of mechanical refining can generate substantial improvements for autohydrolysis process, making it an attractive pretreatment technology for bioethanol commercialization. In this study, several lignocellulosic biomass including wheat straw, switchgrass, corn stover, waste wheat straw have been subjected to autohydrolysis pretreatment followed by mechanical refining to evaluate the total sugar recovery at affordable enzyme dosages. Encouraging results have been found that using autohydrolysis plus refining strategy, the total sugar recovery of most feedstock can be as high as 76% at 4 FPU/g enzymes dosages. The mechanical refining contributed to the improvement of enzymatic sugar yield by as much as 30%. Three non-woody biomass (sugarcane bagasse, wheat straw, and switchgrass) and three woody biomass (maple, sweet gum, and nitens) have been subjected to autohydrolysis pretreatment to acquire a fundamental understanding of biomass characteristics that affect the autohydrolysis and the following enzymatic hydrolysis. It is of interest to note that the nonwoody biomass went through substantial delignification during autohydrolysis compared to woody biomass due to a significant amount of p-coumaric acid and ferulic acid. It has been found that hardwood which has a higher S/V ratio in the lignin structure tends to have a higher total sugar recovery from autohydrolysis pretreatment. The economics of bioethanol production from autohydrolysis of different feedstocks have been investigated. Regardless of different feedstocks, in the conventional design, producing bioethanol and co-producing steam and power, the minimum ethanol revenues (MER) required to generate a 12% internal rate of return (IRR) are high enough to

  2. Review of the desalinated water market in France for small units; Apercu sur le marche de l'eau dessalee en France pour de petites unites

    Energy Technology Data Exchange (ETDEWEB)

    Dutheil, F; Malissen, M [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-07-01

    On the initiative of and in close collaboration with the Commissariat a l'Energie Atomique, the Societe pour la Conversion et le Developpement Industriel (SODIC) has carried out a very general study of the coastal regions of France in which the short, medium and long-term prospects of the demand for water, and the cost of the necessary supplies, could possibly make desalination units of 3 000 to 10 000 m3/day competitive. So far this general enquiry, which went into detail on some particular aspects, has not revealed any very clear possibilities in this respect, except in the case of the small islands, and of units of much lower capacity, as well as that of large units on the coast, which would benefit from the size effect. However the probable difference between the cost of desalinated water and the high selling price already applying in a small number of coastal regions is relatively small. It might therefore be worthwhile and relatively inexpensive to install an experimental desalination unit in the near future. (author) [French] A l'initiative du Commissariat a l'Energie Atomique et en etroite liaison avec lui, la Societe pour la Conversion et le Developpement Industriel (SODIC) a effectue une etude tres generale des zones cotieres francaises dans lesquelles les perspectives de la demande d'eau a court, moyen et long terme et le cout des approvisionnements necessaires, pourraient eventuellement faire apparaitre comme competitives des unites de dessalement de 3 a 10 000 m{sup 3}/jour. Jusqu'ici, cette enquete generale, d'ailleurs approfondie sur quelques points particuliers, n'a pas fait apparaitre de possibilites tres nettes a cet egard. Le cas des petites iles, et pour des unites de bien plus faible capacite, demeure reserve ainsi que, sur les zones cotieres, celui de grandes unites qui beneficieraient de l'effet de taille. Toutefois, l'ecart probable entre le cout de l'eau dessalee et le prix de vente eleve deja observe dans un petit nombre de zones cotieres

  3. Bioethanol production from forestry residues: A comparative techno-economic analysis

    International Nuclear Information System (INIS)

    Frankó, Balázs; Galbe, Mats; Wallberg, Ola

    2016-01-01

    Highlights: • A proposed cellulosic ethanol biorefinery in Sweden was simulated with Aspen Plus. • Forestry residues with different bark contents were evaluated as raw materials. • The bark content negatively influenced the minimum ethanol selling price. • Sensitivity analyses were performed to assess the influence of raw material cost. - Abstract: A techno-economic analysis was conducted to assess the feasibility of using forestry residues with different bark contents for bioethanol production. A proposed cellulosic ethanol biorefinery in Sweden was simulated with Aspen Plus. The plant was assumed to convert different forestry assortments (sawdust and shavings, fuel logs, early thinnings, tops and branches, hog fuel and pulpwood) to ethanol, pellets, biogas and electricity. The intention was not to obtain absolute ethanol production costs for future facilities, but to assess and compare the future potential of utilizing different forestry residues for bioethanol production. The same plant design and operating conditions were assumed in all cases, and the effect of including bark on the whole conversion process, especially how it influenced the ethanol production cost, was studied. While the energy efficiency (not including district heating) obtained for the whole process was between 67 and 69% regardless of the raw material used, the ethanol production cost differed considerably; the minimum ethanol selling price ranging from 0.77 to 1.52 USD/L. Under the basic assumptions, all the forestry residues apart from sawdust and shavings exhibited a negative net present value at current market prices. The profitability decreased with increasing bark content of the raw material. Sensitivity analyses showed that, at current market prices, the utilization of bark-containing forestry residues will not provide significant cost improvement compared with pulpwood unless the conversion of cellulose and hemicellulose to monomeric sugars is improved.

  4. L’INTÉGRATION DU CONSOMMATEUR PAR LE « KNOWLEDGE MARKETING »: CONCEPTION, PRODUCTION ET CONSOMMATION D’UN PRODUIT PERSONNEL

    OpenAIRE

    CURBATOV, Oleg

    2003-01-01

    This research work is first mondial construction (2003) on a marketing proposal on based knowledge in Knowlegde Society. In accordance with an experiential approach to marketing, we study the experiences and skills of clients integrated into a value-oriented enterprise. From the postmodern current of marketing, we seek to bring together the experiential value of consumption and the transversal process of design, production and consumption of personal products. A conceptual reflection on the p...

  5. Potential of bioethanol as a chemical building block for biorefineries: Preliminary sustainability assessment of 12 bioethanol-based products

    NARCIS (Netherlands)

    Posada Duque, J.A.; Patel, A.D.; Roes, A.L.; Blok, K.; Faaij, A.P.C.; Patel, M.K.

    2013-01-01

    The aim of this study is to present and apply aquick screening method and to identify the most promising bioethanol derivatives using an early- stage sustainability assessment method that compares abioetha- nol-base d conversion route to its respective petrochemical counterpart. The method

  6. White paper on perspectives of biofuels in Denmark - with focus on 2nd generation bioethanol; Hvidbog om perspektiver for biobraendstoffer i Danmark - med fokus paa 2. generations bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Gy.; Foghmar, J.

    2009-11-15

    The white paper presents the perspectives - both options and barriers - for a Danish focus on production and use of biomass, including sustainable 2nd generation bioethanol, for transport. The white paper presents the current knowledge of biofuels and bioethanol and recommendations for a Danish strategy. (ln)

  7. Mixtures of bioethanol and gasoline as a fuel for SI engines

    Directory of Open Access Journals (Sweden)

    Stojiljković Dragoslava D.

    2009-01-01

    Full Text Available The importance of alternative fuels, especially bioethanol and biodiesel, rises due to the limited oil sources, secure supply, prices changes, and environment pollution. Bioethanol is an alternative fuel which will be important in future, as a fuel produced from different crops and lignocelluloses materials. The quality of bioethanol has significant influence on the characteristics of mixtures with gasoline and engine performance. The investigations were performed with the bioethanol obtained as by-product from sugar industry, which is not denaturated and produced according the requests prescribed by standards for ethanol used in mixtures with gasoline. Main target was to examine the possibility of utilisation of bioethanol obtained as by-product and without additional technologies for purification and additional costs. The results of standard and non-standard investigations and engine tests of bioethanol and gasoline mixtures are presented.

  8. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review

    International Nuclear Information System (INIS)

    Balat, Mustafa

    2011-01-01

    Bioethanol is by far the most widely used biofuel for transportation worldwide. Production of bioethanol from biomass is one way to reduce both consumption of crude oil and environmental pollution. Bioethanol can be produced from different kinds of raw materials. These raw materials are classified into three categories of agricultural raw materials: simple sugars, starch and lignocellulose. The price of the raw materials is highly volatile, which can highly affect the production costs of the bioethanol. One major problem with bioethanol production is the availability of raw materials for the production. Lignocellulosic biomass is the most promising feedstock considering its great availability and low cost, but the large-scale commercial production of fuel bioethanol from lignocellulosic materials has still not been implemented.

  9. Effects of bioethanol ultrasonic generated aerosols application on diesel engine performances

    Directory of Open Access Journals (Sweden)

    Mariasiu Florin

    2015-01-01

    Full Text Available In this paper the effects of an experimental bioethanol fumigation application using an experimental ultrasound device on performance and emissions of a single cylinder diesel engine have been experimentally investigated. Engine performance and pollutant emissions variations were considered for three different types of fuels (biodiesel, biodiesel-bioethanol blend and biodiesel and fumigated bioethanol. Reductions in brake specific fuel consumption and NOx pollutant emissions are correlated with the use of ultrasonic fumigation of bioethanol fuel, comparative to use of biodiesel-bioethanol blend. Considering the fuel consumption as diesel engine’s main performance parameter, the proposed bioethanol’s fumigation method, offers the possibility to use more efficient renewable biofuels (bioethanol, with immediate effects on environmental protection.

  10. Principi di Marketing

    OpenAIRE

    P. Kotler; G. Armstrong; F. Ancarani; M. Costabile

    2015-01-01

    Principi di marketing propone un quadro dei processi di gestione del marketing relativamente innovativo, ispirato a un modello rigoroso e semplice al tempo stesso: il valore, dei clienti, per i clienti e delle relazioni con i clienti. È su questo modello che vengono declinati i princìpi del marketing e che se ne progettano le strategie – segmentazione, targeting e posizionamento – da cui hanno origine le scelte di differenziazione di prodotti, marche, modalità di distribuzione e comunicazione...

  11. Purification of bioethanol effluent in an UASB reactor system with simultaneous biogas formation

    DEFF Research Database (Denmark)

    Torry-Smith, Mads Peter; Sommer, Peter; Ahring, Birgitte Kiær

    2003-01-01

    of these compounds were removed from the BEE in the reactor. Implementation of a UASB purification step was found to be a promising approach to detoxify process water from bioethanol production allowing for recirculation of the process water and reduced production costs.......In this study, the prospect of using an Upflow Anaerobic Sludge Blanket (UASB) reactor for detoxification of process water derived from bioethanol production has been investigated. The bioethanol effluent (BEE) originated from wet oxidized wheat straw fermented by Saccharomyces cerevisiae...

  12. Study of the environmental impacts of large scale bioethanol production in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1991-01-01

    The report provides an analysis of the energy balance, the carbon dioxide balance, and other environmental effects. Four crops which might be used as bioethanol feedstock were considered. These were: wheat, sugar beet, sweet sorghum and Jerusalem artichoke. Given the current agricultural capabilities in Europe, wheat and sugar beet could be cultivated immediately for bioethanol production whilst sweet sorghum and Jerusalem artichoke represent crops which are under investigation as potential bioethanol feedstock in the longer term. (author).

  13. Study of the environmental impacts of large scale bioethanol production in Europe

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The report provides an analysis of the energy balance, the carbon dioxide balance, and other environmental effects. Four crops which might be used as bioethanol feedstock were considered. These were: wheat, sugar beet, sweet sorghum and Jerusalem artichoke. Given the current agricultural capabilities in Europe, wheat and sugar beet could be cultivated immediately for bioethanol production whilst sweet sorghum and Jerusalem artichoke represent crops which are under investigation as potential bioethanol feedstock in the longer term. (author)

  14. Purification Simulation With Vapor Permeation and Distillation-Adsorption In Bioethanol Plant

    OpenAIRE

    Misri Gozan; Mia Sari Setiawan; Kenny Lischer

    2017-01-01

    High purity of Bioethanol is required in biofuel mixing with gasoline (EXX). In bioethanol production line, the azeotropic property of ethanol-water becomes the barrier for purification process. This study examined two bioethanol separation processes by support of simulation tools, Superpro Designer 9.0 software. Ethanol purity and a low costeconomical process were the major considerations. Purification method of vapor permeation membrane technology was compared with distillation-adsorption m...

  15. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol

    OpenAIRE

    Maurya, Devendra Prasad; Singla, Ankit; Negi, Sangeeta

    2015-01-01

    Second-generation bioethanol can be produced from various lignocellulosic biomasses such as wood, agricultural or forest residues. Lignocellulosic biomass is inexpensive, renewable and abundant source for bioethanol production. The conversion of lignocellulosic biomass to bioethanol could be a promising technology though the process has several challenges and limitations such as biomass transport and handling, and efficient pretreatment methods for total delignification of lignocellulosics. P...

  16. Preparation and Characterization of Zeolite Membrane for Bioethanol Purification

    Directory of Open Access Journals (Sweden)

    Aprilina Purbasari

    2013-06-01

    Full Text Available The use of bioethanol as an alternative fuel with a purity of more than 99.5% wt has prompted research on bioethanol purification. One of the promising methods used for bioethanol purification is pervaporation membrane. This research is aimed to prepare and characterize zeolite membranes for pervaporation membrane. The membrane preparation consisted of two stages, namely support preparation and zeolite deposition on the support. In support preparation, α- alumina and kaolin with specific composition (50:30; 40:40; 50:30 was mixed with additives and water. After pugging and aging process, the mixture became paste and extruded into tubular shape. The tube was then calcined at temperature of 1250 °C for 3 hours. After that, zeolite 4A was deposited on the tubes using clear solution made of 10 %wt zeolite and 90 %wt water and heated at temperature of 80 °C for 3 hours. Furthermore, the resulting zeolite membranes was washed with deionized water for 5 minutes and dried in oven at temperature of 100 °C for 24 hours. Characterization of zeolite membranes included mechanical strength test, XRD, and SEM. In the mechanical strength test, the membrane sample with α- alumina:kaolin = 50:30 (membrane A has the highest mechanical strength of 46.65 N/mm2. Result of XRD analysis for the membrane A indicated that mullite and corundum phases were formed, which mullite phase was more dominant. Meanwhile the result of SEM analysis shows that zeolite crystals have been formed and covered the pores support, but the deposition of zeolite has not been optimal yet. The performance examination for bioethanol purification showed that the membrane could increase the purity of bioethanol from 95% to 98.5% wt. © 2013 BCREC UNDIP. All rights reservedReceived: 23rd October 2012; Revised: 15th February 2013; Accepted: 16th February 2013[How to Cite: Purbasari, A., Istirokhatun, T., Devi, A.M., Mahsunnah, L. , Susanto, H. (2013. Preparation and Characterization of Zeolite

  17. Development and Testing the Technology of Complex Transformation of Carbohydrates from Vegetable Raw Materials into Bioethanol

    Directory of Open Access Journals (Sweden)

    S.P. Tsygankov

    2013-07-01

    Full Text Available Results of development and testing the tentative technology of sweet sorghum and finger millet processing into bioethanol are described. The carbohydrates content and range of the studied vegetable biomass as the raw material is defined. Bioethanol potential output from sugar sorghum and finger millet carbohydrates and key technological parameters of preparation of both types of vegetable raw material for alcohol fermentation are defined. The concept of the tentative technology of bioethanol production from carbohydrate raw material of the first and second generations is offered. Testing of complex transformation of carbohydrates from vegetable raw materials into bioethanol is performed.

  18. The bioethanol industry in sub-Saharan Africa: history, challenges, and prospects.

    Science.gov (United States)

    Deenanath, Evanie Devi; Iyuke, Sunny; Rumbold, Karl

    2012-01-01

    Recently, interest in using bioethanol as an alternative to petroleum fuel has been escalating due to decrease in the availability of crude oil. The application of bioethanol in the motor-fuel industry can contribute to reduction in the use of fossil fuels and in turn to decreased carbon emissions and stress of the rapid decline in crude oil availability. Bioethanol production methods are numerous and vary with the types of feedstock used. Feedstocks can be cereal grains (first generation feedstock), lignocellulose (second generation feedstock), or algae (third generation feedstock) feedstocks. To date, USA and Brazil are the leading contributors to global bioethanol production. In sub-Saharan Africa, bioethanol production is stagnant. During the 1980s, bioethanol production has been successful in several countries including Zimbabwe, Malawi, and Kenya. However, because of numerous challenges such as food security, land availability, and government policies, achieving sustainability was a major hurdle. This paper examines the history and challenges of bioethanol production in sub-Saharan Africa (SSA) and demonstrates the bioethanol production potential in SSA with a focus on using bitter sorghum and cashew apple juice as unconventional feedstocks for bioethanol production.

  19. The Bioethanol Industry in Sub-Saharan Africa: History, Challenges, and Prospects

    Directory of Open Access Journals (Sweden)

    Evanie Devi Deenanath

    2012-01-01

    Full Text Available Recently, interest in using bioethanol as an alternative to petroleum fuel has been escalating due to decrease in the availability of crude oil. The application of bioethanol in the motor-fuel industry can contribute to reduction in the use of fossil fuels and in turn to decreased carbon emissions and stress of the rapid decline in crude oil availability. Bioethanol production methods are numerous and vary with the types of feedstock used. Feedstocks can be cereal grains (first generation feedstock, lignocellulose (second generation feedstock, or algae (third generation feedstock feedstocks. To date, USA and Brazil are the leading contributors to global bioethanol production. In sub-Saharan Africa, bioethanol production is stagnant. During the 1980s, bioethanol production has been successful in several countries including Zimbabwe, Malawi, and Kenya. However, because of numerous challenges such as food security, land availability, and government policies, achieving sustainability was a major hurdle. This paper examines the history and challenges of bioethanol production in sub-Saharan Africa (SSA and demonstrates the bioethanol production potential in SSA with a focus on using bitter sorghum and cashew apple juice as unconventional feedstocks for bioethanol production.

  20. Structure and operation of the natural gas market in France; La structure et le fonctionnement du marche du gaz naturel en France

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The French natural gas market is organized around six main activities: production, transport, methane terminals, storage, distribution and commercialization. This paper describes the facilities related to each activity: gas fields, pipelines network and distribution systems, terminals capacity and underground storage facilities. The selling activity is opened to competition but the French gas market follows a progressive and controlled opening which will be complete in July 2007. (J.S.)

  1. Sustainable Process Design of Biofuels: Bioethanol Production from Cassava rhizome

    DEFF Research Database (Denmark)

    Mangnimit, S.; Malakul, P.; Gani, Rafiqul

    2013-01-01

    This study is focused on the sustainable process design of bioethanol production from cassava rhizome. The study includes: process simulation, sustainability analysis, economic evaluation and life cycle assessment (LCA). A steady state process simulation if performed to generate a base case design........ Also, simultaneously with sustainability analysis, the life cycle impact on environment associated with bioethanol production is performed. Finally, candidate alternative designs are generated and compared with the base case design in terms of LCA, economics, waste, energy usage and enviromental impact...... in order to identify the most sustainable design for the production of ethanol. The capacity for ethanol production from cassava rhizome is set to 150,000 liters/day, which is about 1.3 % of the total demand of ethanol in Thailand. LCA on the base case design pointed to large amounts of CO2 and CO...

  2. Production of bioethanol from agricultural waste | Braide | Journal of ...

    African Journals Online (AJOL)

    Maximum yields of ethanol were obtained at pH 3.60, 3.82, 4.00, 3.64 and 3.65. These findings show/prove that ethanol can be made from the named agricultural waste and the process is recommended as a means of generating wealth from waste. Keywords: bioethanol; fermentation; agro waste; Zea mays; sugar cane ...

  3. Pretreatments employed in lignocellulosic materials for bioethanol production: an overview

    OpenAIRE

    Danay Carrillo-Nieves; Lourdes Zumalacárregui-de Cárdenas; Olga Sánchez-Collazo; Georgina Michelena-Alvarez; Hector Yznaga-Blanco; José Luis Martínez-Hernández; Cristóbal Noé-Aguilar

    2014-01-01

    Lignocellulosic materials are raw materials with high cellulose content and they constitute the most abun- dant sources of biomass on planet. They are attractive for their low cost and high availability in diverse climates and places for the bioethanol production, however, the main impediment for its use is the appro- priate selection from the technological and economic point of view of the stages of pretreatments and hydrolysis, that allow the breaking down of the lignocellulosic matrix to o...

  4. Energy analysis of biochemical conversion processes of biomass to bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Bakari, M.; Ngadi, M.; Bergthorson, T. [McGill Univ., Ste-Anne-de-Bellevue, PQ (Canada). Dept. of Bioresource Engineering

    2010-07-01

    Bioethanol is among the most promising of biofuels that can be produced from different biomass such as agricultural products, waste and byproducts. This paper reported on a study that examined the energy conversion of different groups of biomass to bioethanol, including lignocelluloses, starches and sugar. Biochemical conversion generally involves the breakdown of biomass to simple sugars using different pretreatment methods. The energy needed for the conversion steps was calculated in order to obtain mass and energy efficiencies for the conversions. Mass conversion ratios of corn, molasses and rice straw were calculated as 0.3396, 0.2300 and 0.2296 kg of bioethanol per kg of biomass, respectively. The energy efficiency of biochemical conversion of corn, molasses and rice straw was calculated as 28.57, 28.21 and 31.33 per cent, respectively. The results demonstrated that lignocelluloses can be efficiently converted with specific microorganisms such as Mucor indicus, Rhizopus oryzae using the Simultaneous Saccharification and Fermentation (SSF) methods.

  5. Brosimum Alicastrum as a Novel Starch Source for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Edgar Olguin-Maciel

    2017-10-01

    Full Text Available Ramon (Brosimum alicastrum is a forest tree native to the Mesoamerican region and the Caribbean. The flour obtained from Ramon seeds is 75% carbohydrate, of which 63% is starch, indicating its potential as a novel raw material for bioethanol production. The objective of this study was to produce ethanol from Ramon flour using a 90 °C thermic treatment for 30 min and a native yeast strain (Candida tropicalis for the fermentation process. In addition, the structure of the flour and the effects of pretreatment were observed via scanning electron microscopy. The native yeast strain was superior to the commercial strain, fermenting 98.8% of the reducing sugar (RS at 48 h and generating 31% more ethanol than commercial yeast. One ton of flour yielded 213 L of ethanol. These results suggest that Ramon flour is an excellent candidate for ethanol production. This is the first report on bioethanol production using the starch from Ramon seed flour and a native yeast strain isolated from this feedstock. This alternative material for bioethanol production minimizes the competition between food and energy production, a priority for Mexico that has led to significant changes in public policies to enhance the development of renewable energies.

  6. Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process

    Science.gov (United States)

    2012-01-01

    Background Bioethanol produced from the lignocellulosic fractions of sugar cane (bagasse and leaves), i.e. second generation (2G) bioethanol, has a promising market potential as an automotive fuel; however, the process is still under investigation on pilot/demonstration scale. From a process perspective, improvements in plant design can lower the production cost, providing better profitability and competitiveness if the conversion of the whole sugar cane is considered. Simulations have been performed with AspenPlus to investigate how process integration can affect the minimum ethanol selling price of this 2G process (MESP-2G), as well as improve the plant energy efficiency. This is achieved by integrating the well-established sucrose-to-bioethanol process with the enzymatic process for lignocellulosic materials. Bagasse and leaves were steam pretreated using H3PO4 as catalyst and separately hydrolysed and fermented. Results The addition of a steam dryer, doubling of the enzyme dosage in enzymatic hydrolysis, including leaves as raw material in the 2G process, heat integration and the use of more energy-efficient equipment led to a 37 % reduction in MESP-2G compared to the Base case. Modelling showed that the MESP for 2G ethanol was 0.97 US$/L, while in the future it could be reduced to 0.78 US$/L. In this case the overall production cost of 1G + 2G ethanol would be about 0.40 US$/L with an output of 102 L/ton dry sugar cane including 50 % leaves. Sensitivity analysis of the future scenario showed that a 50 % decrease in the cost of enzymes, electricity or leaves would lower the MESP-2G by about 20%, 10% and 4.5%, respectively. Conclusions According to the simulations, the production of 2G bioethanol from sugar cane bagasse and leaves in Brazil is already competitive (without subsidies) with 1G starch-based bioethanol production in Europe. Moreover 2G bioethanol could be produced at a lower cost if subsidies were used to compensate for the opportunity cost from the

  7. Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process

    Directory of Open Access Journals (Sweden)

    Macrelli Stefano

    2012-04-01

    Full Text Available Abstract Background Bioethanol produced from the lignocellulosic fractions of sugar cane (bagasse and leaves, i.e. second generation (2G bioethanol, has a promising market potential as an automotive fuel; however, the process is still under investigation on pilot/demonstration scale. From a process perspective, improvements in plant design can lower the production cost, providing better profitability and competitiveness if the conversion of the whole sugar cane is considered. Simulations have been performed with AspenPlus to investigate how process integration can affect the minimum ethanol selling price of this 2G process (MESP-2G, as well as improve the plant energy efficiency. This is achieved by integrating the well-established sucrose-to-bioethanol process with the enzymatic process for lignocellulosic materials. Bagasse and leaves were steam pretreated using H3PO4 as catalyst and separately hydrolysed and fermented. Results The addition of a steam dryer, doubling of the enzyme dosage in enzymatic hydrolysis, including leaves as raw material in the 2G process, heat integration and the use of more energy-efficient equipment led to a 37 % reduction in MESP-2G compared to the Base case. Modelling showed that the MESP for 2G ethanol was 0.97 US$/L, while in the future it could be reduced to 0.78 US$/L. In this case the overall production cost of 1G + 2G ethanol would be about 0.40 US$/L with an output of 102 L/ton dry sugar cane including 50 % leaves. Sensitivity analysis of the future scenario showed that a 50 % decrease in the cost of enzymes, electricity or leaves would lower the MESP-2G by about 20%, 10% and 4.5%, respectively. Conclusions According to the simulations, the production of 2G bioethanol from sugar cane bagasse and leaves in Brazil is already competitive (without subsidies with 1G starch-based bioethanol production in Europe. Moreover 2G bioethanol could be produced at a lower cost if subsidies were used to compensate for the

  8. Potential of bioethanol as a chemical building block for biorefineries: preliminary sustainability assessment of 12 bioethanol-based products.

    Science.gov (United States)

    Posada, John A; Patel, Akshay D; Roes, Alexander; Blok, Kornelis; Faaij, André P C; Patel, Martin K

    2013-05-01

    The aim of this study is to present and apply a quick screening method and to identify the most promising bioethanol derivatives using an early-stage sustainability assessment method that compares a bioethanol-based conversion route to its respective petrochemical counterpart. The method combines, by means of a multi-criteria approach, quantitative and qualitative proxy indicators describing economic, environmental, health and safety and operational aspects. Of twelve derivatives considered, five were categorized as favorable (diethyl ether, 1,3-butadiene, ethyl acetate, propylene and ethylene), two as promising (acetaldehyde and ethylene oxide) and five as unfavorable derivatives (acetic acid, n-butanol, isobutylene, hydrogen and acetone) for an integrated biorefinery concept. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. From biofuel to bioproduct: is bioethanol a suitable fermentation feedstock for synthesis of bulk chemicals?

    NARCIS (Netherlands)

    Weusthuis, R.A.; Aarts, J.M.M.J.G.; Sanders, J.P.M.

    2011-01-01

    The first pilot-scale factories for the production of bioethanol from lignocellulose have been installed, indicating that we are on the brink of overcoming most hurdles for an economically feasible process. When bioethanol is competitive as biofuel with fuels originating from petrochemical

  10. Fuel consumption and emission on fuel mixer low-grade bioethanol fuelled motorcycle

    Directory of Open Access Journals (Sweden)

    Abikusna Setia

    2017-01-01

    Full Text Available Bioethanol is currently used as an alternative fuel for gasoline substitute (fossil fuel because it can reduce the dependence on fossil fuel and also emissions produced by fossil fuel which are CO2, HO, NOx. Bioethanol is usually used as a fuel mixed with gasoline with certain comparison. In Indonesia, the usage is still rare. Bioethanol that is commonly used is bioethanol anhydrous 99.5%. In the previous studies, bioethanol was distilled from low to high grade to produce ethanol anhydrous. But the result is only able to reach 95% or ethanol hydrous. This study is objected to design a simple mechanism in the mixing of bioethanol hydrous with the gasoline using a fuel mixer mechanism. By this mechanism, the fuel consumption and the resulting emissions from combustion engine can be analyzed. The fuel blend composition is prepared as E5, E10, and E15/E20, the result of fuel consumption and emission will be compared with pure gasoline. The using of bioethanol hydrous as a fuel mixture was tended to produce more stable bioethanol fuel consumption. However, the utilization of the mixture was found able to reduce the exhaust emissions (CO, HC, and NOx.

  11. Energy analysis of using macroalgae from eutrophic waters as a bioethanol feedstock

    DEFF Research Database (Denmark)

    Seghetta, Michele; Østergård, Hanne; Bastianoni, Simone

    2014-01-01

    , and in KB runoff from agricultural land constitutes 86%. The environmental support needed for producing one Joule of bioethanol is somewhat more than for a number of other bioethanol feedstocks being 2.12 x 106 solar equivalent Joules (seJ) for OL and 2.56 x 106 seJ for KB. However, a high percentage...

  12. Life Cycle Assessment of an Advanced Bioethanol Technology in the Perspective of Constrained Biomass Availability

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Thyø, Kathrine Anker; Wenzel, Henrik

    2008-01-01

    Among the existing environmental assessments of bioethanol, the studies suggesting an environmental benefit of bioethanol all ignore the constraints on the availability of biomass resources and the implications competition for biomass has on the assessment. We show that toward 2030, regardless of....../or biogas, natural gas or electricity for transport are advantageous....

  13. Life cycle analysis for bioethanol production from sugar beet crops in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Foteinis, Spyros; Kouloumpis, Victor [Department of Environmental Engineering, Technical University of Crete, GR 73100 Chania (Greece); Tsoutsos, Theocharis, E-mail: theocharis.tsoutsos@enveng.tuc.gr [Department of Environmental Engineering, Technical University of Crete, GR 73100 Chania (Greece)

    2011-09-15

    The main aim of this study is to evaluate whether the potential transformation of the existing sugar plants of Northern Greece to modern bioethanol plants, using the existing cultivations of sugar beet, would be an environmentally sustainable decision. Using Life Cycle Inventory and Impact Assessment, all processes for bioethanol production from sugar beets were analyzed, quantitative data were collected and the environmental loads of the final product (bioethanol) and of each process were estimated. The final results of the environmental impact assessment are encouraging since bioethanol production gives better results than sugar production for the use of the same quantity of sugar beets. If the old sugar plants were transformed into modern bioethanol plants, the total reduction of the environmental load would be, at least, 32.6% and a reduction of more than 2 tons of CO{sub 2}e/sugar beet of ha cultivation could be reached. Moreover bioethanol production was compared to conventional fuel (gasoline), as well as to other types of biofuels (biodiesel from Greek cultivations). - Highlights: > Bioethanol production gives better results than sugar production from sugar beets. > In most cases, sugar beets, as an already industrialized plant has organizational virtues. > Bioethanol could be a sustainable independent way of energy production, alternative to biodiesel.

  14. Build Your Own Second-Generation Bioethanol Plant in the Classroom!

    NARCIS (Netherlands)

    Seters, van J.R.; Sijbers, J.P.J.; Denis, M.; Tramper, J.

    2011-01-01

    The production of bioethanol from cellulosic waste is described. The experiment is suitable for students in secondary school classroom settings and leads to bioethanol in a concentration high enough to burn the liquid. The experiment consists of three steps: (i) the cellulose of the waste material

  15. Consequences of Iraq war on petroleum market; Les consequences de la guerre d'Iraq sur le marche du petrole

    Energy Technology Data Exchange (ETDEWEB)

    Percebois, J. [Montpellier-1 Univ., 34 (France); Centre de Recherche en Economie, et Droit de l' Energie, Universite de Montpellier-1, Faculte des Sciences Economiques, 34 - Montpellier (France)

    2004-07-01

    The consequences of the last Iraq conflict on the petroleum market can be analyzed under two different aspects: one is the will of the USA to re-establish a political stability in a country which represents an important oil reserve for their future supplies, the other is a US-Russia cooperation/rivalry in a region of prime importance for both countries which are in competition for the exploitation of the Caspian sea hydrocarbon resources. (J.S.)

  16. Bioethanol from lignocellulose. An ecological and economic assessment of selected concepts; Bioethanol aus Lignozellulose. Eine oekologische und oekonomische Bewertung ausgewaehlter Konzepte

    Energy Technology Data Exchange (ETDEWEB)

    Meisel, Kathleen; Zech, Konstantin [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany); Mueller-Langer, Franziska

    2014-08-01

    Against the background of an increased use of residual and waste materials in this paper the specific GHG emissions and production costs of different lignocellulosic based bioethanol concepts are assessed and compared to a conventional wheat based bioethanol concept and to the fossil reference. In order to find the best concept regarding both the environment and the economics the GHG emissions and production costs are compared and the GHG mitigation costs are calculated. Concept 5 (reference concept with C5 sugar to bioethanol and a natural gas-/biogasboiler) could be a good compromise between the both targets. Furthermore this concept has lower GHG emissions and lower production costs compared to the conventional wheat based bioethanol concept.

  17. ÉTUDE DE CAS : Nouvelles armes dans la guerre contre le ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    12 janv. 2011 ... ... sous le sigle anglais IMCI (integrated management of childhood illness). .... moustiquaires ont donc pris la forme d'une campagne de marketing social en ... Dale, pour le compte de la Division des communications du CRDI.

  18. Le laboratoire, le temple et le marché

    International Development Research Centre (IDRC) Digital Library (Canada)

    De manière générale, les auteurs insistent sur le fait que c'est leur foi qui leur a .... nettement que dans de nombreux cercles, le besoin était vivement ressenti de ... Le Dr Kapur présente tout d'abord une brève discussion sur sa vision du ...... pour les soins aux enfants orphelins et aux pauvres et pour la renaissance des ...

  19. Marketing marketing

    NARCIS (Netherlands)

    dr. Karel Jan van Alsem

    2013-01-01

    In deze installatierede betoogt Karel Jan Alsem dat marketing een grotere strategische rol in organisaties zou moeten krijgen. Want marketing is bij uitstek de verbinding tussen klantwensen en het DNA van een organisatie. Doordat merken gemiddeld voor mensen niet heel belangrijk zijn, is goede

  20. Immobilised Sarawak Malaysia yeast cells for production of bioethanol.

    Science.gov (United States)

    Zain, Masniroszaime Mohd; Kofli, Noorhisham Tan; Rozaimah, Siti; Abdullah, Sheikh

    2011-05-01

    Bioethanol production using yeast has become a popular topic due to worrying depleting worldwide fuel reserve. The aim of the study was to investigate the capability of Malaysia yeast strains isolated from starter culture used in traditional fermented food and alcoholic beverages in producing Bioethanol using alginate beads entrapment method. The starter yeast consists of groups of microbes, thus the yeasts were grown in Sabouraud agar to obtain single colony called ST1 (tuak) and ST3 (tapai). The growth in Yeast Potatoes Dextrose (YPD) resulted in specific growth of ST1 at micro = 0.396 h-1 and ST3 at micro = 0.38 h-1, with maximum ethanol production of 7.36 g L-1 observed using ST1 strain. The two strains were then immobilized using calcium alginate entrapment method producing average alginate beads size of 0.51 cm and were grown in different substrates; YPD medium and Local Brown Sugar (LBS) for 8 h in flask. The maximum ethanol concentration measured after 7 h were at 6.63 and 6.59 g L-1 in YPD media and 1.54 and 1.39 g L-1in LBS media for ST1 and ST3, respectively. The use of LBS as carbon source showed higher yield of product (Yp/s), 0.59 g g-1 compared to YPD, 0.25 g g-1 in ST1 and (Yp/s), 0.54 g g-1 compared to YPD, 0.24 g g-1 in ST3 . This study indicated the possibility of using local strains (STI and ST3) to produce bioethanol via immobilization technique with local materials as substrate.

  1. Le reti museali come “sistemi” capaci di generare valore: verso un approccio manageriale e di marketing / Museum networks as “systems” able to create value: towards a management and marketing approach

    Directory of Open Access Journals (Sweden)

    Tonino Pencarelli

    2011-11-01

    The aim of this paper is to offer a mainly theoretical consideration about organizational and management approaches for museum networks through the analysis of two case studies drawn from the context of Le Marche Italian region.The study shows how museum networks represent a potentially effective organizational form for enhancing cultural resources able to create value for consumers as well as local stakeholders. However, as in many cases of business aggregation – as the Viable Systems Approach suggests – networks qualify as systems that can survive and develop when managedby a governing body capable of guiding the network for the purposes of development and long-term success. This is imperative for museum networks in order to create value for both producers and consumers of cultural products.

  2. Feasibility of Hydrothermal Pretreatment on Maize Silage for Bioethanol Production

    DEFF Research Database (Denmark)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2010-01-01

    The potential of maize silage as a feedstock to produce bioethanol was evaluated in the present study. The hydrothermal pretreatment with five different pretreatment severity factors (PSF) was employed to pretreat the maize silage and compared in terms of sugar recovery, toxic test, and ethanol...... the liquors from the five conditions were not toxic to the Baker’s yeast. Pretreatment under 195°C for 7 min had the similar PSF with that of 185°C for 15 min, and both gave the higher ethanol concentration of 19.92 and 19.98 g/L, respectively. The ethanol concentration from untreated maize silage was only 7...

  3. Oxidation of Bioethanol using Zeolite-Encapsulated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Abildstrøm, Jacob Oskar; Wang, Feng

    2014-01-01

    With the ongoing developments in biomass conversion, the oxidation of bioethanol to acetaldehyde may become a favorable and green alternative to the preparation from ethylene. Here, a simple and effective method to encapsulate gold nanoparticles in zeolite silicalite-1 is reported and their high...... zeolite crystals comprise a broad range of mesopores and contain up to several hundred gold nanoparticles with a diameter of 2-3nm that are distributed inside the zeolites rather than on the outer surface. The encapsulated nanoparticles have good stability and result in 50% conversion of ethanol with 98...

  4. Oxidation of Bioethanol using Zeolite-Encapsulated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Abildstrøm, Jacob Oskar; Wang, Feng

    2014-01-01

    With the ongoing developments in biomass conversion, the oxidation of bioethanol to acetaldehyde may become a favorable and green alternative to the preparation from ethylene. Here, a simple and effective method to encapsulate gold nanoparticles in zeolite silicalite‐1 is reported and their high...... zeolite crystals comprise a broad range of mesopores and contain up to several hundred gold nanoparticles with a diameter of 2–3 nm that are distributed inside the zeolites rather than on the outer surface. The encapsulated nanoparticles have good stability and result in 50 % conversion of ethanol with 98...

  5. Policy options for non-grain bioethanol in China: Insights from an economy-energy-environment CGE model

    International Nuclear Information System (INIS)

    Ge, Jianping; Lei, Yalin

    2017-01-01

    The Chinese government has been issuing numerous incentive policies to promote non-grain bioethanol development to address the problem of excessive energy consumption and environmental pollution. In this study, we divide the incentive policies into five categories: subsidies on bioethanol production, non-grain feedstocks planting, marginal land reclamation and utilization, bioethanol consumption in more cities, and consumption tax on gasoline use. The objective of the paper is to evaluate and compare the economic, energy, and environmental effects of the incentive policies to help the government choose the optimal policies to promote bioethanol in China. The results show that subsidies on bioethanol production and consumption can boost GDP, and simultaneously, decrease crude oil and gasoline consumption, and reduce CO_2 emissions. However, the increase in bioethanol consumption is combined with the rise in coal and electricity consumption. Subsidies on bioethanol production can promote GDP and reduce energy consumption and CO_2 emission but have less effect on bioethanol development than that under the scenario of subsides on bioethanol consumption. On the contrary, although subsidies on non-grain feedstocks planting and marginal land reclamation and utilization can improve macro-economy but have a negative effect on energy saving and CO_2 emission reduction. Therefore, appropriate subsidies on bioethanol production and consumption can promote bioethanol consumption with economic, energy and environmental benefits. The Chinese government should further pay more attention to the coordination of different policy options by policy tools and intensities. - Highlights: • Non-grain bioethanol incentive policy is divided into supply and demand perspectives. • China's bioethanol CGE model is constructed. • Demand incentives have largest positive effects on GDP. • Demand incentives have better effects on energy saving and emission reduction. • Subsidies on

  6. Le marketing urbain comme dispositif de légitimation : actions d’élites et espaces de citoyenneté en milieu périurbain wallon

    Directory of Open Access Journals (Sweden)

    Vanneste, Damien

    2007-11-01

    Full Text Available À une époque où s’entrecroisent l’idée forte de changement permanent et la valorisation d’espaces démocratiques, il semble opportun de repenser la participation à la production de l’espace local et les modes d’action des élites. A partir d’une étude de cas qui retrace les cheminements de différents projets locaux en Belgique, un système d’action politique cohérent qui mêle visibilisation de l’action, activisme et production d’un consensus est dégagé. Ce dispositif de légitimation peut alors être étudié en termes de marketing urbain et permettre de confronter les contours organisationnels actuels de la politique à l’horizon démocratique.

  7. Applications of the automatic meter reading techniques at the Brazilian gas domestic market; Application des techniques de releve automatique des compteurs sur le marche domestique Bresilien du gaz

    Energy Technology Data Exchange (ETDEWEB)

    Venancio, J.; Monteiro, F. [Comgas, Sao Paulo (Brazil); D' Oliveira, R.D. [ORBIS, Curitiba (Brazil)

    2000-07-01

    This article will describe applications of the automation and automatic meter reading techniques at the internal gas pipes installations design, considering residential and commercial buildings, and taking in account the tendency of rapid growth of the activities related to the natural gas industry in Brazil, as well as the recently development of new technologies that can be applied with affordable prices. It will be analysed the application of an automatic meter reading technology in a building of several floors in Sao Paulo, which gas installations design is being carried up, with be purpose of making a comparative cost-effectiveness study with the traditional constructive methods applied in Brazil. As a result, it will be purposed a new commercialization model for the gas in Brazil at the residential and commercial market. (authors)

  8. Learning with companies (LeWiCo through the use of Facebook in the context of vocational hospitality education and digital spa marketing

    Directory of Open Access Journals (Sweden)

    Annica Isacsson

    2016-01-01

    The article adopts a case study approach to describe in detail how Facebook was used to foster self-directed and co-constructive learning in a social environment. The findings presented in the article are based on the postings of participating students in Facebook, and on teachers and project team reflections. Overall, the project was a success and led to the construction of a useful, current and engaging knowledge base in the context of spa marketing. Moreover, the students appreciated the informal learning environment, and the teachers learned how to enhance learning without suffocating the learning process with too many guidelines or information. The students learned how to collaborate independently, and in pairs, and to take responsibility of their own learning.

  9. Dynamic Analysis of Bioethanol Production from Corn Stover and Immobilized Yeast

    Directory of Open Access Journals (Sweden)

    Shuang-Qi Tian

    2016-05-01

    Full Text Available The use of low cost and abundant corn stover in yeast fermentation can reduce product costs. In this study, bioethanol was produced from a hydrolysate of corn stover using immobilized yeast. A kinetic model was established for the total reducing sugar consumption and the production of bioethanol. The parameter estimation for kinetic modeling considered the main process variables during bioethanol production from corn stover. Total reducing sugar concentrations decreased exponentially in the bioethanol fermentation for 6 h; consumption was more than 90%. To use kinetic modelling of yeast growth for bioethanol fermentation, the value of μmax reached 0.2891 h-1, and the matrix inhibition constant (KIS and production inhibition constant (KIP were 8.9154 g/dm3 and 0.00676 g/dm3, respectively. To use kinetic modelling of fermentation time on bioethanol, the maximum ratio of bioethanol production rate (qmax reached 1.427 g/g•L. However, KIS was 2.813 g/dm3, and KIP was 0.0149 g/dm3.

  10. Characteristics of the products of hydrothermal liquefaction combined with cellulosic bio-ethanol process

    International Nuclear Information System (INIS)

    Li, Rundong; Xie, Yinghui; Yang, Tianhua; Li, Bingshuo; Zhang, Yang; Kai, Xingping

    2016-01-01

    The integration utilization of fermentation residues from cellulosic bio-ethanol has attracted a great deal of attention to balance the total cost of bio-ethanol production while simultaneously dealing with bio-ethanol wastewater. A process of hydrothermal liquefaction (HTL) of intact materials from cellulosic bio-ethanol in a batch reactor was proposed. The effects of the reaction temperature and time on the liquefaction characteristics were examined. The optimum condition for liquefaction fermentation residues was 370 °C (21.25 MPa) and 30 min with a bio-oil yield of 40.79 wt%. GC-MS results indicated that the major chemical species in the bio-oil were phenols, ketones, long-chain hydrocarbons and fatty acids. Supercritical conditions (375 °C, 23.50 MPa) was favored for the low-molecular-weight species formation compared to subcritical conditions (370 °C, 21.25 MPa), as some long-chain species decreased. This work thus can provide a novel idea for bio-oil production from HTL of cellulosic bio-ethanol fermentation residues. - Highlights: • Bio-oil production via HTL combined with cellulosic bio-ethanol process was proposed. • Optimum condition for HTL of materials from cellulosic bio-ethanol was 370 °C and 30 min. • Bio-oil contained higher content of hydrocarbons and lower contents of organic acids.

  11. New Estimates of Land Use Intensity of Potential Bioethanol Production in the U.S.A.

    Science.gov (United States)

    Kheshgi, H. S.; Song, Y.; Torkamani, S.; Jain, A. K.

    2016-12-01

    We estimate potential bioethanol land use intensity (the inverse of potential bioethanol yield per hectare) across the United States by modeling crop yields and conversion to bioethanol (via a fermentation pathway), based on crop field studies and conversion technology analyses. We apply the process-based land surface model, the Integrated Science Assessment model (ISAM), to estimate the potential yield of four crops - corn, Miscanthus, and two variants of switchgrass (Cave-in-Rock and Alamo) - across the U.S.A. landscape for the 14-year period from 1999 through 2012, for the case with fertilizer application but without irrigation. We estimate bioethanol yield based on recent experience for corn bioethanol production from corn kernel, and current cellulosic bioethanol process design specifications under the assumption of the maximum practical harvest fraction for the energy grasses (Miscanthus and switchgrasses) and a moderate (30%) harvest fraction of corn stover. We find that each of four crops included has regions where that crop is estimated to have the lowest land use intensity (highest potential bioethanol yield per hectare). We find that minimizing potential land use intensity by including both corn and the energy grasses only improves incrementally to that of corn (using both harvested kernel and stover for bioethanol). Bioethanol land use intensity is one fundamental factor influencing the desirability of biofuels, but is not the only one; others factors include economics, competition with food production and land use, water and climate, nitrogen runoff, life-cycle emissions, and the pace of crop and technology improvement into the future.

  12. Security of feedstocks supply for future bio-ethanol production in Thailand

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.

    2010-01-01

    This study assesses the security of feedstock supply to satisfy the increased demand for bio-ethanol production based on the recent 15 years biofuels development plan and target (year 2008-2022) of the Thai government. Future bio-ethanol systems are modeled and the feedstock supply potentials analyzed based on three scenarios including low-, moderate- and high-yields improvement. The three scenarios are modeled and key dimensions including availability; diversity; and environmental acceptability of feedstocks supply in terms of GHG reduction are evaluated through indicators such as net feedstock balances, Shannon index and net life cycle GHG emissions. The results show that only the case of high yields improvement scenario can result in a reliable and sufficient supply of feedstocks to satisfy the long-term demands for bio-ethanol and other related industries. Cassava is identified as the critical feedstock and a reduction in cassava export is necessary. The study concludes that to enhance long-term security of feedstocks supply for sustainable bio-ethanol production in Thailand, increasing use of sugarcane juice as feedstock, improved yields of existing feedstocks and promoting production of bio-ethanol derived from agricultural residues are three key recommendations that need to be urgently implemented by the policy makers. - Research highlights: →Bioethanol in Thailand derived from molasses, cassava, sugarcane juice could yield reductions of 64%, 49% and 87% in GHGs when compared to conventional gasoline. →High yields improvement are required for a reliable and sufficient supply of molasses, cassava and sugarcane to satisfy the long-term demands for bio-ethanol and other related industries. →Other factors to enhance long-term security of feedstocks supply for sustainable bioethanol production in Thailand include increasing use of sugarcane juice as feedstock and promoting production of bioethanol derived from agricultural residues.

  13. Le vieillard et le chevalier

    Directory of Open Access Journals (Sweden)

    Mélanie JECKER

    2010-05-01

    Full Text Available La fin du Moyen Âge fascine. Deux facteurs principaux expliquent l’attraction qu’exerce cette période : elle apparaît d’une part comme un moment historique riche car double, phase de transition entre le Moyen Âge et la Renaissance, où se mêlent des cadres de représentation anciens et nouveaux. L’insinuation d’une pensée humaniste balbutiante s’y traduirait notamment par l’émergence de la notion d’individu, qui constitue l’un des objets de ce travail. Il faut invoquer, d’autre part, l’image macabre d’un bas Moyen Âge hanté par l’idée de la maladie et de la mort depuis l’épidémie de peste noire de 1348, obsédé par la brièveté de la vie humaine. Ces deux facettes de « l’automne du Moyen Âge » tel que l’évoque avec poésie Joan Huizinga sont-elles autre chose qu’une plaisante image d’Epinal? Cette étude cherche précisément à déterminer le degré de validité de ces deux topiques, à travers l’analyse de la représentation des âges de la vie dans un corpus bien défini, celui de la biographie chevaleresque castillane du XVe siècle. L’intérêt porté à l’individu, la conscience de la singularité impliquent en effet celle du caractère mouvant de la personne, or quel thème mieux que celui des âges permet de confirmer ou d’infirmer l’hypothèse du surgissement d’une nouvelle manière de concevoir l’homme, proprement « renaissante », en ce siècle de transition , La nature même du corpus retenu – des récits biographiques – suggère en effet une mutation dans l’appréhension de la personne, une attention prêtée à sa progressive transformation. L’étude de la représentation de la vieillesse, en particulier, révèle non seulement à quel point était alors réelle cette prétendue obsession de la déchéance physique et de la mortalité, mais aussi dans quelle mesure étaient soulignés et valorisés les changements individuels parallèles à l

  14. MICROALGAE AS AN ALTERNATIVE TO BIOFUELS PRODUCTION. PART 1: BIOETHANOL

    Directory of Open Access Journals (Sweden)

    Maiara Priscilla de Souza

    2013-02-01

    Full Text Available The demand from the energy sector is one of the culminating factors to do researches that enable innovations in the biotechnology sector and to boost biofuel production. The variability of the existing feedstocks provides benefits to energy production, however, we must choose the ones that present plausible characteristics depending on the type of product that we want to obtained. In this context, it is noted that the microalgae have suitable characteristics to producing different types of fuels, depending on the type of treatment are subjected, the species being analyzed as well as the biochemical composition of the biomass. Bioethanol production from microalgae is a promising and growing energy alternative under a view that biomass of these microorganisms has an enormous biodiversity and contain high levels of carbohydrates, an indispensable factor for the bioconversion of microalgae in ethanol. Due to these factors, there is a constant search for more viable methods for pretreatment of biomass, hydrolysis and fermentation, having as one of the major aspects the approach of effectives methodologies in the ambit of quality and yield of ethanol. Therefore, we have to search to increase the interest in the developing of biofuels reconciling with the importance of using microalgae, analyzing whether these micro-organisms are capable of being used in bioethanol production.

  15. Energy from whey - comparison of the biogas and bioethanol processes

    International Nuclear Information System (INIS)

    Fruteau de Laclos, H.; Membrez, Y.

    2004-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project which investigated how energy could be generated from the whey produced in the cheese-making process. The first part of the project aimed to validate a concept for on-site production and use of biogas at a medium-sized cheese factory. The results of the first step, an experimental study carried out using a down-flow fixed-film bio-reactor, are discussed. This allowed the determination of the optimal working parameters as well as providing an estimate of the performance of the process. The second part of the project aimed to compare the bio-ethanol and biogas production processes. It was carried out in collaboration with AlcoSuisse and the Energy Systems Laboratory at the Swiss Federal Institute of Technology (EPFL) in Lausanne. The results of a life-cycle assessment (LCA) are discussed, which compared the two processes from an environmental point of view. Here, two impacts were considered: fossil fuel consumption and greenhouse effect. The replacement of fuel-oil with biogas for heat production and the replacement of conventional petrol with mixture including 5% bio-ethanol were examined. The results are presented that show that there was no significant difference between the two processes. According to the authors, the treatment of one cubic meter of cheese-whey allows savings of more than 20 litres of oil equivalent and 60 kg of CO 2 emissions

  16. Yeast strains designed for 2. generation bioethanol production. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Roennow, B.

    2013-04-15

    The aim of the project was to develop a suitable fermentation organism for 2G bioethanol production that would efficiently ferment all of the sugars in lignocellulosic biomass into ethanol at a commercially viable rate (comparable to yeast based 1G ethanol production). More specifically, a yeast strain would be developed with the ability to ferment also the pentoses in lignocellulosic biomass and thereby increase the ethanol yield of the process by 30-45% with a profound positive effect on the total process economy. The project has succeeded in developing a new industrial yeast strain V1. The yeast strain can transform the difficult C5 sugars to ethanol from waste products such as straw and the like from the agricultural sector. The classic issues relating to industrial uses such as inhibitor and ethanol tolerance and high ethanol production is resolved satisfactorily. The potential of the use of the new strain for 2nd generation bioethanol production is that the ethanol yields increase by 30-45%. With the increased ethanol yield follows a marked improvement in the overall process economics. (LN)

  17. Modeling of a bioethanol combustion engine under different operating conditions

    International Nuclear Information System (INIS)

    Hedfi, Hachem; Jedli, Hedi; Jbara, Abdessalem; Slimi, Khalifa

    2014-01-01

    Highlights: • Bioethanol/gasoline blends’ fuel effects on engine’s efficiency, CO and NOx emissions. • Fuel consumption and EGR optimizations with respect to estimated engine’s work. • Ignition timing and blends’ effects on engine’s efficiency. • Rich mixture, gasoline/bioethanol blends and EGR effects on engine’s efficiency. - Abstract: A physical model based on a thermodynamic analysis was designed to characterize the combustion reaction parameters. The time-variations of pressure and temperature required for the calculation of specific heat ratio are obtained from the solution of energy conservation equation. The chemical combustion of biofuel is modeled by an overall reaction in two-steps. The rich mixture and EGR were varied to obtain the optimum operating conditions for the engine. The NOx formation is modeled by using an eight-species six-step mechanism. The effect of various formation steps of NOx in combustion is considered via a phenomenological model of combustion speed. This simplified model, which has been validated by the most available published results, is used to characterize and control, in real time, the impact of biofuel on engine performances and NOx emissions as well. It has been demonstrated that a delay of the ignition timing leads to an increase of the gas mixture temperature and cylinder pressure. Furthermore, it has been found that the CO is lower near the stoichiometry. Nevertheless, we notice that lower rich mixture values result in small NOx emission rates

  18. Multistage process for the production of bioethanol from almond shell.

    Science.gov (United States)

    Kacem, Imen; Koubaa, Mohamed; Maktouf, Sameh; Chaari, Fatma; Najar, Taha; Chaabouni, Moncef; Ettis, Nadia; Ellouz Chaabouni, Semia

    2016-07-01

    This work describes the feasibility of using almond shell as feedstock for bioethanol production. A pre-treatment step was carried out using 4% NaOH for 60min at 121°C followed by 1% sulfuric acid for 60min at 121°C. Enzymatic saccharification of the pre-treated almond shell was performed using Penicillium occitanis enzymes. The process was optimized using a hybrid design with four parameters including the incubation time, temperature, enzyme loads, and polyethylene glycol (PEG) concentration. The optimum hydrolysis conditions led to a sugar yield of 13.5%. A detoxification step of the enzymatic hydrolysate was carried out at pH 5 using 1U/ml of laccase enzyme produced by Polyporus ciliatus. Fermenting efficiency of the hydrolysates was greatly improved by laccase treatment, increasing the ethanol yield from 30% to 84%. These results demonstrated the efficiency of using almond shell as a promising source for bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Can the environmental benefits of biomass support agriculture? - The case of cereals for electricity and bioethanol production in Northern Spain

    International Nuclear Information System (INIS)

    Blanco, Maria Isabel; Azqueta, Diego

    2008-01-01

    Recent policy documents, such as the EC Communication on an Energy Policy for Europe (January 2007) make emphasis on the opportunities that energy applications can offer certain agricultural commodities, especially in the framework of a progressive dismantling of the Common Agricultural Policy. This paper analyses whether this can be true for wheat and barley farmers, using the real example of a straw-based power plant in Northern Spain and a theoretical factory for bioethanol production fed with cereal grain. The outcomes of such an exercise, in which their relative environmental benefits vis-a-vis fossil fuel alternatives are worked out with the aid of a simplified life-cycle approach, show that the characteristics of the electricity and biomass markets, the baseline scenario and the fuel prices are crucial for the future of the sector. (author)

  20. Can the environmental benefits of biomass support agriculture? - The case of cereals for electricity and bioethanol production in Northern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Maria Isabel; Azqueta, Diego [Department of Economics, University of Alcala, Plaza de la Victoria, 3, 28002 Alcala de Henares, Madrid (Spain)

    2008-01-15

    Recent policy documents, such as the EC Communication on an Energy Policy for Europe (January 2007) make emphasis on the opportunities that energy applications can offer certain agricultural commodities, especially in the framework of a progressive dismantling of the Common Agricultural Policy. This paper analyses whether this can be true for wheat and barley farmers, using the real example of a straw-based power plant in Northern Spain and a theoretical factory for bioethanol production fed with cereal grain. The outcomes of such an exercise, in which their relative environmental benefits vis-a-vis fossil fuel alternatives are worked out with the aid of a simplified life-cycle approach, show that the characteristics of the electricity and biomass markets, the baseline scenario and the fuel prices are crucial for the future of the sector. (author)

  1. The potential for bioethanol production from wheat in the U.K

    International Nuclear Information System (INIS)

    Batchelor, S.; Booth, E.J.; Walker, K.C.; Cook, P.

    1994-06-01

    Ethanol, currently widely used in cosmetic chemical and pharmaceutical applications, can be manufactured either from petroleum deriviatives (synthetic ethanol), or by the biological fermentation of carbohydrate. This report looks at the United Kingdom potential for production of the latter, so called, bioethanol from wheat. Ethanol from wheat is already produced for the grain spirit industry, and two such bioethanol plants operating in Sweden and France are described. Although there is, at present, no overall cost advantage in using bioethanol from wheat over synthetic ethanol, environmental benefits may sway the balance in its failure. (UK)

  2. Le beau et le vrai

    Directory of Open Access Journals (Sweden)

    Létitia Mouze

    2006-05-01

    Full Text Available La vie des abeilles de Maeterlinck est un ouvrage à la fois scientifique et littéraire, non pas parce qu’il appartiendrait à la science par son exactitude et à la littérature par son style, mais en ce qu’il invite à penser l’unité des deux domaines. Les aspects littéraires de l’ouvrage (beauté de l’écriture, usage des images, de l’analogie, etc. ne sont pas des accessoires, mais des outils indispensables à l’élaboration d’un authentique savoir sur les abeilles, c’est-à-dire un savoir qui reconnaît la part d’inconnu et le mystère qui subsistent en dépit de toutes les explications physiques et mécaniques que l’on peut par ailleurs donner des phénomènes observés. Etre scientifique, dans cette perspective, c’est-à-dire donner à connaître, c’est donc être littéraire. Cette conception de la science repose en dernière instance sur une conception philosophique de l’univers comme un tout où toutes choses sont reliées, unies, par des relations d’analogies, ce qui fonde et justifie l’emploi d’un style symboliste.The life of bees, one of Maeterlinck’s works, is together a scientific and literary book, not because of it scientific exactness and its literary style, but for the reason it suggests the unity of both these domains. Literay’s aspects of this work (writing’s beauty, use of images, analogy, etc. are not secondary but necessary to elaborate an authentic knowledge about bees, that means a knowledge which admit the unknown part and the mistery that subsist despite all the physical and mechanical explanations we can give moreover about the observed phenomenons. Be a scientist, in this sense, that is give something to know, therefore means be literary. Finally, this conception of science consist in a philosophiacl conception of Universe as a whole where everything links together, and is united by analogical relations, that base and justify the use of a symbolist style.

  3. Atomization and spray characteristics of bioethanol and bioethanol blended gasoline fuel injected through a direct injection gasoline injector

    International Nuclear Information System (INIS)

    Park, Su Han; Kim, Hyung Jun; Suh, Hyun Kyu; Lee, Chang Sik

    2009-01-01

    The focus of this study was to investigate the spray characteristics and atomization performance of gasoline fuel (G100), bioethanol fuel (E100), and bioethanol blended gasoline fuel (E85) in a direct injection gasoline injector in a gasoline engine. The overall spray and atomization characteristics such as an axial spray tip penetration, spray width, and overall SMD were measured experimentally and predicted by using KIVA-3V code. The development process and the appearance timing of the vortices in the test fuels were very similar. In addition, the numerical results accurately described the experimentally observed spray development pattern and shape, the beginning position of the vortex, and the spray breakup on the spray surface. Moreover, the increased injection pressure induced the occurrence of a clear circular shape in the downstream spray and a uniform mixture between the injected spray droplets and ambient air. The axial spray tip penetrations of the test fuels were similar, while the spray width and spray cone angle of E100 were slightly larger than the other fuels. In terms of atomization performance, the E100 fuel among the tested fuels had the largest droplet size because E100 has a high kinematic viscosity and surface tension.

  4. Le CRDI en Colombie

    International Development Research Centre (IDRC) Digital Library (Canada)

    Le CRDI appuie la recherche en Colombie dans des domaines tels ... Le CRDI a soutenu des activités de longue haleine qui ont eu pour ... Des travaux subventionnés par le CRDI ont aidé une fondation à intégrer Internet à son programme ...

  5. Design and control of an alternative distillation sequence for bioethanol purification

    DEFF Research Database (Denmark)

    Errico, Massimiliano; Ramírez-Márquez, César; Torres Ortega, Carlo Edgar

    2015-01-01

    BACKGROUND: Bioethanol is a green fuel considered to be a sustainable alternative to petro-derived gasoline. The transport sector contributes significantly to carbon dioxide emission and consequently has a negative impact on the air quality and is responsible for the increase of the greenhouse...... separation is presented. The steady state performance and the dynamic beavior are analyzed compared with the classical configuration reported in the literature. RESULTS: Ethanol-water azeotropic separation represents a challenge for bioethanol purification. Usually a three column sequence is used to obtain...... fuel grade bioethanol by extractive distillation. In order to reduce bioethanol purification cost a two column separation sequence is proposed. This configuration shows a 10% saving in capital costs together with higher ethanol recovery and better control properties compared with the classical three...

  6. Bioethanol from lignocellulose. An ecological and economic assessment of selected concepts

    International Nuclear Information System (INIS)

    Meisel, Kathleen; Zech, Konstantin; Mueller-Langer, Franziska

    2014-01-01

    Against the background of an increased use of residual and waste materials in this paper the specific GHG emissions and production costs of different lignocellulosic based bioethanol concepts are assessed and compared to a conventional wheat based bioethanol concept and to the fossil reference. In order to find the best concept regarding both the environment and the economics the GHG emissions and production costs are compared and the GHG mitigation costs are calculated. Concept 5 (reference concept with C5 sugar to bioethanol and a natural gas-/biogasboiler) could be a good compromise between the both targets. Furthermore this concept has lower GHG emissions and lower production costs compared to the conventional wheat based bioethanol concept.

  7. SIMULATION OF THE FERMENTATION PROCESS TO OBTAIN BIOETHANOL FROM RICE RESIDUES

    Directory of Open Access Journals (Sweden)

    Verónica Capdevila

    2015-06-01

    Full Text Available In this paper presents a simulation model of the fermentation/separation process of bioethanol from hydrolyzed pretreated rice husk, using Aspen HYSYS simulator. Sensitivity studies performed on the developed model indicated levels for selected variables: biomass/water ratio of 1:2,89 ; biomass flow of 50 t/h and inlet temperature separator of 30°C, leading to maximize the yield of bioethanol. From these variables, a bioethanol production of 8,81 t/h with a purity of 65,51% w/w is obtained, corresponding to a flow of hydrolyzed treated biomass of 50 t/h. This work represents an advance in the development of the simulation model of the complete process to obtain second generation of bioethanol from rice husks.

  8. Utilization of hydrothermally pretreated wheat straw for production of bioethanol and carotene-enriched biomass

    DEFF Research Database (Denmark)

    Petrik, SiniŠa; Márová, Ivana; Kádár, Zsófia

    2013-01-01

    In this work hydrothermally pretreated wheat straw was used for production of bioethanol by Saccharomyces cerevisiae and carotene-enriched biomass by red yeasts Rhodotorula glutinis, Cystofilobasidium capitatum and Sporobolomyces roseus. To evaluate the convertibility of pretreated wheat straw...

  9. Marketing : modellen en berekeningen

    NARCIS (Netherlands)

    Loes Vink; Ton Borchert

    2010-01-01

    Marketing: modellen en berekeningen geeft een overzicht van modellen en commerciële calculaties die een belangrijke rol spelen in marketing. Het boek volgt de structuur van het marketingplanningsproces. De onderwerpen worden op een heldere manier uitgelegd en geïllustreerd met praktische voorbeelden

  10. Bioethanol production from recovered napier grass with heavy metals.

    Science.gov (United States)

    Ko, Chun-Han; Yu, Fan-Chun; Chang, Fang-Chih; Yang, Bing-Yuan; Chen, Wen-Hua; Hwang, Wen-Song; Tu, Ta-Chih

    2017-12-01

    Using plants to absorb and accumulate heavy metals from polluted soil, followed by the recycling of explants containing heavy metals, can help achieve the goal of reverting contaminated soil to low heavy-metal content soil. However, the re-use of recovered explants can also be problematic. Meanwhile, bioethanol has become a popular energy source. In this study, napier grass was used for the remediation of soil contaminated with heavy metals (artificially contaminated soil). The influence of bioethanol production from napier grass after phytoremediation was also investigated. The concentration of Zn, Cd, and Cr in the contaminated soil was 1000, 100, and 250 mg/kg, respectively. After napier grass phytoremediation, the concentration (dry biomass) of Zn, Cd, and Cr in the explants was 2701.97 ± 173.49, 6.1 ± 2.3, and 74.24 ± 1.42 mg/kg, respectively. Biomass production in the unpolluted soil was 861.13 ± 4.23 g. The biomass production ratio in high Zn-polluted soil was only 3.89%, while it was 4.68% for Cd and 21.4% for Cr. The biomass obtained after napier grass phytoremediation was pretreated using the steam explosion conditions of 180 °C, for 10 min, with 1.5% H 2 SO 2 , followed by enzymatic hydrolysis. The efficiency of enzymatic hydrolysis for Zn-polluted biomass was 90% of the unpolluted biomass, while it was 77% for Cd, and approximately the same for Cr. The fermentation efficiency of the heavy-metal-containing biomass was higher than the control biomass. The fermentation ethanol concentration obtained was 8.69-12.68, 13.03-15.50, and 18.48-19.31 g/L in Zn, Cd, and Cr environments, respectively. Results show that the heavy metals had a positive effect on bacteria fermentation. However, the fermentation efficiency was lower for biomass with severe heavy metal pollution. Thus, the utilization of napier grass phytoremediation for bioethanol production has a positive effect on the sustainability of environmental resources. Copyright © 2017

  11. Energy and environmental assessments of bioethanol production from Sri Kanji 1 cassava in Malaysia

    OpenAIRE

    M. Hanif; T.M.I. Mahlia; H.B. Aditiya; M.S. Abu Bakar

    2017-01-01

    According to the Malaysia’s biofuel policy, renewable fuels are crucial for energy sustainability in the transportation sector in the future. This study was aimed to evaluate the potential of bioethanol production from Sri Kanji 1 cassava in Malaysia in terms of energy efficiency and renewability, as well to estimate the potential greenhouse gas (GHG) emissions reduction in CO2 equivalent. Bioethanol production process from cassava includes cassava farming, ethanol production, and transportat...

  12. Sugar palm (Argena pinnata). Potential of sugar palm for bio-ethanol production

    OpenAIRE

    Elbersen, H.W.; Oyen, L.P.A.

    2010-01-01

    The energetic and economic feasibility of bioethanol production from sugar palm is virtually unknown. A positive factor are the potentially very high yields while the long non-productive juvenile phase and the high labor needs can be seen as problematic. Expansion to large scale sugar palm cultivation comes with risks. Small-scale cultivation of sugar palm perfectly fits into local farming systems. In order to make a proper assessment of the value palm sugar as bio-ethanol crop more informati...

  13. Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties

    International Nuclear Information System (INIS)

    Osmani, Atif; Zhang, Jun

    2013-01-01

    An integrated multi-feedstock (i.e. switchgrass and crop residue) lignocellulosic-based bioethanol supply chain is studied under jointly occurring uncertainties in switchgrass yield, crop residue purchase price, bioethanol demand and sales price. A two-stage stochastic mathematical model is proposed to maximize expected profit by optimizing the strategic and tactical decisions. A case study based on ND (North Dakota) state in the U.S. demonstrates that in a stochastic environment it is cost effective to meet 100% of ND's annual gasoline demand from bioethanol by using switchgrass as a primary and crop residue as a secondary biomass feedstock. Although results show that the financial performance is degraded as variability of the uncertain parameters increases, the proposed stochastic model increasingly outperforms the deterministic model under uncertainties. The locations of biorefineries (i.e. first-stage integer variables) are insensitive to the uncertainties. Sensitivity analysis shows that “mean” value of stochastic parameters has a significant impact on the expected profit and optimal values of first-stage continuous variables. Increase in level of mean ethanol demand and mean sale price results in higher bioethanol production. When mean switchgrass yield is at low level and mean crop residue price is at high level, all the available marginal land is used for switchgrass cultivation. - Highlights: • Two-stage stochastic MILP model for maximizing profit of a multi-feedstock lignocellulosic-based bioethanol supply chain. • Multiple uncertainties in switchgrass yield, crop residue purchase price, bioethanol demand, and bioethanol sale price. • Proposed stochastic model outperforms the traditional deterministic model under uncertainties. • Stochastic parameters significantly affect marginal land allocation for switchgrass cultivation and bioethanol production. • Location of biorefineries is found to be insensitive to the stochastic environment

  14. Assessment of bio-ethanol as a transport fuel in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Marrow, J.E.; Coombs, J.; Lees, E.W.

    1987-10-01

    The technical and economic issues associated with the production of bio-ethanol as a road transport fuel (fuel ethanol) in the UK are assessed. This volume addresses the current situation (May 1987) and covers the production of bio-ethanol from available raw materials using technology that is well established on an industrial scale, as well as the use of ethanol-petrol blends in existing petrol engines.

  15. The addition of zeolite adsorbents and calcium oxide on purification of bioethanol from sugar palm (arenga pinnata merr)

    Science.gov (United States)

    Herlina, Netti; Siska Dewi Harahap, Ici

    2018-03-01

    Bioethanol (C2H5OH) is a biochemical liquid produced by microorganisms through fermentation process on sugar molecules from carbohydrates. Bioethanol is a fuel of vegetable oil that has similar properties to premium. With its main product of palm juice, Sugar palm (Arenga pinnata) is a potential source of sugar and carbohydrate for bioethanol production. Production of palm juice can reach up to 12-14 liters/tree/day with total sugar content in palm juice ranges from 12-15%. The purpose of this research was to produce highly-concentrated bioethanol from palm juice through fermentation proccess to subtitude fossil fuel. This study was conducted with three stages of treatment, namely: the fermentation of palm juice, distillation of bioethanol, and purification of bioethanol with the addition of adsorbent zeolite and calcium oxide.

  16. Challenges in bioethanol production: Utilization of cotton fabrics as a feedstock

    Directory of Open Access Journals (Sweden)

    Nikolić Svetlana

    2016-01-01

    Full Text Available Bioethanol, as a clean and renewable fuel with its major environmental benefits, represents a promising biofuel today which is mostly used in combination with gasoline. It can be produced from different kinds of renewable feedstocks. Whereas the first generation of processes (saccharide-based have been well documented and are largely applied, the second and third generation of bioethanol processes (cellulose- or algae-based need further research and development since bioethanol yields are still too low to be economically viable. In this study, the possibilities of bioethanol production from cotton fabrics as valuable cellulosic raw material were investigated and presented. Potential lignocellulosic biomass for bioethanol production and their characteristics, especially cotton-based materials, were analyzed. Available lignocellulosic biomass, the production of textile and clothing and potential for sustainable bioethanol production in Serbia is presented. The progress possibilities are discussed in the domain of different pretreatment methods, optimization of enzymatic hydrolysis and different ethanol fermentation process modes. [Projekat Ministarstva nauke Republike Srbije, br. 31017

  17. The Public Acceptance of Biofuels and Bioethanol from Straw- how does this affect Geoscience

    Science.gov (United States)

    Jäger, Alexander; Ortner, Tina; Kahr, Heike

    2015-04-01

    The Public Acceptance of Biofuels and Bioethanol from Straw- how does this affect Geoscience The successful use of bioethanol as a fuel requires its widespread acceptance by consumers. Due to the planned introduction of a 10 per cent proportion of bioethanol in petrol in Austria, the University of Applied Sciences Upper Austria carried out a representative opinion poll to collect information on the population's acceptance of biofuels. Based on this survey, interviews with important stakeholders were held to discuss the results and collect recommendations on how to increase the information level and acceptance. The results indicate that there is a lack of interest and information about biofuels, especially among young people and women. First generation bioethanol is strongly associated with the waste of food resources, but the acceptance of the second generation, produced from agricultural remnants like straw from wheat or corn, is considerably higher. The interviewees see more transparent, objective and less technical information about biofuels as an essential way to raise the information level and acceptance rate. As the production of bioethanol from straw is now economically feasible, there is one major scientific question to answer: In which way does the withdrawal of straw from the fields affect the formation of humus and, therefore, the quality of the soil? An interdisciplinary approach of researchers in the fields of bioethanol production, geoscience and agriculture in combination with political decision makers are required to make the technologies of renewable bioenergy acceptable to the population.

  18. Simultaneous saccharification and bioethanol production from corn cobs: Process optimization and kinetic studies.

    Science.gov (United States)

    Sewsynker-Sukai, Yeshona; Gueguim Kana, E B

    2018-08-01

    This study investigates the simultaneous saccharification and fermentation (SSF) process for bioethanol production from corn cobs with prehydrolysis (PSSF) and without prehydrolysis (OSSF). Two response surface models were developed with high coefficients of determination (>0.90). Process optimization gave high bioethanol concentrations and bioethanol conversions for the PSSF (36.92 ± 1.34 g/L and 62.36 ± 2.27%) and OSSF (35.04 ± 0.170 g/L and 58.13 ± 0.283%) models respectively. Additionally, the logistic and modified Gompertz models were used to study the kinetics of microbial cell growth and ethanol formation under microaerophilic and anaerobic conditions. Cell growth in the OSSF microaerophilic process gave the highest maximum specific growth rate (µ max ) of 0.274 h -1 . The PSSF microaerophilic bioprocess gave the highest potential maximum bioethanol concentration (P m ) (42.24 g/L). This study demonstrated that microaerophilic rather than anaerobic culture conditions enhanced cell growth and bioethanol production, and that additional prehydrolysis steps do not significantly impact on the bioethanol concentration and conversion in SSF process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Recent trends in global production and utilization of bio-ethanol fuel

    International Nuclear Information System (INIS)

    Balat, Mustafa; Balat, Havva

    2009-01-01

    Bio-fuels are important because they replace petroleum fuels. A number of environmental and economic benefits are claimed for bio-fuels. Bio-ethanol is by far the most widely used bio-fuel for transportation worldwide. Production of bio-ethanol from biomass is one way to reduce both consumption of crude oil and environmental pollution. Using bio-ethanol blended gasoline fuel for automobiles can significantly reduce petroleum use and exhaust greenhouse gas emission. Bio-ethanol can be produced from different kinds of raw materials. These raw materials are classified into three categories of agricultural raw materials: simple sugars, starch and lignocellulose. Bio-ethanol from sugar cane, produced under the proper conditions, is essentially a clean fuel and has several clear advantages over petroleum-derived gasoline in reducing greenhouse gas emissions and improving air quality in metropolitan areas. Conversion technologies for producing bio-ethanol from cellulosic biomass resources such as forest materials, agricultural residues and urban wastes are under development and have not yet been demonstrated commercially.

  20. Severe burn injuries caused by bioethanol-design fireplaces-an overview on recreational fire threats.

    Science.gov (United States)

    Kraemer, Robert; Knobloch, Karsten; Lorenzen, Johan; Breuing, Karl H; Koennecker, Soeren; Rennekampff, Hans-Oliver; Vogt, Peter M

    2011-01-01

    Commercially available bioethanol-fueled fireplaces have become increasingly popular additions for interior home decoration in Europe and more recently in the United States. These fireplaces are advertised as smokeless, ecologically friendly, and do not require professional installation, formal gas lines, or venting. Although manufacturers and businesses promote their safety, recent presentations of injuries have alerted the authors to the relevant danger bioethanol fireplaces can pose for the incautious user. Are bioethanol fireplaces going to become the future threat in domestic burn accidents beside common barbeque burns? A Medline literature search on barbeque and domestic fireplace accidents was performed to compare and stratify the injury patterns reported and to identify a risk profile for contemporary bioethanol-fueled fireplaces. To exemplify, two representative clinical cases of severe burn accidents caused by bioethanol-fueled fireplaces, both treated in the burn unit of the authors, are being presented. Design fireplaces are being recognized as an increasing source of fuel and fire-related danger in the home. This risk may be underestimated by the uninformed customer, resulting in severe burn injuries. Because bioethanol-fueled fireplaces have become more commonplace, they may overtake barbecue-related injury as the most common domestic burn injury.

  1. SACCHARIFICATION OF CORNCOB USING CELLULOLYTIC BACTERIA FOR BIOETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    TITI CANDRA SUNARTI

    2010-08-01

    Full Text Available The use of cellulose degrading enzyme (cellulases for hydrolysis of lignocellulosic material is a part of bioethanol production process. In this experiment, delignified corncob, its cellulose fraction and alpha cellulose were used as substrates to produce fermentable sugar by using three local isolates of celluloytic bacteria (C5-1, C4-4, C11-1 and Cmix ; mixed cultures of three isolates, and Saccharomyces cereviseae to produce ethanol. The results showed that all isolates of cellulolytic bacteria can grow on cellulose fraction better than on delignified corncob, and alpha cellulose. The highest hydrolytic activity produced from cellulose fraction was by isolate C4-4, which liberated 3.50 g/l of total sugar. Ethanol can be produced by mixed culture of bacteria and yeast, but because of competitive growth, the fermentation only produced 0.39-0.47 g/l of ethanol.

  2. Perspectives for the production of bioethanol from lignocellulosic materials

    International Nuclear Information System (INIS)

    Petrova, Petia; Ivanova, Viara

    2010-01-01

    The most common renewable fuel today and suitable alternative to replace fossil fuels is ethanol that can be blended with petrol or used as neat alcohol in engines. Ethanol is currently produced from sugar (Brazil) or grain (starch, USA). However, this raw material base will not be sufficient because the increasing demand for fuel ethanol and the lower than expected reduction of greenhouse gases. An alternative is the production of bioethanol from agroindustrial wastes containing abundant cellulose fibers and carbohydrates such as grape pomace, sugar beet pomace, barley and rice straw, corncobs, sunflower stalks and heads, cotton waste, brewer's spent grain, forest residues etc. Lignocellulosic raw materials and agroindustrial wastes minimize the potential conflict between land use for food (and feed) production and energy feedstock production. This review summarizes recent developments in the bioconversion processes, the new technologies required and the advances achieved in recent years to bring agricultural feedstock and lignocellulosic ethanol towards industrial production.

  3. PRETREATMENT TECHNOLOGIES IN BIOETHANOL PRODUCTION FROM LIGNOCELLULOSIC BIOMASS

    Directory of Open Access Journals (Sweden)

    Vanja Janušić

    2008-07-01

    Full Text Available Bioethanol is today most commonly produced from corn grain and sugar cane. It is expected that there will be limits to the supply of these raw materials in the near future. Therefore, lignocellulosic biomass, namely agricultural and forest waste, is seen as an attractive feedstock for future supplies of ethanol. Lignocellulosic biomass consists of lignin, hemicellulose and cellulose. Indeed, complexicity of the lignocellulosic biomass structure causes a pretreatment to be applied prior to cellulose and hemicellulose hydrolysis into fermentable sugars. Pretreatment technologies can be physical (mechanical comminution, pyrolysis, physico-chemical (steam explosion, ammonia fiber explosion, CO2 explosion, chemical (ozonolysis, acid hydrolysis, alkaline hydrolysis, oxidative delignification, organosolvent process and biological ones.

  4. The Emergence and Challenging Growth of the Bio-Ethanol Innovation System in Taiwan (1949–2015)

    Science.gov (United States)

    Chung, Chao-Chen; Yang, Siang-Cing

    2016-01-01

    This study explores the bio-ethanol innovation system in Taiwan from the perspective of a technology innovation system (TIS). Taiwan is a newly industrialized country and is not currently a main producer of bio-ethanol. This study analyzes the evolution of bio-ethanol innovation system in Taiwan and places a particular emphasis on challenges that present policies face in the context of potential long-term bio-ethanol development. Through an evaluation of the consistency of the present research, technology, development and innovation (RTDI) policies as well as the influence of these policies on the functional dynamics of bio-ethanol innovation system, mechanisms prohibiting the system from flourishing are determined. It is suggested that the production of bio-ethanol in Taiwan would be achieved if the government: (1) fixes long-term targets for both domestic bio-ethanol development and emission reduction; and (2) comprehensively designs a set of interrelated RTDI policies in accordance with the functional pattern of the bio-ethanol innovation system and consistently implements these policies. If such measures were implemented, it is considered that the bio-ethanol innovation system in Taiwan would flourish. PMID:26907306

  5. The Emergence and Challenging Growth of the Bio-Ethanol Innovation System in Taiwan (1949-2015).

    Science.gov (United States)

    Chung, Chao-Chen; Yang, Siang-Cing

    2016-02-19

    This study explores the bio-ethanol innovation system in Taiwan from the perspective of a technology innovation system (TIS). Taiwan is a newly industrialized country and is not currently a main producer of bio-ethanol. This study analyzes the evolution of bio-ethanol innovation system in Taiwan and places a particular emphasis on challenges that present policies face in the context of potential long-term bio-ethanol development. Through an evaluation of the consistency of the present research, technology, development and innovation (RTDI) policies as well as the influence of these policies on the functional dynamics of bio-ethanol innovation system, mechanisms prohibiting the system from flourishing are determined. It is suggested that the production of bio-ethanol in Taiwan would be achieved if the government: (1) fixes long-term targets for both domestic bio-ethanol development and emission reduction; and (2) comprehensively designs a set of interrelated RTDI policies in accordance with the functional pattern of the bio-ethanol innovation system and consistently implements these policies. If such measures were implemented, it is considered that the bio-ethanol innovation system in Taiwan would flourish.

  6. The Emergence and Challenging Growth of the Bio-Ethanol Innovation System in Taiwan (1949–2015

    Directory of Open Access Journals (Sweden)

    Chao-Chen Chung

    2016-02-01

    Full Text Available This study explores the bio-ethanol innovation system in Taiwan from the perspective of a technology innovation system (TIS. Taiwan is a newly industrialized country and is not currently a main producer of bio-ethanol. This study analyzes the evolution of bio-ethanol innovation system in Taiwan and places a particular emphasis on challenges that present policies face in the context of potential long-term bio-ethanol development. Through an evaluation of the consistency of the present research, technology, development and innovation (RTDI policies as well as the influence of these policies on the functional dynamics of bio-ethanol innovation system, mechanisms prohibiting the system from flourishing are determined. It is suggested that the production of bio-ethanol in Taiwan would be achieved if the government: (1 fixes long-term targets for both domestic bio-ethanol development and emission reduction; and (2 comprehensively designs a set of interrelated RTDI policies in accordance with the functional pattern of the bio-ethanol innovation system and consistently implements these policies. If such measures were implemented, it is considered that the bio-ethanol innovation system in Taiwan would flourish.

  7. Le tourisme alpin

    Directory of Open Access Journals (Sweden)

    Andrea Macchiavelli

    2009-06-01

    Full Text Available La forte croissance qu’ont connue les pays alpins dans les dernières décennies a surtout été fondée sur l’offre des activités du ski, avec comme conséquence, un massif développement immobilier, la multiplication d’infrastructures et l’extension des domaines. Aujourd’hui, le marché du ski semble arriver à saturation, la Convention alpine a mis un frein à la poursuite du développement des domaines skiables et on observe donc avec intérêt la diversification de l’offre soutenue par l’innovation. Après avoir rappelé les facteurs de changement en cours les plus significatifs dans le tourisme montagnard, l’article présente une grille interprétative de l’évolution des destinations touristiques alpines, identifiant les phases qui ont caractérisé son développement. Puis il propose une réflexion sur certaines conditions qui peuvent favoriser l’innovation dans le tourisme alpin, ainsi que sur les contradictions qui les accompagnent souvent. Dans la plupart des cas l’innovation est le résultat d’un processus qui a été lancé et qui s’est développé au sein de la communauté alpine, souvent favorisé et soutenu par des institutions nationales et internationales, et grâce auquel les difficultés structurelles qui ont déjà été abordées précédemment ont pu être surmontées avec succès.The spectacular increase in tourism in the Alps in recent decades has been founded mainly on the boom in skiing, resulting in both strong real estate development and an increasing array of infrastructures and ski runs. Today the ski market seems to have virtually reached saturation point and the winter sports sector needs to diversify its offer through innovation. After a review of the main factors of change in mountain tourism, the paper presents a grid for interpreting the life cycle of alpine destinations, identifying the phases that characterize their evolution. The conditions that may favour innovation in alpine

  8. Le corps sportif1

    OpenAIRE

    Brulé, Pierre

    2015-01-01

    Le nu et le cuit Si, pas plus que l’Auvergne, le monde grec antique n’a été le théâtre d’un quelconque « miracle », il n’a pas manqué, toutefois, de « distinctions » diverses, d’exceptions même, qui le singularisent absolument. Une, c’est la pédérastie. Quelle culture l’a autant valorisée, autant instrumentalisée, l’a autant érigée en modèle ? Nous n’en avons pas encore mesuré toutes les conséquences. La place inhabituelle que prend là et alors cette polyvalence rare de la libido masculine de...

  9. Techno-economic and environmental assessment of bioethanol production from high starch and root yield Sri Kanji 1 cassava in Malaysia

    Directory of Open Access Journals (Sweden)

    M. Hanif

    2016-11-01

    Full Text Available Transportation played a significant role in energy consumption and pollution subsequently. Caused by the intense growth of greenhouse gas emission, efficient and sustainable improvement of the transportation sector has elevated the concern in many nations including Malaysia. Bioethanol is an alternative and renewable energy that has a great potential to substitute for fossil gasoline in internal combustion engine (ICE. Although bioethanol has been widely utilized in road transport worldwide, the production and application of bioethanol in Malaysia is yet to be considered. Presently there is comprehensive diversity of bioethanol research on distillation, performance and emission analysis available worldwide. Yet, the study on techno-economic and feasibility of bioethanol fuel in Malaysia condition is unavailable. Thus, this study is concentrated on bioethanol production and techno-economic analysis of cassava bioethanol as an alternative fuel in Malaysia. Furthermore, the current study attempts to determine the effect of bioethanol employment towards the energy scenario, environmental and economy. From the economic analysis, determined that the life cycle cost for 54 ktons cassava bioethanol production plant with a project life time of 20 years is $132 million USD, which is equivalent to $0.11 USD per litre of bioethanol. Furthermore, substituting 5 % of gasoline fuel with bioethanol fuel in road transport can reduce the CO2 emissions up to 2,038 ktons in year 2036. In case to repay the carbon debt from converting natural forest to cassava cropland, cassava bioethanol required about 5.4 years. The cassava bioethanol is much cheaper than gasoline fuel even when 20 % taxation is subjected to bioethanol at current production cost. Thus, this study serves as a guideline for further investigation and research on bioethanol production, subsidy cost and other limitation factors before the extensive application of bioethanol can be implemented in

  10. Engine performance and emissions characteristics of a diesel engine fueled with diesel-biodiesel-bioethanol emulsions

    International Nuclear Information System (INIS)

    Tan, Yie Hua; Abdullah, Mohammad Omar; Nolasco-Hipolito, Cirilo; Zauzi, Nur Syuhada Ahmad; Abdullah, Georgie Wong

    2017-01-01

    Highlights: • Different composition of diesel fuel, biodiesel and bioethanol emulsions were examined. • The fuels were tested in a direct injection diesel engine and parameters were evaluated. • Engine power, torque, exhaust gas temperature & fuel consumptions were compared. • Emulsions fuels emitted lower CO and CO_2 than fossil diesel. • Lower NOx emission was observed at medium engine speeds and loads for emulsion fuels. - Abstract: In this research work, the experimental investigation of the effect of diesel-biodiesel-bioethanol emulsion fuels on combustion, performance and emission of a direct injection (DI) diesel engine are reported. Four kind of emulsion fuels were employed: B (diesel-80%, biodiesel-20% by volume), C (diesel-80%, biodiesel-15%, bioethanol-5%), D (diesel-80%, biodiesel-10%, bioethanol-10%) and E (diesel-80%, biodiesel-5%, bioethanol-15%) to compare its’ performance with the conventional diesel, A. These emulsion fuels were prepared by mechanical homogenizer machine with the help of Tween 80 (1% v/v) and Span 80 (0.5% v/v) as surfactants. The emulsion characteristics were determined by optical electron microscope, emulsification stability test, FTIR, and the physiochemical properties of the emulsion fuels which were all done by following ASTM test methods. The prepared emulsion fuels were then tested in diesel engine test bed to obtain engine performance and exhaust emissions. All the engine experiments were conducted with engine speeds varying from 1600 to 2400 rpm. The results showed the heating value and density of the emulsion fuels decrease as the bioethanol content in the blend increases. The total heating value of the diesel-biodiesel-bioethanol fuels were averagely 21% higher than the total heating value of the pure biodiesel and slightly lower (2%) than diesel fuel. The engine power, torque and exhaust gas temperature were reduced when using emulsion fuels. The brake specific fuel consumption (BSFC) for the emulsion fuels

  11. Use of bioethanol as an additive or substitute for petrol and diesel oil increases in Europe

    International Nuclear Information System (INIS)

    Sarkkinen, K.

    1998-01-01

    Brazil has used bioethanol for decades, to replace gasoline and gasoline additives based on mineral resources. The United States initiated a bioethanol programme 15 years ago, to reduce vehicle emissions and encourage the use of renewable raw materials in fuels. Today, the bioethanol production capacity is 12 million tons/a in Brazil and 5 million tons/a in the United States. In Europe, Sweden and France have been the first to follow this trend. The first European fuel ethanol plant was constructed in France in 1995, and another plant has been designed and is awaiting an investment decision. Spain is going ahead with a project, and a fuel ethanol plant may start up in Sweden in 1998. JPI Process Contracting was chosen as the contractor for the French and Spanish projects. Since bioethanol is more expensive than fossil fuels and fuel additives for vehicles, governments typically support bioethanol production through tax exemptions for a period of 5 to 10 years. In the meantime, new processes based on cellulosic raw materials are actively studied in several countries, but development to full commercial scale could take as much as 10 years. (author)

  12. Second generation bioethanol potential from selected Malaysia's biodiversity biomasses: A review.

    Science.gov (United States)

    Aditiya, H B; Chong, W T; Mahlia, T M I; Sebayang, A H; Berawi, M A; Nur, Hadi

    2016-01-01

    Rising global temperature, worsening air quality and drastic declining of fossil fuel reserve are the inevitable phenomena from the disorganized energy management. Bioethanol is believed to clear out the effects as being an energy-derivable product sourced from renewable organic sources. Second generation bioethanol interests many researches from its unique source of inedible biomass, and this paper presents the potential of several selected biomasses from Malaysia case. As one of countries with rich biodiversity, Malaysia holds enormous potential in second generation bioethanol production from its various agricultural and forestry biomasses, which are the source of lignocellulosic and starch compounds. This paper reviews potentials of biomasses and potential ethanol yield from oil palm, paddy (rice), pineapple, banana and durian, as the common agricultural waste in the country but uncommon to be served as bioethanol feedstock, by calculating the theoretical conversion of cellulose, hemicellulose and starch components of the biomasses into bioethanol. Moreover, the potential of the biomasses as feedstock are discussed based on several reported works. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Bioethanol a Microbial Biofuel Metabolite; New Insights of Yeasts Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Khaled A. Selim

    2018-03-01

    Full Text Available Scarcity of the non-renewable energy sources, global warming, environmental pollution, and raising the cost of petroleum are the motive for the development of renewable, eco-friendly fuels production with low costs. Bioethanol production is one of the promising materials that can subrogate the petroleum oil, and it is considered recently as a clean liquid fuel or a neutral carbon. Diverse microorganisms such as yeasts and bacteria are able to produce bioethanol on a large scale, which can satisfy our daily needs with cheap and applicable methods. Saccharomyces cerevisiae and Pichia stipitis are two of the pioneer yeasts in ethanol production due to their abilities to produce a high amount of ethanol. The recent focus is directed towards lignocellulosic biomass that contains 30–50% cellulose and 20–40% hemicellulose, and can be transformed into glucose and fundamentally xylose after enzymatic hydrolysis. For this purpose, a number of various approaches have been used to engineer different pathways for improving the bioethanol production with simultaneous fermentation of pentose and hexoses sugars in the yeasts. These approaches include metabolic and flux analysis, modeling and expression analysis, followed by targeted deletions or the overexpression of key genes. In this review, we highlight and discuss the current status of yeasts genetic engineering for enhancing bioethanol production, and the conditions that influence bioethanol production.

  14. Lignin-enriched Fermentation Residues from Bioethanol Production of Fast-growing Poplar and Forage Sorghum

    Directory of Open Access Journals (Sweden)

    José I Santos

    2015-07-01

    Full Text Available The current challenges in developing a cost-effective bioethanol industry include the production of not only high-volume, low cost biofuels but also high-value products with minimal downstream waste. The up-grading of side-stream lignins from bioethanol production plants to novel high-value products will improve the profitability of the bioethanol industry; to do that, a precise understanding of lignin is required. In the present study, lignin-enriched fermentation residues from bioethanol production (steam explosion pretreatment, saccharification, and fermentation of fast-growing poplar and forage sorghum were characterized. In addition to the purity and composition, lignin structure (syringyl/guaiacyl (S/G ratio, inter-unit linkages was also analyzed with spectroscopy techniques such as Fourier transform infrared and two-dimensional nuclear magnetic resonance. Bioethanol processing and feedstock origins seemed to be the main factors determining the purity, composition, and structure of lignins. Residual lignins from poplar and forage sorghum contained significant amounts of sugar and protein impurities. Poplar lignin showed a very high S/G ratio associated with p-hydroxybenzoate. A lower S/G ratio together with H lignin units and p-hydroxycinnamates (p-coumarate and ferulate was observed for forage sorghum lignin. The main inter-unit linkages present in both lignins were β-O-4´ aryl ether followed by resinols and phenylcoumarans.

  15. Solid-state fermentation from dried sweet sorghum stalk for bioethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Almodares, A.; Etemadifar, Z.; Omidi, A. [Univ. of Isfahan, Biology Dept., Univ. of Isfahan, Isfahan (Iran, Islamic Republic of)], e-mail: aalmodares@yahoo.com

    2012-11-01

    Due to depletion of global crude oil, countries are interested to alternate fuel energy resources. Presently bioethanol as a source of energy has been a subject of great interest for the industrialized countries. Therefore, there is need for efficient bioethanol production with low cost raw material and production process. Among energy crops, sweet sorghum is the best candidate for bioethanol production. It has been identified as having higher drought tolerance, lower input cost and higher biomass yield than other energy crops. In addition it has wide adoptability and tolerance to abiotic stresses. Moreover due to the shortage of water in dry and hot countries there is a need to reduce water requirement for bioethanol production and solid state fermentation could be the best process for making bioethanol in these countries. The purpose of this study is to achieve the highest ethanol production with lowest amount of water in solid state fermentation using sweet sorghum stalk. In this study the sweet sorghum particles were used for solid state fermentation. Fermentation medium were: sweet sorghum particles with nutrient media, active yeast powder and different moisture contents. The fermentation medium was incubated for 2-3 days at 30 deg C temperature. The results showed sweet sorghum particles (15% w/w) fermented in medium containing 0.5% yeast inoculums, 73.5% moisture content and 3 days incubation period produced the highest amount of ethanol (13% w/w sorghum)

  16. Bioelectricity versus bioethanol from sugarcane bagasse: is it worth being flexible?

    Science.gov (United States)

    2013-01-01

    Background Sugarcane is the most efficient crop for production of (1G) ethanol. Additionally, sugarcane bagasse can be used to produce (2G) ethanol. However, the manufacture of 2G ethanol in large scale is not a consolidated process yet. Thus, a detailed economic analysis, based on consistent simulations of the process, is worthwhile. Moreover, both ethanol and electric energy markets have been extremely volatile in Brazil, which suggests that a flexible biorefinery, able to switch between 2G ethanol and electric energy production, could be an option to absorb fluctuations in relative prices. Simulations of three cases were run using the software EMSO: production of 1G ethanol + electric energy, of 1G + 2G ethanol and a flexible biorefinery. Bagasse for 2G ethanol was pretreated with a weak acid solution, followed by enzymatic hydrolysis, while 50% of sugarcane trash (mostly leaves) was used as surplus fuel. Results With maximum diversion of bagasse to 2G ethanol (74% of the total), an increase of 25.8% in ethanol production (reaching 115.2 L/tonne of sugarcane) was achieved. An increase of 21.1% in the current ethanol price would be enough to make all three biorefineries economically viable (11.5% for the 1G + 2G dedicated biorefinery). For 2012 prices, the flexible biorefinery presented a lower Internal Rate of Return (IRR) than the 1G + 2G dedicated biorefinery. The impact of electric energy prices (auction and spot market) and of enzyme costs on the IRR was not as significant as it would be expected. Conclusions For current market prices in Brazil, not even production of 1G bioethanol is economically feasible. However, the 1G + 2G dedicated biorefinery is closer to feasibility than the conventional 1G + electric energy industrial plant. Besides, the IRR of the 1G + 2G biorefinery is more sensitive with respect to the price of ethanol, and an increase of 11.5% in this value would be enough to achieve feasibility. The ability of the flexible biorefinery to take

  17. Le Bon, Gustave

    DEFF Research Database (Denmark)

    Borch, Christian

    2017-01-01

    Gustave Le Bon (1841–1931) was a French physician and crowd psychologist who published extensively on themes such as crowds, war, race, revolution, socialism, and war. His work on crowd psychology in particular was highly influential, including beyond scholarly circles. Le Bon argued that crowds...

  18. Energy and Environmental Performance of Bioethanol from Different Lignocelluloses

    Directory of Open Access Journals (Sweden)

    Lin Luo

    2010-01-01

    Full Text Available Climate change and the wish to reduce the dependence on oil are the incentives for the development of alternative energy sources. The use of lignocellulosic biomass together with cellulosic processing technology provides opportunities to produce fuel ethanol with less competition with food and nature. Many studies on energy analysis and life cycle assessment of second-generation bioethanol have been conducted. However, due to the different methodology used and different system boundary definition, it is difficult to compare their results. To permit a direct comparison of fuel ethanol from different lignocelluloses in terms of energy use and environmental impact, seven studies conducted in our group were summarized in this paper, where the same technologies were used to convert biomass to ethanol, the same system boundaries were defined, and the same allocation procedures were followed. A complete set of environmental impacts ranging from global warming potential to toxicity aspects is used. The results provide an overview on the energy efficiency and environmental performance of using fuel ethanol derived from different feedstocks in comparison with gasoline.

  19. Integrated bioconversion of syngas into bioethanol and biopolymers.

    Science.gov (United States)

    Lagoa-Costa, Borja; Abubackar, Haris Nalakath; Fernández-Romasanta, María; Kennes, Christian; Veiga, María C

    2017-09-01

    Syngas bioconversion is a promising method for bioethanol production, but some VFA remains at the end of fermentation. A two-stage process was set-up, including syngas fermentation as first stage under strict anaerobic conditions using C. autoethanogenum as inoculum, with syngas (CO/CO 2 /H 2 /N 2 , 30/10/20/40) as gaseous substrate. The second stage consisted in various fed-batch assays using a highly enriched PHA accumulating biomass as inoculum, where the potential for biopolymer production from the remaining acetic acid at the end of the syngas fermentation was evaluated. All of the acetic acid was consumed and accumulated as biopolymer, while ethanol and 2,3-butanediol remained basically unused. It can be concluded that a high C/N ratio in the effluent from the syngas fermentation stage was responsible for non-consumption of alcohols. A maximum PHA content of 24% was reached at the end of the assay. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Bioethanol from lignocelluloses: Status and perspectives in Brazil.

    Science.gov (United States)

    Soccol, Carlos Ricardo; Vandenberghe, Luciana Porto de Souza; Medeiros, Adriane Bianchi Pedroni; Karp, Susan Grace; Buckeridge, Marcos; Ramos, Luiz Pereira; Pitarelo, Ana Paula; Ferreira-Leitão, Viridiana; Gottschalk, Leda Maria Fortes; Ferrara, Maria Antonieta; da Silva Bon, Elba Pinto; de Moraes, Lidia Maria Pepe; Araújo, Juliana de Amorim; Torres, Fernando Araripe Gonçalves

    2010-07-01

    The National Alcohol Program--PróAlcool, created by the government of Brazil in 1975 resulted less dependency on fossil fuels. The addition of 25% ethanol to gasoline reduced the import of 550 million barrels oil and also reduced the emission CO(2) by 110 million tons. Today, 44% of the Brazilian energy matrix is renewable and 13.5% is derived from sugarcane. Brazil has a land area of 851 million hectares, of which 54% are preserved, including the Amazon forest (350 million hectares). From the land available for agriculture (340 million hectares), only 0.9% is occupied by sugarcane as energy crop, showing a great expansion potential. Studies have shown that in the coming years, ethanol yield per hectare of sugarcane, which presently is 6000 L/ha, could reach 10,000 L/ha, if 50% of the produced bagasse would be converted to ethanol. This article describes the efforts of different Brazilian institutions and research groups on second generation bioethanol production, especially from sugarcane bagasse. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Efficient approach for bioethanol production from red seaweed Gelidium amansii.

    Science.gov (United States)

    Kim, Ho Myeong; Wi, Seung Gon; Jung, Sera; Song, Younho; Bae, Hyeun-Jong

    2015-01-01

    Gelidium amansii (GA), a red seaweed species, is a popular source of food and chemicals due to its high galactose and glucose content. In this study, we investigated the potential of bioethanol production from autoclave-treated GA (ATGA). The proposed method involved autoclaving GA for 60min for hydrolysis to glucose. Separate hydrolysis and fermentation processing (SHF) achieved a maximum ethanol concentration of 3.33mg/mL, with a conversion yield of 74.7% after 6h (2% substrate loading, w/v). In contrast, simultaneous saccharification and fermentation (SSF) produced an ethanol concentration of 3.78mg/mL, with an ethanol conversion yield of 84.9% after 12h. We also recorded an ethanol concentration of 25.7mg/mL from SSF processing of 15% (w/v) dry matter from ATGA after 24h. These results indicate that autoclaving can improve the glucose and ethanol conversion yield of GA, and that SSF is superior to SHF for ethanol production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Pequi cake composition, hydrolysis and fermentation to bioethanol

    Directory of Open Access Journals (Sweden)

    A. L. Macedo

    2011-03-01

    Full Text Available Pequizeiro (Caryocar brasiliense Camb fruits have been evaluated as a potential raw material for the newly established biodiesel industry. This scenario demands applications using the solid co-product derived from the extraction of pequi oil, called cake or meal. This study analyses the acid hydrolysis of carbohydrates present in the pequi meal in order to obtain fermentable sugars and evaluates their conversion to bioethanol. There was 27% starch in the pequi meal. The use of a CCRD experimental design type to study the acid saccharification of pequi meal results in 61.6% conversion of its starch content to reducing sugars. Positive and significant linear effects were observed for H2SO4 concentration and temperature factors, while the quadratic effect of H2SO4 concentration and the linear effect of solid-liquid ratio were negative. Even, with non-optimized fermentative condition using 1% of dried baker's yeast in conical flasks, it was possible to obtain a value equivalent to 53 L of ethanol per ton of hydrolyzed pequi meal.

  3. Improvement of competitivity of bio-ethanol in fuel

    International Nuclear Information System (INIS)

    Oksanen, J.

    1998-01-01

    According to an estimate of Work Efficiency Association, grain production costs can be reduced by 0.3 - 0.17 FIM/kg by replacing hot air drying of grain by a wet preservation method. As the grain is used as raw material of bioethanol, a cost saving of 0.08 - 0.16 FIM/kg is achievable in the costs at factory, although the dry matter and carbohydrate losses and the effect of the preservation method are considered. Compared to cold air drying, a saving of 0.05 FIM/kg can be achieved in the most favourable alternative. However, the wet-preserved grain has technical and economical effects on the production process of ethanol, and especially the fermentation process should be as good as that of dry grain. Air-tightly stored barley seems to suit well for fermentation, as well as crushed and preserved barley (AIVII solution). On the other hand, the weak capacity of fermentation may prevent the use of grain preserved with propion acid. The total costs of the integrating wet preservation and ethanol process were not determined in 1993. (orig.)

  4. Production of bioethanol using agricultural waste: banana pseudo stem

    Directory of Open Access Journals (Sweden)

    Snehal Ingale

    2014-09-01

    Full Text Available India is amongst the largest banana (Musa acuminata producing countries and thus banana pseudo stem is commonly available agricultural waste to be used as lignocellulosic substrate. Present study focuses on exploitation of banana pseudo stem as a source for bioethanol production from the sugars released due to different chemical and biological pretreatments. Two fungal strains Aspergillus ellipticus and Aspergillus fumigatus reported to be producing cellulolytic enzymes on sugarcane bagasse were used under co-culture fermentation on banana pseudo stem to degrade holocellulose and facilitate maximum release of reducing sugars. The hydrolysate obtained after alkali and microbial treatments was fermented by Saccharomyces cerevisiae NCIM 3570 to produce ethanol. Fermentation of cellulosic hydrolysate (4.1 g% gave maximum ethanol (17.1 g/L with yield (84% and productivity (0.024 g%/h after 72 h. Some critical aspects of fungal pretreatment for saccharification of cellulosic substrate using A. ellipticus and A. fumigatus for ethanol production by S. cerevisiae NCIM 3570 have been explored in this study. It was observed that pretreated banana pseudo stem can be economically utilized as a cheaper substrate for ethanol production.

  5. Bioethanol Production from Empty Fruit Bunch using Direct Fermentation by an Actinomycete Streptosporangium roseum

    Science.gov (United States)

    Nik Him, N. R.; Huda, T.

    2018-05-01

    Study on the production of bioethanol using palm oil empty fruit bunch (EFB) has been performed using actinomycete Streptosporangium roseum. Positive result of bioethanol production was recorded using Iodoform test followed by confirmation with GC-FID using a polar capillary column (PEG-type, 10m x 0.53, with autosampler) and n-propanol as internal standard. The first and second round distillation has produced azeotrope (85-15% ethanol-water) and the third round has concentrated the ethanol to 96.1%. Therefore, the process was accomplished by using molecular sieves that selectively absorbed the final excess water. Direct fermentation using Streptosporangium roseum has shown to be a very potential way to catalyst for the synthesis of bioethanol from EFB.

  6. Bioethanol production from residual lignocellulosic materials: A review – Part 2

    Directory of Open Access Journals (Sweden)

    CRISTIAN-TEODOR BURUIANA

    2013-08-01

    Full Text Available Lignocellulosic material (LCM can be employed as feedstock for biorefineries, a concept related to industries designed to process biomass for producing chemicals, fuels and/or electrical power. According to this philosophy, LCM can be fractionated and the resulting fractions employed for specific applications. Bioethanol production from cellulosic fraction of LCM involves: hydrolysis of polysaccharides and fermentation of the monomers into bioethanol. Enzymatic hydrolysis is catalyzed by cellulolytic enzymes and fermentation is carried out by bacteria, yeasts or fungi. The main objective of this article is to review different process integration technologies for bioethanol production from LCM. This paper include: separate hydrolysis and fermentation (SHF, simultaneous saccharification and fermentation (SSF, and simultaneous saccharification and co-fermentation (SSCF methods. Furthermore, the fermentation process and a comparative data of cellulases, hemicellulases and ethanol producing-microorganisms were presented.

  7. Bioethanol production from residual lignocellulosic materials: A review – Part 1

    Directory of Open Access Journals (Sweden)

    CRISTIAN-TEODOR BURUIANA

    2013-08-01

    Full Text Available Lignocellulosic materials (LCM are produced in large quantities and without clear application and their use as raw material for bioethanol production shows economic and ecologic benefits. LCM are composed mainly of three polymers: cellulose made up of glucose units, hemicellulose made up of several sugars (as xylose or arabinose, and lignin made up of phenylpropane units, interconnected in a strong structure. Pretreatment is an important step for bioethanol production from LCM, causing the solubilisation of hemicellulosic fraction (leading to the recovery of hemicellulose-derived saccharides in order to obtain a solid phase enriched in cellulose and more susceptible to enzymatic attack. This study provides a comparative data regarding the chemical composition of various LCM used for bioethanol production, as well as different pretreatment technologies for improving the enzymatic hydrolysis of LCM.

  8. Sustainability of bioethanol production from wheat with recycled residues as evaluated by Emergy assessment

    DEFF Research Database (Denmark)

    Coppola, F.; Bastianoni, S.; Østergård, Hanne

    2009-01-01

    , were considered. Material and energy flows were assessed to evaluate the bioethanol yield, the production efficiency in terms of Emergy used compared to energy produced (transformity), and the environmental load (ELR) in terms of use of non-renewable resources. These three indicators varied among......An Emergy assessment study of 24 bioethanol production scenarios was carried out for the comparison of bioethanol production using winter wheat grains and/or straw as feedstock and conversion technologies based on starch (1st generation) and/or lignocellulose (2nd generation). An integrated biomass...... utilization system (IBUS) was used for combining the two kinds of feedstock. The crop was cultivated under four combinations of Danish soil conditions (sand or sandy loam) and crop managements (organic or conventional). For each of the production processes, two scenarios, with or without recycling of residues...

  9. Thermophilic amylase from Thermus sp. isolation and its potential application for bioethanol production

    Directory of Open Access Journals (Sweden)

    Amin Fatoni

    2012-11-01

    Full Text Available Limited reserves of fossil energy stimulate researchers to explore for a new alternative energy, such as bioethanol.A thermophilic amylase producing bacterium was isolated from local hot-springs and its characteristic and potential applicationfor bioethanol production was determined. The obtained amylase was studied to determine its optimum temperature, pH,enzymatic reaction time, and substrate concentration. Tapioca waste was used as the substrate to find the potential of theamylase for degrading starch into glucose, and then the process was continued by fermentation to produce bioethanol. Theamylase producer bacterium was proposed as genus Thermus sp. The crude amylase that was obtained has the optimumtemperature of 60°C and optimum pH of 8.0, optimum substrate concentration at 10% (w/w and optimum enzymatic reactiontime of 45 minutes. These enzymes convert the starches of waste tapioca at optimum conditions, with the result of 2.9%ethanol produced from raw materials.

  10. Lele des chefs traditionnels au Ghana : un modèle inspirant ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    8 févr. 2011 ... Avec ses partenaires du Sud, avec aussi le soutien du Centre de recherches pour le développement international ( CRDI ), organisme canadien, Ray a étudié lele des chefs traditionnels au Ghana dans la lutte contre le VIH et le sida. Les collectivités politiques antérieures au colonialisme sont une ...

  11. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept

    DEFF Research Database (Denmark)

    Kaparaju, Prasad Laxmi-Narasimha; Serrano, Maria; Thomsen, Anne Belinda

    2009-01-01

    fermentation of cellulose yielded 0.41 g-ethanol/g-glucose, while dark fermentation of hydrolysate produced 178.0 ml-H-2/g-sugars. The effluents from both bioethanol and biohydrogen processes were further used to produce methane with the yields of 0.324 and 0.381 m(3)/kg volatile solids (VS)added, respectively....... Additionally, evaluation of six different wheat straw-to-biofuel production scenaria showed that either use of wheat straw for biogas production or multi-fuel production were the energetically most efficient processes compared to production of mono-fuel such as bioethanol when fermenting C6 sugars alone. Thus...

  12. The sustainability of cassava-based bioethanol production in southern Mali

    DEFF Research Database (Denmark)

    Rasmussen, Kjeld; Birch-Thomsen, Torben; Bruun, Thilde Bech

    2015-01-01

    of labour input. Analysis of the significance of current cassava production for food security shows that bioethanol production should be based on the attiéké variety of cassava, thereby avoiding interference with the important role of the bonouma in assuring food security in northern Mali. The key factor......The demand for biofuels has been rising, which has led developing countries to focus on production of feedstocks for biodiesel and bioethanol production. This has caused concerns for the impacts on food security, food prices and environmental sustainability. This paper examines a hypothetical case...

  13. Life Cycle Assessment of an Advanced Bioethanol Technology in the Perspective of Constrained Biomass Availability

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Thyø, Katrine; Wenzel, Henrik

    of alternative uses. Since natural gas and coal will be used as fuels for heat and power production at least within this time frame, the lost alternatives include substitution of natural gas or coal in the heat and power sector. In a case study, we investigate the environmental feasibility of using advanced...... show that for the case of this advanced bioethanol technology, in terms of reducing greenhouse emissions and fossil fuel dependency, more is lost than gained when prioritizing biomass or land for bioethanol. Technology pathways involving heat and power production and/or biogas, natural gas...

  14. Le Peer to Peer: Vers un Nouveau Modèle de Civilization

    Directory of Open Access Journals (Sweden)

    Michel Bauwens

    2006-06-01

    Full Text Available Le « peer to peer » est la dynamique intersubjective caractéristique des réseaux distribués. Le but de cet essai est de montrer qu'il s'agit d'une véritable nouvelle forme d’organisation sociale, apte à produire et échanger des biens, à créer de la valeur. Celle-ci est la conséquence d'un nouvel imaginaire social, et possède le potentiel de devenir le pilier d'un nouveau mode d'économie politique, voire d'un nouveau type de civilisation. Pour cela, nous allons d'abord définir le P2P, décrire en bref ces manifestations, et le différencier d'autres modalités d'échange intersubjectif tel que le marché, la hiérarchie, l'économie du don.Comme principale modalité P2P nous distinguons: Les processus de production P2P, comme troisième mode de production, qui n'est ni géré par un mode hiérarchique ou par l'état, ni répondant à des impératifs de profit ou qui sont modulés par le biais des prix. Les processus de gouvernance P2P, qui gouverne ces processus de production. Les formes de propriété P2P, qui sont destine a empecher l’appropriation prive de cette production pour le commun.Afin d’examiner les characteristiques de cette nouvelle dynamique sociale, nous utilisons la typologie intersubjective de l’anthropologue Alan Page Fisque, qui distingue: 1. l'échange égalitaire (Equality Matching, c..a.d l’economie du don. 2. La relation d’autorité (Authority Ranking tel qu’elle s’exprime dans le mode hierarchique. 3. le marché (Market Pricing. 4. la participation commune (Communal Shareholding.En conclusion, nous examinons les possibilites d’expansion de ce nouveau mode sociale et son insertion dans l’economie capitaliste, en nous nous posons la question: le P2P peut-il etre concu comme alternative sociale et economique aux modeles existants.

  15. Development of industrial yeast for second generation bioethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Hou, X

    2012-01-15

    The cost of lignocellulose-based bioethanol needs to be reduced, in order to commercialize this clean and sustainable fuel substitute for fossil fuels. A microorganism that can completely and efficiently convert all the sugars in lignocellulose into ethanol is one of the prerequisites of a cost-effective production process. In addition, the microorganisms should also have a high tolerance towards the inhibitory compounds present in the lignocellulosic hydrolysate, which are formed during the pretreatment of lignocellulose. Baker's yeast, Saccharomyces cerevisiae, is generally regarded as a robust microorganism and can efficiently ferment glucose. But it lacks the ability to ferment xylose which comprises 20-35% of lignocellulose. Naturally xylose-fermenting yeast such as Pichia stipitis is much more sensitive to inhibitors than S. cerevisiae and it requires accurately controlled microaerophilic conditions during the xylose fermentation, rendering the process technically difficult and expensive. In this study, a novel xylose fermenting yeast Spathaspora passalidarum displayed fast cell growth and efficient xylose fermentation under anaerobic conditions. In contrast, P. stipitis was almost unable to utilize xylose under the same conditions. It is further demonstrated that S. passalidarum converts xylose by means of NADH-preferred xylose reductase (XR) and NAD+-dependent xylitol dehydrogenase (XDH). Thus, the capacity of S. passalidarum to utilize xylose under anaerobic conditions is possibly due to a balance between supply and demand of cofactor through this XR-XDH pathway. Only one other XR with NADH preference has been reported so far. Unfortunately, S. passalidarum also has a low tolerance towards inhibitors generated during pretreatment, which prevents immediate use of this yeast in industrial application. S. passalidarum is able to convert the inhibitor furfural to furfuryl alcohol in a synthetic medium when the addition of furfural is low. The enzymes involved

  16. Development of industrial yeast for second generation bioethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Hou, X.

    2012-01-15

    The cost of lignocellulose-based bioethanol needs to be reduced, in order to commercialize this clean and sustainable fuel substitute for fossil fuels. A microorganism that can completely and efficiently convert all the sugars in lignocellulose into ethanol is one of the prerequisites of a cost-effective production process. In addition, the microorganisms should also have a high tolerance towards the inhibitory compounds present in the lignocellulosic hydrolysate, which are formed during the pretreatment of lignocellulose. Baker's yeast, Saccharomyces cerevisiae, is generally regarded as a robust microorganism and can efficiently ferment glucose. But it lacks the ability to ferment xylose which comprises 20-35% of lignocellulose. Naturally xylose-fermenting yeast such as Pichia stipitis is much more sensitive to inhibitors than S. cerevisiae and it requires accurately controlled microaerophilic conditions during the xylose fermentation, rendering the process technically difficult and expensive. In this study, a novel xylose fermenting yeast Spathaspora passalidarum displayed fast cell growth and efficient xylose fermentation under anaerobic conditions. In contrast, P. stipitis was almost unable to utilize xylose under the same conditions. It is further demonstrated that S. passalidarum converts xylose by means of NADH-preferred xylose reductase (XR) and NAD+-dependent xylitol dehydrogenase (XDH). Thus, the capacity of S. passalidarum to utilize xylose under anaerobic conditions is possibly due to a balance between supply and demand of cofactor through this XR-XDH pathway. Only one other XR with NADH preference has been reported so far. Unfortunately, S. passalidarum also has a low tolerance towards inhibitors generated during pretreatment, which prevents immediate use of this yeast in industrial application. S. passalidarum is able to convert the inhibitor furfural to furfuryl alcohol in a synthetic medium when the addition of furfural is low. The enzymes

  17. Application of lignocellulolytic fungi for bioethanol production from renewable biomass

    Directory of Open Access Journals (Sweden)

    Jović Jelena M.

    2015-01-01

    Full Text Available Pretreatment is a necessary step in the process of conversion of lignocellulosic biomass to ethanol; by changing the structure of lignocellulose, enhances enzymatic hydrolysis, but, often, it consumes large amounts of energy and/or needs an application of expensive and toxic chemicals, which makes the process economically and ecologically unfavourable. Application of lignocellulolytic fungi (from the class Ascomycetes, Basidiomycetes and Deuteromycetes is an attractive method for pre-treatment, environmentally friendly and does not require the investment of energy. Fungi produce a wide range of enzymes and chemicals, which, combined in a variety of ways, together successfully degrade lignocellulose, as well as aromatic polymers that share features with lignin. On the basis of material utilization and features of a rotten wood, they are divided in three types of wood-decay fungi: white rot, brown rot and soft rot fungi. White rot fungi are the most efficient lignin degraders in nature and, therefore, have a very important role in carbon recycling from lignified wood. This paper describes fungal mechanisms of lignocellulose degradation. They involve oxidative and hydrolytic mechanisms. Lignin peroxidase, manganese peroxidase, laccase, cellobiose dehydrogenase and enzymes able to catalyze formation of hydroxyl radicals (•OH such as glyoxal oxidase, pyranose-2-oxidase and aryl-alcohol oxidase are responsible for oxidative processes, while cellulases and hemicellulases are involved in hydrolytic processes. Throughout the production stages, from pre-treatment to fermentation, the possibility of their application in the technology of bioethanol production is presented. Based on previous research, the advantages and disadvantages of biological pre-treatment are pointed out.

  18. Fuel-cycle assessment of selected bioethanol production

    International Nuclear Information System (INIS)

    Wu, M.; Wang, M.; Hong, H.

    2007-01-01

    A large amount of corn stover is available in the U.S. corn belt for the potential production of cellulosic bioethanol when the production technology becomes commercially ready. In fact, because corn stover is already available, it could serve as a starting point for producing cellulosic ethanol as a transportation fuel to help reduce the nation's demand for petroleum oil. Using the data available on the collection and transportation of corn stover and on the production of cellulosic ethanol, we have added the corn stover-to-ethanol pathway in the GREET model, a fuel-cycle model developed at Argonne National Laboratory. We then analyzed the life-cycle energy use and emission impacts of corn stover-derived fuel ethanol for use as E85 in flexible fuel vehicles (FFVs). The analysis included fertilizer manufacturing, corn farming, farming machinery manufacturing, stover collection and transportation, ethanol production, ethanol transportation, and ethanol use in light-duty vehicles (LDVs). Energy consumption of petroleum oil and fossil energy, emissions of greenhouse gases (carbon dioxide [CO 2 ], nitrous oxide [N 2 O], and methane [CH 4 ]), and emissions of criteria pollutants (carbon monoxide [CO], volatile organic compounds [VOCs], nitrogen oxide [NO x ], sulfur oxide [SO x ], and particulate matter with diameters smaller than 10 micrometers [PM 10 ]) during the fuel cycle were estimated. Scenarios of ethanol from corn grain, corn stover, and other cellulosic feedstocks were then compared with petroleum reformulated gasoline (RFG). Results showed that FFVs fueled with corn stover ethanol blends offer substantial energy savings (94-95%) relative to those fueled with RFG. For each Btu of corn stover ethanol produced and used, 0.09 Btu of fossil fuel is required. The cellulosic ethanol pathway avoids 86-89% of greenhouse gas emissions. Unlike the life cycle of corn grain-based ethanol, in which the ethanol plant consumes most of the fossil fuel, farming consumes most

  19. Saccharification of Sugarcane Bagasse by Enzymatic Treatment for bioethanol production

    Directory of Open Access Journals (Sweden)

    Ahmed, F. M.

    2012-06-01

    Full Text Available Aims: The escalating demands for traditional fossil fuels with unsecured deliverance and issues of climate change compel the researchers to develop alternative fuels like bioethanol. This study examines the prospect of biofuel production from high carbohydrate containing lignocellulosic material, e.g. sugarcane bagasse through biological means. Methodology and Results: Cellulolytic enzymes were collected from the culture filtrate of thermotolerant Trichodermaviride grown on variously pre-treated sugarcane bagasse. CMCase and FPase enzyme activities were determined as a measure of suitable substrate pre-treatment and optimum condition for cellulolytic enzyme production. The highest CMCase and FPase activity was found to be 1.217 U/ml and 0.109 U/ml respectively under the production conditions of 200 rpm, pH 4.0 and 50 °C using steamed NaOH treated bagasse as substrate. SEM was carried out to compare and confirm the activity of cellulolytic enzymes on sugarcane bagasse. Saccharification of pre-treated bagasse was carried out with crude enzymes together using a two-factor experimental design. Under optimized conditions the pre-treated bagasse was saccharified up to 42.7 % in 24 h. The hydrolysate was concentrated by heating to suitable concentration and then used for fermentation by an indigenous isolate of Saccharomyces cerevisiae. With 50 and 80 % brix containing liquor the concentration of alcohol was 0.579 % and 1.15 % respectively. Conclusion, significance and impact of study: This is the first report in Bangladesh for the production of cellulosicethanol using local isolates. Though the rate of alcohol production was very low, a great impetus in this field can maximize the production thereby meet the demand for fuel in future.

  20. Bioethanol production: Pretreatment and enzymatic hydrolysis of softwood

    Energy Technology Data Exchange (ETDEWEB)

    Tengborg, Charlotte

    2000-05-01

    The enzymatic hydrolysis process can be used to produce bioethanol from softwood, which are the dominating raw material in the Northern hemisphere. This thesis deals with the development of the process focusing on the pretreatment and the enzymatic hydrolysis stages. The influence of pretreatment conditions on sugar yield, and the effect of inhibitors on the ethanol yield, were investigated for spruce and pine. The maximum yields of hemicellulose sugars and glucose were obtained under different pretreatment conditions. This indicates that two-stage pretreatment may be preferable. The added catalysts, H{sub 2}SO{sub 4} and SO{sub 2}, resulted in similar total sugar yields about 40 g/100 g dry raw material. However, the fermentability of SO{sub 2}-impregnated material was better. This pretreatment resulted in the formation of inhibitors to the subsequent process steps, e.g. sugar and lignin degradation products. The glucose yield in the enzymatic hydrolysis stage was affected by various parameters such as enzyme loading, temperature, pH, residence time, substrate concentration, and agitation. To decrease the amount of fresh water used and thereby waste water produced, the sugar-rich prehydrolysate from the pretreatment step was included in the enzymatic hydrolysis of the solid fraction, resulting in a reduction in the cellulose conversion of up to 36%. Different prehydrolysate detoxification methods, such as treatment with Ca(OH){sub 2}, laccase, and fermentation using yeast, were investigated. The latter was shown to be very efficient. The amount of fresh water used can be further reduced by recycling various process streams. This was simulated experimentally in a bench-scale process. A reduction in fresh water demand of 50% was obtained without any further negative effects on either hydrolysis or fermentation.

  1. Le Mouvement Social

    OpenAIRE

    FRIDENSON, Patrick

    2003-01-01

    J'ai la faiblesse d'affirmer que parmi les revues françaises d'histoire Le Mouvement Social est la revue qui a publié le plus d'articles et de comptes rendus en matière d'histoire des femmes et du gender. Chacun peut le vérifier grâce à nos pages Web sur le site Internet du Dictionnaire créé par Jean Maitron. Elles comportent la table des matières complète de la revue depuis sa fondation en 1960. Notre rédaction est extrêmement fière de ce résultat. Mais elle reconnaît qu'il a été difficile à...

  2. Le Peer to Peer: Vers un Nouveau Modèle de Civilisation

    Directory of Open Access Journals (Sweden)

    Michel Bauwens

    2006-06-01

    Full Text Available Le « peer to peer » est la dynamique intersubjective caractéristique des réseaux distribués. Le but de cet essai est de montrer qu’il s’agit d’une véritable nouvelle forme d’organisation sociale, apte à produire et échanger des biens, à créer de la valeur. Celle-ci est la conséquence d’un nouvel imaginaire social, et possède le potentiel de devenir le pilier d’un nouveau mode d’économie politique, voire d’un nouveau type de civilisation. Pour cela, nous allons d’abord définir le P2P, décrire en bref ces manifestations, et le différencier d’autres modalités d’échange intersubjectif tel que le marché, la hiérarchie, l’économie du don. Comme principale modalité P2P nous distinguons: Les processus de production P2P, comme troisième mode de production, qui n’est ni géré par un mode hiérarchique ou par l’état, ni répondant à des impératifs de profit ou qui sont modulés par le biais des prix. Les processus de gouvernance P2P, qui gouverne ces processus de production. Les formes de propriété P2P, qui sont destine a empecher l’appropriation prive de cette production pour le commun. Afin d’examiner les characteristiques de cette nouvelle dynamique sociale, nous utilisons la typologie intersubjective de l’anthropologue Alan Page Fisque, qui distingue: 1. l’échange égalitaire (Equality Matching, c..a.d l’economie du don. 2. La relation d’autorité (Authority Ranking tel qu’elle s’exprime dans le mode hierarchique. 3. le marché (Market Pricing. 4. la participation commune (Communal Shareholding. En conclusion, nous examinons les possibilites d’expansion de ce nouveau mode sociale et son insertion dans l’economie capitaliste, en nous nous posons la question: le P2P peut-il etre concu comme alternative sociale et economique aux modeles existants. Abstract: “Peer to peer” is hypothesized as a new social formation with intersubjective dynamics characteristic of distributed

  3. Le CRDI en Afghanistan

    International Development Research Centre (IDRC) Digital Library (Canada)

    Depuis près de 40 ans, le CRDI collabore étroitement avec les chercheurs des pays en développement et les appuie dans leur quête de moyens de créer des sociétés en meilleure santé, plus équitables et plus prospères. Centre de recherches pour le développement international. CP 8500, Ottawa (Ontario) Canada K1G ...

  4. Le CRDI au Bhoutan

    International Development Research Centre (IDRC) Digital Library (Canada)

    Il en résulte des solutions locales, novatrices et durables, qui offrent des choix aux personnes qui en ont le plus besoin et font changer les choses. Centre de recherches pour le développement international. CP 8500, Ottawa (Ontario) Canada K1G 3H9. Pour en savoir plus, consulter la page. Web du Bureau régional de ...

  5. Le CRDI au Kenya

    International Development Research Centre (IDRC) Digital Library (Canada)

    afin d'y favoriser la croissance et le développement. Il en résulte des solutions novatrices et durables qui ont pour but d'améliorer les conditions de vie et les moyens de subsistance. Centre de recherches pour le développement international. CP 8500, Ottawa (Ontario) Canada K1G 3H9. Pour en savoir plus, consulter.

  6. Le CRDI en Jordanie

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... dans les pays en développement afin d'y favoriser la croissance et le développement. Il en résulte des solutions novatrices et durables qui ont pour but d'améliorer les conditions de vie et les moyens de subsistance. Centre de recherches pour le développement international. CP 8500, Ottawa (Ontario) Canada K1G 3H9.

  7. Le CRDI au Mali

    International Development Research Centre (IDRC) Digital Library (Canada)

    de ces technologies et tentent de déterminer si un régime de microcrédit pourrait encourager leur adoption. On cherche par cela à accroître la sécurité alimentaire de même que le rendement des cultures de dolique, de sorgho et de mil. □ Menaces pesant sur les moyens de subsistance. Financement octroyé pour le Mali :.

  8. Le faussaire roman

    CERN Document Server

    D'Anna, Gianfranco

    2016-01-01

    À l'aube du XXIe siècle, le monde de la science est sur le point de vivre une révolution. Le jeune physicien allemand Albert Hendrick Thebell, des célèbres laboratoires de recherche B-Labs, à Summit, dans le New Jersey, publie, dans les plus grandes revues scientifiques internationales, une série d'articles dans lesquels il prétend avoir obtenu des résultats extraordinaires qui pourraient révolutionner les bases mêmes de la technologie. Rapidement, la communauté scientifique puis les médias saluent en lui un futur prix Nobel; on compare même son génie à celui d'Albert Einstein. Le progrès scientifique semble avoir franchi une étape décisive, susceptible d'amener un futur meilleur. Mais ces découvertes sont-elles authentiques ? Car pendant ce temps, dans les mêmeslaboratoires, des voix s'élèvent pour contester non seulement les théories de Thebell mais aussi la légitimité même de ses expériences ; certains le soupçonnent d'avoir combiné la plus grande fraude scientifique de tous l...

  9. Assessing the current Brazilian sugar cane industry and directing developments for maximum fossil fuel mitigation for the international petrochemical market

    NARCIS (Netherlands)

    Brehmer, B.; Sanders, J.P.M.

    2009-01-01

    The EU proposes that 5.75% of the transportation fuels market consist of biofuels by 2010 and the USA proposes that all gasoline be blended with 10% bioethanol by 2012. While these targets have not yet been reached, an aura of critique is emerging, arguing that biofuel mandates are not sustainable.

  10. Can the environmental benefits of biomass support agriculture?-The case of cereals for electricity and bioethanol production in Northern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Maria Isabel [Department of Economics, University of Alcala, Plaza de la Victoria, 3, 28002 Alcala de Henares, Madrid (Spain)], E-mail: isabel.blanco@uah.es; Azqueta, Diego [Department of Economics, University of Alcala, Plaza de la Victoria, 3, 28002 Alcala de Henares, Madrid (Spain)

    2008-01-15

    Recent policy documents, such as the EC Communication on an Energy Policy for Europe (January 2007) make emphasis on the opportunities that energy applications can offer certain agricultural commodities, especially in the framework of a progressive dismantling of the Common Agricultural Policy. This paper analyses whether this can be true for wheat and barley farmers, using the real example of a straw-based power plant in Northern Spain and a theoretical factory for bioethanol production fed with cereal grain. The outcomes of such an exercise, in which their relative environmental benefits vis-a-vis fossil fuel alternatives are worked out with the aid of a simplified life-cycle approach, show that the characteristics of the electricity and biomass markets, the baseline scenario and the fuel prices are crucial for the future of the sector.

  11. Design and Modelling of Sustainable Bioethanol Supply Chain by Minimizing the Total Ecological Footprint in Life Cycle Perspective

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Manzardo, Alessandro; Toniolo, Sara

    2013-01-01

    manners in bioethanol systems, this study developed a model for designing the most sustainable bioethanol supply chain by minimizing the total ecological footprint under some prerequisite constraints including satisfying the goal of the stakeholders', the limitation of resources and energy, the capacity......The purpose of this paper is to develop a model for designing the most sustainable bioethanol supply chain. Taking into consideration of the possibility of multiple-feedstock, multiple transportation modes, multiple alternative technologies, multiple transport patterns and multiple waste disposal...

  12. Production of 2nd generation Bioethanol from Lucerne - Optimization of Hydrothermal Pretreatment

    DEFF Research Database (Denmark)

    Thomsen, Sune Tjalfe; Jensen, Morten; Schmidt, Jens Ejbye

    2012-01-01

    Lucerne (Medicago sativa) has many qualities associated with sustainable agriculture such as nitrogen fixation and high biomass yield. Therefore, there is interest in whether lucerne is a suitable biomass substrate for bioethanol production, and if hydrothermal pretreatment (HTT) of lucerne impro...

  13. Energy and environmental assessments of bioethanol production from Sri Kanji 1 cassava in Malaysia

    Directory of Open Access Journals (Sweden)

    M. Hanif

    2017-03-01

    Full Text Available According to the Malaysia’s biofuel policy, renewable fuels are crucial for energy sustainability in the transportation sector in the future. This study was aimed to evaluate the potential of bioethanol production from Sri Kanji 1 cassava in Malaysia in terms of energy efficiency and renewability, as well to estimate the potential greenhouse gas (GHG emissions reduction in CO2 equivalent. Bioethanol production process from cassava includes cassava farming, ethanol production, and transportation in which the primary energy consumption was considered. The Net Energy Balance (NEB and Net Energy Ratio (NER of 25.68 MJ/L and 3.98, respectively, indicated that bioethanol production from Sri Kanji 1 cassava in Malaysia was energy efficient. From the environmental perspective, the GHG balance results revealed that the production and distribution of 1 L of Cassava Fuel Ethanol (CFE could reduce GHG emissions by 73.2%. Although found promising in the present study, Sri Kanji 1 cassava as bioethanol feedstock should be further investigated by constructing an actual ethanol plant to obtain real life data.

  14. Second generation bioethanol production from Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack.

    Science.gov (United States)

    Danilo Scordia; Salvatore L. Consentino; Thomas W. Jeffries

    2010-01-01

    Saccharum (Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack.), is a rapidly growing, wide ranging high-yield perennial, suitable for second generation bioethanol production. This study evaluated oxalic acid as a pretreatment for bioconversion. Overall sugar yields, sugar degradation products, enzymatic glucan hydrolysis and ethanol production were studied as...

  15. LIFE CYCLE BASED STUDIES ON BIOETHANOL FUEL FOR SUSTAINABLE TRANSPORTATION: A LITERATURE REVIEW

    Science.gov (United States)

    A literature search was conducted and revealed 45 publications (1996-2005) that compare bio-ethanol systems to conventional fuel on a life-cycle basis, or using life cycle assessment. Feedstocks, such as sugar beets, wheat, potato, sugar cane, and corn, have been investigated in...

  16. Modeling of Production and Quality of Bioethanol Obtained from Sugarcane Fermentation Using Direct Dissolved Sugars Measurements

    Directory of Open Access Journals (Sweden)

    Borja Velazquez-Marti

    2016-04-01

    Full Text Available Bioethanol production from sugarcane represents an opportunity for urban-agricultural development in small communities of Ecuador. Despite the fact that the industry for bioethanol production from sugarcane in Brazil is fully developed, it is still considered expensive as a small rural business. In order to be able to reduce the costs of monitoring the production process, and avoid the application of expensive sensors, the aim of this research was modeling the kinetics of production of bioethanol based on direct measurements of Brix grades, instead of the concentration of alcohol, during the process of cane juice bio-fermentation with Saccharomyces cerevisiae. This avoids the application of expensive sensors that increase the investment costs. Fermentation experiments with three concentrations of yeast and two temperatures were carried out in a laboratory reactor. In each case Brix grades, amount of ethanol and alcoholic degree were measured. A mathematical model to predict the quality and production of bioethanol was developed from Brix grade measurements, obtaining an adjusted coefficient of determination of 0.97. The model was validated in a pilot plant.

  17. Energy Management Strategy for a Bioethanol Isolated Hybrid System: Simulations and Experiments

    Directory of Open Access Journals (Sweden)

    Pablo Gabriel Rullo

    2018-05-01

    Full Text Available Renewable energy sources have significant advantages both from the environmental and the economic point of view. Additionally, renewable energy sources can contribute significantly to the development of isolated areas that currently have no connection to the electricity supply network. In order to make efficient use of these energy sources, it is necessary to develop appropriate energy management strategies. This work presents an energy management strategy for an isolated hybrid renewable energy system with hydrogen production from bioethanol reforming. The system is based on wind-solar energy, batteries and a bioethanol reformer, which produces hydrogen to feed a fuel cell system. Bioethanol can contribute to the development of isolated areas with surplus agricultural production, which can be used to produce bioethanol. The energy management strategy takes the form of a state machine and tries to maximize autonomy time while minimizing recharging time. The proposed rule-based strategy has been validated both by simulation and experimentally in a scale laboratory station. Both tests have shown the viability of the proposed strategy complying with the specifications imposed and a good agreement between experimental and simulation results.

  18. Life cycle environmental impacts of bioethanol production from sugarcane molasses in Iran.

    Science.gov (United States)

    Farahani, Saeid Shahvarooghi; Asoodar, Mohammad Amin

    2017-10-01

    In recent years, bioethanol from sugarcane molasses has been produced on an industrial scale in Iran. The aim of this study was to evaluate molasses-based bioethanol production from an environmental point of view. Data were collected from Debel Khazai agro-industry situated in southern region of Iran by using face-to-face interviews and annual statistics of 2010 to 2016 (6-year life cycle of sugarcane cultivation). Ten impact categories including abiotic depletion (AD), acidification (AC), eutrophication (EP), global warming potential (GWP), ozone layer depletion (OLD), human toxicity (HT), freshwater aquatic ecotoxicity (FE), marine aquatic ecotoxicity (ME), terrestrial ecotoxicity (TE), and photochemical oxidation (PO) were selected based on CML methodology. Inventory data for production of the inputs were taken from Ecoinvent, BUWAL 250, and IDMAT 2001 databases. The results revealed that in sugarcane cultivation process, electricity and trash burning were the most important contributors to all impact categories except OLD and TE. In industrial phase, natural gas had the highest contribution to the most impact categories. Greenhouse gas (GHG) emission for production of 1000 L molasses-based bioethanol was 1322.78 kg CO 2  eq. By comparing total GHG emissions from 1000 L bioethanol to gasoline, the net avoided GHG emissions came out at 503.17 kg CO 2  eq. According to results, it is clear that with increasing irrigation efficiency and improving performance of heating systems in industrial phase, environmental burdens would be significantly reduced.

  19. Cell-wall structural changes in wheat straw pretreated for bioethanol production

    Science.gov (United States)

    Jan B. Kristensen; G. Thygesen Lisbeth; Claus Felby; Henning Jorgensen; Thomas Elder

    2008-01-01

    Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw...

  20. Dynamics and control of a heat pump assisted extractive dividing-wall column for bioethanol dehydration

    NARCIS (Netherlands)

    Patraşcu, Iulian; Bildea, Costin Sorin; Kiss, Anton A.

    Recently, a novel heat-pump-assisted extractive distillation process taking place in a dividing-wall column was proposed for bioethanol dehydration. This integrated design combines three distillation columns into a single unit that allows over 40% energy savings and low specific energy requirements

  1. Potential contribution of bioethanol fuel to the transport sector of Vojvodina

    International Nuclear Information System (INIS)

    Dodic, Sinisa N.; Popov, Stevan D.; Dodic, Jelena M.; Rankovic, Jovana A.; Zavargo, Zoltan Z.

    2009-01-01

    The Autonomous Province of Vojvodina is an Autonomous Province in Serbia and it is an energy-deficient country. The indigenous reserves of oil and gas are limited and the country is heavily dependent on the import of oil. The oil import bill is a serious strain on the country's economy and has been deteriorating the balance of payments situation. The country has become increasingly more dependent on fossil fuels and its energy security hangs on the fragile supply of imported oil that is subject to disruptions and price volatility. The transport sector has a 26% share in the total commercial energy consumption in Vojvodina. About 0.62 million tons of gasoline were consumed by this sector in 2008. Gasoline consumption in the transport sector is also a major source of environmental degradation especially in urban areas. Consequently, Vojvodina needs to develop indigenous, environment-friendly energy resources, such as bioethanol, to meet its transport sector's energy needs. Vojvodina produces about 3 million tons of sugar beet every year. There is a vast potential for bioethanol production from molasses of sugar beet in the country. Bioethanol can be used in transport sector after blending with gasoline, in order to minimize gasoline consumption and associated economical and environmental impacts. This paper presents the assessment of the potential contribution of bioethanol in the transport sector of Vojvodina. It is concluded that 20% of annual gasoline consumption in transport sector could be met from ethanol by the year 2026. (author)

  2. Acha ( Digitaria exilis ) Malt as a Source of Enzyme for Bio-Ethanol ...

    African Journals Online (AJOL)

    ... exilis ) Malt as a Source of Enzyme for Bio-Ethanol Production from Starchy Materials. ... Incubating a mixture of raw starch and acha malt at 50oC for 30 minutes ... has great potential application in brewery and ethanol production industries.

  3. Bioethanol production by inherent enzymes from rye and wheat with addition of organic farming cheese whey

    DEFF Research Database (Denmark)

    Kádár, Zsófia; Christensen, Anne Deen; Thomsen, Mette Hedegaard

    2011-01-01

    . Throughout our studies, wheat and rye grain was used as raw material in bioethanol production with the purpose of producing in situ enzymes (during germination) for the hydrolysis of starch in the grains and compared with commercial amylase enzyme preparations. Whey permeate was incorporated into the grain...

  4. Integration of chlorogenic acid recovery and bioethanol production from spent coffee grounds

    DEFF Research Database (Denmark)

    Burniol Figols, Anna; Cenian, Katarzyna; Skiadas, Ioannis V.

    2016-01-01

    Spent coffee grounds (SCG) are an abundant by-product of the coffee industry with a complex composition that makes them a promising feedstock for a biorefinery. The objective of this study was to evaluate SCG as a substrate for combined chlorogenic acid and bioethanol production after dilute acid...

  5. Production of bioethanol from papaya and pineapple wastes using marine associated microorganisms

    Digital Repository Service at National Institute of Oceanography (India)

    Jayaprakashvel, M.; Akila, S.; Venkatramani, M.; Vinothini, S.; Bhagat, J.; Hussain, A. J.

    and methane are advantageous. In this study, an attempt was made to produce bio-ethanol by marine fungi in fermentation process with the use of fruit wastes (papaya and pine apple) as substrates. A total of 19 marine fungi were isolated from various marine...

  6. The water footprint of sweeteners and bio-ethanol from sugar cane, sugar beet and maize

    NARCIS (Netherlands)

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert

    2009-01-01

    Sugar cane and sugar beet are used for sugar for human consumption. In the US, maize is used, amongst others, for the sweetener High Fructose Maize Syrup (HFMS). Sugar cane, sugar beet and maize are also important for bio-ethanol production. The growth of crops requires water, a scarce resource. The

  7. Sugar palm (Argena pinnata). Potential of sugar palm for bio-ethanol production

    NARCIS (Netherlands)

    Elbersen, H.W.; Oyen, L.P.A.

    2010-01-01

    The energetic and economic feasibility of bioethanol production from sugar palm is virtually unknown. A positive factor are the potentially very high yields while the long non-productive juvenile phase and the high labor needs can be seen as problematic. Expansion to large scale sugar palm

  8. Production of bio-ethanol from corncobs using Aspergillus niger and ...

    African Journals Online (AJOL)

    Maize is the most abundant cereal grown in Ghana and is accompanied by enormous amount of agrowastes of which corncobs form 30%. This agrowaste which is currently under utilized was used to produce bio-ethanol. Aspergillus niger isolated from soil sampled from Ejura farms was used to hydrolyze the corncobs into ...

  9. A Model-Based Methodology for Simultaneous Design and Control of a Bioethanol Production Process

    DEFF Research Database (Denmark)

    Alvarado-Morales, Merlin; Abd.Hamid, Mohd-Kamaruddin; Sin, Gürkan

    2010-01-01

    . The PGC methodology is used to generate more efficient separation designs in terms of energy consumption by targeting the separation task at the largest DF. Both methodologies are highlighted through the application of two case studies, a bioethanol production process and a succinic acid production...

  10. Synergistic effect of pretreatment and fermentation process on carbohydrate-rich Scenedesmus dimorphus for bioethanol production

    International Nuclear Information System (INIS)

    Chng, Lee Muei; Lee, Keat Teong; Chan, Derek Juinn Chieh

    2017-01-01

    Highlights: • Biomass of Scenedesmus dimorphus is degradable to produce fermentable sugar. • Sugar yield improves with acidic, enzymatic and organosolv pretreatment. • Pretreatment strategies are positively correlated with fermentation process. • SSF with organosolv-treated biomass is promising for bioethanol production. - Abstract: Significant development in conversion technologies to produce bioethanol from microalgae biomass is causing paradigm-shift in energy management. In this study, carbohydrate-rich microalgae, Scenedesmus dimorphus (49% w/w of carbohydrate) is selected with the aim to obtain qualitative correlation between pretreatment and fermentation process. In view of this, separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) were conducted experimentally. The fermentation behavior were investigated for microalgae biomass treated via organosolv, enzymatic and acidic pretreatment. Fermentation process was carried out by ethanologen microbe, Saccharomyces cerevisiae. From the result, it is observed that a combination of two treatment is found to be the most effective in producing fermentable sugar for the subsequent fermentation process. The organosolv treatment which is followed with the SSF process produced a theoretical yield of bioethanol that exceeded 90%. On the other hand, hydrothermal acid-hydrolyzed fermentation produced the bioethanol yield with 80% of its theoretical yield. Enzymatic-hydrolyzed SHF produced 84% of theoretical yield at longer reaction time compared with others. The results were obtained with constant fermentation parameters conducted at pH 5, temperature of 34 °C, and microalgae biomass loading at 18 g/L. Ultimately, the coupling of organosolv-treated biomass with SSF process is found to be the most cost-effective for S. dimorphus biomass as bioethanol feedstock.

  11. Domestic bioethanol-fireplaces--a new source of severe burn accidents.

    Science.gov (United States)

    Neubrech, Florian; Kiefer, Jurij; Schmidt, Volker J; Bigdeli, Amir K; Hernekamp, J Frederick; Kremer, Thomas; Kneser, Ulrich; Radu, Christian Andreas

    2016-02-01

    Bioethanol-fueled fireplaces are popular interior home decoration accessories. Although their safety is promoted frequently, actual presentations of severe burn injuries in our burn intensive care unit (ICU) have focused the authors on safety problems with these devices. In this article we want to explore the mechanisms for these accidents and state our experiences with this increasingly relevant risk for severe burn injuries. The computerized medical records of all burn intensive care patients in our burn unit between 2000 and 2014 were studied. Since 2010, 12 patients with bioethanol associated burn injuries were identified. Their data was compared to the values of all patients, except the ones injured by bioethanol fireplaces that presented themselves to our burn ICU between the years 2010 and 2014. At time of admission the bioethanol patients had a mean ABSI-score of 4.8 (+/- 2.2 standard deviation (SD)). A mean of 17 percent (+/- 9.1 SD) body surface area was burned. Involvement of face and hands was very common. An operative treatment was needed in 8 cases. A median of 20 days of hospitalization (range 3-121) and a median of 4.5 days on the ICU (range 1-64) were necessary. No patient died. In most cases the injuries happened while refilling or while starting the fire, even though safety instructions were followed. In the control group, consisting of 748 patients, the mean ABSI-score was 5.6 (+/- 2.7 SD). A mean of 16.5 percent (+/- 10.1 SD) body surface area was burned. Treatment required a median of 3 days on the burn ICU (range 1-120). Regarding these parameters, the burden of disease was comparable in both groups. Bioethanol-fueled fireplaces for interior home decoration are a potential source for severe burn accidents even by intended use. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  12. Comparism of the Properties and Yield of Bioethanol from Mango and Orange Waste

    Directory of Open Access Journals (Sweden)

    M. B. Maina

    2017-12-01

    Full Text Available The excessive consumption of fossil fuel particularly in urban areas due to transportation and industrial activities has greatly contributed to generation of high levels of pollution; therefore, a renewable eco-friendly energy source is required. The production of bioethanol from sugar extracted from waste fruit peels as an energy supply is renewable as the non-fossil carbon source used is readily replenished. Laboratory experiments were conducted to evaluate the chemical composition of fruit wastes of orange and Mango in order to explore their potential application in bio-ethanol production. Experimental production of Bioethanol from waste fruits of mango and orange was carried out after dilute acid pretreatment followed by enzymatic saccharification using saccharomyces cerevisiae for the fermentation process. Three samples of (mango waste fruit, orange waste fruit and mixture of mango and orange waste fruit 100g each was used for the same method of bio-ethanol extraction. A one factor factorial design involving fruit type was used to statistically analyze the fuel properties of the ethanol produced from the fruits waste. Analysis of variance (ANOVA shows that the observed difference were not significant for all the properties except that of the flash point which showed that the flash point of the produced bioethanol differ from that of the standard ethanol, which may be due to percentage of moisture present in the samples used. The highest yield of ethanol from sample A (mango waste was 19.98%, sample B (orange waste produced 19.17% while least yield of ethanol was from sample C (mango and orange waste which produced 17.38%.

  13. Switchgrass-Based Bioethanol Productivity and Potential Environmental Impact from Marginal Lands in China

    Directory of Open Access Journals (Sweden)

    Xun Zhang

    2017-02-01

    Full Text Available Switchgrass displays an excellent potential to serve as a non-food bioenergy feedstock for bioethanol production in China due to its high potential yield on marginal lands. However, few studies have been conducted on the spatial distribution of switchgrass-based bioethanol production potential in China. This study created a land surface process model (Environmental Policy Integrated Climate GIS (Geographic Information System-based (GEPIC model coupled with a life cycle analysis (LCA to explore the spatial distribution of potential bioethanol production and present a comprehensive analysis of energy efficiency and environmental impacts throughout its whole life cycle. It provides a new approach to study the bioethanol productivity and potential environmental impact from marginal lands based on the high spatial resolution GIS data, and this applies not only to China, but also to other regions and to other types of energy plant. The results indicate that approximately 59 million ha of marginal land in China are suitable for planting switchgrass, and 22 million tons of ethanol can be produced from this land. Additionally, a potential net energy gain (NEG of 1.75 x 106 million MJ will be achieved if all of the marginal land can be used in China, and Yunnan Province offers the most significant one that accounts for 35% of the total. Finally, this study obtained that the total environmental effect index of switchgrass-based bioethanol is the equivalent of a population of approximately 20,300, and a reduction in the global warming potential (GWP is the most significant environmental impact.

  14. A spatially explicit whole-system model of the lignocellulosic bioethanol supply chain: an assessment of decentralised processing potential

    Directory of Open Access Journals (Sweden)

    Shah Nilay

    2008-07-01

    Full Text Available Abstract Background Lignocellulosic bioethanol technologies exhibit significant capacity for performance improvement across the supply chain through the development of high-yielding energy crops, integrated pretreatment, hydrolysis and fermentation technologies and the application of dedicated ethanol pipelines. The impact of such developments on cost-optimal plant location, scale and process composition within multiple plant infrastructures is poorly understood. A combined production and logistics model has been developed to investigate cost-optimal system configurations for a range of technological, system scale, biomass supply and ethanol demand distribution scenarios specific to European agricultural land and population densities. Results Ethanol production costs for current technologies decrease significantly from $0.71 to $0.58 per litre with increasing economies of scale, up to a maximum single-plant capacity of 550 × 106 l year-1. The development of high-yielding energy crops and consolidated bio-processing realises significant cost reductions, with production costs ranging from $0.33 to $0.36 per litre. Increased feedstock yields result in systems of eight fully integrated plants operating within a 500 × 500 km2 region, each producing between 1.24 and 2.38 × 109 l year-1 of pure ethanol. A limited potential for distributed processing and centralised purification systems is identified, requiring developments in modular, ambient pretreatment and fermentation technologies and the pipeline transport of pure ethanol. Conclusion The conceptual and mathematical modelling framework developed provides a valuable tool for the assessment and optimisation of the lignocellulosic bioethanol supply chain. In particular, it can provide insight into the optimal configuration of multiple plant systems. This information is invaluable in ensuring (near-cost-optimal strategic development within the sector at the regional and national scale. The framework

  15. Attainable region analysis for continuous production of second generation bioethanol.

    Science.gov (United States)

    Scott, Felipe; Conejeros, Raúl; Aroca, Germán

    2013-11-29

    Despite its semi-commercial status, ethanol production from lignocellulosics presents many complexities not yet fully solved. Since the pretreatment stage has been recognized as a complex and yield-determining step, it has been extensively studied. However, economic success of the production process also requires optimization of the biochemical conversion stage. This work addresses the search of bioreactor configurations with improved residence times for continuous enzymatic saccharification and fermentation operations. Instead of analyzing each possible configuration through simulation, we apply graphical methods to optimize the residence time of reactor networks composed of steady-state reactors. Although this can be easily made for processes described by a single kinetic expression, reactions under analysis do not exhibit this feature. Hence, the attainable region method, able to handle multiple species and its reactions, was applied for continuous reactors. Additionally, the effects of the sugars contained in the pretreatment liquor over the enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) were assessed. We obtained candidate attainable regions for separate enzymatic hydrolysis and fermentation (SHF) and SSF operations, both fed with pretreated corn stover. Results show that, despite the complexity of the reaction networks and underlying kinetics, the reactor networks that minimize the residence time can be constructed by using plug flow reactors and continuous stirred tank reactors. Regarding the effect of soluble solids in the feed stream to the reactor network, for SHF higher glucose concentration and yield are achieved for enzymatic hydrolysis with washed solids. Similarly, for SSF, higher yields and bioethanol titers are obtained using this substrate. In this work, we demonstrated the capabilities of the attainable region analysis as a tool to assess the optimal reactor network with minimum residence time applied to the SHF and

  16. Fuel-cycle assessment of selected bioethanol production.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, M.; Wang, M.; Hong, H.; Energy Systems

    2007-01-31

    A large amount of corn stover is available in the U.S. corn belt for the potential production of cellulosic bioethanol when the production technology becomes commercially ready. In fact, because corn stover is already available, it could serve as a starting point for producing cellulosic ethanol as a transportation fuel to help reduce the nation's demand for petroleum oil. Using the data available on the collection and transportation of corn stover and on the production of cellulosic ethanol, we have added the corn stover-to-ethanol pathway in the GREET model, a fuel-cycle model developed at Argonne National Laboratory. We then analyzed the life-cycle energy use and emission impacts of corn stover-derived fuel ethanol for use as E85 in flexible fuel vehicles (FFVs). The analysis included fertilizer manufacturing, corn farming, farming machinery manufacturing, stover collection and transportation, ethanol production, ethanol transportation, and ethanol use in light-duty vehicles (LDVs). Energy consumption of petroleum oil and fossil energy, emissions of greenhouse gases (carbon dioxide [CO{sub 2}], nitrous oxide [N{sub 2}O], and methane [CH{sub 4}]), and emissions of criteria pollutants (carbon monoxide [CO], volatile organic compounds [VOCs], nitrogen oxide [NO{sub x}], sulfur oxide [SO{sub x}], and particulate matter with diameters smaller than 10 micrometers [PM{sub 10}]) during the fuel cycle were estimated. Scenarios of ethanol from corn grain, corn stover, and other cellulosic feedstocks were then compared with petroleum reformulated gasoline (RFG). Results showed that FFVs fueled with corn stover ethanol blends offer substantial energy savings (94-95%) relative to those fueled with RFG. For each Btu of corn stover ethanol produced and used, 0.09 Btu of fossil fuel is required. The cellulosic ethanol pathway avoids 86-89% of greenhouse gas emissions. Unlike the life cycle of corn grain-based ethanol, in which the ethanol plant consumes most of the fossil

  17. Tumelo le Moruo

    Directory of Open Access Journals (Sweden)

    Vuyani S. Vellem

    2015-03-01

    Full Text Available Paleng ya rona batho ba batsho, tumelo ya boKreste e fihlile lefatsheng la rona la Afrika Borwa mmoho le dikgoka tsa ditjhaba tsa boPhirima. BoKreste bo fihlile ka nako ya dintwa tseo mohopolo wa tsona e neng e le ho hapa lefatshe la, batho ba batsho. Ka mantswe amang, rona batho ba batsho, re ile ra qetella re le setjhaba se ileng sa hlolwa, mme lefatshe la rona la nkuwa ka dikgoka. Ka hare ho dikgoka tsena, ho ne ho dutse tumelo ya boKreste. Makgowa a ile are: �A re kwaleng mahlo re rapeleng, rona ra kwala mahlo, mme ha re qeta hore Amen, re bula mahlo, ra fumana lefatshe le nkuwe matsohong a rona ho setse Bibele.� Re ile ra sala le Bibele eo ka yona re lekileng dilemong tse fitileng ho lwana ntwa ya topollo, kapa tokoloho hofihlela selemong sa 1994. Le ha re ile ra fumana tokoloho ka selemo seo, hare so ka re lokoloha ho tsa moruo. E kaba sena se bolela eng mabapi le tumelo ya rona ya boKreste? Segolweng sena re leka ho araba potso ena. Tumelo ke eng ho batho ba sa lokolohang moruong wa naha ya bona? Re lekola pale ya boKreste, tumelo ya batho le maemo a kereke ntlheng ya ho tadimana le tokoloho ka tumelo.Faith and economics. In our history from a black perspective, Christianity arrived through violent conquest from the west. Evidentially, this faith coincided with wars of dispossession and the ultimate defeat of black Africans. It is difficult to separate the violent defeat of black Africans from the arrival of Christian faith. This well-known statement within the circles of black Theology of liberation: When the white man arrived in our land he said, �let us pray and after prayer, when we opened our eyes, our land was taken and only the Bible was left in our hands,� captures the black sentiment of this history. Ironically, it was this Bible that black Africans used to wage their struggle for liberation up to the demise of apartheid in 1994.Nonetheless, political liberation is not enough as the struggle for economic liberation

  18. Le vernis des apparences

    Directory of Open Access Journals (Sweden)

    Grazia Nicosia

    2010-04-01

    Full Text Available Le but de cet article est de comprendre l’incidence sémiotique du nettoyage d’un tableau ainsi que la résultante cognitive induite sur l’observateur. Cette étude confronte l’analyse des phénomènes visuels engendrés par le jaunissement du vernis et son retrait, à des entretiens réalisés à dessein. Le retrait d’un vernis jauni change considérablement l’image. L’heure, le climat, la saison et l’activité même des personnages s’en trouvent ainsi modifié. La patine peut être perçue, soit comme un obstacle à l’exploration, soit pour ceux qui l’apprécient, comme le medium d’une relation plus intime entre l’œuvre et l’observateur.The purpose of this article is to understand the semiotic impact of the cleaning of a painting and the cognitive effects induced on the observer. This study analyses conjointly the visual phenomenon generated by yellowing varnish and its removal and controlled interviews of observers.The removal of yellowing varnish modifies considerably the perception of the picture. Daytime, climate, season and characters activities are modified. The patina may be perceived either as an obstacle to the painting exploration, or, for those who appreciate it, as a medium for a closer relationship between the painting and the observer.

  19. Perspectives d'introduction d'un marketing des services au sein des banques publiques Algériennes : Cas de la B.A.D.R.

    OpenAIRE

    Lachachi-taleb, Meriem

    2014-01-01

    Le premier chapitre présente les fondements théoriques relatifs au marketing des services ainsi qu'au concept de servuction et enfin au marketing mix des services dans le deuxiéme chapitre.Le troisiéme chapitre est consacré au marketing bancaire et au plan marketing dans le chapitre suivant, une étude de cas au sein de la B.A.D.R.Banque.

  20. The market of the activities bound to the wastes situation 2002-2003 and perspectives 2004; Le marche des activites liees aux dechets situation 2002-2003 et perspectives 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-12-01

    This study presents the different activities bound to the wastes, evaluates the economical stakes, the short-dated development perspectives, identifies the new markets and analyzes the regulations impact on the short-dated markets. It concerns the non hazardous and hazardous wastes. (A.L.B.)

  1. Samfunds- og selskabsøkonomisk analyse af bioethanol-produktion i Danmark i samproduktion med kraftvarme. Fase I

    DEFF Research Database (Denmark)

    Nielsen, Lars Henrik; van Maarschalkerweerd, Christian

    Aims of the project are to carry out combined socio-economic and corporate-economic analyses of concepts for bioethanol production in Denmark. The project is split into two phases and will in total analyze 3 different plant concepts for bioethanol production based on biomass inputs comprising straw...... fuel. Bioethanol co-produced with CHP and biogas (Risø-DTU concept). The biomass inputs to the process are straw, whole crop, biomass residues, domestic waste etc... By-products from the production are re-circled to agriculture as well-declared fertilizer products. These two concepts will be analyzed...... and compared based on the same input biomass materials. The present project information concerns phase I of the total project, and comprises the socio-economic and corporate-economic analysis of bioethanol production co-produced with CHP (IBUS concept). Due to difficulties in achieving data, consistency...

  2. Assessment of bioethanol yield by S. cerevisiae grown on oil palm residues: Monte Carlo simulation and sensitivity analysis.

    Science.gov (United States)

    Samsudin, Mohd Dinie Muhaimin; Mat Don, Mashitah

    2015-01-01

    Oil palm trunk (OPT) sap was utilized for growth and bioethanol production by Saccharomycescerevisiae with addition of palm oil mill effluent (POME) as nutrients supplier. Maximum yield (YP/S) was attained at 0.464g bioethanol/g glucose presence in the OPT sap-POME-based media. However, OPT sap and POME are heterogeneous in properties and fermentation performance might change if it is repeated. Contribution of parametric uncertainty analysis on bioethanol fermentation performance was then assessed using Monte Carlo simulation (stochastic variable) to determine probability distributions due to fluctuation and variation of kinetic model parameters. Results showed that based on 100,000 samples tested, the yield (YP/S) ranged 0.423-0.501g/g. Sensitivity analysis was also done to evaluate the impact of each kinetic parameter on the fermentation performance. It is found that bioethanol fermentation highly depend on growth of the tested yeast. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Feasibility Study for Bioethanol Co-Location with a Coal Fired Power Plant: 29 November 2001--28 July 2002

    Energy Technology Data Exchange (ETDEWEB)

    2002-12-01

    This study looks at the feasibility of co-locating 30, 50, and 70 million gallon per year bioethanol facilities with coal fired power plants in Indiana and Nebraska. Corn stover is the feedstock for ethanol production in both cases.

  4. Marketing plan for Snack Books

    OpenAIRE

    Santos, Bernardo Vilaça Ribeiro dos

    2009-01-01

    A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics In 2008 LeYa had the desire to grow in two different ways: gaining market share to competitor firms in the book publishing market; and develop a strategy for market size growth, benefiting from first mover advantage. At that time we were already catalyzing and collecting the benefits of dimension, either by using our enhanced...

  5. Storicizzare le teorie psicocritiche

    Directory of Open Access Journals (Sweden)

    Roberto Talamo

    2015-07-01

    Full Text Available Le teorie psicoanalitiche della letteratura, dopo una fase di alterne fortune, sono oggi praticate da una cerchia di adepti sempre più ristretta. Le nuove koinè critico-teoriche tendono infatti a relegare la dottrina freudiana all’interno di un sapere letterario (e non interpretativo o a sostituire ad essa strumenti ritenuti più efficaci nella descrizione della sfera del mentale in letteratura (neuroestetica e neuronarratologia. La proposta storiografica che qui si avanza non vuole prendere parte in questo dibattito pro o contro la psicocritica, ma vuole leggere le proposte di teoria psicoanalitica della letteratura alla luce di una riflessione sul concetto di ibridazione, concetto sul quale queste teorie hanno costruito il loro confronto con i paradigmi teorici di volta in volta egemoni.

  6. Evaluation of the use of bioethanol fuelled buses based on ambient air pollution screening and on-road measurements

    Energy Technology Data Exchange (ETDEWEB)

    López-Aparicio, S., E-mail: sla@nilu.no; Hak, C.

    2013-05-01

    Mitigation measures to reduce greenhouse gas emissions may have adverse effects on urban air quality and human exposure to harmful pollutants. The use of bioethanol fuelled vehicles is increasing worldwide and may create new undesired pollution effects. Different measurement campaigns were performed in a pilot study to contribute to the understanding of the consequences associated with the use of bioethanol blended fuel (E95) on a series of pollutants. Ambient screening measurements of NO{sub 2}, O{sub 3}, acetic acid, formaldehyde and acetaldehyde were performed at different urban locations, exposed and not exposed to the circulation of bioethanol buses. In addition, volatile organic compounds were measured at the exhaust pipe of a bioethanol fuelled bus, both under idling conditions (carbonyls; DNPH cartridge) and under on-road driving conditions applying online monitoring (PTR-TOF). Higher ambient acetaldehyde values were measured at locations exposed to bioethanol fuelled buses than at locations not exposed, and very high acetaldehyde and acetic acid values were measured from the exhaust pipe during driving conditions (acetaldehyde > 150 ppm; acetic acid ≈ 20–30 ppm) and modelled at close distance to the bioethanol bus. Human exposure to high concentration of acetaldehyde is expected, and it may involve a significantly increased chance in developing cancer. The high concentration of acetic acid will involve odour annoyance and significant material degradation or corrosion. - Highlights: ► Acetaldehyde levels above 150 ppm were measured from the bioethanol bus. ► High acetic acid levels (20–30 ppm) were measured from the bioethanol bus. ► Demonstrated usefulness of PTR-MS to evaluate non-criteria pollutants ► High levels of acetaldehyde and acetic acid are estimated in the dispersion plume. ► Climate mitigation measures may have adverse impact on air quality.

  7. Performance and emission analysis of single cylinder SI engine using bioethanol-gasoline blend produced from Salvinia Molesta

    Science.gov (United States)

    Gupta, Priyank; Protim Das, Partha; Mubarak, M.; Shaija, A.

    2018-01-01

    Rapid depletion of world’s crude oil reserve, rising global energy demand and concerns about greenhouse gases emission have led to the high-level interest in biofuels. The biofuel, bioethanol is found as an alternative fuel for SI engines as it has similar properties those of gasoline. Higher areal productivity with fast growth rate of microalgae and aquatic weeds makes them promising alternative feedstocks for bioethanol production. In this study, bioethanol produced from S.molesta (aquatic weed) using combined pre-treatment and hydrolysis followed by fermentation with yeast was used to make bioethanol-gasoline blend. The quantity of bioethanol produced from S.molesta was 99.12% pure. The physical properties such as density and heating value of bioethanol were 792.2 kg/m3 and 26.12 MJ/kg, respectively. In this work, the effects of bioethanol-gasoline (E5) fuel blends on the performance and combustion characteristics of a spark ignition (SI) engine were investigated. In the experiments, a single-cylinder, four-stroke SI engine was used. The tests were performed using electric dynamometer while running the engine at the speed (3200 rpm), and seven different load (0, 0.5, 1, 1.5, 2, 2.5 and 3 kW). The results obtained from the use of bioethanol-gasoline fuel blends were compared to those of gasoline fuel. The test results showed an increase of 0.3% in brake thermal efficiency for E5. From the emission analysis, reduced emissions of 39 ppm unburned hydrocarbon, 1.55% carbon monoxide and 2% smoke opacity, respectively was observed with E5 at full load. An increase in CO2 by 0.17% and NOx by 86.7 ppm was observed for E5 at full load.

  8. Evaluation of the use of bioethanol fuelled buses based on ambient air pollution screening and on-road measurements

    International Nuclear Information System (INIS)

    López-Aparicio, S.; Hak, C.

    2013-01-01

    Mitigation measures to reduce greenhouse gas emissions may have adverse effects on urban air quality and human exposure to harmful pollutants. The use of bioethanol fuelled vehicles is increasing worldwide and may create new undesired pollution effects. Different measurement campaigns were performed in a pilot study to contribute to the understanding of the consequences associated with the use of bioethanol blended fuel (E95) on a series of pollutants. Ambient screening measurements of NO 2 , O 3 , acetic acid, formaldehyde and acetaldehyde were performed at different urban locations, exposed and not exposed to the circulation of bioethanol buses. In addition, volatile organic compounds were measured at the exhaust pipe of a bioethanol fuelled bus, both under idling conditions (carbonyls; DNPH cartridge) and under on-road driving conditions applying online monitoring (PTR-TOF). Higher ambient acetaldehyde values were measured at locations exposed to bioethanol fuelled buses than at locations not exposed, and very high acetaldehyde and acetic acid values were measured from the exhaust pipe during driving conditions (acetaldehyde > 150 ppm; acetic acid ≈ 20–30 ppm) and modelled at close distance to the bioethanol bus. Human exposure to high concentration of acetaldehyde is expected, and it may involve a significantly increased chance in developing cancer. The high concentration of acetic acid will involve odour annoyance and significant material degradation or corrosion. - Highlights: ► Acetaldehyde levels above 150 ppm were measured from the bioethanol bus. ► High acetic acid levels (20–30 ppm) were measured from the bioethanol bus. ► Demonstrated usefulness of PTR-MS to evaluate non-criteria pollutants ► High levels of acetaldehyde and acetic acid are estimated in the dispersion plume. ► Climate mitigation measures may have adverse impact on air quality

  9. French wholesale electricity and gas markets in 2007. Monitoring report; Le fonctionnement des marches de gros francais de l'electricite et du gaz naturel en 2007. Rapport de surveillance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-15

    Settled on 24 March 2000, the French Energy Regulatory Commission (CRE) is an independent authority. CRE supports an efficient functioning of the electricity and natural gas markets, to the advantage of final consumers. CRE ensures the absence of any discrimination, cross subsidy or obstacle to competition. CRE has examined the functioning of the wholesale markets for electricity and gas for the year 2007. The report discloses the results of a first set of analyses, as well as the next actions to be conducted in order to explain some observed behaviour. On the basis of analyses led on the electricity market, CRE observes that nuclear generation was marginal during 15% of the hours in 2007. Hydraulic generation was marginal during 25% of the hours, coal generation during 25% to 30% of the hours and oil generation during less than 2% of the hours in 2007. Finally, prices on the border markets were of high importance on the French prices which they determined during 20% to 25% of the hours of the year. On an efficient market, the price is driven by the marginal power plant among all those which contribute to satisfy the demand. Therefore the wholesale price formation is conditioned by the frequency of marginality of each generation sector and by the associated valuation of production. On the day-ahead market, when nuclear or hydraulic generation was marginal, the day-ahead price reflected the associated valuation which was decided by EDF. The level of this valuation was generally higher than the marginal generation cost of these plants. As a matter of fact, a producer, even market dominant, may legitimately seek to optimise its income, provided that there is no abuse of a dominant position or any price manipulation. Consequently, at this stage, the relevance of the valuation method for nuclear and hydraulic generation on the wholesale market is still to be checked. CRE has also demonstrated that generation transparency, even if it gradually increased, still needs to

  10. Effect of pH fermentation on production bioethanol from jackfruit seeds (Artocarpus heterophyllus) through separate fermentation hydrolysis method

    Science.gov (United States)

    Arif, A. R.; Natsir, H.; Rohani, H.; Karim, A.

    2018-03-01

    Bioethanol is one of the alternative energy sourced from natural products containing carbohydrates through hydrolysis and fermentation process. Jackfruit seeds is one of the feedstock that contain high carbohydrate content but less utilized. The aims of this study to determine the effect of pH hydrolysis in the process of production bioethanol from jackfruit seeds (Artocarpus heterophyllus) through separate fermentation hydrolysis (SHF) method. The hydrolysis process uses H2SO4 as a hydrolyzing agent. The fermentation process used Saccharomyces cereviceae as a fermentor with a variation of pH 2,3 4 and 5 for 70 hours. The results showed that glucose content of 75% and pH 3 was the optimum pH of fermentation with the content of bioethanol 57.94%. The fermentation stage has an important role in increasing the levels of glucose and bioethanol in linear. The content of glucose and bioethanol of jackfruit seeds showed a great potential for development as the feedstock in bioethanol production.

  11. Process Design and Costing of Bioethanol Technology: A Tool for Determining the Status and Direction of Research and Development.

    Science.gov (United States)

    Wooley; Ruth; Glassner; Sheehan

    1999-10-01

    Bioethanol is a fuel-grade ethanol made from trees, grasses, and waste materials. It represents a sustainable substitute for gasoline in today's passenger cars. Modeling and design of processes for making bioethanol are critical tools used in the U.S. Department of Energy's bioethanol research and development program. We use such analysis to guide new directions for research and to help us understand the level at which and the time when bioethanol will achieve commercial success. This paper provides an update on our latest estimates for current and projected costs of bioethanol. These estimates are the result of very sophisticated modeling and costing efforts undertaken in the program over the past few years. Bioethanol could cost anywhere from $1.16 to $1.44 per gallon, depending on the technology and the availability of low cost feedstocks for conversion to ethanol. While this cost range opens the door to fuel blending opportunities, in which ethanol can be used, for example, to improve the octane rating of gasoline, it is not currently competitive with gasoline as a bulk fuel. Research strategies and goals described in this paper have been translated into cost savings for ethanol. Our analysis of these goals shows that the cost of ethanol could drop by 40 cents per gallon over the next ten years by taking advantage of exciting new tools in biotechnology that will improve yield and performance in the conversion process.

  12. Evaluation of the use of bioethanol fuelled buses based on ambient air pollution screening and on-road measurements.

    Science.gov (United States)

    López-Aparicio, S; Hak, C

    2013-05-01

    Mitigation measures to reduce greenhouse gas emissions may have adverse effects on urban air quality and human exposure to harmful pollutants. The use of bioethanol fuelled vehicles is increasing worldwide and may create new undesired pollution effects. Different measurement campaigns were performed in a pilot study to contribute to the understanding of the consequences associated with the use of bioethanol blended fuel (E95) on a series of pollutants. Ambient screening measurements of NO2, O3, acetic acid, formaldehyde and acetaldehyde were performed at different urban locations, exposed and not exposed to the circulation of bioethanol buses. In addition, volatile organic compounds were measured at the exhaust pipe of a bioethanol fuelled bus, both under idling conditions (carbonyls; DNPH cartridge) and under on-road driving conditions applying online monitoring (PTR-TOF). Higher ambient acetaldehyde values were measured at locations exposed to bioethanol fuelled buses than at locations not exposed, and very high acetaldehyde and acetic acid values were measured from the exhaust pipe during driving conditions (acetaldehyde>150 ppm; acetic acid ≈ 20-30 ppm) and modelled at close distance to the bioethanol bus. Human exposure to high concentration of acetaldehyde is expected, and it may involve a significantly increased chance in developing cancer. The high concentration of acetic acid will involve odour annoyance and significant material degradation or corrosion. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Co-production of bioethanol and probiotic yeast biomass from agricultural feedstock: application of the rural biorefinery concept.

    Science.gov (United States)

    Hull, Claire M; Loveridge, E Joel; Donnison, Iain S; Kelly, Diane E; Kelly, Steven L

    2014-01-01

    Microbial biotechnology and biotransformations promise to diversify the scope of the biorefinery approach for the production of high-value products and biofuels from industrial, rural and municipal waste feedstocks. In addition to bio-based chemicals and metabolites, microbial biomass itself constitutes an obvious but overlooked by-product of existing biofermentation systems which warrants fuller attention. The probiotic yeast Saccharomyces boulardii is used to treat gastrointestinal disorders and marketed as a human health supplement. Despite its relatedness to S. cerevisiae that is employed widely in biotechnology, food and biofuel industries, the alternative applications of S. boulardii are not well studied. Using a biorefinery approach, we compared the bioethanol and biomass yields attainable from agriculturally-sourced grass juice using probiotic S. boulardii (strain MYA-769) and a commercial S. cerevisiae brewing strain (Turbo yeast). Maximum product yields for MYA-769 (39.18 [±2.42] mg ethanol mL(-1) and 4.96 [±0.15] g dry weight L(-1)) compared closely to those of Turbo (37.43 [±1.99] mg mL(-1) and 4.78 [±0.10] g L(-1), respectively). Co-production, marketing and/or on-site utilisation of probiotic yeast biomass as a direct-fed microbial to improve livestock health represents a novel and viable prospect for rural biorefineries. Given emergent evidence to suggest that dietary yeast supplementations might also mitigate ruminant enteric methane emissions, the administration of probiotic yeast biomass could also offer an economically feasible way of reducing atmospheric CH4.

  14. Environmental sustainability analysis of UK whole-wheat bioethanol and CHP systems

    International Nuclear Information System (INIS)

    Martinez-Hernandez, Elias; Ibrahim, Muhammad H.; Leach, Matthew; Sinclair, Phillip; Campbell, Grant M.; Sadhukhan, Jhuma

    2013-01-01

    The UK whole-wheat bioethanol and straw and DDGS-based combined heat and power (CHP) generation systems were assessed for environmental sustainability using a range of impact categories or characterisations (IC): cumulative primary fossil energy (CPE), land use, life cycle global warming potential over 100 years (GWP 100 ), acidification potential (AP), eutrophication potential (EP) and abiotic resources use (ARU). The European Union (EU) Renewable Energy Directive's target of greenhouse gas (GHG) emission saving of 60% in comparison to an equivalent fossil-based system by 2020 seems to be very challenging for stand-alone wheat bioethanol system. However, the whole-wheat integrated system, wherein the CHP from the excess straw grown in the same season and from the same land is utilised in the wheat bioethanol plant, can be demonstrated for potential sustainability improvement, achieving 85% emission reduction and 97% CPE saving compared to reference fossil systems. The net bioenergy from this system and from 172,370 ha of grade 3 land is 12.1 PJ y −1 providing land to energy yield of 70 GJ ha −1 y −1 . The use of DDGS as an animal feed replacing soy meal incurs environmental emission credit, whilst its use in heat or CHP generation saves CPE. The hot spots in whole system identified under each impact category are as follows: bioethanol plant and wheat cultivation for CPE (50% and 48%), as well as for ARU (46% and 52%). EP and GWP 100 are distributed among wheat cultivation (49% and 37%), CHP plant (26% and 30%) and bioethanol plant (25%, and 33%), respectively. -- Highlights: ► UK whole-wheat energy system can achieve 85% GHG emission reduction. ► UK whole-wheat energy system can achieve 97% primary energy saving. ► The land to energy yield of the UK whole-wheat system is 70 GJ ha −1 y −1 . ► Fertiliser production is the hotspot. ► DDGS and straw-based CHP system integration to wheat bioethanol is feasible

  15. Considerations and concerting on the european directive transposition to the internal gas market; Mission de reflexion et de concertation sur la transposition de la directive europeenne sur ''le marche interieur du gaz''

    Energy Technology Data Exchange (ETDEWEB)

    Bricq, N

    1999-10-01

    In the framework of the directive 98/30/CE transposition on the the gas internal market, a report has been asked by the First Ministry to define the new form of the gas utilities. The directive deals with the competition opening. The first part presents the gas market organization in France, today and after the transposition. The second part analyses the big stakes of this transposition. (A.L.B)

  16. Report on behalf of the Economic Affairs and Plan Commission on the law project relative to the energy markets; Rapport au nom de la commission des affaires economiques et du plan sur le projet de loi relatif aux marches energetiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-10-01

    In the framework of the directive no. 98/30 concerning the common rules for the natural gas internal market, the Senate debates on the law project relative to the energy markets no. 406, adopted by the Minister Council the 25 september 2002. This project transposes the directive content in french law. This document presents the amendments allowing the directive transposition. (A.L.B.)

  17. Sustainable bioethanol production combining biorefinery principles and intercropping strategies

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, M.H.; Haugaard-Nielsen, H.; Petersson, A.; Thomsen, A.B.; Jensen, E.S. [Risoe National Lab., DTU, Biosystems Dept., Roskilde (Denmark)

    2007-05-15

    species interactions as a response to the actual growing conditions observed which is not achieved with sole cropping of one species/cultivar. It is also concluded that when growing pea as a sole cropping available soil mineral N reduce N{sub 2} fixation and the full potential of symbiotic nitrogen fixation is not exploited which is regarded as an overall inefficient use of N sources. Using clover-grass intercropping raw materials, as another potential species combination with equivalent field responses to e.g. pea-wheat intercropping, conversion yields obtained in laboratory experiments show that wet oxidation is an efficient method for fractionating clover, grass, and clover-grass mixtures into a convertible solid cellulose fraction and a soluble hemicellulose fraction. The highest yield of fermentable sugars after enzymatic hydrolysis is achieved in clover-grass (mixed 1:1) pretreated at 195 deg. C for 10 minutes using 12 bar oxygen. The optimum pretreatment conditions for clover, grass, and clover-grass mixtures is not significantly different from that of wheat, which indicates that wheat straw and clover-grass (from intercropping) could be pretreated in one step. The produced sugars were converted into ethanol by Mucor indicus giving good ethanol yields Y{sub E/TS,Aerobic} = 0.37 and Y{sub E/TS,oxygen} {sub li} It is also concluded that fructans from unheated clover-grass juice can be co-converted into ethanol by natural enzymes and yeast increasing the ethanol production significantly. Using field data and biomass conversion yields obtained in laboratory experiments a decentralized biorefinery concept for co-production of bioethanol and biogas is described with strong emphasis on sustainability, localness and recycling principles. (au)

  18. Case study: Preliminary assessment of integrated palm biomass biorefinery for bioethanol production utilizing non-food sugars from oil palm frond petiole

    International Nuclear Information System (INIS)

    Abdullah, Sharifah Soplah Syed; Shirai, Yoshihito; Ali, Ahmad Amiruddin Mohd; Mustapha, Mahfuzah; Hassan, Mohd Ali

    2016-01-01

    Highlights: • Fermentable sugars production from oil palm frond by integrated technology concept. • Bioethanol production from oil palm frond sugars in a biorefinery. • Palm oil mills have sufficient excess energy and steam to support biorefinery. • The net energy ratio of bioethanol from oil palm frond petiole is 7.48. - Abstract: In this case study, a preliminary assessment on the bioethanol production from oil palm frond (OPF) petiole sugars within an integrated palm biomass biorefinery was carried out. Based on the case study of 4 neighbouring palm oil mills, approximately 55,600 t/y of fermentable sugars could be obtained from OPF petiole. The integrated biorefinery will be located at one of the 4 mills. The mill has potential excess energy comprising 3.64 GW h/y of electricity and 177,000 t/y of steam which are sufficient to run the biorefinery. With 33.9 million litres/y of bioethanol production, the specific production cost of bioethanol is estimated at $ 0.52/l bioethanol, compared to $ 0.31–0.34/l bioethanol produced from sugarcane and $ 0.49–0.60/l bioethanol from other lignocellulosics. The net energy ratio of 7.48 for bioethanol production from OPF provides a promising alternative for OPF utilization as a non-food sugar feedstock.

  19. Shell's interests in applications of gas for power generation, and how this impacts market presence; Les interets de Shell dans le secteur gazier applique a la production d'electricite les effets sur sa presence sur le marche

    Energy Technology Data Exchange (ETDEWEB)

    Mitchenall, R. [Shell International Gas (United Kingdom)

    2000-07-01

    In the last decade natural gas has made significant strides in world energy markets and in particular power generation, supported by ever growing gas reserves. This introduction of natural gas has also been fuelled by advances in combustion turbine efficiency and generating plant capital cost reductions. Simultaneously, the power market itself has seen radical changes and growing concerns over the predicted effect of greenhouse gases and other pollutants. The liberalized markets have attracted many independent power producers and have produced innovative solutions, managing the requirements of non-recourse project financing. These projects are capturing the dramatic changes in the energy value chain and responding to a growing demand for total energy solutions, including distributed power generation and combined heat and power. Natural gas has contributed to a cost competitive solution to sustainable development and is supporting Shell's pledge to reduce its CO{sub 2} emissions by 10%. Recognizing these trends, and in support of its leading position in the pipeline gas and LNG markets, Shell has established itself in power markets through joint ventures in various countries and more specifically, through the acquisition of 50% of InterGen. Shell has also taken significant positions in the renewable energy markets and in the development of business opportunities in the fuel cell based hydrogen economy. (author)

  20. Le vase de Pandore

    Directory of Open Access Journals (Sweden)

    Nicola Panichi

    2000-06-01

    Full Text Available Il s’agit ici de suivre les stratégies discursives par lesquelles Érasme situe sa Lingua sous le patronage symbolique de deux mythes des plus opératoires à la Renaissance : le vase de Pandore et la tour de Babel, tous deux verrouillant le texte, l’un en guise d’incipit, l’autre d’explicit, dans un dialogue où chacun use de l’autre pour renforcer les significations et instaurer le régime sémantique du texte, tant linguistique qu’éthique. Ce sont ces jeux complexes entre différents niveaux de discours dont dépend le sens ultime de l’œuvre que cet article s’attache à saisir.Se trata de seguir aquí las estrategias discursivas mediante las cuales Erasmo sitúa su Lingua bajo el dominio simbólico de dos de los mitos más funcionales del Renacimiento: el vaso de Pandora y la torre de Babel, los cuales limitan el texto, uno a modo de íncipit, otro de excipit, en un diálogo en el que se valen el uno del otro para reforzar los significados y establecer el régimen semántico del texto, tanto lingüístico como ético. Son esos juegos complejos entre diferentes niveles de discurso, de los que depende el sentido último de la obra, que este artículo intenta captar.

  1. : tous les projets | Page 161 | CRDI - Centre de recherches pour le ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Malgré la très forte croissance économique observée au Pérou, le marché du travail ne permet pas d'offrir de meilleurs emplois à tout le monde. Date de début : 4 septembre 2012. End Date: 4 octobre 2014. Sujet: OCCUPATIONAL STRUCTURE, LABOUR MARKET, ACCESS TO MARKETS, DISADVANTAGED GROUPS, ...

  2. Technology Evaluation of Process Configurations for Second Generation Bioethanol Production using Dynamic Model-based Simulations

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Meyer, Anne S.; Gernaey, Krist

    2011-01-01

    An assessment of a number of different process flowsheets for bioethanol production was performed using dynamic model-based simulations. The evaluation employed diverse operational scenarios such as, fed-batch, continuous and continuous with recycle configurations. Each configuration was evaluated...... against the following benchmark criteria, yield (kg ethanol/kg dry-biomass), final product concentration and number of unit operations required in the different process configurations. The results has shown the process configuration for simultaneous saccharification and co-fermentation (SSCF) operating...... in continuous mode with a recycle of the SSCF reactor effluent, results in the best productivity of bioethanol among the proposed process configurations, with a yield of 0.18 kg ethanol /kg dry-biomass....

  3. Utilization of Microalgal Biofractions for Bioethanol, Higher Alcohols, and Biodiesel Production: A Review

    Directory of Open Access Journals (Sweden)

    Marwa M. El-Dalatony

    2017-12-01

    Full Text Available Biomass is a crucial energy resource used for the generation of electricity and transportation fuels. Microalgae exhibit a high content of biocomponents which makes them a potential feedstock for the generation of ecofriendly biofuels. Biofuels derived from microalgae are suitable carbon-neutral replacements for petroleum. Fermentation is the major process for metabolic conversion of microalgal biocompounds into biofuels such as bioethanol and higher alcohols. In this review, we explored the use of all three major biocomponents of microalgal biomass including carbohydrates, proteins, and lipids for maximum biofuel generation. Application of several pretreatment methods for enhancement the bioavailability of substrates (simple sugar, amino acid, and fatty acid was discussed. This review goes one step further to discuss how to direct these biocomponents for the generation of various biofuels (bioethanol, higher alcohol, and biodiesel through fermentation and transesterification processes. Such an approach would result in the maximum utilization of biomasses for economically feasible biofuel production.

  4. Bio-ethanol Production from Green Onion by Yeast in Repeated Batch.

    Science.gov (United States)

    Robati, Reza

    2013-09-01

    Considered to be the cleanest liquid fuel, bio-ethanol can be a reliable alternative to fossil fuels. It is produced by fermentation of sugar components of plant materials. The common onions are considered to be a favorable source of fermentation products as they have high sugar contents as well as contain various nutrients. This study focused on the effective production of ethanol from Green onion (Allium fistulosum L.) by the yeast "Saccharomyces cerevisiae" in repeated batch. The results showed that the total sugar concentration of onion juice was 68.4 g/l. The maximum rate of productivity, ethanol yield and final bio-ethanol percentage was 7 g/l/h (g ethanol per liter of onion juice per hour), 35 g/l (g ethanol per liter of onion juice) and 90 %, respectively.

  5. Bioethanol Production from Waste Potatoes as a Sustainable Waste-to-energy Resource via Enzymatic Hydrolysis

    Science.gov (United States)

    Memon, A. A.; Shah, F. A.; Kumar, N.

    2017-07-01

    Ever increasing demand of energy and corresponding looming depletion of fossil fuels have transpired into a burning need of time to vie for alternative energy resources before the traditional energy sources are completely exhausted. Scientists are continuously working on sustainable energy production as an alternate source of energy to meet the present and future requirements. This research deals with conversion of the starch to fermentable carbon source (sugars) by fermentation through liquefaction by using yeast and alpha- amylase. The results show that the significant bioethanol production was achieved while using the parameters like temperature (30 °C) pH (6) and incubation time of 84 hrs. About 90 ml of bioethanol was produced from potato intake of 800 g. Pakistan being an agricultural country is rich in potato crop and this research bodes well to open new vistas to arrest the energy shortage in this part of the world

  6. Recycling of cellulases in a continuous process for production of bioethanol

    DEFF Research Database (Denmark)

    Haven, Mai Østergaard

    studies, this PhD project investigates enzyme recycling at industrial relevant conditions in the Inbicon process, e.g. high dry matter conditions and process configurations that could be implemented in large scale. The results point towards potential processes for industrial recycling of enzymes......The focus of the work presented in this thesis is recycling of commercial enzymes in a continuous process for production of bioethanol from biomass. To get a deeper understanding of the factors affecting the potential for enzyme recycling, the interactions between enzymes and biomass......, the adsorption and desorption as well as stability and recovery of activity was investigated. More knowledge on these factors have enabled a process adapted for enzyme recycling. The driver being that enzyme consumption remains a major cost when producing bioethanol from lignocellulosic biomass. Unlike previous...

  7. Cathode Assessment for Maximizing Current Generation in Microbial Fuel Cells Utilizing Bioethanol Effluent as Substrate

    DEFF Research Database (Denmark)

    Sun, Guotao; Thygesen, Anders; Meyer, Anne S.

    2016-01-01

    Implementation of microbial fuel cells (MFCs) for electricity production requires effective current generation from waste products via robust cathode reduction. Three cathode types using dissolved oxygen cathodes (DOCs), ferricyanide cathodes (FeCs) and air cathodes (AiCs) were therefore assessed...... to be the most sustainable option since it does not require ferricyanide. The data offer a new add-on option to the straw biorefinery by using bioethanol effluent for microbial electricity production....... using bioethanol effluent, containing 20.5 g/L xylose, 1.8 g/L arabinose and 2.5 g/L propionic acid. In each set-up the anode and cathode had an electrode surface area of 88 cm(2), which was used for calculation of the current density. Electricity generation was evaluated by quantifying current...

  8. Development and perspective of promising energy plants for bioethanol production in Taiwan

    International Nuclear Information System (INIS)

    Liu, Sin-Yie; Lin, Chien-Yih

    2009-01-01

    The global energy crisis and continual soaring prices of fossil fuels force people to seek the new and recycled alternative energy sources hard. Biodiesel oil as well as bioethanol fuel, as two new and clean fuels for environmental protection, have already been approved as substitutes for fuel or fuel additive. Some common bottlenecks for production of biodiesel crops have been found. However, developing bioethanol crops in Taiwan has many benefits. Four most promising alcohol crops in Taiwan, i.e., sweet potato, maize, sugarcane, and sweet sorghum have been discussed. Sweet sorghum can be strongly recommended as a key alcohol crop in Taiwan, because of its short growing period, low water requirement, large amount of biomass and alcohol produced, and greater income obtained from sweet sorghum cultivation. (author)

  9. Process Engineering App lied to the Production of Bioethanol Using Banana Rejection Urabá

    Directory of Open Access Journals (Sweden)

    Daniel Flórez Alvarado

    2012-06-01

    Full Text Available Most countries either financially or in advanced stages of development are faced with the problem of disposal and treatment of waste and organic waste; these can be treated in different ways, for example by reducing its volume or processing any useful substance using physicochemical transformation processesbananas in bioethanol and analyzing environmental impacts to meet sanitary standards.The objective of this study was to evaluate the potential for ethanol production from banana and the study and application of process engineering in ethanol production using banana rejection as feedstock in the region of Urabá.Bioethanol is obtained by fermentation and distillation of rejected bananas where the results are reflected in the operational controls and leaf pattern obtained in the standardization process.

  10. Economic-energy-environment analysis of prospective sugarcane bioethanol production in Brazil

    International Nuclear Information System (INIS)

    Lopes de Carvalho, Ariovaldo; Antunes, Carlos Henggeler; Freire, Fausto

    2016-01-01

    Highlights: • A Hybrid IO-MOLP model is formulated for energy-economic-environmental analysis. • Scenarios for sugarcane cultivation and 1st- and 2nd-generation bioethanol production. • Higher energy use and GHG emissions due to chemicals in 2G processes. • Lower overall employment level in the 1G + 2G scenarios compared to the 1G scenario. • Policies and technological choices should consider direct and indirect effects of 2G. - Abstract: Bioethanol from sugarcane can be produced using first-generation (1G) or second-generation (2G) technologies. 2G technologies can increase the capacity of production per sugarcane mass input and are expected to have a key role in future reductions of environmental impacts of sugarcane bioethanol. A hybrid Input-Output (IO) framework is developed for Brazil coupling the System of National Accounts and the National Energy Balance, which is extended to assess Greenhouse Gas (GHG) emissions. Life-cycle based estimates for two sugarcane cultivation systems, two 1G and eight 2G bioethanol production scenarios, are coupled in the IO framework. A multi-objective linear programming (MOLP) model is formulated based on this framework for energy-economic-environmental analysis of the Brazilian economic system and domestic bioethanol supply in prospective scenarios. Twenty-four solutions are computed: four “extreme” solutions resulting from the individual optimization of each objective function (GDP, employment level, total energy consumption and total GHG emissions - 1G scenario), ten compromise solutions minimizing the distance of the feasible region to the ideal solution (1G, 1G-optimized and prospective 1G + 2G scenarios), and ten solutions maximizing the total bioethanol production (1G, 1G-optimized and prospective 1G + 2G scenarios). Higher diesel oil and lubricants consumption in the mechanical harvesting process has counterbalanced the positive effects of more efficient trucks leading to higher energy consumption and GHG

  11. Enzymatic hydrolysis of eucalyptus biomass for bioethanol production: a bibliometric analysis

    Directory of Open Access Journals (Sweden)

    Renan Amorim Margon

    2018-04-01

    Full Text Available The energy matrix in the Brazilian and world scenarios has undergone significant changes during the last decades. Due to oscillations in the price of the oil barrel and its derivatives, the study of alternative energies has been intensifying. In this context, the production of second generation bioethanol has been considered as a way to meet this demand. Besides being able to partially solve the dependence of the use of fossil fuels, this technology stands out for utilizing lignocellulosic industries residues, adding value to this material. This article consists of a bibliometric review of this application, giving an overview of the advances made to date. A quantitative analysis of the articles found in the Web of Science database was carried out, followed by a qualitative analysis. Subsequently, the convergences and divergences between the articles were identified. The results demonstrate that some improvements are still needed in the process, however the technique is feasible and advantageous in the production of bioethanol.

  12. Bioconversion of glycerol for bioethanol production using isolated Escherichia coli SS1

    Directory of Open Access Journals (Sweden)

    Sheril Norliana Suhaimi

    2012-06-01

    Full Text Available Bioconverting glycerol into various valuable products is one of glycerol's promising applications due to its high availability at low cost and the existence of many glycerol-utilizing microorganisms. Bioethanol and biohydrogen, which are types of renewable fuels, are two examples of bioconverted products. The objectives of this study were to evaluate ethanol production from different media by local microorganism isolates and compare the ethanol fermentation profile of the selected strains to use of glucose or glycerol as sole carbon sources. The ethanol fermentations by six isolates were evaluated after a preliminary screening process. Strain named SS1 produced the highest ethanol yield of 1.0 mol: 1.0 mol glycerol and was identified as Escherichia coli SS1 Also, this isolated strain showed a higher affinity to glycerol than glucose for bioethanol production.

  13. Steps to discern sustainability criteria for a certification scheme of bioethanol in Brazil: Approach and difficulties

    International Nuclear Information System (INIS)

    Delzeit, R.; Holm-Mueller, K.

    2009-01-01

    Taking Brazilian bioethanol as an example, this paper presents possible sustainability criteria for a certification scheme aimed to minimize negative socio-ecological impacts and to increase the sustainable production of biomass. We describe the methods that have led us to the identification of a first set of feasible sustainability criteria for Brazilian bioethanol and discuss issues to be considered when developing certification schemes for sustainability. General problems of a certification scheme lie in the inherent danger of introducing new non-tariff trade barriers and in the problems of including important higher scale issues like land conversion and food security. A certification system cannot replace a thorough analysis of policy impacts on sustainability issues. (author)

  14. Bioethanol Production From Banana Stem By Using Simultaneous Saccharification and Fermentation (SSF)

    Science.gov (United States)

    Kusmiyati; Mustofa, A.; Jumarmi

    2018-05-01

    The rapid growth and development of industries in the world result in a greater energy needs. Some studies show that ethanol can be used as an alternative energy. However, bioethanol production from food raw materials such as sugar and starch has drawback that cause the food crisis. This aim of this study was to convert banana stem into bioethanol. Banana stem contained of 44.6% cellulose, 36.0% hemicellulose and 19.4% lignin. After banana stems were pretreated with acid (H2SO4) and alkaline (NaOH) at a concentration of 2% w/v at 121 °C for 30 minutes, then subsequently the simultaneous saccharification and fermentation (SSF) were carried out by using mixed cultures of Aspergillus niger, Trichoderma reesei and Zymomonas mobilis at various enzymes ratios of (1:1:1), (1:2:1), (1:2:2), (1:1:2) and various pH (4, 5 and 6) with SSF time for 144 hours and temperature of 30°C. The results show that acid pretreatment showed better results than the alkali pretreatment. After acid pretreatment and alkali pretreatment, lignin content of pretreted banana stem reduced to 15.92% and 16.34%, respectively, cellulose increased to 52.11% and 50.6% respectively, hemicellulose reduced to 28.45% and 28.83%, respectively The SSF showed that pH 5 gave the highest bioethanol. The highest concentration of bioethanol (8.51 g/L) was achieved at the SSF process at pH 5 with a ratio Aspergillus niger, Trichoderma reesei and Zymomonas mobilis enzymes of (1:1:2).

  15. Bioethanol Production from Iles-Iles (Amorphopallus campanulatus Flour by Fermentation using Zymomonas mobilis

    Directory of Open Access Journals (Sweden)

    Kusmiyati Kusmiyati

    2016-02-01

    Full Text Available Due to the depletion of fossil oil sources, Indonesia attempts to search new source of bioenergy including bioethanol. One of this sources is Iles-iles tubers (Amorphophallus campanulatus, which is abundantly available in Java Indonesia. The carbohydrate content in Iles-Iles tuber flour was 77% and it can be converted to ethanol by three consecutive steps methods consist of liquefaction-saccharification using α and β-amylase, respectively and then followed by fermentation by using Z. mobilis. The objective of this research was to convert the Iles-iles flour to bioethanol by fermentation process with Z.mobilis. The ethanol production process was studied at various starch concentration 15-30% g/L, Z. mobilis concentration (10-40% and pH fermentation of (4-6. The result showed that the yield of bioethanol (10.33% was the highest at 25% starch concentration and 25% of Z.mobilis concentration. The optimum conditions was found at 4.5, 30°C, 10%, 120 h for pH, temperature, Z. mobilis concentration and fermentation time, respectively  at which  ACT tuber flour produced a maximum ethanol of 10.33 % v/v.Article History: Received November 12nd 2015; Received in revised form January 25th 2016; Accepted January 29th 2016; Available online How to Cite This Article: Kusmiyati , Hadiyanto,H  and Kusumadewi, I (2016. Bioethanol Production from Iles-Iles (Amorphopallus campanulatus Flour by Fermentation using Zymomonas mobilis. Int. Journal of Renewable Energy Development, 9(1, 9-14 http://dx.doi.org/10.14710/ijred.5.1.9-14 

  16. Dilute Ionic Liquids Pretreatment of Palm Empty Bunch and Its Impact to Produce Bioethanol

    OpenAIRE

    Lucy Arianie; Utin Dewi Pebriyana; Yudiansyah; Nora Idiawati; Deana Wahyuningrum

    2014-01-01

    Ethanol production through ionic liquids pretreatment of palm empty bunch (PEB) was carried out. This research aims to investigate impact of ionic liquids synthetic i.e 1-butyl-3-methyl imidazoliumbromide or [BMIM]bromide toward cellulose’s palm empty bunch and convert its cellulose into bioethanol. Ionic liquid was synthesized  through reflux and microwave assisted synthesis methods. Research investigation showed that microwave assisted synthesis produce [BMIM]bromide 90% faster than reflux ...

  17. Dynamics and control of a heat pump assisted extractive dividing-wall column for bioethanol dehydration

    OpenAIRE

    Patraşcu, Iulian; Bildea, Costin Sorin; Kiss, Anton A.

    2017-01-01

    Recently, a novel heat-pump-assisted extractive distillation process taking place in a dividing-wall column was proposed for bioethanol dehydration. This integrated design combines three distillation columns into a single unit that allows over 40% energy savings and low specific energy requirements of 1.24 kWh/kg ethanol. However, these economic benefits are possible only if this highly integrated system is also controllable to ensure operational availability. This paper is the first to addre...

  18. EVALUATION OF BIOETHANOL PRODUCTION FROM Eucalyptus WOOD WITH Saccharomyces cerevisiae AND SACSV-10 1

    Directory of Open Access Journals (Sweden)

    Sylvia Enid Vazquez

    2018-04-01

    Full Text Available ABSTRACT Eucalyptus spp. residues of paper industry are a potential lignocellulosic raw material for production of second-generation bioethanol as an alternative to conventional production from cereal crops. Studying the behavior at 40 ºC of a commercial cellulase (Sunson, Eucalyptus sawdust saccharification was carried out under two pH conditions. With the aim to evaluate the bioethanol production from Eucalyptus wood, a strategy combining saccharification and Simultaneous Saccharification and Fermentation (SSF was undertaken at 40 ºC with a thermotolerant Saccharomyces cerevisiae with different substrate and inoculum concentrations, and different nitrogen sources. At last, the process was carried out in optimal conditions with Saccharomyces cerevisiae M522 and SacSV-10. Saccharification produced more free glucose at pH 5, reaching a maximum of 1.5 g/L. Encouraging results were obtained with 500 mg/L of ammonium sulphate as a nitrogen source and 10 % v/v initial inoculum at 106 cfu/mL concentration. Yeast SacSV-10 was not inhibited by phenols present in the culture media using a wood concentration of 10 g/L, but when the solids concentration was increased, the bioprocess yield was compromised. When the process was carried out in optimal conditions the bioethanol production, expressed as the conversion percentage of cellulose to ethanol, was 71.5 % and 73.6 % for M522 and the mutant strain respectively. The studied properties of the mutant strain provide added value to it, which pose new challenges to national companies dedicated to the production and sale of inputs for bioethanol industry.

  19. Enhanced Bio-Ethanol Production from Industrial Potato Waste by Statistical Medium Optimization

    OpenAIRE

    Izmirlioglu, Gulten; Demirci, Ali

    2015-01-01

    Industrial wastes are of great interest as a substrate in production of value-added products to reduce cost, while managing the waste economically and environmentally. Bio-ethanol production from industrial wastes has gained attention because of its abundance, availability, and rich carbon and nitrogen content. In this study, industrial potato waste was used as a carbon source and a medium was optimized for ethanol production by using statistical designs. The effect of various medium componen...

  20. Exergetic and Economic Assessment of Distillation Hybrid Configurations for Bioethanol Refining

    OpenAIRE

    Suleiman, Bilyaminu; Olawale, Adegboyega Surajudeen; Mohammed, Saidu Waziri

    2014-01-01

    Thermo-economics analysis was used to identify the most economic distillation hybrid configuration to dehydrate bioethanol mash (12 wt%) to fuel grade (99.5 wt%) based on economic objective of minimization of operating cost in this work. Three different hybrids of THIDC with azeotropic and, extractive distillation units were assessed using similar feed and product specifications of 1200 kmol/h (12 % by weight ethanol) and 55 kmol/h (99.5 % by weight ethanol) respectively . The six hybrid conf...

  1. Bioethanol Production from Cachaza as Hydrogen Feedstock: Effect of Ammonium Sulfate during Fermentation

    Directory of Open Access Journals (Sweden)

    Nestor Sanchez

    2017-12-01

    Full Text Available Cachaza is a type of non-centrifugal sugarcane press-mud that, if it is not employed efficiently, generates water pollution, soil eutrophication, and the spread of possible pathogens. This biomass can be fermented to produce bioethanol. Our intention is to obtain bioethanol that can be catalytically reformed to produce hydrogen (H2 for further use in fuel cells for electricity production. However, some impurities could negatively affect the catalyst performance during the bioethanol reforming process. Hence, the aim of this study was to assess the fermentation of Cachaza using ammonium sulfate ((NH42SO4 loadings and Saccharomyces cerevisiae strain to produce the highest ethanol concentration with the minimum amount of impurities in anticipation of facilitating further bioethanol purification and reforming for H2 production. The results showed that ethanol production from Cachaza fermentation was about 50 g·L−1 and the (NH42SO4 addition did not affect its production. However, it significantly reduced the production of branched alcohols. When a 160 mg·L−1 (NH42SO4 was added to the fermentation culture, 2-methyl-1-propanol was reduced by 41% and 3-methyl-1-butanol was reduced by 6%, probably due to the repression of the catabolic nitrogen mechanism. Conversely, 1-propanol doubled its concentration likely due to the higher threonine synthesis promoted by the reducing sugar presence. Afterwards, we employed the modified Gompertz model to fit the ethanol, 2M1P, 3M1B, and 1-propanol production, which provided acceptable fits (R2 > 0.881 for the tested compounds during Cachaza fermentation. To the best of our knowledge, there are no reports of the modelling of aliphatic production during fermentation; this model will be employed to calculate yields with further scaling and for life cycle assessment.

  2. Production of liquid biofuels (biodiesel and bioethanol) from brown marine macroalgae Padina tetrastromatica

    International Nuclear Information System (INIS)

    Ashokkumar, Veeramuthu; Salim, Mohd Razman; Salam, Zainal; Sivakumar, Pandian; Chong, Cheng Tung; Elumalai, Sanniyasi; Suresh, Veeraperumal; Ani, Farid Nasir

    2017-01-01

    Highlights: • Integrated concept of biofuels production from brown macroalgae P. tetrastromatica. • The activation energy was determined as Ea = 34.314 kJ mol"−"1. • Brown marine alga produced 7.8% of biodiesel by acid and alkali transesterification. • The fuel properties of Padina biodiesel meet the ASTM specifications. • Spent biomass of Padina yields 16.1% of bioethanol after fermentation process. - Abstract: In this study, an integrated biomass conversion concept of producing liquid biofuels from brown marine macroalga Padina tetrastromatica was investigated. The algal biomass was collected from the Mandapam coastal region and processed under laboratory. Various parameters were studied to extract crude lipids from the biomass. A kinetic study was conducted for extracting the lipids from the biomass, which follows the first order kinetics and the lipid yield was 8.15 wt.%. The activation energy; Ea = 34.314 kJ mol"−"1 and their thermodynamic parameters were determined. Since the crude algal lipids contain high amount of free fatty acids, a sequential transesterification technique was examined and 7.8% of biodiesel (78 mg/g algal biomass) yield was obtained. The biodiesel was analyzed by "1H and "1"3C–NMR spectroscopy and the conversion yield was estimated. Further, the biodiesel fuel properties were investigated and found that all the features fit the required ASTM D6751 specification limits. The residual biomass after lipid extraction was further explored for bioethanol production through the anaerobic fermentation process. The ethanol yield obtained after saccharification and fermentation were estimated and 161 mg/g residue biomass was reported. The theoretical yield of conversion of hydrolysate to bioethanol was estimated and found to be 83.4%. Therefore, this study demonstrates that macroalga P. tetrastromatica biomass has great potential to produce liquid biofuels such as biodiesel and bioethanol.

  3. Anaerobic digestion of stillage fractions - estimation of the potential for energy recovery in bioethanol plants.

    Science.gov (United States)

    Drosg, B; Fuchs, W; Meixner, K; Waltenberger, R; Kirchmayr, R; Braun, R; Bochmann, G

    2013-01-01

    Stillage processing can require more than one third of the thermal energy demand of a dry-grind bioethanol production plant. Therefore, for every stillage fraction occurring in stillage processing the potential of energy recovery by anaerobic digestion (AD) was estimated. In the case of whole stillage up to 128% of the thermal energy demand in the process can be provided, so even an energetically self-sufficient bioethanol production process is possible. For wet cake the recovery potential of thermal energy is 57%, for thin stillage 41%, for syrup 40% and for the evaporation condensate 2.5%. Specific issues for establishing AD of stillage fractions are evaluated in detail; these are high nitrogen concentrations, digestate treatment and trace element supply. If animal feed is co-produced at the bioethanol plant and digestate fractions are to be reused as process water, a sufficient quality is necessary. Most interesting stillage fractions as substrates for AD are whole stillage, thin stillage and the evaporation condensate. For these fractions process details are presented.

  4. A two-stage bioprocess for hydrogen and methane production from rice straw bioethanol residues.

    Science.gov (United States)

    Cheng, Hai-Hsuan; Whang, Liang-Ming; Wu, Chao-Wei; Chung, Man-Chien

    2012-06-01

    This study evaluates a two-stage bioprocess for recovering hydrogen and methane while treating organic residues of fermentative bioethanol from rice straw. The obtained results indicate that controlling a proper volumetric loading rate, substrate-to-biomass ratio, or F/M ratio is important to maximizing biohydrogen production from rice straw bioethanol residues. Clostridium tyrobutyricum, the identified major hydrogen-producing bacteria enriched in the hydrogen bioreactor, is likely utilizing lactate and acetate for biohydrogen production. The occurrence of acetogenesis during biohydrogen fermentation may reduce the B/A ratio and lead to a lower hydrogen production. Organic residues remained in the effluent of hydrogen bioreactor can be effectively converted to methane with a rate of 2.8 mmol CH(4)/gVSS/h at VLR of 4.6 kg COD/m(3)/d. Finally, approximately 75% of COD in rice straw bioethanol residues can be removed and among that 1.3% and 66.1% of COD can be recovered in the forms of hydrogen and methane, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Emission characteristics when using bioethanol as a fuel for passenger cars

    International Nuclear Information System (INIS)

    Egebaeck, K.E.; Laurikko, J.; Ryden, C.

    1998-11-01

    In 1991 the Swedish Transport and Communication Research Board (KFB), was asked by the Swedish Government to carry out investigations and field tests in order to demonstrate the possibility of using bioethanol and biogas as automotive fuels. A five-year programme was set up for the investigations and demonstrations and the programme was later extended to a seven-year programme. Despite the fact that most of the work has been directed towards heavy-duty vehicles and especially buses in city traffic some important investigations have been carried out in order to demonstrate the use of bioethanol and biogas in passenger cars. The programme for passenger cars has consisted of running and testing 53 Flexible Fuel Vehicles (FFV), fuelled with bioethanol (E85), a project run by the Swedish Ethanol Development Foundation, and 20 other cars fuelled with biogas, a project carried out by the City of Stockholm's Material Supply Organisation, and sponsored by KFB. For both fleets of vehicles the exhaust emissions have been extensively characterised at a laboratory in Finland owned by the Technical Research Centre of Finland. The aim of this paper is to present some interesting results from the demonstrations of the use of E85 in FFV's and thereby especially focus on the results of the characterisation of both regulated and non-regulated emissions 23 refs, 16 figs, 9 tabs

  6. Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass.

    Science.gov (United States)

    Li, Yinping; Cui, Jiefen; Zhang, Gaoli; Liu, Zhengkun; Guan, Huashi; Hwang, Hueymin; Aker, Winfred G; Wang, Peng

    2016-08-01

    The seaweed Ulva prolifera, distributed in inter-tidal zones worldwide, contains a large percentage of cellulosic materials. The technical feasibility of using U. prolifera residue (UPR) obtained after extraction of polysaccharides as a renewable energy resource was investigated. An environment-friendly and economical pretreatment process was conducted using hydrogen peroxide. The hydrogen peroxide pretreatment improved the efficiency of enzymatic hydrolysis. The resulting yield of reducing sugar reached a maximum of 0.42g/g UPR under the optimal pretreatment condition (hydrogen peroxide 0.2%, 50°C, pH 4.0, 12h). The rate of conversion of reducing sugar in the concentrated hydrolysates to bioethanol reached 31.4% by Saccharomyces cerevisiae fermentation, which corresponds to 61.7% of the theoretical maximum yield. Compared with other reported traditional processes on Ulva biomass, the reducing sugar and bioethanol yield are substantially higher. Thus, hydrogen peroxide pretreatment is an effective enhancement of the process of bioethanol production from the seaweed U. prolifera. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Technical Feasibility and Comprehensive Sustainability Assessment of Sweet Sorghum for Bioethanol Production in China

    Directory of Open Access Journals (Sweden)

    Xiaolin Yang

    2018-03-01

    Full Text Available Under dual pressures of energy and environmental security, sweet sorghum is becoming one of the most promising feedstocks for biofuel production. In the present study, the technical feasibility of sweet sorghum production was assessed in eight agricultural regions in China using the Sweet Sorghum Production Technique Maturity Model. Three top typical agricultural zones were then selected for further sustainability assessment of sweet sorghum production: Northeast China (NEC, Huang-Huai-Hai Basin (HHHB and Ganxin Region (GX. Assessment results demonstrated that NEC exhibited the best sustainable production of sweet sorghum, with a degree of technical maturity value of 0.8066, followed by HHHB and GX, with corresponding values of 0.7531 and 0.6594, respectively. Prospective economic profitability analysis indicated that bioethanol production from sweet sorghum was not feasible using current technologies in China. More efforts are needed to dramatically improve feedstock mechanization logistics while developing new bioethanol productive technology to reduce the total cost. This study provides insight and information to guide further technological development toward profitable industrialization and large-scale sweet sorghum bioethanol production.

  8. Optimization and analysis of a bioethanol agro-industrial system from sweet sorghum

    International Nuclear Information System (INIS)

    Guo, Ying; Hu, Shan-ying; Li, You-run; Chen, Ding-jiang; Zhu, Bing; Smith, Karl M.

    2010-01-01

    The use of non-food crops for bioethanol production represents an important trend for renewable energy in China. In this paper, a bioethanol agro-industrial system with distributed fermentation plants from sweet sorghum is presented. The system consists of the following processes: sweet sorghum cultivation, crude ethanol production, ethanol refining and by-product utilization. The plant capacities of crude ethanol and pure ethanol, in different fractions of useful land, are optimized. Assuming a minimum cost of investment, transport, operation and so on, the optimum capacity of the pure ethanol factory is 50,000 tonnes/year. Moreover, this bioethanol system, which requires ca. 13,300 ha (hectares) of non-cultivated land to supply the raw materials, can provide 26,000 jobs for rural workers. The income from the sale of the crops is approximately 71 million RMB Yuan and the ethanol production income is approximately 94 million RMB Yuan. The potential savings in CO 2 emissions are ca. 423,000 tonnes/year and clear economic, social and environmental benefits can be realized. (author)

  9. Emission characteristics when using bioethanol as a fuel for passenger cars

    Energy Technology Data Exchange (ETDEWEB)

    Egebaeck, K.E. [Luleaa Univ. of Technology, (Sweden); Laurikko, J. [Technical Research Centre of Finland, Helsinki (Finland); Ryden, C. [Tima, (Sweden)

    1998-11-01

    In 1991 the Swedish Transport and Communication Research Board (KFB), was asked by the Swedish Government to carry out investigations and field tests in order to demonstrate the possibility of using bioethanol and biogas as automotive fuels. A five-year programme was set up for the investigations and demonstrations and the programme was later extended to a seven-year programme. Despite the fact that most of the work has been directed towards heavy-duty vehicles and especially buses in city traffic some important investigations have been carried out in order to demonstrate the use of bioethanol and biogas in passenger cars. The programme for passenger cars has consisted of running and testing 53 Flexible Fuel Vehicles (FFV), fuelled with bioethanol (E85), a project run by the Swedish Ethanol Development Foundation, and 20 other cars fuelled with biogas, a project carried out by the City of Stockholm`s Material Supply Organisation, and sponsored by KFB. For both fleets of vehicles the exhaust emissions have been extensively characterised at a laboratory in Finland owned by the Technical Research Centre of Finland. The aim of this paper is to present some interesting results from the demonstrations of the use of E85 in FFV`s and thereby especially focus on the results of the characterisation of both regulated and non-regulated emissions 23 refs, 16 figs, 9 tabs

  10. Potential bioethanol feedstock availability around nine locations in the Republic of Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Deverell, R.; McDonnell, K.; Devlin, G. [Department of Biosystems Engineering, Agriculture and Food Science Building, University College Dublin, Belfield (Ireland)

    2009-07-01

    The Republic of Ireland, like many other countries is trying to diversify energy sources to counteract environmental, political and social concerns. Bioethanol from domestically grown agricultural crops is an indigenously produced alternative fuel that can potentially go towards meeting the goal of diversified energy supply. The Republic of Ireland's distribution of existing soils and agricultural land-uses limit arable crop land to around 10% of total agricultural area. Demand for land to produce arable crops is expected to decrease, which could open the opportunity for bioethanol production. Bioethanol production plants are required to be of a sufficient scale in order to compete economically with other fuel sources, it is important therefore to determine if enough land exists around potential ethanol plant locations to meet the potential demands for feedstock. This study determines, through the use of a developed GIS based model, the potential quantities of feedstock that is available in the hinterlands of nine locations in the Republic of Ireland. The results indicate that three locations can meet all its feedstock demands using indigenously grown sugarbeet, while only one location can meet its demands using a combination of indigenous wheat and straw as the two locally sourced feedstocks. (author)

  11. Viability assessment of regional biomass pre-processing center based bioethanol value chains

    Science.gov (United States)

    Carolan, Joseph E.

    Petroleum accounts for 94% of all liquid fuels and 36% of the total of all energy consumed in the United States. Petroleum dependence is problematic because global petroleum reserves are estimated to last only for 40 to 60 years at current consumption rates; global supplies are often located in politically unstable or unfriendly regions; and fossil fuels have negative environmental footprints. Domestic policies have aimed at promoting alternative, renewable liquid fuels, specifically bio-fuels derived from organic matter. Cellulosic bio-ethanol is one promising alternative fuel that has featured prominently in federal bio-fuel mandates under the Energy Independence and Security Act, 2007. However, the cellulosic bio-ethanol industry faces several technical, physical and industrial organization challenges. This dissertation examines the concept of a network of regional biomass pre-treatment centers (RBPC) that form an extended biomass supply chain feeding into a simplified biorefinery as a way to overcome these challenges. The analyses conducted address the structural and transactional issues facing bio-ethanol value chain establishment; the technical and financial feasibility of a stand alone pre-treatment center (RBPC); the impact of distributed pre-treatment on biomass transport costs; a comparative systems cost evaluation of the performance of the RBPC chain versus a fully integrated biorefinery (gIBRh), followed by application of the analytical framework to three case study regions.

  12. Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation.

    Science.gov (United States)

    Oshoma, Cyprian E; Greetham, Darren; Louis, Edward J; Smart, Katherine A; Phister, Trevor G; Powell, Chris; Du, Chenyu

    2015-01-01

    Formic acid is one of the major inhibitory compounds present in hydrolysates derived from lignocellulosic materials, the presence of which can significantly hamper the efficiency of converting available sugars into bioethanol. This study investigated the potential for screening formic acid tolerance in non-Saccharomyces cerevisiae yeast strains, which could be used for the development of advanced generation bioethanol processes. Spot plate and phenotypic microarray methods were used to screen the formic acid tolerance of 7 non-Saccharomyces cerevisiae yeasts. S. kudriavzeii IFO1802 and S. arboricolus 2.3319 displayed a higher formic acid tolerance when compared to other strains in the study. Strain S. arboricolus 2.3319 was selected for further investigation due to its genetic variability among the Saccharomyces species as related to Saccharomyces cerevisiae and availability of two sibling strains: S. arboricolus 2.3317 and 2.3318 in the lab. The tolerance of S. arboricolus strains (2.3317, 2.3318 and 2.3319) to formic acid was further investigated by lab-scale fermentation analysis, and compared with S. cerevisiae NCYC2592. S. arboricolus 2.3319 demonstrated improved formic acid tolerance and a similar bioethanol synthesis capacity to S. cerevisiae NCYC2592, while S. arboricolus 2.3317 and 2.3318 exhibited an overall inferior performance. Metabolite analysis indicated that S. arboricolus strain 2.3319 accumulated comparatively high concentrations of glycerol and glycogen, which may have contributed to its ability to tolerate high levels of formic acid.

  13. Practicability of Lignocellulosic Waste Composite in Controlling Air Pollution from Leaves Litter through Bioethanol Production

    Science.gov (United States)

    Tarrsini, Mahadevan; Teoh, Yi Peng; Ng, Qi Hwa; Kunasundari, Balakrishnan; Xian Ooi, Zhong; Siew Shuit, Hoong; Hoo, Peng Yong

    2018-03-01

    Environmental degradation through greenhouse emission have spurred nation’s interest on feedstock-based fuel. Yet, development of this clean biofuel is obstructed by the expensive feedstock which takes up most of the production cost. Therefore, as an alternative, utilization of widely available lignocellulosic residues with relatively no commercial significance has been considered. This present work emphasizes on mango (Mangifera indica) leaves one of the most abundant lignocellulosic waste in Malaysia. Through implementation of this biomass for bioethanol production, continuous allowance of air pollution with a deleterious impact to the country’s environment could be reduced. The high concentration of sugar (16-18%w/v) in the form of cellulose and hemicellulose is ultimately the reason behind the selection of these leaves as a substrate for bioethanol production. Hence, in this study, a comparison of biomass composition in Harum Manis, Sunshine and Chokanan mango leaves were conducted to detect the most suitable substrate source to produce biofuel. At the end of the biomass evaluation, Harum Manis mango leaves turned out to be the most competitive bioethanol crop as these leaves reported to be made up of 34.71% cellulose and 44.02% hemicellulose which summed up to give highest fermentable sugar source with a lignin content of 19.45%.

  14. Polyhydroxy glucose functionalized silica for the dehydration of bio-ethanol distillate.

    Science.gov (United States)

    Tang, Baokun; Bi, Wentao; Row, Kyung Ho

    2014-07-01

    Although most of the water in a bio-ethanol fermentation broth can be removed by distillation, a small amount of water remains in the bio-ethanol distillate as the water-ethanol azeotrope. To improve the use of ethanol as a fuel, glucose-modified silica, as an adsorbent, was prepared using a facile method and applied to the dehydration of bio-ethanol distillate. The factors affecting the adsorption capacity of the adsorbent, such as the particle size, initial concentration of water in the samples, adsorption temperature and adsorbent dose, were examined by measuring the adsorption kinetics and equilibrium. The Langmuir, Freundlich and Temkin isotherms were used to evaluate the adsorption efficiency. Of these, the Freundlich and Temkin isotherms showed a good correlation with the experimental data. The Langmuir isotherm showed some deviation from the experimental results, and indicated that adsorption in this case was not a simple monolayer adsorption. The property of the adsorbent was attributed to functionalized silica with many hydroxyl groups on its surface. An examination of the separation factors of water/ethanol revealed the modified silica to have preferential selectivity for water. Compared to activated carbon and silica, glucose-modified silica exhibited higher adsorption capacity for water under the same adsorption conditions. In addition, the glucose-modified silica adsorbent exhibited a relatively constant adsorption capacity for five adsorption/desorption cycles.

  15. Pressurized liquid extraction of ginger (Zingiber officinale Roscoe) with bioethanol: an efficient and sustainable approach.

    Science.gov (United States)

    Hu, Jiajin; Guo, Zheng; Glasius, Marianne; Kristensen, Kasper; Xiao, Langtao; Xu, Xuebing

    2011-08-26

    To develop an efficient green extraction approach for recovery of bioactive compounds from natural plants, we examined the potential of pressurized liquid extraction (PLE) of ginger (Zingiber officinale Roscoe) with bioethanol/water as solvents. The advantages of PLE over other extraction approaches, in addition to reduced time/solvent cost, the extract of PLE showed a distinct constituent profile from that of Soxhlet extraction, with significantly improved recovery of diarylheptanoids, etc. Among the pure solvents tested for PLE, bioethanol yield the highest efficiency for recovering most constituents of gingerol-related compounds; while for a broad concentration spectrum of ethanol aqueous solutions, 70% ethanol gave the best performance in terms of yield of total extract, complete constituent profile and recovery of most gingerol-related components. PLE with 70% bioethanol operated at 1500 psi and 100 °C for 20 min (static extraction time: 5 min) is recommended as optimized extraction conditions, achieving 106.8%, 109.3% and 108.0% yield of [6]-, [8]- and [10]-gingerol relative to the yield of corresponding constituent obtained by 8h Soxhlet extraction (absolute ethanol as extraction solvent). Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Simultaneous detoxification and bioethanol fermentation of furans-rich synthetic hydrolysate by digestate-based pyrochar.

    Science.gov (United States)

    Sambusiti, C; Monlau, F; Antoniou, N; Zabaniotou, A; Barakat, A

    2016-12-01

    Pyrolysis is a sustainable pathway to transform renewable biomasses into both biofuels and advanced carbonaceous materials (i.e. pyrochar) which can be used as adsorbent of furan compounds. In particular, the aim of this study was to: i) evaluate the effect of vibro-ball milling on physical characteristics of pyrochar and its consequent performance on solely detoxification of a synthetic medium, containing furans and soluble sugars; ii) study the simultaneous detoxification and bioethanol fermentation, by adding activated pyrochar into fermentation medium. Results demonstrated that, compared to untreated pyrochar, the use of milled pyrochar increased by 52% furfural removal from the synthetic medium. Furfural removal rate was also increased (adsorption kinetic constant increased from 0.015 min -1 up to 0.215 min -1 ), at a pyrochar loading of 40 g L -1 . Although, the simultaneous addition of pyrochar into the fermentation medium did not improve the bioethanol yield of the synthetic medium, it has significantly increased the bioethanol production rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Production of D-tagatose and bioethanol from onion waste by an intergrating bioprocess.

    Science.gov (United States)

    Kim, Ho Myeong; Song, Younho; Wi, Seung Gon; Bae, Hyeun-Jong

    2017-10-20

    The rapid increase of agricultural waste is becoming a burgeoning problem and considerable efforts are being made by numerous researchers to convert it into a high-value resource material. Onion waste is one of the biggest issues in a world of dwindling resource. In this study, the potential of onion juice residue (OJR) for producing valuable rare sugar or bioethanol was evaluated. Purified Paenibacillus polymyxaL-arabinose isomerase (PPAI) has a molecular weight of approximately 53kDa, and exhibits maximal activity at 30°C and pH 7.5 in the presence of 0.8mM Mn 2+ . PPAI can produce 0.99g D-tagatose from 10g OJR. In order to present another application for OJR, we produced 1.56g bioethanol from 10g OJR through a bioconversion and fermentation process. These results indicate that PPAI can be used for producing rare sugars in an industrial setting, and OJR can be converted to D-tagatose and bioethanol. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Role of energy policy in renewable energy accomplishment: The case of second-generation bioethanol

    International Nuclear Information System (INIS)

    Tan, Kok Tat; Lee, Keat Teong; Mohamed, Abdul Rahman

    2008-01-01

    Renewable energy has been in the limelight ever since the price of crude petroleum oil increases to the unprecedented height of US$96 per barrel recently. This is due to the diminishing oil reserves in the world and political instabilities in some oil-exporting countries. The advantages of renewable energy compared to fossil fuels are enormous in terms of environment and availability. Biofuels like bioethanol and biodiesel are currently being produced from agricultural products such as sugarcane and rapeseed oil, respectively. Collectively, these biofuels from food sources are known as first-generation biofuels. Although first-generation biofuels have the potential to replace fossil fuels as the main source of energy supply, its production is surrounded by certain issues like tropical forests' destruction. Instead, second-generation bioethanol, which utilizes non-edible sources such as lignocellulose biomass to produce ethanol, has been shown to be more suitable as the source of renewable energy. However, there are challenges and obstacles such as cost, technology and environmental issues that need to be overcome. Hence, the introduction of energy policy is crucial in promoting and implementing second-generation bioethanol effectively and subsequently become a major source of renewable energy

  19. Carob pod as a feedstock for the production of bioethanol in Mediterranean areas

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, S.; Lozano, L.J.; Godinez, C.; Juan, D.; Perez, A.; Hernandez, F.J. [Technical University of Cartagena, Department of Chemical and Environmental Engineering, C/Dr. Fleming S/N, Campus Muralla del Mar, 30202 Cartagena (Spain)

    2010-11-15

    There is a growing interest worldwide to find out new and cheap carbohydrate sources for production of bioethanol. In this context, carob pod (Ceratonia siliqua) is proposed as an economical source for bioethanol production, especially, in arid regions. The carob tree is an evergreen shrub native to the Mediterranean region, cultivated for its edible seed pods and it is currently being reemphasised as an alternative in dryland areas, because no carbon-enriched lands are necessary. In this work, the global process of ethanol production from carob pod was studied. In a first stage, aqueous extraction of sugars from the pod was conducted, achieving very high yields (>99%) in a short period of time. The process was followed by acid or alkaline hydrolysis of washed pod at different operating conditions, the best results (R = 38.20%) being reached with sulphuric acid (2% v/v) at 90 C, using a L/S (liquid/solid) ratio of 7.5 and shaking at 700 rpm for 420 min. After that, fermentation of hydrolysates were tested at 30 C, 125 rpm, 200 g/L of sugars and 15 g/L of yeast with three different kinds of yeasts. In these conditions a maximum of 95 g/L of ethanol was obtained after 24 h. Finally, the distillation and dehydration of water-bioethanol mixtures was analyzed using the chemical process simulation software CHEMCAD with the aim of estimate the energy requirements of the process. (author)

  20. Purification Simulation With Vapor Permeation and Distillation-Adsorption In Bioethanol Plant

    Directory of Open Access Journals (Sweden)

    Misri Gozan

    2017-04-01

    Full Text Available High purity of Bioethanol is required in biofuel mixing with gasoline (EXX. In bioethanol production line, the azeotropic property of ethanol-water becomes the barrier for purification process. This study examined two bioethanol separation processes by support of simulation tools, Superpro Designer 9.0 software. Ethanol purity and a low costeconomical process were the major considerations. Purification method of vapor permeation membrane technology was compared with distillation-adsorption method. Data from previous lab experiments and some literatures were used. The results showed that distillation-adsorption method is more economical compared to vapor permeation technology. Payback period of the simulation is 3.9 years and 4.3 years to distillation adsorption and vapor permeation respectively with each IRR value is 20.23% and 17.89%. Initial investment value of vapor permeation is 9.6% higher than distillation method. Significant difference observed in operating costs, since more units involved in vapor permeation require more labors to operate.

  1. Potential bioethanol feedstock availability around nine locations in the Republic of Ireland

    International Nuclear Information System (INIS)

    Deverell, R.; McDonnell, K.; Devlin, G.

    2009-01-01

    The Republic of Ireland, like many other countries is trying to diversify energy sources to counteract environmental, political and social concerns. Bioethanol from domestically grown agricultural crops is an indigenously produced alternative fuel that can potentially go towards meeting the goal of diversified energy supply. The Republic of Ireland's distribution of existing soils and agricultural land-uses limit arable crop land to around 10% of total agricultural area. Demand for land to produce arable crops is expected to decrease, which could open the opportunity for bioethanol production. Bioethanol production plants are required to be of a sufficient scale in order to compete economically with other fuel sources, it is important therefore to determine if enough land exists around potential ethanol plant locations to meet the potential demands for feedstock. This study determines, through the use of a developed GIS based model, the potential quantities of feedstock that is available in the hinterlands of nine locations in the Republic of Ireland. The results indicate that three locations can meet all its feedstock demands using indigenously grown sugarbeet, while only one location can meet its demands using a combination of indigenous wheat and straw as the two locally sourced feedstocks. (author)

  2. Potential of fecal waste for the production of biomethane, bioethanol and biodiesel.

    Science.gov (United States)

    Gomaa, Mohamed A; Abed, Raeid M M

    2017-07-10

    Fecal waste is an environmental burden that requires proper disposal, which ultimately becomes also an economic burden. Because fecal waste is nutrient-rich and contains a diverse methanogenic community, it has been utilized to produce biomethane via anaerobic digestion. Carbohydrates and lipids in fecal waste could reach up to 50% of the dry weight, which also suggests a potential as a feedstock for bioethanol and biodiesel production. We measured biomethane production from fecal waste of cows, chickens, goats and humans and compared the microbial community composition before and after anaerobic digestion. We also compared the fecal waste for cellulase production, saccharification and fermentation to produce bioethanol and for lipid content and fatty acid profiles to produce biodiesel. All fecal waste produced biomethane, with the highest yield of 433.4±77.1ml CH 4 /g VS from cow fecal waste. Production of bioethanol was achieved from all samples, with chicken fecal waste yielding as high as 1.6±0.25g/l. Sludge samples exhibited the highest extractable portion of lipids (20.9±0.08wt%) and conversion to fatty acid methyl esters (11.94wt%). Utilization of fecal waste for the production of biofuels is environmentally and economically beneficial. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Potential Bioethanol Feedstock Availability Around Nine Locations in the Republic of Ireland

    Directory of Open Access Journals (Sweden)

    Rory Deverell

    2009-03-01

    Full Text Available The Republic of Ireland, like many other countries is trying to diversify energy sources to counteract environmental, political and social concerns. Bioethanol from domestically grown agricultural crops is an indigenously produced alternative fuel that can potentially go towards meeting the goal of diversified energy supply. The Republic of Ireland’s distribution of existing soils and agricultural land-uses limit arable crop land to around 10% of total agricultural area. Demand for land to produce arable crops is expected to decrease, which could open the opportunity for bioethanol production. Bioethanol production plants are required to be of a sufficient scale in order to compete economically with other fuel sources, it is important therefore to determine if enough land exists around potential ethanol plant locations to meet the potential demands for feedstock. This study determines, through the use of a developed GIS based model, the potential quantities of feedstock that is available in the hinterlands of nine locations in the Republic of Ireland. The results indicate that three locations can meet all its feedstock demands using indigenously grown sugarbeet, while only one location can meet its demands using a combination of indigenous wheat and straw as the two locally sourced feedstocks.

  4. Pretreated of banana pseudo-stem as raw material for enzymatic hydrolysis and bioethanol production

    Directory of Open Access Journals (Sweden)

    Kusmiyati

    2018-01-01

    Full Text Available Development of alternative energy is needed to solve the energy problem, including bioethanol. Banana pseudo-stem is a lignocellulose material that can used to produce bioethanol. Banana pseudo-stem has 28.83% cellulose and 19.39% lignin. The amount of lignin will reduce by pretreatment process. Variations of pretreatment methods by autoclaving of banana-pseudo stem in a steam, 0.5N, 1N, 1.5N, 2N NaOH solutions for 90 minutes were employed. Then the preteated samples were further enzymatic hydrolysed for 24, 48, 72 hours. The fermentation method of simultaneous saccharification and fermentation (SSF was applied using cellulase enzyme and yeast of Saccharomyces cerevisiae for 120 hours. The variation of the pretreatment process by increasing of NaOH concentration solutions led to decreased the lignin content while increased in cellulose content. The lowest lignin content was 11.44% and the highest cellulose was 51.66%. The highest sugar content was 29.8 g/L (at pretreatment 2N NaOH solution, 72 hours hydrolysis. The highest bioethanol amount (4.32 g/L was produced from pretreated banana stem using 2N NaOH solution.

  5. Biological Pretreatment of Rubberwood with Ceriporiopsis subvermispora for Enzymatic Hydrolysis and Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Forough Nazarpour

    2013-01-01

    Full Text Available Rubberwood (Hevea brasiliensis, a potential raw material for bioethanol production due to its high cellulose content, was used as a novel feedstock for enzymatic hydrolysis and bioethanol production using biological pretreatment. To improve ethanol production, rubberwood was pretreated with white rot fungus Ceriporiopsis subvermispora to increase fermentation efficiency. The effects of particle size of rubberwood (1 mm, 0.5 mm, and 0.25 mm and pretreatment time on the biological pretreatment were first determined by chemical analysis and X-ray diffraction and their best condition obtained with 1 mm particle size and 90 days pretreatment. Further morphological study on rubberwood with 1 mm particle size pretreated by fungus was performed by FT-IR spectra analysis and SEM observation and the result indicated the ability of this fungus for pretreatment. A study on enzymatic hydrolysis resulted in an increased sugar yield of 27.67% as compared with untreated rubberwood (2.88%. The maximum ethanol concentration and yield were 17.9 g/L and 53% yield, respectively, after 120 hours. The results obtained demonstrate that rubberwood pretreated by C. subvermispora can be used as an alternative material for the enzymatic hydrolysis and bioethanol production.

  6. A review of conversion processes for bioethanol production with a focus on syngas fermentation

    Directory of Open Access Journals (Sweden)

    Mamatha Devarapalli

    2015-09-01

    Full Text Available Bioethanol production from corn is a well-established technology. However, emphasis on exploring non-food based feedstocks is intensified due to dispute over utilization of food based feedstocks to generate bioethanol. Chemical and biological conversion technologies for non-food based biomass feedstocks to biofuels have been developed. First generation bioethanol was produced from sugar based feedstocks such as corn and sugar cane. Availability of alternative feedstocks such as lignocellulosic and algal biomass and technology advancement led to the development of complex biological conversion processes, such as separate hydrolysis and fermentation (SHF, simultaneous saccharification and fermentation (SSF, simultaneous saccharification and co-fermentation (SSCF, consolidated bioprocessing (CBP, and syngas fermentation. SHF, SSF, SSCF, and CBP are direct fermentation processes in which biomass feedstocks are pretreated, hydrolyzed and then fermented into ethanol. Conversely, ethanol from syngas fermentation is an indirect fermentation that utilizes gaseous substrates (mixture of CO, CO2 and H2 made from industrial flue gases or gasification of biomass, coal or municipal solid waste. This review article provides an overview of the various biological processes for ethanol production from sugar, lignocellulosic, and algal biomass. This paper also provides a detailed insight on process development, bioreactor design, and advances and future directions in syngas fermentation.

  7. Enzymatic saccharification and bioethanol production from Cynara cardunculus pretreated by steam explosion.

    Science.gov (United States)

    Fernandes, Maria C; Ferro, Miguel D; Paulino, Ana F C; Mendes, Joana A S; Gravitis, Janis; Evtuguin, Dmitry V; Xavier, Ana M R B

    2015-06-01

    The correct choice of the specific lignocellulosic biomass pretreatment allows obtaining high biomass conversions for biorefinery implementations and cellulosic bioethanol production from renewable resources. Cynara cardunculus (cardoon) pretreated by steam explosion (SE) was involved in second-generation bioethanol production using separate hydrolysis and fermentation (SHF) or simultaneous saccharification and fermentation (SSF) processes. Steam explosion pretreatment led to partial solubilisation of hemicelluloses and increased the accessibility of residual polysaccharides towards enzymatic hydrolysis revealing 64% of sugars yield against 11% from untreated plant material. Alkaline extraction after SE pretreatment of cardoon (CSEOH) promoted partial removal of degraded lignin, tannins, extractives and hemicelluloses thus allowing to double glucose concentration upon saccharification step. Bioethanol fermentation in SSF mode was faster than SHF process providing the best results: ethanol concentration 18.7 g L(-1), fermentation efficiency of 66.6% and a yield of 26.6g ethanol/100 g CSEOH or 10.1 g ethanol/100 g untreated cardoon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Optimization of enzymatic hydrolysis and fermentation conditions for improved bioethanol production from potato peel residues.

    Science.gov (United States)

    Ben Taher, Imen; Fickers, Patrick; Chniti, Sofien; Hassouna, Mnasser

    2017-03-01

    The aim of this work was the optimization of the enzyme hydrolysis of potato peel residues (PPR) for bioethanol production. The process included a pretreatment step followed by an enzyme hydrolysis using crude enzyme system composed of cellulase, amylase and hemicellulase, produced by a mixed culture of Aspergillus niger and Trichoderma reesei. Hydrothermal, alkali and acid pretreatments were considered with regards to the enhancement of enzyme hydrolysis of potato peel residues. The obtained results showed that hydrothermal pretreatment lead to a higher enzyme hydrolysis yield compared to both acid and alkali pretreatments. Enzyme hydrolysis was also optimized for parameters such as temperature, pH, substrate loading and surfactant loading using a response surface methodology. Under optimized conditions, 77 g L -1 of reducing sugars were obtained. Yeast fermentation of the released reducing sugars led to an ethanol titer of 30 g L -1 after supplementation of the culture medium with ammonium sulfate. Moreover, a comparative study between acid and enzyme hydrolysis of potato peel residues was investigated. Results showed that enzyme hydrolysis offers higher yield of bioethanol production than acid hydrolysis. These results highlight the potential of second generation bioethanol production from potato peel residues treated with onsite produced hydrolytic enzymes. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:397-406, 2017. © 2017 American Institute of Chemical Engineers.

  9. After the crisis: which future for the competitive power market of Ontario?; Apres la crise: quel avenir pour le marche concurrentiel d'electricite de l'Ontario?

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, P

    2003-07-01

    This document presents the power distribution system of Ontario (Canada) and the crisis that followed the opening of the electricity market on May 1, 2002 in Ontario. The author explains the process of reforms of the power market, the re-structuration of Ontario Hydro company and the occurrence of new energy companies (73 new retailers), the launching of a wholesale market, the reasons of the crisis (25% average rise of electricity prices) and the lessons to be learned from. In front of this situation, a freezing of electricity prices to their level prior to May 2002 and a reimbursement of the difference paid by consumers since May 2002 have been decided by the government up to 2006. (J.S.)

  10. Addressing land use change and uncertainty in the life-cycle assessment of wheat-based bioethanol

    International Nuclear Information System (INIS)

    Malça, João; Freire, Fausto

    2012-01-01

    Despite the significant growth in the number of published life-cycle assessments of biofuels, important aspects have not captured sufficient attention, namely soil carbon emissions from land use change (LUC) and uncertainty analysis. The main goal of this article is to evaluate the implications of different LUC scenarios and uncertainty in the life-cycle energy renewability efficiency and GHG (greenhouse gases) intensity of wheat-based bioethanol replacing gasoline. A comprehensive assessment of different LUC scenarios (grassland or cropland converted to wheat cultivation) and agricultural practices is conducted, which results in different carbon stock change values. The types of uncertainty addressed include parameter uncertainty (propagated into LC (life-cycle) results using Monte-Carlo simulation) and uncertainty concerning how bioethanol co-product credits are accounted for. Results show that GHG emissions have considerably higher uncertainty than energy efficiency values, mainly due to soil carbon emissions from direct LUC and N 2 O release from cultivated soil. Moreover, LUC dominates the GHG intensity of bioethanol. Very different GHG emissions are calculated depending on the LUC scenario considered. Conversion of full- or low-tillage croplands to wheat cultivation results in bioethanol GHG emissions lower than gasoline emissions, whereas conversion of grassland does not contribute to bioethanol GHG savings over gasoline in the short- to mid-term. -- Highlights: ► We address different LUC scenarios and uncertainty in the LCA of wheat bioethanol. ► GHG emissions have considerably higher uncertainty than energy efficiency values. ► Bioethanol contributes to primary energy savings over gasoline. ► Very different life-cycle GHG emissions are calculated depending on the LUC scenario. ► GHG savings over gasoline are only achieved if cropland is the reference land use.

  11. Le plurilinguisme du perroquet

    Directory of Open Access Journals (Sweden)

    Manuel Mühlbacher

    2012-05-01

    Full Text Available La figure du perroquet occupe une position ambiguë face à la question de la traduction. Il est capable d’imiter des paroles en toutes les langues, mais il n’est capable d’en comprendre aucune — il ne peut que répéter des sons, c’est-à-dire des signifiants. Le traducteur semble faire le contraire quand il passe d’une langue à une autre en tâchant de transmettre une signification semblable par d’autres signes. L’article vise à discuter lele du traducteur et sa relation, éventuellement équivoque, au perroquet, en analysant la traduction allemande de Trois Contes par André Stoll et Cora van Kleffens. Un décalage au niveau sémantique peut éclairer l’interprétation du texte, par exemple en explicitant des allusions sous-jacentes, tandis que le transfert de la syntaxe française en allemand pose souvent des problèmes considérables. Comment le traducteur peut-il reproduire des structures syntaxiques qui n’existent pas en allemand, mais qui ne cessent de revenir dans le texte français ? Que faire si le texte se met à jouer au perroquet et finit par se singer lui-même ? André Stoll et Cora van Kleffens ont su trouver des stratégies pour affronter ces difficultés.The figure of the parrot holds an ambiguous position towards the question of translation. It is able to imitate all languages, but it will never understand any of them – its only skill is to mimic sounds, i.e. mere signifiers. On the contrary, the translator seems to be the antithesis of the parrot when he moves from one language to another. He endeavours to convey a similar meaning, but by different signs. The article aims at discussing the role of the translator and his or her eventually equivocal relation to the parrot by means of analysing the German translation of Trois Contes by André Stoll and Cora van Kleffens. Whereas a semantic divergence can result in a different tendency on the level of interpretation, as in the case of an underlying

  12. Le cru, le cuit et le pourri dans _Le vice-consul_ de Marguerite Duras

    Directory of Open Access Journals (Sweden)

    Hélène Caron

    2011-05-01

    Full Text Available Bien que plusieurs articles critiques aient déjà avancé de nouvelles perspectives sur le texte Le Vice-Consul (LVC de Marguerite Duras, l’analyse de la représentation de la nourriture dans ce roman n’a fait l’objet d’aucune étude. Cet article tente donc de combler cette lacune en proposant d’analyser les images du cru et du cuit, images qui se rejoignent sous les notions du pourri et de l’abject, tout en offrant quelques interprétations de l’un des passages critiques du roman où la folle mendiante croque la tête d’un poisson vivant.

  13. Le charme slave

    Directory of Open Access Journals (Sweden)

    Antonella Mauri

    2012-09-01

    Full Text Available Antonella Mauri analyse l’image des femmes slaves immigrées en Italie telle qu’elle apparaît à travers la publicité, la littérature romanesque (La ballata dei lavavetri de Peter Del monte, Luce Profuga de Valerio Aiolli, Pornokiller de Bruno Ventavoli, le cinéma, la bande dessinée (Danilo Maramotti, image qu’elle oppose aux résultats d’une enquête qu’elle a menée sur le terrain. Elle s’interroge en particulier sur la permanence des stéréotypes liés à la femme slave.

  14. Le Brahmane du Komintern

    Directory of Open Access Journals (Sweden)

    Elizabeth Burgos

    2008-01-01

    Full Text Available Le Brahmane du Komintern, largometraje documental del realizador francés Vladimir León, constituye un ejercicio ejemplar de investigación histórica y  de lograda factura de realización. Y, pese a no haber contado con la ayuda de ninguno organismo público, se trata de un ambicioso proyecto que cubre una amplia extensión geográfica que abarca: Estados Unidos, México, Moscú, Berlín, y la India. Gira en torno a una figura que tuvo en su tiempo su hora de gloria. Un bengalí, hijo de braman, la c...

  15. Le monde quantique

    CERN Document Server

    Aspect, A; Bensaude-Vincent, B; Castiel, A; Chevalley, C; Darrigol, O; Deligeorges, S; D'Espagnat, B; Laloë, F; Lévy-Leblond, J-M; Messiah, A; Paty, M; Vuillemin, J; Wheaton, B R

    1984-01-01

    Le monde quantique La physique quantique, après trois quarts de siècle, n'en finit pas d'être moderne. Elle est présente quotidiennement dans les laboratoires où les physiciens étudient atomes, noyaux et particules. Elle est entrée dans l'industrie où lasers, transistors et supraconducteurs lui doivent d'exister. Et elle continue à alimenter le débat philosophique sur la nature de la réalité dont elle montre la non-séparabilité fondamentale. Ses concepts de base, son développement, ses applications, ses controverses sont ici présentés par une pléiade de physiciens, d'historiens et de philosophes.

  16. Energy from whey - comparison of the biogas and bioethanol processes; Energie a partir de petit-lait : comparaison des filieres biogaz et bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Fruteau de Laclos, H.; Membrez, Y. [Erep SA, Aclens (Switzerland)

    2004-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project which investigated how energy could be generated from the whey produced in the cheese-making process. The first part of the project aimed to validate a concept for on-site production and use of biogas at a medium-sized cheese factory. The results of the first step, an experimental study carried out using a down-flow fixed-film bio-reactor, are discussed. This allowed the determination of the optimal working parameters as well as providing an estimate of the performance of the process. The second part of the project aimed to compare the bio-ethanol and biogas production processes. It was carried out in collaboration with AlcoSuisse and the Energy Systems Laboratory at the Swiss Federal Institute of Technology (EPFL) in Lausanne. The results of a life-cycle assessment (LCA) are discussed, which compared the two processes from an environmental point of view. Here, two impacts were considered: fossil fuel consumption and greenhouse effect. The replacement of fuel-oil with biogas for heat production and the replacement of conventional petrol with mixture including 5% bio-ethanol were examined. The results are presented that show that there was no significant difference between the two processes. According to the authors, the treatment of one cubic meter of cheese-whey allows savings of more than 20 litres of oil equivalent and 60 kg of CO{sub 2} emissions.

  17. Le CRDI au Ghana

    International Development Research Centre (IDRC) Digital Library (Canada)

    pour prévenir le paludisme, des études ayant démontré que leur utilisation pouvait réduire considérablement la mortalité infantile. Les chercheurs ont également suggéré aux gouvernements différents moyens pour inciter les gens à acheter les moustiquaires et à les utiliser correctement. Les TI au service de la démocratie.

  18. Le Culture preistoriche

    OpenAIRE

    Tanda, Giuseppa

    1987-01-01

    Le più antiche manifestazioni della presenza dell'uomo, nella provincia di Sassari (e in Sardegna), risalgono al Quaternario: sono state osservate nel 1979, nel bacino del rio Altana-Anzos, situato nel territorio dei comuni di Laerru e Perfugas. Il presente lavoro propone un excursus dal Paleolitico al Neolitico (antico, medio e recente) fino all'Età del Rame e all'Età del Bronzo (II metà del III millennio-1600 a.C.).

  19. Le CRDI en Chine

    International Development Research Centre (IDRC) Digital Library (Canada)

    les employés du secteur non structuré ont de meilleures conditions de travail. □ les citoyens influencent les décisions relatives aux dépenses publiques. Soutien accordé par le CRDI depuis 1981. 222 activités d'une valeur de 59 millions CAD. Chercheurs et agriculteurs s'emploient à améliorer les moyens de subsistance.

  20. Le CRDI en Tunisie

    International Development Research Centre (IDRC) Digital Library (Canada)

    les citoyens arabes sont plus présents sur Internet. Soutien accordé depuis 1975. 49 activités. 8 millions cad. Dans la foulée du Printemps arabe, les chercheurs conçoivent des réformes visant à assurer l'essor de la démocratie et en examinent la validité. CRDI centre de recherches pour le développement international.

  1. Beware of ligand efficiency (LE): understanding LE data in modeling structure-activity and structure-economy relationships.

    Science.gov (United States)

    Polanski, Jaroslaw; Tkocz, Aleksandra; Kucia, Urszula

    2017-09-11

    On the one hand, ligand efficiency (LE) and the binding efficiency index (BEI), which are binding properties (B) averaged versus the heavy atom count (HAC: LE) or molecular weight (MW: BEI), have recently been declared a novel universal tool for drug design. On the other hand, questions have been raised about the mathematical validity of the LE approach. In fact, neither the critics nor the advocates are precise enough to provide a generally understandable and accepted chemistry of the LE metrics. In particular, this refers to the puzzle of the LE trends for small and large molecules. In this paper, we explain the chemistry and mathematics of the LE type of data. Because LE is a weight metrics related to binding per gram, its hyperbolic decrease with an increasing number of heavy atoms can be easily understood by its 1/MW dependency. Accordingly, we analyzed how this influences the LE trends for ligand-target binding, economic big data or molecular descriptor data. In particular, we compared the trends for the thermodynamic ∆G data of a series of ligands that interact with 14 different target classes, which were extracted from the BindingDB database with the market prices of a commercial compound library of ca. 2.5 mln synthetic building blocks. An interpretation of LE and BEI that clearly explains the observed trends for these parameters are presented here for the first time. Accordingly, we show that the main misunderstanding of the chemical meaning of the BEI and LE parameters is their interpretation as molecular descriptors that are connected with a single molecule, while binding is a statistical effect in which a population of ligands limits the formation of ligand-receptor complexes. Therefore, LE (BEI) should not be interpreted as a molecular (physicochemical) descriptor that is connected with a single molecule but as a property (binding per gram). Accordingly, the puzzle of the surprising behavior of LE is explained by the 1/MW dependency. This effect

  2. Voorlichting als instrument voor beïnvloeding van vervoers- en verkeersgedrag : een beschouwing over potentiële functies in relatie tot andere instrumenten, in het kader van sociale marketing.

    NARCIS (Netherlands)

    Wittink, R.D.

    1993-01-01

    This report describes how information policy aimed at behaviour in traffic and transport can be designed in a systematic fashion. A stepwise plan is used, taken from the field of social marketing. The following steps can be distinguished: (1) a situation analysis aimed at: a) problem-causing

  3. SEE electric systems. The electricity market opens up. New challenges in metering; SEE reseaux electriques. L'ouverture du marche de l'electricite. Un nouveau defi pour le comptage

    Energy Technology Data Exchange (ETDEWEB)

    Bergerot, J.L. [Electricite de France (EDF), 75 - Paris (France); Doulet, A.; Delorme, G. [EDF-GDF Services, 33 - Bordeaux (France). Groupe d' appui et d' assistance gaz] [and others

    2001-07-01

    The application of the European Directive on the opening up of the energy market redefines the role of companies involved in the production, transmission and distribution of electricity so that eligible customers can henceforth take advantage of the opportunities presented by a genuine market. During this conference managers of transmission and distribution networks will explain the actions they intend to put into place to fulfill their mission. Eligible customers will express their expectations in terms of the market transparency, real prices and contract periods as well as explaining their requirements relating to the quality of electricity and service. Electricity suppliers will indicate the fields in which they aim to differentiate their offer, starting with a product which until now seemed banal. A foreign network manager will share his recent experiences, as regards all of these points. Finally, the constructors will show how traditional metering will evolve to become the management tool to monitor the complex relationships between all the players in the electricity market. (authors)

  4. The potential of macroalgae as a source of carbohydrates for use in bioethanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Nwachukwu, A.N. [School of Earth, Atmospheric and Environmental Sciences, University of Manchester (United Kingdom); Chukwu, M.A. [Department of Sustainable Chemical Engineering, University of Newcastle Upon Tyne (United Kingdom)

    2012-07-01

    Fossil fuel which is the global energy source gives rise to land contamination, air pollution, climate change, fuel crises, hike of price of petroleum products, crises in oil producing nations, dependency on oil producing countries and high risk associated with oil exploitation has led to a search for sustainable and efficient energy sources. Several types and sources of biofuels have been recently studied as potential source of energy to replace the environmentally unfriendly fossil fuels. Bioethanol produced from terrestrial plants have attracted the attention of the global society, though numerous controversies and debates were associated with the technology; such as the issue of food versus fuel competition, which further encouraged more research work on a sustainable renewable bioethanol source. This study aims at determining total carbohydrates from macroalgal specie (Laminaria digitata) for use in bioethanol fermentation, also using wet and analytical chemistry to extract and spectrophotometrically analyse the sample in respect to glucose and sucrose standards. The samples were lyophilized and the resulting powder extracted in a water bath at 100oC in 15minutes. The analysis was performed using anthrone (colorimetric) method and the analyte read in a UV-visible spectrophotometer at 620nm. The result showed that carbohydrates were present in the samples, indicated by green and yellow, colourless pigments. Glucose and sucrose were the main identified sugars from the standards analysed. The concentration of sugars varied with time; months and seasons of the year. Result of the samples showed highest level of sugar concentration in May 2010 and lowest sugar concentration in November 2010. It was observed that the mass of sugars (glucose and sucrose) deposited as a result of photosynthesis, significantly contributed to the weight of biomass. The implication of the result indicated that: the smaller the biomass, the most likely it is to have lower mass of sugars

  5. Optimization of bioethanol production from carbohydrate rich wastes by extreme thermophilic microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Tomas, A.F.

    2013-05-15

    Second-generation bioethanol is produced from residual biomass such as industrial and municipal waste or agricultural and forestry residues. However, Saccharomyces cerevisiae, the microorganism currently used in industrial first-generation bioethanol production, is not capable of converting all of the carbohydrates present in these complex substrates into ethanol. This is in particular true for pentose sugars such as xylose, generally the second major sugar present in lignocellulosic biomass. The transition of second-generation bioethanol production from pilot to industrial scale is hindered by the recalcitrance of the lignocellulosic biomass, and by the lack of a microorganism capable of converting this feedstock to bioethanol with high yield, efficiency and productivity. In this study, a new extreme thermophilic ethanologenic bacterium was isolated from household waste. When assessed for ethanol production from xylose, an ethanol yield of 1.39 mol mol-1 xylose was obtained. This represents 83 % of the theoretical ethanol yield from xylose and is to date the highest reported value for a native, not genetically modified microorganism. The bacterium was identified as a new member of the genus Thermoanaerobacter, named Thermoanaerobacter pentosaceus and was subsequently used to investigate some of the factors that influence secondgeneration bioethanol production, such as initial substrate concentration and sensitivity to inhibitors. Furthermore, T. pentosaceus was used to develop and optimize bioethanol production from lignocellulosic biomass using a range of different approaches, including combination with other microorganisms and immobilization of the cells. T. pentosaceus could produce ethanol from a wide range of substrates without the addition of nutrients such as yeast extract and vitamins to the medium. It was initially sensitive to concentrations of 10 g l-1 of xylose and 1 % (v/v) ethanol. However, long term repeated batch cultivation showed that the strain

  6. Le Conseil des gouverneurs | CRDI - Centre de recherches pour le ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Le Conseil des gouverneurs guide le travail du CRDI en lui fournissant une orientation stratégique, en examinant ses activités et en approuvant ses budgets. Les gouverneurs – un maximum de 14 – sont nommés par le gouverneur en conseil du Canada pour un mandat d'au plus quatre ans, qui peut être reconduit. La Loi ...

  7. Le FIVB annonce le financement de cinq autres projets | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    10 avr. 2018 ... En partenariat avec la Fondation Bill et Melinda Gates et Affaires mondiales Canada, le CRDI est heureux d'annoncer la prochaine série de projets soutenus par le Fonds d'innovation en matière de vaccins pour le bétail (FIVB). À ce jour, 11 projets ont obtenu un financement total de 13,6 millions de CAD ...

  8. Le nouveau modèle africain | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    22 juil. 2011 ... L'annulation de la dette, un commerce plus équitable, davantage d'aide : voilà le plan d'action mondial dont on convient qu'il faut de toute urgence mettre en oeuvre en vue d'accélérer le développement en Afrique. Or, ce serait rater le bateau que de ne pas s'engager dans la voie tout autre que les ...

  9. Phenotypic characterisation of Saccharomyces spp. yeast for tolerance to stresses encountered during fermentation of lignocellulosic residues to produce bioethanol

    Science.gov (United States)

    2014-01-01

    Background During industrial fermentation of lignocellulose residues to produce bioethanol, microorganisms are exposed to a number of factors that influence productivity. These include inhibitory compounds produced by the pre-treatment processes required to release constituent carbohydrates from biomass feed-stocks and during fermentation, exposure of the organisms to stressful conditions. In addition, for lignocellulosic bioethanol production, conversion of both pentose and hexose sugars is a pre-requisite for fermentative organisms for efficient and complete conversion. All these factors are important to maximise industrial efficiency, productivity and profit margins in order to make second-generation bioethanol an economically viable alternative to fossil fuels for future transport needs. Results The aim of the current study was to assess Saccharomyces yeasts for their capacity to tolerate osmotic, temperature and ethanol stresses and inhibitors that might typically be released during steam explosion of wheat straw. Phenotypic microarray analysis was used to measure tolerance as a function of growth and metabolic activity. Saccharomyces strains analysed in this study displayed natural variation to each stress condition common in bioethanol fermentations. In addition, many strains displayed tolerance to more than one stress, such as inhibitor tolerance combined with fermentation stresses. Conclusions Our results suggest that this study could identify a potential candidate strain or strains for efficient second generation bioethanol production. Knowledge of the Saccharomyces spp. strains grown in these conditions will aid the development of breeding programmes in order to generate more efficient strains for industrial fermentations. PMID:24670111

  10. Life cycle energy efficiency and environmental impact assessment of bioethanol production from sweet potato based on different production modes

    Science.gov (United States)

    Zhang, Jun; Jia, Chunrong; Wu, Yi; Xi, Beidou; Wang, Lijun; Zhai, Youlong

    2017-01-01

    The bioethanol is playing an increasingly important role in renewable energy in China. Based on the theory of circular economy, integration of different resources by polygeneration is one of the solutions to improve energy efficiency and to reduce environmental impact. In this study, three modes of bioethanol production were selected to evaluate the life cycle energy efficiency and environmental impact of sweet potato-based bioethanol. The results showed that, the net energy ratio was greater than 1 and the value of net energy gain was positive in the three production modes, in which the maximum value appeared in the circular economy mode (CEM). The environment emission mainly occurred to bioethanol conversion unit in the conventional production mode (CPM) and the cogeneration mode (CGM), and eutrophication potential (EP) and global warming potential (GWP) were the most significant environmental impact category. While compared with CPM and CGM, the environmental impact of CEM significantly declined due to increasing recycling, and plant cultivation unit mainly contributed to EP and GWP. And the comprehensive evaluation score of environmental impact decreased by 73.46% and 23.36%. This study showed that CEM was effective in improving energy efficiency, especially in reducing the environmental impact, and it provides a new method for bioethanol production. PMID:28672044

  11. Environmental impacts of producing bioethanol and biobased lactic acid from standalone and integrated biorefineries using a consequential and an attributional life cycle assessment approach

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Knudsen, Marie Trydeman; Birkved, Morten

    2017-01-01

    : a standalone system producing bioethanol from winter wheat-straw (system A), a standalone system producing biobased lactic acid from alfalfa (system B), and an integrated biorefinery system (system C) combining the two standalone systems and producing both bioethanol and lactic acid. The synergy...

  12. Determination of total acidity index in bioethanol by automated potentiometric titration; Determinacao do indice de acidez total em bioetanol por titulacao potenciometrica automatizada

    Energy Technology Data Exchange (ETDEWEB)

    Sobral, Sidney Pereira; Ribeiro, Carla de Matos; Fraga, Isabel Cristina Serta; Goncalves, Mary Ane [Instituto Nacional de Metrologia, Normalizacao e Qualidade Industrial (DIMCI/INMETRO), Duque de Caxias, RJ (Brazil). Diretoria de Metrologia Cientifica e Industrial], E-mail: spsobral@inmetro.gov.br

    2009-07-01

    This paper determines the total acidity index of bioethanol by volumetric titration with potentiometric detection. Also, viewing the optimization of the method, studies are exhibited related to the repeatable, besides the comparison with the colorimetric method with the objective to contribute to the certification of bioethanol reference materials.

  13. Natural gas: which growth and which markets in a context of high petroleum prices?; Le gaz naturel: quelle croissance, quels marches dans un conteste de prix eleves du petrole?

    Energy Technology Data Exchange (ETDEWEB)

    Appert, O. [Institut Francais du Petrole (IFP), 92 - Rueil Malmaison (France); Chabrelie, M.F. [CEDIGAZ, 92 - Rueil Malmaison (France); Zofrea, F.; Bellussi, G. [EniTecnologie (Italy); Dauger, J.M. [Gaz de France (GDF), 75 - Paris (France); Bigeard, P.H. [Institut Francais du Petrole, 69 - Vernaison (France); Courtois, A.; Renaudie, Th. [Gaz de France, 26 - Valence (France); Cervantes, V. [IRISBUS / Iveco (France); Buffet, P. [Groupe Suez (France)

    2006-07-01

    Beyond the technological stakes linked with the use of natural gas, a new geopolitical equilibrium is coming due to the different geographical distribution of gas and petroleum reserves. New countries and new markets are entering the game and may change the worldwide balance of energy powers. At the occasion of its annual 'Panorama' colloquium, the French institute of petroleum (IFP) tackles the question of the crucial role that natural gas will play in a context of high petroleum prices. Natural gas has serious economical and environmental advantages and already occupies an important position in the residential, industrial and power generation sectors and should become a major fuel for tomorrows' transportation systems. This document gathers 10 presentations (article and transparencies) given at the colloquium and dealing with: the 2005 world energy outlook: analyses and impacts (O. Appert); the future of natural gas in Europe (M.F. Chabrelie); the perspectives and new openings for LNG in a changing market (P. Buffet); the perspectives of the gas-to-liquid (GTL) industry (F. Zofrea); the opening of the natural gas market in Europe (J.M. Dauger); a presentation of natural gas (P.H. Bigeard); the 2005 world energy outlook: analyses and impacts (O. Appert); the new synthetic fuels from the GTL industry (G. Bellussi); the successes and perspectives of natural gas in the transportation sector (A. Courtois); the urban natural gas-fueled captive fleets: point of view of a car-maker (V. Cervantes). A press kit with 11 synthetic notes written by IFP's experts complete the preceding presentations, they treat of: activities and markets in exploration-production, refining and petrochemistry, natural gas industry at the 2020 prospects, petroleum supply and demand, gas reserves, discoveries and production, strategy of the European gas market actors, gas markets liberalization in Europe, natural gas for vehicles, perspectives of development of the GTL

  14. La communication de recrutement dans le milieu hospitalier

    OpenAIRE

    Medina, Pablo

    2011-01-01

    Le développement de la communication institutionnelle et du marketing au sein des institutions hospitalières est très influencé par les changements qui ont lieu dans le milieu sanitaire. La communication de recrutement est l’une des activités les plus stratégiques dans ce cadre, non seulement parce qu’elle répond à des objectifs organisationnels très précis, mais aussi parce qu’elle contribue au développement du champ de la communication institutionnelle dans les hôpitaux. Mais, pour y réussi...

  15. BÜTÜNLEŞİK PAZARLAMA FAALİYETLERİ İLE TURİZMİN VE YABANCI YATIRIMIN İLİŞKİLENDİRİLMESİ - ATTRACTING FOREIGN INVESTMENT AND DEVELOPING TOURISM THROUGH INTEGRATED MARKETING ACTIVITIES

    Directory of Open Access Journals (Sweden)

    Aşkım TÜMBEK

    2012-11-01

    Full Text Available Özet:Bu çalışma ile bütünleşik pazarlama faaliyeti unsurlarıile turizm ve yabancı yatırım kavramlarının bağlantılarıirdelenmiştir.Çalışma kapsamında konu aşamalı olarak ele alınmıştır.Birinci bölümde Bütünleşik Pazarlama ve Yabancı YatırımKavramları incelenmiş, ikinci bölümde ise BütünleşikPazarlama Faaliyetleri ile Turizmin ve Yabancı Yatırımınİlişkilendirilmesi incelenmiştir. Bu kapsamda, BütünleşikPazarlama İletişimi Bileşenleri Yoluyla Turizmin GeliştirilerekYabancı Yatırımın Teşvik Edilmesi ele alınmıştır.Türkiye’nin pazarlanması konusunun değişik mecralardatartışılmaya başlandığı günümüzde Türkiye’nin ülke bazındave hatta şehir bazında yabancı sermayeyi çekebilecek şekildepazarlanması konusu ön plana çıkmaktadır. Bu anlamdaTürkiye’nin birbirinden farklı kültürel ve tarihi zenginliği vegeçmişe sahip illeri her geçen gün pazarlama uzmanlarıncakeşfedilmeye başlanmaktadır.Abstract:This study explicates the relations among integratedmarketing elements, tourism and foreign investment concepts.Within the framework of the article, the issue was handled inprogressive phases. In the first section, Integrated Marketingelements and foreign Investment concept were associated. Inthe second section, Integrated Marketing elements, Tourismand Foreign Investment concepts have been associated. In thisframe, ways of encouraging foreign investment by developingtourism and applying Integrated Marketing Elements havebeen handled and explicated.Today as the marketing of Turkey has been started to bediscussed on several platforms, ways of marketing Turkey orimportant cities of the country specifically have beenemphasized recently especially to increase the foreigninvestment. In this context, the cities of Turkey havingdifferent cultural and historical beauties are being discoveredby more and more important marketers day by day.

  16. Le regard anachronique

    Directory of Open Access Journals (Sweden)

    Jean-Paul Aubert

    2011-01-01

    Full Text Available Cet article a pour objet l’anachronisme dans le film historique. Il s’appuie sur l’étude du long métrage Goya à Bordeaux, réalisé en 1999 par le cinéaste espagnol Carlos Saura. Cette biographie filmée du peintre Francisco de Goya fait mieux que composer avec l’anachronisme inhérent à toute reconstitution historique. Il l’assume et le revendique. La mise en cause de la chronologie et l’effacement de l’Histoire prennent sens dans la perspective d’une réflexion originale sur l’Histoire de l’art conçue comme un dialogue entre les œuvres et entre les époques.Este artículo está dedicado al problema del anacronismo en las películas históricas. Se basa en el estudio de Goya en Burdeos, un largo metraje rodado en 1999 por el director de cine español Carlos Saura. Esta biografía de Goya no sólo se acomoda con el anacronismo propio de la reconstitución histórica sino que lo asume y lo reivindica. El cuestionamiento de la cronología y el desinterés por la Historia cobran un nuevo sentido en el marco de una reflexión original sobre la Historia del arte concebida como un diálogo entre las obras y entre las épocas.

  17. La piraterie sur le web

    CERN Multimedia

    2002-01-01

    Les échanges de toutes sortes sont facilités à l'extrême par le web: des forums, des vidéoconférences, le commerce à distance, ou tout simplement la célérité des courriers électroniques ou la convivialité des chats, tout cela participe de la société de communication. Une certaine partie du monde découvre le nouvel horizon des échanges quasi instantanés, mais... les transactions sur le web sont-elles vraiment s res?

  18. Le commerce du Nord

    OpenAIRE

    Pourchasse, Pierrick; Bouëdec, Gérard Le

    2015-01-01

    Au XVIIIe siècle, la France s'approvisionne abondamment dans les pays du Nord : bois, chanvre et goudron de la Baltique, tonnellerie de Poméranie, pêche de rogue de Norvège, graines de lin de Courlande, barres de fer suédois… Sa balance commerciale est pourtant positive grâce aux sels, aux vins et surtout des nouvelles marchandises coloniales. Or, la plupart des transactions passent par l’incontournable intermédiaire hollandais. Les explications sur l’absence des Français dans le Nord sont re...

  19. Prioritization of Bioethanol Production Pathways in China based on Life Cycle Sustainability Assessment and Multi-Criteria Decision-Making

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Manzardo, Alessandro; Mazzi, Anna

    2015-01-01

    Purpose The study objectives are two-fold: (i) combining the life cycle sustainability assessment (LCSA) framework and the multi-criteria decision-making (MCDM) methodology for sustainability assessment; (ii) determining the most sustainable scenario for bioethanol production in China according......’s proposed method investigates an illustrative case about three alternative bioethanol production scenarios (wheat-based, corn-based and cassava-based): the prior sequence (based on the sustainability performances) in descending order is cassava-based, corn-based and wheat-based. The proposed methodology...... is to test the combination of a MCDM methodology and LCSA for sustainability decision-making by studying three alternative pathways for bioethanol production in China. The proposed method feasibly enables the decision-makers/stakeholders to find the most sustainable scenario to achieve their objectives among...

  20. Simultaneous production of bioethanol and value-added d-psicose from Jerusalem artichoke (Helianthus tuberosus L.) tubers.

    Science.gov (United States)

    Song, Younho; Oh, Chihoon; Bae, Hyeun-Jong

    2017-11-01

    In this study, the production of bioethanol and value added d-psicose from Jerusalem artichoke (JA) was attempted by an enzymatic method. An enzyme mixture used for hydrolysis of 100mgmL -1 JA. The resulting concentrations of released d-fructose and d-glucose were measured at approximately 56mgmL -1 and 15mgmL -1 , respectively. The d-psicose was epimerized from the JA hydrolyzate, and the conversion rate was calculated to be 32.1%. The residual fructose was further converted into ethanol at 18.0gL -1 and the yield was approximately 72%. Bioethanol and d-psicose were separated by pervaporation. This is the first study to report simultaneous d-psicose production and bioethanol fermentation from JA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Possibility of content change in bioethanol gasoline during pre-treatment process for using accelerator mass spectroscopy

    International Nuclear Information System (INIS)

    Saito, Masaaki; Yunoki, Shunji; Suzuki, Takashi

    2010-01-01

    We attempted to determine the bioethanol content of E3 gasoline by applying ASTM D6866 method B. In the pre-treatment process using accelerator mass spectroscopy(AMS), the graphite samples were prepared from E3 gasoline. Three portions of the same graphite sample were measured, and the contents agreed within the measurement error of AMS. The graphite samples prepared from eight portions of the same E3 gasoline sample were measured, but the accuracy was insufficient. There are many kinds of hydrocarbon compounds in the gasoline and their boiling points are different. The content of bioethanol was found to decrease with vaporization when E3 gasoline was placed in open air. A very small amount of E3 gasoline is pre-treated for AMS and the volatile loss cannot be ignored. It seems that the content change of bioethanol was caused by vaporization of E3 gasoline during the pre-treatment process. (author)

  2. Le survivant sans le syndrome Schreber

    Directory of Open Access Journals (Sweden)

    Richard Figuier

    2006-09-01

    Full Text Available On a pensé la catastrophe, mais a-t-on suffisamment pensé la survivance et la figure du survivant ? Ce n'est pas un hasard si celle-ci est au centre de Masse et puissance, oeuvre dans laquelle Canetti interroge la « mauvaise » survivance responsable de la poursuite de la logique de guerre. Mais où trouver la « bonne » ? Revenir de la catastrophe ne suffit pas pour être un « survivant authentique », selon l'expression de Kafka. Il faut avoir dépassé, avec Primo Levi et Robert Antelme, l'opposition de la vie comme croissance continue et de la mort comme son horrible contraire, par le don, dans la pauvreté solidaire, de cette vie retrouvée.Hemos reflexionado acerca de la catástrofe, pero ¿hemos meditado lo suficiente sobre la supervivencia y el superviviente? No es una coincidencia si el superviviente es el tema principal de Masse et puissance, obra en la cual Canetti analiza la «mala» supervivencia responsable de la persistencia de la lógica de guerra ¿Dónde sin embargo podemos encontrar la «buena» supervivencia? Superar la catástrofe no es suficiente para ser un «auténtico superviviente», según Kafka. Es fundamental ir más allá, con Primo Levi y Robert Antelme, de la oposición entre la vida, como crecimiento continuo, y la muerte, como su espantoso contrario, mediante la donación de forma solidaria de esta vida reencontrada.Disaster is the theme of many studies, but what about survival and of the figure of the survivor? This issue is central in Mass and power, work in which Canetti questions the “bad” survival, responsible for the continuation of the logic of war. But is there any “good” survival? Coming back from the catastrophe is not enough to be an “authentic survivor”, according to Kafka’s expression. To achieve this, it is necessary to have exceeded, with PrimoLevi and Robert Antelme, the opposition of life as a continuous growth and of death as its horrible opposite, by the gift, in a

  3. Le Conseil des gouverneurs | CRDI - Centre de recherches pour le ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2 nov. 2010 ... La gouvernance du CRDI. Reddition de comptes, transparence et efficacité. Au cours de l'exercice 2009–2010, le Conseil des gouverneurs du CRDI a adopté un nouveau cadre stratégique quinquennal, Le développement par l'innovation. Pendant de nombreux mois, les gouverneurs et les membres de la ...

  4. Optimization of hydrogen production with CO_2 capture by autothermal chemical-looping reforming using different bioethanol purities

    International Nuclear Information System (INIS)

    García-Díez, E.; García-Labiano, F.; De Diego, L.F.; Abad, A.; Gayán, P.; Adánez, J.; Ruíz, J.A.C.

    2016-01-01

    Highlights: • Autothermal-CLR and WGS have been considered for H_2 production with CO_2 capture. • Bioethanol was used as renewable fuel. • Mass and heat balances allow process optimization. • The use of diluted bioethanol implies energy saves in the bioethanol production. • The use of diluted bioethanol (52 vol.%) produces 4.62 mol H_2/mol ethanol. - Abstract: Autothermal Chemical-Looping Reforming (a-CLR) is a process which allows hydrogen production avoiding the environmental penalty of CO_2 emission typically produced in other processes. The major advantage of this technology is that the heat needed for syngas production is generated by the process itself. The heat necessary for the endothermic reactions is supplied by a Ni-based oxygen-carrier (OC) circulating between two reactors: the air reactor (AR), where the OC is oxidized by air, and the fuel reactor (FR), where the fuel is converted to syngas. Other important advantage is that this process also allows the production of pure N_2 in the AR outlet stream. A renewable fuel such as bioethanol was chosen in this work due to their increasing worldwide production and the current excess of this fuel presented by different countries. In this work, mass and heat balances were done to determine the auto-thermal conditions that maximize H_2 production, assuming that the product gas was in thermodynamic equilibrium. Three different types of bioethanol has been considered according to their ethanol purity; Dehydrated ethanol (≈100 vol.%), hydrated ethanol (≈96 vol.%), and diluted ethanol (≈52 vol.%). It has been observed that the higher H_2 production (4.62 mol of H_2 per mol of EtOH) has been obtained with the use of diluted ethanol and the surplus energy needed could be compensated by the energy save achieved during the purification of ethanol in the production process.

  5. Le tournoi des ombres

    CERN Document Server

    Treille, Daniel

    2017-01-01

    Le lecteur, transporté avec le narrateur dans une région hors norme, est invité à partager sa fascination pour la beauté du lieu, à découvrir la chronique de son passé, rude et pittoresque. Il va côtoyer une galerie de personnages très attachants, mais aux destinées bousculées par l histoire, et assister à l agitation montante du présent dans un contexte d une actualité brûlante. Ce quatrième roman de Daniel Treille, mêlant hardiment les genres, du quotidien trivial au récit épique, de considérations géopolitiques à quelques avancées de la science moderne, confirme son talent à mener, d une écriture très aboutie, une histoire complexe, peuplée de héros singuliers

  6. Le Dominique Interactif

    Directory of Open Access Journals (Sweden)

    Valérie Ouellette

    2005-09-01

    Full Text Available Cet article présente le Dominique Interactif, une bande dessinée interactive et multimédia unique, servant à évaluer sept troubles de la santé mentale chez les jeunes. La version pour les six à onze ans est adaptée aux limites cognitives des enfants et comporte plusieurs avantages. Malgré quelques limites, cet instrument permet d’obtenir des informations fiables de la part de l’enfant sur sa santé mentale. La fidélité et la validité de cet outil sont meilleures que celles des autres instruments traditionnels servant à mesurer la santé mentale des enfants. En combinant les résultats de ce questionnaire avec les informations des parents, professionnels et enseignants, le Dominique Interactif permet aussi d’effectuer une évaluation complète de la santé mentale de l’enfant. Enfin, son utilisation simple et rapide facilite l’évaluation clinique des enfants par les professionnels, permet l’évaluation de programmes d’intervention et favorise l’intervention précoce (Valla et al., 2000.

  7. Le principe roman

    CERN Document Server

    Ferrari, Jérôme

    2015-01-01

    Fasciné par la figure du physicien allemand Werner Heisenberg (1901-1976), fondateur de la mécanique quantique, inventeur du célèbre "principe d'incertitude" et Prix Nobel de physique en 1932, un jeune aspirant-philosophe désenchanté s'efforce, à l'aube du XXIe siècle, de considérer l'incomplétude de sa propre existence à l'aune des travaux et de la destinée de cet exceptionnel homme de sciences qui incarne pour lui la rencontre du langage scientifique et de la poésie, lesquels, chacun à leur manière, en ouvrant la voie au scandale de l'inédit, dessillent les yeux sur le monde pour en révéler la mystérieuse beauté que ne cessent de confisquer le matérialisme à l'œuvre dans l'Histoire des hommes.

  8. Comparasion of iles-iles and cassava tubers as a Saccharomyces cerevisiae substrate fermentation for bioethanol production

    Directory of Open Access Journals (Sweden)

    KUSMIYATI

    2010-01-01

    Full Text Available Kusmiyati (2010 Comparasion of iles-iles and cassava tubers as a Saccharomyces cerevisiae substrate fermentation for bioethanol production. Nusantara Bioscience 2: 7-13. The production of bioethanol increase rapidly because it is renewable energy that can be used to solve energy crisis caused by the depleting of fossil oil. The large scale production bioethanol in industry generally use feedstock such as sugarcane, corn, and cassava that are also required as food resouces. Therefore, many studies on the bioethanol process concerned with the use raw materials that were not competing with food supply. One of the alternative feedstock able to utilize for bioethanol production is the starchy material that available locally namely iles-iles (Amorphophallus mueller Blum. The contain of carbohydrate in the iles-iles tubers is around 71.12 % which is slightly lower as compared to cassava tuber (83,47%. The effect of various starting material, starch concentration, pH, fermentation time were studied. The conversion of starchy material to ethanol have three steps, liquefaction and saccharification were conducted using α-amylase and amyloglucosidase then fermentation by yeast S.cerevisiaie. The highest bioethanol was obtained at following variables starch:water ratio=1:4 ;liquefaction with 0.40 mL α-amylase (4h; saccharification with 0.40 mL amyloglucosidase (40h; fermentation with 10 mL S.cerevisiae (72h producing bioethanol 69,81 g/L from cassava while 53,49 g/L from iles-iles tuber. At the optimum condition, total sugar produced was 33,431 g/L from cassava while 16,175 g/L from iles-iles tuber. The effect of pH revealed that the best ethanol produced was obtained at pH 5.5 during fermentation occurred for both cassava and iles-iles tubers. From the results studied shows that iles-iles tuber is promising feedstock because it is producing bioethanol almost similarly compared to cassava.

  9. Wheat straw, household waste and hay as a source of lignocellulosic biomass for bioethanol and biogas production

    DEFF Research Database (Denmark)

    Tomczak, Anna; Bruch, Magdalena; Holm-Nielsen, Jens Bo

    2010-01-01

    To meet the increasing need for bioenergy three lignocellulosic materials: raw hay, pretreated wheat straw and pretreated household waste were considered for the production of bioethanol and biogas. Several mixtures of household waste supplemented with different fractions of wheat straw and hay...... in fermentation process with Saccharomyces cerevisiae were investigated. Wheat straw and household wastes were pretreated using IBUS technology, patented by Dong Energy, which includes milling, stem explosion treatment and enzymatic hydrolysis. Methane production was investigated using stillages, the effluents...... from bioethanol fermentation experiment. Previous trial of biogas production from above mentioned household wastes was enclosed....

  10. The Production of Bioethanol from Cashew Apple Juice by Batch Fermentation Using Saccharomyces cerevisiae Y2084 and Vin13

    OpenAIRE

    Deenanath, Evanie Devi; Rumbold, Karl; Iyuke, Sunny

    2013-01-01

    Bioethanol as a fossil fuel additive to decrease environmental pollution and reduce the stress of the decline in crude oil availability is becoming increasingly popular. This study aimed to evaluate the concentration of bioethanol obtainable from fermenting cashew apple juice by the microorganism Saccharomyces cerevisiae Y2084 and Vin13. The fermentation conditions were as follows: initial sugar = 100 g/L, pH = 4.50, agitation = 150 rpm, temperatures = 30°C (Y2084) and 20°C (Vin13), oxygen sa...

  11. Evaluation of the biomass potential for the production of lignocellulosic bioethanol from various agricultural residues in Austria and Worldwide

    Science.gov (United States)

    Kahr, Heike; Steindl, Daniel; Wimberger, Julia; Schürz, Daniel; Jäger, Alexander

    2013-04-01

    Due to the fact that the resources of fossil fuels are steadily decreasing, researchers have been trying to find alternatives over the past few years. As bioethanol of the first generation is based on potential food, its production has become an increasingly controversial topic. Therefore the focus of research currently is on the production of bioethanol of the second generation, which is made from cellulosic and lignocellulosic materials. However, for the production of bioethanol of the second generation the fibres have to be pre-treated. In this work the mass balances of various agricultural residues available in Austria were generated and examined in lab scale experiments for their bioethanol potential. The residues were pretreatment by means of state of the art technology (steam explosion), enzymatically hydrolysed and fermented with yeast to produce ethanol. Special attention was paid the mass balance of the overall process. Due to the pretreatment the proportion of cellulose increases with the duration of the pre-treatment, whereby the amount of hemicellulose decreases greatly. However, the total losses were increasing with the duration of the pre-treatment, and the losses largely consist of hemicellulose. The ethanol yield varied depending on the cellulose content of the substrates. So rye straw 200 °C 20 min reaches an ethanol yield of 169 kg/t, by far the largest yield. As result on the basis of the annual straw yield in Austria, approximately 210 000 t of bioethanol (266 million litres) could be produced from the straw of wheat (Triticum vulgare), rye (Secale cereale), oat (Avena sativa) and corn (Zea mays) as well as elephant grass (Miscanthus sinensis) using appropriate pre-treatment. So the greenhouse gas emissions produced by burning fossil fuels could be reduced significantly. About 1.8 million tons of motor gasoline are consumed in Austria every year. The needed quantity for a transition to E10 biofuels could thus be easily provided by bioethanol

  12. L'organizzazione delle funzioni Marketing nel settore bancario e assicurativo

    OpenAIRE

    M.C. Cito; U. Filotto; A. Omarini

    2012-01-01

    Il capitolo intende presentare i risultati della ricerca realizzata presso un campione di banche e assicurazioni circa le caratteristiche della funzione marketing, le iniziative che riguardano la pianificazione delle attività nonchè il grado di interdipendenza e integrazione con le altre funzioni aziendali.

  13. A biorefinery concept using the green macroalgae Chaetomorpha linum for the coproduction of bioethanol and biogas

    International Nuclear Information System (INIS)

    Ben Yahmed, Nesrine; Jmel, Mohamed Amine; Ben Alaya, Monia; Bouallagui, Hassib; Marzouki, M. Nejib; Smaali, Issam

    2016-01-01

    Highlights: • Chaetomorpha linum was used as sustainable feedstock for co-production of bioethanol and biomethane. • An eco-friendly process was developed, only generating 0.3 ± 0.01 g/g of waste. • Ethanol yield obtained was 0.41 g/g reducing sugar. • Methane yield obtained was 0.26 ± 0.045 L/gVS. - Abstract: An innovative integrated biorefinery approach using the green macroalgae Chaetomorpha linum was investigated in the present study for the co-production of bioethanol and biogas. Among three pretreatments of C. linum biomass, consisting of acidic, neutral and alkali ones, 3% NaOH pretreatment gave the best result in terms of thallus disintegration, biomass recovery and enzymatic digestibility as demonstrated by scanning electron microscopy and saccharification tests. The hydrolysis of C. linum feedstock with a crude specific enzyme preparation, locally produced from fermentation of Aspergillus awamori, at 45 °C, pH 5 for 30 h gave the maximum yield of fermentable sugar of 0.22 ± 0.02 g/g dry substrate. An ethanol yield of 0.41 g/g reducing sugar corresponding to about 0.093 g/g pretreated algae was obtained after alcoholic fermentation by Saccharomyces cerevisiae. In the integrated proposed process, mycelium issued from the fungal fermentation, liquid issued from alkali pretreatment, residual from the non-hydrolysable biomass and all effluents and co-products represent a heterogeneous substrate that feed an anaerobic digester for biogas production. GC-analysis of this later showed that the biomethane yield reached 0.26 ± 0.045 L/gVS. This study presents therefore an eco-friendly biorefining process, which efficiently coproduce bioethanol and biomethane and generate only a single waste (0.3 ± 0.01 g/g) allowing an almost complete conversion of the algal biomass.

  14. Sustainability assessment of bioethanol and petroleum fuel production in Japan based on emergy analysis

    International Nuclear Information System (INIS)

    Liu, Jin’e; Lin, Bin-Le; Sagisaka, Masayuki

    2012-01-01

    To promote the reduction of greenhouse gas emissions, research and development of bioethanol technologies are encouraged in Japan and a plan to utilize untilled fields to develop rice for bioethanol production as a substitute for petroleum fuel is being devised. This study applies emergy methods to compare the sustainability of petroleum fuel production and two Japanese rice-to-ethanol production scenarios: (a) ethanol from rice grain, while straw and chaff are burned as energy and (b) ethanol from rice+straw+chaff. The major emergy indices, Emergy Yield Ratio (EYR), Environmental Loading Ratio (ELR), Emergy Investment Ratio (EIR), Emergy Sustainability Index (ESI), Environmental Impacts Ratio (EVR) and system transformity (Tr), are analyzed to assess the production processes. The results show that (1) petroleum fuel production presents higher ELR, EIR, EVR and lower EYR, ESI, Tr than rice-to-ethanol production, indicating rice-to-ethanol production makes sense for reduction of greenhouse gases (GHG); (2) scenario (a) performs similarly on major indicators (EYR, ESI, ELR, EIR and EVR) to scenario (b), yet the system efficiency indicator (Tr) of scenario (a, 7.572×10 5 semj/J) is much higher than (b, 4.573×10 5 semj/J), and therefore (b) is a better alternative for policy decisions; (3) both petroleum fuel production and rice-to-ethanol processes are mainly driven by purchased resources and are unsustainable and nonrenewable in the long run. - Highlights: ► We compare petrol fuel and rice-to-ethanol production using emergy indices. ► Rice-to-ethanol reduces green house gas emissions as a substitute for petrol fuel. ► Rice-to-ethanol production has better sustainability than that of petrol fuel. ► Neither petrol fuel nor biofuel production are sustainable in the long term. ► Bioethanol is not a renewable fuel.

  15. Process optimization for bioethanol production from cassava starch using novel eco-friendly enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Shanavas, S.; Padmaja, G.; Moorthy, S.N.; Sajeev, M.S.; Sheriff, J.T. [Division of Crop Utilization, Central Tuber Crops Research Institute, Thiruvananthapuram, 695 017 Kerala (India)

    2011-02-15

    Although cassava (Manihot esculenta Crantz) is a potential bioethanol crop, high operational costs resulted in a negative energy balance in the earlier processes. The present study aimed at optimizing the bioethanol production from cassava starch using new enzymes like Spezyme {sup registered} Xtra and Stargen trademark 001. The liquefying enzyme Spezyme was optimally active at 90 C and pH 5.5 on a 10% (w/v) starch slurry at levels of 20.0 mg (280 Amylase Activity Units) for 30 min. Stargen levels of 100 mg (45.6 Granular Starch Hydrolyzing Units) were sufficient to almost completely hydrolyze 10% (w/v) starch at room temperature (30 {+-} 1 C). Ethanol yield and fermentation efficiency were very high (533 g/kg and 94.0% respectively) in the Stargen + yeast process with 10% (w/v) starch for 48 h. Raising Spezyme and Stargen levels to 560 AAU and 91.2 GSHU respectively for a two step loading [initial 20% (w/v) followed by 20% starch after Spezyme thinning]/initial higher loading of starch (40% w/v) resulted in poor fermentation efficiency. Upscaling experiments using 1.0 kg starch showed that Stargen to starch ratio of 1:100 (w/w) could yield around 558 g ethanol/kg starch, with a high fermentation efficiency of 98.4%. The study showed that Spezyme level beyond 20.0 mg for a 10% (w/v) starch slurry was not critical for optimizing bioethanol yield from cassava starch, although an initial thinning of starch for 30 min by Spezyme facilitated rapid saccharification-fermentation by Stargen + yeast system. The specific advantage of the new process was that the reaction could be completed within 48.5 h at 30 {+-} 1 C. (author)

  16. Investigations of the pre-treatment and the conversion of energy crops into biogas and bioethanol; Untersuchungen zur Aufbereitung und Umwandlung von Energiepflanzen in Biogas und Bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Britt

    2008-07-01

    Due to finite fossil resources, one opportunity for the future is to increase the supply of energy out of renewable energy sources. One of many opportunities is the use of biomass, which offers plenty combinations of different kinds of biomass, paths of utilization and conversion techniques for a flexible adaptation to natural local and regional frameworks as well as the anthropogenic needs. For an efficient utilization of the limited arable land for the supply of bioenergy, there is a need of up-to-date and proof data about specific energy yields and yields per hectare. The aim of this investigation was to determine these data for the biogas and bioethanol sectors. Batch-tests were carried out in laboratory scaled digesters to investigate specific biogas and bioethanol yields. Additionally the testing of different techniques of pre-treatment for energy crops and their effects on the biogas yield and the progression of the formation of methane were focused. The conversion of maize silage and full ripe triticale into biogas and bioethanol was compared by an energy and environmental balance. The steam explosion technique was included. Pre-treatment The steam explosion pre-treatment of biomass increases the speed of formation of methane and partly increases the methane yields. The effects differ depending on the kind of biomass and the stage of ripening. Other techniques of pre-treatment like microwaving and cooking did not show significant or partly negative effects. A variation of parameters in the trial setup might be interesting. Besides the positive effects of the steam explosion technique there are some arguments like the additional costs of investment, the diminished concentration of nutrients respectively the increase of material flow against it. The additional energy consumption, mostly thermal energy, can be supplied from waste heat out of the combined heat and power plant (CHP). The screening and the production of technical enzymes for the efficient pre

  17. Balance responsible entity. You would like to intervene on the French electricity market, RTE brings you the Balance Responsible service; Responsable d'equilibre. Vous voulez intervenir sur le marche francais de l'electricite, RTE a mis en place pour vous le service responsable d'equilibre

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-02-01

    The mission of RTE, the French manager of the power transportation grid, is to maintain the public electricity transmission system continuity and quality, by guaranteeing fair and equal access to the system to all market participants. To do this, RTE operates the public electricity transmission system in all safety, by maintaining the balance between supply and demand in real time and by physical guaranteeing that consumption sites are supplied and that injections can take place on production sites. As part of this mission, RTE has set up the balance responsible service, aimed at enabling participants in the electricity market to engage in commercial transactions whilst minimizing the cost of setting imbalances between their supply on the one hand, and their deliveries on the other. This brochure describes the work of balance responsible entity, the perimeter of this service, the calculation of imbalances (difference between injections and extractions), their prices, the subscription to the balance responsible service and the respective contributions of the balance responsible service and of RTE. (J.S.)

  18. Equazioni: le icone del sapere

    NARCIS (Netherlands)

    Bais, S.

    2009-01-01

    Il mistero del cosmo è scritto nel linguaggio della matematica, e le equazioni sono le frasi che ne esprimono la bellezza e la profondità. Cercare di spiegare la scienza senza equazioni è come cercare di spiegare l’arte senza illustrazioni: partendo da questo presupposto, Sander Bais presenta una

  19. Le cerveau sous effet placebo

    OpenAIRE

    Touzet , Claude

    2017-01-01

    International audience; Comment le fait de croire qu’on nous injecte de la morphine (alors qu’il s’agit de sérum physiologique) peut-il faire disparaître la douleur ? Investigation sur le cerveau sous placebo.

  20. Process design and evaluation of production of bioethanol and β-lactam antibiotic from lignocellulosic biomass.

    Science.gov (United States)

    Kim, Sung Bong; Park, Chulhwan; Kim, Seung Wook

    2014-11-01

    To design biorefinery processes producing bioethanol from lignocellulosic biomass with dilute acid pretreatment, biorefinery processes were simulated using the SuperPro Designer program. To improve the efficiency of biomass use and the economics of biorefinery, additional pretreatment processes were designed and evaluated, in which a combined process of dilute acid and aqueous ammonia pretreatments, and a process of waste media containing xylose were used, for the production of 7-aminocephalosporanic acid. Finally, the productivity and economics of the designed processes were compared. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Numerical of Bioethanol Production from Liquid Waste of Rise Flour by Distillation Process

    Directory of Open Access Journals (Sweden)

    Ni Ketut Sari

    2016-01-01

    The results obtained experimentally study the composition of bioethanol a maximum of 95% to 96%, the results of experiments and simulations EWI ternary system form the temperature profile, the profile of the composition of liquid and vapor composition profile dimensionless time functions both at the bottom and in the distillate shows the results of the same approach. The simulation results before used reference in experiments performed the validation beforehand, so that the ternary system simulation EWI after validation of reference can be used in experiments.

  2. An assessment of bio-ethanol as a transport fuel in the UK: v. 2

    Energy Technology Data Exchange (ETDEWEB)

    Marrow, J.E. (Energy Technology Support Unit, Harwell (UK)); Coombs, J. (CPL Scientific Ltd., Newbury (GB))

    1990-02-01

    This report evaluates the potential for reducing the cost of producing bio-ethanol from agricultural feedstocks by R and D aimed at reducing production costs. Topics covered include purpose grown biomass as feedstock, lignocellulose wastes and residues and conversion technologies for lignocellulosic materials. It is concluded that enzyme hydrolysis of wood or straw with a lignin by-product could be the most cost effective in the future but even then it would be costing considerably more than ethanol's value as a fuel. (UK).

  3. MODELING AND SIMULATION OF THE PROCESS OF DEHYDRATION OF BIOETHANOL TO ETHYLENE

    Directory of Open Access Journals (Sweden)

    J. G. S. S. Maia

    Full Text Available Abstract The use of carbon-based waste biomass in the production of plastics can partially meet the growing demand for plastics in the near future. An interest in the production of ethylene from bioethanol has been renewing, motivated mainly by environmental appeal and economics. The main objective of this work is the development of a mathematical model for simulation and optimization of the production of ethylene by the dehydration of ethanol, improving the performance of the process. The phenomenological model proposed is based on mass, momentum and energy balances for the process. The results obtained are satisfactory in comparison with theoretical results and experimental data found in the literature.

  4. Modeling Separation Dynamics in a Multi-Tray Bio-Ethanol Distillation Column

    DEFF Research Database (Denmark)

    Løhndorf, Petar Durdevic; Pedersen, Simon; Yang, Zhenyu

    2015-01-01

    the product quality and energy consumption in a typical bio-ethanol distillation column is proposed in this paper. The proposed model is derived based on mass and energy balance principles, with an empirical model of the evaporation dynamics of liquids on column trays. The model parameters are identified......The high energy consumption of popularly used distillation columns has motivated development of energytracking dynamic models with the ultimate objective for potential better energy and quality control of these separation facilities. A dynamic model being able to explicitly describe both...

  5. Evaluation of the parameters effects on the bio-ethanol production process from Ricotta Cheese Whey

    DEFF Research Database (Denmark)

    Sansonetti, Sascha; Curcio, Stefano; Calabrò, Vincenza

    2010-01-01

    composite design, constituted by 26 runs, has been carried out, and the effects of the parameters have been evaluated. Eventually, once eliminated the negligible effects, Response Surface Methodology (RSM) has been applied to optimize the four parameters values in RCW fermentation process. After......The work consists of an experimental analysis to evaluate the effects of the variables temperature (T), pH, agitation rate (K) and initial lactose concentration (L) on the batch fermentation process of Ricotta Cheese Whey (RCW) into bio-ethanol by using the yeast Kluyveromyces marxianus. A central...

  6. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept

    DEFF Research Database (Denmark)

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Karakashev, Dimitar Borisov

    2016-01-01

    The aim of this study was to develop integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production from industrial hemp (Cannabis sativa L.) in a biorefinery concept. Two types of pretreatments were studied (dilute-acid and alkaline oxidative method). High cellulose recovery...... productivity. With respect to succinic acid production, the highest productivity was obtained after liquid fraction fermentation originated from steam treatment with 1.5% of acid. The mass balance calculations clearly showed that 149 kg of EtOH and 115 kg of succinic acid can be obtained per 1 ton of dry hemp....... Results obtained in this study clearly document the potential of industrial hemp for a biorefinery....

  7. Purifying, concentrating and anhydriding bio-ethanol: Alternative process schemes and innovative separation methods

    International Nuclear Information System (INIS)

    Guerreri, G.; Lovati, A.

    1992-01-01

    Starting with the conventional process scheme for bio-ethanol production, this paper illustrates how the anhydriding section, which incorporates an azeotropic distillation process, can be conveniently substituted with a plate and frame pervaporation process which makes use of optimum heat exchange with the stripping section. This technical feasibility study, which proves the superior energy efficiency of the pervaporation scheme as compared with the conventional scheme, is followed by a cost benefit analysis which evidences the economic benefits also to be had with pervaporation

  8. Bioethanol production from waste bread samples made from mixtures of wheat and buckwheat flours

    OpenAIRE

    Ačanski, Marijana; Pastor, Kristian; Razmovski, Radojka; Vučurović, Vesna; Psodorov, Đorđe

    2014-01-01

    In this paper yields of bioethanol from seven samples of bread were compared. Samples of bread were produced and prepared in a laboratory by mixing wheat and buckwheat flour in amounts of 0, 20, 40, 50, 60, 80 and 100%. At first, the analysis of all seven samples of bread was done (dry matter, starch content and pH value of bread sample suspensions). Then the waste bread suspensions were hydrolyzed by applying commercial hydrolytic enzymes, Termamyl® SC and SAN Extra® L. The fermentation proc...

  9. Tentative d'évaluation du systéme d'information marketing au niveau des banques publiques Algériennes

    OpenAIRE

    Hassaine-kazi-tani, Amel

    2014-01-01

    Le premier chapitre présente les fondements théoriques relatifs au marketing, marketing des services et notamment le marketing bancaire.dans le deuxiéme chapitre seront développées les notions de base du concept d'information et celui de systéme d'information et puis le systéme d'information marketing.le troisiéme chapitre pratique présente une étude de cas auprés des banques publiques Algériennes.

  10. Economic Analysis of an Organosolv Process for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Jesse Kautto

    2014-08-01

    Full Text Available In a previous paper, conceptual process design, simulation, and mass and energy balances were presented for an organosolv process with a hardwood feed of 2350 metric tons (MT per day and ethanol, lignin, furfural, and acetic acid production rates of 459, 310, 6.6, and 30.3 MT/day, respectively. In this paper, the investment and operating costs of the process and the minimum ethanol selling price (MESP to make the process economically feasible were estimated. The total capital investment of the plant was approximately 720 million USD. Lignin price was found to affect the MESP considerably. With a base case lignin price of 450 USD/MT, the MESP was approximately 3.1 USD per gallon (gal. Higher lignin price of 1000 USD/MT was required to equal the MESP with the December 2013 ethanol market price (2.0 USD/gal. In addition to lignin price, the MESP was found to be strongly affected by feedstock, enzyme, and investment costs. Variations in feedstock and investment costs affected the MESP by approximately 0.2 and 0.5 USD/gal, respectively. Changing the enzyme dosage and price from base case estimate of 5270 USD/MT and 0.02 g/g cellulose to more conservative 3700 USD/MT and 0.06 g/g cellulose, respectively, increased the MESP by 0.59 USD/gal.

  11. Le Baratze (ou

    Directory of Open Access Journals (Sweden)

    Jacques Blot

    1998-01-01

    Full Text Available El círculo de piedras Mendizabal 7, de 8 metros de diámetro,   presenta una corona externa constituida de grandes bloques   hincados en la tierra, y otra interna y tangente, de elementos idénticos sólo puestos en el suelo. El cajón central está compuesto de cuatro losas y una tapa. No hay depósito de huesos ni de carbón de leña ; sólo se encuentran dos herraduras, entre las cuales una completa de tipo medieval, que podrían permitir de pensar en una construcción del círculo en el periodo histórico.

  12. Le citoyen rieur

    Directory of Open Access Journals (Sweden)

    Anna Rycman

    2009-11-01

    Full Text Available Dans la Pologne d’aujourd’hui, l’évolution des modèles d’engagement civique et politique s’opère plus particulièrement auprès des jeunes générations. Parmi les expériences nouvelles de participation politique, les nouvelles technologies de l’information et de la communication offrent des opportunités radicales de reconfigurer l’espace public. La jeunesse polonaise investit en masse le Web. Dans le flux de paroles affranchies circulant et dialoguant dans le cyberespace, nous nous intéressons ici au développement d’un discours qui emprunte au registre de la dérision et de la satire politiques. Une multitude de sites critiques, de nature apparemment contestataire, des sites d’opposition fondés sur le genre satirique, ont émergé comme réponse apportée à la situation politique. Cet espace public électronique représente une forme moderne de « folklore politique », contribuant au processus de socialisation des jeunes citoyens polonais.The laughing citizen. A modern form of civic commitment in democratic Poland?In present day Poland, the evolution of civic and political commitment models is above all the affaire of the younger generations. Among the current opportunities for political participation, the new information and communication technologies offer radical opportunities to reconfigure the public arena. Polish youth are flocking to the Web. Amongst the flux of frank points of views circulating and dialoguing in cyberspace, our interest here is the development of a discourse inspired by political and satirical derision. A multitude of critical, apparently anti-establishment, sites and general opposition sites using the satirical style have emerged as a response to the political situation. This public electronic space represents a modern form of « political folklore », contributing to the socialising processes of young polish citizens.El ciudadano que rie. ¿Nueva forma del compromiso cívico en la

  13. Le grand inventaire

    Directory of Open Access Journals (Sweden)

    Michel Melot

    2012-05-01

    Full Text Available Depuis quarante ans qu’il existe, l’Inventaire général des monuments et des richesses artistiques de la France n’a pas seulement progressé, couvrant près de dix mille communes, documentant plus de vingt mille dans cinq millions de pages, trois millions de photographies, et cent mille dessins. Il est devenu ce que ses fondateurs désiraient qu’il fût. Il n’est pas une liste d’objets plus ou moins singuliers qu’on aurait oubliés, mais l’observation méthodique de l’émergence dans le monde de l’ar...

  14. INVESTIR DANS LE SAVOIR : le soutien que le CRDI consent à des ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    5 nov. 2010 ... ... 40 ans, le Cenre de recherches pour le développement international (CRDI), en plus d'appuyer des travaux de recherche dans l'ensemble des pays en développement, encourage des générations successives de jeunes chercheurs par l'entremise de son Programme de formation et de bourses (PFB).

  15. Une analyse longitudinale de la réussite des étudiants « en ligne » ou « en classe » : le cas d’un cours de marketing suivi au sein d’une université québécoise

    Directory of Open Access Journals (Sweden)

    William Menvielle

    2011-01-01

    Full Text Available Les études comparatives sur les résultats des étudiants suivant des enseignements en ligne ou en classe ont été nombreuses et les résultats démontrent, dans l’ensemble, qu’il n’y a pas prépondérance de l’une ou de l’autre des formes d’enseignement. Nous présentons ici une étude sur la réussite des étudiants de 1ercycle universitaire d’un cours de base en marketing, dont nous avons suivi les résultats entre l’été 2008 et l’hiver 2009 avec le même professeur. Un échantillon de 373répondants a ainsi été formé et les résultats démontrent, entre autres, qu’il n’y a pas de différences significatives pour un même type d’examen entre les étudiants de ces deux groupes. Par contre, lors d’évaluations différenciées pour chaque groupe, les étudiants suivant un cours en classe réussissent mieux que leurs homologues en ligne.

  16. Impact du marketing bancaire sur les petites et moyennes entreprises en Algérie

    OpenAIRE

    Boutarene, Nezha-yamina

    2014-01-01

    La premiére partie intitulée le marketing dans les institutions financérs bancaires,le premier chapitre présente l'importance du marketing dans la banque , ensuite le deuxiéme chapitre explique le comportement du consommateur (PME) ,et les paramétres d'analyse du banquier.Le troisiéme chapitre est consacré à la politique et le plan marketing bancaire.La deuxiéme partie présente l'historique du systéme bancaire Algérien et la possibilité d'introduction d'un marketing bancaire en Algérie....

  17. Dans le tourbillon des particules

    CERN Document Server

    Zito, Marco

    2015-01-01

    Accélérateurs géants, détecteurs complexes, particules énigmatiques... La physique subatomique peut sembler bien intimidante pour le novice. Et pourtant, qui n a jamais entendu parler du boson de Higgs et du CERN, le laboratoire européen où il a été découvert en 2012 ? Nul besoin d être un spécialiste pour comprendre de quoi il s agit. Aujourd hui, une théorie extraordinairement élégante, le Modèle Standard, décrit tous les résultats des expériences dans le domaine. Trente-sept particules élémentaires et quatre forces fondamentales : c est tout ce dont nous avons besoin pour expliquer la matière et l Univers ! Ce livre, destiné à un large public, raconte sans équations le long parcours qui a abouti au Modèle Standard. Ce parcours, parfois sinueux, a été entamé lorsque les Grecs anciens, et peut-être d autres avant eux, ont imaginé que la matière est composée de petites « billes ». Il faudra attendre plusieurs siècles pour qu on réalise que la matière, à l échelle micros...

  18. Reduction of water consumption in bioethanol production from triticale by recycling the stillage liquid phase.

    Science.gov (United States)

    Gumienna, Małgorzata; Lasik, Małgorzata; Szambelan, Katarzyna; Czarnecki, Zbigniew

    2011-01-01

    The distillery stillage is a major and arduous byproduct generated during ethanol production in distilleries. The aim of this study was to evaluate the possibility of the stillage recirculation in the mashing process of triticale for non-byproducts production and reducing the fresh water consumption. The number of recirculation cycles which can be applied without disturbances in the ethanol fermentation process was investigated. Winter triticale BOGO and "Ethanol Red" Saccharomyces cerevisiae yeast were used in the experiments. The method of non-pressure cooking was used for gelatinizingthe triticale, commercial α-amylase SPEZYME ETHYL and glucoamylase FERMENZYME L-400 were applied for starch liquefaction and saccharification. The process was conducted at 30°C for 72 h, next after distillation the stillage was centrifuged and the liquid fraction was used instead of 75% of process water. Ethanol yield from triticale fermentations during 40 cycles ranged between 82% and 95% of theoretical yield preserving yeast vitality and quantity on the same level. The obtained distillates were characterized with enhanced volatile compounds (fusel oil, esters, aldehydes, methanol) as well as protein and potassium concentrations. The liquid part of stillage was proved that can be reused instead of water in bioethanol production from triticale, without disturbing the fermentation process. This investigated solution of distillery byproducts utilization (liquid phase of stillage) constitutes the way which could significantly decrease the bioethanol production costs by reducing the water consumption, as well as wastewater production.

  19. Combined Biogas and Bioethanol Production: Opportunities and Challenges for Industrial Application

    Directory of Open Access Journals (Sweden)

    Alessandra Cesaro

    2015-08-01

    Full Text Available In the last decades the increasing energy requirements along with the need to face the consequences of climate change have driven the search for renewable energy sources, in order to replace as much as possible the use of fossil fuels. In this context biomass has generated great interest as it can be converted into energy via several routes, including fermentation and anaerobic digestion. The former is the most common option to produce ethanol, which has been recognized as one of the leading candidates to substitute a large fraction of the liquid fuels produced from oil. As the economic competitiveness of bioethanol fermentation processes has to be enhanced in order to promote its wider implementation, the most recent trends are directed towards the use of fermentation by-products within anaerobic digestion. The integration of both fermentation and anaerobic digestion, in a biorefinery concept, would allow the production of ethanol along with that of biogas, which can be used to produce heat and electricity, thus improving the overall energy balance. This work aims at reviewing the main studies on the combination of both bioethanol and biogas production processes, in order to highlight the strength and weakness of the integrated treatment for industrial application.

  20. Investigation of Bioethanol Productivity from Sargassum sp. (Brown Seaweed) by Pressure Cooker and Steam Cooker Pretreatments

    International Nuclear Information System (INIS)

    Yu Yu Wah; Kyaw Nyein Aye; Tint Tint Kyaw; Moe Moe Kyaw

    2011-12-01

    Production of biothanol from Sargassum sp. (Brown seaweed) is more suitable than using any other raw materials because it can easily collect on Chaung Tha Beach in Myanmar without any environmental damages. In this regard an attempt for bioethanol production from sargassum sp. by separation hydrolysis and fermentation (SHF) with saccharomyces cerevisiae was made. Sargassum sp. was pretreated with steam cooker at 120 C and 1 bar for 30 min and pressure cooker at 65 C for 2 hour. The pretreated sargassum sp. was liquefied with the crude enzyme from Trichoderma sp. at the temperature of 50 C and pH of 4 for the first liquefaction step and 95 C, pH of 5 and enzyme of SPEZYME FERD were employed for the second liquefaction step. OPTIDEX L-400 was used as saccharified enzyme with the temperature of 65 C and pH of 4.5 at saccharification step. The process of fermentation was followed by distillation at 78 C for alcohol extraction. Concentrations of crude ethanol were about 1.8% by using steam cooker and 2% for pressure cooker treatment with enzyme mediated saccharification followed by yeast fermentation. Yields of bioethanol were 23% for pressure cooker treatment and 21% for steam cooker treatment at SHF process.

  1. Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast (ADY) production.

    Science.gov (United States)

    Zheng, Daoqiong; Zhang, Ke; Gao, Kehui; Liu, Zewei; Zhang, Xing; Li, Ou; Sun, Jianguo; Zhang, Xiaoyang; Du, Fengguang; Sun, Peiyong; Qu, Aimin; Wu, Xuechang

    2013-01-01

    The application of active dry yeast (ADY) in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjected to a modified whole-genome shuffling (WGS) process to improve its ethanol titer, proliferation capability, and multiple stress tolerance for ADY production. The best-performing mutant, Z3-86, was obtained after three rounds of WGS, producing 4.4% more ethanol and retaining 2.15-fold higher viability than ZTW1 after drying. Proteomics and physiological analyses indicated that the altered expression patterns of genes involved in protein metabolism, plasma membrane composition, trehalose metabolism, and oxidative responses contribute to the trait improvement of Z3-86. This work not only successfully developed a novel S. cerevisiae mutant for application in commercial bioethanol production, but also enriched the current understanding of how WGS improves the complex traits of microbes.

  2. Study of Application of Vinasse from Bio-ethanol Production to Farmland

    Science.gov (United States)

    Chen, Yan; Shinogi, Yoshiyuki

    During bio-ethanol production from sugarcane molasses, large amounts of vinasse, which is strongly acidic with high COD and BOD, is produced as a by-product. Disposal of vinasse is one restrictive problem for sustainable bio-ethanol production. In this study, possible application of vinasse to farmland was investigated. First, the staple characteristics of vinasse were determined. Second, availability of nutrients such as nitrogen and potassium to crops and dynamics in the soil environment were studied in the laboratory, and crop growth experiments were carried out in the field. Farmland application of vinasse as a substitute for one third of the potassium showed no significant damage to the growth of red-radishes and tomatoes. When large amounts of vinasse are applied to farmland as a substitution for the nitrogen in traditional chemical fertilizers, nitrogen-hunger especially immediately after application is expected. In addition, it is necessary to take into consideration the leaching of ions and the dark material in the vinasse for proper timing of application and soil conditions.

  3. Genomic reconstruction to improve bioethanol and ergosterol production of industrial yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhang, Ke; Tong, Mengmeng; Gao, Kehui; Di, Yanan; Wang, Pinmei; Zhang, Chunfang; Wu, Xuechang; Zheng, Daoqiong

    2015-02-01

    Baker's yeast (Saccharomyces cerevisiae) is the common yeast used in the fields of bread making, brewing, and bioethanol production. Growth rate, stress tolerance, ethanol titer, and byproducts yields are some of the most important agronomic traits of S. cerevisiae for industrial applications. Here, we developed a novel method of constructing S. cerevisiae strains for co-producing bioethanol and ergosterol. The genome of an industrial S. cerevisiae strain, ZTW1, was first reconstructed through treatment with an antimitotic drug followed by sporulation and hybridization. A total of 140 mutants were selected for ethanol fermentation testing, and a significant positive correlation between ergosterol content and ethanol production was observed. The highest performing mutant, ZG27, produced 7.9 % more ethanol and 43.2 % more ergosterol than ZTW1 at the end of fermentation. Chromosomal karyotyping and proteome analysis of ZG27 and ZTW1 suggested that this breeding strategy caused large-scale genome structural variations and global gene expression diversities in the mutants. Genetic manipulation further demonstrated that the altered expression activity of some genes (such as ERG1, ERG9, and ERG11) involved in ergosterol synthesis partly explained the trait improvement in ZG27.

  4. Two-steps microwave-assisted treatment on acid hydrolysis of sago pith for bioethanol production

    Science.gov (United States)

    Sunarti, T. C.; Yanti, S. D.; Ruriani, E.

    2017-05-01

    Sago is a genus of palm that can be utilized to produce fermentable sugars as substrate for bioethanol. Sago pith is a heterogeneous substrate consists of starch and fiber. Acid hydrolysis by microwave heating radiation can break down starch and fibers together in a very short time, so it is considered to be very efficient process. The use of microwave energy (as power level) and variation of heating time can produce fermentable sugar with certain characteristics. This study included the preparation and analysis of sago pith flour; process of acid hydrolysis (0.3 M and 0.5 M H2SO4) using two steps microwave heating, first with power level 30% (1, 2 and 3 min) and second with power level 70% (3 min); and ethanol production. The conventional treatment (autoclaving at 121°C for 15 min) was carried for the comparison. The highest fermentable sugar (105.7 g/l) was resulted from microwave heating with power level 30% for 2 min followed by the power level 70% for 3 min. This hydrolyzate then used as substrate for bioethanol fermentation and partially neutralized (pH 3, 4, 5) by using yeast Issatchenkia orientalis, and the highest ethanol (2.8 g/l) was produced in pH 5.

  5. Enhanced Bioethanol Production from Potato Peel Waste Via Consolidated Bioprocessing with Statistically Optimized Medium.

    Science.gov (United States)

    Hossain, Tahmina; Miah, Abdul Bathen; Mahmud, Siraje Arif; Mahin, Abdullah-Al-

    2018-04-12

    In this study, an extensive screening was undertaken to isolate some amylolytic microorganisms capable of producing bioethanol from starchy biomass through Consolidated Bioprocessing (CBP). A total of 28 amylolytic microorganisms were isolated, from which 5 isolates were selected based on high α-amylase and glucoamylase activities and identified as Candida wangnamkhiaoensis, Hyphopichia pseudoburtonii (2 isolates), Wickerhamia sp., and Streptomyces drozdowiczii based on 26S rDNA and 16S rDNA sequencing. Wickerhamia sp. showed the highest ethanol production (30.4 g/L) with fermentation yield of 0.3 g ethanol/g starch. Then, a low cost starchy waste, potato peel waste (PPW) was used as a carbon source to produce ethanol by Wickerhamia sp. Finally, in order to obtain maximum ethanol production from PPW, a fermentation medium was statistically designed. The effect of various medium ingredients was evaluated initially by Plackett-Burman design (PBD), where malt extracts, tryptone, and KH 2 PO 4 showed significantly positive effect (p value < 0.05). Using Response Surface Modeling (RSM), 40 g/L (dry basis) PPW and 25 g/L malt extract were found optimum and yielded 21.7 g/L ethanol. This study strongly suggests Wickerhamia sp. as a promising candidate for bioethanol production from starchy biomass, in particular, PPW through CBP.

  6. Process design and economic analysis of a hypothetical bioethanol production plant using carob pod as feedstock.

    Science.gov (United States)

    Sánchez-Segado, S; Lozano, L J; de Los Ríos, A P; Hernández-Fernández, F J; Godínez, C; Juan, D

    2012-01-01

    A process for the production of ethanol from carob (Ceratonia siliqua) pods was designed and an economic analysis was carried out for a hypothetical plant. The plant was assumed to perform an aqueous extraction of sugars from the pods followed by fermentation and distillation to produce ethanol. The total fixed capital investment for a base case process with a capacity to transform 68,000 t/year carob pod was calculated as 39.61 millon euros (€) with a minimum bioethanol production cost of 0.51 €/L and an internal rate of return of 7%. The plant was found to be profitable at carob pod prices lower than 0.188 €/kg. An increase in the transformation capacity of the plant from 33,880 to 135,450 t/year was calculated to result in an increase in the internal rate of return from 5.50% to 13.61%. The obtained results show that carob pod is a promising alternative source for bioethanol production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Statistical screening and selection of sweet sorghum varieties for bioethanol production

    International Nuclear Information System (INIS)

    Mehmood, S.; Aqil, T.; Tahir, M.S.

    2014-01-01

    This study aims at the screening of four cultivars of sorghums as a feedstock for bioethanol production. The straw of these varieties were subjected to pretreatment (dilute sulfuric acid) followed by enzyme hydrolysis to evaluate their potential to produce sugars. Four factor full factorial experimental design (2*2*2*4=32) was used to investigate the effects of experimental factors; sorghum varieties (84-Y-01, 85-G-86, Mr. Buster and RARI S-3), acid concentration (1 and 2%), temperature (121 and 140 degree C) and pretreatment time (30 and 60 min). The tested sorghum varieties follow the order 85-G-86 (47 g/100g) > Mr. Buster (44.6 g/100g) > 84-Y-01 (42 g/100g) > RARI S-3 (36 g/100g) for their sugar yield. The factors followed given order of significance; variety > temperature > acid concentration > pretreatment time. Sorghum variety (85-G-86) was selected as an appropriate feedstock for bioethanol production due to its higher sugar yield and lower concentration of by-products and furans. (author)

  8. Isolation and characterization of lignin from the oak wood bioethanol production residue for adhesives.

    Science.gov (United States)

    Lee, Soo Jung; Kim, Hyun Joo; Cho, Eun Jin; Song, Younho; Bae, Hyeun-Jong

    2015-01-01

    Lignin was isolated from the residue of bioethanol production with oak wood via alkaline and catalyzed organosolv treatments at ambient temperature to improve the purity of lignin for the materials application. The isolated lignins were analyzed for their chemical composition by nitrobenzene oxidation method and their functionality was characterized via wet chemistry method, element analysis, (1)H NMR, GPC and FTIR-ATR. The isolated lignin by acid catalyzed organosolv treatment (Acid-OSL) contained a higher lignin content, aromatic proton, phenolic hydroxyl group and a lower nitrogen content that is more reactive towards chemical modification. The lignin-based adhesives were prepared and the bond strength was measured to evaluate the enhanced reactivity of lignin by the isolation. Two steps of phenolation and methylolation were applied for the modification of the isolated lignins and their tensile strengths were evaluated for the use as an adhesive. The acid catalyzed organosolv lignin-based adhesives had comparable bond strength to phenol-formaldehyde adhesives. The analysis of lignin-based adhesives by FTIR-ATR and TGA showed structural similarity to phenol adhesive. The results demonstrate that the reactivity of lignin was enhanced by isolation from hardwood bioethanol production residues at ambient temperature and it could be used in a value-added application to produce lignin-based adhesives. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Two stage bioethanol refining with multi litre stacked microbial fuel cell and microbial electrolysis cell.

    Science.gov (United States)

    Sugnaux, Marc; Happe, Manuel; Cachelin, Christian Pierre; Gloriod, Olivier; Huguenin, Gérald; Blatter, Maxime; Fischer, Fabian

    2016-12-01

    Ethanol, electricity, hydrogen and methane were produced in a two stage bioethanol refinery setup based on a 10L microbial fuel cell (MFC) and a 33L microbial electrolysis cell (MEC). The MFC was a triple stack for ethanol and electricity co-generation. The stack configuration produced more ethanol with faster glucose consumption the higher the stack potential. Under electrolytic conditions ethanol productivity outperformed standard conditions and reached 96.3% of the theoretically best case. At lower external loads currents and working potentials oscillated in a self-synchronized manner over all three MFC units in the stack. In the second refining stage, fermentation waste was converted into methane, using the scale up MEC stack. The bioelectric methanisation reached 91% efficiency at room temperature with an applied voltage of 1.5V using nickel cathodes. The two stage bioethanol refining process employing bioelectrochemical reactors produces more energy vectors than is possible with today's ethanol distilleries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Progress in the production of bioethanol on starch-based feedstocks

    Directory of Open Access Journals (Sweden)

    Dragiša Savić

    2009-10-01

    Full Text Available Bioethanol produced from renewable biomass, such as sugar, starch, or lignocellulosic materials, is one of the alternative energy resources, which is both renewable and environmentally friendly. Although, the priority in global future ethanol production is put on lignocellulosic processing, which is considered as one of the most promising second-generation biofuel technologies, the utilizetion of lignocellulosic material for fuel ethanol is still under improvement. Sugar- based (molasses, sugar cane, sugar beet and starch-based (corn, wheat, triticale, potato, rice, etc. feedstock are still currently predominant at the industrial level and they are, so far, economically favorable compared to lingocelluloses. Currently, approx. 80 % of total world ethanol production is obtained from the fermentation of simple sugars by yeast. In Serbia, one of the most suitable and available agricultural raw material for the industrial ethanol production are cereals such as corn, wheat and triticale. In addition, surpluses of this feedstock are being produced in our country constantly. In this paper, a brief review of the state of the art in bioethanol production and biomass availability is given, pointing out the progress possibilities on starch-based production. The progress possibilities are discussed in the domain of feedstock choice and pretreatment, optimization of fermentation, process integration and utilization of the process byproducts.

  11. A Factorial Analysis Study on Enzymatic Hydrolysis of Fiber Pressed Oil Palm Frond for Bioethanol Production

    Science.gov (United States)

    Hashim, F. S.; Yussof, H. W.; Zahari, M. A. K. M.; Illias, R. M.; Rahman, R. A.

    2016-03-01

    Different technologies have been developed to for the conversion of lignocellulosic biomass to suitable fermentation substrates for bioethanol production. The enzymatic conversion of cellulose seems to be the most promising technology as it is highly specific and does not produce substantial amounts of unwanted byproducts. The effects of agitation speed, enzyme loading, temperature, pH and reaction time on the conversion of glucose from fiber pressed oil palm frond (FPOPF) for bioethanol production were screened by statistical analysis using response surface methodology (RSM). A half fraction two-level factorial analysis with five factors was selected for the experimental design to determine the best enzymatic conditions that produce maximum amount of glucose. FPOPF was pre-treated with alkaline prior to enzymatic hydrolysis. The enzymatic hydrolysis was performed using a commercial enzyme Cellic CTec2. From this study, the highest yield of glucose concentration was 9.736 g/L at 72 hours reaction time at 35 °C, pH 5.6, and 1.5% (w/v) of enzyme loading. The model obtained was significant with p-value model had a maximum point which is likely to be the optimum point and possible for the optimization process.

  12. The Potential in Bioethanol Production From Waste Fiber Sludges in Pulp Mill-Based Biorefineries

    Science.gov (United States)

    Sjöde, Anders; Alriksson, Björn; Jönsson, Leif J.; Nilvebrant, Nils-Olof

    Industrial production of bioethanol from fibers that are unusable for pulp production in pulp mills offers an approach to product diversification and more efficient exploitation of the raw material. In an attempt to utilize fibers flowing to the biological waste treatment, selected fiber sludges from three different pulp mills were collected, chemically analyzed, enzymatically hydrolyzed, and fermented for bioethanol production. Another aim was to produce solid residues with higher heat values than those of the original fiber sludges to gain a better fuel for combustion. The glucan content ranged between 32 and 66% of the dry matter. The lignin content varied considerably (1-25%), as did the content of wood extractives (0.2-5.8%). Hydrolysates obtained using enzymatic hydrolysis were found to be readily fermentable using Saccharomyces cerevisiae. Hydrolysis resulted in improved heat values compared with corresponding untreated fiber sludges. Oligomeric xylan fragments in the solid residue obtained after enzymatic hydrolysis were identified using matrix-assisted laser desorption ionization-time of flight and their potential as a new product of a pulp mill-based biorefinery is discussed.

  13. Evolutionary engineering of Saccharomyces cerevisiae for efficient conversion of red algal biosugars to bioethanol.

    Science.gov (United States)

    Lee, Hye-Jin; Kim, Soo-Jung; Yoon, Jeong-Jun; Kim, Kyoung Heon; Seo, Jin-Ho; Park, Yong-Cheol

    2015-09-01

    The aim of this work was to apply the evolutionary engineering to construct a mutant Saccharomyces cerevisiae HJ7-14 resistant on 2-deoxy-D-glucose and with an enhanced ability of bioethanol production from galactose, a mono-sugar in red algae. In batch and repeated-batch fermentations, HJ7-14 metabolized 5-fold more galactose and produced ethanol 2.1-fold faster than the parental D452-2 strain. Transcriptional analysis of genes involved in the galactose metabolism revealed that moderate relief from the glucose-mediated repression of the transcription of the GAL genes might enable HJ7-14 to metabolize galactose rapidly. HJ7-14 produced 7.4 g/L ethanol from hydrolysates of the red alga Gelidium amansii within 12 h, which was 1.5-times faster than that observed with D452-2. We demonstrate conclusively that evolutionary engineering is a promising tool to manipulate the complex galactose metabolism in S. cerevisiae to produce bioethanol from red alga. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Production of bio-sugar and bioethanol from coffee residue (CR) by acid-chlorite pretreatment.

    Science.gov (United States)

    Kim, Ho Myeong; Choi, Yong-Soo; Lee, Dae-Seok; Kim, Yong-Hwan; Bae, Hyeun-Jong

    2017-07-01

    Nowadays, coffee residue (CR) after roasting is recognized as one of the most useful resources in the world for producing the biofuel and bio-materials. In this study, we evaluated the potential of bio-sugar and bioethanol production from acid-chlorite treated CR. Notably, CR treated three times with acid-chlorite after organic solvent extraction (OSE-3), showed the high monosaccharide content, and the efficient sugar conversion yield compared to the other pretreatment conditions. The OSE-3 (6% substrate loading, w/v) can produce bio-sugar (0.568g/g OSE-3). Also, simultaneous saccharification and fermentation (SSF) produced ethanol (0.266g/g OSE-3), and showed an ethanol conversion yield of 73.8% after a 72-h reaction period. These results suggest that acid-chlorite pretreatment can improve the bio-sugar and bioethanol production of CR by removing the phenolic and brown compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Dilute Ionic Liquids Pretreatment of Palm Empty Bunch and Its Impact to Produce Bioethanol

    Directory of Open Access Journals (Sweden)

    Lucy Arianie

    2013-12-01

    Full Text Available Ethanol production through ionic liquids pretreatment of palm empty bunch (PEB was carried out. This research aims to investigate impact of ionic liquids synthetic i.e 1-butyl-3-methyl imidazoliumbromide or [BMIM]bromide toward cellulose’s palm empty bunch and convert its cellulose into bioethanol. Ionic liquid was synthesized  through reflux and microwave assisted synthesis methods. Research investigation showed that microwave assisted synthesis produce [BMIM]bromide 90% faster than reflux method. The characterization of synthesized product using FTIR, 1H-NMR, 13C-NMR and LC-MS showed that these reactions have been carried out successfully. Scanning electron microscope figure out changes morphological surface of palm empty bunch caused by ionic liquid pretreatment. Crystallinity index of PEB milled and cellulose of PEFB after [BMIM]bromide dissolution were identified using comparison of PEB FTIR spectrum. Cellulose without dilute [BMIM]bromide have higher LOI number than cellulose after [BMIM]bromide dissolution. It indicated that a large part of cellulose after dissolution has been changed into amorf. Hydrolysis residue of palm empty bunch hydrolyzed by sulfuric acids 5%, 100 0C for 5 hours and produce 685 ppm of reducing sugar. Simultaneous Saccharification and Fermentation using Trichoderma viride and Saccharomyce cerevisiae  for 5 days produce 0,69% of bioethanol.

  16. Dilute Ionic Liquids Pretreatment of Palm Empty Bunch and Its Impact to Produce Bioethanol

    Directory of Open Access Journals (Sweden)

    Lucy Arianie

    2014-06-01

    Full Text Available Ethanol production through ionic liquids pretreatment of palm empty bunch (PEB was carried out. This research aims to investigate impact of ionic liquids synthetic i.e 1-butyl- 3-methyl imidazoliumbromide or [BMIM]bromide toward cellulose’s palm empty bunch and convert its cellulose into bioethanol. Ionic liquid was synthesized through reflux and microwave assisted synthesis methods. Research investigation showed that microwave assisted synthesis produce [BMIM]bromide 90% faster than reflux method. The characterization of synthesized product using FTIR, 1H-NMR, 13C-NMR and LC-MS showed that these reactions have been carried out successfully. Scanning electron microscope figure out changes morphological surface of palm empty bunch caused by ionic liquid pretreatment. Crystallinity index of PEB milled and cellulose of PEFB after [BMIM]bromide dissolution were identified using comparison of PEB FTIR spectrum. Cellulose without dilute [BMIM]bromide have higher LOI number than cellulose after [BMIM]bromide dissolution. It indicated that a large part of cellulose after dissolution has been changed into amorf. Hydrolysis residue of palm empty bunch hydrolyzed by sulfuric acids 5%, 100 0C for 5 hours and produce 685 ppm of reducing sugar. Simultaneous Saccharification and Fermentation using Trichoderma viride and Saccharomyce cerevisiae for 5 days produce 0,69% of bioethanol.

  17. Copper based anodes for bio-ethanol fueled low-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kondakindi, R.R.; Karan, K. [Queen' s Univ., Kingston, ON (Canada)

    2003-07-01

    Laboratory studies have been conducted to develop a low-temperature solid oxide fuel cell (SOFC) fueled by bio-ethanol. SOFCs are considered to be a potential source for clean and efficient electricity. The use of bio-ethanol to power the SOFC contributes even further to reducing CO{sub 2} emissions. The main barrier towards the development of the proposed SOFC is the identification of a suitable anode catalyst that prevents coking during electro-oxidation of ethanol while yielding good electrical performance. Copper was selected as the catalyst for this study. Composite anodes consisting of copper catalysts and gadolinium-doped ceria (GDC) electrolytes were prepared using screen printing of GDC and copper oxide on dense GDC electrolytes and by wet impregnation of copper nitrate in porous GDC electrolytes followed by calcination and sintering. The electrical conductivity of the prepared anodes was characterized to determine the percolation threshold. Temperature-programmed reduction and the Brunner Emmett Teller (BET) methods were used to quantify the catalyst dispersion and surface area. Electrochemical performance of the single-cell SOFC with a hydrogen-air system was used to assess the catalytic activities. Electrochemical Impedance Spectroscopy was used to probe the electrode kinetics.

  18. Production of hydrogen from bio-ethanol in catalytic membrane reactor

    International Nuclear Information System (INIS)

    Gernot, E.; Aupretre, F.; Deschamps, A.; Etievant, C.; Epron, F.; Marecot, P.; Duprez, D.

    2006-01-01

    Production of hydrogen from renewable energy sources offers a great potential for CO 2 emission reduction, responsible for global warming. Among renewable energies, liquid biofuels are very convenient hydrogen carriers for decentralized applications such as micro-cogeneration and transports. Ethanol, produced from sugar plants and cereals, allows a reduction of more than 60% of CO 2 emissions in comparison to gasoline. BIOSTAR is an R and D project, co-funded by the French Agency for Environment and Energy Management (ADEME) which aims at developing an efficient source of hydrogen from bio-ethanol, suitable for proton exchange membrane fuel cell systems. The objectives are to obtain, through catalytic process at medium temperature range, an efficient conversion of bio-ethanol into pure hydrogen directly usable for PEMFC. CETH has developed a catalytic membrane reformer (CMR), based on a patented technology, integrating a steam reforming catalyst as well as a combustion catalyst. Both catalysts have been developed and optimized for membrane reactor in partnership with the University of Poitiers. The composite metallic membrane developed by CETH allows hydrogen extraction near the hydrogen production sites, which enhances both efficiency and compactness. (authors)

  19. Production of Bioethanol from Carrot Pomace Using the Thermotolerant Yeast Kluyveromyces marxianus

    Energy Technology Data Exchange (ETDEWEB)

    Chi-Yang Yu; Bo-Hong Jiang; Kow-Jen Duan [Tatung University, Tapei, Taiwan (China). Department of Bioengineering

    2013-03-15

    Carrot pomace, a major agricultural waste from the juice industry, was used as a feedstock for bioethanol production by fermentation with the thermotolerant yeast Kluyveromyces marxianus. Treatment of the carrot pomace with Accellerase(TM) 1000 and pectinase at 50 °C for 84 h, resulted in conversion of 42% of its mass to fermentable sugars, mainly glucose, fructose, and sucrose. Simultaneous saccharification and fermentation (SSF) at 42 °C was performed on 10% (w/v) carrot pomace; the concentration of ethanol reached 18 g/L and the yield of ethanol from carrot pomace was 0.18 g/g. The highest ethanol concentration of 37 g/L was observed with an additional charge of 10% supplemented to the original 10% of carrot pomace after 12 h; the corresponding yield was 0.185 g/g. Our results clearly demonstrated the potential of combining a SSF process with thermotolerant yeast for the production of bioethanol using carrot pomace as a feedstock.

  20. Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast (ADY production.

    Directory of Open Access Journals (Sweden)

    Daoqiong Zheng

    Full Text Available The application of active dry yeast (ADY in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjected to a modified whole-genome shuffling (WGS process to improve its ethanol titer, proliferation capability, and multiple stress tolerance for ADY production. The best-performing mutant, Z3-86, was obtained after three rounds of WGS, producing 4.4% more ethanol and retaining 2.15-fold higher viability than ZTW1 after drying. Proteomics and physiological analyses indicated that the altered expression patterns of genes involved in protein metabolism, plasma membrane composition, trehalose metabolism, and oxidative responses contribute to the trait improvement of Z3-86. This work not only successfully developed a novel S. cerevisiae mutant for application in commercial bioethanol production, but also enriched the current understanding of how WGS improves the complex traits of microbes.

  1. The bioethanol from bagasse with the approach of discontinuous systems and the delay phenomena

    International Nuclear Information System (INIS)

    Albernas Carvajal, Yailet; Gonzalez Cortes, Meilyn; Mesa Garriga, Leyanis; Pedraza Garciga, Julio; Gonzalez Suarez, Erenio

    2011-01-01

    In this paper was analyzed the Bioethanol technology from bagasse considering discontinuous systems' and the delay phenomena. This technology have two stages that are key to succeed in obtaining the fermentable sugars, they are the pretreatment stage and enzymatic hydrolysis for subsequent fermentation. The great obstacle of the two latter stages, is that for best results, need long residence times (and this is where the delay phenomena it appears). For that reason the analysis require a study on how to carry out to ensure that the process global continuous. The enzymatic hydrolysis stage last an average of 24 h, while fermentation stage is accomplishes in 12 h. In this paper, the bioethanol technology was studied taking into account the basic concepts of discontinuous systems. Different technological configurations were studied, obtaining the best configuration: the presaccharification process, according to technical and economics criterions. The process profitability is achieved considering the total process as a bio refinery, which allows the production of high added value by-products such as furfural. (author)

  2. Optimization of simultaneous saccharification and fermentation conditions with amphipathic lignin derivatives for concentrated bioethanol production.

    Science.gov (United States)

    Cheng, Ningning; Koda, Keiichi; Tamai, Yutaka; Yamamoto, Yoko; Takasuka, Taichi E; Uraki, Yasumitsu

    2017-05-01

    Amphipathic lignin derivatives (A-LDs) prepared from the black liquor of soda pulping of Japanese cedar are strong accelerators for bioethanol production under a fed-batch simultaneous enzymatic saccharification and fermentation (SSF) process. To improve the bioethanol production concentration, conditions such as reaction temperature, stirring program, and A-LDs loadings were optimized in both small scale and large scale fed-batch SSF. The fed-batch SSF in the presence of 3.0g/L A-LDs at 38°C gave the maximum ethanol production and a high enzyme recovery rate. Furthermore, a jar-fermenter equipped with a powerful mechanical stirrer was designed for 1.5L-scale fed-batch SSF to achieve rigorous mixing during high substrate loading. Finally, the 1.5L fed-batch SSF with a substrate loading of 30% (w/v) produced a high ethanol concentration of 87.9g/L in the presence of A-LDs under optimized conditions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Fenton process combined with coagulation for the treatment of black liquor from bioethanol wastewater

    Science.gov (United States)

    Muryanto, Muryanto; Hanifah, Ummu; Amriani, Feni; Ibadurrahman, Ahmad Faiz; Sari, Ajeng Arum

    2017-11-01

    High amounts of black liquor are generated from bioethanol production by using oil palm empty fruit bunches. The black liquor is waste from alkaline pretreatment, it contains high amount of an alkaline solution (NaOH). The black liquor wastewater was highly contaminated with organic materials, and quite toxic for aquatic ecosystems if discharged directly into waters. This study aimed to determine ability of Fenton process combined with coagulation to treat black liquor. The addition 5% of polyaluminium chloride (PAC) could decolorized black liquor, degraded lignin, and produced sludge 70.64%, 68.28%, and 2.76 gram, respectively. Decolorization of black liquor was in line with degradation of black liquor because lignin is the main compound in black liquor. SEM images after addition of PAC of 5% indicated fragmentation of structure. Fenton reagent consist of 0.7 M FeSO4+ 3M H2O2 has able to decolorize black liquor, degrade lignin, and produce sludge 51.67% and 25.44%, and 0.44 gram, respectively. It was concluded that black liquor wastewater from bioethanol can be treated by using Fenton process combined with coagulation. However, these methods still need improvement to obtain the higher degradation rate, and coagulation sludge needs further consideration.

  4. Integrated Production of Xylonic Acid and Bioethanol from Acid-Catalyzed Steam-Exploded Corn Stover.

    Science.gov (United States)

    Zhu, Junjun; Rong, Yayun; Yang, Jinlong; Zhou, Xin; Xu, Yong; Zhang, Lingling; Chen, Jiahui; Yong, Qiang; Yu, Shiyuan

    2015-07-01

    High-efficiency xylose utilization is one of the restrictive factors of bioethanol industrialization. However, xylonic acid (XA) as a new bio-based platform chemical can be produced by oxidation of xylose with microbial. So, an applicable technology of XA bioconversion was integrated into the process of bioethanol production. After corn stover was pretreated with acid-catalyzed steam-explosion, solid and liquid fractions were obtained. The liquid fraction, also named as acid-catalyzed steam-exploded corn stover (ASC) prehydrolyzate (mainly containing xylose), was catalyzed with Gluconobacter oxydans NL71 to prepare XA. After 72 h of bioconversion of concentrated ASC prehydrolyzate (containing 55.0 g/L of xylose), the XA concentration reached a peak value of 54.97 g/L, the sugar utilization ratio and XA yield were 94.08 and 95.45 %, respectively. The solid fraction was hydrolyzed to produce glucose with cellulase and then fermented with Saccharomyces cerevisiae NL22 to produce ethanol. After 18 h of fermentation of concentrated enzymatic hydrolyzate (containing 86.22 g/L of glucose), the ethanol concentration reached its highest value of 41.48 g/L, the sugar utilization ratio and ethanol yield were 98.72 and 95.25 %, respectively. The mass balance showed that 1 t ethanol and 1.3 t XA were produced from 7.8 t oven dry corn stover.

  5. Digital Marketing

    OpenAIRE

    Stefano Pace; Margherita Pagani; Silvia Vianello

    2011-01-01

    Lo sviluppo di nuove modalità di commercio elettronico via web, le nuove piattaforme di Tv digitale interattiva (t-commerce) e le applicazioni mobili (m-commerce) hanno suscitato rilevante attenzione allo studio del comportamento del consumatore nei nuovi contesti digitali. Per le aziende è rilevante comprendere i fattori che influenzano l’intenzione di acquisto e adozione dei beni e servizi online da parte dei consumatori e il comportamento di fruizione delle singole piattaforme digitali...

  6. Comparing centralised and decentralised anaerobic digestion of stillage from a large-scale bioethanol plant to animal feed production.

    Science.gov (United States)

    Drosg, B; Wirthensohn, T; Konrad, G; Hornbachner, D; Resch, C; Wäger, F; Loderer, C; Waltenberger, R; Kirchmayr, R; Braun, R

    2008-01-01

    A comparison of stillage treatment options for large-scale bioethanol plants was based on the data of an existing plant producing approximately 200,000 t/yr of bioethanol and 1,400,000 t/yr of stillage. Animal feed production--the state-of-the-art technology at the plant--was compared to anaerobic digestion. The latter was simulated in two different scenarios: digestion in small-scale biogas plants in the surrounding area versus digestion in a large-scale biogas plant at the bioethanol production site. Emphasis was placed on a holistic simulation balancing chemical parameters and calculating logistic algorithms to compare the efficiency of the stillage treatment solutions. For central anaerobic digestion different digestate handling solutions were considered because of the large amount of digestate. For land application a minimum of 36,000 ha of available agricultural area would be needed and 600,000 m(3) of storage volume. Secondly membrane purification of the digestate was investigated consisting of decanter, microfiltration, and reverse osmosis. As a third option aerobic wastewater treatment of the digestate was discussed. The final outcome was an economic evaluation of the three mentioned stillage treatment options, as a guide to stillage management for operators of large-scale bioethanol plants. Copyright IWA Publishing 2008.

  7. 1st or 2nd generation bioethanol-impacts of technology integration & on feed production and land use

    DEFF Research Database (Denmark)

    Bentsen, Niclas Scott; Felby, Claus

    2009-01-01

    production comparable to gasoline production in terms of energy loss. Utilisation of biomass in the energy sector is inevitably linked to the utilisation of land. This is a key difference between fossil and bio based energy systems. Thus evaluations of bioethanol production based on energy balances alone...

  8. Isolation and characterization of marine bacteria from macroalgae Gracilaria salicornia and Gelidium latifolium on agarolitic activity for bioethanol production

    Science.gov (United States)

    Kawaroe, M.; Pratiwi, I.; Sunudin, A.

    2017-05-01

    Gracilaria salicornia and Gelidium latifolium have high content of agar and potential to be use as raw material for bioethanol. In bioethanol production, one of the processes level is enzyme hydrolysis. Various microorganisms, one of which is bacteria, can carry out the enzyme hydrolysis. Bacteria that degrade the cell walls of macroalgae and produce an agarase enzyme called agarolytic bacteria. The purpose of this study was to isolate bacteria from macroalgae G. salicornia and G. latifolium, which has the highest agarase enzyme activities, and to obtain agarase enzyme characteristic for bioethanol production. There are two isolates bacteria resulted from G. salicornia that are N1 and N3 and there are two isolates from G. latifolium that are BSUC2 and BSUC4. The result of agarase enzyme qualitative test showed that isolates bacteria from G. latifolium were greater than G. salicornia. The highest agarolitic index of bacteria from G. salicornia produced by isolate N3 was 2.32 mm and isolate N3 was 2.27 mm. Bacteria from G. latifolium produced by isolate BSUC4 was 4.28 mm and isolate BSUC2 was 4.18 mm, respectively. Agarase enzyme activities from isolates N1 and N3 were optimum working at pH 7 and temperature 30 °C, while from isolates BSUC4 was optimum at pH 7 and temperature 50 °C. This is indicated that the four bacteria are appropriate to hydrolyze macro alga for bioethanol production.

  9. Selective dehydration of bio-ethanol to ethylene catalyzed by lanthanum-phosphorous-modified HZSM-5: influence of the fusel.

    Science.gov (United States)

    Hu, Yaochi; Zhan, Nina; Dou, Chang; Huang, He; Han, Yuwang; Yu, Dinghua; Hu, Yi

    2010-11-01

    Bio-ethanol dehydration to ethylene is an attractive alternative to oil-based ethylene. The influence of fusel, main byproducts in the fermentation process of bio-ethanol production, on the bio-ethanol dehydration should not be ignored. We studied the catalytic dehydration of bio-ethanol to ethylene over parent and modified HZSM-5 at 250°C, with weight hourly space velocity (WHSV) equal to 2.0/h. The influences of a series of fusel, such as isopropanol, isobutanol and isopentanol, on the ethanol dehydration over the catalysts were investigated. The 0.5%La-2%PHZSM-5 catalyst exhibited higher ethanol conversion (100%), ethylene selectivity (99%), and especially enhanced stability (more than 70 h) than the parent and other modified HZSM-5. We demonstrated that the introduction of lanthanum and phosphorous to HZSM-5 could weaken the negative influence of fusel on the formation of ethylene. The physicochemical properties of the catalysts were characterized by ammonia temperature-programmed desorption (NH(3)-TPD), nitrogen adsorption and thermogravimetry (TG)/differential thermogravimetry (DTG)/differential thermal analysis (DTA) (TG/DTG/DTA) techniques. The results indicated that the introduction of lanthanum and phosphorous to HZSM-5 could inhibit the formation of coking during the ethanol dehydration to ethylene in the presence of fusel. The development of an efficient catalyst is one of the key technologies for the industrialization of bio-ethylene.

  10. An integral analysis for second generation bioethanol production via a dynamic model-based simulation approach: stochastic nonlinear optimisation

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Meyer, Anne S.; Gernaey, Krist

    of cellulose, co-fermentation of sugars and downstream processes for purification and recovery of most value-added products. The dynamic model involves both the mass and energy balances coupled with constitutive dynamic equations to assess the process yield and energy efficiency of different bioethanol...

  11. A novel solid state fermentation coupled with gas stripping enhancing the sweet sorghum stalk conversion performance for bioethanol

    Science.gov (United States)

    2014-01-01

    Background Bioethanol production from biomass is becoming a hot topic internationally. Traditional static solid state fermentation (TS-SSF) for bioethanol production is similar to the traditional method of intermittent operation. The main problems of its large-scale intensive production are the low efficiency of mass and heat transfer and the high ethanol inhibition effect. In order to achieve continuous production and high conversion efficiency, gas stripping solid state fermentation (GS-SSF) for bioethanol production from sweet sorghum stalk (SSS) was systematically investigated in the present study. Results TS-SSF and GS-SSF were conducted and evaluated based on different SSS particle thicknesses under identical conditions. The ethanol yield reached 22.7 g/100 g dry SSS during GS-SSF, which was obviously higher than that during TS-SSF. The optimal initial gas stripping time, gas stripping temperature, fermentation time, and particle thickness of GS-SSF were 10 h, 35°C, 28 h, and 0.15 cm, respectively, and the corresponding ethanol stripping efficiency was 77.5%. The ethanol yield apparently increased by 30% with the particle thickness decreasing from 0.4 cm to 0.05 cm during GS-SSF. Meanwhile, the ethanol yield increased by 6% to 10% during GS-SSF compared with that during TS-SSF under the same particle thickness. The results revealed that gas stripping removed the ethanol inhibition effect and improved the mass and heat transfer efficiency, and hence strongly enhanced the solid state fermentation (SSF) performance of SSS. GS-SSF also eliminated the need for separate reactors and further simplified the bioethanol production process from SSS. As a result, a continuous conversion process of SSS and online separation of bioethanol were achieved by GS-SSF. Conclusions SSF coupled with gas stripping meet the requirements of high yield and efficient industrial bioethanol production. It should be a novel bioconversion process for bioethanol production from SSS

  12. Marketing; Il marketing

    Energy Technology Data Exchange (ETDEWEB)

    Muscigna, M [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). Dipt. Innovazione

    1999-07-01

    The report discusses marketing strategies oriented to the organizations and analyzes its critical factors, which determine the success of the organization activity. [Italian] Il rapporto analizza i caratteri delle strategie del marketing orientato all'impresa. Vengono infine analizzati i fattori critici che determinano il successo o l'insuccesso delle scelte aziendali.

  13. Marketing; Il marketing

    Energy Technology Data Exchange (ETDEWEB)

    Muscigna, M. [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). Dipt. Innovazione

    1999-07-01

    The report discusses marketing strategies oriented to the organizations and analyzes its critical factors, which determine the success of the organization activity. [Italian] Il rapporto analizza i caratteri delle strategie del marketing orientato all'impresa. Vengono infine analizzati i fattori critici che determinano il successo o l'insuccesso delle scelte aziendali.

  14. Le FIVB annonce le financement de huit autres projets | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    5 avr. 2018 ... Découvrez les derniers récents projets soutenus par le Fonds d'innovation en matière de vaccins pour le bétail : Maladie de Newcastle · Pleuropneumonie contagieuse caprine – cowdriose · Plateforme de modification génétique CRISPR/cas9 · Entérotoxémie, la bactérie Pasteurella et la fièvre de la vallée ...

  15. Kinetic studies of adsorption in the bioethanol dehydration using polyvinyl alcohol, zeolite and activated carbon as adsorbent

    Science.gov (United States)

    Laksmono, J. A.; Pratiwi, I. M.; Sudibandriyo, M.; Haryono, A.; Saputra, A. H.

    2017-11-01

    Bioethanol is considered as the most promising alternative fuel in the future due to its abundant renewable sources. However, the result of bioethanol production process using fermentation contains 70% v/v, and it still needs simultaneous purification process. One of the most energy-efficient purification methods is adsorption. Specifically, the rate of adsorption is an important factor for evaluating adsorption performance. In this work, we have conducted an adsorption using polyvinyl alcohol (PVA), zeolite and activated carbon as promising adsorbents in the bioethanol dehydration. This research aims to prove that PVA, zeolite, activated carbon is suitable to be used as adsorbent in bioethanol dehydration process through kinetics study and water adsorption selectivity performance. According to the results, PVA, zeolite and activated carbon are the potential materials as adsorbents in the bioethanol dehydration process. The kinetics study shows that 30°C temperature gave the optimum adsorption kinetics rate for PVA, zeolite, and activated carbon adsorbents which were 0.4911 min-1; 0.5 min-1; and 1.1272 min-1 respectively. In addition, it also shows that the activated carbon performed as a more potential adsorbent due to its higher pore volume and specific surface area properties. Based on the Arrhenius equation, the PVA works in the chemisorption mechanism, meanwhile zeolite and activated carbon work in the physisorption system as shown in the value of the activation energy which are 51.43 kJ/mole; 8.16 kJ/mole; and 20.30 kJ/mole. Whereas the water to ethanol selectivity study, we discover that zeolite is an impressive adsorbent compared to the others due to the molecular sieving characteristic of the material.

  16. Experimental and theoretical study on spray behaviors of modified bio-ethanol fuel employing direct injection system

    Directory of Open Access Journals (Sweden)

    Ghahremani Amirreza

    2017-01-01

    Full Text Available One of the key solutions to improve engine performance and reduce exhaust emissions of internal combustion engines is direct injection of bio-fuels. A new modified bio-ethanol is produced to be substituted by fossil fuels in gasoline direct injection engines. The key advantages of modified bio-ethanol fuel as an alternative fuel are higher octane number and oxygen content, a long-chain hydro-carbon fuel, and lower emissions compared to fossil fuels. In the present study spray properties of a modified bio-ethanol and its atomization behaviors have been studied experimentally and theoretically. Based on atomization physics of droplets dimensional analysis has been performed to develop a new non-dimensional number namely atomization index. This number determines the atomization level of the spray. Applying quasi-steady jet theory, air entrainment and fuel-air mixing studies have been performed. The spray atomization behaviors such as atomization index number, Ohnesorge number, and Sauter mean diameter have been investigated employing atomization model. The influences of injection and ambient conditions on spray properties of different blends of modified bio-ethanol and gasoline fuels have been investigated performing high-speed visualization technique. Results indicate that decreasing the difference of injection and ambient pressures increases spray cone angle and projected area, and decreases spray tip penetration length. As expected, increasing injection pressure improves atomization behaviors of the spray. Increasing percentage of modified bio-ethanol in the blend, increases spray tip penetration and decreases the projected area as well.

  17. Expression Study of LeGAPDH, LeACO1, LeACS1A, and LeACS2 in Tomato Fruit (Solanum lycopersicum

    Directory of Open Access Journals (Sweden)

    Pijar Riza Anugerah

    2015-10-01

    Full Text Available Tomato is a climacteric fruit, which is characterized by ripening-related increase of respiration and elevated ethylene synthesis. Ethylene is the key hormone in ripening process of climacteric fruits. The objective of this research is to study the expression of three ethylene synthesis genes: LeACO1, LeACS1A, LeACS2, and a housekeeping gene LeGAPDH in ripening tomato fruit. Specific primers have been designed to amplify complementary DNA fragment of LeGAPDH (143 bp, LeACO1 (240 bp, LeACS1A (169 bp, and LeACS2 (148 bp using polymerase chain reaction. Nucleotide BLAST results of the complementary DNA fragments show high similarity with LeGAPDH (NM_001247874.1, LeACO1 (NM_001247095.1, LeACS1A (NM_001246993.1, LeACS2 (NM_001247249.1, respectively. Expression study showed that LeACO1, LeACS1A, LeACS2, and LeGAPDH genes were expressed in ripening tomato fruit. Isolation methods, reference sequences, and primers used in this study can be used in future experiments to study expression of genes responsible for ethylene synthesis using quantitative polymerase chain reaction and to design better strategy for controlling fruit ripening in agroindustry.

  18. Le Valais et ses Reines

    Directory of Open Access Journals (Sweden)

    Alberto Campi

    2012-06-01

    Full Text Available Combat de ReinesAu premier plan (la corde dans la main, un propriétaire de vaches. Dans l'arène se trouve le rabatteur. Les Reines sur la photo sont des reines de première catégorie (ainsi que le montre le « I » sur leur cuisse .Dimanche 6 mai 2012, « Schakira », la vache numéro 42, a gagné, non sans polémique, le titre de Reine. Elle peut donc être considérée comme la Reine des Reines, titre qu’elle a gagné en se battant contre ses rivales dans différents combats, qui ont commencé pour Sch...

  19. Le bal du loup

    CERN Multimedia

    Happy Children's Home

    2013-01-01

    The Bord'eau amateur theatre group will graciously perform a play of their creation Le bal du loup Saturday 19 October 2013 at 20:00 Sunday 20 October at 17:00 in the Théâtre des Grottes Rue Louis Favre 43, 1201 Genève Children from age 12 upwards. Summary: The new-elected mayoress of a small village would like to clean up the town by prohibiting alcohol and getting rid of its prostitutes. Then along comes « Massimo Lupo » the pimp... The performances will be given to support the Happy Children's Home charity, which runs a foster-home in Pokhara for Nepali children:  http://www.happychildrenshome.org/ Admission : minimum charge of 10 CHF per person requested, to cover the cost of technical assistance and theatre rental. Any profit will be used solely for the foster-home. At the end of each performance members of the HCH charity will be happy to answer any questions you may have. The theatre has 86 seats, thank you for reserv...

  20. Livestock Marketing.

    Science.gov (United States)

    Futrell, Gene; And Others

    This marketing unit focuses on the seasonal and cyclical patterns of livestock markets. Cash marketing, forward contracting, hedging in the futures markets, and the options markets are examined. Examples illustrate how each marketing tool may be useful in gaining a profit on livestock and cutting risk exposure. The unit is organized in the…

  1. Un oiseau "sabote" le CERN

    CERN Multimedia

    Colson, Sébastien

    2009-01-01

    Un oiseau, un simple oiseau, est parvenu à bloquer à lui tout seul l'accélérateur à particules à 3,7 milliards d'euros. UNe histoire quasiment bulresque qui a toutefois impacté le fonctionnement de la machine durant près de cinq jours, puisque c'est le système de refroidissement qui a été affecté. (1 page)

  2. Le CRDI dans les Philippines

    International Development Research Centre (IDRC) Digital Library (Canada)

    Le CRDI appuie la recherche dans les. Philippines depuis 1972. Le travail qu'y ont accompli des universités et des instituts de recherche vigoureux et la participation active de la société civile ont entraîné d'importantes améliorations dans les domaines de l'agriculture, du suivi de la pauvreté et de la gestion des forêts.

  3. Le modèle spatial de la capitale allemande

    Directory of Open Access Journals (Sweden)

    Antoine Laporte

    2013-06-01

    Full Text Available En Allemagne, en 1999, le Chancelier fédéral et son gouvernement ont quitté Bonn pour Berlin. Ce transfert du pouvoir est accompagné de celui d’une grande partie de l’appareil d’État et de la haute administration, et des fonctions qui leur sont traditionnellement attribuées comme la presse, les lobbys ou encore la diplomatie. Le déplacement du statut de capitale effective de l’Allemagne de Bonn à Berlin est le résultat des évolutions géopolitiques d’un pays ayant recouvré son unité et sa pleine et entière souveraineté. Installer le pouvoir exécutif et législatif à Berlin était une démarche hautement symbolique, visant à normaliser la position de l’ancienne capitale de la RDA et du IIIe Reich comme véritable centre politique de l’Allemagne. Or le déplacement des institutions fédérales n’est pas qu’un acte symbolique. Il entraîne également à l’échelle intra-urbaine des dynamiques très concrètes sur le tissu urbain et participe à la mise en place de nouvelles centralités dans la ville. En effet, le statut de capitale d’État prédestine l’agglomération à la coprésence de nombreuses fonctions urbaines spécifiques plus ou moins directement liées à l’exercice ou à la symbolique du pouvoir.

  4. Le livre sur le livre traité de documentation

    CERN Document Server

    Otlet, Paul

    2015-01-01

    Paul Otlet est considéré comme le père des sciences de l'information. Ouvrage fondateur et fondamental, le Traité de documentation. Le livre sur le livre (1934) est l'aboutissement de son travail inlassable pour rassembler, classer et partager les connaissances. Otlet y propose une remarquable synthèse du savoir sur le livre et le document en même temps qu'il anticipe Internet et l'hypertexte. La réédition du Traité de documentation, 70 ans après la disparition de son auteur, coïncide avec la réouverture du Mundaneum à Mons, où le fabuleux héritage documentaire légué par Paul Otlet et Henri La Fontaine est conservé. « Ici, la table de travail n'est plus chargée d'aucun livre. À leur place se dresse un écran et à portée un téléphone. Là-bas, au loin, dans un édifice immense, sont tous les livres et tous les renseignements. De là, on fait apparaître sur l'écran la page à lire pour connaître la réponse aux questions posées par téléphone. » Préfaces de Benoît Peeters (éc...

  5. The Enzymatic Conversion of Major Algal and Cyanobacterial Carbohydrates to Bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Al Abdallah, Qusai, E-mail: qalabdal@uthsc.edu [Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN (United States); Nixon, B. Tracy [Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA (United States); Fortwendel, Jarrod R. [Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN (United States)

    2016-11-04

    The production of fuels from biomass is categorized as first-, second-, or third-generation depending upon the source of raw materials, either food crops, lignocellulosic material, or algal biomass, respectively. Thus far, the emphasis has been on using food crops creating several environmental problems. To overcome these problems, there is a shift toward bioenergy production from non-food sources. Algae, which store high amounts of carbohydrates, are a potential producer of raw materials for sustainable production of bioethanol. Algae store their carbohydrates in the form of food storage sugars and structural material. In general, algal food storage polysaccharides are composed of glucose subunits; however, they vary in the glycosidic bond that links the glucose molecules. In starch-type polysaccharides (starch, floridean starch, and glycogen), the glucose subunits are linked together by α-(1→4) and α-(1→6) glycosidic bonds. Laminarin-type polysaccharides (laminarin, chrysolaminarin, and paramylon) are made of glucose subunits that are linked together by β-(1→3) and β-(1→6) glycosidic bonds. In contrast to food storage polysaccharides, structural polysaccharides vary in composition and glycosidic bond. The industrial production of bioethanol from algae requires efficient hydrolysis and fermentation of different algal sugars. However, the hydrolysis of algal polysaccharides employs more enzymatic mixes in comparison to terrestrial plants. Similarly, algal fermentable sugars display more diversity than plants, and therefore more metabolic pathways are required to produce ethanol from these sugars. In general, the fermentation of glucose, galactose, and glucose isomers is carried out by wild-type strains of Saccharomyces cerevisiae and Zymomonas mobilis. In these strains, glucose enters glycolysis, where is it converted to pyruvate through either Embden–Meyerhof–Parnas pathway or Entner–Doudoroff pathway. Other monosaccharides must be converted to

  6. The Enzymatic Conversion of Major Algal and Cyanobacterial Carbohydrates to Bioethanol

    International Nuclear Information System (INIS)

    Al Abdallah, Qusai; Nixon, B. Tracy; Fortwendel, Jarrod R.

    2016-01-01

    The production of fuels from biomass is categorized as first-, second-, or third-generation depending upon the source of raw materials, either food crops, lignocellulosic material, or algal biomass, respectively. Thus far, the emphasis has been on using food crops creating several environmental problems. To overcome these problems, there is a shift toward bioenergy production from non-food sources. Algae, which store high amounts of carbohydrates, are a potential producer of raw materials for sustainable production of bioethanol. Algae store their carbohydrates in the form of food storage sugars and structural material. In general, algal food storage polysaccharides are composed of glucose subunits; however, they vary in the glycosidic bond that links the glucose molecules. In starch-type polysaccharides (starch, floridean starch, and glycogen), the glucose subunits are linked together by α-(1→4) and α-(1→6) glycosidic bonds. Laminarin-type polysaccharides (laminarin, chrysolaminarin, and paramylon) are made of glucose subunits that are linked together by β-(1→3) and β-(1→6) glycosidic bonds. In contrast to food storage polysaccharides, structural polysaccharides vary in composition and glycosidic bond. The industrial production of bioethanol from algae requires efficient hydrolysis and fermentation of different algal sugars. However, the hydrolysis of algal polysaccharides employs more enzymatic mixes in comparison to terrestrial plants. Similarly, algal fermentable sugars display more diversity than plants, and therefore more metabolic pathways are required to produce ethanol from these sugars. In general, the fermentation of glucose, galactose, and glucose isomers is carried out by wild-type strains of Saccharomyces cerevisiae and Zymomonas mobilis. In these strains, glucose enters glycolysis, where is it converted to pyruvate through either Embden–Meyerhof–Parnas pathway or Entner–Doudoroff pathway. Other monosaccharides must be converted to

  7. The enzymatic conversion of major algal and cyanobacterial carbohydrates to bioethanol

    Directory of Open Access Journals (Sweden)

    Qusai Al Abdallah

    2016-11-01

    Full Text Available The production of fuels from biomass is categorized as first-, second- or third-generation depending upon the source of raw materials, either food crops, lignocellulosic material, or algal biomass, respectively. Thus far, the emphasis has been on using food crops creating several environmental problems. To overcome these problems, there is a shift toward bioenergy production from non-food sources. Algae, which store high amounts of carbohydrates, are a potential producer of raw materials for sustainable production of bioethanol. Algae store their carbohydrates in the form of food storage sugars and structural material. In general, algal food storage polysaccharides are composed of glucose subunits, however they vary in the glycosidic bond that links the glucose molecules. In starch-type polysaccharides (starch, floridean starch, and glycogen, the glucose subunits are linked together by α-(1→4 and α-(1→6 glycosidic bonds. Laminarin-type polysaccharides (laminarin, chrysolaminarin, and paramylon are made of glucose subunits that are linked together by β-(1→3 and β-(1→6 glycosidic bonds. In contrast to food storage polysaccharides, structural polysaccharides vary in composition and glycosidic bond. The industrial production of bioethanol from algae requires efficient hydrolysis and fermentation of different algal sugars. However, the hydrolysis of algal polysaccharides employs more enzymatic mixes in comparison to terrestrial plants. Similarly, algal fermentable sugars display more diversity than plants, and therefore more metabolic pathways are required to produce ethanol from these sugars. In general, the fermentation of glucose, galactose, and glucose isomers is carried out by wild type strains of Saccharomyces cerevisiae and Zymomonas mobilis. In these strains, glucose enters glycolysis, where is it converted to pyruvate through either Embden-Meyerhof-Parnas pathway or Entner-Doudoroff pathway. Other monosaccharides must be

  8. Energy Balance of Bio-ethanol - A Review; Energibalans foer bioetanol - en kunskapsoeversikt

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal

    2006-03-15

    This review presents a synthesis of various Swedish and international studies on the bio-ethanol energy balance, and an analysis of how and why their results differ. Other methods, such as exergy- and emergy analysis, are discussed and compared with the energy analysis method. Finally, potential improvements of the energy efficiency in bio-ethanol production are discussed. The energy balance is here expressed as the ratio of the energy content of the fuel to the primary energy input for the entire production cycle of the fuel. The energy balance of ethanol from cereals is, on average, 1.6, and varies between 0.7 and 2.8. Corresponding average figures for ethanol from corn, sugar beets and lignocellulosic biomass (e.g. energy forest) are 1.4, 1.8 and 3.2, respectively. There are several reasons why the energy balances differ between the different studies, even where the feedstock is identical. The sources of differences can be divided between those related to differences in local and geographical conditions, and those related to differences in the methodological approach applied. Depending on the definition of the system that is studied (systems boundaries), and how the energy input is divided between the ethanol and the by-products generated in the process (allocation methods), the energy balance may differ by a factor of 5. Thus, it is impossible to make reliable and fair comparisons between different studies unless all assumptions are clearly presented and defined. Results from exergy- and emergy analysis of bio-ethanol often show significantly different results from those presented in energy analyses. It is, however, not useful to compare these different results since the various methods have different focuses and are answering different questions. The energy balance of cereal-based ethanol can be improved by more efficient cultivation methods, but mainly by improved conversion processes. One possibility is by using bio-refineries where not only ethanol but also

  9. Techno-Economic Analysis of Bioethanol Production from Lignocellulosic Biomass in China: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    OpenAIRE

    Zhao, Lili; Zhang, Xiliang; Xu, Jie; Ou, Xunmin; Chang, Shiyan; Wu, Maorong

    2015-01-01

    Lignocellulosic biomass-based ethanol is categorized as 2 nd generation bioethanol in the advanced biofuel portfolio. To make sound incentive policy proposals for the Chinese government and to develop guidance for research and development and industrialization of the technology, the paper reports careful techno-economic and sensitivity analyses performed to estimate the current competitiveness of the bioethanol and identify key components which have the greatest impact on its plant-gate price...

  10. Le nouveau modèle africain | CRDI - Centre de recherches pour le ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    22 juil. 2011 ... Or, ce serait rater le bateau que de ne pas s'engager dans la voie tout autre que les Africains proposent maintenant — à savoir se défaire du syndrome de la dépendance qui afflige l'Afrique depuis des décennies. Le Canada et les autres pays riches du Nord reconnaissent généralement qu'ils ne peuvent ...

  11. Lele des intervenants non gouvernementaux dans le ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Ce projet servira à déterminer les facteurs stratégiques et réglementaires qui ont contribué ou nui aux efforts visant à permettre aux fournisseurs non gouvernementaux de participer au renforcement des systèmes de santé. Lele des fournisseurs de ... Climate Change and Water Adaptation Options. The impacts of climate ...

  12. Le dualisme Chipaya

    Directory of Open Access Journals (Sweden)

    1974-01-01

    Full Text Available L’auteur, partant des observations de Métraux sur Chipaya, apporte des idées neuves sur les ayllu constituant le village, basées sur une enquête approfondie et un plan détaillé du village : deux divisions principales apparaissent, celles-ci se divisant a leur tour en quatre ayllu. La chute brutale de la démographie depuis la seconde moitié du XVIe siècle a fait disparaître les 4 ayllu originels mais l’examen des archives permet d’observer un très vigoureux redressement démographique à partir des derniers 150 ans. Ce redressement démographique semble précipiter un nouvel éclatement de la communauté chipaya. El autor partiendo de las observaciones de Métraux sobre Chipaya, aporta sobre los ayllu que constituían el pueblo, basadas en una encuesta profunda y un plano detallado del pueblo: aparecen dos divisiones principales, dividiéndose éstas a su vez en cuatro ayllu. La caída brutal de la demografía desde la segunda mitad del siglo XVI ha hecho desaparecer los 4 ayllu primitivos pero el examen de los archivos permite observar un resurgimiento vigoroso a partir de los últimos 150 años. Este resurgimiento demográfico parece precipitar una nueva explosión de la comunidad chipaya.

  13. Le pompage optique naturel dans le milieu astrophysique

    Science.gov (United States)

    Pecker, J.-C.

    The title of this lecture abstracts only a part of it : the importance in astrophysics of the study of non-LTE situations has become considerable, as well in the stellar atmospheres as, still more, in the study of fortuitous coincidences as a mechanism of formation of emission line nebular spectra, or of molecular interstellar « masers ». Another part of this talk underlines the role of Kastler in his time, and describes his warm personality through his public reactions in front of the nuclear armement, of the Viet-Nam and Algerian wars, of the problems of political refugees... Kastler was a great scientist ; he was also a courageous humanist. 1976 : Les accords nucléaires du Brésil : allocution d'ouverture (19 mars). Colloque sur le sujet ci-dessus. 1976 : La promotion de la culture dans le nouvel ordre économique international, allocution à l'occasion d'une table ronde sur ce thème par l'UNESCO (23-27 juin 1976) ; « Sciences et Techniques », octobre 1976. 1979 : La bête immonde (avec J.-C. Pecker), « Le Matin », 20 mars. 1979 : Appel à nos ministres (avec J.-C. Pecker), « Le Monde », 13 décembre. 1979 : Le flou, le ténébreux, l'irrationnel (avec J.-C. Pecker), « Le Monde », 14 septembre. 1980 : Education à la paix, Préface, in : Publ. UNESCO. 1981 : Le vrai danger, « Le Monde », 6 août 1981. 1982 : Nucléaire civil et militaire, « Le Monde », 1er juin 1982. 1982 : Les scientifiques face à la perspective d'holocauste nucléaire (texte inédit). Le titre de cette communication en résume seulement une partie : l'importance prise en astrophysique par l'analyse des situations hors ETL est devenue considérable, qu'il s'agisse des atmosphères stellaires, ou plus encore, des coïncidences fortuites de la formation des spectres d'émission nébulaires, ou des « masers » moléculaires interstellaires. Une autre partie de cet exposé souligne lele de Kastler dans son époque, et décrit sa personnalité généreuse à travers ses r

  14. Application of bioethanol derived lignin for improving physico-mechanical properties of thermoset biocomposites.

    Science.gov (United States)

    Bajwa, Dilpreet S; Wang, Xinnan; Sitz, Evan; Loll, Tyler; Bhattacharjee, Sujal

    2016-08-01

    Lignin is the most abundant of renewable polymers next to cellulose with a global annual production of 70million tons, largely produced from pulping and second generation biofuel industries. Low value of industrial lignin makes it an attractive biomaterial for wide range of applications. The study investigated the application of wheat straw and corn stover based lignin derived from ethanol production for use in thermoset biocomposites. The biocomposite matrix constituted a two component low viscosity Araldite(®)LY 8601/Aradur(®) 8602 epoxy resin system and the lignin content varied from 0 to 25% by weight fraction. The analysis of the physical and mechanical properties of the biocomposites show bioethanol derived lignin can improve selective properties such as impact strength, and thermal stability without compromising the modulus and strength attributes. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Bioethanol production from mannitol by a newly isolated bacterium, Enterobacter sp. JMP3.

    Science.gov (United States)

    Wang, Jing; Kim, Young Mi; Rhee, Hong Soon; Lee, Min Woo; Park, Jong Moon

    2013-05-01

    In this study a new bacterium capable of growing on brown seaweed Laminaria japonica, Enterobacter sp. JMP3 was isolated from the gut of turban shell, Batillus cornutus. In anaerobic condition, it produced high yields of ethanol (1.15 mol-EtOH mol-mannitol(-1)) as well as organic acids from mannitol, the major carbohydrate component of L. japonica. Based on carbon distribution and metabolic flux analysis, it was revealed that mannitol was more favorable than glucose for ethanol production due to their different redox states. This indicates that L. japonica is one of the promising feedstock for bioethanol production. Additionally, the mannitol dehydrogenation pathway in Enterobacter sp. JMP3 was examined and verified. Finally, an attempt was made to explore the possibility of controlling ethanol production by altering the redox potential via addition of external NADH in mannitol fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Hydrodynamic cavitation as a novel pretreatment approach for bioethanol production from reed.

    Science.gov (United States)

    Kim, Ilgook; Lee, Ilgyu; Jeon, Seok Hwan; Hwang, Taewoon; Han, Jong-In

    2015-09-01

    In this study, hydrodynamic cavitation (HC) was employed as a physical means to improve alkaline pretreatment of reed. The HC-assisted alkaline pretreatment was undertaken to evaluate the influence of NaOH concentration (1-5%), solid-to-liquid ratio (5-15%), and reaction time (20-60 min) on glucose yield. The optimal condition was found to be 3.0% NaOH at solid-to-liquid (S/L) ratio of 11.8% for 41.1 min, which resulted in the maximum glucose yield of 326.5 g/kg biomass. Furthermore, simultaneous saccharification and fermentation (SSF) was conducted to assess the ethanol production. An ethanol concentration of 25.9 g/L and ethanol yield of 90% were achieved using batch SSF. These results clearly demonstrated HC system can be indeed a promising pretreatment tool for lignocellulosic bioethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Dairy Manure as a Potential Feedstock for Cost-Effective Cellulosic Bioethanol

    Directory of Open Access Journals (Sweden)

    Qiang Yang

    2015-12-01

    Full Text Available This study investigated sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL pretreatment and subsequent enzymatic digestibility of undigested dairy manure to preliminarily assess its potential use as an inexpensive feedstock for cellulosic bioethanol production. The sulfite pretreatment was carried out in a factorial analysis using 163 to 197 °C for 3 to 37 min with 0.8% to 4.2% sulfuric acid combined with 2.6% to 9.4% sodium sulfite. These treatments were compared with other standard pretreatments of dilute acid, and hot and cold alkali pretreatments. This comparative study showed that the sulfite pretreatment, through its combined effects of hemicellulose and lignin removal and lignin sulfonation, is more effective than the diluted acid and alkali pretreatments to improve the enzymatic digestibility of dairy manure.

  18. Optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hyun Jong; Wi, Seung Gon; Kim, Su Bae; Shin, You Jung; Yi, Ju Hui [Chonnam National University, Bio-Energy Research Institute, Gwangju (Korea, Republic of)

    2010-10-15

    The purpose of this project is optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production. Research scope includes 1) screening of various microorganisms from decayed biomass in order to search for more efficient lignocellulose degrading microorganism, 2) identification and verification of new cell wall degrading cellulase for application cellulose bioconversion process, and 3) identification and characterization of novel genes involved in cellulose degradation. To find good microorganism candidates for lignocellulose degrading, 75 decayed samples from different areas were assayed in triplicate and analyzed. For cloning new cell wall degrading enzymes, we selected microorganisms because it have very good lignocellulose degradation ability. From that microorganisms, we have apparently cloned a new cellulase genes (10 genes). We are applying the new cloned cellulase genes to characterize in lignocellulsoe degradation that are most important to cellulosic biofuels production

  19. Ensiling – Wet-storage method for lignocellulosic biomass for bioethanol production

    DEFF Research Database (Denmark)

    Oleskowicz-Popiel, Piotr; Thomsen, Anne Belinda; Schmidt, Jens Ejbye

    2011-01-01

    , and consequently by lowing pH, inhibiting other microbes to degrade the polysaccharides. Following silage treatment, enzymatic convertibility tests showed that 51.5%, 36.5%, and 41.9% of the cellulose was converted by cellulytic enzymes in ensiled maize, rye, and clover grass, respectively. In addition, tests......Ensiling of humid biomass samples wrapped in plastic bales has been investigated as a wet-storage for bioethanol production from three lignocellulosic biomass samples i.e. maize, rye, and clover grass. During the silage process, lactic acid bacteria fermented free sugars to lactic acid.......5% (by S. cerevisiae); the yields significantly increased after hydrothermal pretreatment: 77.7%, 72.8%, 79.5% (by K. marxianus) and 72.0%, 80.7%, 75.7% (by S. cerevisiae) of the theoretical based on the C6 sugar contents in maize, rye, and clover grass, respectively....

  20. Bioethanol Production by Carbohydrate-Enriched Biomass of Arthrospira (Spirulina) platensis

    DEFF Research Database (Denmark)

    Markou, Giorgos; Angelidaki, Irini; Nerantzis, Elias

    2013-01-01

    at four concentrations, 2.5 N, 1 N, 0.5 N and 0.25 N, and for each acid concentration the saccharification was conducted under four temperatures (40 °C, 60 °C, 80 °C and 100 °C). Higher acid concentrations gave in general higher reducing sugars (RS) yields (%, gRS/gTotal sugars) with higher rates, while...... the increase in temperature lead to higher rates at lower acid concentration. The hydrolysates then were used as substrate for ethanolic fermentation by a salt stress-adapted Saccharomyces cerevisiae strain. The bioethanol yield (%, gEtOH/gBiomass) was significantly affected by the acid concentration used...