WorldWideScience

Sample records for markers reveal genetic

  1. Microsatellite markers reveal low genetic differentiation among ...

    African Journals Online (AJOL)

    Ben

    Assignment. 1* Khai Apple Game Reserve, Kathu, Northern Cape ... Previous genetic studies on Camelidae in Dubai, Germany, Australia, Kenya and Ethiopia mainly reporting the ... All the biological samples were deposited in the Bio-Bank at.

  2. Genetic Diversity of Aromatic Rice Germplasm Revealed By SSR Markers

    Directory of Open Access Journals (Sweden)

    Saba Jasim Aljumaili

    2018-01-01

    Full Text Available Aromatic rice cultivars constitute a small but special group of rice and are considered the best in terms of quality and aroma. Aroma is one of the most significant quality traits of rice, and variety with aroma has a higher price in the market. This research was carried out to study the genetic diversity among the 50 aromatic rice accessions from three regions (Peninsular Malaysia, Sabah, and Sarawak with 3 released varieties as a control using the 32 simple sequence repeat (SSR markers. The objectives of this research were to quantify the genetic divergence of aromatic rice accessions using SSR markers and to identify the potential accessions for introgression into the existing rice breeding program. Genetic diversity index among the three populations such as Shannon information index (I ranged from 0.25 in control to 0.98 in Sabah population. The mean numbers of effective alleles and Shannon’s information index were 0.36 and 64.90%, respectively. Similarly, the allelic diversity was very high with mean expected heterozygosity (He of 0.60 and mean Nei’s gene diversity index of 0.36. The dendrogram based on UPGMA and Nei’s genetic distance classified the 53 rice accessions into 10 clusters. Analysis of molecular variance (AMOVA revealed that 89% of the total variation observed in this germplasm came from within the populations, while 11% of the variation emanated among the populations. These results reflect the high genetic differentiation existing in this aromatic rice germplasm. Using all these criteria and indices, seven accessions (Acc9993, Acc6288, Acc6893, Acc7580, Acc6009, Acc9956, and Acc11816 from three populations have been identified and selected for further evaluation before introgression into the existing breeding program and for future aromatic rice varietal development.

  3. Genetic Diversity of Aromatic Rice Germplasm Revealed By SSR Markers.

    Science.gov (United States)

    Jasim Aljumaili, Saba; Rafii, M Y; Latif, M A; Sakimin, Siti Zaharah; Arolu, Ibrahim Wasiu; Miah, Gous

    2018-01-01

    Aromatic rice cultivars constitute a small but special group of rice and are considered the best in terms of quality and aroma. Aroma is one of the most significant quality traits of rice, and variety with aroma has a higher price in the market. This research was carried out to study the genetic diversity among the 50 aromatic rice accessions from three regions (Peninsular Malaysia, Sabah, and Sarawak) with 3 released varieties as a control using the 32 simple sequence repeat (SSR) markers. The objectives of this research were to quantify the genetic divergence of aromatic rice accessions using SSR markers and to identify the potential accessions for introgression into the existing rice breeding program. Genetic diversity index among the three populations such as Shannon information index ( I ) ranged from 0.25 in control to 0.98 in Sabah population. The mean numbers of effective alleles and Shannon's information index were 0.36 and 64.90%, respectively. Similarly, the allelic diversity was very high with mean expected heterozygosity ( H e ) of 0.60 and mean Nei's gene diversity index of 0.36. The dendrogram based on UPGMA and Nei's genetic distance classified the 53 rice accessions into 10 clusters. Analysis of molecular variance (AMOVA) revealed that 89% of the total variation observed in this germplasm came from within the populations, while 11% of the variation emanated among the populations. These results reflect the high genetic differentiation existing in this aromatic rice germplasm. Using all these criteria and indices, seven accessions (Acc9993, Acc6288, Acc6893, Acc7580, Acc6009, Acc9956, and Acc11816) from three populations have been identified and selected for further evaluation before introgression into the existing breeding program and for future aromatic rice varietal development.

  4. Genetic Diversity of Aromatic Rice Germplasm Revealed By SSR Markers

    Science.gov (United States)

    Jasim Aljumaili, Saba; Sakimin, Siti Zaharah; Arolu, Ibrahim Wasiu; Miah, Gous

    2018-01-01

    Aromatic rice cultivars constitute a small but special group of rice and are considered the best in terms of quality and aroma. Aroma is one of the most significant quality traits of rice, and variety with aroma has a higher price in the market. This research was carried out to study the genetic diversity among the 50 aromatic rice accessions from three regions (Peninsular Malaysia, Sabah, and Sarawak) with 3 released varieties as a control using the 32 simple sequence repeat (SSR) markers. The objectives of this research were to quantify the genetic divergence of aromatic rice accessions using SSR markers and to identify the potential accessions for introgression into the existing rice breeding program. Genetic diversity index among the three populations such as Shannon information index (I) ranged from 0.25 in control to 0.98 in Sabah population. The mean numbers of effective alleles and Shannon's information index were 0.36 and 64.90%, respectively. Similarly, the allelic diversity was very high with mean expected heterozygosity (He) of 0.60 and mean Nei's gene diversity index of 0.36. The dendrogram based on UPGMA and Nei's genetic distance classified the 53 rice accessions into 10 clusters. Analysis of molecular variance (AMOVA) revealed that 89% of the total variation observed in this germplasm came from within the populations, while 11% of the variation emanated among the populations. These results reflect the high genetic differentiation existing in this aromatic rice germplasm. Using all these criteria and indices, seven accessions (Acc9993, Acc6288, Acc6893, Acc7580, Acc6009, Acc9956, and Acc11816) from three populations have been identified and selected for further evaluation before introgression into the existing breeding program and for future aromatic rice varietal development. PMID:29736396

  5. DNA markers reveal genetic structure and localized diversity of ...

    African Journals Online (AJOL)

    uqhdesma

    2016-10-12

    Oct 12, 2016 ... STRUCTURE analysis revealed 4 clusters of genetically ..... 10000 cycles and 50000 Markov Chain Monte Carlo (MCMC) iterations and 10 replicate runs performed for each K value to ..... WL, Lee M, Porter K (2000). Genetic ...

  6. Random amplified polymorphic DNA (RAPD) markers reveal genetic ...

    African Journals Online (AJOL)

    The present study evaluated genetic variability of superior bael genotypes collected from different parts of Andaman Islands, India using fruit characters and random amplified polymorphic DNA (RAPD) markers. Genomic DNA extracted from leaf material using cetyl trimethyl ammonium bromide (CTAB) method was ...

  7. Genetic diversity revealed by AFLP markers in Albanian goat breeds

    Directory of Open Access Journals (Sweden)

    Hoda Anila

    2012-01-01

    Full Text Available The amplified fragment length polymorphism (AFLP technique with three EcoRI/TaqI primer combinations was used in 185 unrelated individuals, representative of 6 local goat breeds of Albania, and 107 markers were generated. The mean Nei’s expected heterozygosity value for the whole population was 0.199 and the mean Shannon index was 0.249, indicating a high level of within-breed diversity. Wright’s FST index, Nei’s unbiased genetic distance and Reynolds’ genetic distance were calculated. Pairwise Fst values among the populations ranged from 0.019 to 0.047. A highly significant average FST of 0.031 was estimated, showing a low level of breed subdivision. Most of the variation is accounted for by differences among individuals. Cluster analysis based on Reynolds’ genetic distance between breeds and PCA were performed. An individual UPGMA tree based on Jaccard’s similarity index showed clusters with individuals from all goat breeds. Analysis of population structure points to a high level of admixture among breeds.

  8. Genetic Diversity of Selected Mangifera Species Revealed by Inter Simple Sequence Repeats Markers

    OpenAIRE

    Ariffin, Zulhairil; Md Sah, Muhammad Shafie; Idris, Salma; Hashim, Nuradni

    2015-01-01

    ISSR markers were employed to reveal genetic diversity and genetic relatedness among 28 Mangifera accessions collected from Yan (Kedah), Bukit Gantang (Perak), Sibuti (Sarawak), and Papar (Sabah). A total of 198 markers were generated using nine anchored primers and one nonanchored primer. Genetic variation among the 28 accessions of Mangifera species including wild relatives, landraces, and clonal varieties is high, with an average degree of polymorphism of 98% and mean Shannon index, H0=7.5...

  9. Genetic Diversity of Selected Mangifera Species Revealed by Inter Simple Sequence Repeats Markers

    Directory of Open Access Journals (Sweden)

    Zulhairil Ariffin

    2015-01-01

    Full Text Available ISSR markers were employed to reveal genetic diversity and genetic relatedness among 28 Mangifera accessions collected from Yan (Kedah, Bukit Gantang (Perak, Sibuti (Sarawak, and Papar (Sabah. A total of 198 markers were generated using nine anchored primers and one nonanchored primer. Genetic variation among the 28 accessions of Mangifera species including wild relatives, landraces, and clonal varieties is high, with an average degree of polymorphism of 98% and mean Shannon index, H0=7.50. Analysis on 18 Mangifera indica accessions also showed high degree of polymorphism of 99% and mean Shannon index, H0=5.74. Dice index of genetic similarity ranged from 0.0938 to 0.8046 among the Mangifera species. The dendrogram showed that the Mangifera species were grouped into three main divergent clusters. Cluster 1 comprised 14 accessions from Kedah and Perak. Cluster II and cluster III comprised 14 accessions from Sarawak and Sabah. Meanwhile, the Dice index of genetic similarity for 18 accessions of Mangifera indica ranged from 0.2588 to 0.7742. The dendrogram also showed the 18 accessions of Mangifera indica were grouped into three main clusters. Cluster I comprised 10 landraces of Mangifera indica from Kedah. Cluster II comprised 7 landraces of Mangifera indica followed by Chokanan to form Cluster III.

  10. Genetic diversity of worldwide Jerusalem artichoke (Helianthus tuberosus) germplasm as revealed by RAPD markers.

    Science.gov (United States)

    Wangsomnuk, P P; Khampa, S; Wangsomnuk, P; Jogloy, S; Mornkham, T; Ruttawat, B; Patanothai, A; Fu, Y B

    2011-12-12

    Jerusalem artichoke (Helianthus tuberosus) is a wild relative of the cultivated sunflower (H. annuus); it is an old tuber crop that has recently received renewed interest. We used RAPD markers to characterize 147 Jerusalem artichoke accessions from nine countries. Thirty RAPD primers were screened; 13 of them detected 357 reproducible RAPD bands, of which 337 were polymorphic. Various diversity analyses revealed several different patterns of RAPD variation. More than 93% of the RAPD variation was found within accessions of a country. Weak genetic differentiation was observed between wild and cultivated accessions. Six groups were detected in this germplasm set. Four ancestral groups were found for the Canadian germplasm. The most genetically distinct accessions were identified. These findings provide useful diversity information for understanding the Jerusalem artichoke gene pool, for conserving Jerusalem artichoke germplasm, and for choosing germplasm for genetic improvement.

  11. Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers.

    Science.gov (United States)

    Hao, Chenyang; Wang, Lanfen; Ge, Hongmei; Dong, Yuchen; Zhang, Xueyong

    2011-02-18

    Two hundred and fifty bread wheat lines, mainly Chinese mini core accessions, were assayed for polymorphism and linkage disequilibrium (LD) based on 512 whole-genome microsatellite loci representing a mean marker density of 5.1 cM. A total of 6,724 alleles ranging from 1 to 49 per locus were identified in all collections. The mean PIC value was 0.650, ranging from 0 to 0.965. Population structure and principal coordinate analysis revealed that landraces and modern varieties were two relatively independent genetic sub-groups. Landraces had a higher allelic diversity than modern varieties with respect to both genomes and chromosomes in terms of total number of alleles and allelic richness. 3,833 (57.0%) and 2,788 (41.5%) rare alleles with frequencies of varieties displayed a wider average LD decay across the whole genome for locus pairs with r(2)>0.05 (Pvarieties. LD decay distances were also somewhat different for each of the 21 chromosomes, being higher for most of the chromosomes in modern varieties (<5 ∼ 25 cM) compared to landraces (<5 ∼ 15 cM), presumably indicating the influences of domestication and breeding. This study facilitates predicting the marker density required to effectively associate genotypes with traits in Chinese wheat genetic resources.

  12. Population genetics of Sargassum horneri (Fucales, Phaeophyta) in China revealed by ISSR and SRAP markers

    Science.gov (United States)

    Yu, Shenhui; Chong, Zhuo; Zhao, Fengjuan; Yao, Jianting; Duan, Delin

    2013-05-01

    Sargassum horneri is a common brown macro-alga that is found in the inter-tidal ecosystems of China. To investigate the current status of seaweed resources and provide basic data for its sustainable development, ISSR (inter simple sequence repeat) and SRAP (sequence related amplified polymorphism) markers were used to analyze the population genetics among nine natural populations of S. horneri. The nine studied populations were distributed over 2 000 km from northeast to south China. The percentage of polymorphic loci P % (ISSR, 99.44%; SRAP, 100.00%), Nei's genetic diversity H (ISSR, 0.107-0.199; SRAP, 0.100-0.153), and Shannon's information index I (ISSR, 0.157-0.291; SRAP, 0.148-0.219) indicated a fair amount of genetic variability among the nine populations. Moreover, the high degree of gene differentiation G st (ISSR, 0.654; SRAP, 0.718) and low gene flow N m (ISSR, 0.265; SRAP, 0.196) implied that there was significant among-population differentiation, possibly as a result of habitat fragmentation. The matrices of genetic distances and fixation indices ( F st) among the populations correlated well with their geographical distribution (Mantel test R =0.541 5, 0.541 8; P =0.005 0, 0.002 0 and R =0.728 6, 0.641 2; P =0.001 0, 0.001 0, respectively); the Rongcheng population in the Shandong peninsula was the only exception. Overall, the genetic differentiation agreed with the geographic isolation. The fair amount of genetic diversity that was revealed in the S. horneri populations in China indicated that the seaweed resources had not been seriously affected by external factors.

  13. Genetic diversity and relationships in mulberry (genus Morus as revealed by RAPD and ISSR marker assays

    Directory of Open Access Journals (Sweden)

    Thangavelu K

    2004-01-01

    Full Text Available Abstract Background The genus Morus, known as mulberry, is a dioecious and cross-pollinating plant that is the sole food for the domesticated silkworm, Bombyx mori. Traditional methods using morphological traits for classification are largely unsuccessful in establishing the diversity and relationships among different mulberry species because of environmental influence on traits of interest. As a more robust alternative, PCR based marker assays including RAPD and ISSR were employed to study the genetic diversity and interrelationships among twelve domesticated and three wild mulberry species. Results RAPD analysis using 19 random primers generated 128 discrete markers ranging from 500–3000 bp in size. One-hundred-nineteen of these were polymorphic (92%, with an average of 6.26 markers per primer. Among these were a few putative species-specific amplification products which could be useful for germplasm classification and introgression studies. The ISSR analysis employed six anchored primers, 4 of which generated 93 polymorphic markers with an average of 23.25 markers per primer. Cluster analysis of RAPD and ISSR data using the WINBOOT package to calculate the Dice coefficient resulted into two clusters, one comprising polyploid wild species and the other with domesticated (mostly diploid species. Conclusion These results suggest that RAPD and ISSR markers are useful for mulberry genetic diversity analysis and germplasm characterization, and that putative species-specific markers may be obtained which can be converted to SCARs after further studies.

  14. Molecular genetic diversity of Punica granatum L. (pomegranate) as revealed by microsatellite DNA markers

    Science.gov (United States)

    Pomegranate (Punica granatum L.) is one of the oldest known edible fruits and more and more it arouse interest of scientific community given its numerous biological activities. However, information about its genetic resources and characterization using reliable molecular markers are still scarce. In...

  15. Genetic diversity and structure of Brazilian ginger germplasm (Zingiber officinale) revealed by AFLP markers.

    Science.gov (United States)

    Blanco, Eleonora Zambrano; Bajay, Miklos Maximiliano; Siqueira, Marcos Vinícius Bohrer Monteiro; Zucchi, Maria Imaculada; Pinheiro, José Baldin

    2016-12-01

    Ginger is a vegetable with medicinal and culinary properties widely cultivated in the Southern and Southeastern Brazil. The knowledge of ginger species' genetic variability is essential to direct correctly future studies of conservation and genetic improvement, but in Brazil, little is known about this species' genetic variability. In this study, we analyzed the genetic diversity and structure of 55 Brazilian accessions and 6 Colombian accessions of ginger, using AFLP (Amplified Fragment Length Polymorphism) molecular markers. The molecular characterization was based on 13 primers combinations, which generated an average of 113.5 polymorphic loci. The genetic diversity estimates of Nei (Hj), Shannon-Weiner index (I) and an effective number of alleles (n e ) were greater in the Colombian accessions in relation to the Brazilian accessions. The analysis of molecular variance showed that most of the genetic variation occurred between the two countries while in the Brazilian populations there is no genetic structure and probably each region harbors 100 % of genetic variation found in the samples. The bayesian model-based clustering and the dendrogram using the dissimilarity's coefficient of Jaccard were congruent with each other and showed that the Brazilian accessions are highly similar between themselves, regardless of the geographic region of origin. We suggested that the exploration of the interspecific variability and the introduction of new varieties of Z.officinale are viable alternatives for generating diversity in breeding programs in Brazil. The introduction of new genetic materials will certainly contribute to a higher genetic basis of such crop.

  16. Outlier SNP markers reveal fine-scale genetic structuring across European hake populations (Merluccius merluccius)

    DEFF Research Database (Denmark)

    Milano, I.; Babbucci, M.; Cariani, A.

    2014-01-01

    fishery. Analysis of 850 individuals from 19 locations across the entire distribution range showed evidence for several outlier loci, with significantly higher resolving power. While 299 putatively neutral SNPs confirmed the genetic break between basins (FCT = 0.016) and weak differentiation within basins...... even when neutral markers provide genetic homogeneity across populations. Here, 381 SNPs located in transcribed regions were used to assess largeand fine-scale population structure in the European hake (Merluccius merluccius), a widely distributed demersal species of high priority for the European...

  17. Genetic diversity and relationships among different tomato varieties revealed by EST-SSR markers.

    Science.gov (United States)

    Korir, N K; Diao, W; Tao, R; Li, X; Kayesh, E; Li, A; Zhen, W; Wang, S

    2014-01-08

    The genetic diversity and relationship of 42 tomato varieties sourced from different geographic regions was examined with EST-SSR markers. The genetic diversity was between 0.18 and 0.77, with a mean of 0.49; the polymorphic information content ranged from 0.17 to 0.74, with a mean of 0.45. This indicates a fairly high degree of diversity among these tomato varieties. Based on the cluster analysis using unweighted pair-group method with arithmetic average (UPGMA), all the tomato varieties fell into 5 groups, with no obvious geographical distribution characteristics despite their diverse sources. The principal component analysis (PCA) supported the clustering result; however, relationships among varieties were more complex in the PCA scatterplot than in the UPGMA dendrogram. This information about the genetic relationships between these tomato lines helps distinguish these 42 varieties and will be useful for tomato variety breeding and selection. We confirm that the EST-SSR marker system is useful for studying genetic diversity among tomato varieties. The high degree of polymorphism and the large number of bands obtained per assay shows that SSR is the most informative marker system for tomato genotyping for purposes of rights/protection and for the tomato industry in general. It is recommended that these varieties be subjected to identification using an SSR-based manual cultivar identification diagram strategy or other easy-to-use and referable methods so as to provide a complete set of information concerning genetic relationships and a readily usable means of identifying these varieties.

  18. Genetic diversity and relationship of global faba bean (Vicia faba L.) germplasm revealed by ISSR markers.

    Science.gov (United States)

    Wang, Hai-Fei; Zong, Xu-Xiao; Guan, Jian-Ping; Yang, Tao; Sun, Xue-Lian; Ma, Yu; Redden, Robert

    2012-03-01

    Genetic diversity and relationships of 802 faba bean (Vicia faba L.) landraces and varieties from different geographical locations of China and abroad were examined using ISSR markers. A total of 212 repeatable amplified bands were generated with 11 ISSR primers, of which 209 were polymorphic. Accessions from North China showed highest genetic diversity, while accessions from central China showed low level of diversity. Chinese spring faba bean germplasm was clearly separated from Chinese winter faba bean, based on principal component analysis and UPGMA clustering analysis. Winter accessions from Zhejiang (East China), Jiangxi (East China), Sichuan (Southwest China) and Guizhou (Southwest China) were quite distinct to that from other provinces in China. Great differentiation between Chinese accessions and those from rest of the world was shown with a UPGMA dendrogram. AMOVA analyses demonstrated large variation and differentiation within and among groups of accessions from China. As a continental geographic group, accessions from Europe were genetically closer to those from North Africa. Based on ISSR data, grouping results of accessions from Asia, Europe and Africa were obviously associated with their geographical origin. The overall results indicated that the genetic relationship of faba bean germplasm was closely associated with their geographical origin and their ecological habit.

  19. Genetic diversity of Bemisia tabaci (Genn. Populations in Brazil revealed by RAPD markers

    Directory of Open Access Journals (Sweden)

    L.H.C. Lima

    2002-01-01

    Full Text Available Bemisia tabaci (Genn. was considered a secondary pest in Brazil until 1990, despite being an efficient geminivirus vector in beans and soybean. In 1991, a new biotype, known as B. tabaci B biotype (=B. argentifolii was detected attacking weed plants and causing phytotoxic problems in Cucurbitaceae. Nowadays, B. tabaci is considered one of the most damaging whitefly pests in agricultural systems worldwide that transmits more than 60 different plant viruses. Little is known about the genetic variability of these populations in Brazil. Knowledge of the genetic variation within whitefly populations is necessary for their efficient control and management. The objectives of the present study were to use RAPD markers (1 to estimate the genetic diversity of B. tabaci populations, (2 to study the genetic relationships among B. tabaci biotypes and two other whitefly species and (3 to discriminate between B. tabaci biotypes. A sample of 109 B. tabaci female individuals obtained from 12 populations in Brazil were analyzed and compared to the A biotype from Arizona (USA and B biotype from California (USA and Paraguay. Trialeurodes vaporariorum and Aleurodicus cocois samples were also included. A total of 72 markers were generated by five RAPD primers and used in the analysis. All primers produced RAPD patterns that clearly distinguished the Bemisia biotypes and the two other whitefly species. Results also showed that populations of the B biotype have considerable genetic variability. An average Jaccard similarity of 0.73 was observed among the B biotype individuals analyzed. Cluster analysis demonstrated that, in general, Brazilian biotype B individuals are scattered independently in the localities where samples were collected. Nevertheless, some clusters were evident, joining individuals according to the host plants. AMOVA showed that most of the total genetic variation is found within populations (56.70%, but a significant portion of the variation is found

  20. Genetic diversity and geographical dispersal in grapevine clones revealed by microsatellite markers.

    Science.gov (United States)

    Moncada, Ximena; Pelsy, Frédérique; Merdinoglu, Didier; Hinrichsen, Patricio

    2006-11-01

    Intravarietal genetic diversification associated with geographical dispersal of a vegetatively propagated species was studied using grapevine Vitis vinifera L. 'Cabernet Sauvignon' as a model. Fifty-nine clonal samples obtained from 7 countries (France, Chile, Spain, Australia, Hungary, USA, and Italy) were analyzed using 84 microsatellite markers. Eighteen polymorphic microsatellite loci (21.4%) were detected, finding 22 different genotypes in the population analyzed with a genetic similarity of over 97%. The presence of chimeric clones was evidenced at locus VMC5g7 by means of a segregation analysis of descendants by self-pollination of a triallelic Chilean clone and by somatic embryogenesis analysis, showing a mutation in L2 cell layer. Only 2 clones (obtained from France and Australia) presented the ancestral genotype, and the most divergent genotype was exhibited by another French clone, which had accumulated 5 somatic mutations. The 2 largest populations considered (from France and Chile) showed a clear divergency in the polymorphisms detected. These antecedents enabled the tracing of geographical dispersal with a phylogenetic hypothesis supporting France as the center of origin of diversification of Cabernet Sauvignon. The results obtained could help to explain diversification processes in other grapevine cultivars. The possibility that this kind of genetic variability occurs in other vegetatively propagated species is discussed, focusing on possible fingerprinting applications.

  1. Start Codon Targeted (SCoT) marker reveals genetic diversity of Dendrobium nobile Lindl., an endangered medicinal orchid species.

    Science.gov (United States)

    Bhattacharyya, Paromik; Kumaria, Suman; Kumar, Shrawan; Tandon, Pramod

    2013-10-15

    Genetic variability in the wild genotypes of Dendrobium nobile Lindl. collected from different parts of Northeast India, was analyzed using a Start Codon Targeted (SCoT) marker system. A total of sixty individuals comprising of six natural populations were investigated for the existing natural genetic diversity. One hundred and thirty two (132) amplicons were produced by SCoT marker generating 96.21% polymorphism. The PIC value of the SCoT marker system was 0.78 and the Rp values of the primers ranged between 4.43 and 7.50. The percentage of polymorphic loci (Pp) ranging from 25% to 56.82%, Nei's gene diversity (h) from 0.08 to 0.15 with mean Nei's gene diversity of 0.28, and Shannon's information index (I) values ranging from 0.13 to 0.24 with an average value of 0.43 were recorded. The gene flow value (0.37) and the diversity among populations (0.57) demonstrated higher genetic variation among the populations. Analysis of molecular variance (AMOVA) showed 43.37% of variation within the populations, whereas 56.63% variation was recorded among the populations. Cluster analysis also reveals high genetic variation among the genotypes. Present investigation suggests the effectiveness of SCoT marker system to estimate the genetic diversity of D. nobile and that it can be seen as a preliminary point for future research on the population and evolutionary genetics of this endangered orchid species of medicinal importance. © 2013.

  2. Genetic Diversity of the Critically Endangered Thuja sutchuenensis Revealed by ISSR Markers and the Implications for Conservation

    Directory of Open Access Journals (Sweden)

    Zeping Jiang

    2013-07-01

    Full Text Available Thuja sutchuenensis Franch. is a critically endangered plant endemic to the North-East Chongqing, China. Genetic variation was studied to assess the distribution of genetic diversity within and among seven populations from the single remnant locations, using inter-simple sequence repeat (ISSR markers. A total of 15 primers generated 310 well defined bands, with an average of 20.7 bands per primer. The seven populations revealed a relatively high level of genetic diversity in the species. The percentage of polymorphic bands, Nei’s gene diversity and Shannon’s information index at the population and species level were 76.1%, 0.155, 0.252 and 100%, 0.165, 0.295, respectively. A low level of genetic differentiation among populations (GST = 0.102, in line with the results of Analyses of Molecular Variance (AMOVA, and a high level of gene flow (Nm = 4.407 were observed. Both the Unweighted Pair Group Method with Arithmatic Mean (UPGMA cluster analysis and Principal Coordinates Analysis (PCoA supported the grouping of all seven populations into two groups. In addition, Mantel test revealed no significant correlation between genetic and geographical distances (r = 0.329, p = 0.100. The low genetic differentiation among populations implies that the conservation efforts should aim to preserve all the extant populations of this endangered species.

  3. Genetic rearrangements of six wheat-agropyron cristatum 6P addition lines revealed by molecular markers.

    Directory of Open Access Journals (Sweden)

    Haiming Han

    Full Text Available Agropyron cristatum (L. Gaertn. (2n = 4x = 28, PPPP not only is cultivated as pasture fodder but also could provide many desirable genes for wheat improvement. It is critical to obtain common wheat-A. cristatum alien disomic addition lines to locate the desired genes on the P genome chromosomes. Comparative analysis of the homoeologous relationships between the P genome chromosome and wheat genome chromosomes is a key step in transferring different desirable genes into common wheat and producing the desired alien translocation line while compensating for the loss of wheat chromatin. In this study, six common wheat-A. cristatum disomic addition lines were produced and analyzed by phenotypic examination, genomic in situ hybridization (GISH, SSR markers from the ABD genomes and STS markers from the P genome. Comparative maps, six in total, were generated and demonstrated that all six addition lines belonged to homoeologous group 6. However, chromosome 6P had undergone obvious rearrangements in different addition lines compared with the wheat chromosome, indicating that to obtain a genetic compensating alien translocation line, one should recombine alien chromosomal regions with homoeologous wheat chromosomes. Indeed, these addition lines were classified into four types based on the comparative mapping: 6PI, 6PII, 6PIII, and 6PIV. The different types of chromosome 6P possessed different desirable genes. For example, the 6PI type, containing three addition lines, carried genes conferring high numbers of kernels per spike and resistance to powdery mildew, important traits for wheat improvement. These results may prove valuable for promoting the development of conventional chromosome engineering techniques toward molecular chromosome engineering.

  4. Molecular Characterization and Genetic Diversity of the Macaw Palm Ex Situ Germplasm Collection Revealed by Microsatellite Markers

    Directory of Open Access Journals (Sweden)

    Fekadu G. Mengistu

    2016-10-01

    Full Text Available Macaw palm (Acrocomia aculeata is native to tropical forests in South America and highly abundant in Brazil. It is cited as a highly productive oleaginous palm tree presenting high potential for biodiesel production. The aim of this work was to characterize and study the genetic diversity of A. aculeata ex situ collections from different geographical states in Brazil using microsatellite (Simple Sequence Repeats, SSR markers. A total of 192 accessions from 10 provenances were analyzed with 10 SSR, and variations were detected in allelic diversity, polymorphism, and heterozygosity in the collections. Three major groups of accessions were formed using PCoA—principal coordinate analysis, UPGMA—unweighted pair-group method with arithmetic mean, and Tocher. The Mantel test revealed a weak correlation (r = 0.07 between genetic and geographic distances among the provenances reaffirming the result of the grouping. Reduced average heterozygosity (Ho < 50% per locus (or provenance confirmed the predominance of endogamy (or inbreeding in the germplasm collections as evidenced by positive inbreeding coefficient (F > 0 per locus (or per provenance. AMOVA—Analysis of Molecular Variance revealed higher (48.2% genetic variation within population than among populations (36.5%. SSR are useful molecular markers in characterizing A. aculeata germplasm and could facilitate the process of identifying, grouping, and selecting genotypes. Present results could be used to formulate appropriate conservation strategies in the genebank.

  5. Genetic variation and comparison of orchardgrass (Dactylis glomerata L.) cultivars and wild accessions as revealed by SSR markers.

    Science.gov (United States)

    Xie, W G; Lu, X F; Zhang, X Q; Huang, L K; Cheng, L

    2012-02-24

    Orchardgrass is a highly variable, perennial forage grass that is cultivated throughout temperate and subtropical regions of the world. Despite its economic importance, the genetic relationship and distance among and within cultivars are largely unknown but would be of great interest for breeding programs. We investigated the molecular variation and structure of cultivar populations, compared the level of genetic diversity among cultivars (Baoxing, Anba, Bote, and Kaimo), subspecies (Dactylis glomerata ssp Woronowii) and advanced breeding line (YA02-116) to determine whether there is still sufficient genetic diversity within presently used cultivars for future breeding progress in China. Twenty individuals were analyzed from each of six accessions using SSR markers; 114 easily scored bands were generated from 15 SSR primer pairs, with an average of 7.6 alleles per locus. The polymorphic rate was 100% among the 120 individuals, reflecting a high degree of genetic diversity. Among the six accessions, the highest genetic diversity was observed in Kaimo (H = 0.2518; I = 0.3916; P = 87.3%) and 02-116 had a lower level of genetic diversity (H = 0.1806; I = 0.2788; P = 58.73%) compared with other cultivars tested. An of molecular variance revealed a much larger genetic variation within accessions (65%) than between them (35%). This observation suggests that these cultivars have potential for providing rich genetic resource for further breeding program. Furthermore, the study also indicated that Chinese orchardgrass breeding has involved strong selection for adaptation to forage production, which may result in restricted genetic base of orchardgrass cultivar.

  6. Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite markers.

    Science.gov (United States)

    Zhao, Dong-Wei; Yang, Jun-Bo; Yang, Shi-Xiong; Kato, Kenji; Luo, Jian-Ping

    2014-01-09

    Tea is one of the most popular beverages in the world. Many species in the Thea section of the Camellia genus can be processed for drinking and have been domesticated. However, few investigations have focused on the genetic consequence of domestication and geographic origin of landraces on tea plants using credible wild and planted populations of a single species. Here, C. taliensis provides us with a unique opportunity to explore these issues. Fourteen nuclear microsatellite loci were employed to determine the genetic diversity and domestication origin of C. taliensis, which were represented by 587 individuals from 25 wild, planted and recently domesticated populations. C. taliensis showed a moderate high level of overall genetic diversity. The greater reduction of genetic diversity and stronger genetic drift were detected in the wild group than in the recently domesticated group, indicating the loss of genetic diversity of wild populations due to overexploitation and habitat fragmentation. Instead of the endangered wild trees, recently domesticated individuals were used to compare with the planted trees for detecting the genetic consequence of domestication. A little and non-significant reduction in genetic diversity was found during domestication. The long life cycle, selection for leaf traits and gene flow between populations will delay the emergence of bottleneck in planted trees. Both phylogenetic and assignment analyses suggested that planted trees may have been domesticated from the adjacent central forest of western Yunnan and dispersed artificially to distant places. This study contributes to the knowledge about levels and distribution of genetic diversity of C. taliensis and provides new insights into genetic consequence of domestication and geographic origin of planted trees of this species. As an endemic tea source plant, wild, planted and recently domesticated C. taliensis trees should all be protected for their unique genetic characteristics, which

  7. Genetic Diversity and Structure of Natural Quercus variabilis Population in China as Revealed by Microsatellites Markers

    Directory of Open Access Journals (Sweden)

    Xiaomeng Shi

    2017-12-01

    Full Text Available Quercus variabilis is a tree species of ecological and economic value that is widely distributed in China. To effectively evaluate, use, and conserve resources, we applied 25 pairs of simple sequence repeat (SSR primers to study its genetic diversity and genetic structure in 19 natural forest or natural secondary forest populations of Q. variabilis (a total of 879 samples. A total of 277 alleles were detected. Overall, the average expected heterozygosity (He was 0.707 and average allelic richness (AR was 7.79. Q. variabilis manifested a loss of heterozygosity, and the mean of inbreeding coefficient (FIS was 0.044. Less differentiation among populations was observed, and the genetic differentiation coefficient (FST was 0.063. Bayesian clustering analysis indicated that the 19 studied populations could be divided into three groups based on their genetic makeup, namely, the Southwest group, Central group, and Northeastern group. The Central group, compared to the populations of the Southwest and Northeast group, showed higher genetic diversities and lower genetic differentiations. As a widely distributed species, the historical migration of Q. variabilis contributed to its genetic differentiation.

  8. Genetic variation in Rhodomyrtus tomentosa (Kemunting) populations from Malaysia as revealed by inter-simple sequence repeat markers.

    Science.gov (United States)

    Hue, T S; Abdullah, T L; Abdullah, N A P; Sinniah, U R

    2015-12-14

    Kemunting (Rhodomyrtus tomentosa) from the Myrtaceae family, is native to Malaysia. It is widely used in traditional medicine to treat various illnesses and possesses significant antibacterial properties. In addition, it has great potential as ornamental in landscape design. Genetic variability studies are important for the rational management and conservation of genetic material. In the present study, inter-simple sequence repeat markers were used to assess the genetic diversity of 18 R. tomentosa populations collected from ten states of Peninsular Malaysia. The 11 primers selected generated 173 bands that ranged in size from 1.6 kb to 130 bp, which corresponded to an average of 15.73 bands per primer. Of these bands, 97.69% (169 in total) were polymorphic. High genetic diversity was documented at the species level (H(T) = 0.2705; I = 0.3973; PPB = 97.69%) but there was a low diversity at population level (H(S) = 0.0073; I = 0 .1085; PPB = 20.14%). The high level of genetic differentiation revealed by G(ST) (73%) and analysis of molecular variance (63%), together with the limited gene flow among population (N(m) = 0.1851), suggests that the populations examined are isolated. Results from an unweighted pair group method with arithmetic mean dendrogram and principal coordinate analysis clearly grouped the populations into two geographic groups. This clear grouping can also be demonstrated by the significant Mantel test (r = 0.581, P = 0.001). We recommend that all the R. tomentosa populations be preserved in conservation program.

  9. Genetic diversity in watermelon (Citrullus lanatus) landraces from Zimbabwe revealed by RAPD and SSR markers.

    Science.gov (United States)

    Mujaju, C; Sehic, J; Werlemark, G; Garkava-Gustavsson, L; Fatih, M; Nybom, H

    2010-08-01

    Low polymorphism in cultivated watermelon has been reported in previous studies, based mainly on US Plant Introductions and watermelon cultivars, most of which were linked to breeding programmes associated with disease resistance. Since germplasm sampled in a putative centre of origin in southern Africa may harbour considerably higher variability, DNA marker-based diversity was estimated among 81 seedlings from eight accessions of watermelon collected in Zimbabwe; five accessions of cow-melons (Citrullus lanatus var. citroides) and three of sweet watermelons (C. lanatus var. lanatus). Two molecular marker methods were used, random amplified polymorphic DNA (RAPD) and simple sequence repeats (SSR) also known as microsatellite DNA. Ten RAPD primers produced 138 markers of which 122 were polymorphic. Nine SSR primer pairs detected a total of 43 alleles with an average of 4.8 alleles per locus. The polymorphic information content (PIC) ranged from 0.47 to 0.77 for the RAPD primers and from 0.39 to 0.97 for the SSR loci. Similarity matrices obtained with SSR and RAPD, respectively, were highly correlated but only RAPD was able to provide each sample with an individual-specific DNA profile. Dendrograms and multidimensional scaling (MDS) produced two major clusters; one with the five cow-melon accessions and the other with the three sweet watermelon accessions. One of the most variable cow-melon accessions took an intermediate position in the MDS analysis, indicating the occurrence of gene flow between the two subspecies. Analysis of molecular variation (AMOVA) attributed most of the variability to within-accessions, and contrary to previous reports, sweet watermelon accessions apparently contain diversity of the same magnitude as the cow-melons.

  10. Genetic differentiation of watermelon landrace types in Mali revealed by microsatellite (SSR) markers

    DEFF Research Database (Denmark)

    Nantoume, Aminata Dolo; Andersen, Sven Bode; Jensen, Brita Dahl

    2013-01-01

    This study describes the genetic differentiation of a collection of 134 watermelon landrace accessions from Mali, representing red fleshed dessert and white fleshed seed and cooking type watermelons from five regions, plus three commercial dessert type cultivars with red flesh. The material...... the accessions into use groups (dessert, cooking, seed processing) explained 25 % of the variation. When categorising the accessions further into 10 landrace types, differentiated on the basis of use groups, local accession name, flesh colour and seed phenotype, these landrace types explained 26......-groups. One group included again the red fleshed dessert types with local and commercial origin, while the remaining seven genetic sub-groups comprised the white fleshed landrace types used for seed processing and cooking, as well as white fleshed types of one dessert type. Some of the seed and cooking types...

  11. Molecular markers reveal limited population genetic structure in a North American corvid, Clark's nutcracker (Nucifraga columbiana.

    Directory of Open Access Journals (Sweden)

    Kimberly M Dohms

    Full Text Available The genetic impact of barriers and Pleistocene glaciations on high latitude resident species has not been widely investigated. The Clark's nutcracker is an endemic North American corvid closely associated with Pinus-dominated forests. The nutcracker's encompasses known barriers to dispersal for other species, and glaciated and unglaciated areas. Clark's nutcrackers also irruptively disperse long distances in search of pine seed crops, creating the potential for gene flow among populations. Using the highly variable mitochondrial DNA control region, seven microsatellite loci, and species distribution modeling, we examined the effects of glaciations and dispersal barriers on population genetic patterns and population structure of nutcrackers. We sequenced 900 bp of mitochondrial control region for 169 individuals from 15 populations and analysed seven polymorphic microsatellite loci for 13 populations across the Clark's nutcracker range. We used species distribution modeling and a range of phylogeographic analyses to examine evolutionary history. Clark's nutcracker populations are not highly differentiated throughout their range, suggesting high levels of gene flow among populations, though we did find some evidence of isolation by distance and peripheral isolation. Our analyses suggested expansion from a single refugium after the last glacial maximum, but patterns of genetic diversity and paleodistribution modeling of suitable habitat were inconclusive as to the location of this refugium. Potential barriers to dispersal (e.g. mountain ranges do not appear to restrict gene flow in Clark's nutcracker, and postglacial expansion likely occurred quickly from a single refugium located south of the ice sheets.

  12. Genetic variation in the Solanaceae fruit bearing species lulo and tree tomato revealed by Conserved Ortholog (COSII) markers

    Science.gov (United States)

    2010-01-01

    The Lulo or naranjilla (Solanum quitoense Lam.) and the tree tomato or tamarillo (Solanum betaceum Cav. Sendt.) are both Andean tropical fruit species with high nutritional value and the potential for becoming premium products in local and export markets. Herein, we present a report on the genetic characterization of 62 accessions of lulos (n = 32) and tree tomatoes (n = 30) through the use of PCR-based markers developed from single-copy conserved orthologous genes (COSII) in other Solanaceae (Asterid) species. We successfully PCR amplified a set of these markers for lulos (34 out of 46 initially tested) and tree tomatoes (26 out of 41) for molecular studies. Six polymorphic COSII markers were found in lulo with a total of 47 alleles and five polymorphic markers in tree tomato with a total of 39 alleles in the two populations. Further genetic analyses indicated a high population structure (with FST > 0.90), which may be a result of low migration between populations, adaptation to various niches and the number of markers evaluated. We propose COSII markers as sound tools for molecular studies, conservation and the breeding of these two fruit species. PMID:21637482

  13. Genetic variation in the Solanaceae fruit bearing species lulo and tree tomato revealed by Conserved Ortholog (COSII) markers.

    Science.gov (United States)

    Enciso-Rodríguez, Felix; Martínez, Rodrigo; Lobo, Mario; Barrero, Luz Stella

    2010-04-01

    The Lulo or naranjilla (Solanum quitoense Lam.) and the tree tomato or tamarillo (Solanum betaceum Cav. Sendt.) are both Andean tropical fruit species with high nutritional value and the potential for becoming premium products in local and export markets. Herein, we present a report on the genetic characterization of 62 accessions of lulos (n = 32) and tree tomatoes (n = 30) through the use of PCR-based markers developed from single-copy conserved orthologous genes (COSII) in other Solanaceae (Asterid) species. We successfully PCR amplified a set of these markers for lulos (34 out of 46 initially tested) and tree tomatoes (26 out of 41) for molecular studies. Six polymorphic COSII markers were found in lulo with a total of 47 alleles and five polymorphic markers in tree tomato with a total of 39 alleles in the two populations. Further genetic analyses indicated a high population structure (with F(ST) > 0.90), which may be a result of low migration between populations, adaptation to various niches and the number of markers evaluated. We propose COSII markers as sound tools for molecular studies, conservation and the breeding of these two fruit species.

  14. Genetic variation in the Solanaceae fruit bearing species lulo and tree tomato revealed by Conserved Ortholog (COSII markers

    Directory of Open Access Journals (Sweden)

    Felix Enciso-Rodríguez

    2010-01-01

    Full Text Available The Lulo or naranjilla (Solanum quitoense Lam. and the tree tomato or tamarillo (Solanum betaceum Cav. Sendt. are both Andean tropical fruit species with high nutritional value and the potential for becoming premium products in local and export markets. Herein, we present a report on the genetic characterization of 62 accessions of lulos (n = 32 and tree tomatoes (n = 30 through the use of PCR-based markers developed from single-copy conserved orthologous genes (COSII in other Solanaceae (Asterid species. We successfully PCR amplified a set of these markers for lulos (34 out of 46 initially tested and tree tomatoes (26 out of 41 for molecular studies. Six polymorphic COSII markers were found in lulo with a total of 47 alleles and five polymorphic markers in tree tomato with a total of 39 alleles in the two populations. Further genetic analyses indicated a high population structure (with F ST > 0.90, which may be a result of low migration between populations, adaptation to various niches and the number of markers evaluated. We propose COSII markers as sound tools for molecular studies, conservation and the breeding of these two fruit species.

  15. [Genetic variability and differentiation of three Russian populations of yellow potato cyst nematode Globodera rostochiensis as revealed by nuclear markers].

    Science.gov (United States)

    Khrisanfova, G G; Kharchevnikov, D A; Popov, I O; Zinov'eva, S V; Semenova, S K

    2008-05-01

    Genetic variability of yellow potato cyst nematode G. rostochiensis from three Russian populations (Karelia, Vladimir oblast, and Moscow oblast) was investigated using two types of nuclear markers. Using RAPD markers identified with the help of six random primers (P-29, OPA-10, OPT-14, OPA-11, OPB-11, and OPH-20), it was possible to distinguish Karelian population from the group consisting of the populations from two adjacent regions (Moscow oblast and Vladimir oblast). Based on the combined matrix, containing 294 RAPD fragments, dendrogram of genetic differences was constructed, and the indices of genetic divergence and partition (P, H, and G(st)), as well as the gene flow indices N(m) between the nematode samples examined, were calculated. The dendrogram structure, genetic diversity indices, and variations of genetic distances between single individuals in each population from Karelia and Central Russia pointed to genetic isolation and higher genetic diversity of the nematodes from Karelia. Based on polymorphism of rDNA first intergenic spacer ITS1, attribution of all populations examined to the species G. rostochiensis was proved. Small variations of the ITS1 sequence in different geographic populations of nematodes from different regions of the species world range did not allow isolation of separate groups within the species. Possible factors (including interregional transportations of seed potato) affecting nematode population structure in Russia are discussed.

  16. Genetic variation in the Solanaceae fruit bearing species lulo and tree tomato revealed by Conserved Ortholog (COSII) markers

    OpenAIRE

    Enciso-Rodríguez, Felix; Martínez, Rodrigo; Lobo, Mario; Barrero, Luz Stella

    2010-01-01

    The Lulo or naranjilla (Solanum quitoense Lam.) and the tree tomato or tamarillo (Solanum betaceum Cav. Sendt.) are both Andean tropical fruit species with high nutritional value and the potential for becoming premium products in local and export markets. Herein, we present a report on the genetic characterization of 62 accessions of lulos (n = 32) and tree tomatoes (n = 30) through the use of PCR-based markers developed from single-copy conserved orthologous genes (COSII) in other Solanaceae...

  17. Genetic Characterization of Turkish Snake Melon (Cucumis melo L. subsp. melo flexuosus Group) Accessions Revealed by SSR Markers.

    Science.gov (United States)

    Solmaz, Ilknur; Kacar, Yildiz Aka; Simsek, Ozhan; Sari, Nebahat

    2016-08-01

    Snake melon is an important cucurbit crop especially in the Southeastern and the Mediterranean region of Turkey. It is consumed as fresh or pickled. The production is mainly done with the local landraces in the country. Turkey is one of the secondary diversification centers of melon and possesses valuable genetic resources which have different morphological characteristics in case of snake melon. Genetic diversity of snake melon genotypes collected from different regions of Turkey and reference genotypes obtained from World Melon Gene Bank in Avignon-France was examined using 13 simple sequence repeat (SSR) markers. A total of 69 alleles were detected, with an average of 5.31 alleles per locus. The polymorphism information content of SSR markers ranged from 0.19 to 0.57 (average 0.38). Based on cluster analysis, two major groups were defined. The first major group included only one accession (61), while the rest of all accessions grouped in the second major group and separated into different sub-clusters. Based on SSR markers, cluster analysis indicated that considerably high genetic variability exists among the examined accessions; however, Turkish snake melon accessions were grouped together with the reference snake melon accessions.

  18. Nuclear and plastid markers reveal the persistence of genetic identity: a new perspective on the evolutionary history of Petunia exserta.

    Science.gov (United States)

    Segatto, Ana Lúcia Anversa; Cazé, Ana Luíza Ramos; Turchetto, Caroline; Klahre, Ulrich; Kuhlemeier, Cris; Bonatto, Sandro Luis; Freitas, Loreta Brandão

    2014-01-01

    Recently divergent species that can hybridize are ideal models for investigating the genetic exchanges that can occur while preserving the species boundaries. Petunia exserta is an endemic species from a very limited and specific area that grows exclusively in rocky shelters. These shaded spots are an inhospitable habitat for all other Petunia species, including the closely related and widely distributed species P. axillaris. Individuals with intermediate morphologic characteristics have been found near the rocky shelters and were believed to be putative hybrids between P. exserta and P. axillaris, suggesting a situation where Petunia exserta is losing its genetic identity. In the current study, we analyzed the plastid intergenic spacers trnS/trnG and trnH/psbA and six nuclear CAPS markers in a large sampling design of both species to understand the evolutionary process occurring in this biological system. Bayesian clustering methods, cpDNA haplotype networks, genetic diversity statistics, and coalescence-based analyses support a scenario where hybridization occurs while two genetic clusters corresponding to two species are maintained. Our results reinforce the importance of coupling differentially inherited markers with an extensive geographic sample to assess the evolutionary dynamics of recently diverged species that can hybridize. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Molecular genetic diversity assessment of Citrus species grown in Iran revealed by SSR, ISSR and CAPS molecular markers

    Directory of Open Access Journals (Sweden)

    Ata Allah Sharafi

    2017-12-01

    Full Text Available In this study, genetic diversity in 19 citrus cultivars was analyzed using Simple Sequence Repeat (SSR, Inter-simple Sequence Repeat (ISSR and cleaved amplified polymorphic sequence (CAPS markers. Nine primers for SSR, nine ISSR primers and two primers for CAPS were used for allele scoring. One chloroplast DNA region (rbcL-ORF106 and one mitochondrial DNA region (18S-5S were analyzed using cleaved amplified polymorphic sequence (CAPS marker in 19 citrus accessions grown in Iran. In total, 45 SSR and 131 ISSR polymorphic alleles and tree organelle genome types were detected. Cluster analysis of SSR and ISSR data was performed using UPGMA method and based on Jaccard's coefficient. The result of this investigation showed that the SSR and ISSR primers were highly informative and efficient in detecting genetic variability and relationships of the citrus accessions. And CAPS marker analysis Results showed that Bakraee and one of off type Mexican lime had banding pattern similar to Clementine Mandarin, while Pummelo regarded as maternal parent of other studied genotypes Citron regarded as father parent showed definite banding pattern among 19 studied genotypes which it confirmed Cytoplasmic inheritance from mother cellular organelles.

  20. Specific Chemical and Genetic Markers Revealed a Thousands-Year Presence of Toxic Nodularia spumigena in the Baltic Sea.

    Science.gov (United States)

    Cegłowska, Marta; Toruńska-Sitarz, Anna; Kowalewska, Grażyna; Mazur-Marzec, Hanna

    2018-04-04

    In the Baltic Sea, diazotrophic cyanobacteria have been present for thousands of years, over the whole brackish water phase of the ecosystem. However, our knowledge about the species composition of the cyanobacterial community is limited to the last several decades. In the current study, the presence of species-specific chemical and genetic markers in deep sediments were analyzed to increase the existing knowledge on the history of toxic Nodularia spumigena blooms in the Baltic Sea. As chemical markers, three cyclic nonribosomal peptides were applied: the hepatotoxic nodularin, which in the sea was detected solely in N. spumigena , and two anabaenopeptins (AP827 and AP883a) characteristic of two different chemotypes of this species. From the same sediment samples, DNA was isolated and the gene involved in biosynthesis of nodularin, as well as the phycocyanin intergenic spacer region (PC-IGS), were amplified. The results of chemical and genetic analyses proved for the first time the thousands-year presence of toxic N. spumigena in the Baltic Sea. They also indicated that through all this time, the same two sub-populations of the species co-existed.

  1. Genetic diversity and parentage in farmer selections of cacao from Southern Sulawesi, Indonesia revealed by microsatellite markers

    Science.gov (United States)

    Dinarti, Diny; Susilo, Agung W.; Meinhardt, Lyndel W.; Ji, Kun; Motilal, Lambert A.; Mischke, Sue; Zhang, Dapeng

    2015-01-01

    Indonesia is the third largest cocoa-producing country in the world. Knowledge of genetic diversity and parentage of farmer selections is important for effective selection and rational deployment of superior cacao clones in farmers’ fields. We assessed genetic diversity and parentage of 53 farmer selections of cacao in Sulawesi, Indonesia, using 152 international clones as references. Cluster analysis, based on 15 microsatellite markers, showed that these Sulawesi farmer selections are mainly comprised of hybrids derived from Trinitario and two Upper Amazon Forastero groups. Bayesian assignment and likelihood-based parentage analysis further demonstrated that only a small number of germplasm groups, dominantly Trinitario and Parinari, contributed to these farmer selections, in spite of diverse parental clones having been used in the breeding program and seed gardens in Indonesia since the 1950s. The narrow parentage predicts a less durable host resistance to cacao diseases. Limited access of the farmers to diverse planting materials or the strong preference for large pods and large bean size by local farmers, may have affected the selection outcome. Diverse sources of resistance, harbored in different cacao germplasm groups, need to be effectively incorporated to broaden the on-farm diversity and ensure sustainable cacao production in Sulawesi. PMID:26719747

  2. Genetic diversity and parentage in farmer selections of cacao from Southern Sulawesi, Indonesia revealed by microsatellite markers.

    Science.gov (United States)

    Dinarti, Diny; Susilo, Agung W; Meinhardt, Lyndel W; Ji, Kun; Motilal, Lambert A; Mischke, Sue; Zhang, Dapeng

    2015-12-01

    Indonesia is the third largest cocoa-producing country in the world. Knowledge of genetic diversity and parentage of farmer selections is important for effective selection and rational deployment of superior cacao clones in farmers' fields. We assessed genetic diversity and parentage of 53 farmer selections of cacao in Sulawesi, Indonesia, using 152 international clones as references. Cluster analysis, based on 15 microsatellite markers, showed that these Sulawesi farmer selections are mainly comprised of hybrids derived from Trinitario and two Upper Amazon Forastero groups. Bayesian assignment and likelihood-based parentage analysis further demonstrated that only a small number of germplasm groups, dominantly Trinitario and Parinari, contributed to these farmer selections, in spite of diverse parental clones having been used in the breeding program and seed gardens in Indonesia since the 1950s. The narrow parentage predicts a less durable host resistance to cacao diseases. Limited access of the farmers to diverse planting materials or the strong preference for large pods and large bean size by local farmers, may have affected the selection outcome. Diverse sources of resistance, harbored in different cacao germplasm groups, need to be effectively incorporated to broaden the on-farm diversity and ensure sustainable cacao production in Sulawesi.

  3. Mitochondrial and nuclear markers reveal a lack of genetic structure in the entocommensal nemertean Malacobdella arrokeana in the Patagonian gulfs

    Science.gov (United States)

    Alfaya, José E. F.; Bigatti, Gregorio; Machordom, Annie

    2013-06-01

    Malacobdella arrokeana is an entocommensal nemertean exclusively found in the bivalve geoduck Panopea abbreviata, and it is the only representative of the genus in the southern hemisphere. To characterize its genetic diversity, population structure and recent demographic history, we conducted the first genetic survey on this species, using sequence data for the cytochrome oxidase I gene (COI), 16S rRNA (16S) and the internal transcribed spacer (ITS2). Only four different ITS2 genotypes were found in the whole sample, and the two main haplotypes identified in the mitochondrial dataset were present among all localities with a diversity ranging from 0.583 to 0.939. Nucleotide diversity was low (π = 0.001-0.002). No significant genetic structure was detected between populations, and mismatch distribution patterns and neutrality tests results are consistent with a population in expansion or under selection. Analysis of molecular variance (AMOVA) revealed that the largest level of variance observed was due to intrapopulation variation (100, 100 and 94.39 % for 16S, COI and ITS2, respectively). F st values were also non-significant. The observed lack of population structure is likely due to high levels of genetic connectivity in combination with the lack or permeability of biogeographic barriers and episodes of habitat modification.

  4. Development, cross-species/genera transferability of novel EST-SSR markers and their utility in revealing population structure and genetic diversity in sugarcane

    KAUST Repository

    Singh, Ram K.

    2013-07-01

    Sugarcane (Saccharum spp. hybrid) with complex polyploid genome requires a large number of informative DNA markers for various applications in genetics and breeding. Despite the great advances in genomic technology, it is observed in several crop species, especially in sugarcane, the availability of molecular tools such as microsatellite markers are limited. Now-a-days EST-SSR markers are preferred to genomic SSR (gSSR) as they represent only the functional part of the genome, which can be easily associated with desired trait. The present study was taken up with a new set of 351 EST-SSRs developed from the 4085 non redundant EST sequences of two Indian sugarcane cultivars. Among these EST-SSRs, TNR containing motifs were predominant with a frequency of 51.6%. Thirty percent EST-SSRs showed homology with annotated protein. A high frequency of SSRs was found in the 5\\'UTR and in the ORF (about 27%) and a low frequency was observed in the 3\\'UTR (about 8%). Two hundred twenty-seven EST-SSRs were evaluated, in sugarcane, allied genera of sugarcane and cereals, and 134 of these have revealed polymorphism with a range of PIC value 0.12 to 0.99. The cross transferability rate ranged from 87.0% to 93.4% in Saccharum complex, 80.0% to 87.0% in allied genera, and 76.0% to 80.0% in cereals. Cloning and sequencing of EST-SSR size variant amplicons revealed that the variation in the number of repeat-units was the main source of EST-SSR fragment polymorphism. When 124 sugarcane accessions were analyzed for population structure using model-based approach, seven genetically distinct groups or admixtures thereof were observed in sugarcane. Results of principal coordinate analysis or UPGMA to evaluate genetic relationships delineated also the 124 accessions into seven groups. Thus, a high level of polymorphism adequate genetic diversity and population structure assayed with the EST-SSR markers not only suggested their utility in various applications in genetics and genomics in

  5. Characterization of a new Vaccinia virus isolate reveals the C23L gene as a putative genetic marker for autochthonous Group 1 Brazilian Vaccinia virus.

    Directory of Open Access Journals (Sweden)

    Felipe L Assis

    Full Text Available Since 1999, several Vaccinia virus (VACV isolates, the etiological agents of bovine vaccinia (BV, have been frequently isolated and characterized with various biological and molecular methods. The results from these approaches have grouped these VACV isolates into two different clusters. This dichotomy has elicited debates surrounding the origin of the Brazilian VACV and its epidemiological significance. To ascertain vital information to settle these debates, we and other research groups have made efforts to identify molecular markers to discriminate VACV from other viruses of the genus Orthopoxvirus (OPV and other VACV-BR groups. In this way, some genes have been identified as useful markers to discriminate between the VACV-BR groups. However, new markers are needed to infer ancestry and to correlate each sample or group with its unique epidemiological and biological features. The aims of this work were to characterize a new VACV isolate (VACV DMTV-2005 molecularly and biologically using conserved and non-conserved gene analyses for phylogenetic inference and to search for new genes that would elucidate the VACV-BR dichotomy. The VACV DMTV-2005 isolate reported in this study is biologically and phylogenetically clustered with other strains of Group 1 VACV-BR, the most prevalent VACV group that was isolated during the bovine vaccinia outbreaks in Brazil. Sequence analysis of C23L, the gene that encodes for the CC-chemokine-binding protein, revealed a ten-nucleotide deletion, which is a new Group 1 Brazilian VACV genetic marker. This deletion in the C23L open reading frame produces a premature stop-codon that is shared by all Group 1 VACV-BR strains and may also reflect the VACV-BR dichotomy; the deletion can also be considered to be a putative genetic marker for non-virulent Brazilian VACV isolates and may be used for the detection and molecular characterization of new isolates.

  6. Mitochondrial DNA markers reveal high genetic diversity but low genetic differentiation in the black fly Simulium tani Takaoka & Davies along an elevational gradient in Malaysia.

    Directory of Open Access Journals (Sweden)

    Van Lun Low

    Full Text Available The population genetic structure of Simulium tani was inferred from mitochondria-encoded sequences of cytochrome c oxidase subunits I (COI and II (COII along an elevational gradient in Cameron Highlands, Malaysia. A statistical parsimony network of 71 individuals revealed 71 haplotypes in the COI gene and 43 haplotypes in the COII gene; the concatenated sequences of the COI and COII genes revealed 71 haplotypes. High levels of genetic diversity but low levels of genetic differentiation were observed among populations of S. tani at five elevations. The degree of genetic diversity, however, was not in accordance with an altitudinal gradient, and a Mantel test indicated that elevation did not have a limiting effect on gene flow. No ancestral haplotype of S. tani was found among the populations. Pupae with unique structural characters at the highest elevation showed a tendency to form their own haplotype cluster, as revealed by the COII gene. Tajima's D, Fu's Fs, and mismatch distribution tests revealed population expansion of S. tani in Cameron Highlands. A strong correlation was found between nucleotide diversity and the levels of dissolved oxygen in the streams where S. tani was collected.

  7. Selection for genetic markers in beef cattle reveals complex associations of thyroglobulin and casein1-S1 with carcass and meat traits

    Science.gov (United States)

    Genetic markers in casein (CSN1S1) and thyroglobulin (TG) genes have previously been associated with fat distribution in cattle. Determining the nature of these genetic associations (additive, recessive, or dominant) has been difficult because both markers have small minor allele frequencies in mos...

  8. Genetic variation among isolates of Sarcocystis neurona, the agent of protozoal myeloencephalitis, as revealed by amplified fragment length polymorphism markers.

    Science.gov (United States)

    Elsheikha, H M; Schott, H C; Mansfield, L S

    2006-06-01

    Sarcocystis neurona causes serious neurological disease in horses and other vertebrates in the Americas. Based on epidemiological data, this parasite has recently emerged. Here, the genetic diversity of Sarcocystis neurona was evaluated using the amplified fragment length polymorphism (AFLP) method. Fifteen S. neurona taxa from different regions collected over the last 10 years were used; six isolates were from clinically diseased horses, eight isolates were from wild-caught opossums (Didelphis virginiana), and one isolate was from a cowbird (Molothrus ater). Additionally, four outgroup taxa were also fingerprinted. Nine primer pairs were used to generate AFLP patterns, with a total number of amplified fragments ranging from 30 to 60, depending on the isolate and primers tested. Based on the presence/absence of amplified AFLP fragments and pairwise similarity values, all the S. neurona isolates tested were clustered in one monophyletic group. No significant correlation could be found between genomic similarity and host origin of the S. neurona isolates. AFLP revealed significant intraspecific genetic variations, and S. neurona appeared as a highly variable species. Furthermore, linkage disequilibrium analysis suggested that S. neurona populations within Michigan have an intermediate type of population structure that includes characteristics of both clonal and panamictic population structures. AFLP is a reliable molecular technique that has provided one of the most informative approaches to ascertain phylogenetic relationships in S. neurona and its closest relatives, allowing them to be clustered by relative similarity using band matching and unweighted pair group method with arithmetic mean analysis, which may be applicable to other related protozoal species.

  9. Genetic identity, ancestry and parentage in farmer selections of cacao from Aceh, Indonesia revealed by single nucleotide polymorphism (SNP) markers

    Science.gov (United States)

    Cacao (Theobroma cacao L.) is the source of cocoa powder and butter used for chocolate and this species originated in the rainforests of South America. Indonesia is the 3rd largest cacao producer in the world with an annual cacao output of 0.55 million tons. Knowledge of on-farm genetic diversity is...

  10. Close genetic proximity between cultivated and wild Bactris gasipaes Kunth. revealed by microsatellite markers in Western Ecuador.

    NARCIS (Netherlands)

    Couvreur, T.L.P.; Billotte, N.; Lara, C.; Vigouroux, Y.; Ludena, B.; Pham, J.L.; Pintaud, J.C.

    2006-01-01

    Bactris gasipaes Kunth (peach palm or Pejibaye) is the only domesticated palm of the Neotropics. The genetic relationships between the crop and its wild relatives are still unclear. We undertook field and laboratory work in order to describe differentiation and relationships between the wild and

  11. High Levels of Genetic Diversity in Salix viminalis of the Czech Republic as Revealed by Microsatellite Markers

    Czech Academy of Sciences Publication Activity Database

    Trybush, S. O.; Jahodová, Šárka; Čížková, L.; Karp, A.; Hanley, S. J.

    2012-01-01

    Roč. 5, č. 4 (2012), s. 969-977 ISSN 1939-1234 Institutional research plan: CEZ:AV0Z60050516 Keywords : bioenergy * short rotation coppice * genetic diversity * population structure Subject RIV: EF - Botanics Impact factor: 4.250, year: 2012

  12. Genetic Variation among Isolates of Sarcocystis neurona, the Agent of Protozoal Myeloencephalitis, as Revealed by Amplified Fragment Length Polymorphism Markers

    OpenAIRE

    Elsheikha, H. M.; Schott, H. C.; Mansfield, L. S.

    2006-01-01

    Sarcocystis neurona causes serious neurological disease in horses and other vertebrates in the Americas. Based on epidemiological data, this parasite has recently emerged. Here, the genetic diversity of Sarcocystis neurona was evaluated using the amplified fragment length polymorphism (AFLP) method. Fifteen S. neurona taxa from different regions collected over the last 10 years were used; six isolates were from clinically diseased horses, eight isolates were from wild-caught opossums (Didelph...

  13. Nuclear and mitochondrial markers reveal evidence for genetically segregated cryptic speciation in giant Pacific octopuses from Prince William Sound, Alaska

    Science.gov (United States)

    Toussaint, Rebecca K.; Scheel, David; Sage, G.K.; Talbot, S.L.

    2012-01-01

    Multiple species of large octopus are known from the north Pacific waters around Japan, however only one large species is known in the Gulf of Alaska (the giant Pacific octopus, Enteroctopus dofleini). Current taxonomy of E. dofleini is based on geographic and morphological characteristics, although with advances in genetic technology that is changing. Here, we used two mitochondrial genes (cytochrome b and cytochrome oxidase I), three nuclear genes (rhodopsin, octopine dehydrogenase, and paired-box 6), and 18 microsatellite loci for phylogeographic and phylogenetic analyses of octopuses collected from across southcentral and the eastern Aleutian Islands (Dutch Harbor), Alaska. Our results suggest the presence of a cryptic Enteroctopus species that is allied to, but distinguished from E. dofleini in Prince William Sound, Alaska. Existence of an undescribed and previously unrecognized taxon raises important questions about the taxonomy of octopus in southcentral Alaska waters.

  14. Genetic variation of wild and hatchery populations of the catla Indian major carp (Catla catla Hamilton 1822: Cypriniformes, Cyprinidae revealed by RAPD markers

    Directory of Open Access Journals (Sweden)

    S.M. Zakiur Rahman

    2009-01-01

    Full Text Available Genetic variation is a key component for improving a stock through selective breeding programs. Randomly amplified polymorphic DNA (RAPD markers were used to assess genetic variation in three wild population of the catla carp (Catla catla Hamilton 1822 in the Halda, Jamuna and Padma rivers and one hatchery population in Bangladesh. Five decamer random primers were used to amplify RAPD markers from 30 fish from each population. Thirty of the 55 scorable bands were polymorphic, indicating some degree of genetic variation in all the populations. The proportion of polymorphic loci and gene diversity values reflected a relatively higher level of genetic variation in the Halda population. Sixteen of the 30 polymorphic loci showed a significant (p < 0.05, p < 0.01, p < 0.001 departure from homogeneity and the F ST values in the different populations indicated some degree of genetic differentiation in the population pairs. Estimated genetic distances between populations were directly correlated with geographical distances. The unweighted pair group method with averages (UPGMA dendrogram showed two clusters, the Halda population forming one cluster and the other populations the second cluster. Genetic variation of C. catla is a useful trait for developing a good management strategy for maintaining genetic quality of the species.

  15. Genetic structure of Pilosocereus gounellei (Cactaceae) as revealed by AFLP marker to guide proposals for improvement and restoration of degraded areas in Caatinga biome.

    Science.gov (United States)

    Monteiro, E R; Strioto, D K; Meirelles, A C S; Mangolin, C A; Machado, M F P S

    2015-12-15

    Amplified fragment length polymorphism (AFLP) analysis was used to evaluate DNA polymorphism in Pilosocereus gounellei with the aim of differentiating samples grown in different Brazilian semiarid regions. Seven primer pairs were used to amplify 703 AFLP markers, of which 700 (99.21%) markers were polymorphic. The percentage of polymorphic markers ranged from 95.3% for the primer combination E-AAG/M-CTT to 100% for E-ACC/M-CAT, E-ACC/M-CAA, E-AGC/M-CAG, E-ACT/M-CTA, and E-AGG/M-CTG. The largest number of informative markers (126) was detected using the primer combination E-AAC/M-CTA. Polymorphism of the amplified DNA fragments ranged from 72.55% (in sample from Piauí State) to 82.79% (in samples from Rio Grande Norte State), with an average of 75.39%. Despite the high genetic diversity of AFLP markers in xiquexique, analysis using the STRUCTURE software identified relatively homogeneous clusters of xiquexique from the same location, indicating a differentiation at the molecular level, among the plant samples from different regions of the Caatinga biome. The AFLP methodology identified genetically homogeneous and contrasting plants, as well as plants from different regions with common DNA markers. Seeds from such plants can be used for further propagation of plants for establishment of biodiversity conservation units and restoration of degraded areas of the Caatinga biome.

  16. Population genetic diversity and structure analysis of wild apricot (Prunus armeniaca L.) revealed by ssr markers in the Tien-Shan mountains of China

    International Nuclear Information System (INIS)

    Hu, X.; Ni, B.; Zheng, P.; Li, M.

    2018-01-01

    The simple sequence repeat markers were used to investigate the population genetic diversity and structure of 212 germplasm samples from 14 apricot (Prunus armeniaca) populations in the western of Tien-Shan Mountains, Sinkiang, China. The relatively high expected heterozygosity and Shannon's diversity index indicated the apricot populations maintained a high level of genetic diversity (He = 0.6109, I = 1.2208), with the population in Tuergen ditch of Xinyuan County having the highest genetic diversity index. A high level of intra-population genetic differentiation (91.51%) and a lower level of inter-population genetic differentiation were occurred, as well as a moderate but steady inter-population gene flow (Nm = 2.3735). The self-incompatible pattern, wide distribution, and long-distance pollen transmission via insects and gale are the main factors underlying the genetic variation structure. The UPGMA cluster analysis and genetic structure analysis showed that apricot germplasm could be divided into two or four groups, which was basically consistent with the geographic distribution pattern. The inter-population genetic distance and geographic distance showed a significant correlation (r = 0.2658, p<0.05). (author)

  17. Enzyme markers in inbred rat strains: genetics of new markers and strain profiles.

    Science.gov (United States)

    Adams, M; Baverstock, P R; Watts, C H; Gutman, G A

    1984-08-01

    Twenty-six inbred strains of the laboratory rat (Rattus norvegicus) were examined for electrophoretic variation at an estimated 97 genetic loci. In addition to previously documented markers, variation was observed for the enzymes aconitase, aldehyde dehydrogenase, and alkaline phosphatase. The genetic basis of these markers (Acon-1, Ahd-2, and Akp-1) was confirmed. Linkage analysis between 35 pairwise comparisons revealed that the markers Fh-1 and Pep-3 are linked. The strain profiles of the 25 inbred strains at 11 electrophoretic markers are given.

  18. AFLP marker analysis revealing genetic structure of the tree Parapiptadenia rigida (Benth. Brenan (Leguminosae-Mimosoideae in the southern Brazilian Tropical Rainforest

    Directory of Open Access Journals (Sweden)

    Laís Bérgamo de Souza

    2013-01-01

    Full Text Available Parapiptadenia rigida is a tropical early secondary succession tree characteristic of the Tropical Atlantic Rainforest. This species is of great ecological importance in the recovery of degraded areas. In this study we investigated the variability and population genetic structure of eight populations of P. rigida. Five AFLP primer combinations were used in a sample of 159 individuals representing these eight populations, rendering a total of 126 polymorphic fragments. The averages of percentage of polymorphic loci, gene diversity, and Shannon index were 60.45%, 0.217, and 0.322, respectively. A significant correlation between the population genetic variability and the population sizes was observed. The genetic variability within populations (72.20% was higher than between these (22.80%. No perfect correlation was observed between geographic and genetic distances, which might be explained by differences in deforestation intensities that occurred in these areas. A dendrogram constructed by the UPGMA method revealed the formation of two clusters, these also confirmed by Bayesian analysis for the number of K cluster. These results show that it is necessary to develop urgent management strategies for the conservation of certain populations of P. rigida, while other populations still preserve reasonably high levels of genetic variability.

  19. New gSSR and EST-SSR markers reveal high genetic diversity in the invasive plant Ambrosia artemisiifolia L. and can be transferred to other invasive Ambrosia species.

    Science.gov (United States)

    Meyer, Lucie; Causse, Romain; Pernin, Fanny; Scalone, Romain; Bailly, Géraldine; Chauvel, Bruno; Délye, Christophe; Le Corre, Valérie

    2017-01-01

    Ambrosia artemisiifolia L., (common ragweed), is an annual invasive and highly troublesome plant species originating from North America that has become widespread across Europe. New sets of genomic and expressed sequence tag (EST) based simple sequence repeats (SSRs) markers were developed in this species using three approaches. After validation, 13 genomic SSRs and 13 EST-SSRs were retained and used to characterize the genetic diversity and population genetic structure of Ambrosia artemisiifolia populations from the native (North America) and invasive (Europe) ranges of the species. Analysing the mating system based on maternal families did not reveal any departure from complete allogamy and excess homozygosity was mostly due the presence of null alleles. High genetic diversity and patterns of genetic structure in Europe suggest two main introduction events followed by secondary colonization events. Cross-species transferability of the newly developed markers to other invasive species of the Ambrosia genus was assessed. Sixty-five percent and 75% of markers, respectively, were transferable from A. artemisiifolia to Ambrosia psilostachya and Ambrosia tenuifolia. 40% were transferable to Ambrosia trifida, this latter species being seemingly more phylogenetically distantly related to A. artemisiifolia than the former two.

  20. Loss of genetic variability in a hatchery strain of Senegalese sole (Solea senegalensis revealed by sequence data of the mitochondrial DNA control region and microsatellite markers

    Directory of Open Access Journals (Sweden)

    Pablo Sánchez

    2012-06-01

    Full Text Available Comparisons of the levels of genetic variation within and between a hatchery F1 (FAR, n=116 of Senegalese sole, Solea senegalensis, and its wild donor population (ATL, n = 26, both native to the SW Atlantic coast of the Iberian peninsula, as well as between the wild donor population and a wild western Mediterranean sample (MED, n=18, were carried out by characterizing 412 base pairs of the nucleotide sequence of the mitochondrial DNA control region I, and six polymorphic microsatellite loci. FAR showed a substantial loss of genetic variability (haplotypic diversity, h=0.49±0.066; nucleotide diversity, π=0.006±0.004; private allelic richness, pAg=0.28 to its donor population ATL (h=0.69±0.114; π=0.009±0.006; pAg=1.21. Pairwise FST values of microsatellite data were highly significant (P < 0.0001 between FAR and ATL (0.053 and FAR and MED (0.055. The comparison of wild samples revealed higher values of genetic variability in MED than in ATL, but only with mtDNA CR-I sequence data (h=0.948±0.033; π=0.030±0.016. However, pairwise ΦST and FST values between ATL and MED were highly significant (P < 0.0001 with mtDNA CR-I (0.228 and with microsatellite data (0.095, respectively. While loss of genetic variability in FAR could be associated with the sampling error when the broodstock was established, the results of parental and sibship inference suggest that most of these losses can be attributed to a high variance in reproductive success among members of the broodstock, particularly among females.

  1. Development, cross-species/genera transferability of novel EST-SSR markers and their utility in revealing population structure and genetic diversity in sugarcane

    KAUST Repository

    Singh, Ram K.; Jena, Satya N.; Khan, Mohammad Suhail; Yadav, Sonia; Banarjee, Nandita; Raghuvanshi, Saurabh; Bhardwaj, Vasudha; Dattamajumder, Sanjay K.; Kapur, Raman; Solomon, Sushil; Swapna, M.; Srivastava, Sangeeta; Tyagi, Akhilesh K.

    2013-01-01

    for population structure using model-based approach, seven genetically distinct groups or admixtures thereof were observed in sugarcane. Results of principal coordinate analysis or UPGMA to evaluate genetic relationships delineated also the 124 accessions

  2. Molecular markers unravel intraspecific and interspecific genetic ...

    Indian Academy of Sciences (India)

    [Kotwal S., Dhar M. K., Kour B., Raj K. and Kaul S. 2013 Molecular markers unravel intraspecific and interspecific genetic variability in ... of bowel problems including chronic constipation, amoebic ..... while to select parents from accessions, Pov80 and Pov79 ... nology (DBT), Govt. of India, for financial assistance in the form.

  3. Genetic diversity and host plant preferences revealed by simple sequence repeat and mitochondrial markers in a population of the arbuscular mycorrhizal fungus Glomus intraradices

    NARCIS (Netherlands)

    Croll, D.; Wille, L.; Gamper, H.A.; Mathimaran, N.; Lammers, P.J.; Corradi, N.; Sanders, I.R.

    2008-01-01

    Arbuscular mycorrhizal fungi (AMF) are important symbionts of plants that improve plant nutrient acquisition and promote plant diversity. Although within-species genetic differences among AMF have been shown to differentially affect plant growth, very little is actually known about the degree of

  4. Rice genetic marker database: An identification of single nucleotide ...

    African Journals Online (AJOL)

    based genetic marker system to provide information about SNP and QTL markers in rice. The SNP marker database provides 7,227 SNP markers including location information on chromosomes by using genetic map. It allows users to access a ...

  5. Genetic Divergence and Heritability of 42 Coloured Upland Rice Genotypes (Oryzasativa) as Revealed by Microsatellites Marker and Agro-Morphological Traits

    Science.gov (United States)

    Ahmad, Faiz; Hanafi, Mohamed Musa; Hakim, Md Abdul; Rafii, Mohd Y.; Arolu, Ibrahim Wasiu; Akmar Abdullah, Siti Nor

    2015-01-01

    Coloured rice genotypes have greater nutritious value and consumer demand for these varieties is now greater than ever. The documentation of these genotypes is important for the improvement of the rice plant. In this study, 42 coloured rice genotypes were selected for determination of their genetic divergence using 25 simple sequence repeat (SSR) primers and 15 agro-morphological traits. Twenty-one out of the 25 SSR primers showed distinct, reproducible polymorphism. A dendrogram constructed using the SSR primers clustered the 42 coloured rice genotypes into 7 groups. Further, principle component analysis showed 75.28% of total variations were explained by the first—three components. All agro-morphological traits showed significant difference at the (p≤0.05) and (p≤0.01) levels. From the dendrogram constructed using the agro-morphological traits, all the genotypes were clustered into four distinct groups. Pearson’s correlation coefficient showed that among the 15 agro-morphological traits, the yield contributing factor had positive correlation with the number of tillers, number of panicles, and panicle length. The heritability of the 15 traits ranged from 17.68 to 99.69%. Yield per plant and harvest index showed the highest value for both heritability and genetic advance. The information on the molecular and agro-morphological traits can be used in rice breeding programmes to improve nutritional value and produce higher yields. PMID:26393807

  6. Inflammatory Genetic Markers of Prostate Cancer Risk

    Energy Technology Data Exchange (ETDEWEB)

    Tindall, Elizabeth A.; Hayes, Vanessa M. [Cancer Genetics Group, Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, PO Box 81, Randwick, NSW 2031 (Australia); University of New South Wales, Kensington Campus, Sydney, NSW 2052 (Australia); Petersen, Desiree C., E-mail: dpetersen@ccia.unsw.edu.au [Cancer Genetics Group, Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, PO Box 81, Randwick, NSW 2031 (Australia)

    2010-06-08

    Prostate cancer is the most common cancer in Western society males, with incidence rates predicted to rise with global aging. Etiology of prostate cancer is however poorly understood, while current diagnostic tools can be invasive (digital rectal exam or biopsy) and/or lack specificity for the disease (prostate-specific antigen (PSA) testing). Substantial histological, epidemiological and molecular genetic evidence indicates that inflammation is important in prostate cancer pathogenesis. In this review, we summarize the current status of inflammatory genetic markers influencing susceptibility to prostate cancer. The focus will be on inflammatory cytokines regulating T-helper cell and chemokine homeostasis, together with the Toll-like receptors as key players in the host innate immune system. Although association studies indicating a genetic basis for prostate cancer are presently limited mainly due to lack of replication, larger and more ethnically and clinically defined study populations may help elucidate the true contribution of inflammatory gene variants to prostate cancer risk.

  7. Inflammatory Genetic Markers of Prostate Cancer Risk

    International Nuclear Information System (INIS)

    Tindall, Elizabeth A.; Hayes, Vanessa M.; Petersen, Desiree C.

    2010-01-01

    Prostate cancer is the most common cancer in Western society males, with incidence rates predicted to rise with global aging. Etiology of prostate cancer is however poorly understood, while current diagnostic tools can be invasive (digital rectal exam or biopsy) and/or lack specificity for the disease (prostate-specific antigen (PSA) testing). Substantial histological, epidemiological and molecular genetic evidence indicates that inflammation is important in prostate cancer pathogenesis. In this review, we summarize the current status of inflammatory genetic markers influencing susceptibility to prostate cancer. The focus will be on inflammatory cytokines regulating T-helper cell and chemokine homeostasis, together with the Toll-like receptors as key players in the host innate immune system. Although association studies indicating a genetic basis for prostate cancer are presently limited mainly due to lack of replication, larger and more ethnically and clinically defined study populations may help elucidate the true contribution of inflammatory gene variants to prostate cancer risk

  8. Instagram photos reveal predictive markers of depression

    OpenAIRE

    Reece, Andrew G.; Danforth, Christopher M.

    2016-01-01

    Using Instagram data from 166 individuals, we applied machine learning tools to successfully identify markers of depression. Statistical features were computationally extracted from 43,950 participant Instagram photos, using color analysis, metadata components, and algorithmic face detection. Resulting models outperformed general practitioners' average diagnostic success rate for depression. These results held even when the analysis was restricted to posts made before depressed individuals we...

  9. Molecular marker systems for Oenothera genetics.

    Science.gov (United States)

    Rauwolf, Uwe; Golczyk, Hieronim; Meurer, Jörg; Herrmann, Reinhold G; Greiner, Stephan

    2008-11-01

    The genus Oenothera has an outstanding scientific tradition. It has been a model for studying aspects of chromosome evolution and speciation, including the impact of plastid nuclear co-evolution. A large collection of strains analyzed during a century of experimental work and unique genetic possibilities allow the exchange of genetically definable plastids, individual or multiple chromosomes, and/or entire haploid genomes (Renner complexes) between species. However, molecular genetic approaches for the genus are largely lacking. In this study, we describe the development of efficient PCR-based marker systems for both the nuclear genome and the plastome. They allow distinguishing individual chromosomes, Renner complexes, plastomes, and subplastomes. We demonstrate their application by monitoring interspecific exchanges of genomes, chromosome pairs, and/or plastids during crossing programs, e.g., to produce plastome-genome incompatible hybrids. Using an appropriate partial permanent translocation heterozygous hybrid, linkage group 7 of the molecular map could be assigned to chromosome 9.8 of the classical Oenothera map. Finally, we provide the first direct molecular evidence that homologous recombination and free segregation of chromosomes in permanent translocation heterozygous strains is suppressed.

  10. Genetic diversity assessed by microsatellite markers in sweet corn cultivars

    Directory of Open Access Journals (Sweden)

    Ana Daniela Lopes

    2015-12-01

    Full Text Available Information on genetic diversity is essential to the characterization and utilization of germplasm. The genetic diversity of twenty-two sweet corn cultivars (seventeen open-pollinated varieties, OPV, and five hybrids, H was investigated by applying simple sequence repeat markers. A total of 257 primers were tested, of which 160 were found to be usable in terms of high reproducibility for all the samples tested; 45 were polymorphic loci, of which 30 were used to assess the genetic diversity of sweet corn cultivars. We detected a total of 86 alleles using 30 microsatellite primers. The mean polymorphism was 82 %. The highest heterozygosity values (Ho = 0.20 were found in the PR030-Doce Flor da Serra and BR427 III OPVs, whereas the lowest values (0.14 were recorded in the MG161-Branco Doce and Doce Cubano OPVs. The polymorphism information content ranged from 0.19 (Umc2319 to 0.71 (Umc2205. The analysis of molecular variance revealed that most of the genetic variability was concentrated within the cultivars of sweet corn (75 %, with less variability between them (25 %. The consensus tree derived from the neighbor-joining (NJ algorithm using 1,000 bootstrapping replicates revealed seven genetically different groups. Nei’s diversity values varied between 0.103 (Doce do Hawai × CNPH-1 cultivars and 0.645 (Amarelo Doce × Lili cultivars, indicating a narrow genetic basis. The Lili hybrid was the most distant cultivar, as revealed by Principal Coordinates Analysis and the NJ tree. This study on genetic diversity will be useful for planning future studies on sweet corn genetic resources and can complement the breeding programs for this crop.

  11. Genetic variability in Brazilian wheat cultivars assessed by microsatellite markers

    Directory of Open Access Journals (Sweden)

    Ivan Schuster

    2009-01-01

    Full Text Available Wheat (Triticum aestivum is one of the most important food staples in the south of Brazil. Understanding genetic variability among the assortment of Brazilian wheat is important for breeding. The aim of this work was to molecularly characterize the thirty-six wheat cultivars recommended for various regions of Brazil, and to assess mutual genetic distances, through the use of microsatellite markers. Twenty three polymorphic microsatellite markers (PMM delineated all 36 of the samples, revealing a total of 74 simple sequence repeat (SSR alleles, i.e. an average of 3.2 alleles per locus. Polymorphic information content (PIC value calculated to assess the informativeness of each marker ranged from 0.20 to 0.79, with a mean of 0.49. Genetic distances among the 36 cultivars ranged from 0.10 (between cultivars Ocepar 18 and BRS 207 to 0.88 (between cultivars CD 101 and Fudancep 46, the mean distance being 0.48. Twelve groups were obtained by using the unweighted pair-group method with arithmetic means analysis (UPGMA, and thirteen through the Tocher method. Both methods produced similar clusters, with one to thirteen cultivars per group. The results indicate that these tools may be used to protect intellectual property and for breeding and selection programs.

  12. Genetic relationship among Musa genotypes revealed by ...

    African Journals Online (AJOL)

    enoh

    2012-03-29

    Mar 29, 2012 ... A banana germplasm was established containing 44 Musa genotypes collected from various locations in Malaysia. To detect their genetic variation and to rule out duplicates among cultivar, microsatellite markers were used in their analysis. The microsatellite profiles of 44 Musa genotypes of various origins.

  13. Polymorphic microsatellite markers for genetic studies of African ...

    African Journals Online (AJOL)

    Administrator

    2011-09-26

    Sep 26, 2011 ... Many wild animal species lack informative genetic markers for analysing genetic variation and ... which act as important buffer zones between human and wildlife. ..... amplification tests of ungulate primers in the endangered.

  14. The efficiency of mitochondrial DNA markers in constructing genetic ...

    African Journals Online (AJOL)

    The efficiency of mitochondrial DNA markers in constructing genetic relationship among Oryx species. ... These data were used to provide the genetic kinship among different Oryx species. The complete cytochrome b gene ... Key words: Conservation, endangered species, Oryx, mitochondrial DNA (mtDNA) markers.

  15. Comparison of genetic detection efficiency of different markers ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Chinese native sheep populations, Hu sheep, Tong sheep, Small-tailed Han sheep and Tan sheep were used to study the efficiency of genetic markers. The genetic markers used in this study include morphological and ecological indices, blood protein enzyme, microsatellite DNA and the combination of.

  16. Assessing Date Palm Genetic Diversity Using Different Molecular Markers.

    Science.gov (United States)

    Atia, Mohamed A M; Sakr, Mahmoud M; Adawy, Sami S

    2017-01-01

    Molecular marker technologies which rely on DNA analysis provide powerful tools to assess biodiversity at different levels, i.e., among and within species. A range of different molecular marker techniques have been developed and extensively applied for detecting variability in date palm at the DNA level. Recently, the employment of gene-targeting molecular marker approaches to study biodiversity and genetic variations in many plant species has increased the attention of researchers interested in date palm to carry out phylogenetic studies using these novel marker systems. Molecular markers are good indicators of genetic distances among accessions, because DNA-based markers are neutral in the face of selection. Here we describe the employment of multidisciplinary molecular marker approaches: amplified fragment length polymorphism (AFLP), start codon targeted (SCoT) polymorphism, conserved DNA-derived polymorphism (CDDP), intron-targeted amplified polymorphism (ITAP), simple sequence repeats (SSR), and random amplified polymorphic DNA (RAPD) to assess genetic diversity in date palm.

  17. Short Communication: Genetic linkage map of Cucurbita maxima with molecular and morphological markers.

    Science.gov (United States)

    Ge, Y; Li, X; Yang, X X; Cui, C S; Qu, S P

    2015-05-22

    Cucurbita maxima is one of the most widely cultivated vegetables in China and exhibits distinct morphological characteristics. In this study, genetic linkage analysis with 57 simple-sequence repeats, 21 amplified fragment length polymorphisms, 3 random-amplified polymorphic DNA, and one morphological marker revealed 20 genetic linkage groups of C. maxima covering a genetic distance of 991.5 cM with an average of 12.1 cM between adjacent markers. Genetic linkage analysis identified the simple-sequence repeat marker 'PU078072' 5.9 cM away from the locus 'Rc', which controls rind color. The genetic map in the present study will be useful for better mapping, tagging, and cloning of quantitative trait loci/gene(s) affecting economically important traits and for breeding new varieties of C. maxima through marker-assisted selection.

  18. Single Nucleotide Polymorphism Markers for Genetic Mapping in Drosophila melanogaster

    OpenAIRE

    Hoskins, Roger A.; Phan, Alexander C.; Naeemuddin, Mohammed; Mapa, Felipa A.; Ruddy, David A.; Ryan, Jessica J.; Young, Lynn M.; Wells, Trent; Kopczynski, Casey; Ellis, Michael C.

    2001-01-01

    For nearly a century, genetic analysis in Drosophila melanogaster has been a powerful tool for analyzing gene function, yet Drosophila lacks the molecular genetic mapping tools that recently have revolutionized human, mouse, and plant genetics. Here, we describe the systematic characterization of a dense set of molecular markers in Drosophila by using a sequence tagged site-based physical map of the genome. We identify 474 biallelic markers in standard laboratory strains of Drosophila that sp...

  19. Genetic diversity characterization of cassava cultivars (Manihot esculenta Crantz.: I RAPD markers

    Directory of Open Access Journals (Sweden)

    Colombo Carlos

    1998-01-01

    Full Text Available RAPD markers were used to investigate the genetic diversity of 31 Brazilian cassava clones. The results were compared with the genetic diversity revealed by botanical descriptors. Both sets of variates revealed identical relationships among the cultivars. Multivariate analysis of genetic similarities placed genotypes destinated for consumption "in nature" in one group, and cultivars useful for flour production in another. Brazil?s abundance of landraces presents a broad dispersion and is consequently an important resource of genetic variability. The botanical descriptors were not able to differentiate thirteen pairs of cultivars compared two-by-two, while only one was not differentiated by RAPD markers. These results showed the power of RAPD markers over botanical descriptors in studying genetic diversity, identifying duplicates, as well as validating, or improving a core collection. The latter is particularly important in this vegetatively propagated crop.

  20. Molecular markers for genetic diversity and phylogeny research of ...

    African Journals Online (AJOL)

    Brazilian sheep descended from several breeds brought to the New World by Portuguese and Spanish colonists, and they have evolved and adapted to local climatic variations and acquired tolerance or resistance to many diseases. Molecular markers are widely used in analyzing genetic variability, and markers such as ...

  1. The use of microsatellite markers for genetic diversity assessment of ...

    African Journals Online (AJOL)

    In this study, gene diversity and genetic relationships among 30 genotypes of genus Hordeum from Kerman province (Iran) were assessed using 10 simple sequence repeat (SSR) primers. Seven of these markers were highly polymorphic. A total of 96 alleles were detected. The number of alleles per microsatellite marker ...

  2. Detection genetic variability of secale cereale L. by scot markers

    Directory of Open Access Journals (Sweden)

    Lenka Petrovičová

    2017-01-01

    Full Text Available Rye (Secale cereale L. is our traditional cereal used for baking. The genetic variability of grown rye has been reduced by modern agronomic practices, which subsequently prompted the importance of search for species that could be useful as a gene pool for the improving of flour quality for human consumption or for other industrial uses. Therefore, the aim of this study was to detect genetic variability among the set of 45 rye genotypes using 8 SCoT markers. Amplification of genomic DNA of 45 genotypes, using SCoT analysis, yielded 114 fragments, with an average of 14.25 polymorphic fragments per primer. The most polymorphic primer was SCoT 36, where 21 polymorphic amplification products were detected. In contract the lowest polymorphic primer was SCoT 45 with 5 polymorphic products. Genetic polymorphism was characterized based on diversity index (DI, probability of identity (PI and polymorphic information content (PIC. The hierarchical cluster analysis showed that the rye genotypes were divided into 2 main clusters. One rye genotype Motto, origin from Poland formed a separate subcluster (1b. Subscluster 2a included only genotype Valtické (CSK. In this experiment, SCoT proved to be a rapid, reliable and practicable method for revealing of polymorphism in the rye cultivars. Normal 0 21 false false false EN-GB X-NONE X-NONE

  3. Genetic Diversity Of Plukenetia Volubilis L. Assessed By ISSR Markers*

    Directory of Open Access Journals (Sweden)

    Ocelák M.

    2015-12-01

    Full Text Available The diversity and genetic relationships in 173 sacha inchi samples were analyzed using ISSR markers. Thirty ISSR primers were used, only 8 showed variability in tested samples. ISSR fragments ranged from 200 to 2500 bp. The mean number of bands per primer was 12 and the average number of polymorphic bands per primer was 11. The lowest percentages of polymorphic bands (27%, gene diversity (0.103, and Shannon’s information index (0.15 were exhibited by the Santa Lucia population, which was also geographically most distant. This fact may be attributed to a very small size of this group. In contrast, the Dos de Mayo population exhibited the highest percentage of polymorphic bands (78%, and the Santa Cruz population the highest Nei’s gene diversity index (0.238 and Shannon’s information index (0.357. The obtained level of genetic variability was 36% among tested populations and 64% within populations. Although the diversity indices were low, a cluster analysis revealed 8 clusters containing mainly samples belonging to individual populations. Principal coordinate analysis clearly distinguished Chumbaquihui, Pucallpa, Dos de Mayo, and Aguas de Oro populations, the others were intermixed. The obtained results indicated the level of genetic diversity present in this location of Peru, although it is influenced by anthropological aspects and independent on the geographical distances.

  4. Global Distribution of Human-Associated Fecal Genetic Markers in Reference Samples from Six Continents.

    Science.gov (United States)

    Mayer, René E; Reischer, Georg H; Ixenmaier, Simone K; Derx, Julia; Blaschke, Alfred Paul; Ebdon, James E; Linke, Rita; Egle, Lukas; Ahmed, Warish; Blanch, Anicet R; Byamukama, Denis; Savill, Marion; Mushi, Douglas; Cristóbal, Héctor A; Edge, Thomas A; Schade, Margit A; Aslan, Asli; Brooks, Yolanda M; Sommer, Regina; Masago, Yoshifumi; Sato, Maria I; Taylor, Huw D; Rose, Joan B; Wuertz, Stefan; Shanks, Orin C; Piringer, Harald; Mach, Robert L; Savio, Domenico; Zessner, Matthias; Farnleitner, Andreas H

    2018-05-01

    Numerous bacterial genetic markers are available for the molecular detection of human sources of fecal pollution in environmental waters. However, widespread application is hindered by a lack of knowledge regarding geographical stability, limiting implementation to a small number of well-characterized regions. This study investigates the geographic distribution of five human-associated genetic markers (HF183/BFDrev, HF183/BacR287, BacHum-UCD, BacH, and Lachno2) in municipal wastewaters (raw and treated) from 29 urban and rural wastewater treatment plants (750-4 400 000 population equivalents) from 13 countries spanning six continents. In addition, genetic markers were tested against 280 human and nonhuman fecal samples from domesticated, agricultural and wild animal sources. Findings revealed that all genetic markers are present in consistently high concentrations in raw (median log 10 7.2-8.0 marker equivalents (ME) 100 mL -1 ) and biologically treated wastewater samples (median log 10 4.6-6.0 ME 100 mL -1 ) regardless of location and population. The false positive rates of the various markers in nonhuman fecal samples ranged from 5% to 47%. Results suggest that several genetic markers have considerable potential for measuring human-associated contamination in polluted environmental waters. This will be helpful in water quality monitoring, pollution modeling and health risk assessment (as demonstrated by QMRAcatch) to guide target-oriented water safety management across the globe.

  5. Application of genetic markers in seed testing and plant breeding

    Directory of Open Access Journals (Sweden)

    Nikolić Zorica

    2010-01-01

    Full Text Available Genetic markers have been used at Institute of Field and Vegetable Crops in Novi Sad for a number of years, both for seed quality control and for research purposes. The Laboratory for Seed Testing was the first in the former Yugoslavia to use the method of control of hybrid seed genetic purity based on enzymatic polymorphism. This paper presents the application of protein markers, isozymes, seed storage proteins and DNA markers for evaluation of seed and breeding materials of various agricultural crops in Serbia.

  6. Genetic diversity, population structure and marker trait associations ...

    Indian Academy of Sciences (India)

    Supplementary data: Genetic diversity, population structure and marker trait associations for seed quality traits in cotton (Gossypium hirsutum). Ashok Badigannavar and Gerald O. Myers. J. Genet. 94, 87–94. Table 1. List of cotton germplasm lines used in this study. Germplasm no. Cultivar. Region. Germplasm no. Cultivar.

  7. Identification of novel genetic markers of breast cancer survival

    NARCIS (Netherlands)

    Q. Guo (Qi); M.K. Schmidt (Marjanka); P. Kraft (Peter); S. Canisius (Sander); C. Chen (Constance); S. Khan (Sofia); J.P. Tyrer (Jonathan); M.K. Bolla (Manjeet); Q. Wang (Qing); J. Dennis (Joe); K. Michailidou (Kyriaki); M. Lush (Michael); S. Kar (Siddhartha); J. Beesley (Jonathan); A.M. Dunning (Alison); M. Shah (Mitul); K. Czene (Kamila); H. Darabi (Hatef); M. Eriksson (Mikael); D. Lambrechts (Diether); C. Weltens (Caroline); K. Leunen; S.E. Bojesen (Stig); B.G. Nordestgaard (Børge); S.F. Nielsen (Sune); H. Flyger (Henrik); J. Chang-Claude (Jenny); A. Rudolph (Anja); P. Seibold (Petra); D. Flesch-Janys (Dieter); C. Blomqvist (Carl); K. Aittomäki (Kristiina); R. Fagerholm (Rainer); T.A. Muranen (Taru); F.J. Couch (Fergus); J.E. Olson (Janet); C. Vachon (Celine); I.L. Andrulis (Irene); J.A. Knight (Julia); G. Glendon (Gord); A.-M. Mulligan (Anna-Marie); A. Broeks (Annegien); F.B.L. Hogervorst (Frans); C.A. Haiman (Christopher); B.E. Henderson (Brian); F.R. Schumacher (Fredrick); L. Le Marchand (Loic); J. Hopper (John); H. Tsimiklis (Helen); C. Apicella (Carmel); M.C. Southey (Melissa); A. Cox (Angela); S.S. Cross (Simon); M.W.R. Reed (Malcolm); G.G. Giles (Graham G.); R.L. Milne (Roger L.); C.A. McLean (Catriona Ann); R. Winqvist (Robert); K. Pykäs (Katri); A. Jukkola-Vuorinen (Arja); M. Grip (Mervi); M.J. Hooning (Maartje); A. Hollestelle (Antoinette); J.W.M. Martens (John W. M.); A.M.W. van den Ouweland (Ans); F. Marme (Federick); A. Schneeweiss (Andreas); R. Yang (Rongxi); B. Burwinkel (Barbara); J.D. Figueroa (Jonine); S.J. Chanock (Stephen); J. Lissowska (Jolanta); E.J. Sawyer (Elinor); I.P. Tomlinson (Ian); M. Kerin (Michael); N. Miller (Nicola); H. Brenner (Hermann); A.K. Dieffenbach (Aida Karina); V. Arndt (Volker); B. Holleczek (B.); A. Mannermaa (Arto); V. Kataja (Vesa); V-M. Kosma (Veli-Matti); J.M. Hartikainen (J.); J. Li (Jingmei); J.S. Brand (Judith S.); M.K. Humphreys (Manjeet); P. Devilee (Peter); R.A.E.M. Tollenaar (Rob); C.M. Seynaeve (Caroline); P. Radice (Paolo); P. Peterlongo (Paolo); B. Bonnani (Bernardo); P. Mariani (Paolo); P.A. Fasching (Peter); M.W. Beckmann (Matthias); R. Hein (Rebecca); A.B. Ekici (Arif); G. Chenevix-Trench (Georgia); R. Balleine (Rosemary); K.-A. Phillips (Kelly-Anne); J. Benítez (Javier); M.P. Zamora (Pilar); J.I. Arias Pérez (José Ignacio); P. Menéndez (Primitiva); A. Jakubowska (Anna); J. Lubinski (Jan); K. Jaworska-Bieniek (Katarzyna); K. Durda (Katarzyna); U. Hamann (Ute); M. Kabisch (Maria); H.U. Ulmer (Hans); T. Rud̈iger (Thomas); S. Margolin (Sara); V. Kristensen (Vessela); S. Nord (Silje); D.G. Evans (Gareth); J. Abraham (Jean); H. Earl (Helena); L. Hiller (Louise); J.A. Dunn (J.); S. Bowden (Sarah); C.D. Berg (Christine); D. Campa (Daniele); W.R. Diver (Ryan); S.M. Gapstur (Susan M.); M.M. Gaudet (Mia); S.E. Hankinson (Susan); R.N. Hoover (Robert); A. Hüsing (Anika); R. Kaaks (Rudolf); M.J. Machiela (Mitchell J.); W.C. Willett (Walter C.); M. Barrdahl (Myrto); F. Canzian (Federico); S.-F. Chin (Suet-Feung); C. Caldas (Carlos); D. Hunter (David); S. Lindstrom (Stephen); M. García-Closas (Montserrat); P. Hall (Per); D.F. Easton (Douglas); D. Eccles (Diana); N. Rahman (Nazneen); H. Nevanlinna (Heli); P.D.P. Pharoah (Paul)

    2015-01-01

    textabstractBackground: Survival after a diagnosis of breast cancer varies considerably between patients, and some of this variation may be because of germline genetic variation. We aimed to identify genetic markers associated with breast cancer-specific survival. Methods: We conducted a large

  8. Molecular markers: a potential resource for ginger genetic diversity studies.

    Science.gov (United States)

    Ismail, Nor Asiah; Rafii, M Y; Mahmud, T M M; Hanafi, M M; Miah, Gous

    2016-12-01

    Ginger is an economically important and valuable plant around the world. Ginger is used as a food, spice, condiment, medicine and ornament. There is available information on biochemical aspects of ginger, but few studies have been reported on its molecular aspects. The main objective of this review is to accumulate the available molecular marker information and its application in diverse ginger studies. This review article was prepared by combing material from published articles and our own research. Molecular markers allow the identification and characterization of plant genotypes through direct access to hereditary material. In crop species, molecular markers are applied in different aspects and are useful in breeding programs. In ginger, molecular markers are commonly used to identify genetic variation and classify the relatedness among varieties, accessions, and species. Consequently, it provides important input in determining resourceful management strategies for ginger improvement programs. Alternatively, a molecular marker could function as a harmonizing tool for documenting species. This review highlights the application of molecular markers (isozyme, RAPD, AFLP, SSR, ISSR and others such as RFLP, SCAR, NBS and SNP) in genetic diversity studies of ginger species. Some insights on the advantages of the markers are discussed. The detection of genetic variation among promising cultivars of ginger has significance for ginger improvement programs. This update of recent literature will help researchers and students select the appropriate molecular markers for ginger-related research.

  9. Genetic prognostic markers in colorectal cancer.

    OpenAIRE

    Houlston, R S; Tomlinson, I P

    1997-01-01

    The contribution of molecular genetics to colorectal cancer has been restricted largely to relatively rare inherited tumours and to the detection of germline mutations predisposing to these cancers. However, much is now also known about somatic events leading to colorectal cancer. A number of studies has been undertaken examining possible relations between genetic features and prognostic indices. While many of these studies are small and inconclusive, it is clear that a number of different pa...

  10. Evolutionary Meta-Analysis of Association Studies Reveals Ancient Constraints Affecting Disease Marker Discovery

    Science.gov (United States)

    Dudley, Joel T.; Chen, Rong; Sanderford, Maxwell; Butte, Atul J.; Kumar, Sudhir

    2012-01-01

    Genome-wide disease association studies contrast genetic variation between disease cohorts and healthy populations to discover single nucleotide polymorphisms (SNPs) and other genetic markers revealing underlying genetic architectures of human diseases. Despite scores of efforts over the past decade, many reproducible genetic variants that explain substantial proportions of the heritable risk of common human diseases remain undiscovered. We have conducted a multispecies genomic analysis of 5,831 putative human risk variants for more than 230 disease phenotypes reported in 2,021 studies. We find that the current approaches show a propensity for discovering disease-associated SNPs (dSNPs) at conserved genomic positions because the effect size (odds ratio) and allelic P value of genetic association of an SNP relates strongly to the evolutionary conservation of their genomic position. We propose a new measure for ranking SNPs that integrates evolutionary conservation scores and the P value (E-rank). Using published data from a large case-control study, we demonstrate that E-rank method prioritizes SNPs with a greater likelihood of bona fide and reproducible genetic disease associations, many of which may explain greater proportions of genetic variance. Therefore, long-term evolutionary histories of genomic positions offer key practical utility in reassessing data from existing disease association studies, and in the design and analysis of future studies aimed at revealing the genetic basis of common human diseases. PMID:22389448

  11. Development and genetic mapping of SSR markers in foxtail millet [Setaria italica (L.) P. Beauv.].

    Science.gov (United States)

    Jia, Xiaoping; Zhang, Zhongbao; Liu, Yinghui; Zhang, Chengwei; Shi, Yunsu; Song, Yanchun; Wang, Tianyu; Li, Yu

    2009-02-01

    SSR markers are desirable markers in analysis of genetic diversity, quantitative trait loci mapping and gene locating. In this study, SSR markers were developed from two genomic libraries enriched for (GA)n and (CA)n of foxtail millet [Setaria italica (L.) P. Beauv.], a crop of historical importance in China. A total of 100 SSR markers among the 193 primer pairs detected polymorphism between two mapping parents of an F(2) population, i.e. "B100" of cultivated S. italica and "A10" of wild S. viridis. Excluding 14 markers with unclear amplifications, and five markers unlinked with any linkage group, a foxtail millet SSR linkage map was constructed by integrating 81 new developed SSR markers with 20 RFLP anchored markers. The 81 SSRs covered nine chromosomes of foxtail millet. The length of the map was 1,654 cM, with an average interval distance between markers of 16.4 cM. The 81 SSR markers were not evenly distributed throughout the nine chromosomes, with Ch.8 harbouring the least (3 markers) and Ch.9 harbouring the most (18 markers). To verify the usefulness of the SSR markers developed, 37 SSR markers were randomly chosen to analyze genetic diversity of 40 foxtail millet accessions. Totally 228 alleles were detected, with an average 6.16 alleles per locus. Polymorphism information content (PIC) value for each locus ranged from 0.413 to 0.847, with an average of 0.697. A positive correlation between PIC and number of alleles and between PIC and number of repeat unit were found [0.802 and 0.429, respectively (P < 0.01)]. UPGMA analysis revealed that the 40 foxtail millet cultivars could be grouped into five clusters in which the landraces' grouping was largely consistent with ecotypes while the breeding varieties from different provinces in China tended to be grouped together.

  12. Indel Group in Genomes (IGG) Molecular Genetic Markers1[OPEN

    Science.gov (United States)

    Burkart-Waco, Diana; Kuppu, Sundaram; Britt, Anne; Chetelat, Roger

    2016-01-01

    Genetic markers are essential when developing or working with genetically variable populations. Indel Group in Genomes (IGG) markers are primer pairs that amplify single-locus sequences that differ in size for two or more alleles. They are attractive for their ease of use for rapid genotyping and their codominant nature. Here, we describe a heuristic algorithm that uses a k-mer-based approach to search two or more genome sequences to locate polymorphic regions suitable for designing candidate IGG marker primers. As input to the IGG pipeline software, the user provides genome sequences and the desired amplicon sizes and size differences. Primer sequences flanking polymorphic insertions/deletions are produced as output. IGG marker files for three sets of genomes, Solanum lycopersicum/Solanum pennellii, Arabidopsis (Arabidopsis thaliana) Columbia-0/Landsberg erecta-0 accessions, and S. lycopersicum/S. pennellii/Solanum tuberosum (three-way polymorphic) are included. PMID:27436831

  13. Genetic markers for flowering in perennial ryegrass

    DEFF Research Database (Denmark)

    Paina, Cristiana; Byrne, Stephen; Andersen, Jeppe Reitan

    2011-01-01

    Perennial ryegrass (Lolium perenne L.) is the principal forage grass utilized in Danish agriculture and underpins the beef and dairy sectors. It is characterized as having high digestibility, high nutritional value, and high productivity during vegetative growth. However, at the reproductive growth...... genes will be converted to molecular markers and mapped in an existing mapping population previously characterized for flowering time and vernalization response. References: Amasino, R.M., Michaels S.D. (2010). The Timing of Flowering. Plant Physiology 154: 516–520 Greenup, A., W. Peacock, W.J., Dennis...

  14. Genetic diversity of Mycosphaerella fijiensis in Brazil analyzed using an ERIC-PCR marker.

    Science.gov (United States)

    Silva, G F; Paixão, R D V; Queiroz, C B; Santana, M F; Souza, A; Sousa, N R; Hanada, R E; Gasparotto, L

    2014-09-26

    The Enterobacterial repetitive intergenic consensus (ERIC) marker was used to analyze the genetic variability of Mycosphaerella fijiensis, the causative agent of Black Sigatoka disease in banana plants. A total of 123 isolates were used, which were divided into populations based on their original hosts and collection sites in Brazil. A total of 9 loci were amplified, 77.8% of which were found to be polymorphic. The genetic diversity found in the population was 0.20. Analysis of molecular variance (AMOVA) demonstrated that the highest level of genetic variation is within populations. Cluster analysis revealed three main groups in Brazil, with no correlation between geographic and genetic distance.

  15. Uniparental genetic markers in South Amerindians

    Directory of Open Access Journals (Sweden)

    Rafael Bisso-Machado

    2012-01-01

    Full Text Available A comprehensive review of uniparental systems in South Amerindians was undertaken. Variability in the Y-chromosome haplogroups were assessed in 68 populations and 1,814 individuals whereas that of Y-STR markers was assessed in 29 populations and 590 subjects. Variability in the mitochondrial DNA (mtDNA haplogroup was examined in 108 populations and 6,697 persons, and sequencing studies used either the complete mtDNA genome or the highly variable segments 1 and 2. The diversity of the markers made it difficult to establish a general picture of Y-chromosome variability in the populations studied. However, haplogroup Q1a3a* was almost always the most prevalent whereas Q1a3* occurred equally in all regions, which suggested its prevalence among the early colonizers. The STR allele frequencies were used to derive a possible ancient Native American Q-clade chromosome haplotype and five of six STR loci showed significant geographic variation. Geographic and linguistic factors moderately influenced the mtDNA distributions (6% and 7%, respectively and mtDNA haplogroups A and D correlated positively and negatively, respectively, with latitude. The data analyzed here provide rich material for understanding the biological history of South Amerindians and can serve as a basis for comparative studies involving other types of data, such as cultural data.

  16. Genetic diversity in cultivated carioca common beans based on molecular marker analysis

    Directory of Open Access Journals (Sweden)

    Juliana Morini Küpper Cardoso Perseguini

    2011-01-01

    Full Text Available A wide array of molecular markers has been used to investigate the genetic diversity among common bean species. However, the best combination of markers for studying such diversity among common bean cultivars has yet to be determined. Few reports have examined the genetic diversity of the carioca bean, commercially one of the most important common beans in Brazil. In this study, we examined the usefulness of two molecular marker systems (simple sequence repeats - SSRs and amplified fragment length polymorphisms - AFLPs for assessing the genetic diversity of carioca beans. The amount of information provided by Roger's modified genetic distance was used to analyze SSR data and Jaccards similarity coefficient was used for AFLP data. Seventy SSRs were polymorphic and 20 AFLP primer combinations produced 635 polymorphic bands. Molecular analysis showed that carioca genotypes were quite diverse. AFLPs revealed greater genetic differentiation and variation within the carioca genotypes (Gst = 98% and Fst = 0.83, respectively than SSRs and provided better resolution for clustering the carioca genotypes. SSRs and AFLPs were both suitable for assessing the genetic diversity of Brazilian carioca genotypes since the number of markers used in each system provided a low coefficient of variation. However, fingerprint profiles were generated faster with AFLPs, making them a better choice for assessing genetic diversity in the carioca germplasm.

  17. Radiation application on development of marker genes for genetic manipulation

    International Nuclear Information System (INIS)

    Lee, Young Il

    1997-04-01

    This state of art report was dealt with the recent progress of genetic engineering techniques and prospect of gene manipulation. Especially the selection of new genetic marker genes such as variants to environmental stress, pest or insect resistance, herbicide resistance and nutritional requirement was reviewed by using plant cell and tissue culture combined with radiation mutation induction. Biotechnology has taken us from the era hybrid plants to the era of transgenic plants. Although there are still many problems to solve in transformation method and the regeneration of transformed cell and tissue. Genetic marker genes are very important material to improve the technique of genetic manipulation. Most of the genes have been developed by radiation. (author). 180 refs., 6 tabs

  18. SCoT marker for the assessment of genetic diversity in saudi arabian date palm cultivars

    International Nuclear Information System (INIS)

    Qurainy, F.A.; Tarroum, M.

    2015-01-01

    Different types of molecular markers based on DNA have been used for the assessment of genetic diversity in the plant species. Start Codon Targeted Polymorphism (SCoT) marker has recently become the marker of choice in genetic diversity studies. SCoT marker was used for the assessment of genetic diversity in Saudi Arabian date palm cultivars. The percentage of polymorphic loci (PPL) at population level ranged from 3.28 to 13.11 with an average of 7.10. The Neis gene diversity (h) and Shannons Information index (I) were 0.033 and 0.046, respectively. However, at cultivar level, PPL, Neis gene diversity (h) and Shannons Information index (I) were 42.62, 0.090 and 0.155, respectively. Analysis of molecular variance (AMOVA) showed 48% of variation within the populations, whereas 52% was found among the populations. A hierarchical analysis of molecular variance revealed level of genetic differentiation among populations (52% of total variance, P = 0.001), consistent with the gene differentiation coefficient (Gst = 0.631). Unweighted pair group method of arithmetic averages (UPGMA) cluster analysis of the SCoT marker data divided the six cultivars and their populations into five main clusters at 0.95 genetic similarity coefficient level. (author)

  19. Plasmodium vivax merozoite surface protein-3 alpha: a high-resolution marker for genetic diversity studies.

    Science.gov (United States)

    Prajapati, Surendra Kumar; Joshi, Hema; Valecha, Neena

    2010-06-01

    Malaria, an ancient human infectious disease caused by five species of Plasmodium, among them Plasmodium vivax is the most widespread human malaria species and causes huge morbidity to its host. Identification of genetic marker to resolve higher genetic diversity for an ancient origin organism is a crucial task. We have analyzed genetic diversity of P. vivax field isolates using highly polymorphic antigen gene merozoite surface protein-3 alpha (msp-3 alpha) and assessed its suitability as high-resolution genetic marker for population genetic studies. 27 P. vivax field isolates collected during chloroquine therapeutic efficacy study at Chennai were analyzed for genetic diversity. PCR-RFLP was employed to assess the genetic variations using highly polymorphic antigen gene msp-3 alpha. We observed three distinct PCR alleles at msp-3 alpha, and among them allele A showed significantly high frequency (53%, chi2 = 8.22, p = 0.001). PCR-RFLP analysis revealed 14 and 17 distinct RFLP patterns for Hha1 and Alu1 enzymes respectively. Further, RFLP analysis revealed that allele A at msp-3 alpha is more diverse in the population compared with allele B and C. Combining Hha1 and Alu1 RFLP patterns revealed 21 distinct genotypes among 22 isolates reflects higher diversity resolution power of msp-3 alpha in the field isolates. P. vivax isolates from Chennai region revealed substantial amount of genetic diversity and comparison of allelic diversity with other antigen genes and microsatellites suggesting that msp-3 alpha could be a high-resolution marker for genetic diversity studies among P. vivax field isolates.

  20. Genetic fidelity and variability of micropropagated cassava plants (Manihot esculenta Crantz) evaluated using ISSR markers.

    Science.gov (United States)

    Vidal, Á M; Vieira, L J; Ferreira, C F; Souza, F V D; Souza, A S; Ledo, C A S

    2015-07-14

    Molecular markers are efficient for assessing the genetic fidelity of various species of plants after in vitro culture. In this study, we evaluated the genetic fidelity and variability of micropropagated cassava plants (Manihot esculenta Crantz) using inter-simple sequence repeat markers. Twenty-two cassava accessions from the Embrapa Cassava & Fruits Germplasm Bank were used. For each accession, DNA was extracted from a plant maintained in the field and from 3 plants grown in vitro. For DNA amplification, 27 inter-simple sequence repeat primers were used, of which 24 generated 175 bands; 100 of those bands were polymorphic and were used to study genetic variability among accessions of cassava plants maintained in the field. Based on the genetic distance matrix calculated using the arithmetic complement of the Jaccard's index, genotypes were clustered using the unweighted pair group method using arithmetic averages. The number of bands per primer was 2-13, with an average of 7.3. For most micropropagated accessions, the fidelity study showed no genetic variation between plants of the same accessions maintained in the field and those maintained in vitro, confirming the high genetic fidelity of the micropropagated plants. However, genetic variability was observed among different accessions grown in the field, and clustering based on the dissimilarity matrix revealed 7 groups. Inter-simple sequence repeat markers were efficient for detecting the genetic homogeneity of cassava plants derived from meristem culture, demonstrating the reliability of this propagation system.

  1. Use of multiple genetic markers in prediction of breeding values.

    NARCIS (Netherlands)

    Arendonk, van J.A.M.; Tier, B.; Kinghorn, B.P.

    1994-01-01

    Genotypes at a marker locus give information on transmission of genes from parents to offspring and that information can be used in predicting the individuals' additive genetic value at a linked quantitative trait locus (MQTL). In this paper a recursive method is presented to build the gametic

  2. Genetic diversity and identification of variety-specific AFLP markers ...

    African Journals Online (AJOL)

    In all the fenugreek varieties, a total of 25 variety-specific AFLP markers were found. Phylogenetic trees among 5 plant varieties were constructed based on Nei's coefficient standard genetic distances using unweighted pair group method with arithmetic mean (UPGMA) method. For RAPD and AFLP analysis, Gujarat Methi-1 ...

  3. Simple sequence repeat marker development and genetic mapping ...

    Indian Academy of Sciences (India)

    polymorphic SSR (simple sequence repeats) markers from libraries enriched for GA, CAA and AAT repeats, as well as 6 ... ers for quinoa was the development of a genetic linkage map ...... Weber J. L. 1990 Informativeness of human (dC-dA)n.

  4. Oxidative Stress Markers and Genetic Polymorphisms of Glutathione ...

    African Journals Online (AJOL)

    Hence, we evaluated the serum levels of oxidative stress markers and investigated genetic polymorphisms of glutathione S-transferase associated with autism. Materials and Methods: Forty-two children clinically diagnosed with ASD using the Diagnostic and Statistical Manual for Mental Disorders (DSM-5) criteria and a ...

  5. Evaluation of algorithms used to order markers on genetic maps.

    Science.gov (United States)

    Mollinari, M; Margarido, G R A; Vencovsky, R; Garcia, A A F

    2009-12-01

    When building genetic maps, it is necessary to choose from several marker ordering algorithms and criteria, and the choice is not always simple. In this study, we evaluate the efficiency of algorithms try (TRY), seriation (SER), rapid chain delineation (RCD), recombination counting and ordering (RECORD) and unidirectional growth (UG), as well as the criteria PARF (product of adjacent recombination fractions), SARF (sum of adjacent recombination fractions), SALOD (sum of adjacent LOD scores) and LHMC (likelihood through hidden Markov chains), used with the RIPPLE algorithm for error verification, in the construction of genetic linkage maps. A linkage map of a hypothetical diploid and monoecious plant species was simulated containing one linkage group and 21 markers with fixed distance of 3 cM between them. In all, 700 F(2) populations were randomly simulated with 100 and 400 individuals with different combinations of dominant and co-dominant markers, as well as 10 and 20% of missing data. The simulations showed that, in the presence of co-dominant markers only, any combination of algorithm and criteria may be used, even for a reduced population size. In the case of a smaller proportion of dominant markers, any of the algorithms and criteria (except SALOD) investigated may be used. In the presence of high proportions of dominant markers and smaller samples (around 100), the probability of repulsion linkage increases between them and, in this case, use of the algorithms TRY and SER associated to RIPPLE with criterion LHMC would provide better results.

  6. Genetic variability in local Brazilian horse lines using microsatellite markers.

    Science.gov (United States)

    Silva, A C M; Paiva, S R; Albuquerque, M S M; Egito, A A; Santos, S A; Lima, F C; Castro, S T; Mariante, A S; Correa, P S; McManus, C M

    2012-04-10

    Genetic variability at 11 microsatellite markers was analyzed in five naturalized/local Brazilian horse breeds or genetic groups. Blood samples were collected from 328 animals of the breeds Campeira (Santa Catarina State), Lavradeira (Roraima State), Pantaneira (Pantanal Mato-Grossense), Mangalarga Marchador (Minas Gerais State), as well as the genetic group Baixadeiro (Maranhão State), and the exotic breeds English Thoroughbred and Arab. We found significant genetic variability within evaluated microsatellite loci, with observed heterozygosis varying between 0.426 and 0.768 and polymorphism information content values of 0.751 to 0.914. All breeds showed high inbreeding coefficients and were not in Hardy-Weinberg equilibrium. The smallest genetic distance was seen between the Pantaneira and Arab breeds. The principal component analyzes and Bayesian approach demonstrated that the exotic breeds have had a significant influence on the genetic formation of the local breeds, with introgression of English Throroughbred in Pantaneira and Lavradeira, as well as genetic proximity between the Arab, Pantaneira and Mangalarga Marchador populations. This study shows the need to conserve traits acquired by naturalized horse breeds over centuries of natural selection in Brazil due to the genetic uniqueness of each group, suggesting a reduced gene flow between them. These results reinforce the need to include these herds in animal genetic resource conservation programs to maximize the genetic variability and conserve useful allele combinations.

  7. Incorporation of conventional genetic markers and RAPD markers into an RFLP based map in maize

    International Nuclear Information System (INIS)

    Coe, E.H. Jr.; McMullen, M.D.; Polacco, M.; Davis, G.L.; Chao, S.

    1998-01-01

    Integration of classical genetic markers, in particular mutants, onto the maize Restriction Fragment Length Polymorphism (RFLP) map will provide the tools necessary to further our understanding of plant development and of complex traits. Initially integration was accomplished by visual alignment of common markers and sometimes involved the use of information from several different molecular maps to determine the relative placement of a single mutant. The maize core marker set was designed to provide a common set of markers which could be used for integration of map data. We have completed the mapping, of 56 mutants on chromosome one relative to the core marker set. Phenotypes included whole plant, seedling, and kernel effects and represented a variety of biological processes. Since these mutants were previously located to chromosome arm, mapping required the use of only seven markers per mutant to define the correct bin location. Two mistakes in marker order relative to the classical map were identified, as well as, six groups of mutants which require allelism testing. Placement of mutants and cDNAs into bins using, the core markers provides a necessary resource for identification of gene function in maize. (author)

  8. RAPD-SCAR marker and genetic relationship analysis of three Demodex species (Acari: Demodicidae).

    Science.gov (United States)

    Zhao, Ya-E; Wu, Li-Ping

    2012-06-01

    For a long time, classification of Demodex mites has been mainly based on their hosts and phenotype characteristics. The study was the first to conduct molecular identification and genetic relationship analysis for six isolates of three Demodex species by random amplified polymorphic DNA (RAPD) and sequence-characterized amplified region (SCAR) marker. Totally, 239 DNA fragments were amplified from six Demodex isolates with 10 random primers in RAPD, of which 165 were polymorphic. Using a single primer, at least five fragments and at most 40 in the six isolates were amplified, whereas within a single isolate, a range of 35-49 fragments were amplified. DNA fingerprints of primers CZ 1-9 revealed intra- and interspecies difference in six Demodex isolates, whereas primer CZ 10 only revealed interspecies difference. The genetic distance and dendrogram showed the intraspecific genetic distances were closer than the interspecific genetic distances. The interspecific genetic distances of Demodex folliculorum and Demodex canis (0.7931-0.8140) were shorter than that of Demodex brevis and D. canis (0.8182-0.8987). The RAPD-SCAR marker displayed primer CZ 10 could be applied to identify the three Demodex species. The 479-bp fragment was specific for D. brevis, and the 261-bp fragment was specific for D. canis. The conclusion was that the RAPD-SCAR multi-marker was effective in molecular identification of three Demodex species. The genetic relationship between D. folliculorum and D. canis was nearer than that between D. folliculorum and D. brevis.

  9. Genetic variability assessment in the genus Passiflora by SSR markers

    Directory of Open Access Journals (Sweden)

    Claudia Lougon Paiva

    2014-09-01

    Full Text Available The genus Passiflora encompasses many species that are endemic to the Brazilian territory, including some with economic value. Studies on genetic diversity in this genus are fundamental because they allow understanding genetic variability and distance. The present study aimed to determine the genetic variability and distances among 10 species of the genus Passiflora by using microsatellite markers (Simple Sequence Repeat, SSR. Twenty-eight heterologous microsatellite markers were tested, but only 12 were used in the diversity analysis because they amplified in at least 80% of the species. A clear separation was observed among the subgenuses studied, as well as wide variation among the accessions of Passiflora. This knowledge enables breeders to explore diversity and transfer favorable alleles found in wild species.

  10. Uniparental Markers of Contemporary Italian Population Reveals Details on Its Pre-Roman Heritage

    Science.gov (United States)

    Álvarez-Iglesias, Vanesa; Fondevila, Manuel; Blanco-Verea, Alejandro; Carracedo, Ángel; Pascali, Vincenzo L.; Capelli, Cristian

    2012-01-01

    Background According to archaeological records and historical documentation, Italy has been a melting point for populations of different geographical and ethnic matrices. Although Italy has been a favorite subject for numerous population genetic studies, genetic patterns have never been analyzed comprehensively, including uniparental and autosomal markers throughout the country. Methods/Principal Findings A total of 583 individuals were sampled from across the Italian Peninsula, from ten distant (if homogeneous by language) ethnic communities — and from two linguistic isolates (Ladins, Grecani Salentini). All samples were first typed for the mitochondrial DNA (mtDNA) control region and selected coding region SNPs (mtSNPs). This data was pooled for analysis with 3,778 mtDNA control-region profiles collected from the literature. Secondly, a set of Y-chromosome SNPs and STRs were also analyzed in 479 individuals together with a panel of autosomal ancestry informative markers (AIMs) from 441 samples. The resulting genetic record reveals clines of genetic frequencies laid according to the latitude slant along continental Italy – probably generated by demographical events dating back to the Neolithic. The Ladins showed distinctive, if more recent structure. The Neolithic contribution was estimated for the Y-chromosome as 14.5% and for mtDNA as 10.5%. Y-chromosome data showed larger differentiation between North, Center and South than mtDNA. AIMs detected a minor sub-Saharan component; this is however higher than for other European non-Mediterranean populations. The same signal of sub-Saharan heritage was also evident in uniparental markers. Conclusions/Significance Italy shows patterns of molecular variation mirroring other European countries, although some heterogeneity exists based on different analysis and molecular markers. From North to South, Italy shows clinal patterns that were most likely modulated during Neolithic times. PMID:23251386

  11. Uniparental markers of contemporary Italian population reveals details on its pre-Roman heritage.

    Science.gov (United States)

    Brisighelli, Francesca; Álvarez-Iglesias, Vanesa; Fondevila, Manuel; Blanco-Verea, Alejandro; Carracedo, Angel; Pascali, Vincenzo L; Capelli, Cristian; Salas, Antonio

    2012-01-01

    According to archaeological records and historical documentation, Italy has been a melting point for populations of different geographical and ethnic matrices. Although Italy has been a favorite subject for numerous population genetic studies, genetic patterns have never been analyzed comprehensively, including uniparental and autosomal markers throughout the country. A total of 583 individuals were sampled from across the Italian Peninsula, from ten distant (if homogeneous by language) ethnic communities--and from two linguistic isolates (Ladins, Grecani Salentini). All samples were first typed for the mitochondrial DNA (mtDNA) control region and selected coding region SNPs (mtSNPs). This data was pooled for analysis with 3,778 mtDNA control-region profiles collected from the literature. Secondly, a set of Y-chromosome SNPs and STRs were also analyzed in 479 individuals together with a panel of autosomal ancestry informative markers (AIMs) from 441 samples. The resulting genetic record reveals clines of genetic frequencies laid according to the latitude slant along continental Italy--probably generated by demographical events dating back to the Neolithic. The Ladins showed distinctive, if more recent structure. The Neolithic contribution was estimated for the Y-chromosome as 14.5% and for mtDNA as 10.5%. Y-chromosome data showed larger differentiation between North, Center and South than mtDNA. AIMs detected a minor sub-Saharan component; this is however higher than for other European non-Mediterranean populations. The same signal of sub-Saharan heritage was also evident in uniparental markers. Italy shows patterns of molecular variation mirroring other European countries, although some heterogeneity exists based on different analysis and molecular markers. From North to South, Italy shows clinal patterns that were most likely modulated during Neolithic times.

  12. A genetic analysis of segregation distortion revealed by molecular ...

    Indian Academy of Sciences (India)

    Journal of Genetics, Vol. 90, No. ... Segregation analysis was based on 64 molecular markers, including 26 .... FHB of RIL populations was controlled by quantitative trait ... The authors acknowledge financial support by the National Basic.

  13. Survey of genetic structure of geese using novel microsatellite markers

    Directory of Open Access Journals (Sweden)

    Fang-Yu Lai

    2018-02-01

    Full Text Available Objective The aim of this study was to create a set of microsatellite markers with high polymorphism for the genetic monitoring and genetic structure analysis of local goose populations. Methods Novel microsatellite markers were isolated from the genomic DNA of white Roman geese using short tandem repeated probes. The DNA segments, including short tandem repeats, were tested for their variability among four populations of geese from the Changhua Animal Propagation Station (CAPS. The selected microsatellite markers could then be used to monitor genetic variability and study the genetic structures of geese from local geese farms. Results 14 novel microsatellite loci were isolated. In addition to seven known loci, two multiplex sets were constructed for the detection of genetic variations in geese populations. The average of allele number, the effective number of alleles, the observed heterozygosity, the expected heterozygosity, and the polymorphism information content were 11.09, 5.145, 0.499, 0.745, and 0.705, respectively. The results of analysis of molecular variance and principal component analysis indicated a contracting white Roman cluster and a spreading Chinese cluster. In white Roman populations, the CAPS populations were depleted to roughly two clusters when K was set equal to 6 in the Bayesian cluster analysis. The founders of private farm populations had a similar genetic structure. Among the Chinese geese populations, the CAPS populations and private populations represented different clads of the phylogenetic tree and individuals from the private populations had uneven genetic characteristics according to various analyses. Conclusion Based on this study’s analyses, we suggest that the CAPS should institute a proper breeding strategy for white Roman geese to avoid further clustering. In addition, for preservation and stable quality, the Chinese geese in the CAPS and the aforementioned proper breeding scheme should be introduced to

  14. Interspecific introgression in cetaceans: DNA markers reveal post-F1 status of a pilot whale.

    Directory of Open Access Journals (Sweden)

    Laura Miralles

    Full Text Available Visual species identification of cetacean strandings is difficult, especially when dead specimens are degraded and/or species are morphologically similar. The two recognised pilot whale species (Globicephala melas and Globicephala macrorhynchus are sympatric in the North Atlantic Ocean. These species are very similar in external appearance and their morphometric characteristics partially overlap; thus visual identification is not always reliable. Genetic species identification ensures correct identification of specimens. Here we have employed one mitochondrial (D-Loop region and eight nuclear loci (microsatellites as genetic markers to identify six stranded pilot whales found in Galicia (Northwest Spain, one of them of ambiguous phenotype. DNA analyses yielded positive amplification of all loci and enabled species identification. Nuclear microsatellite DNA genotypes revealed mixed ancestry for one individual, identified as a post-F1 interspecific hybrid employing two different Bayesian methods. From the mitochondrial sequence the maternal species was Globicephala melas. This is the first hybrid documented between Globicephala melas and G. macrorhynchus, and the first post-F1 hybrid genetically identified between cetaceans, revealing interspecific genetic introgression in marine mammals. We propose to add nuclear loci to genetic databases for cetacean species identification in order to detect hybrid individuals.

  15. Genetic diversity and population structure of Brassica oleracea germplasm in Ireland using SSR markers.

    Science.gov (United States)

    El-Esawi, Mohamed A; Germaine, Kieran; Bourke, Paula; Malone, Renee

    2016-01-01

    The most economically important Brassica oleracea species is endangered in Ireland, with no prior reported genetic characterization studies. This study assesses the genetic diversity, population structure and relationships of B. oleracea germplasm in Ireland using microsatellite (SSRs) markers. A total of 118 individuals from 25 accessions of Irish B. oleracea were genotyped. The SSR loci used revealed a total of 47 alleles. The observed heterozygosity (0.699) was higher than the expected one (0.417). Moreover, the average values of fixation indices (F) were negative, indicating excess of heterozygotes in all accessions. Polymorphic information content (PIC) values of SSR loci ranged from 0.27 to 0.66, with an average of 0.571, and classified 10 loci as informative markers (PIC>0.5) to differentiate among the accessions studied. The genetic differentiation among accessions showed that 27.1% of the total genetic variation was found among accessions, and 72.9% of the variation resided within accessions. The averages of total heterozygosity (H(T)) and intra-accession genetic diversity (H(S)) were 0.577 and 0.442, respectively. Cluster analysis of SSR data distinguished among kale and Brussels sprouts cultivars. This study provided a new insight into the exploitation of the genetically diverse spring cabbages accessions, revealing a high genetic variation, as potential resources for future breeding programs. SSR loci were effective for differentiation among the accessions studied. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  16. Assessment of genetic diversity in indigenous turmeric (Curcuma longa) germplasm from India using molecular markers.

    Science.gov (United States)

    Verma, Sushma; Singh, Shweta; Sharma, Suresh; Tewari, S K; Roy, R K; Goel, A K; Rana, T S

    2015-04-01

    Curcuma longa L., commonly known as turmeric, is one of the economically and medicinally important plant species. It is predominantly cultivated in the tropical and sub tropical countries. India is the largest producer, and exporter of turmeric in the world, followed by China, Indonesia, Bangladesh and Thailand. In the present study, Directed Amplification of Minisatellite DNA (DAMD) and Inter Simple Sequence Repeats (ISSR), methods were used to estimate the genetic variability in indigenous turmeric germplasm. Cumulative data analysis for DAMD (15) and ISSR (13) markers resulted into 478 fragments, out of which 392 fragments were polymorphic, revealing 82 % polymorphism across the turmeric genotypes. Wide range of pairwise genetic distances (0.03-0.59) across the genotypes revealed that these genotypes are genetically quite diverse. The UPGMA dendrogram generated using cumulative data showed significant relationships amongst the genotypes. All 29 genotypes studied grouped into two clusters irrespective of their geographical affiliations with 100 % bootstrap value except few genotypes, suggesting considerable diversity amongst the genotypes. These results suggested that the current collection of turmeric genotypes preserve the vast majority of natural variations. The results further demonstrate the efficiency and reliability of DAMD and ISSR markers in determining the genetic diversity and relationships among the indigenous turmeric germplasm. DAMD and ISSR profiling have identified diverse turmeric genotypes, which could be further utilized in various genetic improvement programmes including conventional as well as marker assisted breeding towards development of new and desirable turmeric genotypes.

  17. Genetic diversity of Halla horses using microsatellite markers

    Directory of Open Access Journals (Sweden)

    Joo-Hee Seo

    2016-11-01

    Full Text Available Abstract Background Currently about 26,000 horses are breeding in Korea and 57.2% (14,776 horses of them are breeding in Jeju island. According to the statistics published in 2010, the horses breeding in Jeju island are subdivided into Jeju horse (6.1%, Thoroughbred (18.8% and Halla horse (75.1%. Halla horses are defined as a crossbreed between Jeju and Thoroughbred horses and are used for horse racing, horse riding and horse meat production. However, little research has been conducted on Halla horses because of the perception of crossbreed and people’s weighted interest toward Jeju horses. Method Using 17 Microsatellite (MS Markers recommended by International Society for Animal Genetics (ISAG, genomic DNAs were extracted from the hair roots of 3,880 Halla horses breeding in Korea and genetic diversity was identified by genotyping after PCR was performed. Results and conclusion In average, 10.41 alleles (from 6 alleles in HTG7 to 17 alleles in ASB17 were identified after the analysis using 17 MS Markers. The mean value of Hobs was 0.749 with a range from 0.612(HMS1 to 0.857(ASB2. Also, it was found that Hexp and PIC values were lowest in HMS1 (0.607 and 0.548, respectively, and highest in LEX3(0.859 and 0.843, respectively, and the mean value of Hexp was 0.760 and that of PIC was 0.728. 17 MS markers used in this studies were considered as appropriate markers for the polymorphism analysis of Halla horses. The frequency for the appearance of identical individuals was 5.90 × 10−20 when assumed as random mating population and when assumed as half-sib and full-sib population, frequencies were 4.08 × 10−15 and 3.56 × 10−8, respectively. Based on these results, the 17 MS markers can be used adequately for the Individual Identification and Parentage Verification of Halla horses. Remarkably, allele M and Q of ASB23 marker, G of HMS2 marker, H and L of HTG6 marker, L of HTG7 marker, E of LEX3 marker were the specific alleles

  18. Genetic variation and geographical differentiation revealed using ...

    Indian Academy of Sciences (India)

    there are a few reports on the genetic evaluation of tung tree germplasm. .... bES, Enshi in Hubei province; SN, Suining in Sichuan province. Journal of Genetics Vol. 94, Online Resources e6 ... gene diversity. Journal of Genetics Vol. 94, Online Resources e7 .... Pan Y., Pan L., Chen L., Zhang L. L., Nevo E. and Peng J. H..

  19. Genetic variability of Pantaneiro horse using RAPD-PCR markers

    OpenAIRE

    Egito,Andréa Alves do; Fuck,Beatriz Helena; McManus,Concepta; Paiva,Samuel Rezende; Albuquerque,Maria do Socorro Maués; Santos,Sandra Aparecida; Abreu,Urbano Gomes Pinto de; Silva,Joaquim Augusto da; Sereno,Fabiana Tavares Pires de Souza; Mariante,Arthur da Silva

    2007-01-01

    Blood samples were collected from Pantaneiro Horses in five regions of Mato Grosso do Sul and Mato Grosso States. Arabian, Mangalarga Marchador and Thoroughbred were also included to estimate genetic distances and the existing variability among and within these breeds by RAPD-PCR (Random Amplified Polymorphic DNA - Polymerase Chain Reaction) molecular markers. From 146 primers, 13 were chosen for amplification and 44 polymorphic bands were generated. The analysis of molecular variance (AMOVA)...

  20. Development of SSR Markers and Assessment of Genetic Diversity in Medicinal Chrysanthemum morifolium Cultivars.

    Science.gov (United States)

    Feng, Shangguo; He, Renfeng; Lu, Jiangjie; Jiang, Mengying; Shen, Xiaoxia; Jiang, Yan; Wang, Zhi'an; Wang, Huizhong

    2016-01-01

    Chrysanthemum morifolium, is a well-known flowering plant worldwide, and has a high commercial, floricultural, and medicinal value. In this study, simple-sequence repeat (SSR) markers were generated from EST datasets and were applied to assess the genetic diversity among 32 cultivars. A total of 218 in silico SSR loci were identified from 7300 C. morifolium ESTs retrieved from GenBank. Of all SSR loci, 61.47% of them (134) were hexa-nucleotide repeats, followed by tri-nucleotide repeats (17.89%), di-nucleotide repeats (12.39%), tetra-nucleotide repeats (4.13%), and penta-nucleotide repeats (4.13%). In this study, 17 novel EST-SSR markers were verified. Along with 38 SSR markers reported previously, 55 C. morifolium SSR markers were selected for further genetic diversity analysis. PCR amplification of these EST-SSRs produced 1319 fragments, 1306 of which showed polymorphism. The average polymorphism information content of the SSR primer pairs was 0.972 (0.938-0.993), which showed high genetic diversity among C. morifolium cultivars. Based on SSR markers, 32 C. morifolium cultivars were separated into two main groups by partitioning of the clusters using the unweighted pair group method with arithmetic mean dendrogram, which was further supported by a principal coordinate analysis plot. Phylogenetic relationship among C. morifolium cultivars as revealed by SSR markers was highly consistent with the classification of medicinal C. morifolium populations according to their origin and ecological distribution. Our results demonstrated that SSR markers were highly reproducible and informative, and could be used to evaluate genetic diversity and relationships among medicinal C. morifolium cultivars.

  1. Microsatellite variability reveals high genetic diversity and low genetic differentiation in a critical giant panda population

    Directory of Open Access Journals (Sweden)

    Jiandong YANG, Zhihe ZHANG, Fujun SHEN, Xuyu YANG, Liang ZHANG, Limin CHEN, Wenping ZHANG, Qing ZHU, Rong HOU

    2011-12-01

    Full Text Available Understanding present patterns of genetic diversity is critical in order to design effective conservation and management strategies for endangered species. Tangjiahe Nature Reserve (NR is one of the most important national reserves for giant pandas Ailuropoda melanoleuca in China. Previous studies have shown that giant pandas in Tangjiahe NR may be threatened by population decline and fragmentation. Here we used 10 microsatellite DNA markers to assess the genetic variability in the Tangjiahe population. The results indicate a low level of genetic differentiation between the Hongshihe and Motianling subpopulations in the reserve. Assignment tests using the Bayesian clustering method in STRUCTURE identified one genetic cluster from 42 individuals of the two subpopulations. All individuals from the same subpopulation were assigned to one cluster. This indicates high gene flow between subpopulations. F statistic analyses revealed a low FIS-value of 0.024 in the total population and implies a randomly mating population in Tangjiahe NR. Additionally, our data show a high level of genetic diversity for the Tangjiahe population. Mean allele number (A, Allelic richness (AR and mean expected heterozygosity (HE for the Tangjiahe population was 5.9, 5.173 and 0.703, respectively. This wild giant panda population can be restored through concerted effort [Current Zoology 57 (6: 717–724, 2011].

  2. Genetic diversity among Juglans regia L. genotypes assessed by morphological traits and microsatellite markers

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodi, R.; Rahmani, F.; Rezaee, R.

    2013-06-01

    In this study, genetic diversity was assayed among 16 accessions and five cultivars of Persian walnut (Juglans regia L.) using morphological traits and nine simple sequence repeat (SSR) markers. Samples were collected from Agriculture Research Center of Urmia city (North West Iran). Study on important morphological traits revealed genetic similarity of -0.6 to 0.99 based on CORR coefficient. The microsatellite marker system produced 34 alleles in range of 160-290 bp. The minimum (2) and maximum (7) number of alleles were obtained from WGA71 and WGA202 genetic loci, respectively. The mean number of alleles per locus was 4.25. Jaccards similarity coefficient ranged from 0.13 to 0.76. The results of this paper indicate high diversity among these genotypes which could be used for breeding management. (Author) 28 refs.

  3. On coding genotypes for genetic markers with multiple alleles in genetic association study of quantitative traits

    Directory of Open Access Journals (Sweden)

    Wang Tao

    2011-09-01

    Full Text Available Abstract Background In genetic association study of quantitative traits using F∞ models, how to code the marker genotypes and interpret the model parameters appropriately is important for constructing hypothesis tests and making statistical inferences. Currently, the coding of marker genotypes in building F∞ models has mainly focused on the biallelic case. A thorough work on the coding of marker genotypes and interpretation of model parameters for F∞ models is needed especially for genetic markers with multiple alleles. Results In this study, we will formulate F∞ genetic models under various regression model frameworks and introduce three genotype coding schemes for genetic markers with multiple alleles. Starting from an allele-based modeling strategy, we first describe a regression framework to model the expected genotypic values at given markers. Then, as extension from the biallelic case, we introduce three coding schemes for constructing fully parameterized one-locus F∞ models and discuss the relationships between the model parameters and the expected genotypic values. Next, under a simplified modeling framework for the expected genotypic values, we consider several reduced one-locus F∞ models from the three coding schemes on the estimability and interpretation of their model parameters. Finally, we explore some extensions of the one-locus F∞ models to two loci. Several fully parameterized as well as reduced two-locus F∞ models are addressed. Conclusions The genotype coding schemes provide different ways to construct F∞ models for association testing of multi-allele genetic markers with quantitative traits. Which coding scheme should be applied depends on how convenient it can provide the statistical inferences on the parameters of our research interests. Based on these F∞ models, the standard regression model fitting tools can be used to estimate and test for various genetic effects through statistical contrasts with the

  4. Assessment of Genetic Diversity of Some Finger Millet (Eleusine coracana (L. Gaertn. Accessions Using Morphological Markers

    Directory of Open Access Journals (Sweden)

    D.V.S. Kaluthanthri

    2017-03-01

    Full Text Available AbstractGermplasm characterization is an important link between conservation and utilizationof plant genetic resources. The study was conducted to characterize randomly selected 20finger millet germplasm accessions obtained from Plant Genetic Resource Center,Gannoruwa, Sri Lanka using morphological markers. Morphological study was carried outusing Randomized Complete Block Design (RCBD and 15 morphological markers wererecorded. Analysis of variance (ANOVA results for quantitative morphological charactersrevealed that all quantitative morphological characters measured differed significantly(p˂0.05 among the accessions used for the study, indicating higher levels of morphologicaldiversity. According to the ANOVA results, days to flowering and days to maturity showhigh level of predictive capability while flag leaf length and number of productive tillersshow comparatively low level of predictive capability. Principal component analysisindicated that morphological characters such as days to flowering, finger number and yieldper plant were the important traits contributing for the overall variability implying thatbreeding effort on those traits can meet the targeted objective. The clustering pattern ofstudied finger millet accessions based on morphological markers comprised of two majorclusters. Both clusters comprised of Indian accessions those conserved at PGRC, Gannoruwaand as well as Sri Lankan accessions.Results of the study suggest a considerable morphological variability, which couldexist among the studied traits. Furthermore, this study revealed that the genetic diversityexisted irrespective to the geographical origin. This finding justifies the importance ofgermplasm characterization.Keywords: Finger Millet, Morphological Markers, Germplasm Accessions, GeneticDiversity, Crop Improvement

  5. Molecular diversity and phylogeny of Triticum-Aegilops species possessing D genome revealed by SSR and ISSR markers

    Directory of Open Access Journals (Sweden)

    Moradkhani Hoda

    2015-12-01

    Full Text Available The aim of this study is investigation the applicability of SSR and ISSR markers in evaluating the genetic relationships in twenty accessions of Aegilops and Triticum species with D genome in different ploidy levels. Totally, 119 bands and 46 alleles were detected using ten primers for ISSR and SSR markers, respectively. Polymorphism Information Content values for all primers ranged from 0.345 to 0.375 with an average of 0.367 for SSR, and varied from 0.29 to 0.44 with the average 0.37 for ISSR marker. Analysis of molecular variance (AMOVA revealed that 81% (ISSR and 84% (SSR of variability was partitioned among individuals within populations. Comparing the genetic diversity of Aegilops and Triticum accessions, based on genetic parameters, shows that genetic variation of Ae. crassa and Ae. tauschii species are higher than other species, especially in terms of Nei’s gene diversity. Cluster analysis, based on both markers, separated total accessions in three groups. However, classification based on SSR marker data was not conformed to classification according to ISSR marker data. Principal co-ordinate analysis (PCoA for SSR and ISSR data showed that, the first two components clarified 53.48% and 49.91% of the total variation, respectively. This analysis (PCoA, also, indicated consistent patterns of genetic relationships for ISSR data sets, however, the grouping of accessions was not completely accorded to their own geographical origins. Consequently, a high level of genetic diversity was revealed from the accessions sampled from different eco-geographical regions of Iran.

  6. Identification of novel genetic markers of breast cancer survival

    DEFF Research Database (Denmark)

    Guo, Qi; Schmidt, Marjanka K; Kraft, Peter

    2015-01-01

    BACKGROUND: Survival after a diagnosis of breast cancer varies considerably between patients, and some of this variation may be because of germline genetic variation. We aimed to identify genetic markers associated with breast cancer-specific survival. METHODS: We conducted a large meta-analysis ......BACKGROUND: Survival after a diagnosis of breast cancer varies considerably between patients, and some of this variation may be because of germline genetic variation. We aimed to identify genetic markers associated with breast cancer-specific survival. METHODS: We conducted a large meta......-analysis of studies in populations of European ancestry, including 37954 patients with 2900 deaths from breast cancer. Each study had been genotyped for between 200000 and 900000 single nucleotide polymorphisms (SNPs) across the genome; genotypes for nine million common variants were imputed using a common reference...... panel from the 1000 Genomes Project. We also carried out subtype-specific analyses based on 6881 estrogen receptor (ER)-negative patients (920 events) and 23059 ER-positive patients (1333 events). All statistical tests were two-sided. RESULTS: We identified one new locus (rs2059614 at 11q24...

  7. Genetic markers for western corn rootworm resistance to Bt toxin.

    Science.gov (United States)

    Flagel, Lex E; Swarup, Shilpa; Chen, Mao; Bauer, Christopher; Wanjugi, Humphrey; Carroll, Matthew; Hill, Patrick; Tuscan, Meghan; Bansal, Raman; Flannagan, Ronald; Clark, Thomas L; Michel, Andrew P; Head, Graham P; Goldman, Barry S

    2015-01-07

    Western corn rootworm (WCR) is a major maize (Zea mays L.) pest leading to annual economic losses of more than 1 billion dollars in the United States. Transgenic maize expressing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are widely used for the management of WCR. However, cultivation of Bt-expressing maize places intense selection pressure on pest populations to evolve resistance. Instances of resistance to Bt toxins have been reported in WCR. Developing genetic markers for resistance will help in characterizing the extent of existing issues, predicting where future field failures may occur, improving insect resistance management strategies, and in designing and sustainably implementing forthcoming WCR control products. Here, we discover and validate genetic markers in WCR that are associated with resistance to the Cry3Bb1 Bt toxin. A field-derived WCR population known to be resistant to the Cry3Bb1 Bt toxin was used to generate a genetic map and to identify a genomic region associated with Cry3Bb1 resistance. Our results indicate that resistance is inherited in a nearly recessive manner and associated with a single autosomal linkage group. Markers tightly linked with resistance were validated using WCR populations collected from Cry3Bb1 maize fields showing significant WCR damage from across the US Corn Belt. Two markers were found to be correlated with both diet (R2 = 0.14) and plant (R2 = 0.23) bioassays for resistance. These results will assist in assessing resistance risk for different WCR populations, and can be used to improve insect resistance management strategies. Copyright © 2015 Flagel et al.

  8. Genetic markers of insulin resistance in gestational diabetes

    Directory of Open Access Journals (Sweden)

    Tatiana Vasil'evna Sebko

    2009-12-01

    Full Text Available Aim. To search for genetic markers of insulin resistance and impaired insulin secretion in pregnant women with gestational diabetes mellitus (GDM. Materials and methods. A total of 100 healthy pregnant women and 185 patients with GDM were available for examination. 80 patients developedGDM during current pregnancy, in 105 it was diagnosed 4-19 years ago. 25 of the 105 GDM patients had a history of type 2 DM. The following parameterswere measured: beta-cell secretory activity (proinsulin, ITI, C-peptide, total cholesterol (CH, HDL and LDL CH, triglycerides, HbA1c,fasting glycemia. Molecular-genetic DNA testing using PCR included studies of KCNJ 11, TCF7L2, PPARG2, ADIPOQ, ADIPOR1, ADIPOR2gene polymorphism. These genes were chosen based on the published data associating them with disturbed insulin secretion and sensitivity in DM2patient. Results. Pregnant women with GDM and obesity showed elevated IRI and leptin levels compared with controls. This rise was accompanied bymarked insulin resistance in 75% of these patients. In 50% of the healthy women proinsulin and insulin secretion decreased. Obesity in pregnantpatients was associated with significant elevation of proinsulin, IRI, and C-peptyide levels and GDM with Lys/Lys genotype of polymorphous markerGlu23k of KCNJ11 gene, pro and ala allele of polymorphous marker A219T of ADIPOR2 gene. These associations suggest specific genetic featuresof GDM related to impaired insulin secretion and sensitivity. Conclusion. Studies of common genetic nature of GDM and DM2 permit to identify risk groups at the preclinical stage, plan prevention and treatmentof these disorders.

  9. Genetic variation and DNA fingerprinting of durian types in Malaysia using simple sequence repeat (SSR) markers.

    Science.gov (United States)

    Siew, Ging Yang; Ng, Wei Lun; Tan, Sheau Wei; Alitheen, Noorjahan Banu; Tan, Soon Guan; Yeap, Swee Keong

    2018-01-01

    Durian ( Durio zibethinus ) is one of the most popular tropical fruits in Asia. To date, 126 durian types have been registered with the Department of Agriculture in Malaysia based on phenotypic characteristics. Classification based on morphology is convenient, easy, and fast but it suffers from phenotypic plasticity as a direct result of environmental factors and age. To overcome the limitation of morphological classification, there is a need to carry out genetic characterization of the various durian types. Such data is important for the evaluation and management of durian genetic resources in producing countries. In this study, simple sequence repeat (SSR) markers were used to study the genetic variation in 27 durian types from the germplasm collection of Universiti Putra Malaysia. Based on DNA sequences deposited in Genbank, seven pairs of primers were successfully designed to amplify SSR regions in the durian DNA samples. High levels of variation among the 27 durian types were observed (expected heterozygosity, H E  = 0.35). The DNA fingerprinting power of SSR markers revealed by the combined probability of identity (PI) of all loci was 2.3×10 -3 . Unique DNA fingerprints were generated for 21 out of 27 durian types using five polymorphic SSR markers (the other two SSR markers were monomorphic). We further tested the utility of these markers by evaluating the clonal status of shared durian types from different germplasm collection sites, and found that some were not clones. The findings in this preliminary study not only shows the feasibility of using SSR markers for DNA fingerprinting of durian types, but also challenges the current classification of durian types, e.g., on whether the different types should be called "clones", "varieties", or "cultivars". Such matters have a direct impact on the regulation and management of durian genetic resources in the region.

  10. Genetic characterization of Toxoplasma gondii isolates from Portugal, Austria and Israel reveals higher genetic variability within the type II lineage.

    Science.gov (United States)

    Verma, S K; Ajzenberg, D; Rivera-Sanchez, A; Su, C; Dubey, J P

    2015-06-01

    This study compared genetic diversity of Toxoplasma gondii isolates from Portugal, Austria and Israel. For this, we genotyped 90 T. gondii isolates (16 from Portugal, 67 from Austria and 7 from Israel) using 10 nested PCR-restriction length polymorphism (RFLP) genetic markers and 15 microsatellite (MS) markers. By PCR-RFLP typing, 7 isolates from Portugal chickens were identified as type II (ToxoDB #1 or #3), 4 were type III (ToxoDB #2) and the remaining 4 isolates have unique genotype pattern were designated as ToxoDB #254. One mouse virulent isolate from a bovine fetus (Bos taurus) in Portugal was type I (ToxoDB #10) at all loci and designated as TgCowPr1. All 67 isolates from Austria and 7 from Israel were type II (ToxoDB #1 or #3). By MS typing, many additional genetic variations were revealed among the type II and type III isolates. Phylogenetic analysis showed that isolates from the same geographical locations tend to cluster together, and there is little overlapping of genotypes among different locations. This study demonstrated that the MS markers can provide higher discriminatory power to reveal association of genotypes with geographical locations. Future studies of the type II strains in Europe by these MS markers will be useful to reveal transmission patterns of the parasite.

  11. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  12. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    2011-01-01

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  13. Genetic diversity analysis of common beans based on molecular markers.

    Science.gov (United States)

    Gill-Langarica, Homar R; Muruaga-Martínez, José S; Vargas-Vázquez, M L Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

    2011-10-01

    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  14. The impact of mating systems and dispersal on fine-scale genetic structure at maternally, paternally and biparentally inherited markers.

    Science.gov (United States)

    Shaw, Robyn E; Banks, Sam C; Peakall, Rod

    2018-01-01

    For decades, studies have focused on how dispersal and mating systems influence genetic structure across populations or social groups. However, we still lack a thorough understanding of how these processes and their interaction shape spatial genetic patterns over a finer scale (tens-hundreds of metres). Using uniparentally inherited markers may help answer these questions, yet their potential has not been fully explored. Here, we use individual-level simulations to investigate the effects of dispersal and mating system on fine-scale genetic structure at autosomal, mitochondrial and Y chromosome markers. Using genetic spatial autocorrelation analysis, we found that dispersal was the major driver of fine-scale genetic structure across maternally, paternally and biparentally inherited markers. However, when dispersal was restricted (mean distance = 100 m), variation in mating behaviour created strong differences in the comparative level of structure detected at maternally and paternally inherited markers. Promiscuity reduced spatial genetic structure at Y chromosome loci (relative to monogamy), whereas structure increased under polygyny. In contrast, mitochondrial and autosomal markers were robust to differences in the specific mating system, although genetic structure increased across all markers when reproductive success was skewed towards fewer individuals. Comparing males and females at Y chromosome vs. mitochondrial markers, respectively, revealed that some mating systems can generate similar patterns to those expected under sex-biased dispersal. This demonstrates the need for caution when inferring ecological and behavioural processes from genetic results. Comparing patterns between the sexes, across a range of marker types, may help us tease apart the processes shaping fine-scale genetic structure. © 2017 John Wiley & Sons Ltd.

  15. Multilocus genotypic data reveal high genetic diversity and low population genetic structure of Iranian indigenous sheep

    International Nuclear Information System (INIS)

    Vahidi, S.M.F.; Faruque, M.O.; Falahati Anbaran, M.; Afraz, F.; Mousavi, S.M.; Boettcher, P.; Joost, S.; Han, J.L.; Colli, L.; Periasamy, K.; Negrini, R.; Ajmone-Marsan, P.

    2016-01-01

    Full text: Iranian livestock diversity is still largely unexplored, in spite of the interest in the populations historically reared in this country located near the Fertile Crescent, a major livestock domestication centre. In this investigation, the genetic diversity and differentiation of 10 Iranian indigenous fat-tailed sheep breeds were investigated using 18 microsatellite markers. Iranian breeds were found to host a high level of diversity. This conclusion is substantiated by the large number of alleles observed across loci (average 13.83, range 7–22) and by the high within-breed expected heterozygosity (average 0.75, range 0.72–0.76). Iranian sheep have a low level of genetic differentiation, as indicated by the analysis of molecular variance, which allocated a very small proportion (1.67%) of total variation to the between-population component, and by the small fixation index (FST = 0.02). Both Bayesian clustering and principal coordinates analysis revealed the absence of a detectable genetic structure. Also, no isolation by distance was observed through comparison of genetic and geographical distances. In spite of high within-breed variation, signatures of inbreeding were detected by the FIS indices, which were positive in all and statistically significant in three breeds. Possible factors explaining the patterns observed, such as considerable gene flow and inbreeding probably due to anthropogenic activities in the light of population management and conservation programmes are discussed. (author)

  16. Genetic diversity of different accessions of Thymus kotschyanus using RAPD marker

    Directory of Open Access Journals (Sweden)

    Ahmad Ismaili

    2014-11-01

    Full Text Available Analysis of genetic diversity is a major step for understanding evolution and breeding applications. Recent advances in the application of the polymerase chain reaction make it possible to score individuals at a large number of loci. The RAPD technique has been successfully used in a variety of taxonomic and genetic diversity studies. The genetic diversity of 18 accessions of Thymus kotschyanus collected from different districts of Iran has been reported in this study, using 30 random amplified polymorphic DNA primers. Multivariate statistical analyses including principal coordinate analysis (PCOA and cluster analysis were used to group the accessions. From 29 primers, 385 bands were scored corresponding to an average of 13.27 bands per primer with 298 bands showing polymorphism (77.40%. A dendrogram constructed based on the UPGMA clustering method revealed three major clusters. The obtained results from grouping 18 accessions of T. kotschyanus with two studied methods indicated that in the most cases the applied methods produced similar grouping results. This study revealed nearly rich genetic diversity among T. kotschyanus accessions from different regions of Iran. The results showed RAPD marker was a useful marker for genetic diversity studies of T. kotschyanus and it was indicative of geographica variations.

  17. Use of the IRAP marker to study genetic variability in Pseudocercospora fijiensis populations.

    Science.gov (United States)

    de Queiroz, Casley Borges; Santana, Mateus Ferreira; da Silva, Gilvan Ferreira; Mizubuti, Eduardo Seiti Gomide; de Araújo, Elza Fernandes; de Queiroz, Marisa Vieira

    2014-03-01

    Pseudocercospora fijiensis is the etiological agent of black Sigatoka, which is currently considered as one of the most destructive banana diseases in all locations where it occurs. It is estimated that a large portion of the P. fijiensis genome consists of transposable elements, which allows researchers to use transposon-based molecular markers in the analysis of genetic variability in populations of this pathogen. In this context, the inter-retrotransposon-amplified polymorphism (IRAP) was used to study the genetic variability in P. fijiensis populations from different hosts and different geographical origins in Brazil. A total of 22 loci were amplified and 77.3 % showed a polymorphism. Cluster analysis revealed two major groups in Brazil. The observed genetic diversity (H E) was 0.22, and through molecular analysis of variance, it was determined that the greatest genetic variability occurs within populations. The discriminant analysis of principal components revealed no structuring related to the geographical origin of culture of the host. The IRAP-based marker system is a suitable tool for the study of genetic variability in P. fijiensis.

  18. Genetic diversity analysis among collected purslane (Portulaca oleracea L.) accessions using ISSR markers.

    Science.gov (United States)

    Alam, M Amirul; Juraimi, Abdul Shukor; Rafii, Mohd Yusop; Hamid, Azizah Abdul; Arolu, Ibrahim Wasiu; Abdul Latif, M

    2015-01-01

    Genetic diversity and relationships among 45 collected purslane accessions were evaluated using ISSR markers. The 28 primers gave a total of 167 bands, among which 163 were polymorphic (97.6%). The genetic diversity as estimated by Shannon's information index was 0.513, revealing a quite high level of genetic diversity in the germplasm. The average number of observed allele, effective allele, expected heterozygosity, polymorphic information content (PIC) and Nei's index were 5.96, 1.59, 0.43, 0.35 and 0.35, respectively. The UPGMA dendrogram based on Nei's genetic distance grouped the whole germplasm into 7 distinct clusters. The analysis of molecular variance (AMOVA) revealed that 89% of total variation occurred within population, while 11% were found among populations. Based on the constructed dendrogram using ISSR markers those accessions that are far from each other by virtue of genetic origin and diversity index (like Ac1 and Ac42; Ac19 and Ac45; Ac9 and Ac23; Ac18 and A25; Ac24 and Ac18) are strongly recommended to select as parent for future breeding program to develop high yielding and stress tolerant purslane variety in contribution to global food security. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  19. Birth Characteristics and Childhood Leukemia Risk: Correlations With Genetic Markers.

    Science.gov (United States)

    Kennedy, Amy E; Kamdar, Kala Y; Lupo, Philip J; Okcu, Mehmet F; Scheurer, Michael E; Dorak, Mehmet T

    2015-07-01

    Birth characteristics such as birth order, birth weight, birth defects, and Down syndrome showed some of the first risk associations with childhood leukemia. Examinations of correlations between birth characteristics and leukemia risk markers have been limited to birth weight-related genetic polymorphisms. We integrated information on nongenetic and genetic markers by evaluating the relationship of birth characteristics, genetic markers for childhood acute lymphoblastic leukemia (ALL) susceptibility, and ALL risk together. The multiethnic study consisted of cases with childhood ALL (n=161) and healthy controls (n=261). Birth characteristic data were collected through questionnaires, and genotyping was achieved by TaqMan SNP Genotyping Assays. We observed risk associations for birth weight over 4000 g (odds ratios [OR]=1.93; 95% confidence interval [CI], 1.16-3.19), birth length (OR=1.18 per inch; 95% CI, 1.01-1.38), and with gestational age (OR=1.10 per week; 95% CI, 1.00-1.21). Only the HFE tag single-nucleotide polymorphism (SNP) rs9366637 showed an inverse correlation with a birth characteristic, gestational age, with a gene-dosage effect (P=0.005), and in interaction with a transferrin receptor rs3817672 genotype (Pinteraction=0.05). This correlation translated into a strong association for rs9366637 with preterm birth (OR=5.0; 95% CI, 1.19-20.9). Our study provides evidence for the involvement of prenatal events in the development of childhood ALL. The inverse correlation of rs9366637 with gestational age has implications on the design of HFE association studies in birth weight and childhood conditions using full-term newborns as controls.

  20. Genetic Markers Analyses and Bioinformatic Approaches to Distinguish Between Olive Tree (Olea europaea L.) Cultivars.

    Science.gov (United States)

    Ben Ayed, Rayda; Ben Hassen, Hanen; Ennouri, Karim; Rebai, Ahmed

    2016-12-01

    The genetic diversity of 22 olive tree cultivars (Olea europaea L.) sampled from different Mediterranean countries was assessed using 5 SNP markers (FAD2.1; FAD2.3; CALC; SOD and ANTHO3) located in four different genes. The genotyping analysis of the 22 cultivars with 5 SNP loci revealed 11 alleles (average 2.2 per allele). The dendrogram based on cultivar genotypes revealed three clusters consistent with the cultivars classification. Besides, the results obtained with the five SNPs were compared to those obtained with the SSR markers using bioinformatic analyses and by computing a cophenetic correlation coefficient, indicating the usefulness of the UPGMA method for clustering plant genotypes. Based on principal coordinate analysis using a similarity matrix, the first two coordinates, revealed 54.94 % of the total variance. This work provides a more comprehensive explanation of the diversity available in Tunisia olive cultivars, and an important contribution for olive breeding and olive oil authenticity.

  1. Analysis of the genetic diversity of physic nut, Jatropha curcas L. accessions using RAPD markers.

    Science.gov (United States)

    Rafii, M Y; Shabanimofrad, M; Puteri Edaroyati, M W; Latif, M A

    2012-06-01

    A sum of 48 accessions of physic nut, Jatropha curcas L. were analyzed to determine the genetic diversity and association between geographical origin using RAPD-PCR markers. Eight primers generated a total of 92 fragments with an average of 11.5 amplicons per primer. Polymorphism percentages of J. curcas accessions for Selangor, Kelantan, and Terengganu states were 80.4, 50.0, and 58.7%, respectively, with an average of 63.04%. Jaccard's genetic similarity co-efficient indicated the high level of genetic variation among the accessions which ranged between 0.06 and 0.81. According to UPGMA dendrogram, 48 J. curcas accessions were grouped into four major clusters at coefficient level 0.3 and accessions from same and near states or regions were found to be grouped together according to their geographical origin. Coefficient of genetic differentiation (G(st)) value of J. curcas revealed that it is an outcrossing species.

  2. Genetic analysis of 430 Chinese Cynodon dactylon accessions using sequence-related amplified polymorphism markers.

    Science.gov (United States)

    Huang, Chunqiong; Liu, Guodao; Bai, Changjun; Wang, Wenqiang

    2014-10-21

    Although Cynodon dactylon (C. dactylon) is widely distributed in China, information on its genetic diversity within the germplasm pool is limited. The objective of this study was to reveal the genetic variation and relationships of 430 C. dactylon accessions collected from 22 Chinese provinces using sequence-related amplified polymorphism (SRAP) markers. Fifteen primer pairs were used to amplify specific C. dactylon genomic sequences. A total of 481 SRAP fragments were generated, with fragment sizes ranging from 260-1800 base pairs (bp). Genetic similarity coefficients (GSC) among the 430 accessions averaged 0.72 and ranged from 0.53-0.96. Cluster analysis conducted by two methods, namely the unweighted pair-group method with arithmetic averages (UPGMA) and principle coordinate analysis (PCoA), separated the accessions into eight distinct groups. Our findings verify that Chinese C. dactylon germplasms have rich genetic diversity, which is an excellent basis for C. dactylon breeding for new cultivars.

  3. Genetic Diversity Among Historical Olive (Olea europaea L.) Genotypes from Southern Anatolia Based on SSR Markers.

    Science.gov (United States)

    Sakar, Ebru; Unver, Hulya; Ercisli, Sezai

    2016-12-01

    Olive (Olea europaea) is an ancient and important crop in both olive oil production and table use. It is important to identify the genetic diversity of olive genetic resources for cultivar development and evaluation of olive germplasm. In the study, 14 microsatellite markers (UDO4, UDO8, UDO9, UDO11, UDO12, UDO22, UDO24, UDO26, UDO28, DCA9, DCA11, DCA13, DCA15, and DCA18) were used to assess the genetic variation on 76 olive (Olea europaea L.) genotypes from Mardin province together with 6 well-known Turkish and 4 well-known foreign reference cultivars. All microsatellite markers showed polymorphism and the number of alleles varied between 9 and 22, with an average of 14.57. The most informative loci were DCA 11 (22 alleles) and DCA 9 (21 alleles). Dendrogram based on genetic distances was constructed for the 86 olive genotypes/cultivars, which revealed the existence of different clusters. The high genetic similarity was evident between Bakırkire2 and Zinnar5 (0.74) genotypes, while the most genetically divergent genotypes were Gürmeşe5 and Yedikardeşler2 (0.19). It was concluded that there was abundant SSR polymorphism in olive germplasm in southern Anatolia in Turkey and could be important for future breeding activities.

  4. Review: domestic animal forensic genetics - biological evidence, genetic markers, analytical approaches and challenges.

    Science.gov (United States)

    Kanthaswamy, S

    2015-10-01

    This review highlights the importance of domestic animal genetic evidence sources, genetic testing, markers and analytical approaches as well as the challenges this field is facing in view of the de facto 'gold standard' human DNA identification. Because of the genetic similarity between humans and domestic animals, genetic analysis of domestic animal hair, saliva, urine, blood and other biological material has generated vital investigative leads that have been admitted into a variety of court proceedings, including criminal and civil litigation. Information on validated short tandem repeat, single nucleotide polymorphism and mitochondrial DNA markers and public access to genetic databases for forensic DNA analysis is becoming readily available. Although the fundamental aspects of animal forensic genetic testing may be reliable and acceptable, animal forensic testing still lacks the standardized testing protocols that human genetic profiling requires, probably because of the absence of monetary support from government agencies and the difficulty in promoting cooperation among competing laboratories. Moreover, there is a lack in consensus about how to best present the results and expert opinion to comply with court standards and bear judicial scrutiny. This has been the single most persistent challenge ever since the earliest use of domestic animal forensic genetic testing in a criminal case in the mid-1990s. Crime laboratory accreditation ensures that genetic test results have the courts' confidence. Because accreditation requires significant commitments of effort, time and resources, the vast majority of animal forensic genetic laboratories are not accredited nor are their analysts certified forensic examiners. The relevance of domestic animal forensic genetics in the criminal justice system is undeniable. However, further improvements are needed in a wide range of supporting resources, including standardized quality assurance and control protocols for sample

  5. The efficiency of mitochondrial DNA markers in constructing genetic ...

    African Journals Online (AJOL)

    Administrator

    2011-05-30

    May 30, 2011 ... To date, only parts of mitochondrial DNA from cytochrome b, 12S rRNA, 16S rRNA and non-coding D- loop had been sequenced for different species of Oryx. Discrepancy in the genetic relationship among. Oryx species was previously revealed when combinations of these sequences were analyzed. In the.

  6. Molecular marker studies in riverine buffaloes, for characterization and diagnosis of genetic defects

    International Nuclear Information System (INIS)

    Yadav, B.R.

    2005-01-01

    The buffalo is probably the last livestock species to have been domesticated, with many genetic, physiological and behavioural traits not yet well understood. Molecular markers have been used for characterizing animals and breeds, diagnosing diseases and identifying anatomical and physiological anomalies. RFLP studies showed low heterozygosity, but genomic and oligonucleotide probes showed species-specific bands useful for identification of carcass or other unknown samples. Use of RAPD revealed band frequencies, band sharing frequencies, genetic distances, and genetic and identity indexes in different breeds. Bovine microsatellite primers indicate that 70.9% of bovine loci were conserved in buffalo. Allele numbers, sizes, frequencies, heterozygosity and polymorphism information content showed breed-specific patterns. Different marker types - genomic and oligonucleotide probes, RAPD and microsatellites - are useful in parent identification. Individual specific DNA fingerprinting techniques were applied with twin-born animal (XX/XY) chimerism, sex identification, anatomically defective and XO individuals. Molecular markers are a potential tool for geneticists and breeders to evaluate existing germplasm and to manipulate it to develop character-specific strains and to provide the basis for effective genetic conservation. (author)

  7. Genetic variability of watermelon accessions based on microsatellite markers.

    Science.gov (United States)

    de S Gama, R N C; Santos, C A F; de C S Dias, R

    2013-03-13

    We analyzed the genetic variability of 40 watermelon accessions collected from 8 regions of Northeastern Brazil using microsatellite markers, in order to suggest strategies of conservation and utilization of genetic variability in this species. These accessions are not commercial cultivars. They were sampled in areas of traditional farmers that usually keep their own seeds for future plantings year after year. An UPGMA dendrogram was generated from a distance matrix of the Jaccard coefficient, based on 41 alleles of 13 microsatellite loci. Analysis of molecular variance was made by partitioning between and within geographical regions. The similarity coefficient between accessions ranged from 37 to 96%; the dendrogram gave a co-phenetic value of 0.80. The among population genetic variability was high ( (^)ϕST = 0.319). Specific clusters of accessions sampled in 3 regions of Maranhão were observed while the other 5 regions did not presented specific clusters by regions. We conclude that watermelon genetic variability is not uniformly dispersed in the regions analyzed, indicating that geographical barriers or edaphoclimatic conditions have limited open mating. We suggest sampling a greater number of populations, so regional species diversity will be better represented and preserved in the germplasm bank.

  8. Genetic characterization of the Bardigiano horse using microsatellite markers

    Directory of Open Access Journals (Sweden)

    Claudio Lisa

    2010-01-01

    Full Text Available The study was aimed at investigating the genetic structure of the Bardigiano horse and its relationships with the Haflinger, Maremmano and Arabian breeds using 11 microsatellite markers. A total of 94 alleles were detected across the breeds, with a mean of 8.5 alleles per locus and a mean observed heterozygosity of 0.69. Compared to the other breeds, the Bardigiano horse showed quite a high genetic variability, as indicated by the mean number of alleles (7.0 vs 6.1÷7.6 and by the observed heterozygosity (0.72 vs 0.66÷0.71. Moreover, the genotype distributions in the Bardigiano groups of different sex and age were not significantly different. The overall FST value showed that the genetic differences among breeds accounted for 7.8% (P=0.001 of the total variation, and the pairwise FST values were all significant. The assignment test allocated between 96.8 and 98.9% of the individuals to the population they were collected from, with a mean probability of assignment of about 97% for all breeds, except for the Arabian, where it approached 100%. The results have highlighted that the Bardigiano breed has a high within and between breed variability, which is considerably more than could be expected by looking at its evolution history. This justifies the need for the development of additional breeding strategies to preserve the existing genetic variability.

  9. Implication of Gastric Cancer Molecular Genetic Markers in Surgical Practice.

    Science.gov (United States)

    Nemtsova, Marina V; Strelnikov, Vladimir V; Tanas, Alexander S; Bykov, Igor I; Zaletaev, Dmitry V; Rudenko, Viktoria V; Glukhov, Alexander I; Kchorobrich, Tatiana V; Li, Yi; Tarasov, Vadim V; Barreto, George E; Aliev, Gjumrakch

    2017-10-01

    We have investigated aberrant methylation of genes CDH1, RASSF1A, MLH1, N33, DAPK, expression of genes hTERT, MMP7, MMP9, BIRC5 (survivin), PTGS2, and activity of telomerase of 106 gastric tumor samples obtained intra-operatively and 53 gastric tumor samples from the same group of patients obtained endoscopically before surgery. Biopsy specimens obtained from 50 patients with chronic calculous cholecystitis were used as a control group. Together with tissue samples obtained from different sites remote to tumors, a total of 727 samples have been studied. The selected parameters comprise a system of molecular markers that can be used in both diagnostics of gastric cancer and in dynamic monitoring of patients after surgery. Special attention was paid to the use of molecular markers for the diagnostics of malignant process in the material obtained endoscopically since the efficacy of morphological diagnostics in biopsies is compromised by intratumoral heterogeneity, which may prevent reliable identification of tumor cells in the sampling. Our data indicated that certain molecular genetic events provided more sensitive yet specific markers of the tumor. We demonstrated that molecular profiles detected in preoperative biopsies were confirmed by the material obtained intra-operatively. The use of endoscopic material facilitates gastric tumors pre-operative diagnostics, improving early detection of gastric cancer and potential effective treatment strategies.

  10. Genetic and epigenetic markers in colorectal cancer screening: recent advances.

    Science.gov (United States)

    Singh, Manish Pratap; Rai, Sandhya; Suyal, Shradha; Singh, Sunil Kumar; Singh, Nand Kumar; Agarwal, Akash; Srivastava, Sameer

    2017-07-01

    Colorectal cancer (CRC) is a heterogenous disease which develops from benign intraepithelial lesions known as adenomas to malignant carcinomas. Acquired alterations in Wnt signaling, TGFβ, MAPK pathway genes and clonal propagation of altered cells are responsible for this transformation. Detection of adenomas or early stage cancer in asymptomatic patients and better prognostic and predictive markers is important for improving the clinical management of CRC. Area covered: In this review, the authors have evaluated the potential of genetic and epigenetic alterations as markers for early detection, prognosis and therapeutic predictive potential in the context of CRC. We have discussed molecular heterogeneity present in CRC and its correlation to prognosis and response to therapy. Expert commentary: Molecular marker based CRC screening methods still fail to gain trust of clinicians. Invasive screening methods, molecular heterogeneity, chemoresistance and low quality test samples are some key challenges which need to be addressed in the present context. New sequencing technologies and integrated omics data analysis of individual or population cohort results in GWAS. MPE studies following a GWAS could be future line of research to establish accurate correlations between CRC and its risk factors. This strategy would identify most reliable biomarkers for CRC screening and management.

  11. Microsatellite markers from tea green leafhopper Empoasca (Matsumurasca) onukii: a powerful tool for studying genetic structure in tea plantations.

    Science.gov (United States)

    Zhang, Li; Dietrich, Christopher H; Qin, Daozheng

    2016-07-29

    Tea green leafhopper is one of the most dominant pests in Chinese tea plantations. Recent evidence, including morphological and molecular data, revealed that tea green leafhopper in China is the same species as in Japan, Empoasca (Matsumurasca) onukii Matsuda. Previous morphological study that revealed variation in the structure of the male genitalia within and among populations of this species suggested that there may be significant population-level genetic variation. To provide powerful molecular markers to explore the population genetic diversity and population genetic structure of this pest in China, microsatellite markers were obtained by AFLP of sequences containing repeats (FIASCO). Eighteen polymorphic markers were evaluated for five populations of E. (M.) onukii, Two related empoascine leafhopper species were selected to test the transferability of the markers. Population genetic structure of E. (M.) onukii was detected using Structure analysis, principal coordinate analysis (PCoA) and variance analysis. The identified markers were polymorphic with total number of alleles ranging from 6 to 24 per locus, observed and expected heterozygosity ranged from 0.133 to 0.9 and 0.183 to 0.926, respectively, and the polymorphic information content value over all populations varied from 0.429 to 0.911. This is the first study to demonstrate that microsatellite markers provide valuable information for genetic structure of E. (M.) onukii in Chinese tea plantations. There is obvious genetic differentiation between the two populations in the Southwest tea area. These microsatellite markers will be the powerful tools for genetic studies of E. (M.) onukii and improve understanding of the microevolution of this species.

  12. Assessment of Genetic Diversity and Population Genetic Structure of Corylus mandshurica in China Using SSR Markers.

    Directory of Open Access Journals (Sweden)

    Jian-Wei Zong

    Full Text Available Corylus mandshurica, also known as pilose hazelnut, is an economically and ecologically important species in China. In this study, ten polymorphic simple sequence repeat (SSR markers were applied to evaluate the genetic diversity and population structure of 348 C. mandshurica individuals among 12 populations in China. The SSR markers expressed a relatively high level of genetic diversity (Na = 15.3, Ne = 5.6604, I = 1.8853, Ho = 0.6668, and He = 0.7777. According to the coefficient of genetic differentiation (Fst = 0.1215, genetic variation within the populations (87.85% were remarkably higher than among populations (12.15%. The average gene flow (Nm = 1.8080 significantly impacts the genetic structure of C. mandshurica populations. The relatively high gene flow (Nm = 1.8080 among wild C. mandshurica may be caused by wind-pollinated flowers, highly nutritious seeds and self-incompatible mating system. The UPGMA (unweighted pair group method of arithmetic averages dendrogram was divided into two main clusters. Moreover, the results of STRUCTURE analysis suggested that C. mandshurica populations fell into two main clusters. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among populations of C. mandshurica. Group I accessions were located in Northeast China, while Group II accessions were in North China. It is worth noting that a number of genetically similar populations were located in the same geographic region. The results further showed that there was obvious genetic differentiation among populations from Northeast China to North China. Results from the Mantel test showed a weak but still significant positive correlation between Nei's genetic distance and geographic distance (km among populations (r = 0.419, P = 0.005, suggesting that genetic differentiation in the 12 C. mandshurica populations might be related to geographic

  13. Assessment of Genetic Diversity and Population Genetic Structure of Corylus mandshurica in China Using SSR Markers.

    Science.gov (United States)

    Zong, Jian-Wei; Zhao, Tian-Tian; Ma, Qing-Hua; Liang, Li-Song; Wang, Gui-Xi

    2015-01-01

    Corylus mandshurica, also known as pilose hazelnut, is an economically and ecologically important species in China. In this study, ten polymorphic simple sequence repeat (SSR) markers were applied to evaluate the genetic diversity and population structure of 348 C. mandshurica individuals among 12 populations in China. The SSR markers expressed a relatively high level of genetic diversity (Na = 15.3, Ne = 5.6604, I = 1.8853, Ho = 0.6668, and He = 0.7777). According to the coefficient of genetic differentiation (Fst = 0.1215), genetic variation within the populations (87.85%) were remarkably higher than among populations (12.15%). The average gene flow (Nm = 1.8080) significantly impacts the genetic structure of C. mandshurica populations. The relatively high gene flow (Nm = 1.8080) among wild C. mandshurica may be caused by wind-pollinated flowers, highly nutritious seeds and self-incompatible mating system. The UPGMA (unweighted pair group method of arithmetic averages) dendrogram was divided into two main clusters. Moreover, the results of STRUCTURE analysis suggested that C. mandshurica populations fell into two main clusters. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among populations of C. mandshurica. Group I accessions were located in Northeast China, while Group II accessions were in North China. It is worth noting that a number of genetically similar populations were located in the same geographic region. The results further showed that there was obvious genetic differentiation among populations from Northeast China to North China. Results from the Mantel test showed a weak but still significant positive correlation between Nei's genetic distance and geographic distance (km) among populations (r = 0.419, P = 0.005), suggesting that genetic differentiation in the 12 C. mandshurica populations might be related to geographic distance. These

  14. Genetic Diversity Analysis of Tagetes Species Using PCR Based Molecular Markers

    International Nuclear Information System (INIS)

    Shahzadi, I.; Ahmad, R.; Waheed, U.; Shah, M. F.

    2016-01-01

    Tagetes is a genus of medicinally important wild and cultivated plants containing several chemical compounds. Lack of information on variation at molecular level present in Tagetes species is paramount to understand the genetic basis of medicinally important compounds. Current study aims at finding genetic variability in Tagetes species using random and specific molecular markers. Two primer systems including 25 RAPD and 3 STS (limonene gene) were used to ascertain genetic diversity of 15 Tagetes genotypes belonging to different species. We found that 20 of the 25 tested RAPD primers generated stable band patterns with 167 loci of amplification products. The proportion of polymorphic bands was 95.21 percent for RAPD primers. Three STS primers generated a total of 29 amplification products, of which 96.55 percent were polymorphic. Homology of genotypes was 53.18 percent and 51.11 percent with RAPD and STS primers respectively. The dendrogram obtained revealed that the range of overall genetic distances estimated was 22 percent to 100 percent through RAPD and 9 percent to 100 percent through STS markers. The findings help to establish that PCR-based assay such as RAPD and STS could be used successfully for estimation of genetic diversity of different genotypes of Tagetes that can be used for selection of parents for improvement of the species. (author)

  15. Intelligent DNA-based molecular diagnostics using linked genetic markers

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, D.K.; Perlin, M.W.; Hoffman, E.P.

    1994-12-31

    This paper describes a knowledge-based system for molecular diagnostics, and its application to fully automated diagnosis of X-linked genetic disorders. Molecular diagnostic information is used in clinical practice for determining genetic risks, such as carrier determination and prenatal diagnosis. Initially, blood samples are obtained from related individuals, and PCR amplification is performed. Linkage-based molecular diagnosis then entails three data analysis steps. First, for every individual, the alleles (i.e., DNA composition) are determined at specified chromosomal locations. Second, the flow of genetic material among the individuals is established. Third, the probability that a given individual is either a carrier of the disease or affected by the disease is determined. The current practice is to perform each of these three steps manually, which is costly, time consuming, labor-intensive, and error-prone. As such, the knowledge-intensive data analysis and interpretation supersede the actual experimentation effort as the major bottleneck in molecular diagnostics. By examining the human problem solving for the task, we have designed and implemented a prototype knowledge-based system capable of fully automating linkage-based molecular diagnostics in X-linked genetic disorders, including Duchenne Muscular Dystrophy (DMD). Our system uses knowledge-based interpretation of gel electrophoresis images to determine individual DNA marker labels, a constraint satisfaction search for consistent genetic flow among individuals, and a blackboard-style problem solver for risk assessment. We describe the system`s successful diagnosis of DMD carrier and affected individuals from raw clinical data.

  16. Understanding the genetic diversity and population structure of yam (Dioscorea alata L.) using microsatellite markers

    Science.gov (United States)

    Arnau, Gemma; MN, Sheela; Chair, Hana; Lebot, Vincent; K, Abraham; Perrier, Xavier; Petro, Dalila; Penet, Laurent; Pavis, Claudie

    2017-01-01

    Yams (Dioscorea sp.) are staple food crops for millions of people in tropical and subtropical regions. Dioscorea alata, also known as greater yam, is one of the major cultivated species and most widely distributed throughout the tropics. Despite its economic and cultural importance, very little is known about its origin, diversity and genetics. As a consequence, breeding efforts for resistance to its main disease, anthracnose, have been fairly limited. The objective of this study was to contribute to the understanding of D. alata genetic diversity by genotyping 384 accessions from different geographical regions (South Pacific, Asia, Africa and the Caribbean), using 24 microsatellite markers. Diversity structuration was assessed via Principal Coordinate Analysis, UPGMA analysis and the Bayesian approach implemented in STRUCTURE. Our results revealed the existence of a wide genetic diversity and a significant structuring associated with geographic origin, ploidy levels and morpho-agronomic characteristics. Seventeen major groups of genetically close cultivars have been identified, including eleven groups of diploid cultivars, four groups of triploids and two groups of tetraploids. STRUCTURE revealed the existence of six populations in the diploid genetic pool and a few admixed cultivars. These results will be very useful for rationalizing D. alata genetic resources in breeding programs across different regions and for improving germplasm conservation methods. PMID:28355293

  17. Assessment of genetic diversity in lettuce (Lactuca sativa L.) germplasm using RAPD markers.

    Science.gov (United States)

    Sharma, Shubhangi; Kumar, Pankaj; Gambhir, Geetika; Kumar, Ramesh; Srivastava, D K

    2018-01-01

    The importance of germplasm characterization is an important link between the conservation and utilization of plant genetic resources in various breeding programmes. In the present study, genetic variability and relationships among 25 Lactuca sativa L. genotypes were tested using random amplified polymorphic DNA (RAPD) molecular markers. A total of 45 random decamer oligonucleotide primers were examined to generate RAPD profiles, out of these reproducible patterns were obtained with 22 primers. A total of 87 amplicon were obtained, out of which all were polymorphic and 7 were unique bands. The level of polymorphism across genotypes was 100% as revealed by RAPD. Genetic similarity matrix, based on Jaccard's coefficients ranged from 13.7 to 84.10% indicating a wide genetic base. Dendrogram was constructed by unweighted pair group method with arithmetic averages method. RAPD technology could be useful for identification of different accessions as well as assessing the genetic similarity among different genotypes of lettuce. The study reveals the limited genetic base and the needs to diversify using new sources from the germplasm.

  18. Sinai and Norfa chicken diversity revealed by microsatellite markers ...

    African Journals Online (AJOL)

    The present study aimed to outline the population differentiation of Sinai and Norfa chicken, native to Egypt, with microsatellite markers. Twenty microsatellite loci recommended by the Food and Agriculture Organization (FAO) were used. Fifty eight birds were sampled (29 for each strain: 12 males + 17 females). Data were ...

  19. Genetic studies and a search for molecular markers that are linked ...

    African Journals Online (AJOL)

    SERVER

    Instead, linkage analysis resulted in the construction of a molecular marker linkage map consisting of 45 ..... This limits the application of this marker type, particularly in ... primer design when one uses RAPDs. .... Concepts of Genetics. Fourth.

  20. Genetic similarity of soybean genotypes revealed by seed protein

    Directory of Open Access Journals (Sweden)

    Nikolić Ana

    2005-01-01

    Full Text Available More accurate and complete descriptions of genotypes could help determinate future breeding strategies and facilitate introgression of new genotypes in current soybean genetic pool. The objective of this study was to characterize 20 soybean genotypes from the Maize Research Institute "Zemun Polje" collection, which have good agronomic performances, high yield, lodging and drought resistance, and low shuttering by seed proteins as biochemical markers. Seed proteins were isolated and separated by PAA electrophoresis. On the basis of the presence/absence of protein fractions coefficients of similarity were calculated as Dice and Roger and Tanamoto coefficient between pairs of genotypes. The similarity matrix was submitted for hierarchical cluster analysis of un weighted pair group using arithmetic average (UPGMA method and necessary computation were performed using NTSYS-pc program. Protein seed analysis confirmed low level of genetic diversity in soybean. The highest genetic similarity was between genotypes P9272 and Kador. According to obtained results, soybean genotypes were assigned in two larger groups and coefficients of similarity showed similar results. Because of the lack of pedigree data for analyzed genotypes, correspondence with marker data could not be determined. In plant with a narrow genetic base in their gene pool, such as soybean, protein markers may not be sufficient for characterization and study of genetic diversity.

  1. Genetic diversity of Colombian sheep by microsatellite markers

    Directory of Open Access Journals (Sweden)

    Ricardo Ocampo

    2016-03-01

    Full Text Available In Colombia the sheep production systems are managed under extensive conditions and mainly correspond to peasant production systems so their genetic management has led to increased homozygosity and hence productivity loss. The aim of this study was to determine the genetic diversity in 549 individuals corresponding to 13 sheep breeds in Colombia, using a panel of 11 microsatellite molecular markers. One hundred and fifty seven alleles were found (average of 14.27 alleles/locus, with a range of observed and expected heterozygosity from 0.44 to 0.84 and 0.67 to 0.86, respectively. Thirty-three of 143 Hardy Weinberg tests performed showed significant deviations (p < 0.05 due to a general lack of heterozygous individuals. The Fis ranged from 0.01 in Corriedale to 0.15 for the Persian Black Head breed, suggesting that there are presenting low to moderate levels of inbreeding. Overall, Colombian sheep showed high levels of genetic diversity which is very important for future selection and animal breeding programs.

  2. Comparison of the effectiveness of ISJ and SSR markers and detection of outlier loci in conservation genetics of Pulsatilla patens populations.

    Science.gov (United States)

    Bilska, Katarzyna; Szczecińska, Monika

    2016-01-01

    Research into the protection of rare and endangered plant species involves genetic analyses to determine their genetic variation and genetic structure. Various categories of genetic markers are used for this purpose. Microsatellites, also known as simple sequence repeats (SSR), are the most popular category of markers in population genetics research. In most cases, microsatellites account for a large part of the noncoding DNA and exert a neutral effect on the genome. Neutrality is a desirable feature in evaluations of genetic differences between populations, but it does not support analyses of a population's ability to adapt to a given environment or its evolutionary potential. Despite the numerous advantages of microsatellites, non-neutral markers may supply important information in conservation genetics research. They are used to evaluate adaptation to specific environmental conditions and a population's adaptive potential. The aim of this study was to compare the level of genetic variation in Pulsatilla patens populations revealed by neutral SSR markers and putatively adaptive ISJ markers (intron-exon splice junction). The experiment was conducted on 14 Polish populations of P. patens and three P. patens populations from the nearby region of Vitebsk in Belarus. A total of 345 individuals were examined. Analyses were performed with the use of eight SSR primers specific to P. patens and three ISJ primers. SSR markers revealed a higher level of genetic variation than ISJ markers ( H e = 0.609, H e = 0.145, respectively). An analysis of molecular variance (AMOVA) revealed that, the overall genetic diversity between the analyzed populations defined by parameters F ST and Φ PT for SSR (20%) and Φ PT for ISJ (21%) markers was similar. Analysis conducted in the Structure program divided analyzed populations into two groups (SSR loci) and three groups (ISJ markers). Mantel test revealed correlations between the geographic distance and genetic diversity of Polish

  3. Molecular markers reveal infestation dynamics of the bed bug (Hemiptera: Cimicidae) within apartment buildings.

    Science.gov (United States)

    Booth, Warren; Saenz, Virna L; Santangelo, Richard G; Wang, Changlu; Schal, Coby; Vargo, Edward L

    2012-05-01

    The bed bug, Cimex lectularius L. (Hemiptera: Cimicidae), has experienced an extraordinary global resurgence in recent years, the reasons for which remain poorly understood. Once considered a pest of lower socioeconomic classes, bed bugs are now found extensively across all residential settings, with widespread infestations established in multiapartment buildings. Within such buildings, understanding the population genetic structure and patterns of dispersal may prove critical to the development of effective control strategies. Here, we describe the development of 24 high-resolution microsatellite markers through next generation 454 pyrosequencing and their application to elucidate infestation dynamics within three multistory apartment buildings in the United States. Results reveal contrasting characteristics potentially representative of geographic or locale differences. In Raleigh, NC, an infestation within an apartment building seemed to have started from a single introduction followed by extensive spread. In Jersey City, NJ, two or more introductions followed by spread are evident in two buildings. Populations within single apartments in all buildings were characterized by high levels of relatedness and low levels of diversity, indicative of foundation from small, genetically depauperate propagules. Regardless of the number of unique introductions, genetic data indicate that spread within buildings is extensive, supporting both active and human-mediated dispersal within and between adjacent rooms or apartments spanning multiple floors.

  4. Genetic diversity and relationship of Indian cattle inferred from microsatellite and mitochondrial DNA markers.

    Science.gov (United States)

    Sharma, Rekha; Kishore, Amit; Mukesh, Manishi; Ahlawat, Sonika; Maitra, Avishek; Pandey, Ashwni Kumar; Tantia, Madhu Sudan

    2015-06-30

    Indian agriculture is an economic symbiosis of crop and livestock production with cattle as the foundation. Sadly, the population of indigenous cattle (Bos indicus) is declining (8.94% in last decade) and needs immediate scientific management. Genetic characterization is the first step in the development of proper management strategies for preserving genetic diversity and preventing undesirable loss of alleles. Thus, in this study we investigated genetic diversity and relationship among eleven Indian cattle breeds using 21 microsatellite markers and mitochondrial D loop sequence. The analysis of autosomal DNA was performed on 508 cattle which exhibited sufficient genetic diversity across all the breeds. Estimates of mean allele number and observed heterozygosity across all loci and population were 8.784 ± 0.25 and 0.653 ± 0.014, respectively. Differences among breeds accounted for 13.3% of total genetic variability. Despite high genetic diversity, significant inbreeding was also observed within eight populations. Genetic distances and cluster analysis showed a close relationship between breeds according to proximity in geographic distribution. The genetic distance, STRUCTURE and Principal Coordinate Analysis concluded that the Southern Indian Ongole cattle are the most distinct among the investigated cattle populations. Sequencing of hypervariable mitochondrial DNA region on a subset of 170 cattle revealed sixty haplotypes with haplotypic diversity of 0.90240, nucleotide diversity of 0.02688 and average number of nucleotide differences as 6.07407. Two major star clusters for haplotypes indicated population expansion for Indian cattle. Nuclear and mitochondrial genomes show a similar pattern of genetic variability and genetic differentiation. Various analyses concluded that the Southern breed 'Ongole' was distinct from breeds of Northern/ Central India. Overall these results provide basic information about genetic diversity and structure of Indian cattle which

  5. Insight into the genetic variability analysis and cultivar identification of tall fescue by using SSR markers.

    Science.gov (United States)

    Fu, Kaixin; Guo, Zhihui; Zhang, Xinquan; Fan, Yan; Wu, Wendan; Li, Daxu; Peng, Yan; Huang, Linkai; Sun, Ming; Bai, Shiqie; Ma, Xiao

    2016-01-01

    Genetic diversity of 19 forage-type and 2 turf-type cultivars of tall fescue ( Festuca arundinacea Schreb.) was revealed using SSR markers in an attempt to explore the genetic relationships among them, and examine potential use of SSR markers to identify cultivars by bulked samples. A total of 227 clear band was scored with 14 SSR primers and out of which 201 (88.6 %) were found polymorphic. The percentage of polymorphic bands (PPB) per primer pair varied from 62.5 to 100 % with an average of 86.9 %. The polymorphism information content (PIC) value ranged from 0.116 to 0.347 with an average of 0.257 and the highest PIC value (0.347) was noticed for primer NFA040 followed by NFA113 (0.346) whereas the highest discriminating power (D) of 1 was shown in NFA037 and LMgSSR02-01C. A Neighbor-joining dendrogram and the principal component analysis identified six major clusters and grouped the cultivars in agreement with their breeding histories. STRUCTURE analysis divided these cultivars into 3 sub-clades which correspond to distance based groupings. These findings indicates that SSR markers by bulking strategy are a useful tool to measure genetic diversity among tall fescue cultivars and could be used to supplement morphological data for plant variety protection.

  6. Analysis of genetic diversity and differentiation of seven stocks of Litopenaeus vannamei using microsatellite markers

    Science.gov (United States)

    Zhang, Kai; Wang, Weiji; Li, Weiya; Zhang, Quanqi; Kong, Jie

    2014-08-01

    Seven microsatellite markers were used to evaluate the genetic diversity and differentiation of seven stocks of Litopenaeus vannamei, which were introduced from Central and South America to China. All seven microsatellite loci were polymorphic, with polymorphism information content ( PIC) values ranging from 0.593 to 0.952. Totally 92 alleles were identified, and the number of alleles ( Na) and effective alleles ( Ne) varied between 4 and 21 and 2.7 and 14.6, respectively. Observed heterozygosity ( H o) values were lower than the expected heterozygosity ( H e) values (0.526-0.754), which indicated that the seven stocks possessed a rich genetic diversity. Thirty-seven tests were detected for reasonable significant deviation from Hardy-Weinberg equilibrium. F is values were positive at five loci, suggesting that there was a relatively high degree of inbreeding within stocks. Pairwise F st values ranged from 0.0225 to 0.151, and most of the stock pairs were moderately differentiated. Genetic distance and cluster analysis using UPGMA revealed a close genetic relationship of L. vannamei between Pop2 and Pop3. AMOVA indicated that the genetic variation among stocks (11.3%) was much lower than that within stocks (88.7%). Although the seven stocks had a certain degree of genetic differentiation and a rich genetic diversity, there is an increasing risk of decreased performance due to inbreeding in subsequent generations.

  7. Genetic diversity of cucumber estimated by morpho-physiological and EST-SSR markers.

    Science.gov (United States)

    Pandey, Sudhakar; Ansari, Waquar Akhter; Pandey, Maneesh; Singh, Bijendra

    2018-02-01

    In the present study, genetic variation among 40 cucumber genotypes was analyzed by means of morpho-physiological traits and 21 EST-SSR markers. Diversity was observed for morpho-physiological characters like days to 50% female flowering (37-46.9, number of fruits/plant (1.33-5.80), average fruit weight (41-333), vine length (36-364), relative water content (58.5-92.7), electrolyte leakage (15.9-37.1), photosynthetic efficiency (0.40-0.75) and chlorophyll concentration index (11.1-28.6). The pair wise Jaccard similarity coefficient ranged from 0.00 to 0.27 for quantitative traits and 0.24 to 0.96 for EST-SSR markers indicating that the accessions represent genetically diverse populations. With twenty-one EST-SSR markers, polymorphism revealed among 40 cucumber genotypes, number of alleles varied 2-6 with an average 3.05. Polymorphism information content varied from 0.002 to 0.989 (mean = 0.308). The number of effective allele (Ne), expected heterozygosity (He) and unbiased expected heterozygosity (uHe) of these EST-SSRs were 1.079-1.753, 0.074-0.428 and 0.074-0.434, respectively. Same 21 EST-SSR markers transferability checked in four other Cucumis species: snapmelon ( Cucumis melo var. momordica ), muskmelon ( Cucumis melo L.), pickling melon ( Cucumis melo var. conomon ) and wild muskmelon ( Cucumis melo var. agrestis ) with frequency of 61.9, 95.2, 76.2, and 76.2%, respectively. Present study provides useful information on variability, which can assist geneticists with desirable traits for cucumber germplasm utilization. Observed physiological parameters may assists in selection of genotype for abiotic stress tolerance also, EST-SSR markers may be useful for genetic studies in related species.

  8. Invasion and spreading of Cabomba caroliniana revealed by RAPD markers

    Science.gov (United States)

    Jin, Xiaofeng; Ding, Bingyang; Gao, Shuqin; Jiang, Weimei

    2005-12-01

    Applying randomly amplified polymorphic DNA (RAPD), the genetic variation of Cabomba caroliniana Gray (cabomba or fanwort), a new alien plant in China, was analyzed in this paper. Total 143 bands, including 47 polymorphic bands, were amplified from 23 primers in 20 samples. The sampling distance was large, but its genetic diversity was low. The main results were that: (1) Cabomba, which grew and dispersed mainly in fragment, was an abundant and dominant species in freshwater, and its main dispersal mechanism was vegetative reproduction (2) Cabomba was originally introduced into China as an aquarium submerged plant. Somehow, those discarded cabomba became invasive species in the areas of Hangzhou, Shanghai, and Meicheng, and other places. (3) Although the level of genetic diversity in cabomba was low, their rapid dispersion and propagation could seriously harm to local aquatic community. Therefore, specific measure should be used to control cabomba from uncontrolled spreading and damage to local vegetation communities.

  9. Genetic markers of comorbid depression and alcoholism in women.

    Science.gov (United States)

    Procopio, Daniela O; Saba, Laura M; Walter, Henriette; Lesch, Otto; Skala, Katrin; Schlaff, Golda; Vanderlinden, Lauren; Clapp, Peter; Hoffman, Paula L; Tabakoff, Boris

    2013-06-01

    Alcohol dependence (AD) is often accompanied by comorbid depression. Recent clinical evidence supports the benefit of subtype-specific pharmacotherapy in treating the population of alcohol-dependent subjects with comorbid major depressive disorder (MDD). However, in many alcohol-dependent subjects, depression is a reactive response to chronic alcohol use and withdrawal and abates with a period of abstinence. Genetic markers may distinguish alcohol-dependent subjects with MDD not tied chronologically and etiologically to their alcohol consumption. In this work, we investigated the association of adenylyl cyclase genes (ADCY1-9), which are implicated in both AD and mood disorders, with alcoholism and comorbid depression. Subjects from Vienna, Austria (n = 323) were genotyped, and single nucleotide polymorphisms (1,152) encompassing the genetic locations of the 9 ADCY genes were examined. The Vienna cohort contained alcohol-dependent subjects differentiated using the Lesch Alcoholism Typology. In this typology, subjects are segregated into 4 types. Type III alcoholism is distinguished by co-occurrence of symptoms of depression and by affecting predominantly females. We identified 4 haplotypes associated with the phenotype of Type III alcoholism in females. One haplotype was in a genomic area in proximity to ADCY2, but actually within a lincRNA gene, 2 haplotypes were within ADCY5, and 1 haplotype was within the coding region of ADCY8. Three of the 4 haplotypes contributed independently to Type III alcoholism and together generated a positive predictive value of 72% and a negative predictive value of 78% for distinguishing women with a Lesch Type III diagnosis versus women designated as Type I or II alcoholics. Polymorphisms in ADCY8 and ADCY5 and within a lincRNA are associated with an alcohol-dependent phenotype in females, which is distinguished by comorbid signs of depression. Each of these genetic locations can rationally contribute to the polygenic etiology of

  10. STUDY OF GENETIC VARIABILITY OF TRITICALE VARIETIES BY SSR MARKERS

    Directory of Open Access Journals (Sweden)

    Jana Ondroušková

    2013-04-01

    Full Text Available For the detection of genetic variability ten genotypes of winter triticale (×Triticosecale Wittmack, 2n = 6x = 42; BBAARR were selected: nine varieties and one breeding line with good bread-making quality KM 4-09 with the chromosome translocation 1R.1D 5+10-2. 25 microsatellites markers located in the genome A, B, D and R were chosen for analysis. Eighty-four alleles were detected with an average of 3.36 alleles per locus were detected. For each microsatellite statistical values were calculated diversity index (DI, probabilities of identity (PI and polymorphic information content (PIC were calculated and averages statistical values are: DI 0.55, PI 0.27 and 0.5 PIC. Overall dendrogram based on the UPGMA method (Jaccards similarity coefficient significantly distinguished two groups of genotypes and these groups were divided into sub-clusters. A set of 5 SSR markers (Xwms0752, Xbarc128, Xrems1237, Xwms0861 and Xbrac170 which have the calculated PIC value higher than 0.68 that are sufficient for the identification of the analyzed genotypes was described.

  11. Application of PCR – RFLP markers for identification of genetically delimited groups of the Calypogeia fissa complex (Jungermanniopsida, Calypogeiaceae

    Directory of Open Access Journals (Sweden)

    Buczkowska Katarzyna

    2015-06-01

    Full Text Available Currently, two subspecies are formally recognized within Calypogeia fissa: C. fissa subsp. fissa occurring in Europe and C. fissa subsp. neogea known from North America. Genetic studies have revealed a complex structure of this species. Within the European part of distribution, three genetically distinct groups PS, PB and G are distinguished. The combination of the SCAR marker Cal04 and PCR-RFLP markers with three restriction enzymes (SmaI, TaqI and TspGWI allowed the recognition of all groups within the C. fissa complex. The TaqI enzyme recognizing the restriction sites in the PCR product of SCAR marker Ca104 turned out to be the best marker

  12. Analysis of the genetic diversity of super sweet corn inbred lines using SSR and SSAP markers.

    Science.gov (United States)

    Ko, W R; Sa, K J; Roy, N S; Choi, H-J; Lee, J K

    2016-01-22

    In this study, we compared the efficiency of simple sequence repeat (SSR) and sequence specific amplified polymorphism (SSAP) markers for analyzing genetic diversity, genetic relationships, and population structure of 87 super sweet corn inbred lines from different origins. SSR markers showed higher average gene diversity and Shannon's information index than SSAP markers. To assess genetic relationships and characterize inbred lines using SSR and SSAP markers, genetic similarity (GS) matrices were constructed. The dendrogram using SSR marker data showed a complex pattern with nine clusters and a GS of 53.0%. For SSAP markers, three clusters were observed with a GS of 50.8%. Results of combined marker data showed six clusters with 53.5% GS. To analyze the genetic population structure of SSR and SSAP marker data, the 87 inbred lines were divided into groups I, II, and admixed based on the membership probability threshold of 0.8. Using combined marker data, the population structure was K = 3 and was divided into groups I, II, III, and admixed. This study represents a comparative analysis of SSR and SSAP marker data for the study of genetic diversity and genetic relationships in super sweet corn inbred lines. Our results would be useful for maize-breeding programs in Korea.

  13. [Application of Multiple Genetic Markers in a Case of Determination of Half Sibling].

    Science.gov (United States)

    Yang, Xue; Shi, Mei-sen; Yuan, Li; Lu, Di

    2016-02-01

    A case of half sibling was determined with multiple genetic markers, which could be potentially applied for determination of half sibling relationship from same father. Half sibling relationship was detected by 39 autosomal STR genetic markers, 23 Y-chromosomal STR genetic markers and 12 X -chromosomal STR genetic markers among ZHAO -1, ZHAO -2, ZHAO -3, ZHAO -4, and ZHAO-5. According to autosomal STR, Y-STR and X-STR genotyping results, it was determined that ZHAO-4 (alleged half sibling) was unrelated with ZHAO-1 and ZHAO-2; however, ZHAO-3 (alleged half sibling), ZHAO-5 (alleged half sibling) shared same genetic profile with ZHAO-1, and ZHAO-2 from same father. It is reliable to use multiple genetic markers and family gene reconstruction to determine half sibling relationship from same father, but it is difficult to determination by calculating half sibling index with ITO and discriminant functions.

  14. Estimation of the genetic diversity in tetraploid alfalfa populations based on RAPD markers for breeding purposes.

    Science.gov (United States)

    Nagl, Nevena; Taski-Ajdukovic, Ksenija; Barac, Goran; Baburski, Aleksandar; Seccareccia, Ivana; Milic, Dragan; Katic, Slobodan

    2011-01-01

    Alfalfa is an autotetraploid, allogamous and heterozygous forage legume, whose varieties are synthetic populations. Due to the complex nature of the species, information about genetic diversity of germplasm used in any alfalfa breeding program is most beneficial. The genetic diversity of five alfalfa varieties, involved in progeny tests at Institute of Field and Vegetable Crops, was characterized based on RAPD markers. A total of 60 primers were screened, out of which 17 were selected for the analysis of genetic diversity. A total of 156 polymorphic bands were generated, with 10.6 bands per primer. Number and percentage of polymorphic loci, effective number of alleles, expected heterozygosity and Shannon's information index were used to estimate genetic variation. Variety Zuzana had the highest values for all tested parameters, exhibiting the highest level of variation, whereas variety RSI 20 exhibited the lowest. Analysis of molecular variance (AMOVA) showed that 88.39% of the total genetic variation was attributed to intra-varietal variance. The cluster analysis for individual samples and varieties revealed differences in their population structures: variety Zuzana showed a very high level of genetic variation, Banat and Ghareh were divided in subpopulations, while Pecy and RSI 20 were relatively uniform. Ways of exploiting the investigated germplasm in the breeding programs are suggested in this paper, depending on their population structure and diversity. The RAPD analysis shows potential to be applied in analysis of parental populations in semi-hybrid alfalfa breeding program in both, development of new homogenous germplasm, and identification of promising, complementary germplasm.

  15. discriminating phenotypic markers reveal low genetic diversity in ...

    African Journals Online (AJOL)

    ACSS

    2015-11-25

    Nov 25, 2015 ... diet for many rural Africans, with limited food budgets (Chivinge, 1983; Chweya, 1997; Mishra et al., 2011). The crop has a number of health benefits, which ..... Mishra, S., Moharana, S. and Dash, M. 2011. Review on Cleome gynandra. International. Journal Pharmaceutical Chemistry 1:681-. 689. Onyango ...

  16. DNA markers reveal genetic structure and localized diversity of ...

    African Journals Online (AJOL)

    uqhdesma

    2016-10-12

    Oct 12, 2016 ... cluster, and landraces from this area also exhibited the greatest allelic diversity and the highest number of private alleles. ..... number of clusters (K) was varied from one to ten with a burn-in of ..... Review Front. Plant Sci. 5:484 ...

  17. SSR markers reveal genetic variation between improved cassava ...

    African Journals Online (AJOL)

    SERVER

    2007-12-03

    Dec 3, 2007 ... Numerical Taxonomy and Multivariate Analysis System software .... DNA extraction and polymerase chain reaction with SSR .... Primers that have PIC value falling between 0.50 to 0.70 ..... Woodman, Lee M, Porter K (2000).

  18. Analysis of genetic diversity of Tunisian pistachio (Pistacia vera L.) using sequence-related amplified polymorphism (SRAP) markers.

    Science.gov (United States)

    Guenni, K; Aouadi, M; Chatti, K; Salhi-Hannachi, A

    2016-10-17

    Sequence-related amplified polymorphism (SRAP) markers preferentially amplify open reading frames and were used to study the genetic diversity of Tunisian pistachio. In the present study, 43 Pistacia vera accessions were screened using seven SRAP primer pairs. A total of 78 markers was revealed (95.12%) with an average polymorphic information content of 0.850. The results suggest that there is strong genetic differentiation, which characterizes the local resources (G ST = 0.307). High gene flow (N m = 1.127) among groups was explained by the exchange of plant material among regions. Analysis of molecular variance revealed significant differences within groups and showed that 73.88% of the total genetic diversity occurred within groups, whereas the remaining 26.12% occurred among groups. Bayesian clustering and principal component analysis identified three pools, El Guettar, Pollenizers, and the rest of the pistachios belonging to the Gabès, Kasserine, and Sfax localities. Bayesian analysis revealed that El Guettar and male genotypes were assigned with more than 80% probability. The BayeScan method proposed that locus 59 (F13-R9) could be used in the development of sex-linked SCAR markers from SRAP since it is a commonly detected locus in comparisons involving the Pollenizers group. This is the first application of SRAP markers for the assessment of genetic diversity in Tunisian germplasm of P. vera. Such information will be useful to define conservation strategies and improvement programs for this species.

  19. Molecular markers for analyses of intraspecific genetic diversity in the Asian Tiger mosquito, Aedes albopictus.

    Science.gov (United States)

    Manni, Mosè; Gomulski, Ludvik M; Aketarawong, Nidchaya; Tait, Gabriella; Scolari, Francesca; Somboon, Pradya; Guglielmino, Carmela R; Malacrida, Anna R; Gasperi, Giuliano

    2015-03-28

    The dramatic worldwide expansion of Aedes albopictus (the Asian tiger mosquito) and its vector competence for numerous arboviruses represent a growing threat to public health security. Molecular markers are crucially needed for tracking the rapid spread of this mosquito and to obtain a deeper knowledge of population structure. This is a fundamental requirement for the development of strict monitoring protocols and for the improvement of sustainable control measures. Wild population samples from putative source areas and from newly colonised regions were analysed for variability at the ribosomal DNA internal transcribed spacer 2 (ITS2). Moreover, a new set of 23 microsatellite markers (SSR) was developed. Sixteen of these SSRs were tested in an ancestral (Thailand) and two adventive Italian populations. Seventy-six ITS2 sequences representing 52 unique haplotypes were identified, and AMOVA indicated that most of their variation occurred within individuals (74.36%), while only about 8% was detected among populations. Spatial analyses of molecular variance revealed that haplotype genetic similarity was not related to the geographic proximity of populations and the haplotype phylogeny clearly indicated that highly related sequences were distributed across populations from different geographical regions. The SSR markers displayed a high level of polymorphism both in the ancestral and in adventive populations, and F ST estimates suggested the absence of great differentiation. The ancestral nature of the Thai population was corroborated by its higher level of variability. The two types of genetic markers here implemented revealed the distribution of genetic diversity within and between populations and provide clues on the dispersion dynamics of this species. It appears that the diffusion of this mosquito does not conform to a progressive expansion from the native Asian source area, but to a relatively recent and chaotic propagule distribution mediated by human activities

  20. Genetic variability within Fusarium solani specie as revealed by PCR-fingerprinting based on pcr markers Variabilidade genética em espécies de Fusarium solani revelada pela técnica de impressão genética baseada em marcadores PCR

    Directory of Open Access Journals (Sweden)

    Bereneuza Tavares Ramos Valente Brasileiro

    2004-09-01

    Full Text Available Fusarium solani fungus (teleomorph Haematonectria haematococca is of relevance for agriculture, producing a disease that causes significant losses for many cultivars. Moreover, F. solani is an opportunistic pathogen to animals and humans. The complexity associated to its correct identification by traditional methods justifies the efforts of using molecular markers for isolates characterization. In this work, three PCR-based methods (one PCR-ribotyping and two PCR-fingerprinting were used to investigate the molecular variability of eighteen F. solani isolates from four Brazilian States, collected from different substrates. Genetic analysis revealed the intraspecific variability within the F. solani isolates, without any correlation to their geographical origin and substrate. Its polymorphism was observed even in the very conserved sequence of rDNA locus, and the SPAR marker (GTG5 showed the highest polymorphism. Together, those results may contribute to understand the relation between fungal genetic variability and cultivars resistance phenotypes to fungal-caused diseases, helping plant-breeding programs.O fungo Fusarium solani (teleomorfo Haematonectria haematococca apresenta uma expressiva importância na agricultura por ser considerado patógeno para várias culturas de interesse econômico causando doença conhecida por podridão das raízes, além de ser patógeno aos animais e ao homem, provocando nestes últimos, micoses superficiais e sistêmicas. A complexidade associada a sua identificação correta através de métodos tradicionais justifica os esforços de usar marcadores moleculares para caracterização dos isolados. Neste trabalho, três métodos baseados na tecnologia da PCR (um por ribotipagem por PCR e dois por impressão genética por PCR foram utilizados para investigar a variabilidade molecular de dezoito isolados de F. solani de quatro Estados brasileiros, coletados de diferentes substratos. A análise genética revelou a

  1. Genetic molecular analysis of Coffea arabica (Rubiaceae hybrids using SRAP markers

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Mishra

    2011-06-01

    Full Text Available In Coffea arabica (arabica coffee, the phenotypic as well as genetic variability has been found low because of the narrow genetic basis and self fertile nature of the species. Because of high similarity in phenotypic appearance among the majority of arabica collections, selection of parental lines for inter-varietals hybridization and identification of resultant hybrids at an early stage of plant growth is difficult. DNA markers are known to be reliable in identifying closely related cultivars and hybrids. Sequence Related Amplified Polymorphism (SRAP is a new molecular marker technology developed based on PCR. In this paper, sixty arabica-hybrid progenies belonging to six crosses were analyzed using 31 highly polymorphic SRAP markers. The analysis revealed seven types of SRAP marker profiles which are useful in discriminating the parents and hybrids. The number of bands amplified per primer pair ranges from 6.13 to 8.58 with average number of seven bands. Among six hybrid combinations, percentage of bands shared between hybrids and their parents ranged from 66.29% to 85.71% with polymorphic bands varied from 27.64% to 60.0%. Percentage of hybrid specific fragments obtained in various hybrid combinations ranged from 0.71% to 10.86% and ascribed to the consequence of meiotic recombination. Based on the similarity index calculation, it was observed that F1 hybrids share maximum number of bands with the female parent compared to male parent. The results obtained in the present study revealed the effectiveness of SRAP technique in cultivar identification and hybrid analysis in this coffee species. Rev. Biol. Trop. 59 (2: 607-617. Epub 2011 June 01.

  2. Development of Pineapple Microsatellite Markers and Germplasm Genetic Diversity Analysis

    Directory of Open Access Journals (Sweden)

    Suping Feng

    2013-01-01

    Full Text Available Two methods were used to develop pineapple microsatellite markers. Genomic library-based SSR development: using selectively amplified microsatellite assay, 86 sequences were generated from pineapple genomic library. 91 (96.8% of the 94 Simple Sequence Repeat (SSR loci were dinucleotide repeats (39 AC/GT repeats and 52 GA/TC repeats, accounting for 42.9% and 57.1%, resp., and the other three were mononucleotide repeats. Thirty-six pairs of SSR primers were designed; 24 of them generated clear bands of expected sizes, and 13 of them showed polymorphism. EST-based SSR development: 5659 pineapple EST sequences obtained from NCBI were analyzed; among 1397 nonredundant EST sequences, 843 were found containing 1110 SSR loci (217 of them contained more than one SSR locus. Frequency of SSRs in pineapple EST sequences is 1SSR/3.73 kb, and 44 types were found. Mononucleotide, dinucleotide, and trinucleotide repeats dominate, accounting for 95.6% in total. AG/CT and AGC/GCT were the dominant type of dinucleotide and trinucleotide repeats, accounting for 83.5% and 24.1%, respectively. Thirty pairs of primers were designed for each of randomly selected 30 sequences; 26 of them generated clear and reproducible bands, and 22 of them showed polymorphism. Eighteen pairs of primers obtained by the one or the other of the two methods above that showed polymorphism were selected to carry out germplasm genetic diversity analysis for 48 breeds of pineapple; similarity coefficients of these breeds were between 0.59 and 1.00, and they can be divided into four groups accordingly. Amplification products of five SSR markers were extracted and sequenced, corresponding repeat loci were found and locus mutations are mainly in copy number of repeats and base mutations in the flanking region.

  3. Development of Pineapple Microsatellite Markers and Germplasm Genetic Diversity Analysis

    Science.gov (United States)

    Tong, Helin; Chen, You; Wang, Jingyi; Chen, Yeyuan; Sun, Guangming; He, Junhu; Wu, Yaoting

    2013-01-01

    Two methods were used to develop pineapple microsatellite markers. Genomic library-based SSR development: using selectively amplified microsatellite assay, 86 sequences were generated from pineapple genomic library. 91 (96.8%) of the 94 Simple Sequence Repeat (SSR) loci were dinucleotide repeats (39 AC/GT repeats and 52 GA/TC repeats, accounting for 42.9% and 57.1%, resp.), and the other three were mononucleotide repeats. Thirty-six pairs of SSR primers were designed; 24 of them generated clear bands of expected sizes, and 13 of them showed polymorphism. EST-based SSR development: 5659 pineapple EST sequences obtained from NCBI were analyzed; among 1397 nonredundant EST sequences, 843 were found containing 1110 SSR loci (217 of them contained more than one SSR locus). Frequency of SSRs in pineapple EST sequences is 1SSR/3.73 kb, and 44 types were found. Mononucleotide, dinucleotide, and trinucleotide repeats dominate, accounting for 95.6% in total. AG/CT and AGC/GCT were the dominant type of dinucleotide and trinucleotide repeats, accounting for 83.5% and 24.1%, respectively. Thirty pairs of primers were designed for each of randomly selected 30 sequences; 26 of them generated clear and reproducible bands, and 22 of them showed polymorphism. Eighteen pairs of primers obtained by the one or the other of the two methods above that showed polymorphism were selected to carry out germplasm genetic diversity analysis for 48 breeds of pineapple; similarity coefficients of these breeds were between 0.59 and 1.00, and they can be divided into four groups accordingly. Amplification products of five SSR markers were extracted and sequenced, corresponding repeat loci were found and locus mutations are mainly in copy number of repeats and base mutations in the flanking region. PMID:24024187

  4. Genetic variation of Anastrepha suspensa (Diptera: Tephritidae) in Florida and the Caribbean using microsatellite DNA markers.

    Science.gov (United States)

    Boykin, Laura M; Shatters, Robert G; Hall, David G; Dean, David; Beerli, Peter

    2010-12-01

    Anastrepha suspensa (Loew) (Diptera: Tephritidae), the Caribbean fruit fly, is indigenous to Florida and the Greater Antilles where it causes economic losses in fruit crops, including citrus. Because of the geographic separation of many of its native locations and anecdotal descriptions of regional differences in host preferences, there have been questions about the population structure of A. suspensa. Seven DNA microsatellite markers were used to characterize the population genetic structure of A. suspensa, in Florida and the Caribbean from a variety of hosts, including citrus. We genotyped 729 A. suspensa individuals from Florida, Puerto Rico, Cayman Island, Dominican Republic, and Jamaica. The investigated seven loci displayed from 5 to 19 alleles, with expected heterozygosities ranging from 0.05 to 0.83. There were five unique alleles in Florida and three unique alleles in the Caribbean samples; however, no microsatellite alleles were specific to a single host plant. Genetic diversity was analyzed using F(ST) and analysis of molecular variance and revealed low genetic diversity between Florida and Caribbean samples and also between citrus and noncitrus samples. Analyses using migrate revealed there is continuous gene flow between sampling sites in Florida and the Caribbean and among different hosts. These results support previous comparisons based on the mitochondrial cytochrome oxidase I locus indicating there is no genetic differentiation among locations in Florida and the Caribbean and that there is no separation into host races.

  5. Genetic African Ancestry and Markers of Mineral Metabolism in CKD.

    Science.gov (United States)

    Gutiérrez, Orlando M; Parsa, Afshin; Isakova, Tamara; Scialla, Julia J; Chen, Jing; Flack, John M; Nessel, Lisa C; Gupta, Jayanta; Bellovich, Keith A; Steigerwalt, Susan; Sondheimer, James H; Wright, Jackson T; Feldman, Harold I; Kusek, John W; Lash, James P; Wolf, Myles

    2016-04-07

    Disorders of mineral metabolism are more common in African Americans with CKD than in European Americans with CKD. Previous studies have focused on the differences in mineral metabolism by self-reported race, making it difficult to delineate the importance of environmental compared with biologic factors. In a cross-sectional analysis of 3013 participants of the Chronic Renal Insufficiency Cohort study with complete data, we compared markers of mineral metabolism (phosphorus, calcium, alkaline phosphatase, parathyroid hormone, fibroblast growth factor 23, and urine calcium and phosphorus excretion) in European Americans versus African Americans and separately, across quartiles of genetic African ancestry in African Americans (n=1490). Compared with European Americans, African Americans had higher blood concentrations of phosphorus, alkaline phosphatase, fibroblast growth factor 23, and parathyroid hormone, lower 24-hour urinary excretion of calcium and phosphorus, and lower urinary fractional excretion of calcium and phosphorus at baseline (PAfrican Americans, a higher percentage of African ancestry was associated with lower 24-hour urinary excretion of phosphorus (PtrendAfrican ancestry was significantly associated with lower 24-hour urinary phosphorus excretion (each 10% higher African ancestry was associated with 39.6 mg lower 24-hour urinary phosphorus, PAfrican ancestry was associated with an absolute 1.1% lower fractional excretion of phosphorus, P=0.01). A higher percentage of African ancestry was independently associated with lower 24-hour urinary phosphorus excretion and lower fractional excretion of phosphorus among African Americans with CKD. These findings suggest that genetic variability might contribute to racial differences in urinary phosphorus excretion in CKD. Copyright © 2016 by the American Society of Nephrology.

  6. Assessment of genome origins and genetic diversity in the genus Eleusine with DNA markers.

    Science.gov (United States)

    Salimath, S S; de Oliveira, A C; Godwin, I D; Bennetzen, J L

    1995-08-01

    Finger millet (Eleusine coracana), an allotetraploid cereal, is widely cultivated in the arid and semiarid regions of the world. Three DNA marker techniques, restriction fragment length polymorphism (RFLP), randomly amplified polymorphic DNA (RAPD), and inter simple sequence repeat amplification (ISSR), were employed to analyze 22 accessions belonging to 5 species of Eleusine. An 8 probe--3 enzyme RFLP combination, 18 RAPD primers, and 6 ISSR primers, respectively, revealed 14, 10, and 26% polymorphism in 17 accessions of E. coracana from Africa and Asia. These results indicated a very low level of DNA sequence variability in the finger millets but did allow each line to be distinguished. The different Eleusine species could be easily identified by DNA marker technology and the 16% intraspecific polymorphism exhibited by the two analyzed accessions of E. floccifolia suggested a much higher level of diversity in this species than in E. coracana. Between species, E. coracana and E. indica shared the most markers, while E. indica and E. tristachya shared a considerable number of markers, indicating that these three species form a close genetic assemblage within the Eleusine. Eleusine floccifolia and E. compressa were found to be the most divergent among the species examined. Comparison of RFLP, RAPD, and ISSR technologies, in terms of the quantity and quality of data output, indicated that ISSRs are particularly promising for the analysis of plant genome diversity.

  7. Genetic Diversity Assessment of Portuguese Cultivated Vicia faba L. through IRAP Markers

    Directory of Open Access Journals (Sweden)

    Diana Tomás

    2016-03-01

    Full Text Available Faba bean have been grown in Portugal for a long time and locally adapted populations are still maintained on farm. The genetic diversity of four Portuguese faba bean populations that are still cultivated in some regions of the country was evaluated using the Inter Retrotransposons Amplified Polymorphism (IRAP technique. It was shown that molecular markers based on retrotransposons previously identified in other species can be efficiently used in the genetic variability assessment of Vicia faba. The IRAP experiment targeting Athila yielded the most informative banding patterns. Cluster analysis using the neighbor-joining algorithm generated a dendrogram that clearly shows the distribution pattern of V. faba samples. The four equina accessions are separated from each other and form two distinct clades while the two major faba bean accessions are not unequivocally separated by the IRAP. Fluorescent In Situ Hybridization (FISH analysis of sequences amplified by IRAP Athila revealed a wide distribution throughout V. faba chromosomes, confirming the whole-genome coverage of this molecular marker. Morphological characteristics were also assessed through cluster analysis of seed characters using the unweighted pair group method arithmetic average (UPGMA and principal component analysis (PCA, showing a clear discrimination between faba bean major and equina groups. It was also found that the seed character most relevant to distinguish accessions was 100 seed weight. Seed morphological traits and IRAP evaluation give similar results supporting the potential of IRAP analysis for genetic diversity studies.

  8. Genetic structure and inter-generic relationship of closed colony of laboratory rodents based on RAPD markers.

    Science.gov (United States)

    Kumar, Mahadeo; Kumar, Sharad

    2014-11-01

    Molecular genetic analysis was performed using random amplified polymorphic DNA (RAPD) on three commonly used laboratory bred rodent genera viz. mouse (Mus musculus), rat (Rattus norvegicus) and guinea pig (Cavia porcellus) as sampled from the breeding colony maintained at the Animal Facility, CSIR-Indian Institute of Toxicology Research, Lucknow. In this study, 60 samples, 20 from each genus, were analyzed for evaluation of genetic structure of rodent stocks based on polymorphic bands using RAPD markers. Thirty five random primers were assessed for RAPD analysis. Out of 35, only 20 primers generated a total of 56.88% polymorphic bands among mice, rats and guinea pigs. The results revealed significantly variant and distinct fingerprint patterns specific to each of the genus. Within-genera analysis, the highest (89.0%) amount of genetic homogeneity was observed in mice samples and the least (79.3%) were observed in guinea pig samples. The amount of genetic homogeneity was observed very high within all genera. The average genetic diversity index observed was low (0.045) for mice and high (0.094) for guinea pigs. The inter-generic distances were maximum (0.8775) between mice and guinea pigs; and the minimum (0.5143) between rats and mice. The study proved that the RAPD markers are useful as genetic markers for assessment of genetic structure as well as inter-generic variability assessments.

  9. Carotta: Revealing Hidden Confounder Markers in Metabolic Breath Profiles

    Directory of Open Access Journals (Sweden)

    Anne-Christin Hauschild

    2015-06-01

    Full Text Available Computational breath analysis is a growing research area aiming at identifying volatile organic compounds (VOCs in human breath to assist medical diagnostics of the next generation. While inexpensive and non-invasive bioanalytical technologies for metabolite detection in exhaled air and bacterial/fungal vapor exist and the first studies on the power of supervised machine learning methods for profiling of the resulting data were conducted, we lack methods to extract hidden data features emerging from confounding factors. Here, we present Carotta, a new cluster analysis framework dedicated to uncovering such hidden substructures by sophisticated unsupervised statistical learning methods. We study the power of transitivity clustering and hierarchical clustering to identify groups of VOCs with similar expression behavior over most patient breath samples and/or groups of patients with a similar VOC intensity pattern. This enables the discovery of dependencies between metabolites. On the one hand, this allows us to eliminate the effect of potential confounding factors hindering disease classification, such as smoking. On the other hand, we may also identify VOCs associated with disease subtypes or concomitant diseases. Carotta is an open source software with an intuitive graphical user interface promoting data handling, analysis and visualization. The back-end is designed to be modular, allowing for easy extensions with plugins in the future, such as new clustering methods and statistics. It does not require much prior knowledge or technical skills to operate. We demonstrate its power and applicability by means of one artificial dataset. We also apply Carotta exemplarily to a real-world example dataset on chronic obstructive pulmonary disease (COPD. While the artificial data are utilized as a proof of concept, we will demonstrate how Carotta finds candidate markers in our real dataset associated with confounders rather than the primary disease (COPD

  10. Genetic Diversity of Hibiscus tiliaceus (Malvaceae) in China Assessed using AFLP Markers

    Science.gov (United States)

    TANG, TIAN; ZHONG, YANG; JIAN, SHUGUANG; SHI, SUHUA

    2003-01-01

    Amplified fragment length polymorphism (AFLP) markers were used to investigate the genetic variations within and among nine natural populations of Hibiscus tiliaceus in China. DNA from 145 individuals was amplified with eight primer pairs. No polymorphisms were found among the 20 samples of a marginal population of recent origin probably due to a founder effect. Across the other 125 individuals, 501 of 566 bands (88·5 %) were polymorphic, and 125 unique AFLP phenotypes were observed. Estimates of genetic diversity agreed with life history traits of H. tiliaceus and geographical distribution. AMOVA analysis revealed that most genetic diversity resided within populations (84·8 %), which corresponded to results reported for outcrossing plants. The indirect estimate of gene flow based on ϕST was moderate (Nm = 1·395). Long-distance dispersal of floating seeds and local environments may play an important role in shaping the genetic diversity of the population and the genetic structure of this species. PMID:12930729

  11. Estimation of genetic structure of a Mycosphaerella musicola population using inter-simple sequence repeat markers.

    Science.gov (United States)

    Peixouto, Y S; Dórea Bragança, C A; Andrade, W B; Ferreira, C F; Haddad, F; Oliveira, S A S; Darosci Brito, F S; Miller, R N G; Amorim, E P

    2015-07-17

    Among the diseases affecting banana (Musa sp), yellow Sigatoka, caused by the fungal pathogen Mycosphaerella musicola Leach, is considered one of the most important in Brazil, causing losses throughout the year. Understanding the genetic structure of pathogen populations will provide insight into the life history of pathogens, including the evolutionary processes occurring in agrosystems. Tools for estimating the possible emergence of pathogen variants with altered pathogenicity, virulence, or aggressiveness, as well as resistance to systemic fungicides, can also be developed from such data. The objective of this study was to analyze the genetic diversity and population genetics of M. musicola in the main banana-producing regions in Brazil. A total of 83 isolates collected from different banana cultivars in the Brazilian states of Bahia, Rio Grande do Norte, and Minas Gerais were evaluated using inter-simple sequence repeat markers. High variability was detected between the isolates, and 85.5% of the haplotypes were singletons in the populations. The highest source of genetic diversity (97.22%) was attributed to variations within populations. Bayesian cluster analysis revealed the presence of 2 probable ancestral groups, however, showed no relationship to population structure in terms of collection site, state of origin, or cultivar. Similarly, we detected noevidence of genetic recombination between individuals within different states, indicating that asexual cycles play a major role in M. musicola reproduction and that long-distance dispersal of the pathogen is the main factor contributing to the lack of population structure in the fungus.

  12. Population genetic structure of rare and endangered plants using molecular markers

    Science.gov (United States)

    Raji, Jennifer; Atkinson, Carter T.

    2013-01-01

    This study was initiated to assess the levels of genetic diversity and differentiation in the remaining populations of Phyllostegia stachyoides and Melicope zahlbruckneri in Hawai`i Volcanoes National Park and determine the extent of gene flow to identify genetically distinct individuals or groups for conservation purposes. Thirty-six Amplified Fragment Length Polymorphic (AFLP) primer combinations generated a total of 3,242 polymorphic deoxyribonucleic acid (DNA) fragments in the P. stachyoides population with a percentage of polymorphic bands (PPB) ranging from 39.3 to 65.7% and 2,780 for the M. zahlbruckneri population with a PPB of 18.8 to 64.6%. Population differentiation (Fst) of AFLP loci between subpopulations of P. stachyoides was low (0.043) across populations. Analysis of molecular variance of P. stachyoides showed that 4% of the observed genetic differentiation occurred between populations in different kīpuka and 96% when individuals were pooled from all kīpuka. Moderate genetic diversity was detected within the M. zahlbruckneri population. Bayesian and multivariate analyses both classified the P. stachyoides and M. zahlbruckneri populations into genetic groups with considerable sub-structuring detected in the P. stachyoides population. The proportion of genetic differentiation among populations explained by geographical distance was estimated by Mantel tests. No spatial correlation was found between genetic and geographic distances in both populations. Finally, a moderate but significant gene flow that could be attributed to insect or bird-mediated dispersal of pollen across the different kīpuka was observed. The results of this study highlight the utility of a multi-allelic DNA-based marker in screening a large number of polymorphic loci in small and closely related endangered populations and revealed the presence of genetically unique groups of individuals in both M. zahlbruckneri and P. stachyoides populations. Based on these findings

  13. Genetic variation, population structure and linkage disequilibrium in Switchgrass with ISSR, SCoT and EST-SSR markers.

    Science.gov (United States)

    Zhang, Yu; Yan, Haidong; Jiang, Xiaomei; Wang, Xiaoli; Huang, Linkai; Xu, Bin; Zhang, Xinquan; Zhang, Lexin

    2016-01-01

    To evaluate genetic variation, population structure, and the extent of linkage disequilibrium (LD), 134 switchgrass ( Panicum virgatum L.) samples were analyzed with 51 markers, including 16 ISSRs, 20 SCoTs, and 15 EST-SSRs. In this study, a high level of genetic variation was observed in the switchgrass samples and they had an average Nei's gene diversity index (H) of 0.311. A total of 793 bands were obtained, of which 708 (89.28 %) were polymorphic. Using a parameter marker index (MI), the efficiency of the three types of markers (ISSR, SCoT, and EST-SSR) in the study were compared and we found that SCoT had a higher marker efficiency than the other two markers. The 134 switchgrass samples could be divided into two sub-populations based on STRUCTURE, UPGMA clustering, and principal coordinate analyses (PCA), and upland and lowland ecotypes could be separated by UPGMA clustering and PCA analyses. Linkage disequilibrium analysis revealed an average r 2 of 0.035 across all 51 markers, indicating a trend of higher LD in sub-population 2 than that in sub-population 1 ( P  < 0.01). The population structure revealed in this study will guide the design of future association studies using these switchgrass samples.

  14. MOLECULAR GENETIC MARKERS AND METHODS OF THEIR IDENTIFICATION IN MODERN FISH-FARMING

    Directory of Open Access Journals (Sweden)

    I. Hrytsyniak

    2014-03-01

    Full Text Available Purpose. The application of molecular genetic markers has been widely used in modern experimental fish-farming in recent years. This methodology is currently presented by a differentiated approach with individual mechanisms and clearly defined possibilities. Numerous publications in the scientific literature that are dedicated to molecular genetic markers for the most part offer purely practical data. Thus, the synthesis and analysis of existing information on the general principles of action and the limits of the main methods of using molecular genetic markers is an actual problem. In particular, such a description will make it possible to plan more effectively the experiment and to obtain the desired results with high reliability. Findings. The main types of variable parts of DNA that can be used as molecular genetic markers in determining the level of stock hybridization, conducting genetic inventory of population and solving other problems in modern fish-farming are described in this paper. Also, the article provides an overview of principal modern methods that can be used to identify molecular genetic markers. Originality. This work is a generalization of modern ideas about the mechanisms of experiments with molecular genetic markers in fish-farming. Information is provided in the form of consistent presentation of the principles and purpose of each method, as well as significant advances during their practical application. Practical value. The proposed review of classic and modern literature data on molecular genetic markers can be used for planning, modernization and correction of research activity in modern fish-farming.

  15. Genetic markers and their application in livestock breeding in South ...

    African Journals Online (AJOL)

    The ultimate use of DNA markers would be to identify quantitative trait loci (QTL) in order to practice genotypic selection. This paper reviews DNA markers (RAPD, DFP, RFLP AFLP, minisatellites, microsatellites, SNP) and provides a brief overview of the current application of these markers in animal breeding.

  16. Genetic characterization of Gaddi goat breed of Western Himalayas using microsatellite markers

    Directory of Open Access Journals (Sweden)

    Gurdeep Singh

    2015-04-01

    Full Text Available Aim: In the present study, genetic characterization of Gaddi goat breed, a native to north temperate western Himalayan region of India, was carried out for the purpose of breed characterization and assessing existing intra-population genetic diversity. Materials and Methods: Totally, 75 blood samples procured at random from genetically unrelated animals of two sexes and different age groups and true to breed type were collected from different locations in the breeding tract of these goats in Himachal Pradesh, of which only 51 samples with desired quantity and quality were subjected to further processing for DNA isolation. The multi-locus genotype data were generated on 51 Gaddi goats sampled across different regions of the breeding tract in Himachal Pradesh using 15 FAO recommended goat specific microsatellite markers, which gave amplification and observed and effective number of alleles, gene frequency, observed and expected heterozygosity were estimated through PopGene software (1.3.1. Results: A total of 135 distinct alleles were observed with mean observed and effective number of alleles as 9.0000±0.82 and 6.5874±0.56 respectively across all 15 studied loci. The maximum (15 alleles were contributed by loci DRBP1 and P19/DYA and the least (5 by SRCRSP5. The mean heterozygosity was observed to be 0.8347±0.01 ranging from 0.7584 (SRCRSP5 to 0.9156 (P19-DYA across all loci. The mean observed (HO and expected (HE heterozygosities across all loci were 0.7484±0.02 and 0.8431±0.01 respectively. The polymorphism information content (PIC value ranged from 0.7148 (SRCPS5 to 0.909 (P19-DYA with mean PIC of 0.8105±0.01 in the present study. The average heterozygosity was observed to be 0.8347±0.01 ranging from 0.7584 (SRCRSP5 to 0.9156 P19 (DYA across all loci. Conclusion: Microsatellite analysis revealed high level of polymorphism across studied microsatellite markers and informativeness of the markers for genetic diversity analysis studies in

  17. [Population genetic study of Russian cosmonauts and test subjects: genetic demographic parameters and immunogenetic markers].

    Science.gov (United States)

    Kurbatova, O L; Pobedonostseva, E Iu; Prokhorovskaia, V D; Kholod, O N; Evsiukov, A N; Bogomolov, V V; Voronkov, Iu I; Filatova, L M; Larina, O N; Sidorenko, L A; Morgun, V V; Kasparanskiĭ, R R; Altukhov, Iu P

    2006-10-01

    Genetic demographic characteristics and immunogenetic markers (blood groups ABO, Rhesus, MNSs, P, Duffy, Kidd, and Kell) have been studied in a group of 132 Russian cosmonauts and test subjects (CTSG). Analysis of pedigrees has shown a high exogamy in the preceding generations: almost half of the subjects have mixed ethnic background. According to the results of genetic demographic analysis, a sample from the Moscow population was used as control group (CG). Comparison between the CTSG and CG has demonstrated significant differences in genotype frequencies for several blood group systems. The CTSG is characterized by a decreased proportion of rare interlocus genotypic combinations and an increased man heterozygosity. Analysis of the distributions of individual heterozygosity for loci with codominant expression of alleles has shown that highly heterozygous loci are more frequent in the CTSG. Taking into account that the CTSG has been thoroughly selected from the general population, it is concluded that heterozygosity is related to successful adaptation to a space flight.

  18. Annotated genetic linkage maps of Pinus pinaster Ait. from a Central Spain population using microsatellite and gene based markers.

    Science.gov (United States)

    de Miguel, Marina; de Maria, Nuria; Guevara, M Angeles; Diaz, Luis; Sáez-Laguna, Enrique; Sánchez-Gómez, David; Chancerel, Emilie; Aranda, Ismael; Collada, Carmen; Plomion, Christophe; Cabezas, José-Antonio; Cervera, María-Teresa

    2012-10-04

    Pinus pinaster Ait. is a major resin producing species in Spain. Genetic linkage mapping can facilitate marker-assisted selection (MAS) through the identification of Quantitative Trait Loci and selection of allelic variants of interest in breeding populations. In this study, we report annotated genetic linkage maps for two individuals (C14 and C15) belonging to a breeding program aiming to increase resin production. We use different types of DNA markers, including last-generation molecular markers. We obtained 13 and 14 linkage groups for C14 and C15 maps, respectively. A total of 211 and 215 markers were positioned on each map and estimated genome length was between 1,870 and 2,166 cM respectively, which represents near 65% of genome coverage. Comparative mapping with previously developed genetic linkage maps for P. pinaster based on about 60 common markers enabled aligning linkage groups to this reference map. The comparison of our annotated linkage maps and linkage maps reporting QTL information revealed 11 annotated SNPs in candidate genes that co-localized with previously reported QTLs for wood properties and water use efficiency. This study provides genetic linkage maps from a Spanish population that shows high levels of genetic divergence with French populations from which segregating progenies have been previously mapped. These genetic maps will be of interest to construct a reliable consensus linkage map for the species. The importance of developing functional genetic linkage maps is highlighted, especially when working with breeding populations for its future application in MAS for traits of interest.

  19. Annotated genetic linkage maps of Pinus pinaster Ait. from a Central Spain population using microsatellite and gene based markers

    Directory of Open Access Journals (Sweden)

    de Miguel Marina

    2012-10-01

    Full Text Available Abstract Background Pinus pinaster Ait. is a major resin producing species in Spain. Genetic linkage mapping can facilitate marker-assisted selection (MAS through the identification of Quantitative Trait Loci and selection of allelic variants of interest in breeding populations. In this study, we report annotated genetic linkage maps for two individuals (C14 and C15 belonging to a breeding program aiming to increase resin production. We use different types of DNA markers, including last-generation molecular markers. Results We obtained 13 and 14 linkage groups for C14 and C15 maps, respectively. A total of 211 and 215 markers were positioned on each map and estimated genome length was between 1,870 and 2,166 cM respectively, which represents near 65% of genome coverage. Comparative mapping with previously developed genetic linkage maps for P. pinaster based on about 60 common markers enabled aligning linkage groups to this reference map. The comparison of our annotated linkage maps and linkage maps reporting QTL information revealed 11 annotated SNPs in candidate genes that co-localized with previously reported QTLs for wood properties and water use efficiency. Conclusions This study provides genetic linkage maps from a Spanish population that shows high levels of genetic divergence with French populations from which segregating progenies have been previously mapped. These genetic maps will be of interest to construct a reliable consensus linkage map for the species. The importance of developing functional genetic linkage maps is highlighted, especially when working with breeding populations for its future application in MAS for traits of interest.

  20. Genetic variation of european maize genotypes (zea mays l. Detected using ssr markers

    Directory of Open Access Journals (Sweden)

    Martin Vivodík

    2017-01-01

    Full Text Available The SSR molecular markers were used to assess genetic diversity in 40 old European maize genotypes. Ten SSR primers revealed a total of 65 alleles ranging from 4 (UMC1060 to 8 (UMC2002 and UMC1155 alleles per locus with a mean value of 6.50 alleles per locus. The PIC values ranged from 0.713 (UMC1060 to 0.842 (UMC2002 with an average value of 0.810 and the DI value ranged from 0.734 (UMC1060 to 0.848 (UMC2002 with an average value of 0.819. 100% of used SSR markers had PIC and DI values higher than 0.7 that means high polymorphism of chosen markers used for analysis. Probability of identity (PI was low ranged from 0.004 (UMC1072 to 0.022 (UMC1060 with an average of 0.008. A dendrogram was constructed from a genetic distance matrix based on profiles of the 10 maize SSR loci using the unweighted pair-group method with the arithmetic average (UPGMA. According to analysis, the collection of 40 diverse accessions of maize was clustered into four clusters. The first cluster contained nine genotypes of maize, while the second cluster contained the four genotypes of maize. The third cluster contained 5 maize genotypes. Cluster 4 contained five genotypes from Hungary (22.73%, two genotypes from Poland (9.10%, seven genotypes of maize from Union of Soviet Socialist Republics (31.81%, six genotypes from Czechoslovakia (27.27%, one genotype from Slovak Republic (4.55% and one genotype of maize is from Yugoslavia (4.55%. We could not distinguish 4 maize genotypes grouped in cluster 4, (Voroneskaja and Kocovska Skora and 2 Hungarian maize genotypes - Feheres Sarga Filleres and Mindszentpusztai Feher, which are genetically the closest.

  1. Raman spectroscopy reveals biophysical markers in skin cancer surgical margins

    Science.gov (United States)

    Feng, Xu; Moy, Austin J.; Nguyen, Hieu T. M.; Zhang, Yao; Fox, Matthew C.; Sebastian, Katherine R.; Reichenberg, Jason S.; Markey, Mia K.; Tunnell, James W.

    2018-02-01

    The recurrence rate of nonmelanoma skin cancer is highly related to the residual tumor after surgery. Although tissueconserving surgery, such as Mohs surgery, is a standard method for the treatment of nonmelanoma skin cancer, they are limited by lengthy and costly frozen-section histopathology. Raman spectroscopy (RS) is proving to be an objective, sensitive, and non-destructive tool for detecting skin cancer. Previous studies demonstrated the high sensitivity of RS in detecting tumor margins of basal cell carcinoma (BCC). However, those studies rely on statistical classification models and do not elucidate the skin biophysical composition. As a result, we aim to discover the biophysical differences between BCC and primary normal skin structures (including epidermis, dermis, hair follicle, sebaceous gland and fat). We obtained freshly resected ex vivo skin samples from fresh resection specimens from 14 patients undergoing Mohs surgery. Raman images were acquired from regions containing one or more structures using a custom built 830nm confocal Raman microscope. The spectra were grouped using K-means clustering analysis and annotated as either BCC or each of the five normal structures by comparing with the histopathology image of the serial section. The spectral data were then fit by a previously established biophysical model with eight primary skin constituents. Our results show that BCC has significant differences in the fit coefficients of nucleus, collagen, triolein, keratin and elastin compared with normal structures. Our study reveals RS has the potential to detect biophysical changes in resection margins, and supports the development of diagnostic algorithms for future intraoperative implementation of RS during Mohs surgery.

  2. Genetic diversity of six populations of red hybrid tilapia, using microsatellites genetic markers

    Directory of Open Access Journals (Sweden)

    Boris Briñez R.

    2011-05-01

    Full Text Available Objective. To determine and evaluate the genetic diversity of six populations of red hybrid tilapia, with the purpose to assess the potential benefit of a future breeding program conducted at the Research Center for Aquaculture (Ceniacua, Colombia. Material and methods. A total of 300 individuals, representing a wide genetic variability, were genotyped using a fluorescent microsatellite marker set of 5 gene-based SSRs in 6 different farms belonging to 4 States of Colombia. Results. The result showed that the mean number of alleles per locus per population was 8.367. The population 5 had the highest mean number of alleles with 9.6 alleles, followed by population 4 with 9.4 alleles, population 2 with 9.2, population 3 with 8.0, population 1 with 7.2 and population 6 with 6.8 alleles. The analysis of the distribution of genetic variation was (17.32% among population, while among individuals within populations was (28.55% and within individuals was high (54.12%. The standard diversity indices showed that population 4 was the more variable (mean He=0.837 followed by population 1 (mean He=0.728, population 3 (mean He=0.721, population 5 (mean He=0.705, population 2 (mean He=0.690, population 6 (mean He=0.586. Highly significant deviations from Hardy–Weinberg, exhibited all of the populations, mostly due to deficits of heterozygotes. Genotype frequencies at loci UNH 106 of population 5 and loci UNH 172 of population 6 were Hardy-Weinberg equilibrium (HWE. Conclusions. The results of this study, contribute to the genetic breeding program of Tilapia, conduced by the Research Center for Aquaculture. The Fst distance showed that the samples are differentiated genetically and it is possible to use at the beginning of the genetic program. However, it is recommended to introduce others individuals to the crossbreeding program.

  3. Novel fluorescent sequence-related amplified polymorphism(FSRAP markers for the construction of a genetic linkage map of wheat(Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Zhao Lingbo

    2017-01-01

    Full Text Available Novel fluorescent sequence-related amplified polymorphism (FSRAP markers were developed based on the SRAP molecular marker. Then, the FSRAP markers were used to construct the genetic map of a wheat (Triticum aestivumL. recombinant inbred line population derived from a Chuanmai 42×Chuannong 16 cross. Reproducibility and polymorphism tests indicated that the FSRAP markers have repeatability and better reflect the polymorphism of wheat varieties compared with SRAP markers. A total of 430 polymorphic loci between Chuanmai 42 and Chuannong 16 were detected with 189 FSRAP primer combinations. A total of 281 FSARP markers and 39 SSR markers re classified into 20 linkage groups. The maps spanned a total length of 2499.3cM with an average distance of 7.81cM between markers. A total of 201 markers were mapped on the B genome and covered a distance of 1013cM. On the A genome, 84 markers were mapped and covered a distance of 849.6cM. On the D genome, however, only 35 markers were mapped and covered a distance of 636.7cM. No FSRAP markers were distributed on the 7D chromosome. The results of the present study revealed that the novel FSRAP markers can be used to generate dense, uniform genetic maps of wheat.

  4. Insights into population ecology and sexual selection in snakes through the application of DNA-based genetic markers.

    Science.gov (United States)

    Gibbs, H L; Weatherhead, P J

    2001-01-01

    Hypervariable genetic markers have revolutionized studies of kinship, behavioral ecology, and population biology in vertebrate groups such as birds, but their use in snakes remains limited. To illustrate the value of such markers in snakes, we review studies that have used microsatellite DNA loci to analyze local population differentiation and parentage in snakes. Four ecologically distinct species of snakes all show evidence for differentiation at small spatial scales (2-15 km), but with substantial differences among species. This result highlights how genetic analysis can reveal hidden aspects of the natural history of difficult-to-observe taxa, and it raises important questions about the ecological factors that may contribute to restricted gene flow. A 3-year study of genetic parentage in marked populations of the northern water snake showed that (1) participation in mating aggregations was a poor predictor of genetic-based measures of reproductive success; (2) multiple paternity was high, yet there was no detectable fitness advantage to multiple mating by females; and (3) the opportunity for selection was far higher in males than in females due to a larger variance in male reproductive success, and yet this resulted in no detectable selection on morphological variation in males. Thus genetic markers have provided accurate measures of individual reproductive success in this species, an important step toward resolving the adaptive significance of key features including multiple paternity and reversed sexual size dimorphism. Overall these studies illustrate how genetic analyses of snakes provide previously unobtainable information of long-standing interest to behavioral ecologists.

  5. Evolutionary history of two endemic Appalachian conifers revealed using microsatellite markers

    Science.gov (United States)

    Kevin M. Potter; John Frampton; Sedley A. Josserand; C. Dana Nelson

    2010-01-01

    Fraser fir (Abies fraseri [Pursh] Poir.) and intermediate fir (Abies balsamea [L.] Mill. var. phanerolepis Fern.) exist in small populations in the Appalachian highlands of the southeastern United States. We used ten nuclear microsatellite markers to quantify genetic variation within Fraser fir and intermediate...

  6. Kazusa Marker DataBase: a database for genomics, genetics, and molecular breeding in plants

    Science.gov (United States)

    Shirasawa, Kenta; Isobe, Sachiko; Tabata, Satoshi; Hirakawa, Hideki

    2014-01-01

    In order to provide useful genomic information for agronomical plants, we have established a database, the Kazusa Marker DataBase (http://marker.kazusa.or.jp). This database includes information on DNA markers, e.g., SSR and SNP markers, genetic linkage maps, and physical maps, that were developed at the Kazusa DNA Research Institute. Keyword searches for the markers, sequence data used for marker development, and experimental conditions are also available through this database. Currently, 10 plant species have been targeted: tomato (Solanum lycopersicum), pepper (Capsicum annuum), strawberry (Fragaria × ananassa), radish (Raphanus sativus), Lotus japonicus, soybean (Glycine max), peanut (Arachis hypogaea), red clover (Trifolium pratense), white clover (Trifolium repens), and eucalyptus (Eucalyptus camaldulensis). In addition, the number of plant species registered in this database will be increased as our research progresses. The Kazusa Marker DataBase will be a useful tool for both basic and applied sciences, such as genomics, genetics, and molecular breeding in crops. PMID:25320561

  7. Nuclear Species-Diagnostic SNP Markers Mined from 454 Amplicon Sequencing Reveal Admixture Genomic Structure of Modern Citrus Varieties

    Science.gov (United States)

    Curk, Franck; Ancillo, Gema; Ollitrault, Frédérique; Perrier, Xavier; Jacquemoud-Collet, Jean-Pierre; Garcia-Lor, Andres; Navarro, Luis; Ollitrault, Patrick

    2015-01-01

    Most cultivated Citrus species originated from interspecific hybridisation between four ancestral taxa (C. reticulata, C. maxima, C. medica, and C. micrantha) with limited further interspecific recombination due to vegetative propagation. This evolution resulted in admixture genomes with frequent interspecific heterozygosity. Moreover, a major part of the phenotypic diversity of edible citrus results from the initial differentiation between these taxa. Deciphering the phylogenomic structure of citrus germplasm is therefore essential for an efficient utilization of citrus biodiversity in breeding schemes. The objective of this work was to develop a set of species-diagnostic single nucleotide polymorphism (SNP) markers for the four Citrus ancestral taxa covering the nine chromosomes, and to use these markers to infer the phylogenomic structure of secondary species and modern cultivars. Species-diagnostic SNPs were mined from 454 amplicon sequencing of 57 gene fragments from 26 genotypes of the four basic taxa. Of the 1,053 SNPs mined from 28,507 kb sequence, 273 were found to be highly diagnostic for a single basic taxon. Species-diagnostic SNP markers (105) were used to analyse the admixture structure of varieties and rootstocks. This revealed C. maxima introgressions in most of the old and in all recent selections of mandarins, and suggested that C. reticulata × C. maxima reticulation and introgression processes were important in edible mandarin domestication. The large range of phylogenomic constitutions between C. reticulata and C. maxima revealed in mandarins, tangelos, tangors, sweet oranges, sour oranges, grapefruits, and orangelos is favourable for genetic association studies based on phylogenomic structures of the germplasm. Inferred admixture structures were in agreement with previous hypotheses regarding the origin of several secondary species and also revealed the probable origin of several acid citrus varieties. The developed species-diagnostic SNP

  8. Use of toxicogenomics for identifying genetic markers of pulmonary oedema

    International Nuclear Information System (INIS)

    Balharry, Dominique; Oreffo, Victor; Richards, Roy

    2005-01-01

    This study was undertaken primarily to identify genetic markers of oedema and inflammation. Mild pulmonary injury was induced following the instillation of the oedema-producing agent, bleomycin (0.5 units). Oedema was then confirmed by conventional toxicology (lavage protein levels, free cell counts and lung/body weight ratios) and histology 3 days post-bleomycin instillation.The expression profile of 1176 mRNA species was determined for bleomycin-exposed lung (Clontech Atlas macroarray, n = 9). To obtain pertinent results from these data, it was necessary to develop a simple, effective method for bioinformatic analysis of altered gene expression. Data were log 10 transformed followed by global normalisation. Differential gene expression was accepted if: (a) genes were statistically significant (P ≤ 0.05) from a two-tailed t test; (b) genes were consistently outside a two standard deviation (SD) range from control levels. A combination of these techniques identified 31 mRNA transcripts (approximately 3%) which were significantly altered in bleomycin treated tissue. Of these genes, 26 were down-regulated whilst only five were up-regulated. Two distinct clusters were identified, with 17 genes classified as encoding hormone receptors, and nine as encoding ion channels. Both these clusters were consistently down-regulated.The magnitude of the changes in gene expression were quantified and confirmed by Q-PCR (n = 6), validating the macroarray data and the bioinformatic analysis employed.In conclusion, this study has developed a suitable macroarray analysis procedure and provides the basis for a better understanding of the gene expression changes occurring during the early phase of drug-induced pulmonary oedema

  9. Assessment of sorghum genetic resources for genetic diversity and drought tolerance using molecular markers and agro-morphological traits

    Energy Technology Data Exchange (ETDEWEB)

    Abu Assar, A H; Salih, M; Ali, A M [Agricultural Research Corporation (ARC), P.O. Box 126 Wad Medani (Sudan); Uptmoor, R [Institute of Vegetable and Fruit Science, University of Hannover, Herrengauser Strabe 2.30419 Hanover (Greece); Abdelmula, A A [Department of Agronomy, Faculty of Agriculture, University of Khartoum, postal code: 13314 Shambat (Sudan); Ordon, F [Institute of Eqidemiology and Resistance, Federal Centre for Breeding Research on Cultivated Plants, Theodor-Roemer-Weg 4, D-06449 Aschersleben (Greece); Wagner, C; Friedt, W [Institute of Crop Science and Plant Breedin 1, Heinrich-Buff-Ring 26-32, D-35392 Giessen (Greece)

    2009-07-01

    Forty sorghum genotype were investigated for genetic diversity and drought tolerance. Diversity parameters were estimated using 16 simple sequence repeats markers. For assessment of drought tolerance, the genotype were field evaluated under normal and drought stress condition for two seasons in three environments, in Sudan. In total, 98 SSRs alleles were detected with an average of 6.1 alleles per locus. The estimated polymorphic information contents ranged from 0.33 to 0.86. The genetic similarity ranged from 0.00 to 0.88 with a low mean of 0.32. The dendrogram, generated from the UPGMA cluster analysis, showed two main clusters differentiated into nine sub-clusters with close relationship to morphological characters and pedigree information. Mantel statistics revealed a good fit of the cophenetic values to the original data set (r= 0.88). The overall mean genetic diversity was 0.67. Significant differences were detected among genotypes under both normal and drought stressed conditions for all measured traits. Based on the relative yield, the most drought-tolerant genotypes were Arfa Gadamak, Wad Ahmed, El-Najada, Korcola, ICSR 92003 And Sham Sham. Drought five days delay in flowering, and the earliest genotypes were PI 569695, PI 570446, PI 569953, Dwarf White Milo and PI 56995. (Author)

  10. Assessment of sorghum genetic resources for genetic diversity and drought tolerance using molecular markers and agro-morphological traits

    International Nuclear Information System (INIS)

    Abu Assar, A. H.; Salih, M.; Ali, A. M.; Uptmoor, R.; Abdelmula, A. A.; Ordon, F.; Wagner, C.; Friedt, W.

    2009-01-01

    Forty sorghum genotype were investigated for genetic diversity and drought tolerance. Diversity parameters were estimated using 16 simple sequence repeats markers. For assessment of drought tolerance, the genotype were field evaluated under normal and drought stress condition for two seasons in three environments, in Sudan. In total, 98 SSRs alleles were detected with an average of 6.1 alleles per locus. The estimated polymorphic information contents ranged from 0.33 to 0.86. The genetic similarity ranged from 0.00 to 0.88 with a low mean of 0.32. The dendrogram, generated from the UPGMA cluster analysis, showed two main clusters differentiated into nine sub-clusters with close relationship to morphological characters and pedigree information. Mantel statistics revealed a good fit of the cophenetic values to the original data set (r= 0.88). The overall mean genetic diversity was 0.67. Significant differences were detected among genotypes under both normal and drought stressed conditions for all measured traits. Based on the relative yield, the most drought-tolerant genotypes were Arfa Gadamak, Wad Ahmed, El-Najada, Korcola, ICSR 92003 And Sham Sham. Drought five days delay in flowering, and the earliest genotypes were PI 569695, PI 570446, PI 569953, Dwarf White Milo and PI 56995. (Author)

  11. Autism and genetics: Clinical approach and association study with two markers of HRAS gene

    Energy Technology Data Exchange (ETDEWEB)

    Herault, J.; Petit, E.; Cherpi, C. [Laboratoire de Biochimie Medicale, Tours (France)] [and others

    1995-08-14

    Twin studies and familial aggregation studies indicate that genetic factors could play a role in infantile autism. In an earlier study, we identified a possible positive association between autism and a c-Harvey-ras (HRAS) oncogene marker at the 3{prime} end of the coding region. In an attempt to confirm this finding, we studied a larger population, well-characterized clinically and genetically. We report a positive association between autism and two HRAS markers, the 3{prime} marker used in the initial study and an additional marker in exon 1. 46 refs., 1 fig., 2 tabs.

  12. Genetic diversity and structure analysis in wild and landraces of barley from Jordan by using ISJ markers

    International Nuclear Information System (INIS)

    Baloch, A. W.; Balogh, M. J.; Baloch, M.; Baloch, I. A.

    2016-01-01

    The present experiment was carried out to estimate genetic diversity and genetic structure in cultivated and wild barley populations collected from Jordan which is considered as primary gene pool of barley. In a total, 94 cultivated barley accessions composed of 4 populations and 52 wild barley accessions consisted of 3 populations were used for genetic analysis using 7 Intron Splice Junction (ISJ) markers. The genetic diversity index (He) of cultivated barley ranged between 0.049 and 0.060; whereas that of wild barley populations ranged between 0.084 and 0.146, suggesting that wild resources of barley harbored greater genetic diversity than its domesticated counterpart, reflecting that barley domestication occurred with genetic bottleneck. Analysis of molecular variance showed high genetic variations among rather than within populations, referring that high genetic differentiation of barley populations caused by genetic and geographical separation of the populations in the harsh growing conditions of Fertile Crescent. Principal coordinate, clustering and structure analysis not only separated cultivated and wild barley, but also each single population, showing their genetic basis and original sample site. The obtained Results also revealed that there is lesser genetic communication between cultivated and wild barley under natural environments. The current findings can better be exploited for collection and utilization of plant germplasms. (author)

  13. Assessment of genetic diversity among moderately drought tolerant landraces of rice using RAPD markers

    Directory of Open Access Journals (Sweden)

    Md. Shariful Islam

    2013-01-01

    Full Text Available Genetic diversity and relationships among six rice genotypes were investigated using five random amplified polymorphic DNA (RAPD markers. A total of 69 alleles were amplified, of which 66 were polymorphic. The size of the amplified alleles was between 0.25 and 2.35 kbp. The number of polymorphic alleles detected with each primer ranged from 7 to 24 with an average of 13.2 per primer and the polymorphism information content (PIC values varied from 0.8672 to 0.9471. Pair-wise similarity estimated the range of 0.308 to 0.718 among all the genotypes and the highest genetic similarity was found between Maloti and BRRI dhan53. Cluster analysis using UPGMA (unweighted pair group method with arithmetic averages revealed three clusters at genetic similarity of 46%. A moderately drought tolerant landrace, Boalia, formed a single cluster and the remaining genotypes grouped into distinct clusters based on their relatedness. The results showed a high level of genetic diversity among studied genotypes and this information will assist in conservation as well as selection of parents during breeding programs for the development of drought tolerant rice varieties in near future.

  14. Assessment of genetic variability in rice (oryza sativa l.) germplasm from Pakistan using rapd markers

    International Nuclear Information System (INIS)

    Pervaiz, Z.H.; Rabbani, M.A.; Shinwar, Z.K.; Masood, M.S.; Malik, S.A.

    2010-01-01

    Information on genetic diversity and relationships among rice genotypes from Pakistan is currently very limited. Molecular marker analysis can truly be beneficial in analyzing the diversity of rice germplasm providing useful information to broaden the genetic base of modern rice cultivars. The objective of this study was to evaluate the genetic polymorphism of 75 rice accessions and improved cultivars using random amplified polymorphic DNA (RAPD) technique. Twenty-eight decamer-primers generated a total of 145 RAPD fragments, of which 116 (80%) were polymorphic. The number of amplification products produced by each primer varied from 3 to 9 with an average of 5.2 alleles primer-1. The size of amplified fragments ranged from 250 to 4000bp. A dendrogram was generated from minimal variance algorithm using Ward method. All the 75 genotypes were grouped into two main groups corresponding to aromatic and non-aromatic types of indica rice. Clustering of accessions did not show any significant pattern of association between the RAPD fingerprints and collection sites. This type of analysis grouping different rice accessions in relation to fragrance, a major rice quality determinant, and varietal group is extremely useful to develop a core collection and gene bank management. Further more, the information revealed by the RAPDs regarding genetic variation is helpful to the plant breeder in selecting diverse parents and for future orientation of rice breeding program. (author)

  15. Assessment of RAPD Markers to Analyse the Genetic Diversity among Sunflower (Helianthus annuus L. Genotypes

    Directory of Open Access Journals (Sweden)

    Ali Raza

    2018-02-01

    Full Text Available Genetic diversity estimation among different species is an important tool for genetic improvement to maximize the yield, desirable quality, wider adaptation, pest and insect resistance that ultimately boosting traditional plant breeding methods. The most efficient way of diversity estimation is application of molecular markers. In this study, twenty random amplified polymorphic DNA (RAPD primers were utilized to estimate the genetic diversity between ten sunflower genotypes. Overall 227 bands were amplified by 20 primers with an average of 11.35 bands per primer. RAPD data showed 86.34% polymorophic bands and 13.65% of monomorophic bands. Genetic similarity was ranged from 50.22% to 87.22%. The lowest similarity (50.22% was observed between FH-352 and FH-359 and the maximum similarity 87.22% was observed between A-23 and G-46. Polymorphic information content (PIC values were varying from 0.05 to 0.12 with a mean of 0.09. Cluster analysis based on RAPD results displayed two major distinct groups 1 and 2. Group-2 contains FH-352 which was the most diverse genotype, while group-1 consists of few sub groups with all other genotypes. Ample diversity was found in all the genotypes. Present study reveals novel information about sunflower genome which can be used in future studies for sunflower improvement.

  16. Impact of marker ascertainment bias on genomic selection accuracy and estimates of genetic diversity.

    Directory of Open Access Journals (Sweden)

    Nicolas Heslot

    Full Text Available Genome-wide molecular markers are often being used to evaluate genetic diversity in germplasm collections and for making genomic selections in breeding programs. To accurately predict phenotypes and assay genetic diversity, molecular markers should assay a representative sample of the polymorphisms in the population under study. Ascertainment bias arises when marker data is not obtained from a random sample of the polymorphisms in the population of interest. Genotyping-by-sequencing (GBS is rapidly emerging as a low-cost genotyping platform, even for the large, complex, and polyploid wheat (Triticum aestivum L. genome. With GBS, marker discovery and genotyping occur simultaneously, resulting in minimal ascertainment bias. The previous platform of choice for whole-genome genotyping in many species such as wheat was DArT (Diversity Array Technology and has formed the basis of most of our knowledge about cereals genetic diversity. This study compared GBS and DArT marker platforms for measuring genetic diversity and genomic selection (GS accuracy in elite U.S. soft winter wheat. From a set of 365 breeding lines, 38,412 single nucleotide polymorphism GBS markers were discovered and genotyped. The GBS SNPs gave a higher GS accuracy than 1,544 DArT markers on the same lines, despite 43.9% missing data. Using a bootstrap approach, we observed significantly more clustering of markers and ascertainment bias with DArT relative to GBS. The minor allele frequency distribution of GBS markers had a deficit of rare variants compared to DArT markers. Despite the ascertainment bias of the DArT markers, GS accuracy for three traits out of four was not significantly different when an equal number of markers were used for each platform. This suggests that the gain in accuracy observed using GBS compared to DArT markers was mainly due to a large increase in the number of markers available for the analysis.

  17. Impact of Marker Ascertainment Bias on Genomic Selection Accuracy and Estimates of Genetic Diversity

    Science.gov (United States)

    Heslot, Nicolas; Rutkoski, Jessica; Poland, Jesse; Jannink, Jean-Luc; Sorrells, Mark E.

    2013-01-01

    Genome-wide molecular markers are often being used to evaluate genetic diversity in germplasm collections and for making genomic selections in breeding programs. To accurately predict phenotypes and assay genetic diversity, molecular markers should assay a representative sample of the polymorphisms in the population under study. Ascertainment bias arises when marker data is not obtained from a random sample of the polymorphisms in the population of interest. Genotyping-by-sequencing (GBS) is rapidly emerging as a low-cost genotyping platform, even for the large, complex, and polyploid wheat (Triticum aestivum L.) genome. With GBS, marker discovery and genotyping occur simultaneously, resulting in minimal ascertainment bias. The previous platform of choice for whole-genome genotyping in many species such as wheat was DArT (Diversity Array Technology) and has formed the basis of most of our knowledge about cereals genetic diversity. This study compared GBS and DArT marker platforms for measuring genetic diversity and genomic selection (GS) accuracy in elite U.S. soft winter wheat. From a set of 365 breeding lines, 38,412 single nucleotide polymorphism GBS markers were discovered and genotyped. The GBS SNPs gave a higher GS accuracy than 1,544 DArT markers on the same lines, despite 43.9% missing data. Using a bootstrap approach, we observed significantly more clustering of markers and ascertainment bias with DArT relative to GBS. The minor allele frequency distribution of GBS markers had a deficit of rare variants compared to DArT markers. Despite the ascertainment bias of the DArT markers, GS accuracy for three traits out of four was not significantly different when an equal number of markers were used for each platform. This suggests that the gain in accuracy observed using GBS compared to DArT markers was mainly due to a large increase in the number of markers available for the analysis. PMID:24040295

  18. Genetic and biochemical evidences reveal novel insights into the ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 41; Issue 4. Genetic and biochemical evidences reveal novel insights into the mechanism underlying Saccharomyces cerevisiae Sae2-mediated abrogation of DNA replication stress. INDRAJEET GHODKE K MUNIYAPPA. ARTICLE Volume 41 Issue 4 December 2016 pp ...

  19. Development of a set of SSR markers for genetic polymorphism detection and interspecific hybrid jute breeding

    Directory of Open Access Journals (Sweden)

    Dipnarayan Saha

    2017-10-01

    Full Text Available Corchorus capsularis (white jute and C. olitorius (dark jute are the two principal cultivated species of jute that produce natural bast fiber of commercial importance. We have identified 4509 simple sequence repeat (SSR loci from 34,163 unigene sequences of C. capsularis to develop a non-redundant set of 2079 flanking primer pairs. Among the SSRs, trinucleotide repeats were most frequent (60% followed by dinucleotide repeats (37.6%. Annotation of the SSR-containing unigenes revealed their putative functions in various biological and molecular processes, including responses to biotic and abiotic signals. Eighteen expressed gene-derived SSR (eSSR markers were successfully mapped to the existing single-nucleotide polymorphism (SNP linkage map of jute, providing additional anchor points. Amplification of 72% of the 74 randomly selected primer pairs was successful in a panel of 24 jute accessions, comprising five and twelve accessions of C. capsularis and C. olitorius, respectively, and seven wild jute species. Forty-three primer pairs produced an average of 2.7 alleles and 58.1% polymorphism in a panel of 24 jute accessions. The mean PIC value was 0.34 but some markers showed PIC values higher than 0.5, suggesting that these markers can efficiently measure genetic diversity and serve for mapping of quantitative trait loci (QTLs in jute. A primer polymorphism survey with parents of a wide-hybridized population between a cultivated jute and its wild relative revealed their efficacy for interspecific hybrid identification. For ready accessibility of jute eSSR primers, we compiled all information in a user-friendly web database, JuteMarkerdb (http://jutemarkerdb.icar.gov.in/ for the first time in jute. This eSSR resource in jute is expected to be of use in characterization of germplasm, interspecific hybrid and variety identification, and marker-assisted breeding of superior-quality jute.

  20. Population Structure, Genetic Diversity and Molecular Marker-Trait Association Analysis for High Temperature Stress Tolerance in Rice.

    Directory of Open Access Journals (Sweden)

    Sharat Kumar Pradhan

    Full Text Available Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright's F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance.

  1. Population Structure, Genetic Diversity and Molecular Marker-Trait Association Analysis for High Temperature Stress Tolerance in Rice.

    Science.gov (United States)

    Pradhan, Sharat Kumar; Barik, Saumya Ranjan; Sahoo, Ambika; Mohapatra, Sudipti; Nayak, Deepak Kumar; Mahender, Anumalla; Meher, Jitandriya; Anandan, Annamalai; Pandit, Elssa

    2016-01-01

    Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright's F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance.

  2. Assessment of Genetic Diversity in Opuntia spp. Portuguese Populations Using SSR Molecular Markers

    Directory of Open Access Journals (Sweden)

    Carlos M. G. Reis

    2018-04-01

    Full Text Available The Opuntia spp., most likely few individuals, were introduced in the Iberian Peninsula in the beginning of the 16th century, after the discovery of America, spreading afterwards throughout the Mediterranean basin. We analysed, for the first time, the genetic diversity in a set of 19 Portuguese Opuntia spp. populations from the species O. ficus-indica, O. elata, O. dillenii and O. robusta using nuclear microsatellite (nuSSR markers. The Italian cultivars ‘Bianca’, ‘Gialla’ and ‘Rossa’ were included in the study for comparison purposes. The nuSSR amplifications produced from five to 16 alleles, with an average of 9.2 alleles per primer pair, and average polymorphism information content of 0.71. The estimated Dice coefficient among populations varied from 0.26 to 1.0, indicating high interspecific genetic diversity but low genetic diversity at the intraspecific level. The hierarchical clustering analysis revealed four major groups that clearly separated the four Opuntia species. Among the O. ficus-indica populations, two sub-clusters were found, one including the white pulp fruits (with cv. Bianca and the other with the orange pulp ones and including the cv. Gialla, the cv. Rossa, and one pale yellow pulp population. No genetic differences were found between the inermis form, O. ficus-indica f. ficus-indica, and the rewilded spiny one, O. ficus-indica f. amyclaea. The dendrogram indicated that the clustering pattern was unrelated to geographical origin. The results revealed a low level of genetic diversity among the Portuguese populations of O. ficus-indica.

  3. SSR marker development and intraspecific genetic divergence exploration of Chrysanthemum indicum based on transcriptome analysis.

    Science.gov (United States)

    Han, Zhengzhou; Ma, Xinye; Wei, Min; Zhao, Tong; Zhan, Ruoting; Chen, Weiwen

    2018-04-25

    Chrysanthemum indicum L., an important ancestral species of the flowering plant chrysanthemum, can be used as medicine and for functional food development. Due to the lack of hereditary information for this species and the difficulty of germplasm identification, we herein provide new genetic insight from the perspective of intraspecific transcriptome comparison and present single sequence repeat (SSR) molecular marker recognition technology. Through the study of a diploid germplasm (DIWNT) and a tetraploid germplasm (DIWT), the following outcome were obtained. (1) A significant difference in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations for specific homologous genes was observed using the OrthoMCL method for the identification of homologous gene families between the two cytotypes. Ka/Ks analysis of common, single-copy homologous family members also revealed a greater difference among genes that experienced positive selection than among those experiencing positive selection. (2) Of more practical value, 2575 SSR markers were predicted and partly verified. We used TaxonGap as a visual tool to inspect genotype uniqueness and screen for high-performance molecular loci; we recommend four primers of 65 randomly selected primers with a combined identification success rate of 88.6% as priorities for further development of DNA fingerprinting of C. indicum germplasm. The SSR technology based on next-generation sequencing was proved to be successful in the identification of C. indicum germplasms. And the information on the intraspecfic genetic divergence generated by transcriptome comparison deepened the understanding of this complex species' nature.

  4. Social stratification in the Sikh population of Punjab (India) has a genetic basis: evidence from serological and biochemical markers.

    Science.gov (United States)

    Chahal, Sukh Mohinder Singh; Virk, Rupinder Kaur; Kaur, Sukhvir; Bansal, Rupinder

    2011-01-01

    The present study was planned to assess whether social stratification in the Sikh population inhabiting the northwest border Indian state of Punjab has any genetic basis. Blood samples were collected randomly from a total of 2851 unrelated subjects belonging to 21 groups of two low-ranking Sikh scheduled caste populations, viz. Mazhabi and Ramdasi, and a high-ranking Jat Sikh caste population of Punjab. The genetic profile of Sikh groups was investigated using a total of nine serobiochemical genetic markers, comprising two blood groups (ABO, RH(D)) and a battery of seven red cell enzyme polymorphisms (ADA, AK1, ESD, PGM1, GLO1, ACP1, GPI), following standard serological and biochemical laboratory protocols. Genetic structure was studied using original allele frequency data and statistical measures of heterozygosity, genic differentiation, genetic distance, and genetic admixture. Great heterogeneity was observed between Sikh scheduled caste and Jat Sikh populations, especially in the RH(D) blood group system, and distribution of ESD, ACP1, and PGM1 enzyme markers was also found to be significantly different between many of their groups. Genetic distance trees demonstrated little or no genetic affinities between Sikh scheduled caste and Jat Sikh populations; the Mazhabi and Ramdasi also showed little genetic relationship. Genetic admixture analysis suggested a higher element of autochthonous tribal extraction in the Ramdasi. The present study revealed much genetic heterogeneity in differently ranking Sikh caste populations of Punjab, mainly attributable to their different ethnic backgrounds, and provided a genetic basis to social stratification present in this religious community of Punjab, India.

  5. Molecular Diversity and Population Structure of a Worldwide Collection of Cultivated Tetraploid Alfalfa (Medicago sativa subsp. sativa L.) Germplasm as Revealed by Microsatellite Markers.

    Science.gov (United States)

    Qiang, Haiping; Chen, Zhihong; Zhang, Zhengli; Wang, Xuemin; Gao, Hongwen; Wang, Zan

    2015-01-01

    Information on genetic diversity and population structure of a tetraploid alfalfa collection might be valuable in effective use of the genetic resources. A set of 336 worldwide genotypes of tetraploid alfalfa (Medicago sativa subsp. sativa L.) was genotyped using 85 genome-wide distributed SSR markers to reveal the genetic diversity and population structure in the alfalfa. Genetic diversity analysis identified a total of 1056 alleles across 85 marker loci. The average expected heterozygosity and polymorphism information content values were 0.677 and 0.638, respectively, showing high levels of genetic diversity in the cultivated tetraploid alfalfa germplasm. Comparison of genetic characteristics across chromosomes indicated regions of chromosomes 2 and 3 had the highest genetic diversity. A higher genetic diversity was detected in alfalfa landraces than that of wild materials and cultivars. Two populations were identified by the model-based population structure, principal coordinate and neighbor-joining analyses, corresponding to China and other parts of the world. However, lack of strictly correlation between clustering and geographic origins suggested extensive germplasm exchanges of alfalfa germplasm across diverse geographic regions. The quantitative analysis of the genetic diversity and population structure in this study could be useful for genetic and genomic analysis and utilization of the genetic variation in alfalfa breeding.

  6. Estimation of the Genetic Diversity in Tetraploid Alfalfa Populations Based on RAPD Markers for Breeding Purposes

    Directory of Open Access Journals (Sweden)

    Slobodan Katic

    2011-08-01

    Full Text Available Alfalfa is an autotetraploid, allogamous and heterozygous forage legume, whose varieties are synthetic populations. Due to the complex nature of the species, information about genetic diversity of germplasm used in any alfalfa breeding program is most beneficial. The genetic diversity of five alfalfa varieties, involved in progeny tests at Institute of Field and Vegetable Crops, was characterized based on RAPD markers. A total of 60 primers were screened, out of which 17 were selected for the analysis of genetic diversity. A total of 156 polymorphic bands were generated, with 10.6 bands per primer. Number and percentage of polymorphic loci, effective number of alleles, expected heterozygosity and Shannon’s information index were used to estimate genetic variation. Variety Zuzana had the highest values for all tested parameters, exhibiting the highest level of variation, whereas variety RSI 20 exhibited the lowest. Analysis of molecular variance (AMOVA showed that 88.39% of the total genetic variation was attributed to intra-varietal variance. The cluster analysis for individual samples and varieties revealed differences in their population structures: variety Zuzana showed a very high level of genetic variation, Banat and Ghareh were divided in subpopulations, while Pecy and RSI 20 were relatively uniform. Ways of exploiting the investigated germplasm in the breeding programs are suggested in this paper, depending on their population structure and diversity. The RAPD analysis shows potential to be applied in analysis of parental populations in semi-hybrid alfalfa breeding program in both, development of new homogenous germplasm, and identification of promising, complementary germplasm.

  7. (SSR) markers for analysis of genetic diversity in African rice ...

    African Journals Online (AJOL)

    Bonny Oloka

    2015-05-06

    May 6, 2015 ... and conservation. To address this knowledge gap, 10 highly polymorphic rice simple sequence repeat. (SSR) markers were used to characterize 99 rice genotypes to determine their diversity and place them in their different population groups. The SSR markers were multiplexed in 3 panels to increase their.

  8. Genetic structure of South African Nguni (Zulu) sheep populations reveals admixture with exotic breeds.

    Science.gov (United States)

    Selepe, Mokhethi Matthews; Ceccobelli, Simone; Lasagna, Emiliano; Kunene, Nokuthula Winfred

    2018-01-01

    The population of Zulu sheep is reported to have declined by 7.4% between 2007 and 2011 due to crossbreeding. There is insufficient information on the genetic diversity of the Zulu sheep populations in the different area of KwaZulu Natal where they are reared. The study investigated genetic variation and genetic structure within and among eight Zulu sheep populations using 26 microsatellite markers. In addition, Damara, Dorper and South African Merino breeds were included to assess the genetic relationship between these breeds and the Zulu sheep. The results showed that there is considerable genetic diversity among the Zulu sheep populations (expected heterozygosity ranging from 0.57 to 0.69) and the level of inbreeding was not remarkable. The structure analysis results revealed that Makhathini Research Station and UNIZULU research station share common genetic structure, while three populations (Nongoma, Ulundi and Nquthu) had some admixture with the exotic Dorper breed. Thus, there is a need for sustainable breeding and conservation programmes to control the gene flow, in order to stop possible genetic dilution of the Zulu sheep.

  9. Genetic structure of South African Nguni (Zulu sheep populations reveals admixture with exotic breeds.

    Directory of Open Access Journals (Sweden)

    Mokhethi Matthews Selepe

    Full Text Available The population of Zulu sheep is reported to have declined by 7.4% between 2007 and 2011 due to crossbreeding. There is insufficient information on the genetic diversity of the Zulu sheep populations in the different area of KwaZulu Natal where they are reared. The study investigated genetic variation and genetic structure within and among eight Zulu sheep populations using 26 microsatellite markers. In addition, Damara, Dorper and South African Merino breeds were included to assess the genetic relationship between these breeds and the Zulu sheep. The results showed that there is considerable genetic diversity among the Zulu sheep populations (expected heterozygosity ranging from 0.57 to 0.69 and the level of inbreeding was not remarkable. The structure analysis results revealed that Makhathini Research Station and UNIZULU research station share common genetic structure, while three populations (Nongoma, Ulundi and Nquthu had some admixture with the exotic Dorper breed. Thus, there is a need for sustainable breeding and conservation programmes to control the gene flow, in order to stop possible genetic dilution of the Zulu sheep.

  10. Characterization of genetic diversity in chickpea using SSR markers, Start Codon Targeted Polymorphism (SCoT) and Conserved DNA-Derived Polymorphism (CDDP).

    Science.gov (United States)

    Hajibarat, Zahra; Saidi, Abbas; Hajibarat, Zohreh; Talebi, Reza

    2015-07-01

    To evaluate the genetic diversity among 48 genotypes of chickpea comprising cultivars, landraces and internationally developed improved lines genetic distances were evaluated using three different molecular marker techniques: Simple Sequence Repeat (SSR); Start Codon Targeted (SCoT) and Conserved DNA-derived Polymorphism (CDDP). Average polymorphism information content (PIC) for SSR, SCoT and CDDP markers was 0.47, 0.45 and 0.45, respectively, and this revealed that three different marker types were equal for the assessment of diversity amongst genotypes. Cluster analysis for SSR and SCoT divided the genotypes in to three distinct clusters and using CDDP markers data, genotypes grouped in to five clusters. There were positive significant correlation (r = 0.43, P SSR markers. These results suggest that efficiency of SSR, SCOT and CDDP markers was relatively the same in fingerprinting of chickpea genotypes. To our knowledge, this is the first detailed report of using targeted DNA region molecular marker (CDDP) for genetic diversity analysis in chickpea in comparison with SCoT and SSR markers. Overall, our results are able to prove the suitability of SCoT and CDDP markers for genetic diversity analysis in chickpea for their high rates of polymorphism and their potential for genome diversity and germplasm conservation.

  11. Comparative analysis of genetic diversity among Chinese watermelon germplasmsusing SSR and SRAP markers, and implications for future genetic improvement

    OpenAIRE

    WANG, PANGQIAO; LI, QIONG; Hu, Jianbin; SU, YAN

    2015-01-01

    The genetic diversity of watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] in China, the world's largest producer of watermelon fruits, has not been examined. Two molecular markers, sequence-related amplified polymorphism (SRAP) and simple sequence repeat (SSR), were used to investigate the genetic variation and genetic relationship among 54 Chinese watermelon accessions, as well as 7 accessions from Africa, the United States, and Japan. SRAP assay generated 312 bands, ...

  12. Genetic characterization of early maturing maize hybrids (Zea mays L. obtained by protein and RAPD markers

    Directory of Open Access Journals (Sweden)

    Bauer Iva

    2005-01-01

    Full Text Available Knowledge of maize germplasm genetic diversity is important for planning breeding programmes, germplasm conservation per se etc. Genetic variability of maize hybrids grown in the fields is also very important because genetic uniformity implies risks of genetic vulnerability to stress factors and can cause great losts in yield. Early maturing maize hybrids are characterized by shorter vegetation period and they are grown in areas with shorter vegetation season. Because of different climatic conditions in these areas lines and hybrids are developed with different features in respect to drought resistance and disease resistance. The objective of our study was to characterize set of early maturing maize hybrids with protein and RAPD markers and to compare this clasification with their pedigree information. RAPD markers gave significantly higher rate of polymorphism than protein markers. Better corelation was found among pedigree information and protein markers.

  13. Identifying genetic marker sets associated with phenotypes via an efficient adaptive score test

    KAUST Repository

    Cai, T.; Lin, X.; Carroll, R. J.

    2012-01-01

    the overall effect of a marker-set have been actively studied in recent years. For example, score tests derived under an Empirical Bayes (EB) framework (Liu and others, 2007. Semiparametric regression of multidimensional genetic pathway data: least

  14. Molecular Genetic Diversity of Date (Phoenix dactylifera) Germplasm in Qatar based on Microsatellite Markers

    KAUST Repository

    Ahmed, Talaat

    2016-01-01

    Depending on morphological traits alone, studying the genetic diversity of date palm is a very difficult task since morphological characteristics are highly affected by the environment. DNA markers are excellent option that can help and enhance

  15. Fine-scaled human genetic structure revealed by SNP microarrays.

    Science.gov (United States)

    Xing, Jinchuan; Watkins, W Scott; Witherspoon, David J; Zhang, Yuhua; Guthery, Stephen L; Thara, Rangaswamy; Mowry, Bryan J; Bulayeva, Kazima; Weiss, Robert B; Jorde, Lynn B

    2009-05-01

    We report an analysis of more than 240,000 loci genotyped using the Affymetrix SNP microarray in 554 individuals from 27 worldwide populations in Africa, Asia, and Europe. To provide a more extensive and complete sampling of human genetic variation, we have included caste and tribal samples from two states in South India, Daghestanis from eastern Europe, and the Iban from Malaysia. Consistent with observations made by Charles Darwin, our results highlight shared variation among human populations and demonstrate that much genetic variation is geographically continuous. At the same time, principal components analyses reveal discernible genetic differentiation among almost all identified populations in our sample, and in most cases, individuals can be clearly assigned to defined populations on the basis of SNP genotypes. All individuals are accurately classified into continental groups using a model-based clustering algorithm, but between closely related populations, genetic and self-classifications conflict for some individuals. The 250K data permitted high-level resolution of genetic variation among Indian caste and tribal populations and between highland and lowland Daghestani populations. In particular, upper-caste individuals from Tamil Nadu and Andhra Pradesh form one defined group, lower-caste individuals from these two states form another, and the tribal Irula samples form a third. Our results emphasize the correlation of genetic and geographic distances and highlight other elements, including social factors that have contributed to population structure.

  16. Tracking the Genetic Stability of a Honey Bee (Hymenoptera: Apidae) Breeding Program With Genetic Markers.

    Science.gov (United States)

    Bourgeois, Lelania; Beaman, Lorraine

    2017-08-01

    A genetic stock identification (GSI) assay was developed in 2008 to distinguish Russian honey bees from other honey bee stocks that are commercially produced in the United States. Probability of assignment (POA) values have been collected and maintained since the stock release in 2008 to the Russian Honey Bee Breeders Association. These data were used to assess stability of the breeding program and the diversity levels of the contemporary breeding stock through comparison of POA values and genetic diversity parameters from the initial release to current values. POA values fluctuated throughout 2010-2016, but have recovered to statistically similar levels in 2016 (POA(2010) = 0.82, POA(2016) = 0.74; P = 0.33). Genetic diversity parameters (i.e., allelic richness and gene diversity) in 2016 also remained at similar levels when compared to those in 2010. Estimates of genetic structure revealed stability (FST(2009/2016) = 0.0058) with a small increase in the estimate of the inbreeding coefficient (FIS(2010) = 0.078, FIS(2016) = 0.149). The relationship among breeding lines, based on genetic distance measurement, was similar in 2008 and 2016 populations, but with increased homogeneity among lines (i.e., decreased genetic distance). This was expected based on the closed breeding system used for Russian honey bees. The successful application of the GSI assay in a commercial breeding program demonstrates the utility and stability of such technology to contribute to and monitor the genetic integrity of a breeding stock of an insect species. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  17. Sequence exploration reveals information bias among molecular markers used in phylogenetic reconstruction for Colletotrichum species.

    Science.gov (United States)

    Rampersad, Sephra N; Hosein, Fazeeda N; Carrington, Christine Vf

    2014-01-01

    The Colletotrichum gloeosporioides species complex is among the most destructive fungal plant pathogens in the world, however, identification of isolates of quarantine importance to the intra-specific level is confounded by a number of factors that affect phylogenetic reconstruction. Information bias and quality parameters were investigated to determine whether nucleotide sequence alignments and phylogenetic trees accurately reflect the genetic diversity and phylogenetic relatedness of individuals. Sequence exploration of GAPDH, ACT, TUB2 and ITS markers indicated that the query sequences had different patterns of nucleotide substitution but were without evidence of base substitution saturation. Regions of high entropy were much more dispersed in the ACT and GAPDH marker alignments than for the ITS and TUB2 markers. A discernible bimodal gap in the genetic distance frequency histograms was produced for the ACT and GAPDH markers which indicated successful separation of intra- and inter-specific sequences in the data set. Overall, analyses indicated clear differences in the ability of these markers to phylogenetically separate individuals to the intra-specific level which coincided with information bias.

  18. Genetic Confirmation of Mungbean (Vigna radiata) and Mashbean (Vigna mungo) Interspecific Recombinants using Molecular Markers.

    Science.gov (United States)

    Abbas, Ghulam; Hameed, Amjad; Rizwan, Muhammad; Ahsan, Muhammad; Asghar, Muhammad J; Iqbal, Nayyer

    2015-01-01

    Molecular confirmation of interspecific recombinants is essential to overcome the issues like self-pollination, environmental influence, and inadequacy of morphological characteristics during interspecific hybridization. The present study was conducted for genetic confirmation of mungbean (female) and mashbean (male) interspecific crosses using molecular markers. Initially, polymorphic random amplified polymorphic DNA (RAPD), universal rice primers (URP), and simple sequence repeats (SSR) markers differentiating parent genotypes were identified. Recombination in hybrids was confirmed using these polymorphic DNA markers. The NM 2006 × Mash 88 was most successful interspecific cross. Most of true recombinants confirmed by molecular markers were from this cross combination. SSR markers were efficient in detecting genetic variability and recombination with reference to specific chromosomes and particular loci. SSR (RIS) and RAPD identified variability dispersed throughout the genome. In conclusion, DNA based marker assisted selection (MAS) efficiently confirmed the interspecific recombinants. The results provided evidence that MAS can enhance the authenticity of selection in mungbean improvement program.

  19. Dog obesity--the need for identifying predisposing genetic markers.

    Science.gov (United States)

    Switonski, M; Mankowska, M

    2013-12-01

    Incidence of overweight and obesity in dogs exceeds 30%, and several breeds are predisposed to this heritable phenotype. Rapid progress of canine genomics and advanced knowledge on the genetic background of human obesity bring a unique opportunity to perform such studies in dogs. Natural candidate genes for obesity are these encoding adipokines. Extended studies in humans indicated that polymorphisms of three of them, i.e. ADIPOQ, IL1 and TNF, are associated with predisposition to obesity. On the other hand, the use of genome-wide association studies revealed an association between human obesity and polymorphism of more than 50 other genes. Until now only few preliminary reports on polymorphism of canine FTO, MC4R, MC3R and PPARG genes have been published. Since the dog is a valuable model organism for human diseases one can foresee that such studies may also contribute to an in-depth understanding of human obesity pathogenesis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Genetic architecture and bottleneck analyses of Salem Black goat breed based on microsatellite markers

    Directory of Open Access Journals (Sweden)

    A. K. Thiruvenkadan

    2014-09-01

    Full Text Available Aim: The present study was undertaken in Salem Black goat population for genetic analysis at molecular level to exploit the breed for planning sustainable improvement, conservation and utilization, which subsequently can improve the livelihood of its stakeholders. Materials and Methods: Genomic DNA was isolated from blood samples of 50 unrelated Salem Black goats with typical phenotypic features in several villages in the breeding tract and the genetic characterization and bottleneck analysis in Salem Black goat was done using 25 microsatellite markers as recommended by the Food and Agricultural Organization, Rome, Italy. The basic measures of genetic variation were computed using bioinformatic software. To evaluate the Salem Black goats for mutation drift equilibrium, three tests were performed under three different mutation models, viz., infinite allele model (IAM, stepwise mutation model (SMM and two-phase model (TPM and the observed gene diversity (He and expected equilibrium gene diversity (Heq were estimated under different models of microsatellite evolution. Results: The study revealed that the observed number of alleles ranged from 4 (ETH10, ILSTS008 to 17 (BM64444 with a total of 213 alleles and mean of 10.14±0.83 alleles across loci. The overall observed heterozygosity, expected heterozygosity, inbreeding estimate and polymorphism information content values were 0.631±0.041, 0.820±0.024, 0.233±0.044 and 0.786±0.023 respectively indicating high genetic diversity. The average observed gene diversities (He pooled over different markers was 0.829±0.024 and the average expected gene diversities under IAM, TPM and SMM models were 0.769±0.026, 0.808±0.024 and 0.837±0.020 respectively. The number of loci found to exhibit gene diversity excess under IAM, TPM and SMM models were 18, 17 and 12 respectively. Conclusion: All the three statistical tests, viz., sign test, standardized differences test and Wilcoxon sign rank test, revealed

  1. New chloroplast microsatellite markers suitable for assessing genetic diversity of Lolium perenne and other related grass species.

    Science.gov (United States)

    Diekmann, Kerstin; Hodkinson, Trevor R; Barth, Susanne

    2012-11-01

    Lolium perenne (perennial ryegrass) is the most important forage grass species of temperate regions. We have previously released the chloroplast genome sequence of L. perenne 'Cashel'. Here nine chloroplast microsatellite markers are published, which were designed based on knowledge about genetically variable regions within the L. perenne chloroplast genome. These markers were successfully used for characterizing the genetic diversity in Lolium and different grass species. Chloroplast genomes of 14 Poaceae taxa were screened for mononucleotide microsatellite repeat regions and primers designed for their amplification from nine loci. The potential of these markers to assess genetic diversity was evaluated on a set of 16 Irish and 15 European L. perenne ecotypes, nine L. perenne cultivars, other Lolium taxa and other grass species. All analysed Poaceae chloroplast genomes contained more than 200 mononucleotide repeats (chloroplast simple sequence repeats, cpSSRs) of at least 7 bp in length, concentrated mainly in the large single copy region of the genome. Nucleotide composition varied considerably among subfamilies (with Pooideae biased towards poly A repeats). The nine new markers distinguish L. perenne from all non-Lolium taxa. TeaCpSSR28 was able to distinguish between all Lolium species and Lolium multiflorum due to an elongation of an A(8) mononucleotide repeat in L. multiflorum. TeaCpSSR31 detected a considerable degree of microsatellite length variation and single nucleotide polymorphism. TeaCpSSR27 revealed variation within some L. perenne accessions due to a 44-bp indel and was hence readily detected by simple agarose gel electrophoresis. Smaller insertion/deletion events or single nucleotide polymorphisms detected by these new markers could be visualized by polyacrylamide gel electrophoresis or DNA sequencing, respectively. The new markers are a valuable tool for plant breeding companies, seed testing agencies and the wider scientific community due to

  2. Weight of the evidence of genetic investigations of ancestry informative markers

    DEFF Research Database (Denmark)

    Tvedebrink, Torben; Eriksen, Poul Svante; Mogensen, Helle Smidt

    2018-01-01

    Ancestry-informative markers (AIMs) are markers that give information about the ancestry of individuals. They are used in forensic genetics for predicting the geographic origin of the investigated individual in crime and identification cases. In the exploration of the genogeographic origin...

  3. Genetic diversity of sweet sorghum germplasm in Mexico using AFLP and SSR markers

    Science.gov (United States)

    The objective of this work was to evaluate the diversity and genetic relationships between lines and varieties of the sweet sorghum (Sorghum bicolor) germplasm bank of the National Institute for Forestry, Agriculture and Livestock Research, Mexico, using AFLP and SSR markers. The molecular markers ...

  4. Genetic Investigations Using Immuno-biochemical Markers in a Maramureş Brown Cattle Population

    Directory of Open Access Journals (Sweden)

    Nicoleta Isfan

    2011-05-01

    Full Text Available The study of the genetic markers and identifying new markers involves an increasing number of research projects in the fields of genetics of immunology, biochemical genetics, molecular genetics, quantity genetics and the genetic improvement of animals. Some studies on genes frequency determining the red cells specificity and for whey hemoglobin are approached in the present report. In this way, some blood factors, most of them belonging to B system (the most complex system in cattle have been evidenced. The lowest gene frequency was present in K factor (7%, and highest one in, O1, G’ , W and F1 (100%. In addition to basic importance on knowledge and determination of cattle population genetic structure for studied protein loci, another theme proposed to correlate hemoglobin type with some traits of economical importance: milk yield, fat and protein content, fat and protein yield. Higher performance was recorded by HbA/HbA individuals.

  5. Evaluation of genetic diversity in rice using SSR markers

    African Journals Online (AJOL)

    hemant

    2012-10-18

    Oct 18, 2012 ... advantages and disadvantages, the choice of the marker system to be used ... absence (0) of unique and shared polymorphic products was used to generate ..... and any two of them can be used to differentiate rice genotypes.

  6. Genetic diversity of the Northern Morocco goat population assessed with microsatellite markers

    Directory of Open Access Journals (Sweden)

    Najat El Moutchou

    2017-12-01

    Full Text Available The main goal of this work was to study the genetic diversity of the Northern Morocco goat population through the analysis of 19 microsatellites in 144 animals from 61 herds. To detect a possible population structure, three distinct geographic subpopulations were characterized as a function of climate and environmental influences. Most of the markers were highly polymorphic, and the results revealed considerable genetic variation across the studied loci. A total of 204 alleles were detected, with an average number of 10.7 per locus. The PIC average was 0.728, and four microsatellites showed a significant deviation (p< 0.05 from Hardy-Weinberg Equilibrium. Analysis of molecular variance (AMOVA indicated that only 0.5% of the variation corresponded to differences among subpopulations, and 99.5% corresponded to differences among individuals. Factorial correspondence analysis showed intense admixtures across the putative subpopulations, and the subdivision related to geographical or environmental adaptation was undetectable. The Northern Morocco goat population presented high genetic diversity and a lack of population structure. The main reason for these findings is the absence of the breed concept (reproductively closed population, resulting in uncontrolled crossbreeding with exotic breeds and other local goats.

  7. Genetic diversity of the Northern Morocco goat population assessed with microsatellite markers

    Energy Technology Data Exchange (ETDEWEB)

    El Moutchou, N.; González-Martínez, A.M.; Chentouf, M.; Lairini, K.; Rodero, E.

    2017-07-01

    The main goal of this work was to study the genetic diversity of the Northern Morocco goat population through the analysis of 19 microsatellites in 144 animals from 61 herds. To detect a possible population structure, three distinct geographic subpopulations were characterized as a function of climate and environmental influences. Most of the markers were highly polymorphic, and the results revealed considerable genetic variation across the studied loci. A total of 204 alleles were detected, with an average number of 10.7 per locus. The PIC average was 0.728, and four microsatellites showed a significant deviation (p< 0.05) from Hardy-Weinberg Equilibrium. Analysis of molecular variance (AMOVA) indicated that only 0.5% of the variation corresponded to differences among subpopulations, and 99.5% corresponded to differences among individuals. Factorial correspondence analysis showed intense admixtures across the putative subpopulations, and the subdivision related to geographical or environmental adaptation was undetectable. The Northern Morocco goat population presented high genetic diversity and a lack of population structure. The main reason for these findings is the absence of the breed concept (reproductively closed population), resulting in uncontrolled crossbreeding with exotic breeds and other local goats.

  8. Genetic diversity of the Northern Morocco goat population assessed with microsatellite markers

    International Nuclear Information System (INIS)

    El Moutchou, N.; González-Martínez, A.M.; Chentouf, M.; Lairini, K.; Rodero, E.

    2017-01-01

    The main goal of this work was to study the genetic diversity of the Northern Morocco goat population through the analysis of 19 microsatellites in 144 animals from 61 herds. To detect a possible population structure, three distinct geographic subpopulations were characterized as a function of climate and environmental influences. Most of the markers were highly polymorphic, and the results revealed considerable genetic variation across the studied loci. A total of 204 alleles were detected, with an average number of 10.7 per locus. The PIC average was 0.728, and four microsatellites showed a significant deviation (p< 0.05) from Hardy-Weinberg Equilibrium. Analysis of molecular variance (AMOVA) indicated that only 0.5% of the variation corresponded to differences among subpopulations, and 99.5% corresponded to differences among individuals. Factorial correspondence analysis showed intense admixtures across the putative subpopulations, and the subdivision related to geographical or environmental adaptation was undetectable. The Northern Morocco goat population presented high genetic diversity and a lack of population structure. The main reason for these findings is the absence of the breed concept (reproductively closed population), resulting in uncontrolled crossbreeding with exotic breeds and other local goats.

  9. Evaluation of Pulasan (Nephelium ramboutan-ake Genetic Diversity in Bogor, West Java, Using Microsatellite Markers

    Directory of Open Access Journals (Sweden)

    Amelia Luisyane Puhili

    2016-11-01

    Full Text Available Pulasan (Nephelium ramboutan-ake (Labill. Leenh fruit is highly similar to rambutan rapiah (Nephelium lappaceum fruit with ovate shape, sweet and sour fresh taste, but it has a thick rind. The diversity of pulasan is little informed including in Bogor. The objective of this study was to analyze the genetic diversity of pulasan from Bogor revealed by microsatellite marker. The DNA of 63 individuals from 10 populations of pulasan were extracted using CTAB method and amplified using two primer sets, LMLY6 (GA9(CA2(GA4 dan LMLY12 (CT11. DNA amplification product was visualized and arranged in a matrix of binary data then analyzed the value of the number of different alleles (Na, the number of effective alleles (Ne, Shannon information index (I, heterozygosity (He, and the percentage of polymorphism (PLP. The results of the analysis showed the highest genetic diversity was found in North Bogor (He=0.313. The genetic diversity within a population (61% was higher than that among populations (39%. A dendrogram was constructed using the Unweighted Pair Group Method with arithmetic Mean (UPGMA. The similarity index ranged from 52 to 100% that means there are close relationships among individuals. Cluster analyses grouped some individuals originated from different locations in the same group. The levels of heterozygosity within a population was determined by the history of each individual in a population.

  10. Development of microsatellite markers to genetically differentiate populations of Octopus minor from Korea and China.

    Science.gov (United States)

    Kang, Jung-Ha; Kim, Yi-Kyung; Park, Jung-Youn; An, Chel-Min; Jun, Je-Chun

    2012-08-01

    Of the more than 300 octopus species, Octopus minor is one of the most popular and economically important species in Eastern Asia, including Korea, along with O. vulgaris, O. ocellatus, and O. aegina. We developed 19 microsatellite markers from Octopus minor and eight polymorphic markers were developed to analyze the genetic diversity and relationships among four octopus populations from Korea and three from China. The number of alleles per locus varied from 10 to 49, and allelic richness per locus ranged from 2 to 16.4 across all populations. The average allele number among the populations was 11.1, with a minimum of 8.3 and a maximum of 13.6. The mean allelic richness was 8.7 in all populations. The Hardy-Weinberg equilibrium (HWE) test revealed significant deviation in 19 of the 56 single-locus sites, and null alleles were presumed in five of eight loci. The pairwise F ( ST ) values between populations from Korea and China differed significantly in all pairwise comparisons. The genetic distances between the China and Korea samples ranged from 0.161 to 0.454. The genetic distances among the populations from Korea ranged from 0.033 to 0.090, with an average of 0.062; those among populations from China ranged from 0.191 to 0.316, with an average of 0.254. The populations from Korea and China formed clearly separated into clusters via an unweighted pair group method with arithmetic mean dendrogram. Furthermore, a population from muddy flats on the western coast of the Korean Peninsula and one from a rocky area on Jeju Island formed clearly separated subclusters. An assignment test based on the allele distribution discriminated between the Korean and Chinese origins with 96.9 % accuracy.

  11. Genetic diversity of sago palm in Indonesia based on chloroplast DNA (cpDNA markers

    Directory of Open Access Journals (Sweden)

    MEMEN SURAHMAN

    2010-07-01

    Full Text Available Abbas B, Renwarin Y, Bintoro MH, Sudarsono, Surahman M, Ehara H (2010 Genetic diversity of sago palm in Indonesia based on chloroplast DNA (cpDNA markers. Biodiversitas 11: 112-117. Sago palm (Metroxylon sagu Rottb. was believed capable to accumulate high carbohydrate content in its trunk. The capability of sago palm producing high carbohydrate should be an appropriate criterion for defining alternative crops in anticipating food crisis. The objective of this research was to study genetic diversity of sago palm in Indonesia based on cpDNA markers. Total genome extraction was done following the Qiagen DNA isolation protocols 2003. Single Nucleotide Fragments (SNF analyses were performed by using ABI Prism GeneScanR 3.7. SNF analyses detected polymorphism revealing eleven alleles and ten haplotypes from total 97 individual samples of sago palm. Specific haplotypes were found in the population from Papua, Sulawesi, and Kalimantan. Therefore, the three islands will be considered as origin of sago palm diversities in Indonesia. The highest haplotype numbers and the highest specific haplotypes were found in the population from Papua suggesting this islands as the centre and the origin of sago palm diversities in Indonesia. The research had however no sufficient data yet to conclude the Papua origin of sago palm. Genetic hierarchies and differentiations of sago palm samples were observed significantly different within populations (P=0.04574, among populations (P=0.04772, and among populations within the island (P=0.03366, but among islands no significant differentiations were observed (P= 0.63069.

  12. Covariance Association Test (CVAT) Identifies Genetic Markers Associated with Schizophrenia in Functionally Associated Biological Processes.

    Science.gov (United States)

    Rohde, Palle Duun; Demontis, Ditte; Cuyabano, Beatriz Castro Dias; Børglum, Anders D; Sørensen, Peter

    2016-08-01

    Schizophrenia is a psychiatric disorder with large personal and social costs, and understanding the genetic etiology is important. Such knowledge can be obtained by testing the association between a disease phenotype and individual genetic markers; however, such single-marker methods have limited power to detect genetic markers with small effects. Instead, aggregating genetic markers based on biological information might increase the power to identify sets of genetic markers of etiological significance. Several set test methods have been proposed: Here we propose a new set test derived from genomic best linear unbiased prediction (GBLUP), the covariance association test (CVAT). We compared the performance of CVAT to other commonly used set tests. The comparison was conducted using a simulated study population having the same genetic parameters as for schizophrenia. We found that CVAT was among the top performers. When extending CVAT to utilize a mixture of SNP effects, we found an increase in power to detect the causal sets. Applying the methods to a Danish schizophrenia case-control data set, we found genomic evidence for association of schizophrenia with vitamin A metabolism and immunological responses, which previously have been implicated with schizophrenia based on experimental and observational studies. Copyright © 2016 by the Genetics Society of America.

  13. Using microsatellite markers to analyze genetic diversity in 14 sheep types in Iran

    Directory of Open Access Journals (Sweden)

    M. T. Vajed Ebrahimi

    2017-07-01

    Full Text Available Investigation of genetic relationship among populations has been traditionally based on the analysis of allele frequencies at different loci. The prime objective of this research was to measure the genetic polymorphism of five microsatellite markers (McMA2, BM6444, McMA26, HSC, and OarHH35 and study genetic diversity of 14 sheep types in Iran. Genomic DNA was extracted from blood samples of 565 individuals using an optimized salting-out DNA extraction procedure. The polymerase chain reaction (PCR was successfully performed with the specific primers. Some locus–population combinations were not at Hardy–Weinberg equilibrium (P < 0. 05. The microsatellite analysis revealed high allelic and gene diversity in all 14 breeds. Pakistani and Arabi breeds showed the highest mean number of alleles (11.8 and 11 respectively, while the highest value for polymorphic information content was observed for the Arabi breed (0.88. A UPGMA (unweighted pair group method with arithmetic mean dendrogram based on the Nei's standard genetic distance among studied breeds showed a separate cluster for Arabi and Pakistani breeds and another cluster for other breeds. The Shannon index (H0 for McMA2, BM6444, McMA26, HSC, and OarHH35 was 2.31, 2.17, 2.27, 2.04 and 2.18, respectively, and polymorphic information content (PIC values were 0.88, 0.92, 0.87, 0.84, and 0.86 for McMA2, BM6444, McMA26, HSC, and OarHH35, respectively. The high degree of variability demonstrated within the studied sheep types implies that these populations are rich reservoirs of genetic diversity that must be preserved.

  14. Unraveling the genetic structure of Brazilian commercial sugarcane cultivars through microsatellite markers.

    Science.gov (United States)

    Manechini, João Ricardo Vieira; da Costa, Juliana Borges; Pereira, Bruna Turcatto; Carlini-Garcia, Luciana Aparecida; Xavier, Mauro Alexandre; Landell, Marcos Guimarães de Andrade; Pinto, Luciana Rossini

    2018-01-01

    The Brazilian sugarcane industry plays an important role in the worldwide supply of sugar and ethanol. Investigation into the genetic structure of current commercial cultivars and comparisons to the main ancestor species allow sugarcane breeding programs to better manage crosses and germplasm banks as well as to promote its rational use. In the present study, the genetic structure of a group of Brazilian cultivars currently grown by commercial producers was assessed through microsatellite markers and contrasted with a group of basic germplasm mainly composed of Saccharum officinarum and S. spontaneum accessions. A total of 285 alleles was obtained by a set of 12 SSRs primer pairs that taken together were able to efficiently distinguish and capture the genetic variability of sugarcane commercial cultivars and basic germplasm accessions allowing its application in a fast and cost-effective way for routine cultivar identification and management of sugarcane germplasm banks. Allelic distribution revealed that 97.6% of the cultivar alleles were found in the basic germplasm while 42% of the basic germplasm alleles were absent in cultivars. Of the absent alleles, 3% was exclusive to S. officinarum, 33% to S. spontaneum and 19% to other species/exotic hybrids. We found strong genetic differentiation between the Brazilian commercial cultivars and the two main species (S. officinarum: [Formula: see text] = 0.211 and S. spontaneum: [Formula: see text] = 0.216, Pcommercial cultivars. Average dissimilarity within cultivars was 1.2 and 1.4 times lower than that within S. officinarum and S. spontaneum. Genetic divergence found between cultivars and S. spontaneum accessions has practical applications for energy cane breeding programs as the choice of more divergent parents will maximize the frequency of transgressive individuals in the progeny.

  15. Development and characterization of highly polymorphic long TC repeat microsatellite markers for genetic analysis of peanut

    Directory of Open Access Journals (Sweden)

    Macedo Selma E

    2012-02-01

    Full Text Available Abstract Background Peanut (Arachis hypogaea L. is a crop of economic and social importance, mainly in tropical areas, and developing countries. Its molecular breeding has been hindered by a shortage of polymorphic genetic markers due to a very narrow genetic base. Microsatellites (SSRs are markers of choice in peanut because they are co-dominant, highly transferrable between species and easily applicable in the allotetraploid genome. In spite of substantial effort over the last few years by a number of research groups, the number of SSRs that are polymorphic for A. hypogaea is still limiting for routine application, creating the demand for the discovery of more markers polymorphic within cultivated germplasm. Findings A plasmid genomic library enriched for TC/AG repeats was constructed and 1401 clones sequenced. From the sequences obtained 146 primer pairs flanking mostly TC microsatellites were developed. The average number of repeat motifs amplified was 23. These 146 markers were characterized on 22 genotypes of cultivated peanut. In total 78 of the markers were polymorphic within cultivated germplasm. Most of those 78 markers were highly informative with an average of 5.4 alleles per locus being amplified. Average gene diversity index (GD was 0.6, and 66 markers showed a GD of more than 0.5. Genetic relationship analysis was performed and corroborated the current taxonomical classification of A. hypogaea subspecies and varieties. Conclusions The microsatellite markers described here are a useful resource for genetics and genomics in Arachis. In particular, the 66 markers that are highly polymorphic in cultivated peanut are a significant step towards routine genetic mapping and marker-assisted selection for the crop.

  16. Genetic similarity among strawberry cultivars assessed by RAPD and ISSR markers

    Directory of Open Access Journals (Sweden)

    Rafael Gustavo Ferreira Morales

    2011-12-01

    Full Text Available Most strawberry (Fragaria × ananassa Duchesne cultivars used in Brazil are developed in other countries, it became clear the need to start the strawberry breeding program in the country. To start a breeding program is necessary the genetic characterization of the germplasm available. Molecular markers are important tools that can be used for this purpose. The objectives of the present study were to assess the genetic similarity among 11 strawberry cultivars using RAPD and ISSR molecular markers and to indicate the possible promising crosses. The DNA of the eleven strawberry cultivars was extracted and amplified by PCR with RAPD and ISSR primers. The DNA fragments were separated in agarose gel for the RAPD markers and in polyacrylamide gel for the ISSR markers. The genetic similarity matrix was estimated by the Jaccard coefficient. Based on this matrix, the cultivars were grouped using the UPGMA method. The dendogram generated by the RAPD markers distributed the cultivars in three groups while the ISSR markers generated two groups. There was no direct relationship between the marker groups when the two types of markers were compared. The grouping proposed by the ISSR markers was more coherent with the origin and the genealogy of the cultivars than that proposed by the RAPD markers, and it can be considered the most efficient method for the study of genetic divergence in strawberry. The most promising crosses, based on the genetic divergence estimated from the RAPD and ISSR molecular data were between the Tudla and Ventana and the Oso Grande and Ventana cultivars, respectively.

  17. GENETIC DIVERSITY OF SOME IRANIAN SWEET CHERRY (PRUNUS AVIUM) CULTIVARS USING MICROSATELLITE MARKERS AND MORPHOLOGICAL TRAITS.

    Science.gov (United States)

    Farsad, A; Esna-Ashari, M

    2016-01-01

    The aim of this study was to characterize 23 important Iranian sweet cherry (Prunus avium) cultivars collected from different provinces of Iran and 1 foreign cultivar, which was used as control, considered for breeding programs by using 21 microsatellite markers and 27 morphological traits. In sweet cherry (Prunus avium) accessions, leaf, fruit, and stone morphological characters were evaluated during two consecutive years. The study revealed a high variability in the set of evaluated sweet cherry accessions. The majority of important correlations were determined among variables representing fruit and leaf size and variables related to color. Cluster analysis distinguished sweet cherry accessions into two distinct groups. Principal component analysis (PCA) of qualitative and quantitative morphological parameters explained over 86.59% of total variability in the first seven axes. In PCA, leaf traits such as leaf length and width, and fruit traits such as length, width, and weight, and fruit flesh and juice color were predominant in the first two components, indicating that they were useful for the assessment of sweet cherry germplasm characterization. Out of 21 SSR markers, 16 were polymorphic, producing 177 alleles that varied from 4 to 16 alleles (9.35 on average) with a mean heterozygosity value of 0.82 that produced successful amplifications and revealed DNA polymorphisms. Allele size varied from 95 to 290 bp. Cluster analyses showed that the studied sweet cherry genotypes were classified intofive main groups based mainly on their species characteristics and SSR data. In general, our results did not show a clear structuring of genetic variability within the Iranian diffusion area of sweet cherry, so it was not possible to draw any indications on regions of provenance delimitation. The results of this study contribute to a better understanding of sweet cherry genetic variations in Iran, thus making for more efficient programs aimed at preserving biodiversity and

  18. Genetic diversity studies in pea (Pisum sativum L.) using simple sequence repeat markers.

    Science.gov (United States)

    Kumari, P; Basal, N; Singh, A K; Rai, V P; Srivastava, C P; Singh, P K

    2013-03-13

    The genetic diversity among 28 pea (Pisum sativum L.) genotypes was analyzed using 32 simple sequence repeat markers. A total of 44 polymorphic bands, with an average of 2.1 bands per primer, were obtained. The polymorphism information content ranged from 0.657 to 0.309 with an average of 0.493. The variation in genetic diversity among these cultivars ranged from 0.11 to 0.73. Cluster analysis based on Jaccard's similarity coefficient using the unweighted pair-group method with arithmetic mean (UPGMA) revealed 2 distinct clusters, I and II, comprising 6 and 22 genotypes, respectively. Cluster II was further differentiated into 2 subclusters, IIA and IIB, with 12 and 10 genotypes, respectively. Principal component (PC) analysis revealed results similar to those of UPGMA. The first, second, and third PCs contributed 21.6, 16.1, and 14.0% of the variation, respectively; cumulative variation of the first 3 PCs was 51.7%.

  19. Genetic diversity and structure of tea plant in Qinba area in China by three types of molecular markers.

    Science.gov (United States)

    Zhang, Yu; Zhang, Xiaojuan; Chen, Xi; Sun, Wang; Li, Jiao

    2018-01-01

    advantages in terms of NPB, PPB, Rp, EMR, and MI. Nevertheless, the values of PIC showed different trends, with the highest values generated with EST-SSR, followed by SCoT and SRAP. The average band informativeness showed similar trends. Correlation between genetic distances produced by three different molecular markers were very small, thus it is not recommended to use a single marker to evaluate genetic diversity and population structure. It is hence suggested that combining of different types of molecular markers should be used to evaluate the genetic diversity and population structure. It also seems crucial to screen out, for each type of molecular markers, core markers of Camellia sinensis . This study revealed that genes of exotic plant varieties have been constantly integrated into the gene pool of Qinba area tea. A low level of genetic diversity was observed; this is shown by an average coefficient of genetic similarity of 0.74.

  20. An annotated genetic map of loblolly pine based on microsatellite and cDNA markers

    Directory of Open Access Journals (Sweden)

    Wimalanathan Kokulapalan

    2011-01-01

    Full Text Available Abstract Background Previous loblolly pine (Pinus taeda L. genetic linkage maps have been based on a variety of DNA polymorphisms, such as AFLPs, RAPDs, RFLPs, and ESTPs, but only a few SSRs (simple sequence repeats, also known as simple tandem repeats or microsatellites, have been mapped in P. taeda. The objective of this study was to integrate a large set of SSR markers from a variety of sources and published cDNA markers into a composite P. taeda genetic map constructed from two reference mapping pedigrees. A dense genetic map that incorporates SSR loci will benefit complete pine genome sequencing, pine population genetics studies, and pine breeding programs. Careful marker annotation using a variety of references further enhances the utility of the integrated SSR map. Results The updated P. taeda genetic map, with an estimated genome coverage of 1,515 cM(Kosambi across 12 linkage groups, incorporated 170 new SSR markers and 290 previously reported SSR, RFLP, and ESTP markers. The average marker interval was 3.1 cM. Of 233 mapped SSR loci, 84 were from cDNA-derived sequences (EST-SSRs and 149 were from non-transcribed genomic sequences (genomic-SSRs. Of all 311 mapped cDNA-derived markers, 77% were associated with NCBI Pta UniGene clusters, 67% with RefSeq proteins, and 62% with functional Gene Ontology (GO terms. Duplicate (i.e., redundant accessory and paralogous markers were tentatively identified by evaluating marker sequences by their UniGene cluster IDs, clone IDs, and relative map positions. The average gene diversity, He, among polymorphic SSR loci, including those that were not mapped, was 0.43 for 94 EST-SSRs and 0.72 for 83 genomic-SSRs. The genetic map can be viewed and queried at http://www.conifergdb.org/pinemap. Conclusions Many polymorphic and genetically mapped SSR markers are now available for use in P. taeda population genetics, studies of adaptive traits, and various germplasm management applications. Annotating mapped

  1. Genetic structure and relationships of an associated population in ramie (Boehmeria nivea L. Gaud evaluated by SSR markers

    Directory of Open Access Journals (Sweden)

    Siyuan Zhu

    2017-01-01

    Full Text Available Ramie (Boehmeria nivea L. Gaud is one of the most important natural fibre crops. For enhanced crop development, it is necessary to understand its population structure and genetic relationships. In this study, we assessed the genetic diversity and population structure of 134 ramie accessions (with three plants per accession from 12 regions by using 36 simple sequence repeat markers. The 36 microsatellite primers revealed 149 alleles in 134 ramie populations, with an average of 4.14 alleles per locus. The structure analysis divided the 134 ramie accessions into three groups (I, II and III, and into further six subgroups (a, b, c, d, e and f. In Subgroup b, 13 accessions were from Guizhou Province, 9 accessions were from Sichuan Province and the remaining 20 accessions were from Chongqing (4, Hunan (8, Guangxi (4, Jiangxi (2, Yunan (1 and Taiwan (1. In Subgroup d, 22 accessions were from Guizhou Province and the remaining 17 accessions were from Chongqing (6, Sichuan (5 and Yunnan (6. It can be inferred that the genetic background of these ramie accessions did not always correlate with their geographical regions. Similar results were found in Subgroups a and f. The pair-wise genetic similarity coefficients between the 134 accessions ranged from 0.390 to 0.939, which suggested that there was abundant genetic diversity in the ramie accessions. These markers have provided important information about the genetic structure of ramie, which can contribute to future breeding and improvement programmes for these resources.

  2. Use of SNP markers to conserve genome-wide genetic diversity in livestock

    NARCIS (Netherlands)

    Engelsma, K.A.

    2012-01-01

    Conservation of genetic diversity in livestock breeds is important since it is, both within and between breeds, under threat. The availability of large numbers of SNP markers has resulted in new opportunities to estimate genetic diversity in more detail, and to improve prioritization of animals

  3. Genetic diversity based on SSR markers in maize (Zea mays L.)

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 87; Issue 3. Genetic diversity based on SSR markers in maize (Zea mays L.) landraces from Wuling mountain region in China. Yao Qi-Lun Fang Ping Kang Ke-Cheng Pan Guang-Tang. Research Note Volume 87 Issue 3 December 2008 pp 287-291 ...

  4. Matrilineal Heritage in Southern Iberia Reveals Deep Genetic Links between Continents.

    Science.gov (United States)

    Hernández, Candela L; Calderón, Rosario

    2017-03-01

    Within the Mediterranean Basin, the Iberian Peninsula has been a focus of attraction for several cultures and civilizations from its prehistory and history, making it a target territory for studying human migration patterns and peopling processes using a wide and heterogeneous spectrum of genomic markers. While its Cantabrian fringe represents the most regularly analysed area in terms of its mitochondrial diversity, the absence of monographic surveys on the maternal genetic composition of southern Iberians (i.e., Andalusians) is striking. In this work, we present a comprehensive view of various aspects of the human maternal heritage of the autochthonous Andalusian population regarding specific mitochondrial haplogroups considered key candidates to determine the genetic relationship between Europe and Africa. Data reveal that southern Iberian populations do not have genetically homogeneous mitochondrial DNA profiles, and their observed genetic affinity with north-western African populations represents strong signals of old, sustained and bidirectional human movements between the northern and southern shores of the western Mediterranean. Thorough analyses of African mtDNA haplogroups have shown that the most relevant African contribution within Iberian Peninsula could be explained as a consequence of prehistoric events. The subsequent historic episodes helped to strengthen the ties between both shores. In southern Iberia, mitochondrial and other genetic markers show that the Strait of Gibraltar together with its surrounding maritime areas should be considered a bridge between continents. More broadly, the Mediterranean Sea has acted as a transport surface, that is, as a permeable barrier to human migrations from prehistoric and historic times. In conclusion, this research contributes to our knowledge of processes that have shaped the recent human genetic history in the Mediterranean and, more specifically, of the population dynamics that the inhabitants of southern

  5. A genetic linkage map of hexaploid naked oat constructed with SSR markers

    Directory of Open Access Journals (Sweden)

    Gaoyuan Song

    2015-08-01

    Full Text Available Naked oat is a unique health food crop in China. Using 202 F2 individuals derived from a hybrid between the variety 578 and the landrace Sanfensan, we constructed a genetic linkage map consisting of 22 linkage groups covering 2070.50 cM and including 208 simple sequence repeat (SSR markers. The minimum distance between adjacent markers was 0.01 cM and the average was 9.95 cM. Each linkage group contained 2–22 markers. The largest linkage group covered 174.40 cM and the shortest one covered 36.80 cM, with an average of 94.11 cM. Thirty-six markers (17.3% showing distorted segregation were distributed across linkage groups LG5 to LG22. This map complements published oat genetic maps and is applicable for quantitative trait locus analysis, gene cloning and molecular marker-assisted selection.

  6. Microsatellite marker analysis reveals the complex phylogeographic history of Rhododendron ferrugineum (Ericaceae in the Pyrenees.

    Directory of Open Access Journals (Sweden)

    Olivia Charrier

    Full Text Available Genetic variation within plant species is determined by a number of factors such as reproductive mode, breeding system, life history traits and climatic events. In alpine regions, plants experience heterogenic abiotic conditions that influence the population's genetic structure. The aim of this study was to investigate the genetic structure and phylogeographic history of the subalpine shrub Rhododendron ferrugineum across the Pyrenees and the links between the populations in the Pyrenees, the Alps and Jura Mountains. We used 27 microsatellite markers to genotype 645 samples from 29 Pyrenean populations, three from the Alps and one from the Jura Mountains. These data were used to estimate population genetics statistics such as allelic richness, observed heterozygosity, expected heterozygosity, fixation index, inbreeding coefficient and number of migrants. Genetic diversity was found to be higher in the Alps than in the Pyrenees suggesting colonization waves from the Alps to the Pyrenees. Two separate genetic lineages were found in both the Alps and Pyrenees, with a substructure of five genetic clusters in the Pyrenees where a loss of genetic diversity was noted. The strong differentiation among clusters is maintained by low gene flow across populations. Moreover, some populations showed higher genetic diversity than others and presented rare alleles that may indicate the presence of alpine refugia. Two lineages of R. ferrugineum have colonized the Pyrenees from the Alps. Then, during glaciation events R. ferrugineum survived in the Pyrenees in different refugia such as lowland refugia at the eastern part of the chain and nunataks at high elevations leading to a clustered genetic pattern.

  7. Analysis of genetic diversity of certain species of Piper using RAPD-based molecular markers.

    Science.gov (United States)

    Chowdhury, Utpal; Tanti, Bhaben; Rethy, Parakkal; Gajurel, Padma Raj

    2014-09-01

    The utility of RAPD markers in assessing genetic diversity and phenetic relationships of six different species of Piper from Northeast India was investigated. Polymerase chain reaction (PCR) with four arbitrary 10-mer oligonucleotide primers applied to the six species produced a total of 195 marker bands, of which, 159 were polymorphic. On average, six RAPD fragments were amplified per reaction. In the UPGMA phenetic dendrogram based on Jaccard's coefficient, the different accessions of Piper showed a high level of genetic variation. This study may be useful in identifying diverse genetic stocks of Piper, which may then be conserved on a priority basis.

  8. [Genetic polymorphism of flax Linum usitatissimum based on use of molecular cytogenetic markers].

    Science.gov (United States)

    Rachinskaia, O A; Lemesh, V A; Muravenko, O V; Iurkevich, O Iu; Guzenko, E V; Bol'sheva, N L; Bogdanova, M V; Samatadze, T E; Popov, K V; Malyshev, S V; Shostak, N G; Heller, K; Khotyleva, L V; Zelenin, A V

    2011-01-01

    Using a set of approaches based on the use of molecular cytogenetic markers (DAPI/C-banding, estimation of the total area of DAPI-positive regions in prophase nuclei, FISH with 26S and 5S rDNA probes) and the microsatellite (SSR-PCR) assay, we studied genomic polymorphism in 15 flax (Linum usitatissimum L.) varieties from different geographic regions belonging to three directions of selection (oil, fiber, and intermediate flaxes) and in the k-37 x Viking hybrid. All individual chromosomes have been identified in the karyotypes of these varieties on the basis of the patterns of differential DAPI/C-banding and the distribution of 26S and 5S rDNA, and idiograms of the chromosomes have been generated. Unlike the oil flax varieties, the chromosomes in the karyotypes of the fiber flax varieties have, as a rule, pericentromeric and telomeric DAPI-positive bands of smaller size, but contain larger intercalary regions. Two chromosomal rearrangements (chromosome 3 inversions) were discovered in the variety Luna and in the k-37 x Viking hybrid. In both these forms, no colocalization of 26S rDNA and 5S rDNA on the satellite chromosome was detected. The SSR assay with the use of 20 polymorphic pairs of primers revealed 22 polymorphic loci. Based on the SSR data, we analyzed genetic similarity of the flax forms studied and constructed a genetic similarity dendrogram. The genotypes studied here form three clusters. The oil varieties comprise an independent cluster. The genetically related fiber flax varieties Vita and Luna, as well as the landrace Lipinska XIII belonging to the intermediate type, proved to be closer to the oil varieties than the remaining fiber flax varieties. The results of the molecular chromosomal analysis in the fiber and oil flaxes confirm their very close genetic similarity. In spite of this, the combined use of the chromosomal and molecular markers has opened up unique possibilities for describing the genotypes of flax varieties and creating their genetic

  9. Microsatellite DNA as shared genetic markers among conifer species

    Science.gov (United States)

    Craig S. Echt; G.G. Vendramin; C.D. Nelson; P. Marquardt

    1999-01-01

    Polymerase chain reaction (PCR) primer pairs for 21 simple sequence repeat (SSR) loci in Pinus strobus L. and 6 in Pinus radiata D. Don. were evaluated to determine whether SSR marker amplification could be achieved in 10 other conifer species. Eighty percent of SSR primer pairs for (AC)n loci that were polymorphic in P. ...

  10. Comparative results of RAPD and ISSR markers for genetic diversity ...

    African Journals Online (AJOL)

    PRECIOUS

    the mean level of genetic similarity with populations of M. baccifera by using RAPD .... The statistical data for 9 RAPD and 17 ISSR primers used for analyzing 12 accessions of M. .... (Numerical Taxonomy and Multivariate Analysis System, Bio-.

  11. Genetic variant as a marker for bladder cancer therapy

    Science.gov (United States)

    Patients who have inherited a specific common genetic variant develop bladder cancer tumors that strongly express a protein known as prostate stem cell antigen (PSCA), which is also expressed in many pancreatic and prostate tumors, according to research a

  12. NOTE - Genetic variability among cassava accessions based on SSR markers

    Directory of Open Access Journals (Sweden)

    Márcia de Nazaré Oliveira Ribeiro

    2011-01-01

    Full Text Available The aim of this study was to characterize and estimate the genetic similarity among 93 cassava accessions. The DNAamplification was performed with 14 microsatellite primers. The amplification products were separated by a polyacrylamide gelelectrophoresis, showing a polymorphism formation, through which the accessions were discriminated against. The genetic similarityamong accessions of cassava was estimated by the Dice coefficient. Cluster analysis was carried out using the UPGMA method. Thepolymorphic primers amplified a total of 26 alleles with 2-4 alleles per loci. The genetic similarity ranged from 0.16 to 0.96. Theaverage values for observed and expected heterozygosity were 0.18 and 0.46, respectively. Twenty genetic similarity clusters weredetermined, demonstrating diversity among accessions, suggesting the possibility of heterotic hybrid generation.

  13. Using inter simple sequence repeat (ISSR) markers to study genetic ...

    African Journals Online (AJOL)

    enoh

    2012-04-10

    Apr 10, 2012 ... Genetic relationships among the cultivars was assessed by using six inter simple sequence ... polymorphism breeders of this species in order to find the ..... well as the high level of heterozygosity due to the cross- pollinating ...

  14. Genetic diversity analysis of chewing sugarcane (Saccharum officinarum L. varieties by using RAPD markers

    Directory of Open Access Journals (Sweden)

    S. M. Sarid Ullah

    2013-01-01

    Full Text Available In the present study an efficient and easy method was followed for the isolation of DNA from meristem cylinder in five chewing sugarcane varieties, namely Amrita, Bomaby, Babulal (Co.527, Q83 and Misrimala. The quality and quantity of DNA were assured by visual estimation using agarose gel electrophoresis and UV spectrophotometry. The highest amount of DNA was retrieved from the Amrita (3250 ng/ml and the lowest amount was attained from the variety Q83 (1450 ng/ml. The amount of recovered DNA was enough for PCR amplification and marker studies such as random amplified polymorphic DNA (RAPD. Using RAPD markers, bands obtained from fingerprinting (190 bp to 1200 bp showed 73.5% polymorphism. The dendrogram, based on linkage distance using unweighted pair group method of arithmetic means (UPGMA, indicated segregation of the five chewing varieties of sugarcane into two main clusters. Amrita, Bombay and Misrimala were grouped in cluster 1 (C1 followed by sub-clusters. Babulal and Q83 were grouped in cluster 2 (C2. The results of the present investigation also revealed that the twenty RAPD primers were able to identify and classify the chewing sugarcane varieties based on their genetic relationship.

  15. Development of STS and CAPS markers for variety identification and genetic diversity analysis of tea germplasm in Taiwan.

    Science.gov (United States)

    Hu, Chih-Yi; Tsai, You-Zen; Lin, Shun-Fu

    2014-12-01

    Tea (Camellia sinensis) is an important economic crop in Taiwan. Particularly, two major commercial types of tea (Paochong tea and Oolong tea) which are produced in Taiwan are famous around the world, and they must be manufactured with specific cultivars. Nevertheless, many elite cultivars have been illegally introduced to foreign countries. Because of the lower cost, large amount of "Taiwan-type tea" are produced and imported to Taiwan, causing a dramatic damage in the tea industry. It is very urgent to develop the stable, fast and reliable DNA markers for fingerprinting tea cultivars in Taiwan and protecting intellectual property rights for breeders. Furthermore, genetic diversity and phylogenetic relationship evaluations of tea germplasm in Taiwan are imperative for parental selection in the cross-breeding program and avoidance of genetic vulnerability. Two STS and 37 CAPS markers derived from cytoplasmic genome and ESTs of tea have been developed in this study providing a useful tool for distinguishing all investigated germplasm. For identifying 12 prevailing tea cultivars in Taiwan, five core markers, including each one of mitochondria and chloroplast, and three nuclear markers, were developed. Based on principal coordinate analysis and cluster analysis, 55 tea germplasm in Taiwan were divided into three groups: sinensis type (C. sinensis var. sinensis), assamica type (C. sinensis var. assamica) and Taiwan wild species (C. formosensis). The result of genetic diversity analysis revealed that both sinensis (0.44) and assamica (0.41) types had higher genetic diversity than wild species (0.25). The close genetic distance between the first (Chin-Shin-Oolong) and the third (Shy-Jih-Chuen) prevailing cultivars was found, and many recently released varieties are the descents of Chin-Shin-Oolong. This implies the potential risk of genetic vulnerability for tea cultivation in Taiwan. We have successfully developed a tool for tea germplasm discrimination and genetic

  16. Using genetic markers to orient the edges in quantitative trait networks: the NEO software.

    Science.gov (United States)

    Aten, Jason E; Fuller, Tova F; Lusis, Aldons J; Horvath, Steve

    2008-04-15

    Systems genetic studies have been used to identify genetic loci that affect transcript abundances and clinical traits such as body weight. The pairwise correlations between gene expression traits and/or clinical traits can be used to define undirected trait networks. Several authors have argued that genetic markers (e.g expression quantitative trait loci, eQTLs) can serve as causal anchors for orienting the edges of a trait network. The availability of hundreds of thousands of genetic markers poses new challenges: how to relate (anchor) traits to multiple genetic markers, how to score the genetic evidence in favor of an edge orientation, and how to weigh the information from multiple markers. We develop and implement Network Edge Orienting (NEO) methods and software that address the challenges of inferring unconfounded and directed gene networks from microarray-derived gene expression data by integrating mRNA levels with genetic marker data and Structural Equation Model (SEM) comparisons. The NEO software implements several manual and automatic methods for incorporating genetic information to anchor traits. The networks are oriented by considering each edge separately, thus reducing error propagation. To summarize the genetic evidence in favor of a given edge orientation, we propose Local SEM-based Edge Orienting (LEO) scores that compare the fit of several competing causal graphs. SEM fitting indices allow the user to assess local and overall model fit. The NEO software allows the user to carry out a robustness analysis with regard to genetic marker selection. We demonstrate the utility of NEO by recovering known causal relationships in the sterol homeostasis pathway using liver gene expression data from an F2 mouse cross. Further, we use NEO to study the relationship between a disease gene and a biologically important gene co-expression module in liver tissue. The NEO software can be used to orient the edges of gene co-expression networks or quantitative trait

  17. Global phylogeography with mixed-marker analysis reveals male-mediated dispersal in the endangered scalloped hammerhead shark (Sphyrna lewini.

    Directory of Open Access Journals (Sweden)

    Toby S Daly-Engel

    Full Text Available The scalloped hammerhead shark, Sphyrna lewini, is a large endangered predator with a circumglobal distribution, observed in the open ocean but linked ontogenetically to coastal embayments for parturition and juvenile development. A previous survey of maternal (mtDNA markers demonstrated strong genetic partitioning overall (global Φ(ST = 0.749 and significant population separations across oceans and between discontinuous continental coastlines.We surveyed the same global range with increased sample coverage (N = 403 and 13 microsatellite loci to assess the male contribution to dispersal and population structure. Biparentally inherited microsatellites reveal low or absent genetic structure across ocean basins and global genetic differentiation (F(ST = 0.035 over an order of magnitude lower than the corresponding measures for maternal mtDNA lineages (Φ(ST = 0.749. Nuclear allelic richness and heterozygosity are high throughout the Indo-Pacific, while genetic structure is low. In contrast, allelic diversity is low while population structure is higher for populations at the ends of the range in the West Atlantic and East Pacific.These data are consistent with the proposed Indo-Pacific center of origin for S. lewini, and indicate that females are philopatric or adhere to coastal habitats while males facilitate gene flow across oceanic expanses. This study includes the largest sampling effort and the most molecular loci ever used to survey the complete range of a large oceanic predator, and findings emphasize the importance of incorporating mixed-marker analysis into stock assessments of threatened and endangered shark species.

  18. Application of next-generation sequencing technology to study genetic diversity and identify unique SNP markers in bread wheat from Kazakhstan.

    Science.gov (United States)

    Shavrukov, Yuri; Suchecki, Radoslaw; Eliby, Serik; Abugalieva, Aigul; Kenebayev, Serik; Langridge, Peter

    2014-09-28

    New SNP marker platforms offer the opportunity to investigate the relationships between wheat cultivars from different regions and assess the mechanism and processes that have led to adaptation to particular production environments. Wheat breeding has a long history in Kazakhstan and the aim of this study was to explore the relationship between key varieties from Kazakhstan and germplasm from breeding programs for other regions. The study revealed 5,898 polymorphic markers amongst ten cultivars, of which 2,730 were mapped in the consensus genetic map. Mapped SNP markers were distributed almost equally across the A and B genomes, with between 279 and 484 markers assigned to each chromosome. Marker coverage was approximately 10-fold lower in the D genome. There were 863 SNP markers identified as unique to specific cultivars, and clusters of these markers (regions containing more than three closely mapped unique SNPs) showed specific patterns on the consensus genetic map for each cultivar. Significant intra-varietal genetic polymorphism was identified in three cultivars (Tzelinnaya 3C, Kazakhstanskaya rannespelaya and Kazakhstanskaya 15). Phylogenetic analysis based on inter-varietal polymorphism showed that the very old cultivar Erythrospermum 841 was the most genetically distinct from the other nine cultivars from Kazakhstan, falling in a clade together with the American cultivar Sonora and genotypes from Central and South Asia. The modern cultivar Kazakhstanskaya 19 also fell into a separate clade, together with the American cultivar Thatcher. The remaining eight cultivars shared a single sub-clade but were categorised into four clusters. The accumulated data for SNP marker polymorphisms amongst bread wheat genotypes from Kazakhstan may be used for studying genetic diversity in bread wheat, with potential application for marker-assisted selection and the preparation of a set of genotype-specific markers.

  19. A fifth major genetic group among honeybees revealed in Syria.

    Science.gov (United States)

    Alburaki, Mohamed; Bertrand, Bénédicte; Legout, Hélène; Moulin, Sibyle; Alburaki, Ali; Sheppard, Walter Steven; Garnery, Lionel

    2013-12-06

    Apiculture has been practiced in North Africa and the Middle-East from antiquity. Several thousand years of selective breeding have left a mosaic of Apis mellifera subspecies in the Middle-East, many uniquely adapted and survived to local environmental conditions. In this study we explore the genetic diversity of A. mellifera from Syria (n = 1258), Lebanon (n = 169) and Iraq (n = 35) based on 14 short tandem repeat (STR) loci in the context of reference populations from throughout the Old World (n = 732). Our data suggest that the Syrian honeybee Apis mellifera syriaca occurs in both Syrian and Lebanese territories, with no significant genetic variability between respective populations from Syria and Lebanon. All studied populations clustered within a new fifth independent nuclear cluster, congruent with an mtDNA Z haplotype identified in a previous study. Syrian honeybee populations are not associated with Oriental lineage O, except for sporadic introgression into some populations close to the Turkish and Iraqi borders. Southern Syrian and Lebanese populations demonstrated high levels of genetic diversity compared to the northern populations. This study revealed the effects of foreign queen importations on Syrian bee populations, especially for the region of Tartus, where extensive introgression of A. m. anatolica and/or A. m. caucasica alleles were identified. The policy of creating genetic conservation centers for the Syrian subspecies should take into consideration the influence of the oriental lineage O from the northern Syrian border and the large population of genetically divergent indigenous honeybees located in southern Syria.

  20. Molecular Markers and Cotton Genetic Improvement: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Waqas Malik

    2014-01-01

    Full Text Available Narrow genetic base and complex allotetraploid genome of cotton (Gossypium hirsutum L. is stimulating efforts to avail required polymorphism for marker based breeding. The availability of draft genome sequence of G. raimondii and G. arboreum and next generation sequencing (NGS technologies facilitated the development of high-throughput marker technologies in cotton. The concepts of genetic diversity, QTL mapping, and marker assisted selection (MAS are evolving into more efficient concepts of linkage disequilibrium, association mapping, and genomic selection, respectively. The objective of the current review is to analyze the pace of evolution in the molecular marker technologies in cotton during the last ten years into the following four areas: (i comparative analysis of low- and high-throughput marker technologies available in cotton, (ii genetic diversity in the available wild and improved gene pools of cotton, (iii identification of the genomic regions within cotton genome underlying economic traits, and (iv marker based selection methodologies. Moreover, the applications of marker technologies to enhance the breeding efficiency in cotton are also summarized. Aforementioned genomic technologies and the integration of several other omics resources are expected to enhance the cotton productivity and meet the global fiber quantity and quality demands.

  1. The Ventasso Horse: genetic characterization by microsatellites markers

    Directory of Open Access Journals (Sweden)

    M. Blasi

    2010-04-01

    Full Text Available The genetic structure of Ventasso Horse (VH was investigated using 12 microsatellites. The analyses were carried out on 117 VH individuals and the results were compared with those obtained analysing 11 other breeds reared in Italy. All microsatellites were polymorphic in VH and in the other breeds. A total of 124 alleles (from 6 to 19 alleles per microsatellite were detected. Average heterozygosity was 0.743 in VH and ranged from 0.613 to 0.759 in the other breeds. The mean FST value had an average value of 0.0932. Genetic distances were calculated using Nei’s standard genetic distance (Ds. The smallest Ds values were found between VH and Anglo-Arab, Thoroughbred, Maremmano and Lipizzan horse breeds. Phylogenetic trees constructed using neighbour-joining method showed two clear separate clusters: the first includes Bardigiano, Haflinger and Italian Heavy Draught Horse, the second contains the other 9 breeds.

  2. Microsatellite marker analysis of the genetic variability in Hanoverian Hounds.

    Science.gov (United States)

    Lüpke, L; Distl, O

    2005-04-01

    Genetic variability of the dog breed Hanoverian Hound was analysed using a set of 16 microsatellites. The sample of 92 dogs was representative for the total current population [n=334, inbreeding coefficient 9.2%, relationship coefficient 11.2%] with respect to the level and distribution of the inbreeding and relationship coefficients. All microsatellites used were in Hardy-Weinberg equilibrium. The average number of alleles was 6.4. The average observed heterozygosity (H(O)) was slightly higher than the expected heterozygosity (H(E)). Dinucleotide microsatellites exhibited lower polymorphism information content (PIC) than tetranucleotide microsatellites (0.52 versus 0.66). The average PIC was 0.61. The individual inbreeding coefficient was negatively related to the average H(O) of all microsatellites, whereas the proportion of genes from introducing of Hanoverian Hounds from abroad showed no relationships to H(O). We found that the genetic variability in the Hanoverian Hounds analysed here was unexpectedly higher than that previously published for dog breeds of similar population size. Even in dog breeds of larger population size heterogyzosity was seldom higher than that observed here. The rather high genetic variability as quantified by polymorphic microsatellites in Hanoverian Hounds may be due to a large genetic variation in the founder animals of this breed and to the fact that this genetic diversity could be maintained despite genetic bottlenecks experienced by this breed in the 1920s and 1950s and despite the presence of high inbreeding and relationship coefficients for more than 50 years.

  3. Retrotransposon-Based Molecular Markers for Analysis of Genetic Diversity within the Genus Linum

    Science.gov (United States)

    Melnikova, Nataliya V.; Kudryavtseva, Anna V.; Zelenin, Alexander V.; Lakunina, Valentina A.; Yurkevich, Olga Yu.; Speranskaya, Anna S.; Dmitriev, Alexey A.; Krinitsina, Anastasia A.; Belenikin, Maxim S.; Uroshlev, Leonid A.; Snezhkina, Anastasiya V.; Sadritdinova, Asiya F.; Koroban, Nadezda V.; Amosova, Alexandra V.; Samatadze, Tatiana E.; Guzenko, Elena V.; Lemesh, Valentina A.; Savilova, Anastasya M.; Rachinskaia, Olga A.; Kishlyan, Natalya V.; Rozhmina, Tatiana A.; Bolsheva, Nadezhda L.; Muravenko, Olga V.

    2014-01-01

    SSAP method was used to study the genetic diversity of 22 Linum species from sections Linum, Adenolinum, Dasylinum, Stellerolinum, and 46 flax cultivars. All the studied flax varieties were distinguished using SSAP for retrotransposons FL9 and FL11. Thus, the validity of SSAP method was demonstrated for flax marking, identification of accessions in genebank collections, and control during propagation of flax varieties. Polymorphism of Fl1a, Fl1b, and Cassandra insertions were very low in flax varieties, but these retrotransposons were successfully used for the investigation of Linum species. Species clusterization based on SSAP markers was in concordance with their taxonomic division into sections Dasylinum, Stellerolinum, Adenolinum, and Linum. All species of sect. Adenolinum clustered apart from species of sect. Linum. The data confirmed the accuracy of the separation in these sections. Members of section Linum are not as closely related as members of other sections, so taxonomic revision of this section is desirable. L. usitatissimum accessions genetically distant from modern flax cultivars were revealed in our work. These accessions are of utmost interest for flax breeding and introduction of new useful traits into flax cultivars. The chromosome localization of Cassandra retrotransposon in Linum species was determined. PMID:25243121

  4. Genetic markers for prediction of normal tissue toxicity after radiotherapy

    DEFF Research Database (Denmark)

    Alsner, Jan; Andreassen, Christian Nicolaj; Overgaard, Jens

    2008-01-01

    During the last decade, a number of studies have supported the hypothesis that there is an important genetic component to the observed interpatient variability in normal tissue toxicity after radiotherapy. This review summarizes the candidate gene association studies published so far on the risk...

  5. Simple sequence repeat (SSR) markers analysis of genetic diversity ...

    African Journals Online (AJOL)

    hope&shola

    2012-04-24

    Apr 24, 2012 ... erucic acid in the oil and low glucosinolate content in the meal has made rapeseed a valuable source of high quality oil for people and nutritional protein for live-stock. (Qiu et al., 2006). Previous studies have demonstrated that yellow seeds have a thinner seed coat than black seeds in the same genetic ...

  6. Genetic and molecular markers of proteinuria and glomerulosclerosis

    NARCIS (Netherlands)

    IJpelaar, Daphne Hubertina Thea

    2009-01-01

    The clinical course of renal diseases depends on the type of renal disorder, genetic factors, environmental influences, and the severity of renal fibrosis. Proteinuria is the abnormal amount of proteins present in the urine. Proteinuria is an independent risk factor for development of renal

  7. Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers

    NARCIS (Netherlands)

    Atienza, S.G.; Satovic, Z.; Petersen, K.K.; Dolstra, O.; Martin, A.

    2002-01-01

    We have used an "offspring cross" mapping strategy in combination with the random amplified polymorphic DNA (RAPD) assay to construct the first genetic map of the species Miscanthus sinensis (2n = 2x = 38). This map is based on an outbred population of 89 individuals resulting from the cross between

  8. Association of susceptible genetic markers and autoantibodies in ...

    Indian Academy of Sciences (India)

    antigen (HLA) locus accounting for at least 30% of overall genetic risk. Non-HLA genes, i.e. ..... to specific regions of DNA and helps control the activity of certain genes. Encodes a transcription factor ..... The cost of such an extensive panel may ...

  9. Microsatellite markers suggest high genetic diversity in an urban ...

    Indian Academy of Sciences (India)

    FRANCISCO MORINHA

    diversity in an urban population of Cooper's hawks (Accipiter cooperii). J. Genet. 95, e19–e24. ... high quality habitat for this species (Boggie and Mannan. 2014) and the rapid ... The high densities of birds in urban populations can result in the ..... comparing urban and rural Cooper's hawk populations are mandatory to ...

  10. The Effect of Pleistocene Climate Fluctuations on Distribution of European Abalone (Haliotis tuberculata), Revealed by Combined Mitochondrial and Nuclear Marker Analyses.

    Science.gov (United States)

    Roussel, Valérie; Van Wormhoudt, Alain

    2017-04-01

    The genetic differentiation among the populations of the European abalone Haliotis tuberculata was investigated using different markers to better understand the evolutionary history and exchanges between populations. Three markers were used: mitochondrial cytochrome oxidase I (COI), the sperm lysin nuclear gene, and eight nuclear microsatellites. These markers present different characteristics concerning mutation rate and inheritance, which provided complementary information about abalone history and gene diversity. Genetic diversity and relationships among subspecies were calculated from a sample of approximately 500 individuals, collected from 17 different locations in the north-eastern Atlantic Ocean, Macaronesia, and Mediterranean Sea. COI marker was used to explore the phylogeny of the species with a network analysis and two phylogenetic methods. The analysis revealed 18 major haplotypes grouped into two distinct clades with a pairwise sequence divergence up to 3.5 %. These clades do not correspond to subspecies but revealed many contacts along Atlantic coast during the Pleistocene interglaciations. The sperm lysin gene analysis separated two different subtaxa: one associated to Macaronesian islands, and the other to all other populations. Moreover, a small population of the northern subtaxon was isolated in the Adriatic Sea-probably before the separation of the two lineages-and evolved independently. Microsatellites were analyzed by different genetics methods, including the Bayesian clustering method and migration patterns analysis. It revealed genetically distinct microsatellite patterns among populations from Mediterranean Sea, Brittany and Normandy, Morocco, and Canary and Balearic islands. Gene flow is asymmetric among the regions; the Azores and the Canary Islands are particularly isolated and have low effective population sizes. Our results support the hypothesis that climate changes since the Pleistocene glaciations have played a major role in the

  11. First genetic linkage map of Taraxacum koksaghyz Rodin based on AFLP, SSR, COS and EST-SSR markers.

    Science.gov (United States)

    Arias, Marina; Hernandez, Monica; Remondegui, Naroa; Huvenaars, Koen; van Dijk, Peter; Ritter, Enrique

    2016-08-04

    Taraxacum koksaghyz Rodin (TKS) has been studied in many occasions as a possible alternative source for natural rubber production of good quality and for inulin production. Some tire companies are already testing TKS tire prototypes. There are also many investigations on the production of bio-fuels from inulin and inulin applications for health improvement and in the food industry. A limited amount of genomic resources exist for TKS and particularly no genetic linkage map is available in this species. We have constructed the first TKS genetic linkage map based on AFLP, COS, SSR and EST-SSR markers. The integrated linkage map with eight linkage groups (LG), representing the eight chromosomes of Russian dandelion, has 185 individual AFLP markers from parent 1, 188 individual AFLP markers from parent 2, 75 common AFLP markers and 6 COS, 1 SSR and 63 EST-SSR loci. Blasting the EST-SSR sequences against known sequences from lettuce allowed a partial alignment of our TKS map with a lettuce map. Blast searches against plant gene databases revealed some homologies with useful genes for downstream applications in the future.

  12. Genetic Diversity of Acacia mangium Seed Orchard in Wonogiri Indonesia Using Microsatellite Markers

    Directory of Open Access Journals (Sweden)

    VIVI YUSKIANTI

    2012-09-01

    Full Text Available Genetic diversity is important in tree improvement programs. To evaluate levels of genetic diversity of first generation Acacia mangium seedling seed orchard in Wonogiri, Central Java, Indonesia, three populations from each region of Papua New Guinea (PNG and Queensland, Australia (QLD were selected and analyzed using 25 microsatellite markers. Statistical analysis showed that PNG populations have higher number of detected alleles and level of genetic diversity than QLD populations. This study provides a basic information about the genetic background of the populations used in the development of an A. mangium seed orchard in Indonesia.

  13. Genetic Diversity Analysis of Medicinally Important Horticultural Crop Aegle marmelos by ISSR Markers.

    Science.gov (United States)

    Mujeeb, Farina; Bajpai, Preeti; Pathak, Neelam; Verma, Smita Rastogi

    2017-01-01

    Inter simple sequence repeat (ISSR) markers help in identifying and determining the extent of genetic diversity in cultivars. Here, we describe their application in determining the genetic diversity of bael (Aegle marmelos Corr.). Universal ISSR primers are selected and their marker characteristics such as polymorphism information content, effective multiplex ratio and marker index have been evaluated. ISSR-PCR is then performed using universal ISSR primers to generate polymorphic bands. This information is used to determine the degree of genetic similarity among the bael varieties/accessions by cluster analysis using unweighted pair-group method with arithmetic averages (UPGMA). This technology is valuable for biodiversity conservation and for making an efficient choice of parents in breeding programs.

  14. Evaluation of genetic diversity amongst Descurainia sophia L. genotypes by inter-simple sequence repeat (ISSR) marker.

    Science.gov (United States)

    Saki, Sahar; Bagheri, Hedayat; Deljou, Ali; Zeinalabedini, Mehrshad

    2016-01-01

    Descurainia sophia is a valuable medicinal plant in family of Brassicaceae. To determine the range of diversity amongst D. sophia in Iran, 32 naturally distributed plants belonging to six natural populations of the Iranian plateau were investigated by inter-simple sequence repeat (ISSR) markers. The average percentage of polymorphism produced by 12 ISSR primers was 86 %. The PIC values for primers ranged from 0.22 to 0.40 and Rp values ranged between 6.5 and 19.9. The relative genetic diversity of the populations was not high (Gst =0.32). However, the value of gene flow revealed by the ISSR marker was high (Nm = 1.03). UPGMA clustering method based on Jaccard similarity coefficient grouped the genotypes into two major clusters. Graph results from Neighbor-Net Network generated after a 1000 bootstrap test using Jaccard coefficient, and STRUCTURE analysis confirmed the UPGMA clustering. The first three PCAs represented 57.31 % of the total variation. The high levels of genetic diversity were observed within populations, which is useful in breeding and conservation programs. ISSR is found to be an eligible marker to study genetic diversity of D. sophia.

  15. Results for five sets of forensic genetic markers studied in a Greek population sample.

    Science.gov (United States)

    Tomas, C; Skitsa, I; Steinmeier, E; Poulsen, L; Ampati, A; Børsting, C; Morling, N

    2015-05-01

    A population sample of 223 Greek individuals was typed for five sets of forensic genetic markers with the kits NGM SElect™, SNPforID 49plex, DIPplex®, Argus X-12 and PowerPlex® Y23. No significant deviation from Hardy-Weinberg expectations was observed for any of the studied markers after Holm-Šidák correction. Statistically significant (P21) individuals for 16 autosomal STRs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Chapter 10: Mining genome-wide genetic markers.

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    Full Text Available Genome-wide association study (GWAS aims to discover genetic factors underlying phenotypic traits. The large number of genetic factors poses both computational and statistical challenges. Various computational approaches have been developed for large scale GWAS. In this chapter, we will discuss several widely used computational approaches in GWAS. The following topics will be covered: (1 An introduction to the background of GWAS. (2 The existing computational approaches that are widely used in GWAS. This will cover single-locus, epistasis detection, and machine learning methods that have been recently developed in biology, statistic, and computer science communities. This part will be the main focus of this chapter. (3 The limitations of current approaches and future directions.

  17. Markers of Psychological Differences and Social and Health Inequalities: Possible Genetic and Phenotypic Overlaps.

    Science.gov (United States)

    Mõttus, René; Marioni, Riccardo; Deary, Ian J

    2017-02-01

    Associations between markers of ostensible psychological characteristics and social and health inequalities are pervasive but difficult to explain. In some cases, there may be causal influence flowing from social and health inequalities to psychological differences, whereas sometimes it may be the other way around. Here, we focus on the possibility that some markers that we often consider as indexing different domains of individual differences may in fact reflect at least partially overlapping genetic and/or phenotypic bases. For example, individual differences in cognitive abilities and educational attainment appear to reflect largely overlapping genetic influences, whereas cognitive abilities and health literacy may be almost identical phenomena at the phenotypic, never mind genetic, level. We make the case for employing molecular genetic data and quantitative genetic techniques to better understand the associations of psychological individual differences with social and health inequalities. We illustrate these arguments by using published findings from the Lothian Birth Cohort and the Generation Scotland studies. We also present novel findings pertaining to longitudinal stability and change in older age personality traits and some correlates of the change, molecular genetic data-based heritability estimates of Neuroticism and Extraversion, and the genetic correlations of these personality traits with markers of social and health inequalities. © 2015 The Authors. Journal of Personality published by Wiley Periodicals, Inc.

  18. Genetic Markers for Western Corn Rootworm Resistance to Bt Toxin

    OpenAIRE

    Flagel, Lex E.; Swarup, Shilpa; Chen, Mao; Bauer, Christopher; Wanjugi, Humphrey; Carroll, Matthew; Hill, Patrick; Tuscan, Meghan; Bansal, Raman; Flannagan, Ronald; Clark, Thomas L.; Michel, Andrew P.; Head, Graham P.; Goldman, Barry S.

    2015-01-01

    Western corn rootworm (WCR) is a major maize (Zea mays L.) pest leading to annual economic losses of more than 1 billion dollars in the United States. Transgenic maize expressing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are widely used for the management of WCR. However, cultivation of Bt-expressing maize places intense selection pressure on pest populations to evolve resistance. Instances of resistance to Bt toxins have been reported in WCR. Developing genet...

  19. APPLICATION OF RYE SSR MARKERS FOR DETECTION OF GENETIC DIVERSITY IN TRITICALE

    Directory of Open Access Journals (Sweden)

    Želmíra Balážová

    2016-06-01

    Full Text Available Present study aims to testify usefulness of particular rye SSR markers for the detection of genetic diversity degree in the set of 20 triticale cultivars coming from different European countries. For this purpose, a set of six rye SSR markers were used. The set of six polymorphic markers provided 22 alleles with an average frequency of 3.67 alleles per locus. The number of alleles ranged between 2 (SCM43 and 5 (SCM28, SCM86. Resulting from the number and frequency of alleles diversity index (DI, polymorphic information content (PIC and probability of identity (PI were calculated. An average value of PIC for 6 SSR markers was 0.505, the highest value was calculated for rye SSR marker SCM86 (0.706. Based on UPGMA algorithm, a dendrogram was constructed. In dendrogram cultivars were divided into two main clusters. The first cluster contained two cultivars, Russian cultivar Greneder and Slovak cultivar Largus, and second included 18 cultivars. Genetically the closest were two Greek cultivars (Niobi and Thisbi and were close to other Greek cultivar Vrodi. It was possible to separate triticale cultivars of spring and winter form in dendrogram. Results showed the utility of rye microsatellite markers for estimation of genetic diversity of European triticale genotypes leading to genotype identification.

  20. Inherited Genetic Markers for Thrombophilia in Northeastern Iran (a Clinical-Based Report

    Directory of Open Access Journals (Sweden)

    Fatemeh Keify

    2014-05-01

    Full Text Available Background: Thrombophilia is a main predisposition to thrombosis due to a procoagulant state. Several point mutations play key roles in blood-clotting disorders, which are grouped under the term thrombophilia. These thrombophilic mutations are methylenetetrahydrofolate reductase (MTHFR, C677T, and A1298C, factor V Leiden (G1691A, prothrombin gene mutation (factor II, G20210A, and plasminogen activator inhibitor (PAI. In the present study, we assessed the prevalence of the above thrombophilia markers in patients with recurrent pregnancy loss or first and second trimester abortions, infertility, and failed in vitro fertilization (IVF. Methods: This study was conducted among 457 cases those were referred to detect the inherited genetic markers for thrombophilia. Markers for MTHFR, Factor II, and Factor V were assessed by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP, and PAI was assessed by Amplification Refractory Mutation System (ARMS-PCR. Results: Two hundred sixty cases (56.89% were diagnosed as having at least one thrombophilia marker, whereas 197 cases (43.11% had no thrombophilia markers and were normal. Conclusion: According to the current study, the pattern of abnormal genetic markers for thrombophilia in northeastern Iran demonstrates the importance of genetic evaluations in patients who show clinical abnormalities with recurrent spontaneous abortion (RSA or other serious obstetric complications.

  1. Assessing the genetic relationships of Curcuma alismatifolia varieties using simple sequence repeat markers.

    Science.gov (United States)

    Taheri, S; Abdullah, T L; Abdullah, N A P; Ahmad, Z; Karimi, E; Shabanimofrad, M R

    2014-09-05

    The genus Curcuma is a member of the ginger family (Zingiberaceae) that has recently become popular for use as flowering pot plants, both indoors and as patio and landscape plants. We used PCR-based molecular markers (SSRs) to elucidate genetic variation and relationships between five varieties of Curcuma (Curcuma alismatifolia) cultivated in Malaysia. Of the primers tested, 8 (of 17) SSR primers were selected for their reproducibility and high rates of polymorphism. The number of presumed alleles revealed by the SSR analysis ranged from two to six alleles, with a mean value of 3.25 alleles per locus. The values of HO and HE ranged from 0 to 0.8 (mean value of 0.2) and 0.1837 to 0.7755 (mean value of 0.5102), respectively. Eight SSR primers yielded 26 total amplified fragments and revealed high rates of polymorphism among the varieties studied. The polymorphic information content varied from 0.26 to 0.73. Dice's similarity coefficient was calculated for all pairwise comparisons and used to construct an unweighted pair group method with arithmetic average (UPGMA) dendrogram. Similarity coefficient values from 0.2105 to 0.6667 (with an average of 0.4386) were found among the five varieties examined. A cluster analysis of data using a UPGMA algorithm divided the five varieties/hybrids into 2 groups.

  2. Genetic characterization of Toxoplasma gondii isolates from Portugal, Austria, and Israel reveals higher genetic variability within the type II lineage

    Science.gov (United States)

    This study compared genetic diversity of Toxoplasma gondii isolates from Portugal, Austria and Israel. For this, we genotyped 90 T. gondii isolates (16 from Portugal, 67 from Austria and 7 from Israel) using 10 nested PCR-restriction length polymorphism (RFLP) genetic markers and 15 microsatellite (...

  3. Genetic linkage mapping in an F2 perennial ryegrass population using DArT markers

    DEFF Research Database (Denmark)

    Tomaszewski, Céline; Byrne, Stephen; Foito, Alexandra

    2012-01-01

    Perennial ryegrass is the principal forage grass species used in temperate agriculture. In recent years, significant efforts have been made to develop molecular marker strategies to allow cost-effective characterization of a large number of loci simultaneously. One such strategy involves using DAr......T markers, and a DArT array has recently been developed for the Lolium-Festuca complex. In this study, we report the first use of the DArTFest array to generate a genetic linkage map based on 326 markers in a Lolium perenne F2 population, consisting of 325 genotypes. For proof of concept, the map was used...

  4. Genetic Diversity Analysis of South and East Asian Duck Populations Using Highly Polymorphic Microsatellite Markers

    Directory of Open Access Journals (Sweden)

    Dongwon Seo

    2016-04-01

    Full Text Available Native duck populations have lower productivity, and have not been developed as much as commercials duck breeds. However, native ducks have more importance in terms of genetic diversity and potentially valuable economic traits. For this reason, population discriminable genetic markers are needed for conservation and development of native ducks. In this study, 24 highly polymorphic microsatellite (MS markers were investigated using commercial ducks and native East and South Asian ducks. The average polymorphic information content (PIC value for all MS markers was 0.584, indicating high discrimination power. All populations were discriminated using 14 highly polymorphic MS markers by genetic distance and phylogenetic analysis. The results indicated that there were close genetic relationships among populations. In the structure analysis, East Asian ducks shared more haplotypes with commercial ducks than South Asian ducks, and they had more independent haplotypes than others did. These results will provide useful information for genetic diversity studies in ducks and for the development of duck traceability systems in the market.

  5. ASSOCIATION OF SOME BIOCHEMICAL-GENETIC MARKERS WITH THE REPRODUCTION PARAMETERS OF THE BOTOSANI KARAKUL EWES

    Directory of Open Access Journals (Sweden)

    GH. HRINCĂ

    2008-10-01

    Full Text Available The paper describes some associative aspects of various biochemical-genetic markers with the reproduction activity in ewes of the Botosani Karakul breed. The two most important reproduction parameters (fecundity and prolificacy were analyzed according to the genotypes or phenotypes of polymorph systems (haemoglobin, transferrin, albumin and blood potassium of females. The relationship between reproduction data and genetic markers in ewes was quantified both for each genotype (phenotype and for each mating couple type made up depending on the genotype (phenotype of the couple partners (homozygous x homozygous, homozygous x heterozygous or heterozygous x heterozygous. All these associative aspects and their results are discussed for each polymorph genetic system. The ewes which are heterozygous at different genetic marker loci are more fertile and more prolific than the ewes which are homozygous at the levels of these loci. The highest conception and lambing rates resulted from the mating couples in which both partners were heterozygous and the least lambs were obtained from the mating couples in which both partners were homozygous; the fertility and prolificacy had intermediate values in heterogeneous mating couples (heterozygotes x homozygotes but they were nearer to the case in which both mating couple partners were heterozygous. The sheep breeding field can benefit by the contribution of biochemical-genetic markers to optimize the selection criteria with a view to increasing the reproduction capacity of this species.

  6. Genetic relationship of a cucumber germplasm collection revealed ...

    Indian Academy of Sciences (India)

    SSR is a new marker system which is commonly developed ... A web tool, SSRIT (http://www.gramene.org/db/markers/ssrtool), was used for searching SSRs in the unigenes with the crite- ..... genomic library of cucumber (Cucumis sativus).

  7. Genetic diversity analysis among male and female Jojoba genotypes employing gene targeted molecular markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) markers.

    Science.gov (United States)

    Heikrujam, Monika; Kumar, Jatin; Agrawal, Veena

    2015-09-01

    To detect genetic variations among different Simmondsia chinensis genotypes, two gene targeted markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) were employed in terms of their informativeness and efficiency in analyzing genetic relationships among different genotypes. A total of 15 SCoT and 17 CBDP primers detected genetic polymorphism among 39 Jojoba genotypes (22 females and 17 males). Comparatively, CBDP markers proved to be more effective than SCoT markers in terms of percentage polymorphism as the former detecting an average of 53.4% and the latter as 49.4%. The Polymorphic information content (PIC) value and marker index (MI) of CBPD were 0.43 and 1.10, respectively which were higher than those of SCoT where the respective values of PIC and MI were 0.38 and 1.09. While comparing male and female genotype populations, the former showed higher variation in respect of polymorphic percentage and PIC, MI and Rp values over female populations. Nei's diversity (h) and Shannon index (I) were calculated for each genotype and found that the genotype "MS F" (in both markers) was highly diverse and genotypes "Q104 F" (SCoT) and "82-18 F" (CBDP) were least diverse among the female genotype populations. Among male genotypes, "32 M" (CBDP) and "MS M" (SCoT) revealed highest h and I values while "58-5 M" (both markers) was the least diverse. Jaccard's similarity co-efficient of SCoT markers ranged from 0.733 to 0.922 in female genotypes and 0.941 to 0.746 in male genotype population. Likewise, CBDP data analysis also revealed similarity ranging from 0.751 to 0.958 within female genotypes and 0.754 to 0.976 within male genotype populations thereby, indicating genetically diverse Jojoba population. Employing the NTSYS (Numerical taxonomy and multivariate analysis system) Version 2.1 software, both the markers generated dendrograms which revealed that all the Jojoba genotypes were clustered into two major groups, one group consisting of

  8. Phylogeographic structure of the commercially important tropical tree species Dryobalanops aromatica Gaertn. F. (Dipterocarpaceae revealed by microsatellite markers

    Directory of Open Access Journals (Sweden)

    Fifi Gus Dwiyanti

    2014-12-01

    Full Text Available Dryobalanops aromatica Gaertn. F. (Kapur is an economically important timber     species in Southeast Asia that can serve as a good model for studying the impact of the Pleistocene glaciations on the genetic diversity and distribution of species in tropical regions. Seven polymorphic microsatellite markers were        analyzed in five natural populations of D. aromatica (N = 120 individuals: Gunung Panti in Malay Peninsula, Lingga Island in Lingga Archipelago, Lambir Hills National Park, Limbang and Similajau National Park in Borneo. The level of gene diversity (HE for the five populations was relatively high with a range from 0.571 (Similajau to 0.729 (Gunung Panti. The high genetic diversity in the present study could be attributed to the larger refugia population sizes of D. aromatica than that of other species. The population genetic structure revealed two distinct groups: the Malay Peninsula-Lingga Archipelago and Borneo. This pattern suggests that populations in each geographical area might be the consequence of post-glacial expansion from one or two refugia, but that gene flow between different glacial refugia was fairly restricted. 

  9. Genetic Diversity Analysis in 27 Tomato Accessions Using Morphological and Molecular Markers

    Directory of Open Access Journals (Sweden)

    Catur Herison

    2018-02-01

    Full Text Available Genetic diversity is the most important aspect in tomato breeding activities. Better assessment on the diversity of the collected accessions will come up with better result of the cultivar development. This study aimed at analyzing the genetic diversity of 27 tomato accessions by morphological and molecular markers. Twenty seven accessions collected from various regions of Indonesia were planted in the field and evaluated for their morphological traits, and RAPD analyzed for their molecular markers. The UPGMA clustering analyzes, elaborating the combination of morphological and molecular data, indicated that the tomato accessions could be grouped into 5 major groups with 70 % genetic similarity levels. Current study indicated that although many accessions came from different locations, they congregated into the same group. Cherry, Kudamati 1 and Lombok 3 were the farthest genetic distant accessions to the others. Those three genotypes will be the most valuable accessions, when they were crossed with other accessions, for designing a prospective breeding program in the future.

  10. Analysis of the genetic relationships and diversity among 11 populations of Xanthoceras sorbifolia using phenotypic and microsatellite marker data

    Directory of Open Access Journals (Sweden)

    Zhan Shen

    2017-03-01

    Conclusions: Microsatellite markers can be used to efficiently distinguish X. sorbifolia populations and assess their genetic diversity. The information we have provided will contribute to the conservation and management of this important plant genetic resource.

  11. The Genetic Relationship between Leishmania aethiopica and Leishmania tropica Revealed by Comparing Microsatellite Profiles.

    Science.gov (United States)

    Krayter, Lena; Schnur, Lionel F; Schönian, Gabriele

    2015-01-01

    Leishmania (Leishmania) aethiopica and L. (L.) tropica cause cutaneous leishmaniases and appear to be related. L. aethiopica is geographically restricted to Ethiopia and Kenya; L. tropica is widely dispersed from the Eastern Mediterranean, through the Middle East into eastern India and in north, east and south Africa. Their phylogenetic inter-relationship is only partially revealed. Some studies indicate a close relationship. Here, eight strains of L. aethiopica were characterized genetically and compared with 156 strains of L. tropica from most of the latter species' geographical range to discern the closeness. Twelve unlinked microsatellite markers previously used to genotype strains of L. tropica were successfully applied to the eight strains of L. aethiopica and their microsatellite profiles were compared to those of 156 strains of L. tropica from various geographical locations that were isolated from human cases of cutaneous and visceral leishmaniasis, hyraxes and sand fly vectors. All the microsatellite profiles were subjected to various analytical algorithms: Bayesian statistics, distance-based and factorial correspondence analysis, revealing: (i) the species L. aethiopica, though geographically restricted, is genetically very heterogeneous; (ii) the strains of L. aethiopica formed a distinct genetic cluster; and (iii) strains of L. aethiopica are closely related to strains of L. tropica and more so to the African ones, although, by factorial correspondence analysis, clearly separate from them. The successful application of the 12 microsatellite markers, originally considered species-specific for the species L. tropica, to strains of L. aethiopica confirmed the close relationship between these two species. The Bayesian and distance-based methods clustered the strains of L. aethiopica among African strains of L. tropica, while the factorial correspondence analysis indicated a clear separation between the two species. There was no correlation between

  12. Genetic diversity of five local Swedish chicken breeds detected by microsatellite markers.

    Directory of Open Access Journals (Sweden)

    Abiye Shenkut Abebe

    Full Text Available This study aimed at investigating the genetic diversity, relationship and population structure of 110 local Swedish chickens derived from five breeds (Gotlandshöna, Hedemorahöna, Öländsk dvärghöna, Skånsk blommehöna, and Bohuslän- Dals svarthöna, in the rest of the paper the shorter name Svarthöna is used using 24 microsatellite markers. In total, one hundred thirteen alleles were detected in all populations, with a mean of 4.7 alleles per locus. For the five chicken breeds, the observed and expected heterozygosity ranged from 0.225 to 0.408 and from 0.231 to 0.515, with the lowest scores for the Svarthöna and the highest scores for the Skånsk blommehöna breeds, respectively. Similarly, the average within breed molecular kinship varied from 0.496 to 0.745, showing high coancestry, with Skånsk blommehöna having the lowest and Svarthöna the highest coancestry. Furthermore, all breeds showed significant deviations from Hardy-Weinberg expectations. Across the five breeds, the global heterozygosity deficit (FIT was 0.545, population differentiation index (FST was 0.440, and the global inbreeding of individuals within breed (FIS was 0.187. The phylogenetic relationships of chickens were examined using neighbor-joining trees constructed at the level of breeds and individual samples. The neighbor-joining tree constructed at breed level revealed two main clusters, with Hedemorahöna and Öländsk dvärghöna breeds in one cluster, and Gotlandshöna and Svarthöna breeds in the second cluster leaving the Skånsk blommehöna in the middle. Based on the results of the STRUCTURE analysis, the most likely number of clustering of the five breeds was at K = 4, with Hedemorahöna, Gotlandshöna and Svarthöna breeds forming their own distinct clusters, while Öländsk dvärghöna and Skånsk blommehöna breeds clustered together. Losses in the overall genetic diversity of local Swedish chickens due to breeds extinction varied from -1.46% to -6

  13. Tracing the evolution of male lineages in bears using genetic markers on the Y chromosome

    OpenAIRE

    Bidon, Tobias

    2015-01-01

    The mammalian family of bears (Ursidae) comprises eight extant species, occurring on four different continents. Among them are the iconic and well-known brown and polar bears, both widely distributed across the Northern hemisphere. Their intraspecific genetic structuring has been extensively investigated, albeit with a focus on genetic markers from maternally inherited parts of their genomes (mitochondrial DNA). The evolutionary relationship and divergence time between brown and polar bears h...

  14. Monitoring Genetic Stability in Quercus serrata Thunb. Somatic Embryogenesis Using RAPD Markers

    OpenAIRE

    Ramesh C., Thakur; Susumu, Goto; Katsuaki, Ishii; S. Mohan, Jain; Forestry and Forest Products Research Institute; Fukuoka Prefecture Forest Research and Extension Center; Forestry and Forest Products Research Institute; University of Helsinki

    1999-01-01

    Genetic stability of propagules regenerated via somatic embryogenesis is of paramount importance for its application to clonal forestry. Random amplified polymorphic DNA (RAPD) markers were used to determine the genetic stability in somatic embryogenesis of Quercus serrata Thunb. (Japanese white oak). Forty samples from an embryogenic line, consisting of regenerated plantlets, somatic embryos, and embryogenic calli, were examined using 54 decanucleotide primers. A total of 6520 clear reproduc...

  15. Analysis of the genetic diversity of Chinese native Cannabis sativa cultivars by using ISSR and chromosome markers.

    Science.gov (United States)

    Zhang, L G; Chang, Y; Zhang, X F; Guan, F Z; Yuan, H M; Yu, Y; Zhao, L J

    2014-12-12

    Hemp (Cannabis sativa) is an important fiber crop, and native cultivars exist widely throughout China. In the present study, we analyzed the genetic diversity of 27 important Chinese native hemp cultivars, by using inter-simple sequence repeats (ISSR) and chromosome markers. We determined the following chromosome formulas: 2n = 20 = 14m + 6sm; 2n = 20 = 20m; 2n = 20 = 18m + 2sm; 2n = 20 = 16m + 4sm; and 2n = 20 = 12m + 8sm. The results of our ISSR analysis revealed the genetic relationships among the 27 cultivars; these relationships were analyzed by using the unweighted pair-group method based on DNA polymorphism. Our results revealed that all of the native cultivars showed considerable genetic diversity. At a genetic distance of 0.324, the 27 varieties could be classified into five categories; this grouping corresponded well with the chromosome formulas. All of the investigated hemp cultivars represent relatively primitive types; moreover, the genetic distances show a geographical distribution, with a small amount of regional hybridity.

  16. Genetic diversity in Spanish donkey breeds using microsatellite DNA markers

    Directory of Open Access Journals (Sweden)

    Jordana Jordi

    2001-07-01

    Full Text Available Abstract Genetic diversity at 13 equine microsatellite loci was compared in five endangered Spanish donkey breeds: Andaluza, Catalana, Mallorquina, Encartaciones and Zamorano-Leonesa. All of the equine microsatellites used in this study were amplified and were polymorphic in the domestic donkey breeds with the exception of HMS1, which was monomorphic, and ASB2, which failed to amplify. Allele number, frequency distributions and mean heterozygosities were very similar among the Spanish donkey breeds. The unbiased expected heterozygosity (HE over all the populations varied between 0.637 and 0.684 in this study. The low GST value showed that only 3.6% of the diversity was between breeds (P A distance matrix showed little differentiation between Spanish breeds, but great differentiation between them and the Moroccan ass and also with the horse, used as an outgroup. These results confirm the potential use of equine microsatellite loci as a tool for genetic studies in domestic donkey populations, which could also be useful for conservation plans.

  17. Expanding Possibilities for Intervention against Small Ruminant Lentiviruses through Genetic Marker-Assisted Selective Breeding

    Science.gov (United States)

    White, Stephen N.; Knowles, Donald P.

    2013-01-01

    Small ruminant lentiviruses include members that infect sheep (ovine lentivirus [OvLV]; also known as ovine progressive pneumonia virus/maedi-visna virus) and goats (caprine arthritis encephalitis virus [CAEV]). Breed differences in seroprevalence and proviral concentration of OvLV had suggested a strong genetic component in susceptibility to infection by OvLV in sheep. A genetic marker test for susceptibility to OvLV has been developed recently based on the TMEM154 gene with validation data from over 2,800 sheep representing nine cohorts. While no single genotype has been shown to have complete resistance to OvLV, consistent association in thousands of sheep from multiple breeds and management conditions highlight a new strategy for intervention by selective breeding. This genetic marker-assisted selection (MAS) has the potential to be a useful addition to existing viral control measures. Further, the discovery of multiple additional genomic regions associated with susceptibility to or control of OvLV suggests that additional genetic marker tests may be developed to extend the reach of MAS in the future. This review will cover the strengths and limitations of existing data from host genetics as an intervention and outline additional questions for future genetic research in sheep, goats, small ruminant lentiviruses, and their host-pathogen interactions. PMID:23771240

  18. The Y chromosome as the most popular marker in genetic genealogy benefits interdisciplinary research.

    Science.gov (United States)

    Calafell, Francesc; Larmuseau, Maarten H D

    2017-05-01

    The Y chromosome is currently by far the most popular marker in genetic genealogy that combines genetic data and family history. This popularity is based on its haploid character and its close association with the patrilineage and paternal inherited surname. Other markers have not been found (yet) to overrule this status due to the low sensitivity and precision of autosomal DNA for genetic genealogical applications, given the vagaries of recombination, and the lower capacities of mitochondrial DNA combined with an in general much lower interest in maternal lineages. The current knowledge about the Y chromosome and the availability of markers with divergent mutation rates make it possible to answer questions on relatedness levels which differ in time depth; from the individual and familial level to the surnames, clan and population level. The use of the Y chromosome in genetic genealogy has led to applications in several well-established research disciplines; namely in, e.g., family history, demography, anthropology, forensic sciences, population genetics and sex chromosome evolution. The information obtained from analysing this chromosome is not only interesting for academic scientists but also for the huge and lively community of amateur genealogists and citizen-scientists, fascinated in analysing their own genealogy or surname. This popularity, however, has also some drawbacks, mainly for privacy reasons related to the DNA donor, his close family and far-related namesakes. In this review paper we argue why Y-chromosomal analysis and its genetic genealogical applications will still perform an important role in future interdisciplinary research.

  19. Expanding Possibilities for Intervention against Small Ruminant Lentiviruses through Genetic Marker-Assisted Selective Breeding

    Directory of Open Access Journals (Sweden)

    Donald P. Knowles

    2013-06-01

    Full Text Available Small ruminant lentiviruses include members that infect sheep (ovine lentivirus [OvLV]; also known as ovine progressive pneumonia virus/maedi-visna virus and goats (caprine arthritis encephalitis virus [CAEV]. Breed differences in seroprevalence and proviral concentration of OvLV had suggested a strong genetic component in susceptibility to infection by OvLV in sheep. A genetic marker test for susceptibility to OvLV has been developed recently based on the TMEM154 gene with validation data from over 2,800 sheep representing nine cohorts. While no single genotype has been shown to have complete resistance to OvLV, consistent association in thousands of sheep from multiple breeds and management conditions highlight a new strategy for intervention by selective breeding. This genetic marker-assisted selection (MAS has the potential to be a useful addition to existing viral control measures. Further, the discovery of multiple additional genomic regions associated with susceptibility to or control of OvLV suggests that additional genetic marker tests may be developed to extend the reach of MAS in the future. This review will cover the strengths and limitations of existing data from host genetics as an intervention and outline additional questions for future genetic research in sheep, goats, small ruminant lentiviruses, and their host-pathogen interactions.

  20. Genetic diversity and population differentiation of small giant clam Tridacna maxima in Comoros islands assessed by microsatellite markers.

    Science.gov (United States)

    Ahmed Mohamed, Nadjim; Yu, Qian; Chanfi, Mohamed Ibrahim; Li, Yangping; Wang, Shi; Huang, Xiaoting; Bao, Zhenmin

    2016-01-01

    Small giant clam, Tridacna maxima , widely distributed from French Polynesia to East Africa, has faced population declines due to over-exploitation. Comoros islands are an important biogeographic region due to potential richness of marine species, but no relevant information is available. In order to facilitate devising effective conservation management plan for T. maxima , nine microsatellite markers were used to survey genetic diversity and population differentiation of 72 specimens collected from three Comoros islands, Grande Comore, Moheli and Anjouan. A total of 51 alleles were detected ranged from 2 to 8 per locus. Observed and expected heterozygosity varied from 0.260 to 0.790 and from 0.542 to 0.830, respectively. All populations have high genetic diversity, especially the population in Moheli, a protected area, has higher genetic diversity than the others. Significant heterozygote deficiencies were recorded, and null alleles were probably the main factor leading to these deficits. F ST value indicated medium genetic differentiation among the populations. Although significant, AMOVA revealed 48.9 % of genetic variation within individuals and only a small variation of 8.9 % was found between populations. Gene flow was high ( Nm  = 12.40) between Grande Comore and Moheli, while lower ( Nm  = 1.80) between Grande Comore and Anjouan, explaining geographic barriers to genetic exchanges might exist in these two islands. Global gene flow analysis ( Nm  = 5.50) showed that larval dispersal is enough to move between the islands. The high genetic diversity and medium population differentiation revealed in the present study offer useful information on genetic conservation of small giant clams.

  1. Genetic Diversity and Population Structure in Native Chicken Populations from Myanmar, Thailand and Laos by Using 102 Indels Markers

    Directory of Open Access Journals (Sweden)

    A. A. Maw

    2015-01-01

    Full Text Available The genetic diversity of native chicken populations from Myanmar, Thailand, and Laos was examined by using 102 insertion and/or deletion (indels markers. Most of the indels loci were polymorphic (71% to 96%, and the genetic variability was similar in all populations. The average observed heterozygosities (HO and expected heterozygosities (HE ranged from 0.205 to 0.263 and 0.239 to 0.381, respectively. The coefficients of genetic differentiation (Gst for all cumulated populations was 0.125, and the Thai native chickens showed higher Gst (0.088 than Myanmar (0.041 and Laotian (0.024 populations. The pairwise Fst distances ranged from 0.144 to 0.308 among populations. A neighbor-joining (NJ tree, using Nei’s genetic distance, revealed that Thai and Laotian native chicken populations were genetically close, while Myanmar native chickens were distant from the others. The native chickens from these three countries were thought to be descended from three different origins (K = 3 from STRUCTURE analysis. Genetic admixture was observed in Thai and Laotian native chickens, while admixture was absent in Myanmar native chickens.

  2. Genetic Diversity and Population Structure of Broomcorn Millet (Panicum miliaceum L.) Cultivars and Landraces in China Based on Microsatellite Markers

    Science.gov (United States)

    Liu, Minxuan; Xu, Yue; He, Jihong; Zhang, Shuang; Wang, Yinyue; Lu, Ping

    2016-01-01

    Broomcorn millet (Panicum miliaceum L.), one of the first domesticated crops, has been grown in Northern China for at least 10,000 years. The species is presently a minor crop, and evaluation of its genetic diversity has been very limited. In this study, we analyzed the genetic diversity of 88 accessions of broomcorn millet collected from various provinces of China. Amplification with 67 simple sequence repeat (SSR) primers revealed moderate levels of diversity in the investigated accessions. A total of 179 alleles were detected, with an average of 2.7 alleles per locus. Polymorphism information content and expected heterozygosity ranged from 0.043 to 0.729 (mean = 0.376) and 0.045 to 0.771 (mean = 0.445), respectively. Cluster analysis based on the unweighted pair group method of mathematical averages separated the 88 accessions into four groups at a genetic similarity level of 0.633. A genetic structure assay indicated a close correlation between geographical regions and genetic diversity. The uncovered information will be valuable for defining gene pools and developing breeding programs for broomcorn millet. Furthermore, the millet-specific SSR markers developed in this study should serve as useful tools for assessment of genetic diversity and elucidation of population structure in broomcorn millet. PMID:26985894

  3. Blood group ascription as a genetic marker of hepatic hemangioma

    International Nuclear Information System (INIS)

    Polysalov, V.N.; Tarazov, P.G.

    1992-01-01

    There is no single point of view on pathogenesis of hemangiomas. The authors investigated the ABO blood types in 52 patients with hepatic hemangiomas (Group 1) and 1000 control patients (Group 2). The character of changes in the liver was established by means of reontgenoradionuclide investigation methods. The study demonstrated 61.5 % of the A blood type among the patients of Group 1. This was significantly higher than in the Group 2 and representative groups from literature (P < 0.001). Taking into account that the cells of both blood and blood vessels are formed in embryos through the mesenchyma and the heritability of blood group antigens, it is supposed that the results obtained support the genetic determination theory of pathogenesis of hepatic hemangioamas

  4. Pollen genetic markers for detection of mutagens in the environment

    International Nuclear Information System (INIS)

    Nilan, R.A.; Rosichan, J.L.; Arenaz, P.; Hodgdon, A.L.; Kleinhofs, A.

    1980-01-01

    To utilize and exploit pollen for in situ mutagen monitoring, screening and toxicology, the range of genetic traits in pollen must be identified and analyzed. To be useful for the development of mutagen detection systems proteins should be: (1) activity stainable or immunologically identifiable in the pollen, (2) the products of one to three loci; and (3) gametophytic and nuclear in origin. Several proteins, including alcohol dehydrogenase in maize, which meet these criteria are discussed. The waxy locus in barley and maize which controls starch deposition for pollen screening and mutant detection. Thirty waxy mutant lines, induced by sodium azide and gamma-rays are characterized for spontaneous and induced reversion frequencies, allelism, karyotype, amylose content, and UDPglucose glucosyltransferase (waxy gene product) activity. Twelve mutant alleles are being mapped by recombinant frequencies

  5. Genetic Markers of Human Evolution Are Enriched in Schizophrenia

    DEFF Research Database (Denmark)

    Srinivasan, Saurabh; Bettella, Francesco; Mattingsdal, Morten

    2016-01-01

    BACKGROUND: Why schizophrenia has accompanied humans throughout our history despite its negative effect on fitness remains an evolutionary enigma. It is proposed that schizophrenia is a by-product of the complex evolution of the human brain and a compromise for humans' language, creative thinking...... and ancillary information on genetic variants. We used information from the evolutionary proxy measure called the Neanderthal selective sweep (NSS) score. RESULTS: Gene loci associated with schizophrenia are significantly (p = 7.30 × 10(-9)) more prevalent in genomic regions that are likely to have undergone...... phenotypes. The false discovery rate conditional on the evolutionary proxy points to 27 candidate schizophrenia susceptibility loci, 12 of which are associated with schizophrenia and other psychiatric disorders or linked to brain development. CONCLUSIONS: Our results suggest that there is a polygenic overlap...

  6. Molecular markers to assess genetic diversity and mutant identifications in Jatropha curcas

    International Nuclear Information System (INIS)

    Azhar Mohamad; Yie Min Kwan; Fatin Mastura Derani; Abdul Rahim Harun

    2010-01-01

    Jatropha curcas (Linnaeus) belongs to the Euphorbiaceae family, is a multipurpose use, drought resistant and perennial plant. It is an economic important crop, which generates wide interest in understanding the genetic diversity of the species towards selection and breeding of superior genotypes. Jatropha accessions are closely related family species. Thus, better understanding of the effectiveness of the different DNA-based markers is an important step towards plant germplasm characterization and evaluation. It is becoming a prerequisite for more effective application of marker techniques in breeding programs. Inter-simple sequence repeats (ISSRs) has shown rapid, simple, reproducible and inexpensive means in molecular taxonomy, conservation breeding and genetic diversity analysis. These markers were used to understand diversity and differentiate amongst accessions of Jatropha population and mutant lines generated by acute gamma radiation. The ISSR for marker applications are essential to facilitate management, conservation and genetic improvement programs towards improvement of bio-diesel production and medication substances. A total of 62 ISSR primers were optimized for polymorphism evaluations on five foreign accessions (Africa, India, Myanmar, Indonesia, Thailand), nine local accessions and two mutants of Jatropha. Optimization was resulted 54 ISSR primers affirmative for the polymorphism evaluation study, which encountered 12 ISSR primers, showed significance polymorphism amongst the accessions and mutants. Marker derived from ISSR profiling is a powerful method for identification and molecular classification of Jatropha from accession to generated mutant varieties. (author)

  7. Genetic diversity and population structure of Chinese natural bermudagrass [Cynodon dactylon (L.) Pers.] germplasm based on SRAP markers.

    Science.gov (United States)

    Zheng, Yiqi; Xu, Shaojun; Liu, Jing; Zhao, Yan; Liu, Jianxiu

    2017-01-01

    Bermudagrass [Cynodon dactylon (L.) Pers.], an important turfgrass used in public parks, home lawns, golf courses and sports fields, is widely distributed in China. In the present study, sequence-related amplified polymorphism (SRAP) markers were used to assess genetic diversity and population structure among 157 indigenous bermudagrass genotypes from 20 provinces in China. The application of 26 SRAP primer pairs produced 340 bands, of which 328 (96.58%) were polymorphic. The polymorphic information content (PIC) ranged from 0.36 to 0.49 with a mean of 0.44. Genetic distance coefficients among accessions ranged from 0.04 to 0.61, with an average of 0.32. The results of STRUCTURE analysis suggested that 157 bermudagrass accessions can be grouped into three subpopulations. Moreover, according to clustering based on the unweighted pair-group method of arithmetic averages (UPGMA), accessions were divided into three major clusters. The UPGMA dendrogram revealed that accessions from identical or adjacent areas were generally, but not entirely, clustered into the same cluster. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among accessions. Principal coordinate analysis (PCoA) with SRAP markers revealed a similar grouping of accessions to the UPGMA dendrogram and STRUCTUE analysis. Analysis of molecular variance (AMOVA) indicated that 18% of total molecular variance was attributed to diversity among subpopulations, while 82% of variance was associated with differences within subpopulations. Our study represents the most comprehensive investigation of the genetic diversity and population structure of bermudagrass in China to date, and provides valuable information for the germplasm collection, genetic improvement, and systematic utilization of bermudagrass.

  8. Identification of novel microsatellite markers preimplantation genetic diagnosis of beta-thalassemia.

    Science.gov (United States)

    Chen, Min; Tan, Arnold S C; Cheah, Felicia S H; Saw, Eugene E L; Chong, Samuel S

    2015-12-01

    Beta (β)-thalassemia is one of the most common monogenic diseases worldwide. Affected pregnancies can be avoided through preimplantation genetic diagnosis (PGD), which commonly involves customized assays to detect the different combinations of β-globin (HBB) gene mutations present in couples, in conjunction with linkage analysis of flanking microsatellite markers. Currently, the limited number of reported closely linked markers hampers their utility in indirect linkage-based PGD for this disorder. To increase the available markers closely flanking the HBB gene, an in silico search was performed to identify all markers within 1 Mb flanking the HBB gene. Fifteen markers with potentially high polymorphism information content (PIC) and heterozygosity values were selected and optimized into a single-tube pentadecaplex PCR panel. Allele frequencies and polymorphism and heterozygosity indices of each marker were assessed in five populations. A total of 238 alleles were observed from the 15 markers. PIC was >0.7 for all markers, with expected heterozygosity and observed heterozygosity values ranging from 0.74 to 0.90 and 0.72 to 0.88, respectively. Greater than 99% of individuals were heterozygous for at least seven markers, with at least two heterozygous markers on either side of the HBB gene. The pentadecaplex marker assay also performed reliably on single cells either directly or after whole genome amplification, thus validating its use in standalone linkage-based β-thalassemia PGD or in conjunction with HBB mutation detection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Genetic diversity of indigenous chickens from selected areas in Kenya using microsatellite markers

    Directory of Open Access Journals (Sweden)

    Okoth Noah Okumu

    2017-12-01

    Full Text Available In this study, indigenous chickens were collected from eight different regions in Kenya and kept at InCIP-Egerton University. These were studied using eighteen microsatellite markers to determine genetic variation. Statistics related to genetic variation were estimated using GenALEx6. Mean percentage polymorphic loci (PPL was 96.71% and 4% genetic variance (p ≥ 0.003 was seen between the eight populations. MCW0123 marker had the highest genetic variance of 13% among populations (p ≥ 0.003 at 95% CI. Mean He ranged from 0.351 ± 0.031 (SIB to 0.434 ± 0.022 (BM with a grand mean He of 0.399 ± 0.011 across the populations using the microsatellite markers. Nei’s genetic distance ranged from 0.016 (SIB and WP to 0.126 (NR and SIB. DARwin6.501 analysis software was used to draw the population dendrogram and two major population clusters were observed, also seen with PCoA. This study found a lot of genetic variation and relatedness within and among populations. Based on the phylogenetic tree result, it is concluded that the clustering of the chicken populations in the present study is not based on geographical proximity. The microsatellite markers used in this study were suitable for the measurement of the genetic biodiversity and relationship of Kenyan chicken populations. These results can therefore serve as an initial step to plan the conservation of indigenous chickens in Kenya.

  10. An annotated genetic map of loblolly pine based on microsatellite and cDNA markers

    Science.gov (United States)

    Craig S. Echt; Surya Saha; Konstantin V. Krutovsky; Kokulapalan Wimalanathan; John E. Erpelding; Chun Liang; C Dana Nelson

    2011-01-01

    Previous loblolly pine (Pinus taeda L.) genetic linkage maps have been based on a variety of DNA polymorphisms, such as AFLPs, RAPDs, RFLPs, and ESTPs, but only a few SSRs (simple sequence repeats), also known as simple tandem repeats or microsatellites, have been mapped in P. taeda. The objective of this study was to integrate a large set of SSR markers from a variety...

  11. Refining the genetic portrait of Portuguese Roma through X-chromosomal markers

    DEFF Research Database (Denmark)

    Pereira, Vania; Gusmão, Leonor; Valente, Cristina

    2012-01-01

    Due to differences in transmission between X-chromosomal and autosomal DNA, the comparison of data derived from both markers allows deeper insight into the forces that shape the patterns of genetic diversity in populations. In this study, we applied this comparative approach to a sample of Portug...

  12. On the Informativeness of Dominant and Co-Dominant Genetic Markers for Bayesian Supervised Clustering

    DEFF Research Database (Denmark)

    Guillot, Gilles; Carpentier-Skandalis, Alexandra

    2011-01-01

    We study the accuracy of a Bayesian supervised method used to cluster individuals into genetically homogeneous groups on the basis of dominant or codominant molecular markers. We provide a formula relating an error criterion to the number of loci used and the number of clusters. This formula...

  13. Genetic characterization of guava (psidium guajava l.) Germplasm in the United States using microsatellite markers

    Science.gov (United States)

    Genetic diversity of thirty five Psidium guajava accessions maintained at the USDA, National Plants Germplasm System, Hilo, HI, was characterized using 20 simple sequence repeat (SSR) markers. Diversity analysis detected a total of 178 alleles ranging from four to 16. The observed mean heterozygosit...

  14. Genetic markers, translocations and sexing genes on chromosome 2 of Ceratitis capitata

    International Nuclear Information System (INIS)

    Cladera, J.L.

    1997-01-01

    A review is presented of results obtained in a search for genetic markers, translocations and selectable genes obtained at the Instituto de Genetica, Castelar, Argentina, with special reference to chromosome 2 linked mutations and genes useful for developing self-sexing strains in Ceratitis capitata. (author)

  15. Application of marker selection to enhance estimation of genetic effects and gene interaction in cattle

    Science.gov (United States)

    Selection on important genetic markers can improve estimates of additive and dominance association effects. A composite population of beef cattle was selected for intermediate frequencies of myostatin (GDF8) F94L and µ-calpain (CAPN1) polymorphisms. Important additive associations of the GDF8 locu...

  16. A genetic linkage map of willow (Salix viminalis) based on AFLP and microsatelite markers

    NARCIS (Netherlands)

    Hanley, S.; Barker, J.H.A.; Ooijen, van J.W.; Aldam, C.; Harris, S.L.; Ahman, I.; Larsson, S.; Karp, A.

    2002-01-01

    The genus Salix (willow) contains a number of species of great value as biomass crops. Efforts to breed varieties with improved biomass yields and resistances to pests and diseases are limited by the lack of knowledge on the genetic basis of the traits. We have used AFLP and microsatellite markers

  17. Assessment of genetic diversity in Chinese eared pheasant using fluorescent-AFLP markers

    DEFF Research Database (Denmark)

    Li, Xiujuan; Zhu, Yaohong; Liu, Panqi

    2010-01-01

    on the list of the world’s threatened species. In this paper, 74 individuals from the four eared pheasant species were assessed for population genetic diversity by means of fluorescent-AFLP markers. A total of 429 AFLP peaks were amplified by 11 pairs of fluorescent EcoRI/TaqI primer combinations. Out of all...... using Jaccard’s similarity coefficients (SC) and the corresponding dendrogram. It was found that there was a moderate genetic distance between the four species (SC = 0.674–0.832). Brown eared pheasant was genetically closely related to blue eared pheasant (SC = 0.832), while white eared pheasant...

  18. Microsatellite markers for population genetic studies of the blowfly Chrysomya putoria (Diptera: Calliphoridae

    Directory of Open Access Journals (Sweden)

    Rosangela Aparecida Rodrigues

    2009-11-01

    Full Text Available The investigation of the genetic variation and population structure of Chrysomya species is of great interest for both basic and applied research. However, very limited genetic information is available for this genus across its geographical distribution. Here, we describe 12 polymorphic microsatellite loci isolated from Chrysomya putoria with expected heterozygosities ranging from 0.1402-0.8312. These markers are of potential applied interest for forensic entomologists and for the characterisation of the genetic structure of C. putoria from recently colonised regions, with great promise for understanding the colonisation dynamics and spread of the genus Chrysomya in the New World.

  19. Marker-based estimation of genetic parameters in genomics.

    Directory of Open Access Journals (Sweden)

    Zhiqiu Hu

    Full Text Available Linear mixed model (LMM analysis has been recently used extensively for estimating additive genetic variances and narrow-sense heritability in many genomic studies. While the LMM analysis is computationally less intensive than the Bayesian algorithms, it remains infeasible for large-scale genomic data sets. In this paper, we advocate the use of a statistical procedure known as symmetric differences squared (SDS as it may serve as a viable alternative when the LMM methods have difficulty or fail to work with large datasets. The SDS procedure is a general and computationally simple method based only on the least squares regression analysis. We carry out computer simulations and empirical analyses to compare the SDS procedure with two commonly used LMM-based procedures. Our results show that the SDS method is not as good as the LMM methods for small data sets, but it becomes progressively better and can match well with the precision of estimation by the LMM methods for data sets with large sample sizes. Its major advantage is that with larger and larger samples, it continues to work with the increasing precision of estimation while the commonly used LMM methods are no longer able to work under our current typical computing capacity. Thus, these results suggest that the SDS method can serve as a viable alternative particularly when analyzing 'big' genomic data sets.

  20. Identification of Brucella melitensis Rev.1 vaccine-strain genetic markers: Towards understanding the molecular mechanism behind virulence attenuation.

    Science.gov (United States)

    Issa, Mohammad Nouh; Ashhab, Yaqoub

    2016-09-22

    Brucella melitensis Rev.1 is an avirulent strain that is widely used as a live vaccine to control brucellosis in small ruminants. Although an assembled draft version of Rev.1 genome has been available since 2009, this genome has not been investigated to characterize this important vaccine. In the present work, we used the draft genome of Rev.1 to perform a thorough genomic comparison and sequence analysis to identify and characterize the panel of its unique genetic markers. The draft genome of Rev.1 was compared with genome sequences of 36 different Brucella melitensis strains from the Brucella project of the Broad Institute of MIT and Harvard. The comparative analyses revealed 32 genetic alterations (30 SNPs, 1 single-bp insertion and 1 single-bp deletion) that are exclusively present in the Rev.1 genome. In silico analyses showed that 9 out of the 17 non-synonymous mutations are deleterious. Three ABC transporters are among the disrupted genes that can be linked to virulence attenuation. Out of the 32 mutations, 11 Rev.1 specific markers were selected to test their potential to discriminate Rev.1 using a bi-directional allele-specific PCR assay. Six markers were able to distinguish between Rev.1 and a set of control strains. We succeeded in identifying a panel of 32 genome-specific markers of the B. melitensis Rev.1 vaccine strain. Extensive in silico analysis showed that a considerable number of these mutations could severely affect the function of the associated genes. In addition, some of the discovered markers were able to discriminate Rev.1 strain from a group of control strains using practical PCR tests that can be applied in resource-limited settings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Diversity arrays technology (DArT) markers in apple for genetic linkage maps.

    Science.gov (United States)

    Schouten, Henk J; van de Weg, W Eric; Carling, Jason; Khan, Sabaz Ali; McKay, Steven J; van Kaauwen, Martijn P W; Wittenberg, Alexander H J; Koehorst-van Putten, Herma J J; Noordijk, Yolanda; Gao, Zhongshan; Rees, D Jasper G; Van Dyk, Maria M; Jaccoud, Damian; Considine, Michael J; Kilian, Andrzej

    2012-03-01

    Diversity Arrays Technology (DArT) provides a high-throughput whole-genome genotyping platform for the detection and scoring of hundreds of polymorphic loci without any need for prior sequence information. The work presented here details the development and performance of a DArT genotyping array for apple. This is the first paper on DArT in horticultural trees. Genetic mapping of DArT markers in two mapping populations and their integration with other marker types showed that DArT is a powerful high-throughput method for obtaining accurate and reproducible marker data, despite the low cost per data point. This method appears to be suitable for aligning the genetic maps of different segregating populations. The standard complexity reduction method, based on the methylation-sensitive PstI restriction enzyme, resulted in a high frequency of markers, although there was 52-54% redundancy due to the repeated sampling of highly similar sequences. Sequencing of the marker clones showed that they are significantly enriched for low-copy, genic regions. The genome coverage using the standard method was 55-76%. For improved genome coverage, an alternative complexity reduction method was examined, which resulted in less redundancy and additional segregating markers. The DArT markers proved to be of high quality and were very suitable for genetic mapping at low cost for the apple, providing moderate genome coverage. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-011-9579-5) contains supplementary material, which is available to authorized users.

  2. Genetic Analysis of Pinus sylvestris L. and Pinus sylvestris forma turfosa L. Using RAPD Markers

    Directory of Open Access Journals (Sweden)

    Beáta ÁBRAHÁM

    2010-03-01

    Full Text Available The purpose of the present study was to determine the level of genetic diversity within and among Ciuc basin, Romania (populations from Mohos and Luci raised bogs in Harghita Mountain and Sumuleu in Ciuc Mountain Pinus sylvestris populations using molecular markers. Two of populations (Mohos and Luci seems to be the descendants that survived the continental glaciation. Genetic diversity was analyzed by RAPD (Random Amplified Polymorphic DNA. Nine primers were selected for analysis, which generated reproducible bands. On base of presence or absence of homologues bands Nei’s gene diversity, the percentage of polymorphic loci and Nei’s unbiased genetic distance were calculated. The level of genetic variation among populations was found to be low. For both populations the variation values among populations were higher than within populations. The fossil records and geological historical data explain the extremely low genetic diversity of this species. Pinus sylvestris experienced strong bottlenecks during its evolutionary history, which caused the loss of genetic variation. Genetic drift and breeding in post-bottlenecked small populations may be the major forces that contribute to low genetic diversity and genetic differentiation of populations. Human activities may have accelerated the loss of genetic diversity in Pinus sylvestris.

  3. Molecular identification and genetic variation of varieties of Styphnolobium japonicum (Fabaceae) using SRAP markers.

    Science.gov (United States)

    Sun, R X; Zhang, C H; Zheng, Y Q; Zong, Y C; Yu, X D; Huang, P

    2016-05-06

    Thirty-four Styphnolobium japonicum varieties were analyzed using sequence-related amplified polymorphism (SRAP) markers, to investigate genetic variation and test the effectiveness of SRAP markers in DNA fingerprint establishment. Twelve primer pairs were selected from 120 primer combinations for their reproducibility and high polymorphism. We found a total of 430 amplified fragments, of which 415 fragments were considered polymorphic with an average of 34.58 polymorphic fragments for each primer combination. The percentage of polymorphic fragments was 96.60%, and four primer pairs showed 100% polymorphism. Moreover, simple matched coefficients ranged between 0.68 and 0.89, with an average of 0.785, indicating that the genetic variation among varieties was relatively low. This could be because of the narrow genetic basis of the selected breeding material. Based on the similarity coefficient value of 0.76, the varieties were divided into four major groups. In addition, abundant and clear SRAP fingerprints were obtained and could be used to establish DNA fingerprints. In the DNA fingerprints, each variety had its unique pattern that could be easily distinguished from others. The results demonstrated that 34 varieties of S. japonicum had a relatively narrow genetic variation. Hence, a broadening of the genetic basis of breeding material is necessary. We conclude that establishment of DNA fingerprint is feasible by means of SRAP markers.

  4. A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa

    NARCIS (Netherlands)

    Choi, H.K.; Kim, D.; Uhm, T.; Limpens, E.H.M.; Lim, H.; Mun, J.H.; Kalo, P.; Penmetsa, R.V.; Seres, A.; Kulikova, O.; Roe, B.A.; Bisseling, T.; Kiss, G.B.; Cook, D.R.

    2004-01-01

    A core genetic map of the legume Medicago truncatula has been established by analyzing the segregation of 288 sequence-characterized genetic markers in an E, population composed of 93 individuals. These molecular markers correspond to 141 ESTs, 80 BAC end sequence tags, and 67 resistance gene

  5. Covariance Association Test (CVAT) Identifies Genetic Markers Associated with Schizophrenia in Functionally Associated Biological Processes

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Demontis, Ditte; Castro Dias Cuyabano, Beatriz

    2016-01-01

    was among the top performers. When extending CVAT to utilize a mixture of SNP effects, we found an increase in power to detect the causal sets. Applying the methods to a Danish schizophrenia case–control data set, we found genomic evidence for association of schizophrenia with vitamin A metabolism......Schizophrenia is a psychiatric disorder with large personal and social costs, and understanding the genetic etiology is important. Such knowledge can be obtained by testing the association between a disease phenotype and individual genetic markers; however, such single-marker methods have limited...... genomic best linear unbiased prediction (GBLUP), the covariance association test (CVAT). We compared the performance of CVAT to other commonly used set tests. The comparison was conducted using a simulated study population having the same genetic parameters as for schizophrenia. We found that CVAT...

  6. RAPID-COMMUNICATION Genetic diversity and differentiation in natural populations of Arapaima gigas from lower Amazon revealed by microsatellites.

    Science.gov (United States)

    Fazzi-Gomes, P F; Melo, N; Palheta, G; Guerreiro, S; Amador, M; Ribeiro-Dos-Santos, A K; Santos, S; Hamoy, I

    2017-02-08

    Genetic variability is one of the important criteria for species conservation decisions. This study aimed to analyze the genetic diversity and the population differentiation of two natural populations of Arapaima gigas, a species with a long history of being commercially exploited. We collected 87 samples of A. gigas from Grande Curuai Lake and Paru Lake, located in the Lower Amazon region of Amazônia, Brazil, and genotyped these samples using a multiplex panel of microsatellite markers. Our results showed that the populations of A. gigas analyzed had high levels of genetic variability, which were similar to those described in previous studies. These two populations had a significant population differentiation supported by the estimates of F ST and R ST (0.06), by Bayesian analysis (K = 2), and by population assignment tests, which revealed a moderate genetic distance.

  7. Alu repeats as markers for human population genetics

    Energy Technology Data Exchange (ETDEWEB)

    Batzer, M.A.; Alegria-Hartman, M. [Lawrence Livermore National Lab., CA (United States); Bazan, H. [Louisiana State Univ., New Orleans, LA (United States). Medical Center] [and others

    1993-09-01

    The Human-Specific (HS) subfamily of Alu sequences is comprised of a group of 500 nearly identical members which are almost exclusively restricted to the human genome. Individual subfamily members share an average of 97.9% nucleotide identity with each other and an average of 98.9% nucleotide identity with the HS subfamily consensus sequence. HS Alu family members are thought to be derived from a single source ``master`` gene, and have an average age of 2.8 million years. We have developed a Polymerase Chain Reaction (PCR) based assay using primers complementary to the 5 in. and 3 in. unique flanking DNA sequences from each HS Alu that allows the locus to be assayed for the presence or absence of an Alu repeat. Individual HS Alu sequences were found to be either monomorphic or dimorphic for the presence or absence of each repeat. The monomorphic HS Alu family members inserted in the human genome after the human/great ape divergence (which is thought to have occurred 4--6 million years ago), but before the radiation of modem man. The dimorphic HS Alu sequences inserted in the human genome after the radiation of modem man (within the last 200,000-one million years) and represent a unique source of information for human population genetics and forensic DNA analyses. These sites can be developed into Dimorphic Alu Sequence Tagged Sites (DASTS) for the Human Genome Project as well. HS Alu family member insertion dimorphism differs from other types of polymorphism (e.g. Variable Number of Tandem Repeat [VNTR] or Restriction Fragment Length Polymorphism [RFLP]) because individuals share HS Alu family member insertions based upon identity by descent from a common ancestor as a result of a single event which occurred one time within the human population. The VNTR and RFLP polymorphisms may arise multiple times within a population and are identical by state only.

  8. Mitochondrial DNA reveals genetic structuring of Pinna nobilis across the Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Daria Sanna

    Full Text Available Pinna nobilis is the largest endemic Mediterranean marine bivalve. During past centuries, various human activities have promoted the regression of its populations. As a consequence of stringent standards of protection, demographic expansions are currently reported in many sites. The aim of this study was to provide the first large broad-scale insight into the genetic variability of P. nobilis in the area that encompasses the western Mediterranean, Ionian Sea, and Adriatic Sea marine ecoregions. To accomplish this objective twenty-five populations from this area were surveyed using two mitochondrial DNA markers (COI and 16S. Our dataset was then merged with those obtained in other studies for the Aegean and Tunisian populations (eastern Mediterranean, and statistical analyses (Bayesian model-based clustering, median-joining network, AMOVA, mismatch distribution, Tajima's and Fu's neutrality tests and Bayesian skyline plots were performed. The results revealed genetic divergence among three distinguishable areas: (1 western Mediterranean and Ionian Sea; (2 Adriatic Sea; and (3 Aegean Sea and Tunisian coastal areas. From a conservational point of view, populations from the three genetically divergent groups found may be considered as different management units.

  9. Genetic diversity of Clavispora lusitaniae isolated from Agave fourcroydes Lem, as revealed by DNA fingerprinting.

    Science.gov (United States)

    Pérez-Brito, Daisy; Magaña-Alvarez, Anuar; Lappe-Oliveras, Patricia; Cortes-Velazquez, Alberto; Torres-Calzada, Claudia; Herrera-Suarez, Teófilo; Larqué-Saavedra, Alfonso; Tapia-Tussell, Raul

    2015-01-01

    This study characterized Clavispora lusitaniae strains isolated from different stages of the processing and early fermentation of a henequen (Agave fourcroydes) spirit produced in Yucatan, Mexico using a molecular technique. Sixteen strains identified based on morphological features, obtained from different substrates, were typed molecularly. Nine different versions of the divergent D1/D2 domain of the large-subunit ribosomal DNA sequence were identified among the C. lusitaniae strains. The greatest degree of polymorphism was found in the 90-bp structural motif of the D2 domain. The MSP-PCR technique was able to differentiate 100% of the isolates. This study provides significant insight into the genetic diversity of the mycobiota present during the henequen fermentation process, especially that of C. lusitaniae, for which only a few studies in plants have been published. The applied MSP-PCR markers were very efficient in revealing olymorphisms between isolates of this species.

  10. Markers

    Science.gov (United States)

    Healthy Schools Network, Inc., 2011

    2011-01-01

    Dry erase whiteboards come with toxic dry erase markers and toxic cleaning products. Dry erase markers labeled "nontoxic" are not free of toxic chemicals and can cause health problems. Children are especially vulnerable to environmental health hazards; moreover, schools commonly have problems with indoor air pollution, as they are more densely…

  11. Identifying genetic marker sets associated with phenotypes via an efficient adaptive score test

    KAUST Repository

    Cai, T.

    2012-06-25

    In recent years, genome-wide association studies (GWAS) and gene-expression profiling have generated a large number of valuable datasets for assessing how genetic variations are related to disease outcomes. With such datasets, it is often of interest to assess the overall effect of a set of genetic markers, assembled based on biological knowledge. Genetic marker-set analyses have been advocated as more reliable and powerful approaches compared with the traditional marginal approaches (Curtis and others, 2005. Pathways to the analysis of microarray data. TRENDS in Biotechnology 23, 429-435; Efroni and others, 2007. Identification of key processes underlying cancer phenotypes using biologic pathway analysis. PLoS One 2, 425). Procedures for testing the overall effect of a marker-set have been actively studied in recent years. For example, score tests derived under an Empirical Bayes (EB) framework (Liu and others, 2007. Semiparametric regression of multidimensional genetic pathway data: least-squares kernel machines and linear mixed models. Biometrics 63, 1079-1088; Liu and others, 2008. Estimation and testing for the effect of a genetic pathway on a disease outcome using logistic kernel machine regression via logistic mixed models. BMC bioinformatics 9, 292-2; Wu and others, 2010. Powerful SNP-set analysis for case-control genome-wide association studies. American Journal of Human Genetics 86, 929) have been proposed as powerful alternatives to the standard Rao score test (Rao, 1948. Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. Mathematical Proceedings of the Cambridge Philosophical Society, 44, 50-57). The advantages of these EB-based tests are most apparent when the markers are correlated, due to the reduction in the degrees of freedom. In this paper, we propose an adaptive score test which up- or down-weights the contributions from each member of the marker-set based on the Z-scores of

  12. Genetic diversity of grape germplasm as revealed by microsatellite ...

    African Journals Online (AJOL)

    aghomotsegin

    In this work, cluster analysis and principal component analysis (PCA) were used to study the genetic ... Key words: Vitis vinifera L., simple sequence repeat (SSR), genetic diversity, .... The data were used for the following statistical analyses.

  13. Cumulative Small Effect Genetic Markers and the Risk of Colorectal Cancer in Poland, Estonia, Lithuania, and Latvia

    Directory of Open Access Journals (Sweden)

    Pablo Serrano-Fernandez

    2015-01-01

    Full Text Available The continued identification of new low-penetrance genetic variants for colorectal cancer (CRC raises the question of their potential cumulative effect among compound carriers. We focused on 6 SNPs (rs380284, rs4464148, rs4779584, rs4939827, rs6983267, and rs10795668, already described as risk markers, and tested their possible independent and combined contribution to CRC predisposition. Material and Methods. DNA was collected and genotyped from 2330 unselected consecutive CRC cases and controls from Estonia (166 cases and controls, Latvia (81 cases and controls, Lithuania (123 cases and controls, and Poland (795 cases and controls. Results. Beyond individual effects, the analysis revealed statistically significant linear cumulative effects for these 6 markers for all samples except of the Latvian one (corrected P value = 0.018 for the Estonian, corrected P value = 0.0034 for the Lithuanian, and corrected P value = 0.0076 for the Polish sample. Conclusions. The significant linear cumulative effects demonstrated here support the idea of using sets of low-risk markers for delimiting new groups with high-risk of CRC in clinical practice that are not carriers of the usual CRC high-risk markers.

  14. Genetic diversity of Arapaima gigas (Schinz, 1822 (Osteoglossiformes: Arapaimidae in the Araguaia-Tocantins basin estimated by ISSR marker

    Directory of Open Access Journals (Sweden)

    Carla A. Vitorino

    Full Text Available The genetic diversity of the specimens of four natural populations of Arapaima from Araguaia-Tocantins basin was assessed within and among these stocks, using five primers for ISSR. COI (cytochrome c oxidase subunit I partial sequences confirmed that the specimens belongs to Arapaima gigas . The ISSR provided 168 loci, of which 165 were polymorphic. However, the number of loci for each population and expected heterozygosity values were low. AMOVA showed 52.63% intra-population variation and 47.37% inter-population variation. The F ST was high among all populations (F ST ≥ 0.25, however, the cluster analysis (PCoA and Bayesian inference showed three major groups: Araguaiana-MT + São Félix do Araguaia-MT, Novo Santo Antônio-MT and Itupiranga-PA. The genetic distance was not correlated with geographical distance. The ISSR marker revealed that the populations of the Araguaia-Tocantins are structured and have a low genetic diversity. These are the first data from a population analysis using molecular markers for A. gigas of Araguaia-Tocantins basins and may be used to define the best management strategies and conservation projects for this species.

  15. Genetic structure of earthworm populations at a regional scale: inferences from mitochondrial and microsatellite molecular markers in Aporrectodea icterica (Savigny 1826.

    Directory of Open Access Journals (Sweden)

    Magally Torres-Leguizamon

    Full Text Available Despite the fundamental role that soil invertebrates (e.g. earthworms play in soil ecosystems, the magnitude of their spatial genetic variation is still largely unknown and only a few studies have investigated the population genetic structure of these organisms. Here, we investigated the genetic structure of seven populations of a common endogeic earthworm (Aporrectodea icterica sampled in northern France to explore how historical species range changes, microevolutionary processes and human activities interact in shaping genetic variation at a regional scale. Because combining markers with distinct modes of inheritance can provide extra, complementary information on gene flow, we compared the patterns of genetic structure revealed using nuclear (7 microsatellite loci and mitochondrial markers (COI. Both types of markers indicated low genetic polymorphism compared to other earthworm species, a result that can be attributed to ancient bottlenecks, for instance due to species isolation in southern refugia during the ice ages with subsequent expansion toward northern Europe. Historical events can also be responsible for the existence of two divergent, but randomly interbreeding mitochondrial lineages within all study populations. In addition, the comparison of observed heterozygosity among microsatellite loci and heterozygosity expected under mutation-drift equilibrium suggested a recent decrease in effective size in some populations that could be due to contemporary events such as habitat fragmentation. The absence of relationship between geographic and genetic distances estimated from microsatellite allele frequency data also suggested that dispersal is haphazard and that human activities favour passive dispersal among geographically distant populations.

  16. Genetic Diversity and Association of EST-SSR and SCoT Markers with Rust Traits in Orchardgrass (Dactylis glomerata L.).

    Science.gov (United States)

    Yan, Haidong; Zhang, Yu; Zeng, Bing; Yin, Guohua; Zhang, Xinquan; Ji, Yang; Huang, Linkai; Jiang, Xiaomei; Liu, Xinchun; Peng, Yan; Ma, Xiao; Yan, Yanhong

    2016-01-08

    Orchardgrass (Dactylis glomerata L.), is a well-known perennial forage species; however, rust diseases have caused a noticeable reduction in the quality and production of orchardgrass. In this study, genetic diversity was assessed and the marker-trait associations for rust were examined using 18 EST-SSR and 21 SCoT markers in 75 orchardgrass accessions. A high level of genetic diversity was detected in orchardgrass with an average genetic diversity index of 0.369. For the EST-SSR and SCoT markers, 164 and 289 total bands were obtained, of which 148 (90.24%) and 272 (94.12%) were polymorphic, respectively. Results from an AMOVA analysis showed that more genetic variance existed within populations (87.57%) than among populations (12.43%). Using a parameter marker index, the efficiencies of the EST-SSR and SCoT markers were compared to show that SCoTs have higher marker efficiency (8.07) than EST-SSRs (4.82). The results of a UPGMA cluster analysis and a STRUCTURE analysis were both correlated with the geographic distribution of the orchardgrass accessions. Linkage disequilibrium analysis revealed an average r² of 0.1627 across all band pairs, indicating a high extent of linkage disequilibrium in the material. An association analysis between the rust trait and 410 bands from the EST-SSR and SCoT markers using TASSEL software revealed 20 band panels were associated with the rust trait in both 2011 and 2012. The 20 bands obtained from association analysis could be used in breeding programs for lineage selection to prevent great losses of orchardgrass caused by rust, and provide valuable information for further association mapping using this collection of orchardgrass.

  17. [Evaluation of Molecular Genetic Diversity of Wild Apple Malus sieversii Populations from Zailiysky Alatau by Microsatellite Markers].

    Science.gov (United States)

    Omasheva, M E; Chekalin, S V; Galiakparov, N N

    2015-07-01

    The territory of Kazakhstan is part of the distribution range of Malus sieversii, which is one of the ancestors of cultivated apple tree varieties. The collected samples of Sievers apple leaves from five populations growing in the Zailiysky Alatau region served as a source not only for the creation of a bank of genomic DNA but also for determination ofthe wild apple genetic polymorphism. The seven microsatellite markers used in this study revealed 86 alleles with different frequencies, as well as the characteristic pools of rare alleles for each of the populations. Molecular genetic analysis showed a high level of genetic diversity (H(o) = 0.704; PIC = 0.752; I = 1.617). Moreover, interpopulation variability accounted only for 7.5% of total variability, confirming the genetic closeness of the populations examined. Based on phylogenetic analysis, it was demonstrated that the Bel'bulak and Almaty Reserve populations were closest to each other, while the most distant were the Ketmen and Great Almaty gorge populations, which suggests the dependence of genetic distance on the geographical.

  18. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape

    Science.gov (United States)

    2013-01-01

    Background The economic importance of grapevine has driven significant efforts in genomics to accelerate the exploitation of Vitis resources for development of new cultivars. However, although a large number of clonally propagated accessions are maintained in grape germplasm collections worldwide, their use for crop improvement is limited by the scarcity of information on genetic diversity, population structure and proper phenotypic assessment. The identification of representative and manageable subset of accessions would facilitate access to the diversity available in large collections. A genome-wide germplasm characterization using molecular markers can offer reliable tools for adjusting the quality and representativeness of such core samples. Results We investigated patterns of molecular diversity at 22 common microsatellite loci and 384 single nucleotide polymorphisms (SNPs) in 2273 accessions of domesticated grapevine V. vinifera ssp. sativa, its wild relative V. vinifera ssp. sylvestris, interspecific hybrid cultivars and rootstocks. Despite the large number of putative duplicates and extensive clonal relationships among the accessions, we observed high level of genetic variation. In the total germplasm collection the average genetic diversity, as quantified by the expected heterozygosity, was higher for SSR loci (0.81) than for SNPs (0.34). The analysis of the genetic structure in the grape germplasm collection revealed several levels of stratification. The primary division was between accessions of V. vinifera and non-vinifera, followed by the distinction between wild and domesticated grapevine. Intra-specific subgroups were detected within cultivated grapevine representing different eco-geographic groups. The comparison of a phenological core collection and genetic core collections showed that the latter retained more genetic diversity, while maintaining a similar phenotypic variability. Conclusions The comprehensive molecular characterization of our grape

  19. Genetic Characterization of Five Hatchery Populations of the Pacific Abalone (Haliotis discus hannai Using Microsatellite Markers

    Directory of Open Access Journals (Sweden)

    Jeong-In Myeong

    2011-07-01

    Full Text Available The Pacific abalone, Haliotis discus hannai, is a popular food in Eastern Asia. Aquacultural production of this species has increased because of recent resource declines, the growing consumption, and ongoing government-operated stock release programs. Therefore, the genetic characterization of hatchery populations is necessary to maintain the genetic diversity of this species and to develop more effective aquaculture practices. We analyzed the genetic structures of five cultured populations in Korea using six microsatellite markers. The number of alleles per locus ranged from 15 to 64, with an average of 23.5. The mean observed and expected heterozygosities were 0.797 and 0.904, respectively. The inbreeding coefficient FIS ranged from 0.054 to 0.184 (mean FIS = 0.121 ± 0.056. The genetic differentiation across all populations was low but significant (overall FST = 0.009, P < 0.01. Pairwise multilocus FST tests, estimates of genetic distance, and phylogenetic and principal component analyses did not show a consistent relationship between geographic and genetic distances. These results could reflect extensive aquaculture, the exchange of breeds and eggs between hatcheries and/or genetic drift due to intensive breeding practices. Thus, for optimal resource management, the genetic variation of hatchery stocks should be monitored and inbreeding controlled within the abalone stocks that are being released every year. This genetic information will be useful for the management of both H. discus hannai fisheries and the aquaculture industry.

  20. Adaptive genetic markers discriminate migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid continued gene flow.

    Science.gov (United States)

    O'Malley, Kathleen G; Jacobson, Dave P; Kurth, Ryon; Dill, Allen J; Banks, Michael A

    2013-12-01

    Neutral genetic markers are routinely used to define distinct units within species that warrant discrete management. Human-induced changes to gene flow however may reduce the power of such an approach. We tested the efficiency of adaptive versus neutral genetic markers in differentiating temporally divergent migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid high gene flow owing to artificial propagation and habitat alteration. We compared seven putative migration timing genes to ten microsatellite loci in delineating three migratory groups of Chinook in the Feather River, CA: offspring of fall-run hatchery broodstock that returned as adults to freshwater in fall (fall run), spring-run offspring that returned in spring (spring run), and fall-run offspring that returned in spring (FRS). We found evidence for significant differentiation between the fall and federally listed threatened spring groups based on divergence at three circadian clock genes (OtsClock1b, OmyFbxw11, and Omy1009UW), but not neutral markers. We thus demonstrate the importance of genetic marker choice in resolving complex life history types. These findings directly impact conservation management strategies and add to previous evidence from Pacific and Atlantic salmon indicating that circadian clock genes influence migration timing.

  1. Study of some biochemical and genetic markers in asthmatic children

    International Nuclear Information System (INIS)

    Abdel-Latif, A.; Abdalla, A.; EL-NASHAR, N.; Abdel-Samad, N.

    2005-01-01

    Bronchial asthma is the most common chronic disease of childhood. Interleukin-4 (IL-4) and interleukin-13 (IL-13) are T-helper type 2 (Th2) cytokines with numerous activities that contribute to allergic inflammation and asthma. Both IL-4 and IL-13 use the IL-4 receptor alpha chain (IL-4 Ra) as a component of their respective systems. Allelic variants of IL-4 Ra have been reported and the R 576 IL-4 Ra allele was recently shown to be a risk factor for atopy. This study was designed to determine whether the R 576 allele was associated with the prevalence of asthma among children and also to evaluate the role of serum IL-4 and IL-13 in the development of asthma. Hence, we used a developed, rapid and reliable PCR-based assay to screen individuals for the R 576 IL-4 Ra allele. This assay has also used to genotype prospectively both recruited children with asthma (n = 22) and controls (n = 11). Serum IL-4 and IL-13 were determined by ELISA. The results of the PCR-based assay revealed a significant association of R 576 IL-4 Ra with the prevalence of all asthmatics, Chi-square (x 2 ) 4.035; P 2 = 4.197, P 2 = 0.609, P > 0.05). Consequently, R 576 IL-4 Ra acts as an allergic asthma susceptibility gene. Also, asthmatic children displayed higher significant levels of IL-4 and IL-13 (P <0.()1). Allergic group exhibited significant higher levels of IL-4 (P < 0.001) and IL-13 (P < 0. 05). This gave clear evidence that both cytokines contributed to the development of asthma especially the allergic phenotype

  2. Raps markers for genetic diversity analysis in rice (Oryza sativa L)

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, A; Fuentes, Jorge L [Centro de Estudios Aplicados al Desarrollo Nuclear, La Habana (Cuba); Deus, Juan E [Instituto de Investigaciones del Arroz, Habana (Cuba); Duque, Maria C [Centro Internacional de la Agricultura Tropical. Proyecto de Arroz , Cali (Colombia)

    1999-07-01

    The establishment of relationships between genotypes existing in gene banks that may be used in new crosses, and about genetic diversity in available germplasm, is very useful for plant breeders. In this work, a genetic diversity analysis among 20 varieties of the Cuban rice germplasm bank was performed by using RAPD markers. Twenty four decamer primers were screened which produced 61 polymorphic bands out of 105 consistent and reproducible amplified fragments (58.1 %). The proportion of polymorphic bands varied for each primer, with an average of 3 polymorphic bands per primer, these results agreed with previous reports on RAPD polymorphism in rice germplasm. Depending on the primer, 1 to 7 distinct patterns were obtained among the screened genotypes. Pair-wise genetic distances between genotypes were computed based on Dice's coefficient. Three major, statistically robust groups were obtained in the UPGMA dendrogram (A, B and C) which clearly corresponded to different genetic pools. Additionally, more insight could be gained according to the sub-grouping pattern within group A, which included the principal semi-dwarf commercial varieties. The present study allowed to prove the efficiency of RAPD markers for genetic diversity analysis in closely related germplasm, particularly for the semi-dwarf Cuban commercial rice cultivars. Also, the existence of a narrow genetic base among these varieties has been confirmed, pointing at the urgent necessity of widen it.

  3. Raps markers for genetic diversity analysis in rice (Oryza sativa L)

    International Nuclear Information System (INIS)

    Alvarez, A.; Fuentes, Jorge L.; Deus, Juan E.; Duque, Maria C.

    1999-01-01

    The establishment of relationships between genotypes existing in gene banks that may be used in new crosses, and about genetic diversity in available germplasm, is very useful for plant breeders. In this work, a genetic diversity analysis among 20 varieties of the Cuban rice germplasm bank was performed by using RAPD markers. Twenty four decamer primers were screened which produced 61 polymorphic bands out of 105 consistent and reproducible amplified fragments (58.1 %). The proportion of polymorphic bands varied for each primer, with an average of 3 polymorphic bands per primer, these results agreed with previous reports on RAPD polymorphism in rice germplasm. Depending on the primer, 1 to 7 distinct patterns were obtained among the screened genotypes. Pair-wise genetic distances between genotypes were computed based on Dice's coefficient. Three major, statistically robust groups were obtained in the UPGMA dendrogram (A, B and C) which clearly corresponded to different genetic pools. Additionally, more insight could be gained according to the sub-grouping pattern within group A, which included the principal semi-dwarf commercial varieties. The present study allowed to prove the efficiency of RAPD markers for genetic diversity analysis in closely related germplasm, particularly for the semi-dwarf Cuban commercial rice cultivars. Also, the existence of a narrow genetic base among these varieties has been confirmed, pointing at the urgent necessity of widen it

  4. Genetic evolutionary taboo search for optimal marker placement in infrared patient setup

    International Nuclear Information System (INIS)

    Riboldi, M; Baroni, G; Spadea, M F; Tagaste, B; Garibaldi, C; Cambria, R; Orecchia, R; Pedotti, A

    2007-01-01

    In infrared patient setup adequate selection of the external fiducial configuration is required for compensating inner target displacements (target registration error, TRE). Genetic algorithms (GA) and taboo search (TS) were applied in a newly designed approach to optimal marker placement: the genetic evolutionary taboo search (GETS) algorithm. In the GETS paradigm, multiple solutions are simultaneously tested in a stochastic evolutionary scheme, where taboo-based decision making and adaptive memory guide the optimization process. The GETS algorithm was tested on a group of ten prostate patients, to be compared to standard optimization and to randomly selected configurations. The changes in the optimal marker configuration, when TRE is minimized for OARs, were specifically examined. Optimal GETS configurations ensured a 26.5% mean decrease in the TRE value, versus 19.4% for conventional quasi-Newton optimization. Common features in GETS marker configurations were highlighted in the dataset of ten patients, even when multiple runs of the stochastic algorithm were performed. Including OARs in TRE minimization did not considerably affect the spatial distribution of GETS marker configurations. In conclusion, the GETS algorithm proved to be highly effective in solving the optimal marker placement problem. Further work is needed to embed site-specific deformation models in the optimization process

  5. Genetic characterization of Moroccan and the exotic bread wheat cultivars using functional and random DNA markers linked to the agronomic traits for genomics-assisted improvement.

    Science.gov (United States)

    Henkrar, Fatima; El-Haddoury, Jamal; Ouabbou, Hassan; Bendaou, Najib; Udupa, Sripada M

    2016-06-01

    Genetic characterization, diversity analysis and estimate of the genetic relationship among varieties using functional and random DNA markers linked to agronomic traits can provide relevant guidelines in selecting parents and designing new breeding strategies for marker-assisted wheat cultivar improvement. Here, we characterize 20 Moroccan and 19 exotic bread wheat (Triticum aestivum L.) cultivars using 47 functional and 7 linked random DNA markers associated with 21 loci of the most important traits for wheat breeding. The functional marker analysis revealed that 35, 45, and 10 % of the Moroccan cultivars, respectively have the rust resistance genes (Lr34/Yr18/Pm38), dwarfing genes (Rht1b or Rht2b alleles) and the leaf rust resistance gene (Lr68). The marker alleles for genes Lr37/Yr17/Sr38, Sr24 and Yr36 were present only in the exotic cultivars and absent in Moroccan cultivars. 25 % of cultivars had 1BL.1RS translocation. 70 % of the wheat cultivars had Ppo-D1a and Ppo-A1b associated with low polyphenol oxidase activity. 10 % of cultivars showed presence of a random DNA marker allele (175 bp) linked to Hessian fly resistance gene H22. The majority of the Moroccan cultivars were carrying alleles that impart good bread making quality. Neighbor joining (NJ) and principal coordinate analysis based on the marker data revealed a clear differentiation between elite Moroccan and exotic wheat cultivars. The results of this study are useful for selecting suitable parents for making targeted crosses in marker-assisted wheat breeding and enhancing genetic diversity in the wheat cultivars.

  6. AFLP markers for the assessment of genetic diversity in european and North American potato varieties cultivated in Iran

    Directory of Open Access Journals (Sweden)

    Saeed Tarkesh Esfahani

    2009-01-01

    Full Text Available Information about the genetic diversity of potato germplasm in Iran is important for variety identification andto enhance the classification of germplasm collections and exploit them in breeding programs and for the development andintroduction of new varieties. AFLP fingerprinting was applied to a group of cultivated potato varieties to find if there is anygeographical differentiation in potato diversity from Europe and North America. The high level of polymorphism within potatovarieties and the high number of variety-specific bands suggest that AFLPs are powerful markers for diversity analysis inpotato varieties. No region-specific AFLP markers were found (present in varieties from the same origin and absent inothers. The UPGMA dendrogram revealed four distinct clusters corresponding almost to the geographical origin of thevarieties. However, the bootstrap support for branches was rather weak. No clusters clearly distinguished varieties fromEurope and North America. Varieties from the same geographical origins however tended to group together within eachcluster. The mean similarity and the UPGMA dendrogram both suggest that North American varieties have nearly identicalgenetic diversity to European varieties. The results of AMOVA revealed large within-region variations which accounted for94.5% of the total molecular variance. The between-region variation, although accounting for only 5.5% of the total variation,was statistically significant. AFLP technology was successfully used to evaluate diversity between different geographicalgroups of potatoes and is recommended for potato genetic studies.

  7. DEVELOPMENT OF EST-SSR MARKERS TO ASSESS GENETIC DIVERSITY OF BROCCOLI AND ITS RELATED SPECIES

    Directory of Open Access Journals (Sweden)

    Nur Kholilatul Izzah

    2017-01-01

    Full Text Available Development of Expressed Sequence Tag-Simple Sequence Repeat (EST-SSR markers derived from public database is known to be more efficient, faster and low cost. The objective of this study was to generate a new set of EST-SSR markers for broccoli and its related species and their usefulness for assessing their genetic diversity. A total of 202 Brassica oleracea ESTs were retrieved from NCBI and then assembled into 172 unigenes by means of CAP3 program. Identification of SSRs was carried out using web-based tool, RepeatMasker software. Afterwards, EST-SSR markers were developed using Primer3 program. Among the identified SSRs, trinucleotide repeats were the most common repeat types, which accounted for about 50%. A total of eight primer pairs were successfully designed and yielded amplification products. Among them, five markers were polymorphic and displayed a total of 30 alleles with an average number of six alleles per locus. The polymorphic markers were subsequently used for analyzing genetic diversity of 36 B. oleracea cultivars including 22 broccoli, five cauliflower and nine kohlrabi cultivars based on genetic similarity matrix as implemented in NTSYS program. At similarity coefficient of 61%, a UPGMA clustering dendrogram effectively separated 36 genotypes into three main groups, where 30 out of 36 genotypes were clearly discriminated. The result obtained in the present study would help breeders in selecting parental lines for crossing. Moreover, the novel EST-SSR markers developed in the study could be a valuable tool for differentiating cultivars of broccoli and related species.

  8. Genetic structure of Lutzomyia longipalpis populations in Mato Grosso Do Sul, Brazil, based on microsatellite markers.

    Directory of Open Access Journals (Sweden)

    Mirella F C Santos

    Full Text Available BACKGROUND: Lutzomyialongipalpis (Diptera: Psychodidae is the major vector of Leishmania (Leishmania infantum and thus plays a crucial role in the epidemiology of American visceral leishmaniasis (AVL. This vector is the best studied species of sand fly in the Neotropical region. Many studies claim that this vector is in fact a species complex; however there is still no consensus regarding the number of species that belong into this complex or the geographical distribution of sibling species. The aim of the present study was to analyze the genetic relationships within Lu. longipalpis populations in the state of Mato Grosso do Sul (MS, Brazil. METHODOLOGY/PRINCIPAL FINDINGS: We collected 30 Lu. longipalpis (15 females and 15 males from five localities (Campo Grande, Três Lagoas, Aquidauana, Miranda and Bonito and 30 Lu. Cruzi from Corumbá, totaling 180 sandflies from MS, and 30 Lu. longipalpis from Estrela de Alagoas, state of Alagoas (AL, Northeast Brazil. We show that eight previously described microsatellite loci were sufficient in distinguishing Lu. longipalpis from Lu. Cruzi, which is a closely related species, and in differentiating between Lu. longipalpis collected in MS versus Estrela de Alagoas. Analyses of the genotypes revealed introgression between sympatric Lu. longipalpis and Lu. Cruzi. CONCLUSIONS/SIGNIFICANCE: Our findings support the hypothesis of cryptic species within the Lu. longipalpis complex. Furthermore, our data revealed introgression between Lu. longipalpis and Lu. cruzi. This phenomenon should be further investigated to determine the level and incidence of hybridization between these two species. We also demonstrated that microsatellite markers are a powerful tool for differentiating sand fly populations and species. The present study has elucidated the population structure of Lu. longipalpis in MS and, by extension, the Neotropical Lu. longipalpis complex itself.

  9. Genetic structure of Lutzomyia longipalpis populations in Mato Grosso Do Sul, Brazil, based on microsatellite markers.

    Science.gov (United States)

    Santos, Mirella F C; Ribolla, Paulo E M; Alonso, Diego P; Andrade-Filho, José D; Casaril, Aline E; Ferreira, Alda M T; Fernandes, Carlos E S; Brazil, Reginaldo P; Oliveira, Alessandra G

    2013-01-01

    Lutzomyialongipalpis (Diptera: Psychodidae) is the major vector of Leishmania (Leishmania) infantum and thus plays a crucial role in the epidemiology of American visceral leishmaniasis (AVL). This vector is the best studied species of sand fly in the Neotropical region. Many studies claim that this vector is in fact a species complex; however there is still no consensus regarding the number of species that belong into this complex or the geographical distribution of sibling species. The aim of the present study was to analyze the genetic relationships within Lu. longipalpis populations in the state of Mato Grosso do Sul (MS), Brazil. We collected 30 Lu. longipalpis (15 females and 15 males) from five localities (Campo Grande, Três Lagoas, Aquidauana, Miranda and Bonito) and 30 Lu. Cruzi from Corumbá, totaling 180 sandflies from MS, and 30 Lu. longipalpis from Estrela de Alagoas, state of Alagoas (AL), Northeast Brazil. We show that eight previously described microsatellite loci were sufficient in distinguishing Lu. longipalpis from Lu. Cruzi, which is a closely related species, and in differentiating between Lu. longipalpis collected in MS versus Estrela de Alagoas. Analyses of the genotypes revealed introgression between sympatric Lu. longipalpis and Lu. Cruzi. Our findings support the hypothesis of cryptic species within the Lu. longipalpis complex. Furthermore, our data revealed introgression between Lu. longipalpis and Lu. cruzi. This phenomenon should be further investigated to determine the level and incidence of hybridization between these two species. We also demonstrated that microsatellite markers are a powerful tool for differentiating sand fly populations and species. The present study has elucidated the population structure of Lu. longipalpis in MS and, by extension, the Neotropical Lu. longipalpis complex itself.

  10. Genetic Structure of Lutzomyia longipalpis Populations in Mato Grosso Do Sul, Brazil, Based on Microsatellite Markers

    Science.gov (United States)

    Santos, Mirella F. C.; Ribolla, Paulo E. M.; Alonso, Diego P.; Andrade-Filho, José D.; Casaril, Aline E.; Ferreira, Alda M. T.; Fernandes, Carlos E. S.; Brazil, Reginaldo P.; Oliveira, Alessandra G.

    2013-01-01

    Background Lutzomyia longipalpis (Diptera: Psychodidae) is the major vector of Leishmania (Leishmania) infantum and thus plays a crucial role in the epidemiology of American visceral leishmaniasis (AVL). This vector is the best studied species of sand fly in the Neotropical region. Many studies claim that this vector is in fact a species complex; however there is still no consensus regarding the number of species that belong into this complex or the geographical distribution of sibling species. The aim of the present study was to analyze the genetic relationships within Lu. longipalpis populations in the state of Mato Grosso do Sul (MS), Brazil. Methodology/Principal Findings We collected 30 Lu. longipalpis (15 females and 15 males) from five localities (Campo Grande, Três Lagoas, Aquidauana, Miranda and Bonito) and 30 Lu. Cruzi from Corumbá, totaling 180 sandflies from MS, and 30 Lu. longipalpis from Estrela de Alagoas, state of Alagoas (AL), Northeast Brazil. We show that eight previously described microsatellite loci were sufficient in distinguishing Lu. longipalpis from Lu. Cruzi, which is a closely related species, and in differentiating between Lu. longipalpis collected in MS versus Estrela de Alagoas. Analyses of the genotypes revealed introgression between sympatric Lu. longipalpis and Lu. Cruzi. Conclusions/Significance Our findings support the hypothesis of cryptic species within the Lu. longipalpis complex. Furthermore, our data revealed introgression between Lu. longipalpis and Lu. cruzi. This phenomenon should be further investigated to determine the level and incidence of hybridization between these two species. We also demonstrated that microsatellite markers are a powerful tool for differentiating sand fly populations and species. The present study has elucidated the population structure of Lu. longipalpis in MS and, by extension, the Neotropical Lu. longipalpis complex itself. PMID:24066129

  11. Gene-based single nucleotide polymorphism markers for genetic and association mapping in common bean.

    Science.gov (United States)

    Galeano, Carlos H; Cortés, Andrés J; Fernández, Andrea C; Soler, Álvaro; Franco-Herrera, Natalia; Makunde, Godwill; Vanderleyden, Jos; Blair, Matthew W

    2012-06-26

    In common bean, expressed sequence tags (ESTs) are an underestimated source of gene-based markers such as insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). However, due to the nature of these conserved sequences, detection of markers is difficult and portrays low levels of polymorphism. Therefore, development of intron-spanning EST-SNP markers can be a valuable resource for genetic experiments such as genetic mapping and association studies. In this study, a total of 313 new gene-based markers were developed at target genes. Intronic variation was deeply explored in order to capture more polymorphism. Introns were putatively identified after comparing the common bean ESTs with the soybean genome, and the primers were designed over intron-flanking regions. The intronic regions were evaluated for parental polymorphisms using the single strand conformational polymorphism (SSCP) technique and Sequenom MassARRAY system. A total of 53 new marker loci were placed on an integrated molecular map in the DOR364 × G19833 recombinant inbred line (RIL) population. The new linkage map was used to build a consensus map, merging the linkage maps of the BAT93 × JALO EEP558 and DOR364 × BAT477 populations. A total of 1,060 markers were mapped, with a total map length of 2,041 cM across 11 linkage groups. As a second application of the generated resource, a diversity panel with 93 genotypes was evaluated with 173 SNP markers using the MassARRAY-platform and KASPar technology. These results were coupled with previous SSR evaluations and drought tolerance assays carried out on the same individuals. This agglomerative dataset was examined, in order to discover marker-trait associations, using general linear model (GLM) and mixed linear model (MLM). Some significant associations with yield components were identified, and were consistent with previous findings. In short, this study illustrates the power of intron-based markers for linkage and association mapping in

  12. Genetic characterization of local Criollo pig breeds from the Americas using microsatellite markers.

    Science.gov (United States)

    Revidatti, M A; Delgado Bermejo, J V; Gama, L T; Landi Periati, V; Ginja, C; Alvarez, L A; Vega-Pla, J L; Martínez, A M

    2014-11-01

    Little is known about local Criollo pig genetic resources and relationships among the various populations. In this paper, genetic diversity and relationships among 17 Criollo pig populations from 11 American countries were assessed with 24 microsatellite markers. Heterozygosities, F-statistics, and genetic distances were estimated, and multivariate, genetic structure and admixture analyses were performed. The overall means for genetic variability parameters based on the 24 microsatellite markers were the following: mean number of alleles per locus of 6.25 ± 2.3; effective number of alleles per locus of 3.33 ± 1.56; allelic richness per locus of 4.61 ± 1.37; expected and observed heterozygosity of 0.62 ± 0.04 and 0.57 ± 0.02, respectively; within-population inbreeding coefficient of 0.089; and proportion of genetic variability accounted for by differences among breeds of 0.11 ± 0.01. Genetic differences were not significantly associated with the geographical location to which breeds were assigned or their country of origin. Still, the NeighborNet dendrogram depicted the clustering by geographic origin of several South American breeds (Criollo Boliviano, Criollo of northeastern Argentina wet, and Criollo of northeastern Argentina dry), but some unexpected results were also observed, such as the grouping of breeds from countries as distant as El Salvador, Mexico, Ecuador, and Cuba. The results of genetic structure and admixture analyses indicated that the most likely number of ancestral populations was 11, and most breeds clustered separately when this was the number of predefined populations, with the exception of some closely related breeds that shared the same cluster and others that were admixed. These results indicate that Criollo pigs represent important reservoirs of pig genetic diversity useful for local development as well as for the pig industry.

  13. Evaluation of genetic diversity in Piper spp using RAPD and SRAP markers.

    Science.gov (United States)

    Jiang, Y; Liu, J-P

    2011-11-29

    Random amplified polymorphic DNA (RAPD) and sequence-related amplified polymorphism (SRAP) analysis were applied to 74 individual plants of Piper spp in Hainan Island. The results showed that the SRAP technique may be more informative and more efficient and effective for studying genetic diversity of Piper spp than the RAPD technique. The overall level of genetic diversity among Piper spp in Hainan was relatively high, with the mean Shannon diversity index being 0.2822 and 0.2909, and the mean Nei's genetic diversity being 0.1880 and 0.1947, calculated with RAPD and SRAP data, respectively. The ranges of the genetic similarity coefficient were 0.486-0.991 and 0.520-1.000 for 74 individual plants of Piper spp (the mean genetic distance was 0.505 and 0.480) and the within-species genetic distance ranged from 0.063 to 0.291 and from 0.096 to 0.234, estimated with RAPD and SRAP data, respectively. These genetic indices indicated that these species are closely related genetically. The dendrogram generated with the RAPD markers was topologically different from the dendrogram based on SRAP markers, but the SRAP technique clearly distinguished all Piper spp from each other. Evaluation of genetic variation levels of six populations showed that the effective number of alleles, Nei's gene diversity and the Shannon information index within Jianfengling and Diaoluoshan populations are higher than those elsewhere; consequently conservation of wild resources of Piper in these two regions should have priority.

  14. Genetic Diversity Assessment and Identification of New Sour Cherry Genotypes Using Intersimple Sequence Repeat Markers

    Directory of Open Access Journals (Sweden)

    Roghayeh Najafzadeh

    2014-01-01

    Full Text Available Iran is one of the chief origins of subgenus Cerasus germplasm. In this study, the genetic variation of new Iranian sour cherries (which had such superior growth characteristics and fruit quality as to be considered for the introduction of new cultivars was investigated and identified using 23 intersimple sequence repeat (ISSR markers. Results indicated a high level of polymorphism of the genotypes based on these markers. According to these results, primers tested in this study specially ISSR-4, ISSR-6, ISSR-13, ISSR-14, ISSR-16, and ISSR-19 produced good and various levels of amplifications which can be effectively used in genetic studies of the sour cherry. The genetic similarity among genotypes showed a high diversity among the genotypes. Cluster analysis separated improved cultivars from promising Iranian genotypes, and the PCoA supported the cluster analysis results. Since the Iranian genotypes were superior to the improved cultivars and were separated from them in most groups, these genotypes can be considered as distinct genotypes for further evaluations in the framework of breeding programs and new cultivar identification in cherries. Results also confirmed that ISSR is a reliable DNA marker that can be used for exact genetic studies and in sour cherry breeding programs.

  15. Genetic diversity and DNA fingerprinting in jute(Corchorus spp.) based on SSR markers

    Institute of Scientific and Technical Information of China (English)

    Liwu; Zhang; Rongrong; Cai; Minhang; Yuan; Aifen; Tao; Jiantang; Xu; Lihui; Lin; Pingping; Fang; Jianmin; Qi

    2015-01-01

    Genetic diversity analysis and DNA finger printing are very useful in breeding programs,seed conservation and management. Jute(Corchorus spp.) is the second most important natural fiber crop after cotton. DNA fingerprinting studies in jute using SSR markers are limited. In this study, 58 jute accessions, including two control varieties(Huangma 179 and Kuanyechangguo) from the official variety registry in China were evaluated with 28 pairs of SSR primers. A total of 184 polymorphic loci were identified. Each primer detected 3 to 15 polymorphic loci, with an average of 6.6. The 58 jute accessions were DNA-fingerprinted with 67 SSR markers from the 28 primer pairs. These markers differentiated the 58 jute accessions from one another, with Co SSR305-120 and Co SSR174-195 differentiating Huangma 179 and Kuanyechangguo, respectively. NTSYS-pc2.10 software was used to analyze the genetic diversity in the 58 jute accessions. Their genetic similarity coefficients ranged from 0.520 to 0.910 with an average of 0.749, indicating relatively great genetic diversity among them. The 58 jute accessions were divided into four groups with the coefficient 0.710 used as a value for classification, consistent with their species and pedigrees. All these results may be useful both for protection of intellectual property rights of jute accessions and for jute improvement.

  16. Genetic diversity and DNA fingerprinting in jute (Corchorus spp. based on SSR markers

    Directory of Open Access Journals (Sweden)

    Liwu Zhang

    2015-10-01

    Full Text Available Genetic diversity analysis and DNA finger printing are very useful in breeding programs, seed conservation and management. Jute (Corchorus spp. is the second most important natural fiber crop after cotton. DNA fingerprinting studies in jute using SSR markers are limited. In this study, 58 jute accessions, including two control varieties (Huangma 179 and Kuanyechangguo from the official variety registry in China were evaluated with 28 pairs of SSR primers. A total of 184 polymorphic loci were identified. Each primer detected 3 to 15 polymorphic loci, with an average of 6.6. The 58 jute accessions were DNA-fingerprinted with 67 SSR markers from the 28 primer pairs. These markers differentiated the 58 jute accessions from one another, with CoSSR305-120 and CoSSR174-195 differentiating Huangma 179 and Kuanyechangguo, respectively. NTSYS-pc2.10 software was used to analyze the genetic diversity in the 58 jute accessions. Their genetic similarity coefficients ranged from 0.520 to 0.910 with an average of 0.749, indicating relatively great genetic diversity among them. The 58 jute accessions were divided into four groups with the coefficient 0.710 used as a value for classification, consistent with their species and pedigrees. All these results may be useful both for protection of intellectual property rights of jute accessions and for jute improvement.

  17. A Multi-Marker Genetic Association Test Based on the Rasch Model Applied to Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    Wenjia Wang

    Full Text Available Results from Genome-Wide Association Studies (GWAS have shown that the genetic basis of complex traits often include many genetic variants with small to moderate effects whose identification remains a challenging problem. In this context multi-marker analysis at the gene and pathway level can complement traditional point-wise approaches that treat the genetic markers individually. In this paper we propose a novel statistical approach for multi-marker analysis based on the Rasch model. The method summarizes the categorical genotypes of SNPs by a generalized logistic function into a genetic score that can be used for association analysis. Through different sets of simulations, the false-positive rate and power of the proposed approach are compared to a set of existing methods, and shows good performances. The application of the Rasch model on Alzheimer's Disease (AD ADNI GWAS dataset also allows a coherent interpretation of the results. Our analysis supports the idea that APOE is a major susceptibility gene for AD. In the top genes selected by proposed method, several could be functionally linked to AD. In particular, a pathway analysis of these genes also highlights the metabolism of cholesterol, that is known to play a key role in AD pathogenesis. Interestingly, many of these top genes can be integrated in a hypothetic signalling network.

  18. Genetic diversity in natural populations of Jacaranda decurrens Cham. determined using RAPD and AFLP markers

    Directory of Open Access Journals (Sweden)

    Bianca W. Bertoni

    2010-01-01

    Full Text Available Jacaranda decurrens (Bignoniaceae is an endemic species of the Cerrado with validated antitumoral activity. The genetic diversity of six populations of J. decurrens located in the State of São Paulo was determined in this study by using molecular markers for randomly amplified polymorphic DNA (RAPD and amplified fragment length polymorphism (AFLP. Following optimization of the amplification reaction, 10 selected primers generated 78 reproducible RAPD fragments that were mostly (69.2% polymorphic. Two hundred and five reproducible AFLP fragments were generated by using four selected primer combinations; 46.3% of these fragments were polymorphic, indicating a considerable level of genetic diversity. Analysis of molecular variance (AMOVA using these two groups of markers indicated that variability was strongly structured amongst populations. The unweighted pair group method with arithmatic mean (UPGMA and Pearson's correlation coefficient (RAPD -0.16, p = 0.2082; AFLP 0.37, p = 0.1006 between genetic matrices and geographic distances suggested that the population structure followed an island model in which a single population of infinite size gave rise to the current populations of J. decurrens, independently of their spatial position. The results of this study indicate that RAPD and AFLP markers were similarly efficient in measuring the genetic variability amongst natural populations of J. decurrens. These data may be useful for developing strategies for the preservation of this medicinal species in the Cerrado.

  19. Diversity arrays technology (DArT) markers in apple for genetic linkage maps

    OpenAIRE

    Schouten, H.J.; Weg, van de, W.E.; Carling, J.; Khan, S.A.; McKay, S.J.; Kaauwen, van, M.P.W.

    2012-01-01

    Diversity Arrays Technology (DArT) provides a high-throughput whole-genome genotyping platform for the detection and scoring of hundreds of polymorphic loci without any need for prior sequence information. The work presented here details the development and performance of a DArT genotyping array for apple. This is the first paper on DArT in horticultural trees. Genetic mapping of DArT markers in two mapping populations and their integration with other marker types showed that DArT is a powerf...

  20. Diversity arrays technology (DArT) markers in apple for genetic linkage maps

    OpenAIRE

    Schouten, Henk J.; van de Weg, W. Eric; Carling, Jason; Khan, Sabaz Ali; McKay, Steven J.; van Kaauwen, Martijn P. W.; Wittenberg, Alexander H. J.; Koehorst-van Putten, Herma J. J.; Noordijk, Yolanda; Gao, Zhongshan; Rees, D. Jasper G.; Van Dyk, Maria M.; Jaccoud, Damian; Considine, Michael J.; Kilian, Andrzej

    2011-01-01

    Diversity Arrays Technology (DArT) provides a high-throughput whole-genome genotyping platform for the detection and scoring of hundreds of polymorphic loci without any need for prior sequence information. The work presented here details the development and performance of a DArT genotyping array for apple. This is the first paper on DArT in horticultural trees. Genetic mapping of DArT markers in two mapping populations and their integration with other marker types showed that DArT is a powerf...

  1. Introgression evidence and phylogenetic relationships among three (ParaMisgurnus species as revealed by mitochondrial and nuclear DNA markers

    Directory of Open Access Journals (Sweden)

    Jakovlić I.

    2013-01-01

    Full Text Available The taxonomy of (ParaMisgurnus genera is still debated. We therefore used mitochondrial and nuclear DNA markers to analyze the phylogenetic relationships among Misgurnus anguillicaudatus, Paramisgurnus dabryanus and Misgurnus fossilis. Differing phylogenetic signals from mitochondrial and nuclear marker data suggest an introgression event in the history of M. anguillicaudatus and M. mohoity. No substantial genetic evidence was found that Paramisgurnus dabryanus should be classified as a separate genus.

  2. Genetic divergence of rubber tree estimated by multivariate techniques and microsatellite markers

    Directory of Open Access Journals (Sweden)

    Lígia Regina Lima Gouvêa

    2010-01-01

    Full Text Available Genetic diversity of 60 Hevea genotypes, consisting of Asiatic, Amazonian, African and IAC clones, and pertaining to the genetic breeding program of the Agronomic Institute (IAC, Brazil, was estimated. Analyses were based on phenotypic multivariate parameters and microsatellites. Five agronomic descriptors were employed in multivariate procedures, such as Standard Euclidian Distance, Tocher clustering and principal component analysis. Genetic variability among the genotypes was estimated with 68 selected polymorphic SSRs, by way of Modified Rogers Genetic Distance and UPGMA clustering. Structure software in a Bayesian approach was used in discriminating among groups. Genetic diversity was estimated through Nei's statistics. The genotypes were clustered into 12 groups according to the Tocher method, while the molecular analysis identified six groups. In the phenotypic and microsatellite analyses, the Amazonian and IAC genotypes were distributed in several groups, whereas the Asiatic were in only a few. Observed heterozygosity ranged from 0.05 to 0.96. Both high total diversity (H T' = 0.58 and high gene differentiation (Gst' = 0.61 were observed, and indicated high genetic variation among the 60 genotypes, which may be useful for breeding programs. The analyzed agronomic parameters and SSRs markers were effective in assessing genetic diversity among Hevea genotypes, besides proving to be useful for characterizing genetic variability.

  3. [Genetic diversity of wild Cynodon dactylon germplasm detected by SRAP markers].

    Science.gov (United States)

    Yi, Yang-Jie; Zhang, Xin-Quan; Huang, Lin-Kai; Ling, Yao; Ma, Xiao; Liu, Wei

    2008-01-01

    Sequence-related amplified polymorphism (SRAP) molecular markers were used to detect the genetic diversity of 32 wild accessions of Cynodon dactylon collected from Sichuan, Chongqing, Guizhou and Tibet, China. The following results were obtained. (1) Fourteen primer pairs produced 132 polymorphic bands, averaged 9.4 bands per primer pair. The percentage of polymorphic bands in average was 79.8%. The Nei's genetic similarity coefficient of the tested accessions ranged from 0.591 to 0.957, and the average Nei's coefficient was 0.759. These results suggested that there was rich genetic diversity among the wild resources of Cynodon dactylon tested. (2) Thirty two wild accessions were clustered into four groups. Moreover, the accessions from the same origin frequently clustered into one group. The findings implied that a correlation among the wild resources, geographical and ecological environment. (3) Genetic differentiation between and within six eco-geographical groups of C. dactylon was estimated by Shannon's diversity index, which showed that 65.56% genetic variance existed within group, and 34.44% genetic variance was among groups. (4) Based on Nei's unbiased measures of genetic identity, UPGMA cluster analysis measures of six eco-geographical groups of Cynodon dactylon, indicated that there was a correlation between genetic differentiation and eco-geographical habits among the groups.

  4. New Genetic Susceptibility Factors for Sjögren's Syndrome Revealed

    Science.gov (United States)

    ... Spotlight on Research Spotlight on Research New Genetic Susceptibility Factors for Sjögren’s Syndrome Revealed By Kirstie Saltsman, ... swallowing and speaking. “The identification of these genetic susceptibility factors opens up new avenues for understanding how ...

  5. Genomic markers reveal introgressive hybridization in the Indo-West Pacific mangroves: a case study.

    Directory of Open Access Journals (Sweden)

    Mei Sun

    2011-05-01

    Full Text Available Biodiversity of mangrove ecosystems is difficult to assess, at least partly due to lack of genetic verification of morphology-based documentation of species. Natural hybridization, on the one hand, plays an important role in evolution as a source of novel gene combinations and a mechanism of speciation. However, on the other hand, recurrent introgression allows gene flow between species and could reverse the process of genetic differentiation among populations required for speciation. To understand the dynamic evolutionary consequences of hybridization, this study examines genomic structure of hybrids and parental species at the population level. In the Indo-West Pacific, Bruguiera is one of the dominant mangrove genera and species ranges overlap extensively with one another. Morphological intermediates between sympatric Bruguiera gymnorrhiza and Bruguiera sexangula have been reported as a variety of B. sexangula or a new hybrid species, B. × rhynchopetala. However, the direction of hybridization and extent of introgression are unclear. A large number of species-specific inter-simple sequence repeat (ISSR markers were found in B. gymnorrhiza and B. sexangula, and the additive ISSR profiling of B. × rhynchopetala ascertained its hybrid status and identified its parental origin. The varying degree of scatterness among hybrid individuals in Principal Coordinate Analysis and results from NewHybrids analysis indicate that B. × rhynchopetala comprises different generations of introgressants in addition to F(1s. High genetic relatedness between B. × rhynchopetala and B. gymnorrhiza based on nuclear and chloroplast sequences suggests preferential hybrid backcrosses to B. gymnorrhiza. We conclude that B. × rhynchopetala has not evolved into an incipient hybrid species, and its persistence can be explained by recurrent hybridization and introgression. Genomic data provide insights into the hybridization dynamics of mangrove plants. Such information

  6. Genetic characterization of natural populations of pineapple guava (Acca sellowiana, with heterologous microsatellites markers

    Directory of Open Access Journals (Sweden)

    Karine Louise dos Santos

    2011-12-01

    Full Text Available Pineapple guava (Acca sellowiana is a native species from south Brazil and northeast Uruguay, and due to the unique flavor of its fruits, it is an income-generating alternative to small farmers. Knowledge on genetic diversity is an important tool for genetic improvement and conservation. Aiming to increase the knowledge with regarde to the species genetic diversity, fi ve natural populations of A. sellowiana were analyzed through microsatellites markers developed from Eucalyptus grandis W. Hill ex Maiden x E. urophylla S.T. Blake complex. Using 10 pairs of selected markers, 122 plants were characterized. The mean values for expected and observed heterozigosity were 0.42 and 0.47, respectively. The fˆ estimates did not differ from zero to four out of the five populations evaluated, suggesting a small inbreeding effect. In addition, private alleles and high genetic divergence was observed. the average genetic divergence among the populations was st Fˆ = 0,13 e st Rˆ = 0,14, mostly due to the incidenceof rare or exclusive alleles among some populations.

  7. Genetic diversity in soybean genotypes using phenotypic characters and enzymatic markers.

    Science.gov (United States)

    Zambiazzi, E V; Bruzi, A T; Sales, A P; Borges, I M M; Guilherme, S R; Zuffo, A M; Lima, J G; Ribeiro, F O; Mendes, A E S; Godinho, S H M; Carvalho, M L M

    2017-09-21

    The objective of this study was to evaluate the genetic diversity of soybean cultivars by adopting phenotypic traits and enzymatic markers, the relative contribution of agronomic traits to diversity, as well as diversity between the level of technology used in soybean cultivars and genetic breeding programs in which cultivars were inserted. The experiments were conducted on the field at the Center for Scientific and Technological Development in crop-livestock production and the Electrophoresis Laboratory of Lavras Federal University. The agronomic traits adopted were grain yield, plant height, first legume insertion, plant lodging, the mass of one thousand seeds, and days for complete maturation, in which the Euclidean distance, grouped by Tocher and UPGMA criteria, was obtained. After electrophorese gels for enzymatic systems, dehydrogenase alcohol, esterase, superoxide dismutase, and peroxidase were performed. The genetic similarity estimative was also obtained between genotypes by the Jaccard coefficient with subsequent grouping by the UPGMA method. The formation of two groups was shown using phenotypic characters in the genetic diversity study and individually discriminating the cultivar 97R73 RR. The character with the greatest contribution to the genetic divergence was grain yield with contribution higher than 90.0%. To obtain six different groups, individually discriminating the cultivars CG 8166 RR, FPS Jupiter RR, and BRS MG 780 RR, enzymatic markers were used. Cultivars carrying the RR technology presented more divergence than conventional cultivars and IPRO cultivars.

  8. Genetic similarity among commercial oil palm materials based on microsatellite markers

    Directory of Open Access Journals (Sweden)

    Diana Arias

    2012-08-01

    Full Text Available Microsatellite markers are used to determine genetic similarities among individuals and might be used in various applications in breeding programs. For example, knowing the genetic similarity relationships of commercial planting materials helps to better understand their responses to environmental, agronomic and plant health factors. This study assessed 17 microsatellite markers in 9 crosses (D x P of Elaeis guineensis Jacq. from various commercial companies in Malaysia, France, Costa Rica and Colombia, in order to find possible genetic differences and/or similarities. Seventy-seven alleles were obtained, with an average of 4.5 alleles per primer and a range of 2-8 amplified alleles. The results show a significant reduction of alleles, compared to the number of alleles reported for wild oil palm populations. The obtained dendrogram shows the formation of two groups based on their genetic similarity. Group A, with ~76% similarity, contains the commercial material of 3 codes of Deli x La Mé crosses produced in France and Colombia, and group B, with ~66% genetic similarity, includes all the materials produced by commercial companies in Malaysia, France, Costa Rica and Colombia

  9. Assessment of genetic diversity in okra (abelmoschus esculentus l.) using rapd markers

    International Nuclear Information System (INIS)

    Haq, I.; Khan, A.A.; Azmat, M.A.

    2013-01-01

    Thirty nine okra genotypes were assessed for genetic variability using Random Amplified Polymorphic DNA (RAPD) markers. Twenty polymorphic RAPD primers amplified 111 DNA fragments, with an average of 5.5 fragments per primer. Among 39 okra genotypes, 107 fragments (96%) were found to be polymorphic. The UPGMA cluster analysis placed okra genotypes into seven main clusters. Sabzpari 2001 and Acc. No. 019221 had shown maximum similarity (83%) while the minimum similarity (44.14%) was observed between the genotypes Punjab Selection and Acc. No. 019217. Thus, by using RAPD primers a considerable polymorphism appeared to exist, which showed genetic variability in the okra genotypes. (author)

  10. Modeling of genetic gain for single traits from marker-assisted seedling selection in clonally propagated crops

    Science.gov (United States)

    Ru, Sushan; Hardner, Craig; Carter, Patrick A; Evans, Kate; Main, Dorrie; Peace, Cameron

    2016-01-01

    Seedling selection identifies superior seedlings as candidate cultivars based on predicted genetic potential for traits of interest. Traditionally, genetic potential is determined by phenotypic evaluation. With the availability of DNA tests for some agronomically important traits, breeders have the opportunity to include DNA information in their seedling selection operations—known as marker-assisted seedling selection. A major challenge in deploying marker-assisted seedling selection in clonally propagated crops is a lack of knowledge in genetic gain achievable from alternative strategies. Existing models based on additive effects considering seed-propagated crops are not directly relevant for seedling selection of clonally propagated crops, as clonal propagation captures all genetic effects, not just additive. This study modeled genetic gain from traditional and various marker-based seedling selection strategies on a single trait basis through analytical derivation and stochastic simulation, based on a generalized seedling selection scheme of clonally propagated crops. Various trait-test scenarios with a range of broad-sense heritability and proportion of genotypic variance explained by DNA markers were simulated for two populations with different segregation patterns. Both derived and simulated results indicated that marker-based strategies tended to achieve higher genetic gain than phenotypic seedling selection for a trait where the proportion of genotypic variance explained by marker information was greater than the broad-sense heritability. Results from this study provides guidance in optimizing genetic gain from seedling selection for single traits where DNA tests providing marker information are available. PMID:27148453

  11. Problems of genetic diagnosis: serological markers in the prognosis of the development of human speed abilities

    Directory of Open Access Journals (Sweden)

    Serhiyenko Leonid Prokopovich

    2011-10-01

    Full Text Available The article deals with the study of correlation between blood groups system AB0 and Rh with the peculiarities of the development of human speed abilities. Complex of genetic markers is defined. It is possible to use this complex in the individual prognosis of the development of human motor abilities. With 0(I and A(II blood groups and Rh+ have a high inclination to the physical development. Better identify trends in the phenotypic expression of high-speed abilities in people with 0(I and A(II blood groups in comparison with people with the AB(IV and B(III blood group. The pattern of decreasing susceptibility to the development of high-speed abilities as follows: 0(I>A(II>B(III>AB (IV. It is established that a complex system of genetic markers AB0 and Rh blood has no gender differences.

  12. GeMprospector--online design of cross-species genetic marker candidates in legumes and grasses.

    Science.gov (United States)

    Fredslund, Jakob; Madsen, Lene H; Hougaard, Birgit K; Sandal, Niels; Stougaard, Jens; Bertioli, David; Schauser, Leif

    2006-07-01

    The web program GeMprospector (URL: http://cgi-www.daimi.au.dk/cgi-chili/GeMprospector/main) allows users to automatically design large sets of cross-species genetic marker candidates targeting either legumes or grasses. The user uploads a collection of ESTs from one or more legume or grass species, and they are compared with a database of clusters of homologous EST and genomic sequences from other legumes or grasses, respectively. Multiple sequence alignments between submitted ESTs and their homologues in the appropriate database form the basis of automated PCR primer design in conserved exons such that each primer set amplifies an intron. The only user input is a collection of ESTs, not necessarily from more than one species, and GeMprospector can boost the potential of such an EST collection by combining it with a large database to produce cross-species genetic marker candidates for legumes or grasses.

  13. Isolation and characterization of microsatellite markers and analysis of genetic variability in Curculigo latifolia Dryand.

    Science.gov (United States)

    Babaei, Nahid; Abdullah, Nur Ashikin Psyquay; Saleh, Ghizan; Abdullah, Thohirah Lee

    2012-11-01

    Curculin, a sweet protein found in Curculigo latifolia fruit has great potential for the pharmaceutical industry. This protein interestingly has been found to have both sweet taste and taste-modifying capacities comparable with other natural sweeteners. According to our knowledge this is the first reported case on the isolation of microsatellite loci in this genus. Hence, the current development of microsatellite markers for C. latifolia will facilitate future population genetic studies and breeding programs for this valuable plant. In this study 11 microsatellite markers were developed using 3' and 5' ISSR markers. The primers were tested on 27 accessions from all states of Peninsular Malaysia. The number of alleles per locus ranged from three to seven, with allele size ranging from 141 to 306 bp. The observed and expected heterozygosity ranged between 0.00-0.65 and 0.38-0.79, respectively. The polymorphic information content ranged from 0.35 to 0.74 and the Shannon's information index ranged from 0.82 to 1.57. These developed polymorphic microsatellites were used for constructing a dendrogram by unweighted pair group method with arithmetic mean cluster analysis using the Dice's similarity coefficient. Accessions association according to their geographical origin was observed. Based on characteristics of isolated microsatellites for C. latifolia accessions all genotype can be distinguished using these 11 microsatellite markers. These polymorphic markers could also be applied to studies on uniformity determination and somaclonal variation of tissue culture plantlets, varieties identification, genetic diversity, analysis of phylogenetic relationship, genetic linkage maps and quantitative trait loci in C. latifolia.

  14. Development of marker vaccines for rinderpest virus using reverse genetics technology

    International Nuclear Information System (INIS)

    Parida, S.; Walsh, E.P.; Anderson, J.; Baron, M.D.; Barrett, T.

    2005-01-01

    Rinderpest is an economically devastating disease of cattle (cattle plague), but a live-attenuated vaccine has been very successfully used in a global rinderpest eradication campaign. As a consequence, the endemic focus of the virus has been reduced to an area in eastern Africa known as the Kenya-Somali ecosystem. Although the vaccine is highly effective, it has a drawback in that vaccinated animals are serologically indistinguishable from those that have recovered from natural infection. In the final stages of the eradication campaign, when vaccination to control the spread of disease will only be used in emergencies to contain an outbreak, a marker vaccine would be a very useful tool to monitor possible wild virus spread outside the vaccination area. Marker vaccines for rinderpest, and other viruses with negative-sense RNA genomes, can now be produced using reverse genetics, and the development of such marker vaccines for rinderpest virus is described. (author)

  15. Genetic linkage of mild pseudoachondroplasia (PSACH) to markers in the pericentromeric region of chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, M.D.; Rasmussen, M.; Garber, P.; Rimoin, D.L.; Cohn, D.H. (Steven Spielberg Pediatric Research Center, Los Angeles, CA (United States)); Weber, J.L. (Marshfield Medical Research Foundation, WI (United States)); Yuen, J.; Reinker, K. (Univ. of Hawaii, Honolulu, HI (United States))

    1993-12-01

    Pseudoachondroplasia (PSACH) is a dominantly inherited form of short-limb dwarfism characterized by dysplastic changes in the spine, epiphyses, and metaphyses and early onset osteoarthropathy. Chondrocytes from affected individuals accumulate an unusual appearing material in the rough endoplasmic reticulum, which has led to the hypothesis that a structural abnormality in a cartilage-specific protein produces the phenotype. The authors recently identified a large family with a mild form of pseudoachondroplasia. By genetic linkage to a dinucleotide repeat polymorphic marker (D19S199), they have localized the disease gene to chromosome 19 (maximum lod score of 7.09 at a recombination fraction of 0.03). Analysis of additional markers and recombinations between the linked markers and the phenotype suggests that the disease gene resides within a 6.3-cM interval in the immediate pericentromeric region of the chromosome. 39 refs., 2 figs., 1 tab.

  16. Genetic Assessment of Moroccan Tomato (Solanum lycopersicum L. Genotypes by RAPD and SSR Markers

    Directory of Open Access Journals (Sweden)

    Rajae Amraoui

    2017-06-01

    Full Text Available For the first time eight local tomato cultivars collected from four different regions of Morocco were assessed with RAPD and SSR methods. Most of RAPD markers give monomorphic banding profiles. Only OPU03 marker showed a total of 4 polymorphic amplicons out of 8 recorded in FIGUIG2 cultivar. The analysis with SSR markers gives more polymorphism. The number of alleles amplified assessed from 2 to 5 alleles among cultivars. The similarity matrix subjected by the unweighted pairgroup arithmetic method (UPGMA clustering grouped the cultivars in four groups where FIGUIG2 cultivar formed a separate and more distant cluster. In addition this cultivar holds the very high percentage of uniformity (99% indicating that is an homogeneous traditional cultivar with high purity. This genotype can be conserved and used in breeding programs. More traditional Moroccan cultivars must be collected in order to determine their genetic structure.

  17. [The muzzle and biochemical genetic markers as supplementary breed characteristics in cattle].

    Science.gov (United States)

    Tarasiuk, S I; Glazko, V I; Trofimenko, A L

    1997-01-01

    The comparative analysis of characteristics of three different cattle breeds (Brown Carpathian, Pinzgauer, Red Polish) on the 5 molecular-genetic markers and 5 muzzle dermatoglyphic types was carried out. It was indicated, that one characteristic can not be use as a breed-specific one but only their complex. The main aspect of search of this complex is the use of characteristics which mark different structure-functional systems of whole organism.

  18. Microsatellite genotyping reveals high genetic diversity but low ...

    African Journals Online (AJOL)

    JMwacharos

    2016-03-16

    Mar 16, 2016 ... diversity and (2) Investigate population structure and extent of admixture .... to estimate and partition genetic variation within and ... K between 1 and 40 and inferred its most optimal value ... populations of 0.84 ± 0.021 with the lowest mean in ..... on population stratification and the distribution of genetic.

  19. Targeted sequencing reveals low-frequency variants in EPHA genes as markers of paclitaxel-induced peripheral neuropathy.

    OpenAIRE

    Apellániz-Ruiz, Maria; Tejero, Héctor; Inglada-Pérez, Lucía; Sánchez-Barroso, Lara; Gutiérrez-Gutiérrez, Gerardo; Calvo, Isabel; Castelo, Beatriz; Redondo, Andrés; García-Donás, Jesus; Romero-Laorden, Nuria; Sereno, Maria; Merino, María; Currás-Freixes, Maria; Montero-Conde, Cristina; Mancikova, Veronika

    2017-01-01

    PURPOSE: Neuropathy is the dose limiting toxicity of paclitaxel and a major cause for decreased quality of life. Genetic factors have been shown to contribute to paclitaxel neuropathy susceptibility; however, the major causes for inter-individual differences remain unexplained. In this study we identified genetic markers associated with paclitaxel-induced neuropathy through massive sequencing of candidate genes. EXPERIMENTAL DESIGN: We sequenced the coding region of 4 EPHA genes, 5 genes invo...

  20. [Cloning goat producing human lactoferrin with genetically modified donor cells selected by single or dual markers].

    Science.gov (United States)

    An, Liyou; Yuan, Yuguo; Yu, Baoli; Yang, Tingjia; Cheng, Yong

    2012-12-01

    We compared the efficiency of cloning goat using human lactoferrin (hLF) with genetically modified donor cells marked by single (Neo(r)) or double (Neo(r)/GFP) markers. Single marker expression vector (pBLC14) or dual markers expression vector (pAPLM) was delivered to goat fetal fibroblasts (GFF), and then the transgenic GFF was used as donor cells to produce transgenic goats. Respectively, 58.8% (20/34) and 86.7% (26/30) resistant cell lines confirmed the transgenic integration by PCR. Moreover, pAPLM cells lines were subcultured with several passages, only 20% (6/30) cell lines was observed fluorescence from each cell during the cell passage. Somatic cell nuclear transfer using the donor cells harbouring pBLC14 or pAPLM construct, resulting in a total of 806 reconstructed embryos, a pregnancy rate at 35 d (53.8%, 39.1%) and 60 d (26.9%, 21.7%), and an offspring birth rate (1.9%, 1.4%) with 5 and 7 newborn cloned goats, respectively. Transgene was confirmed by PCR and southern-blot in all cloned offspring. There were no significant differences at the reconstructed embryo fusion rates, pregnancy rates and the birth rate (P > 0.05) between single and double markers groups. The Neo(r)/GFP double markers could improve the reliability for accurately and efficiently selecting the genetically modified donor cells. No adverse effect was observed on the efficiency of transgenic goat production by SCNT using somatic cells transfected with double (Neo(r)/GFP) markers vector.

  1. Cultivar identification and genetic relationship of pineapple (Ananas comosus) cultivars using SSR markers.

    Science.gov (United States)

    Lin, Y S; Kuan, C S; Weng, I S; Tsai, C C

    2015-11-25

    The genetic relationships among 27 pineapple [Ananas comosus (L.) Merr.] cultivars and lines were examined using 16 simple sequence repeat (SSR) markers. The number of alleles per locus of the SSR markers ranged from 2 to 6 (average 3.19), for a total of 51 alleles. Similarity coefficients were calculated on the basis of 51 amplified bands. A dendrogram was created according to the 16 SSR markers by the unweighted pair-group method. The banding patterns obtained from the SSR primers allowed most of the cultivars and lines to be distinguished, with the exception of vegetative clones. According to the dendrogram, the 27 pineapple cultivars and lines were clustered into three main clusters and four individual clusters. As expected, the dendrogram showed that derived cultivars and lines are closely related to their parental cultivars; the genetic relationships between pineapple cultivars agree with the genealogy of their breeding history. In addition, the analysis showed that there is no obvious correlation between SSR markers and morphological characters. In conclusion, SSR analysis is an efficient method for pineapple cultivar identification and can offer valuable informative characters to identify pineapple cultivars in Taiwan.

  2. Genetic diversity and genetic structure of consecutive breeding generations of golden mandarin fish (Siniperca scherzeri Steindachner) using microsatellite markers.

    Science.gov (United States)

    Luo, X N; Yang, M; Liang, X F; Jin, K; Lv, L Y; Tian, C X; Yuan, Y C; Sun, J

    2015-09-25

    In this study, 12 polymorphic microsatellites were inves-tigated to determine the genetic diversity and structure of 5 consecu-tive selected populations of golden mandarin fish (Siniperca scherzeri Steindachner). The total numbers of alleles, average heterozyosity, and average polymorphism information content showed that the genetic diversity of these breeding populations was decreasing. Additionally, pairwise fixation index FST values among populations and Da values in-creased from F1 generation to subsequent generations (FST values from 0.0221-0.1408; Da values from 0.0608-0.1951). Analysis of molecular variance indicated that most genetic variations arise from individuals within populations (about 92.05%), while variation among populations accounted for only 7.95%. The allele frequency of the loci SC75-220 and SC101-222 bp changed regularly in the 5 breeding generations. Their frequencies were gradually increased and showed an enrichment trend, indicating that there may be genetic correlations between these 2 loci and breeding traits. Our study indicated that microsatellite markers are effective for assessing the genetic variability in the golden mandarin fish breeding program.

  3. Standing at the Gateway to Europe - The Genetic Structure of Western Balkan Populations Based on Autosomal and Haploid Markers

    Science.gov (United States)

    Kovacevic, Lejla; Tambets, Kristiina; Ilumäe, Anne-Mai; Kushniarevich, Alena; Yunusbayev, Bayazit; Solnik, Anu; Bego, Tamer; Primorac, Dragan; Skaro, Vedrana; Leskovac, Andreja; Jakovski, Zlatko; Drobnic, Katja; Tolk, Helle-Viivi; Kovacevic, Sandra; Rudan, Pavao; Metspalu, Ene; Marjanovic, Damir

    2014-01-01

    Contemporary inhabitants of the Balkan Peninsula belong to several ethnic groups of diverse cultural background. In this study, three ethnic groups from Bosnia and Herzegovina - Bosniacs, Bosnian Croats and Bosnian Serbs - as well as the populations of Serbians, Croatians, Macedonians from the former Yugoslav Republic of Macedonia, Montenegrins and Kosovars have been characterized for the genetic variation of 660 000 genome-wide autosomal single nucleotide polymorphisms and for haploid markers. New autosomal data of the 70 individuals together with previously published data of 20 individuals from the populations of the Western Balkan region in a context of 695 samples of global range have been analysed. Comparison of the variation data of autosomal and haploid lineages of the studied Western Balkan populations reveals a concordance of the data in both sets and the genetic uniformity of the studied populations, especially of Western South-Slavic speakers. The genetic variation of Western Balkan populations reveals the continuity between the Middle East and Europe via the Balkan region and supports the scenario that one of the major routes of ancient gene flows and admixture went through the Balkan Peninsula. PMID:25148043

  4. Standing at the gateway to Europe--the genetic structure of Western balkan populations based on autosomal and haploid markers.

    Science.gov (United States)

    Kovacevic, Lejla; Tambets, Kristiina; Ilumäe, Anne-Mai; Kushniarevich, Alena; Yunusbayev, Bayazit; Solnik, Anu; Bego, Tamer; Primorac, Dragan; Skaro, Vedrana; Leskovac, Andreja; Jakovski, Zlatko; Drobnic, Katja; Tolk, Helle-Viivi; Kovacevic, Sandra; Rudan, Pavao; Metspalu, Ene; Marjanovic, Damir

    2014-01-01

    Contemporary inhabitants of the Balkan Peninsula belong to several ethnic groups of diverse cultural background. In this study, three ethnic groups from Bosnia and Herzegovina - Bosniacs, Bosnian Croats and Bosnian Serbs - as well as the populations of Serbians, Croatians, Macedonians from the former Yugoslav Republic of Macedonia, Montenegrins and Kosovars have been characterized for the genetic variation of 660 000 genome-wide autosomal single nucleotide polymorphisms and for haploid markers. New autosomal data of the 70 individuals together with previously published data of 20 individuals from the populations of the Western Balkan region in a context of 695 samples of global range have been analysed. Comparison of the variation data of autosomal and haploid lineages of the studied Western Balkan populations reveals a concordance of the data in both sets and the genetic uniformity of the studied populations, especially of Western South-Slavic speakers. The genetic variation of Western Balkan populations reveals the continuity between the Middle East and Europe via the Balkan region and supports the scenario that one of the major routes of ancient gene flows and admixture went through the Balkan Peninsula.

  5. Estimates of epistatic and pleiotropic effects of casein alpha s1 (CSN1S1) and thyroglobulin (TG) genetic markers on beef heifer performance traits enhanced by selection

    Science.gov (United States)

    Genetic marker effects and type of inheritance are estimated with poor precision when minor marker allele frequencies are low. A stable composite population (MARC II) was subjected to marker assisted selection for two years to equalize CSN1S1 and TG genetic marker frequencies to evaluate the epista...

  6. Genetic relationship among nine Rhododendron species in Qinling mountains, China using amplified fragment length polymorphism markers

    International Nuclear Information System (INIS)

    Zhao, B.; Zheng, X.Z.

    2015-01-01

    Genetic relationships of nine species of Rhododendron in the Qinling Mountains were evaluated using amplified fragment length polymorphism (AFLP) markers. A total of 440 amplification products were obtained using nine selected AFLP markers, of which 421 (95.40%) showed polymorphism. With these polymorphic products, a dendrogram was constructed using the unweighted pair-group method with arithmetic mean (UPGMA). R. calophytum, R. hypoglaucum and R. clementinae, belonging to Subgen Hymenanthes, gathered together, and the species derived from Subgen Rhododendron and Subgen Tsutsusi formed another two groups. R. tsinlingense, R. purdomii, R. Taibaiense and R. capitatum (Subsect. Lapponica), and R. concinnum (Subsect. Triflora) were clustered as one group, but they belong to difference subsect. and R. purdomii and R. Taibaiense showed the closest genetic distance, but both species differed greatly in morphological characteristics.These results showed that the genetic relationships among nine Rhododendron species, determined by AFLP markers, were partially related to their taxonomic position, geography distribution and morphological classification. The present study will benefit the identification and conservation of Rhododendron, and the development of new Rhododendron cultivar. (author)

  7. Genetic Diversity in Jatropha curcas L. Assessed with SSR and SNP Markers

    Directory of Open Access Journals (Sweden)

    Juan M. Montes

    2014-08-01

    Full Text Available Jatropha curcas L. (jatropha is an undomesticated plant that has recently received great attention for its utilization in biofuel production, rehabilitation of wasteland, and rural development. Knowledge of genetic diversity and marker-trait associations is urgently needed for the design of breeding strategies. The main goal of this study was to assess the genetic structure and diversity in jatropha germplasm with co-dominant markers (Simple Sequence Repeats (SSR and Single Nucleotide Polymorphism (SNP in a diverse, worldwide, germplasm panel of 70 accessions. We found a high level of homozygosis in the germplasm that does not correspond to the purely outcrossing mating system assumed to be present in jatropha. We hypothesize that the prevalent mating system of jatropha comprise a high level of self-fertilization and that the outcrossing rate is low. Genetic diversity in accessions from Central America and Mexico was higher than in accession from Africa, Asia, and South America. We identified makers associated with the presence of phorbol esters. We think that the utilization of molecular markers in breeding of jatropha will significantly accelerate the development of improved cultivars.

  8. Transferability of STS markers in studying genetic relationships of marvel grass (Dichanthium annulatum).

    Science.gov (United States)

    Saxena, Raghvendra; Chandra, Amaresh

    2011-11-01

    Transferability of sequence-tagged-sites (STS) markers was assessed for genetic relationships study among accessions of marvel grass (Dichanthium annulatum Forsk.). In total, 17 STS primers of Stylosanthes origin were tested for their reactivity with thirty accessions of Dichanthium annulatum. Of these, 14 (82.4%) reacted and a total 106 (84 polymorphic) bands were scored. The number of bands generated by individual primer pairs ranged from 4 to 11 with an average of 7.57 bands, whereas polymorphic bands ranged from 4 to 9 with an average of 6.0 bands accounts to an average polymorphism of 80.1%. Polymorphic information content (PIC) ranged from 0.222 to 0.499 and marker index (MI) from 1.33 to 4.49. Utilizing Dice coefficient of genetic similarity dendrogram was generated through un-weighted pairgroup method with arithmetic mean (UPGMA) algorithm. Further, clustering through sequential agglomerative hierarchical and nested (SAHN) method resulted three main clusters constituted all accessions except IGBANG-D-2. Though there was intermixing of few accessions of one agro-climatic region to another, largely groupings of accessions were with their regions of collections. Bootstrap analysis at 1000 scale also showed large number of nodes (11 to 17) having strong clustering (> 50). Thus, results demonstrate the utility of STS markers of Stylosanthes in studying the genetic relationships among accessions of Dichanthium.

  9. Genetic and chemical diversity of high mucilaginous plants of Sida complex by ISSR markers and chemical fingerprinting.

    Science.gov (United States)

    Thul, Sanjog T; Srivastava, Ankit K; Singh, Subhash C; Shanker, Karuna

    2011-09-01

    A method was developed based on multiple approaches wherein DNA and chemical analysis was carried out toward differentiation of important species of Sida complex that is being used for commercial preparation. Isolated DNA samples were successfully performed through PCR amplification using ISSR markers and degree of genetic diversity among the different species of Sida is compared with that of chemical diversity. For genetic fingerprint investigation, selected 10 ISSR primers generating reproducible banding patterns were used. Among the total of 63 amplicons, 62 were recorded as polymorphic, genetic similarity index deduced from ISSR profiles ranged from 12 to 51%. Based on similarity index, S. acuta and S. rhombifolia found to be most similar (51%). High number of species-specific bands played pivotal role to delineate species at genetic level. Investigation based on HPTLC fingerprints analysis revealed 23 bands representing to characteristic chemicals and similarity index ranged from 73 to 91%. Prominent distinguishable bands were observed only in S. acuta, while S. cordifolia and S. rhombifolia shared most bands making them difficult to identify on chemical fingerprint basis. This report summarizes the genotypic and chemotypic diversity and the use of profiles for authentication of species of Sida complex.

  10. Dissecting Genetic Network of Fruit Branch Traits in Upland Cotton by Association Mapping Using SSR Markers.

    Directory of Open Access Journals (Sweden)

    Yongjun Mei

    Full Text Available Genetic architecture of branch traits has large influences on the morphological structure, photosynthetic capacity, planting density, and yield of Upland cotton (Gossypium hirsutum L.. This research aims to reveal the genetic effects of six branch traits, including bottom fruit branch node number (BFBNN, bottom fruit branch length (BFBL, middle fruit branch node number (MFBNN, middle fruit branch length (MFBL, upper fruit branch node number (UFBNN, and upper fruit branch length (UFBL. Association mapping was conducted for these traits of 39 lines and their 178 F1 hybrids in three environments. There were 20 highly significant Quantitative Trait SSRs (QTSs detected by mixed linear model approach analyzing a full genetic model with genetic effects of additive, dominance, epistasis and their environment interaction. The phenotypic variation explained by genetic effects ranged from 32.64 ~ 91.61%, suggesting these branch traits largely influenced by genetic factors.

  11. Genetic characterization of Toxoplasma gondii from Brazilian wildlife revealed abundant new genotypes.

    Science.gov (United States)

    Vitaliano, S N; Soares, H S; Minervino, A H H; Santos, A L Q; Werther, K; Marvulo, M F V; Siqueira, D B; Pena, H F J; Soares, R M; Su, C; Gennari, S M

    2014-12-01

    This study aimed to isolate and genotype T. gondii from Brazilian wildlife. For this purpose, 226 samples were submitted to mice bioassay and screened by PCR based on 18S rRNA sequences. A total of 15 T. gondii isolates were obtained, including samples from four armadillos (three Dasypus novemcinctus, one Euphractus sexcinctus), three collared anteaters (Tamandua tetradactyla), three whited-lipped peccaries (Tayassu pecari), one spotted paca (Cuniculus paca), one oncilla (Leopardus tigrinus), one hoary fox (Pseudalopex vetulus), one lineated woodpecker (Dryocopus lineatus) and one maned wolf (Chrysocyon brachyurus). DNA from the isolates, originated from mice bioassay, and from the tissues of the wild animal, designated as "primary samples", were genotyped by PCR-restriction fragment length polymorphism (PCR/RFLP), using 12 genetic markers (SAG1, SAG2, alt.SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L258, PK1, CS3 and Apico). A total of 17 genotypes were identified, with 13 identified for the first time and four already reported in published literature. Results herein obtained corroborate previous studies in Brazil, confirming high diversity and revealing unique genotypes in this region. Given most of genotypes here identified are different from previous studies in domestic animals, future studies on T. gondii from wildlife is of interest to understand population genetics and structure of this parasite.

  12. Genetic characterization of Toxoplasma gondii from Brazilian wildlife revealed abundant new genotypes

    Directory of Open Access Journals (Sweden)

    S.N. Vitaliano

    2014-12-01

    Full Text Available This study aimed to isolate and genotype T. gondii from Brazilian wildlife. For this purpose, 226 samples were submitted to mice bioassay and screened by PCR based on 18S rRNA sequences. A total of 15 T. gondii isolates were obtained, including samples from four armadillos (three Dasypus novemcinctus, one Euphractus sexcinctus, three collared anteaters (Tamandua tetradactyla, three whited-lipped peccaries (Tayassu pecari, one spotted paca (Cuniculus paca, one oncilla (Leopardus tigrinus, one hoary fox (Pseudalopex vetulus, one lineated woodpecker (Dryocopus lineatus and one maned wolf (Chrysocyon brachyurus. DNA from the isolates, originated from mice bioassay, and from the tissues of the wild animal, designated as “primary samples”, were genotyped by PCR–restriction fragment length polymorphism (PCR/RFLP, using 12 genetic markers (SAG1, SAG2, alt.SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L258, PK1, CS3 and Apico. A total of 17 genotypes were identified, with 13 identified for the first time and four already reported in published literature. Results herein obtained corroborate previous studies in Brazil, confirming high diversity and revealing unique genotypes in this region. Given most of genotypes here identified are different from previous studies in domestic animals, future studies on T. gondii from wildlife is of interest to understand population genetics and structure of this parasite.

  13. Genetic differentiation in Pyrenophora teres f. teres populations from Syria and Tunisia as assessed by AFLP markers.

    Science.gov (United States)

    Bouajila, A; Zoghlami, N; Murad, S; Baum, M; Ghorbel, A; Nazari, K

    2013-06-01

    To investigate the level of genetic differentiation and diversity among Pyrenophora teres isolate populations originating from different agro-ecological areas of Syria and Tunisia and to determine the potential of AFLP profiling in genotyping Pyrenophora teres f. teres. In this study, AFLP markers have been employed to identify patterns of population structure in 20 Pyrenophora teres f. teres populations from Syria and Tunisia. Ninety-four isolates were studied by the use of a protocol that involved stringent PCR amplification of fragments derived from digestion of genomic DNA with restriction enzymes EcoRI and MesI. Based on 401 amplified polymorphic DNA markers (AFLP), variance analyses indicated that most of the variation was partitioned within rather than between populations. Genotypic diversity (GD) was high for populations from Rihane, local landraces and different agro-ecological zones (GD = 0·75-0·86). There was high genetic differentiation among pathogen populations from different host populations in Syria (Gst  = 0·31, ht = 0·190) and Tunisia (Gst  = 0·39, ht = 0·263), which may be partly explained by the low gene flow around the areas sampled. A phenetic tree revealed three groups with high bootstrap values (55, 68, 76) and reflected the grouping of isolates based on host, or agro-ecological areas. AFLP profiling is an effective method for typing the genetically diverse pathogen Pyrenophora teres f. teres. The study represents a comparative analysis of the genetic diversity in P. teres isolates from two countries spanning two continents and also shows that several distinct P. teres genotypes may be found in a given environment. The implications of these findings for Pyrenophora teres f. teres evolutionary potential and net blotch-resistance breeding in Syria and Tunisia were also discussed. © 2012 The Society for Applied Microbiology.

  14. Identification of genetic markers linked to anthracnose resistance in sorghum using association analysis.

    Science.gov (United States)

    Upadhyaya, Hari D; Wang, Yi-Hong; Sharma, Rajan; Sharma, Shivali

    2013-06-01

    Anthracnose in sorghum caused by Colletotrichum sublineolum is one of the most destructive diseases affecting sorghum production under warm and humid conditions. Markers and genes linked to resistance to the disease are important for plant breeding. Using 14,739 SNP markers, we have mapped eight loci linked to resistance in sorghum through association analysis of a sorghum mini-core collection consisting of 242 diverse accessions evaluated for anthracnose resistance for 2 years in the field. The mini-core was representative of the International Crops Research Institute for the Semi-Arid Tropics' world-wide sorghum landrace collection. Eight marker loci were associated with anthracnose resistance in both years. Except locus 8, disease resistance-related genes were found in all loci based on their physical distance from linked SNP markers. These include two NB-ARC class of R genes on chromosome 10 that were partially homologous to the rice blast resistance gene Pib, two hypersensitive response-related genes: autophagy-related protein 3 on chromosome 1 and 4 harpin-induced 1 (Hin1) homologs on chromosome 8, a RAV transcription factor that is also part of R gene pathway, an oxysterol-binding protein that functions in the non-specific host resistance, and homologs of menthone:neomenthol reductase (MNR) that catalyzes a menthone reduction to produce the antimicrobial neomenthol. These genes and markers may be developed into molecular tools for genetic improvement of anthracnose resistance in sorghum.

  15. Phylogenetic origin of limes and lemons revealed by cytoplasmic and nuclear markers.

    Science.gov (United States)

    Curk, Franck; Ollitrault, Frédérique; Garcia-Lor, Andres; Luro, François; Navarro, Luis; Ollitrault, Patrick

    2016-04-01

    The origin of limes and lemons has been a source of conflicting taxonomic opinions. Biochemical studies, numerical taxonomy and recent molecular studies suggested that cultivated Citrus species result from interspecific hybridization between four basic taxa (C. reticulata,C. maxima,C. medica and C. micrantha). However, the origin of most lemons and limes remains controversial or unknown. The aim of this study was to perform extended analyses of the diversity, genetic structure and origin of limes and lemons. The study was based on 133 Citrus accessions. It combined maternal phylogeny studies based on mitochondrial and chloroplastic markers, and nuclear structure analysis based on the evaluation of ploidy level and the use of 123 markers, including 73 basic taxa diagnostic single nucleotide polymorphism (SNP) and indel markers. The lime and lemon horticultural group appears to be highly polymorphic, with diploid, triploid and tetraploid varieties, and to result from many independent reticulation events which defined the sub-groups. Maternal phylogeny involves four cytoplasmic types out of the six encountered in the Citrus genus. All lime and lemon accessions were highly heterozygous, with interspecific admixture of two, three and even the four ancestral taxa genomes. Molecular polymorphism between varieties of the same sub-group was very low. Citrus medica contributed to all limes and lemons and was the direct male parent for the main sub-groups in combination with C. micrantha or close papeda species (for C. aurata, C. excelsa, C. macrophylla and C. aurantifolia--'Mexican' lime types of Tanaka's taxa), C. reticulata(for C. limonia, C. karna and C. jambhiri varieties of Tanaka's taxa, including popular citrus rootstocks such as 'Rangpur' lime, 'Volkamer' and 'Rough' lemons), C. aurantium (for C. limetta and C. limon--yellow lemon types--varieties of Tanaka's taxa) or the C. maxima × C. reticulate hybrid (for C. limettioides--'Palestine sweet' lime types--and C

  16. Novel molecular markers of Chlamydia pecorum genetic diversity in the koala (Phascolarctos cinereus)

    Science.gov (United States)

    2011-01-01

    Background Chlamydia pecorum is an obligate intracellular bacterium and the causative agent of reproductive and ocular disease in several animal hosts including koalas, sheep, cattle and goats. C. pecorum strains detected in koalas are genetically diverse, raising interesting questions about the origin and transmission of this species within koala hosts. While the ompA gene remains the most widely-used target in C. pecorum typing studies, it is generally recognised that surface protein encoding genes are not suited for phylogenetic analysis and it is becoming increasingly apparent that the ompA gene locus is not congruent with the phylogeny of the C. pecorum genome. Using the recently sequenced C. pecorum genome sequence (E58), we analysed 10 genes, including ompA, to evaluate the use of ompA as a molecular marker in the study of koala C. pecorum genetic diversity. Results Three genes (incA, ORF663, tarP) were found to contain sufficient nucleotide diversity and discriminatory power for detailed analysis and were used, with ompA, to genotype 24 C. pecorum PCR-positive koala samples from four populations. The most robust representation of the phylogeny of these samples was achieved through concatenation of all four gene sequences, enabling the recreation of a "true" phylogenetic signal. OmpA and incA were of limited value as fine-detailed genetic markers as they were unable to confer accurate phylogenetic distinctions between samples. On the other hand, the tarP and ORF663 genes were identified as useful "neutral" and "contingency" markers respectively, to represent the broad evolutionary history and intra-species genetic diversity of koala C. pecorum. Furthermore, the concatenation of ompA, incA and ORF663 sequences highlighted the monophyletic nature of koala C. pecorum infections by demonstrating a single evolutionary trajectory for koala hosts that is distinct from that seen in non-koala hosts. Conclusions While the continued use of ompA as a fine

  17. Novel molecular markers of Chlamydia pecorum genetic diversity in the koala (Phascolarctos cinereus

    Directory of Open Access Journals (Sweden)

    Timms Peter

    2011-04-01

    Full Text Available Abstract Background Chlamydia pecorum is an obligate intracellular bacterium and the causative agent of reproductive and ocular disease in several animal hosts including koalas, sheep, cattle and goats. C. pecorum strains detected in koalas are genetically diverse, raising interesting questions about the origin and transmission of this species within koala hosts. While the ompA gene remains the most widely-used target in C. pecorum typing studies, it is generally recognised that surface protein encoding genes are not suited for phylogenetic analysis and it is becoming increasingly apparent that the ompA gene locus is not congruent with the phylogeny of the C. pecorum genome. Using the recently sequenced C. pecorum genome sequence (E58, we analysed 10 genes, including ompA, to evaluate the use of ompA as a molecular marker in the study of koala C. pecorum genetic diversity. Results Three genes (incA, ORF663, tarP were found to contain sufficient nucleotide diversity and discriminatory power for detailed analysis and were used, with ompA, to genotype 24 C. pecorum PCR-positive koala samples from four populations. The most robust representation of the phylogeny of these samples was achieved through concatenation of all four gene sequences, enabling the recreation of a "true" phylogenetic signal. OmpA and incA were of limited value as fine-detailed genetic markers as they were unable to confer accurate phylogenetic distinctions between samples. On the other hand, the tarP and ORF663 genes were identified as useful "neutral" and "contingency" markers respectively, to represent the broad evolutionary history and intra-species genetic diversity of koala C. pecorum. Furthermore, the concatenation of ompA, incA and ORF663 sequences highlighted the monophyletic nature of koala C. pecorum infections by demonstrating a single evolutionary trajectory for koala hosts that is distinct from that seen in non-koala hosts. Conclusions While the continued use of

  18. Genetic diversity, identification, and certification of Chilean rice varieties using molecular markers

    Directory of Open Access Journals (Sweden)

    Viviana Becerra

    2015-09-01

    Full Text Available It takes approximately 14 yr to produce a new rice (Oryza sativa L. variety, that is, from initial hybridization to its commercial release. Currently, new varieties are identified based on morphological descriptors, which have been efficient over time. However, due to the main constraints on seed type impose to other breeding objectives and the pressure of continuous release of varieties, high degree of parentage, and genetic and morphological uniformity has been observed in the breeding populations. The objectives of this study were: to determine the genetic variability of Chilean and foreign commercial rice varieties, and determine, identify, and certify the genetic relationships among varieties, using simple sequence repeat (SSR markers. A total of 16 commercial varieties, some of them closely related, were included in the study, which were genétically analyzed using 54 microsatellites. The 54 microsatellite loci allowed the discrimination among the 16 varieties. The number of alleles ranged between 2 and 8 with a mean of 3.54 alleles per locus, while the polymorphism information content (PIC presented a mean of 0.44. The genetic distance and diversity parameters between pairs of varieties indicate a limited diversity among these genotypes. The cluster analysis indicated that varieties were grouped according to their grain type and pedigree. Results demonstrate that the identification and certification of varieties using microsatellite markers could be a good complement to existing agro-morphological data when varieties are closed related.

  19. The study of genetic diversity of Daemonorops draco (Palmae using ISSR markers

    Directory of Open Access Journals (Sweden)

    REVIS ASRA

    2014-10-01

    Full Text Available Asra R, Syamsuardi, Mansyurdin, Witono JR. 2014. The study of genetic diversity of Daemonorops draco (Palmae using ISSR markers. Biodiversitas 15: 109-114. The genetic diversity in five populations of Daemonorops draco(Willd. Blume (Jernang: in Bahasa Indonesia was analyzed using Inter Simple Sequence Repeat (ISSR markers. The screening results from using 15 ISSR primers showed that only 5 of ISSR primers had clear and reproducible bands. Based on the data from the matrix binary analyzed using POPGENE version 3.2, the highest genetic diversity was found in the Sepintun population at 0.0969 average heterozygosis (H and 0.146 average Shannon Index (I. The heterozygosis calculation of the total population (HT was 0.2571. The heterozygosis value within a population (HS=0.0704 was smaller than that between populations (DST=0.1867. Using the clustering analysis program Past version 32 on 43 individuals of D. draco, we found that there were three groups of D. draco. Group A consisted of 8 individuals in the Bengayoan population, group B consisted of 9 units in the Nunusan population and group C consisted of three populations; Tebo, Sepintun and Mandiangin consisted of 10, 8 and 8 individuals. The genetic similarity varied among all populations withthe values between 0.07-0.93.

  20. The use of genetic markers to estimate relationships between dogs in the course of criminal investigations.

    Science.gov (United States)

    Ciampolini, Roberta; Cecchi, Francesca; Spinetti, Isabella; Rocchi, Anna; Biscarini, Filippo

    2017-08-17

    Attacks on humans by dogs in a pack, though uncommon, do happen, and result in severe, sometimes fatal, injuries. We describe the role that canine genetic markers played during the investigation of a fatal dog-pack attack involving a 50-year-old male truck driver in a parking lot in Tuscany (Italy). Using canine specific STR genetic markers, the local authorities, in the course of their investigations, reconstructed the genetic relationships between the dogs that caused the deadly aggression and other dogs belonging to the owner of the parking who, at the moment of the aggression, was located in another region of Italy. From a Bayesian clustering algorithm, the most likely number of clusters was two. The average relatedness among the dogs responsible for the aggression was higher than the average relatedness among the other dogs or between the two groups. Taken together, all these results indicate that the two groups of dogs are clearly distinct. Genetic relationships showed that the two groups of dogs were not related. It was therefore unlikely that the murderous dogs belonged to the owner of the parking lot who, on grounds of this and additional evidence, was eventually acquitted.

  1. Alu polymorphic insertions reveal genetic structure of north Indian populations.

    Science.gov (United States)

    Tripathi, Manorama; Tripathi, Piyush; Chauhan, Ugam Kumari; Herrera, Rene J; Agrawal, Suraksha

    2008-10-01

    The Indian subcontinent is characterized by the ancestral and cultural diversity of its people. Genetic input from several unique source populations and from the unique social architecture provided by the caste system has shaped the current genetic landscape of India. In the present study 200 individuals each from three upper-caste and four middle-caste Hindu groups and from two Muslim populations in North India were examined for 10 polymorphic Alu insertions (PAIs). The investigated PAIs exhibit high levels of polymorphism and average heterozygosity. Limited interpopulation variance and genetic flow in the present study suggest admixture. The results of this study demonstrate that, contrary to common belief, the caste system has not provided an impermeable barrier to genetic exchange among Indian groups.

  2. Genomewide mapping reveals a combination of different genetic ...

    Indian Academy of Sciences (India)

    could not investigate all kinds of genetic effects, especially epistatic effects, simultaneously on the whole genome. ... consistent with different loci affecting heterosis for different ...... Jones D. F. 1917 Dominance of linked factors as a means of.

  3. MONITORING OF GENETIC DIVERSITY IN FARMED DEER POPULATIONS USING MICROSATELLITE MARKERS

    Directory of Open Access Journals (Sweden)

    Pavol Bajzík

    2011-12-01

    Full Text Available Deer (Cervidaei belong to the most important species used as farmed animals. We focused on assesing the genetic diversity among five deer populations. Analysis has been performed on a total of 183 animals originating from Czech Republic, Hungary, New Zealand, Poland and Slovak Republic. Genetic variability were investigated using 8 microsatellite markers used in deer. Statistical data of all populations we obtained on the basis of Nei statistics, using by POWERMARKER 3.23 programme. Graphical view of relationships among populations and individuals in the populations was obtained using the Dendroscope software. Molecular genetic data combinated with evaluation in statistical programmes could lead to a complex view of populations and diffrences among them.doi:10.5219/172

  4. The genetic profiles of two salmonid populations from Romania obtained through nuclear markers analysis

    Directory of Open Access Journals (Sweden)

    Ramona Nechifor

    2017-05-01

    Full Text Available The Salmonidae fish family is well represented in Romanian fauna, with a total of six species in the wild and reared in fish farms. Among them, the brown trout (Salmo trutta fario can be found in all major Romanian river basins. However, anthropogenic activities might disrupt salmonids’ habitats, so that inbreeding and genetic isolation might easily occur in the wild populations. We analyzed two wild brown trout populations from rivers targeted by anthropogenic activities, by using nuclear markers and genotyping in order to observe their genetic structure. We analyzed nine microsatellites and we observed their alleles frequencies, number of private alleles, observed and expected heterozygosity, as well as their population structure. The two populations are not in Hardy-Weinberg equilibrium for most of the loci and the inbreeding coefficient for both populations suggests a heterozygote deficit. Further sequencing data are needed in order to have a better view upon their complete genetic structure.

  5. Genetic diversity in some tunisian barley land races based on raped markers

    International Nuclear Information System (INIS)

    Abdellaos, R.; Kadir, K.; Naceur, M.B.; Kaab, L.B.B.

    2010-01-01

    The genetic diversity analysis of 15 barley land races was carried out using RAPD markers.These land races were collected from various bio climatic Tunisian zones. The amplification products varied from 4 to 11 bands ranging between 250 pb and 3000 pb. On 698 fragments counted, 578 are polymorphic showing a high level of polymorphism (82.8%). The relationship between the studied land races was evaluated according to (UPGMA) method that classified barley land races in 4 homogeneous groups. Among which, the group D included the majority of the land races with the introduced variety 'Martin'. The genetic distance between these land races is reduced, may be because of the presence of a common ancestor which led to a narrow genetic diversity. (author)

  6. Genetic diversity in some tunisian barley land races based on raped markers

    Energy Technology Data Exchange (ETDEWEB)

    Abdellaos, R; Kadir, K; Naceur, M B; Kaab, L B.B.,

    2010-12-15

    The genetic diversity analysis of 15 barley land races was carried out using RAPD markers.These land races were collected from various bio climatic Tunisian zones. The amplification products varied from 4 to 11 bands ranging between 250 pb and 3000 pb. On 698 fragments counted, 578 are polymorphic showing a high level of polymorphism (82.8%). The relationship between the studied land races was evaluated according to (UPGMA) method that classified barley land races in 4 homogeneous groups. Among which, the group D included the majority of the land races with the introduced variety 'Martin'. The genetic distance between these land races is reduced, may be because of the presence of a common ancestor which led to a narrow genetic diversity. (author)

  7. Microsatellite markers to determine population genetic structure in the golden anchovy, Coilia dussumieri.

    Science.gov (United States)

    Kathirvelpandian, A; Gopalakrishnan, A; Lakra, W S; Krishna, Gopal; Sharma, Rupam; Musammilu, K K; Basheer, V S; Jena, J K

    2014-06-01

    Coilia dussumieri (Valenciennes, 1848) commonly called as golden anchovy, constitutes a considerable fishery in the northern part of both the west and east coasts of India. Despite its clear-cut geographic isolation, the species is treated as a unit stock for fishery management purposes. We evaluated 32 microsatellite primer pairs from three closely related species (resource species) belonging to the family Engraulidae through cross-species amplification in C. dussumieri. Successful cross-priming was obtained with 10 loci, which were sequenced for confirmation of repeats. Loci were tested for delineating the genetic stock structure of four populations of C. dussumieri from both the coasts of India. The number of alleles per locus ranged from 8 to 18, with a mean of 12.3. Results of pairwise F ST indicated genetic stock structuring between the east and west coast populations of India and also validated the utilization of identified microsatellite markers in population genetic structure analysis.

  8. Genetic progress in multistage dairy cattle breeding schemes using genetic markers.

    Science.gov (United States)

    Schrooten, C; Bovenhuis, H; van Arendonk, J A M; Bijma, P

    2005-04-01

    The aim of this paper was to explore general characteristics of multistage breeding schemes and to evaluate multistage dairy cattle breeding schemes that use information on quantitative trait loci (QTL). Evaluation was either for additional genetic response or for reduction in number of progeny-tested bulls while maintaining the same response. The reduction in response in multistage breeding schemes relative to comparable single-stage breeding schemes (i.e., with the same overall selection intensity and the same amount of information in the final stage of selection) depended on the overall selection intensity, the selection intensity in the various stages of the breeding scheme, and the ratio of the accuracies of selection in the various stages of the breeding scheme. When overall selection intensity was constant, reduction in response increased with increasing selection intensity in the first stage. The decrease in response was highest in schemes with lower overall selection intensity. Reduction in response was limited in schemes with low to average emphasis on first-stage selection, especially if the accuracy of selection in the first stage was relatively high compared with the accuracy in the final stage. Closed nucleus breeding schemes in dairy cattle that use information on QTL were evaluated by deterministic simulation. In the base scheme, the selection index consisted of pedigree information and own performance (dams), or pedigree information and performance of 100 daughters (sires). In alternative breeding schemes, information on a QTL was accounted for by simulating an additional index trait. The fraction of the variance explained by the QTL determined the correlation between the additional index trait and the breeding goal trait. Response in progeny test schemes relative to a base breeding scheme without QTL information ranged from +4.5% (QTL explaining 5% of the additive genetic variance) to +21.2% (QTL explaining 50% of the additive genetic variance). A

  9. Genome-wide generation and use of informative intron-spanning and intron-length polymorphism markers for high-throughput genetic analysis in rice

    Science.gov (United States)

    Badoni, Saurabh; Das, Sweta; Sayal, Yogesh K.; Gopalakrishnan, S.; Singh, Ashok K.; Rao, Atmakuri R.; Agarwal, Pinky; Parida, Swarup K.; Tyagi, Akhilesh K.

    2016-01-01

    We developed genome-wide 84634 ISM (intron-spanning marker) and 16510 InDel-fragment length polymorphism-based ILP (intron-length polymorphism) markers from genes physically mapped on 12 rice chromosomes. These genic markers revealed much higher amplification-efficiency (80%) and polymorphic-potential (66%) among rice accessions even by a cost-effective agarose gel-based assay. A wider level of functional molecular diversity (17–79%) and well-defined precise admixed genetic structure was assayed by 3052 genome-wide markers in a structured population of indica, japonica, aromatic and wild rice. Six major grain weight QTLs (11.9–21.6% phenotypic variation explained) were mapped on five rice chromosomes of a high-density (inter-marker distance: 0.98 cM) genetic linkage map (IR 64 x Sonasal) anchored with 2785 known/candidate gene-derived ISM and ILP markers. The designing of multiple ISM and ILP markers (2 to 4 markers/gene) in an individual gene will broaden the user-preference to select suitable primer combination for efficient assaying of functional allelic variation/diversity and realistic estimation of differential gene expression profiles among rice accessions. The genomic information generated in our study is made publicly accessible through a user-friendly web-resource, “Oryza ISM-ILP marker” database. The known/candidate gene-derived ISM and ILP markers can be enormously deployed to identify functionally relevant trait-associated molecular tags by optimal-resource expenses, leading towards genomics-assisted crop improvement in rice. PMID:27032371

  10. Haplotype structure around Bru1 reveals a narrow genetic basis for brown rust resistance in modern sugarcane cultivars.

    Science.gov (United States)

    Costet, L; Le Cunff, L; Royaert, S; Raboin, L-M; Hervouet, C; Toubi, L; Telismart, H; Garsmeur, O; Rousselle, Y; Pauquet, J; Nibouche, S; Glaszmann, J-C; Hoarau, J-Y; D'Hont, A

    2012-09-01

    Modern sugarcane cultivars (Saccharum spp., 2n = 100-130) are high polyploid, aneuploid and of interspecific origin. A major gene (Bru1) conferring resistance to brown rust, caused by the fungus Puccinia melanocephala, has been identified in cultivar R570. We analyzed 380 modern cultivars and breeding materials covering the worldwide diversity with 22 molecular markers genetically linked to Bru1 in R570 within a 8.2 cM segment. Our results revealed a strong LD in the Bru1 region and strong associations between most of the markers and rust resistance. Two PCR markers, that flank the Bru1-bearing segment, were found completely associated with one another and only in resistant clones representing efficient molecular diagnostic for Bru1. On this basis, Bru1 was inferred in 86 % of the 194 resistant sugarcane accessions, revealing that it constitutes the main source of brown rust resistance in modern cultivars. Bru1 PCR diagnostic markers should be particularly useful to identify cultivars with potentially alternative sources of resistance to diversify the basis of brown rust resistance in breeding programs.

  11. Microsatellite marker-based genetic analysis of relatedness between commercial and heritage turkeys (Meleagris gallopavo).

    Science.gov (United States)

    Kamara, D; Gyenai, K B; Geng, T; Hammade, H; Smith, E J

    2007-01-01

    The turkey is second only to the chicken in importance as an agriculturally important poultry species. Unlike the chicken, however, genetic studies of the turkey continue to be limited. For example, to date, many genomic investigations have been conducted to characterize genetic relationships between commercial (CO) and non-CO chicken breeds, whereas the nature of the genetic relatedness between CO and heritage turkeys remains unknown. The objective of the current research was to use microsatellites to analyze the genetic relatedness between CO and heritage domestic turkeys including Narragansett, Bourbon Red, Blue Slate, Spanish Black, and Royal Palm. Primer pairs specific for 10 previously described turkey microsatellite markers were used. The phylogenetic analysis showed that the Blue Slate, Bourbon Red, and Narragansett were genetically closely related to the CO strain, with a Nei distance of 0.30, and the Royal Palm and Spanish Black were the least related to the CO strain, with Nei distances of 0.41 and 0.40, respectively. The present work provides a foundation for the basis of using heritage turkeys to genetically improve CO populations by introgression.

  12. An efficient method to find potentially universal population genetic markers, applied to metazoans

    Directory of Open Access Journals (Sweden)

    Chenuil Anne

    2010-09-01

    Full Text Available Abstract Background Despite the impressive growth of sequence databases, the limited availability of nuclear markers that are sufficiently polymorphic for population genetics and phylogeography and applicable across various phyla restricts many potential studies, particularly in non-model organisms. Numerous introns have invariant positions among kingdoms, providing a potential source for such markers. Unfortunately, most of the few known EPIC (Exon Primed Intron Crossing loci are restricted to vertebrates or belong to multigenic families. Results In order to develop markers with broad applicability, we designed a bioinformatic approach aimed at avoiding multigenic families while identifying intron positions conserved across metazoan phyla. We developed a program facilitating the identification of EPIC loci which allowed slight variation in intron position. From the Homolens databases we selected 29 gene families which contained 52 promising introns for which we designed 93 primer pairs. PCR tests were performed on several ascidians, echinoderms, bivalves and cnidarians. On average, 24 different introns per genus were amplified in bilaterians. Remarkably, five of the introns successfully amplified in all of the metazoan genera tested (a dozen genera, including cnidarians. The influence of several factors on amplification success was investigated. Success rate was not related to the phylogenetic relatedness of a taxon to the groups that most influenced primer design, showing that these EPIC markers are extremely conserved in animals. Conclusions Our new method now makes it possible to (i rapidly isolate a set of EPIC markers for any phylum, even outside the animal kingdom, and thus, (ii compare genetic diversity at potentially homologous polymorphic loci between divergent taxa.

  13. Determination of genetic structure of germplasm collections: are traditional hierarchical clustering methods appropriate for molecular marker data?

    NARCIS (Netherlands)

    Odong, T.L.; Heerwaarden, van J.; Jansen, J.; Hintum, van T.J.L.; Eeuwijk, van F.A.

    2011-01-01

    Despite the availability of newer approaches, traditional hierarchical clustering remains very popular in genetic diversity studies in plants. However, little is known about its suitability for molecular marker data. We studied the performance of traditional hierarchical clustering techniques using

  14. Mapping Late Leaf Spot Resistance in Peanut (Arachis hypogaea Using QTL-seq Reveals Markers for Marker-Assisted Selection

    Directory of Open Access Journals (Sweden)

    Josh Clevenger

    2018-02-01

    Full Text Available Late leaf spot (LLS; Cercosporidium personatum is a major fungal disease of cultivated peanut (Arachis hypogaea. A recombinant inbred line population segregating for quantitative field resistance was used to identify quantitative trait loci (QTL using QTL-seq. High rates of false positive SNP calls using established methods in this allotetraploid crop obscured significant QTLs. To resolve this problem, robust parental SNPs were first identified using polyploid-specific SNP identification pipelines, leading to discovery of significant QTLs for LLS resistance. These QTLs were confirmed over 4 years of field data. Selection with markers linked to these QTLs resulted in a significant increase in resistance, showing that these markers can be immediately applied in breeding programs. This study demonstrates that QTL-seq can be used to rapidly identify QTLs controlling highly quantitative traits in polyploid crops with complex genomes. Markers identified can then be deployed in breeding programs, increasing the efficiency of selection using molecular tools.Key Message: Field resistance to late leaf spot is a quantitative trait controlled by many QTLs. Using polyploid-specific methods, QTL-seq is faster and more cost effective than QTL mapping.

  15. Genome Microscale Heterogeneity among Wild Potatoes Revealed by Diversity Arrays Technology Marker Sequences

    Directory of Open Access Journals (Sweden)

    Alessandra Traini

    2013-01-01

    Full Text Available Tuber-bearing potato species possess several genes that can be exploited to improve the genetic background of the cultivated potato Solanum tuberosum. Among them, S. bulbocastanum and S. commersonii are well known for their strong resistance to environmental stresses. However, scant information is available for these species in terms of genome organization, gene function, and regulatory networks. Consequently, genomic tools to assist breeding are meager, and efficient exploitation of these species has been limited so far. In this paper, we employed the reference genome sequences from cultivated potato and tomato and a collection of sequences of 1,423 potato Diversity Arrays Technology (DArT markers that show polymorphic representation across the genomes of S. bulbocastanum and/or S. commersonii genotypes. Our results highlighted microscale genome sequence heterogeneity that may play a significant role in functional and structural divergence between related species. Our analytical approach provides knowledge of genome structural and sequence variability that could not be detected by transcriptome and proteome approaches.

  16. Genome Microscale Heterogeneity among Wild Potatoes Revealed by Diversity Arrays Technology Marker Sequences.

    Science.gov (United States)

    Traini, Alessandra; Iorizzo, Massimo; Mann, Harpartap; Bradeen, James M; Carputo, Domenico; Frusciante, Luigi; Chiusano, Maria Luisa

    2013-01-01

    Tuber-bearing potato species possess several genes that can be exploited to improve the genetic background of the cultivated potato Solanum tuberosum. Among them, S. bulbocastanum and S. commersonii are well known for their strong resistance to environmental stresses. However, scant information is available for these species in terms of genome organization, gene function, and regulatory networks. Consequently, genomic tools to assist breeding are meager, and efficient exploitation of these species has been limited so far. In this paper, we employed the reference genome sequences from cultivated potato and tomato and a collection of sequences of 1,423 potato Diversity Arrays Technology (DArT) markers that show polymorphic representation across the genomes of S. bulbocastanum and/or S. commersonii genotypes. Our results highlighted microscale genome sequence heterogeneity that may play a significant role in functional and structural divergence between related species. Our analytical approach provides knowledge of genome structural and sequence variability that could not be detected by transcriptome and proteome approaches.

  17. Novel genetic markers associate with atrial fibrillation risk in Europeans and Japanese.

    Science.gov (United States)

    Lubitz, Steven A; Lunetta, Kathryn L; Lin, Honghuang; Arking, Dan E; Trompet, Stella; Li, Guo; Krijthe, Bouwe P; Chasman, Daniel I; Barnard, John; Kleber, Marcus E; Dörr, Marcus; Ozaki, Kouichi; Smith, Albert V; Müller-Nurasyid, Martina; Walter, Stefan; Agarwal, Sunil K; Bis, Joshua C; Brody, Jennifer A; Chen, Lin Y; Everett, Brendan M; Ford, Ian; Franco, Oscar H; Harris, Tamara B; Hofman, Albert; Kääb, Stefan; Mahida, Saagar; Kathiresan, Sekar; Kubo, Michiaki; Launer, Lenore J; MacFarlane, Peter W; Magnani, Jared W; McKnight, Barbara; McManus, David D; Peters, Annette; Psaty, Bruce M; Rose, Lynda M; Rotter, Jerome I; Silbernagel, Guenther; Smith, Jonathan D; Sotoodehnia, Nona; Stott, David J; Taylor, Kent D; Tomaschitz, Andreas; Tsunoda, Tatsuhiko; Uitterlinden, Andre G; Van Wagoner, David R; Völker, Uwe; Völzke, Henry; Murabito, Joanne M; Sinner, Moritz F; Gudnason, Vilmundur; Felix, Stephan B; März, Winfried; Chung, Mina; Albert, Christine M; Stricker, Bruno H; Tanaka, Toshihiro; Heckbert, Susan R; Jukema, J Wouter; Alonso, Alvaro; Benjamin, Emelia J; Ellinor, Patrick T

    2014-04-01

    This study sought to identify nonredundant atrial fibrillation (AF) genetic susceptibility signals and examine their cumulative relations with AF risk. AF-associated loci span broad genomic regions that may contain multiple susceptibility signals. Whether multiple signals exist at AF loci has not been systematically explored. We performed association testing conditioned on the most significant, independently associated genetic markers at 9 established AF loci using 2 complementary techniques in 64,683 individuals of European ancestry (3,869 incident and 3,302 prevalent AF cases). Genetic risk scores were created and tested for association with AF in Europeans and an independent sample of 11,309 individuals of Japanese ancestry (7,916 prevalent AF cases). We observed at least 4 distinct AF susceptibility signals on chromosome 4q25 upstream of PITX2, but not at the remaining 8 AF loci. A multilocus score comprised 12 genetic markers demonstrated an estimated 5-fold gradient in AF risk. We observed a similar spectrum of risk associated with these markers in Japanese. Regions containing AF signals on chromosome 4q25 displayed a greater degree of evolutionary conservation than the remainder of the locus, suggesting that they may tag regulatory elements. The chromosome 4q25 AF locus is architecturally complex and harbors at least 4 AF susceptibility signals in individuals of European ancestry. Similar polygenic AF susceptibility exists between Europeans and Japanese. Future work is necessary to identify causal variants, determine mechanisms by which associated loci predispose to AF, and explore whether AF susceptibility signals classify individuals at risk for AF and related morbidity. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  18. Developing Exon-Primed Intron-Crossing (EPIC) markers for population genetic studies in three Aedes disease vectors.

    Science.gov (United States)

    White, Vanessa Linley; Endersby, Nancy Margaret; Chan, Janice; Hoffmann, Ary Anthony; Weeks, Andrew Raymond

    2015-03-01

    Aedes aegypti, Aedes notoscriptus, and Aedes albopictus are important vectors of many arboviruses implicated in human disease such as dengue fever. Genetic markers applied across vector species can provide important information on population structure, gene flow, insecticide resistance, and taxonomy, however, robust microsatellite markers have proven difficult to develop in these species and mosquitoes generally. Here we consider the utility and transferability of 15 Ribosome protein (Rp) Exon-Primed Intron-Crossing (EPIC) markers for population genetic studies in these 3 Aedes species. Rp EPIC markers designed for Ae. aegypti also successfully amplified populations of the sister species, Ae. albopictus, as well as the distantly related species, Ae. notoscriptus. High SNP and good indel diversity in sequenced alleles plus support for amplification of the same regions across populations and species were additional benefits of these markers. These findings point to the general value of EPIC markers in mosquito population studies. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  19. Genome Target Evaluator (GTEvaluator: A workflow exploiting genome dataset to measure the sensitivity and specificity of genetic markers.

    Directory of Open Access Journals (Sweden)

    Arnaud Felten

    Full Text Available Most of the bacterial typing methods used to discriminate isolates in medical or food safety microbiology are based on genetic markers used as targets in PCR or hybridization experiments. These DNA typing methods are important tools for studying prevalence and epidemiology, for conducting surveillance, investigations and control of biological hazard sources. In that perspective, it is crucial to insure that the chosen genetic markers have the greatest specificity and sensitivity. The wealth of whole-genome sequences available for many bacterial species offers the opportunity to evaluate the performance of these genetic markers. In the present study, we have developed GTEvaluator, a bioinformatics workflow which ranks genetic markers depending on their sensitivity and specificity towards groups of well-defined genomes. GTEvaluator identifies the most performant genetic markers to target individuals among a population. The individuals (i.e. a group of genomes within a collection are defined by any kind of particular phenotypic or biological properties inside a related population (i.e. collection of genomes. The performance of the genetic markers is computed by a distance value which takes into account both sensitivity and specificity. In this study we report two examples of GTEvaluator application. In the first example Bacillus phenotypic markers were evaluated for their capacity to distinguish B. cereus from B. thuringiensis. In the second experiment, GTEvaluator measured the performance of genetic markers dedicated to the molecular serotyping of Salmonella enterica. In one in silico experiment it was possible to test 64 markers onto 134 genomes corresponding to 14 different serotypes.

  20. Population genetic structure in wild and aquaculture populations of Hemibarbus maculates inferred from microsatellites markers

    Directory of Open Access Journals (Sweden)

    Linlin Li

    2017-03-01

    Full Text Available The objective of this study was to investigate 4 aquaculture populations Shanghai (SH, Hangzhou (HZ, Kaihua (KH and Xianju (XJ and one wild population Yingshan (YS of spotted barbell (Hemibarbus maculates to assess their genetic diversity level and investigate the genetic structure of the populations. The dendrogram and STRUCTURE revealed that the populations XJ, KH, and HZ jointly formed one cluster, to which the populations SH and YS were sequentially adhered. The genetic diversity of the cultured populations maintained better, possible due to favourable hatchery conditions that decreased the effect of environmental selection present in wild populations. The results of the present study will contribute to the management of spotted barbell genetic resources, but also demonstrates how the genetic diversity of freshwater species is vulnerable to human activity.

  1. Development of Genetic Markers in Eucalyptus Species by Target Enrichment and Exome Sequencing

    Science.gov (United States)

    Dasgupta, Modhumita Ghosh; Dharanishanthi, Veeramuthu; Agarwal, Ishangi; Krutovsky, Konstantin V.

    2015-01-01

    The advent of next-generation sequencing has facilitated large-scale discovery, validation and assessment of genetic markers for high density genotyping. The present study was undertaken to identify markers in genes supposedly related to wood property traits in three Eucalyptus species. Ninety four genes involved in xylogenesis were selected for hybridization probe based nuclear genomic DNA target enrichment and exome sequencing. Genomic DNA was isolated from the leaf tissues and used for on-array probe hybridization followed by Illumina sequencing. The raw sequence reads were trimmed and high-quality reads were mapped to the E. grandis reference sequence and the presence of single nucleotide variants (SNVs) and insertions/ deletions (InDels) were identified across the three species. The average read coverage was 216X and a total of 2294 SNVs and 479 InDels were discovered in E. camaldulensis, 2383 SNVs and 518 InDels in E. tereticornis, and 1228 SNVs and 409 InDels in E. grandis. Additionally, SNV calling and InDel detection were conducted in pair-wise comparisons of E. tereticornis vs. E. grandis, E. camaldulensis vs. E. tereticornis and E. camaldulensis vs. E. grandis. This study presents an efficient and high throughput method on development of genetic markers for family– based QTL and association analysis in Eucalyptus. PMID:25602379

  2. Genetic divergence in Tetragonisca angustula Latreille, 1811 (Hymenoptera, Meliponinae, Trigonini based on rapd markers

    Directory of Open Access Journals (Sweden)

    Rosana de Cássia Oliveira

    2004-01-01

    Full Text Available One of the commonest neotropical stingless bees is Tetragonisca angustula (Latreille, 1811, popularly known in Portuguese as jataí, which occurs in variable nesting sites from Mexico to Argentina. We used 18 primers to generate 218 RAPD markers which we used to determined the genetic distance between T. angustula populations from 25 localities in three different Latin America countries, using Tetragonisca weyrauchi from the Brazilian state of Acre and the common honey bee (Apis mellifera as outgroups. Genetic distance, calculated as the Percentage of Dissimilarity (14%, based on all markers divided the T. angustula population into eastern (group 1 and western (group 2 groups. However, we were able to separate the two groups by using only two primers that have generated five specific molecular markers. The eastern group consists of T. angustula angustula which occurs from Panama to the Brazilian states of Maranhão and northern Minas Gerais and has spread through the Brazilian Atlantic Forest as far as the southern Brazilian state of Santa Catarina. Group 2 is made up of T. angustula fiebrigi which has a more southerly and western distribution, occurring only in the western Brazilian states of Mato Grosso and Mato Grosso do Sul as well as the west of some other Brazilian states (Goiás, Minas Gerais, São Paulo, Paraná and Santa Catarina and northeastern Argentina.

  3. Development of genetic markers in Eucalyptus species by target enrichment and exome sequencing.

    Directory of Open Access Journals (Sweden)

    Modhumita Ghosh Dasgupta

    Full Text Available The advent of next-generation sequencing has facilitated large-scale discovery, validation and assessment of genetic markers for high density genotyping. The present study was undertaken to identify markers in genes supposedly related to wood property traits in three Eucalyptus species. Ninety four genes involved in xylogenesis were selected for hybridization probe based nuclear genomic DNA target enrichment and exome sequencing. Genomic DNA was isolated from the leaf tissues and used for on-array probe hybridization followed by Illumina sequencing. The raw sequence reads were trimmed and high-quality reads were mapped to the E. grandis reference sequence and the presence of single nucleotide variants (SNVs and insertions/ deletions (InDels were identified across the three species. The average read coverage was 216X and a total of 2294 SNVs and 479 InDels were discovered in E. camaldulensis, 2383 SNVs and 518 InDels in E. tereticornis, and 1228 SNVs and 409 InDels in E. grandis. Additionally, SNV calling and InDel detection were conducted in pair-wise comparisons of E. tereticornis vs. E. grandis, E. camaldulensis vs. E. tereticornis and E. camaldulensis vs. E. grandis. This study presents an efficient and high throughput method on development of genetic markers for family- based QTL and association analysis in Eucalyptus.

  4. Assessment of genetic diversity in ragi [Eleusine coracana (L.) Gaertn] using morphological, RAPD and SSR markers.

    Science.gov (United States)

    Prabhu, Kalapad Santosh; Das, Anath Bandhu; Dikshit, Nilamani

    2018-04-25

    Finger millet (Eleusine coracana L. Gaertn., 2n=36) is one of the most important minor crops, commonly known as 'ragi' and used as a staple food grain in more than 25 countries including Africa and south Asia. Twenty-seven accessions of ragi were collected from different parts of India and were evaluated for morpho-genetic diversity studies. Simple sequence repeat (SSR) and random amplified polymorphic DNA (RAPD) markers were used for assessment of genetic diversity among 27 genotypes of E. coracana. High degree of similarity (90%) was obtained between 'IC49979A' and 'IC49974B' genotypes, whereas low level of similarity (9.09%) was found between 'IC204141' and 'IC49985' as evident in morphological and DNA markers. A total of 64 SSR and 301 RAPD amplicons were produced, out of which 87.50% and 77.20% DNA fragments showed polymorphism, respectively. The clustering pattern obtained among the genotypes corresponded well with their morphological and cytological data with a monophyletic origin of this species which was further supported by high bootstrap values and principal component analysis. Cluster analysis showed that ragi accessions were categorised into three distinct groups. Genotypes IC344761, IC340116, IC340127, IC49965 and IC49985 found accession specific in RAPD and SSR markers. The variation among ragi accessions might be used as potential source of germplasm for crop improvement.

  5. Dispersal capacity and genetic structure of Arapaima gigas on different geographic scales using microsatellite markers.

    Directory of Open Access Journals (Sweden)

    Juliana Araripe

    Full Text Available Despite the ecological and economic importance of the Arapaima gigas (Cuvier 1817, few data about its dispersal capacity are available. The present study was based on the analysis of microsatellite markers in order to estimate the dispersal capacity of the species on fine, meso, and large geographic scales. For this, 561 specimens obtained from stocks separated by distances of up to 25 km (fine scale, 100 km (meso scale, and 1300-2300 km (large scale were analyzed. The fine scale analysis indicated a marked genetic similarity between lakes, with low genetic differentiation, and significant differences between only a few pairs of sites. Low to moderate genetic differentiation was observed between pairs of sites on a meso scale (100 km, which could be explained by the distances between sites. By contrast, major genetic differentiation was recorded in the large scale analysis, that is, between stocks separated by distances of over 1300 km, with the analysis indicating that differentiation was not related solely to distance. The genetic structuring analysis indicated the presence of two stocks, one represented by the arapaimas of the Mamirauá Reserve, and the other by those of Santarém and Tucuruí. The dispersal of arapaimas over short distances indicates a process of lateral migration within the várzea floodplains, which may be the principal factor determining the considerable homogeneity observed among the várzea lakes. The populations separated by distances of approximately 100 km were characterized by reduced genetic differentiation, which was associated with the geographic distances between sites. Populations separated by distances of over 1300 km were characterized by a high degree of genetic differentiation, which may be related primarily to historical bottlenecks in population size and the sedentary behavior of the species. Evidence was found of asymmetric gene flow, resulting in increasing genetic variability in the population of the

  6. Dispersal capacity and genetic structure of Arapaima gigas on different geographic scales using microsatellite markers.

    Science.gov (United States)

    Araripe, Juliana; do Rêgo, Péricles Sena; Queiroz, Helder; Sampaio, Iracilda; Schneider, Horacio

    2013-01-01

    Despite the ecological and economic importance of the Arapaima gigas (Cuvier 1817), few data about its dispersal capacity are available. The present study was based on the analysis of microsatellite markers in order to estimate the dispersal capacity of the species on fine, meso, and large geographic scales. For this, 561 specimens obtained from stocks separated by distances of up to 25 km (fine scale), 100 km (meso scale), and 1300-2300 km (large scale) were analyzed. The fine scale analysis indicated a marked genetic similarity between lakes, with low genetic differentiation, and significant differences between only a few pairs of sites. Low to moderate genetic differentiation was observed between pairs of sites on a meso scale (100 km), which could be explained by the distances between sites. By contrast, major genetic differentiation was recorded in the large scale analysis, that is, between stocks separated by distances of over 1300 km, with the analysis indicating that differentiation was not related solely to distance. The genetic structuring analysis indicated the presence of two stocks, one represented by the arapaimas of the Mamirauá Reserve, and the other by those of Santarém and Tucuruí. The dispersal of arapaimas over short distances indicates a process of lateral migration within the várzea floodplains, which may be the principal factor determining the considerable homogeneity observed among the várzea lakes. The populations separated by distances of approximately 100 km were characterized by reduced genetic differentiation, which was associated with the geographic distances between sites. Populations separated by distances of over 1300 km were characterized by a high degree of genetic differentiation, which may be related primarily to historical bottlenecks in population size and the sedentary behavior of the species. Evidence was found of asymmetric gene flow, resulting in increasing genetic variability in the population of the Mamirau

  7. Genetic variation of rs438601 marker in the Iranian Population: An informative marker for molecular diagnosis of hemophilia B

    Directory of Open Access Journals (Sweden)

    P Dorri

    2014-12-01

    Conclusion: The study findings demonstrated that rs438601 marker due to high heterozygosity could be suggested as an appropriate diagnostic marker in linkage analysis and carrier detection of hemophilia B in regard with a sample of Iranian population.

  8. Genetic diversity and population structure in Physalis peruviana and related taxa based on InDels and SNPs derived from COSII and IRG markers

    Science.gov (United States)

    Garzón-Martínez, Gina A.; Osorio-Guarín, Jaime A.; Delgadillo-Durán, Paola; Mayorga, Franklin; Enciso-Rodríguez, Felix E.; Landsman, David

    2015-01-01

    The genus Physalis is common in the Americas and includes several economically important species, among them Physalis peruviana that produces appetizing edible fruits. We studied the genetic diversity and population structure of P. peruviana and characterized 47 accessions of this species along with 13 accessions of related taxa consisting of 222 individuals from the Colombian Corporation of Agricultural Research (CORPOICA) germplasm collection, using Conserved Orthologous Sequences (COSII) and Immunity Related Genes (IRGs). In addition, 642 Single Nucleotide Polymorphism (SNPs) markers were identified and used for the genetic diversity analysis. A total of 121 alleles were detected in 24 InDels loci ranging from 2 to 9 alleles per locus, with an average of 5.04 alleles per locus. The average number of alleles in the SNP markers was two. The observed heterozygosity for P. peruviana with InDel and SNP markers was higher (0.48 and 0.59) than the expected heterozygosity (0.30 and 0.41). Interestingly, the observed heterozygosity in related taxa (0.4 and 0.12) was lower than the expected heterozygosity (0.59 and 0.25). The coefficient of population differentiation FST was 0.143 (InDels) and 0.038 (SNPs), showing a relatively low level of genetic differentiation among P. peruviana and related taxa. Higher levels of genetic variation were instead observed within populations based on the AMOVA analysis. Population structure analysis supported the presence of two main groups and PCA analysis based on SNP markers revealed two distinct clusters in the P. peruviana accessions corresponding to their state of cultivation. In this study, we identified molecular markers useful to detect genetic variation in Physalis germplasm for assisting conservation and crossbreeding strategies. PMID:26550601

  9. Genetic diversity and population structure in Physalis peruviana and related taxa based on InDels and SNPs derived from COSII and IRG markers.

    Science.gov (United States)

    Garzón-Martínez, Gina A; Osorio-Guarín, Jaime A; Delgadillo-Durán, Paola; Mayorga, Franklin; Enciso-Rodríguez, Felix E; Landsman, David; Mariño-Ramírez, Leonardo; Barrero, Luz Stella

    2015-12-01

    The genus Physalis is common in the Americas and includes several economically important species, among them Physalis peruviana that produces appetizing edible fruits. We studied the genetic diversity and population structure of P. peruviana and characterized 47 accessions of this species along with 13 accessions of related taxa consisting of 222 individuals from the Colombian Corporation of Agricultural Research (CORPOICA) germplasm collection, using Conserved Orthologous Sequences (COSII) and Immunity Related Genes (IRGs). In addition, 642 Single Nucleotide Polymorphism (SNPs) markers were identified and used for the genetic diversity analysis. A total of 121 alleles were detected in 24 InDels loci ranging from 2 to 9 alleles per locus, with an average of 5.04 alleles per locus. The average number of alleles in the SNP markers was two. The observed heterozygosity for P. peruviana with InDel and SNP markers was higher (0.48 and 0.59) than the expected heterozygosity (0.30 and 0.41). Interestingly, the observed heterozygosity in related taxa (0.4 and 0.12) was lower than the expected heterozygosity (0.59 and 0.25). The coefficient of population differentiation F ST was 0.143 (InDels) and 0.038 (SNPs), showing a relatively low level of genetic differentiation among P. peruviana and related taxa. Higher levels of genetic variation were instead observed within populations based on the AMOVA analysis. Population structure analysis supported the presence of two main groups and PCA analysis based on SNP markers revealed two distinct clusters in the P. peruviana accessions corresponding to their state of cultivation. In this study, we identified molecular markers useful to detect genetic variation in Physalis germplasm for assisting conservation and crossbreeding strategies.

  10. Prehistoric genomes reveal the genetic foundation and cost of horse domestication

    DEFF Research Database (Denmark)

    Schubert, Mikkel; Jáónsson, Hákon; Chang, Dan

    2014-01-01

    genetics alone. We therefore sequenced two complete horse genomes, predating domestication by thousands of years, to characterize the genetic footprint of domestication. These ancient genomes reveal predomestic population structure and a significant fraction of genetic variation shared with the domestic...... breeds but absent from Przewalski’s horses. We find positive selection on genes involved in various aspects of locomotion, physiology, and cognition. Finally, we show that modern horse genomes contain an excess of deleterious mutations, likely representing the genetic cost of domestication....

  11. Differential network analysis reveals genetic effects on catalepsy modules.

    Directory of Open Access Journals (Sweden)

    Ovidiu D Iancu

    Full Text Available We performed short-term bi-directional selective breeding for haloperidol-induced catalepsy, starting from three mouse populations of increasingly complex genetic structure: an F2 intercross, a heterogeneous stock (HS formed by crossing four inbred strains (HS4 and a heterogeneous stock (HS-CC formed from the inbred strain founders of the Collaborative Cross (CC. All three selections were successful, with large differences in haloperidol response emerging within three generations. Using a custom differential network analysis procedure, we found that gene coexpression patterns changed significantly; importantly, a number of these changes were concordant across genetic backgrounds. In contrast, absolute gene-expression changes were modest and not concordant across genetic backgrounds, in spite of the large and similar phenotypic differences. By inferring strain contributions from the parental lines, we are able to identify significant differences in allelic content between the selected lines concurrent with large changes in transcript connectivity. Importantly, this observation implies that genetic polymorphisms can affect transcript and module connectivity without large changes in absolute expression levels. We conclude that, in this case, selective breeding acts at the subnetwork level, with the same modules but not the same transcripts affected across the three selections.

  12. Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers.

    Science.gov (United States)

    Crossa, José; Campos, Gustavo de Los; Pérez, Paulino; Gianola, Daniel; Burgueño, Juan; Araus, José Luis; Makumbi, Dan; Singh, Ravi P; Dreisigacker, Susanne; Yan, Jianbing; Arief, Vivi; Banziger, Marianne; Braun, Hans-Joachim

    2010-10-01

    The availability of dense molecular markers has made possible the use of genomic selection (GS) for plant breeding. However, the evaluation of models for GS in real plant populations is very limited. This article evaluates the performance of parametric and semiparametric models for GS using wheat (Triticum aestivum L.) and maize (Zea mays) data in which different traits were measured in several environmental conditions. The findings, based on extensive cross-validations, indicate that models including marker information had higher predictive ability than pedigree-based models. In the wheat data set, and relative to a pedigree model, gains in predictive ability due to inclusion of markers ranged from 7.7 to 35.7%. Correlation between observed and predictive values in the maize data set achieved values up to 0.79. Estimates of marker effects were different across environmental conditions, indicating that genotype × environment interaction is an important component of genetic variability. These results indicate that GS in plant breeding can be an effective strategy for selecting among lines whose phenotypes have yet to be observed.

  13. Assessment of genetic diversity and phylogenetic relationships of Korean native chicken breeds using microsatellite markers

    Directory of Open Access Journals (Sweden)

    Joo Hee Seo

    2017-10-01

    Full Text Available Objective This study was conducted to investigate the basic information on genetic structure and characteristics of Korean Native chickens (NC and foreign breeds through the analysis of the pure chicken populations and commercial chicken lines of the Hanhyup Company which are popular in the NC market, using the 20 microsatellite markers. Methods In this study, the genetic diversity and phylogenetic relationships of 445 NC from five different breeds (NC, Leghorn [LH], Cornish [CS], Rhode Island Red [RIR], and Hanhyup [HH] commercial line were investigated by performing genotyping using 20 microsatellite markers. Results The highest genetic distance was observed between RIR and LH (18.9%, whereas the lowest genetic distance was observed between HH and NC (2.7%. In the principal coordinates analysis (PCoA illustrated by the first component, LH was clearly separated from the other groups. The correspondence analysis showed close relationship among individuals belonging to the NC, CS, and HH lines. From the STRUCTURE program, the presence of 5 clusters was detected and it was found that the proportion of membership in the different clusters was almost comparable among the breeds with the exception of one breed (HH, although it was highest in LH (0.987 and lowest in CS (0.578. For the cluster 1 it was high in HH (0.582 and in CS (0.368, while for the cluster 4 it was relatively higher in HH (0.392 than other breeds. Conclusion Our study showed useful genetic diversity and phylogenetic relationship data that can be utilized for NC breeding and development by the commercial chicken industry to meet consumer demands.

  14. Genetic variability among 18 cultivars of cooking bananas and plantains by RAPD and ISSR markers

    Directory of Open Access Journals (Sweden)

    YUYU SURYASARI POERBA

    2010-07-01

    Full Text Available Poerba YS, Ahmad F (2010 Genetic variability among 18 cultivars of cooking bananas and plantains by RAPD and ISSR markers. Biodiversitas 11: 118-123. This study was done to assess the molecular diversity of 36 accessions (18 cultivars of the plantain and cooking bananas (Musa acuminata x M. balbisiana, AAB, ABB subgroups based on Random amplified polymorphic DNA (RAPD and and Inter Simple Sequence Repeats (ISSR markers and to determine genetic relationships in the bananas. RAPD and ISSR fingerprinting of these banana varieties was carried out by five primers of RAPDs and two primers of ISSRs. RAPD primers produced 63 amplified fragments varying from 250 to 2500 bp in size. 96.82% of the amplification bands were polymorphic. ISSR primers produced 26 amplified fragments varying from 350 bp to 2000 bp in size. The results showed that 92.86% of the amplification bands were polymorphic. The range of genetic distance of 18 cultivars was from 0.06-0.67.

  15. RAPD markers on genetic diversity in three populations of pisifera type of oil palm (elaeis guineensis)

    Science.gov (United States)

    Basyuni, M.; Prayogi, H.; Putri, L. A. P.; Syahputra, I.; Siregar, E. S.; Risnasari, I.; Wati, R.; Arifiyanto, D.

    2018-03-01

    Palm oil (E. guineensis) is one of the major commodity and contributing largely to non-petroleum oil of Indonesian foreign exchange. E. guineensis has three fruit types, dura (female), pisifera (male), and tenera —a hybrid between dura and pisifera. Pisifera plays an important function in the production of seed oil palm. The purpose of this research is to analyze genetic diversity of pisifera type of E. guineensis from three populations, Yangambi, Lame and Lame further cross in Bangun Bandar, North Sumatra, Indonesia. Eighteen samples for each population were analyzed using six RAPD markers. Results showed that RAPD markers were low polymorphic with 1.49, 1.39, and 1.00 average number alleles detected for Yagambi, Lame, and Lame further cross, respectively. The level of genetic diversity detected for each population was 0.28, 0.22, and 0.21 for Yagambi, Lame, and Lame further cross, respectively, indicating that the populations had little genetic variation. The highest of polymorphic information content (PIC) was found on the P11 primer of Yangambi (0.49) and P10 primer for lame further cross (0.49). By contrast, the lowest PIC belongs to P21 for Lame population (0.01). This data is likely to contributing oil palm breeding.

  16. Assessment of genetic diversity of Bermudagrass (Cynodon dactylon) using ISSR markers.

    Science.gov (United States)

    Farsani, Tayebeh Mohammadi; Etemadi, Nematollah; Sayed-Tabatabaei, Badraldin Ebrahim; Talebi, Majid

    2012-01-01

    Bermudagrass (Cynodon spp.) is a major turfgrass for home lawns, public parks, golf courses and sport fields and is known to have originated in the Middle East. Morphological and physiological characteristics are not sufficient to differentiate some bermudagrass genotypes because the differences between them are often subtle and subjected to environmental influences. In this study, twenty seven bermudagrass accessions and introductions, mostly from different parts of Iran, were assayed by inter-simple sequence repeat (ISSR) markers to differentiate and explore their genetic relationships. Fourteen ISSR primers amplified 389 fragments of which 313 (80.5%) were polymorphic. The average polymorphism information content (PIC) was 0.328, which shows that the majority of primers are informative. Cluster analysis using the un-weighted paired group method with arithmetic average (UPGMA) method and Jaccard's similarity coefficient (r = 0.828) grouped the accessions into six main clusters according to some degree to geographical origin, their chromosome number and some morphological characteristics. It can be concluded that there exists a wide genetic base of bermudograss in Iran and that ISSR markers are effective in determining genetic diversity and relationships among them.

  17. Three Molecular Markers Show No Evidence of Population Genetic Structure in the Gouldian Finch (Erythrura gouldiae.

    Directory of Open Access Journals (Sweden)

    Peri E Bolton

    Full Text Available Assessment of genetic diversity and connectivity between regions can inform conservation managers about risk of inbreeding, potential for adaptation and where population boundaries lie. The Gouldian finch (Erythrura gouldiae is a threatened species in northern Australia, occupying the savannah woodlands of the biogeographically complex monsoon tropics. We present the most comprehensive population genetic analysis of diversity and structure the Gouldian finch using 16 microsatellite markers, mitochondrial control region and 3,389 SNPs from genotyping-by-sequencing. Mitochondrial diversity is compared across three related, co-distributed finches with different conservation threat-statuses. There was no evidence of genetic differentiation across the western part of the range in any of the molecular markers, and haplotype diversity but not richness was lower than a common co-distributed species. Individuals within the panmictic population in the west may be highly dispersive within this wide area, and we urge caution when interpreting anecdotal observations of changes to the distribution and/or flock sizes of Gouldian finch populations as evidence of overall changes to the population size of this species.

  18. Genetic Diversity of Arabica Coffee (Coffea arabica L. in Nicaragua as Estimated by Simple Sequence Repeat Markers

    Directory of Open Access Journals (Sweden)

    Mulatu Geleta

    2012-01-01

    Full Text Available Coffea arabica L. (arabica coffee, the only tetraploid species in the genus Coffea, represents the majority of the world’s coffee production and has a significant contribution to Nicaragua’s economy. The present paper was conducted to determine the genetic diversity of arabica coffee in Nicaragua for its conservation and breeding values. Twenty-six populations that represent eight varieties in Nicaragua were investigated using simple sequence repeat (SSR markers. A total of 24 alleles were obtained from the 12 loci investigated across 260 individual plants. The total Nei’s gene diversity (HT and the within-population gene diversity (HS were 0.35 and 0.29, respectively, which is comparable with that previously reported from other countries and regions. Among the varieties, the highest diversity was recorded in the variety Catimor. Analysis of variance (AMOVA revealed that about 87% of the total genetic variation was found within populations and the remaining 13% differentiate the populations (FST=0.13; P<0.001. The variation among the varieties was also significant. The genetic variation in Nicaraguan coffee is significant enough to be used in the breeding programs, and most of this variation can be conserved through ex situ conservation of a low number of populations from each variety.

  19. High degree of genetic diversity among genotypes of the forage grass Brachiaria ruziziensis (Poaceae) detected with ISSR markers.

    Science.gov (United States)

    Azevedo, A L S; Costa, P P; Machado, M A; de Paula, C M P; Sobrinho, F S

    2011-11-17

    The grasses of the genus Brachiaria account for 80% of the cultivated pastures in Brazil. Despite its importance for livestock production, little information is available for breeding purposes. Embrapa has a population of B. ruziziensis from different regions of Brazil, representing most of existing variability. This population was used to initiate an improvement program based on recurrent selection. In order to assist the genetic improvement program, we estimated the molecular variability among 93 genotypes of Embrapa's collection using ISSR (inter-simple sequence repeat) markers. DNA was extracted from the leaves. Twelve ISSR primers generated 89 polymorphic bands in the 93 genotypes. The number of bands identified by each primer ranged from two to 13, with a mean of 7.41. Cluster analysis revealed a clearly distinct group, containing most of the B. ruziziensis genotypes apart from the outgroup genotypes. Genetic similarity coefficients ranged from 0.0 to 0.95, with a mean of 0.50 and analysis of molecular variance indicated higher variation within (73.43%) than among species (26.57%). We conclude that there is a high genetic diversity among these B. ruziziensis genotypes, which could be explored by breeding programs.

  20. Assessment of genetic diversity among Syrian durum (Triticum turgidum ssp. durum) and bread wheat (Triticum aestivum L.) using SSR markers.

    Science.gov (United States)

    Achtar, S; Moualla, M Y; Kalhout, A; Röder, M S; MirAli, N

    2010-11-01

    Genetic diversity among 49 wheat varieties (37 durum and 12 bread wheat) was assayed using 32 microsatellites representing 34 loci covering almost the whole wheat genome. The polymorphic information content (PIC) across the tested loci ranged from 0 to 0.88 with average values of 0.57 and 0.65 for durum and bread wheat respectively. B genome had the highest mean number of alleles (10.91) followed by A genome (8.3) whereas D genome had the lowest number (4.73). The correlation between PIC and allele number was significant in all genome groups accounting for 0.87, 074 and 0.84 for A, B and D genomes respectively, and over all genomes, the correlation was higher in tetraploid (0.8) than in hexaploid wheat varieties (0.5). The cluster analysis discriminated all varieties and clearly divided the two ploidy levels into two separate clusters that reflect the differences in genetic diversity within each cluster. This study demonstrates that microsatellites markers have unique advantages compared to other molecular and biochemical fingerprinting techniques in revealing the genetic diversity in Syrian wheat varieties that is crucial for wheat improvement.

  1. Classification of genetic variation for cadmium tolerance in Bermudagrass [Cynodon dactylon (L.) Pers.] using physiological traits and molecular markers.

    Science.gov (United States)

    Xie, Yan; Luo, Hongji; Hu, Longxing; Sun, Xiaoyan; Lou, Yanhong; Fu, Jinmin

    2014-08-01

    Cadmium (Cd) is one of the most toxic pollutants that caused severe threats to animal and human health. Bermudagrass is a dominant species in Cd contaminated soils, which can prevent Cd flow and spread. The objectives of this study were to determine the genetic variations in major physiological traits related to Cd tolerance in six populations of Bermudagrass collected from China, and to examine the genetic diversity and relationships among these accessions that vary in Cd tolerance using molecular markers. Plants of 120 accessions (116 natural accessions and 4 commercial cultivars) were exposed to 0 (i.e. control) or 1.5 mM CdSO4·8/3H2O for 3 weeks in hydroponic culture. Turf quality, transpiration rate, chlorophyll content, leaf water content and growth rate showed wide phenotypic variation. The membership function method was used to comprehensively evaluate Cd-tolerance. According to the average subordinate function value, four accessions were classified as the most tolerant genotypes and four accessions as Cd-sensitive genotypes. The trend of Cd tolerance among the six studied populations was as follows: Hunan > South China > North China > Central China > West South China and Xinjiang population. Phylogenetic analysis revealed that the majority of accessions from the same or adjacent regions were clustered into the same groups or subgroups, and the accessions with similar cadmium tolerance displayed a close phylogenetic relationship. Screening genetically diverse germplasm by combining the physiological traits and molecular markers could prove useful in developing Cd-tolerant Bermudagrass for the remediation of mill tailings and heavy metal polluted soils.

  2. Genetic Diversity Analysis of Iranian Jujube Ecotypes (Ziziphus spp. Using RAPD Molecular Marker

    Directory of Open Access Journals (Sweden)

    S Abbasi

    2012-12-01

    Full Text Available Jujube (Ziziphus jujuba Mill. is a valuable medicinal plant which is important in Iranian traditional medicines. Although the regional plants such as jujube play an important role in our economy, but they are forgotten in research and technology. Considering the economic and medicinal importance of jujube, the first step in breeding programs is determination of the genetic diversity among the individuals. 34 ecotypes of jujube, which have been collected from eight provinces of Iran, were used in this study. The genetic relationships of Iranian jujube ecotypes were analyzed using Random Amplified Polymorphic DNA (RAPD marker. Six out of 15 random decamer primers applied for RAPD analysis, showed an informative polymorphism. According to clustering analysis using UPGMA's methods, the ecotypes were classified into two major groups at the 0.81 level of genetic similarity. The highest value of similarity coefficient (0.92 was detected between Mazandaran and Golestan ecotypes and the most genetic diversity was observed in ecotypes of Khorasan-Jonoubi. The affinity of Khorasan-Jonoubi and Esfahan ecotypes indicated a possible common origin for the variation in these areas. Results indicated that RAPD analysis could be successfully used for the estimation of genetic diversity among Ziziphus ecotypes and it can be useful for further investigations.

  3. Identification of genetically diverse genotypes for photoperiod insensitivity in soybean using RAPD markers.

    Science.gov (United States)

    Singh, R K; Bhatia, V S; Yadav, Sanjeev; Athale, Rashmi; Lakshmi, N; Guruprasad, K N; Chauhan, G S

    2008-10-01

    Most of the Indian soybean varieties were found to be highly sensitive to photoperiod, which limits their cultivation in only localized area. Identification of genetically diverse source of photoperiod insensitive would help to broaden the genetic base for this trait. Present study was undertaken with RAPD markers for genetic diversity estimation in 44 accessions of soybean differing in response to photoperiod sensitivity. The selected twenty-five RAPD primers produced a total of 199 amplicons, which generated 89.9 % polymorphism. The number of amplification products ranged from 2 to 13 for different primers. The polymorphism information content ranged from 0.0 for monomorphic loci to 0.5 with an average of 0.289. Genetic diversity between pairs of genotypes was 37.7% with a range of 3.9 to 71.6%. UPGMA cluster analysis placed all the accessions of soybean into four major clusters. No discernable geographical patterns were observed in clustering however; the smaller groups corresponded well with pedigree. Mantel's test (r = 0.915) indicates very good fit for clustering pattern. Two genotypes, MACS 330 and 111/2/1939 made a very divergent group from other accessions of soybean and highly photoperiod insensitive that may be potential source for broadening the genetic base of soybean for this trait.

  4. THE USE OF MICROSATELLITE MARKERS TO STUDY GENETIC DIVERSITY IN INDONESIAN SHEEP

    Directory of Open Access Journals (Sweden)

    Jakaria

    2012-03-01

    Full Text Available The purpose of this research was to study genetic diversity in Indonesian sheep population using microsatellite markers. A total of 18 microsatellite loci have been used for genotyping Indonesian sheep. Total sheep blood 200 samples were extracted from garut sheep of fighting and meat types, purbalingga sheep, batur sheep and jember sheep populations by using a salting out method. Microsatellite loci data were analyzed using POPGENE 3.2 software. Based on this study obtained 180 alleles from 17 microsatellite loci, while average number of alleles was 6.10 alleles (6 to 18 alleles from five Indonesian sheep populations (garut sheep of fighting type, garut sheep of meat type, purbalingga sheep, batur sheep and jember sheep population. The average of observed heterozygosity (Ho and expected heterozygosity (He values were 0.5749 and 0.6896, respectively, while the genetic differentiation for inbreeding among population (FIS, within population (FIT and average genetic differentiation (FST were 0.1006, 0.1647 and 0.0712, respectively. Genetic distance and genetic tree showed that Indonesian sheep population was distinct from garut sheep of fighting and meat types, purbalingga sheep, batur sheep and jember sheep population. Based on this results were needed a strategy for conservation and breeding programs in each Indonesian sheep population.

  5. Genetic relationship and diversity among coconut (Cocos nucifera L.) accessions revealed through SCoT analysis.

    Science.gov (United States)

    Rajesh, M K; Sabana, A A; Rachana, K E; Rahman, Shafeeq; Jerard, B A; Karun, Anitha

    2015-12-01

    Coconut (Cocos nucifera L.) is one of the important palms grown both as a homestead and plantation crop in countries and most island territories of tropical regions. Different DNA-based marker systems have been utilized to assess the extent of genetic diversity in coconut. Advances in genomics research have resulted in the development of novel gene-targeted markers. In the present study, we have used a simple and novel marker system, start codon targeted polymorphism (SCoT), for its evaluation as a potential marker system in coconut. SCoT markers were utilized for assessment of genetic diversity in 23 coconut accessions (10 talls and 13 dwarfs), representing different geographical regions. Out of 25 SCoT primers screened, 15 primers were selected for this study based on their consistent amplification patterns. A total of 102 scorable bands were produced by the 15 primers, 88 % of which were polymorphic. The scored data were used to construct a similarity matrix. The similarity coefficient values ranged between 0.37 and 0.91. These coefficients were utilized to construct a dendrogram using the unweighted pair group of arithmetic means (UPGMA). The extent of genetic diversity observed based on SCoT analysis of coconut accessions was comparable to earlier findings using other marker systems. Tall and dwarf coconut accessions were clearly demarcated, and in general, coconut accessions from the same geographical region clustered together. The results indicate the potential of SCoT markers to be utilized as molecular markers to detect DNA polymorphism in coconut accessions.

  6. Genetic diversity of wild and cultivated Rubus species in Colombia using AFLP and SSR markers

    Directory of Open Access Journals (Sweden)

    Sandra Bibiana Aguilar

    2007-01-01

    Full Text Available The Andean blackberry belongs to the genus Rubus, the largest of the Rosaceae family and one of the mostdiverse of the plant kingdom. In Colombia Rubus glaucus Benth, known as the Andean raspberry or blackberry, is one of thenine edible of the genus out of forty-four reported species. In this study wild and cultivated genotypes, collected in the CentralAndes of Colombia were analyzed by AFLP and SSR markers. Sexual reproduction seems to play an important role inmaintaining the genetic variability in R. glaucus, and the viability of using the SSR of Rubus alceifolius to characterizeColombian Rubus species was clearly demonstrated. All species evaluated produced very specific banding patterns,differentiating them from the others. Both AFLP and SSR produced bands exclusive to each of the following species: R.robustus, R. urticifolius, R. glaucus, and R. rosifolius. The SSR markers differentiated diploid and tetraploid genotypes of R.glaucus.

  7. An evaluation of sequence tagged microsatellite site markers for genetic analysis within Citrus and related species.

    Science.gov (United States)

    Kijas, J M; Fowler, J C; Thomas, M R

    1995-04-01

    Microsatellites, also called sequence tagged microsatellite sites (STMSs), have become important markers for genome analysis but are currently little studied in plants. To assess the value of STMSs for analysis within the Citrus plant species, two example STMSs were isolated from an intergeneric cross between rangpur lime (Citrus x limonia Osbeck) and trifoliate orange (Poncirus trifoliata (L.) Raf.). Unique flanking primers were constructed for polymerase chain reaction amplification both within the test cross and across a broad range of citrus and related species. Both loci showed length variation between test cross parents with alleles segregating in a Mendelian fashion to progeny. Amplification across species showed the STMS flanking primers to be conserved in every genome tested. The traits of polymorphism, inheritance, and conservation across species mean that STMS markers are ideal for genome mapping within Citrus, which contains high levels of genetic variability.

  8. Results for five sets of forensic genetic markers studied in a Greek population sample

    DEFF Research Database (Denmark)

    Tomas Mas, Carmen; Skitsa, I; Steinmeier, E

    2015-01-01

    A population sample of 223 Greek individuals was typed for five sets of forensic genetic markers with the kits NGM SElect™, SNPforID 49plex, DIPplex(®), Argus X-12 and PowerPlex(®) Y23. No significant deviation from Hardy-Weinberg expectations was observed for any of the studied markers after Holm...... origin. The Greek population grouped closely to the other European populations measured by FST(*) distances. The match probability ranged from a value of 1 in 2×10(7) males by using haplotype frequencies of four X-chromosome haplogroups in males to 1 in 1.73×10(21) individuals for 16 autosomal STRs....

  9. Genetic diversity of wild and cultivated genotypes of pigeonpea through RAPD and SSR markers.

    Science.gov (United States)

    Walunjkar, Babasaheb C; Parihar, Akarsh; Singh, Nirbhay Kumar; Parmar, L D

    2015-03-01

    Eight wild and four cultivated pigeonpea genotypes were subjected to RAPD and microsatellite analysis, with 40 primers each. Out of these, eight RAPD and five SSR primers were found polymorphic. RAPD primers showed 100% polymorphism and produced a total of 517 DNA fragments, whereas SSR primers produced 67 fragments and they too showed 100% polymorphism. The RAPD markers revealed highest similarity co-efficient of 0.93 (GT-100 and ICPL-87), whereas the highest similarity co-efficient obtained with SSR markers was 1.00 (GTH-1 and GT-100). Average PIC value obtained with RAPD and SSR were 0.90 and 0.18, respectively. The arithmetic mean heterozygosity and marker index were 0.90 and 22.47 respectively with RAPD marker, whereas the corresponding values for SSR markers were 0.18 and 33.66. Moreover; the four wild genotypes (Cajanus scarabaeoides, Rhyncosia rufescence, Cajanus cajanifolius and Rhyncosia canna) and the four cultivars (GTH-1, GT-100, ICPL-87 and GT-1) grouped distinctly in the same subgroups of the dendrograms obtained with both RAPD and SSR analysis. Therefore, the findings of SSR supplement and validate the results obtained with RAPD analysis.

  10. Genetic and environmental variances of bone microarchitecture and bone remodeling markers: a twin study.

    Science.gov (United States)

    Bjørnerem, Åshild; Bui, Minh; Wang, Xiaofang; Ghasem-Zadeh, Ali; Hopper, John L; Zebaze, Roger; Seeman, Ego

    2015-03-01

    All genetic and environmental factors contributing to differences in bone structure between individuals mediate their effects through the final common cellular pathway of bone modeling and remodeling. We hypothesized that genetic factors account for most of the population variance of cortical and trabecular microstructure, in particular intracortical porosity and medullary size - void volumes (porosity), which establish the internal bone surface areas or interfaces upon which modeling and remodeling deposit or remove bone to configure bone microarchitecture. Microarchitecture of the distal tibia and distal radius and remodeling markers were measured for 95 monozygotic (MZ) and 66 dizygotic (DZ) white female twin pairs aged 40 to 61 years. Images obtained using high-resolution peripheral quantitative computed tomography were analyzed using StrAx1.0, a nonthreshold-based software that quantifies cortical matrix and porosity. Genetic and environmental components of variance were estimated under the assumptions of the classic twin model. The data were consistent with the proportion of variance accounted for by genetic factors being: 72% to 81% (standard errors ∼18%) for the distal tibial total, cortical, and medullary cross-sectional area (CSA); 67% and 61% for total cortical porosity, before and after adjusting for total CSA, respectively; 51% for trabecular volumetric bone mineral density (vBMD; all p accounted for 47% to 68% of the variance (all p ≤ 0.001). Cross-twin cross-trait correlations between tibial cortical porosity and medullary CSA were higher for MZ (rMZ  = 0.49) than DZ (rDZ  = 0.27) pairs before (p = 0.024), but not after (p = 0.258), adjusting for total CSA. For the remodeling markers, the data were consistent with genetic factors accounting for 55% to 62% of the variance. We infer that middle-aged women differ in their bone microarchitecture and remodeling markers more because of differences in their genetic factors than

  11. Molecular genetic markers for thyroid FNAB. Established assays and future perspective.

    Science.gov (United States)

    Musholt, Thomas J; Musholt, P B

    2015-01-01

    Thyroid nodules > 1 cm are observed in about 12% of unselected adult employees aged 18-65 years screened by ultrasound scan (40). While intensive ultrasound screening leads to early detection of thyroid diseases, the determination of benign or malignant behaviour remains uncertain and may trigger anxieties in many patients and their physicians. A considerable number of thyroid resections are consecutively performed due to suspicion of malignancy in the detected nodes. Fine needle aspiration biopsy (FNAB) has been recommended for the assessment of thyroid nodules to facilitate detection of thyroid carcinomas but also to rule out malignancy and thereby avoid unnecessary thyroid resections. However, cytology results are dependent on experience of the respective cytologist and unfortunately inconclusive in many cases. Molecular genetic markers are already used nowadays to enhance sensitivity and specificity of FNAB cytology in some centers in Germany. The most clinically relevant molecular genetic markers as pre-operative diagnostic tools and the clinical implications for the intraoperative and postoperative management were reviewed. Molecular genetic markers predominantly focus on the preoperative detection of thyroid malignancies rather than the exclusion of thyroid carcinomas. While some centers routinely assess FNABs, other centers concentrate on FNABs with cytology results of follicular neoplasia or suspicion of thyroid carcinoma. Predominantly mutations of BRAF, RET/PTC, RAS, and PAX8/PPARγ or expression of miRNAs are analyzed. However, only the detection of BRAF mutations predicts the presence of (papillary) thyroid malignancy with almost 98% probability, indicating necessity of oncologic thyroid resections irrespective of the cytology result. Other genetic alterations are associated with thyroid malignancy with varying frequency and achieve less impact on the clinical management. Molecular genetic analysis of FNABs is increasingly performed in Germany

  12. Molecular markers for genetic diversity, gene flow and genetic population structure of freshwater mussel species

    Directory of Open Access Journals (Sweden)

    AB Choupina

    Full Text Available Freshwater mussel species are in global decline. Anthropogenic changes of river channels and the decrease of autochthonous fish population, the natural hosts of mussels larval stages (glochidia, are the main causes. Therefore, the conservation of mussel species depends not only on habitat conservation, but also on the availability of the fish host. In Portugal, information concerning most of the mussel species is remarkably scarce. One of the most known species, Unio pictorum is also in decline however, in the basins of the rivers Tua and Sabor (Northeast of Portugal, there is some indication of relatively large populations. The aforementioned rivers can be extremely important for this species conservation not only in Portugal, but also in the remaining Iberian Peninsula. Thus, it is important to obtain data concerning Unio pictorum bioecology (distribution, habitat requirements, population structure, genetic variability, reproductive cycle and recruitment rates, as well as the genetic variability and structure of the population. Concomitantly, information concerning fish population structure, the importance of the different fish species as “glochidia” hosts and their appropriate density to allow effective mussel recruitment, will also be assessed. The achieved data is crucial to obtain information to develop effective management measures in order to promote the conservation of this bivalve species, the conservation of autochthonous fish populations, and consequently the integrity of the river habitats.

  13. Is there a genetic contribution to cultural differences? Collectivism, individualism and genetic markers of social sensitivity.

    Science.gov (United States)

    Way, Baldwin M; Lieberman, Matthew D

    2010-06-01