WorldWideScience

Sample records for markers allowing raman

  1. Raman Spectra of Nanodiamonds: New Treatment Procedure Directed for Improved Raman Signal Marker Detection

    Directory of Open Access Journals (Sweden)

    Raoul R. Nigmatullin

    2013-01-01

    Full Text Available Detonation nanodiamonds (NDs have shown to be promising agents in several industries, ranging from electronic to biomedical applications. These NDs are characterized by small particle size ranging from 3 to 6 nm, while having a reactive surface and a stable inert core. Nanodiamonds can exhibit novel intrinsic properties such as fluorescence, high refractive index, and unique Raman signal making them very attractive imaging agents. In this work, we used several nanodiamond preparations for Raman spectroscopic studies. We exposed these nanodiamonds to increasing temperature treatments at constant heating rates (425–575°C aiding graphite release. We wanted to correlate changes in the nanodiamond surface and properties with Raman signal which could be used as a detection marker. These observations would hold potential utility in biomedical imaging applications. First, the procedure of optimal linear smoothing was applied successfully to eliminate the high-frequency fluctuations and to extract the smoothed Raman spectra. After that we applied the secondary Fourier transform as the fitting function based on some significant set of frequencies. The remnant noise was described in terms of the beta-distribution function. We expect this data treatment to provide better results in biomolecule tracking using nanodiamond base Raman labeling.

  2. Development of surface enhanced Raman scattering (SERS) spectroscopy monitoring of fuel markers to prevent fraud

    Science.gov (United States)

    Wilkinson, Timothy; Clarkson, John; White, Peter C.; Meakin, Nicholas; McDonald, Ken

    2013-05-01

    Governments often tax fuel products to generate revenues to support and stimulate their economies. They also subsidize the cost of essential fuel products. Fuel taxation and subsidization practices are both subject to fraud. Oil marketing companies also suffer from fuel fraud with loss of legitimate sales and additional quality and liability issues. The use of an advanced marking system to identify and control fraud has been shown to be effective in controlling illegal activity. DeCipher has developed surface enhanced Raman scattering (SERS) spectroscopy as its lead technology for measuring markers in fuel to identify and control malpractice. SERS has many advantages that make it highly suitable for this purpose. The SERS instruments are portable and can be used to monitor fuel at any point in the supply chain. SERS shows high specificity for the marker, with no false positives. Multiple markers can also be detected in a single SERS analysis allowing, for example, specific regional monitoring of fuel. The SERS analysis from fuel is also quick, clear and decisive, with a measurement time of less than 5 minutes. We will present results highlighting our development of the use of a highly stable silver colloid as a SERS substrate to measure the markers at ppb levels. Preliminary results from the use of a solid state SERS substrate to measure fuel markers will also be presented.

  3. 78 FR 41720 - CampCo Petition to Allow Commercial Distribution of Tritium Markers

    Science.gov (United States)

    2013-07-11

    ...-32-8; NRC-2013-0078] CampCo Petition to Allow Commercial Distribution of Tritium Markers AGENCY... distribution of tritium markers for use under exemption from licensing requirements. DATES: Submit comments by... illumination markers containing tritium. On July 5, 2012 (ADAMS Accession No. ML121580046), the NRC requested...

  4. Raman spectroscopy reveals biophysical markers in skin cancer surgical margins

    Science.gov (United States)

    Feng, Xu; Moy, Austin J.; Nguyen, Hieu T. M.; Zhang, Yao; Fox, Matthew C.; Sebastian, Katherine R.; Reichenberg, Jason S.; Markey, Mia K.; Tunnell, James W.

    2018-02-01

    The recurrence rate of nonmelanoma skin cancer is highly related to the residual tumor after surgery. Although tissueconserving surgery, such as Mohs surgery, is a standard method for the treatment of nonmelanoma skin cancer, they are limited by lengthy and costly frozen-section histopathology. Raman spectroscopy (RS) is proving to be an objective, sensitive, and non-destructive tool for detecting skin cancer. Previous studies demonstrated the high sensitivity of RS in detecting tumor margins of basal cell carcinoma (BCC). However, those studies rely on statistical classification models and do not elucidate the skin biophysical composition. As a result, we aim to discover the biophysical differences between BCC and primary normal skin structures (including epidermis, dermis, hair follicle, sebaceous gland and fat). We obtained freshly resected ex vivo skin samples from fresh resection specimens from 14 patients undergoing Mohs surgery. Raman images were acquired from regions containing one or more structures using a custom built 830nm confocal Raman microscope. The spectra were grouped using K-means clustering analysis and annotated as either BCC or each of the five normal structures by comparing with the histopathology image of the serial section. The spectral data were then fit by a previously established biophysical model with eight primary skin constituents. Our results show that BCC has significant differences in the fit coefficients of nucleus, collagen, triolein, keratin and elastin compared with normal structures. Our study reveals RS has the potential to detect biophysical changes in resection margins, and supports the development of diagnostic algorithms for future intraoperative implementation of RS during Mohs surgery.

  5. Development of Raman spectral markers to assess metastatic bone in breast cancer

    Science.gov (United States)

    Ding, Hao; Nyman, Jeffry S.; Sterling, Julie A.; Perrien, Daniel S.; Mahadevan-Jansen, Anita; Bi, Xiaohong

    2014-11-01

    Bone is the most common site for breast cancer metastases. One of the major complications of bone metastasis is pathological bone fracture caused by chronic bone loss and degeneration. Current guidelines for the prediction of pathological fracture mainly rely on radiographs or computed tomography, which are limited in their ability to predict fracture risk. The present study explored the feasibility of using Raman spectroscopy to estimate pathological fracture risk by characterizing the alterations in the compositional properties of metastatic bones. Tibiae with evident bone destruction were investigated using Raman spectroscopy. The carbonation level calculated by the ratio of carbonate/phosphate ν1 significantly increased in the tumor-bearing bone at all the sampling regions at the proximal metaphysis and diaphysis, while tumor-induced elevation in mineralization and crystallinity was more pronounced in the metaphysis. Furthermore, the increased carbonation level is positively correlated to bone lesion size, indicating that this parameter could serve as a unique spectral marker for tumor progression and bone loss. With the promising advances in the development of spatially offset Raman spectroscopy for deep tissue measurement, this spectral marker can potentially be used for future noninvasive evaluation of metastatic bone and prediction of pathological fracture risk.

  6. Raman Spectroscopic Signature Markers of Dopamine-Human Dopamine Transporter Interaction in Living Cells.

    Science.gov (United States)

    Silwal, Achut P; Yadav, Rajeev; Sprague, Jon E; Lu, H Peter

    2017-07-19

    Dopamine (DA) controls many psychological and behavioral activities in the central nervous system (CNS) through interactions with the human dopamine transporter (hDAT) and dopamine receptors. The roles of DA in the function of the CNS are affected by the targeted binding of drugs to hDAT; thus, hDAT plays a critical role in neurophysiology and neuropathophysiology. An effective experimental method is necessary to study the DA-hDAT interaction and effects of variety of drugs like psychostimulants and antidepressants that are dependent on this interaction. In searching for obtaining and identifying the Raman spectral signatures, we have used surface enhanced Raman scattering (SERS) spectroscopy to record SERS spectra from DA, human embryonic kidney 293 cells (HEK293), hDAT-HEK293, DA-HEK293, and DA-hDAT-HEK293. We have demonstrated a specific 2D-distribution SERS spectral analytical approach to analyze DA-hDAT interaction. Our study shows that the Raman modes at 807, 839, 1076, 1090, 1538, and 1665 cm -1 are related to DA-hDAT interaction, where Raman shifts at 807 and 1076 cm -1 are the signature markers for the bound state of DA to probe DA-hDAT interaction. On the basis of density function theory (DFT) calculation, Raman shift of the bound state of DA at 807 cm -1 is related to combination of bending modes α(C3-O10-H21), α(C2-O11-H22), α(C7-C8-H18), α(C6-C4-H13), α(C7-C8-H19), and α(C7-C8-N9), and Raman shift at 1076 cm -1 is related to combination of bending modes α(H19-N9-C8), γ(N9-H19), γ(C8-H19), γ(N9-H20), γ(C8-H18), and α(C7-C8-H18). These findings demonstrate that protein-ligand interactions can be confirmed by probing change in Raman shift of ligand molecules, which could be crucial to understanding molecular interactions between neurotransmitters and their receptors or transporters.

  7. Statistical strategies to reveal potential vibrational markers for in vivo analysis by confocal Raman spectroscopy

    Science.gov (United States)

    Oliveira Mendes, Thiago de; Pinto, Liliane Pereira; Santos, Laurita dos; Tippavajhala, Vamshi Krishna; Téllez Soto, Claudio Alberto; Martin, Airton Abrahão

    2016-07-01

    The analysis of biological systems by spectroscopic techniques involves the evaluation of hundreds to thousands of variables. Hence, different statistical approaches are used to elucidate regions that discriminate classes of samples and to propose new vibrational markers for explaining various phenomena like disease monitoring, mechanisms of action of drugs, food, and so on. However, the technical statistics are not always widely discussed in applied sciences. In this context, this work presents a detailed discussion including the various steps necessary for proper statistical analysis. It includes univariate parametric and nonparametric tests, as well as multivariate unsupervised and supervised approaches. The main objective of this study is to promote proper understanding of the application of various statistical tools in these spectroscopic methods used for the analysis of biological samples. The discussion of these methods is performed on a set of in vivo confocal Raman spectra of human skin analysis that aims to identify skin aging markers. In the Appendix, a complete routine of data analysis is executed in a free software that can be used by the scientific community involved in these studies.

  8. A minimally invasive multiple marker approach allows highly efficient detection of meningioma tumors

    Directory of Open Access Journals (Sweden)

    Meese Eckart

    2006-12-01

    Full Text Available Abstract Background The development of effective frameworks that permit an accurate diagnosis of tumors, especially in their early stages, remains a grand challenge in the field of bioinformatics. Our approach uses statistical learning techniques applied to multiple antigen tumor antigen markers utilizing the immune system as a very sensitive marker of molecular pathological processes. For validation purposes we choose the intracranial meningioma tumors as model system since they occur very frequently, are mostly benign, and are genetically stable. Results A total of 183 blood samples from 93 meningioma patients (WHO stages I-III and 90 healthy controls were screened for seroreactivity with a set of 57 meningioma-associated antigens. We tested several established statistical learning methods on the resulting reactivity patterns using 10-fold cross validation. The best performance was achieved by Naïve Bayes Classifiers. With this classification method, our framework, called Minimally Invasive Multiple Marker (MIMM approach, yielded a specificity of 96.2%, a sensitivity of 84.5%, and an accuracy of 90.3%, the respective area under the ROC curve was 0.957. Detailed analysis revealed that prediction performs particularly well on low-grade (WHO I tumors, consistent with our goal of early stage tumor detection. For these tumors the best classification result with a specificity of 97.5%, a sensitivity of 91.3%, an accuracy of 95.6%, and an area under the ROC curve of 0.971 was achieved using a set of 12 antigen markers only. This antigen set was detected by a subset selection method based on Mutual Information. Remarkably, our study proves that the inclusion of non-specific antigens, detected not only in tumor but also in normal sera, increases the performance significantly, since non-specific antigens contribute additional diagnostic information. Conclusion Our approach offers the possibility to screen members of risk groups as a matter of routine

  9. Determining early markers of disease using Raman spectroscopy in a rat combat-trauma model of heterotopic ossification

    Science.gov (United States)

    Cilwa, Katherine E.; Qureshi, Ammar T.; Forsberg, Jonathan A.; Davis, Thomas A.; Crane, Nicole J.

    2016-02-01

    Traumatic heterotopic ossification (HO) is the pathological formation of bone in soft tissue and is a debilitating sequela following acute trauma involving blast-related extremity musculoskeletal injuries, severe burns, spinal cord injury, and traumatic brain injury. Over 60% of combat related injuries and severe burns develop HO; often resulting in reduced mobility, chronic pain, ulceration, tissue entrapment, and reduced ambulation. Detection and prognosis is limited by current clinical imaging modalities (computed tomography, radiography, and ultrasound). This study identifies Raman spectral signatures corresponding to histological changes in a combat-trauma induced rat HO model at early time points prior to radiographic evidence of HO. HO was induced in Sprague-Dawley rats via blast over pressure injury, mid-femoral fracture, soft tissue crush injury, and limb amputation through the zone of injury. Rats were euthanized, and amputated limbs were formalin fixed and embedded in paraffin; 10 μm sections were placed on gold slides, and paraffin was chemically removed. Tissues from sham-treated animals served as controls. Tissue maps consisting of Raman spectra were generated using a Raman microprobe system with an 80-90 μm spot size and 785 nm excitation in regions exhibiting histological evidence of early HO development according to adjacent HE sections. Factors were extracted from mapping data using Band-Target Entropy Minimization algorithms. Areas of early HO were highlighted by a Raman factor indicative of the presence of collagen. Identification of collagen as an early marker of HO prior to radiographic detection in a clinically relevant animal model serves to inform future clinical work.

  10. Raman spectroscopic characterisations and analytical discrimination between caffeine and demethylated analogues of pharmaceutical relevance

    Science.gov (United States)

    Edwards, H. G. M.; Munshi, T.; Anstis, M.

    2005-05-01

    The FT Raman spectrum of caffeine was analysed along with that of its demethylated analogues, theobromine and theophylline. The similar but not identical structures of these three compounds allowed a more detailed assignment of the Raman bands. Noticeable differences in the Raman spectra of these compounds were apparent and key marker bands have been identified for the spectroscopic identification of these three compounds.

  11. Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging.

    Science.gov (United States)

    Lee, Sangyeop; Chon, Hyangah; Lee, Jiyoung; Ko, Juhui; Chung, Bong Hyun; Lim, Dong Woo; Choo, Jaebum

    2014-01-15

    We report a surface-enhanced Raman scattering (SERS)-based cellular imaging technique to detect and quantify breast cancer phenotypic markers expressed on cell surfaces. This technique involves the synthesis of SERS nano tags consisting of silica-encapsulated hollow gold nanospheres (SEHGNs) conjugated with specific antibodies. Hollow gold nanospheres (HGNs) enhance SERS signal intensity of individual particles by localizing surface electromagnetic fields through pinholes in the hollow particle structures. This capacity to enhance imaging at the level of single molecules permits the use of HGNs to detect specific biological markers expressed in living cancer cells. In addition, silica encapsulation greatly enhances the stability of nanoparticles. Here we applied a SERS-based imaging technique using SEHGNs in the multiplex imaging of three breast cancer cell phenotypes. Expression of epidermal growth factor (EGF), ErbB2, and insulin-like growth factor-1 (IGF-1) receptors were assessed in the MDA-MB-468, KPL4 and SK-BR-3 human breast cancer cell lines. SERS imaging technology described here can be used to test the phenotype of a cancer cell and quantify proteins expressed on the cell surface simultaneously. Based on results, this technique may enable an earlier diagnosis of breast cancer than is currently possible and offer guidance in treatment. © 2013 Elsevier B.V. All rights reserved.

  12. Harnessing Raman spectroimmunoassay for detection of serological breast cancer markers (Conference Presentation)

    Science.gov (United States)

    Barman, Ishan; Li, Ming

    2017-02-01

    Two critical, unmet needs in breast cancer are the early detection of cancer metastasis and recurrence, and the sensitive assessment of temporal changes in tumor burden in response to therapy. The present research is directed towards developing a non-invasive, ultrasensitive and specific tool that provides a comprehensive real-time picture of the metastatic tumor burden and provides a radically new route to address these overarching challenges. As the continuing search for better diagnostic and prognostic clues has shifted away from a singular focus on primary tumor lesions, circulating and disseminated biomarkers have surfaced as attractive candidates due to the intrinsic advantages of a non-invasive, repeatable "liquid biopsy" procedure. However, a reproducible, facile blood-based test for diagnosis and follow-up of breast cancer has yet to be incorporated into a clinical laboratory assay due to the limitations of existing assays in terms of sensitivity, extensive sample processing requirements and, importantly, multiplexing capability. Here, by architecting nano-structured probes for detection of specific molecular species, we engineer a novel plasmon-enhanced Raman spectroscopic platform that offers a paradigmatic shift from the capabilities of today's diagnostic test platforms. Specifically, quantitative single-droplet serum tests reveal ultrasensitive and multiplexed detection of three key breast cancer biomarkers, cancer antigen 15-3 (CA15-3), CA27-29 and carcinoembryonic antigen (CEA), over several order of magnitude range of biomarker concentration and clear segmentation of the sera between normal and metastatic cancer levels.

  13. Determination of spectral markers of cytotoxicity and genotoxicity using in vitro Raman microspectroscopy: cellular responses to polyamidoamine dendrimer exposure.

    Science.gov (United States)

    Efeoglu, Esen; Casey, Alan; Byrne, Hugh J

    2017-10-09

    Although consumer exposure to nanomaterials is ever increasing, with potential increased applications in areas such as drug and/or gene delivery, contrast agents and diagnosis, the determination of the cyto- and geno-toxic effects of nanomaterials on human health and the environment still remains challenging. Although many techniques have been established and adapted to determine the cytotoxicity and genotoxicity of nano-sized materials, these techniques remain limited by the number of assays required, total cost, and use of labels and they struggle to explain the underlying interaction mechanisms. In this study, Raman microspectroscopy is employed as an in vitro label-free, high content screening technique to observe toxicological changes within the cell in a multi-parametric fashion. The evolution of spectral markers as a function of time and applied dose has been used to elucidate the mechanism of action of polyamidoamine (PAMAM) dendrimers associated with cytotoxicity and their impact on nuclear biochemistry. PAMAM dendrimers are chosen as a model nanomaterial due to their widely studied cytotoxic and genotoxic properties and commercial availability. Point spectra were acquired from the cytoplasm to monitor the cascade of toxic events occurring in the cytoplasm upon nanoparticle exposure, whereas the spectra acquired from the nucleus and the nucleolus were used to explore PAMAM-nuclear material interaction as well as genotoxic responses.

  14. Markers

    Science.gov (United States)

    Healthy Schools Network, Inc., 2011

    2011-01-01

    Dry erase whiteboards come with toxic dry erase markers and toxic cleaning products. Dry erase markers labeled "nontoxic" are not free of toxic chemicals and can cause health problems. Children are especially vulnerable to environmental health hazards; moreover, schools commonly have problems with indoor air pollution, as they are more densely…

  15. Does the insertion of a gel-based marker at stereotactic breast biopsy allow subsequent wire localizations to be carried out under ultrasound guidance?

    International Nuclear Information System (INIS)

    McMahon, M.A.; James, J.J.; Cornford, E.J.; Hamilton, L.J.; Burrell, H.C.

    2011-01-01

    Aim: To investigate whether the insertion of a gel-based marker at the time of stereotactic breast biopsy allows subsequent preoperative localization to be performed under ultrasound guidance. Materials and methods: One hundred consecutive women who underwent either a 10 G stereotactic vacuum-assisted breast biopsy or 14 G stereotactic core biopsy with marker placement, followed by wire localization and surgical excision were identified. All had mammographic abnormalities not initially visible with ultrasound. The method of preoperative localization was recorded and its success judged with reference to the wire position on the post-procedure films relative to the mammographic abnormality and the marker. Histopathology data were reviewed to ensure the lesion had been adequately excised. Results: Eighty-three women (83%) had a successful ultrasound-guided wire localization. Successful ultrasound-guided localization was more likely after stereotactic vacuum biopsy (86%) compared to stereotactic core biopsy (68%), although this did not quite reach statistical significance (p = 0.06). Conclusion: The routine placement of a gel-based marker after stereotactic breast biopsy facilitates preoperative ultrasound-guided localization.

  16. A novel two T-DNA binary vector allows efficient generation of marker-free transgenic plants in three elite cultivars of rice (Oryza sativa L.).

    Science.gov (United States)

    Breitler, Jean-Christophe; Meynard, Donaldo; Van Boxtel, Jos; Royer, Monique; Bonnot, François; Cambillau, Laurence; Guiderdoni, Emmanuel

    2004-06-01

    A pilot binary vector was constructed to assess the potential of the 2 T-DNA system for generating selectable marker-free progeny plants in three elite rice cultivars (ZhongZuo321, Ariete and Khao Dawk Mali 105) known to exhibit contrasting amenabilities to transformation. The first T-DNA of the vector, delimited by Agrobacterium tumefaciens borders, contains the hygromycin phosphotransferase (hpt) selectable gene and the green fluorescent protein (gfp) reporter gene while the second T-DNA, delimited by Agrobacterium rhizogenes borders, bears the phosphinothricin acetyl transferase (bar) gene, featuring the gene of interest. 82-90% of the hygromycin-resistant primary transformants exhibited tolerance to ammonium glufosinate mediated by the bar gene suggesting very high co-transformation frequency in the three cultivars. All of the regenerated plants were analyzed by Southern blot which confirmed co-integration of the T-DNAs at frequencies consistent with those of co-expression and allowed determination of copy number for each gene as well as detection of two different vector backbone fragments extending between the two T-DNAs. Hygromycin susceptible, ammonium glufosinate tolerant phenotypes represented 14.4, 17.4 and 14.3% of the plants in T1 progenies of ZZ321, Ariete and KDML105 primary transformants, respectively. We developed a statistical model for deducing from the observed copy number of each T-DNA in T0 plants and phenotypic segregations in T1 progenies the most likely constitution and linkage of the T-DNA integration locus. Statistical analysis identified in 40 out of 42 lines a most likely linkage configuration theoretically allowing genetic separation of the two T-DNA types and out segregation of the T-DNA bearing the bar gene. Overall, though improvements of the technology would be beneficial, the 2 T-DNA system appeared to be a useful approach to generate selectable marker-free rice plants with a consistent frequency among cultivars.

  17. Confocal Raman Microscopy

    CERN Document Server

    Dieing, Thomas; Toporski, Jan

    2011-01-01

    Confocal Raman Microscopy is a relatively new technique that allows chemical imaging without specific sample preparation. By integrating a sensitive Raman spectrometer within a state-of-the-art microscope, Raman microscopy with a spatial resolution down to 200nm laterally and 500nm vertically can be achieved using visible light excitation. Recent developments in detector and computer technology as well as optimized instrument design have reduced integration times of Raman spectra by orders of magnitude, so that complete images consisting of tens of thousands of Raman spectra can be acquired in seconds or minutes rather than hours, which used to be standard just one decade ago. The purpose of this book is to provide the reader a comprehensive overview of the rapidly developing field of Confocal Raman Microscopy and its applications.

  18. Raman spectroscopy in graphene

    International Nuclear Information System (INIS)

    Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.

    2009-01-01

    Recent Raman scattering studies in different types of graphene samples are reviewed here. We first discuss the first-order and the double resonance Raman scattering mechanisms in graphene, which give rise to the most prominent Raman features. The determination of the number of layers in few-layer graphene is discussed, giving special emphasis to the possibility of using Raman spectroscopy to distinguish a monolayer from few-layer graphene stacked in the Bernal (AB) configuration. Different types of graphene samples produced both by exfoliation and using epitaxial methods are described and their Raman spectra are compared with those of 3D crystalline graphite and turbostratic graphite, in which the layers are stacked with rotational disorder. We show that Resonance Raman studies, where the energy of the excitation laser line can be tuned continuously, can be used to probe electrons and phonons near the Dirac point of graphene and, in particular allowing a determination to be made of the tight-binding parameters for bilayer graphene. The special process of electron-phonon interaction that renormalizes the phonon energy giving rise to the Kohn anomaly is discussed, and is illustrated by gated experiments where the position of the Fermi level can be changed experimentally. Finally, we discuss the ability of distinguishing armchair and zig-zag edges by Raman spectroscopy and studies in graphene nanoribbons in which the Raman signal is enhanced due to resonance with singularities in the density of electronic states.

  19. SuperQuant-assisted comparative proteome analysis of glioblastoma subpopulations allows for identification of potential novel therapeutic targets and cell markers

    DEFF Research Database (Denmark)

    Verano-Braga, Thiago; Gorshkov, Vladimir; Munthe, Sune

    2018-01-01

    Glioblastoma (GBM) is a highly aggressive brain cancer with poor prognosis and low survival rate. Invasive cancer stem-like cells (CSCs) are responsible for tumor recurrence because they escape current treatments. Our main goal was to study the proteome of three GBM subpopulations to identify key...... molecules behind GBM cell phenotypes and potential cell markers for migrating cells. We used SuperQuant-an enhanced quantitative proteome approach-to increase proteome coverage. We found 148 proteins differentially regulated in migrating CSCs and 199 proteins differentially regulated in differentiated cells...... migration. Moreover, our data suggested that microRNA-122 (miR-122) is a potential upstream regulator of GBM phenotypes as miR-122 activation was predicted for differentiated cells while its inhibition was predicted for migrating CSCs. Finally, we validated transferrin (TF) and procollagen-lysine 2...

  20. Raman spectroscopy

    Science.gov (United States)

    Raman spectroscopy has gained increased use and importance in recent years for accurate and precise detection of physical and chemical properties of food materials, due to the greater specificity and sensitivity of Raman techniques over other analytical techniques. This book chapter presents Raman s...

  1. Raman spectral markers of collagen denaturation and hydration in human cortical bone tissue are affected by radiation sterilization and high cycle fatigue damage.

    Science.gov (United States)

    Flanagan, Christopher D; Unal, Mustafa; Akkus, Ozan; Rimnac, Clare M

    2017-11-01

    Thermal denaturation and monotonic mechanical damage alter the organic and water-related compartments of cortical bone. These changes can be detected using Raman spectroscopy. However, less is known regarding Raman sensitivity to detect the effects of cyclic fatigue damage and allograft sterilization doses of gamma radiation. To determine if Raman spectroscopic biomarkers of collagen denaturation and hydration are sensitive to the effects of (a) high cycle fatigue damage and (b) 25kGy irradiation. Unirradiated and gamma-radiation sterilized human cortical bone specimens previously tested in vitro under high-cycle (> 100,000 cycles) fatigue conditions at 15MPa, 25MPa, 35MPa, 45MPa, and 55MPa cyclic stress levels were studied. Cortical bone Raman spectral profiles from wavenumber ranges of 800-1750cm -1 and 2700-3800cm -1 were obtained and compared from: a) non-fatigue vs fatigue fracture sites and b) radiated vs. unirradiated states. Raman biomarker ratios 1670/1640 and 3220/2949, which reflect collagen denaturation and organic matrix (mainly collagen)-bound water, respectively, were assessed. One- and two-way ANOVA analyses were utilized to identify differences between groups along with interaction effects between cyclic fatigue and radiation-induced damage. Cyclic fatigue damage resulted in increases in collagen denaturation (1670/1640: 1.517 ± 0.043 vs 1.579 ± 0.021, p Raman spectroscopy can detect the effects of cyclic fatigue damage and 25kGy irradiation via increases in organic matrix (mainly collagen)-bound water. A Raman measure of collagen denaturation was sensitive to cyclic fatigue damage but not 25kGy irradiation. Collagen denaturation was correlated with organic matrix-bound water, suggesting that denaturation of collagen to gelatinous form may expose more binding sites to water by unwinding the triple alpha chains. This research may eventually be useful to help identify allograft quality and more appropriately match donors to recipients. Copyright

  2. Detecting Temporal and Spatial Effects of Epithelial Cancers with Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Matthew D. Keller

    2008-01-01

    Full Text Available Epithelial cancers, including those of the skin and cervix, are the most common type of cancers in humans. Many recent studies have attempted to use Raman spectroscopy to diagnose these cancers. In this paper, Raman spectral markers related to the temporal and spatial effects of cervical and skin cancers are examined through four separate but related studies. Results from a clinical cervix study show that previous disease has a significant effect on the Raman signatures of the cervix, which allow for near 100% classification for discriminating previous disease versus a true normal. A Raman microspectroscopy study showed that Raman can detect changes due to adjacent regions of dysplasia or HPV that cannot be detected histologically, while a clinical skin study showed that Raman spectra may be detecting malignancy associated changes in tissues surrounding nonmelanoma skin cancers. Finally, results of an organotypic raft culture study provided support for both the skin and the in vitro cervix results. These studies add to the growing body of evidence that optical spectroscopy, in this case Raman spectral markers, can be used to detect subtle temporal and spatial effects in tissue near cancerous sites that go otherwise undetected by conventional histology.

  3. Raman and Photoluminescence Spectroscopy in Mineral Identification

    Science.gov (United States)

    Kuehn, J. W.

    2014-06-01

    Raman spectroscopy is particularly useful for rapid identification of minerals and gemstones. Raman spectrometers also allow PL studies for authentication of samples and geological provenance, diamond type screening and detection of HPHT treatments.

  4. Raman-based detection of hydroxyethyl starch in kidney allograft biopsies as a potential marker of allograft quality in kidney transplant recipients

    Science.gov (United States)

    Vuiblet, Vincent; Fere, Michael; Bankole, Ezechiel; Wynckel, Alain; Gobinet, Cyril; Birembaut, Philippe; Piot, Olivier; Rieu, Philippe

    2016-09-01

    In brain-dead donor resuscitation, hydroxyethyl starch (HES) use has been associated with presence of osmotic-nephrosis-like lesions in kidney transplant recipients. Our aim was to determine whether the presence of HES in protocol renal graft biopsies at three months (M3) after transplantation is associated with renal graft quality. According to the HES administered to the donor during the procurement procedure, two groups of patients were defined according graft exposition to HES: HES group, (N = 20) and control group (N = 6). Detection and relative quantification of HES was performed by Raman spectroscopy microimaging on M3 protocol renal graft biopsies. Statistical analyses were used to investigate the association between Raman data and graft characteristics. HES spectral signal was revealed negative in the control group, whereas it was positive in 40% of biopsies from the HES group. In the HES group, a stronger HES signal was associated with a lower risk of graft failure measured by the Kidney Donor Risk Index (KDRI) and was correlated with the allograft kidney function. Thus, HES accumulation in donor kidney, as probed by Raman biophotonic technique, is correlated with the quality of donor kidney and consequently the graft renal function and graft survival.

  5. Raman facility

    Data.gov (United States)

    Federal Laboratory Consortium — Raman scattering is a powerful light scattering technique used to diagnose the internal structure of molecules and crystals. In a light scattering experiment, light...

  6. CHILD ALLOWANCE

    CERN Multimedia

    Human Resources Division

    2001-01-01

    HR Division wishes to clarify to members of the personnel that the allowance for a dependent child continues to be paid during all training courses ('stages'), apprenticeships, 'contrats de qualification', sandwich courses or other courses of similar nature. Any payment received for these training courses, including apprenticeships, is however deducted from the amount reimbursable as school fees. HR Division would also like to draw the attention of members of the personnel to the fact that any contract of employment will lead to the suppression of the child allowance and of the right to reimbursement of school fees.

  7. Unveiling NIR Aza-Boron-Dipyrromethene (BODIPY) Dyes as Raman Probes: Surface-Enhanced Raman Scattering (SERS)-Guided Selective Detection and Imaging of Human Cancer Cells.

    Science.gov (United States)

    Adarsh, Nagappanpillai; Ramya, Adukkadan N; Maiti, Kaustabh Kumar; Ramaiah, Danaboyina

    2017-10-12

    The development of new Raman reporters has attracted immense attention in diagnostic research based on surface enhanced Raman scattering (SERS) techniques, which is a well established method for ultrasensitive detection through molecular fingerprinting and imaging. Herein, for the first time, we report the unique and efficient Raman active features of the selected aza-BODIPY dyes 1-6. These distinctive attributes could be extended at the molecular level to allow detection through SERS upon adsorption onto nano-roughened gold surface. Among the newly revealed Raman reporters, the amino substituted derivative 4 showed high signal intensity at very low concentrations (ca. 0.4 μm for 4-Au). Interestingly, an efficient nanoprobe has been constructed by using gold nanoparticles as SERS substrate, and 4 as the Raman reporter (4-Au@PEG), which unexpectedly showed efficient recognition of three human cancer cells (lung: A549, cervical: HeLa, Fibrosarcoma: HT-1080) without any specific surface marker. We observed well reflected and resolved Raman mapping and characteristic signature peaks whereas, such recognition was not observed in normal fibroblast (3T3L1) cells. To confirm these findings, a SERS nanoprobe was conjugated with a specific tumour targeting marker, EGFR (Epidermal Growth Factor Receptor), a well known targeted agent for Human Fibrosarcoma (HT1080). This nanoprobe efficiently targeted the surface marker of HT1080 cells, threreby demonstrating its use as an ultrasensitive Raman probe for detection and targeted imaging, leaving normal cells unaffected. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Selective isolation and noninvasive analysis of circulating cancer stem cells through Raman imaging.

    Science.gov (United States)

    Cho, Hyeon-Yeol; Hossain, Md Khaled; Lee, Jin-Ho; Han, Jiyou; Lee, Hun Joo; Kim, Kyeong-Jun; Kim, Jong-Hoon; Lee, Ki-Bum; Choi, Jeong-Woo

    2018-04-15

    Circulating cancer stem cells (CCSCs), a rare circulating tumor cell (CTC) type, recently arose as a useful resource for monitoring and characterizing both cancers and their metastatic derivatives. However, due to the scarcity of CCSCs among hematologic cells in the blood and the complexity of the phenotype confirmation process, CCSC research can be extremely challenging. Hence, we report a nanoparticle-mediated Raman imaging method for CCSC characterization which profiles CCSCs based on their surface marker expression phenotypes. We have developed an integrated combinatorial Raman-Active Nanoprobe (RAN) system combined with a microfluidic chip to successfully process complete blood samples. CCSCs and CTCs were detected (90% efficiency) and classified in accordance with their respective surface marker expression via completely distinct Raman signals of RANs. Selectively isolated CCSCs (93% accuracy) were employed for both in vitro and in vivo tumor phenotyping to identify the tumorigenicity of the CCSCs. We utilized our new method to predict metastasis by screening blood samples from xenograft models, showing that upon CCSC detection, all subjects exhibited liver metastasis. Having highly efficient detection and noninvasive isolation capabilities, we have demonstrated that our RAN-based Raman imaging method will be valuable for predicting cancer metastasis and relapse via CCSC detection. Moreover, the exclusion of peak overlapping in CCSC analysis with our Raman imaging method will allow to expand the RAN families for various cancer types, therefore, increasing therapeutic efficacy by providing detailed molecular features of tumor subtypes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. CV Raman

    Indian Academy of Sciences (India)

    formatted to take advantage of the changes in publishing methods in the past thirty ..... This work would not have been possible without the support and en- couragement of ..... in which Raman made his decision, have a deeper significance than .... Light in Water and the Colour of the Sea within a month of his return to India ...

  10. Raman Chandrasekar

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Raman Chandrasekar. Articles written in Resonance – Journal of Science Education. Volume 13 Issue 5 May 2008 pp 430-439 General Article. How Children Learn to Use Language - An Overview of R. Narasimhan's Ideas on Child Language Acquisition.

  11. Raman microspectroscopy of nucleus and cytoplasm for human colon cancer diagnosis.

    Science.gov (United States)

    Liu, Wenjing; Wang, Hongbo; Du, Jingjing; Jing, Chuanyong

    2017-11-15

    Subcellular Raman analysis is a promising clinic tool for cancer diagnosis, but constrained by the difficulty of deciphering subcellular spectra in actual human tissues. We report a label-free subcellular Raman analysis for use in cancer diagnosis that integrates subcellular signature spectra by subtracting cytoplasm from nucleus spectra (Nuc.-Cyt.) with a partial least squares-discriminant analysis (PLS-DA) model. Raman mapping with the classical least-squares (CLS) model allowed direct visualization of the distribution of the cytoplasm and nucleus. The PLS-DA model was employed to evaluate the diagnostic performance of five types of spectral datasets, including non-selective, nucleus, cytoplasm, ratio of nucleus to cytoplasm (Nuc./Cyt.), and nucleus minus cytoplasm (Nuc.-Cyt.), resulting in diagnostic sensitivity of 88.3%, 84.0%, 98.4%, 84.5%, and 98.9%, respectively. Discriminating between normal and cancerous cells of actual human tissues through subcellular Raman markers is feasible, especially when using the nucleus-cytoplasm difference spectra. The subcellular Raman approach had good stability, and had excellent diagnostic performance for rectal as well as colon tissues. The insights gained from this study shed new light on the general applicability of subcellular Raman analysis in clinical trials. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Label-free detection of insulin and glucagon within human islets of Langerhans using Raman spectroscopy.

    Directory of Open Access Journals (Sweden)

    Janneke Hilderink

    Full Text Available Intrahepatic transplantation of donor islets of Langerhans is a promising therapy for patients with type 1 diabetes. It is of critical importance to accurately monitor islet quality before transplantation, which is currently done by standard histological methods that are performed off-line and require extensive sample preparation. As an alternative, we propose Raman spectroscopy which is a non-destructive and label-free technique that allows continuous real-time monitoring of the tissue to study biological changes as they occur. By performing Raman spectroscopic measurements on purified insulin and glucagon, we showed that the 520 cm(-1 band assigned to disulfide bridges in insulin, and the 1552 cm(-1 band assigned to tryptophan in glucagon are mutually exclusive and could therefore be used as indirect markers for the label-free distinction between both hormones. High-resolution hyperspectral Raman imaging for these bands showed the distribution of disulfide bridges and tryptophan at sub-micrometer scale, which correlated with the location of insulin and glucagon as revealed by conventional immunohistochemistry. As a measure for this correlation, quantitative analysis was performed comparing the Raman images with the fluorescence images, resulting in Dice coefficients (ranging between 0 and 1 of 0.36 for insulin and 0.19 for glucagon. Although the use of separate microscope systems with different spatial resolution and the use of indirect Raman markers cause some image mismatch, our findings indicate that Raman bands for disulfide bridges and tryptophan can be used as distinctive markers for the label-free detection of insulin and glucagon in human islets of Langerhans.

  13. In vivo Raman spectroscopy for biochemical monitoring of the human cervix throughout pregnancy.

    Science.gov (United States)

    O'Brien, Christine M; Vargis, Elizabeth; Rudin, Amy; Slaughter, James C; Thomas, Giju; Newton, J Michael; Reese, Jeff; Bennett, Kelly A; Mahadevan-Jansen, Anita

    2018-05-01

    The cervix must undergo significant biochemical remodeling to allow for successful parturition. This process is not fully understood, especially in instances of spontaneous preterm birth. In vivo Raman spectroscopy is an optical technique that can be used to investigate the biochemical composition of tissue longitudinally and noninvasively in human beings, and has been utilized to measure physiology and disease states in a variety of medical applications. The purpose of this study is to measure in vivo Raman spectra of the cervix throughout pregnancy in women, and to identify biochemical markers that change with the preparation for delivery and postpartum repair. In all, 68 healthy pregnant women were recruited. Raman spectra were measured from the cervix of each patient monthly in the first and second trimesters, weekly in the third trimester, and at the 6-week postpartum visit. Raman spectra were measured using an in vivo Raman system with an optical fiber probe to excite the tissue with 785 nm light. A spectral model was developed to highlight spectral regions that undergo the most changes throughout pregnancy, which were subsequently used for identifying Raman peaks for further analysis. These peaks were analyzed longitudinally to determine if they underwent significant changes over the course of pregnancy (P Raman peaks indicative of extracellular matrix proteins (1248 and 1254 cm -1 ) significantly decreased (P Raman spectroscopy was successfully used to biochemically monitor cervical remodeling in pregnant women during prenatal visits. This foundational study has demonstrated sensitivity to known biochemical dynamics that occur during cervical remodeling, and identified patient variables that have significant effects on Raman spectra throughout pregnancy. Raman spectroscopy has the potential to improve our understanding of cervical maturation, and be used as a noninvasive preterm birth risk assessment tool to reduce the incidence, morbidity, and mortality

  14. All-Fiber Raman Probe

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara

    by means of fiber components. Assuming the possibility to use a fiber laser with a fundamental radiation at 1064nm, in-fiber efficient second harmonic generation is achieved by optically poling the core of the waveguide delivering the excitation light to the sample. In this way, Raman spectroscopy...... in the visible range can be performed. The simultaneous delivery of the excitation light and collection of the Raman signal from the sample are achieved by means of a doubleclad fiber, whose core and inner cladding act as \\independent" transmission channels. A double-clad fiber coupler allows for the recovery...... of the collected Raman scattering from the inner-cladding region of the double-clad fiber, thus replacing the bulk dichroic component normally used to demultiplex the pump and Raman signal. A tunable Rayleigh-rejection filter based on a liquid filled-photonic bandgap fiber is also demonstrated in this work...

  15. Raman study of ? crystals

    Science.gov (United States)

    Pimenta, M. A.; Oliveira, M. A. S.; Bourson, P.; Crettez, J. M.

    1997-09-01

    In this work we present a polarized Raman study of 0953-8984/9/37/020/img7 single crystals for several values of the concentration 0953-8984/9/37/020/img8 made using different scattering geometries. The Raman spectra, composed of broad bands, have been fitted in accordance with a symmetry analysis which allowed us to assign the vibrational modes, and determine their frequencies and damping constants. The results are compatible with an average hexagonal symmetry for the solid solutions with x in the range 0953-8984/9/37/020/img9. In each of the spectra we found two bands at about 590 and 0953-8984/9/37/020/img10, probably associated with the existence of 0953-8984/9/37/020/img11 structures in the solid solutions.

  16. Biomedical Applications of Micro-Raman and Surface-Enhanced Raman Scattering (SERS) Technology

    Science.gov (United States)

    2012-10-01

    hydroxyapatite ; 1073cm-1, carbonate from carbonate apatite; 1442cm-1, cholesterol and cholesterol esters. 17 Table 1. Tentative assignment and Raman peak...allowed for the discrete location of atherosclerotic plaques. Raman peaks at 961 and 1073 cm-1 reveal the presence of calcium hydroxyapatite and... hydroxyapatite are located within the vessel wall. Similarly, Fig. 5 maps the Raman intensity of the peak at 1073cm-1, which is indicative of

  17. Raman Optical Activity and Raman Spectra of Amphetamine Species

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Shim, Irene; White, Peter Cyril

    2012-01-01

    Theoretical calculations and preliminary measurements of vibrational Raman optical activity (ROA) spectra of different species of amphetamine (amphetamine and amphetamine-H+) are reported for the first time. The quantum chemical calculations were carried out as hybrid ab initio DFT-molecular orbi......Theoretical calculations and preliminary measurements of vibrational Raman optical activity (ROA) spectra of different species of amphetamine (amphetamine and amphetamine-H+) are reported for the first time. The quantum chemical calculations were carried out as hybrid ab initio DFT...... are employed for identification purposes. The DFT calculations show that the most stable conformations are those allowing for close contact between the aromatic ring and the amine hydrogen atoms. The internal rotational barrier within the same amphetamine enanti- omer has a considerable influence on the Raman...

  18. Raman fiber distributed feedback lasers.

    Science.gov (United States)

    Westbrook, Paul S; Abedin, Kazi S; Nicholson, Jeffrey W; Kremp, Tristan; Porque, Jerome

    2011-08-01

    We demonstrate fiber distributed feedback (DFB) lasers using Raman gain in two germanosilicate fibers. Our DFB cavities were 124 mm uniform fiber Bragg gratings with a π phase shift offset from the grating center. Our pump was at 1480 nm and the DFB lasers operated on a single longitudinal mode near 1584 nm. In a commercial Raman gain fiber, the maximum output power, linewidth, and threshold were 150 mW, 7.5 MHz, and 39 W, respectively. In a commercial highly nonlinear fiber, these figures improved to 350 mW, 4 MHz, and 4.3 W, respectively. In both lasers, more than 75% of pump power was transmitted, allowing for the possibility of substantial amplification in subsequent Raman gain fiber. © 2011 Optical Society of America

  19. Condensing Raman spectrum for single-cell phenotype analysis

    KAUST Repository

    Sun, Shiwei

    2015-12-09

    Background In recent years, high throughput and non-invasive Raman spectrometry technique has matured as an effective approach to identification of individual cells by species, even in complex, mixed populations. Raman profiling is an appealing optical microscopic method to achieve this. To fully utilize Raman proling for single-cell analysis, an extensive understanding of Raman spectra is necessary to answer questions such as which filtering methodologies are effective for pre-processing of Raman spectra, what strains can be distinguished by Raman spectra, and what features serve best as Raman-based biomarkers for single-cells, etc. Results In this work, we have proposed an approach called rDisc to discretize the original Raman spectrum into only a few (usually less than 20) representative peaks (Raman shifts). The approach has advantages in removing noises, and condensing the original spectrum. In particular, effective signal processing procedures were designed to eliminate noise, utilising wavelet transform denoising, baseline correction, and signal normalization. In the discretizing process, representative peaks were selected to signicantly decrease the Raman data size. More importantly, the selected peaks are chosen as suitable to serve as key biological markers to differentiate species and other cellular features. Additionally, the classication performance of discretized spectra was found to be comparable to full spectrum having more than 1000 Raman shifts. Overall, the discretized spectrum needs about 5storage space of a full spectrum and the processing speed is considerably faster. This makes rDisc clearly superior to other methods for single-cell classication.

  20. Ultraviolet Resonant Raman Enhancements in the Detection of Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Short Jr., Billy Joe [Naval Postgraduate School, Monterey, CA (United States)

    2009-06-01

    Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided ~2000-fold enhancement at 244 nm and ~800-fold improvement at 229 nm while PETN showed a maximum of ~25-fold at 244 nm and ~190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman enhancements for solid HE samples.

  1. Applications of Raman spectroscopy in life science

    Science.gov (United States)

    Martin, Airton A.; T. Soto, Cláudio A.; Ali, Syed M.; Neto, Lázaro P. M.; Canevari, Renata A.; Pereira, Liliane; Fávero, Priscila P.

    2015-06-01

    Raman spectroscopy has been applied to the analysis of biological samples for the last 12 years providing detection of changes occurring at the molecular level during the pathological transformation of the tissue. The potential use of this technology in cancer diagnosis has shown encouraging results for the in vivo, real-time and minimally invasive diagnosis. Confocal Raman technics has also been successfully applied in the analysis of skin aging process providing new insights in this field. In this paper it is presented the latest biomedical applications of Raman spectroscopy in our laboratory. It is shown that Raman spectroscopy (RS) has been used for biochemical and molecular characterization of thyroid tissue by micro-Raman spectroscopy and gene expression analysis. This study aimed to improve the discrimination between different thyroid pathologies by Raman analysis. A total of 35 thyroid tissues samples including normal tissue (n=10), goiter (n=10), papillary (n=10) and follicular carcinomas (n=5) were analyzed. The confocal Raman spectroscopy allowed a maximum discrimination of 91.1% between normal and tumor tissues, 84.8% between benign and malignant pathologies and 84.6% among carcinomas analyzed. It will be also report the application of in vivo confocal Raman spectroscopy as an important sensor for detecting advanced glycation products (AGEs) on human skin.

  2. Introductory Raman spectroscopy

    CERN Document Server

    Ferraro, John R

    2012-01-01

    Praise for Introductory Raman Spectroscopy Highlights basic theory, which is treated in an introductory fashion Presents state-of-the-art instrumentation Discusses new applications of Raman spectroscopy in industry and research.

  3. Miniature Raman spectrometer development

    Science.gov (United States)

    Bonvallet, Joseph; Auz, Bryan; Rodriguez, John; Olmstead, Ty

    2018-02-01

    The development of techniques to rapidly identify samples ranging from, molecule and particle imaging to detection of high explosive materials, has surged in recent years. Due to this growing want, Raman spectroscopy gives a molecular fingerprint, with no sample preparation, and can be done remotely. These systems can be small, compact, lightweight, and with a user interface that allows for easy use and sample identification. Ocean Optics Inc. has developed several systems that would meet all these end user requirements. This talk will describe the development of different Ocean Optics Inc miniature Raman spectrometers. The spectrometer on a phone (SOAP) system was designed using commercial off the shelf (COTS) components, in a rapid product development cycle. The footprint of the system measures 40x40x14 mm (LxWxH) and was coupled directly to the cell phone detector camera optics. However, it gets roughly only 40 cm-1 resolution. The Accuman system is the largest (290x220X100 mm) of the three, but uses our QEPro spectrometer and get 7-11 cm-1 resolution. Finally, the HRS-30 measuring 165x85x40 mm is a combination of the other two systems. This system uses a modified EMBED spectrometer and gets 7-12 cm-1 resolution. Each of these units uses a peak matching algorithm that then correlates the results to the pre-loaded and customizable spectral libraries.

  4. Development of Single Cell Raman Spectroscopy for Cancer Screening and Therapy Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Chan, James W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2009-02-24

    The overall goal of this project was to develop a new technology for cancer detection based on single cell laser tweezers Raman spectroscopy (LTRS). This method has the potential to improve the detection of cancer characteristics in single cells by acquiring cellular spectral markers that reflect the intrinsic biology of the cell. These spectral biomarkers are a new form of molecular signatures in the field of cancer research that may hold promise in accurately identifying and diagnosing cancer and measuring patient response to treatment. The primary objectives of this proposed work were to perform a full characterization of the Raman spectra of single normal, transformed, and cancer cells to identify cancer spectral signatures, validate the clinical significance of these results by direct correlation to established clinical parameters for assessing cancer, and to develop the optical technology needed for efficient sampling and analysis of cells needed for the practical use of such a system in the clinic. The results indicated that normal T and B lymphocytes could be distinguished from their neoplastic cultured cells and leukemia patient cells with classification sensitivities and specificities routinely exceeding 90% based on multivariate statistical analysis and leave-one-out cross validation. Differences primarily in the Raman peaks associated with DNA and protein were observed between normal and leukemic cells and were consistent for both the cultured and primary cells. Differences between normal and leukemia patient cells were more subtle than between normal and leukemia cultured cells but were still significant to allow for accurate discrimination. Furthermore, it is revealed that the spectral differences are representative of the neoplastic phenotype of the cells and not a reflection of the different metabolic states (resting versus active) of normal and leukemic cells. The effect of different standard cell fixation protocols (i.e. methanol, paraformaledhye

  5. Raman Spectrometer for the Characterization of Advanced Materials and Nanomaterials

    Science.gov (United States)

    2016-04-18

    SECURITY CLASSIFICATION OF: The grant focused on the purchase of a Renishaw InVia Raman microscope to support and enhance the research in...laser. The system includes an accessory for polarization (for 785 nm) and an optical cable that allows external Raman measurements. The manufacturer...UU 18-04-2016 1-Feb-2015 31-Jan-2016 Final Report: Raman Spectrometer for the Characterization of Advanced Materials and Nanomaterials The views

  6. Characterization of excited electronic states of naphthalene by resonance Raman and hyper-Raman scattering

    International Nuclear Information System (INIS)

    Bonang, C.C.; Cameron, S.M.

    1992-01-01

    The first resonance Raman and hyper-Raman scattering from naphthalene are reported. Fourth harmonic of a mode-locked Nd:YAG laser is used to resonantly excite the 1 B 1u + transition, producing Raman spectra that confirm the dominance of the vibronically active ν 28 (b 3g ) mode and the Franck--Condon active a g modes, ν 5 and ν 3 . A synchronously pumped stilbene dye laser and its second harmonic are employed as the excitation sources for hyper-Raman and Raman scattering from the overlapping 1 B 2 u + and 1 A g - states. The Raman spectra indicate that the equilibrium geometry of naphthalene is distorted primarily along ν 5 , ν 8 , and ν 7 normal coordinates upon excitation to 1 B 2 u + . The hyper-Raman spectrum shows that ν 25 (b 2u ) is the mode principally responsible for vibronic coupling between the 1 A g - and 1 B 2u + states. The results demonstrate the advantageous features of resonance hyper-Raman scattering for the case of overlapping one- and two-photon allowed transitions. Calculations based on simple molecular orbital configurations are shown to qualitatively agree with the experimental results

  7. Application of Raman Spectroscopy and Univariate Modelling As a Process Analytical Technology for Cell Therapy Bioprocessing

    Science.gov (United States)

    Baradez, Marc-Olivier; Biziato, Daniela; Hassan, Enas; Marshall, Damian

    2018-01-01

    Cell therapies offer unquestionable promises for the treatment, and in some cases even the cure, of complex diseases. As we start to see more of these therapies gaining market authorization, attention is turning to the bioprocesses used for their manufacture, in particular the challenge of gaining higher levels of process control to help regulate cell behavior, manage process variability, and deliver product of a consistent quality. Many processes already incorporate the measurement of key markers such as nutrient consumption, metabolite production, and cell concentration, but these are often performed off-line and only at set time points in the process. Having the ability to monitor these markers in real-time using in-line sensors would offer significant advantages, allowing faster decision-making and a finer level of process control. In this study, we use Raman spectroscopy as an in-line optical sensor for bioprocess monitoring of an autologous T-cell immunotherapy model produced in a stirred tank bioreactor system. Using reference datasets generated on a standard bioanalyzer, we develop chemometric models from the Raman spectra for glucose, glutamine, lactate, and ammonia. These chemometric models can accurately monitor donor-specific increases in nutrient consumption and metabolite production as the primary T-cell transition from a recovery phase and begin proliferating. Using a univariate modeling approach, we then show how changes in peak intensity within the Raman spectra can be correlated with cell concentration and viability. These models, which act as surrogate markers, can be used to monitor cell behavior including cell proliferation rates, proliferative capacity, and transition of the cells to a quiescent phenotype. Finally, using the univariate models, we also demonstrate how Raman spectroscopy can be applied for real-time monitoring. The ability to measure these key parameters using an in-line Raman optical sensor makes it possible to have immediate

  8. Application of Raman Spectroscopy and Univariate Modelling As a Process Analytical Technology for Cell Therapy Bioprocessing.

    Science.gov (United States)

    Baradez, Marc-Olivier; Biziato, Daniela; Hassan, Enas; Marshall, Damian

    2018-01-01

    Cell therapies offer unquestionable promises for the treatment, and in some cases even the cure, of complex diseases. As we start to see more of these therapies gaining market authorization, attention is turning to the bioprocesses used for their manufacture, in particular the challenge of gaining higher levels of process control to help regulate cell behavior, manage process variability, and deliver product of a consistent quality. Many processes already incorporate the measurement of key markers such as nutrient consumption, metabolite production, and cell concentration, but these are often performed off-line and only at set time points in the process. Having the ability to monitor these markers in real-time using in-line sensors would offer significant advantages, allowing faster decision-making and a finer level of process control. In this study, we use Raman spectroscopy as an in-line optical sensor for bioprocess monitoring of an autologous T-cell immunotherapy model produced in a stirred tank bioreactor system. Using reference datasets generated on a standard bioanalyzer, we develop chemometric models from the Raman spectra for glucose, glutamine, lactate, and ammonia. These chemometric models can accurately monitor donor-specific increases in nutrient consumption and metabolite production as the primary T-cell transition from a recovery phase and begin proliferating. Using a univariate modeling approach, we then show how changes in peak intensity within the Raman spectra can be correlated with cell concentration and viability. These models, which act as surrogate markers, can be used to monitor cell behavior including cell proliferation rates, proliferative capacity, and transition of the cells to a quiescent phenotype. Finally, using the univariate models, we also demonstrate how Raman spectroscopy can be applied for real-time monitoring. The ability to measure these key parameters using an in-line Raman optical sensor makes it possible to have immediate

  9. Application of Raman Spectroscopy and Univariate Modelling As a Process Analytical Technology for Cell Therapy Bioprocessing

    Directory of Open Access Journals (Sweden)

    Marc-Olivier Baradez

    2018-03-01

    Full Text Available Cell therapies offer unquestionable promises for the treatment, and in some cases even the cure, of complex diseases. As we start to see more of these therapies gaining market authorization, attention is turning to the bioprocesses used for their manufacture, in particular the challenge of gaining higher levels of process control to help regulate cell behavior, manage process variability, and deliver product of a consistent quality. Many processes already incorporate the measurement of key markers such as nutrient consumption, metabolite production, and cell concentration, but these are often performed off-line and only at set time points in the process. Having the ability to monitor these markers in real-time using in-line sensors would offer significant advantages, allowing faster decision-making and a finer level of process control. In this study, we use Raman spectroscopy as an in-line optical sensor for bioprocess monitoring of an autologous T-cell immunotherapy model produced in a stirred tank bioreactor system. Using reference datasets generated on a standard bioanalyzer, we develop chemometric models from the Raman spectra for glucose, glutamine, lactate, and ammonia. These chemometric models can accurately monitor donor-specific increases in nutrient consumption and metabolite production as the primary T-cell transition from a recovery phase and begin proliferating. Using a univariate modeling approach, we then show how changes in peak intensity within the Raman spectra can be correlated with cell concentration and viability. These models, which act as surrogate markers, can be used to monitor cell behavior including cell proliferation rates, proliferative capacity, and transition of the cells to a quiescent phenotype. Finally, using the univariate models, we also demonstrate how Raman spectroscopy can be applied for real-time monitoring. The ability to measure these key parameters using an in-line Raman optical sensor makes it possible

  10. The hallmarks of breast cancer by Raman spectroscopy

    Science.gov (United States)

    Abramczyk, H.; Surmacki, J.; Brożek-Płuska, B.; Morawiec, Z.; Tazbir, M.

    2009-04-01

    This paper presents new biological results on ex vivo breast tissue based on Raman spectroscopy and demonstrates its power as diagnostic tool with the key advantage in breast cancer research. The results presented here demonstrate the ability of Raman spectroscopy to accurately characterize cancer tissue and distinguish between normal, malignant and benign types. The goal of the paper is to develop the diagnostic ability of Raman spectroscopy in order to find an optical marker of cancer in the breast tissue. Applications of Raman spectroscopy in breast cancer research are in the early stages of development in the world. To the best of our knowledge, this paper is one of the most statistically reliable reports (1100 spectra, 99 patients) on Raman spectroscopy-based diagnosis of breast cancers among the world women population.

  11. Using Deep UV Raman Spectroscopy to Identify In Situ Microbial Activity

    Science.gov (United States)

    Sapers, H. M.; Wanger, G.; Amend, J.; Orphan, V. J.; Bhartia, R.

    2017-12-01

    Microbial communities living in close association with lithic substrates play a critical role in biogeochemical cycles. Understanding the interactions between microorganisms and their abiotic substrates requires knowledge of microbial activity. Identifying active cells adhered to complex environmental substrates, especially in low biomass systems, remains a challenge. Stable isotope probing (SIP) provides a means to trace microbial activity in environmental systems. Active members of the community take up labeled substrates and incorporate the labels into biomolecules that can be detected through downstream analyses. Here we show for the first time that Deep UV (248 nm) Raman spectroscopy can differentiate microbial cells labeled with stable isotopes. Previous studies have used Raman spectroscopy with a 532 nm source to identify active bacterial cells by measuring a Raman shift between peaks corresponding to amino acids incorporating 13C compared to controls. However, excitation at 532 nm precludes detection on complex substrates due to high autofluorescence of native minerals. Excitation in the DUV range offers non-destructive imaging on mineral surfaces - retaining critical contextual information. We prepared cultures of E. coli grown in 50 atom% 13C glucose spotted onto Al wafers to test the ability of DUV Raman spectroscopy to differentiate labeled and unlabeled cells. For the first time, we are able to demonstrate a distinct and repeatable shift between cells grown in labeled media and unlabeled media when imaged on Al wafers with DUV Raman spectroscopy. The Raman spectra are dominated by the characteristic Raman bands of guanine. The dominant marker peak for guanine attributed to N7-C8 and C8-N9 ring stretching and C8-H in-plane bending, is visible at 1480 cm-1 in the unlabeled cells and is blue-shifted by 20 wavenumbers to 1461 cm-1 in the labeled cells. The ability of DUV Raman to effectively identify regions containing cells that have incorporated isotopic

  12. [Raman spectra of monkey cerebral cortex tissue].

    Science.gov (United States)

    Zhu, Ji-chun; Guo, Jian-yu; Cai, Wei-ying; Wang, Zu-geng; Sun, Zhen-rong

    2010-01-01

    Monkey cerebral cortex, an important part in the brain to control action and thought activities, is mainly composed of grey matter and nerve cell. In the present paper, the in situ Raman spectra of the cerebral cortex of the birth, teenage and aged monkeys were achieved for the first time. The results show that the Raman spectra for the different age monkey cerebral cortex exhibit most obvious changes in the regions of 1000-1400 and 2800-3000 cm(-1). With monkey growing up, the relative intensities of the Raman bands at 1313 and 2885 cm(-1) mainly assigned to CH2 chain vibrational mode of lipid become stronger and stronger whereas the relative intensities of the Raman bands at 1338 and 2932 cm(-1) mainly assigned to CH3 chain vibrational mode of protein become weaker and weaker. In addition, the two new Raman bands at 1296 and 2850 cm(-1) are only observed in the aged monkey cerebral cortex, therefore, the two bands can be considered as a character or "marker" to differentiate the caducity degree with monkey growth In order to further explore the changes, the relative intensity ratios of the Raman band at 1313 cm(-1) to that at 1338 cm(-1) and the Raman band at 2885 cm(-1) to that at 2 932 cm(-1), I1313/I1338 and I2885/I2932, which are the lipid-to-protein ratios, are introduced to denote the degree of the lipid content. The results show that the relative intensity ratios increase significantly with monkey growth, namely, the lipid content in the cerebral cortex increases greatly with monkey growth. So, the authors can deduce that the overmuch lipid is an important cause to induce the caducity. Therefore, the results will be a powerful assistance and valuable parameter to study the order of life growth and diagnose diseases.

  13. Confocal Raman Microspectroscopy of Oral Streptococci

    Science.gov (United States)

    Beier, Brooke D.

    Raman spectroscopy has been used in a variety of applications throughout the field of biomedical optics. It has the ability to acquire chemically-specific information in a non-invasive manner, without the need for exogenous markers. This makes it useful in the identification of bacterial species, as well as in the study of tissues and other cells. In this work, a species identification model has been created in order to discriminate between the oral bacterial species Streptococcus sanguinis and Streptococcus mutans. These are two of the most prevalent species within the human mouth and their relative concentrations can be an indicator of a patient's oral health and risk of tooth decay. They are predominantly found within plaque on the tooth's surface. To study a simplified model for dental plaque, we have examined S. sanguinis and S. mutans grown in biofilm forms. Raman spectroscopy has been implemented here through a confocal microscope. The optical system has been equipped with computationally controlled stages to allow for automated scanning, including autofocusing to probe a consistent depth within a sample. A spectrum has been acquired from each position within a scan and sent for spectral preprocessing before being submitted for species identification. This preprocessing includes an algorithm that has been developed to remove fluorescence features from known contaminants within the confocal volume, to include signal from a fluorescent substrate. Species classification has been accomplished using a principal component score-fed logistic regression model constructed from a variety of biofilm samples that have been transferred and allowed to dry, as might occur with the study of plaque samples. This binary classification model has been validated on other samples with identical preparations. The model has also been transferred to determine the species of hydrated biofilms studied in situ. Artificially mixed biofilms have been examined to test the spatial

  14. Raman fiber lasers

    CERN Document Server

    2017-01-01

    This book serves as a comprehensive, up-to-date reference about this cutting-edge laser technology and its many new and interesting developments. Various aspects and trends of Raman fiber lasers are described in detail by experts in their fields. Raman fiber lasers have progressed quickly in the past decade, and have emerged as a versatile laser technology for generating high power light sources covering a spectral range from visible to mid-infrared. The technology is already being applied in the fields of telecommunication, astronomy, cold atom physics, laser spectroscopy, environmental sensing, and laser medicine. This book covers various topics relating to Raman fiber laser research, including power scaling, cladding and diode pumping, cascade Raman shifting, single frequency operation and power amplification, mid-infrared laser generation, specialty optical fibers, and random distributed feedback Raman fiber lasers. The book will appeal to scientists, students, and technicians seeking to understand the re...

  15. In situ Raman mapping of art objects

    Science.gov (United States)

    Brondeel, Ph.; Moens, L.; Vandenabeele, P.

    2016-01-01

    Raman spectroscopy has grown to be one of the techniques of interest for the investigation of art objects. The approach has several advantageous properties, and the non-destructive character of the technique allowed it to be used for in situ investigations. However, compared with laboratory approaches, it would be useful to take advantage of the small spectral footprint of the technique, and use Raman spectroscopy to study the spatial distribution of different compounds. In this work, an in situ Raman mapping system is developed to be able to relate chemical information with its spatial distribution. Challenges for the development are discussed, including the need for stable positioning and proper data treatment. To avoid focusing problems, nineteenth century porcelain cards are used to test the system. This work focuses mainly on the post-processing of the large dataset which consists of four steps: (i) importing the data into the software; (ii) visualization of the dataset; (iii) extraction of the variables; and (iv) creation of a Raman image. It is shown that despite the challenging task of the development of the full in situ Raman mapping system, the first steps are very promising. This article is part of the themed issue ‘Raman spectroscopy in art and archaeology’. PMID:27799424

  16. Raman spectroscopic studies on bacteria

    Science.gov (United States)

    Maquelin, Kees; Choo-Smith, Lin-P'ing; Endtz, Hubert P.; Bruining, Hajo A.; Puppels, Gerwin J.

    2000-11-01

    Routine clinical microbiological identification of pathogenic micro-organisms is largely based on nutritional and biochemical tests. Laboratory results can be presented to a clinician after 2 - 3 days for most clinically relevant micro- organisms. Most of this time is required to obtain pure cultures and enough biomass for the tests to be performed. In the case of severely ill patients, this unavoidable time delay associated with such identification procedures can be fatal. A novel identification method based on confocal Raman microspectroscopy will be presented. With this method it is possible to obtain Raman spectra directly from microbial microcolonies on the solid culture medium, which have developed after only 6 hours of culturing for most commonly encountered organisms. Not only does this technique enable rapid (same day) identifications, but also preserves the sample allowing it to be double-checked with traditional tests. This, combined with the speed and minimal sample handling indicate that confocal Raman microspectroscopy has much potential as a powerful new tool in clinical diagnostic microbiology.

  17. Transcutaneous Raman Spectroscopy of Bone

    Science.gov (United States)

    Maher, Jason R.

    Clinical diagnoses of bone health and fracture risk typically rely upon measurements of bone density or structure, but the strength of a bone is also dependent upon its chemical composition. One technology that has been used extensively in ex vivo, exposed-bone studies to measure the chemical composition of bone is Raman spectroscopy. This spectroscopic technique provides chemical information about a sample by probing its molecular vibrations. In the case of bone tissue, Raman spectra provide chemical information about both the inorganic mineral and organic matrix components, which each contribute to bone strength. To explore the relationship between bone strength and chemical composition, our laboratory has contributed to ex vivo, exposed-bone animal studies of rheumatoid arthritis, glucocorticoid-induced osteoporosis, and prolonged lead exposure. All of these studies suggest that Raman-based predictions of biomechanical strength may be more accurate than those produced by the clinically-used parameter of bone mineral density. The utility of Raman spectroscopy in ex vivo, exposed-bone studies has inspired attempts to perform bone spectroscopy transcutaneously. Although the results are promising, further advancements are necessary to make non-invasive, in vivo measurements of bone that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based upon fitting with spectral libraries derived from separately-acquired measurements of the underlying tissue components. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both soft tissue and bone and was applied to experimental data in order to transcutaneously detect, to our knowledge for the first time, age- and disease-related spectral

  18. Raman spectra studies of dipeptides

    International Nuclear Information System (INIS)

    Blanchard, Simone.

    1977-10-01

    This work deals with the homogenous and heterogeneous dipeptides derived from alanine and glycine, in the solid state or in aqueous solutions, in the zwitterions or chlorhydrates form. The Raman spectra comparative study of these various forms of hydrogenated or deuterated compounds allows to specify some of the attributions which are necessary in the conformational study of the like tripeptides. These compounds contain only one peptidic group; therefore there is no possibility of intramolecular hydrogen bond which caracterise vibrations of non bonded peptidic groups and end groups. Infrared spectra of solid dipeptides will be presented and discussed in the near future [fr

  19. Confocal Raman microscopy

    CERN Document Server

    Dieing, Thomas; Hollricher, Olaf

    2018-01-01

    This second edition provides a cutting-edge overview of physical, technical and scientific aspects related to the widely used analytical method of confocal Raman microscopy. The book includes expanded background information and adds insights into how confocal Raman microscopy, especially 3D Raman imaging, can be integrated with other methods to produce a variety of correlative microscopy combinations. The benefits are then demonstrated and supported by numerous examples from the fields of materials science, 2D materials, the life sciences, pharmaceutical research and development, as well as the geosciences.

  20. Holographic Raman lidar

    International Nuclear Information System (INIS)

    Andersen, G.

    2000-01-01

    Full text: We have constructed a Raman lidar system that incorporates a holographic optical element. By resolving just 3 nitrogen lines in the Resonance Raman spectroscopy (RRS) spectrum, temperature fits as good as 1% at altitudes of 20km can be made in 30 minutes. Due to the narrowband selectivity of the HOE, the lidar provides measurements over a continuous 24hr period. By adding a 4th channel to capture the Rayleigh backscattered light, temperature profiles can be extended to 80km

  1. Differentiating the growth phases of single bacteria using Raman spectroscopy

    Science.gov (United States)

    Strola, S. A.; Marcoux, P. R.; Schultz, E.; Perenon, R.; Simon, A.-C.; Espagnon, I.; Allier, C. P.; Dinten, J.-M.

    2014-03-01

    In this paper we present a longitudinal study of bacteria metabolism performed with a novel Raman spectrometer system. Longitudinal study is possible with our Raman setup since the overall procedure to localize a single bacterium and collect a Raman spectrum lasts only 1 minute. Localization and detection of single bacteria are performed by means of lensfree imaging, whereas Raman signal (from 600 to 3200 cm-1) is collected into a prototype spectrometer that allows high light throughput (HTVS technology, Tornado Spectral System). Accomplishing time-lapse Raman spectrometry during growth of bacteria, we observed variation in the net intensities for some band groups, e.g. amides and proteins. The obtained results on two different bacteria species, i.e. Escherichia coli and Bacillus subtilis clearly indicate that growth affects the Raman chemical signature. We performed a first analysis to check spectral differences and similarities. It allows distinguishing between lag, exponential and stationary growth phases. And the assignment of interest bands to vibration modes of covalent bonds enables the monitoring of metabolic changes in bacteria caused by growth and aging. Following the spectra analysis, a SVM (support vector machine) classification of the different growth phases is presented. In sum this longitudinal study by means of a compact and low-cost Raman setup is a proof of principle for routine analysis of bacteria, in a real-time and non-destructive way. Real-time Raman studies on metabolism and viability of bacteria pave the way for future antibiotic susceptibility testing.

  2. Trading sulfur dioxide allowances

    International Nuclear Information System (INIS)

    Goldburg, C.B.; Lave, L.B.

    1992-01-01

    The 1990 Clean Air Act is aimed at generators larger than 25 MW, as these are the largest polluters. Market incentives give each source an emissions allocation but also flexibility. If a plant has lower emissions than the target, it can sell the 'surplus' emissions as allowances to plants that fail to meet the target. Only a few trades have occurred to date. Market-based incentives should lower the costs of improving environmental quality significantly. However, currently institutional dificulties hamper implementation

  3. Raman spectroscopy and imaging: applications in human breast cancer diagnosis.

    Science.gov (United States)

    Brozek-Pluska, Beata; Musial, Jacek; Kordek, Radzislaw; Bailo, Elena; Dieing, Thomas; Abramczyk, Halina

    2012-08-21

    The applications of spectroscopic methods in cancer detection open new possibilities in early stage diagnostics. Raman spectroscopy and Raman imaging represent novel and rapidly developing tools in cancer diagnosis. In the study described in this paper Raman spectroscopy has been employed to examine noncancerous and cancerous human breast tissues of the same patient. The most significant differences between noncancerous and cancerous tissues were found in regions characteristic for the vibrations of carotenoids, lipids and proteins. Particular attention was paid to the role played by unsaturated fatty acids in the differentiation between the noncancerous and the cancerous tissues. Comparison of Raman spectra of the noncancerous and the cancerous tissues with the spectra of oleic, linoleic, α-linolenic, γ-linolenic, docosahexaenoic and eicosapentaenoic acids has been presented. The role of sample preparation in the determination of cancer markers is also discussed in this study.

  4. Raman microscopy of individual living human embryonic stem cells

    Science.gov (United States)

    Novikov, S. M.; Beermann, J.; Bozhevolnyi, S. I.; Harkness, L. M.; Kassem, M.

    2010-04-01

    We demonstrate the possibility of mapping the distribution of different biomolecules in living human embryonic stem cells grown on glass substrates, without the need for fluorescent markers. In our work we improve the quality of measurements by finding a buffer that gives low fluorescence, growing cells on glass substrates (whose Raman signals are relatively weak compared to that of the cells) and having the backside covered with gold to improve the image contrast under direct white light illumination. The experimental setup used for Raman microscopy is the commercially available confocal scanning Raman microscope (Alpha300R) from Witec and sub-μm spatially resolved Raman images were obtained using a 532 nm excitation wavelength.

  5. Condensing Raman spectrum for single-cell phenotype analysis

    KAUST Repository

    Sun, Shiwei; Wang, Xuetao; Gao, Xin; Ren, Lihui; Su, Xiaoquan; Bu, Dongbo; Ning, Kang

    2015-01-01

    In this work, we have proposed an approach called rDisc to discretize the original Raman spectrum into only a few (usually less than 20) representative peaks (Raman shifts). The approach has advantages in removing noises, and condensing the original spectrum. In particular, effective signal processing procedures were designed to eliminate noise, utilising wavelet transform denoising, baseline correction, and signal normalization. In the discretizing process, representative peaks were selected to signicantly decrease the Raman data size. More importantly, the selected peaks are chosen as suitable to serve as key biological markers to differentiate species and other cellular features. Additionally, the classication performance of discretized spectra was found to be comparable to full spectrum having more than 1000 Raman shifts. Overall, the discretized spectrum needs about 5storage space of a full spectrum and the processing speed is considerably faster. This makes rDisc clearly superior to other methods for single-cell classication.

  6. Optical trapping and Raman spectroscopy of single nanostructures using standing-wave Raman tweezers

    Science.gov (United States)

    Wu, Mu-ying; He, Lin; Chen, Gui-hua; Yang, Guang; Li, Yong-qing

    2017-08-01

    Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped micro-particle, but is generally less effective for individual nano-sized objects in the 10-100 nm range. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap (SWOT) with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus is more stable and sensitive in measuring nanoparticles in liquid with 4-8 fold increase in the Raman signals. It can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, polystyrene beads (100 nm), SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles with a low laser power of a few milliwatts. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints.

  7. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles

    Science.gov (United States)

    Redding, Brandon; Schwab, Mark J.; Pan, Yong-le

    2015-01-01

    The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field. PMID:26247952

  8. Raman spectroscopic analysis of real samples: Brazilian bauxite mineralogy

    Science.gov (United States)

    Faulstich, Fabiano Richard Leite; Castro, Harlem V.; de Oliveira, Luiz Fernando Cappa; Neumann, Reiner

    2011-10-01

    In this investigation, Raman spectroscopy with 1064 and 632.8 nm excitation was used to investigate real mineral samples of bauxite ore from mines of Northern Brazil, together with Raman mapping and X-rays diffraction. The obtained results show clearly that the use of microRaman spectroscopy is a powerful tool for the identification of all the minerals usually found in bauxites: gibbsite, kaolinite, goethite, hematite, anatase and quartz. Bulk samples can also be analysed, and FT-Raman is more adequate due to better signal-to-noise ratio and representativity, although not efficient for kaolinite. The identification of fingerprinting vibrations for all the minerals allows the acquisition of Raman-based chemical maps, potentially powerful tools for process mineralogy applied to bauxite ores.

  9. Raman spectrum of asphaltene

    KAUST Repository

    Abdallah, Wael A.; Yang, Yang

    2012-01-01

    Asphaltenes extracted from seven different crude oils representing different geological formations from around the globe were analyzed using the Raman spectroscopic technique. Each spectrum is fitted with four main peaks using the Gaussian function. On the basis of D1 and G bands of the Raman spectrum, asphaltene indicated an ordered structure with the presence of boundary defected edges. The average aromatic sheet size of the asphaltene molecules is estimated within the range of 1.52-1.88 nm, which represents approximately seven to eight aromatic fused rings. This estimation is based on the integrated intensity of D1 and G bands, as proposed by Tunistra and Koenig. The results here are in perfect agreement with so many other used techniques and indicate the potential applicability of Raman measurements to determine the average aromatic ring size and its boundary. © 2012 American Chemical Society.

  10. Raman spectrum of asphaltene

    KAUST Repository

    Abdallah, Wael A.

    2012-11-05

    Asphaltenes extracted from seven different crude oils representing different geological formations from around the globe were analyzed using the Raman spectroscopic technique. Each spectrum is fitted with four main peaks using the Gaussian function. On the basis of D1 and G bands of the Raman spectrum, asphaltene indicated an ordered structure with the presence of boundary defected edges. The average aromatic sheet size of the asphaltene molecules is estimated within the range of 1.52-1.88 nm, which represents approximately seven to eight aromatic fused rings. This estimation is based on the integrated intensity of D1 and G bands, as proposed by Tunistra and Koenig. The results here are in perfect agreement with so many other used techniques and indicate the potential applicability of Raman measurements to determine the average aromatic ring size and its boundary. © 2012 American Chemical Society.

  11. Shot-Noise Limited Time-Encoded Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Sebastian Karpf

    2017-01-01

    Full Text Available Raman scattering, an inelastic scattering mechanism, provides information about molecular excitation energies and can be used to identify chemical compounds. Albeit being a powerful analysis tool, especially for label-free biomedical imaging with molecular contrast, it suffers from inherently low signal levels. This practical limitation can be overcome by nonlinear enhancement techniques like stimulated Raman scattering (SRS. In SRS, an additional light source stimulates the Raman scattering process. This can lead to orders of magnitude increase in signal levels and hence faster acquisition in biomedical imaging. However, achieving a broad spectral coverage in SRS is technically challenging and the signal is no longer background-free, as either stimulated Raman gain (SRG or loss (SRL is measured, turning a sensitivity limit into a dynamic range limit. Thus, the signal has to be isolated from the laser background light, requiring elaborate methods for minimizing detection noise. Here, we analyze the detection sensitivity of a shot-noise limited broadband stimulated time-encoded Raman (TICO-Raman system in detail. In time-encoded Raman, a wavelength-swept Fourier domain mode locking (FDML laser covers a broad range of Raman transition energies while allowing a dual-balanced detection for lowering the detection noise to the fundamental shot-noise limit.

  12. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    weak Raman signal, which facilitates identification in chemi- cal and biological systems. Recently, single-molecule Raman scattering has enhanced the detection sensitivity limit of ... was working on the molecular diffraction of light, which ulti-.

  13. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 2. Surface-Enhanced Raman Spectroscopy - Recent Advancement of Raman Spectroscopy. Ujjal Kumar Sur. General Article Volume 15 Issue 2 February 2010 pp 154-164 ...

  14. Development of Raman spectrophotometer

    International Nuclear Information System (INIS)

    Adam, A.I.

    2008-05-01

    In this work, the Raman spectrophotometer HG.2S Jobin Yvon rebuilt and developed, the Raman setup provided as a gift for Neelian University from Amsterdam University. The main parts, which were replaced, include monochromator, an air-cooled photomultiplier tube RCA IP 28, log amplifier, hand scanning lab VIEW card for computer interfacing. The components assembled and the whole device was tested successfully. The developed setup was checked using some standard solutions, which showed perfect consistency with literature in the references and published papers. Solutions included hexane, cyclohexane, carbon tetrachloride, benzene and sodium sulfate.(Author)

  15. Raman spectra of graphene ribbons

    International Nuclear Information System (INIS)

    Saito, R; Furukawa, M; Dresselhaus, G; Dresselhaus, M S

    2010-01-01

    Raman spectra of graphene nanoribbons with zigzag and armchair edges are calculated within non-resonant Raman theory. Depending on the edge structure and polarization direction of the incident and scattered photon beam relative to the edge direction, a symmetry selection rule for the phonon type appears. These Raman selection rules will be useful for the identification of the edge structure of graphene nanoribbons.

  16. Raman-in-SEM, a multimodal and multiscale analytical tool: performance for materials and expertise.

    Science.gov (United States)

    Wille, Guillaume; Bourrat, Xavier; Maubec, Nicolas; Lahfid, Abdeltif

    2014-12-01

    The availability of Raman spectroscopy in a powerful analytical scanning electron microscope (SEM) allows morphological, elemental, chemical, physical and electronic analysis without moving the sample between instruments. This paper documents the metrological performance of the SEMSCA commercial Raman interface operated in a low vacuum SEM. It provides multiscale and multimodal analyses as Raman/EDS, Raman/cathodoluminescence or Raman/STEM (STEM: scanning transmission electron microscopy) as well as Raman spectroscopy on nanomaterials. Since Raman spectroscopy in a SEM can be influenced by several SEM-related phenomena, this paper firstly presents a comparison of this new tool with a conventional micro-Raman spectrometer. Then, some possible artefacts are documented, which are due to the impact of electron beam-induced contamination or cathodoluminescence contribution to the Raman spectra, especially with geological samples. These effects are easily overcome by changing or adapting the Raman spectrometer and the SEM settings and methodology. The deletion of the adverse effect of cathodoluminescence is solved by using a SEM beam shutter during Raman acquisition. In contrast, this interface provides the ability to record the cathodoluminescence (CL) spectrum of a phase. In a second part, this study highlights the interest and efficiency of the coupling in characterizing micrometric phases at the same point. This multimodal approach is illustrated with various issues encountered in geosciences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Raman tweezers in microfluidic systems for analysis and sorting of living cells

    Science.gov (United States)

    Pilát, Zdeněk.; Ježek, Jan; Kaňka, Jan; Zemánek, Pavel

    2014-12-01

    We have devised an analytical and sorting system combining optical trapping with Raman spectroscopy in microfluidic environment, dedicated to identification and sorting of biological objects, such as living cells of various unicellular organisms. Our main goal was to create a robust and universal platform for non-destructive and non-contact sorting of micro-objects based on their Raman spectral properties. This approach allowed us to collect spectra containing information about the chemical composition of the objects, such as the presence and composition of pigments, lipids, proteins, or nucleic acids, avoiding artificial chemical probes such as fluorescent markers. The non-destructive nature of this optical analysis and manipulation allowed us to separate individual living cells of our interest in a sterile environment and provided the possibility to cultivate the selected cells for further experiments. We used a mixture of polystyrene micro-particles and algal cells to test and demonstrate the function of our analytical and sorting system. The devised system could find its use in many medical, biotechnological, and biological applications.

  18. Designing of Raman laser

    International Nuclear Information System (INIS)

    Zidan, M. D.; Al-Awad, F.; Alsous, M. B.

    2005-01-01

    In this work, we describe the design of the Raman laser pumped by Frequency doubled Nd-YAG laser (λ=532 nm) to generate new laser wavelengths by shifting the frequency of the Nd-YAG laser to Stokes region (λ 1 =683 nm, λ 2 =953.6 nm, λ 3 =1579.5 nm) and Antistokes region (λ ' 1 =435 nm, λ ' 2 =369.9 nm, λ ' 3=319.8 nm). Laser resonator has been designed to increase the laser gain. It consists of two mirrors, the back mirror transmits the pump laser beam (λ=532 nm) through the Raman tube and reflects all other generated Raman laser lines. Four special front mirrors were made to be used for the four laser lines λ 1 =683 nm, λ 2 =953.6 nm and λ ' 1 = 435 nm, λ ' 2 =369.9 nm. The output energy for the lines υ 1 s, υ 2 s, υ 1 as,υ 2 as was measured. The output energy of the Raman laser was characterized for different H 2 pressure inside the tube. (Author)

  19. Confocal Raman microspectroscopy

    International Nuclear Information System (INIS)

    Puppels, G.J.

    1991-01-01

    Raman spectroscopy is a technique that provides detailed structural information about molecules studied. In the field of molecular biophysics it has been extensively used for characterization of nucleic acids and proteins and for investigation of interactions between these molecules. It was felt that this technique would have great potential if it could be applied for in situ study of these molecules and their interactions, at the level of single living cell or a chromosome. To make this possible a highly sensitive confocal Raman microspectrometer (CRM) was developed. The instrument is described in detail in this thesis. It incorporates a number of recent technological developments. First, it employs a liquid nitrogen cooled CCD-camera. This type of detector, first used in astronomy, is the ultimate detector for Raman spectroscopy because it combines high quantum efficiency light detection with photon-noise limited operation. Second, an important factor in obtaining a high signal throughput of the spectrometer was the development of a new type of Raman notch filter. In the third place, the confocal detection principle was applied in the CRM. This limits the effective measuring volume to 3 . (author). 279 refs., 48 figs., 11 tabs

  20. Tumors markers

    International Nuclear Information System (INIS)

    Yamaguchi-Mizumoto, N.H.

    1989-01-01

    In order to study blood and cell components alterations (named tumor markers) that may indicate the presence of a tumor, several methods are presented. Aspects as diagnostic, prognostic, therapeutic value and clinical evaluation are discussed. (M.A.C.)

  1. 40 CFR 35.2025 - Allowance and advance of allowance.

    Science.gov (United States)

    2010-07-01

    ... advance of allowance. (a) Allowance. Step 2+3 and Step 3 grant agreements will include an allowance for facilities planning and design of the project and Step 7 agreements will include an allowance for facility... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Allowance and advance of allowance. 35...

  2. Time-lapse Raman imaging of osteoblast differentiation

    Science.gov (United States)

    Hashimoto, Aya; Yamaguchi, Yoshinori; Chiu, Liang-Da; Morimoto, Chiaki; Fujita, Katsumasa; Takedachi, Masahide; Kawata, Satoshi; Murakami, Shinya; Tamiya, Eiichi

    2015-07-01

    Osteoblastic mineralization occurs during the early stages of bone formation. During this mineralization, hydroxyapatite (HA), a major component of bone, is synthesized, generating hard tissue. Many of the mechanisms driving biomineralization remain unclear because the traditional biochemical assays used to investigate them are destructive techniques incompatible with viable cells. To determine the temporal changes in mineralization-related biomolecules at mineralization spots, we performed time-lapse Raman imaging of mouse osteoblasts at a subcellular resolution throughout the mineralization process. Raman imaging enabled us to analyze the dynamics of the related biomolecules at mineralization spots throughout the entire process of mineralization. Here, we stimulated KUSA-A1 cells to differentiate into osteoblasts and conducted time-lapse Raman imaging on them every 4 hours for 24 hours, beginning 5 days after the stimulation. The HA and cytochrome c Raman bands were used as markers for osteoblastic mineralization and apoptosis. From the Raman images successfully acquired throughout the mineralization process, we found that β-carotene acts as a biomarker that indicates the initiation of osteoblastic mineralization. A fluctuation of cytochrome c concentration, which indicates cell apoptosis, was also observed during mineralization. We expect time-lapse Raman imaging to help us to further elucidate osteoblastic mineralization mechanisms that have previously been unobservable.

  3. Raman Imaging Techniques and Applications

    CERN Document Server

    2012-01-01

    Raman imaging has long been used to probe the chemical nature of a sample, providing information on molecular orientation, symmetry and structure with sub-micron spatial resolution. Recent technical developments have pushed the limits of micro-Raman microscopy, enabling the acquisition of Raman spectra with unprecedented speed, and opening a pathway to fast chemical imaging for many applications from material science and semiconductors to pharmaceutical drug development and cell biology, and even art and forensic science. The promise of tip-enhanced raman spectroscopy (TERS) and near-field techniques is pushing the envelope even further by breaking the limit of diffraction and enabling nano-Raman microscopy.

  4. Monitoring of blood oxygenation in brain by resonance Raman spectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda A; Thomsen, Kirsten; Lønstrup, Micael

    2018-01-01

    Blood oxygenation in cerebral vessels is an essential parameter to evaluate brain function and to investigate the coupling between local blood flow and neuronal activity. We apply resonance Raman spectroscopy in vivo to study hemoglobin oxygenation in cortex vessels of anesthetized ventilated mice....... We demonstrate that the pairs of Raman peaks at 1355 and1375 cm-1(symmetric vibrations of pyrrol half-rings in the heme molecule), 1552 and 1585 cm-1and 1602 and 1638 cm-1(vibrations of methine bridges in heme molecule) are reliable markers for quantitative estimation of the relative amount...

  5. Raman microscopy of individual living human embryonic stem cells

    DEFF Research Database (Denmark)

    Novikov, Sergey M.; Beermann, Jonas; Bozhevolnyi, Sergey I.

    2010-01-01

    We demonstrate the possibility of mapping the distribution of different biomolecules in living human embryonic stem cells grown on glass substrates, without the need for fluorescent markers. In our work we improve the quality of measurements by finding a buffer that gives low fluorescence, growing...... cells on glass substrates (whose Raman signals are relatively weak compared to that of the cells) and having the backside covered with gold to improve the image contrast under direct white light illumination. The experimental setup used for Raman microscopy is the commercially available confocal...

  6. Raman spectroscopy an intensity approach

    CERN Document Server

    Guozhen, Wu

    2017-01-01

    This book summarizes the highlights of our work on the bond polarizability approach to the intensity analysis. The topics covered include surface enhanced Raman scattering, Raman excited virtual states and Raman optical activity (ROA). The first chapter briefly introduces the Raman effect in a succinct but clear way. Chapter 2 deals with the normal mode analysis. This is a basic tool for our work. Chapter 3 introduces our proposed algorithm for the Raman intensity analysis. Chapter 4 heavily introduces the physical picture of Raman virtual states. Chapter 5 offers details so that the readers can have a comprehensive idea of Raman virtual states. Chapter 6 demonstrates how this bond polarizability algorithm is extended to ROA intensity analysis. Chapters 7 and 8 offer details on ROA, showing many findings on ROA mechanism that were not known or neglected before. Chapter 9 introduces our proposed classical treatment on ROA which, as combined with the results from the bond polarizability analysis, leads to a com...

  7. Electronic resonances in broadband stimulated Raman spectroscopy

    Science.gov (United States)

    Batignani, G.; Pontecorvo, E.; Giovannetti, G.; Ferrante, C.; Fumero, G.; Scopigno, T.

    2016-01-01

    Spontaneous Raman spectroscopy is a formidable tool to probe molecular vibrations. Under electronic resonance conditions, the cross section can be selectively enhanced enabling structural sensitivity to specific chromophores and reaction centers. The addition of an ultrashort, broadband femtosecond pulse to the excitation field allows for coherent stimulation of diverse molecular vibrations. Within such a scheme, vibrational spectra are engraved onto a highly directional field, and can be heterodyne detected overwhelming fluorescence and other incoherent signals. At variance with spontaneous resonance Raman, however, interpreting the spectral information is not straightforward, due to the manifold of field interactions concurring to the third order nonlinear response. Taking as an example vibrational spectra of heme proteins excited in the Soret band, we introduce a general approach to extract the stimulated Raman excitation profiles from complex spectral lineshapes. Specifically, by a quantum treatment of the matter through density matrix description of the third order nonlinear polarization, we identify the contributions which generate the Raman bands, by taking into account for the cross section of each process.

  8. Raman Probe Based on Optically-Poled Double-Core Fiber

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Margulis, Walter; Rottwitt, Karsten

    2012-01-01

    A Raman probe based on an optically-poled double-core fiber. In-fiber SHG allows for Raman spectroscopy of DMSO at 532nm when illuminating the fiber with 1064nm light. The fiber structure provides independent excitation and collection paths.......A Raman probe based on an optically-poled double-core fiber. In-fiber SHG allows for Raman spectroscopy of DMSO at 532nm when illuminating the fiber with 1064nm light. The fiber structure provides independent excitation and collection paths....

  9. Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers

    DEFF Research Database (Denmark)

    Perozziello, Gerardo; Candeloro, Patrizio; De Grazia, Antonio

    2016-01-01

    In this work a Raman flow cytometer is presented. It consists of a microfluidic device that takes advantages of the basic principles of Raman spectroscopy and flow cytometry. The microfluidic device integrates calibrated microfluidic channels-where the cells can flow one-by-one -, allowing single...... cell Raman analysis. The microfluidic channel integrates plasmonic nanodimers in a fluidic trapping region. In this way it is possible to perform Enhanced Raman Spectroscopy on single cell. These allow a label-free analysis, providing information about the biochemical content of membrane and cytoplasm...

  10. Label-Free Raman Imaging to Monitor Breast Tumor Signatures

    Science.gov (United States)

    Ciubuc, John

    Methods built on Raman spectroscopy have shown major potential in describing and discriminating between malignant and benign specimens. Accurate, real-time medical diagnosis benefits in substantial improvements through this vibrational optical method. Not only is acquisition of data possible in milliseconds and analysis in minutes, Raman allows concurrent detection and monitoring of all biological components. Besides validating a significant Raman signature distinction between non-tumorigenic (MCF-10A) and tumorigenic (MCF-7) breast epithelial cells, this study reveals a label-free method to assess overexpression of epidermal growth factor receptors (EGFR) in tumor cells. EGFR overexpression sires Raman features associated with phosphorylated threonine and serine, and modifications of DNA/RNA characteristics. Investigations by gel electrophoresis reveal EGF induction of phosphorylated Akt, agreeing with the Raman results. The analysis presented is a vital step toward Raman-based evaluation of EGF receptors in breast cancer cells. With the goal of clinically applying Raman-guided methods for diagnosis of breast tumors, the current results lay the basis for proving label-free optical alternatives in making prognosis of the disease.

  11. Surface enhanced Raman scattering

    CERN Document Server

    Furtak, Thomas

    1982-01-01

    In the course of the development of surface science, advances have been identified with the introduction of new diagnostic probes for analytical characterization of the adsorbates and microscopic structure of surfaces and interfaces. Among the most recently de­ veloped techniques, and one around which a storm of controversy has developed, is what has now been earmarked as surface enhanced Raman scattering (SERS). Within this phenomenon, molecules adsorbed onto metal surfaces under certain conditions exhibit an anomalously large interaction cross section for the Raman effect. This makes it possible to observe the detailed vibrational signature of the adsorbate in the ambient phase with an energy resolution much higher than that which is presently available in electron energy loss spectroscopy and when the surface is in contact with a much larger amount of material than that which can be tolerated in infrared absorption experiments. The ability to perform vibrational spectroscopy under these conditions would l...

  12. Raman Plus X: Biomedical Applications of Multimodal Raman Spectroscopy.

    Science.gov (United States)

    Das, Nandan K; Dai, Yichuan; Liu, Peng; Hu, Chuanzhen; Tong, Lieshu; Chen, Xiaoya; Smith, Zachary J

    2017-07-07

    Raman spectroscopy is a label-free method of obtaining detailed chemical information about samples. Its compatibility with living tissue makes it an attractive choice for biomedical analysis, yet its translation from a research tool to a clinical tool has been slow, hampered by fundamental Raman scattering issues such as long integration times and limited penetration depth. In this review we detail the how combining Raman spectroscopy with other techniques yields multimodal instruments that can help to surmount the translational barriers faced by Raman alone. We review Raman combined with several optical and non-optical methods, including fluorescence, elastic scattering, OCT, phase imaging, and mass spectrometry. In each section we highlight the power of each combination along with a brief history and presentation of representative results. Finally, we conclude with a perspective detailing both benefits and challenges for multimodal Raman measurements, and give thoughts on future directions in the field.

  13. Spectroscopy and Raman imaging of inhomogeneous materials

    International Nuclear Information System (INIS)

    Maslova, Olga

    2014-01-01

    This thesis is aimed at developing methodologies in Raman spectroscopy and imaging. After reviewing the statistical instruments which allow treating giant amount of data (multivariate analysis and classification), the study is applied to two families of well-known materials which are used as models for testing the limits of the implemented developments. The first family is a series of carbon materials pyrolyzed at various temperatures and exhibiting inhomogeneities at a nm scale which is suitable for Raman-X-ray diffraction combination. Another results concern the polishing effect on carbon structure. Since it is found to induce Raman artifacts leading to the overestimation of the local structural disorder, a method based on the use of the G band width is therefore proposed in order to evaluate the crystallite size in both unpolished and polished nano-graphites. The second class of materials presents inhomogeneities at higher (micrometric) scales by the example of uranium dioxide ceramics. Being well adapted in terms of spatial scale, Raman imaging is thus used for probing their surfaces. Data processing is implemented via an approach combining the multivariate (principal component) analysis and the classical fitting procedure with Lorentzian profiles. The interpretation of results is supported via electron backscattering diffraction (EBSD) analysis which enables us to distinguish the orientation effects of ceramic grains from other underlying contributions. The last ones are mainly localized at the grain boundaries, that is testified by the appearance of a specific Raman mode. Their origin seems to be caused by stoichiometric oxygen variations or impurities, as well as strain inhomogeneities. The perspectives of this work include both the implementation of other mathematical methods and in-depth analysis of UO 2 structure damaged by irradiation (anisotropic effects, role of grain boundaries). (author) [fr

  14. (SSR) markers

    African Journals Online (AJOL)

    acer

    2013-06-26

    Jun 26, 2013 ... analysis was in general agreement with PCoA in discrimi- nating the cultivars. Conclusions. Estimation of morphological diversity may provide addi- tional information on the present finding. Nonetheless, the 29 SSR markers provided considerable genetic reso- lution and this genetic diversity analysis ...

  15. (SSR) markers

    African Journals Online (AJOL)

    SAM

    2014-07-30

    Jul 30, 2014 ... India and the country is currently the leading producer, consumer and exporter of ... registration with the competent authority for plant variety protection. Conventionally ... detection of duplicates, parental verification in crosses, gene tagging in .... allelic patterns as revealed by the current set of SSR markers.

  16. Label-Free Raman Imaging to Monitor Breast Tumor Signatures.

    Science.gov (United States)

    Manciu, Felicia S; Ciubuc, John D; Parra, Karla; Manciu, Marian; Bennet, Kevin E; Valenzuela, Paloma; Sundin, Emma M; Durrer, William G; Reza, Luis; Francia, Giulio

    2017-08-01

    Although not yet ready for clinical application, methods based on Raman spectroscopy have shown significant potential in identifying, characterizing, and discriminating between noncancerous and cancerous specimens. Real-time and accurate medical diagnosis achievable through this vibrational optical method largely benefits from improvements in current technological and software capabilities. Not only is the acquisition of spectral information now possible in milliseconds and analysis of hundreds of thousands of data points achieved in minutes, but Raman spectroscopy also allows simultaneous detection and monitoring of several biological components. Besides demonstrating a significant Raman signature distinction between nontumorigenic (MCF-10A) and tumorigenic (MCF-7) breast epithelial cells, our study demonstrates that Raman can be used as a label-free method to evaluate epidermal growth factor activity in tumor cells. Comparative Raman profiles and images of specimens in the presence or absence of epidermal growth factor show important differences in regions attributed to lipid, protein, and nucleic acid vibrations. The occurrence, which is dependent on the presence of epidermal growth factor, of new Raman features associated with the appearance of phosphothreonine and phosphoserine residues reflects a signal transduction from the membrane to the nucleus, with concomitant modification of DNA/RNA structural characteristics. Parallel Western blotting analysis reveals an epidermal growth factor induction of phosphorylated Akt protein, corroborating the Raman results. The analysis presented in this work is an important step toward Raman-based evaluation of biological activity of epidermal growth factor receptors on the surfaces of breast cancer cells. With the ultimate future goal of clinically implementing Raman-guided techniques for the diagnosis of breast tumors (e.g., with regard to specific receptor activity), the current results just lay the foundation for

  17. Resonant Impulsive Stimulated Raman Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A; Chesnoy, J

    1988-03-15

    Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution.

  18. Resonant Impulsive Stimulated Raman Scattering

    International Nuclear Information System (INIS)

    Mokhtari, A.; Chesnoy, J.

    1988-01-01

    Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution

  19. Exploring Raman spectroscopy for the evaluation of glaucomatous retinal changes

    Science.gov (United States)

    Wang, Qi; Grozdanic, Sinisa D.; Harper, Matthew M.; Hamouche, Nicolas; Kecova, Helga; Lazic, Tatjana; Yu, Chenxu

    2011-10-01

    Glaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal ganglion cells and subsequent loss of visual function. Early detection of glaucoma is critical for the prevention of permanent structural damage and irreversible vision loss. Raman spectroscopy is a technique that provides rapid biochemical characterization of tissues in a nondestructive and noninvasive fashion. In this study, we explored the potential of using Raman spectroscopy for detection of glaucomatous changes in vitro. Raman spectroscopic imaging was conducted on retinal tissues of dogs with hereditary glaucoma and healthy control dogs. The Raman spectra were subjected to multivariate discriminant analysis with a support vector machine algorithm, and a classification model was developed to differentiate disease tissues versus healthy tissues. Spectroscopic analysis of 105 retinal ganglion cells (RGCs) from glaucomatous dogs and 267 RGCs from healthy dogs revealed spectroscopic markers that differentiated glaucomatous specimens from healthy controls. Furthermore, the multivariate discriminant model differentiated healthy samples and glaucomatous samples with good accuracy [healthy 89.5% and glaucomatous 97.6% for the same breed (Basset Hounds); and healthy 85.0% and glaucomatous 85.5% for different breeds (Beagles versus Basset Hounds)]. Raman spectroscopic screening can be used for in vitro detection of glaucomatous changes in retinal tissue with a high specificity.

  20. Raman fiber-optical method for colon cancer detection: Cross-validation and outlier identification approach

    Science.gov (United States)

    Petersen, D.; Naveed, P.; Ragheb, A.; Niedieker, D.; El-Mashtoly, S. F.; Brechmann, T.; Kötting, C.; Schmiegel, W. H.; Freier, E.; Pox, C.; Gerwert, K.

    2017-06-01

    Endoscopy plays a major role in early recognition of cancer which is not externally accessible and therewith in increasing the survival rate. Raman spectroscopic fiber-optical approaches can help to decrease the impact on the patient, increase objectivity in tissue characterization, reduce expenses and provide a significant time advantage in endoscopy. In gastroenterology an early recognition of malign and precursor lesions is relevant. Instantaneous and precise differentiation between adenomas as precursor lesions for cancer and hyperplastic polyps on the one hand and between high and low-risk alterations on the other hand is important. Raman fiber-optical measurements of colon biopsy samples taken during colonoscopy were carried out during a clinical study, and samples of adenocarcinoma (22), tubular adenomas (141), hyperplastic polyps (79) and normal tissue (101) from 151 patients were analyzed. This allows us to focus on the bioinformatic analysis and to set stage for Raman endoscopic measurements. Since spectral differences between normal and cancerous biopsy samples are small, special care has to be taken in data analysis. Using a leave-one-patient-out cross-validation scheme, three different outlier identification methods were investigated to decrease the influence of systematic errors, like a residual risk in misplacement of the sample and spectral dilution of marker bands (esp. cancerous tissue) and therewith optimize the experimental design. Furthermore other validations methods like leave-one-sample-out and leave-one-spectrum-out cross-validation schemes were compared with leave-one-patient-out cross-validation. High-risk lesions were differentiated from low-risk lesions with a sensitivity of 79%, specificity of 74% and an accuracy of 77%, cancer and normal tissue with a sensitivity of 79%, specificity of 83% and an accuracy of 81%. Additionally applied outlier identification enabled us to improve the recognition of neoplastic biopsy samples.

  1. Raman fiber-optical method for colon cancer detection: Cross-validation and outlier identification approach.

    Science.gov (United States)

    Petersen, D; Naveed, P; Ragheb, A; Niedieker, D; El-Mashtoly, S F; Brechmann, T; Kötting, C; Schmiegel, W H; Freier, E; Pox, C; Gerwert, K

    2017-06-15

    Endoscopy plays a major role in early recognition of cancer which is not externally accessible and therewith in increasing the survival rate. Raman spectroscopic fiber-optical approaches can help to decrease the impact on the patient, increase objectivity in tissue characterization, reduce expenses and provide a significant time advantage in endoscopy. In gastroenterology an early recognition of malign and precursor lesions is relevant. Instantaneous and precise differentiation between adenomas as precursor lesions for cancer and hyperplastic polyps on the one hand and between high and low-risk alterations on the other hand is important. Raman fiber-optical measurements of colon biopsy samples taken during colonoscopy were carried out during a clinical study, and samples of adenocarcinoma (22), tubular adenomas (141), hyperplastic polyps (79) and normal tissue (101) from 151 patients were analyzed. This allows us to focus on the bioinformatic analysis and to set stage for Raman endoscopic measurements. Since spectral differences between normal and cancerous biopsy samples are small, special care has to be taken in data analysis. Using a leave-one-patient-out cross-validation scheme, three different outlier identification methods were investigated to decrease the influence of systematic errors, like a residual risk in misplacement of the sample and spectral dilution of marker bands (esp. cancerous tissue) and therewith optimize the experimental design. Furthermore other validations methods like leave-one-sample-out and leave-one-spectrum-out cross-validation schemes were compared with leave-one-patient-out cross-validation. High-risk lesions were differentiated from low-risk lesions with a sensitivity of 79%, specificity of 74% and an accuracy of 77%, cancer and normal tissue with a sensitivity of 79%, specificity of 83% and an accuracy of 81%. Additionally applied outlier identification enabled us to improve the recognition of neoplastic biopsy samples. Copyright

  2. Marker lamps

    International Nuclear Information System (INIS)

    Watkins, D.V.

    1980-01-01

    A marker lamp is described which consists of a block of transparent plastics material encapsulated in which is a radioactive light source. These lights comprise a small sealed glass capsule, the hollow inside surface of which is coated with phosphor and which contains tritium or similar radioactive gas. The use of such lamps for identification marking of routes, for example roads, and for identification of underwater oil pipelines is envisaged. (U.K.)

  3. Nonlinear Stimulated Raman Exact Passage by Resonance-Locked Inverse Engineering

    Science.gov (United States)

    Dorier, V.; Gevorgyan, M.; Ishkhanyan, A.; Leroy, C.; Jauslin, H. R.; Guérin, S.

    2017-12-01

    We derive an exact and robust stimulated Raman process for nonlinear quantum systems driven by pulsed external fields. The external fields are designed with closed-form expressions from the inverse engineering of a given efficient and stable dynamics. This technique allows one to induce a controlled population inversion which surpasses the usual nonlinear stimulated Raman adiabatic passage efficiency.

  4. Multidimensional Raman spectroscopic signature of sweat and its potential application to forensic body fluid identification.

    Science.gov (United States)

    Sikirzhytski, Vitali; Sikirzhytskaya, Aliaksandra; Lednev, Igor K

    2012-03-09

    This proof-of-concept study demonstrated the potential of Raman microspectroscopy for nondestructive identification of traces of sweat for forensic purposes. Advanced statistical analysis of Raman spectra revealed that dry sweat was intrinsically heterogeneous, and its biochemical composition varies significantly with the donor. As a result, no single Raman spectrum could adequately represent sweat traces. Instead, a multidimensional spectroscopic signature of sweat was built that allowed for the presentation of any single experimental spectrum as a linear combination of two fluorescent backgrounds and three Raman spectral components dominated by the contribution from lactate, lactic acid, urea and single amino acids. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Diffusion measurements by Raman spectroscopy

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Shapiro, Alexander; Berg, Rolf W.

    Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt......Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt...

  6. Imaging with extrinsic Raman labels

    NARCIS (Netherlands)

    Sijtsema, N M; Duindam, J J; Puppels, G J; Otto, C; Greve, J

    1996-01-01

    In two separate examples we demonstrate the use of extrinsic Raman scattering probes for imaging of biological samples. First, the distribution of cholesterol in a rat eye Lens is determined with the use of the Raman scattered light from filipin, a molecule which binds specifically to cholesterol.

  7. Raman scattering tensors of tyrosine.

    Science.gov (United States)

    Tsuboi, M; Ezaki, Y; Aida, M; Suzuki, M; Yimit, A; Ushizawa, K; Ueda, T

    1998-01-01

    Polarized Raman scattering measurements have been made of a single crystal of L-tyrosine by the use of a Raman microscope with the 488.0-nm exciting beam from an argon ion laser. The L-tyrosine crystal belongs to the space group P2(1)2(1)2(1) (orthorhombic), and Raman scattering intensities corresponding to the aa, bb, cc, ab and ac components of the crystal Raman tensor have been determined for each prominent Raman band. A similar set of measurements has been made of L-tyrosine-d4, in which four hydrogen atoms on the benzene ring are replaced by deuterium atoms. The effects of NH3-->ND3 and OH-->OD on the Raman spectrum have also been examined. In addition, depolarization ratios of some bands of L-tyrosine in aqueous solutions of pH 13 and pH 1 were examined. For comparison with these experimental results, on the other hand, ab initio molecular orbital calculations have been made of the normal modes of vibration and their associated polarizability oscillations of the L-tyrosine molecule. On the basis of these experimental data and by referring to the results of the calculations, discussions have been presented on the Raman tensors associated to some Raman bands, including those at 829 cm-1 (benzene ring breathing), 642 cm-1 (benzene ring deformation), and 432 cm-1 (C alpha-C beta-C gamma bending).

  8. Femtosecond Broadband Stimulated Raman Spectroscopy

    International Nuclear Information System (INIS)

    Lee, Soo-Y; Yoon, Sagwoon; Mathies, Richard A

    2006-01-01

    Femtosecond broadband stimulated Raman spectroscopy (FSRS) is a new technique where a narrow bandwidth picosecond Raman pump pulse and a red-shifted broadband femtosecond Stokes probe pulse (with or without time delay between the pulses) act on a sample to produce a high resolution Raman gain spectrum with high efficiency and speed, free from fluorescence background interference. It can reveal vibrational structural information and dynamics of stationary or transient states. Here, the quantum picture for femtosecond broadband stimulated Raman spectroscopy (FSRS) is used to develop the semiclassical coupled wave theory of the phenomenon and to derive an expression for the measurable Raman gain in FSRS. The semiclassical theory is applied to study the dependence of lineshapes in FSRS on the pump-probe time delay and to deduce vibrational dephasing times in cyclohexane in the ground state

  9. Blood analysis by Raman spectroscopy.

    Science.gov (United States)

    Enejder, Annika M K; Koo, Tae-Woong; Oh, Jeankun; Hunter, Martin; Sasic, Slobodan; Feld, Michael S; Horowitz, Gary L

    2002-11-15

    Concentrations of multiple analytes were simultaneously measured in whole blood with clinical accuracy, without sample processing, using near-infrared Raman spectroscopy. Spectra were acquired with an instrument employing nonimaging optics, designed using Monte Carlo simulations of the influence of light-scattering-absorbing blood cells on the excitation and emission of Raman light in turbid medium. Raman spectra were collected from whole blood drawn from 31 individuals. Quantitative predictions of glucose, urea, total protein, albumin, triglycerides, hematocrit, and hemoglobin were made by means of partial least-squares (PLS) analysis with clinically relevant precision (r(2) values >0.93). The similarity of the features of the PLS calibration spectra to those of the respective analyte spectra illustrates that the predictions are based on molecular information carried by the Raman light. This demonstrates the feasibility of using Raman spectroscopy for quantitative measurements of biomolecular contents in highly light-scattering and absorbing media.

  10. The substrate matters in the Raman spectroscopy analysis of cells

    Science.gov (United States)

    Mikoliunaite, Lina; Rodriguez, Raul D.; Sheremet, Evgeniya; Kolchuzhin, Vladimir; Mehner, Jan; Ramanavicius, Arunas; Zahn, Dietrich R. T.

    2015-08-01

    Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research.

  11. Optimization of Sample Preparation processes of Bone Material for Raman Spectroscopy.

    Science.gov (United States)

    Chikhani, Madelen; Wuhrer, Richard; Green, Hayley

    2018-03-30

    Raman spectroscopy has recently been investigated for use in the calculation of postmortem interval from skeletal material. The fluorescence generated by samples, which affects the interpretation of Raman data, is a major limitation. This study compares the effectiveness of two sample preparation techniques, chemical bleaching and scraping, in the reduction of fluorescence from bone samples during testing with Raman spectroscopy. Visual assessment of Raman spectra obtained at 1064 nm excitation following the preparation protocols indicates an overall reduction in fluorescence. Results demonstrate that scraping is more effective at resolving fluorescence than chemical bleaching. The scraping of skeletonized remains prior to Raman analysis is a less destructive method and allows for the preservation of a bone sample in a state closest to its original form, which is beneficial in forensic investigations. It is recommended that bone scraping supersedes chemical bleaching as the preferred method for sample preparation prior to Raman spectroscopy. © 2018 American Academy of Forensic Sciences.

  12. A Raman-Based Portable Fuel Analyzer

    Science.gov (United States)

    Farquharson, Stuart

    2010-08-01

    Fuel is the single most import supply during war. Consider that the US Military is employing over 25,000 vehicles in Iraq and Afghanistan. Most fuel is obtained locally, and must be characterized to ensure proper operation of these vehicles. Fuel properties are currently determined using a deployed chemical laboratory. Unfortunately, each sample requires in excess of 6 hours to characterize. To overcome this limitation, we have developed a portable fuel analyzer capable of determine 7 fuel properties that allow determining fuel usage. The analyzer uses Raman spectroscopy to measure the fuel samples without preparation in 2 minutes. The challenge, however, is that as distilled fractions of crude oil, all fuels are composed of hundreds of hydrocarbon components that boil at similar temperatures, and performance properties can not be simply correlated to a single component, and certainly not to specific Raman peaks. To meet this challenge, we measured over 800 diesel and jet fuels from around the world and used chemometrics to correlate the Raman spectra to fuel properties. Critical to the success of this approach is laser excitation at 1064 nm to avoid fluorescence interference (many fuels fluoresce) and a rugged interferometer that provides 0.1 cm-1 wavenumber (x-axis) accuracy to guarantee accurate correlations. Here we describe the portable fuel analyzer, the chemometric models, and the successful determination of these 7 fuel properties for over 100 unknown samples provided by the US Marine Corps, US Navy, and US Army.

  13. Paleoreconstruction by biological markers

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, W K; Moldowan, J M

    1981-06-01

    During diagenesis and conversion of the original lipid fraction of biological systems to petroleum hydrocarbons, the following four basic events needed for paleoreconstruction may be monitored by biological markers: (1) sourcing, (2) maturation, (3) migration and (4) biodegradation. Actual cases of applying biological markers to petroleum exploration problems in different parts of the world are demonstrated. Cretaceous- and Phosphoria-sourced oils in the Wyoming Thrust Belt can be distinguished from one another by high quality source fingerprinting of biomarker terpanes using gas chromatography mass spectrometry. Identification of recently discovered biological markers, head-to-head isoprenoids, allows source differentiation between some oils from Sumatra. The degree of crude oil maturation in basins from California, Alaska, Russia, Wyoming and Louisiana can be assessed by specific biomarker ratios (20S/20R sterane epimers). Field evidence from such interpretation is augmented by laboratory pyrolysis of the rock. Extensive migration is documented by biomarkers in several oils. Biological marker results are consistent with the geological setting and add a dimension in assisting the petroleum explorationist towar paleoreconstruction.

  14. Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.

    Science.gov (United States)

    Lednev, Vasily N; Pershin, Sergey M; Sdvizhenskii, Pavel A; Grishin, Mikhail Ya; Fedorov, Alexander N; Bukin, Vladimir V; Oshurko, Vadim B; Shchegolikhin, Alexander N

    2018-01-01

    A new approach combining Raman spectrometry and laser induced breakdown spectrometry (LIBS) within a single laser event was suggested. A pulsed solid state Nd:YAG laser running in double pulse mode (two frequency-doubled sequential nanosecond laser pulses with dozens microseconds delay) was used to combine two spectrometry methods within a single instrument (Raman/LIBS spectrometer). First, a low-energy laser pulse (power density far below ablation threshold) was used for Raman measurements while a second powerful laser pulse created the plasma suitable for LIBS analysis. A short time delay between two successive pulses allows measuring LIBS and Raman spectra at different moments but within a single laser flash-lamp pumping. Principal advantages of the developed instrument include high quality Raman/LIBS spectra acquisition (due to optimal gating for Raman/LIBS independently) and absence of target thermal alteration during Raman measurements. A series of high quality Raman and LIBS spectra were acquired for inorganic salts (gypsum, anhydrite) as well as for pharmaceutical samples (acetylsalicylic acid). To the best of our knowledge, the quantitative analysis feasibility by combined Raman/LIBS instrument was demonstrated for the first time by calibration curves construction for acetylsalicylic acid (Raman) and copper (LIBS) in gypsum matrix. Combining ablation pulses and Raman measurements (LIBS/Raman measurements) within a single instrument makes it an efficient tool for identification of samples hidden by non-transparent covering or performing depth profiling analysis including remote sensing. Graphical abstract Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.

  15. Towards eye-safe standoff Raman imaging systems

    Science.gov (United States)

    Glimtoft, Martin; Bââth, Petra; Saari, Heikki; Mäkynen, Jussi; Näsilä, Antti; Östmark, Henric

    2014-05-01

    Standoff Raman imaging systems have shown the ability to detect single explosives particles. However, in many cases, the laser intensities needed restrict the applications where they can be safely used. A new generation imaging Raman system has been developed based on a 355 nm UV laser that, in addition to eye safety, allows discrete and invisible measurements. Non-dangerous exposure levels for the eye are several orders of magnitude higher in UVA than in the visible range that previously has been used. The UV Raman system has been built based on an UV Fabry-Perot Interferometer (UV-FPI) developed by VTT. The design allows for precise selection of Raman shifts in combination with high out-of-band blocking. The stable operation of the UV-FPI module under varying environmental conditions is arranged by controlling the temperature of the module and using a closed loop control of the FPI air gap based on capacitive measurement. The system presented consists of a 3rd harmonics Nd:YAG laser with 1.5 W average output at 1000 Hz, a 200 mm Schmidt-Cassegrain telescope, UV-FPI filter and an ICCD camera for signal gating and detection. The design principal leads to a Raman spectrum in each image pixel. The system is designed for field use and easy manoeuvring. Preliminary results show that in measurements of <60 s on 10 m distance, single AN particles of <300 μm diameter can be identified.

  16. Analysis of tooth tissues using Raman spectroscopy

    International Nuclear Information System (INIS)

    Timchenko, E.V.; Timchenko, P.E.; Kulabukhova, A.Yu.; Volova, L.T.; Rosenbaum, A.Yu.

    2016-01-01

    The results of experimental studies of healthy tooth tissue and tooth tissues during caries disease are presented. Features of Raman spectrum of tooth tissues during caries disease are obtained: the main changes are detected at wavenumbers 956 cm -1 .1069 cm -1 . corresponding to phosphates. and 1241 cm -1 . 1660 cm -1 . corresponding to collagen III and collagen I. respectively. Were introduced criteria allowing to detect caries and to identify weakening of tooth tissues. preceding the caries. The reliability of research results is confirmed by scanning electron microscopy. (paper)

  17. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Matthew W. [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  18. Detection of latent prints by Raman imaging

    Science.gov (United States)

    Lewis, Linda Anne [Andersonville, TN; Connatser, Raynella Magdalene [Knoxville, TN; Lewis, Sr., Samuel Arthur

    2011-01-11

    The present invention relates to a method for detecting a print on a surface, the method comprising: (a) contacting the print with a Raman surface-enhancing agent to produce a Raman-enhanced print; and (b) detecting the Raman-enhanced print using a Raman spectroscopic method. The invention is particularly directed to the imaging of latent fingerprints.

  19. Frequency shifts in stimulated Raman scattering

    International Nuclear Information System (INIS)

    Zinth, W.; Kaiser, W.

    1980-01-01

    The nonresonant contributions to the nonlinear susceptibility chisup(()3) produce a frequency chirp during stimulated Raman scattering. In the case of transient stimulated Raman scattering, the spectrum of the generated Stokes pulse is found at higher frequencies than expected from spontaneous Raman data. The frequency difference can be calculated from the theory of stimulated Raman scattering. (orig.)

  20. Raman spectra of lithium compounds

    Science.gov (United States)

    Gorelik, V. S.; Bi, Dongxue; Voinov, Y. P.; Vodchits, A. I.; Gorshunov, B. P.; Yurasov, N. I.; Yurasova, I. I.

    2017-11-01

    The paper is devoted to the results of investigating the spontaneous Raman scattering spectra in the lithium compounds crystals in a wide spectral range by the fibre-optic spectroscopy method. We also present the stimulated Raman scattering spectra in the lithium hydroxide and lithium deuteride crystals obtained with the use of powerful laser source. The symmetry properties of the lithium hydroxide, lithium hydroxide monohydrate and lithium deuteride crystals optical modes were analyzed by means of the irreducible representations of the point symmetry groups. We have established the selection rules in the Raman and infrared absorption spectra of LiOH, LiOH·H2O and LiD crystals.

  1. Analysis of scorpion venom composition by Raman Spectroscopy

    Science.gov (United States)

    Martínez-Zérega, Brenda E.; González-Solís, José L.

    2015-01-01

    In this work we study the venom of two Centruroides scorpion species using Raman spectroscopy. The spectra analysis allows to determine the venoms chemical composition and to establish the main differences and similarities among the species. It is also shown that the use of Principal Component Analysis may help to tell apart between the scorpion species.

  2. Supplementary data: Development of SSR markers and construction ...

    Indian Academy of Sciences (India)

    Supplementary data: Development of SSR markers and construction of a linkage map in jute. Moumita Das, Sumana Banerjee, Raman Dhariwal, Shailendra Vyas, Reyazul R. Mir, Niladri Topdar, Avijit Kundu, Jitendra P. Khurana, Akhilesh K. Tyagi,. Debabrata Sarkar, Mohit K. Sinha, Harindra S. Balyan and Pushpendra K.

  3. Coherent Raman Imaging of Live Muscle Sarcomeres Assisted by SFG Microscopy.

    Science.gov (United States)

    Kim, Hyunmin; Kim, Do-Young; Joo, Kyung-Il; Kim, Jung-Hye; Jeong, Soon Moon; Lee, Eun Seong; Hahm, Jeong-Hoon; Kim, Kyuhyung; Moon, Dae Woon

    2017-08-23

    In this study, we used spectrally focused coherent anti-Stokes Raman scattering (spCARS) microscopy assisted by sum-frequency generation (SFG) to monitor the variations in the structural morphology and molecular vibrations of a live muscle of Caenorhabditis elegans. The subunits of the muscle sarcomeres, such as the M-line, myosin, dense body, and α-actinin, were alternatively observed using spCARS microscopy for different sample orientations, with the guidance of a myosin positional marker captured by SFG microscopy. Interestingly enough, the beam polarization dependence of the spCARS contrasts for two parallel subunits (dense body and myosin) showed a ~90° phase difference. The chemically sensitive spCARS spectra induced by the time-varying overlap of two pulses allowed (after a robust subtraction of the non-resonant background using a modified Kramers-Krönig transformation method) high-fidelity detection of various genetically modified muscle sarcomeres tuned to the C-H vibration (2800-3100 cm -1 ). Conversely, SFG image mapping assisted by phase-retrieved spCARS spectra also facilitated label-free monitoring of the changes in the muscle content of C. elegans that are associated with aging, based on the hypothesis that the C-H vibrational modes could serve as qualitative chemical markers sensitive to the amount and/or structural modulation of the muscle.

  4. Raman spectroscopy of white wines.

    Science.gov (United States)

    Martin, Coralie; Bruneel, Jean-Luc; Guyon, François; Médina, Bernard; Jourdes, Michael; Teissedre, Pierre-Louis; Guillaume, François

    2015-08-15

    The feasibility of exploiting Raman scattering to analyze white wines has been investigated using 3 different wavelengths of the incoming laser radiation in the near-UV (325 nm), visible (532 nm) and near infrared (785 nm). To help in the interpretation of the Raman spectra, the absorption properties in the UV-visible range of two wine samples as well as their laser induced fluorescence have also been investigated. Thanks to the strong intensity enhancement of the Raman scattered light due to electronic resonance with 325 nm laser excitation, hydroxycinnamic acids may be detected and analyzed selectively. Fructose and glucose may also be easily detected below ca. 1000 cm(-1). This feasibility study demonstrates the potential of the Raman spectroscopic technique for the analysis of white wines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Triplet State Resonance Raman Spectroscopy

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, N. H.; Pagsberg, Palle Bjørn

    1978-01-01

    Makes the first report on the resonance Raman spectrum of a molecule in its triplet state generated by pulse radiolysis. A solution of 0.01 mol dm-3 of p-terphenyl in benzene was studied......Makes the first report on the resonance Raman spectrum of a molecule in its triplet state generated by pulse radiolysis. A solution of 0.01 mol dm-3 of p-terphenyl in benzene was studied...

  6. Heating by the Raman instability

    International Nuclear Information System (INIS)

    Estabrook, K.G.; Kruer, W.L.

    1980-01-01

    Computer simulations are presented of the reflection and heating due to stimulated Raman backscatter of intense laser light in large regions of underdense plasma. The heated electron distribution is found to be approximately a Maxwellian of temperature (m/sub e//2)v/sub p/ 2 , where v/sub p/ is the phase velocity of the electron plasma wave. A simple model of the reflection is presented. Raman may cause a pre-heat problem with large laser fusion reactor targets

  7. Raman scattering in a nearly resonant density ripple

    International Nuclear Information System (INIS)

    Barr, H.C.; Chen, F.F.

    1987-01-01

    Stimulated Raman scattering of light waves by an underdense plasma is affected by the presence of a density ripple caused by a simultaneously occurring stimulated Brillouin instability. The problem is treated kinetically for the particularly interesting case where the ripple has nearly the same wavelength as the plasma wave. The ripple is found to reduce the growth rate of the usual Raman instability but allows other decay modes to occur. Numerical results for the frequencies, growth rates, and k spectra of these modes are obtained. A physical explanation is given for a baffling result of the calculation. The physical picture is also of interest to particle acceleration by plasma waves

  8. Diffusion measurements in binary liquid mixtures by Raman spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Hansen, Susanne Brunsgaard; Shapiro, Alexander

    2007-01-01

    It is shown that Raman spectroscopy allows determination of the molar fractions in mixtures subjected to molecular diffusion. Spectra of three binary systems, benzene/n-hexane, benzene/cyclohexane, and benzene/ acetone, were obtained during vertical (exchange) diffusion at several different heights...... in the literature were found, even in a thermostatically controlled diffusion cell, recording spectra through circulating water. For the system benzene/acetone, the determined diffusion coefficients were in good agreement with the literature data. The limitations of the Raman method are discussed...

  9. Ring cavity for a Raman capillary waveguide amplifier

    Science.gov (United States)

    Kurnit, N.A.

    1981-01-27

    A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.

  10. Ring cavity for a Raman capillary waveguide amplifir

    Science.gov (United States)

    Kurnit, N.A.

    1981-01-27

    A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.

  11. Rice genetic marker database: An identification of single nucleotide ...

    African Journals Online (AJOL)

    based genetic marker system to provide information about SNP and QTL markers in rice. The SNP marker database provides 7,227 SNP markers including location information on chromosomes by using genetic map. It allows users to access a ...

  12. Raman probes based on optically-poled double-clad fiber and coupler

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Margulis, Walter; Rottwitt, Karsten

    2012-01-01

    of a sample of dimethyl sulfoxide (DMSO), when illuminating the waveguide with 1064nm laser light. The Raman signal is collected in the inner cladding, from which it is retrieved with either a bulk dichroic mirror or a double-clad fiber coupler. The coupler allows for a substantial reduction of the fiber......Two fiber Raman probes are presented, one based on an optically-poled double-clad fiber and the second based on an optically-poled double-clad fiber coupler respectively. Optical poling of the core of the fiber allows for the generation of enough 532nm light to perform Raman spectroscopy...

  13. Time-Gated Raman Spectroscopy for Quantitative Determination of Solid-State Forms of Fluorescent Pharmaceuticals.

    Science.gov (United States)

    Lipiäinen, Tiina; Pessi, Jenni; Movahedi, Parisa; Koivistoinen, Juha; Kurki, Lauri; Tenhunen, Mari; Yliruusi, Jouko; Juppo, Anne M; Heikkonen, Jukka; Pahikkala, Tapio; Strachan, Clare J

    2018-04-03

    Raman spectroscopy is widely used for quantitative pharmaceutical analysis, but a common obstacle to its use is sample fluorescence masking the Raman signal. Time-gating provides an instrument-based method for rejecting fluorescence through temporal resolution of the spectral signal and allows Raman spectra of fluorescent materials to be obtained. An additional practical advantage is that analysis is possible in ambient lighting. This study assesses the efficacy of time-gated Raman spectroscopy for the quantitative measurement of fluorescent pharmaceuticals. Time-gated Raman spectroscopy with a 128 × (2) × 4 CMOS SPAD detector was applied for quantitative analysis of ternary mixtures of solid-state forms of the model drug, piroxicam (PRX). Partial least-squares (PLS) regression allowed quantification, with Raman-active time domain selection (based on visual inspection) improving performance. Model performance was further improved by using kernel-based regularized least-squares (RLS) regression with greedy feature selection in which the data use in both the Raman shift and time dimensions was statistically optimized. Overall, time-gated Raman spectroscopy, especially with optimized data analysis in both the spectral and time dimensions, shows potential for sensitive and relatively routine quantitative analysis of photoluminescent pharmaceuticals during drug development and manufacturing.

  14. Raman characterization of high temperature materials using an imaging detector

    International Nuclear Information System (INIS)

    Rosenblatt, G.M.; Veirs, D.K.

    1989-03-01

    The characterization of materials by Raman spectroscopy has been advanced by recent technological developments in light detectors. Imaging photomultiplier-tube detectors are now available that impart position information in two dimensions while retaining photon-counting sensitivity, effectively greatly reducing noise. The combination of sensitivity and reduced noise allows smaller amounts of material to be analyzed. The ability to observe small amount of material when coupled with position information makes possible Raman characterization in which many spatial elements are analyzed simultaneously. Raman spectroscopy making use of these capabilities has been used, for instance, to analyze the phases present in carbon films and fibers and to map phase-transformed zones accompanying crack propagation in toughened zirconia ceramics. 16 refs., 6 figs., 2 tabs

  15. Determining Gender by Raman Spectroscopy of a Bloodstain.

    Science.gov (United States)

    Sikirzhytskaya, Aliaksandra; Sikirzhytski, Vitali; Lednev, Igor K

    2017-02-07

    The development of novel methods for forensic science is a constantly growing area of modern analytical chemistry. Raman spectroscopy is one of a few analytical techniques capable of nondestructive and nearly instantaneous analysis of a wide variety of forensic evidence, including body fluid stains, at the scene of a crime. In this proof-of-concept study, Raman microspectroscopy was utilized for gender identification based on dry bloodstains. Raman spectra were acquired in mapping mode from multiple spots on a bloodstain to account for intrinsic sample heterogeneity. The obtained Raman spectroscopic data showed highly similar spectroscopic features for female and male blood samples. Nevertheless, support vector machines (SVM) and artificial neuron network (ANN) statistical methods applied to the spectroscopic data allowed for differentiating between male and female bloodstains with high confidence. More specifically, the statistical approach based on a genetic algorithm (GA) coupled with an ANN classification showed approximately 98% gender differentiation accuracy for individual bloodstains. These results demonstrate the great potential of the developed method for forensic applications, although more work is needed for method validation. When this method is fully developed, a portable Raman instrument could be used for the infield identification of traces of body fluids and to obtain phenotypic information about the donor, including gender and race, as well as for the analysis of a variety of other types of forensic evidence.

  16. Monitoring the oxidation of nuclear fuel cladding using Raman spectroscopy

    International Nuclear Information System (INIS)

    Mi, Hongyi; Mikael, Solomon; Allen, Todd; Sridharan, Kumar; Butt, Darryl; Blanchard, James P.; Ma, Zhenqiang

    2014-01-01

    In order to observe Zircaloy-4 (Zr-4) cladding oxidation within a spent fuel canister, cladding oxidized in air at 500 °C was investigated by micro-Raman spectroscopy to measure the oxide layer thickness. Systematic Raman scans were performed to study the relationship between typical Raman spectra and various oxide layer thicknesses. The thicknesses of the oxide layers developed for various exposure times were measured by cross-sectional Scanning Electron Microscopy (SEM). The results of this work reveal that each oxide layer thickness has a corresponding typical Raman spectrum. Detailed analysis suggests that the Raman scattering peaks around wave numbers of 180 cm −1 and 630 cm −1 are the best choices for accurately determining the oxide layer thickness. After Gaussian–Lorentzian deconvolution, these two peaks can be quantitatively represented by four peaks. The intensities of the deconvoluted peaks increase consistently as the oxide layer becomes thicker and sufficiently strong signals are produced, allowing one to distinguish the bare and oxidized cladding samples, as well as samples with different oxide layer thicknesses. Hence, a process that converts sample oxide layer thickness to optical signals can be achieved

  17. Bladder cancer diagnosis during cystoscopy using Raman spectroscopy

    Science.gov (United States)

    Grimbergen, M. C. M.; van Swol, C. F. P.; Draga, R. O. P.; van Diest, P.; Verdaasdonk, R. M.; Stone, N.; Bosch, J. H. L. R.

    2009-02-01

    Raman spectroscopy is an optical technique that can be used to obtain specific molecular information of biological tissues. It has been used successfully to differentiate normal and pre-malignant tissue in many organs. The goal of this study is to determine the possibility to distinguish normal tissue from bladder cancer using this system. The endoscopic Raman system consists of a 6 Fr endoscopic probe connected to a 785nm diode laser and a spectral recording system. A total of 107 tissue samples were obtained from 54 patients with known bladder cancer during transurethral tumor resection. Immediately after surgical removal the samples were placed under the Raman probe and spectra were collected and stored for further analysis. The collected spectra were analyzed using multivariate statistical methods. In total 2949 Raman spectra were recorded ex vivo from cold cup biopsy samples with 2 seconds integration time. A multivariate algorithm allowed differentiation of normal and malignant tissue with a sensitivity and specificity of 78,5% and 78,9% respectively. The results show the possibility of discerning normal from malignant bladder tissue by means of Raman spectroscopy using a small fiber based system. Despite the low number of samples the results indicate that it might be possible to use this technique to grade identified bladder wall lesions during endoscopy.

  18. Cell Imaging by Spontaneous and Amplified Raman Spectroscopies

    Directory of Open Access Journals (Sweden)

    Giulia Rusciano

    2017-01-01

    Full Text Available Raman spectroscopy (RS is a powerful, noninvasive optical technique able to detect vibrational modes of chemical bonds. The high chemical specificity due to its fingerprinting character and the minimal requests for sample preparation have rendered it nowadays very popular in the analysis of biosystems for diagnostic purposes. In this paper, we first discuss the main advantages of spontaneous RS by describing the study of a single protozoan (Acanthamoeba, which plays an important role in a severe ophthalmological disease (Acanthamoeba keratitis. Later on, we point out that the weak signals that originated from Raman scattering do not allow probing optically thin samples, such as cellular membrane. Experimental approaches able to overcome this drawback are based on the use of metallic nanostructures, which lead to a huge amplification of the Raman yields thanks to the excitation of localized surface plasmon resonances. Surface-enhanced Raman scattering (SERS and tip-enhanced Raman scattering (TERS are examples of such innovative techniques, in which metallic nanostructures are assembled on a flat surface or on the tip of a scanning probe microscope, respectively. Herein, we provide a couple of examples (red blood cells and bacterial spores aimed at studying cell membranes with these techniques.

  19. Comparison of time-gated surface-enhanced Raman spectroscopy (TG-SERS) and classical SERS based monitoring of Escherichia coli cultivation samples.

    Science.gov (United States)

    Kögler, Martin; Paul, Andrea; Anane, Emmanuel; Birkholz, Mario; Bunker, Alex; Viitala, Tapani; Maiwald, Michael; Junne, Stefan; Neubauer, Peter

    2018-06-08

    The application of Raman spectroscopy as a monitoring technique for bioprocesses is severely limited by a large background signal originating from fluorescing compounds in the culture media. Here we compare time-gated Raman (TG-Raman)-, continuous wave NIR-process Raman (NIR-Raman) and continuous wave micro-Raman (micro-Raman) approaches in combination with surface enhanced Raman spectroscopy (SERS) for their potential to overcome this limit. For that purpose, we monitored metabolite concentrations of Escherichia coli bioreactor cultivations in cell-free supernatant samples. We investigated concentration transients of glucose, acetate, AMP and cAMP at alternating substrate availability, from deficiency to excess. Raman and SERS signals were compared to off-line metabolite analysis of carbohydrates, carboxylic acids and nucleotides. Results demonstrate that SERS, in almost all cases, led to a higher number of identifiable signals and better resolved spectra. Spectra derived from the TG-Raman were comparable to those of micro-Raman resulting in well-discernable Raman peaks, which allowed for the identification of a higher number of compounds. In contrast, NIR-Raman provided a superior performance for the quantitative evaluation of analytes, both with and without SERS nanoparticles when using multivariate data analysis. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.

  20. Laser Raman detection of platelet as a non-invasive approach for early and differential diagnosis of Alzheimer's disease

    International Nuclear Information System (INIS)

    Chen, P; Wang, X H; Cheng, Y; Peng, J; Shen, A G; Hu, J M; Tian, Q; Shang, X L; Liu, Z C; Yao, X Q; Wang, J Z; Baek, S J; Park, A

    2011-01-01

    Early and differential diagnosis of Alzheimer's disease (AD) is a problem that puzzled many doctors. Reliable markers in easy-assembling samples are of considerable clinical diagnostic value. In this work, laser Raman spectroscopy (LRS) was developed a new method that potentially allows early and differential diagnosis of AD from the platelet sample. Raman spectra of platelets isolated from different ages of AD transgenic mice and non-transgenic controls were collected and analyzed. Multilayer perceptron networks (MLP) classification method was used to classify spectra and establish the diagnostic models. For differential diagnosis, spectra of platelets isolated from AD, Parkinson's disease (PD) and vascular dementia (VD) mice were also discriminated. Two notable spectral differences at 740 and 1654 cm -1 were revealed in the mean spectrum of platelets isolated from AD transgenic mice and the controls. MLP displayed a powerful ability in the classifying of early, advanced AD and the control group, and in differential diagnosis of PD and advanced AD, as well as VD and advanced AD. The results suggest that platelet detecting by LRS coupled with MLP analysis appears to be an easy and accurate method for early and differential diagnosis of AD. This technique could be rapidly promoted from laboratory to the hospital

  1. Raman spectroscopic studies of optically trapped red blood cells

    International Nuclear Information System (INIS)

    Dasgupta, R.; Gupta, P.K.

    2010-01-01

    Raman spectroscopic studies were performed on optically trapped red blood cells (RBCs) collected from healthy volunteers and patients suffering from malaria (Plasmodium vivax infection) using near infrared (785 nm) laser source. The results show significant alteration in the spectra averaged over ∼ 50 non-parasitized RBCs per sample. As compared to RBCs from healthy donors, in cells collected from malaria patients, a significant decrease in the intensity of the low spin (oxygenated-haemoglobin) marker Raman band at 1223 cm -1 (υ 13 or υ 42 ) along with a concomitant increase in the high spin (deoxygenated-haemoglobin) marker bands at 1210 cm -1 (υ 5 + υ 18 ) and 1546 cm -1 (υ 11 ) was observed. The changes primarily suggest a reduced haemoglobin-oxygen affinity for the non-parasitized red cells in malaria patients. The possible causes include up regulation of intra-erythrocytic 2,3-diphosphoglycerate and/or ineffective erythropoiesis resulted from the disease. During the above study we also observed that significant photo-damage may results to the intracellular haemoglobin (Hb) if higher laser power is used. For a laser power above ∼ 5 mW the observed increase in intensity of the Raman bands at 975 cm -1 (υ 46 ), 1244 cm -1 (υ 42 ) and 1366 cm -1 (υ 4 ) with increasing exposure time suggests photo-denaturation of Hb and the concomitant decrease in intensity of the Raman band at 1544 cm -1 (υ 11 ) suggests photo induced methaemoglobin formation. The photo damage of intracellular haemoglobin by the above processes was also observed to result in intracellular heme aggregation. (author)

  2. Design of an 1800nm Raman amplifier

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    2013-01-01

    We present the experimental results for a Raman amplifier that operates at 1810 nm and is pumped by a Raman fiber laser at 1680 nm. Both the pump laser and the Raman amplifier is polarization maintaining. A challenge when scaling Raman amplifiers to longer wavelengths is the increase...... in transmission loss, but also the reduction in the Raman gain coefficient as the amplifier wavelength is increased. Both polarization components of the Raman gain is characterized, initially for linearly co-polarized signal and pump, subsequently linearly polarized orthogonal signal and pump. The noise...

  3. 76 FR 70883 - Clothing Allowance

    Science.gov (United States)

    2011-11-16

    ... prescription skin cream for the ``face, neck, hands, arms, or any area not covered by clothing may come into... the clothing or outergarment due to a second appliance or medication.'' This language will clarify that a second clothing allowance may be paid when a second appliance and/or medication increases the...

  4. Analysis of polymer surfaces and thin-film coatings with Raman and surface enhanced Raman scattering

    International Nuclear Information System (INIS)

    McAnally, Gerard David

    2001-01-01

    This thesis investigates the potential of surface-enhanced Raman scattering (SERS) for the analysis and characterisation of polymer surfaces. The Raman and SERS spectra from a PET film are presented. The SERS spectra from the related polyester PBT and from the monomer DMT are identical to PET, showing that only the aromatic signals are enhanced. Evidence from other compounds is presented to show that loss of the carbonyl stretch (1725 cm -1 ) from the spectra is due to a chemical interaction between the silver and surface carbonyl groups. The interaction of other polymer functional groups with silver is discussed. A comparison of Raman and SERS spectra collected from three faces of a single crystal shows the SERS spectra are depolarised. AFM images of the silver films used to obtain SERS are presented. They consist of regular islands of silver, fused together to form a complete film. The stability and reproducibility and of these surfaces is assessed. Band assignments for the SERS spectrum of PET are presented. A new band in the spectrum (1131 cm -1 ) is assigned to a complex vibration using a density functional calculation. Depth profiling through a polymer film on to the silver layer showed the SERS signals arise from the silver surface only. The profiles show the effects of refraction on the beam, and the adverse affect on the depth resolution. Silver films were used to obtain SERS spectra from a 40 nm thin-film coating on PET, without interference from the PET layer. The use of an azo dye probe as a marker to detect the coating is described. Finally, a novel method for the synthesis of a SERS-active vinyl-benzotriazole monomer is reported. The monomer was incorporated into a thin-film coating and the SERS spectrum obtained from the polymer. (author)

  5. The Ring Monstrance from the Loreto treasury in Prague: handheld Raman spectrometer for identification of gemstones.

    Science.gov (United States)

    Jehlička, Jan; Culka, Adam; Baštová, Markéta; Bašta, Petr; Kuntoš, Jaroslav

    2016-12-13

    A miniature lightweight portable Raman spectrometer and a palm-sized device allow for fast and unambiguous detection of common gemstones mounted in complex jewels. Here, complex religious artefacts and the Ring Monstrance from the Loreto treasury (Prague, Czech Republic; eighteenth century) were investigated. These discriminations are based on the very good correspondence of the wavenumbers of the strongest Raman bands of the minerals. Very short laser illumination times and efficient collection of scattered light were sufficient to obtain strong diagnostic Raman signals. The following minerals were documented: quartz and its varieties, beryl varieties (emerald), corundum varieties (sapphire), garnets (almandine, grossular), diamond as well as aragonite in pearls. Miniature Raman spectrometers can be recommended for common gemmological work as well as for mineralogical investigations of jewels and cultural heritage objects whenever the antiquities cannot be transported to a laboratory.This article is part of the themed issue 'Raman spectroscopy in art and archaeology'. © 2016 The Author(s).

  6. Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality

    Science.gov (United States)

    Okagbare, Paul I.; Begun, Dana; Tecklenburg, Mary; Awonusi, Ayorinde; Goldstein, Steven A.

    2012-01-01

    Abstract. We report on in vivo noninvasive Raman spectroscopy of rat tibiae using robust fiber-optic Raman probes and holders designed for transcutaneous Raman measurements in small animals. The configuration allows placement of multiple fibers around a rat leg, maintaining contact with the skin. Bone Raman data are presented for three regions of the rat tibia diaphysis with different thicknesses of overlying soft tissue. The ability to perform in vivo noninvasive Raman measurement and evaluation of subtle changes in bone composition is demonstrated with rat leg phantoms in which the tibia has carbonated hydroxylapatite, with different carbonate contents. Our data provide proof of the principle that small changes in bone composition can be monitored through soft tissue at anatomical sites of interest in biomedical studies. PMID:23085899

  7. Raman Spectroscopy for Homeland Security Applications

    Directory of Open Access Journals (Sweden)

    Gregory Mogilevsky

    2012-01-01

    Full Text Available Raman spectroscopy is an analytical technique with vast applications in the homeland security and defense arenas. The Raman effect is defined by the inelastic interaction of the incident laser with the analyte molecule’s vibrational modes, which can be exploited to detect and identify chemicals in various environments and for the detection of hazards in the field, at checkpoints, or in a forensic laboratory with no contact with the substance. A major source of error that overwhelms the Raman signal is fluorescence caused by the background and the sample matrix. Novel methods are being developed to enhance the Raman signal’s sensitivity and to reduce the effects of fluorescence by altering how the hazard material interacts with its environment and the incident laser. Basic Raman techniques applicable to homeland security applications include conventional (off-resonance Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS, resonance Raman spectroscopy, and spatially or temporally offset Raman spectroscopy (SORS and TORS. Additional emerging Raman techniques, including remote Raman detection, Raman imaging, and Heterodyne imaging, are being developed to further enhance the Raman signal, mitigate fluorescence effects, and monitor hazards at a distance for use in homeland security and defense applications.

  8. Studies of Minerals, Organic and Biogenic Materials through Time-Resolved Raman Spectroscopy

    Science.gov (United States)

    Garcia, Christopher S.; Abedin, M. Nurul; Ismail, Syed; Sharma, Shiv K.; Misra, Anupam K.; Nyugen, Trac; Elsayed-Ali, hani

    2009-01-01

    A compact remote Raman spectroscopy system was developed at NASA Langley Research center and was previously demonstrated for its ability to identify chemical composition of various rocks and minerals. In this study, the Raman sensor was utilized to perform time-resolved Raman studies of various samples such as minerals and rocks, Azalea leaves and a few fossil samples. The Raman sensor utilizes a pulsed 532 nm Nd:YAG laser as excitation source, a 4-inch telescope to collect the Raman-scattered signal from a sample several meters away, a spectrograph equipped with a holographic grating, and a gated intensified CCD (ICCD) camera system. Time resolved Raman measurements were carried out by varying the gate delay with fixed short gate width of the ICCD camera, allowing measurement of both Raman signals and fluorescence signals. Rocks and mineral samples were characterized including marble, which contain CaCO3. Analysis of the results reveals the short (approx.10-13 s) lifetime of the Raman process, and shows that Raman spectra of some mineral samples contain fluorescence emission due to organic impurities. Also analyzed were a green (pristine) and a yellow (decayed) sample of Gardenia leaves. It was observed that the fluorescence signals from the green and yellow leaf samples showed stronger signals compared to the Raman lines. Moreover, it was also observed that the fluorescence of the green leaf was more intense and had a shorter lifetime than that of the yellow leaf. For the fossil samples, Raman shifted lines could not be observed due the presence of very strong short-lived fluorescence.

  9. Raman chemical imaging technology for food and agricultural applications

    Science.gov (United States)

    This paper presents Raman chemical imaging technology for inspecting food and agricultural products. The paper puts emphasis on introducing and demonstrating Raman imaging techniques for practical uses in food analysis. The main topics include Raman scattering principles, Raman spectroscopy measurem...

  10. Surfaces allowing for fractional statistics

    International Nuclear Information System (INIS)

    Aneziris, Charilaos.

    1992-07-01

    In this paper we give a necessary condition in order for a geometrical surface to allow for Abelian fractional statistics. In particular, we show that such statistics is possible only for two-dimentional oriented surfaces of genus zero, namely the sphere S 2 , the plane R 2 and the cylindrical surface R 1 *S 1 , and in general the connected sum of n planes R 2 -R 2 -R 2 -...-R 2 . (Author)

  11. Theory of Graphene Raman Scattering.

    Science.gov (United States)

    Heller, Eric J; Yang, Yuan; Kocia, Lucas; Chen, Wei; Fang, Shiang; Borunda, Mario; Kaxiras, Efthimios

    2016-02-23

    Raman scattering plays a key role in unraveling the quantum dynamics of graphene, perhaps the most promising material of recent times. It is crucial to correctly interpret the meaning of the spectra. It is therefore very surprising that the widely accepted understanding of Raman scattering, i.e., Kramers-Heisenberg-Dirac theory, has never been applied to graphene. Doing so here, a remarkable mechanism we term"transition sliding" is uncovered, explaining the uncommon brightness of overtones in graphene. Graphene's dispersive and fixed Raman bands, missing bands, defect density and laser frequency dependence of band intensities, widths of overtone bands, Stokes, anti-Stokes anomalies, and other known properties emerge simply and directly.

  12. Nanophotonics with Surface Enhanced Coherent Raman Microscopy

    Science.gov (United States)

    Fast, Alexander

    Nonlinear nanophotonics is a rapidly developing field of research that aims at detecting and disentangling weak congested optical signatures on the nanoscale. Sub-wavelength field confinement of the local electromagnetic fields and the resulting field enhancement is achieved by utilizing plasmonic near-field antennas. This allows for probing nanoscopic volumes, a property unattainable by conventional far-field microscopy techniques. Combination of plasmonics and nonlinear optical microscopy provides a path to visualizing a small chemical and spatial subset of target molecules within an ensemble. This is achieved while maintaining rapid signal acquisition, which is necessary for capturing biological processes in living systems. Herein, a novel technique, wide-field surface enhanced coherent anti-Stokes Raman scattering (wfSE-CARS) is presented. This technique allows for isolating weak vibrational signals in nanoscopic proximity to the surface by using chemical sensitivity of coherent Raman microspectroscopy (CRM) and field confinement from surface plasmons supported on a thin gold film. Uniform field enhancement over a large field of view, achieved with surface plasmon polaritons (SPP) in wfSE-CARSS, allows for biomolecular imaging demonstrated on extended structures like phospholipid droplets and live cells. Surface selectivity and chemical contrast are achieved at 70 fJ/mum2 incident energy densities, which is over five orders of magnitude lower than used in conventional point scanning CRM. Next, a novel surface sensing imaging technique, local field induced metal emission (LFIME), is introduced. Presence of a sample material at the surface influences the local fields of a thin flat gold film, such that nonlinear fluorescence signal of the metal can be detected in the far-field. Nanoscale nonmetallic, nonfluorescent objects can be imaged with high signal-to-background ratio and diffraction limited lateral resolution using LFIME. Additionally, structure of the

  13. Surface-Enhanced Raman Spectroscopy of Carbon Nanomembranes from Aromatic Self-Assembled Monolayers.

    Science.gov (United States)

    Zhang, Xianghui; Mainka, Marcel; Paneff, Florian; Hachmeister, Henning; Beyer, André; Gölzhäuser, Armin; Huser, Thomas

    2018-02-27

    Surface-enhanced Raman scattering spectroscopy (SERS) was employed to investigate the formation of self-assembled monolayers (SAMs) of biphenylthiol, 4'-nitro-1,1'-biphenyl-4-thiol, and p-terphenylthiol on Au surfaces and their structural transformations into carbon nanomembranes (CNMs) induced by electron irradiation. The high sensitivity of SERS allows us to identify two types of Raman scattering in electron-irradiated SAMs: (1) Raman-active sites exhibit similar bands as those of pristine SAMs in the fingerprint spectral region, but with indications of an amorphization process and (2) Raman-inactive sites show almost no Raman-scattering signals, except a very weak and broad D band, indicating a lack of structural order but for the presence of graphitic domains. Statistical analysis showed that the ratio of the number of Raman-active sites to the total number of measurement sites decreases exponentially with increasing the electron irradiation dose. The maximum degree of cross-linking ranged from 97 to 99% for the three SAMs. Proof-of-concept experiments were conducted to demonstrate potential applications of Raman-inactive CNMs as a supporting membrane for Raman analysis.

  14. Raman Spectroscopic Imaging of the Whole Ciona intestinalis Embryo during Development

    Science.gov (United States)

    Nakamura, Mitsuru J.; Hotta, Kohji; Oka, Kotaro

    2013-01-01

    Intracellular composition and the distribution of bio-molecules play central roles in the specification of cell fates and morphogenesis during embryogenesis. Consequently, investigation of changes in the expression and distribution of bio-molecules, especially mRNAs and proteins, is an important challenge in developmental biology. Raman spectroscopic imaging, a non-invasive and label-free technique, allows simultaneous imaging of the intracellular composition and distribution of multiple bio-molecules. In this study, we explored the application of Raman spectroscopic imaging in the whole Ciona intestinalis embryo during development. Analysis of Raman spectra scattered from C. intestinalis embryos revealed a number of localized patterns of high Raman intensity within the embryo. Based on the observed distribution of bio-molecules, we succeeded in identifying the location and structure of differentiated muscle and endoderm within the whole embryo, up to the tailbud stage, in a label-free manner. Furthermore, during cell differentiation, we detected significant differences in cell state between muscle/endoderm daughter cells and daughter cells with other fates that had divided from the same mother cells; this was achieved by focusing on the Raman intensity of single Raman bands at 1002 or 1526 cm−1, respectively. This study reports the first application of Raman spectroscopic imaging to the study of identifying and characterizing differentiating tissues in a whole chordate embryo. Our results suggest that Raman spectroscopic imaging is a feasible label-free technique for investigating the developmental process of the whole embryo of C. intestinalis. PMID:23977129

  15. [Immunological Markers in Organ Transplantation].

    Science.gov (United States)

    Beckmann, J H; Heits, N; Braun, F; Becker, T

    2017-04-01

    The immunological monitoring in organ transplantation is based mainly on the determination of laboratory parameters as surrogate markers of organ dysfunction. Structural damage, caused by alloreactivity, can only be detected by invasive biopsy of the graft, which is why inevitably rejection episodes are diagnosed at a rather progressive stage. New non-invasive specific markers that enable transplant clinicians to identify rejection episodes at an earlier stage, on the molecular level, are needed. The accurate identification of rejection episodes and the establishment of operational tolerance permit early treatment or, respectively, a controlled cessation of immunosuppression. In addition, new prognostic biological markers are expected to allow a pre-transplant risk stratification thus having an impact on organ allocation and immunosuppressive regimen. New high-throughput screening methods allow simultaneous examination of hundreds of characteristics and the generation of specific biological signatures, which might give concrete information about acute rejection, chronic dysfunction as well as operational tolerance. Even though multiple studies and a variety of publications report about important advances on this subject, almost no new biological marker has been implemented in clinical practice as yet. Nevertheless, new technologies, in particular analysis of the genome, transcriptome, proteome and metabolome will make personalised transplantation medicine possible and will further improve the long-term results and graft survival rates. This article gives a survey of the limitations and possibilities of new immunological markers in organ transplantation. Georg Thieme Verlag KG Stuttgart · New York.

  16. germplasm using ISSR markers and their relationships

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... (MAS) is the current trend in 'Modern Agriculture'. These. DNA markers allow the construction of ... are inherited in Mendelian fashion and are scored as dominant markers (Ratnaparkhe et al., 1998) ... ISSR amplified PCR products were resolved on 2% agarose gel in. 1X TBE buffer (89 mM Tris-Hcl, pH 8.3, ...

  17. Higher order mode optical fiber Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.

    2016-01-01

    We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....

  18. Field Raman spectrograph for environmental analysis

    International Nuclear Information System (INIS)

    Carrabba, M.M.

    1995-01-01

    The use of Raman Spectroscopy in the screening of soils, ground water, and surface waters for pollutants is described. A probe accessory for conducting surface enhanced Raman Spectroscopy is undergoing testing for dilute chlorinated solvents

  19. Dynamics of long ring Raman fiber laser

    Science.gov (United States)

    Sukhanov, Sergey V.; Melnikov, Leonid A.; Mazhirina, Yulia A.

    2016-04-01

    The numerical model for dynamics of long fiber ring Raman laser is proposed. The model is based on the transport equations and Courant-Isaacson-Rees numerical method. Different regimes of a long ring fiber Raman laser are investigated.

  20. Spectral watermarking in femtosecond stimulated Raman spectroscopy: resolving the nature of the carotenoid S-star state

    NARCIS (Netherlands)

    Kloz, Miroslav; Weissenborn, J.; Polivka, T.; Frank, H.A.; Kennis, J.T.M.

    2016-01-01

    A new method for recording femtosecond stimulated Raman spectra was developed that dramatically improves and automatizes baseline problems. Instead of using a narrowband Raman source, the experiment is performed using shaping of a broadband source. This allows locking the signal into carefully

  1. Raman Spectroscopy of Microbial Pigments

    Science.gov (United States)

    Edwards, Howell G. M.; Oren, Aharon

    2014-01-01

    Raman spectroscopy is a rapid nondestructive technique providing spectroscopic and structural information on both organic and inorganic molecular compounds. Extensive applications for the method in the characterization of pigments have been found. Due to the high sensitivity of Raman spectroscopy for the detection of chlorophylls, carotenoids, scytonemin, and a range of other pigments found in the microbial world, it is an excellent technique to monitor the presence of such pigments, both in pure cultures and in environmental samples. Miniaturized portable handheld instruments are available; these instruments can be used to detect pigments in microbiological samples of different types and origins under field conditions. PMID:24682303

  2. Micro-raman and tip-enhanced raman spectroscopy of carbon allotropes

    NARCIS (Netherlands)

    Hoffmann, G.G.; With, de G.; Loos, J.

    2008-01-01

    Raman spectroscopic data are obtained on various carbon allotropes like diamond, amorphous carbon, graphite, graphene and single wall carbon nanotubes by micro-Raman spectroscopy, tip-enhanced Raman spectroscopy and tip-enhanced Raman spectroscopy imaging, and the potentials of these techniques for

  3. Challenges in higher order mode Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Nielsen, Kristian; Friis, Søren Michael Mørk

    2015-01-01

    A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed......A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed...

  4. Mixture analysis with laser raman spctroscopy

    International Nuclear Information System (INIS)

    Kim, M.S.; Bark, G.M.

    1981-01-01

    Trace amount of methyl orange was determined in colored medium by resonance Raman spectrometry. Without major modification of a commercial laser Raman spectrometer, the resonance Raman active molecule could be determined satisfactorily in 10sup(-5)M range when the background fluorescence was more than 20 times stronger than the signal. Use of fluorescence quenching agent was found helpful to improve the Raman signal. Suggestions for the improvement of analytical method is presented. (Author)

  5. Emission allowances stall in marketplace

    International Nuclear Information System (INIS)

    Malec, W.F.

    1993-01-01

    Misinformation and public misunderstanding have given emissions trading a bad reputation in the public marketplace, says William F. Malec, executive vice president of the Tennessee Valley Authority (TVA), in Knoxville, Tennessee. Media coverage of a May 1992 emissions-allowance trade between TVA and Wisconsin Power and Light open-quotes focused on the agreement's pollution-trading aspects, not its overall potential economic and environmental benefits,close quotes Malec says. Such negative portrayal of TVA's transaction sparked severe public criticism and charges that emissions trading gives utilities the right to pollute. open-quotes The fact is that TVA sought the emissions-trading agreement as a means to reduce overall emissions in the most cost-effective way,close quotes Malec explains. Emissions trading allows a company with emission levels lower than clean-air standards to earn open-quotes credits.close quotes These credits then may be purchased by a company with emission levels that exceed federal standards. Under this arrangement, the environment is protected and companies that buy credits save money because they do not have to purchase expensive emissions-control devices or reduce their production levels. Malec says TVA decided to enter into the emissions-allowance market, not only to cut costs, but also to publicize the existence and benefits of emissions trading. However, TVA's experience proves that open-quotes people will not accept what they do not understand,close quotes concludes Malec, open-quotes especially when complex environmental issues are involved.close quotes

  6. Subfemtosecond pulse generation by cascade-stimulated Raman scattering with modulated Raman excitation

    International Nuclear Information System (INIS)

    Wu Kun; Wu Jian; Zeng Heping

    2003-01-01

    Subfemtosecond (sub-fs) pulses can be generated by cascade-stimulated Raman scattering in a Raman medium with modulated Raman excitations, driven by two sufficiently intense laser beams, one of which is amplitude modulated. The nonadiabatic Raman interaction establishes a strong modulated Raman coherence, which supports compression of the generated broadband Raman sidebands to a train of sub-fs pulses regardless of whether the carrier frequencies of the driving lasers are tuned above, below or on two-photon Raman resonance. (letter to the editor)

  7. Raman Microscopy and Microspectroscopy of Biological Materials

    NARCIS (Netherlands)

    Sijtsema, N.M.; Otto, C.; Segers-Nolten, G.M.J.; Greve, J.; Merlin, Jean Claude; Turrell, Sylvia; Huvenne, Jean Pierre

    With a confocal Raman microspectrometer it is possible to collect Raman signal of a volume of only 1 µm3 Therefore, this technique offers the possibility to obtain information about the chemical composition of small cell structures like granules, without destroying the cell [1], This makes Raman

  8. Raman spectra of lignin model compounds

    Science.gov (United States)

    Umesh P. Agarwal; Richard S. Reiner; Ashok K. Pandey; Sally A. Ralph; Kolby C. Hirth; Rajai H. Atalla

    2005-01-01

    To fully exploit the value of Raman spectroscopy for analyzing lignins and lignin containing materials, a detailed understanding of lignins’ Raman spectra needs to be achieved. Although advances made thus far have led to significant growth in application of Raman techniques, further developments are needed to improve upon the existing knowledge. Considering that lignin...

  9. Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers

    KAUST Repository

    Perozziello, Gerardo

    2015-12-11

    In this work a Raman flow cytometer is presented. It consists of a microfluidic device that takes advantages of the basic principles of Raman spectroscopy and flow cytometry. The microfluidic device integrates calibrated microfluidic channels- where the cells can flow one-by-one -, allowing single cell Raman analysis. The microfluidic channel integrates plasmonic nanodimers in a fluidic trapping region. In this way it is possible to perform Enhanced Raman Spectroscopy on single cell. These allow a label-free analysis, providing information about the biochemical content of membrane and cytoplasm of the each cell. Experiments are performed on red blood cells (RBCs), peripheral blood lymphocytes (PBLs) and myelogenous leukemia tumor cells (K562). © 2015 Optical Society of America.

  10. Raman Spectroscopy of Ocular Tissue

    Science.gov (United States)

    Ermakov, Igor V.; Sharifzadeh, Mohsen; Gellermann, Warner

    The optically transparent nature of the human eye has motivated numerous Raman studies aimed at the non-invasive optical probing of ocular tissue components critical to healthy vision. Investigations include the qualitative and quantitative detection of tissue-specific molecular constituents, compositional changes occurring with development of ocular pathology, and the detection and tracking of ocular drugs and nutritional supplements. Motivated by a better understanding of the molecular mechanisms leading to cataract formation in the aging human lens, a great deal of work has centered on the Raman detection of proteins and water content in the lens. Several protein groups and the hydroxyl response are readily detectable. Changes of protein compositions can be studied in excised noncataractous tissue versus aged tissue preparations as well as in tissue samples with artificially induced cataracts. Most of these studies are carried out in vitro using suitable animal models and conventional Raman techniques. Tissue water content plays an important role in optimum light transmission of the outermost transparent ocular structure, the cornea. Using confocal Raman spectroscopy techniques, it has been possible to non-invasively measure the water to protein ratio as a measure of hydration status and to track drug-induced changes of the hydration levels in the rabbit cornea at various depths. The aqueous humor, normally supplying nutrients to cornea and lens, has an advantageous anterior location for Raman studies. Increasing efforts are pursued to non-invasively detect the presence of glucose and therapeutic concentrations of antibiotic drugs in this medium. In retinal tissue, Raman spectroscopy proves to be an important tool for research into the causes of macular degeneration, the leading cause of irreversible vision disorders and blindness in the elderly. It has been possible to detect the spectral features of advanced glycation and advanced lipooxydation end products in

  11. Raman spectral properties of squamous cell carcinoma of oral tissues and cells

    Science.gov (United States)

    Su, L.; Sun, Y. F.; Chen, Y.; Chen, P.; Shen, A. G.; Wang, X. H.; Jia, J.; Zhao, Y. F.; Zhou, X. D.; Hu, J. M.

    2012-01-01

    Early diagnosis is the key of the improved survival rates of oral cancer. Raman spectroscopy is sensitive to the early changes of molecular composition and structure that occur in benign lesion during carcinogenesis. In this study, in situ Raman analysis provided distinct spectra that can be used to discriminate between normal and malignant tissues, as well as normal and cancer cells. The biochemical variations between different groups were analyzed by the characteristic bands by comparing the normalized mean spectra. Spectral profiles of normal, malignant conditions show pronounced differences between one another, and multiple Raman markers associated with DNA and protein vibrational modes have been identified that exhibit excellent discrimination power for cancer sample identification. Statistical analyses of the Raman data and classification using principal component analysis (PCA) are shown to be effective for the Raman spectral diagnosis of oral mucosal diseases. The results indicate that the biomolecular differences between normal and malignant conditions are more obviously at the cellular level. This technique could provide a research foundation for the Raman spectral diagnosis of oral mucosal diseases.

  12. Raman Spectroscopy of DNA Packaging in Individual Human Sperm Cells distinguishes Normal from Abnormal Cells

    Energy Technology Data Exchange (ETDEWEB)

    Huser, T; Orme, C; Hollars, C; Corzett, M; Balhorn, R

    2009-03-09

    Healthy human males produce sperm cells of which about 25-40% have abnormal head shapes. Increases in the percentage of sperm exhibiting aberrant sperm head morphologies have been correlated with male infertility, and biochemical studies of pooled sperm have suggested that sperm with abnormal shape may contain DNA that has not been properly repackaged by protamine during spermatid development. We have used micro-Raman spectroscopy to obtain Raman spectra from individual human sperm cells and examined how differences in the Raman spectra of sperm chromatin correlate with cell shape. We show that Raman spectra of individual sperm cells contain vibrational marker modes that can be used to assess the efficiency of DNA-packaging for each cell. Raman spectra obtained from sperm cells with normal shape provide evidence that DNA in these sperm is very efficiently packaged. We find, however, that the relative protein content per cell and DNA packaging efficiencies are distributed over a relatively wide range for sperm cells with both normal and abnormal shape. These findings indicate that single cell Raman spectroscopy should be a valuable tool in assessing the quality of sperm cells for in-vitro fertilization.

  13. Inverse Raman effect: applications and detection techniques

    International Nuclear Information System (INIS)

    Hughes, L.J. Jr.

    1980-08-01

    The processes underlying the inverse Raman effect are qualitatively described by comparing it to the more familiar phenomena of conventional and stimulated Raman scattering. An experession is derived for the inverse Raman absorption coefficient, and its relationship to the stimulated Raman gain is obtained. The power requirements of the two fields are examined qualitatively and quantitatively. The assumption that the inverse Raman absorption coefficient is constant over the interaction length is examined. Advantages of the technique are discussed and a brief survey of reported studies is presented

  14. Inverse Raman effect: applications and detection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, L.J. Jr.

    1980-08-01

    The processes underlying the inverse Raman effect are qualitatively described by comparing it to the more familiar phenomena of conventional and stimulated Raman scattering. An experession is derived for the inverse Raman absorption coefficient, and its relationship to the stimulated Raman gain is obtained. The power requirements of the two fields are examined qualitatively and quantitatively. The assumption that the inverse Raman absorption coefficient is constant over the interaction length is examined. Advantages of the technique are discussed and a brief survey of reported studies is presented.

  15. Low-loss tunable all-in-fiber filter for Raman spectroscopy

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Scolari, Lara; Lund-Hansen, Toke

    2011-01-01

    We show a novel in-line Rayleigh-rejection filter for Raman spectroscopy, based on a solid-core Photonic Crystal Fiber (PCF) filled with a high-index material. The device is low-loss and thermally tunable, and allows for a strong attenuation of the Rayleigh line at 532nm and the transmission...... of the Raman lines in a broad wavenumber range....

  16. Raman spectroscopy of single nanoparticles in a double-nanohole optical tweezer system

    International Nuclear Information System (INIS)

    Jones, Steven; Al Balushi, Ahmed A; Gordon, Reuven

    2015-01-01

    A double nanohole in a metal film was used to trap nanoparticles (20 nm diameter) and simultaneously record their Raman spectrum using the trapping laser as the excitation source. This allowed for the identification of characteristic Stokes lines for titania and polystyrene nanoparticles, showing the capability for material identification of nanoparticles once trapped. Increased Raman signal was observed for the trapping of multiple nanoparticles. This system combines the benefits of nanoparticle isolation and manipulation with unique identification. (fast track communication)

  17. Raman Spectroscopy of Single Nanoparticles in a Double-Nanohole Optical Tweezer System

    OpenAIRE

    Jones, Steven; Balushi, Ahmed A. Al; Gordon, Reuven

    2015-01-01

    A double nanohole in a metal film was used to trap nanoparticles (20 nm diameter) and simultaneously record their Raman spectrum using the trapping laser as the excitation source. This allowed for the identification of characteristic Stokes lines for titania and polystyrene nanoparticles, showing the capability for material identification of nanoparticles once trapped. Increased Raman signal is observed for the trapping of multiple nanoparticles. This system combines the benefits of nanoparti...

  18. Surface-Enhanced Raman Scattering in Molecular Junctions.

    Science.gov (United States)

    Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu

    2017-08-18

    Surface-enhanced Raman scattering (SERS) is a surface-sensitive vibrational spectroscopy that allows Raman spectroscopy on a single molecular scale. Here, we present a review of SERS from molecular junctions, in which a single molecule or molecules are made to have contact from the top to the bottom of metal surfaces. The molecular junctions are nice platforms for SERS as well as transport measurement. Electronic characterization based on the transport measurements of molecular junctions has been extensively studied for the development of miniaturized electronic devices. Simultaneous SERS and transport measurement of the molecular junctions allow both structural (geometrical) and electronic information on the single molecule scale. The improvement of SERS measurement on molecular junctions open the door toward new nanoscience and nanotechnology in molecular electronics.

  19. Raman Spectroscopic Analyses of Jaw Periosteal Cell Mineralization

    Directory of Open Access Journals (Sweden)

    Eva Brauchle

    2017-01-01

    Full Text Available To achieve safer patient treatments, serum-free cell culture conditions have to be established for cell therapies. In previous studies, we demonstrated that serum-free culture favored the proliferation of MSCA-1+ osteoprogenitors derived from the jaw periosteum. In this study, the in vitro formation of bone-specific matrix by MSCA-1+ jaw periosteal cells (JPCs, 3 donors was assessed and compared under serum-free and serum-containing media conditions using the marker-free Raman spectroscopy. Based on a standard fluorescence assay, JPCs from one patient were not able to mineralize under serum-containing culture conditions, whereas the other cells showed similar mineralization levels under both conditions. Raman spectra from mineralizing MSCA-1+ JPCs revealed higher levels of hydroxyapatite formation and higher mineral to matrix ratios under serum-free culture conditions. Higher carbonate to phosphate ratios and higher crystallinity in JPCs cultured under serum-containing conditions indicated immature bone formation. Due to reduced collagen production under serum-free conditions, we obtained significant differences in collagen maturity and proline to hydroxyproline ratios compared to serum-free conditions. We conclude that Raman spectroscopy is a useful tool for the assessment and noninvasive monitoring of in vitro mineralization of osteoprogenitor cells. Further studies should extend this knowledge and improve JPC mineralization by optimizing culture conditions.

  20. Studies of cartilaginous tissue using Raman spectroscopy method

    Science.gov (United States)

    Timchenko, Pavel E.; Timchenko, Elena V.; Volova, Larisa T.; Dolgyshkin, Dmitry A.; Markova, Maria D.; Kylabyhova, A. Y.; Kornilin, Dmitriy V.

    2016-10-01

    The work presents the results of studies of samples of human articular surface of the knee joint, obtained by Raman spectroscopy implementedduring endoprosthesis replacement surgery . The main spectral characteristics of articular surface areas with varying degrees of cartilage damage were detected at 956 cm-1, 1066 cm-1 wavenumbers, corresponding to phosphate and carbonate, and at 1660 cm-1, 1271 cm-1 wavenumbers, corresponding to amide I and amide III. Criteria allowing to identify the degree of articular hyaline cartilage damage were introduced.

  1. In vitro quantitation of human femoral artery atherosclerosis using near-infrared Raman spectroscopy

    Science.gov (United States)

    Dykes, Ava C.; Anastasiadis, Pavlos; Allen, John S., III; Sharma, Shiv K.

    2012-06-01

    Near-infrared Raman spectroscopy has been used in vitro to identify calcified atherosclerotic plaques in human femoral arteries. Raman techniques allow for the identification of these plaques in a nondestructive manner, which may allow for the diagnosis of coronary artery disease in cardiac patients in the future. As Raman spectroscopy also reveals chemical information about the composition of the arteries, it can also be used as a prognostic tool. The in vivo detection of atherosclerotic plaques at risk for rupture in cardiac patients will enhance treatment methods while improving clinical outcomes for these procedures. Raman spectra were excited by an Invictus 785-nm NIR laser and measured with a fiber-coupled micro-Raman RXN system (Kaiser Optical Systems, Inc., Ann Arbor, MI) equipped with a 785 nm CW laser and CCD detector. Chemical mapping of arteries obtained post mortem allowed for the discrete location of atherosclerotic plaques. Raman peaks at 961 and 1073 cm-1 reveal the presence of calcium hydroxyapatite and carbonate apatite, which are known to be present in calcified plaques. By mapping the locations of these peaks the boundaries of the plaques can be precisely determined. Areas of varying degrees of calcification were also identified. Because this can be useful in determining the degree of plaque calcification and vessel stenosis, this may have a significant impact on the clinical treatment of atherosclerotic plaques in the future.

  2. Quantitative polarized Raman spectroscopy in highly turbid bone tissue.

    Science.gov (United States)

    Raghavan, Mekhala; Sahar, Nadder D; Wilson, Robert H; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H; Morris, Michael D

    2010-01-01

    Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim/oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (pbones (28+/-3 deg) compared to wild-type bones (22+/-3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76+/-2 deg and in oim/oim mice, it is 72+/-4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.

  3. Raman molecular imaging of brain frozen tissue sections.

    Science.gov (United States)

    Kast, Rachel E; Auner, Gregory W; Rosenblum, Mark L; Mikkelsen, Tom; Yurgelevic, Sally M; Raghunathan, Aditya; Poisson, Laila M; Kalkanis, Steven N

    2014-10-01

    Raman spectroscopy provides a molecular signature of the region being studied. It is ideal for neurosurgical applications because it is non-destructive, label-free, not impacted by water concentration, and can map an entire region of tissue. The objective of this paper is to demonstrate the meaningful spatial molecular information provided by Raman spectroscopy for identification of regions of normal brain, necrosis, diffusely infiltrating glioma and solid glioblastoma (GBM). Five frozen section tissues (1 normal, 1 necrotic, 1 GBM, and 2 infiltrating glioma) were mapped in their entirety using a 300-µm-square step size. Smaller regions of interest were also mapped using a 25-µm step size. The relative concentrations of relevant biomolecules were mapped across all tissues and compared with adjacent hematoxylin and eosin-stained sections, allowing identification of normal, GBM, and necrotic regions. Raman peaks and peak ratios mapped included 1003, 1313, 1431, 1585, and 1659 cm(-1). Tissue maps identified boundaries of grey and white matter, necrosis, GBM, and infiltrating tumor. Complementary information, including relative concentration of lipids, protein, nucleic acid, and hemoglobin, was presented in a manner which can be easily adapted for in vivo tissue mapping. Raman spectroscopy can successfully provide label-free imaging of tissue characteristics with high accuracy. It can be translated to a surgical or laboratory tool for rapid, non-destructive imaging of tumor margins.

  4. ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS.

    Energy Technology Data Exchange (ETDEWEB)

    SEDLACEK,III, A.J.FINFROCK,C.

    2002-09-01

    As a member of the science-support part of the ITT-lead LISA development program, BNL is tasked with the acquisition of UV Raman spectral fingerprints and associated scattering cross-sections for those chemicals-of-interest to the program's sponsor. In support of this role, the present report contains the first installment of UV Raman spectral fingerprint data on the initial subset of chemicals. Because of the unique nature associated with the acquisition of spectral fingerprints for use in spectral pattern matching algorithms (i.e., CLS, PLS, ANN) great care has been undertaken to maximize the signal-to-noise and to minimize unnecessary spectral subtractions, in an effort to provide the highest quality spectral fingerprints. This report is divided into 4 sections. The first is an Experimental section that outlines how the Raman spectra are performed. This is then followed by a section on Sample Handling. Following this, the spectral fingerprints are presented in the Results section where the data reduction process is outlined. Finally, a Photographs section is included.

  5. Non-destructive Identification of Individual Leukemia Cells by Optical Trapping Raman Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J W; Taylor, D S; Lane, S; Zwerdling, T; Tuscano, J; Huser, T

    2007-03-05

    Currently, a combination of technologies is typically required to assess the malignancy of cancer cells. These methods often lack the specificity and sensitivity necessary for early, accurate diagnosis. Here we demonstrate using clinical samples the application of laser trapping Raman spectroscopy as a novel approach that provides intrinsic biochemical markers for the noninvasive detection of individual cancer cells. The Raman spectra of live, hematopoietic cells provide reliable molecular fingerprints that reflect their biochemical composition and biology. Populations of normal T and B lymphocytes from four healthy individuals, and cells from three leukemia patients were analyzed, and multiple intrinsic Raman markers associated with DNA and protein vibrational modes have been identified that exhibit excellent discriminating power for cancer cell identification. A combination of two multivariate statistical methods, principal component analysis (PCA) and linear discriminant analysis (LDA), was used to confirm the significance of these markers for identifying cancer cells and classifying the data. The results indicate that, on average, 95% of the normal cells and 90% of the patient cells were accurately classified into their respective cell types. We also provide evidence that these markers are unique to cancer cells and not purely a function of differences in their cellular activation.

  6. Utilizing Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy to investigate healthy and cancerous colon samples

    International Nuclear Information System (INIS)

    Barzegar, A.; Rezaei, H.; Malekfar, R.

    2012-01-01

    In this study, spontaneous Raman scattering and surface-enhanced Raman scattering, Surface-Enhanced Raman Spectroscopy spectra have been investigated. The samples which were kept in the formalin solution selected from the human's healthy and cancerous colon tissues. The Surface-Enhanced Raman Spectroscopy spectra were collected by adding colloidal solution contained silver nanoparticles to the top of the samples. The recorded spectra were compared for the spontaneous Raman spectra of healthy and cancerous colon samples. The spontaneous and surface enhanced Raman scattering data were also collected and compared for both healthy and damaged samples.

  7. A novel non-imaging optics based Raman spectroscopy device for transdermal blood analyte measurement

    Directory of Open Access Journals (Sweden)

    Chae-Ryon Kong

    2011-09-01

    Full Text Available Due to its high chemical specificity, Raman spectroscopy has been considered to be a promising technique for non-invasive disease diagnosis. However, during Raman excitation, less than one out of a million photons undergo spontaneous Raman scattering and such weakness in Raman scattered light often require highly efficient collection of Raman scattered light for the analysis of biological tissues. We present a novel non-imaging optics based portable Raman spectroscopy instrument designed for enhanced light collection. While the instrument was demonstrated on transdermal blood glucose measurement, it can also be used for detection of other clinically relevant blood analytes such as creatinine, urea and cholesterol, as well as other tissue diagnosis applications. For enhanced light collection, a non-imaging optical element called compound hyperbolic concentrator (CHC converts the wide angular range of scattered photons (numerical aperture (NA of 1.0 from the tissue into a limited range of angles accommodated by the acceptance angles of the collection system (e.g., an optical fiber with NA of 0.22. A CHC enables collimation of scattered light directions to within extremely narrow range of angles while also maintaining practical physical dimensions. Such a design allows for the development of a very efficient and compact spectroscopy system for analyzing highly scattering biological tissues. Using the CHC-based portable Raman instrument in a clinical research setting, we demonstrate successful transdermal blood glucose predictions in human subjects undergoing oral glucose tolerance tests.

  8. Raman spectroscopy peer review report

    International Nuclear Information System (INIS)

    Winkelman, W.D.; Eberlein, S.J.

    1994-09-01

    The Hanford Site in eastern Washington includes 177 underground storage tanks (UST), which contain waste materials produced during the production of nuclear fuels. The materials in the tanks must be characterized to support the retrieval, processing, and final disposition of the waste. Characterization is currently performed by removing waste samples for analyses in a hot cell or laboratory. A review of the Hanford Raman Spectroscopy Program was held in Richland on March 23 and 24, 1994. A team of principal investigators and researchers made presentations that covered both technical and programmatic aspects of the Hanford Site Raman work. After these presentations and discussions, the review panel met in a closed session to formalize a list of findings. The reviewers agreed that Raman spectroscopy is an excellent method to attack the tank waste characterization and screening problems that were presented. They agreed that there was a good chance that the method would be successful as presently envisioned. The reviewers provided the following primary recommendations: evaluation a laser with wavelength in the near infrared; provide optical filters at or near the sampling end of the fiber-optic probe; develop and implement a strategy for frequent calibration of the system; do not try to further increase Raman resolution at the expense of wavelength range; clearly identify and differentiate between requirements for providing a short-term operational system and requirements for optimizing a system for long-term field use; and determine the best optical configuration, which may include reduced fiber-optic diameter and/or short focal length and low F-number spectrographs

  9. Raman spectra of SDW superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Rout, G.C. [Condensed Matter Physics Group, Department of Physics, Government Science College, Chatrapur, Orissa 761 020 (India)]. E-mail: gcr@iopb.res.in; Bishoyi, K.C. [P.G. Department of Physics, F.M. College (Autonomous), Balasore, Orissa 756 001 (India); Behera, S.N. [Institute of Physics, Bhubaneswar 751 005 (India)

    2005-03-15

    We report the calculation of the phonon response of the coexistent spin density wave (SDW) and superconducting (SC) state and predict the observation of SC gap in the Raman spectra of rare-earth nickel borocarbide superconductors. The SDW state normally does not couple to the lattice and hence, the phonons in the system are not expected to be affected by the SDW state. But there is a possibility of observing SC gap mode in the Raman spectra of a SDW superconductor due to the coupling of the SC gap excitation to the Raman active phonons in the system via the electron-phonon (e-p) interaction. A theoretical model is used for the coexistent phase and electron-phonon interaction. Phonon Green's function is calculated by Zubarev's technique and the phonon self-energy due to e-p interaction which is given by electron density response function in the coexistent state corresponding to the SDW wave vector q = Q is evaluated. The results so obtained exhibit agreement with the experimental observations.

  10. Raman spectra of SDW superconductors

    International Nuclear Information System (INIS)

    Rout, G.C.; Bishoyi, K.C.; Behera, S.N.

    2005-01-01

    We report the calculation of the phonon response of the coexistent spin density wave (SDW) and superconducting (SC) state and predict the observation of SC gap in the Raman spectra of rare-earth nickel borocarbide superconductors. The SDW state normally does not couple to the lattice and hence, the phonons in the system are not expected to be affected by the SDW state. But there is a possibility of observing SC gap mode in the Raman spectra of a SDW superconductor due to the coupling of the SC gap excitation to the Raman active phonons in the system via the electron-phonon (e-p) interaction. A theoretical model is used for the coexistent phase and electron-phonon interaction. Phonon Green's function is calculated by Zubarev's technique and the phonon self-energy due to e-p interaction which is given by electron density response function in the coexistent state corresponding to the SDW wave vector q = Q is evaluated. The results so obtained exhibit agreement with the experimental observations

  11. Macro and micro Raman spectroscopy of YBa2Cu3O7 films and microbridges

    International Nuclear Information System (INIS)

    Bock, A.

    1993-01-01

    In the present work Raman spectroscopy is used as a method to characterize the properties of YBa 2 Cu 3 O 7 -films. This is done in the usual (macro-)Raman set-up as well as in the micro-Raman set-up where the spatial resolution is about one micron. To obtain comparable results the Raman spectra have to be corrected for the spectral response of the spectrometer. Therefore a calibration of the set-up was performed. The calibration can be used to determine spot temperatures by comparing Stokes and Anti-Stokes spectra. Two different methods are developed to correct for the straylight which is additionally observed in Raman-spectra of YBa 2 Cu 3 O 7 -films. Macro- as well as micro-Raman measurements are used to characterize the film properties, where care has been taken to avoid damages by the laser itself. The macro-Raman set-up is used to identify the properties of the film, such as orientation, oxygen-content and morphology. Outgrowths and other particles on the surface are on the other hand investigated by micro-Raman spectroscopy. The surface morphology is additionally characterized by scanning-electron-microscopy. This is compared to the Raman data. Raman spectra of epitaxial YBa 2 Cu 3 O 7 -films are taken as a function of the temperature and exciting wavelength. The influence on the phonons and on the electronic background is discussed separately. The obtained results are analyzed by comparison with single-crystal measurements. The investigation of YBa 2 Cu 3 O 7 -microbridges in the macro-Raman set-up allows a correlation between the local optical and electrical properties of the bridge. A method is presented which can account for the heating in the laser spot with high accuracy. This method allows to determine local critical current densities as well as local critical temperatures on the microbridge. It provides also the possibility to take Raman spectra at precise spot temperatures. (orig./WL)

  12. Combined IR-Raman vs vibrational sum-frequency heterospectral correlation spectroscopy

    Science.gov (United States)

    Roy, Sandra; Beutier, Clémentine; Hore, Dennis K.

    2018-06-01

    Vibrational sum-frequency generation spectroscopy is a valuable probe of surface structure, particularly when the same molecules are present in one of the adjacent bulk solid or solution phases. As a result of the non-centrosymmetric requirement of SFG, the signal generated is a marker of the extent to which the molecules are ordered in an arrangement that breaks the up-down symmetry at the surface. In cases where the accompanying changes in the bulk are of interest in understanding and interpreting the surface structure, simultaneous analysis of the bulk IR absorption or bulk Raman scattering is helpful, and may be used in heterospectral surface-bulk two-dimensional correlation. We demonstrate that, in such cases, generating a new type of bulk spectrum that combines the IR and Raman amplitudes is a better candidate than the individual IR and Raman spectra for the purpose of correlation with the SFG signal.

  13. Detection of single bacteria - causative agents of meningitis using raman microscopy

    Science.gov (United States)

    Baikova, T. V.; Minaeva, S. A.; Sundukov, A. V.; Svistunova, T. S.; Bagratashvili, V. N.; Alushin, M. V.; Gonchukov, S. A.

    2015-03-01

    Early diagnostics of meningitis is a very topical problem as it is a fulminant disease with a high level of mortality. The progress of this disease is, as a rule, accompanied by the appearance of bacteria in the cerebrospinal fluid (CSF) composition. The examination of the CSF is well known to be the only reliable approach to the identification of meningitis. However, the traditional biochemical analyses are time consuming and not always reliable, simple, and inexpensive, whereas the optical methods are poorly developed. This work is devoted to the study of Raman spectra of several bacterial cultures which are mainly present during meningitis. Raman microscopy is a prompt and noninvasive technique capable of providing reliable information about molecular-level alterations of biological objects at their minimal quantity and size. It was shown that there are characteristic lines in Raman spectra which can be the reliable markers for determination of bacterial form of meningitis at a level of a single bacterium.

  14. Detection of single bacteria – causative agents of meningitis using Raman microscopy

    International Nuclear Information System (INIS)

    Baikova, T V; Alushin, M V; Gonchukov, S A; Minaeva, S A; Bagratashvili, V N; Sundukov, A V; Svistunova, T S

    2015-01-01

    Early diagnostics of meningitis is a very topical problem as it is a fulminant disease with a high level of mortality. The progress of this disease is, as a rule, accompanied by the appearance of bacteria in the cerebrospinal fluid (CSF) composition. The examination of the CSF is well known to be the only reliable approach to the identification of meningitis. However, the traditional biochemical analyses are time consuming and not always reliable, simple, and inexpensive, whereas the optical methods are poorly developed. This work is devoted to the study of Raman spectra of several bacterial cultures which are mainly present during meningitis. Raman microscopy is a prompt and noninvasive technique capable of providing reliable information about molecular-level alterations of biological objects at their minimal quantity and size. It was shown that there are characteristic lines in Raman spectra which can be the reliable markers for determination of bacterial form of meningitis at a level of a single bacterium

  15. Automatic and objective oral cancer diagnosis by Raman spectroscopic detection of keratin with multivariate curve resolution analysis

    Science.gov (United States)

    Chen, Po-Hsiung; Shimada, Rintaro; Yabumoto, Sohshi; Okajima, Hajime; Ando, Masahiro; Chang, Chiou-Tzu; Lee, Li-Tzu; Wong, Yong-Kie; Chiou, Arthur; Hamaguchi, Hiro-O.

    2016-01-01

    We have developed an automatic and objective method for detecting human oral squamous cell carcinoma (OSCC) tissues with Raman microspectroscopy. We measure 196 independent Raman spectra from 196 different points of one oral tissue sample and globally analyze these spectra using a Multivariate Curve Resolution (MCR) analysis. Discrimination of OSCC tissues is automatically and objectively made by spectral matching comparison of the MCR decomposed Raman spectra and the standard Raman spectrum of keratin, a well-established molecular marker of OSCC. We use a total of 24 tissue samples, 10 OSCC and 10 normal tissues from the same 10 patients, 3 OSCC and 1 normal tissues from different patients. Following the newly developed protocol presented here, we have been able to detect OSCC tissues with 77 to 92% sensitivity (depending on how to define positivity) and 100% specificity. The present approach lends itself to a reliable clinical diagnosis of OSCC substantiated by the “molecular fingerprint” of keratin.

  16. Raman spectroscopy applied to identify metabolites in urine of physically active subjects.

    Science.gov (United States)

    Moreira, Letícia Parada; Silveira, Landulfo; da Silva, Alexandre Galvão; Fernandes, Adriana Barrinha; Pacheco, Marcos Tadeu Tavares; Rocco, Débora Dias Ferraretto Moura

    2017-11-01

    Raman spectroscopy is a rapid and non-destructive technique suitable for biological fluids analysis. In this work, dispersive Raman spectroscopy has been employed as a rapid and nondestructive technique to detect the metabolites in urine of physically active subjects before and after vigorous 30min pedaling or running compared to sedentary subjects. For so, urine samples from 9 subjects were obtained before and immediately after physical activities and submitted to Raman spectroscopy (830nm excitation, 250mW laser power, 20s integration time) and compared to urine from 5 sedentary subjects. The Raman spectra of urine from sedentary showed peaks related to urea, creatinine, ketone bodies, phosphate and other nitrogenous compounds. These metabolic biomarkers presented peaks with different intensities in the urine of physically active individuals after exercises compared to before, measured by the intensity of selected peaks the Raman spectra, which means different concentrations after training. These peaks presented different intensity values for each subject before physical activity, also behaving differently compared to the post-training: some subjects presented increase while others decrease the intensity. Raman spectroscopy may allow the development of a rapid and non-destructive test for metabolic evaluation of the physical training in active and trained subjects using urine samples, allowing nutrition adjustment with the sport's performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Difference Raman spectroscopy of DNA molecules

    International Nuclear Information System (INIS)

    Anokhin, Andrey S; Yuzyuk, Yury I; Gorelik, Vladimir S; Dovbeshko, Galina I; Pyatyshev, Alexander Yu

    2015-01-01

    In this paper the micro-Raman spectra of calf DNA for different points of DNA sample have been recorded. The Raman spectra were made with help of difference Raman spectroscopy technique. Raman spectra were recorded with high spatial resolution from different points of the wet and dry samples in different spectral range (100÷4000cm −1 ) using two lasers: argon (514.5 nm) and helium -neon (632.8 nm). The significant differences in the Raman spectra for dry and wet DNA and for different points of DNA molecules were observed. The obtained data on difference Raman scattering spectra of DNA molecules may be used for identification of DNA types and for analysis of genetic information associated with the molecular structure of this molecule

  18. Raman amplification in optical communication systems

    DEFF Research Database (Denmark)

    Kjær, Rasmus

    2008-01-01

    Fiber Raman amplifiers are investigated with the purpose of identifying new applications and limitations for their use in optical communication systems. Three main topics are investigated, namely: New applications of dispersion compensating Raman amplifiers, the use Raman amplification to increase...... fiberbaserede Raman-forstærkere med henblik på at identificere både deres begrænsninger og nye anvendelsesmuligheder i optiske kommunikationssystemer. En numerisk forstærkermodel er blevet udviklet for bedre at forstå forstærkerens dynamik, dens gain- og støjbegrænsninger. Modellen bruges til at forudsige...... forstærkerens statiske og dynamiske egenskaber, og det eftervises at dens resultater er i god overensstemmelse med eksperimentelle forstærkermålinger. Dispersions-kompenserende fiber er på grund af sin store udbredelse og fiberens høje Raman gain effektivitet et meget velegnet Raman gain-medium. Tre nye...

  19. Raman technique application for rubber blends characterization

    Directory of Open Access Journals (Sweden)

    Smitthipong, W.

    2007-11-01

    Full Text Available Raman spectroscopy has been employed in a number of studies to examine the morphological changes in a variety of materials. It is a non-destructive analysis method and an equally useful method for the investigation of material structure. Recently, Raman spectroscopy has been developed to employ as an imaging instrumentation. Sample surface scanning in X- and Y-axis and sample depth (Z-axis can be carried out by modifying the focus of the laser beam from the Raman microscope. Therefore, three-dimensional images can be thus built by using special software. The surface and bulk properties of immiscible rubber blend were investigated by Raman spectroscopy. The results obtained by Raman spectroscopy were in good agreement with those of Scanning Electron Microscope (SEM. The combination of Raman spectrometry and SEM clearly elucidates the identification of phases between the dispersed phase and the matrix (continuous phase of the immiscible rubber blends.

  20. Enhanced Raman scattering in porous silicon grating.

    Science.gov (United States)

    Wang, Jiajia; Jia, Zhenhong; Lv, Changwu

    2018-03-19

    The enhancement of Raman signal on monocrystalline silicon gratings with varying groove depths and on porous silicon grating were studied for a highly sensitive surface enhanced Raman scattering (SERS) response. In the experiment conducted, porous silicon gratings were fabricated. Silver nanoparticles (Ag NPs) were then deposited on the porous silicon grating to enhance the Raman signal of the detective objects. Results show that the enhancement of Raman signal on silicon grating improved when groove depth increased. The enhanced performance of Raman signal on porous silicon grating was also further improved. The Rhodamine SERS response based on Ag NPs/ porous silicon grating substrates was enhanced relative to the SERS response on Ag NPs/ porous silicon substrates. Ag NPs / porous silicon grating SERS substrate system achieved a highly sensitive SERS response due to the coupling of various Raman enhancement factors.

  1. Analytic calculations of hyper-Raman spectra from density functional theory hyperpolarizability gradients

    Energy Technology Data Exchange (ETDEWEB)

    Ringholm, Magnus; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø (Norway); Bast, Radovan [Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, S-10691 Stockholm (Sweden); PDC Center for High Performance Computing, Royal Institute of Technology, S-10044 Stockholm (Sweden); Oggioni, Luca [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø (Norway); Department of Physics G. Occhialini, University of Milano Bicocca, Piazza della scienza 3, 20126 Milan (Italy); Ekström, Ulf [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo (Norway)

    2014-10-07

    We present the first analytic calculations of the geometrical gradients of the first hyperpolarizability tensors at the density-functional theory (DFT) level. We use the analytically calculated hyperpolarizability gradients to explore the importance of electron correlation effects, as described by DFT, on hyper-Raman spectra. In particular, we calculate the hyper-Raman spectra of the all-trans and 11-cis isomers of retinal at the Hartree-Fock (HF) and density-functional levels of theory, also allowing us to explore the sensitivity of the hyper-Raman spectra on the geometrical characteristics of these structurally related molecules. We show that the HF results, using B3LYP-calculated vibrational frequencies and force fields, reproduce the experimental data for all-trans-retinal well, and that electron correlation effects are of minor importance for the hyper-Raman intensities.

  2. Spectral Collection of Polyethylene Pellets at nearly Cryogenic Temperature to Improve Selectivity of Raman Measurement

    International Nuclear Information System (INIS)

    Kim, Saetbyeol; Lee, Sanguk; Hwang, Jinyoung; Chung, Hoeil

    2010-01-01

    Raman spectroscopy has been extensively used for analysis of diverse polymer samples. Normally, Raman spectral collection of samples is routinely performed at room temperature for convenience. However, the feasibility of improving spectral selectivity and the resulting quantitative accuracy, when samples are measured at nearly cryogenic temperature, has not been investigated. For this purpose, we attempted to measure the density of polyethylene (PE) pellets at cryogenic temperatures and the resulting accuracies were compared with that from room temperature measurement. Initially, each of 25 PE sample was allowed to cool down to cryogenic temperature and the corresponding Raman spectra were continuously collected while the temperature of sample increased. When the temperature of sample was at cryogenic temperature, the resulting band widths were narrower compared to those at room temperature, thereby improving the accuracy of density measurement. In overall, the proposed Raman scheme is simple and efficient; therefore, it could be further applied for analysis of other polymers.

  3. Remote Raman microimaging using an AOTF and a spatially coherent microfiber optical probe

    International Nuclear Information System (INIS)

    Trey Skinner, H.; Cooney, T.F.; Sharma, S.K.; Angel, S.M.

    1996-01-01

    A fiber-optic Raman microimaging probe is described that is suitable for acquiring high-spatial-resolution Raman images in sampling situations with no clear line of sight. A high-power near-infrared diode laser combined with an acousto-optic tunable filter and a spatially coherent optical fiber bundle allow fluorescence-free Raman images of remotely located samples to be acquired at distances up to several meters. The feasibility of this technique is demonstrated with Raman images of (1) a pellet containing a mixture of a highly scattering sample, bis-methylstyrylbenzene (BMSB), KCl, and graphite, and (2) a partially graphitized diamond. These images clearly show phase boundaries over an area of approximately 0.1 mm 2 with ∼4-μm resolution. copyright 1996 Society for Applied Spectroscopy

  4. Probing the evaporation of ternary ethanol-methanol-water droplets by cavity enhanced Raman scattering.

    Science.gov (United States)

    Howle, Chris R; Homer, Chris J; Hopkins, Rebecca J; Reid, Jonathan P

    2007-10-21

    Cavity enhanced Raman scattering is used to characterise the evolving composition of ternary aerosol droplets containing methanol, ethanol and water during evaporation into a dry nitrogen atmosphere. Measurements made using non-linear stimulated Raman scattering from these ternary alcohol-water droplets allow the in situ determination of the concentration of the two alcohol components with high accuracy. The overlapping spontaneous Raman bands of the two alcohol components, arising from C-H stretching vibrational modes, are spectrally-resolved in stimulated Raman scattering measurements. We also demonstrate that the evaporation measurements are consistent with a quasi-steady state evaporation model, which can be used to interpret the evaporation dynamics occurring at a range of pressures at a particular evaporation time.

  5. Enhancement of Raman scattering from monolayer graphene by photonic crystal nanocavities

    Science.gov (United States)

    Kimura, Issei; Yoshida, Masahiro; Sota, Masaki; Inoue, Taiki; Chiashi, Shohei; Maruyama, Shigeo; Kato, Yuichiro K.

    Monolayer graphene is an atomically thin two-dimensional material that shows strong Raman scattering, while photonic crystal nanocavities with small mode volumes allow for efficient optical coupling at the nanoscale. Here we demonstrate resonant enhancement of graphene Raman G' band by coupling to photonic crystal cavity modes. Hexagonal-lattice photonic crystal L3 cavities are fabricated from silicon-on-insulator substrates. and monolayer graphene sheets grown by chemical vapor deposition are transferred onto the nanocavities. Excitation wavelength dependence of Raman spectra show that the Raman intensity is enhanced when the G' peak is in resonance with the cavity mode. By performing imaging measurements, we confirm that such an enhancement is only observed at the cavity position. Work supported by JSPS KAKENHI Grant Numbers JP16K13613, JP25107002 and MEXT (Photon Frontier Network Program, Nanotechnology Platform).

  6. Raman Spectroscopy with simple optic components

    International Nuclear Information System (INIS)

    Mendoza, Mario; Cunya, Eduardo; Olivera, Paula

    2014-01-01

    Raman Spectroscopy is .a high resolution photonics technique that provides chemical and structural information of almost any material, organic or inorganic compound. In this report we describe the implementation of a system based on the principle of Raman scattering, developed to analyze solid samples. The spectrometer integrates an optical bench coupled to an optical fiber and a green laser source of 532 nm. The spectrometer was tested obtaining the Naphthalene and the Yellow 74 Pigment Raman patterns. (authors).

  7. Reduction of Raman scattering and fluorescence from anvils in high pressure Raman scattering

    Science.gov (United States)

    Dierker, S. B.; Aronson, M. C.

    2018-05-01

    We describe a new design and use of a high pressure anvil cell that significantly reduces the Raman scattering and fluorescence from the anvils in high pressure Raman scattering experiments. The approach is particularly useful in Raman scattering studies of opaque, weakly scattering samples. The effectiveness of the technique is illustrated with measurements of two-magnon Raman scattering in La2CuO4.

  8. Sparse-sampling with time-encoded (TICO) stimulated Raman scattering for fast image acquisition

    Science.gov (United States)

    Hakert, Hubertus; Eibl, Matthias; Karpf, Sebastian; Huber, Robert

    2017-07-01

    Modern biomedical imaging modalities aim to provide researchers a multimodal contrast for a deeper insight into a specimen under investigation. A very promising technique is stimulated Raman scattering (SRS) microscopy, which can unveil the chemical composition of a sample with a very high specificity. Although the signal intensities are enhanced manifold to achieve a faster acquisition of images if compared to standard Raman microscopy, there is a trade-off between specificity and acquisition speed. Commonly used SRS concepts either probe only very few Raman transitions as the tuning of the applied laser sources is complicated or record whole spectra with a spectrometer based setup. While the first approach is fast, it reduces the specificity and the spectrometer approach records whole spectra -with energy differences where no Raman information is present-, which limits the acquisition speed. Therefore, we present a new approach based on the TICO-Raman concept, which we call sparse-sampling. The TICO-sparse-sampling setup is fully electronically controllable and allows probing of only the characteristic peaks of a Raman spectrum instead of always acquiring a whole spectrum. By reducing the spectral points to the relevant peaks, the acquisition time can be greatly reduced compared to a uniformly, equidistantly sampled Raman spectrum while the specificity and the signal to noise ratio (SNR) are maintained. Furthermore, all laser sources are completely fiber based. The synchronized detection enables a full resolution of the Raman signal, whereas the analogue and digital balancing allows shot noise limited detection. First imaging results with polystyrene (PS) and polymethylmethacrylate (PMMA) beads confirm the advantages of TICO sparse-sampling. We achieved a pixel dwell time as low as 35 μs for an image differentiating both species. The mechanical properties of the applied voice coil stage for scanning the sample currently limits even faster acquisition.

  9. Dengue viral infection monitoring from diagnostic to recovery using Raman spectroscopy

    International Nuclear Information System (INIS)

    Firdous, Shamaraz; Anwar, Shahzad

    2015-01-01

    Raman spectroscopy has been found useful for monitoring the dengue patient diagnostic and recovery after infection. In the present work, spectral changes that occurred in the blood sera of a dengue infected patient and their possible utilization for monitoring of infection and recovery were investigated using 532 nm wavelength of light. Raman spectrum peaks for normal and after recovery of dengue infection are observed at 1527, 1170, 1021 cm −1 attributed to guanine, adenine, TRP (protein) carbohydrates peak for solids, and skeletal C–C stretch of lipids acyl chains. Where in the dengue infected patient Raman peaks are at 1467, 1316, 1083, and 860 attributed to CH2/CH3 deformation of lipids and collagen, guanine (B, Z-marker), lipids and protein bands. Due to antibodies and antigen reactions the portions and lipids concentration totally changes in dengue viral infection compared to normal blood. These chemical changes in blood sera of dengue viral infection in human blood may be used as possible markers to indicate successful remission and suggest that Raman spectroscopy may provide a rapid optical method for continuous monitoring or evaluation of a protein bands and an antibodies population. Accumulate acquisition mode was used to reduce noise and thermal fluctuation and improve signal to noise ratio. This in vitro dengue infection monitoring methodology will lead in vivo noninvasive on-line monitoring and screening of viral infected patients and their recovery. (letter)

  10. Study of hemoglobin response to mid-ultraviolet (UVB) radiation using micro-Raman spectroscopy

    Science.gov (United States)

    Huang, Y. Y.; Li, N.; Zhou, S. N.; Huang, Z. T.; Zhuang, Z. F.

    2017-09-01

    Confocal micro-Raman spectroscopy is employed to monitor the damage to haemoglobin from mid-ultraviolet (UVB) radiation. We obtained the Raman spectra of an erythrocyte, which indicated that a peroxidation reaction occurs after UVB radiation. Further, the surface enhanced Raman scattering (SERS) spectra of isolated haemoglobin show that the intensities of the 1375 and 1399 cm-1 bands, which are markers of haem aggregation, obviously increase with prolonged UVB irradiation. This increase reveals that haem aggregation occurs in the peroxidation of erythrocytes. The UV-Vis spectra of isolated haemoglobin indicate that the Soret band, which is indicative of excitonic interactions in the aggregated haems, has a redshift ( 12 nm) after 30 min of UVB irradiation of erythrocytes. It can be deduced that an excitonic interaction occurs in the aggregated haems, which is caused by haemoglobin denaturation following UVB irradiation. In addition, the changes of the Raman marker bands during aggregation primarily originate from excitonic interactions. Throughout the process, a higher UVB radiation dose causes greater damage to haemoglobin.

  11. What Good is Raman Water Vapor Lidar?

    Science.gov (United States)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  12. Raman Spectroscopy and its Application in Nanostructures

    CERN Document Server

    Zhang, Shu-Lin

    2012-01-01

    Raman Spectroscopy and its Application in Nanostructures is an original and timely contribution to a very active area of physics and materials science research. This book presents the theoretical and experimental phenomena of Raman spectroscopy, with specialized discussions on the physical fundamentals, new developments and main features in low-dimensional systems of Raman spectroscopy. In recent years physicists, materials scientists and chemists have devoted increasing attention to low-dimensional systems and as Raman spectroscopy can be used to study and analyse such materials as carbon nan

  13. Raman Mapping for the Investigation of Nano-phased Materials

    Science.gov (United States)

    Gouadec, G.; Bellot-Gurlet, L.; Baron, D.; Colomban, Ph.

    Nanosized and nanophased materials exhibit special properties. First they offer a good compromise between the high density of chemical bonds by unit volume, needed for good mechanical properties and the homogeneity of amorphous materials that prevents crack initiation. Second, interfaces are in very high concentration and they have a strong influence on many electrical and redox properties. The analysis of nanophased, low crystallinity materials is not straigtforward. The recording of Raman spectra with a geometric resolution close to 0.5 \\upmu {text{ m}^3} and the deep understanding of the Raman signature allow to locate the different nanophases and to predict the properties of the material. Case studies are discussed: advanced polymer fibres, ceramic fibres and composites, textured piezoelectric ceramics and corroded (ancient) steel.

  14. Raman-laser spectroscopy of Wannier-Stark states

    International Nuclear Information System (INIS)

    Tackmann, G.; Pelle, B.; Hilico, A.; Beaufils, Q.; Pereira dos Santos, F.

    2011-01-01

    Raman lasers are used as a spectroscopic probe of the state of atoms confined in a shallow one-dimensional (1D) vertical lattice. For sufficiently long laser pulses, resolved transitions in the bottom band of the lattice between Wannier Stark states corresponding to neighboring wells are observed. Couplings between such states are measured as a function of the lattice laser intensity and compared to theoretical predictions, from which the lattice depth can be extracted. Limits to the linewidth of these transitions are investigated. Transitions to higher bands can also be induced, as well as between transverse states for tilted Raman beams. All these features allow for a precise characterization of the trapping potential and for an efficient control of the atomic external degrees of freedom.

  15. Raman scattering in air: four-dimensional analysis

    International Nuclear Information System (INIS)

    Lin, Y.; Kessler, T.J.; Lawrence, G.N.

    1994-01-01

    Inertial confinement fusion requires propagation of high-intensity, pulse-shaped IR and UV laser beams through long air paths. Such beams are subject to energy losses and decreased beam quality as a result by stimulated rotational Raman scattering (SRRS). In this paper we describe how quantum fluctuations, stimulated Raman amplification, diffraction propagation, and optical aberrations interact during the propagation of short, high-power laser pulses using a four-dimensional (4-D) model of the optical beams and the medium. The 4-D model has been incorporated into a general optical-propagation computer program that allows the entire optical system to be modeled and that is implemented on high-end personal computers, workstations, and supercomputers. The numerical model is used to illustrate important phenomena in the evolution of the optical beams. In addition, the OMEGA Upgrade laser system is used as a design case to illustrate the various considerations for inertial confinement fusion laser design

  16. Rapid Classification of Ordinary Chondrites Using Raman Spectroscopy

    Science.gov (United States)

    Fries, M.; Welzenbach, L.

    2014-01-01

    Classification of ordinary chondrites is typically done through measurements of the composition of olivine and pyroxenes. Historically, this measurement has usually been performed via electron microprobe, oil immersion or other methods which can be costly through lost sample material during thin section preparation. Raman microscopy can perform the same measurements but considerably faster and with much less sample preparation allowing for faster classification. Raman spectroscopy can facilitate more rapid classification of large amounts of chondrites such as those retrieved from North Africa and potentially Antarctica, are present in large collections, or are submitted to a curation facility by the public. With development, this approach may provide a completely automated classification method of all chondrite types.

  17. Dental caries imaging using hyperspectral stimulated Raman scattering microscopy

    Science.gov (United States)

    Wang, Zi; Zheng, Wei; Jian, Lin; Huang, Zhiwei

    2016-03-01

    We report the development of a polarization-resolved hyperspectral stimulated Raman scattering (SRS) imaging technique based on a picosecond (ps) laser-pumped optical parametric oscillator system for label-free imaging of dental caries. In our imaging system, hyperspectral SRS images (512×512 pixels) in both fingerprint region (800-1800 cm-1) and high-wavenumber region (2800-3600 cm-1) are acquired in minutes by scanning the wavelength of OPO output, which is a thousand times faster than conventional confocal micro Raman imaging. SRS spectra variations from normal enamel to caries obtained from the hyperspectral SRS images show the loss of phosphate and carbonate in the carious region. While polarization-resolved SRS images at 959 cm-1 demonstrate that the caries has higher depolarization ratio. Our results demonstrate that the polarization resolved-hyperspectral SRS imaging technique developed allows for rapid identification of the biochemical and structural changes of dental caries.

  18. Raman microspectroscopy, surface-enhanced Raman scattering microspectroscopy, and stable-isotope Raman microspectroscopy for biofilm characterization.

    Science.gov (United States)

    Ivleva, Natalia P; Kubryk, Patrick; Niessner, Reinhard

    2017-07-01

    Biofilms represent the predominant form of microbial life on our planet. These aggregates of microorganisms, which are embedded in a matrix formed by extracellular polymeric substances, may colonize nearly all interfaces. Detailed knowledge of microorganisms enclosed in biofilms as well as of the chemical composition, structure, and functions of the complex biofilm matrix and their changes at different stages of the biofilm formation and under various physical and chemical conditions is relevant in different fields. Important research topics include the development and improvement of antibiotics and medical devices and the optimization of biocides, antifouling strategies, and biological wastewater treatment. Raman microspectroscopy is a capable and nondestructive tool that can provide detailed two-dimensional and three-dimensional chemical information about biofilm constituents with the spatial resolution of an optical microscope and without interference from water. However, the sensitivity of Raman microspectroscopy is rather limited, which hampers the applicability of Raman microspectroscopy especially at low biomass concentrations. Fortunately, the resonance Raman effect as well as surface-enhanced Raman scattering can help to overcome this drawback. Furthermore, the combination of Raman microspectroscopy with other microscopic techniques, mass spectrometry techniques, or particularly with stable-isotope techniques can provide comprehensive information on monospecies and multispecies biofilms. Here, an overview of different Raman microspectroscopic techniques, including resonance Raman microspectroscopy and surface-enhanced Raman scattering microspectroscopy, for in situ detection, visualization, identification, and chemical characterization of biofilms is given, and the main feasibilities and limitations of these techniques in biofilm research are presented. Future possibilities of and challenges for Raman microspectroscopy alone and in combination with other

  19. Discrimination and classification of acute lymphoblastic leukemia cells by Raman spectroscopy

    Science.gov (United States)

    Managò, Stefano; Valente, Carmen; Mirabelli, Peppino; De Luca, Anna Chiara

    2015-05-01

    Currently, a combination of technologies is typically required to identify and classify leukemia cells. These methods often lack the specificity and sensitivity necessary for early and accurate diagnosis. Here, we demonstrate the use of Raman spectroscopy to identify normal B cells, collected from healthy patients, and three ALL cell lines (RS4;11, REH and MN60 at different differentiation level, respectively). Raman markers associated with DNA and protein vibrational modes have been identified that exhibit excellent discriminating power for leukemia cell identification. Principal Component Analysis was finally used to confirm the significance of these markers for identify leukemia cells and classifying the data. The obtained results indicate a sorting accuracy of 96% between the three leukemia cell lines.

  20. Raman spectroscopic sensing of carbonate intercalation in breast microcalcifications at stereotactic biopsy

    Science.gov (United States)

    Sathyavathi, R.; Saha, Anushree; Soares, Jaqueline S.; Spegazzini, Nicolas; McGee, Sasha; Rao Dasari, Ramachandra; Fitzmaurice, Maryann; Barman, Ishan

    2015-04-01

    Microcalcifications are an early mammographic sign of breast cancer and frequent target for stereotactic biopsy. Despite their indisputable value, microcalcifications, particularly of the type II variety that are comprised of calcium hydroxyapatite deposits, remain one of the least understood disease markers. Here we employed Raman spectroscopy to elucidate the relationship between pathogenicity of breast lesions in fresh biopsy cores and composition of type II microcalcifications. Using a chemometric model of chemical-morphological constituents, acquired Raman spectra were translated to characterize chemical makeup of the lesions. We find that increase in carbonate intercalation in the hydroxyapatite lattice can be reliably employed to differentiate benign from malignant lesions, with algorithms based only on carbonate and cytoplasmic protein content exhibiting excellent negative predictive value (93-98%). Our findings highlight the importance of calcium carbonate, an underrated constituent of microcalcifications, as a spectroscopic marker in breast pathology evaluation and pave the way for improved biopsy guidance.

  1. Surface-enhanced Raman scattering based nonfluorescent probe for multiplex DNA detection.

    Science.gov (United States)

    Sun, Lan; Yu, Chenxu; Irudayaraj, Joseph

    2007-06-01

    To provide rapid and accurate detection of DNA markers in a straightforward, inexpensive, and multiplex format, an alternative surface-enhanced Raman scattering based probe was designed and fabricated to covalently attach both DNA probing sequence and nonfluorescent Raman tags to the surface of gold nanoparticles (DNA-AuP-RTag). The intensity of Raman signal of the probes could be controlled through the surface coverage of the nonfluorescent Raman tags (RTags). Detection sensitivity of these probes could be optimized by fine-tuning the amount of DNA molecules and RTags on the probes. Long-term stability of the DNA-AuP-RTag probes was found to be good (over 3 months). Excellent multiplexing capability of the DNA-AuP-RTag scheme was demonstrated by simultaneous identification of up to eight probes in a mixture. Detection of hybridization of single-stranded DNA to its complementary targets was successfully accomplished with a long-term goal to use nonfluorescent RTags in a Raman-based DNA microarray platform.

  2. Raman spectroscopic study of keratin 8 knockdown oral squamous cell carcinoma derived cells

    Science.gov (United States)

    Singh, S. P.; Alam, Hunain; Dmello, Crismita; Vaidya, Milind M.; Krishna, C. Murali

    2012-03-01

    Keratins are one of most widely used markers for oral cancers. Keratin 8 and 18 are expressed in simple epithelia and perform both mechanical and regulatory functions. Their expression are not seen in normal oral tissues but are often expressed in oral squamous cell carcinoma. Aberrant expression of keratins 8 and 18 is most common change in human oral cancer. Optical-spectroscopic methods are sensitive to biochemical changes and being projected as novel diagnostic tools for cancer diagnosis. Aim of this study was to evaluate potentials of Raman spectroscopy in detecting minor changes associated with differential level of keratin expression in tongue-cancer-derived AW13516 cells. Knockdown clones for K8 were generated and synchronized by growing under serum-free conditions. Cell pellets of three independent experiments in duplicate were used for recording Raman spectra with fiberoptic-probe coupled HE-785 Raman-instrument. A total of 123 and 96 spectra from knockdown clones and vector controls respectively in 1200-1800 cm-1 region were successfully utilized for classification using LDA. Two separate clusters with classification-efficiency of ~95% were obtained. Leave-one-out cross-validation yielded ~63% efficiency. Findings of the study demonstrate the potentials of Raman spectroscopy in detecting even subtle changes such as variations in keratin expression levels. Future studies towards identifying Raman signals from keratin in oral cells can help in precise cancer diagnosis.

  3. Raman Spectroscopy Provides a Powerful Diagnostic Tool for Accurate Determination of Albumin Glycation

    OpenAIRE

    Dingari, Narahara Chari; Kang, Jeon Woong; Dasari, Ramachandra R.; Barman, Ishan; Horowitz, Gary Leigh

    2012-01-01

    We present the first demonstration of glycated albumin detection and quantification using Raman spectroscopy without the addition of reagents. Glycated albumin is an important marker for monitoring the long-term glycemic history of diabetics, especially as its concentrations, in contrast to glycated hemoglobin levels, are unaffected by changes in erythrocyte life times. Clinically, glycated albumin concentrations show a strong correlation with the development of serious diabetes complications...

  4. Discrimination of bladder cancer cells from normal urothelial cells with high specificity and sensitivity: combined application of atomic force microscopy and modulated Raman spectroscopy.

    Science.gov (United States)

    Canetta, Elisabetta; Riches, Andrew; Borger, Eva; Herrington, Simon; Dholakia, Kishan; Adya, Ashok K

    2014-05-01

    Atomic force microscopy (AFM) and modulated Raman spectroscopy (MRS) were used to discriminate between living normal human urothelial cells (SV-HUC-1) and bladder tumour cells (MGH-U1) with high specificity and sensitivity. MGH-U1 cells were 1.5-fold smaller, 1.7-fold thicker and 1.4-fold rougher than normal SV-HUC-1 cells. The adhesion energy was 2.6-fold higher in the MGH-U1 cells compared to normal SV-HUC-1 cells, which possibly indicates that bladder tumour cells are more deformable than normal cells. The elastic modulus of MGH-U1 cells was 12-fold lower than SV-HUC-1 cells, suggesting a higher elasticity of the bladder cancer cell membranes. The biochemical fingerprints of cancer cells displayed a higher DNA and lipid content, probably due to an increase in the nuclear to cytoplasm ratio. Normal cells were characterized by higher protein contents. AFM studies revealed a decrease in the lateral dimensions and an increase in thickness of cancer cells compared to normal cells; these studies authenticate the observations from MRS. Nanostructural, nanomechanical and biochemical profiles of bladder cells provide qualitative and quantitative markers to differentiate between normal and cancerous cells at the single cellular level. AFM and MRS allow discrimination between adhesion energy, elasticity and Raman spectra of SV-HUC-1 and MGH-U1 cells with high specificity (83, 98 and 95%) and sensitivity (97, 93 and 98%). Such single-cell-level studies could have a pivotal impact on the development of AFM-Raman combined methodologies for cancer profiling and screening with translational significance. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Diagnostic markers for germ cell neoplasms

    DEFF Research Database (Denmark)

    Rajpert-De Meyts, Ewa; Nielsen, John E; Skakkebaek, Niels E

    2015-01-01

    This concise review summarises tissue and serum markers useful for differential diagnosis of germ cell tumours (GCTs), with focus on the most common testicular GCTs (TGCTs). GCTs are characterised by phenotypic heterogeneity due to largely retained embryonic pluripotency and aberrant somatic diff...... of molecular markers, which allow specific diagnosis of various subtypes of GCT and are very useful for early detection at the precursor stage and for monitoring of patients during the follow-up....

  6. Development of Femtosecond Stimulated Raman Spectroscopy: Stimulated Raman Gain via Elimination of Cross Phase Modulation

    International Nuclear Information System (INIS)

    Jin, Seung Min; Lee, Young Jong; Yu, Jong Wan; Kim, Seong Keun

    2004-01-01

    We have developed a new femtosecond probe technique by using stimulated Raman spectroscopy. The cross phase modulation in femtosecond time scale associated with off-resonant interaction was shown to be eliminated by integrating the transient gain/loss signal over the time delay between the Raman pump pulse and the continuum pulse. The stimulated Raman gain of neat cyclohexane was obtained to demonstrate the feasibility of the technique. Spectral and temporal widths of stimulated Raman spectra were controlled by using a narrow band pass filter. Femtosecond stimulated Raman spectroscopy was proposed as a highly useful probe in time-resolved vibrational spectroscopy

  7. Biological image construction by using Raman radiation and Pca: preliminary results

    International Nuclear Information System (INIS)

    Martinez E, J. C.; Cordova F, T.; Hugo R, V.

    2015-10-01

    Full text: In the last years, the Raman spectroscopy (Rs) technique has had some applications in the study and analysis of biological samples, due to it is able to detect concentrations or presence of certain organic and inorganic compounds of medical interest. In this work, raw data were obtained through measurements in selected points on a square regions in order to detect specific organic / inorganic compounds on biological samples. Gold nano stars samples were prepared and coated with membrane markers (CD 10+ and CD 19+) and diluted in leukemic B lymphocytes. Each data block was evaluated independently by the method of principal component analysis (Pca) in order to find representative dimensionless values (Cp) for each Raman spectrum in a specific coordinate. Each Cp was normalized in a range of 0-255 in order to generate a representative image of 8 bits of the region under study. Data acquisition was performed with Raman microscopy system Renishaw in Via in the range of 550 to 1700 cm-1 with a 785 nm laser source, with a power of 17 m W and 15 s of exposure time were used for each spectrum. In preliminary results could detect the presence of molecular markers CD 10+ and CD 19+ with gold nano stars and discrimination between both markers. The results suggest conducting studies with specific concentrations organic and inorganic materials. (Author)

  8. Biological image construction by using Raman radiation and Pca: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Martinez E, J. C. [IPN, Unidad Profesional Interdisciplinaria de Ingenieria, Campus Guanajuato, Av. Mineral de Valenciana 200, Col. Fracc. Industrial Puerto Interior, 36275 Silao, Guanajuato (Mexico); Cordova F, T. [Universidad de Guanajuato, DIC, Departamento de Ingenieria Fisica, Loma del Bosque No. 103, Col. Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Hugo R, V., E-mail: jcmartineze@ipn.mx [Universidad de Guadalajara, Centro Universitario de Tonala, Morelos No. 180, 69584 Tonala, Jalisco (Mexico)

    2015-10-15

    Full text: In the last years, the Raman spectroscopy (Rs) technique has had some applications in the study and analysis of biological samples, due to it is able to detect concentrations or presence of certain organic and inorganic compounds of medical interest. In this work, raw data were obtained through measurements in selected points on a square regions in order to detect specific organic / inorganic compounds on biological samples. Gold nano stars samples were prepared and coated with membrane markers (CD 10+ and CD 19+) and diluted in leukemic B lymphocytes. Each data block was evaluated independently by the method of principal component analysis (Pca) in order to find representative dimensionless values (Cp) for each Raman spectrum in a specific coordinate. Each Cp was normalized in a range of 0-255 in order to generate a representative image of 8 bits of the region under study. Data acquisition was performed with Raman microscopy system Renishaw in Via in the range of 550 to 1700 cm-1 with a 785 nm laser source, with a power of 17 m W and 15 s of exposure time were used for each spectrum. In preliminary results could detect the presence of molecular markers CD 10+ and CD 19+ with gold nano stars and discrimination between both markers. The results suggest conducting studies with specific concentrations organic and inorganic materials. (Author)

  9. Infrared and Raman spectroscopy: principles and spectral interpretation

    National Research Council Canada - National Science Library

    Larkin, Peter

    2011-01-01

    "Infrared and Raman Spectroscopy: Principles and Spectral Interpretation explains the background, core principles and tests the readers understanding of the important techniques of Infrared and Raman Spectroscopy...

  10. Four-wave-mixing and nonlinear cavity dumping of 280 picosecond 2nd Stokes pulse at 1.3 μm from Nd:SrMoO4 self-Raman laser

    International Nuclear Information System (INIS)

    Smetanin, S N; Ivleva, L I; Jelínek, M Jr; Kubeček, V; Jelínková, H; Shurygin, A S

    2016-01-01

    The 280 picosecond 2nd Stokes Raman pulses at 1.3 μm were generated directly from the miniature diode-pumped Nd:SrMoO 4 self-Raman laser. Using the 90° phase matching insensitive to the angular mismatch, the self-Raman laser allowed for the achievement of the four-wave-mixing generation of the 2nd Stokes Raman pulse directly in the active Nd:SrMoO 4 crystal at stimulated Raman scattering (SRS) self-conversion of the laser radiation. The passive Cr:YAG Q-switching and nonlinear cavity dumping was used without any phase locking device. (letter)

  11. Tantalum markers in radiography

    International Nuclear Information System (INIS)

    Aronson, A.S.; Jonsson, N.; Alberius, P.

    1985-01-01

    The biocompatibility of two types of radiopaque tantalum markers was evaluated histologically. Reactions to pin markers (99.9% purity) and spherical markers (95.2% purity) were investigated after 3-6 weeks in rabbits and 5-48 weeks in children with abnormal growth. Both marker types were firmly attached to bone trabeculae; this was most pronounced in rabbit bone, and no adverse macroscopic reactions were observed. Microscopically, no reactions or only slight fibrosis of bone tissue were detected, while soft tissues only demonstrated a minor inflammatory reaction. Nevertheless, the need for careful preparation and execution of marker implantations is stressed, and particularly avoidance iof the use of emery in sharpening of cannulae. The bioinertness of tantalum was reconfirmed as was its suitability for use as skeletal and soft tissue radiographic markers. (orig.)

  12. Analysis of ancient pigments by Raman microscopy

    International Nuclear Information System (INIS)

    Zuo Jian; Xu Cunyi

    1999-01-01

    Raman microscopy can be applied for the spatial resolution, and non-destructive in situ analysis of inorganic pigments in pottery, manuscripts and paintings. Compared with other techniques, it is the best single technique for this purpose. An overview is presented of the applications of Raman microscopy in the analysis of ancient pigments

  13. RAMAN-SPECTRA OF HUMAN DENTAL CALCULUS

    NARCIS (Netherlands)

    TSUDA, H; ARENDS, J

    1993-01-01

    Raman spectra of human dental calculus have been observed for the first time by use of micro-Raman spectroscopy. The spectral features of calculus were influenced easily by heating caused by laser irradiation. Therefore, the measurements were carried out at relatively low power (5 mW, 1-mu m spot

  14. Self-pulsation in Raman fiber amplifiers

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Ott, Johan Raunkjær; Rottwitt, Karsten

    2009-01-01

    Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated.......Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated....

  15. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  16. Characterization of Materials by Raman Scattering

    Science.gov (United States)

    Kozielski, M.

    2007-03-01

    The paper reports on the use of phonon spectra obtained with the Raman spectroscopy for characterization of different materials. The Raman scattering spectra obtained for zinc selenide crystals, mixed crystals zinc selenide admixtured with magnesium or beryllium, oxide crystals including strontium lanthanum gallate, molecular crystals of triammonium hydrogen diseleniate and a homologous series of polyoxyethylene glycols are analysed.

  17. INFRARED AND RAMAN SPECTROSCOPIC STUDY OF ION ...

    African Journals Online (AJOL)

    Infrared and Raman spectroscopy techniques have been used to study the ionic interactions of strontium(II) and barium(II) with thiocyanate ion in liquid ammonia. A number of bands were observed in both n (CN) and n (CS) regions of infrared and Raman spectra and these were assigned to 1:1 contact ion pair, ...

  18. Confocal Raman Microscopy; applications in tissue engineering

    NARCIS (Netherlands)

    van Apeldoorn, Aart A.

    2005-01-01

    This dissertation describes the use of confocal Raman microscopy and spectroscopy in the field of tissue engineering. Moreover, it describes the combination of two already existing technologies, namely scanning electron microscopy and confocal Raman spectroscopy in one apparatus for the enhancement

  19. Raman spectra of human dentin mineral

    NARCIS (Netherlands)

    Tsuda, H; Ruben, J; Arends, J

    Human dentin mineral has been investigated by using micro-Raman spectroscopy. Fluorescence and thermal problems were largely avoided by preparing dentin samples by grinding and ultrasonic agitation in acetone. The Raman spectral features were consistent with those of impure hydroxyapatite containing

  20. Development of a Raman spectrometer to study surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Biswas, Nandita; Chadha, Ridhima; Kapoor, Sudhir; Sarkar, Sisir K.; Mukherjee, Tulsi

    2011-02-01

    Raman spectroscopy is an important tool, which provides enormous information on the vibrational and structural details of materials. This understanding is not only interesting due to its fundamental importance, but also of considerable importance in optoelectronics and device applications of these materials in nanotechnology. In this report, we begin with a brief introduction on the Raman effect and various Raman scattering techniques, followed by a detailed discussion on the development of an instrument with home-built collection optics attachment. This Raman system consists of a pulsed laser excitation source, a sample compartment, collection optics to collect the scattered light, a notch filter to reject the intense laser light, a monochromator to disperse the scattered light and a detector to detect the Raman signal. After calibrating the Raman spectrometer with standard solvents, we present our results on Surface-Enhanced Raman Scattering (SERS) investigations on three different kinds of chemical systems. (author)

  1. High Fidelity Raman Chemical Imaging of Materials

    Science.gov (United States)

    Bobba, Venkata Nagamalli Koteswara Rao

    The development of high fidelity Raman imaging systems is important for a number of application areas including material science, bio-imaging, bioscience and healthcare, pharmaceutical analysis, and semiconductor characterization. The use of Raman imaging as a characterization tool for detecting the amorphous and crystalline regions in the biopolymer poly-L-lactic acid (PLLA) is the precis of my thesis. In the first chapter, a brief insight about the basics of Raman spectroscopy, Raman chemical imaging, Raman mapping, and Raman imaging techniques has been provided. The second chapter contains details about the successful development of tailored sample of PLLA. Biodegradable polymers are used in areas of tissue engineering, agriculture, packaging, and in medical field for drug delivery, implant devices, and surgical sutures. Detailed information about the sample preparation and characterization of these cold-drawn PLLA polymer substrates has been provided. Wide-field Raman hyperspectral imaging using an acousto-optic tunable filter (AOTF) was demonstrated in the early 1990s. The AOTF contributed challenges such as image walk, distortion, and image blur. A wide-field AOTF Raman imaging system has been developed as part of my research and methods to overcome some of the challenges in performing AOTF wide-field Raman imaging are discussed in the third chapter. This imaging system has been used for studying the crystalline and amorphous regions on the cold-drawn sample of PLLA. Of all the different modalities that are available for performing Raman imaging, Raman point-mapping is the most extensively used method. The ease of obtaining the Raman hyperspectral cube dataset with a high spectral and spatial resolution is the main motive of performing this technique. As a part of my research, I have constructed a Raman point-mapping system and used it for obtaining Raman hyperspectral image data of various minerals, pharmaceuticals, and polymers. Chapter four offers

  2. Molecular markers for thyroid cancer

    International Nuclear Information System (INIS)

    Marrero Rodriguez, Maria Teresa; Sinconegui Gomez, Belkys; Cruz Cruz, Anaisa

    2015-01-01

    The importance of the study of the thyroid nodule lies in excluding the possibility of a malignant lesion because the majority of lesions are benign but there is a malignancy risk of 5 to 10%. Most of them are well differentiated carcinomas originating in the follicular epithelium. In spite of the fact that the majority are benign lesions, distinguishing them from carcinomas is crucial to treatment and adequate follow-up. Fine-needle biopsy allows making the diagnosis in most of cases. However, this method is restricted, particularly when diagnosing follicular lesions. In an effort to improve the diagnostic accuracy of biopsy and to provide new diagnosing criteria, a number of molecular markers have been put forward, some of which has wide range of approval whereas others still awaits to be validated for further implementation. This article presented an updated review of molecular markers with higher number of evidence, more accessible and potentially usable from a methodological viewpoint for diagnosis of the thyroid nodule before surgery. The importance of the study of the thyroid nodule lies in excluding the possibility of a malignant lesion because the majority of lesions are benign but there is a malignancy risk of 5 to 10%. Most of them are well differentiated carcinomas originating in the follicular epithelium. In spite of the fact that the majority are benign lesions, distinguishing them from carcinomas is crucial to treatment and adequate follow-up. Fine-needle biopsy allows making the diagnosis in most of cases. However, this method is restricted, particularly when diagnosing follicular lesions. In an effort to improve the diagnostic accuracy of biopsy and to provide new diagnosing criteria, a number of molecular markers have been put forward, some of which has wide range of approval whereas others still awaits to be validated for further implementation. This article presented an updated review of molecular markers with higher number of evidence, more

  3. Relaxation oscillations in stimulated Raman scattering

    International Nuclear Information System (INIS)

    Kachen, G.I.; Lowdermilk, W.H.

    1977-01-01

    Light pulses created by stimulated Raman scattering having been found to exhibit a complex time dependence which resembles relaxation oscillations. A focused laser pulse generated both forward and backward Raman emissions which appeared as a series of pulses with durations much shorter than the incident laser pulse. Time dependence of the Raman emission was observed directly by use of a streak camera. The number of observed pulses increased with the intensity of the incident pulse, while separation of the pulses in time depended on the length of the focal region. Beam focusing was incorporated in the coupled wave equations for stimulated Raman scattering. These rate equations were then solved numerically, and the results are in good qualitative agreement with the experimental observations. The short Raman pulses are created by a process associated with depletion of the incident laser pulse. This process occurs under a broad range of conditions

  4. Raman spectra of filled carbon nanotubes

    International Nuclear Information System (INIS)

    Bose, S.M.; Behera, S.N.; Sarangi, S.N.; Entel, P.

    2004-01-01

    The Raman spectra of a metallic carbon nanotube filled with atoms or molecules have been investigated theoretically. It is found that there will be a three way splitting of the main Raman lines due to the interaction of the nanotube phonon with the collective excitations (plasmons) of the conduction electrons of the nanotube as well as its coupling with the phonon of the filling material. The positions and relative strengths of these Raman peaks depend on the strength of the electron-phonon interaction, phonon frequency of the filling atom and the strength of interaction of the nanotube phonon and the phonon of the filling atoms. Careful experimental studies of the Raman spectra of filled nanotubes should show these three peaks. It is also shown that in a semiconducting nanotube the Raman line will split into two and should be observed experimentally

  5. Surface enhanced raman spectroscopy on chip

    DEFF Research Database (Denmark)

    Hübner, Jörg; Anhøj, Thomas Aarøe; Zauner, Dan

    2007-01-01

    In this paper we report low resolution surface enhanced Raman spectra (SERS) conducted with a chip based spectrometer. The flat field spectrometer presented here is fabricated in SU-8 on silicon, showing a resolution of around 3 nm and a free spectral range of around 100 nm. The output facet...... is projected onto a CCD element and visualized by a computer. To enhance the otherwise rather weak Raman signal, a nanosurface is prepared and a sample solutions is impregnated on this surface. The surface enhanced Raman signal is picked up using a Raman probe and coupled into the spectrometer via an optical...... fiber. The obtained spectra show that chip based spectrometer together with the SERS active surface can be used as Raman sensor....

  6. Ultrafast surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Keller, Emily L; Brandt, Nathaniel C; Cassabaum, Alyssa A; Frontiera, Renee R

    2015-08-07

    Ultrafast surface-enhanced Raman spectroscopy (SERS) with pico- and femtosecond time resolution has the ability to elucidate the mechanisms by which plasmons mediate chemical reactions. Here we review three important technological advances in these new methodologies, and discuss their prospects for applications in areas including plasmon-induced chemistry and sensing at very low limits of detection. Surface enhancement, arising from plasmonic materials, has been successfully incorporated with stimulated Raman techniques such as femtosecond stimulated Raman spectroscopy (FSRS) and coherent anti-Stokes Raman spectroscopy (CARS). These techniques are capable of time-resolved measurement on the femtosecond and picosecond time scale and can be used to follow the dynamics of molecules reacting near plasmonic surfaces. We discuss the potential application of ultrafast SERS techniques to probe plasmon-mediated processes, such as H2 dissociation and solar steam production. Additionally, we discuss the possibilities for high sensitivity SERS sensing using these stimulated Raman spectroscopies.

  7. Implementation of Deep Ultraviolet Raman Spectroscopy

    DEFF Research Database (Denmark)

    Liu, Chuan

    of the aromatics, Toluene and Naphthalene, in the gasoline. Chapter 6 shows examples of other applications of DUV Raman spectroscopy, for instance for the illegal red food additive: Sudan I. For this dye Raman spectra - useful to indicate an unwanted presence - could not be obtained with green or blue laser line...... Raman spectrometry was further applied to detect another illegal food additive, Melamine, in milk sample. It was shown that the DUV constitutes a more sensitive measurement method than traditional Raman spectrometry and realizes a direct detection in liquid milk. In another research field regarding...... spectra of the gasoline samples. It is virtually unimportant what the rest of the sample consisted of. The most intense characteristic band is located at 1381 cm-1. The Raman spectra of home-made artificial gasoline mixtures - with gradually increasing Naphthalene contents - can be used to determine...

  8. Raman scattering of Cisplatin near silver nanoparticles

    Science.gov (United States)

    Mirsaleh-Kohan, Nasrin; Duplanty, Michael; Torres, Marjorie; Moazzezi, Mojtaba; Rostovtsev, Yuri V.

    2018-03-01

    The Raman scattering of Cisplatin (the first generation of anticancer drugs) has been studied. In the presence of silver nanoparticles, strong modifications of Raman spectra have been observed. The Raman frequencies have been shifted and the line profiles are broadened. We develop a theoretical model to explain the observed features of the Raman scattering. The model takes into account self-consistently the interaction of molecules with surface plasmonic waves excited in the silver nanoparticles, and it provides a qualitative agreement with the observed Raman spectra. We have demonstrated that the using silver nanoparticles can increase sensitivity of the technique, and potentially it has a broader range of applications to both spectroscopy and microscopy.

  9. Pulse compression by Raman induced cavity dumping

    International Nuclear Information System (INIS)

    De Rougemont, F.; Xian, D.K.; Frey, R.; Pradere, F.

    1985-01-01

    High efficiency pulse compression using Raman induced cavity dumping has been studied theoretically and experimentally. Through stimulated Raman scattering the electromagnetic energy at a primary frequency is down-converted and extracted from a storage cavity containing the Raman medium. Energy storage may be achieved either at the laser frequency by using a laser medium inside the storage cavity, or performed at a new frequency obtained through an intracavity nonlinear process. The storage cavity may be dumped passively through stimulated Raman scattering either in an oscillator or in an amplifier. All these cases have been studied by using a ruby laser as the pump source and compressed hydrogen as the Raman scatter. Results differ slightly accordingly to the technique used, but pulse shortenings higher than 10 and quantum efficiencies higher than 80% were obtained. This method could also be used with large power lasers of any wavelength from the ultraviolet to the farinfrared spectral region

  10. Applications of Raman spectroscopy to gemology.

    Science.gov (United States)

    Bersani, Danilo; Lottici, Pier Paolo

    2010-08-01

    Being nondestructive and requiring short measurement times, a low amount of material, and no sample preparation, Raman spectroscopy is used for routine investigation in the study of gemstone inclusions and treatments and for the characterization of mounted gems. In this work, a review of the use of laboratory Raman and micro-Raman spectrometers and of portable Raman systems in the gemology field is given, focusing on gem identification and on the evaluation of the composition, provenance, and genesis of gems. Many examples are shown of the use of Raman spectroscopy as a tool for the identification of imitations, synthetic gems, and enhancement treatments in natural gemstones. Some recent developments are described, with particular attention being given to the semiprecious stone jade and to two important organic materials used in jewelry, i.e., pearls and corals.

  11. Raman spectroscopy in pharmaceutical product design

    DEFF Research Database (Denmark)

    Paudel, Amrit; Raijada, Dhara; Rantanen, Jukka

    2015-01-01

    Almost 100 years after the discovery of the Raman scattering phenomenon, related analytical techniques have emerged as important tools in biomedical sciences. Raman spectroscopy and microscopy are frontier, non-invasive analytical techniques amenable for diverse biomedical areas, ranging from...... molecular-based drug discovery, design of innovative drug delivery systems and quality control of finished products. This review presents concise accounts of various conventional and emerging Raman instrumentations including associated hyphenated tools of pharmaceutical interest. Moreover, relevant...... application cases of Raman spectroscopy in early and late phase pharmaceutical development, process analysis and micro-structural analysis of drug delivery systems are introduced. Finally, potential areas of future advancement and application of Raman spectroscopic techniques are discussed....

  12. Biosignatures observed by Raman mapping in silicified materials

    Science.gov (United States)

    Foucher, F.; Westall, F.; Knoll, A.

    2012-04-01

    Establishing the biogenicity of ancient microbial remains is relatively difficult due to their simple shape and small size (micrometric-submicrometric). Potential biosignatures that remain in the rocks are related to morphological aspects of the potential microfossils, their chemical composition (carbon and associated elements), and evidence for metabolic activity (elemental isotopic signature, biominerals, corrosion/leaching features). Detection of biosignatures related to each of these microbial characteristics will increase the confidence with which biogenicity can be assigned to an unknown structure. However, given the small size of the microfossils and the consequent faint organic/geochemical traces, sophisticated instrumentation, such as mass spectrometers, electron microscopes, proton probes, nano-SIMS or even synchrotrons is generally required. In this study, we demonstrate the usefulness of Raman spectroscopy, and in particular Raman mapping, as a very powerful tool for the study of both organic and minerals biosignatures. Our investigations concern silicified, carbonaceous-walled microfossils from the Precambrian (700-800 Ma) Draken Formation, Spitsbergen (Svalbard). The microfossils consist of filamentous cyanobacterial mats containing trapped coccoidal planktonic microorganisms. The filaments are generally ~5 µm in width and the coccoidal structures are ~10µm in diameter. The Raman spectrometer used (WITec Alpha500 RA) allows compositional 2D/3D mapping at a sub-micrometric resolution of fossilised microorganisms, whose biogenicity had been previously established on the basis of their morphological characteristics and carbonaceous composition [1]. Complementary features were revealed by the micro-Raman mapping that may aid interpretation of biogenicity in an unknown structure. They included detection of opaline silica, titanium dioxide (anatase), pyrite and hydroxyapatite associated with the microfossils. Opaline silica is metastable and normally

  13. Combined micro-PIXE and NIR Raman spectroscopic plaque characterisation in a human atherosclerotic aorta sample

    International Nuclear Information System (INIS)

    Brands, P.J.M.; Poll, S.W.E. van de; Quaedackers, J.A.; Mutsaers, P.H.A.; Puppels, G.J.; Laarse, A. van der; Voigt, M.J.A. de

    2001-01-01

    Raman spectroscopy can be applied to characterise the chemical composition of an atherosclerotic plaque in vivo. In the near future this technique may become available for use in (coronary) arteries of living patients. For this moment, Raman spectroscopy is applied on artery samples in vitro, to study progression and regression of atherosclerotic plaque. Raman spectroscopy provides chemical information on a molecular basis. In this study, micro-particle induced X-ray emission (micro-PIXE) is applied to provide additional information on the elemental composition of the artery. Furthermore, the combined techniques allow for validation of the structures studied with Raman spectroscopy. This study proves that it is possible to combine and compare both techniques using the same region on the same sample if proper sample preparation is applied. Comparison shows that regions appearing in the Raman spectroscopy results can also be distinguished in micro-PIXE and backscattering spectroscopy (BS) distributions and vice versa. Combining both techniques makes it possible to separate phospholipids from triglycerides. Combined Raman spectroscopy and micro-PIXE/BS is recommended for studying progression and regression of atherosclerosis

  14. High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy.

    Science.gov (United States)

    Slipchenko, Mikhail N; Le, Thuc T; Chen, Hongtao; Cheng, Ji-Xin

    2009-05-28

    Cells store excess energy in the form of cytoplasmic lipid droplets. At present, it is unclear how different types of fatty acids contribute to the formation of lipid droplets. We describe a compound Raman microscope capable of both high-speed chemical imaging and quantitative spectral analysis on the same platform. We used a picosecond laser source to perform coherent Raman scattering imaging of a biological sample and confocal Raman spectral analysis at points of interest. The potential of the compound Raman microscope was evaluated on lipid bodies of cultured cells and live animals. Our data indicate that the in vivo fat contains much more unsaturated fatty acids (FAs) than the fat formed via de novo synthesis in 3T3-L1 cells. Furthermore, in vivo analysis of subcutaneous adipocytes and glands revealed a dramatic difference not only in the unsaturation level but also in the thermodynamic state of FAs inside their lipid bodies. Additionally, the compound Raman microscope allows tracking of the cellular uptake of a specific fatty acid and its abundance in nascent cytoplasmic lipid droplets. The high-speed vibrational imaging and spectral analysis capability renders compound Raman microscopy an indispensible analytical tool for the study of lipid-droplet biology.

  15. Quantifying Local Thickness and Composition in Thin Films of Organic Photovoltaic Blends by Raman Scattering

    KAUST Repository

    Rodríguez-Martínez, Xabier

    2017-07-06

    We report a methodology based on Raman spectroscopy that enables the non-invasive and fast quantitative determination of local thickness and composition in thin films (from few monolayers to hundreds of nm) of one or more components. We apply our methodology to blends of organic conjugated materials relevant in the field of organic photovoltaics. As a first step, we exploit the transfer-matrix formalism to describe the Raman process in thin films including reabsorption and interference effects of the incoming and scattered electric fields. This allows determining the effective solid-state Raman cross-section of each material by studying the dependence of the Raman intensity on film thickness. These effective cross sections are then used to estimate the local thickness and composition in a series of polymer:fullerene blends. We find that the model is accurate within ±10 nm in thickness and ±5 vol% in composition provided that (i) the film thickness is kept below the thickness corresponding to the first maximum of the calculated Raman intensity oscillation; (ii) the materials making up the blend show close enough effective Raman cross-sections; and (iii) the degree of order attained by the conjugated polymer in the blend is similar to that achieved when cast alone. Our methodology opens the possibility to make quantitative maps of composition and thickness over large areas (from microns to centimetres squared) with diffraction-limited resolution and in any multi-component system based thin film technology.

  16. Monitoring and trace detection of hazardous waste and toxic chemicals using resonance Raman spectroscopy

    International Nuclear Information System (INIS)

    Sedlacek, A.J. III; Dougherty, D.R.; Chen, C.L.

    1993-01-01

    Raman scattering is a coherent, inelastic, two-photon process, which shifts the frequency of an outgoing photon according to the vibrational structure of the irradiated species, thereby providing a unique fingerprint of the molecule. When involving an allowed electronic transition (resonance Raman), this scattering cross section can be enhanced by 10 4 to 10 6 and provides the basis for a viable technique that can monitor and detect trace quantities of hazardous wastes and toxic chemicals. Resonance Raman spectroscopy (RRS) possesses many of the ideal characteristics for monitoring and detecting of hazardous waste and toxic chemicals. Some of these traits are: (1) very high selectivity (chemical specific fingerprints); (2) independence from the excitation wavelength (ability to monitor in the solar blind region); (3) chemical mixture fingerprints are the sum of its individual components (no spectral cross-talk); (4) near independence of the Raman fingerprint to its physical state (very similar spectra for gas, liquid, solid and solutions -- either bulk or aerosols); and (5) insensitivity of the Raman signature to environmental conditions (no quenching). Data from a few chemicals will be presented which illustrate these features. In cases where background fluorescence accompanies the Raman signals, an effective frequency modulation technique has been developed, which can completely eliminate this interference

  17. Significant Contributions of the Albrecht's A Term to Nonresonant Raman Scattering Processes.

    Science.gov (United States)

    Gong, Zu-Yong; Tian, Guangjun; Duan, Sai; Luo, Yi

    2015-11-10

    The Raman intensity can be well described by the famous Albrecht's Raman theory that consists of A and B terms. It is well-known that the contribution from Albrecht's A term can be neglected without any loss of accuracy for far-off resonant Raman scattering processes. However, as demonstrated in this study, we have found that this widely accepted long-standing assumption fails drastically for totally symmetric vibration modes of molecules in general off-resonant Raman scattering. Perturbed first-principles calculations for water molecule show that strong constructive interference between the A and B terms occurs for the Raman intensity of the symmetric O-H stretching mode, which can account for ∼40% of the total intensity. Meanwhile, a minor destructive interference is found for the angle bending mode. The state-to-state mapping between Albrecht's theory and perturbation theory allows us to verify the accuracy of the widely employed perturbation method for the dynamic/resonant Raman intensities. The model calculations rationalized from water molecule with the bending mode show that the perturbation method is a good approximation only when the absolute energy difference between the first excited state and the incident light is more than five times greater than the vibrational energy in the ground state.

  18. Feasibility study of Raman spectroscopy for investigating the mouse retina in vivo

    Science.gov (United States)

    Manna, Suman K.; de Oliveira, Marcos A. S.; Zhang, Pengfei; Maleppat, Ratheesh K.; Chang, Che-Wei; Pugh, Edward N.; Chan, James W.; Zawadzki, Robert J.

    2018-02-01

    The use of Raman spectroscopy in biochemistry has been very successful, particularly because of its ability to identify elementary chemical species. However, application of this spectroscopic technique for in vivo assessment is often limited by autofluorescence, which make detection of Raman signatures difficult. The mouse eye has been used as an optical testbed for investigation of a variety of disease models and therapeutic pathways. Implementation of in vivo Raman spectroscopy in mice retina would be valuable but needs to be examined in context of the intrinsic auto-fluorescence artifact and potential light damage if high probing beam powers were used. To evaluate feasibility, a Raman system was built on a custom SLO/OCT platform allowing mouse positioning and morphological data acquisition along with the Raman signal from a desired retinal eccentricity. The performance of the Raman system was first assessed with a model eye consisting of polystyrene in the image plane (retina), using excitation wavelengths of 488 nm, 561 nm, and 785 nm to determine whether auto-fluorescence would be reduced at longer wavelengths. To improve the SNR, the combined system is featured with the optical compatibility for these three excitations such that their corresponding spectra from a typical region of interest can be acquired consecutively during single imaging run. Our results include emission spectra acquired over 10 s with excitation energy less than 160 J.s-1.m-2 for all wavelengths and corresponding retinal morphology for different mouse strains including WT, BALB/c and ABCA4-/-.

  19. Raman-based imaging uncovers the effects of alginate hydrogel implants in spinal cord injury

    Science.gov (United States)

    Galli, Roberta; Tamosaityte, Sandra; Koch, Maria; Sitoci-Ficici, Kerim H.; Later, Robert; Uckermann, Ortrud; Beiermeister, Rudolf; Gelinsky, Michael; Schackert, Gabriele; Kirsch, Matthias; Koch, Edmund; Steiner, Gerald

    2015-07-01

    The treatment of spinal cord injury by using implants that provide a permissive environment for axonal growth is in the focus of the research for regenerative therapies. Here, Raman-based label-free techniques were applied for the characterization of morphochemical properties of surgically induced spinal cord injury in the rat that received an implant of soft unfunctionalized alginate hydrogel. Raman microspectroscopy followed by chemometrics allowed mapping the different degenerative areas, while multimodal multiphoton microscopy (e.g. the combination of coherent anti-Stokes Raman scattering (CARS), endogenous two-photon fluorescence and second harmonic generation on the same platform) enabled to address the morphochemistry of the tissue at cellular level. The regions of injury, characterized by demyelination and scarring, were retrieved and the distribution of key tissue components was evaluated by Raman mapping. The alginate hydrogel was detected in the lesion up to six months after implantation and had positive effects on the nervous tissue. For instance, multimodal multiphoton microscopy complemented the results of Raman mapping, providing the micromorphology of lipid-rich tissue structures by CARS and enabling to discern lipid-rich regions that contained myelinated axons from degenerative regions characterized by myelin fragmentation and presence of foam cells. These findings demonstrate that Raman-based imaging methods provide useful information for the evaluation of alginate implant effects and have therefore the potential to contribute to new strategies for monitoring degenerative and regenerative processes induced in SCI, thereby improving the effectiveness of therapies.

  20. Studies of particle drying using non-invasive Raman spectrometry and particle size analysis.

    Science.gov (United States)

    Hamilton, Peter; Littlejohn, David; Nordon, Alison; Sefcik, Jan; Slavin, Paul; Dallin, Paul; Andrews, John

    2011-05-21

    The evaporation of methanol from needle-shaped particles of cellobiose octaacetate (COA) has been studied directly in a jacketed vacuum drier using in situ measurements by Raman spectrometry. A design of experiments (DoE) approach was used to investigate the effects of three parameters (method of agitation, % solvent loss on drying and jacket temperature), with the intention of minimising the drying time and extent of particle attrition. Drying curves based on Raman signals for methanol and COA in the spectra of the wet particles indicated the end of drying and revealed three stages in the drying process that could be used to monitor the progress of solvent removal in real time. Off-line particle size measurements based on laser diffraction were made to obtain information on the extent of attrition, to compare with the trends revealed by the Raman drying curves. The study demonstrated that non-invasive Raman spectrometry can be used to study the progress of drying during agitation of particles in a vacuum drier, allowing optimisation of operating conditions to minimise attrition and reduce drying times. Although a correlation between particle size and off-line Raman measurements of COA was demonstrated, it was not possible to derive equivalent information from the in situ Raman spectra owing to the greater effects of particle motion or bulk density variations of the particles in the drier.

  1. Raman Spectroscopy and Microscopy of Individual Cells andCellular Components

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J; Fore, S; Wachsmann-Hogiu, S; Huser, T

    2008-05-15

    Raman spectroscopy provides the unique opportunity to non-destructively analyze chemical concentrations on the submicron length scale in individual cells without the need for optical labels. This enables the rapid assessment of cellular biochemistry inside living cells, and it allows for their continuous analysis to determine cellular response to external events. Here, we review recent developments in the analysis of single cells, subcellular compartments, and chemical imaging based on Raman spectroscopic techniques. Spontaneous Raman spectroscopy provides for the full spectral assessment of cellular biochemistry, while coherent Raman techniques, such as coherent anti-Stokes Raman scattering is primarily used as an imaging tool comparable to confocal fluorescence microscopy. These techniques are complemented by surface-enhanced Raman spectroscopy, which provides higher sensitivity and local specificity, and also extends the techniques to chemical indicators, i.e. pH sensing. We review the strengths and weaknesses of each technique, demonstrate some of their applications and discuss their potential for future research in cell biology and biomedicine.

  2. Label-free separation of human embryonic stem cells (hESCs) and their cardiac derivatives using Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J W; Lieu, D K; Huser, T R; Li, R A

    2008-09-08

    Self-renewable, pluripotent human embryonic stem cells (hESCs) can be differentiated into cardiomyocytes (CMs), providing an unlimited source of cells for transplantation therapies. However, unlike certain cell lineages such as hematopoietic cells, CMs lack specific surface markers for convenient identification, physical separation, and enrichment. Identification by immunostaining of cardiac-specific proteins such as troponin requires permeabilization, which renders the cells unviable and non-recoverable. Ectopic expression of a reporter protein under the transcriptional control of a heart-specific promoter for identifying hESC-derived CMs (hESC-CMs) is useful for research but complicates potential clinical applications. The practical detection and removal of undifferentiated hESCs in a graft, which may lead to tumors, is also critical. Here, we demonstrate a non-destructive, label-free optical method based on Raman scattering to interrogate the intrinsic biochemical signatures of individual hESCs and their cardiac derivatives, allowing cells to be identified and classified. By combining the Raman spectroscopic data with multivariate statistical analysis, our results indicate that hESCs, human fetal left ventricular CMs, and hESC-CMs can be identified by their intrinsic biochemical characteristics with an accuracy of 96%, 98% and 66%, respectively. The present study lays the groundwork for developing a systematic and automated method for the non-invasive and label-free sorting of (i) high-quality hESCs for expansion, and (ii) ex vivo CMs (derived from embryonic or adult stem cells) for cell-based heart therapies.

  3. Optimizing laser crater enhanced Raman spectroscopy.

    Science.gov (United States)

    Lednev, V N; Sdvizhenskii, P A; Grishin, M Ya; Filichkina, V A; Shchegolikhin, A N; Pershin, S M

    2018-03-20

    Raman signal enhancement by laser crater production was systematically studied for 785 nm continuous wave laser pumping. Laser craters were produced in L-aspartic acid powder by a nanosecond pulsed solid state neodymium-doped yttrium aluminum garnet laser (532 nm, 8 ns, 1 mJ/pulse), while Raman spectra were then acquired by using a commercial spectrometer with 785 nm laser beam pumping. The Raman signal enhancement effect was studied in terms of the number of ablating pulses used, the lens-to-sample distance, and the crater-center-laser-spot offset. The influence of the experiment parameters on Raman signal enhancement was studied for different powder materials. Maximum Raman signal enhancement reached 11 fold for loose powders but decreased twice for pressed tablets. Raman signal enhancement was demonstrated for several diverse powder materials like gypsum or ammonium nitrate with better results achieved for the samples tending to give narrow and deep craters upon the laser ablation stage. Alternative ways of cavity production (steel needle tapping and hole drilling) were compared with the laser cratering technique in terms of Raman signal enhancement. Drilling was found to give the poorest enhancement of the Raman signal, while both laser ablation and steel needle tapping provided comparable results. Here, we have demonstrated for the first time, to the best of our knowledge, that a Raman signal can be enhanced 10 fold with the aid of simple cavity production by steel needle tapping in rough highly reflective materials. Though laser crater enhancement Raman spectroscopy requires an additional pulsed laser, this technique is more appropriate for automatization compared to the needle tapping approach.

  4. Regime for a Self-ionizing Raman Laser Amplifier

    International Nuclear Information System (INIS)

    Clark, D.S.; Fisch, N.J.

    2001-01-01

    Backward Raman amplification and compression at high power might occur if a long pumping laser pulse is passed through a plasma to interact resonantly with a counter-propagating short seed pulse [V.M. Malkin, et al., Phys. Rev. Lett. 82 (1999) 4448-4451]. One critical issue, however, is that the pump may be unacceptably depleted due to spontaneous Raman backscatter from intrinsic fluctuations in the amplifying plasma medium prior to its useful interaction with the seed. Premature backscatter may be avoided, however, by employing a gaseous medium with pump intensities too low to ionize the medium, and using the intense seed to produce the plasma by rapid photoionization as it is being amplified [V.M. Malkin, et al., Phys. Plasmas (2001)]. In addition to allowing that only rather low power pumps be used, photoionization introduces a damping of the short pulse which must be overcome by the Raman growth rate for net amplification to occur. The parameter space of gas densities, laser wavelengths, and laser intensities is surveyed to identify favorable regimes for this effect. Output laser intensities of 10(superscript ''17'') W/cm(superscript ''2'') for 0.5 mm radiation are found to be feasible for such a scheme using a pump of 10(superscript ''13'') W/cm(superscript ''2'') and an initial seed of 5 x 10(superscript ''14'') W/cm(superscript ''2'') over an amplification length of 5.6 cm in hydrogen gas

  5. Micro-Raman analysis of glisterings in intraocular lenses

    Science.gov (United States)

    Rusciano, G.; Martinez, A.; Pesce, G.; Zito, G.; Sasso, A.

    2017-06-01

    The phenomenon of inclusions or microvacuoles in intraocular lenses (IOL), often referred to glistenings due to their appearance when visualized in slit-lamp exams, is main cause of decreased visual in people after IOL implantation. For this reason, there is a huge request by the market of new polymers able to reduce, or even eliminate, the formation of such microvacuoles. In such frame, the use of advanced optical techniques, able to provide a deeper insight on the glistering formation, is strongly required. In particular, Raman spectroscopy (RS) is ideally suited for the analysis of polymers, due to its well-know sensitivity to highly polarizable chemical groups, commonly found in the polymer chains backbones. Moreover, the combination of RS with optical microscopy (Raman micro-spectroscopy) paves the way for real, information-rich chemical mapping of polymeric materials (Raman imaging). In this paper, we analyze the formation of microvacuoles in IOLs following a thermal treatment. In particular, we performed a chemical mapping of a single microvacuole, which allowed us to infer on its effective chemical composition. In order to investigate on the reversibility of glistenings formation, this analysis was repeated as function of time after thermal treatment, in different IOL environments. It turns out that this phenomenon is partially reversible, with an almost complete disappearance of microvacuoles in a dry environment.

  6. Dual-Remote Raman Technology for In-Situ Identification of Tank Waste - 13549

    International Nuclear Information System (INIS)

    Bryan, Sam; Levitskaia, Tatiana; Lines, Amanda; Smith, Frannie; Josephson, Gary; Bello, Job

    2013-01-01

    A new Raman spectroscopic system for in-situ identification of the composition of solid nuclear tank waste is being developed by collaborative effort between Pacific Northwest National Laboratory (PNNL) and EIC Laboratories, Inc. The recent advancements in Raman technology allow probing the chemical composition of the tank waste without sample collection. In the newly tested configuration, the Raman probe is installed on the top of the tank riser and sends the incident laser beam to the bottom of the tank, 10 - 70 feet away. The returning light containing chemical information is collected by the Raman probe and is transmitted via fiber optic cable to the spectrometer located outside the tank farm area. This dual remote technology significantly expands currently limited options for the safe rapid in-situ identification of the solid tank waste needed for the retrieval decisions. The developed Raman system was extensively tested for acceptability prior to tank farm deployment. This testing included calibration of the system with respect of the distance between the Raman probe and the sample, incident laser beam angle, and presence of the optical interferences. The Raman system was successfully deployed on Tank C-111 at the US DOE Hanford site. As the result of this deployment, the composition of the hardpan at the bottom of C-111 tank was identified. Further development of the dual-remote Raman technology will provide a significant safety enhancement eliminating the potential of personnel radiation exposure associated with the grab sample collection and expands options of the rapid and cost-effective in-situ chemical analysis of the tank waste. (authors)

  7. Raman studies of pressure and temperature induced phase transformations in calcite

    International Nuclear Information System (INIS)

    Exarhos, G.J.; Hess, N.J.

    1992-01-01

    This patent describes phase stability in the calcium carbonate system investigated as a simultaneous function of pressure and temperature up to 40 kbar and several hundred degrees Kelvin. Micro-Raman techniques were used to interrogate samples constrained within a resistively heated diamond anvil cell. Measured spectra allow unequivocal identification of crystalline phases and are used to refine the P,T phase diagram. Calcium carbonate was found to exhibit both reversible and irreversible transformation phenomena among the four known phases which exist under these conditions. Time-dependent Raman intensity variations as the material is perturbed from its equilibrium state allow real-time kinetics measurements to be performed. Evidence suggests that the order of certain observed transformations may be pressure dependent. The utility of Raman spectroscopy to follow transformation phenomena and to estimate fundamental thermophysical properties from the stress dependence of vibrational mode frequencies is demonstrated

  8. Non-invasive blood glucose monitoring with Raman spectroscopy: prospects for device miniaturization

    International Nuclear Information System (INIS)

    Wróbel, M.S.

    2016-01-01

    The number of patients with diabetes has reached over 350 million, and still continues to increase. The need for regular blood glucose monitoring sparks the interest in the development of modern detection technologies. One of those methods, which allows for noninvasive measurements, is Raman spectroscopy. The ability of infrared light to penetrate deep into tissues allows for obtaining measurements through the skin without its perforation. This paper presents the limitations and possibilities of non-invasive blood glucose monitoring with Raman spectroscopy. Especially focusing on the possibilities for device miniaturization. Such device incorporates a Raman spectrometer, a fiber-optical probe, and a computing device (microcontroller, smartphone, etc.) which calculates the glucose concentration using specialized algorithms. Simplification of device design, as well as turbidity correction technique and a new proposed method of synchronized detection are described

  9. Raman spectroscopy study of the doping effect of the encapsulated terbium halogenides on single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kharlamova, M.V.; Kramberger, C.; Mittelberger, A. [University of Vienna, Faculty of Physics, Vienna (Austria)

    2017-04-15

    In the present work, the doping effect of terbium chloride, terbium bromide, and terbium iodide on single-walled carbon nanotubes (SWCNTs) was compared by Raman spectroscopy. A precise investigation of the doping-induced alterations of the Raman modes of the filled SWCNTs was conducted. The shifts of the components of the Raman modes and modification of their profiles allowed concluding that the inserted terbium halogenides have acceptor doping effect on the SWCNTs, and the doping efficiency increases in the line with terbium iodide, terbium bromide, and terbium chloride. (orig.)

  10. 46 CFR 154.440 - Allowable stress.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Allowable stress. 154.440 Section 154.440 Shipping COAST... Tank Type A § 154.440 Allowable stress. (a) The allowable stresses for an independent tank type A must... Commandant (CG-522). (b) A greater allowable stress than required in paragraph (a)(1) of this section may be...

  11. 46 CFR 154.421 - Allowable stress.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Allowable stress. 154.421 Section 154.421 Shipping COAST... § 154.421 Allowable stress. The allowable stress for the integral tank structure must meet the American Bureau of Shipping's allowable stress for the vessel's hull published in “Rules for Building and Classing...

  12. 34 CFR 304.21 - Allowable costs.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Allowable costs. 304.21 Section 304.21 Education... Grantee § 304.21 Allowable costs. In addition to the allowable costs established in the Education... allowable expenditures by projects funded under the program: (a) Cost of attendance, as defined in Title IV...

  13. 2 CFR 215.27 - Allowable costs.

    Science.gov (United States)

    2010-01-01

    ... 2 Grants and Agreements 1 2010-01-01 2010-01-01 false Allowable costs. 215.27 Section 215.27... § 215.27 Allowable costs. For each kind of recipient, there is a set of Federal principles for determining allowable costs. Allowability of costs shall be determined in accordance with the cost principles...

  14. 50 CFR 80.15 - Allowable costs.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Allowable costs. 80.15 Section 80.15... WILDLIFE RESTORATION AND DINGELL-JOHNSON SPORT FISH RESTORATION ACTS § 80.15 Allowable costs. (a) What are allowable costs? Allowable costs are costs that are necessary and reasonable for accomplishment of approved...

  15. 49 CFR 266.11 - Allowable costs.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Allowable costs. 266.11 Section 266.11... TRANSPORTATION ACT § 266.11 Allowable costs. Allowable costs include only the following costs which are properly allocable to the work performed: Planning and program operation costs which are allowed under Federal...

  16. Continuous anti-Stokes Raman laser operation

    International Nuclear Information System (INIS)

    Feitisch, A.; Muller, T.; Welling, H.; Wellegehausen, B.

    1988-01-01

    The anti-Stokes Raman laser (ASRL) process has proved to be a method that works well for frequency upconversion and for the generation of powerful tunable narrowband (pulsed) laser radiation in the UV and VUV spectral range. This conversion process allows large-frequency shifts in single step, high output energies, and high efficiencies. A basic requirement is population inversion on a two-photon transition, where, in general, the upper level of the transition should be metastable. Up to now the ASRL technique has only been demonstrated for the pulsed regime, where the necessary population inversion was generated by photodissociation or inner shell photoionization. These inversion techniques, however, cannot be transferred to cw operation of an ASRL, and, therefore, other inversion techniques have to be developed. Here a novel approach for the creation of the necessary population inversion is proposed, that uses well-known cw gas lasers as the active material for the conversion process. The basic idea is to use either existing two-photon population inversions in a cw laser material or to generate the necessary population inversion by applying a suitable population transfer process to the material. A natural two-photon inversion situation in a laser material is evident whenever a cascade laser can be operated. Cascade laser-based anti-Stokes schemes are possible in a He-Ne laser discharge, and investigations of these schemes are discussed

  17. Radiopaque anastomosis marker

    International Nuclear Information System (INIS)

    Elliott, D.P.; Halseth, W.L.

    1977-01-01

    This invention relates to split ring markers fabricated in whole or in part from a radiopaque material, usually metal, having the terminal ends thereof and a medial portion formed to define eyelets by means of which said marker can be sutured to the tissue at the site of an anastomosis to provide a visual indication of its location when examined fluoroscopically

  18. High resolution resonant Raman scattering in InP and GaAs

    International Nuclear Information System (INIS)

    Kernohan, E.T.M.

    1996-04-01

    Previous studies of III-V semiconductors using resonant Raman scattering have concentrated on measuring the variations in scattering intensity under different excitation conditions. The shape of the Raman line also contains important information, but this has usually been lost because the low signal strengths mean that resolution has been sacrificed for sensitivity. It might therefore be expected that further insights into the processes involved in Raman scattering could be obtained by using high resolution methods. In this thesis I have measured single- and multiple- phonon scattering from bulk GaAs and InP with a spectral resolution better than the intrinsic widths of the Raman lines. For scattering in the region of one longitudinal optic (LO) phonon energy, it is found that in InP the scattering in the allowed and forbidden configurations occur at different Raman shifts, above and below the zone-centre phonon energy respectively. These shifts are used to determine the scattering processes involved, and how they differ between InP and GaAs. The lineshapes obtained in multiple-phonon scattering are found to depend strongly on the excitation energy used, providing evidence for the presence of intermediate resonances. The measured spectra are used to provide information about the phonon dispersion of InP, whose dispersion it is difficult to measure in any other way, and the first evidence is found for an upward dispersion of the LO mode. Raman lineshapes are measured for InP in a magnetic field. The field alters the electronic bandstructure, leading to a series of strong resonances in the Raman efficiency due to interband magneto-optical transitions between Landau levels. This allows multiphonon processes up to sixth-order to be investigated. (author)

  19. Raman micro-spectroscopy analysis of different sperm regions: a species comparison.

    Science.gov (United States)

    Amaral, S; Da Costa, R; Wübbeling, F; Redmann, K; Schlatt, S

    2018-04-01

    Is Raman micro-spectroscopy a valid approach to assess the biochemical hallmarks of sperm regions (head, midpiece and tail) in four different species? Non-invasive Raman micro-spectroscopy provides spectral patterns enabling the biochemical characterization of the three sperm regions in the four species, revealing however high similarities for each region among species. Raman micro-spectroscopy has been described as an innovative method to assess sperm features having the potential to be used as a non-invasive selection tool. However, except for nuclear DNA, the identification and assignment of spectral bands in Raman-profiles to the different sperm regions is scarce and controversial. Raman spectra from head, midpiece and tail of four different species were obtained. Sperm samples were collected and smeared on microscope slides. Air dried samples were subjected to Raman analysis using previously standardized procedures. Sperm samples from (i) two donors attending the infertility clinic at the Centre of Reproductive Medicine and Andrology; (ii) two C57BL/6 -TgN (ACTbEGFP) 1Osb adult mice; (iii) two adult Cynomolgus monkeys (Macaca fascicularis) and (iv) two sea urchins (Arbacia punctulata) were used to characterize and compare their spectral profiles. Differences and similarities were confirmed by principal component analysis (PCA). Several novel region-specific peaks were identified. The three regions could be differentiated by distinctive Raman patterns irrespective of the species. However, regardless of the specie, their main spectral pattern remains mostly unchanged. These results were corroborated by the PCA analysis and suggest that the basic constituents of spermatozoa are biochemically similar among species. Further research should be performed in live sperm to validate the detected spectral bands and their use as markers of distinctive regions. Raman peaks that have never been described in the sperm cell were detected. Particularly important are those that

  20. Assignment of the Raman lines in single crystal barium metaborate (beta-BaB sub 2 O sub 4)

    CERN Document Server

    Ney, P; Maillard, A; Polgar, K

    1998-01-01

    A Raman-scattering study performed on beta-BaB sub 2 O sub 4 (beta-BBO) at room temperature allows us to assign all the vibrational modes detected in the Raman spectra. The internal and external vibration modes are properly obtained by taking account of the light polarization, mode contamination and isotope effects. A correspondence between the lattice and the free-ring modes is also presented. (author)

  1. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matries; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  2. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matrices; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  3. Laser-Raman spectroscopy of living cells

    International Nuclear Information System (INIS)

    Webb, S.J.

    1980-01-01

    Investigations into the laser-Raman shift spectra of bacterial and mammalian cells have revealed that many Raman lines observed at 4-6 K, do not appear in the spectra of cells held at 300 K. At 300 K, Raman activity, at set frequencies, is observed only when the cells are metabolically active; however, the actual live cell spectrum, between 0 and 3400 cm -1 , has been found to alter in a specific way with time as the cells' progress through their life cycles. Lines above 300 cm -1 , from in vivo Raman active states, appear to shift to higher wave numbers whereas those below 300 cm -1 seem to shift to lower ones. The transient nature of many shift lines observed and the intensity of them when present in the spectrum indicates that, in, vivo, a metabolically induced condensation of closely related states occurs at a set time in the life of a living cell. In addition, the calculated ratio between the intensities of Stokes and anti-Stokes lines observed suggests that the metabolically induced 'collective' Raman active states are produced, in vivo, by non thermal means. It appears, therefore, that the energetics of the well established cell 'time clock' may be studied by laser-Raman spectroscopy; moreover, Raman spectroscopy may yield a new type of information regarding the physics of such biological phenomena as nutrition, virus infection and oncogenesis. (orig.)

  4. A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells

    KAUST Repository

    Perozziello, Gerardo

    2013-11-01

    In this work we developed a microfluidic device integrating nanoplasmonic devices combined with fluidic trapping regions. The microfuidic traps allow to capture single cells in areas where plasmonic sensors are placed. In this way it is possible to perform Enhanced Raman analysis on the cell membranes. Moreover, by changing direction of the flux it is possible to change the orientation of the cell in the trap, so that it is possible to analyze different points of the membrane of the same cell. We shows an innovative procedure to fabricate and assembly the microfluidic device which combine photolithography, focused ion beam machining, and hybrid bonding between a polymer substrate and lid of Calcium fluoride. This procedure is compatible with the fabrication of the plasmonic sensors in close proximity of the microfluidic traps. Moreover, the use of Calcium fluoride as lid allows full compatibility with Raman measurements producing negligible Raman background signal and avoids Raman artifacts. Finally, we performed Raman analysis on cells to monitor their oxidative stress under particular non physiological conditions. © 2013 Elsevier B.V. All rights reserved.

  5. A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells

    KAUST Repository

    Perozziello, Gerardo; Catalano, Rossella; Francardi, Marco; Rondanina, Eliana; Pardeo, Francesca; De Angelis, Francesco De; Malara, Natalia Maria; Candeloro, Patrizio; Morrone, Giovanni; Di Fabrizio, Enzo M.

    2013-01-01

    In this work we developed a microfluidic device integrating nanoplasmonic devices combined with fluidic trapping regions. The microfuidic traps allow to capture single cells in areas where plasmonic sensors are placed. In this way it is possible to perform Enhanced Raman analysis on the cell membranes. Moreover, by changing direction of the flux it is possible to change the orientation of the cell in the trap, so that it is possible to analyze different points of the membrane of the same cell. We shows an innovative procedure to fabricate and assembly the microfluidic device which combine photolithography, focused ion beam machining, and hybrid bonding between a polymer substrate and lid of Calcium fluoride. This procedure is compatible with the fabrication of the plasmonic sensors in close proximity of the microfluidic traps. Moreover, the use of Calcium fluoride as lid allows full compatibility with Raman measurements producing negligible Raman background signal and avoids Raman artifacts. Finally, we performed Raman analysis on cells to monitor their oxidative stress under particular non physiological conditions. © 2013 Elsevier B.V. All rights reserved.

  6. Characterization of conducting polyaniline blends by Resonance Raman Spectroscopy

    International Nuclear Information System (INIS)

    Silva, Jose E. Pereira da; Temperini, Marcia L.A.; Torresi, Susana I. Cordoba de

    2005-01-01

    Raman and optical microscopy were used to investigate possible interactions between polyaniline (PANI) and different insulating polymers in conducting blends. Resonance Raman and optical micrographs were used to study the physical interaction in materials. Analysis Raman spectra was done investigating the relative intensity of bands at 574 and 607 cm -1 . A relationship between Raman bands and conductivity was also proposed. (author)

  7. Raman Chair | About IASc | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Raman Chair. The Raman Chair was instituted in 1972 by the Government of India to commemorate the memory of the founder of the Academy, Sir C. V. Raman. Eminent scientists are invited by the Council of the Academy to occupy the Chair, for periods of between six weeks and six months. Raman Professors who have ...

  8. Resonance Raman study of benzyl radical

    DEFF Research Database (Denmark)

    Langkilde, F.W.; Bajdor, K.; Wilbrandt, R.

    1992-01-01

    Time-resolved resonance Raman spectra are obtained of benzyl radicals created by laser flash photolysis of benzylchloride and diphenylacetone in solution. The spectra are obtained in resonance with the intense 2 2A2-1 B-2(2) transition of benzyl. The strong Raman bands are assigned to totally...... symmetric a1 modes. The remaining observed bands are tentatively assigned to fundamental modes of b1, a2, and b2 symmetry, and to overtones and combinations. The resonance Raman spectra are found to be quite different from previous fluorescence spectra of benzyl, and the origins of these differences...

  9. Detection of laser damage by Raman microscopy

    International Nuclear Information System (INIS)

    Fauchet, P.M.; Campbell, I.H.; Adar, F.

    1988-01-01

    The authors demonstrate that Raman miroscopy is a sensitive and quantitative tool to detect and characterize laser-induced damage in solids. After damage is induced with single or multiple high power laser pulses, a Raman microprobe maps the surface of the sample with one micron spatial resolution. By performing accurate measurements of the Stokes line, the authors have been able to measure stress, strain and crystallinity in various samples which had been exposed to high intensity pulses. These results are compared to those obtained using conventional tools such as Nomarski microscopy. Major advantages of Raman microscopy include sensitivity to subtle structural modifications and the fact that it gives quantitative measurements

  10. Raman band intensities of tellurite glasses.

    Science.gov (United States)

    Plotnichenko, V G; Sokolov, V O; Koltashev, V V; Dianov, E M; Grishin, I A; Churbanov, M F

    2005-05-15

    Raman spectra of TeO2-based glasses doped with WO3, ZnO, GeO2, TiO2, MoO3, and Sb2O3 are measured. The intensity of bands in the Raman spectra of MoO3-TeO2 and MoO3-WO3-TeO2 glasses is shown to be 80-95 times higher than that for silica glass. It is shown that these glasses can be considered as one of the most promising materials for Raman fiber amplifiers.

  11. Raman overtone intensities measured for H2

    International Nuclear Information System (INIS)

    Shelton, D.P.

    1990-01-01

    The Raman spectra of the vibrational fundamental, first overtone and second overtone transitions of the H 2 molecule were recorded using visible and ultraviolet argon--ion laser excitation. The ratios of transition polarizability matrix elements, α 01,21 /α 01,11 and α 01,31 /α 01,11 , were determined from the measured intensities of the Q(1) Raman lines v,J=0,1→v',1 for v'=1,2,3. The experimentally determined value of the Raman first overtone matrix element is in good agreement with the value from the best ab initio calculation

  12. Investigation of biomineralization by Raman spectroscopy

    Science.gov (United States)

    Fatscher, Robert William

    implants. These implants are designed to osteointegrate with the native healthy tissues in order to create a functionally stable and structural interface. Biomaterials such as hydroxyapatite and titania are known to increase the rate of bone regeneration in vivo.1 By accelerating the early response of bone forming cells to these implants, better fixation is achieved between the implant and the bone, shortening recovery times and increasing the viability of these implants. In the last part of this research an investigation of osteoblasts cultured at 14 days on five different heat-treated titania substrates was investigated by Raman spectroscopy, in order to observe the initial cellular response to the titania substrates. The heat-treatment of titania changes the amount of oxygen on it's surface which in turn effects the surface energy. A change in the surface energy of a material will affect the cellular response, by culturing cells on various heat-treated titania substrates a relationship between the surface energy and cellular response can be investigated. A faster cellular response would lead to an increased rate of bone regeneration shortening healing times and allowing for better fixation of the implant.

  13. Mode-dependent dispersion in Raman line shapes: Observation and implications from ultrafast Raman loss spectroscopy

    International Nuclear Information System (INIS)

    Umapathy, S.; Mallick, B.; Lakshmanna, A.

    2010-01-01

    Ultrafast Raman loss spectroscopy (URLS) enables one to obtain the vibrational structural information of molecular systems including fluorescent materials. URLS, a nonlinear process analog to stimulated Raman gain, involves a narrow bandwidth picosecond Raman pump pulse and a femtosecond broadband white light continuum. Under nonresonant condition, the Raman response appears as a negative (loss) signal, whereas, on resonance with the electronic transition the line shape changes from a negative to a positive through a dispersive form. The intensities observed and thus, the Franck-Condon activity (coordinate dependent), are sensitive to the wavelength of the white light corresponding to a particular Raman frequency with respect to the Raman pump pulse wavelength, i.e., there is a mode-dependent response in URLS.

  14. Clean Air Markets - Allowances Query Wizard

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Allowances Query Wizard is part of a suite of Clean Air Markets-related tools that are accessible at http://camddataandmaps.epa.gov/gdm/index.cfm. The Allowances...

  15. Allowance Holdings and Transfers Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Allowance Holdings and Transfers Data Inventory contains measured data on holdings and transactions of allowances under the NOx Budget Trading Program (NBP), a...

  16. Compact, integrable, and long life time Raman multiline UV-Vis source based on hypocycloid core Kagome HC-PCF

    Science.gov (United States)

    Chafer, M.; Lekiefs, Q.; Gorse, A.; Beaudou, B.; Debord, B.; Gérôme, F.; Benabid, F.

    2017-02-01

    Raman-gas filled HC-PCF has proved to be an outstanding Raman-convertor, as illustrated by the generation of more than 5 octaves wide Raman comb using a hydrogen-filled Kagome HC-PCF pumped with high power picosecond-laser, or the generation of multiline Raman-source in the UV-Vis using a very compact system pumped with micro-chip laser. Whilst these demonstrations are promising, a principal challenge for the industrialization of such a Raman source is its lifetime as the H2 diffusion through silica is high enough to leak out from the fiber within only a few months. Here, we report on a HC-PCF based Raman multiline source with a very long life-span. The system consists of hydrogen filled ultra-low loss HC-PCF contained in highly sealed box, coined CombBox, and pumped with a 532 nm micro-chip laser. This combination is a turnkey multiline Raman-source with a "shoe box" size. The CombBox is a robust and compact component that can be integrated and pumped with any common pulsed laser. When pumped with a 32 mW average power and 1 ns frequency-doubled Nd:Yag microchip laser, this Raman-source generates 24 lines spanning from 355 to 745 nm, and a peak power density per line of 260 mW/nm for the strongest lines. Both the output power and the spectrum remained constant over its monitoring duration of more than six months. The spectrum of this multiline laser superimposes with no less than 17 absorption peaks of fluorescent dyes from the Alexa Fluor family used as biological markers.

  17. Emerging technology: applications of Raman spectroscopy for prostate cancer.

    Science.gov (United States)

    Kast, Rachel E; Tucker, Stephanie C; Killian, Kevin; Trexler, Micaela; Honn, Kenneth V; Auner, Gregory W

    2014-09-01

    There is a need in prostate cancer diagnostics and research for a label-free imaging methodology that is nondestructive, rapid, objective, and uninfluenced by water. Raman spectroscopy provides a molecular signature, which can be scaled from micron-level regions of interest in cells to macroscopic areas of tissue. It can be used for applications ranging from in vivo or in vitro diagnostics to basic science laboratory testing. This work describes the fundamentals of Raman spectroscopy and complementary techniques including surface enhanced Raman scattering, resonance Raman spectroscopy, coherent anti-Stokes Raman spectroscopy, confocal Raman spectroscopy, stimulated Raman scattering, and spatially offset Raman spectroscopy. Clinical applications of Raman spectroscopy to prostate cancer will be discussed, including screening, biopsy, margin assessment, and monitoring of treatment efficacy. Laboratory applications including cell identification, culture monitoring, therapeutics development, and live imaging of cellular processes are discussed. Potential future avenues of research are described, with emphasis on multiplexing Raman spectroscopy with other modalities.

  18. Raman Spectroscopy with simple optic components; Espectrometria Raman con componentes opticos simples

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Mario; Cunya, Eduardo; Olivera, Paula [Direccion de Investigacion y Desarrollo, Instituto Peruano de Energia Nuclear, Lima (Peru)

    2014-07-01

    Raman Spectroscopy is .a high resolution photonics technique that provides chemical and structural information of almost any material, organic or inorganic compound. In this report we describe the implementation of a system based on the principle of Raman scattering, developed to analyze solid samples. The spectrometer integrates an optical bench coupled to an optical fiber and a green laser source of 532 nm. The spectrometer was tested obtaining the Naphthalene and the Yellow 74 Pigment Raman patterns. (authors).

  19. An Empirical Study on Raman Peak Fitting and Its Application to Raman Quantitative Research.

    Science.gov (United States)

    Yuan, Xueyin; Mayanovic, Robert A

    2017-10-01

    Fitting experimentally measured Raman bands with theoretical model profiles is the basic operation for numerical determination of Raman peak parameters. In order to investigate the effects of peak modeling using various algorithms on peak fitting results, the representative Raman bands of mineral crystals, glass, fluids as well as the emission lines from a fluorescent lamp, some of which were measured under ambient light whereas others under elevated pressure and temperature conditions, were fitted using Gaussian, Lorentzian, Gaussian-Lorentzian, Voigtian, Pearson type IV, and beta profiles. From the fitting results of the Raman bands investigated in this study, the fitted peak position, intensity, area and full width at half-maximum (FWHM) values of the measured Raman bands can vary significantly depending upon which peak profile function is used in the fitting, and the most appropriate fitting profile should be selected depending upon the nature of the Raman bands. Specifically, the symmetric Raman bands of mineral crystals and non-aqueous fluids are best fit using Gaussian-Lorentzian or Voigtian profiles, whereas the asymmetric Raman bands are best fit using Pearson type IV profiles. The asymmetric O-H stretching vibrations of H 2 O and the Raman bands of soda-lime glass are best fit using several Gaussian profiles, whereas the emission lines from a florescent light are best fit using beta profiles. Multiple peaks that are not clearly separated can be fit simultaneously, provided the residuals in the fitting of one peak will not affect the fitting of the remaining peaks to a significant degree. Once the resolution of the Raman spectrometer has been properly accounted for, our findings show that the precision in peak position and intensity can be improved significantly by fitting the measured Raman peaks with appropriate profiles. Nevertheless, significant errors in peak position and intensity were still observed in the results from fitting of weak and wide Raman

  20. 49 CFR 19.27 - Allowable costs.

    Science.gov (United States)

    2010-10-01

    ... applicable to the entity incurring the costs. Thus, allowability of costs incurred by State, local or... Circular A-87, “Cost Principles for State and Local Governments.” The allowability of costs incurred by non... Principles for Non-Profit Organizations.” The allowability of costs incurred by institutions of higher...

  1. 29 CFR 95.27 - Allowable costs.

    Science.gov (United States)

    2010-07-01

    ... cost principles applicable to the entity incurring the costs. Thus, allowability of costs incurred by... Governments.” The allowability of costs incurred by non-profit organizations is determined in accordance with... Organizations.” The allowability of costs incurred by institutions of higher education is determined in...

  2. 24 CFR 84.27 - Allowable costs.

    Science.gov (United States)

    2010-04-01

    ... to the entity incurring the costs. Thus, allowability of costs incurred by State, local or federally..., “Cost Principles for State and Local Governments.” The allowability of costs incurred by non-profit...-Profit Organizations.” The allowability of costs incurred by institutions of higher education is...

  3. 7 CFR 550.25 - Allowable costs.

    Science.gov (United States)

    2010-01-01

    ... cost principles applicable to the entity incurring the costs. Thus, allowability of costs incurred by... at 2 CFR part 225. The allowability of costs incurred by non-profit organizations is determined in... at 2 CFR part 230. The allowability of costs incurred by institutions of higher education is...

  4. 36 CFR 1210.27 - Allowable costs.

    Science.gov (United States)

    2010-07-01

    ... applicable to the entity incurring the costs. Thus, allowability of costs incurred by State, local or... Circular A-87, “Cost Principles for State and Local Governments.” The allowability of costs incurred by non... Principles for Non-Profit Organizations.” The allowability of costs incurred by institutions of higher...

  5. 7 CFR 3019.27 - Allowable costs.

    Science.gov (United States)

    2010-01-01

    ... applicable to the entity incurring the costs. Thus, allowability of costs incurred by State, local or... Circular A-87, “Cost Principles for State and Local Governments.” The allowability of costs incurred by non... Principles for Non-Profit Organizations.” The allowability of costs incurred by institutions of higher...

  6. 46 CFR 154.428 - Allowable stress.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Allowable stress. 154.428 Section 154.428 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.428 Allowable stress. The membrane tank and the supporting insulation must have allowable stresses...

  7. 46 CFR 154.447 - Allowable stress.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Allowable stress. 154.447 Section 154.447 Shipping COAST... Tank Type B § 154.447 Allowable stress. (a) An independent tank type B designed from bodies of revolution must have allowable stresses 3 determined by the following formulae: 3 See Appendix B for stress...

  8. 42 CFR 417.802 - Allowable costs.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Allowable costs. 417.802 Section 417.802 Public... PLANS Health Care Prepayment Plans § 417.802 Allowable costs. (a) General rule. The costs that are considered allowable for HCPP reimbursement are the same as those for reasonable cost HMOs and CMPs specified...

  9. 45 CFR 1180.56 - Allowable costs.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Allowable costs. 1180.56 Section 1180.56 Public... by a Grantee General Administrative Responsibilities § 1180.56 Allowable costs. (a) Determination of costs allowable under a grant is made in accordance with government-wide cost principles in applicable...

  10. 50 CFR 85.41 - Allowable costs.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Allowable costs. 85.41 Section 85.41... Use/Acceptance of Funds § 85.41 Allowable costs. (a) Allowable grant costs are limited to those costs... applicable Federal cost principles in 43 CFR 12.60(b). Purchase of informational signs, program signs, and...

  11. 34 CFR 675.33 - Allowable costs.

    Science.gov (United States)

    2010-07-01

    ... costs. An institution's share of allowable costs may be in cash or in the form of services. The... 34 Education 3 2010-07-01 2010-07-01 false Allowable costs. 675.33 Section 675.33 Education... costs. (a)(1) Allowable and unallowable costs. Except as provided in paragraph (a)(2) of this section...

  12. Investigation of the Brill transition in nylon 6,6 by Raman, THz-Raman, and two-dimensional correlation spectroscopy.

    Science.gov (United States)

    Bertoldo Menezes, D; Reyer, A; Musso, M

    2018-02-05

    The Brill transition is a phase transition process in polyamides related with structural changes between the hydrogen bonds of the lateral functional groups (CO) and (NH). In this study, we have used the potential of Raman spectroscopy for exploring this phase transition in polyamide 6,6 (nylon 6,6), due to the sensitivity of this spectroscopic technique to small intermolecular changes affecting vibrational properties of relevant functional groups. During a step by step heating and cooling process of the sample we collected Raman spectra allowing us from two-dimensional Raman correlation spectroscopy to identify which spectral regions suffered the largest influence during the Brill transition, and from Terahertz Stokes and anti-Stokes Raman spectroscopy to obtain complementary information, e.g. on the temperature of the sample. This allowed us to grasp signatures of the Brill transition from peak parameters of vibrational modes associated with (CC) skeletal stretches and (CNH) bending, and to verify the Brill transition temperature at around 160°C, as well as the reversibility of this phase transition. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Micro-Raman spectroscopy of chromosomes

    NARCIS (Netherlands)

    de Mul, F.F.M.; van Welle, A.G.M.; Otto, Cornelis; Greve, Jan

    1984-01-01

    Raman spectra of intact chromosomes (Chinese hamster), recorded with a microspectrometer, are reported. The spectra could be assigned to protein and DNA contributions. Protein and DNA conformations and the ratio of base pairs in DNA were determined.

  14. Energy dissipation by a longitudinal Raman process

    International Nuclear Information System (INIS)

    Fano, U.; Inokuti, Mitio

    1994-01-01

    The concept of a longitudinal Raman process is introduced to encompass the indirect transmission of energy from slow electrons to nuclei through the reversible polarization of surrounding electrons. Experimental approaches are sought to assess this process quantitatively

  15. Stimulated Raman scattering: old physics, new applications.

    Science.gov (United States)

    Yakovlev, Vladislav V; Petrov, Georgi I; Zhang, Hao F; Noojin, Gary D; Denton, Michael L; Thomas, Robert J; Scully, Marlan O

    2009-10-01

    Stimulated Raman scattering as a promising way of expanding the tunability of ultrafast lasers and as an exciting new biomedical imaging modality capable of selective excitation and chemically-specific diagnostics of molecular species.

  16. Quantitative detection of caffeine in human skin by confocal Raman spectroscopy--A systematic in vitro validation study.

    Science.gov (United States)

    Franzen, Lutz; Anderski, Juliane; Windbergs, Maike

    2015-09-01

    For rational development and evaluation of dermal drug delivery, the knowledge of rate and extent of substance penetration into the human skin is essential. However, current analytical procedures are destructive, labor intense and lack a defined spatial resolution. In this context, confocal Raman microscopy bares the potential to overcome current limitations in drug depth profiling. Confocal Raman microscopy already proved its suitability for the acquisition of qualitative penetration profiles, but a comprehensive investigation regarding its suitability for quantitative measurements inside the human skin is still missing. In this work, we present a systematic validation study to deploy confocal Raman microscopy for quantitative drug depth profiling in human skin. After we validated our Raman microscopic setup, we successfully established an experimental procedure that allows correlating the Raman signal of a model drug with its controlled concentration in human skin. To overcome current drawbacks in drug depth profiling, we evaluated different modes of peak correlation for quantitative Raman measurements and offer a suitable operating procedure for quantitative drug depth profiling in human skin. In conclusion, we successfully demonstrate the potential of confocal Raman microscopy for quantitative drug depth profiling in human skin as valuable alternative to destructive state-of-the-art techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Multiple marker abundance profiling

    DEFF Research Database (Denmark)

    Hooper, Cornelia M.; Stevens, Tim J.; Saukkonen, Anna

    2017-01-01

    proteins and the scoring accuracy of lower-abundance proteins in Arabidopsis. NPAS was combined with subcellular protein localization data, facilitating quantitative estimations of organelle abundance during routine experimental procedures. A suite of targeted proteomics markers for subcellular compartment...

  18. (DArT) markers

    Indian Academy of Sciences (India)

    2EH Graham Centre for Agricultural Innovation (NSW Department of Industry and Investment and Charles Sturt. University), P. O. Box 588 Wagga Wagga, NSW 2650, Australia. 3Guangxi .... and obtain marker statistics. The exact order of the ...

  19. VT Roadside Historic Markers

    Data.gov (United States)

    Vermont Center for Geographic Information — Roadside Historic Site Marker program has proven an effective way to commemorate Vermont’s many people, events, and places of regional, statewide, or national...

  20. Raman assisted lightwave synthesized frequency sweeper

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Rottwitt, Karsten

    2010-01-01

    We present a Lightwave Synthesized Frequency Sweeper comprising a Raman amplifier for loss compensation. The generated pulse train contains 123 pulses and has a flat signal level as well as a low noise level.......We present a Lightwave Synthesized Frequency Sweeper comprising a Raman amplifier for loss compensation. The generated pulse train contains 123 pulses and has a flat signal level as well as a low noise level....

  1. PM Raman fiber laser at 1679 nm

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    2012-01-01

    We demonstrate a PM Raman fiber laser emitting light at 1679 nm. The laser has an slope efficiency of 67 % and an output power of more than 275mWwith a 27 pm linewidth.......We demonstrate a PM Raman fiber laser emitting light at 1679 nm. The laser has an slope efficiency of 67 % and an output power of more than 275mWwith a 27 pm linewidth....

  2. Ultraviolet resonance Raman spectroscopy for the detection of cocaine in oral fluid

    Science.gov (United States)

    D'Elia, Valentina; Montalvo, Gemma; Ruiz, Carmen García; Ermolenkov, Vladimir V.; Ahmed, Yasmine; Lednev, Igor K.

    2018-01-01

    Detecting and quantifying cocaine in oral fluid is of significant importance for practical forensics. Up to date, mainly destructive methods or biochemical tests have been used, while spectroscopic methods were only applied to pretreated samples. In this work, the possibility of using resonance Raman spectroscopy to detect cocaine in oral fluid without pretreating samples was tested. It was found that ultraviolet resonance Raman spectroscopy with 239-nm excitation allows for the detection of cocaine in oral fluid at 10 μg/mL level. Further method development will be needed for reaching the practically useful levels of cocaine detection.

  3. Fiber-optic surface-enhanced Raman system for field screening of hazardous compounds

    International Nuclear Information System (INIS)

    Ferrell, T.L.; Goudonnet, J.P.; Arakawa, E.T.; Reddick, R.C.; Gammage, R.B.; Haas, J.W.; James, D.R.; Wachter, E.A.

    1988-01-01

    Surface-enhanced Raman scattering permits identification of compounds adsorbed onto a metal microbase that is microlithographically produced with submicron resolution. Less than one percent of a monolayer of a Raman Active target compound offers a high signal-to-noise ratio. By depositing the microbase on the exterior of a fiber optic cable, convenient field screening or monitoring is permitted. By using highly effective microbases, it is possible to reduce laser power requirements sufficiently to allow an economical, but complete, system to be housed in a suitcase. We shall present details of SERS system of this type and shall show data on samples of interest in the screening of hazardous compounds

  4. Pigment Identification on "The Ecstasy of St. Theresa" Painting by Raman Microscopy

    Science.gov (United States)

    Marano, D.; Marmontelli, M.; De Benedetto, G. E.; Catalano, I. M.; Sabbatini, L.; Vona, F.

    A study of the pigments of "The Ecstasy of St. Theresa," a seventeenth century oil painting on canvas, was performed by Raman microscopy. Lazurite was identified in both Jesus Christ's and St. Theresa's mantles as the pigment responsible for the blue coloration. Litharge was identified inside the black bitumen layer. Usually the bitumen needed a lot of time to dry in the air when mixed with drying oil. Litharge was used by the artist to decrease the oil drying time. A complementary study, using micro-Raman and SEM, allowed us to identify red ochre as the pigment responsible for the red coloration in the altar on the left side of the painting.

  5. Formation of gold nanorods and gold nanorod films for surface-enhanced Raman scattering spectroscopy

    International Nuclear Information System (INIS)

    Trotsyuk, L.L.; Kulakovich, O.S.; Shabunya-Klyachkovskaya, E.V.; Gaponenko, S.V.; Vashchenko, S.V.

    2016-01-01

    The formation of gold nanorods as well as thin films prepared via electrostatic deposition of gold nanorods has been investigated. The obtained gold nanorods films have been used as substrates for the surface-enhanced Raman scattering analysis of sulfur-free organic molecules mitoxantrone and malachite green as well as inorganic malachite microcrystals for the first time. The additional modification of films with L-cysteine allows one to significantly extend the use of gold nanorods for the surface-enhanced Raman scattering analysis. (authors)

  6. Effects of ion beam heating on Raman spectra of single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Hulman, Martin; Skakalova, Viera; Krasheninnikov, A. V.; Roth, S.

    2009-01-01

    Free standing films of single-wall carbon nanotubes were irradiated with energetic N + and C 4+ ions. The observed changes in the Raman line shape of the radial breathing mode and the G band of the C 4+ irradiated samples were similar to those found for a thermally annealed sample. We ascribe these changes to thermal desorption of volatile dopants from the initially doped nanotubes. A simple geometry of the experiment allows us to estimate the temperature rise by one-dimensional heat conductance equation. The calculation indicates that irradiation-mediated increase in temperature may account for the observed Raman spectra changes

  7. A micro-Raman spectroscopic investigation of leukemic U-937 cells in aged cultures

    Science.gov (United States)

    Fazio, Enza; Trusso, Sebastiano; Franco, Domenico; Nicolò, Marco Sebastiano; Allegra, Alessandro; Neri, Fortunato; Musolino, Caterina; Guglielmino, Salvatore P. P.

    2016-04-01

    Recently it has been shown that micro-Raman spectroscopy combined with multivariate analysis is able to discriminate among different types of tissues and tumoral cells by the detection of significant alterations and/or reorganizations of complex biological molecules, such as nucleic acids, lipids and proteins. Moreover, its use, being in principle a non-invasive technique, appears an interesting clinical tool for the evaluation of the therapeutical effects and of the disease progression. In this work we analyzed molecular changes in aged cultures of leukemia model U937 cells with respect to fresh cultures of the same cell line. In fact, structural variations of individual neoplastic cells on aging may lead to a heterogeneous data set, therefore falsifying confidence intervals, increasing error levels of analysis and consequently limiting the use of Raman spectroscopy analysis. We found that the observed morphological changes of U937 cells corresponded to well defined modifications of the Raman contributions in selected spectral regions, where markers of specific functional groups, useful to characterize the cell state, are present. A detailed subcellular analysis showed a change in cellular organization as a function of time, and correlated to a significant increase of apoptosis levels. Besides the aforementioned study, Raman spectra were used as input for principal component analysis (PCA) in order to detect and classify spectral changes among U937 cells.

  8. Silver Nanoparticle-Enhanced Resonance Raman Sensor of Chromium(III) in Seawater Samples.

    Science.gov (United States)

    Ly, Nguyễn Hoàng; Joo, Sang-Woo

    2015-04-29

    Tris(hydroxymethyl)aminomethane ethylenediaminetetraacetic acid (Tris-EDTA), upon binding Cr(III) in aqueous solutions at pH 8.0 on silver nanoparticles (AgNPs), was found to provide a sensitive and selective Raman marker band at ~563 cm-1, which can be ascribed to the metal-N band. UV-Vis absorption spectra also supported the aggregation and structural change of EDTA upon binding Cr(III). Only for Cr(III) concentrations above 500 nM, the band at ~563 cm-1 become strongly intensified in the surface-enhanced Raman scattering spectra. This band, due to the metal-EDTA complex, was not observed in the case of 50 mM of K+, Cd2+, Mg2+, Ca2+, Mn2+, Co2+, Na+, Cu2+, NH4+, Hg2+, Ni2+, Fe3+, Pb2+, Fe2+, and Zn2+ ions. Seawater samples containing K, Mg, Ca, and Na ion concentrations higher than 8 mM also showed the characteristic Raman band at ~563 cm-1 above 500 nM, validating our method. Our approach may be useful in detecting real water samples by means of AgNPs and Raman spectroscopy.

  9. Effect of Laser Irradiation on Cell Function and Its Implications in Raman Spectroscopy.

    Science.gov (United States)

    Yuan, Xiaofei; Song, Yanqing; Song, Yizhi; Xu, Jiabao; Wu, Yinhu; Glidle, Andrew; Cusack, Maggie; Ijaz, Umer Z; Cooper, Jonathan M; Huang, Wei E; Yin, Huabing

    2018-04-15

    Lasers are instrumental in advanced bioimaging and Raman spectroscopy. However, they are also well known for their destructive effects on living organisms, leading to concerns about the adverse effects of laser technologies. To implement Raman spectroscopy for cell analysis and manipulation, such as Raman-activated cell sorting, it is crucial to identify nondestructive conditions for living cells. Here, we evaluated quantitatively the effect of 532-nm laser irradiation on bacterial cell fate and growth at the single-cell level. Using a purpose-built microfluidic platform, we were able to quantify the growth characteristics, i.e., specific growth rates and lag times of individual cells, as well as the survival rate of a population in conjunction with Raman spectroscopy. Representative Gram-negative and Gram-positive species show similar trends in response to a laser irradiation dose. Laser irradiation could compromise the physiological function of cells, and the degree of destruction is both dose and strain dependent, ranging from reduced cell growth to a complete loss of cell metabolic activity and finally to physical disintegration. Gram-positive bacterial cells are more susceptible than Gram-negative bacterial strains to irradiation-induced damage. By directly correlating Raman acquisition with single-cell growth characteristics, we provide evidence of nondestructive characteristics of Raman spectroscopy on individual bacterial cells. However, while strong Raman signals can be obtained without causing cell death, the variety of responses from different strains and from individual cells justifies careful evaluation of Raman acquisition conditions if cell viability is critical. IMPORTANCE In Raman spectroscopy, the use of powerful monochromatic light in laser-based systems facilitates the detection of inherently weak signals. This allows environmentally and clinically relevant microorganisms to be measured at the single-cell level. The significance of being able to

  10. Citrus fruits freshness assessment using Raman spectroscopy.

    Science.gov (United States)

    Nekvapil, Fran; Brezestean, Ioana; Barchewitz, Daniel; Glamuzina, Branko; Chiş, Vasile; Cintă Pinzaru, Simona

    2018-03-01

    The freshness of citrus fruits commonly available in the market was non-destructively assessed by Raman spectroscopy. Intact clementine, mandarin and tangerine species were characterised concerning their carotenoids skin Raman signalling in a time course from the moment they were acquired as fresh stock, supplying the market, to the physical degradation, when they were no longer attractive to consumers. The freshness was found to strongly correlate to the peel Raman signal collected from the same area of the intact fruits in a time course of a maximum of 20days. We have shown that the intensity of the carotenoid Raman signal is indeed a good indicator of fruit freshness and introduced a Raman coefficient of freshness (C Fresh ), whose time course is linearly decreasing, with different slope for different citrus groups. Additionally, we demonstrated that the freshness assessment could be achieved using a portable Raman instrument. The results could have a strong impact for consumer satisfaction and the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Visualizing cell state transition using Raman spectroscopy.

    Directory of Open Access Journals (Sweden)

    Taro Ichimura

    Full Text Available System level understanding of the cell requires detailed description of the cell state, which is often characterized by the expression levels of proteins. However, understanding the cell state requires comprehensive information of the cell, which is usually obtained from a large number of cells and their disruption. In this study, we used Raman spectroscopy, which can report changes in the cell state without introducing any label, as a non-invasive method with single cell capability. Significant differences in Raman spectra were observed at the levels of both the cytosol and nucleus in different cell-lines from mouse, indicating that Raman spectra reflect differences in the cell state. Difference in cell state was observed before and after the induction of differentiation in neuroblastoma and adipocytes, showing that Raman spectra can detect subtle changes in the cell state. Cell state transitions during embryonic stem cell (ESC differentiation were visualized when Raman spectroscopy was coupled with principal component analysis (PCA, which showed gradual transition in the cell states during differentiation. Detailed analysis showed that the diversity between cells are large in undifferentiated ESC and in mesenchymal stem cells compared with terminally differentiated cells, implying that the cell state in stem cells stochastically fluctuates during the self-renewal process. The present study strongly indicates that Raman spectral morphology, in combination with PCA, can be used to establish cells' fingerprints, which can be useful for distinguishing and identifying different cellular states.

  12. Prospects for in vivo Raman spectroscopy

    International Nuclear Information System (INIS)

    Hanlon, E.B.; Manoharan, R.; Koo, T.-W.; Shafer, K.E.; Motz, J.T.; Fitzmaurice, M.; Kramer, J.R.; Itzkan, I.; Dasari, R.R.; Feld, M.S.

    2000-01-01

    Raman spectroscopy is a potentially important clinical tool for real-time diagnosis of disease and in situ evaluation of living tissue. The purpose of this article is to review the biological and physical basis of Raman spectroscopy of tissue, to assess the current status of the field and to explore future directions. The principles of Raman spectroscopy and the molecular level information it provides are explained. An overview of the evolution of Raman spectroscopic techniques in biology and medicine, from early investigations using visible laser excitation to present-day technology based on near-infrared laser excitation and charge-coupled device array detection, is presented. State-of-the-art Raman spectrometer systems for research laboratory and clinical settings are described. Modern methods of multivariate spectral analysis for extracting diagnostic, chemical and morphological information are reviewed. Several in-depth applications are presented to illustrate the methods of collecting, processing and analysing data, as well as the range of medical applications under study. Finally, the issues to be addressed in implementing Raman spectroscopy in various clinical applications, as well as some long-term directions for future study, are discussed. (author)

  13. The Raman Laser Spectrometer for the ExoMars Rover Mission to Mars

    Science.gov (United States)

    Rull, Fernando; Maurice, Sylvestre; Hutchinson, Ian; Moral, Andoni; Perez, Carlos; Diaz, Carlos; Colombo, Maria; Belenguer, Tomas; Lopez-Reyes, Guillermo; Sansano, Antonio; Forni, Olivier; Parot, Yann; Striebig, Nicolas; Woodward, Simon; Howe, Chris; Tarcea, Nicolau; Rodriguez, Pablo; Seoane, Laura; Santiago, Amaia; Rodriguez-Prieto, Jose A.; Medina, Jesús; Gallego, Paloma; Canchal, Rosario; Santamaría, Pilar; Ramos, Gonzalo; Vago, Jorge L.; RLS Team

    2017-07-01

    The Raman Laser Spectrometer (RLS) on board the ESA/Roscosmos ExoMars 2020 mission will provide precise identification of the mineral phases and the possibility to detect organics on the Red Planet. The RLS will work on the powdered samples prepared inside the Pasteur analytical suite and collected on the surface and subsurface by a drill system. Raman spectroscopy is a well-known analytical technique based on the inelastic scattering by matter of incident monochromatic light (the Raman effect) that has many applications in laboratory and industry, yet to be used in space applications. Raman spectrometers will be included in two Mars rovers scheduled to be launched in 2020. The Raman instrument for ExoMars 2020 consists of three main units: (1) a transmission spectrograph coupled to a CCD detector; (2) an electronics box, including the excitation laser that controls the instrument functions; and (3) an optical head with an autofocus mechanism illuminating and collecting the scattered light from the spot under investigation. The optical head is connected to the excitation laser and the spectrometer by optical fibers. The instrument also has two targets positioned inside the rover analytical laboratory for onboard Raman spectral calibration. The aim of this article was to present a detailed description of the RLS instrument, including its operation on Mars. To verify RLS operation before launch and to prepare science scenarios for the mission, a simulator of the sample analysis chain has been developed by the team. The results obtained are also discussed. Finally, the potential of the Raman instrument for use in field conditions is addressed. By using a ruggedized prototype, also developed by our team, a wide range of terrestrial analog sites across the world have been studied. These investigations allowed preparing a large collection of real, in situ spectra of samples from different geological processes and periods of Earth evolution. On this basis, we are working

  14. Portable standoff Raman system for fast detection of homemade explosives through glass, plastic, and water

    Science.gov (United States)

    Misra, Anupam K.; Sharma, Shiv K.; Acosta, Tayro E.; Porter, John N.; Lucey, Paul G.; Bates, David E.

    2012-06-01

    The University of Hawaii has been developing portable remote Raman systems capable of detecting chemicals in daylight from a safe standoff distance. We present data on standoff detection of chemicals used in the synthesis of homemade explosives (HME) using a portable standoff Raman system utilizing an 8-inch telescope. Data show that good-quality Raman spectra of various hazardous chemicals such as ammonium nitrate, potassium nitrate, potassium perchlorate, sulfur, nitrobenzene, benzene, acetone, various organic and inorganic chemicals etc. could be easily obtained from remote distances, tested up to 120 meters, with a single-pulse laser excitation and with detection time less than 1 μs. The system uses a frequency-doubled Nd:YAG pulsed laser source (532 nm, 100 mJ/pulse, 15 Hz, pulse width 10 ns) capable of firing a single or double pulse. The double-pulse configuration also allows the system to perform standoff LIBS (Laser-Induced Breakdown Spectroscopy) at 50 m range. In the standoff Raman detection, the doublepulse sequence simply doubles the signal to noise ratio. Significant improvement in the quality of Raman spectra is observed when the standoff detection is made with 1s integration time. The system uses a 50-micron slit and has spectral resolution of 8 cm-1. The HME chemicals could be easily detected through clear and brown glass bottles, PP and HDPE plastic bottles, and also through fluorescent plastic water bottles. Standoff Raman detection of HME chemical from a 10 m distance through non-visible concealed bottles in plastic bubble wrap packaging is demonstrated with 1 s integration time. Possible applications of the standoff Raman system for homeland security and environmental monitoring are discussed.

  15. Sulfates on Mars: A systematic Raman spectroscopic study of hydration states of magnesium sulfates

    Science.gov (United States)

    Wang, A.; Freeman, J.J.; Jolliff, B.L.; Chou, I.-Ming

    2006-01-01

    The martian orbital and landed surface missions, OMEGA on Mar Express and the two Mars Explorations Rovers, respectively, have yielded evidence pointing to the presence of magnesium sulfates on the martian surface. In situ identification of the hydration states of magnesium sulfates, as well as the hydration states of other Ca- and Fe- sulfates, will be crucial in future landed missions on Mars in order to advance our knowledge of the hydrologic history of Mars as well as the potential for hosting life on Mars. Raman spectroscopy is a technique well-suited for landed missions on the martian surface. In this paper, we report a systematic study of the Raman spectra of the hydrates of magnesium sulfate. Characteristic and distinct Raman spectral patterns were observed for each of the 11 distinct hydrates of magnesium sulfates, crystalline and non-crystalline. The unique Raman spectral features along with the general tendency of the shift of the position of the sulfate ??1 band towards higher wavenumbers with a decrease in the degree of hydration allow in situ identification of these hydrated magnesium sulfates from the raw Raman spectra of mixtures. Using these Raman spectral features, we have started the study of the stability field of hydrated magnesium sulfates and the pathways of their transformations at various temperature and relative humidity conditions. In particular we report on the Raman spectrum of an amorphous hydrate of magnesium sulfate (MgSO4??2H2O) that may have specific relevance for the martian surface. ?? 2006 Elsevier Inc. All rights reserved.

  16. Raman spectroscopy for the characterization of different fractions of hemp essential oil extracted at 130 °C using steam distillation method

    Science.gov (United States)

    Hanif, Muhammad Asif; Nawaz, Haq; Naz, Saima; Mukhtar, Rubina; Rashid, Nosheen; Bhatti, Ijaz Ahmad; Saleem, Muhammad

    2017-07-01

    In this study, Raman spectroscopy along with Principal Component Analysis (PCA) is used for the characterization of pure essential oil (pure EO) isolated from the leaves of the Hemp (Cannabis sativa L.,) as well as its different fractions obtained by fractional distillation process. Raman spectra of pure Hemp essential oil and its different fractions show characteristic key bands of main volatile terpenes and terpenoids, which significantly differentiate them from each other. These bands provide information about the chemical composition of sample under investigation and hence can be used as Raman spectral markers for the qualitative monitoring of the pure EO and different fractions containing different active compounds. PCA differentiates the Raman spectral data into different clusters and loadings of the PCA further confirm the biological origin of the different fractions of the essential oil.

  17. Fluorescence-Raman Dual Modal Endoscopic System for Multiplexed Molecular Diagnostics

    Science.gov (United States)

    Jeong, Sinyoung; Kim, Yong-Il; Kang, Homan; Kim, Gunsung; Cha, Myeong Geun; Chang, Hyejin; Jung, Kyung Oh; Kim, Young-Hwa; Jun, Bong-Hyun; Hwang, Do Won; Lee, Yun-Sang; Youn, Hyewon; Lee, Yoon-Sik; Kang, Keon Wook; Lee, Dong Soo; Jeong, Dae Hong

    2015-03-01

    Optical endoscopic imaging, which was recently equipped with bioluminescence, fluorescence, and Raman scattering, allows minimally invasive real-time detection of pathologies on the surface of hollow organs. To characterize pathologic lesions in a multiplexed way, we developed a dual modal fluorescence-Raman endomicroscopic system (FRES), which used fluorescence and surface-enhanced Raman scattering nanoprobes (F-SERS dots). Real-time, in vivo, and multiple target detection of a specific cancer was successful, based on the fast imaging capability of fluorescence signals and the multiplex capability of simultaneously detected SERS signals using an optical fiber bundle for intraoperative endoscopic system. Human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) on the breast cancer xenografts in a mouse orthotopic model were successfully detected in a multiplexed way, illustrating the potential of FRES as a molecular diagnostic instrument that enables real-time tumor characterization of receptors during routine endoscopic procedures.

  18. Femtosecond time-resolved impulsive stimulated Raman spectroscopy using sub-7-fs pulses: Apparatus and applications

    Energy Technology Data Exchange (ETDEWEB)

    Kuramochi, Hikaru [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan); Takeuchi, Satoshi; Tahara, Tahei, E-mail: tahei@riken.jp [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan); Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198 (Japan)

    2016-04-15

    We describe details of the setup for time-resolved impulsive stimulated Raman spectroscopy (TR-ISRS). In this method, snapshot molecular vibrational spectra of the photoreaction transients are captured via time-domain Raman probing using ultrashort pulses. Our instrument features transform-limited sub-7-fs pulses to impulsively excite and probe coherent nuclear wavepacket motions, allowing us to observe vibrational fingerprints of transient species from the terahertz to 3000-cm{sup −1} region with high sensitivity. Key optical components for the best spectroscopic performance are discussed. The TR-ISRS measurements for the excited states of diphenylacetylene in cyclohexane are demonstrated, highlighting the capability of our setup to track femtosecond dynamics of all the Raman-active fundamental molecular vibrations.

  19. Monitoring the Wobbe Index of Natural Gas Using Fiber-Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Vincenz Sandfort

    2017-11-01

    Full Text Available The fast and reliable analysis of the natural gas composition requires the simultaneous quantification of numerous gaseous components. To this end, fiber-enhanced Raman spectroscopy is a powerful tool to detect most components in a single measurement using a single laser source. However, practical issues such as detection limit, gas exchange time and background Raman signals from the fiber material still pose obstacles to utilizing the scheme in real-world settings. This paper compares the performance of two types of hollow-core photonic crystal fiber (PCF, namely photonic bandgap PCF and kagomé-style PCF, and assesses their potential for online determination of the Wobbe index. In contrast to bandgap PCF, kagomé-PCF allows for reliable detection of Raman-scattered photons even below 1200 cm−1, which in turn enables fast and comprehensive assessment of the natural gas quality of arbitrary mixtures.

  20. Tunable optical setup with high flexibility for spectrally resolved coherent anti-Stokes Raman scattering microscopy

    International Nuclear Information System (INIS)

    Bergner, G; Akimov, D; Bartelt, H; Dietzek, B; Popp, J; Schlücker, S

    2011-01-01

    A simplified setup for coherent anti-Stokes Raman scattering (CARS) microscopy is introduced, which allows for recording CARS images with 30 cm -1 excitation bandwidth for probing Raman bands between 500 and 900 cm -1 with minimal requirements for alignment. The experimental arrangement is based on electronic switching between CARS images recorded at different Raman resonances by combining a photonic crystal fiber (PCF) as broadband light source and an acousto-optical programmable dispersive filter (AOPDF) as tunable wavelength filter. Such spatial light modulator enables selection of a narrow-band spectrum to yield high vibrational contrast and hence chemical contrast in the resultant CARS images. Furthermore, an experimental approach to reconstruct spectral information from CARS image contrast is introduced

  1. Raman detection of extra virgin olive oil adulterated with cheaper oils

    Science.gov (United States)

    Farley, Carlton; Kassu, Aschalew; Mills, Jonathan; Kenney, Brianna; Ruffin, Paul; Sharma, Anup

    2016-09-01

    Pure extra virgin olive oil (EVOO) is mixed with cheaper edible oils and samples are kept inside clear glass containers, while a 785nm Raman system is used to take measurements as Raman probe is placed against glass container. Several types of oils at various concentrations of adulteration are used. Ratios of peak intensities are used to analyze raw data, which allows for quick, easy, and accurate analysis. While conventional Raman measurements of EVOO may take as long as 2 minutes, all measurements reported here are for integration times of 15s. It is found that adulteration of EVOO with cheaper oils is detectable at concentrations as low as 5% for all oils used in this study.

  2. Monitoring the Wobbe Index of Natural Gas Using Fiber-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Sandfort, Vincenz; Trabold, Barbara M; Abdolvand, Amir; Bolwien, Carsten; Russell, Philip St. J; Wöllenstein, Jürgen; Palzer, Stefan

    2017-11-24

    The fast and reliable analysis of the natural gas composition requires the simultaneous quantification of numerous gaseous components. To this end, fiber-enhanced Raman spectroscopy is a powerful tool to detect most components in a single measurement using a single laser source. However, practical issues such as detection limit, gas exchange time and background Raman signals from the fiber material still pose obstacles to utilizing the scheme in real-world settings. This paper compares the performance of two types of hollow-core photonic crystal fiber (PCF), namely photonic bandgap PCF and kagomé-style PCF, and assesses their potential for online determination of the Wobbe index. In contrast to bandgap PCF, kagomé-PCF allows for reliable detection of Raman-scattered photons even below 1200 cm -1 , which in turn enables fast and comprehensive assessment of the natural gas quality of arbitrary mixtures.

  3. Surface enhanced Raman spectroscopy in the presence of hydroquinone assisted by gold nanorods

    Science.gov (United States)

    Cabrera Alonso, R.; Guevara, Edgar; Ramírez Elías, Miguel G.; González, Francisco Javier

    2017-08-01

    Hydroquinone is an aromatic organic molecule found in skin lightening creams for dermatological melasma treatment. The absorbance of this substance at high concentrations can be the cause of skin diseases. Nowadays most of the methods used for medical diagnosis for dermatological diseases consist on invasive methods such as biopsies. In recent years non-invasive techniques based on the properties of light and the interaction with biological samples have come to a new way for medical diagnosis. By means of Raman spectroscopy is of great interest the detection of hydroquinone for future medical applications. Due to the low Raman signal that the biological samples present, it is necessary to make use of nanotechnology. Making biosensors (SERS substrates) that allow us to amplify the electromagnetic field for the biological Raman signals.

  4. Recognizing different tissues in human fetal femur cartilage by label-free Raman microspectroscopy

    Science.gov (United States)

    Kunstar, Aliz; Leijten, Jeroen; van Leuveren, Stefan; Hilderink, Janneke; Otto, Cees; van Blitterswijk, Clemens A.; Karperien, Marcel; van Apeldoorn, Aart A.

    2012-11-01

    Traditionally, the composition of bone and cartilage is determined by standard histological methods. We used Raman microscopy, which provides a molecular "fingerprint" of the investigated sample, to detect differences between the zones in human fetal femur cartilage without the need for additional staining or labeling. Raman area scans were made from the (pre)articular cartilage, resting, proliferative, and hypertrophic zones of growth plate and endochondral bone within human fetal femora. Multivariate data analysis was performed on Raman spectral datasets to construct cluster images with corresponding cluster averages. Cluster analysis resulted in detection of individual chondrocyte spectra that could be separated from cartilage extracellular matrix (ECM) spectra and was verified by comparing cluster images with intensity-based Raman images for the deoxyribonucleic acid/ribonucleic acid (DNA/RNA) band. Specific dendrograms were created using Ward's clustering method, and principal component analysis (PCA) was performed with the separated and averaged Raman spectra of cells and ECM of all measured zones. Overall (dis)similarities between measured zones were effectively visualized on the dendrograms and main spectral differences were revealed by PCA allowing for label-free detection of individual cartilaginous zones and for label-free evaluation of proper cartilaginous matrix formation for future tissue engineering and clinical purposes.

  5. Four-point bend apparatus for in situ micro-Raman stress measurements

    Science.gov (United States)

    Ward, Shawn H.; Mann, Adrian B.

    2018-06-01

    A device for in situ use with a micro-Raman microscope to determine stress from the Raman peak position was designed and validated. The device is a four-point bend machine with a micro-stepping motor and load cell, allowing for fine movement and accurate readings of the applied force. The machine has a small footprint and easily fits on most optical microscope stages. The results obtained from silicon are in good agreement with published literature values for the linear relationship between stress and peak position for the 520.8 cm‑1 Raman peak. The device was used to examine 4H–SiC and a good linear relationship was found between the 798 cm‑1 Raman peak position and stress, with the proportionality coefficient being close to the theoretical value of 0.0025. The 777 cm‑1 Raman peak also showed a linear dependence on stress, but the dependence was not as strong. The device examines both the tensile and compressive sides of the beam in bending, granting the potential for many materials and crystal orientations to be examined.

  6. Revealing New Structural Insights from Surfactant Micelles through DLS, Microrheology and Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Samiul Amin

    2015-06-01

    Full Text Available The correlation between molecular changes and microstructural evolution of rheological properties has been demonstrated for the first time in a mixed anionic/zwitterionic surfactant-based wormlike micellar system. Utilizing a novel combination of DLS-microrheology and Raman Spectroscopy, the effect of electrostatic screening on these properties of anionic (SLES and zwitterionic (CapB surfactant mixtures was studied by modulating the NaCl concentration. As Raman Spectroscopy delivers information about the molecular structure and DLS-microrheology characterizes viscoelastic properties, the combination of data delivered allows for a deeper understanding of the molecular changes underlying the viscoelastic ones. The high frequency viscoelastic response obtained through DLS-microrheology has shown the persistence of the Maxwell fluid response for low viscosity solutions at high NaCl concentrations. The intensity of the Raman band at 170 cm−1 exhibits very strong correlation with the viscosity variation. As this Raman band is assigned to hydrogen bonding, its variation with NaCl concentration additionally indicates differences in water structuring due to potential microstructural differences at low and high NaCl concentrations. The microstructural differences at low and high NaCl concentrations are further corroborated by persistence of a slow mode at the higher NaCl concentrations as seen through DLS measurements. The study illustrates the utility of the combined DLS, DLS-optical microrheology and Raman Spectroscopy in providing new molecular structural insights into the self-assembly process in complex fluids.

  7. Raman Spectroscopy: An Emerging Tool in Neurodegenerative Disease Research and Diagnosis.

    Science.gov (United States)

    Devitt, George; Howard, Kelly; Mudher, Amrit; Mahajan, Sumeet

    2018-03-21

    The pathogenesis underlining many neurodegenerative diseases remains incompletely understood. The lack of effective biomarkers and disease preventative medicine demands the development of new techniques to efficiently probe the mechanisms of disease and to detect early biomarkers predictive of disease onset. Raman spectroscopy is an established technique that allows the label-free fingerprinting and imaging of molecules based on their chemical constitution and structure. While analysis of isolated biological molecules has been widespread in the chemical community, applications of Raman spectroscopy to study clinically relevant biological species, disease pathogenesis, and diagnosis have been rapidly increasing since the past decade. The growing number of biomedical applications has shown the potential of Raman spectroscopy for detection of novel biomarkers that could enable the rapid and accurate screening of disease susceptibility and onset. Here we provide an overview of Raman spectroscopy and related techniques and their application to neurodegenerative diseases. We further discuss their potential utility in research, biomarker detection, and diagnosis. Challenges to routine use of Raman spectroscopy in the context of neuroscience research are also presented.

  8. In-situ detection of drugs-of-abuse on clothing using confocal Raman microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Esam M.A. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom); Edwards, Howell G.M. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom)], E-mail: h.g.m.edwards@bradford.ac.uk; Hargreaves, Michael D.; Scowen, Ian J. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom)

    2008-05-12

    This study describes the application of confocal Raman microscopy to the detection and identification of drugs-of-abuse in situ on undyed natural synthetic fibres, and coloured textile specimens. Raman spectra were obtained from drug particles trapped between the fibres of the specimens. Pure samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine HCl (MDMA-HCl) were used in this study. Raman spectra were collected from drug particles of an average size in the range 5-15 {mu}m. Despite the presence of spectral bands arising from the natural and synthetic polymer and dyed textiles, the drugs could be identified by their characteristic Raman bands. If necessary, interfering bands could be successfully removed by spectral subtraction. Furthermore, Raman spectra were recorded from drug particles trapped between the fibres of highly fluorescent specimens. Interference from the fibres, including background fluorescence, was overcome by careful focusing of the confocal beam and the resulting spectra allow ready differentiation from interference from the fibres substrate bands. Spectra of several drugs-of-abuse on dyed and undyed clothing substrates were readily obtained within 3 min with little or no sample preparation and with no alteration of the evidential material.

  9. In-situ detection of drugs-of-abuse on clothing using confocal Raman microscopy

    International Nuclear Information System (INIS)

    Ali, Esam M.A.; Edwards, Howell G.M.; Hargreaves, Michael D.; Scowen, Ian J.

    2008-01-01

    This study describes the application of confocal Raman microscopy to the detection and identification of drugs-of-abuse in situ on undyed natural synthetic fibres, and coloured textile specimens. Raman spectra were obtained from drug particles trapped between the fibres of the specimens. Pure samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine HCl (MDMA-HCl) were used in this study. Raman spectra were collected from drug particles of an average size in the range 5-15 μm. Despite the presence of spectral bands arising from the natural and synthetic polymer and dyed textiles, the drugs could be identified by their characteristic Raman bands. If necessary, interfering bands could be successfully removed by spectral subtraction. Furthermore, Raman spectra were recorded from drug particles trapped between the fibres of highly fluorescent specimens. Interference from the fibres, including background fluorescence, was overcome by careful focusing of the confocal beam and the resulting spectra allow ready differentiation from interference from the fibres substrate bands. Spectra of several drugs-of-abuse on dyed and undyed clothing substrates were readily obtained within 3 min with little or no sample preparation and with no alteration of the evidential material

  10. The effects of machine parameters on residual stress determined using micro-Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.G.; Enloe, W.S.; Paesler, M.A.

    1988-12-01

    The effects of machine parameters on residual stresses in single point diamond turned silicon and germanium have been investigated using micro-Raman spectroscopy. Residual stresses were sampled across ductile feed cuts in < 100 > silicon and germanium which were single point diamond turned using a variety of feed rates, rake angles and clearance angles. High spatial resolution micro-Raman spectra (1{mu}m spot) were obtained in regions of ductile cutting where no visible surface damage was present. The use of both 514-5nm and 488.0nm excitation wavelengths, by virtue of their differing characteristic penetration depths in the materials, allowed determinations of stress profiles as a function of depth into the sample. Previous discussions have demonstrated that such Raman spectra will exhibit asymmetrically broadened peaks which are characteristic of the superposition of a continuum of Raman scatterers from the various depths probed. Depth profiles of residual stress were obtained using computer deconvolution of the resulting asymmetrically broadened raman spectra.

  11. Protonation–deprotonation of the glycine backbone as followed by Raman scattering and multiconformational analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Belén; Pflüger, Fernando [Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny cedex (France); Kruglik, Sergei G. [Laboratoire Jean Perrin, FRE 3231, Université Pierre et Marie Curie (Paris 6), Case courrier 138, 75252 Paris Cedex 05 (France); Ghomi, Mahmoud, E-mail: mahmoud.ghomi@univ-paris13.fr [Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93017 Bobigny cedex (France)

    2013-11-08

    Highlights: • New pH-dependent Raman spectra in the middle wavenumber region (1800-300 cm{sup −1}). • New quantum mechanical calculations for exploring the Gly conformational landscape. • Construction of muticonformation based theoretical Raman spectra. - Abstract: Because of the absence of the side chain in its chemical structure and its well defined Raman spectra, glycine was selected here to follow its backbone protonation–deprotonation. The scan of the recorded spectra in the 1800–300 cm{sup −1} region led us to assign those obtained at pH 1, 6 and 12 to the cationic, zwitterionic and anionic species, respectively. These data complete well those previously published by Bykov et al. (2008) [16] devoted to the high wavenumber Raman spectra (>2500 cm{sup −1}). To reinforce our discussion, DFT calculations were carried out on the clusters of glycine + 5H{sub 2}O, mimicking reasonably the first hydration shell of the amino acid. Geometry optimization of 141 initial clusters, reflecting plausible combinations of the backbone torsion angles, allowed exploration of the conformational features, as well as construction of the theoretical Raman spectra by considering the most stable clusters containing each glycine species.

  12. Raman Excitation Profile of the G-band Enhancement in Twisted Bilayer Graphene

    Science.gov (United States)

    Eliel, G. S. N.; Ribeiro, H. B.; Sato, K.; Saito, R.; Lu, Chun-Chieh; Chiu, Po-Wen; Fantini, C.; Righi, A.; Pimenta, M. A.

    2017-12-01

    A resonant Raman study of twisted bilayer graphene (TBG) samples with different twisting angles using many different laser lines in the visible range is presented. The samples were fabricated by CVD technique and transferred to Si/SiO2 substrates. The Raman excitation profiles of the huge enhancement of the G-band intensity for a group of different TBG flakes were obtained experimentally, and the analysis of the profiles using a theoretical expression for the Raman intensities allowed us to obtain the energies of the van Hove singularities generated by the Moiré patterns and the lifetimes of the excited state of the Raman process. Our results exhibit a good agreement between experimental and calculated energies for van Hove singularities and show that the lifetime of photoexcited carrier does not depend significantly on the twisting angle in the range intermediate angles ( 𝜃 between 10∘ and 15∘). We observed that the width of the resonance window (Γ ≈ 250 meV) is much larger than the REP of the Raman modes of carbon nanotubes, which are also enhanced by resonances with van Hove singularities.

  13. Raman Spectroscopy of Serpentine and Reaction Products at High Pressure Using a Diamond Anvil Cell

    Science.gov (United States)

    Burgess, K.; Zinin, P.; Odake, S.; Fryer, P.; Hellebrand, E.

    2012-12-01

    Serpentine is one of the most abundant hydrous phases in the altered subducting plate, and contributes a large portion of the water flux in subduction zones. Measuring and understanding the structural changes in serpentine with pressure aids our understanding of the processes ongoing in oceanic crust and subduction zones. We have conducted high-pressure/high-temperature experiments on serpentine and its dehydration reaction products using a diamond anvil cell. We used the multifunctional in-situ measurement system equipped with a Raman device and laser heating system at the University of Hawaii. Well-characterized natural serpentinite was used in the study. Pressure was determined using the shift of the fluorescence line of a ruby placed next to the sample. Raman spectra of serpentine were obtained at higher pressures than previously published, up to 15 GPa; the peak shift with pressure fits the model determined by Auzende et al. [2004] at lower pressures. Heating was done at several different pressures up to 20 GPa, and reaction products were identified using Raman. Micro-Raman techniques allow us to determine reaction progress and heterogeneity within natural samples containing olivine and serpentine. Auzende, A-L., I. Daniel, B. Reynard, C. Lemaire, F. Guyot (2004). High-pressure behavior of serpentine minerals: a Raman spectroscopic study. Phys. Chem. Minerals 31 269-277.

  14. Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms: implications for astrobiology

    Science.gov (United States)

    Jehlička, Jan; Edwards, Howell G. M.; Osterrothová, Kateřina; Novotná, Julie; Nedbalová, Linda; Kopecký, Jiří; Němec, Ivan; Oren, Aharon

    2014-01-01

    In this paper, it is demonstrated how Raman spectroscopy can be used to detect different carotenoids as possible biomarkers in various groups of microorganisms. The question which arose from previous studies concerns the level of unambiguity of discriminating carotenoids using common Raman microspectrometers. A series of laboratory-grown microorganisms of different taxonomic affiliation was investigated, such as halophilic heterotrophic bacteria, cyanobacteria, the anoxygenic phototrophs, the non-halophilic heterotrophs as well as eukaryotes (Ochrophyta, Rhodophyta and Chlorophyta). The data presented show that Raman spectroscopy is a suitable tool to assess the presence of carotenoids of these organisms in cultures. Comparison is made with the high-performance liquid chromatography approach of analysing pigments in extracts. Direct measurements on cultures provide fast and reliable identification of the pigments. Some of the carotenoids studied are proposed as tracers for halophiles, in contrast with others which can be considered as biomarkers of other genera. The limits of application of Raman spectroscopy are discussed for a few cases where the current Raman spectroscopic approach does not allow discriminating structurally very similar carotenoids. The database reported can be used for applications in geobiology and exobiology for the detection of pigment signals in natural settings. PMID:25368348

  15. Dielectrophoretic positioning of single nanoparticles on atomic force microscope tips for tip-enhanced Raman spectroscopy.

    Science.gov (United States)

    Leiterer, Christian; Deckert-Gaudig, Tanja; Singh, Prabha; Wirth, Janina; Deckert, Volker; Fritzsche, Wolfgang

    2015-05-01

    Tip-enhanced Raman spectroscopy, a combination of Raman spectroscopy and scanning probe microscopy, is a powerful technique to detect the vibrational fingerprint of molecules at the nanometer scale. A metal nanoparticle at the apex of an atomic force microscope tip leads to a large enhancement of the electromagnetic field when illuminated with an appropriate wavelength, resulting in an increased Raman signal. A controlled positioning of individual nanoparticles at the tip would improve the reproducibility of the probes and is quite demanding due to usually serial and labor-intensive approaches. In contrast to commonly used submicron manipulation techniques, dielectrophoresis allows a parallel and scalable production, and provides a novel approach toward reproducible and at the same time affordable tip-enhanced Raman spectroscopy tips. We demonstrate the successful positioning of an individual plasmonic nanoparticle on a commercial atomic force microscope tip by dielectrophoresis followed by experimental proof of the Raman signal enhancing capabilities of such tips. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. An FT-Raman, FT-IR, and Quantum Chemical Investigation of Stanozolol and Oxandrolone

    Directory of Open Access Journals (Sweden)

    Tibebe Lemma

    2017-12-01

    Full Text Available We have studied the Fourier Transform Infrared (FT-IR and the Fourier transform Raman (FT-Raman spectra of stanozolol and oxandrolone, and we have performed quantum chemical calculations based on the density functional theory (DFT with a B3LYP/6-31G (d, p level of theory. The FT-IR and FT-Raman spectra were collected in a solid phase. The consistency between the calculated and experimental FT-IR and FT-Raman data indicates that the B3LYP/6-31G (d, p can generate reliable geometry and related properties of the title compounds. Selected experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumbers by their total energy distribution. The good agreement between the experimental and theoretical spectra allowed positive assignment of the observed vibrational absorption bands. Finally, the calculation results were applied to simulate the Raman and IR spectra of the title compounds, which show agreement with the observed spectra.

  17. High-efficiency, 154  W CW, diode-pumped Raman fiber laser with brightness enhancement.

    Science.gov (United States)

    Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Ter-Gabrielyan, Nikolay; Dubinskii, Mark

    2017-01-20

    We demonstrate a high-power, high-efficiency Raman fiber laser pumped directly by laser diode modules at 978 nm. 154 W of CW power were obtained at a wavelength of 1023 nm with an optical to optical efficiency of 65%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the second Stokes. In addition, brightness enhancement of the pump beam by a factor of 8.4 is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge this is the highest power and highest efficiency Raman fiber laser demonstrated in any configuration allowing brightness enhancement (i.e., in either cladding-pumped configuration or with GRIN fibers, excluding step-index core pumped), regardless of pumping scheme (i.e., either diode pumped or fiber laser pumped).

  18. Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Brückner, Michael [Leibniz Institute of Photonic Technology, 07745 Jena (Germany); Becker, Katja [Justus Liebig University Giessen, Biochemistry and Molecular Biology, 35392 Giessen (Germany); Popp, Jürgen [Leibniz Institute of Photonic Technology, 07745 Jena (Germany); Friedrich Schiller University Jena, Institute for Physical Chemistry, 07745 Jena (Germany); Friedrich Schiller University Jena, Abbe Centre of Photonics, 07745 Jena (Germany); Frosch, Torsten, E-mail: torsten.frosch@uni-jena.de [Leibniz Institute of Photonic Technology, 07745 Jena (Germany); Friedrich Schiller University Jena, Institute for Physical Chemistry, 07745 Jena (Germany); Friedrich Schiller University Jena, Abbe Centre of Photonics, 07745 Jena (Germany)

    2015-09-24

    A new setup for Raman spectroscopic wide-field imaging is presented. It combines the advantages of a fiber array based spectral translator with a tailor-made laser illumination system for high-quality Raman chemical imaging of sensitive biological samples. The Gaussian-like intensity distribution of the illuminating laser beam is shaped by a square-core optical multimode fiber to a top-hat profile with very homogeneous intensity distribution to fulfill the conditions of Koehler. The 30 m long optical fiber and an additional vibrator efficiently destroy the polarization and coherence of the illuminating light. This homogeneous, incoherent illumination is an essential prerequisite for stable quantitative imaging of complex biological samples. The fiber array translates the two-dimensional lateral information of the Raman stray light into separated spectral channels with very high contrast. The Raman image can be correlated with a corresponding white light microscopic image of the sample. The new setup enables simultaneous quantification of all Raman spectra across the whole spatial area with very good spectral resolution and thus outperforms other Raman imaging approaches based on scanning and tunable filters. The unique capabilities of the setup for fast, gentle, sensitive, and selective chemical imaging of biological samples were applied for automated hemozoin analysis. A special algorithm was developed to generate Raman images based on the hemozoin distribution in red blood cells without any influence from other Raman scattering. The new imaging setup in combination with the robust algorithm provides a novel, elegant way for chemical selective analysis of the malaria pigment hemozoin in early ring stages of Plasmodium falciparum infected erythrocytes. - Highlights: • Raman hyperspectral imaging allows for chemical selective analysis of biological samples with spatial heterogeneity. • A homogeneous, incoherent illumination is essential for reliable

  19. Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells

    International Nuclear Information System (INIS)

    Brückner, Michael; Becker, Katja; Popp, Jürgen; Frosch, Torsten

    2015-01-01

    A new setup for Raman spectroscopic wide-field imaging is presented. It combines the advantages of a fiber array based spectral translator with a tailor-made laser illumination system for high-quality Raman chemical imaging of sensitive biological samples. The Gaussian-like intensity distribution of the illuminating laser beam is shaped by a square-core optical multimode fiber to a top-hat profile with very homogeneous intensity distribution to fulfill the conditions of Koehler. The 30 m long optical fiber and an additional vibrator efficiently destroy the polarization and coherence of the illuminating light. This homogeneous, incoherent illumination is an essential prerequisite for stable quantitative imaging of complex biological samples. The fiber array translates the two-dimensional lateral information of the Raman stray light into separated spectral channels with very high contrast. The Raman image can be correlated with a corresponding white light microscopic image of the sample. The new setup enables simultaneous quantification of all Raman spectra across the whole spatial area with very good spectral resolution and thus outperforms other Raman imaging approaches based on scanning and tunable filters. The unique capabilities of the setup for fast, gentle, sensitive, and selective chemical imaging of biological samples were applied for automated hemozoin analysis. A special algorithm was developed to generate Raman images based on the hemozoin distribution in red blood cells without any influence from other Raman scattering. The new imaging setup in combination with the robust algorithm provides a novel, elegant way for chemical selective analysis of the malaria pigment hemozoin in early ring stages of Plasmodium falciparum infected erythrocytes. - Highlights: • Raman hyperspectral imaging allows for chemical selective analysis of biological samples with spatial heterogeneity. • A homogeneous, incoherent illumination is essential for reliable

  20. Quantum statistics of stimulated Raman and hyper-Raman scattering by master equation approach

    International Nuclear Information System (INIS)

    Gupta, P.S.; Dash, J.

    1991-01-01

    A quantum theoretical density matrix formalism of stimulated Raman and hyper-Raman scattering using master equation approach is presented. The atomic system is described by two energy levels. The effects of upper level population and the cavity loss are incorporated. The photon statistics, coherence characteristics and the building up of the Stokes field are investigated. (author). 8 figs., 5 refs

  1. Application of Raman Microspectroscopic and Raman imaging techniques for cell biological studies

    NARCIS (Netherlands)

    Puppels, G.J.; Puppels, G.J.; Bakker schut, T.C.; Bakker Schut, T.C.; Sijtsema, N.M.; Grond, M.; Grond, M.; Maraboeuf, F.; de Grauw, C.J.; de Grauw, C.J.; Figdor, Carl; Greve, Jan

    1995-01-01

    Raman spectroscopy is being used to study biological molecules for some three decades now. Thanks to continuing advances in instrumentation more and more applications have become feasible in which molecules are studied in situ, and this has enabled Raman spectroscopy to enter the realms of

  2. Integration of Correlative Raman microscopy in a dual beam FIB-SEM J. of Raman Spectroscopy

    NARCIS (Netherlands)

    Timmermans, Frank Jan; Liszka, B.; Lenferink, Aufrid T.M.; van Wolferen, Hendricus A.G.M.; Otto, Cornelis

    2016-01-01

    We present an integrated confocal Raman microscope in a focused ion beam scanning electron microscope (FIB SEM). The integrated system enables correlative Raman and electron microscopic analysis combined with focused ion beam sample modification on the same sample location. This provides new

  3. Development and Application of Raman Microspectroscopic and Raman Imaging Techniques for Cell Biological Studies

    NARCIS (Netherlands)

    PUPPELS, G J; SCHUT, T C B; SIJTSEMA, N M; GROND, M; MARABOEUF, F; DEGRAUW, C G; FIGDOR, C G; GREVE, J

    1995-01-01

    Raman spectroscopy is being used to study biological molecules for some three decades now. Thanks to continuing advances in instrumentation more and more applications have become feasible in which molecules are studied in situ, and this has enabled Raman spectroscopy to enter the realms of

  4. Laser Raman Spectroscopy with Different Excitation Sources and Extension to Surface Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Md. Wahadoszamen

    2015-01-01

    Full Text Available A dispersive Raman spectrometer was used with three different excitation sources (Argon-ion, He-Ne, and Diode lasers operating at 514.5 nm, 633 nm, and 782 nm, resp.. The system was employed to a variety of Raman active compounds. Many of the compounds exhibit very strong fluorescence while being excited with a laser emitting at UV-VIS region, hereby imposing severe limitation to the detection efficiency of the particular Raman system. The Raman system with variable excitation laser sources provided us with a desired flexibility toward the suppression of unwanted fluorescence signal. With this Raman system, we could detect and specify the different vibrational modes of various hazardous organic compounds and some typical dyes (both fluorescent and nonfluorescent. We then compared those results with the ones reported in literature and found the deviation within the range of ±2 cm−1, which indicates reasonable accuracy and usability of the Raman system. Then, the surface enhancement technique of Raman spectrum was employed to the present system. To this end, we used chemically prepared colloidal suspension of silver nanoparticles as substrate and Rhodamine 6G as probe. We could observe significant enhancement of Raman signal from Rhodamine 6G using the colloidal solution of silver nanoparticles the average magnitude of which is estimated to be 103.

  5. 42 CFR 61.8 - Benefits: Stipends; dependency allowances; travel allowances; vacation.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Benefits: Stipends; dependency allowances; travel...; dependency allowances; travel allowances; vacation. Individuals awarded regular fellowships shall be entitled...) Stipend. (b) Dependency allowances. (c) When authorized in advance, separate allowances for travel. Such...

  6. 42 CFR 61.9 - Payments: Stipends; dependency allowances; travel allowances.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Payments: Stipends; dependency allowances; travel... FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.9 Payments: Stipends; dependency allowances; travel allowances. Payments for stipends, dependency allowances, and the travel allowances...

  7. 33 CFR 136.235 - Compensation allowable.

    Science.gov (United States)

    2010-07-01

    ... allowable. The amount of compensation allowable is limited to the actual net reduction or loss of earnings or profits suffered. Calculations for net reductions or losses must clearly reflect adjustments for... available; (d) Any saved overhead or normal expenses not incurred as a result of the incident; and (e) State...

  8. 10 CFR 600.317 - Allowable costs.

    Science.gov (United States)

    2010-01-01

    ... to the type of entity incurring the cost as follows: (1) For-profit organizations. Allowability of costs incurred by for-profit organizations and those nonprofit organizations listed in Attachment C to... specifically authorized in the award document. (2) Other types of organizations. Allowability of costs incurred...

  9. 29 CFR 97.22 - Allowable costs.

    Science.gov (United States)

    2010-07-01

    ... accounting standards that comply with cost principles acceptable to the Federal agency. [53 FR 8069, 8087... LOCAL GOVERNMENTS Post-Award Requirements Financial Administration § 97.22 Allowable costs. (a... increment above allowable costs) to the grantee or subgrantee. (b) Applicable cost principles. For each kind...

  10. 22 CFR 135.22 - Allowable costs.

    Science.gov (United States)

    2010-04-01

    ... Procedures, or uniform cost accounting standards that comply with cost principles acceptable to the Federal... AGREEMENTS TO STATE AND LOCAL GOVERNMENTS Post-Award Requirements Financial Administration § 135.22 Allowable... principles. For each kind of organization, there is a set of Federal principles for determining allowable...

  11. 34 CFR 74.27 - Allowable costs.

    Science.gov (United States)

    2010-07-01

    ... Procedures or uniform cost accounting standards that comply with cost principles acceptable to ED. (b) The... OF HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Financial... principles for determining allowable costs. Allowability of costs are determined in accordance with the cost...

  12. 44 CFR 13.22 - Allowable costs.

    Science.gov (United States)

    2010-10-01

    ... uniform cost accounting standards that comply with cost principles acceptable to the Federal agency. ... STATE AND LOCAL GOVERNMENTS Post-Award Requirements Financial Administration § 13.22 Allowable costs. (a... increment above allowable costs) to the grantee or subgrantee. (b) Applicable cost principles. For each kind...

  13. 24 CFR 85.22 - Allowable costs.

    Science.gov (United States)

    2010-04-01

    ... uniform cost accounting standards that comply with cost principles acceptable to the Federal agency. ... TRIBAL GOVERNMENTS Post-Award Requirements Financial Administration § 85.22 Allowable costs. (a... increment above allowable costs) to the grantee or subgrantee. (b) Applicable cost principles. For each kind...

  14. 36 CFR 1207.22 - Allowable costs.

    Science.gov (United States)

    2010-07-01

    ... uniform cost accounting standards that comply with cost principles acceptable to the Federal agency. ... GOVERNMENTS Post-Award Requirements Financial Administration § 1207.22 Allowable costs. (a) Limitation on use... increment above allowable costs) to the grantee or subgrantee. (b) Applicable cost principles. For each kind...

  15. 32 CFR 33.22 - Allowable costs.

    Science.gov (United States)

    2010-07-01

    ... accounting standards that comply with cost principles acceptable to the Federal agency. ... Post-Award Requirements Financial Administration § 33.22 Allowable costs. (a) Limitation on use of... allowable costs) to the grantee or subgrantee. (b) Applicable cost principles. For each kind of organization...

  16. 20 CFR 631.84 - Allowable projects.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Allowable projects. 631.84 Section 631.84... THE JOB TRAINING PARTNERSHIP ACT Disaster Relief Employment Assistance § 631.84 Allowable projects...) Shall be used exclusively to provide employment on projects that provide food, clothing, shelter and...

  17. 45 CFR 2541.220 - Allowable costs.

    Science.gov (United States)

    2010-10-01

    ... accounting standards that comply with cost principles acceptable to the Federal agency. ... the grantee or subgrantee. (b) Applicable cost principles. For each kind of organization, there is a set of Federal principles for determining allowable costs. Allowable costs will be determined in...

  18. 15 CFR 14.27 - Allowable costs.

    Science.gov (United States)

    2010-01-01

    ... GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, OTHER NON-PROFIT, AND COMMERCIAL ORGANIZATIONS Post-Award Requirements Financial and Program Management § 14.27 Allowable costs. For each kind of... Organizations.” The allowability of costs incurred by institutions of higher education is determined in...

  19. 45 CFR 2543.27 - Allowable costs.

    Science.gov (United States)

    2010-10-01

    ... GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Financial and Program Management § 2543.27 Allowable costs. For each kind... Organizations.” The allowability of costs incurred by institutions of higher education is determined in...

  20. 28 CFR 70.27 - Allowable costs.

    Science.gov (United States)

    2010-07-01

    ... AND AGREEMENTS (INCLUDING SUBAWARDS) WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Financial and Program Management § 70.27 Allowable costs. (a... Organizations.” The allowability of costs incurred by institutions of higher education is determined in...

  1. 38 CFR 49.27 - Allowable costs.

    Science.gov (United States)

    2010-07-01

    ... ADMINISTRATIVE REQUIREMENTS FOR GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Financial and Program Management § 49.27 Allowable...-Profit Organizations.” The allowability of costs incurred by institutions of higher education is...

  2. 20 CFR 435.27 - Allowable costs.

    Science.gov (United States)

    2010-04-01

    ... AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, OTHER NON-PROFIT ORGANIZATIONS, AND COMMERCIAL ORGANIZATIONS Post-Award Requirements Financial and Program Management § 435.27 Allowable costs. For each kind... Organizations.” (c) Allowability of costs incurred by institutions of higher education is determined in...

  3. 40 CFR 30.27 - Allowable costs.

    Science.gov (United States)

    2010-07-01

    ... ADMINISTRATIVE REQUIREMENTS FOR GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Financial and Program Management § 30.27 Allowable...-Profit Organizations.” The allowability of costs incurred by institutions of higher education is...

  4. Molecular markers in glioma.

    Science.gov (United States)

    Ludwig, Kirsten; Kornblum, Harley I

    2017-09-01

    Gliomas are the most malignant and aggressive form of brain tumors, and account for the majority of brain cancer related deaths. Malignant gliomas, including glioblastoma are treated with radiation and temozolomide, with only a minor benefit in survival time. A number of advances have been made in understanding glioma biology, including the discovery of cancer stem cells, termed glioma stem cells (GSC). Some of these advances include the delineation of molecular heterogeneity both between tumors from different patients as well as within tumors from the same patient. Such research highlights the importance of identifying and validating molecular markers in glioma. This review, intended as a practical resource for both clinical and basic investigators, summarizes some of the more well-known molecular markers (MGMT, 1p/19q, IDH, EGFR, p53, PI3K, Rb, and RAF), discusses how they are identified, and what, if any, clinical relevance they may have, in addition to discussing some of the specific biology for these markers. Additionally, we discuss identification methods for studying putative GSC's (CD133, CD15, A2B5, nestin, ALDH1, proteasome activity, ABC transporters, and label-retention). While much research has been done on these markers, there is still a significant amount that we do not yet understand, which may account for some conflicting reports in the literature. Furthermore, it is unlikely that the investigator will be able to utilize one single marker to prospectively identify and isolate GSC from all, or possibly, any gliomas.

  5. Tumour markers in urology

    International Nuclear Information System (INIS)

    Schmid, L.; Fornara, P.; Fabricius, P.G.

    1988-01-01

    The same applies essentially also for the bladder carcinomas: There is no reliable marker for these cancers which would be useful for clinical purposes. TPA has proven to be too non-specific in malignoma-detection and therefore hardly facilitates clinical decision-making in individual cases. The CEA is not sensitive enough to be recommendable for routine application. However, in advanced stages a CEA examination may be useful if applied within the scope of therapeutic efforts made to evaluate efficacy. In cases of carcinomas of the prostate the sour prostate-specific phosphatase (SPP) and, more recently, especially the prostate-specific antigen (PSA) have proven in follow-up and therapy monitoring, whereby the PSA is superior to the SPP. Nevertheless, both these markers should be employed in therapy monitoring because differences in behaviour will be observed when the desired treatment effect is only achieved in one of the two markers producing tumour cell clonuses. Both markers, but especially the PSA, are quite reliably in agreement with the result of the introduced chemo-/hormone therapy, whereby an increase may be a sure indicator of relapse several months previous to clinical symptoms, imaging procedures, so-called routine laboratory results and subjective complaints. However, none of the 2 markers is appropriate for the purposes of screening or early diagnosis of carcinomas of the prostate. (orig.) [de

  6. Broadband stimulated Raman spectroscopy in the deep ultraviolet region

    Science.gov (United States)

    Kuramochi, Hikaru; Fujisawa, Tomotsumi; Takeuchi, Satoshi; Tahara, Tahei

    2017-09-01

    We report broadband stimulated Raman measurements in the deep ultraviolet (DUV) region, which enables selective probing of the aromatic amino acid residues inside proteins through the resonance enhancement. We combine the narrowband DUV Raman pump pulse (1000 cm-1) to realize stimulated Raman measurements covering a >1500 cm-1 spectral window. The stimulated Raman measurements for neat solvents, tryptophan, tyrosine, and glucose oxidase are performed using 240- and 290-nm Raman pump, highlighting the high potential of the DUV stimulated Raman probe for femtosecond time-resolved study of proteins.

  7. Utility allowed returns and market extremes

    International Nuclear Information System (INIS)

    Murry, D.A.; Nan, G.D.; Harrington, B.M.

    1993-01-01

    In recent years interest rates have fluctuated from exceptionally high levels in the early 1980s to their current levels, the lowest in two decades. Observers and analysts generally have assumed that allowed returns by regulatory commissions follow the movement of interest rates; indeed some analysts use a risk premium method to estimate the cost of common equity, assuming a constant and linear relationship between interest rates and the cost of common equity. That suggests we could expect a relatively stable relationship between interest rates and allowed returns, as well. However, a simple comparison of allowed returns and interest rates shows that this is not the case in recent years. The relationship between market interest rates and the returns allowed by commissions varies and is obviously a great deal more complicated. Empirically, there appears to be only a narrow range where market interest rates significantly affect the allowed returns on common stock set by state commissions, at least for electric and combination utilities. If rates are at historically low levels, allowed returns based largely on market rates will hasten subsequent rate filings, and commissions appear to look beyond the low rate levels. Conversely, it appears that regulators do not let historically high market rates determine allowed returns either. At either high or low interest levels, caution seems to be the policy

  8. The future(s) of emission allowances

    International Nuclear Information System (INIS)

    Rosenzweig, K.M.; Villarreal, J.A.

    1993-01-01

    The Clean Air Act Amendments of 1990 (CAAA) established a sulfur dioxide emission allowance system to be implemented by the US Environmental Protection Agency (EPA). Under the two-phase implementation of the program, electric utilities responsible for approximately 70 percent of SO 2 emissions in the United States will be issued emission allowances, each representing authorization to emit one ton of sulfur dioxide during a specified calendar year or a later year. Allowances will be issued to utilities with electric-generating units affected by the CAAA limits, as well as to certain entities which may choose to opt-in to the program. Each utility or other emission source must hold a number of allowances at least equal to its total SO 2 emissions during any given year. Unused allowances may be sold, traded, or held in inventory for use against SO 2 emissions in future years. Anyone can buy and hold allowances, including affected utilities, non-utility companies, SO 2 allowances brokers and dealers, environmental groups, and individuals. During Phase I of the program, allowances equivalent to approximately 6.4 million tons of SO 2 emissions will be allocated annually to a group of 110 large, high-SO 2 -emitting power plants. In Phase II, virtually all power-generating utilities (representing approximately 99.4 percent of total US utility emissions) will be subject to the program. The number of allowances issued will increase to approximately 8.9 million a year, with certain special allocations raising the actual number issued to 9.48 million between the years 2000 to 2009, and 8.95 million yearly thereafter. Thus, the CAAA goal of annual emissions of 9 million tons should be achieved by 2010, when virtually all US emission sources will be participating in the program

  9. Keynes, family allowances and Keynesian economic policy

    OpenAIRE

    Pressman, Steven

    2014-01-01

    This paper provides a short history of family allowances and documents the fact that Keynes supported family allowances as early as the 1920s, continuing through the 1930s and early 1940s. Keynes saw this policy as a way to help households raise their children and also as a way to increase consumption without reducing business investment. The paper goes on to argue that a policy of family allowances is consistent with Keynesian economics. Finally, the paper uses the Luxembourg Income Study to...

  10. A quarter century of stimulated Raman scattering

    International Nuclear Information System (INIS)

    Bloembergen, N.

    1987-01-01

    To round out a quarter century of SRS the timing of this writing (1986) requires a look ahead of only one year into the future. The proceedings of the 10th International Conference on Raman Spectroscopy present a picture of current activity. Further progress will be made in time-resolved spectroscopy with subpicosecond resolution, in the study of hyper-Raman and other higher order effects with CARS, in extension of resonant Raman excitation in the UV region of spectrum, and in the development of Raman laser sources. During past few years extensive theoretical investigations have been made for four-wave light mixing in the case of one or more very strong light beams. The perturbation approach for those fields ceases to be valid. If only one light field is strong, the usual approach is to make a transformation to a rotating coordinate system so that the strong Hamiltonian for this light field becomes time-independent. Very recently these techniques have been extended to the case of two or more strong fields. CARS-type experiments with strong beams are likely to receive more attention. Extrapolation of the current activities instills confidence in the vitality of stimulated Raman scattering for the foreseeable future

  11. Optical Sensors based on Raman Effects

    DEFF Research Database (Denmark)

    Jernshøj, Kit Drescher

    Formålet med denne afhandling er at give en systematisk og uddybende videnskabelig diskussion af molekylær Raman spredning, som kan danne grundlag for udviklingen af molekylespecifikke optiske sensorer til on-site, ikke-destruktiv måling. Afhandlingen falder i tre dele, to teoriafsnit, hvor første...... del omhandler den tilgangelige molekylære information ved overfladeforstærket resonans Raman spredning (SERRS), samt hvordan adgangen til denne information kan optimeres. Anden del omhandler, hvordan det molekylære informationsindhold kan forøges ved at kombinere polariserede Raman og resonans Raman...... målinger på frie molekyler med multivariat analyse. I tredje og sidste del, som er et eksperimentelt afsnit, præsenteres og diskuteres overfladeforstærkede Raman målinger (SERS) på tre udvalgte pesticider. Afhandlingen indledes med en diskussion af teorien bag SERRS med speciel fokus på den molekylære...

  12. Polarization Sensitive Coherent Raman Measurements of DCVJ

    Science.gov (United States)

    Anderson, Josiah; Cooper, Nathan; Lawhead, Carlos; Shiver, Tegan; Ujj, Laszlo

    2014-03-01

    Coherent Raman spectroscopy which recently developed into coherent Raman microscopy has been used to produce label free imaging of thin layers of material and find the spatial distributions of certain chemicals within samples, e.g. cancer cells.(1) Not all aspects of coherent scattering have been used for imaging. Among those for example are special polarization sensitive measurements. Therefore we have investigated the properties of polarization sensitive CARS spectra of a highly fluorescent molecule, DCVJ.(2) Spectra has been recorded by using parallel polarized and perpendicular polarized excitations. A special polarization arrangement was developed to suppress the non-resonant background scattering from the sample. These results can be used to improve the imaging properties of a coherent Raman microscope in the future. This is the first time coherent Raman polarization sensitive measurements have been used to characterize the vibrational modes of DCVJ. 1: K. I. Gutkowski, et al., ``Fluorescence of dicyanovinyl julolidine in a room temperature ionic liquid '' Chemical Physics Letters 426 (2006) 329 - 333 2: Fouad El-Diasty, ``Coherent anti-Stokes Raman scattering: Spectroscopy and microscopy'' Vibrational Spectroscopy 55 (2011) 1-37

  13. Stimulated Raman signals at conical intersections: Ab initio surface hopping simulation protocol with direct propagation of the nuclear wave function

    Energy Technology Data Exchange (ETDEWEB)

    Kowalewski, Markus, E-mail: mkowalew@uci.edu; Mukamel, Shaul, E-mail: smukamel@uci.edu [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States)

    2015-07-28

    Femtosecond Stimulated Raman Spectroscopy (FSRS) signals that monitor the excited state conical intersections dynamics of acrolein are simulated. An effective time dependent Hamiltonian for two C—H vibrational marker bands is constructed on the fly using a local mode expansion combined with a semi-classical surface hopping simulation protocol. The signals are obtained by a direct forward and backward propagation of the vibrational wave function on a numerical grid. Earlier work is extended to fully incorporate the anharmonicities and intermode couplings.

  14. Stimulated Raman signals at conical intersections: Ab initio surface hopping simulation protocol with direct propagation of the nuclear wave function

    International Nuclear Information System (INIS)

    Kowalewski, Markus; Mukamel, Shaul

    2015-01-01

    Femtosecond Stimulated Raman Spectroscopy (FSRS) signals that monitor the excited state conical intersections dynamics of acrolein are simulated. An effective time dependent Hamiltonian for two C—H vibrational marker bands is constructed on the fly using a local mode expansion combined with a semi-classical surface hopping simulation protocol. The signals are obtained by a direct forward and backward propagation of the vibrational wave function on a numerical grid. Earlier work is extended to fully incorporate the anharmonicities and intermode couplings

  15. Raman Microspectroscopy of Individual Algal Cells: Sensing Unsaturation of Storage Lipids in vivo

    Directory of Open Access Journals (Sweden)

    Ladislav Nedbal

    2010-09-01

    Full Text Available Algae are becoming a strategic source of fuels, food, feedstocks, and biologically active compounds. This potential has stimulated the development of innovative analytical methods focused on these microorganisms. Algal lipids are among the most promising potential products for fuels as well as for nutrition. The crucial parameter characterizing the algal lipids is the degree of unsaturation of the constituent fatty acids quantified by the iodine value. Here we demonstrate the capacity of the spatially resolved Raman microspectroscopy to determine the effective iodine value in lipid storage bodies of individual living algal cells. The Raman spectra were collected from three selected algal species immobilized in an agarose gel. Prior to immobilization, the algae were cultivated in the stationary phase inducing an overproduction of lipids. We employed the characteristic peaks in the Raman scattering spectra at 1,656 cm−1 (cis C=C stretching mode and 1,445 cm−1 (CH2 scissoring mode as the markers defining the ratio of unsaturated-to-saturated carbon-carbon bonds of the fatty acids in the algal lipids. These spectral features were first quantified for pure fatty acids of known iodine value. The resultant calibration curve was then used to calculate the effective iodine value of storage lipids in the living algal cells from their Raman spectra. We demonstrated that the iodine value differs significantly for the three studied algal species. Our spectroscopic estimations of the iodine value were validated using GC-MS measurements and an excellent agreement was found for the Trachydiscus minutus species. A good agreement was also found with the earlier published data on Botryococcus braunii. Thus, we propose that Raman microspectroscopy can become technique of choice in the rapidly expanding field of algal biotechnology.

  16. Lichen biomarkers upon heating: a Raman spectroscopic study with implications for extra-terrestrial exploration

    Science.gov (United States)

    Miralles, I.; Capel Ferrón, C.; Hernández, V.; López-Navarrete, J. T.; Jorge-Villar, S. E.

    2017-01-01

    Lithopanspermia Theory has suggested that life was transferred among planets by meteorites and other rocky bodies. If the planet had an atmosphere, this transfer of life had to survive drastic temperature changes in a very short time in its entry or exit. Only organisms able to endure such a temperature range could colonize a planet from outer space. Many experiments are being carried out by NASA and European Space Agency to understand which organisms were able to survive and how. Among the suite of instruments designed for extraplanetary exploration, particularly for Mars surface exploration, a Raman spectrometer was selected with the main objective of looking for life signals. Among all attributes, Raman spectroscopy is able to identify organic and inorganic compounds, either pure or in admixture, without requiring sample manipulation. In this study, we used Raman spectroscopy to examine the lichen Squamarina lentigera biomarkers. We analyse spectral signature changes after sample heating under different experimental situations, such as (a) laser, (b) analysis accumulations over the same spot and (c) environmental temperature increase. Our goal is to evaluate the capability of Raman spectroscopy to identify unambiguously life markers even if heating has induced spectral changes, reflecting biomolecular transformations. Usnic acid, chlorophyll, carotene and calcium oxalates were identified by the Raman spectra. From our experiments, we have seen that usnic acid, carotene and calcium oxalates (the last two have been suggested to be good biomarkers) respond in a different way to environmental heating. Our main conclusion is that despite their abundance in nature or their inorganic composition the resistance to heat makes some molecules more suitable than others as biomarkers.

  17. Quantitative analysis of microbicide concentrations in fluids, gels and tissues using confocal Raman spectroscopy.

    Directory of Open Access Journals (Sweden)

    Oranat Chuchuen

    Full Text Available Topical vaginal anti-HIV microbicides are an important focus in female-based strategies to prevent the sexual transmission of HIV. Understanding microbicide pharmacokinetics is essential to development, characterization and implementation of efficacious microbicide drug delivery formulations. Current methods to measure drug concentrations in tissue (e.g., LC-MS/MS, liquid chromatography coupled with tandem mass spectrometry are highly sensitive, but destructive and complex. This project explored the use of confocal Raman spectroscopy to detect microbicide drugs and to measure their local concentrations in fluids, drug delivery gels, and tissues. We evaluated three candidate microbicide drugs: tenofovir, Dapivirine and IQP-0528. Measurements were performed in freshly excised porcine buccal tissue specimens, gel vehicles and fluids using two Horiba Raman microscopes, one of which is confocal. Characteristic spectral peak calibrations for each drug were obtained using serial dilutions in the three matrices. These specific Raman bands demonstrated strong linear concentration dependences in the matrices and were characterized with respect to their unique vibrational signatures. At least one specific Raman feature was identified for each drug as a marker band for detection in tissue. Sensitivity of detection was evaluated in the three matrices. A specific peak was also identified for tenofovir diphosphate, the anti-HIV bioactive product of tenofovir after phosphorylation in host cells. Z-scans of drug concentrations vs. depth in excised tissue specimens, incubated under layers of tenofovir solution in a Transwell assay, showed decreasing concentration with depth from the surface into the tissue. Time-dependent concentration profiles were obtained from tissue samples incubated in the Transwell assay, for times ranging 30 minutes - 6 hours. Calibrations and measurements from tissue permeation studies for tenofovir showed good correlation with gold

  18. Quantitative Analysis of Microbicide Concentrations in Fluids, Gels and Tissues Using Confocal Raman Spectroscopy

    Science.gov (United States)

    Chuchuen, Oranat; Henderson, Marcus H.; Sykes, Craig; Kim, Min Sung; Kashuba, Angela D. M.; Katz, David F.

    2013-01-01

    Topical vaginal anti-HIV microbicides are an important focus in female-based strategies to prevent the sexual transmission of HIV. Understanding microbicide pharmacokinetics is essential to development, characterization and implementation of efficacious microbicide drug delivery formulations. Current methods to measure drug concentrations in tissue (e.g., LC-MS/MS, liquid chromatography coupled with tandem mass spectrometry) are highly sensitive, but destructive and complex. This project explored the use of confocal Raman spectroscopy to detect microbicide drugs and to measure their local concentrations in fluids, drug delivery gels, and tissues. We evaluated three candidate microbicide drugs: tenofovir, Dapivirine and IQP-0528. Measurements were performed in freshly excised porcine buccal tissue specimens, gel vehicles and fluids using two Horiba Raman microscopes, one of which is confocal. Characteristic spectral peak calibrations for each drug were obtained using serial dilutions in the three matrices. These specific Raman bands demonstrated strong linear concentration dependences in the matrices and were characterized with respect to their unique vibrational signatures. At least one specific Raman feature was identified for each drug as a marker band for detection in tissue. Sensitivity of detection was evaluated in the three matrices. A specific peak was also identified for tenofovir diphosphate, the anti-HIV bioactive product of tenofovir after phosphorylation in host cells. Z-scans of drug concentrations vs. depth in excised tissue specimens, incubated under layers of tenofovir solution in a Transwell assay, showed decreasing concentration with depth from the surface into the tissue. Time-dependent concentration profiles were obtained from tissue samples incubated in the Transwell assay, for times ranging 30 minutes - 6 hours. Calibrations and measurements from tissue permeation studies for tenofovir showed good correlation with gold standard LC-MS/MS data

  19. Maximum allowable load on wheeled mobile manipulators

    International Nuclear Information System (INIS)

    Habibnejad Korayem, M.; Ghariblu, H.

    2003-01-01

    This paper develops a computational technique for finding the maximum allowable load of mobile manipulator during a given trajectory. The maximum allowable loads which can be achieved by a mobile manipulator during a given trajectory are limited by the number of factors; probably the dynamic properties of mobile base and mounted manipulator, their actuator limitations and additional constraints applied to resolving the redundancy are the most important factors. To resolve extra D.O.F introduced by the base mobility, additional constraint functions are proposed directly in the task space of mobile manipulator. Finally, in two numerical examples involving a two-link planar manipulator mounted on a differentially driven mobile base, application of the method to determining maximum allowable load is verified. The simulation results demonstrates the maximum allowable load on a desired trajectory has not a unique value and directly depends on the additional constraint functions which applies to resolve the motion redundancy

  20. 33 CFR 136.223 - Compensation allowable.

    Science.gov (United States)

    2010-07-01

    ...) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL LIABILITY TRUST FUND; CLAIMS... allowable under paragraph (a) of this section must be reduced by— (1) All compensation made available to the... under § 136.235. Government Revenues ...

  1. Corneal markers of diabetic neuropathy.

    Science.gov (United States)

    Pritchard, Nicola; Edwards, Katie; Shahidi, Ayda M; Sampson, Geoff P; Russell, Anthony W; Malik, Rayaz A; Efron, Nathan

    2011-01-01

    Diabetic neuropathy is a significant clinical problem that currently has no effective therapy, and in advanced cases, leads to foot ulceration and lower limb amputation. The accurate detection, characterization and quantification of this condition are important in order to define at-risk patients, anticipate deterioration, monitor progression, and assess new therapies. This review evaluates novel corneal methods of assessing diabetic neuropathy. Two new noninvasive corneal markers have emerged, and in cross-sectional studies have demonstrated their ability to stratify the severity of this disease. Corneal confocal microscopy allows quantification of corneal nerve parameters and noncontact corneal esthesiometry, the functional correlate of corneal structure, assesses the sensitivity of the cornea. Both these techniques are quick to perform, produce little or no discomfort for the patient, and are suitable for clinical settings. Each has advantages and disadvantages over traditional techniques for assessing diabetic neuropathy. Application of these new corneal markers for longitudinal evaluation of diabetic neuropathy has the potential to reduce dependence on more invasive, costly, and time-consuming assessments, such as skin biopsy.

  2. Raman and infrared spectroscopy of carbohydrates: A review

    Science.gov (United States)

    Wiercigroch, Ewelina; Szafraniec, Ewelina; Czamara, Krzysztof; Pacia, Marta Z.; Majzner, Katarzyna; Kochan, Kamila; Kaczor, Agnieszka; Baranska, Malgorzata; Malek, Kamilla

    2017-10-01

    Carbohydrates are widespread and naturally occurring compounds, and essential constituents for living organisms. They are quite often reported when biological systems are studied and their role is discussed. However surprisingly, up till now there is no database collecting vibrational spectra of carbohydrates and their assignment, as has been done already for other biomolecules. So, this paper serves as a comprehensive review, where for selected 14 carbohydrates in the solid state both FT-Raman and ATR FT-IR spectra were collected and assigned. Carbohydrates can be divided into four chemical groups and in the same way is organized this review. First, the smallest molecules are discussed, i.e. monosaccharides (D-(-)-ribose, 2-deoxy-D-ribose, L-(-)-arabinose, D-(+)-xylose, D-(+)-glucose, D-(+)-galactose and D-(-)-fructose) and disaccharides (D-(+)-sucrose, D-(+)-maltose and D-(+)-lactose), and then more complex ones, i.e. trisaccharides (D-(+)-raffinose) and polysaccharides (amylopectin, amylose, glycogen). Both Raman and IR spectra were collected in the whole spectral range and discussed looking at the specific regions, i.e. region V (3600-3050 cm- 1), IV (3050-2800 cm- 1) and II (1200-800 cm- 1) assigned to the stretching vibrations of the OH, CH/CH2 and C-O/C-C groups, respectively, and region III (1500-1200 cm- 1) and I (800-100 cm- 1) dominated by deformational modes of the CH/CH2 and CCO groups, respectively. In spite of the fact that vibrational spectra of saccharides are significantly less specific than spectra of other biomolecules (e.g. lipids or proteins), marker bands of the studied molecules can be identified and correlated with their structure.

  3. FT-Raman and QM/MM study of the interaction between histamine and DNA

    International Nuclear Information System (INIS)

    Ruiz-Chica, A.J.; Soriano, A.; Tunon, I.; Sanchez-Jimenez, F.M.; Silla, E.; Ramirez, F.J.

    2006-01-01

    The interaction between histamine and highly polymerized calf-thymus DNA has been investigated using FT-Raman spectroscopy and the hybrid QM/MM (quantum mechanics/molecular mechanics) methodology. Raman spectra of solutions containing histamine and calf-thymus DNA, at different molar ratios, were recorded. Solutions were prepared at physiological settings of pH and ionic strength, using both natural and heavy water as the solvent. The analysis of the spectral changes on the DNA Raman spectra when adding different concentrations of histamine allowed us to identify the reactive sites of DNA and histamine, which were used to built two minor groove and one intercalated binding models. They were further used as starting points of the QM/MM theoretical study. However, minimal energy points were only reached for the two minor groove models. For each optimized structure, we calculated analytical force constants of histamine molecule in order to perform the vibrational dynamics. Normal mode descriptions allowed us to compare calculated wavenumbers for DNA-interacting histamine to those measured in the Raman spectra of DNA-histamine solutions

  4. Investigation of domain walls in PPLN by confocal raman microscopy and PCA analysis

    Science.gov (United States)

    Shur, Vladimir Ya.; Zelenovskiy, Pavel; Bourson, Patrice

    2017-07-01

    Confocal Raman microscopy (CRM) is a powerful tool for investigation of ferroelectric domains. Mechanical stresses and electric fields existed in the vicinity of neutral and charged domain walls modify frequency, intensity and width of spectral lines [1], thus allowing to visualize micro- and nanodomain structures both at the surface and in the bulk of the crystal [2,3]. Stresses and fields are naturally coupled in ferroelectrics due to inverse piezoelectric effect and hardly can be separated in Raman spectra. PCA is a powerful statistical method for analysis of large data matrix providing a set of orthogonal variables, called principal components (PCs). PCA is widely used for classification of experimental data, for example, in crystallization experiments, for detection of small amounts of components in solid mixtures etc. [4,5]. In Raman spectroscopy PCA was applied for analysis of phase transitions and provided critical pressure with good accuracy [6]. In the present work we for the first time applied Principal Component Analysis (PCA) method for analysis of Raman spectra measured in periodically poled lithium niobate (PPLN). We found that principal components demonstrate different sensitivity to mechanical stresses and electric fields in the vicinity of the domain walls. This allowed us to separately visualize spatial distribution of fields and electric fields at the surface and in the bulk of PPLN.

  5. Combining optical trapping in a microfluidic channel with simultaneous micro-Raman spectroscopy and motion detection

    Science.gov (United States)

    Lawton, Penelope F.; Saunter, Christopher D.; Girkin, John M.

    2014-03-01

    Since their invention by Ashkin optical tweezers have demonstrated their ability and versatility as a non-invasive tool for micromanipulation. One of the most useful additions to the basic optical tweezers system is micro-Raman spectroscopy, which permits highly sensitive analysis of single cells or particles. We report on the development of a dual laser system combining two spatial light modulators to holographically manipulate multiple traps (at 1064nm) whilst undertaking Raman spectroscopy using a 532nm laser. We can thus simultaneously trap multiple particles and record their Raman spectra, without perturbing the trapping system. The dual beam system is built around micro-fluidic channels where crystallisation of calcium carbonate occurs on polymethylmethacrylate (PMMA) beads. The setup is designed to simulate at a microscopic level the reactions that occur on items in a dishwasher, where permanent filming of calcium carbonate on drinking glasses is a problem. Our system allows us to monitor crystal growth on trapped particles in which the Raman spectrum and changes in movement of the bead are recorded. Due to the expected low level of crystallisation on the bead surfaces this allows us to obtain results quickly and with high sensitivity. The long term goal is to study the development of filming on samples in-situ with the microfl.uidic system acting as a model dishwasher.

  6. Characterization of Kevlar Using Raman Spectroscopy

    Science.gov (United States)

    Washer, Glenn; Brooks, Thomas; Saulsberry, Regor

    2007-01-01

    This paper explores the characterization of Kevlar composite materials using Raman spectroscopy. The goal of the research is to develop and understand the Raman spectrum of Kevlar materials to provide a foundation for the development of nondestructive evaluation (NDE) technologies based on the interaction of laser light with the polymer Kevlar. The paper discusses the fundamental aspects of experimental characterization of the spectrum of Kevlar, including the effects of incident wavelength, polarization and laser power. The effects of environmental exposure of Kevlar materials on certain characteristics of its Raman spectrum are explored, as well as the effects of applied stress. This data may provide a foundation for the development of NDE technologies intended to detect the in-situ deterioration of Kevlar materials used for engineering applications that can later be extended to other materials such as carbon fiber composites.

  7. Raman scattering of rare earth hexaborides

    International Nuclear Information System (INIS)

    Ogita, Norio; Hasegawa, Takumi; Udagawa, Masayuki; Iga, Fumitoshi; Kunii, Satoru

    2009-01-01

    Raman scattering spectra were measured for the rare-earth hexaborides RB 6 (R = Ce, Gd, or Dy). All Raman-active phonons due to B 6 vibrations were observed in the range 600 - 1400 cm -1 . Anomalous peaks were detected below 200 cm -1 , which correspond to vibrations of rare-earth ion excited by second-order Raman scattering process. The intensity and energy of the rare-earth mode decrease with decreasing temperature. This suggests that the rare-earth ion vibrates in a shallow and anharmonic potential due to the boron cage. Using the reported values of mean square displacement of rare-earth ion, we estimated the anharmonic contribution for the rare-earth vibrations.

  8. The Swift Turbidity Marker

    Science.gov (United States)

    Omar, Ahmad Fairuz; MatJafri, Mohd Zubir

    2011-01-01

    The Swift Turbidity Marker is an optical instrument developed to measure the level of water turbidity. The components and configuration selected for the system are based on common turbidity meter design concepts but use a simplified methodology to produce rapid turbidity measurements. This work is aimed at high school physics students and is the…

  9. Magik Markers Trehvis

    Index Scriptorium Estoniae

    2008-01-01

    Müra-rock'i viljelevast USA duost Magik Markers (ansambel osaleb režissöör Veiko Õunapuu uue mängufilmi "Püha Tõnu kiusamine" võtetel, kontsert 15. nov. Tartus klubis Trehv, vt. www.magikmarkers.audiosport.org.)

  10. Raman spectroscopy of synthetic and natural iowaite.

    Science.gov (United States)

    Frost, Ray L; Adebajo, Moses O; Erickson, Kristy L

    2005-02-01

    The chemistry of a magnesium based hydrotalcite known as iowaite Mg6Fe2Cl2(OH)16.4H2O has been studied using Raman spectroscopy. Iowaite has chloride as the counter anion in the interlayer. The formula of synthetic iowaite was found to be Mg5.78Fe2.09(Cl,(CO3)0.5)(OH)16.4H2O. Oxidation of natural iowaite results in the formation of Mg4FeO(Cl,CO3) (OH)8.4H2O. X-ray diffraction (XRD) shows that the iowaite is a layered structure with a d(001) spacing of 8.0 angtsroms. For synthetic iowaite three Raman bands at 1376, 1194 and 1084 cm(-1) are attributed to CO3 stretching vibrations. These bands are not observed for the natural iowaite but are observed when the natural iowaite is exposed to air. The Raman spectrum of natural iowaite shows three bands at 708, 690 and 620 cm(-1) and upon exposure to air, two broad bands are found at 710 and 648 cm(-1). The Raman spectrum of synthetic iowaite has a very broad band at 712 cm(-1). The Raman spectrum of natural iowaite shows an intense band at 527 cm(-1). The air oxidized iowaite shows two bands at 547 and 484 cm(-1) attributed to the (CO3)(2-)nu2 bending mode. Raman spectroscopy has proven most useful for the study of the chemistry of iowaite and chemical changes induced in natural iowaite upon exposure to air.

  11. Phonon populations by nanosecond-pulsed Raman scattering in Si

    International Nuclear Information System (INIS)

    Compaan, A.; Lee, M.C.; Trott, G.J.

    1985-01-01

    Since the first time-resolved Raman studies of phonon populations under pulsed-laser-annealing conditions, a number of cw Raman studies have been performed which provide a much improved basis for interpreting the pulsed Raman data. Here we present new pulsed Raman results and interpret them with reference to temperature-dependent resonance effects, high-carrier-density effects, phonon anharmonicity, and laser-induced strain effects. The pulsed Raman data: Stokes to anti-Stokes ratios, shift and shape of the first-order peak, and second-order spectra: indicate the existence of a phase in which the Raman signal disappears followed by a rapidly cooling solid which begins within 300 K of the 1685 K normal melting temperature of Si. We identify a major difficulty in pulsed Raman studies in Si to be the decrease in Raman intensity at high temperatures

  12. A general methodology for full-field plastic strain measurements using X-ray absorption tomography and internal markers

    DEFF Research Database (Denmark)

    Haldrup, Martin Kristoffer; Nielsen, Søren Fæster; Wert, John A.

    2008-01-01

    on a homogenous distribution of marker particles throughout the bulk of a sample, markers which are detected through the application of synchrotron X-ray tomography. Making use of the morphology of individual markers, motion of individual markers is tracked during deformation allowing the local displacement field...

  13. Upgrade of an old Raman Spectrometer

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2004-01-01

    Improvement of a conventional Jeol Raman spectrometer with a single channel photo multiplier detector is described. New optical components (fibres, mirror, lens and CCD detector) have been chosen to design a high quality and easy-to-use instrument. Tests have shown that with this modified...... spectrometer Raman spectra can be acquired of a quality comparable to the spectra obtained previously, but the time needed to obtain a spectrum is markedly reduced. Selected test spectra and a simple calibration procedure to obtain the wavenumber values from the band CCD pixel position are presented....

  14. Raman spectroscopic study of reaction dynamics

    Science.gov (United States)

    MacPhail, R. A.

    1990-12-01

    The Raman spectra of reacting molecules in liquids can yield information about various aspects of the reaction dynamics. The author discusses the analysis of Raman spectra for three prototypical unimolecular reactions, the rotational isomerization of n-butane and 1,2-difluoroethane, and the barrierless exchange of axial and equatorial hydrogens in cyclopentane via pseudorotation. In the first two cases the spectra are sensitive to torsional oscillations of the gauche conformer, and yield estimates of the torsional solvent friction. In the case of cyclopentane, the spectra can be used to discriminate between different stochastic models of the pseudorotation dynamics, and to determine the relevant friction coefficients.

  15. Blood proteins analysis by Raman spectroscopy method

    Science.gov (United States)

    Artemyev, D. N.; Bratchenko, I. A.; Khristoforova, Yu. A.; Lykina, A. A.; Myakinin, O. O.; Kuzmina, T. P.; Davydkin, I. L.; Zakharov, V. P.

    2016-04-01

    This work is devoted to study the possibility of plasma proteins (albumin, globulins) concentration measurement using Raman spectroscopy setup. The blood plasma and whole blood were studied in this research. The obtained Raman spectra showed significant variation of intensities of certain spectral bands 940, 1005, 1330, 1450 and 1650 cm-1 for different protein fractions. Partial least squares regression analysis was used for determination of correlation coefficients. We have shown that the proposed method represents the structure and biochemical composition of major blood proteins.

  16. Raman Optical Activity of Biological Molecules

    Science.gov (United States)

    Blanch, Ewan W.; Barron, Laurence D.

    Now an incisive probe of biomolecular structure, Raman optical activity (ROA) measures a small difference in Raman scattering from chiral molecules in right- and left-circularly polarized light. As ROA spectra measure vibrational optical activity, they contain highly informative band structures sensitive to the secondary and tertiary structures of proteins, nucleic acids, viruses and carbohydrates as well as the absolute configurations of small molecules. In this review we present a survey of recent studies on biomolecular structure and dynamics using ROA and also a discussion of future applications of this powerful new technique in biomedical research.

  17. Raman spectroscopy: a structural probe of glycosaminoglycans

    International Nuclear Information System (INIS)

    Bansil, R.; Stanley, H.E.; Yannas, I.V.

    1978-01-01

    The authors report the first Raman spectroscopic study of the glycosaminoglycans chondroitin 4-sulfate, chondroitin 6-sulfate and hyaluronic acid, both in solution and in the solid state. To aid in spectral identification, infrared spectra were also recorded from films of these samples. Vibrational frequencies for important functional groups like the sulfate groups, glycosidic linkages, C-OH and the N-acetyl group can be identified from the Raman spectra. Certain differences in the spectra of the different glycosaminoglycans can be interpreted in terms of the geometry of the various substituents, while other differences can be related to differences in chemical composition. (Auth.)

  18. Negative refraction using Raman transitions and chirality

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, D. E.; Yavuz, D. D. [Department of Physics, 1150 University Avenue, University of Wisconsin at Madison, Madison, Wisconsin 53706 (United States)

    2011-11-15

    We present a scheme that achieves negative refraction with low absorption in far-off resonant atomic systems. The scheme utilizes Raman resonances and does not require the simultaneous presence of an electric-dipole transition and a magnetic-dipole transition near the same wavelength. We show that two interfering Raman tran-sitions coupled to a magnetic-dipole transition can achieve a negative index of refraction with low absorption through magnetoelectric cross-coupling. We confirm the validity of the analytical results with exact numerical simulations of the density matrix. We also discuss possible experimental implementations of the scheme in rare-earth metal atomic systems.

  19. A Raman Spectrometer for the ExoMars 2020 Rover

    Science.gov (United States)

    Moral, A. G.; Rull, F.; Maurice, S.; Hutchinson, I.; Canora, C. P.; Seoane, L.; Rodríguez, P.; Canchal, R.; Gallego, P.; Ramos, G.; López, G.; Prieto, J. A. R.; Santiago, A.; Santamaría, P.; Colombo, M.; Belenguer, T.; Forni, O.

    2017-09-01

    The Raman project is devoted to the development of a Raman spectrometer and the support science associated for the rover EXOMARS mission to be launched in 2020. ExoMars is a double mission with two different launch opportunities, first one launched in March 2016 allowed to put in orbit the TGO with the communication system for the next mission. And the second one in 2020, deploying a rover which includes for the first time in the robotic exploration of Mars, a drill capable to obtain samples from the subsurface up to 2 meters depth. These samples will be crushed into a fine powder and delivered to the analytical instruments suite inside the rover by means of a dosing station. The EQM has been already qualified under a very demanding thermo mechanical environment, and under EMC tests, finally achieving required scientific performances. The RLS Engineering and Qualification Model has been manufactured and is expected to be delivered by May 2017, after a full qualification testing campaign developed during 2016 Q4, and 2017 Q1. It will finally delivered to ESA, by July 2017. December 2017 at TAS-I premises will do RLS FM delivery to ESA, for its final integration on the ExoMars 2020 Rover.

  20. Surface-enhanced raman optical data storage system

    Science.gov (United States)

    Vo-Dinh, Tuan

    1994-01-01

    An improved Surface-Enhanced Raman Optical Data Storage System (SERODS) is disclosed. In the improved system, entities capable of existing in multiple reversible states are present on the storage device. Such entities result in changed Surface-Enhanced Raman Scattering (SERS) when localized state changes are effected in less than all of the entities. Therefore, by changing the state of entities in localized regions of a storage device, the SERS emissions in such regions will be changed. When a write-on device is controlled by a data signal, such a localized regions of changed SERS emissions will correspond to the data written on the device. The data may be read by illuminating the surface of the storage device with electromagnetic radiation of an appropriate frequency and detecting the corresponding SERS emissions. Data may be deleted by reversing the state changes of entities in regions where the data was initially written. In application, entities may be individual molecules which allows for the writing of data at the molecular level. A read/write/delete head utilizing near-field quantum techniques can provide for a write/read/delete device capable of effecting state changes in individual molecules, thus providing for the effective storage of data at the molecular level.

  1. Resonance Raman spectroscopy of volatile organics -- Carbon tetrachloride

    International Nuclear Information System (INIS)

    Barletta, R.E.; Veligdan, J.T.

    1994-09-01

    Volatile organic chemicals are a class of pollutants which are regulated at very low levels by the EPA. Consequently a need exists as a part of site remediation efforts within DOE to develop technologies which will allow for the in situ monitoring of these chemicals. Resonance Raman spectroscopy is a potential technique to accomplish this if the resonance enhancement is sufficiently high. Carbon tetrachloride was selected as a test case. Measurements under resonance conditions at 248 nm showed an enhancement factor of 2 x 10 4 . Using this value an estimate of the sensitivity for both in situ and remote monitoring of CCl 4 was made. It was concluded that resonance Raman could be used to detect these chemicals at levels of regulatory interest. Future effort directed towards the development of a suitable probe as well as a field-portable system would be desirable. Such effort could be directed towards the solution of a particular monitoring problem within a DOE waste remediation project. Once developed, however, it should be easily generalized to the analysis of other VOC's in other environments

  2. Dynamic Volume Holography and Optical Information Processing by Raman Scattering

    International Nuclear Information System (INIS)

    Dodin, I.Y.; Fisch, N.J.

    2002-01-01

    A method of producing holograms of three-dimensional optical pulses is proposed. It is shown that both the amplitude and the phase profile of three-dimensional optical pulse can be stored in dynamic perturbations of a Raman medium, such as plasma. By employing Raman scattering in a nonlinear medium, information carried by a laser pulse can be captured in the form of a slowly propagating low-frequency wave that persists for a time large compared with the pulse duration. If such a hologram is then probed with a short laser pulse, the information stored in the medium can be retrieved in a second scattered electromagnetic wave. The recording and retrieving processes can conserve robustly the pulse shape, thus enabling the recording and retrieving with fidelity of information stored in optical signals. While storing or reading the pulse structure, the optical information can be processed as an analogue or digital signal, which allows simultaneous transformation of three-dimensional continuous images or computing discrete arrays of binary data. By adjusting the phase fronts of the reference pulses, one can also perform focusing, redirecting, and other types of transformation of the output pulses

  3. Micro-Raman Imaging for Biology with Multivariate Spectral Analysis

    KAUST Repository

    Malvaso, Federica

    2015-05-05

    Raman spectroscopy is a noninvasive technique that can provide complex information on the vibrational state of the molecules. It defines the unique fingerprint that allow the identification of the various chemical components within a given sample. The aim of the following thesis work is to analyze Raman maps related to three pairs of different cells, highlighting differences and similarities through multivariate algorithms. The first pair of analyzed cells are human embryonic stem cells (hESCs), while the other two pairs are induced pluripotent stem cells (iPSCs) derived from T lymphocytes and keratinocytes, respectively. Although two different multivariate techniques were employed, ie Principal Component Analysis and Cluster Analysis, the same results were achieved: the iPSCs derived from T-lymphocytes show a higher content of genetic material both compared with the iPSCs derived from keratinocytes and the hESCs . On the other side, equally evident, was that iPS cells derived from keratinocytes assume a molecular distribution very similar to hESCs.

  4. Raman study of radiation-damaged zircon under hydrostatic compression

    Science.gov (United States)

    Nasdala, Lutz; Miletich, Ronald; Ruschel, Katja; Váczi, Tamás

    2008-12-01

    Pressure-induced changes of Raman band parameters of four natural, gem-quality zircon samples with different degrees of self-irradiation damage, and synthetic ZrSiO4 without radiation damage, have been studied under hydrostatic compression in a diamond anvil cell up to ~10 GPa. Radiation-damaged zircon shows similar up-shifts of internal SiO4 stretching modes at elevated pressures as non-damaged ZrSiO4. Only minor changes of band-widths were observed in all cases. This makes it possible to estimate the degree of radiation damage from the width of the ν3(SiO4) band of zircon inclusions in situ, almost independent from potential “fossilized pressures” or compressive strain acting on the inclusions. An application is the non-destructive analysis of gemstones such as corundum or spinel: broadened Raman bands are a reliable indicator of self-irradiation damage in zircon inclusions, whose presence allows one to exclude artificial color enhancement by high-temperature treatment of the specimen.

  5. Two-step Raman spectroscopy method for tumor diagnosis

    Science.gov (United States)

    Zakharov, V. P.; Bratchenko, I. A.; Kozlov, S. V.; Moryatov, A. A.; Myakinin, O. O.; Artemyev, D. N.

    2014-05-01

    Two-step Raman spectroscopy phase method was proposed for differential diagnosis of malignant tumor in skin and lung tissue. It includes detection of malignant tumor in healthy tissue on first step with identification of concrete cancer type on the second step. Proposed phase method analyze spectral intensity alteration in 1300-1340 and 1640-1680 cm-1 Raman bands in relation to the intensity of the 1450 cm-1 band on first step, and relative differences between RS intensities for tumor area and healthy skin closely adjacent to the lesion on the second step. It was tested more than 40 ex vivo samples of lung tissue and more than 50 in vivo skin tumors. Linear Discriminant Analysis, Quadratic Discriminant Analysis and Support Vector Machine were used for tumors type classification on phase planes. It is shown that two-step phase method allows to reach 88.9% sensitivity and 87.8% specificity for malignant melanoma diagnosis (skin cancer); 100% sensitivity and 81.5% specificity for adenocarcinoma diagnosis (lung cancer); 90.9% sensitivity and 77.8% specificity for squamous cell carcinoma diagnosis (lung cancer).

  6. Molecular markers. Amplified fragment length polymorphism

    Directory of Open Access Journals (Sweden)

    Pržulj Novo

    2005-01-01

    Full Text Available Amplified Fragment Length Polymorphism molecular markers (AFLPs has been developed combining procedures of RFLPs and RAPDs molekular markers, i.e. the first step is restriction digestion of the genomic DNA that is followed by selective amplification of the restricted fragments. The advantage of the AFLP technique is that it allows rapid generation of a large number of reproducible markers. The reproducibility of AFLPs markers is assured by the use of restriction site-specific adapters and adapter-specific primers for PCR reaction. Only fragments containing the restriction site sequence plus the additional nucleotides will be amplified and the more selected nucleotides added on the primer sequence the fewer the number of fragments amplified by PCR. The amplified products are normally separated on a sequencing gel and visualized after exposure to X-ray film or by using fluorescent labeled primers. AFLP shave proven to be extremely proficient in revealing diversity at below the species level. A disadvantage of AFLP technique is that AFLPs are essentially a dominant marker system and not able to identify heterozygotes.

  7. Emission allowances -- Long-term price trend

    International Nuclear Information System (INIS)

    Lennox, F.H.

    1994-01-01

    Estimated trends in emission allowance (EA) values have been of interest to all those affected by the Clean Air Act Amendments of 1990 since it became law in 1990. The authors published estimates of the values of EAs in December 1991, and revised their estimate in November 1992. The summary trends of the 1992 estimate is shown here. General estimates such as these are no longer useful. Everyone directly involved in complying with the Act or in buying and selling allowances has developed their own outlook on EA values. Many recent trades have been publicized. The prices from the first auction are also well known. Therefore this article is concerned only with what might happening the long-run. Once Phase 2 compliance is essentially complete and emissions roughly match Emission Allowance allocations of some 9.8 million tons annually, what pressures will there be on prices? What will be the direction of values after Phase 2 is in balance?

  8. Novel strategies of Raman imaging for brain tumor research.

    Science.gov (United States)

    Anna, Imiela; Bartosz, Polis; Lech, Polis; Halina, Abramczyk

    2017-10-17

    Raman diagnostics and imaging have been shown to be an effective tool for the analysis and discrimination of human brain tumors from normal structures. Raman spectroscopic methods have potential to be applied in clinical practice as they allow for identification of tumor margins during surgery. In this study, we investigate medulloblastoma (grade IV WHO) (n= 5), low-grade astrocytoma (grades I-II WHO) (n =4), ependymoma (n=3) and metastatic brain tumors (n= 1) and the tissue from the negative margins used as normal controls. We compare a high grade medulloblastoma, low grade astrocytoma and non-tumor samples from human central nervous system (CNS) tissue. Based on the properties of the Raman vibrational features and Raman images we provide a real-time feedback method that is label-free to monitor tumor metabolism that reveals reprogramming of biosynthesis of lipids, proteins, DNA and RNA. Our results indicate marked metabolic differences between low and high grade brain tumors. We discuss molecular mechanisms causing these metabolic changes, particularly lipid alterations in malignant medulloblastoma and low grade gliomas that may shed light on the mechanisms driving tumor recurrence thereby revealing new approaches for the treatment of malignant glioma. We have found that the high-grade tumors of central nervous system (medulloblastoma) exhibit enhanced level of β-sheet conformation and down-regulated level of α-helix conformation when comparing against normal tissue. We have found that almost all tumors studied in the paper have increased Raman signals of nucleic acids. This increase can be interpreted as increased DNA/RNA turnover in brain tumors. We have shown that the ratio of Raman intensities I 2930 /I 2845 at 2930 and 2845 cm -1 is a good source of information on the ratio of lipid and protein contents. We have found that the ratio reflects the different lipid and protein contents of cancerous brain tissue compared to the non-tumor tissue. We found that

  9. Fast label-free detection of Legionella spp. in biofilms by applying immunomagnetic beads and Raman spectroscopy.

    Science.gov (United States)

    Kusić, Dragana; Rösch, Petra; Popp, Jürgen

    2016-03-01

    Legionellae colonize biofilms, can form a biofilm by itself and multiply intracellularly within the protozoa commonly found in water distribution systems. Approximately half of the known species are pathogenic and have been connected to severe multisystem Legionnaires' disease. The detection methods for Legionella spp. in water samples are still based on cultivation, which is time consuming due to the slow growth of this bacterium. Here, we developed a cultivation-independent, label-free and fast detection method for legionellae in a biofilm matrix based on the Raman spectroscopic analysis of isolated single cells via immunomagnetic separation (IMS). A database comprising the Raman spectra of single bacterial cells captured and separated from the biofilms formed by each species was used to build the identification method based on a support vector machine (SVM) discriminative classifier. The complete method allows the detection of Legionella spp. in 100 min. Cross-reactivity of Legionella spp. specific immunomagnetic beads to the other studied genera was tested, where only small cell amounts of Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli compared to the initial number of cells were isolated by the immunobeads. Nevertheless, the Raman spectra collected from isolated non-targeted bacteria were well-discriminated from the Raman spectra collected from isolated Legionella cells, whereby the Raman spectra of the independent dataset of Legionella strains were assigned with an accuracy of 98.6%. In addition, Raman spectroscopy was also used to differentiate between isolated Legionella species. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Continuous gradient temperature Raman spectroscopy and differential scanning calorimetry of N-3DPA and DHA from -100 to 10°C.

    Science.gov (United States)

    Broadhurst, C Leigh; Schmidt, Walter F; Nguyen, Julie K; Qin, Jianwei; Chao, Kuanglin; Aubuchon, Steven R; Kim, Moon S

    2017-04-01

    Docosahexaenoic acid (DHA, 22:6n-3) is exclusively utilized in fast signal processing tissues such as retinal, neural and cardiac. N-3 docosapentaenoic acid (n-3DPA, 22:5n-3), with just one less double bond, is also found in the marine food chain yet cannot substitute for DHA. Gradient temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS and both conventional and modulated DSC to n-3DPA and DHA from -100 to 20°C. Three-dimensional data arrays with 0.2°C increments and first derivatives allowed complete assignment of solid, liquid and transition state vibrational modes. Melting temperatures n-3DPA (-45°C) and DHA (-46°C) are similar and show evidence for solid-state phase transitions not seen in n-6DPA (-27°C melt). The C6H2 site is an elastic marker for temperature perturbation of all three lipids, each of which has a distinct three dimensional structure. N-3 DPA shows the spectroscopic signature of saturated fatty acids from C1 to C6. DHA does not have three aliphatic carbons in sequence; n-6DPA does but they occur at the methyl end, and do not yield the characteristic signal. DHA appears to have uniform twisting from C6H2 to C12H2 to C18H2 whereas n-6DPA bends from C12 to C18, centered at C15H2. For n-3DPA, twisting is centered at C6H2 adjacent to the C2-C3-C4-C5 aliphatic moiety. These molecular sites are the most elastic in the solid phase and during premelting. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Tradable allowances in a restructuring electric industry

    International Nuclear Information System (INIS)

    Tschirhart, J.

    1999-01-01

    The SO 2 tradable allowance program has been introduced into an electric industry undergoing dramatic changes. Entry of nonutilities into the industry and the emergence of stranded costs are two major changes that are shown to have an impact on the market for allowances and the industry's incentives to switch to cleaner fuels. The degree of impact depends on the extent to which consumers bypass traditional utilities and buy from entrants, and on public utility commission policies regarding the recovery of stranded costs. In turn, the amount of stranded costs depends on fuel switching. The results follow from simulations of a two-utility model that illustrate the qualitative effects of changing policies

  12. RAMAN THE MAN, HIS CONTRIBUTION AND HIS MESSAGE

    Indian Academy of Sciences (India)

    GV

    Since research careers did not exist back then, Raman decided to join the .... the sea is blue, Raman was constantly thinking about the quantum aspect ..... Referring to the many papers published by Raman in the Journal of ... After that, the creative period ceases abruptly, though scientific .... science of international quality.

  13. Raman Chair | About IASc | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The Raman Chair was instituted in 1972 by the Government of India to commemorate the memory of the founder of the Academy, Sir C. V. Raman. Eminent scientists are invited by the Council of the Academy to occupy the Chair, for periods of between six weeks and six months. Raman Professors who have occupied the ...

  14. A Raman Study of Titanate Nanotubes | Liu | South African Journal ...

    African Journals Online (AJOL)

    The effect of the addition of NaOH or KOH on commercial Degussa Titania P25 was investigated using TEM, Raman and in situ Raman spectroscopy. Treatment of titania with conc. NaOH generated a tubular material corresponding to a sodium titanate. An in situ Raman study on the sodium titanate nanotubes as a function ...

  15. Analyzing the fundamental properties of Raman amplification in optical fibers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Povlsen, Jørn Hedegaard

    2005-01-01

    The Raman response of germanosilicate fibers is presented. This includes not only the material dependence but also the relation between the spatial-mode profile of the light and the Raman response in the time and frequency domain. From the Raman-gain spectrum, information is derived related...

  16. Scaling the Raman gain coefficient: Applications to Germanosilicate fibers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Bromage, J.; Stentz, A.J.

    2003-01-01

    This paper presents a comprehensive analysis of the temperature dependence of a Raman amplifier and the scaling of the Raman gain coefficient with wavelength, modal overlap, and material composition. The temperature dependence is derived by applying a quantum theoretical description, whereas...... the scaling of the Raman gain coefficient is derived using a classical electromagnetic model. We also present experimental verification of our theoretical findings....

  17. Nanostructured surface enhanced Raman scattering substrates for explosives detection

    DEFF Research Database (Denmark)

    Schmidt, Michael Stenbaek; Olsen, Jesper Kenneth; Boisen, Anja

    2010-01-01

    Here we present a method for trace detection of explosives in the gas phase using novel surface enhanced Raman scattering (SERS) spectroscopy substrates. Novel substrates that produce an exceptionally large enhancement of the Raman effect were used to amplify the Raman signal of explosives...

  18. Characterization of Few-Layer 1T' MoTe2 by Polarization-Resolved Second Harmonic Generation and Raman Scattering.

    Science.gov (United States)

    Beams, Ryan; Cancado, Luiz Gustavo; Krylyuk, Sergiy; Kalish, Irina; Kalanyan, Berc; Singh, Arunima K; Choudhary, Kamal; Bruma, Alina; Vora, Patrick M; Tavazza, Francesca; Davydov, Albert V; Stranick, Stephan J

    2016-10-05

    We study the crystal symmetry of few-layer 1T' MoTe 2 using the polarization dependence of the second harmonic generation (SHG) and Raman scattering. Bulk 1T' MoTe 2 is known to be inversion symmetric; however, we find that the inversion symmetry is broken for finite crystals with even numbers of layers, resulting in strong SHG comparable to other transition metal dichalcogenides. Group theory analysis of the polarization dependence of the Raman signals allows for the definitive assignment of all the Raman modes in 1T' MoTe 2 and clears up a discrepancy in the literature. The Raman results were also compared with density-functional theory simulations and are in excellent agreement in the layer-depenent variations of the Raman modes. The experimental measurements also determine the relationship between the crystal axes and the polarization-dependence of the SHG and Raman scattering, which now allows the anisotropy of polarized SHG or Raman signal to independently determine the crystal orientation.

  19. Determination of ripeness stages of Mazafati variety of date fruit by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    R Khodabakhshian

    2016-04-01

    study was to evaluate the feasibility of a nondestructive method based on FT-Raman spectroscopy in distinction of Mazafati date fruits according to four mentioned ripeness stages. Materials and Methods: Sample preparation: Mazafati variety of date fruit was used for this study. During the harvest seasons of 2012 (July-August, the samples from each four stages of ripening namely Kimri, Khalal, Rutab and Tamr were collected from two different orchards in Bam, Kerman province, Iran. A number of 100 date samples were tested in this study, and the external features of the four stages are exemplified in Fig.1. To characterize the physical properties of studied samples, the selected physical properties such as initial moisture content, mass, geometric mean diameter, sphericity and density of studied samples were measured using represented methods by Mohsenin (1896, Jahromi et al. (2008 and Shakeri and Khodabakhshian (2011. At least, the samples were kept at 5C in a refrigerator for 7 days to distribute the moisture uniformly throughout the sample. Before spectral acquisition, the required quantities of date fruits in each ripeness stage was taken out of the frig and allowed to warm with room temperature for approximately 2 hr (Khodabakhshian et al., 2012. Chemical properties measurements: Tissue samples were cut from each fruit separately and were macerated with a commercial juice extractor, filtered and centrifuged. The supernatant juice was used for the determination of sugar content with a manual refractometer, and expressed as percent Brix in the juice. Dry weight percentage of samples (Between 3-5 g was determined by weighing them first, then dried them at 105ºC in a forced-air oven for 4 h and finally reweighed. PH value of date fruits was determined by a pH meter. Raman spectroscopic set-up: FT-Raman spectra on the whole fruits in the region 200-2500 cm-1 were recorded using a Thermo Nicolet NEXUS 870 spectrometer (Thermo Electron Corp, Madison, Wis., U.S.A equipped

  20. Full molecular dynamics simulations of liquid water and carbon tetrachloride for two-dimensional Raman spectroscopy in the frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Ju-Yeon, E-mail: ju8879@kuchem.kyoto-u.ac.jp; Ito, Hironobu, E-mail: h.ito@kuchem.kyoto-u.ac.jp; Tanimura, Yoshitaka, E-mail: tanimura@kuchem.kyoto-u.ac.jp

    2016-12-20

    Frequency-domain two-dimensional (2D) Raman signals, which are equivalent to coherent two-dimensional Raman scattering (COTRAS) signals, for liquid water and carbon tetrachloride were calculated using an equilibrium–nonequilibrium hybrid molecular dynamics (MD) simulation algorithm. An appropriate representation of the 2D Raman spectrum obtained from MD simulations provides an easy-to-understand depiction of structural and dynamical properties. We elucidate mechanisms governing the 2D signal profiles involving anharmonic mode–mode coupling and the nonlinearities of the polarizability for the intermolecular and intramolecular vibrational modes. The predicted signal profiles and intensities can be utilized to analyze recently developed single-beam 2D spectra, whose signals are generated from a coherently controlled pulse, allowing the single-beam measurement to be carried out more efficiently. Moreover, the MD simulation results allow us to visualize the molecular structure and dynamics by comparing the accurately calculated spectrum with experimental result.

  1. 22 CFR 226.27 - Allowable costs.

    Science.gov (United States)

    2010-04-01

    ... Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADMINISTRATION OF ASSISTANCE AWARDS TO U.S. NON-GOVERNMENTAL ORGANIZATIONS Post-award Requirements Financial and Program Management § 226.27 Allowable costs. For each kind... organizations is determined in accordance with the provisions of OMB Circular A-122, “Cost Principles for Non...

  2. 13 CFR 143.22 - Allowable costs.

    Science.gov (United States)

    2010-01-01

    ... to that circular 48 CFR part 31. Contract Cost Principles and Procedures, or uniform cost accounting... Financial Administration § 143.22 Allowable costs. (a) Limitation on use of funds. Grant funds may be used... grantee or subgrantee. (b) Applicable cost principles. For each kind of organization, there is a set of...

  3. 38 CFR 43.22 - Allowable costs.

    Science.gov (United States)

    2010-07-01

    ... accounting standards that comply with cost principles acceptable to the Federal agency. ... Requirements Financial Administration § 43.22 Allowable costs. (a) Limitation on use of funds. Grant funds may... the grantee or subgrantee. (b) Applicable cost principles. For each kind of organization, there is a...

  4. 29 CFR 1470.22 - Allowable costs.

    Science.gov (United States)

    2010-07-01

    ... to that circular 48 CFR part 31. Contract Cost Principles and Procedures, or uniform cost accounting... Financial Administration § 1470.22 Allowable costs. (a) Limitation on use of funds. Grant funds may be used... grantee or subgrantee. (b) Applicable cost principles. For each kind of organization, there is a set of...

  5. 40 CFR 31.22 - Allowable costs.

    Science.gov (United States)

    2010-07-01

    ... accounting standards that comply with cost principles acceptable to the Federal agency. ... Requirements Financial Administration § 31.22 Allowable costs. (a) Limitation on use of funds. Grant funds may... the grantee or sub-grantee. (b) Applicable cost principles. For each kind of organization, there is a...

  6. 34 CFR 80.22 - Allowable costs.

    Science.gov (United States)

    2010-07-01

    ... CFR part 31. Contract Cost Principles and Procedures, or uniform cost accounting standards that comply... COOPERATIVE AGREEMENTS TO STATE AND LOCAL GOVERNMENTS Post-Award Requirements Financial Administration § 80.22... kind of organization, there is a set of Federal principles for determining allowable costs. For the...

  7. 45 CFR 92.22 - Allowable costs.

    Science.gov (United States)

    2010-10-01

    ... to that circular 48 CFR Part 31. Contract Cost Principles and Procedures, or uniform cost accounting... Financial Administration § 92.22 Allowable costs. (a) Limitation on use of funds. Grant funds may be used... grantee or subgrantee. (b) Applicable cost principles. For each kind of organization, there is a set of...

  8. 7 CFR 3016.22 - Allowable costs.

    Science.gov (United States)

    2010-01-01

    ... uniform cost accounting standards that comply with cost principles acceptable to the Federal agency. ... Regulations of the Department of Agriculture (Continued) OFFICE OF THE CHIEF FINANCIAL OFFICER, DEPARTMENT OF... GOVERNMENTS Post-Award Requirements Financial Administration § 3016.22 Allowable costs. (a) Limitation on use...

  9. 10 CFR 440.18 - Allowable expenditures.

    Science.gov (United States)

    2010-01-01

    ... part for labor, weatherization materials, and related matters for a renewable energy system, shall not... beginning in calendar year 2010 and the $3,000 average for renewable energy systems will be adjusted... 10 Energy 3 2010-01-01 2010-01-01 false Allowable expenditures. 440.18 Section 440.18 Energy...

  10. 42 CFR 417.534 - Allowable costs.

    Science.gov (United States)

    2010-10-01

    ... typical “provider” costs, and costs (such as marketing, enrollment, membership, and operation of the HMO... principles applicable to provider costs, as set forth in § 417.536. (2) The allowability of other costs is determined in accordance with principles set forth in §§ 417.538 through 417.550. (3) Costs for covered...

  11. 44 CFR 295.21 - Allowable compensation.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Allowable compensation. 295.21 Section 295.21 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT... no-cost crisis counseling services available in the community. FEMA will not reimburse for treatment...

  12. 38 CFR 21.260 - Subsistence allowance.

    Science.gov (United States)

    2010-07-01

    ... rehabilitation facility or sheltered workshop; independent instructor; institutional non-farm cooperative: Full...) VOCATIONAL REHABILITATION AND EDUCATION Vocational Rehabilitation and Employment Under 38 U.S.C. Chapter 31... rehabilitation program under 38 U.S.C. Chapter 31 will receive a monthly subsistence allowance at the rates in...

  13. 43 CFR 12.62 - Allowable costs.

    Science.gov (United States)

    2010-10-01

    ... uniform cost accounting standards that comply with cost principles acceptable to the Federal agency. ... COST PRINCIPLES FOR ASSISTANCE PROGRAMS Uniform Administrative Requirements for Grants and Cooperative... increment above allowable costs) to the grantee or subgrantee. (b) Applicable cost principles. For each kind...

  14. 45 CFR 74.27 - Allowable costs.

    Science.gov (United States)

    2010-10-01

    ... FOR AWARDS AND SUBAWARDS TO INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, OTHER NONPROFIT ORGANIZATIONS, AND COMMERCIAL ORGANIZATIONS Post-Award Requirements Financial and Program Management § 74.27... Organizations” and paragraph (b) of this section. The allowability of costs incurred by institutions of higher...

  15. 22 CFR 145.27 - Allowable costs.

    Science.gov (United States)

    2010-04-01

    ... Relations DEPARTMENT OF STATE CIVIL RIGHTS GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Financial and Program Management § 145...-Profit Organizations.” The allowability of costs incurred by institutions of higher education is...

  16. 22 CFR 518.27 - Allowable costs.

    Science.gov (United States)

    2010-04-01

    ... INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Financial and Program Management § 518.27 Allowable costs. For each kind of recipient, there is a set of... by institutions of higher education is determined in accordance with the provisions of OMB Circular A...

  17. 33 CFR 136.217 - Compensation allowable.

    Science.gov (United States)

    2010-07-01

    ...) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL LIABILITY TRUST FUND; CLAIMS PROCEDURES; DESIGNATION OF SOURCE; AND ADVERTISEMENT Procedures for Particular Claims § 136.217 Compensation... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Compensation allowable. 136.217...

  18. 33 CFR 136.205 - Compensation allowable.

    Science.gov (United States)

    2010-07-01

    ...) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL LIABILITY TRUST FUND; CLAIMS PROCEDURES; DESIGNATION OF SOURCE; AND ADVERTISEMENT Procedures for Particular Claims § 136.205 Compensation... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Compensation allowable. 136.205...

  19. 20 CFR 632.37 - Allowable costs.

    Science.gov (United States)

    2010-04-01

    ... otherwise indicated below, direct and indirect costs shall be charged in accordance with 41 CFR 29-70 and 41... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Allowable costs. 632.37 Section 632.37 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR INDIAN AND NATIVE AMERICAN...

  20. Retention of external and internal markers by southern pine beetles (Coleoptera: Scolytidae) during gallery

    Science.gov (United States)

    Douglas J. Rhodes; Jane Leslie Hayes; Chris Steiner

    1998-01-01

    If retained, markers used in mark-release-recapture studies of bark beetle dispersal could provide valuable tools in the determination of post-dispersal fate. Retention of the internal marker rubidium (Rb) and of the external marker fluorescent powder during egg gallery construction, oviposition, and feeding were quantified at intervals from 0 to 96 hours by allowing...

  1. A low-cost Raman spectrometer design used to study Raman ...

    Indian Academy of Sciences (India)

    Unknown

    The paper discusses the design of a low cost Raman spectrometer. ... system. We observe both the radial-breathing mode (RBM) and the tangential mode ... broadened due to the inherent tube diameter distribution present in the material.

  2. Resonance Raman Optical Activity and Surface Enhanced Resonance Raman Optical Activity analysis of Cytochrome C

    DEFF Research Database (Denmark)

    Johannessen, Christian; Abdali, Salim; White, Peter C.

    2007-01-01

    High quality Resonance Raman (RR) and resonance Raman Optical Activity (ROA) spectra of cytochrome c were obtained in order to perform full assignment of spectral features of the resonance ROA spectrum. The resonance ROA spectrum of cytochrome c revealed a distinct spectral signature pattern due...... to resonance enhanced skeletal porphyrin vibrations, more pronounced than any contribution from the protein back-bone. Combining the intrinsic resonance enhancement of cytochrome c with surface plasmon enhancement by colloidal silver particles, the Surface Enhanced Resonance Raman Scattering (SERRS) and Chiral...... Enhanced Raman Spectroscopy (ChERS) spectra of the protein were successfully obtained at very low concentration (as low as 1 µM). The assignment of spectral features was based on the information obtained from the RR and resonance ROA spectra. Excellent agreement between RR and SERRS spectra is reported...

  3. Charge Transfer Effect on Raman and Surface Enhanced Raman Spectroscopy of Furfural Molecules.

    Science.gov (United States)

    Wan, Fu; Shi, Haiyang; Chen, Weigen; Gu, Zhaoliang; Du, Lingling; Wang, Pinyi; Wang, Jianxin; Huang, Yingzhou

    2017-08-02

    The detection of furfural in transformer oil through surface enhanced Raman spectroscopy (SERS) is one of the most promising online monitoring techniques in the process of transformer aging. In this work, the Raman of individual furfural molecules and SERS of furfural-M x (M = Ag, Au, Cu) complexes are investigated through density functional theory (DFT). In the Raman spectrum of individual furfural molecules, the vibration mode of each Raman peak is figured out, and the deviation from experimental data is analyzed by surface charge distribution. In the SERS of furfural-M x complexes, the influence of atom number and species on SERS chemical enhancement factors (EFs) are studied, and are further analyzed by charge transfer effect. Our studies strengthen the understanding of charge transfer effect in the SERS of furfural molecules, which is important in the online monitoring of the transformer aging process through SERS.

  4. NIR–FT Raman, FT–IR and surface-enhanced Raman scattering ...

    Indian Academy of Sciences (India)

    Administrator

    Single crystals of (S)-phenylsuccinic acid (SPSA) were grown by the slow evaporation tech- nique and vibrational ... the shift of Raman frequencies, enhancing or weak- ening of .... Harmonic vibrational wave numbers were cal- culated using ...

  5. The urine marker test

    DEFF Research Database (Denmark)

    Elbe, Anne-Marie; Jensen, Stine Nylandsted; Elsborg, Peter

    2016-01-01

    BACKGROUND: Urine sample collection for doping control tests is a key component of the World Anti-Doping Agency's fight against doping in sport. However, a substantial number of athletes experience difficulty when having to urinate under supervision. Furthermore, it cannot always be ensured...... that athletes are actually delivering their own urine. A method that can be used to alleviate the negative impact of a supervised urination procedure and which can also identify urine as coming from a specific athlete is the urine marker test. Monodisperse low molecular weight polyethylene glycols (PEGs......) are given orally prior to urination. Urine samples can be traced to the donor by analysis of the PEGs previously given. OBJECTIVE: The objective of this study was to investigate the use of the urine marker during urine doping control testing. METHODS: Two studies investigated athletes' acceptance...

  6. Laser pulses for coherent xuv Raman excitation

    Science.gov (United States)

    Greenman, Loren; Koch, Christiane P.; Whaley, K. Birgitta

    2015-07-01

    We combine multichannel electronic structure theory with quantum optimal control to derive femtosecond-time-scale Raman pulse sequences that coherently populate a valence excited state. For a neon atom, Raman target populations of up to 13% are obtained. Superpositions of the ground and valence Raman states with a controllable relative phase are found to be reachable with up to 4.5% population and arbitrary phase control facilitated by the pump pulse carrier-envelope phase. Analysis of the optimized pulse structure reveals a sequential mechanism in which the valence excitation is reached via a fast (femtosecond) population transfer through an intermediate resonance state in the continuum rather than avoiding intermediate-state population with simultaneous or counterintuitive (stimulated Raman adiabatic passage) pulse sequences. Our results open a route to coupling valence excitations and core-hole excitations in molecules and aggregates that locally address specific atoms and represent an initial step towards realization of multidimensional spectroscopy in the xuv and x-ray regimes.

  7. Raman imaging using fixed bandpass filter

    Science.gov (United States)

    Landström, L.; Kullander, F.; Lundén, H.; Wästerby, P.

    2017-05-01

    By using fixed narrow band pass optical filtering and scanning the laser excitation wavelength, hyperspectral Raman imaging could be achieved. Experimental, proof-of-principle results from the Chemical Warfare Agent (CWA) tabun (GA) as well as the common CWA simulant tributyl phosphate (TBP) on different surfaces/substrates are presented and discussed.

  8. Raman spectroscopy of garnet-group minerals

    Science.gov (United States)

    Mingsheng, P.; Mao, Ho-kwang; Dien, L.; Chao, E.C.T.

    1994-01-01

    The Raman spectra of the natural end members of the garnet-group minerals, which include pyrope, almandine and spessarite of Fe-Al garnet series and grossularite, andradite and uvarovite of Ca-Fe garnet series, have been studied. Measured Raman spectra of these minerals are reasonably and qualitatively assigned to the internal modes, translational and rotatory modes of SiO4 tetrahedra, as well as the translational motion of bivalent cations in the X site. The stretch and rotatory Alg modes for the Fe-Al garnet series show obvious Raman shifts as compared with those for the Ca-Fe garnet series, owing to the cations residing in the X site connected with SiO4 tetrahedra by sharing the two edges. The Raman shifts of all members within either of the series are attributed mainly to the properties of cations in the X site for the Fe-Al garnet series and in the Y site for the Ca-Fe garnet series. ?? 1994 Institute of Geochemistry, Chinese Academy of Sciences.

  9. Raman spectroscopic studies of hydrogen clathrate hydrates.

    Science.gov (United States)

    Strobel, Timothy A; Sloan, E Dendy; Koh, Carolyn A

    2009-01-07

    Raman spectroscopic measurements of simple hydrogen and tetrahydrofuran+hydrogen sII clathrate hydrates have been performed. Both the roton and vibron bands illuminate interesting quantum dynamics of enclathrated H(2) molecules. The complex vibron region of the Raman spectrum has been interpreted by observing the change in population of these bands with temperature, measuring the absolute H(2) content as a function of pressure, and with D(2) isotopic substitution. Quadruple occupancy of the large sII clathrate cavity shows the highest H(2) vibrational frequency, followed by triple and double occupancies. Singly occupied small cavities display the lowest vibrational frequency. The vibrational frequencies of H(2) within all cavity environments are redshifted from the free gas phase value. At 76 K, the progression from ortho- to para-H(2) occurs over a relatively slow time period (days). The rotational degeneracy of H(2) molecules within the clathrate cavities is lifted, observed directly in splitting of the para-H(2) roton band. Raman spectra from H(2) and D(2) hydrates suggest that the occupancy patterns between the two hydrates are analogous, increasing confidence that D(2) is a suitable substitute for H(2). The measurements suggest that Raman is an effective and convenient method to determine the relative occupancy of hydrogen molecules in different clathrate cavities.

  10. Surface-enhanced Raman spectroscopy: nonlocal limitations

    DEFF Research Database (Denmark)

    Toscano, Giuseppe; Raza, Søren; Xiao, Sanshui

    2012-01-01

    for our understanding of surface-enhanced Raman spectroscopy (SERS). The intrinsic length scale of the electron gas serves to smear out assumed field singularities, leaving the SERS enhancement factor finite, even for geometries with infinitely sharp features. For silver nanogroove structures, mimicked...

  11. Surface enhanced Raman optical activity (SEROA)

    DEFF Research Database (Denmark)

    Abdali, Salim; Blanch, E.W.

    2008-01-01

    Raman optical activity (ROA) directly monitors the stereochemistry of chiral molecules and is now an incisive probe of biomolecular structure. ROA spectra contain a wealth of information on tertiary folding, secondary structure and even the orientation of individual residues in proteins and nucleic...

  12. Basic principles of ultrafast Raman loss spectroscopy

    Indian Academy of Sciences (India)

    field tries to drive the electron with its frequency. If the applied field is of the form E = E0eiωt , the driving ..... (CARS),8 coherent Stokes Raman scattering (CSRS), ... gain or loss process in which only two beams are required and it is a self ...

  13. Optimizing laser crater enhanced Raman scattering spectroscopy

    Science.gov (United States)

    Lednev, V. N.; Sdvizhenskii, P. A.; Grishin, M. Ya.; Fedorov, A. N.; Khokhlova, O. V.; Oshurko, V. B.; Pershin, S. M.

    2018-05-01

    The laser crater enhanced Raman scattering (LCERS) spectroscopy technique has been systematically studied for chosen sampling strategy and influence of powder material properties on spectra intensity enhancement. The same nanosecond pulsed solid state Nd:YAG laser (532 nm, 10 ns, 0.1-1.5 mJ/pulse) was used for laser crater production and Raman scattering experiments for L-aspartic acid powder. Increased sampling area inside crater cavity is the key factor for Raman signal improvement for the LCERS technique, thus Raman signal enhancement was studied as a function of numerous experimental parameters including lens-to-sample distance, wavelength (532 and 1064 nm) and laser pulse energy utilized for crater production. Combining laser pulses of 1064 and 532 nm wavelengths for crater ablation was shown to be an effective way for additional LCERS signal improvement. Powder material properties (particle size distribution, powder compactness) were demonstrated to affect LCERS measurements with better results achieved for smaller particles and lower compactness.

  14. Application of Raman spectroscopy for cancer diagnosis

    International Nuclear Information System (INIS)

    Krishnakumar, N.

    2011-01-01

    Cancer is the second leading causes of death next to heart diseases, Half of all cancer cases occur in developing countries. The conventional histopathology is usually the most trustable gold standard for pre-cancer and cancer diagnosis. However, the applicability of this method is more or less restricted because of the requirement of removing human tissues and the difficulty of real time diagnosis. Recently, there has been increased interest in 'optical biopsy' system using tissue spectroscopy to establish the pathological changes. Among optical based methods, Raman spectroscopy is a unique vibrational spectroscopic technique capable of probing biomolecular structures and conformation of tissues, and has excelled in the early detection of pre-cancer and cancer in the number of organs with high diagnostic specificity. Raman spectroscopy offers certain distinct advantages over than other optical diagnostic techniques such as high spatial resolution, use of less harmful NIR radiation, less or no sample preparation, no influence of water bands which facilitates in vivo/in situ measurements. This makes Raman spectroscopy also very useful for biomedical applications. Several research groups have demonstrated the efficacy of this technique in biomedical applications. The background and principle of these techniques will be discussed with some examples and discussions on how Raman spectroscopy can act as a promising technique for rapid in vivo diagnosis and detection of various cancers at the molecular level. (author)

  15. Detecting changes during pregnancy with Raman spectroscopy

    Science.gov (United States)

    Vargis, Elizabeth; Robertson, Kesha; Al-Hendy, Ayman; Reese, Jeff; Mahadevan-Jansen, Anita

    2010-02-01

    Preterm labor is the second leading cause of neonatal mortality and leads to a myriad of complications like delayed development and cerebral palsy. Currently, there is no way to accurately predict preterm labor, making its prevention and treatment virtually impossible. While there are some at-risk patients, over half of all preterm births do not fall into any high-risk category. This study seeks to predict and prevent preterm labor by using Raman spectroscopy to detect changes in the cervix during pregnancy. Since Raman spectroscopy has been used to detect cancers in vivo in organs like the cervix and skin, it follows that spectra will change over the course of pregnancy. Previous studies have shown that fluorescence decreased during pregnancy and increased during post-partum exams to pre-pregnancy levels. We believe significant changes will occur in the Raman spectra obtained during the course of pregnancy. In this study, Raman spectra from the cervix of pregnant mice and women will be acquired. Specific changes that occur due to cervical softening or changes in hormonal levels will be observed to understand the likelihood that a female mouse or a woman will enter labor.

  16. Quantum Zeno effect in Raman scattering

    Czech Academy of Sciences Publication Activity Database

    Thun, K.; Peřina, Jan; Křepelka, Jaromír

    2002-01-01

    Roč. 299, - (2002), s. 19-30 ISSN 0375-9601 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010921 Keywords : quantum measurement * Raman scattering * Zeno effect Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.483, year: 2002

  17. Measured stimulated Raman gain in methane

    International Nuclear Information System (INIS)

    Lopert, R.B.

    1983-01-01

    This report is about the stimulated Raman effect in methane due to the nu 1 vibration. For various gas pressures between 150 torr and 30 atm, the Raman lineshape function was both experimentally measured and synthesized using a computer model. The stimulated Raman gain was measured by sending a pump laser beam provided by an argon-ion laser and a weak probe beam provided by a tunable dye laser through a cell of methane gas. The stimulated Raman effect caused some of the energy from the pump beam to be transferred to the probe beam. The intensity of the pump beam was low so the gain of the probe beam was on the order of parts per million. A two detector arrangement and a differential amplifier system that had a feedback loop to balance the detectors was constructed to measure the small gains. A detailed description of this detection system that was able to measure gains as small as 0.2 parts per million is provided

  18. Quasiperiodic Raman technique for ultrashort pulse generation

    International Nuclear Information System (INIS)

    Yavuz, D.D.; Walker, D.R.; Shverdin, M.Y.; Yin, G.Y.; Harris, S.E.

    2003-01-01

    We report the experimental demonstration of a new Raman technique that produces 200 sidebands, ranging in wavelength from 3 μm to 195 nm. By studying multiphoton ionization of nitric oxide (NO) molecules, we show mutual phase coherence among 15 visible sidebands covering 0.63 octaves of bandwidth

  19. Construction of coherent antistokes Raman spectroscopy (CARS)

    International Nuclear Information System (INIS)

    Zidan, M. D.; Jazmati, A.

    2007-01-01

    Coherent Antistokes Raman Spectroscopy (CARS) has been built. It consists of a Raman cell, which is filled with CO 2 gas at 5 atm pressure and a frequency doubled Nd-YAG laser pumped dye laser. The two beams are focused by means of a bi-convex lens into Raman cell. The Antistokes signals (CARS signals) are generated due to Four-wave mixing process. The antistokes signals were directed to monochrometer entrance slit by prism . The signals are detected by photomultiplier detector which is fixed on the exit slit and connected to data acquisition card located inside the computed case. The dye laser frequency has to be tuned to satisfy the energy difference between the ν 1 beam (Nd- YAG laser beam) and the ν 2 beam (the stokes beam or the dye laser beam) exactly corresponds to a vibrational - rotational Raman resonance (ν 2 - ν 1 = ν M ) in the 12 CO 2 or 13 CO 2 molecule, then the antistokes signals (ν 3 ) will be generated. The spectra of the CARS signals have been recorded to determine the isotope shift of 12 CO 2 , 13 CO 2 , which is 18.3 cm -1 . (author)

  20. Raman spectroscopy of saliva as a perspective method for periodontitis diagnostics Raman spectroscopy of saliva

    Science.gov (United States)

    Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Minaeva, S.

    2012-01-01

    In view of its potential for biological tissues analyses at a molecular level, Raman spectroscopy in optical range has been the object of biomedical research for the last years. The main aim of this work is the development of Raman spectroscopy for organic content identifying and determination of biomarkers of saliva at a molecular level for periodontitis diagnostics. Four spectral regions were determined: 1155 and 1525 cm-1, 1033 and 1611 cm-1, which can be used as biomarkers of this widespread disease.

  1. Raman spectroscopy for diagnosis of glioblastoma multiforme

    Science.gov (United States)

    Clary, Candace Elise

    Glioblastoma multiforme (GBM), the most common and most fatal malignant brain tumor, is highly infiltrative and incurable. Although improved prognosis has been demonstrated by surgically resecting the bulk tumor, a lack of clear borders at the tumor margins complicates the selection decision during surgery. This dissertation investigates the potential of Raman spectroscopy for distinguishing between normal and malignant brain tissue and sets the groundwork for a surgical diagnostic guide for resection of gross malignant gliomas. These studies revealed that Raman spectroscopy was capable of discriminating between normal scid mouse brain tissue and human xenograft tumors induced in those mice. The spectra of normal and malignant tissue were normalized by dividing by the respective magnitudes of the peaks near 1440 cm -1. Spectral differences include the shape of the broad peaks near 1440 cm-1 and 1660 cm-1 and the relative magnitudes of the peaks at 1264 cm-1, 1287 cm-1, 1297 cm-1, 1556 cm -1, 1586 cm-1, 1614 cm-1, and 1683 cm-1. From these studies emerged questions regarding how to objectively normalize and compare spectra for future automation. Some differences in the Raman spectra were shown to be inherent in the disease states of the cells themselves via differences in the Raman spectra of normal human astrocytes in culture and cultured cells derived from GBM tumors. The spectra of astrocytes and glioma cells were normalized by dividing by the respective magnitudes of the peaks near 1450 cm-1. The differences between the Raman spectra of normal and transformed cells include the ratio of the 1450 cm-1/1650 cm-1 peaks and the relative magnitudes of the peaks at 1181 cm-1, 1191 cm-1, 1225 cm-1, 1263 cm -1, 1300 cm-1, 1336 cm-1, 1477 cm-1, 1494 cm-1, and 1695 cm -1. Previous Raman spectroscopic studies of biological cells have shown that the magnitude of the Raman signal decreases over time, indicating sample damage. Cells exposed to laser excitation at similar power

  2. Horizontal silicon nanowires for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Gebavi, Hrvoje; Ristić, Davor; Baran, Nikola; Mikac, Lara; Mohaček-Grošev, Vlasta; Gotić, Marijan; Šikić, Mile; Ivanda, Mile

    2018-01-01

    The main purpose of this paper is to focus on details of the fabrication process of horizontally and vertically oriented silicon nanowires (SiNWs) substrates for the application of surface-enhanced Raman spectroscopy (SERS). The fabrication process is based on the vapor-liquid-solid method and electroless-assisted chemical etching, which, as the major benefit, resulting in the development of economical, easy-to-prepare SERS substrates. Furthermore, we examined the fabrication of Au coated Ag nanoparticles (NPs) on the SiNWs substrates in such a way as to diminish the influence of silver NPs corrosion, which, in turn, enhanced the SERS time stability, thus allowing for wider commercial applications. The substances on which high SERS sensitivity was proved are rhodamine (R6G) and 4-mercaptobenzoic acid (MBA), with the detection limits of 10-8 M and 10-6 M, respectively.

  3. Raman spectroscopy of triolein under high pressures

    Science.gov (United States)

    Tefelski, D. B.; Jastrzębski, C.; Wierzbicki, M.; Siegoczyński, R. M.; Rostocki, A. J.; Wieja, K.; Kościesza, R.

    2010-03-01

    This article presents results of the high pressure Raman spectroscopy of triolein. Triolein, a triacylglyceride (TAG) of oleic acid, is an unsaturated fat, present in natural oils such as olive oil. As a basic food component and an energy storage molecule, it has considerable importance for food and fuel industries. To generate pressure in the experiment, we used a high-pressure cylindrical chamber with sapphire windows, presented in (R.M. Siegoczyński, R. Kościesza, D.B. Tefelski, and A. Kos, Molecular collapse - modification of the liquid structure induced by pressure in oleic acid, High Press. Res. 29 (2009), pp. 61-66). Pressure up to 750 MPa was applied. A Raman spectrometer in "macro"-configuration was employed. Raman spectroscopy provides information on changes of vibrational modes related to structural changes of triolein under pressure. Interesting changes in the triglyceride C‒H stretching region at 2650-3100 cm-1 were observed under high-pressures. Changes were also observed in the ester carbonyl (C˭ O) stretching region 1700-1780 cm-1 and the C‒C stretching region at 1050-1150 cm-1. The overall luminescence of the sample decreased under pressure, making it possible to set longer spectrum acquisition time and obtain more details of the spectrum. The registered changes suggest that the high-pressure solid phase of triolein is organized as β-polymorphic, as was reported in (C. Akita, T. Kawaguchi, and F. Kaneko, Structural study on polymorphism of cis-unsaturated triacylglycerol: Triolein, J. Phys. Chem. B 110 (2006), pp. 4346-4353; E. Da Silva and D. Rousseau, Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy, Phys. Chem. Chem. Phys. 10 (2008), pp. 4606-4613) (with temperature-induced phase transitions). The research has shown that Raman spectroscopy in TAGs under pressure reveals useful information about its structural changes.

  4. Improved molecular fingerprint analysis employing multi-branched gold nanoparticles in conjunction with surface-enhanced Raman scattering

    Directory of Open Access Journals (Sweden)

    Johnston J

    2015-12-01

    linked with MBAuNP, superior Raman signal fingerprint results were obtained. Such results provide significant promise for the use of MBAuNP in the detection of numerous diseases for which biologically specific surface markers exist. Keywords: gold nanostars, IR820, SERS

  5. Super-allowed Fermi beta-decay

    International Nuclear Information System (INIS)

    Wilkinson, D.H.

    2005-01-01

    A final analysis of J π =0 + ->0 + super-allowed Fermi transitions yields vertical bar V ud vertical bar 2 =0.9500±0.0007; vertical bar V ud vertical bar 2 + vertical bar V us vertical bar 2 + vertical bar V ub vertical bar 2 =0.9999±0.0011 with the operational vector coupling constant G V */(-bar c) 3 =(1.15052±0.00021)x10 -5 GeV -2

  6. Making It Personal: Per Capita Carbon Allowances

    DEFF Research Database (Denmark)

    Fawcett, Tina; Hvelplund, Frede; Meyer, Niels I

    2009-01-01

    The Chapter highligts the importance of introducing new, efficient schemes for mitigation of global warming. One such scheme is Personal Carbon Allowances (PCA), whereby individuals are allotted a tradable ration of CO2 emission per year.This chapter reviews the fundamentals of PCA and analyzes its...... merits and problems. The United Kingdom and Denmark have been chosen as case studies because the energy situation and the institutional setup are quite different between the two countries....

  7. Comparative study of human blood Raman spectra and biochemical analysis of patients with cancer

    Science.gov (United States)

    Shamina, Lyudmila A.; Bratchenko, Ivan A.; Artemyev, Dmitry N.; Myakinin, Oleg O.; Moryatov, Alexander A.; Orlov, Andrey E.; Kozlov, Sergey V.; Zakharov, Valery P.

    2018-04-01

    In this study we measured spectral features of blood by Raman spectroscopy. Correlation of the obtained spectral data and biochemical studies results is investigated. Analysis of specific spectra allows for identification of informative spectral bands proportional to components whose content is associated with body fluids homeostasis changes at various pathological conditions. Regression analysis of the obtained spectral data allows for discriminating the lung cancer from other tumors with a posteriori probability of 88.3%. The potentiality of applying surface-enhanced Raman spectroscopy with utilized experimental setup for further studies of the body fluids component composition was estimated. The greatest signal amplification was achieved for the gold substrate with a surface roughness of 1 μm. In general, the developed approach of body fluids analysis provides the basis of a useful and minimally invasive method of pathologies screening.

  8. POTENTIALS OF RAMAN BASED SENSOR SYSTEM FOR AN ONLINE ANALYSIS OF HUMAN INHALE AND EXHALE

    Directory of Open Access Journals (Sweden)

    T. Seeger

    2015-11-01

    Full Text Available A gas sensor based on spontaneous Raman scattering is proposed for the compositional analysis of single breath events. A description of the sensor as well as of the calibration procedure, which also allows the quantification of condensable gases, is presented. Moreover, a comprehensive characterization of the system is carried out in order to determine the measurement uncertainty. Finally, the sensor is applied to consecutive breath events and allowed measurements with 250 ms time resolution. The Raman sensor is able to detect all the major gas components, i.e. N2, O2, CO2, and H2O at ambient pressure with a high temporal resolution. Concentration fluctuations within a single breath event could be resolved.

  9. Development of an optimal filter substrate for the identification of small microplastic particles in food by micro-Raman spectroscopy.

    Science.gov (United States)

    Oßmann, Barbara E; Sarau, George; Schmitt, Sebastian W; Holtmannspötter, Heinrich; Christiansen, Silke H; Dicke, Wilhelm

    2017-06-01

    When analysing microplastics in food, due to toxicological reasons it is important to achieve clear identification of particles down to a size of at least 1 μm. One reliable, optical analytical technique allowing this is micro-Raman spectroscopy. After isolation of particles via filtration, analysis is typically performed directly on the filter surface. In order to obtain high qualitative Raman spectra, the material of the membrane filters should not show any interference in terms of background and Raman signals during spectrum acquisition. To facilitate the usage of automatic particle detection, membrane filters should also show specific optical properties. In this work, beside eight different, commercially available membrane filters, three newly designed metal-coated polycarbonate membrane filters were tested to fulfil these requirements. We found that aluminium-coated polycarbonate membrane filters had ideal characteristics as a substrate for micro-Raman spectroscopy. Its spectrum shows no or minimal interference with particle spectra, depending on the laser wavelength. Furthermore, automatic particle detection can be applied when analysing the filter surface under dark-field illumination. With this new membrane filter, analytics free of interference of microplastics down to a size of 1 μm becomes possible. Thus, an important size class of these contaminants can now be visualized and spectrally identified. Graphical abstract A newly developed aluminium coated polycarbonate membrane filter enables automatic particle detection and generation of high qualitative Raman spectra allowing identification of small microplastics.

  10. Raman spectroscopy of human skin: looking for a quantitative algorithm to reliably estimate human age

    Science.gov (United States)

    Pezzotti, Giuseppe; Boffelli, Marco; Miyamori, Daisuke; Uemura, Takeshi; Marunaka, Yoshinori; Zhu, Wenliang; Ikegaya, Hiroshi

    2015-06-01

    The possibility of examining soft tissues by Raman spectroscopy is challenged in an attempt to probe human age for the changes in biochemical composition of skin that accompany aging. We present a proof-of-concept report for explicating the biophysical links between vibrational characteristics and the specific compositional and chemical changes associated with aging. The actual existence of such links is then phenomenologically proved. In an attempt to foster the basics for a quantitative use of Raman spectroscopy in assessing aging from human skin samples, a precise spectral deconvolution is performed as a function of donors' ages on five cadaveric samples, which emphasizes the physical significance and the morphological modifications of the Raman bands. The outputs suggest the presence of spectral markers for age identification from skin samples. Some of them appeared as authentic "biological clocks" for the apparent exactness with which they are related to age. Our spectroscopic approach yields clear compositional information of protein folding and crystallization of lipid structures, which can lead to a precise identification of age from infants to adults. Once statistically validated, these parameters might be used to link vibrational aspects at the molecular scale for practical forensic purposes.

  11. Feasibility Study of Using High-Temperature Raman Spectroscopy for On-Line Monitoring and Product Control of the Glass Vitrification Process

    International Nuclear Information System (INIS)

    Windisch, C.F. Jr.; Piepel, G.F.; Li, H.; Elliott, M.L.; Su, Y.

    1999-01-01

    A pulse-gating Raman spectroscopy setup was developed in this project. The setup was capable of performing in-situ high-temperature Raman measurements for glasses at temperatures as high as 1412 C. In the literature, high-temperature Raman measurements have only been performed on thin films of glass to minimize black-body radiation effects. The pulse-gating Raman setup allows making high-temperature measurements for bulk melts while effectively minimizing black-body radiation effects. A good correlation was found between certain Raman characteristic parameters and glass melt temperature for sodium silicate glasses measured in this project. Comparisons were made between the high-temperature Raman data from this study and literature data. The results suggest that an optimization of the pulse-gating Raman setup is necessary to further improve data quality (i.e., to obtain data with a higher signal-to-noise ratio). An W confocal Raman microspectrometer with continuous wave laser excitation using a 325 nm excitation line was evaluated selectively using a transparent silicate glass ad a deep-colored high-level waste glass in a bulk quantity. The data were successfully collected at temperatures as high as approximately 1500 C. The results demonstrated that the UV excitation line can be used for high-temperature Raman measurements of molten glasses without black-body radiation interference from the melt for both transparent and deep-color glasses. Further studies are needed to select the best laser system that can be used to develop high-temperature Raman glass databases

  12. Remote measurement of atmospheric temperature profiles in clouds with rotational Raman lidar; Fernmessung atmosphaerischer Temperaturprofile in Wolken mit Rotations-Raman-Lidar

    Energy Technology Data Exchange (ETDEWEB)

    Behrendt, A. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Physikalische und Chemische Analytik

    2000-07-01

    The development of a lidar receiver for remote measurements of atmospheric temperature profiles with the rotational Raman method is described. By a new receiver concept, this instrument allowed for the first time remote temperature measurements without any perturbation by the presence of clouds up to a backscatter ratio of 45. In addition, high efficiency of the spectral separation of atmospheric backscatter signals leads to improved measurement resolution: the minimum integration time needed for a statistical uncertainty < {+-}1 K at, e.g., 10 km height and 960 m height resolution is only 5 minutes. The measurement range extends to over 45 km altitude. Results of field campaigns obtained with the instrument are presented and discussed. In winter 1997/98, the instrument was transferred with the GKSS Raman lidar to Esrange (67.9 N, 21.1 E) in northern Sweden, where pioneering remote measurements of local temperatures in orographically induced polar stratospheric clouds could be carried out. (orig.)

  13. In-pile Thermal Conductivity Characterization with Time Resolved Raman

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinwei [Iowa State Univ., Ames, IA (United States). Dept. of Mechanical Engineering; Hurley, David H. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2018-03-19

    The project is designed to achieve three objectives: (1) Develop a novel time resolved Raman technology for direct measurement of fuel and cladding thermal conductivity. (2) Validate and improve the technology development by measuring ceramic materials germane to the nuclear industry. (3) Conduct instrumentation development to integrate optical fiber into our sensing system for eventual in-pile measurement. We have developed three new techniques: time-domain differential Raman (TD-Raman), frequency-resolved Raman (FR-Raman), and energy transport state-resolved Raman (ET-Raman). The TD-Raman varies the laser heating time and does simultaneous Raman thermal probing, the FR-Raman probes the material’s thermal response under periodical laser heating of different frequencies, and the ET-Raman probes the thermal response under steady and pulsed laser heating. The measurement capacity of these techniques have been fully assessed and verified by measuring micro/nanoscale materials. All these techniques do not need the data of laser absorption and absolute material temperature rise, yet still be able to measure the thermal conductivity and thermal diffusivity with unprecedented accuracy. It is expected they will have broad applications for in-pile thermal characterization of nuclear materials based on pure optical heating and sensing.

  14. [Surface-enhanced Raman spectroscopy analysis of thiabendazole pesticide].

    Science.gov (United States)

    Lin, Lei; Wu, Rui-mei; Liu, Mu-hua; Wang, Xiao-bin; Yan, Lin-yuan

    2015-02-01

    Surface-enhanced Raman spectroscopy (SERS) technique was used to analyze the Raman peaks of thiabendazole pesticides in the present paper. Surface enhanced substrates of silver nanoparticle were made based on microwave technology. Raman signals of thiabendazole were collected by laser Micro-Raman spectrometer with 514. 5 and 785 nm excitation wavelengths, respectively. The Raman peaks at different excitation wavelengths were analyzed and compared. The Raman peaks 782 and 1 012 at 785 nm excitation wavelength were stronger, which were C--H out-of-plane vibrations. While 1284, 1450 and 1592 cm(-1) at 514.5 nm excitation wavelength were stronger, which were vng and C==N stretching. The study results showed that the intensity of Raman peak and Raman shift at different excitation wavelengths were different And strong Raman signals were observed at 782, 1012, 1284, 1450 and 1592 cm(-1) at 514.5 and 785 nm excitation wavelengths. These characteristic vibrational modes are characteristic Raman peaks of carbendazim pesticide. The results can provide basis for the rapid screening of pesticide residue in agricultural products and food based on Raman spectrum.

  15. Raman Spectra from Pesticides on the Surface of Fruits

    International Nuclear Information System (INIS)

    Zhang, P X; Zhou Xiaofang; Cheng, Andrew Y S; Fang Yan

    2006-01-01

    Raman spectra of several vegetables and fruits were studied by micro-Raman spectrometer (514.5 nm) and Near-infrared Fourier Transform Raman spectrometer (FTRaman). It is shown that at 514.5 nm excitation, most of the spectra are from that of carotene with some very strong fluorescence in some cases. While at 1064 nm wavelength excitation, the spectra from the different samples demonstrate different characteristic Raman spectra without fluorescence. We discuss the spectroscopic difference by the two excitation wavelengths, and the application of Raman spectra for detection of pesticides left on the surface of vegetables and fruits. Raman spectra of fruits and pesticides were successfully recorded, and using the FT-Raman spectra the pesticides left on the surface of the fruits can be detected conveniently

  16. Raman spectroscopy in nanomedicine: current status and future perspective.

    Science.gov (United States)

    Keating, Mark E; Byrne, Hugh J

    2013-08-01

    Raman spectroscopy is a branch of vibration spectroscopy that is capable of probing the chemical composition of materials. Recent advances in Raman microscopy have significantly added to the range of applications, which now extend from medical diagnostics to exploring the interfaces between biological organisms and nanomaterials. In this review, Raman is introduced in a general context, highlighting some of the areas in which the technique has been successful in the past, as well as some of the potential benefits it offers over other analytical modalities. The subset of Raman techniques that specifically probe the nanoscale, namely surface- and tip-enhanced Raman spectroscopy, will be described and specific applications relevant to nanomedical applications will be reviewed. Progress in the use of traditional label-free Raman for investigation of nanoscale interactions will be described, and recent developments in coherent anti-Stokes Raman scattering will be explored, particularly its applications to biomedical and nanomedical fields.

  17. Raman tensor elements of β-Ga2O3.

    Science.gov (United States)

    Kranert, Christian; Sturm, Chris; Schmidt-Grund, Rüdiger; Grundmann, Marius

    2016-11-03

    The Raman spectrum and particularly the Raman scattering intensities of monoclinic β-Ga 2 O 3 are investigated by experiment and theory. The low symmetry of β-Ga 2 O 3 results in a complex dependence of the Raman intensity for the individual phonon modes on the scattering geometry which is additionally affected by birefringence. We measured the Raman spectra in dependence on the polarization direction for backscattering on three crystallographic planes of β-Ga 2 O 3 and modelled these dependencies using a modified Raman tensor formalism which takes birefringence into account. The spectral position of all 15 Raman active phonon modes and the Raman tensor elements of 13 modes were determined and are compared to results from ab-initio calculations.

  18. Quantum properties of a parametric four-wave mixing in a Raman type atomic system

    Directory of Open Access Journals (Sweden)

    Sharypov A.V.

    2017-01-01

    Full Text Available We present a study of the quantum properties of two light fields used to parametric four-wave mixing in a Raman type atomic system. The system realizes an effective Hamiltonian of beamsplitter type coupling between the light fields, which allows to control squeezing and amplitude distribution of the light fields, as well as realizing their entanglement. The scheme can be feasibly applied to engineer the quantum properties of two single-mode light fields in properly chosen input states.

  19. The potential of Raman spectroscopy for the identification of biofilm formation by Staphylococcus epidermidis

    International Nuclear Information System (INIS)

    Samek, O; Al-Marashi, J F M; Telle, H H

    2010-01-01

    We report on an investigation into a common problem in microbiology laboratories, which is associated with the difficulty of distinguishing/recognising different strains of the genus Staphylococcus. We demonstrate the potential of Raman spectroscopy as a rapid techniques allowing for the identification of different isolates for the detection of biofilm-positive and biofilm-negative Staphylococcus epidermidis strains. For this, the recorded spectra were interpreted using the approach of principal component analysis (PCA)

  20. A Raman cell based on hollow core photonic crystal fiber for human breath analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Kam Kong; Zeng, Haishan, E-mail: hzeng@bccrc.ca [Imaging Unit – Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada and Medical Physics Program – Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1 (Canada); Short, Michael; Lam, Stephen; McWilliams, Annette [Imaging Unit – Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3 (Canada)

    2014-09-15

    Purpose: Breath analysis has a potential prospect to benefit the medical field based on its perceived advantages to become a point-of-care, easy to use, and cost-effective technology. Early studies done by mass spectrometry show that volatile organic compounds from human breath can represent certain disease states of our bodies, such as lung cancer, and revealed the potential of breath analysis. But mass spectrometry is costly and has slow-turnaround time. The authors’ goal is to develop a more portable and cost effective device based on Raman spectroscopy and hollow core-photonic crystal fiber (HC-PCF) for breath analysis. Methods: Raman scattering is a photon-molecular interaction based on the kinetic modes of an analyte which offers unique fingerprint type signals that allow molecular identification. HC-PCF is a novel light guide which allows light to be confined in a hollow core and it can be filled with a gaseous sample. Raman signals generated by the gaseous sample (i.e., human breath) can be guided and collected effectively for spectral analysis. Results: A Raman-cell based on HC-PCF in the near infrared wavelength range was developed and tested in a single pass forward-scattering mode for different gaseous samples. Raman spectra were obtained successfully from reference gases (hydrogen, oxygen, carbon dioxide gases), ambient air, and a human breath sample. The calculated minimum detectable concentration of this system was ∼15 parts per million by volume, determined by measuring the carbon dioxide concentration in ambient air via the characteristic Raman peaks at 1286 and 1388 cm{sup −1}. Conclusions: The results of this study were compared to a previous study using HC-PCF to trap industrial gases and backward-scatter 514.5 nm light from them. The authors found that the method presented in this paper has an advantage to enhance the signal-to-noise ratio (SNR). This SNR advantage, coupled with the better transmission of HC-PCF in the near-IR than in the