WorldWideScience

Sample records for mark-iii nuclear power

  1. Neutron detection of the Triga Mark III reactor, using nuclear track methodology

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, G., E-mail: espinosa@fisica.unam.mx; Golzarri, J. I. [Instituto de Física, Universidad Nacional Autónoma de México Circuito de la Investigación Científica, Ciudad Universitaria. México, DF (Mexico); Raya-Arredondo, R.; Cruz-Galindo, S. [Instituto Nacional de Investigaciones Nucleares (Mexico); Sajo-Bohus, L. [Universidad Simón Bolivar, Laboratorio de Física Nuclear, Caracas (Venezuela, Bolivarian Republic of)

    2015-07-23

    Nuclear Track Methodology (NTM), based on the neutron-proton interaction is one often employed alternative for neutron detection. In this paper we apply NTM to determine the Triga Mark III reactor operating power and neutron flux. The facility nuclear core, loaded with 85 Highly Enriched Uranium as fuel with control rods in a demineralized water pool, provide a neutron flux around 2 × 10{sup 12} n cm{sup −2} s{sup −1}, at the irradiation channel TO-2. The neutron field is measured at this channel, using Landauer{sup ®} PADC as neutron detection material, covered by 3 mm Plexiglas{sup ®} as converter. After exposure, plastic detectors were chemically etched to make observable the formed latent tracks induced by proton recoils. The track density was determined by a custom made Digital Image Analysis System. The resulting average nuclear track density shows a direct proportionality response for reactor power in the range 0.1-7 kW. We indicate several advantages of the technique including the possibility to calibrate the neutron flux density measured at low reactor power.

  2. Kuosheng Mark III containment analyses using GOTHIC

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ansheng, E-mail: samuellin1999@iner.gov.tw; Chen, Yen-Shu; Yuann, Yng-Ruey

    2013-10-15

    Highlights: • The Kuosheng Mark III containment model is established using GOTHIC. • Containment pressure and temperature responses due to LOCA are presented. • The calculated results are all below the design values and compared with the FSAR results. • The calculated results can be served as an analysis reference for an SPU project in the future. -- Abstract: Kuosheng nuclear power plant in Taiwan is a twin-unit BWR/6 plant, and both units utilize the Mark III containment. Currently, the plant is performing a stretch power uprate (SPU) project to increase the core thermal power to 103.7% OLTP (original licensed thermal power). However, the containment response in the Kuosheng Final Safety Analysis Report (FSAR) was completed more than twenty-five years ago. The purpose of this study is to establish a Kuosheng Mark III containment model using the containment program GOTHIC. The containment pressure and temperature responses under the design-basis accidents, which are the main steam line break (MSLB) and the recirculation line break (RCLB) accidents, are investigated. Short-term and long-term analyses are presented in this study. The short-term analysis is to calculate the drywell peak pressure and temperature which happen in the early stage of the LOCAs. The long-term analysis is to calculate the peak pressure and temperature of the reactor building space. In the short-term analysis, the calculated peak drywell to wetwell differential pressure is 140.6 kPa for the MSLB, which is below than the design value of 189.6 kPa. The calculated peak drywell temperature is 158 °C, which is still below the design value of 165.6 °C. In addition, in the long-term analysis, the calculated peak containment pressure is 47 kPa G, which is below the design value of 103.4 kPa G. The calculated peak values of containment temperatures are 74.7 °C, which is lower than the design value of 93.3 °C. Therefore, the Kuosheng Mark III containment can maintain the integrity after

  3. Adaptive fuzzy control of neutron power of the TRIGA Mark III reactor

    International Nuclear Information System (INIS)

    Rojas R, E.

    2014-01-01

    The design and implementation of an identification and control scheme of the TRIGA Mark III research nuclear reactor of the Instituto Nacional de Investigaciones Nucleares (ININ) of Mexico is presented in this thesis work. The identification of the reactor dynamics is carried out using fuzzy logic based systems, in which a learning process permits the adjustment of the membership function parameters by means of techniques based on neural networks and bio-inspired algorithms. The resulting identification system is a useful tool that allows the emulation of the reactor power behavior when different types of insertions of reactivity are applied into the core. The identification of the power can also be used for the tuning of the parameters of a control system. On the other hand, the regulation of the reactor power is carried out by means of an adaptive and stable fuzzy control scheme. The control law is derived using the input-output linearization technique, which permits the introduction of a desired power profile for the plant to follow asymptotically. This characteristic is suitable for managing the ascent of power from an initial level n o up to a predetermined final level n f . During the increase of power, a constraint related to the rate of change in power is considered by the control scheme, thus minimizing the occurrence of a safety reactor shutdown due to a low reactor period value. Furthermore, the theory of stability in the sense of Lyapunov is used to obtain a supervisory control law which maintains the power error within a tolerance region, thus guaranteeing the stability of the power of the closed loop system. (Author)

  4. Adaptive fuzzy control of neutron power of the TRIGA Mark III reactor; Control difuso adaptable de la potencia neutronica del reactor Triga Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Rojas R, E.

    2014-07-01

    The design and implementation of an identification and control scheme of the TRIGA Mark III research nuclear reactor of the Instituto Nacional de Investigaciones Nucleares (ININ) of Mexico is presented in this thesis work. The identification of the reactor dynamics is carried out using fuzzy logic based systems, in which a learning process permits the adjustment of the membership function parameters by means of techniques based on neural networks and bio-inspired algorithms. The resulting identification system is a useful tool that allows the emulation of the reactor power behavior when different types of insertions of reactivity are applied into the core. The identification of the power can also be used for the tuning of the parameters of a control system. On the other hand, the regulation of the reactor power is carried out by means of an adaptive and stable fuzzy control scheme. The control law is derived using the input-output linearization technique, which permits the introduction of a desired power profile for the plant to follow asymptotically. This characteristic is suitable for managing the ascent of power from an initial level n{sub o} up to a predetermined final level n{sub f}. During the increase of power, a constraint related to the rate of change in power is considered by the control scheme, thus minimizing the occurrence of a safety reactor shutdown due to a low reactor period value. Furthermore, the theory of stability in the sense of Lyapunov is used to obtain a supervisory control law which maintains the power error within a tolerance region, thus guaranteeing the stability of the power of the closed loop system. (Author)

  5. Development of the user interface for visualization of the auxiliary systems of the TRIGA Mark III nuclear reactor; Desarrollo de la interface de usuario para la visualizacion de los sistemas auxiliares del reactor nuclear Triga Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Merced D, J. E.

    2016-07-01

    The Instituto Nacional de Investigaciones Nucleares (ININ) has a nuclear research reactor type swimming pool with movable core cooled and moderate with light water. The nominal maximum power of the reactor is 1 MW in steady-state operation and can be pulsed at a maximum power of 2,000 MW for approximately 10 milliseconds. This reactor is mainly used to study the effects of radiation on various materials and substances. In 2001 the new control console of the nuclear reactor was installed which was based on two digital computers, one computer controls the bar management mechanisms and the other the systems to the reactor operator. In 2004, the control computer was replaced and the software was updated. Within the modernization and/or updating of the TRIGA Mark III reactor of ININ, is intended (theme of this work) to develop the user interface for the visualization of the auxiliary systems, through a Man-Machine Interface module for the renewal process of the control console. The man-machine interface system to be developed will have communication with the programmable logic controllers that will be constantly monitored and controlled to obtain real-time variables of the reactor behavior. (Author)

  6. Immobilization of ion exchange radioactive resins of the TRIGA Mark III nuclear reactor; Inmovilizacion de resinas de intercambio ionico radiactivas del reactor nuclear Triga Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Garcia M, H.; Emeterio H, M.; Canizal S, C. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, C.P. 11801 Mexico D.F. (Mexico)

    2000-07-01

    This work has the objective to develop the process and to define the agglutinating material which allows the immobilization of the ion exchange radioactive resins coming from the TRIGA Mark III nuclear reactor contaminated with Ba-133, Co-60, Cs-137, Eu-152, and Mn-54 through the behavior analysis of different immobilization agents such as: bitumens, cement and polyester resin. According to the International Standardization the archetype samples were observed with the following tests: determination of free liquid, leaching, charge resistance, biodegradation, irradiation, thermal cycle, burned resistance. Generally all the tests were satisfactorily achieved, for each agent. Therefore, the polyester resin could be considered as the main immobilizing. (Author)

  7. Qinshan Phase III (CANDU) nuclear power project quality assurance

    International Nuclear Information System (INIS)

    Wang Lingen; Du Jinxiang

    2001-01-01

    The completion and implementation of quality assurance system of Qinshan Phase III (CANDU) nuclear power project are presented. Some comments and understanding with consideration of the project characteristics are put forward

  8. Development of the user interface for visualization of the auxiliary systems of the TRIGA Mark III nuclear reactor

    International Nuclear Information System (INIS)

    Merced D, J. E.

    2016-01-01

    The Instituto Nacional de Investigaciones Nucleares (ININ) has a nuclear research reactor type swimming pool with movable core cooled and moderate with light water. The nominal maximum power of the reactor is 1 MW in steady-state operation and can be pulsed at a maximum power of 2,000 MW for approximately 10 milliseconds. This reactor is mainly used to study the effects of radiation on various materials and substances. In 2001 the new control console of the nuclear reactor was installed which was based on two digital computers, one computer controls the bar management mechanisms and the other the systems to the reactor operator. In 2004, the control computer was replaced and the software was updated. Within the modernization and/or updating of the TRIGA Mark III reactor of ININ, is intended (theme of this work) to develop the user interface for the visualization of the auxiliary systems, through a Man-Machine Interface module for the renewal process of the control console. The man-machine interface system to be developed will have communication with the programmable logic controllers that will be constantly monitored and controlled to obtain real-time variables of the reactor behavior. (Author)

  9. Neuro-diffuse algorithm for neutronic power identification of TRIGA Mark III reactor

    International Nuclear Information System (INIS)

    Rojas R, E.; Benitez R, J. S.; Segovia de los Rios, J. A.; Rivero G, T.

    2009-10-01

    In this work are presented the results of design and implementation of an algorithm based on diffuse logic systems and neural networks like method of neutronic power identification of TRIGA Mark III reactor. This algorithm uses the punctual kinetics equation as data generator of training, a cost function and a learning stage based on the descending gradient algorithm allow to optimize the parameters of membership functions of a diffuse system. Also, a series of criteria like part of the initial conditions of training algorithm are established. These criteria according to the carried out simulations show a quick convergence of neutronic power estimated from the first iterations. (Author)

  10. Phosphated in aluminium 6061-T651 used in the pool of the TRIGA Mark III nuclear reactor; Fosfatado en aluminio 6061-T651 utilizado en la tina del reactor nuclear TRIGA Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F.; Espinosa L, J.; Pena B, A.; Perez F, C.; Sanchez C, M.; Vite T, M.; Vite T, J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2001-07-01

    We characterized a phosphated coating used a substrate in aluminium 6061-T651, which is used in the container of the TRIGA Mark III nuclear reactor. Characterization was made using MEB and X-ray diffraction techniques. Coating application has the function to prevent the corrosion. Coating was probed to test adhesion in accordance with the Standard ASTM D-4541, and the corrosion process using a salt spray (fog) camera, in accordance with the Standard ASTM B-117, so as we could phosphate the welding cord. These experiences were obtained using a Deep cell. Results obtained are going to phosphate 'in situ' using a mobile device which was patented for the National Institute of Nuclear Research (ININ) in the Mexican Institute of Intellectual Property (INPI). (Author)

  11. Immobilization of ion exchange radioactive resins of the TRIGA Mark III nuclear reactor

    International Nuclear Information System (INIS)

    Garcia M, H.; Emeterio H, M.; Canizal S, C.

    1999-01-01

    This work has the objective to develop the process and to define the agglutinating material which allows the immobilization of the ion exchange radioactive resins coming from the TRIGA Mark III nuclear reactor contaminated with Ba-133, Co-60, Cs-137, Eu-152, and Mn-54 through the behavior analysis of different immobilization agents such as: bitumens, cement and polyester resin. According to the International Standardization the archetype samples were observed with the following tests: determination of free liquid, leaching, charge resistance, biodegradation, irradiation, thermal cycle, burned resistance. Generally all the tests were satisfactorily achieved, for each agent. Therefore, the polyester resin could be considered as the main immobilizing. (Author)

  12. Flow-induced vibration phenomenon in a Mark III TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C K; Whittemore, W L; Kim, B S; Lee, J B; Blevins, R D; Burton, T E [Korea Atomic Energy Research Institute, Seoul (Korea, Republic of); General Atomic Company, San Diego, CA (United States)

    1976-07-01

    The Mark III TRIGA reactor with hexagonal fuel spacing is capable of operating at 2.0 MW. The Mark III at San Diego operated without core cooling problems or vibration at power levels up to 2.0 MW. All Mark III reactors have operated trouble-free up to 1.0 MW. The Mark III TRIGA in Korea was installed in 1972 and operated many months without trouble at 2.0 MW. During this period core changes including addition of new fuel were made. Eighteen months after startup, a coolant flow-induced vibration was observed for the first time at a power of 1.5 MW. A lengthy series of tests showed that it was not possible to establish a core configuration that permitted vibration-free operation for power levels in the range 1.5 - 2.0 MW. Observations during the tests confirmed that standing waves in the reactor tank water coupled the source within the core to the shield structure and surrounding building. Analysis of the data indicates strongly that the source of the vibration is the creation and collapse of bubbles with the core acting as a resonator. A substantially increased flow of coolant through the upper grid plate is expected to eliminate the vibration phenomenon and permit trouble-free operation at power up to 2.0 MW. In an attempt to seek a remedy, both GAC and KAERI have independently developed designs for upper grid plates. KAERI has constructed and installed an interim version of the standard grid plate which was calculated to provide 25% more coolant flow and mounted high so as to provide less restriction to flow around the upper fittings of the fuel elements. A substantial reduction in vibration was observed. No vibration was observed at any power up to 2.0 MW with cooling water at or below 20 C. A slight vibration at 1.8 MW occurred for higher cooling temperatures. The GAC grid plate design provides not only for increasing the flow area but also for streamlining the flow surfaces on the grid plate and possibly also on the top fittings of the fuel elements. It is

  13. Flow-induced vibration phenomenon in a Mark III TRIGA reactor

    International Nuclear Information System (INIS)

    Lee, C.K.; Whittemore, W.L.; Kim, B.S.; Lee, J.B.; Blevins, R.D.; Burton, T.E.

    1976-01-01

    The Mark III TRIGA reactor with hexagonal fuel spacing is capable of operating at 2.0 MW. The Mark III at San Diego operated without core cooling problems or vibration at power levels up to 2.0 MW. All Mark III reactors have operated trouble-free up to 1.0 MW. The Mark III TRIGA in Korea was installed in 1972 and operated many months without trouble at 2.0 MW. During this period core changes including addition of new fuel were made. Eighteen months after startup, a coolant flow-induced vibration was observed for the first time at a power of 1.5 MW. A lengthy series of tests showed that it was not possible to establish a core configuration that permitted vibration-free operation for power levels in the range 1.5 - 2.0 MW. Observations during the tests confirmed that standing waves in the reactor tank water coupled the source within the core to the shield structure and surrounding building. Analysis of the data indicates strongly that the source of the vibration is the creation and collapse of bubbles with the core acting as a resonator. A substantially increased flow of coolant through the upper grid plate is expected to eliminate the vibration phenomenon and permit trouble-free operation at power up to 2.0 MW. In an attempt to seek a remedy, both GAC and KAERI have independently developed designs for upper grid plates. KAERI has constructed and installed an interim version of the standard grid plate which was calculated to provide 25% more coolant flow and mounted high so as to provide less restriction to flow around the upper fittings of the fuel elements. A substantial reduction in vibration was observed. No vibration was observed at any power up to 2.0 MW with cooling water at or below 20 C. A slight vibration at 1.8 MW occurred for higher cooling temperatures. The GAC grid plate design provides not only for increasing the flow area but also for streamlining the flow surfaces on the grid plate and possibly also on the top fittings of the fuel elements. It is

  14. Conversion of the core of the TRIGA Mark III reactor at the Mexican Nuclear Centre

    International Nuclear Information System (INIS)

    Moran Lopez, J.M.; Lucatero, M.A.; Reyes Andrade, B.; Rivero Gutierrez, T.; Sainz Mejia, E.

    1990-01-01

    It was decided to convert the core of the TRIGA MARK III reactor at the Mexican Nuclear Centre run by the National Nuclear Institute because of problems detected during the operation, such as a lack of excess reactivity for operation at nominal power over long periods and difficulties in the maintenance and calibration of the control panel. In order to compensate for the lack of excess reactivity the fuel elements taken to the highest burnup were replaced by fresh elements acquired for this purpose. The latter, however, had a different enrichment, and this necessitated a detailed analysis of the neutronic and thermohydraulic behaviour of the reactor with a view to determining a mixed core configuration which would meet safe operation requirements. In conducting the thermohydraulic analysis, a natural convection coolant flow model was developed to determine coolant velocity and pressure drop patterns within the core. The heat transfer equations were solved and it was found that the hottest fuel element did not attain critical heat flux conditions. In loading this core it was also necessary to analyse procedures and to consider the possible effects of reaching criticality with fuel elements having different enrichments. The loading procedure is described, as is the measurement system and the results obtained. In order to resolve the calibration and maintenance problems, a new, more advanced control panel was designed with conventional and nuclear detection systems and modern components

  15. Neuro-diffuse algorithm for neutronic power identification of TRIGA Mark III reactor; Algoritmo neuro-difuso para la identificacion de la potencia neutronica del reactor Triga Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Rojas R, E.; Benitez R, J. S. [Instituto Tecnologico de Toluca, Division de Estudios de Posgrado e Investigacion, Av. Tecnologico s/n, Ex-Rancho La Virgen, 50140 Metepec, Estado de Mexico (Mexico); Segovia de los Rios, J. A.; Rivero G, T. [ININ, Gerencia de Ciencias Aplicadas, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)], e-mail: jorge.benitez@inin.gob.mx

    2009-10-15

    In this work are presented the results of design and implementation of an algorithm based on diffuse logic systems and neural networks like method of neutronic power identification of TRIGA Mark III reactor. This algorithm uses the punctual kinetics equation as data generator of training, a cost function and a learning stage based on the descending gradient algorithm allow to optimize the parameters of membership functions of a diffuse system. Also, a series of criteria like part of the initial conditions of training algorithm are established. These criteria according to the carried out simulations show a quick convergence of neutronic power estimated from the first iterations. (Author)

  16. Mark III LOCA-related hydrodynamic load definition. Generic technical activity B-10

    International Nuclear Information System (INIS)

    1984-02-01

    This report, prepared by the staff of the Office of Nuclear Reactor Regulation and its consultants at the Brookhaven National Laboratory, provides a discussion of LOCA-related suppression pool hydrodynamic loads in boiling water reactor (BWR) facilities with the Mark III pressure-suppression containment design. Its issuance completes NRC Generic Technical Activity B-10, Behavior of BWR Mark III Containment. On the basis of certain large-scale tests conducted between 1973 and 1979, the General Electric Company developed LOCA-related hydrodynamic load definitions for use in the design of the standard Mark III containment. The staff and its consultants have reviewed these load definitions and their bases conclude that, with a few specified changes, the proposed load definitions provide conservative loading conditions. The staff-approved acceptance criteria for LOCA-related hydrodynamic loads are provided in Appendix C of this report

  17. Neutron spectra in two beam ports of the TRIGA Mark III reactor

    International Nuclear Information System (INIS)

    Vega C, H. R.; Hernandez D, V. M.; Aguilar, F.; Paredes, L.; Rivera M, T.

    2013-10-01

    The neutron spectra have been measured in two beam ports, radial and tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research. Measurements were carried out with the core with mixed fuel (Leu 8.5/20 and Flip Heu 8.5/70). Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a 6 Lil(Eu) scintillator and 2, 3, 5, 8, 10 and 12 inches-diameter high density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code; from each spectrum the total neutron flux, the neutron mean energy and the neutron ambient dose equivalent dose were determined. Measured spectra show fission (E≥ 0.1 MeV), epithermal (from 0.4 eV up to 0.1 MeV) and thermal neutrons (E≤ 0.4 eV). For both reactor powers the spectra in the radial beam port have similar features which are different to the neutron spectrum characteristics in the tangential beam port. (Author)

  18. Neutron spectra in two beam ports of the TRIGA Mark III reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Hernandez D, V. M. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas (Mexico); Aguilar, F.; Paredes, L. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Rivera M, T., E-mail: fermineutron@yahoo.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Av. Legaria 694, 11500 Mexico D. F. (Mexico)

    2013-10-15

    The neutron spectra have been measured in two beam ports, radial and tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research. Measurements were carried out with the core with mixed fuel (Leu 8.5/20 and Flip Heu 8.5/70). Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a {sup 6}Lil(Eu) scintillator and 2, 3, 5, 8, 10 and 12 inches-diameter high density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code; from each spectrum the total neutron flux, the neutron mean energy and the neutron ambient dose equivalent dose were determined. Measured spectra show fission (E≥ 0.1 MeV), epithermal (from 0.4 eV up to 0.1 MeV) and thermal neutrons (E≤ 0.4 eV). For both reactor powers the spectra in the radial beam port have similar features which are different to the neutron spectrum characteristics in the tangential beam port. (Author)

  19. Startup of Torrey Pines Mark III and Puerto Rico Nuclear Center reactors with TRIGA-FLIP fuel

    Energy Technology Data Exchange (ETDEWEB)

    Chesworth, R. H. [Gulf E and ES, San Diego, CA (United States)

    1972-07-01

    This paper discusses the characteristics of TRIGA FLIP cores in two different geometries: the normal TRIGA single-rod geometry as typified by the installation in the Torrey Pines Mark III reactor; and the four-rod cluster geometry as typified by the conversion core installed in the Puerto Rico Nuclear Center reactor at Mayaguez. In both reactors the fuel is 8-1/2 wt % uranium, 70% enriched in U-235. The hydrogen to zirconium atom ratio is 1.5 to 1.65 and the cladding material is stainless steel. The basic neutronic characteristics of the fuel in both reactor installations are briefly discussed.

  20. 1L Mark-IV Target Design Review

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Paul E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-16

    This presentation includes General Design Considerations; Current (Mark-III) Lower Tier; Mark-III Upper Tier; Performance Metrics; General Improvements for Material Science; General Improvements for Nuclear Science; Improving FOM for Nuclear Science; General Design Considerations Summary; Design Optimization Studies; Expected Mark-IV Performance: Material Science; Expected Mark-IV Performance: Nuclear Science (Disk); Mark IV Enables Much Wider Range of Nuclear-Science FOM Gains than Mark III; Mark-IV Performance Summary; Rod or Disk? Center or Real FOV?; and Project Cost and Schedule.

  1. Phosphated in aluminium 6061-T651 used in the pool of the TRIGA Mark III nuclear reactor

    International Nuclear Information System (INIS)

    Aguilar H, F.; Espinosa L, J.; Pena B, A.; Perez F, C.; Sanchez C, M.; Vite T, M.; Vite T, J.

    2001-01-01

    We characterized a phosphated coating used a substrate in aluminium 6061-T651, which is used in the container of the TRIGA Mark III nuclear reactor. Characterization was made using MEB and X-ray diffraction techniques. Coating application has the function to prevent the corrosion. Coating was probed to test adhesion in accordance with the Standard ASTM D-4541, and the corrosion process using a salt spray (fog) camera, in accordance with the Standard ASTM B-117, so as we could phosphate the welding cord. These experiences were obtained using a Deep cell. Results obtained are going to phosphate 'in situ' using a mobile device which was patented for the National Institute of Nuclear Research (ININ) in the Mexican Institute of Intellectual Property (INPI). (Author)

  2. Leibstadt: a 950-MW(e) BWR/6 Mark-III in commercial operation

    International Nuclear Information System (INIS)

    Fischer, P.U.

    1985-01-01

    It may be somewhat premature to report on a plant that started up in 1984 as the first of General Electric's (GE's) BWR/6 Mark-III plants in the Western Hemisphere and commenced commercial operation on December 15, 1984. The theme of the session certainly applies to the overall Swiss nuclear program and the search for excellence has been our ambition out of economic and energy supply necessities. Leibstadt came on line just in time to cover the needs of the Swiss consumers during the winter of 84/85. It has provided reliable service from the outset and operated during the extreme European cold wave in January 1985 without interruption. In 1985 the plant is expected to cover approx.15% of the electricity needs of Switzerland. The encouraging start of commercial operation gives hope that with time Leibstadt will be able to approach the capacity factors of the other four Swiss nuclear power stations, which in 1984 were between 88.4 and 90.3%

  3. Mark III LOCA-related hydrodynamic load definition. Generic technical activity B-10. Final report

    International Nuclear Information System (INIS)

    Fields, M.B.; Kudrick, J.A.

    1984-08-01

    This report, prepared by the staff of the Office of Nuclear Reactor Regulation and its consultants at the Brookhaven National Laboratory, provides a discussion of LOCA-related suppression pool hydrodynamic loads in boiling water reactor (BWR) facilities with the Mark III pressure-suppression containment design. Its issuance completes NRC Generic Technical Activity B-10, Behavior of BWR Mark III Containment. On the basis of certain large-scale tests conducted between 1973 and 1979, the General Electric Company developed LOCA-related hydrodynamic load definitions for use in the design of the standard Mark III containment. The staff and its consultants have reviewed these load definitions and their bases and conclude that, with a few specified changes, the proposed load definitions provide conservative loading conditions. The staff approved acceptance criteria for LOCA-related hydrodynamic loads are provided in an appendix

  4. Steam explosions-induced containment failure studies for Swiss nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Zuchuat, O.; Schmocker, U. [Swiss Federal Nuclear Safety Inspectorate, Villigen (Switzerland); Esmaili, H.; Khatib-Rahbar, M.

    1998-01-01

    The assessment of the consequences of both in-vessel and ex-vessel energetic fuel-coolant interaction for Beznau (a Westinghouse pressurized water reactor with a large, dry containment), Goesgen (a Siemens/KWU pressurized water reactor with a large, dry containment) and Leibstadt (a General Electric boiling water reactor-6 with a free standing steel, MARK-III containment) nuclear power plants is presented in this paper. The Conditional Containment Failure Probability of the steel containment of these Swiss nuclear power plants is determined based on different probabilistic approaches. (author)

  5. Design studies for the Mark-III core of experimental multi-purpose VHTR

    International Nuclear Information System (INIS)

    Yasuno, Takehiko; Miyamoto, Yoshiaki; Mitake, Susumu; Shindo, Ryuiti; Arai, Taketoshi

    1979-08-01

    The Mark-III core in the first conceptual design made in 1975 is a fundamental core for VHTR. Subsequently, further design studies were made fuel loading scheme and control rod withdrawal sequence for the core to increase its safety margin (shutdown margin, etc.) and operational margin (minimum Reynolds number, maximum fuel temperature, etc.). It was shown that the Mark-III should exhibit the performance expected of VHTR, unless changes are made in the preconditions for its nuclear, thermal-hydraulic design. Also, the needs as below were indicated: (1) reasonable core design criteria and guidelines, (2) fuel-loading-scheme requirements in fuel management, fuel misloading and reactor operation, (3) confirmation on precision of the core design method and its further refinement. (author)

  6. Simulator of the punctual kinetics of a TRIGA Mark III reactor with power diffuse control in a visual environment; Simulador de la cinetica puntual de un reactor nuclear TRIGA Mark III con control difuso de potencia en un ambiente visual

    Energy Technology Data Exchange (ETDEWEB)

    Perez M, C

    2004-07-01

    The development of a software is presented that simulates the punctual kinetics of a nuclear reactor of investigation model TRIGA Mark III, generating the answers of the reactor low different algorithms of control of power. The user requires a graphic interface that allows him easily interacting with the simulator. To achieve the proposed objective, first the system was modeled in open loop, not using a mathematical model of the consistent reactor in a system of linear ordinary differential equations. For their solution in real time the numeric method of Runge-Kutta-Fehlberg was used. As second phase, it was modeled to the system in closed loop, using for it an algorithm of control of the power based on fuzzy logic. This software has as purpose to help the investigator in the control area who will be able to prove different algorithms for the control of the power of the reactor. This is achieved using the code source in language C, C++, Visual Basic, with which a file is generated. DLL and it is inserted in the simulator. Then they will be able to visualize the results as if their controller had installed in the reactor, analyzing the behavior of all his variables that will be stored in files, for his later study. The easiness of proving these control algorithms in the reactor without necessity to make it physically has important consequences as the saving in the expense of fuel, the not generation of radioactive waste and the most important thing, one doesn't run any risk. The simulator can be used how many times it is necessary until the total purification of the algorithm. This program is the base for following investigation processes, enlarging the capacities and options of the same one. The program fulfills the time of execution satisfactorily, assisting to the necessity of visualizing the behavior in real time of the reactor, and it responds from an effective way to the petitions of changes of power on the part of the user. (Author)

  7. Evaluation of the aptitude for the service of the pool of the TRIGA Mark III reactor of the National Institute of Nuclear Research of Mexico; Evaluacion de la aptitud para el servicio de la piscina del reactor TRIGA Mark III del Instituto Nacional de Investigaciones Nucleares de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Merino C, J.; Gachuz M, M.; Diaz S, A.; Arganis J, C.; Gonzalez R, C.; Nava G, T.; Medina R, M.J. [Departamento de Sintesis y Caracterizacion de Materiales del ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2001-07-01

    This work describes the evaluation of the structural integrity of the pool of the TRIGA Mark III reactor of the National Institute of Nuclear Research of Mexico, which was realized in July 2001, as an element to determine those actions for preventive and corrective maintenance which owner must do it for a safety and efficient operation of the component in the next years. (Author)

  8. Current status of generation III nuclear power and assessment of AP1000 developed by Westinghouse

    International Nuclear Information System (INIS)

    Zhang Mingchang

    2005-01-01

    In order to make greater contributions to the environment, new nuclear power systems will be needed to meet the increase of electricity demand and to replace plants to be decommissioned. A series of new designs, so called Generation III and Generation III +, are being developed to ensure their deployment in a Near-Term Deployment Road-map in US by 2010 and in Europe by 2015. The AP1000, developed by Westinghouse, is a two-loop 1000 MWe PWR with passive safety features and extensive simplifications to enhance its competitiveness in cost and tariff. It is the first Generation III + plant receiving the Final Design Approval by the US NRC. This paper briefly describes AP1000 design features and technical specifications, and presents a more detailed design evaluation with reference to relevant literatures. Both the opportunity and challenges for nuclear power development in China during the first decade of the 21 st century in a historic transition from Gen II to Gen III are analyzed. The key is to balance risks and benefits if the first AP1000 to be settled down in China. (author)

  9. Immobilization of Ion Exchange radioactive resins of the TRIGA Mark III Nuclear Reactor; Inmovilizacion de resinas de intercambio ionico radiactivas del reactor nuclear TRIGA Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Martinez, H

    1999-07-01

    In the last decades many countries in the world have taken interest in the use, availability, and final disposal of dangerous wastes in the environment, within these, those dangerous wastes that contain radioactive material. That is why studies have been made on materials used as immobilization agent of radioactive waste that may guarantee its storage for long periods of time under drastic conditions of humidity, temperature change and biodegradation. In mexico, the development of different applications of radioactive material in the industry, medicine and investigation, have generated radioactive waste, sealed and open sources, whose require a special technological development for its management and final disposal. The present work has as a finality to develop the process and define the agglutinating material, bitumen, cement and polyester resin that permits immobilization of resins of Ionic Exchange contaminated by Barium 153, Cesium 137, Europium 152, Cobalt 60 and Manganese 54 generated from the nuclear reactor TRIGA Mark III. Ionic interchange contaminated resin must be immobilized and is analysed under different established tests by the Mexican Official Standard NOM-019-NUCL-1995 {sup L}ow level radioactive wastes package requirements for its near-surface final disposal. Immobilization of ionic interchange contaminated resins must count with the International Standards applicable in this process; in these standards, the following test must be taken in prototype examples: Free-standing water, leachability, compressive strength, biodegradation, radiation stability, thermal stability and burning rate. (Author)

  10. Analysis of risk-dominant sequences by MAAP3.0 for Kuosheng Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lin, J.D.; Chieng, C.C.; Wang, T.K.; Hsiue, R.K.

    1987-01-01

    Kuosheng Nuclear Power Plant is the first operating model-6/Mark III boiling water reactor (BWR6/Mark III) in the world, and a probabilistic risk assessment (PRA) has been performed to determine the likely frequencies of core melt accidents and the magnitude, composition, and fraction of fission products released in these accidents. The final report of this PRA indicates that categories 8 and 15 are ranked No. 1 by risk index (the product of release frequency and release fraction) and release frequency, respectively. The dominant contributors of these two categories are frequent earthquakes and typhoons

  11. Licensing of the TRIGA Mark III reactor at the Mexican Nuclear Centre

    International Nuclear Information System (INIS)

    Ramirez, R.M.; Arrendondo, R.R.

    1990-01-01

    The TRIGA Mark III reactor at the Mexican Nuclear Centre went critical in 1968 and remained so until 1979 when the National Commission for Nuclear Safety and Safeguards (CNSNS), the Mexican regulatory authority, was set up. The reactor was therefore operating without a formal operating license, and the CNSNS accordingly requested the ININ to license the reactor under the existing conditions and to ensure that any modification of the original design complied with Standards ANSI/ANS-15 and with the code of practice set out in IAEA Safety Series No. 35. The most relevant points in granting the operating licence were: (a) the preparation of the Safety Report; (b) the formulation and application of the Quality Assurance Programme; (c) the reconditioning of the following reactor systems: the cooling systems; the ventilation and exhaust system; the monitoring system and control panel; (d) the training of the reactor operating staff at junior and senior levels; and (e) the formulation of procedures and instructions. Once the provisional operating license was obtained for the reactor it was considered necessary to modify the reactor core, which has been composed of 20% enriched standards fuel, to a mixed core based on a mixture of standard fuel and FLIP-type fuel with 70% 235 U enrichment. The CNSNS therefore requested that the mixed core be licensed and a technical report was accordingly annexed to the Safety Report, its contents including the following subjects: (a) neutron analysis of the proposed configuration; (b) reactor shutdown margins; (c) accident analysis; and (d) technical specifications. The licensing process was completed this year and we are now hoping to obtain the final operating license

  12. A level III PSA for the inherently safe CAREM-25 nuclear power station

    International Nuclear Information System (INIS)

    Baron, Jorge H.; Nunez McLeod, J.; Rivera, S.S.

    2000-01-01

    A Level III PSA has been performed for the inherently safe CAREM-25 nuclear power station, as a requirement for licensing according to argentinian regulations. The CAREM-25 project is still at a detailed design state, therefore only internal events have been considered, and a representative site has been assumed for dose estimations. Several conservative hypothesis have been formulated, but even so an overall core melt frequency of 2.3E -5 per reactor year has been obtained. The risk estimations comply with the regulations. The risk values obtained are compared to the 700MW(e) nuclear power plant Atucha II PSA result, showing an effective risk reduction not only in the severe accident probability but alto in the consequence component of the risk estimation. (author)

  13. Decontamination and decommissioning project status of the TRIGA Mark II and III in Korea

    International Nuclear Information System (INIS)

    Paik, S.T.; Park, S.K.; Chung, K.W.; Chung, U.S.; Jung, K.J.

    1999-01-01

    TRIGA Mark-II, the first research reactor in Korea, has operated since 1962, and the second one, TRIGA Mark-III since 1972. Both of them had their operation phased out in 1995 due to their lives and operation of the new research reactor, HANARO (High-flux Advanced Neutron Application Reactor) at the Korea Atomic Energy Institute (KAERI) in Taejon. Decontamination and decommissioning (D and D) project of TRIGA Mark-II and Mark-III was started in January 1997 and will be completed in December 2002. The first year of the project, work was performed in preparation of the decommissioning plan, start of the environmental impact assessment and setup licensing procedure and documentation for the project with cooperation of Korea Institute of Nuclear Safety (KINS). Hyundai Engineering Company (HEC) is the main contractor to do design and licensing documentation for the D and D of both reactors. British Nuclear Fuels plc (BNFL) is the technical assisting partner of HEC. The decommissioning plan document was submitted to the Ministry of Since and Technology (MOST) for the decommissioning license in December 1998, and it expecting to be issued a license in mid 1999. The goal of this project is to release the reactor site and buildings as an unrestricted area. This paper summarizes current status and future plan for the D and D project. (author)

  14. Applicable regulations and development of surveillance experiments of criticality approach in the TRIGA III Mark reactor; Normativa aplicable y desarrollo de experimentos de vigilancia de aproximacion a criticidad en el reactor Triga Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez M, J L; Aguilar H, F; Rivero G, T; Sainz M, E [Instituto nacional de Investigaciones Nucleares, Departamento de Automatizacion, A.P. 18-1027, Col. Escandon, 11801 Mexico D.F. (Mexico)

    2000-07-01

    In the procedure elaborated to repair the vessel of TRIGA III Mark reactor is required to move toward two tanks of temporal storage the fuel elements which are in operation and the spent fuel elements which are in decay inside the reactor pool. The National Commission of Nuclear Safety and Safeguards (CNSNS) has requested as protection measure that it is carried out a surveillance of the criticality approach of the temporal storages. This work determines the main regulation aspects that entails an experiment of criticality approach, moreover, informing about the results obtained in the developing of this experiments. The regulation aspects are not exclusives for this work in the TRIGA Mark III reactor but they also apply toward any assembling of fissile material. (Author)

  15. Evaluation of the aptitude for the service of the pool of the TRIGA Mark III reactor of the National Institute of Nuclear Research of Mexico

    International Nuclear Information System (INIS)

    Merino C, J.; Gachuz M, M.; Diaz S, A.; Arganis J, C.; Gonzalez R, C.; Nava G, T.; Medina R, M.J.

    2001-01-01

    This work describes the evaluation of the structural integrity of the pool of the TRIGA Mark III reactor of the National Institute of Nuclear Research of Mexico, which was realized in July 2001, as an element to determine those actions for preventive and corrective maintenance which owner must do it for a safety and efficient operation of the component in the next years. (Author)

  16. Optical diameters of stars measured with the Mt. Wilson Mark III interferometer

    International Nuclear Information System (INIS)

    Simon, R.S.; Mozurkewich, D.; Johnston, K.J.; Gaume, R.; Hutter, D.J.; Bowers, P.F.; Colavita, M.M.; Shao, M.

    1990-01-01

    Reliable stellar angular diameters can now be determined using the Mark III Optical Interferometer located on Mt. Wilson, California. The Mark III is a Michelson Interferometer capable of measuring the interferometric fringe visibility for stars using interferometer baselines varying from 3 to 31.5 meters in length. Angular diameters measured with the Mark III Optical Interferometer are presented for 12 stars at wavelengths of 450 and 800 nm. 10 refs

  17. Applicable regulations and development of surveillance experiments of criticality approach in the TRIGA III Mark reactor

    International Nuclear Information System (INIS)

    Gonzalez M, J.L.; Aguilar H, F.; Rivero G, T.; Sainz M, E.

    2000-01-01

    In the procedure elaborated to repair the vessel of TRIGA III Mark reactor is required to move toward two tanks of temporal storage the fuel elements which are in operation and the spent fuel elements which are in decay inside the reactor pool. The National Commission of Nuclear Safety and Safeguards (CNSNS) has requested as protection measure that it is carried out a surveillance of the criticality approach of the temporal storages. This work determines the main regulation aspects that entails an experiment of criticality approach, moreover, informing about the results obtained in the developing of this experiments. The regulation aspects are not exclusives for this work in the TRIGA Mark III reactor but they also apply toward any assembling of fissile material. (Author)

  18. Nuclear particle track-etched anti-bogus mark

    International Nuclear Information System (INIS)

    He Xiangming; Yan Yushun; Zhang Quanrong

    2003-01-01

    Nuclear particle track-etched anti-bogus mark is a new type of forgery-proof product after engraving gravure printing, thermocolour, fluorescence, laser hologram and metal concealed anti-bogus mark. The mark is manufactured by intricate high technology and the state strictly controlled sensitive nuclear facilities to ensure the mark not to be copied. The pattern of the mark is specially characterized by permeability of liquid to be discriminated from forgery. The genuine mark can be distinguished from sham one by transparent liquid (e.g. water), colorful pen and chemical reagent. The mark has passed the official examination of health safety. It is no danger of nuclear irradiation. (author)

  19. Images of nuclear power plants

    International Nuclear Information System (INIS)

    Hashiguchi, Katsuhisa; Misumi, Jyuji; Yamada, Akira; Sakurai, Yukihiro; Seki, Fumiyasu; Shinohara, Hirofumi; Misumi, Emiko; Kinjou, Akira; Kubo, Tomonori.

    1995-01-01

    This study was conducted to check and see, using Hayashi's quantification method III, whether or not the respondents differed in their images of a nuclear power plant, depending on their demographic variables particularly occupations. In our simple tabulation, we compared subject groups of nuclear power plant employees with general citizens, nurses and students in terms of their images of a nuclear power plant. The results were that while the nuclear power plant employees were high in their evaluations of facts about a nuclear power plant and in their positive images of a nuclear power plant, general citizens, nurses and students were overwhelmingly high in their negative images of a nuclear power plant. In our analysis on category score by means of the quantification method III, the first correlation axis was the dimension of 'safety'-'danger' and the second correlation axis was the dimension of 'subjectivity'-'objectivity', and that the first quadrant was the area of 'safety-subjectivity', the second quadrant was the area of 'danger-subjectivity', the third quadrant as the area of 'danger-objectivity', and the forth quadrant was the area of 'safety-objectivity'. In our analysis of sample score, 16 occupation groups was compared. As a result, it was found that the 16 occupation groups' images of a nuclear power plant were, in the order of favorableness, (1) section chiefs in charge, maintenance subsection chiefs, maintenance foremen, (2) field leaders from subcontractors, (3) maintenance section members, operation section members, (4) employees of those subcontractors, (5) general citizens, nurses and students. On the 'safety-danger' dimension, nuclear power plant workers on the one hand and general citizens, nurses and students on the other were clearly divided in terms of their images of a nuclear power plant. Nuclear power plant workers were concentrated in the area of 'safety' and general citizens, nurses and students in the area of 'danger'. (J.P.N.)

  20. First results from Mark III at SPEAR

    International Nuclear Information System (INIS)

    Einsweiler, K.F.

    The paper presents data on meson decays obtained using the MARK III detector operating at SPEAR. Results on hadronic decays; decays of the etasub(e); and results on radiative decays; are all described. (U.K.)

  1. Simulator of the punctual kinetics of a TRIGA Mark III reactor with power diffuse control in a visual environment

    International Nuclear Information System (INIS)

    Perez M, C.

    2004-01-01

    The development of a software is presented that simulates the punctual kinetics of a nuclear reactor of investigation model TRIGA Mark III, generating the answers of the reactor low different algorithms of control of power. The user requires a graphic interface that allows him easily interacting with the simulator. To achieve the proposed objective, first the system was modeled in open loop, not using a mathematical model of the consistent reactor in a system of linear ordinary differential equations. For their solution in real time the numeric method of Runge-Kutta-Fehlberg was used. As second phase, it was modeled to the system in closed loop, using for it an algorithm of control of the power based on fuzzy logic. This software has as purpose to help the investigator in the control area who will be able to prove different algorithms for the control of the power of the reactor. This is achieved using the code source in language C, C++, Visual Basic, with which a file is generated. DLL and it is inserted in the simulator. Then they will be able to visualize the results as if their controller had installed in the reactor, analyzing the behavior of all his variables that will be stored in files, for his later study. The easiness of proving these control algorithms in the reactor without necessity to make it physically has important consequences as the saving in the expense of fuel, the not generation of radioactive waste and the most important thing, one doesn't run any risk. The simulator can be used how many times it is necessary until the total purification of the algorithm. This program is the base for following investigation processes, enlarging the capacities and options of the same one. The program fulfills the time of execution satisfactorily, assisting to the necessity of visualizing the behavior in real time of the reactor, and it responds from an effective way to the petitions of changes of power on the part of the user. (Author)

  2. Fuel for the next Brazilian nuclear power plants

    International Nuclear Information System (INIS)

    Lameiras, Fernando S.; Faeda, Kelly Cristina Ferreira

    2009-01-01

    The conclusion of the Angra III nuclear power plant ends a cycle of the nuclear energy in Brazil that started about forty years ago. Nowadays the country is planning the installation of 4 GWe to 8 GWe of nuclear power up to the year 2030. The nuclear reactors considered for this new cycle should take into account the current technologic development and environment of the nuclear market. They certainly will have significant differences in relation to the Angra I, II, and III reactors. Important impacts may result on the nuclear fuel production chain, e. g., case high temperature reactors were chosen, which can deliver electricity and heat. The differences between the fuels of the candidate reactors after Angra III are analyzed and development lines are suggested to minimize these impacts. (author)

  3. Immobilization of Ion Exchange radioactive resins of the TRIGA Mark III Nuclear Reactor

    International Nuclear Information System (INIS)

    Garcia Martinez, H.

    1999-01-01

    In the last decades many countries in the world have taken interest in the use, availability, and final disposal of dangerous wastes in the environment, within these, those dangerous wastes that contain radioactive material. That is why studies have been made on materials used as immobilization agent of radioactive waste that may guarantee its storage for long periods of time under drastic conditions of humidity, temperature change and biodegradation. In mexico, the development of different applications of radioactive material in the industry, medicine and investigation, have generated radioactive waste, sealed and open sources, whose require a special technological development for its management and final disposal. The present work has as a finality to develop the process and define the agglutinating material, bitumen, cement and polyester resin that permits immobilization of resins of Ionic Exchange contaminated by Barium 153, Cesium 137, Europium 152, Cobalt 60 and Manganese 54 generated from the nuclear reactor TRIGA Mark III. Ionic interchange contaminated resin must be immobilized and is analysed under different established tests by the Mexican Official Standard NOM-019-NUCL-1995 L ow level radioactive wastes package requirements for its near-surface final disposal. Immobilization of ionic interchange contaminated resins must count with the International Standards applicable in this process; in these standards, the following test must be taken in prototype examples: Free-standing water, leachability, compressive strength, biodegradation, radiation stability, thermal stability and burning rate. (Author)

  4. Development and validation of a model TRIGA Mark III reactor with code MCNP5; Desarrollo y validacion de un modelo del reactor Triga Mark III con el codigo MCNP5

    Energy Technology Data Exchange (ETDEWEB)

    Galicia A, J.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico); Aguilar H, F., E-mail: blink19871@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    The main purpose of this paper is to obtain a model of the reactor core TRIGA Mark III that accurately represents the real operating conditions to 1 M Wth, using the Monte Carlo code MCNP5. To provide a more detailed analysis, different models of the reactor core were realized by simulating the control rods extracted and inserted in conditions in cold (293 K) also including an analysis for shutdown margin, so that satisfied the Operation Technical Specifications. The position they must have the control rods to reach a power equal to 1 M Wth, were obtained from practice entitled Operation in Manual Mode performed at Instituto Nacional de Investigaciones Nucleares (ININ). Later, the behavior of the K{sub eff} was analyzed considering different temperatures in the fuel elements, achieving calculate subsequently the values that best represent the actual reactor operation. Finally, the calculations in the developed model for to obtain the distribution of average flow of thermal, epithermal and fast neutrons in the six new experimental facilities are presented. (Author)

  5. Evaluation for the status of the IAEA inspection at Hanaro and TRIGA Mark II and III reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Sook; Lee, Byung Doo

    2007-11-15

    Safeguards implementation of nuclear material was carried out at facility level in an effect to support the peaceful nuclear activities in KAERI. Safeguards implementation is to fulfill the obligations associated with international agreements such as IAEA comprehensive safeguards agreement and additional protocol. IAEA inspection is the most important and basic factor of the safeguards implementation for the purpose of verifying whether all source or special fissionable material is diverted to nuclear weapons or other nuclear explosive devices. The status of the IAEA inspection at Hanaro and TRIGA Mark II and III reactor during 2001-2006 is evaluated in this report.

  6. Evaluation for the status of the IAEA inspection at Hanaro and TRIGA Mark II and III reactor

    International Nuclear Information System (INIS)

    Kim, Hyun Sook; Lee, Byung Doo

    2007-11-01

    Safeguards implementation of nuclear material was carried out at facility level in an effect to support the peaceful nuclear activities in KAERI. Safeguards implementation is to fulfill the obligations associated with international agreements such as IAEA comprehensive safeguards agreement and additional protocol. IAEA inspection is the most important and basic factor of the safeguards implementation for the purpose of verifying whether all source or special fissionable material is diverted to nuclear weapons or other nuclear explosive devices. The status of the IAEA inspection at Hanaro and TRIGA Mark II and III reactor during 2001-2006 is evaluated in this report

  7. Global outlook for nuclear power

    International Nuclear Information System (INIS)

    Southworth, F.H.

    2010-01-01

    'Full text:' The global nuclear power forecast, the North American outlook and the effect of nuclear power growth on greenhouse gas emissions in North America will be discussed. The construction of Generation III reactors will replace aging power plants and, further, add capacity that is environmentally sustainable. The outlook for Generation IV reactors also may significantly improve the environmental balance after 2030, both in electrical markets, waste reduction, and in non-traditional markets such as process heat. (author)

  8. Coordination of motor systems of the control bars of TRIGA Mark III reactor, through the use of a PLC; Coordinacion de los sistemas motrices de las barras de control del reactor Triga Mark III, mediante el uso de un PLC

    Energy Technology Data Exchange (ETDEWEB)

    Castro R, P. R.

    2016-07-01

    The use of programmable logic controllers (PLCs) has a wide field in the realization of automatic systems, since is sought that the form of control is easy for any user. In this work, the TRIGA Mark III reactor of Instituto Nacional de Investigaciones Nucleares (ININ) is intended to operate with a programming code in PLC for the automation of the control rods, having uniform wear according to the power required by the user. On the other hand, is proposed to develop an HMI graphical interface for communication via Ethernet, allowing supervision during the reactor operation process and greater protection of operators during reactor startup. The accuracy of the new actuators, as well as their durability, will allow a good performance of the reactor for many years to come. (Author)

  9. Recent results for Mark III

    International Nuclear Information System (INIS)

    Brient, J.C.

    1987-12-01

    This paper presents recent results from the Mark III detector at SPEAR, in the open charm sector. The first topic discussed is the reanalysis of the direct measurement of the D hadronic branching fractions, where a detailed study has been made of the Cabibbo suppressed and multi-π 0 's D decays backgrounds in the double tag sample. Next, the Dalitz plot analysis of the D decays to Kππ is presented, leading to the relative fractions of three-body versus pseudoscalarvector decays. 7 refs., 5 figs

  10. Characterization of the TRIGA Mark III reactor for k0-neutron activation analysis

    International Nuclear Information System (INIS)

    Diaz R, O.; Herrera P, E.; Lopez R, M.C.

    1997-01-01

    The non-ideality of the epithermal neutron flux distribution in a a reactor site parameter (α), the thermal-to-epithermal neutron ratio (f), the irradiation channel neutron temperature (T n ) and the k 0 -factors for more than 20 isotopes were determined in the 3 typical irradiation positions of the TRIGA Mark III reactor of the National Nuclear Research Institute, Salazar, Mexico, using different experimental methods with conventional and non-conventional monitors. This characterization is used in the k 0 -method of NAA, recently introduced at the Institute. (author). 21 refs., 3 figs., 5 tabs

  11. Nuclear power development in Japan

    International Nuclear Information System (INIS)

    Mishiro, M.

    2000-01-01

    This article describes the advantages of nuclear energy for Japan. In 1997 the composition of the total primary energy supply (TPES) was oil 52.7%, coal 16.5%, nuclear 16.1% and natural gas 10.7%. Nuclear power has a significant role to play in contributing to 3 national interests: i) energy security, ii) economic growth and iii) environmental protection. Energy security is assured because a stable supply of uranium fuel can be reasonably expected in spite of dependence on import from abroad. Economic growth implies the reduction of energy costs. As nuclear power is capital intensive, the power generation cost is less affected by the fuel cost, therefore nuclear power can realize low cost by favoring high capacity utilization factor. Fossil fuels have substantial impacts on environment such as global warming and acid rain by releasing massive quantities of CO 2 , so nuclear power is a major option for meeting the Kyoto limitations. In Japan, in 2010 nuclear power is expected to reach 17% of TPES and 45% of electricity generated. (A.C.)

  12. Characterization of the TRIGA Mark II reactor full-power steady state

    Energy Technology Data Exchange (ETDEWEB)

    Cammi, Antonio, E-mail: antonio.cammi@polimi.it [Politecnico di Milano – Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via La Masa 34, 20156 Milano (Italy); Zanetti, Matteo [Politecnico di Milano – Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via La Masa 34, 20156 Milano (Italy); Chiesa, Davide; Clemenza, Massimiliano; Pozzi, Stefano; Previtali, Ezio; Sisti, Monica [University of Milano-Bicocca, Physics Department “G. Occhialini” and INFN Section, Piazza dell’Ateneo Nuovo, 20126 Milan (Italy); Magrotti, Giovanni; Prata, Michele; Salvini, Andrea [University of Pavia, Applied Nuclear Energy Laboratory (L.E.N.A.), Via Gaspare Aselli 41, 27100 Pavia (Italy)

    2016-04-15

    Highlights: • Full-power steady state characterization of the TRIGA Mark II reactor. • Monte Carlo and Multiphysics simulation of the TRIGA Mark II reactor. • Sub-cooled boiling effects in the TRIGA Mark II reactor. • Thermal feedback effects in the TRIGA Mark II reactor. • Experimental data based validation. - Abstract: In this paper, the characterization of the full-power steady state of the TRIGA Mark II nuclear reactor at the University of Pavia is achieved by coupling the Monte Carlo (MC) simulation for neutronics with the “Multiphysics” model for thermal-hydraulics. Neutronic analyses have been carried out with a MCNP5 based MC model of the entire reactor system, already validated in fresh fuel and zero-power configurations (in which thermal effects are negligible) and using all available experimental data as a benchmark. In order to describe the full-power reactor configuration, the temperature distribution in the core must be established. To evaluate this, a thermal-hydraulic model has been developed, using the power distribution results from the MC simulation as input. The thermal-hydraulic model is focused on the core active region and takes into account sub-cooled boiling effects present at full reactor power. The obtained temperature distribution is then entered into the MC model and a benchmark analysis is carried out to validate the model in fresh fuel and full-power configurations. An acceptable correspondence between experimental data and simulation results concerning full-power reactor criticality proves the reliability of the adopted methodology of analysis, both from the perspective of neutronics and thermal-hydraulics.

  13. Greenfield nuclear power for Finland

    Energy Technology Data Exchange (ETDEWEB)

    Saarenpaa, Tapio

    2010-09-15

    In Finland, licensing for new nuclear power is ongoing. The political approval is to be completed in 2010. Fennovoima's project is unique in various ways: (i) the company was established only in 2007, (ii) its ownership includes a mixture of local energy companies, electricity-intensive industries and international nuclear competence through E.ON, and (iii) it has two alternative greenfield sites. There are five prerequisites for a successful nuclear power project in a transparent democracy of today: (1) need for additional power capacity, (2) actor prepared to invest, (3) established competence, (4) available site, (5) open communications, and (6) favorable public opinion.

  14. Development and validation of a model TRIGA Mark III reactor with code MCNP5

    International Nuclear Information System (INIS)

    Galicia A, J.; Francois L, J. L.; Aguilar H, F.

    2015-09-01

    The main purpose of this paper is to obtain a model of the reactor core TRIGA Mark III that accurately represents the real operating conditions to 1 M Wth, using the Monte Carlo code MCNP5. To provide a more detailed analysis, different models of the reactor core were realized by simulating the control rods extracted and inserted in conditions in cold (293 K) also including an analysis for shutdown margin, so that satisfied the Operation Technical Specifications. The position they must have the control rods to reach a power equal to 1 M Wth, were obtained from practice entitled Operation in Manual Mode performed at Instituto Nacional de Investigaciones Nucleares (ININ). Later, the behavior of the K eff was analyzed considering different temperatures in the fuel elements, achieving calculate subsequently the values that best represent the actual reactor operation. Finally, the calculations in the developed model for to obtain the distribution of average flow of thermal, epithermal and fast neutrons in the six new experimental facilities are presented. (Author)

  15. Canadian attitudes to nuclear power

    International Nuclear Information System (INIS)

    Davies, J.E.O.; Dobson, J.K.; Baril, R.G.

    1977-05-01

    A national assessment was made of public attitudes towards nuclear power, along with regional studies of the Maritimes and mid-western Canada and a study of Canadian policy-makers' views on nuclear energy. Public levels of knowledge about nuclear power are very low and there are marked regional differences. Opposition centers on questions of safety and is hard to mollify due to irrational fear and low institutional credibility. Canadians rate inflation as a higher priority problem than energy and see energy shortages as a future problem (within 5 years) and energy independence as a high priority policy. (E.C.B.)

  16. The Mark III vertex chamber

    International Nuclear Information System (INIS)

    Adler, J.; Bolton, T.; Bunnell, K.

    1987-07-01

    The design and construction of the new Mark III vertex chamber is described. Initial tests with cosmic rays prove the ability of track reconstruction and yield triplet resolutions below 50 μm at 3 atm using argon/ethane (50:50). Also performed are studies using a prototype of a pressurized wire vertex chamber with 8 mm diameter straw geometry. Spatial resolution of 35mm was obtained using dimethyl ether (DME) at 1 atm and 30 μm using argon/ethane (50/50 mixture) at 4 atm. Preliminary studies indicate the DME to adversely affect such materials as aluminized Mylar and Delrin

  17. Coordination of motor systems of the control bars of TRIGA Mark III reactor, through the use of a PLC

    International Nuclear Information System (INIS)

    Castro R, P. R.

    2016-01-01

    The use of programmable logic controllers (PLCs) has a wide field in the realization of automatic systems, since is sought that the form of control is easy for any user. In this work, the TRIGA Mark III reactor of Instituto Nacional de Investigaciones Nucleares (ININ) is intended to operate with a programming code in PLC for the automation of the control rods, having uniform wear according to the power required by the user. On the other hand, is proposed to develop an HMI graphical interface for communication via Ethernet, allowing supervision during the reactor operation process and greater protection of operators during reactor startup. The accuracy of the new actuators, as well as their durability, will allow a good performance of the reactor for many years to come. (Author)

  18. A sidelight on the history Korea nuclear energy

    International Nuclear Information System (INIS)

    Park, Ik Su

    1999-12-01

    It deals with a sidelight on the history of Korea nuclear energy through debate. It includes a lot of debates, which are about opinions on agreement of nuclear energy, three people's debates on agreement of nuclear energy between Korea and U.S.A development of nuclear energy and revolution of technology, introduction of reactor for generation of electricity, discuss over business of Korea nuclear power, the system of nuclear power plants, the issues on administration for nuclear power and radiation safety, the important things of Korea nuclear power business and Let's keep the first reactor; TRIGA-MARK-II and III.

  19. Development of a hydrogen diffusion gothic model of MARK III-containment

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Zhen-Yu [National Tsing Hua Univ., Dept. of Engineering and System Science, Hsinchu, Taiwan (China); Huang, Yu-Kai; Pei, Bau-Shei [National Tsing Hua Univ., Inst. of Nuclear Engineering Science, Hsinchu, Taiwan (China); Hsu, Wen-Sheng [National Tsing Hua Univ., Nuclear Science and Technology Development Center, Hsinchu, Taiwan (China); Chen, Yen-Shu [Institute of Nuclear Energy Research, Nuclear Engineering Div., Taiyuan County, Taiwan (China)

    2015-07-15

    The accident that occurred at the Fukushima Daiichi Nuclear Power Plant is a reminder of the danger of hydrogen explosion within a reactor building. Sufficiently high hydrogen concentration may cause an explosion that could damage the structure, resulting in the release of radioisotopes into the environment. In the first part of this study, a gas diffusion experiment was performed, in which helium was used as the working fluid. An analytical model was also developed using the GOTHIC code and the model predictions of the helium distribution were found to be in good agreement with the experimentally measured data. In the second part of the study, a model of the Mark III containment of the Kuosheng Plant in Taiwan was developed, and was applied to a long-term station blackout (SBO) accident similar to that of the Fukushima plant. The hydrogen generation was calculated using the Modular Accident Analysis Program and was used as the boundary condition for the GOTHIC containment model. The simulation results revealed that the hydrogen concentration at the first floor of the wetwell in the containment reached 4 % 9.7 h after the accident. This indicated the possibility of dangerous conditions inside the containment. Although active hydrogen ignitors are already installed in the Kuosheng plant, the findings of this study indicate that it may be necessary to add passive recombiners to prolong an SBO event.

  20. Development of a hydrogen diffusion gothic model of MARK III-containment

    International Nuclear Information System (INIS)

    Hung, Zhen-Yu; Huang, Yu-Kai; Pei, Bau-Shei; Hsu, Wen-Sheng; Chen, Yen-Shu

    2015-01-01

    The accident that occurred at the Fukushima Daiichi Nuclear Power Plant is a reminder of the danger of hydrogen explosion within a reactor building. Sufficiently high hydrogen concentration may cause an explosion that could damage the structure, resulting in the release of radioisotopes into the environment. In the first part of this study, a gas diffusion experiment was performed, in which helium was used as the working fluid. An analytical model was also developed using the GOTHIC code and the model predictions of the helium distribution were found to be in good agreement with the experimentally measured data. In the second part of the study, a model of the Mark III containment of the Kuosheng Plant in Taiwan was developed, and was applied to a long-term station blackout (SBO) accident similar to that of the Fukushima plant. The hydrogen generation was calculated using the Modular Accident Analysis Program and was used as the boundary condition for the GOTHIC containment model. The simulation results revealed that the hydrogen concentration at the first floor of the wetwell in the containment reached 4 % 9.7 h after the accident. This indicated the possibility of dangerous conditions inside the containment. Although active hydrogen ignitors are already installed in the Kuosheng plant, the findings of this study indicate that it may be necessary to add passive recombiners to prolong an SBO event.

  1. Nuclear Power: Understanding the Economic Risks and Uncertainties

    OpenAIRE

    Kessides, Ioannis N.

    2010-01-01

    This paper identifies the fundamental elements and critical research tasks of a comprehensive analysis of the costs and benefits of nuclear power relative to investments in alternative baseload technologies. The proposed framework seeks to: (i) identify the set of expected parameter values under which nuclear power becomes cost competitive relative to alternative generating technologies; (ii) identify the main risk drivers and quantify their impacts on the costs of nuclear power; (iii) estima...

  2. Estimation of fast neutron fluence in steel specimens type Laguna Verde in TRIGA Mark III reactor; Estimacion de la fluencia de neutrones rapidos en probetas de acero tipo Laguna Verde en el reactor Triga Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Galicia A, J.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico); Aguilar H, F., E-mail: blink19871@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    The main purpose of this work is to obtain the fluence of fast neutrons recorded within four specimens of carbon steel, similar to the material having the vessels of the BWR reactors of the nuclear power plant of Laguna Verde when subjected to neutron flux in a experimental facility of the TRIGA Mark III reactor, calculating an irradiation time to age the material so accelerated. For the calculation of the neutron flux in the specimens was used the Monte Carlo code MCNP5. In an initial stage, three sheets of natural molybdenum and molybdenum trioxide (MoO{sub 3}) were incorporated into a model developed of the TRIGA reactor operating at 1 M Wth, to calculate the resulting activity by setting a certain time of irradiation. The results obtained were compared with experimentally measured activities in these same materials to validate the calculated neutron flux in the model used. Subsequently, the fast neutron flux received by the steel specimens to incorporate them in the experimental facility E-16 of the reactor core model operating at nominal maximum power in steady-state was calculated, already from these calculations the irradiation time required was obtained for values of the neutron flux in the range of 10{sup 18} n/cm{sup 2}, which is estimated for the case of Laguna Verde after 32 years of effective operation at maximum power. (Author)

  3. mobile nuclear energy power plants for Turkey and III. world

    International Nuclear Information System (INIS)

    Oezden, H.

    2001-01-01

    It is estimated that if there is no alternative energy source, there will be increase in building nuclear energy power plants. This source of energy and know how along with technology must be put into the possession of Turkey. Since almost all of Turkey is 1 st degree earthquake region and in view of the regional political instability, the requirement of ample amount of water for prolonged times, the density of settlement, environmental problems, high cost of building nuclear energy power plants it becomes necessary to think about their application techniques. In this study, mobile nuclear energy power plants having a wide area of use in conditions prevailing in Turkey , their draft drawings for making them by using metal/steel are shown. The positive-negative aspects of the topic is presented for discussions

  4. Efficiency mark of the two-product power complex of nuclear power plant

    Science.gov (United States)

    Khrustalev, V. A.; Suchkov, V. M.

    2017-11-01

    The article discusses the combining nuclear power plants (NPP) with pressurized water reactors and distillation-desalination plants (DDP), their joint mode of operation during periods of coating failures of the electric power load graphs and thermo-economical efficiency. Along with the release of heat and generation of electric energy a desalination complex with the nuclear power plant produces distillate. Part of the selected steam “irretrievably lost” with a mix of condensation of this vapor in a desalination machine with a flow of water for distillation. It means that this steam transforms into condition of acquired product - distillate. The article presents technical solutions for the return of the working fluid for turbine К-1000-60/1500-2 и К-1200-6,8/50, as well as permissible part of low pressure regime according to the number of desalination units for each turbine. Patent for the proposed two-product energy complex, obtained by Gagarin State Technical University is analyzed. The energy complex has such system advantages as increasing the capacity factor of a nuclear reactor and also allows to solve the problem of shortage of fresh water. Thermo-economics effectiveness of this complex is determined by introducing a factor-“thermo-economic index”. During analyzing of the results of the calculations of a thermo-economic index we can see a strong influence of the cost factor of the distillate on the market. Then higher participation of the desalination plant in coverage of the failures of the graphs of the electric loading then smaller the payback period of the NPP. It is manifested more clearly, as it’s shown in the article, when pricing options depend on time of day and the configuration of the daily electric load diagram. In the geographical locations of the NPPs with PWR the Russian performance in a number of regions with low freshwater resources and weak internal electrical connections combined with DDP might be one of the ways to improve the

  5. Estimation of fast neutron fluence in steel specimens type Laguna Verde in TRIGA Mark III reactor

    International Nuclear Information System (INIS)

    Galicia A, J.; Francois L, J. L.; Aguilar H, F.

    2015-09-01

    The main purpose of this work is to obtain the fluence of fast neutrons recorded within four specimens of carbon steel, similar to the material having the vessels of the BWR reactors of the nuclear power plant of Laguna Verde when subjected to neutron flux in a experimental facility of the TRIGA Mark III reactor, calculating an irradiation time to age the material so accelerated. For the calculation of the neutron flux in the specimens was used the Monte Carlo code MCNP5. In an initial stage, three sheets of natural molybdenum and molybdenum trioxide (MoO 3 ) were incorporated into a model developed of the TRIGA reactor operating at 1 M Wth, to calculate the resulting activity by setting a certain time of irradiation. The results obtained were compared with experimentally measured activities in these same materials to validate the calculated neutron flux in the model used. Subsequently, the fast neutron flux received by the steel specimens to incorporate them in the experimental facility E-16 of the reactor core model operating at nominal maximum power in steady-state was calculated, already from these calculations the irradiation time required was obtained for values of the neutron flux in the range of 10 18 n/cm 2 , which is estimated for the case of Laguna Verde after 32 years of effective operation at maximum power. (Author)

  6. Status of nuclear power in the Czech Republic

    International Nuclear Information System (INIS)

    Linhart, Z.

    2004-01-01

    The presentation by the CEZ Executive Director for Nuclear Power concentrates on the following topics: (i) Current situation in the Czech electricity market; (ii) CEZ Group; (iii) Development of the Nuclear Power Division; (iv) Modernisation of the Dukovany and Temelin NPPs; and (v) Efficiency enhancement. The document contains many detailed figures and graphs. (P.A.)

  7. Application of fatigue monitoring system in PWR nuclear power plant

    International Nuclear Information System (INIS)

    Piao Lei

    2014-01-01

    Fatigue failure is one form of equipment failure of nuclear power plant, influencing equipment lifetime and lifetime extension. Fatigue monitoring system can track real thermal transient at fatigue sensitive components, establish a basis for fatigue analyses based on realistic operating loads, identify unexpected operational transients, optimize the plant behavior by improved operating modes, provide supporting data for lifetime management, enhance security of plant and reduce economical loss. Fatigue monitoring system has been applied in many plants and is required to be applied in Generation-III nuclear power plant. It is necessary to develop the fatigue monitoring system with independent intellectual property rights and improve the competitiveness of domestic Generation-III nuclear power technology. (author)

  8. Fukushima, two years later, modification requirements in nuclear power plants

    International Nuclear Information System (INIS)

    Sanchez J, J.; Camargo C, R.; Nunez C, A.; Mendoza F, J. E.; Salmeron V, J. A.

    2013-10-01

    The occurred events in the nuclear power plant of Fukushima Daiichi as consequence of the strong earthquake of 9 grades in the Richter scale and the later tsunami with waves estimated in more than 14 meters high began a series of important questions about the safety of the nuclear power plants in operation and of the new designs. Firstly, have allowed to be questioned on the magnitudes and consequences of the extreme external natural events; that can put in risk the integrity of the safety barriers of a nuclear power plant when being presented in a multiple way. As consequence of the events of the Fukushima Daiichi NPP, the countries with NPPs in operation and /or construction carried out evaluations about their safety operation. They have also realized evaluations about accidents and their impact in the safety, analysis and studies too that have forced to the regulatory bodies to continue a systematic and methodical revision of their procedures and regulations, to identify the possible improvements to the safety in response to the events happened in Japan; everything has taken it to determine the necessity to incorporate additional requirements to the nuclear power plants to mitigate events Beyond the Design Base. Due to Mexico has the nuclear power plant of Laguna Verde, with two units of BWR-5 type with contention Mark III, some the modifications can be applicable to these units to administrate and/or to mitigate the consequences of the possible occurrence of an accident Beyond the Design Base and that could generate a severe accident. In this work an exposition is presented on the modification requirements to confront external natural events Beyond the Design Base, and its application in our country. (Author)

  9. Ten years of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-08-15

    Ten years have elapsed since the world's first nuclear power station began to supply electricity in Russia, and this in turn marked the end of a twelve year stage following the first controlled nuclear chain reaction at Chicago. These periods mark major stages in the development of atomic energy from the realm of abstract ideas to that of everyday industrial application. They followed a period of fundamental research and laboratory work, culminating in Enrico Fermi's demonstration of a system whereby the forces of the atom could be brought under control. Then it was necessary to find ways and means of using the chain reaction for practical purposes and on an industrial scale. And after this had been shown in 1954 to be technically possible, it had still to be developed into an economic process. The nuclear power station has proved itself from the technical and engineering standpoint. The third phase of development has been to bring it to the stage of being economically competitive with alternative sources of energy, and it would appear that we are now reaching that goal - though more slowly than had been envisaged ten years ago

  10. A trend to small nuclear power plants?

    International Nuclear Information System (INIS)

    Lameira, Fernando Soares

    2000-01-01

    The release of fossil fuel greenhouse gases and the depletion of cheap oil reserves outside the Persic Gulf suggest a promising scenario for the future of nuclear power. But the end of the Cold War, the crisis of the state, axiological questions and globalization may lead to a marked for small power plants. The purpose of this paper is to analyze these factors, since they are not always considered all together in the future scenarios for nuclear power. It is concluded that the current evolutionary trend of nuclear power projects toward big plants may become one of the main barriers for the introduction of new plants in the future. It is suggested that a combination of fission reactors with technologies unavailable in the 1950's, when the design characteristics of the current nuclear power plants were established, could be considered to overcome this barrier. (author)

  11. LDC nuclear power: Argentina

    International Nuclear Information System (INIS)

    Tweedale, D.L.

    1982-01-01

    Argentina's 31-year-old nuclear research and power program makes it a Third World leader and the preeminent Latin American country. Easily accessible uranium fuels the heavy water reactor, Atucha I, which provides 10% of the country's electric power. Atucha II and III are under construction. Several domestic and international factors combined to make Argentina's program succeed, but achieving fuel-cycle independence and the capacity to divert fissionable material to military uses is a cause for some concern. 60 references

  12. Preliminary nuclear power reactor technology qualitative assessment for Malaysia

    International Nuclear Information System (INIS)

    Shamsul Amri Sulaiman

    2011-01-01

    Since the worlds first nuclear reactor major breakthrough in December 02, 1942, the nuclear power industry has undergone tremendous development and evolution for more than half a century. After surpassing moratorium of nuclear power plant construction caused by catastrophic accidents at Three-mile island (1979) and Chernobyl (1986), today, nuclear energy is back on the policy agendas of many countries, both developed and developing, signaling nuclear revival or nuclear renaissance. Selection of suitable nuclear power technology has thus been subjected to primary attention. This short paper attempts to draw preliminary technology assessment for the first nuclear power reactor technology for Malaysia. Methodology employed is qualitative analysis collating recent finding of tnb-kepco preliminary feasibility study for nuclear power program in peninsular malaysia and other published presentations and/or papers by multiple experts. The results suggested that pressurized water reactor (PWR) is the prevailing technology in terms of numbers and plant performances, and while the commercialization of generation IV reactors is remote (e.g. Not until 2030), generation III/ III+ NPP models are commercially available on the market today. Five (5) major steps involved in reactor technology selection were introduced with a focus on introducing important aspects of selection criteria. Three (3) categories for the of reactor technology selection were used for the cursory evaluation. The outcome of these analyses shall lead to deeper and full analyses of the recommended reactor technologies for a comprehensive feasibility study in the near future. Recommendations for reactor technology option were also provided for both strategic and technical recommendations. The paper shall also implore the best way to select systematically the first civilian nuclear power reactor. (Author)

  13. BWR Mark III pressure suppression containment response to hydrogen deflagration

    International Nuclear Information System (INIS)

    Fuls, G.M.; Gunter, A.D.

    1982-01-01

    The CLASIX-3 computer program has been used to evaluate the temperature and pressure response of the BWR Mark III Suppression Containment System to hydrogen deflagration resulting from a degraded core condition. The CLASIX-3 computer program is an extension of the CLASIX program which was originally developed to analyze ice condenser containments. A brief description is given of the modifications made to CLASIX to increase its flexibility and versatility to include the capability of analyzing the Mark III Containment. Analytical results are presented for the two base case transients. The two base cases are the stuck open steam relief valve and the small break LOCA, both of which are assumed to lead to a degraded core condition and the release of hydrogen to the containment. Results include pressure and temperature response, gas concentrations and suppression pool response

  14. Canadian attitudes to nuclear power

    International Nuclear Information System (INIS)

    Davies, J.E.O.

    1977-01-01

    In the past ten years, public interest in nuclear power and its relationship to the environment has grown. Although most Canadians have accepted nuclear power as a means of generating electricity, there is significant opposition to its use. This opposition has effectively forced the Canadian nuclear industry to modify its behaviour to the public in the face of growing concern over the safety of nuclear power and related matters. The paper reviews Canadian experience concerning public acceptance of nuclear power, with special reference to the public information activities of the Canadian nuclear industry. Experience has shown the need for scientific social data that will permit the nuclear industry to involve the public in a rational examination of its concern about nuclear power. The Canadian Nuclear Association sponsored such studies in 1976 and the findings are discussed. They consisted of a national assessment of public attitudes, two regional studies and a study of Canadian policy-makers' views on nuclear energy. The social data obtained were of a base-line nature describing Canadian perceptions of and attitudes to nuclear power at that time. This research established that Canadian levels of knowledge about nuclear power are very low and that there are marked regional differences. Only 56% of the population have the minimum knowledge required to indicate that they know that nuclear power can be used to generate electricity. Nevertheless, 21% of informed Canadians oppose nuclear power primarily on the grounds that it is not safe. Radiation and waste management are seen to be major disadvantages. In perspective, Canadians are more concerned with inflation than with the energy supply. About half of all Canadians see the question of energy supplies as a future problem (within five years), not a present one. A more important aspect of energy is seen by the majority of Canadians to be some form of energy independence. The use of data from these studies is no easy

  15. Nuclear and radiological safety in the substitution process of the fuel HEU to LEU 30/20 in the Reactor TRIGA Mark III of the ININ

    International Nuclear Information System (INIS)

    Hernandez G, J.

    2012-10-01

    Inside the safety initiative in the international ambit, with the purpose of reducing the risks associated with the use of high enrichment nuclear fuels (HEU) for different proposes to the peaceful uses of the nuclear energy, Mexico contributes by means of the substitution of the high enrichment fuel HEU for low enrichment fuel LEU 30/20 in the TRIGA Mark III Reactor, belonging to Instituto Nacional de Investigaciones Nucleares (ININ). The conversion process was carried out by means of the following activities: analysis of the proposed core, reception and inspection of the fuel LEU 30/20, the discharge of the fuels of the mixed reactor core, shipment of the fuels HEU fresh and irradiated to the origin country, reload activities with the fuels LEU 30/20 and parameters measurement of the core operation. In order to maintaining the personnel's integrity and infrastructure associated to the Reactor, during the whole process the measurements of nuclear and radiological safety were controlled to detail, in execution with the license requirements of the installation. This work describes the covering activities and radiological inspections more relevant, as well as the measurements of radiological control implemented with base in the estimate of the equivalent dose of the substitution process. (Author)

  16. The American nuclear power industry. A handbook

    International Nuclear Information System (INIS)

    Pearman, W.A.; Starr, P.

    1984-01-01

    This book presents an overview of the history and current organization of the American nuclear power industry. Part I focuses on development of the industry, including the number, capacity, and type of plants in commercial operation as well as those under construction. Part II examines the safety, environmental, antitrust, and licensing issues involved in the use of nuclear power. Part III presents case studies of selected plants, such as Three Mile Island and Seabrook, to illustrate some of the issues discussed. The book also contains a listing of the Nuclear Regulatory Commission libraries and a subject index

  17. Activation calculation of steel of the control rods of TRIGA Mark III reactor; Calculo de activacion del acero de las barras de control del reactor TRIGA Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Garcia M, T.; Cruz G, H. S.; Ruiz C, M. A.; Angeles C, A., E-mail: teodoro.garcia@inin.gob.mx [ININ, Carretera Mexico-Toluca sn, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    In the pool of TRIGA Mark III reactor of the Instituto Nacional de Investigaciones Nucleares (ININ), there are control rods that were removed from the core, and which are currently on shelves of decay. These rods were part of the reactor core when only had fuel standard (from 1968-1989). To conduct a proper activation analysis of the rods, is very important to have well-characterized the materials which are built, elemental composition of the same ones, the atomic densities and weight fractions of the elements that constitute them. To determine the neutron activation of the control rods MCNP5 code was used, this code allows us to have well characterized the radionuclides inventory that were formed during irradiation of the control rods. This work is limited to determining the activation of the steel that is part of the shielding of the control rods, the nuclear fuel that is in the fuel follower does not include. The calculation model of the code will be validated with experimental measurements and calculating the activity of fission products of the fuel follower which will take place at the end of 2014. (Author)

  18. Nuclear Power Plant 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Again this year, our magazine presents the details of the conference on Spanish nuclear power plant operation held in February and that was devoted to 1996 operating results. The Protocol for Establishment of a New Electrical Sector Regulation that was signed last December will undoubtedly represent a new challenge for the nuclear industry. By clearing stating that current standards of quality and safety should be maintained or even increased if possible, the Protocol will force the Sector to improve its productivity, which is already high as demonstrated by the results of the last few years described during this conference and by recent sectorial economic studies. Generation of a nuclear kWh that can compete with other types of power plants is the new challenge for the Sector's professionals, who do not fear the new liberalization policies and approaching competition. Lower inflation and the resulting lower interest rates, apart from being representative indices of our economy's marked improvement, will be very helpful in facing this challenge. (Author)

  19. CNEN activities and brazilian nuclear power policy

    International Nuclear Information System (INIS)

    Costa, E.M. da

    1989-01-01

    The goal of the brazilian policy in nuclear power is to provide its use in a pacific way to promote the well being of our people. It is intended, as well, to finish the construction of Angra II and III and proceed with the implementation of the nuclear fuel cycle, progressively fomenting its nationalization. (A.C.A.S.)

  20. The Mark III vertex chamber and prototype test results

    International Nuclear Information System (INIS)

    Grab, C.

    1987-07-01

    A vertex chamber has been constructed for use in the Mark III experiment. The chamber is positioned inside the current main drift chamber and will be used to trigger data collection, to aid in vertex reconstruction, and to improve the momentum resolution. This paper discusses the chamber's construction and performance and tests of the prototype

  1. An Axiomatic Design Approach of Nanofluid-Engineered Nuclear Safety Features for Generation III+ React

    International Nuclear Information System (INIS)

    Bang, In Cheol; Heo, Gyun Young; Jeong, Yong Hoon; Heo, Sun

    2009-01-01

    A variety of Generation III/III+ reactor designs featuring enhanced safety and improved economics are being proposed by nuclear power industries around the world to solve the future energy supply shortfall. Nanofluid coolants showing an improved thermal performance are being considered as a new key technology to secure nuclear safety and economics. However, it should be noted that there is a lack of comprehensible design works to apply nanofluids to Generation III+ reactor designs. In this work, the review of accident scenarios that consider expected nanofluid mechanisms is carried out to seek detailed application spots. The Axiomatic Design (AD) theory is then applied to systemize the design of nanofluid-engineered nuclear safety systems such as Emergency Core Cooling System (ECCS) and External Reactor Vessel Cooling System (ERVCS). The various couplings between Gen-III/III+ nuclear safety features and nanofluids are investigated and they try to be reduced from the perspective of the AD in terms of prevention/mitigation of severe accidents. This study contributes to the establishment of a standard communication protocol in the design of nanofluid-engineered nuclear safety systems

  2. Pressure and temperature analyses using GOTHIC for Mark I containment of the Chinshan Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yen-Shu, E-mail: yschen@iner.org.t [Nuclear Engineering Division, Institute of Nuclear Energy Research, 1000, Wenhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China); Yuann, Yng-Ruey; Dai, Liang-Che; Lin, Yon-Pon [Nuclear Engineering Division, Institute of Nuclear Energy Research, 1000, Wenhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China)

    2011-05-15

    Research highlights: The Chinshan Mark I containment pressure-temperature responses are analyzed. GOTHIC is used to calculate the containment responses under three pipe break events. This study is used to support the Chinshan Stretch Power Uprate (SPU) program. The calculated peak pressure and temperature are still below the design values. The Chinshan containment integrity can be maintained under SPU condition. - Abstract: Chinshan Nuclear Power Plant in Taiwan is a GE-designed twin-unit BWR/4 plant with original licensed thermal power (OLTP) of 1775 MWt for each unit. Recently, the Stretch Power Uprate (SPU) program for the Chinshan plant is being conducted to uprate the core thermal power to 1858 MWt (104.66% OLTP). In this study, the Chinshan Mark I containment pressure/temperature responses during LOCA at 105% OLTP (104.66% OLTP + 0.34% OLTP power uncertainty = 105% OLTP) are analyzed using the containment thermal-hydraulic program GOTHIC. Three kinds of LOCA (Loss of Coolant Accident) scenarios are investigated: Recirculation Line Break (RCLB), Main Steam Line Break (MSLB), and Feedwater Line Break (FWLB). In the short-term analyses, blowdown data generated by RELAP5 transient analyses are provided as boundary conditions to the GOTHIC containment model. The calculated peak drywell pressure and temperature in the RCLB event are 217.2 kPaG and 137.1 {sup o}C, respectively, which are close to the original FSAR results (219.2 kPaG and 138.4 {sup o}C). Additionally, the peak drywell temperature of 155.3 {sup o}C calculated by MSLB is presented in this study. To obtain the peak suppression pool temperature, a long-term RCLB analysis is performed using a simplified RPV (Reactor Pressure Vessel) volume to calculate blowdown flow rate. One RHR (Residual Heat Removal) heat exchanger is assumed to be inoperable for suppression pool cooling mode. The calculated peak suppression pool temperature is 93.2 {sup o}C, which is below the pool temperature used for evaluating the

  3. Pressure and temperature analyses using GOTHIC for Mark I containment of the Chinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Chen, Yen-Shu; Yuann, Yng-Ruey; Dai, Liang-Che; Lin, Yon-Pon

    2011-01-01

    Research highlights: → The Chinshan Mark I containment pressure-temperature responses are analyzed. → GOTHIC is used to calculate the containment responses under three pipe break events. → This study is used to support the Chinshan Stretch Power Uprate (SPU) program. → The calculated peak pressure and temperature are still below the design values. → The Chinshan containment integrity can be maintained under SPU condition. - Abstract: Chinshan Nuclear Power Plant in Taiwan is a GE-designed twin-unit BWR/4 plant with original licensed thermal power (OLTP) of 1775 MWt for each unit. Recently, the Stretch Power Uprate (SPU) program for the Chinshan plant is being conducted to uprate the core thermal power to 1858 MWt (104.66% OLTP). In this study, the Chinshan Mark I containment pressure/temperature responses during LOCA at 105% OLTP (104.66% OLTP + 0.34% OLTP power uncertainty = 105% OLTP) are analyzed using the containment thermal-hydraulic program GOTHIC. Three kinds of LOCA (Loss of Coolant Accident) scenarios are investigated: Recirculation Line Break (RCLB), Main Steam Line Break (MSLB), and Feedwater Line Break (FWLB). In the short-term analyses, blowdown data generated by RELAP5 transient analyses are provided as boundary conditions to the GOTHIC containment model. The calculated peak drywell pressure and temperature in the RCLB event are 217.2 kPaG and 137.1 o C, respectively, which are close to the original FSAR results (219.2 kPaG and 138.4 o C). Additionally, the peak drywell temperature of 155.3 o C calculated by MSLB is presented in this study. To obtain the peak suppression pool temperature, a long-term RCLB analysis is performed using a simplified RPV (Reactor Pressure Vessel) volume to calculate blowdown flow rate. One RHR (Residual Heat Removal) heat exchanger is assumed to be inoperable for suppression pool cooling mode. The calculated peak suppression pool temperature is 93.2 o C, which is below the pool temperature used for evaluating the

  4. 1999 Nuclear power world report

    International Nuclear Information System (INIS)

    Wesselmann, C.

    2000-01-01

    Last year, 1999, nuclear power plants were available for energy supply and under construction, respectively, in 33 countries. A total of 436 nuclear power plants with an aggregate net power of 350.228 MWe and an aggregate gross power of 366.988 MWe were in operation in 31 countries. Four units with an aggregate of 2.900 MWe, i.e. Civaux 2 in France, Kaiga 2 and Rajasthan 3 in India, and Wolsung-4 in the Republic of Korea, went critical for the first time or started commercial operation after having been synchronized with the power grid. After 26 years of operation, the BN 350 sodium cooled fast breeder was permanently decommissioned in Kazakhstan. The plant not only generated electricity (its capacity was 135 MWe) but also supplied process heat to a seawater desalination plant. In 1999, however, it did not contribute to the supply of electricity. In Sweden, unit 1 of the Barsebaeck nuclear power station (600 Mwe net) was decommissioned because of political decisions. This step entails financial compensation payments and substitute electricity generating capacity made available to the power plant operators. Net electricity generation in 1999 amounts to approx. 2.395 Twh, which marks a 100 TWh increase over the preceding year. Since the first generation of electricity from nuclear power in 1951, the cumulated world generation amounts to nearly 37.200 TWh of electricity, and experience in the operation of nuclear power plants has increased to 9414 years. Last year, 38 plants were under construction. This slight increase is due to the start of construction of a total of seven projects: Two each in Japan, the Republic of Korea and Taiwan, and one in China. Shares of nuclear power differ widely among the operator countries. They reach 75 per cent in France, 73 per cent in Lithuania, and 58 per cent in Belgium. With a share of approx. 20 per cent and more than 720 TWh, the US is the largest producer worldwide of electricity from nuclear power. As far as the aggregate

  5. Guides about nuclear energy in South Korea

    International Nuclear Information System (INIS)

    2004-03-01

    This document summarizes the main information on nuclear energy in South Korea: number of reactors in operation, type, date of commissioning, nuclear facilities under construction, nuclear share in power production, companies and organizations (Korea electric power company (KEPCO), Korea atomic energy institute (KAERI), Korea institute of nuclear safety (KINS), Korea nuclear energy foundation (KNEF), Korea hydro and nuclear power (KHNP), nuclear environment technology institute (NETEC), Korea basic science institute (KBSI)), nuclear fuel fabrication, research works on waste disposal, nuclear R and D in fission and fusion, safety of nuclear facilities, strategies under study (1000 MWe Korea standard nuclear power plant (KSNP), 1400 MWe advanced power reactor (APR), small power water cooled reactors (system-integrated modular advanced reactor (SMART) research program), development of fast reactors (Kalimer research program), development of the process of direct use of PWR fuel in Candu (DUPIC), use of reprocessing uranium, transmutation of trans-uranian and wastes (KOMAC program), first dismantling experience (Triga Mark II and III research reactors). (J.S.)

  6. Infrastructure needs and organizational aspect of nuclear power programme

    International Nuclear Information System (INIS)

    Villanueva, M.S.

    1996-01-01

    I. Introduction. II. Infrastructure development for nuclear power program: a) pre-requisites and requirements for a nuclear power program; b) long-term national policy for a nuclear power (long-term policy reason; national commitment); c) manpower development (role of academic institutions; practical manpower training); d) laws and regulations (regulatory framework; main national laws and regulations); e) nuclear research and development implementation (researches in the university; long term nuclear R and D program; research reactors); f) functions of government organizations (Atomic Energy Commission (PNRI); Department of Science and Technology; Department of Energy; Department of Education and Culture); g) industrial infrastructure; h) technology transfer (recipients's preparedness); i) safeguards obligations; j) public acceptance activities. III. Stages of nuclear power development (stage 1: planning; stage 2: detailed study and procurement; stage 3: construction; stage 4: operation) IV. Conclusion/Recommendation. (author)

  7. Determination of the subcadmium flux in the Triga Mark III reactor of the Nuclear Center in Mexico

    International Nuclear Information System (INIS)

    Rodiguez V, F.J.

    1975-01-01

    The determination of the subcadmium flux profile (neutrons with energy between 0 and 0.4 eV approximatley) in the core of the reactor Triga Mark III in the Nuclear Center of Mexico was made. The technique used for that purpose consists in placing alternativelly indium sheets covered and uncovered with cadmium and separated by fragments of aluminium 2.54cm wide in an aluminium tube whose external diameter reaches 0.635cm. This tube is introduced in each of the 21 axial irradiation places of the sheets the activity of gamma rays of 1.293 MeV of In-116m produced during the irradiation, is measured using a monochannel analyzer. We obtain graphs of the specific counting ratio vs position for the sheets uncovered and covered with cadmium; using quadratic interpolation we compute in each position the missing specific measuring ratio. The difference between the specific counting ratios with our cadmium and with cadmium multiplied by a constant gives the subcadmium flux in the z point. For irradiation at 10 watts, 1 Kilowatt and 1 megawatt the results show profiles which in general terms are in accordance with those which were obtained theoretically for a cylyndrical reactor using group theory. The greatest flow given by the manufacturer of the reactor is in the values range obtained experimentally.For the calculations, the method uses a FORTRAN IV program so that the determinations can be made routinely. (author)

  8. The environmental impact of nuclear power

    International Nuclear Information System (INIS)

    Fisk, D.J.

    1999-01-01

    Various recent and forthcoming inquiries into the future of nuclear power generation (the House of Lords, the Environment Agency, the Royal Society, the Royal Academy of Engineering, the Royal Commission for Environmental Pollution, the Government commitment to the reduction of greenhouse gas emissions and to sustainable development) mark an important point in the history of nuclear power. This paper explores what the assumptions might be in the context of the current sustainable development debate. It considers the changes that will be required to achieve a more mature approach to the future and the problems that will have to be confronted and resolved in order to meet those changes. (author)

  9. The Economics of Nuclear Power: Is Nuclear Power a Cost-Effective Way to Tackle Climate Change

    International Nuclear Information System (INIS)

    Thomas, S.

    2009-01-01

    The role nuclear power can play in combating climate change is limited by the fact that nuclear can have little role in the transport sector, one of the two major emitters of greenhouse gases. However, nuclear power is often portrayed as the most important potential measure to reduce emissions in the other major emitter of greenhouse gases, the power generation sector. For nearly a decade, there has been talk of a 'nuclear renaissance'. Under this, a new generation of nuclear power plants, so called generation III+ designs, would revitalize ordering in markets, especially Europe and North America, that had seen no orders since the 1980s or earlier. This renaissance and the potential role of nuclear power in combating climate change raise a number of issues, including: 1) Is nuclear power the most cost-effective way to replace fossil fuel power generation? 2) Can the issues that nuclear power brings with it, including environmental impact, safety, waste disposal and weapons proliferation be dealt with effectively enough that they will not be a barrier to the use of nuclear power? 3) Are uranium resources sufficient to allow deployment of nuclear power on the scale necessary to have a significant impact on greenhouse gas emissions with existing technologies or would unproven and even more controversial technologies that use natural uranium more sparingly, such as fast reactors, be required? This paper focuses on the first question and in particular, it examines whether economic factors are behind the failure of the long-forecast 'nuclear renaissance' to materialize in Europe and North America. It examines factors such as the construction cost escalation, difficulties of finance and the cost of capital, the financial crisis of 2008/09, the delays in getting regulatory approval for the new designs, and skills and equipment shortages. It concludes that the main factors behind the delays in new orders are: 1) Poor construction experience with the only two new orders

  10. Determination of the flows profile in the role of power in the central thimble of TRIGA Mark III Reactor

    International Nuclear Information System (INIS)

    Garcia F, A.

    2010-01-01

    The overall objective of the thesis project is to determine the flow profiles sub cadmic and epi cadmic in the central thimble to different powers and operation times of TRIGA Mark III Reactor, using activation foils as detectors. In the reactor operation, it is necessary to know the neutron flow profile for to realize other tasks as: the radioisotopes production, research in reactors physics and fuel burning. The distribution of the neutron flow, accurately reflects what is happening in the reactor core, plus the flows value in this distribution is directly related to the power generated. For this reason it is performed the sub cadmic flow measurement with energies between 0 and 0.4 eV (energy of the cadmium cut E cd ∼ 0.4 eV) and epi cadmic flow with energies greater than 0.4 eV, in the central thimble powers to the powers of 10, 100 W, 1, 10 100 Kw and 1 MW. The method used is known as flakes activation, which is to be arranged by placing flakes ( 3 mm of diameter and 0.0508 mm of thickness) of a given material (either Au, In, Cu, Mn, etc.) into an aluminum tube outside diameter equal to 6.35 mm, alternating flakes with lids covered and discovered of cadmium (3.4 mm of diameter and 0.508 mm of thickness) and separated by lucite pieces of 3 mm of diameter and 25.4 mm in length. After irradiating the flakes for some time, is measured the gamma activity of each of them, using a hyper pure germanium detector of high resolution. Already known gamma activity, proceed to calculate the epi cadmic and sub cadmic flows using a computer program in Fortran language, called Caflu. (Author)

  11. Project management skills for nuclear power plants

    International Nuclear Information System (INIS)

    Bhatikar, R.J.

    2002-01-01

    Full text: The E and C Division of L and T has executed several power projects in India and abroad and thus possesses the requisite wherewithal to execute nuclear power projects on a fast track basis. To achieve this L and T has set up a separate Strategic Business Unit (SBU) to have a focused attention to the nuclear power industry in the country. All the four important and necessary hallmarks for successful implementation of any project namely (i) engineering capabilities, (ii) sophisticated project management tools, (iii) ability to mobilize resources, and (iv) skilled personnel to execute the project have been adequately addressed. These could be realized either by establishing fruitful collaborations with other specialist Companies and/or creating powerful and multitasking software tools for effective implementation. The execution of nuclear power projects on a fast track basis could be implemented by following the EPC route and by minimizing the number of packages. Details of this scheme for project implementation will be highlighted during the talk

  12. The three public images of nuclear power

    International Nuclear Information System (INIS)

    Gritti, Jules

    1982-01-01

    The author outlines the three main fears which, to his mind, have stemmed from the nuclear power question over the three post-war decades and marked public opinion to a greater or lesser extent: fear of the atom bomb, fear of cancer, fear of pollution [fr

  13. Gen-III/III+ reactors. Solving the future energy supply shortfall. The SWR-1000 option

    International Nuclear Information System (INIS)

    Stosic, Z.V.

    2006-01-01

    Deficiency of non-renewable energy sources, growing demand for electricity and primary energy, increase in population, raised concentration of greenhouse gases in the atmosphere and global warming are the facts which make nuclear energy currently the most realistic option to replace fossil fuels and satisfy global demand. The nuclear power industry has been developing and improving reactor technology for almost five decades and is now ready for the next generation of reactors which should solve the future energy supply shortfall. The advanced Gen-III/III+ (Generation III and/or III+) reactor designs incorporate passive or inherent safety features which require no active controls or operational intervention to manage accidents in the event of system malfunction. The passive safety equipment functions according to basic laws of physics such as gravity and natural convection and is automatically initiated. By combining these passive systems with proven active safety systems, the advanced reactors can be considered to be amongst the safest equipment ever made. Since the beginning of the 90's AREVA NP has been intensively engaged in the design of two advanced Gen-III+ reactors: (i) PWR (Pressurized Water Reactor) EPR (Evolutionary Power Reactor) and (ii) BWR (Boiling Water Reactor) SWR-1000. The SWR-1000 reactor design marks a new era in the successful tradition of BWR technology. It meets the highest safety standards, including control of a core melt accident. This is achieved by supplementing active safety systems with passive safety equipment of diverse design for accident detection and control and by simplifying systems needed for normal plant operation. A short construction period, flexible fuel cycle lengths and a high fuel discharge burn-up contribute towards meeting economic goals. The SWR-1000 completely fulfils international nuclear regulatory requirements. (author)

  14. Safety systems and safety analysis of the Qinshan phase III CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Cai Jianping; Shen Sen; Barkman, N.

    1999-01-01

    The author introduces the Canadian nuclear reactor safety philosophy and the Qinshan Phase III CANDU NPP safety systems and safety analysis, which are designed and performed according to this philosophy. The concept of 'defence-in-depth' is a key element of the Canadian nuclear reactor safety philosophy. The design concepts of redundancy, diversity, separation, equipment qualification, quality assurance, and use of appropriate design codes and standards are adopted in the design. Four special safety systems as well as a set of reliable safety support systems are incorporated in the design of Qinshan phase III CANDU for accident mitigation. The assessment results for safety systems performance show that the fundamental safety criteria for public dose, and integrity of fuel, channels and the reactor building, are satisfied

  15. Opportunities and challenges for emerging nuclear power states

    International Nuclear Information System (INIS)

    Nkong-Njock, V.; Facer, R.I.; Boussaha, A.

    2009-01-01

    Energy and reliable access to energy sources are essential to economic and social development and improved quality of life. However, limited access to modern energy still remains one of the major constraints to socio-economic development in many parts in the world. On the other hand, energy production, distribution and consumption may have many adverse effects on the local, regional and global environment including climate change. Production and consumption of fossil fuels constitutes the main source of greenhouse gas emissions (GHGs). Cleaner and affordable energy systems are therefore needed to address all of these effects and to contribute to environmental sustainability. Nuclear power is a proven technology with virtually no greenhouse gas emissions or emission of pollutants, and therefore is expected to play an increasing role in meeting this rapidly growing global requirements for clean and economic electricity. But, it is known that challenges and opportunities are polarities, and as opposite poles of the magnet, they do not exist separately. An opportunity for some can be a challenge for others, or a challenge today can become an opportunity tomorrow. The potential growth of nuclear power has increased, in some quarters, concern that nonproliferation should be given sufficient attention. In particular, since introduction of many new power reactors will require increased uranium enrichment services, with the potential proliferation risk of adding enrichment facilities in new countries. This has urged the international community to strongly support the development of safeguarded and well-regulated nuclear power around the world, with the aim to ensure that nuclear power is deployed through a commitment to the highest possible standards of nuclear safety, security, and non-proliferation. The keys issues and trends for nuclear power expansion include therefore problems related to (i) safety, security and reliability, (ii) public perception and acceptance, (iii

  16. An overview of future sustainable nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Poullikkas, Andreas [Electricity Authority of Cyprus, P.O. Box 24506, 1399 Nicosia (Cyprus)

    2013-07-01

    In this paper an overview of the current and future nuclear power reactor technologies is carried out. In particular, the nuclear technology is described and the classification of the current and future nuclear reactors according to their generation is provided. The analysis has shown that generation II reactors currently in operation all around the world lack significantly in safety precautions and are prone to loss of coolant accident (LOCA). In contrast, generation III reactors, which are an evolution of generation II reactors, incorporate passive or inherent safety features that require no active controls or operational intervention to avoid accidents in the event of malfunction, and may rely on gravity, natural convection or resistance to high temperatures. Today, partly due to the high capital cost of large power reactors generating electricity and partly due to the consideration of public perception, there is a shift towards the development of smaller units. These may be built independently or as modules in a larger complex, with capacity added incrementally as required. Small reactors most importantly benefit from reduced capital costs, simpler units and the ability to produce power away from main grid systems. These factors combined with the ability of a nuclear power plant to use process heat for co-generation, make the small reactors an attractive option. Generally, modern small reactors for power generation are expected to have greater simplicity of design, economy of mass production and reduced installation costs. Many are also designed for a high level of passive or inherent safety in the event of malfunction. Generation III+ designs are generally extensions of the generation III concept, which include advanced passive safety features. These designs can maintain the safe state without the use of any active control components. Generation IV reactors, which are future designs that are currently under research and development, will tend to have closed

  17. Activation calculation of steel of the control rods of TRIGA Mark III reactor

    International Nuclear Information System (INIS)

    Garcia M, T.; Cruz G, H. S.; Ruiz C, M. A.; Angeles C, A.

    2014-10-01

    In the pool of TRIGA Mark III reactor of the Instituto Nacional de Investigaciones Nucleares (ININ), there are control rods that were removed from the core, and which are currently on shelves of decay. These rods were part of the reactor core when only had fuel standard (from 1968-1989). To conduct a proper activation analysis of the rods, is very important to have well-characterized the materials which are built, elemental composition of the same ones, the atomic densities and weight fractions of the elements that constitute them. To determine the neutron activation of the control rods MCNP5 code was used, this code allows us to have well characterized the radionuclides inventory that were formed during irradiation of the control rods. This work is limited to determining the activation of the steel that is part of the shielding of the control rods, the nuclear fuel that is in the fuel follower does not include. The calculation model of the code will be validated with experimental measurements and calculating the activity of fission products of the fuel follower which will take place at the end of 2014. (Author)

  18. Nuclear EGFRvIII resists hypoxic microenvironment induced apoptosis via recruiting ERK1/2 nuclear translocation

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hui; Yang, Jinfeng; Xing, Wenjing; Dong, Yucui [Dept. of Immunology, Harbin Medical University, Harbin 150081 (China); Key Lab Infection & Immunity, Heilongjiang Province, Harbin 150081 (China); Ren, Huan, E-mail: renhuan@ems.hrbmu.edu.cn [Dept. of Immunology, Harbin Medical University, Harbin 150081 (China); Key Lab Infection & Immunity, Heilongjiang Province, Harbin 150081 (China)

    2016-02-05

    Glioblastoma (GBM) is the most aggressive type of primary brain tumor. Its interaction with the tumor microenvironment promotes tumor progression. Furthermore, GBM bearing expression of EGFRvIII displays more adaptation to tumor microenvironment related stress. But the mechanisms were poorly understood. Here, we presented evidence that in the human U87MG glioblastoma tumor model, EGFRvIII overexpression led aberrant kinase activation and nuclear translocation of EGFRvIII/ERK1/2 under hypoxia, which induced growth advantage by resisting apoptosis. Additionally, EGFRvIII defective in nuclear entry impaired this capacity in hypoxia adaptation, and partially interrupted ERK1/2 nuclear translocation. Pharmacology or genetic interference ERK1/2 decreased hypoxia resistance triggered by EGFRvIII expression, but not EGFRvIII nuclear translocation. In summary, this study identified a novel role for EGFRvIII in hypoxia tolerance, supporting an important link between hypoxia and subcellular localization alterations of the receptor. - Highlights: • Nuclear translocation of EGFRvIII contributes to GBM cell apoptotic resistance by hypoxia. • Nuclear ERK1/2 facilitates EGFRvIII in hypoxia resistance. • EGFRvIII nuclear translocation is not dependent on ERK1/2.

  19. Present status and future outlook of nuclear power generation in Japan

    International Nuclear Information System (INIS)

    Kunikazu Aisaka

    1987-01-01

    The structure of energy consumption in Japan is heavily dependent on imported oil, therefore Japan has been making its greatest effort in developing nuclear power among other alternatives of oil. The capacity factor of the nuclear power plants in Japan marked 76% in FY 1986, exceeding 70% level for the past several years. The share of nuclear power is expected to increase steadily in the future. Future scale of the nuclear power generation is projected as 62,000 MW in year 2000 and as 137,000 MW in 2030. Nuclear power is expected to produce 58% of the nation's total power generation in 2030. Under the present circumstances, Janpan is executing a nuclear energy policy based on the following guidelines: 1. Promoting the safety advancement program; 2. Improving LWR technologies; 3. Program on use of plutonium in thermal reactors; 4. Advanced thermal reactors (ATRs); 5. Promotion of FBR development; 6. Nuclear fuel cycle. (Liu)

  20. Nuclear power indices and safety

    International Nuclear Information System (INIS)

    Bennet, L.L.; Fizher, D.; Nechaev, A.

    1987-01-01

    Problems discussed at the IAEA International Conference on nuclear power indices and safety held in Vienna from 28 September to 2 October, 1987 are considered. Representatives from 40 countries and 12 international organizations participated in the conference. It is marked that by the end of this century nuclear power plant capacities in developing countries will increase by more than twice. In developed countries increase of installed capacity by 65 % is forecasted. It is stressed that competently constructed and operated NPPs will be successfully competing with coal-fueled power plants in the majority of the world regions. Much attention was paid to reports on measures taken after Chernobyl' accident and its radiation effects on people helth. It is shown that parallel with fundamental theoretical studies on NPP safety as a complex engineering system much attention is paid to some problems of designing and operation of such facilities. Fuel cycle problems, radioactive waste and spent fuel storage and disposal in particular, are considered

  1. Safety/relief valve quencher loads: evaluation for BWR Mark II and III containments

    International Nuclear Information System (INIS)

    Su, T.M.

    1982-10-01

    Boiling water reactor (BWR) plants are equipped with safety/relief valves (SRVs) to protect the reactor from overpressurization. Plant operational transients, such as turbine trips, will actuate the SRV. Once the SRV opens, the air column within the partially submerged discharge line is compressed by the high-pressure steam released from the reactor. The compressed air discharged into the suppression pool produces high-pressure bubbles. Oscillatory expansion and contraction of these bubbles create hydrodynamic loads on the containment structures, piping, and equipment inside containment. This report presents the results of the staff's evaluation of SRV loads. The evaluation, however, is limited to the quencher devices used in Mark II and III containments. With respect to Mark I containments, the SRV acceptance criteria are presented in NUREG-0661 issued July 1980. The staff acceptance criteria for SRV loads for Mark II and III containments are presented in this report

  2. Characterization of the neutron flux in the Hohlraum of the thermal column of the TRIGA Mark III reactor of the ININ; Caracterizacion del flujo neutronico en el Hohlraum de la columna termica del reactor TRIGA Mark III del ININ

    Energy Technology Data Exchange (ETDEWEB)

    Delfin L, A.; Palacios, J.C.; Alonso, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: adl@nuclear.inin.mx

    2006-07-01

    Knowing the magnitude of the neutron flux in the reactor irradiation facilities, is so much importance for the operation of the same one, like for the investigation developing. Particularly, knowing with certain precision the spectrum and the neutron flux in the different positions of irradiation of a reactor, it is essential for the evaluation of the results obtained for a certain irradiation experiment. The TRIGA Mark III reactor account with irradiation facilities designed to carry out experimentation, where the reactor is used like an intense neutron source and gamma radiation, what allows to make irradiations of samples or equipment in radiation fields with components and diverse levels in the different facilities, one of these irradiation facilities is the Thermal Column where the Hohlraum is. In this work it was carried out a characterization of the neutron flux inside the 'Hohlraum' of the irradiation facility Thermal Column of the TRIGA Mark III reactor of the Nuclear Center of Mexico to 1 MW of power. It was determined the sub cadmic neutron flux and the epi cadmic by means of the neutron activation technique of thin sheets of gold. The maps of the distribution of the neutron flux for both energy groups in three different positions inside the 'Hohlraum' are presented, these maps were obtained by means of the irradiation of undressed thin activation sheets of gold and covered with cadmium in arrangements of 10 x 12, located parallel to 11.5 cm, 40.5 cm and 70.5 cm to the internal wall of graphite of the installation in inverse address to the position of the reactor core. Starting from the obtained values of neutron flux it was found that, for the same position of the surface of irradiation of the experimental arrangement, the relative differences among the values of neutron flux can be of 80%, and that the differences among different positions of the irradiation surfaces can vary until in a one order of magnitude. (Author)

  3. Nuclear power. Volume 1. Nuclear power plant design

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 1 contains the following chapters; (1) nuclear reactor theory; (2) nuclear reactor design; (3) types of nuclear power plants; (4) licensing requirements; (5) shielding and personnel exposure; (6) containment and structural design; (7) main steam and turbine cycles; (8) plant electrical system; (9) plant instrumentation and control systems; (10) radioactive waste disposal (waste management) and (11) conclusion

  4. Nuclear Power Plants and Uranium Prices

    Directory of Open Access Journals (Sweden)

    SERGHEI MĂRGULESCU

    2016-06-01

    Full Text Available The recent UN Climate Talks in Paris have put forward the goal of limiting the global temperature rise to two degrees Celsius by the end of the century. This is providing a strong political base for expanding the nuclear power capacity because of the critical role that nuclear power plants play in the production of electricity without emissions of greenhouse gases. In all, more than a dozen countries get over 25% of their energy from nuclear power, with 437 nuclear reactors operating around the world. On top of that, there are another 71 reactors under construction, 165 planned, and 315 proposed. Global uranium demand is expected to rise 40% by 2025 and 81% by 2035. Mined supply of uranium will struggle to keep pace amid rising demand and falling secondary supplies. A cumulative supply deficit is expected to emerge by 2021 while 2016 marks a huge inflection point for the industry, beeing the first year that demand will actually exceed supplies, creating a 60,000-tonne shortfall by 2018. Over the next 10 years, we're going to see uranium prices more than double while the bull run will begin in earnest in 2016.

  5. Selected results on J/PSI hadronic decays from DM2 and Mark III

    International Nuclear Information System (INIS)

    Augustin, J.E.

    1985-01-01

    Results from the high statistics experiments Mark III and DM2 on J/PSI hadronic decays are reviewed. Special interest is given to SU3 violating decays into two pseudoscalars and baryon-antibaryon, especially the first observation of J/PSI → Ksub(S)sup(o)Ksub(L)sup(o). The complete measurement of the vector + pseudoscalar modes allows a new determination of the eta and eta' mixing parameters, indicating the presence of a new component in the eta' wave function. The iota(1440) and theta(1700) gluonium candidates have been searched for in hadronic decays, and the Mark III experiment observes a signal in J/PSI → ω iota (or ωE)

  6. Capture programs, analysis, data graphication for the study of the thermometry of the TRIGA Mark III reactor core

    International Nuclear Information System (INIS)

    Paredes G, L.C.

    1991-05-01

    This document covers the explanation of the capture programs, analysis and graphs of the data obtained during the measurement of the temperatures of the instrumented fuel element of the TRIGA Mark III reactor and of the coolant one near to this fuel, using the conversion card from Analogic to Digital of 'Data Translation', and using a signal conditioner for five temperature measurers with the help of thermo par type K, developed by the Simulation and Control of the nuclear systems management department, which gives a signal from 0 to 10 Vcd for an interval of temperature of 0 to 1000 C. (Author)

  7. Nuclear power. Volume 2. Nuclear power project management

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 2 contains the following chapters: (1) review of nuclear power plants; (2) licensing procedures; (3) safety analysis; (4) project professional services; (5) quality assurance and project organization; (6) construction, scheduling, and operation; (7) nuclear fuel handling and fuel management; (8) plant cost management; and (9) conclusion

  8. Experience gained in the operation of the Beznau nuclear power station

    International Nuclear Information System (INIS)

    Kueffer, K. von.

    1976-01-01

    The 24th December 1969, when the Beznau 1 nuclear power station was placed in commercial operation, marked the beginning of electricity production from nuclear energy in Switzerland. Beznau 2 followed on the 15th March 1972. Together with the Muehleberg nuclear power station, nuclear energy accounts for approximately 20 percent of the total electricity production in Switzerland. Until the end of 1975, Switzerland's three nuclear power stations had a mean energy utilisation factor of 71.3 percent which, as compared with a mean energy utilization factor of 60.5 percent for all the nuclear power stations in the West, suggests fairly good operational results. Problems that arose during operation are discussed in detail. By way of summary it is stated that the operation of the Beznau nuclear power station has so far proved a success. The production of electrical energy has always remained within the limits imposed by the law and by the safety aspects. (Auth.)

  9. Identification and assessment of containment and release management strategies for a BWR Mark III containment

    International Nuclear Information System (INIS)

    Lin, C.C.; Lehner, J.R.; Vandenkieboom, J.J.

    1992-02-01

    This report identifies and assesses accident management strategies which could be important for preventing containment failure and/or mitigating the release of fission products during a severe accident in a BWR plant with a Mark III type of containment. Based on information available from probabilistic risk assessments and other existing severe accident research, and using simplified containment and release event trees, the report identifies the challenges a Mark III containment could face during the course of a severe accident, the mechanisms behind these challenges, and the strategies that could be used to mitigate the challenges. The strategies are linked to the general safety objectives which apply for containment and release management by means of a safety objective tree. The strategies were assessed by applying them to certain severe accident sequence categories deemed important for a Mark III containment because of one or more of the following characteristics: high probability of core damage, high consequences, lead to a number of challenges, and involve the failure of multiple systems

  10. Capture programs, analysis, data graphication for the study of the thermometry of the TRIGA Mark III reactor core; Programas de captura, analisis y graficado de datos para el estudio de la termometria del nucleo del reactor TRIGA Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Paredes G, L.C

    1991-05-15

    This document covers the explanation of the capture programs, analysis and graphs of the data obtained during the measurement of the temperatures of the instrumented fuel element of the TRIGA Mark III reactor and of the coolant one near to this fuel, using the conversion card from Analogic to Digital of 'Data Translation', and using a signal conditioner for five temperature measurers with the help of thermo par type K, developed by the Simulation and Control of the nuclear systems management department, which gives a signal from 0 to 10 Vcd for an interval of temperature of 0 to 1000 C. (Author)

  11. Nuclear Power

    International Nuclear Information System (INIS)

    Douglas-Hamilton, J.; Home Robertson, J.; Beith, A.J.

    1987-01-01

    In this debate the Government's policy on nuclear power is discussed. Government policy is that nuclear power is the safest and cleanest way of generating electricity and is cheap. Other political parties who do not endorse a nuclear energy policy are considered not to be acting in the people's best interests. The debate ranged over the risks from nuclear power, the UK safety record, safety regulations, and the environmental effects of nuclear power. The Torness nuclear power plant was mentioned specifically. The energy policy of the opposition parties is strongly criticised. The debate lasted just over an hour and is reported verbatim. (UK)

  12. Fukushima, two years later, modification requirements in nuclear power plants; Fukushima, dos anos despues, requerimientos de modificacion en centrales nucleares de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez J, J.; Camargo C, R.; Nunez C, A.; Mendoza F, J. E.; Salmeron V, J. A., E-mail: jerson.sanchez@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2013-10-15

    The occurred events in the nuclear power plant of Fukushima Daiichi as consequence of the strong earthquake of 9 grades in the Richter scale and the later tsunami with waves estimated in more than 14 meters high began a series of important questions about the safety of the nuclear power plants in operation and of the new designs. Firstly, have allowed to be questioned on the magnitudes and consequences of the extreme external natural events; that can put in risk the integrity of the safety barriers of a nuclear power plant when being presented in a multiple way. As consequence of the events of the Fukushima Daiichi NPP, the countries with NPPs in operation and /or construction carried out evaluations about their safety operation. They have also realized evaluations about accidents and their impact in the safety, analysis and studies too that have forced to the regulatory bodies to continue a systematic and methodical revision of their procedures and regulations, to identify the possible improvements to the safety in response to the events happened in Japan; everything has taken it to determine the necessity to incorporate additional requirements to the nuclear power plants to mitigate events Beyond the Design Base. Due to Mexico has the nuclear power plant of Laguna Verde, with two units of BWR-5 type with contention Mark III, some the modifications can be applicable to these units to administrate and/or to mitigate the consequences of the possible occurrence of an accident Beyond the Design Base and that could generate a severe accident. In this work an exposition is presented on the modification requirements to confront external natural events Beyond the Design Base, and its application in our country. (Author)

  13. Modernization of the facilities of the TRIGA Mark III reactor of ININ; Modernizacion de las instalaciones del reactor TRIGA Mark III del ININ

    Energy Technology Data Exchange (ETDEWEB)

    Mendez T, D.; Flores C, J., E-mail: dario.mendez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    The TRIGA Mark III reactor of the Instituto Nacional de Investigaciones Nucleares (ININ) has been in operation since 1968 under strict maintenance and component replacement programs, which has allowed its safe operation during this time. Under this scheme, the reactor was operating under suitable conditions, taking into account the different requests for operation that were received for the samples irradiation for the radioisotopes production such as the Sm-153, personnel training, basic research, archaeology and environmental studies and nuclear chemistry of the elements. However, a modernization program of its components and laboratories was required, in order to improve safety in the operation of the same and to increase its use in the analysis of samples by neutron activation and in the training of personnel. This program known as Modernization Program of the Reactor Facilities, was proposed alongside the project to replace high-enrichment fuels with low-enrichment fuels at the end of 2011 and early 2012. The central aspects of this program are described in this work, grouped into generic topics that include instrumentation and control, the radiological monitoring system of the area, the cooling system, the ventilation system, the neutron activation analysis laboratory, the manufacture of graphite elements, inspection submersible system of the pool, temporary storage system for irradiated fuels, traveling crane, Reactor support laboratories and technical meetings, courses and seminars for reactor personnel and associated groups. It also describes some of the most relevant components required for each system and the progress that is made in each one of them. As a fundamental result of the implementation of this Modernization Program of the Reactor Facilities, there has been a substantial improvement in the performance of the systems and components of its facilities, in the reliability of its operation and in the safety of the same. (Author)

  14. Implementing New Methods of Laser Marking of Items in the Nuclear Material Control and Accountability System at SSC RF-IPPE: An Automated Laser Marking System

    International Nuclear Information System (INIS)

    Regoushevsky, V.I.; Tambovtsev, S.D.; Dvukhsherstnov, V.G.; Efimenko, V.F.; Ilyantsev, A.I.; Russ, G.P. III

    2009-01-01

    For over ten years SSC RF-IPPE, together with the US DOE National Laboratories, has been working on implementing automated control and accountability methods for nuclear materials and other items. Initial efforts to use adhesive bar codes or ones printed (painted) onto metal revealed that these methods were inconvenient and lacked durability under operational conditions. For NM disk applications in critical stands, there is the additional requirement that labels not affect the neutron characteristics of the critical assembly. This is particularly true for the many stainless-steel clad disks containing highly enriched uranium (HEU) and plutonium that are used at SSC RF-IPPE for modeling nuclear power reactors. In search of an alternate method for labeling these disks, we tested several technological options, including laser marking and two-dimensional codes. As a result, the method of laser coloring was chosen in combination with Data Matrix ECC200 symbology. To implement laser marking procedures for the HEU disks and meet all the nuclear material (NM) handling standards and rules, IPPE staff, with U.S. technical and financial support, implemented an automated laser marking system; there are also specially developed procedures for NM movements during laser marking. For the laser marking station, a Zenith 10F system by Telesis Technologies (10 watt Ytterbium Fiber Laser and Merlin software) is used. The presentation includes a flowchart for the automated system and a list of specially developed procedures with comments. Among other things, approaches are discussed for human-factor considerations. To date, markings have been applied to numerous steel-clad HEU disks, and the work continues. In the future this method is expected to be applied to other MC and A items.

  15. Study of the characteristic response of the pressure control system for the design parameters of the new turbine control system, MARK VI, in Cofrentes Nuclear Power Plant

    International Nuclear Information System (INIS)

    Palomo anaya, M. J.; Ruiz Bueno, G.; Mora, J. A.; Vaquer, J. I.; Bucho, L.; Lopez, B.

    2010-01-01

    This paper presents the results of the study of the characteristic response of the ancient Pressure and Turbine Control System for the OCP-4300 Project in the Cofrentes Nuclear Power Plant, made by Tatiana Servicios Tecnologicos in collaboration with the Institute for Industrial, Radiophysical and Environmental Safety. This work was done as one of the preliminary work necessary for replacing the old control system by Mark VI.

  16. Results on the iota from Mark III

    International Nuclear Information System (INIS)

    Richman, J.D.

    1985-01-01

    A survey is presented of Mark III results on the iota(1440), a possible glueball state observed in radiative J/psi decays. The measurements include a spin-parity determination using both the iota → Ksub(s) 0 K +- π +- and iota → K + K - π 0 decay modes; an upper limit on the K*anti-K content of the Kanti-Kπ Dalitz plot; branching fractions and isospin; stringent upper limits for several hadronic channels, including iota → zetaπ→etaππ; and results from a search for iota radiative decays into vector mesons. These measurements are discussed in the context of theoretical ideas about the iota and results on the E(1420), a state observed in hadronic interactions. 11 refs., 7 figs

  17. Determination of the flows profile in the role of power in the central thimble of TRIGA Mark III Reactor; Determinacion del perfil de flujos en funcion de la potencia en el dedal central del Reactor Triga Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Garcia F, A.

    2010-07-01

    The overall objective of the thesis project is to determine the flow profiles sub cadmic and epi cadmic in the central thimble to different powers and operation times of TRIGA Mark III Reactor, using activation foils as detectors. In the reactor operation, it is necessary to know the neutron flow profile for to realize other tasks as: the radioisotopes production, research in reactors physics and fuel burning. The distribution of the neutron flow, accurately reflects what is happening in the reactor core, plus the flows value in this distribution is directly related to the power generated. For this reason it is performed the sub cadmic flow measurement with energies between 0 and 0.4 eV (energy of the cadmium cut E{sub cd} approx 0.4 eV) and epi cadmic flow with energies greater than 0.4 eV, in the central thimble powers to the powers of 10, 100 W, 1, 10 100 Kw and 1 MW. The method used is known as flakes activation, which is to be arranged by placing flakes ( 3 mm of diameter and 0.0508 mm of thickness) of a given material (either Au, In, Cu, Mn, etc.) into an aluminum tube outside diameter equal to 6.35 mm, alternating flakes with lids covered and discovered of cadmium (3.4 mm of diameter and 0.508 mm of thickness) and separated by lucite pieces of 3 mm of diameter and 25.4 mm in length. After irradiating the flakes for some time, is measured the gamma activity of each of them, using a hyper pure germanium detector of high resolution. Already known gamma activity, proceed to calculate the epi cadmic and sub cadmic flows using a computer program in Fortran language, called Caflu. (Author)

  18. Nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    Data concerning the existing nuclear power plants in the world are presented. The data was retrieved from the SIEN (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: nuclear plants, its status and type; installed nuclear power plants by country; nuclear power plants under construction by country; planned nuclear power plants by country; cancelled nuclear power plants by country; shut-down nuclear power plants by country. (E.G.) [pt

  19. Fujian electric system analysis and nuclear power planning

    International Nuclear Information System (INIS)

    Lin Jianwen; Fu Qiang; Cheng Ping

    1994-11-01

    The objective of the study is to conduct a long term electric expansion planning and nuclear power planning for Fujian Province. The Wien Automatic System Planning Package (WASP-III) is used to optimize the electric system. Probabilistic Simulation is one of the most favorite techniques for middle and long term generation and production cost planning of electric power system. The load duration curve is obtained by recording the load data of a time interval into a monotone non-increasing sense. Polynomial function is used to describe the load duration curve (LDC), and this LDC is prepared for probabilistic simulation in WASP-III. WASP-III is a dynamic optimizing module in the area of supply modelling. It could find out the economically optimal expansion plan for a power generating system over a period of up to thirty years, with the constraints given by the planners. The optimum is evaluated in terms of minimum discounted total costs. Generating costs, amount of energy not served and reliability of the system are analyzed in the system expansion planning by using the probabilistic simulation method. The following conclusions can be drawn from this study. Hydro electricity is the cheapest one of all available technologies and resources. After the large hydro station is committed at the end of 1995, more base load power plants are needed in the system. Coal-fired power plants with capacity of 600 MWe will be the most competitive power plants in the future of the system. At the end of the studying period, about half of the stalled capacity will be composed of these power plants. Nuclear power plants with capacity of 600 MWe are suitable for the system after the base load increases to a certain level. Oil combustion units will decrease the costs of the system. (12 tabs., 6 figs.)

  20. Nuclear power

    International Nuclear Information System (INIS)

    Porter, Arthur.

    1980-01-01

    This chapter of the final report of the Royal Commission on Electric Power Planning in Ontario updates its interim report on nuclear power in Ontario (1978) in the light of the Three Mile Island accident and presents the commission's general conclusions and recommendations relating to nuclear power. The risks of nuclear power, reactor safety with special reference to Three Mile Island and incidents at the Bruce generating station, the environmental effects of uranium mining and milling, waste management, nuclear power economics, uranium supplies, socio-political issues, and the regulation of nuclear power are discussed. Specific recommendations are made concerning the organization and public control of Ontario Hydro, but the commission concluded that nuclear power is acceptable in Ontario as long as satisfactory progress is made in the disposal of uranium mill tailings and spent fuel wastes. (LL)

  1. Computer aided design (CAD) for electronics improvement of the nuclear channels of TRIGA Mark III reactor of the ININ; Diseno asistido por computadora (DAC) para mejorar la electronica de los canales nucleares del reactor TRIGA Mark III del ININ

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez M, J.L.; Rivero G, T.; Aguilar H, F. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: jlgm@nuclear.inin.mx

    2007-07-01

    The 4 neutron measurement channels of the digital control console (CCD) of the TRIGA Mark III reactor (RTMIII) of the ININ, its were designed and built with the corresponding Quality Guarantee program, being achieved the one licensing to replace the old console. With the time they were carried out some changes to improve and to not solve some problems detected in the tests, verification and validation, requiring to modify the circuits originally designed. In this work the corrective actions carried out to eliminate the Non Conformity generated by these problems, being mentioned the advantages of using modern tools, as the software applied to the Attended Engineering by Computer, and those obtained results are presented. (Author)

  2. The renaissance of Italian nuclear power

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Cassuto, A.

    2010-01-01

    In the fifties Italy was an advanced country in terms of nuclear electricity but as a consequence of the Chernobyl accident Italy changed drastically its energy policy and closed definitely all its nuclear plants. Now in order to be less dependent on energy imports and to reduce its CO 2 emission, Italy has changed its mind and welcomes nuclear power in its future energy mix. The aim is to reach the following contributions for the production of electricity in 2030: 50% from fossil fuels, 25% from renewable energies and 25% from nuclear energy (13.000 MWe) and with a first reactor operating in 2020. The main actors of the renaissance of nuclear power in Italy are: -) ENEL (the second electricity producer in Europe), -) SOGIN, a company that is mainly in charge of the dismantling of nuclear plants, -) ENEA a state agency for the development of new technologies, energy and sustainable development, and -) companies working in the nuclear industry like ANSALDO. Various collaboration agreements have been signed between ENEL and EDF or between ENEA and CEA concerning staff training, nuclear safety or radioactive waste management. The main difficulties of this renaissance of the nuclear energy are to get the agreement of the national and local populations as well as that of the political class that is strongly marked by a division in 2 wings. (A.C.)

  3. The Importance of Reliable Nuclear Power For Energy Supply

    International Nuclear Information System (INIS)

    Blix, Hans

    1989-01-01

    The severe accident at Chernobyl in 1986 caused a setback in public acceptance of nuclear power practically everywhere in the world. In some countries, the media even give the impression that nuclear power is on the way out worldwide, because of concerns about safety, radioactive waste disposal, and the risk of proliferation of nuclear weapons. Let me give you a more accurate picture of the situation. At the beginning of this year there were about 430 nuclear power reactors in operation in 26 countries around the world and they produced more than 16% of the world's electric energy. That amount of electricity is equal to the total amount of electric energy that was produced in the world in 1956. I mention this because, when we concentrate on the problems which nuclear power is facing, we tend to forget that among all the major energy sources? coal, oil, gas, hydro and nuclear- it is nuclear which has experienced the fastest rise in relative importance for the global energy supply. Its contribution to global energy supply has increased from just under 1% in 1974 to about 5% in 1987. On the positive side we can note the continuation of strong nuclear power programmes with construction starts in France and Japan, the start of construction at Sizewell B, which marks a new departure for nuclear power in the United Kingdom, and the orders for the Korean units 11 and 12

  4. Epithermal neutron flux characterization of the TRIGA Mark III reactor, Salazar, Mexico, for use in Internal Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Diaz Rizo, O.; Herrera Peraza, E.

    1996-01-01

    The non ideality of the epithermal neutron flux distribution at a reactor site parameter (made, using Chloramine-T method. Radiochemical purity and stability of the labelled product were determined by radiochromatography. The labelled Melagenine-II showed two radioactive fractions thermal-to-epithermal neutron ratio (f) were determined in the 3 typical irradiations positions of the TRIGA Mark III reactor of the National Nuclear Research Institute, Salazar, Mexico, using the Cd-ratio for multi monitor and bare bi-isotopic monitor methods respectively. This characterization is of use in the K o - method of neutron activation analysis, recently introduced at the Institute

  5. Recent results on D meson decays from the MARK III

    International Nuclear Information System (INIS)

    Coward, D.H.

    1985-10-01

    The MARK III Collaboration recently completed the analysis of a number of decay modes of charged and neutral D mesons produced in electron-positron collisions near the peak of the psi(3770) resonance at SLAC's SPEAR storage ring. The mesons were produced nearly at rest in pairs, either D + D - or D 0 anti D 0 , at a center-of-mass energy below the threshold for DD production. The unique kinematics of the production allow us to isolate the charmed meson signal clearly and unambiguously. The data were collected with the MARK III Spectrometer, a large solid angle magnetic detector. Our data sample corresponds to an integrated luminosity of approximately 9.3 inverse picobarns. New results will be presented on the absolute branching ratios of D mesons into hadronic final states, branching ratios for three body decays via pseudoscalar-vector intermediate states, and branching ratios for Cabibbo allowed and Cabibbo suppressed decays. Inclusive and exclusive branching ratios for the semi-leptonic decays of D mesons will be presented, as well as the first measurement of the vector form factor in the decay D 0 → K - e + nu, evidence for interference in D + decays, and new information on the contributions of W exchange diagrams to D 0 decays

  6. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2005-01-01

    This chapter discussed the following topics related to the nuclear power: nuclear reactions, nuclear reactors and its components - reactor fuel, fuel assembly, moderator, control system, coolants. The topics titled nuclear fuel cycle following subtopics are covered: , mining and milling, tailings, enrichment, fuel fabrication, reactor operations, radioactive waste and fuel reprocessing. Special topic on types of nuclear reactor highlighted the reactors for research, training, production, material testing and quite detail on reactors for electricity generation. Other related topics are also discussed: sustainability of nuclear power, renewable nuclear fuel, human capital, environmental friendly, emission free, impacts on global warming and air pollution, conservation and preservation, and future prospect of nuclear power

  7. Nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The committee concludes that the nature of the proliferation problem is such that even stopping nuclear power completely could not stop proliferation completely. Countries can acquire nuclear weapons by means independent of commercial nuclear power. It is reasonable to suppose if a country is strongly motivated to acquire nuclear weapons, it will have them by 2010, or soon thereafter, no matter how nuclear power is managed in the meantime. Unilateral and international diplomatic measures to reduce the motivations that lead to proliferation should be high on the foreign policy agenda of the United States. A mimimum antiproliferation prescription for the management of nuclear power is to try to raise the political barriers against proliferation through misuse of nuclear power by strengthening the Non-Proliferation Treaty, and to seek to raise the technological barriers by placing fuel-cycle operations involving weapons-usable material under international control. Any such measures should be considered tactics to slow the spread of nuclear weapons and thus earn time for the exercise of statesmanship. The committee concludes the following about technical factors that should be considered in formulating nuclear policy: (1) rate of growth of electricity use is a primary factor; (2) growth of conventional nuclear power will be limited by producibility of domestic uranium sources; (3) greater contribution of nuclear power beyond 400 GWe past the year 2000 can only be supported by advanced reactor systems; and (4) several different breeder reactors could serve in principle as candidates for an indefinitely sustainable source of energy

  8. Nuclear power development

    International Nuclear Information System (INIS)

    Nealey, S.

    1990-01-01

    The objective of this study is to examine factors and prospects for a resumption in growth of nuclear power in the United States over the next decade. The focus of analysis on the likelihood that current efforts in the United States to develop improved and safer nuclear power reactors will provide a sound technical basis for improved acceptance of nuclear power, and contribute to a social/political climate more conducive to a resumption of nuclear power growth. The acceptability of nuclear power and advanced reactors to five social/political sectors in the U.S. is examined. Three sectors highly relevant to the prospects for a restart of nuclear power plant construction are the financial sector involved in financing nuclear power plant construction, the federal nuclear regulatory sector, and the national political sector. For this analysis, the general public are divided into two groups: those who are knowledgeable about and involved in nuclear power issues, the involved public, and the much larger body of the general public that is relatively uninvolved in the controversy over nuclear power

  9. Nuclear power

    International Nuclear Information System (INIS)

    King, P.

    1990-01-01

    Written from the basis of neutrality, neither for nor against nuclear power this book considers whether there are special features of nuclear power which mean that its development should be either promoted or restrained by the State. The author makes it dear that there are no easy answers to the questions raised by the intervention of nuclear power but calls for openness in the nuclear decision making process. First, the need for energy is considered; most people agree that energy is the power to progress. Then the historicalzed background to the current position of nuclear power is given. Further chapters consider the fuel cycle, environmental impacts including carbon dioxide emission and the greenhouse effect, the costs, safety and risks and waste disposal. No conclusion either for or against nuclear power is made. The various shades of opinion are outlined and the arguments presented so that readers can come to their own conclusions. (UK)

  10. Neutron spectra in two beam ports of a TRIGA Mark III reactor with HEU fuel

    International Nuclear Information System (INIS)

    Vega C, H. R.; Hernandez D, V. M.; Paredes G, L.; Aguilar, F.

    2012-10-01

    Before to change the HEU for Leu fuel of the ININ's TRIGA Mark III nuclear reactor the neutron spectra were measured in two beam ports using 5 and 10 W. Measurements were carried out in a tangential and a radial beam port using a Bonner sphere spectrometer. It was found that neutron spectra are different in the beam ports, in radial beam port the amplitude of thermal and fast neutrons are approximately the same while, in the tangential beam port thermal neutron peak is dominant. In the radial beam port the fluence-to-ambient dose equivalent factors are 131±11 and 124±10 p Sv-cm 2 for 5 and 10 W respectively while in the tangential beam port the fluence-to-ambient dose equivalent factor is 55±4 p Sv-cm 2 for 10 W. (Author)

  11. Country nuclear power profiles. 2001 ed

    International Nuclear Information System (INIS)

    2002-03-01

    . Statistical data about nuclear plant operations, population, energy and electricity use are largely drawn from the PRIS and EEDB sources as of yearend 2000 and from the national contributions. However, the 2000 EEDB data are extrapolated based on trends in the second half of the 90 ties. Economic data are taken from the World Bank statistics as of 1999 and from national contributions. Five annexes have been added to the profiles: Annex I provides an overview of the global development of advanced nuclear power plants covering all reactor lines, i.e. water-cooled reactors, gas-cooled reactors, and liquid metal cooled reactors. Annex II provides 4 summary tables for the year 2000 with PRIS and EEDB data. It contains the status of nuclear power reactors in Member States, individual reactors connected to the grid and under construction and the main EEDB data (population, economic, energy, electricity and energy related ratio data). Annex III is prepared in HTML format to facilitate easy and direct access to web sites of nuclear related organizations on the CD-ROM edition and is not reproduced for this hard copy edition. However, each country profile contains an Appendix 'Directory of the main organizations, institutions and companies involved in nuclear power related activities', with addresses, telephone and facsimile numbers and web sites. Annexes IV and V contain information from a few countries involved with nuclear power programme planning, i.e. Bangladesh and Indonesia. These countries have submitted relevant information in the framework of the IAEA activity on integrated approach of nuclear power programme planning. In addition, the Secretariat has added the EEDB data and the international agreements

  12. Country nuclear power profiles. 2001 ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    . Statistical data about nuclear plant operations, population, energy and electricity use are largely drawn from the PRIS and EEDB sources as of yearend 2000 and from the national contributions. However, the 2000 EEDB data are extrapolated based on trends in the second half of the 90 ties. Economic data are taken from the World Bank statistics as of 1999 and from national contributions. Five annexes have been added to the profiles: Annex I provides an overview of the global development of advanced nuclear power plants covering all reactor lines, i.e. water-cooled reactors, gas-cooled reactors, and liquid metal cooled reactors. Annex II provides 4 summary tables for the year 2000 with PRIS and EEDB data. It contains the status of nuclear power reactors in Member States, individual reactors connected to the grid and under construction and the main EEDB data (population, economic, energy, electricity and energy related ratio data). Annex III is prepared in HTML format to facilitate easy and direct access to web sites of nuclear related organizations on the CD-ROM edition and is not reproduced for this hard copy edition. However, each country profile contains an Appendix 'Directory of the main organizations, institutions and companies involved in nuclear power related activities', with addresses, telephone and facsimile numbers and web sites. Annexes IV and V contain information from a few countries involved with nuclear power programme planning, i.e. Bangladesh and Indonesia. These countries have submitted relevant information in the framework of the IAEA activity on integrated approach of nuclear power programme planning. In addition, the Secretariat has added the EEDB data and the international agreements.

  13. Technological status of reactor coolant pumps in generation III+ pressurized nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, Bernhard; Bross, Stephan [KSB Aktiengesellschaft, Frankenthal (Germany)

    2016-05-15

    KSB has been developing and producing pumps for thermal power plants for nearly 90 years. Consequently, KSB also started to develop and manufacture pumps for all kinds of nuclear power plants from the very beginning of the civil use of nuclear energy. This is especially true for reactor coolant pumps for pressurized water reactors. For the generation of advanced evolutionary reactors (Generation III+ reactors), KSB developed an advanced shaft seal system which is also able to fulfill the requirements of station blackout conditions. The tests in the KSB test rigs, which were successfully completed in December 2015, proved the full functionality of the new design. For generation III+ passive plant reactors KSB developed a new reactor coolant pump type called RUV, which is based on the experience of classic reactor coolant pumps and reactor internal pumps. It is a very compact, hermetically sealed vertical pump-motor unit with a wet winding motor. A full scale prototype successfully passed the 1st stage qualification test program in October 2015.

  14. 1997: Nuclear power in the German power industry

    International Nuclear Information System (INIS)

    Wnuk, A.

    1998-01-01

    Also in 1997, nuclear power contributed the largest share among all sources of energy to the supply of electricity in Germany, generating 170,3 TWh. This marks a considerable increase by almost 5% over the previous year's level. Nuclear power held a 31.0% share in the supply of electricity in Germany, and a 34.7% share in public supply. Hard coal, producing 143.1 TWh, contributed a share of 26.0%. Electricity generation from lignite decreased by 1.8%, reaching 141.7 TWh; its share is now 25.8%. Hydrocarbons hold a share in gross electricity generation of nearly 12% (to which oil merely contributes 1%), which is a low level by international standards. Hydroelectricity generation decreased by 3.6% down to 3.8%. The upward trend of the economy raised the electricity requirement in industry by 2.2%. Net consumption by private households decreased by 2.5%. For the year under review, the foreign trade balance in electricity showed an excess of exports over imports of 2.4 TWh. (orig.) [de

  15. Successful completion of the Qinshan phase III nuclear power plant-a successful model for Chinese-Canadian cooperation

    International Nuclear Information System (INIS)

    Peng Xiaoxing

    2004-01-01

    This report documents Qinshan CANDU project construction and commissioning experience as well as management strategies and approaches that contributed to the successful completion of the project. The Qinshan phase III (CANDU) nuclear power plant was built in record times: Unit 1 achieved commercial operation on December 31, 2002 and Unit 2 on July 24, 2003, 43 days and 112 days ahead of schedule respectively. The reference plant design is the Wolsong 3 and 4 CANDU-6 units in the Republic of Korea. Improvements in design and construction methods allowed Unit 1 to be constructed in 51.5 Months from First Concrete to Criticality-a record in China for nuclear power plants. The key factors are project management and project management tools, quality assurance, construction methods (including open top construction, heavy lifts and modularization), electronic documentation with configuration control that provides up-to-date on-line information, CADDS design linked with material management, specialized material control including bar coding, and planning. The introduction of new design and construction techniques was achieved by combining conventional AECL practices with working experiences in China. The most advanced tools and techniques for achieving optimum construction quality, schedule and cost were used. Successful application of advanced project management methods and tools will benefit TQNPC in operation of the station, and the Chinese contractors in advancing their capabilities in future nuclear projects in China and enhancing their opportunities internationally. TQNPC's participation in Quality surveillance (QS) activities of nuclear steam plant (NSP) and Balance of Plant (BOP) offshore equipment benefited TQNPC in acquiring knowledge of specific equipment manufacturing processes, which can be applied to similar activities in China. China has established the capability of manufacturing CANDU fuel and becoming self-reliant in fuel supply. Excellent co-operation and

  16. Strategy of nuclear power in Korea, non-nuclear-weapon state and peaceful use of nuclear power

    International Nuclear Information System (INIS)

    Nagasaki, Takao

    2005-01-01

    The nuclear power plant started at Kori in Korea in April, 1978. Korea has carried out development of nuclear power as a national policy. The present capacity of nuclear power plants takes the sixes place in the world. It supplies 42% total power generation. The present state of nuclear power plant, nuclear fuel cycle facility, strategy of domestic production of nuclear power generation, development of next generation reactor and SMART, strategy of export in corporation with industry, government and research organization, export of nuclear power generation in Japan, nuclear power improvement project with Japan, Korea and Asia, development of nuclear power system with nuclear diffusion resistance, Hybrid Power Extraction Reactor System, radioactive waste management and construction of joint management and treatment system of spent fuel in Asia are stated. (S.Y.)

  17. Analysis of BWR/Mark III drywell failure during degraded core accidents

    International Nuclear Information System (INIS)

    Yang, J.W.

    1983-01-01

    The potential for a hydrogen detonation due to the accumulation of a large amount of hydrogen in the drywell region of a BWR Mark III containment is analyzed. Loss of integrity of the drywell wall causes a complete bypass of the suppression pool and leads to pressurization of the containment building. However, the predicted peak containment pressure does not exceed the estimates of containment failure pressure

  18. Power generation by nuclear power plants

    International Nuclear Information System (INIS)

    Bacher, P.

    2004-01-01

    Nuclear power plays an important role in the world, European (33%) and French (75%) power generation. This article aims at presenting in a synthetic way the main reactor types with their respective advantages with respect to the objectives foreseen (power generation, resources valorization, waste management). It makes a fast review of 50 years of nuclear development, thanks to which the nuclear industry has become one of the safest and less environmentally harmful industry which allows to produce low cost electricity: 1 - simplified description of a nuclear power generation plant: nuclear reactor, heat transfer system, power generation system, interface with the power distribution grid; 2 - first historical developments of nuclear power; 3 - industrial development and experience feedback (1965-1995): water reactors (PWR, BWR, Candu), RBMK, fast neutron reactors, high temperature demonstration reactors, costs of industrial reactors; 4 - service life of nuclear power plants and replacement: technical, regulatory and economical lifetime, problems linked with the replacement; 5 - conclusion. (J.S.)

  19. Transportation cost of nuclear off-peak power for hydrogen production based on water electrolysis

    International Nuclear Information System (INIS)

    Shimizu, Saburo; Ueno, Shuichi

    2004-01-01

    The paper describes transportation cost of the nuclear off-peak power for a hydrogen production based on water electrolysis in Japan. The power could be obtainable by substituting hydropower and/or fossil fueled power supplying peak and middle demands with nuclear power. The transportation cost of the off-peak power was evaluated to be 1.42 yen/kWh when an electrolyser receives the off-peak power from a 6kV distribution wire. Marked reduction of the cost was caused by the increase of the capacity factor. (author)

  20. Nuclear power economic database

    International Nuclear Information System (INIS)

    Ding Xiaoming; Li Lin; Zhao Shiping

    1996-01-01

    Nuclear power economic database (NPEDB), based on ORACLE V6.0, consists of three parts, i.e., economic data base of nuclear power station, economic data base of nuclear fuel cycle and economic database of nuclear power planning and nuclear environment. Economic database of nuclear power station includes data of general economics, technique, capital cost and benefit, etc. Economic database of nuclear fuel cycle includes data of technique and nuclear fuel price. Economic database of nuclear power planning and nuclear environment includes data of energy history, forecast, energy balance, electric power and energy facilities

  1. First steps of Poland in the nuclear power industry

    International Nuclear Information System (INIS)

    Guidez, J.

    2010-01-01

    Poland appears as a new-comer in the domain of nuclear power but in fact previous projects of nuclear power plants existed but were abruptly stopped in the afterwards of Chernobyl. Today almost 90% of the electricity produced in Poland comes from the combustion of coal and lignite. In january 2009 the Polish government decided to include nuclear power in the energy mix with an aim of a 15% share of the electricity production in 2030 and with the first nuclear plant operating in 2020. The path toward this aim is marked out as following. 2009-2010: drawing up of the legal frame, creation of the nuclear safety authority, drawing up of the list of potential sites, and launching of the public debate. 2011-2013: selection of the first site, of the pool of investors, of the reactor technology and the signature of the contract for the first plant. 2014-2015: obtention of the administrative agreements, elaboration of the technical project. 2016-2020: construction of the plant. The polish public opinion favours nuclear energy and there is a kind of competition between different regions to home nuclear power plants. In 2010 Poland signed various collaboration agreements with the Usa, France and South-Korea. Polish authorities are studying the pros and cons of the EPR (EDF - Areva), ABWR (GE/Hitachi) and AP1000 (Westinghouse) reactors. (A.C.)

  2. Current issues in nuclear power projects decision making

    International Nuclear Information System (INIS)

    Yanev, Y.; Rogner, H.

    2011-01-01

    Concluding Comments: Firm government commitment and support - imminent; New financing approaches/models are emerging, repackaging existing methods and combination of project finance/co-operative mode; Global financial crisis will make financing for investors very challenging, especially for large scale infrastructure projects like NNP –financial regulators to impose tougher rules (Basel III, UK bank levy, US Financial Regulatory Bill, etc; Pure project finance is still challenging for nuclear projects - the availability of finance for new NPPs will depend on the initial government support. This presentation presents a “free market” view on investment in nuclear power projects; If the public sector (governments) wishes to invest in nuclear power as part of its socioeconomic development priorities, finance is not a real obstacle; It becomes an issue in the presence of other equally important development needs and private sector participation is sought

  3. Nuclear power for under-developed areas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-07-15

    In evaluating the needs of the less developed countries for nuclear power and in determining how and to what extent these needs can be met, the fundamental questions to be decided are: (a) to what extent can the total power needs of these countries be met by conventional (thermal and hydro) means, (b) in which sectors would it be immediately possible - from both technical and economic points of view - to generate power from nuclear energy, and (c) in which areas would it be imperative to resort to nuclear power in the immediate future. The IAEA Second General Conference recommended a survey of the nuclear power needs of the less developed countries, a study on a continuing basis of the technology and economics of small and medium power reactors suited to these countries, dissemination of the information obtained and assistance in training personnel in the technology and economic utilization of such nuclear stations. And on the basis of this recommendation, the Agency has initiated an integrated two-year programme of work for examining the possibilities of utilizing nuclear power in under-developed countries. In carrying out this programme, the Agency is seeking potentially promising cases in which nuclear energy can yield necessarily limited but early benefits. That would help an assessment of the technical and economic possibilities of small and medium reactors in specific situations. It would also enable under-developed countries to compare and ascertain whether nuclear energy can provide an early solution to some of their pressing power problems. The first three phases of IAEA's work programme are: (i) studies on the technical suitability of reactors with a power level of up to 50 mw; (ii) economic studies in regard to reactor systems, including a systematic analysis of power costs; and (iii) selection of characteristic situations that appear to favour utilization of nuclear power. A survey of special interest in this connexion will be carried out by an Agency

  4. Nuclear power for under-developed areas

    International Nuclear Information System (INIS)

    1959-01-01

    In evaluating the needs of the less developed countries for nuclear power and in determining how and to what extent these needs can be met, the fundamental questions to be decided are: (a) to what extent can the total power needs of these countries be met by conventional (thermal and hydro) means, (b) in which sectors would it be immediately possible - from both technical and economic points of view - to generate power from nuclear energy, and (c) in which areas would it be imperative to resort to nuclear power in the immediate future. The IAEA Second General Conference recommended a survey of the nuclear power needs of the less developed countries, a study on a continuing basis of the technology and economics of small and medium power reactors suited to these countries, dissemination of the information obtained and assistance in training personnel in the technology and economic utilization of such nuclear stations. And on the basis of this recommendation, the Agency has initiated an integrated two-year programme of work for examining the possibilities of utilizing nuclear power in under-developed countries. In carrying out this programme, the Agency is seeking potentially promising cases in which nuclear energy can yield necessarily limited but early benefits. That would help an assessment of the technical and economic possibilities of small and medium reactors in specific situations. It would also enable under-developed countries to compare and ascertain whether nuclear energy can provide an early solution to some of their pressing power problems. The first three phases of IAEA's work programme are: (i) studies on the technical suitability of reactors with a power level of up to 50 mw; (ii) economic studies in regard to reactor systems, including a systematic analysis of power costs; and (iii) selection of characteristic situations that appear to favour utilization of nuclear power. A survey of special interest in this connexion will be carried out by an Agency

  5. Ukrainian 'greens' and nuclear power

    International Nuclear Information System (INIS)

    Sappa, Nikolai

    1993-01-01

    At the First Constituent Congress of the Ukrainian Ecology Association 'Zelenyj svit' started in 1989 under antinuclear banners the as an organization of 'greens'. Since a great many of the Ukrainian citizens shared the attitude of the 'greens' to the Chernobyl accident, we faced the problem to stand our ground at least on our 'territory', i,e. the towns-NPP satellites. It is this factor that specified the urgent tasks for our activities at the regional level, carried out in cooperation with public relations services at the NPP. He arranged giving lectures in these towns, sent the public relations services all kind of information which sight be of use for efficient work, and performed sociological studies, which included: i) clearing up the attitude of the public to different aspects of nuclear energy industry, the level of public knowledge concerning the problem involved, ii) finding the channels and most preferable forms of disseminating information on nuclear power, and iii) developing recommendations for NPP administration and public relations services. He started our work three years ago. it may be noted that at the end of the last year there was a conference in Kiev 'The power industry of independent Ukraine and ecology', held by the Union of power engineers and Z elenyj svit . It is rather significant that at this conference, for the first time in the history of the ecological movement in the Ukraine, the 'greens' have admitted the possibility of having a creative dialogue with power engineers on nuclear power problems. Re consider it to be a serious progress in the perception of our opponents may be noted that at the end of the last year there was a conference in Kiev T he power industry of independent Ukraine and ecology , held by the Union of power engineers and Z elenyj svit . It is rather significant that at this conference, for the first time in the history of the ecological movement in the Ukraine, the 'greens' have admitted the possibility of having

  6. Ukrainian 'greens' and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Sappa, Nikolai [Nuclear Public Relations Agency, Ukrainian Science Centre, ' Kharkiv Institute of Physics and Technology' , 310108, Kharkiv (Ukraine)

    1993-07-01

    At the First Constituent Congress of the Ukrainian Ecology Association 'Zelenyj svit' started in 1989 under antinuclear banners the as an organization of 'greens'. Since a great many of the Ukrainian citizens shared the attitude of the 'greens' to the Chernobyl accident, we faced the problem to stand our ground at least on our 'territory', i,e. the towns-NPP satellites. It is this factor that specified the urgent tasks for our activities at the regional level, carried out in cooperation with public relations services at the NPP. He arranged giving lectures in these towns, sent the public relations services all kind of information which sight be of use for efficient work, and performed sociological studies, which included: i) clearing up the attitude of the public to different aspects of nuclear energy industry, the level of public knowledge concerning the problem involved, ii) finding the channels and most preferable forms of disseminating information on nuclear power, and iii) developing recommendations for NPP administration and public relations services. He started our work three years ago. it may be noted that at the end of the last year there was a conference in Kiev 'The power industry of independent Ukraine and ecology', held by the Union of power engineers and {sup Z}elenyj svit{sup .} It is rather significant that at this conference, for the first time in the history of the ecological movement in the Ukraine, the 'greens' have admitted the possibility of having a creative dialogue with power engineers on nuclear power problems. Re consider it to be a serious progress in the perception of our opponents may be noted that at the end of the last year there was a conference in Kiev {sup T}he power industry of independent Ukraine and ecology{sup ,} held by the Union of power engineers and {sup Z}elenyj svit{sup .} It is rather significant that at this conference, for the first time in the history of the ecological movement in the Ukraine, the 'greens' have

  7. Optimization approaches for treating nuclear power plant problems

    International Nuclear Information System (INIS)

    Abdelgoad, A.S.A.

    2012-01-01

    Electricity generation is the process of generating electric energy from other forms of energy. There are many technologies that can be and are used to generate electricity. One of these technologies is the nuclear power. A nuclear power plant (NPP) is a thermal power station in which the heat source is one or more nuclear reactors. As in a conventional thermal power station the heat is used to generate steam which drives a steam turbine connected to a generator which produces electricity. As of February 2nd, 2012, there were 439 nuclear power plants in operation through the world. NPP are usually considered to be base load stations, which are best suited to constant power output. The thesis consists of five chapters: Chapter I presents a survey on some important concepts of the NPP problems. Chapter II introduces the economic future of nuclear power. It presents nuclear energy scenarios beyond 2015, market potential for electricity generation to 2030 and economics of new plant construction. Chapter III presents a reliability centered problem of power plant preventive maintenance scheduling. NPP preventive maintenance scheduling problem with fuzzy parameters in the constraints is solved. A case study is provided to demonstrate the efficiency of proposed model. A comparison study between the deterministic case and fuzzy case for the problem of concern is carried out. Chapter IV introduces a fuzzy approach to the generation expansion planning problem (GEP) in a multiobjective environment. The GEP problem as an integer programming model with fuzzy parameters in the constraints is formulated. A parametric study is carried out for the GEP problem. A case study is provided to demonstrate the efficiency of our proposed model. A comparison study between our approach and the deterministic one is made. Chapter V is concerned with the conclusions arrived in carrying out this thesis and gives some suggestions for further research.

  8. The Nuclear Power Landscape in the Post-Fukushima Era: Thoughts on the Current and Future Effects on Nuclear New-Build

    International Nuclear Information System (INIS)

    Tyobeka, B.

    2012-01-01

    The nuclear landscape looked very promising before the Fukushima Daiichi accident. In the past five years before the accident, so-called Nuclear Rennainsance looked to be in full swing, with many countries beginning to factor nuclear energy as part of their electricity generation mix. At some point, 43 IAEA Members States confirmed their interest in launching new nuclear power programmes. Whilst only two of these nuclear new-comers have already chosen the reactor designs they would deploy in their new build, it is commonly accepted that the so-called Generation III and Generation III+ would mostly be the designs of the choice for new nuclear build. This presentation seeks to examine the current status of plans for nuclear build after Fukushima, looking into technology and safety issues that would influence the final policy decisions in new nuclear build programmes.(author).

  9. Corrosion control in CANDU nuclear power reactors

    International Nuclear Information System (INIS)

    Lesurf, J.E.

    1974-01-01

    Corrosion control in CANDU reactors which use pressurized heavy water (PHW) and boiling light water (BLW) coolants is discussed. Discussions are included on pressure tubes, primary water chemistry, fuel sheath oxidation and hydriding, and crud transport. It is noted that corrosion has not been a significant problem in CANDU nuclear power reactors which is a tribute to design, material selection, and chemistry control. This is particularly notable at the Pickering Nuclear Generating Station which will have four CANDU-PHW reactors of 540 MWe each. The net capacity factor for Pickering-I from first full power (May 1971) to March 1972 was 79.5 percent, and for Pickering II (first full power November 1971) to March 1972 was 83.5 percent. Pickering III has just reached full power operation (May 1972) and Pickering IV is still under construction. Gentilly CANDU-BLW reached full power operation in May 1972 after extensive commissioning tests at lower power levels with no major corrosion or chemistry problems appearing. Experience and operating data confirm that the value of careful attention to all aspects of corrosion control and augur well for future CANDU reactors. (U.S.)

  10. Nuclear power controversy

    International Nuclear Information System (INIS)

    Murphy, A.W.

    1976-01-01

    Arthur W. Murphy in the introductory chapter cites the issues, pro and con, concerning nuclear power. In assessing the present stance, he first looks back to the last American Assembly on nuclear power, held October 1957 and notes its accomplishments. He summarizes the six papers of this book, which focus on nuclear power to the end of this century. Chapter I, Safety Aspects of Nuclear Energy, by David Bodansky and Fred Schmidt, deals with the technical aspects of reactor safety as well as waste storage and plutonium diversion. Chapter 2, The Economics of Electric Power Generation--1975-2000, by R. Michael Murray, Jr., focuses specifically on coal-fired and nuclear plants. Chapter 3, How Can We Get the Nuclear Job Done, by Fritz Heimann, identifies actions that must take place to develop nuclear power in the U.S. and who should build the reprocessing plants. Chapter 4, by Arthur Murphy, Nuclear Power Plant Regulation, discusses the USNRC operation and the Price-Anderson Act specifically. Chapter 5, Nuclear Exports and Nonproliferation Strategy, by John G. Palfrey, treats the international aspects of the problem with primary emphasis upon the situation of the U.S. as an exporter of technology. Chapter 6, by George Kistiakowsky, Nuclear Power: How Much Is Too Much, expresses doubt about the nuclear effort, at least in the short run

  11. Trade reforms, mark-ups and bargaining power of workers: the case ...

    African Journals Online (AJOL)

    Ethiopian Journal of Economics ... workers between 1996 and 2007, a model of mark-up with labor bargaining power was estimated using random effects and LDPDM. ... Keywords: Trade reform, mark-up, bargaining power, rent, trade unions ...

  12. Financing nuclear power

    International Nuclear Information System (INIS)

    Sheriffah Noor Khamseah Al-Idid Syed Ahmad Idid

    2009-01-01

    Global energy security and climate change concerns sparked by escalating oil prices, high population growth and the rapid pace of industrialization are fueling the current interest and investments in nuclear power. Globally, a significant number policy makers and energy industry leaders have identified nuclear power as a favorable alternative energy option, and are presently evaluating either a new or an expanded role for nuclear power. The International Atomic Energy Agency (IAEA) has reported that as of October 2008, 14 countries have plans to construct 38 new nuclear reactors and about 100 more nuclear power plants have been written into the development plans of governments for the next three decades. Hence as new build is expected to escalate, issues of financing will become increasingly significant. Energy supply, including nuclear power, considered as a premium by government from the socio-economic and strategic perspective has traditionally been a sector financed and owned by the government. In the case for nuclear power, the conventional methods of financing include financing by the government or energy entity (utility or oil company) providing part of the funds from its own resources with support from the government. As national financing is, as in many cases, insufficient to fully finance the nuclear power plants, additional financing is sourced from international sources of financing including, amongst others, Export Credit Agencies (ECAs) and Multilateral Development Institutions. However, arising from the changing dynamics of economics, financing and business model as well as increasing concerns regarding environmental degradation , transformations in methods of financing this energy sector has been observed. This paper aims to briefly present on financing aspects of nuclear power as well as offer some examples of the changing dynamics of financing nuclear power which is reflected by the evolution of ownership and management of nuclear power plants

  13. Nuclear power debate

    International Nuclear Information System (INIS)

    Hunwick, Richard

    2005-01-01

    A recent resurgence of interest in Australia in the nuclear power option has been largely attributed to growing concerns over climate change. But what are the real pros and cons of nuclear power? Have advances in technology solved the sector's key challenges? Do the economics stack up for Australia where there is so much coal, gas and renewable resources? Is the greenhouse footprint' of nuclear power low enough to justify its use? During May and June, the AIE hosted a series of Branch events on nuclear power across Sydney, Adelaide and Perth. In the interest of balance, and at risk of being a little bit repetitive, here we draw together four items that resulted from these events and that reflect the opposing views on nuclear power in Australia. Nuclear Power for Australia: Irrelevant or Inevitable? - a summary of the presentations to the symposium held by Sydney Branch on 8 June 2005. Nuclear Reactors Waste the Planet - text from the flyer distributed by The Greens at their protest gathering outside the symposium venue on 8 June 2005. The Case For Nuclear Power - an edited transcript of Ian Hore-Lacy's presentation to Adelaide Branch on 19 May 2005 and to Perth Branch on 28 June 2005. The Case Against Nuclear Power - an article submitted to Energy News by Robin Chappie subsequent to Mr Hore-Lacy's presentation to Perth Branch

  14. Nuclear power prospects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-09-15

    A survey of the nuclear power needs of the less-developed countries and a study of the technology and economics of small and medium scale power reactors are envisioned by the General Conference. Agency makes its services available to Member States to assist them for their future nuclear power plans, and in particular in studying the technical and economic aspects of their power programs. The Agency also undertakes general studies on the economics of nuclear power, including the collection and analysis of cost data, in order to assist Member States in comparing and forecasting nuclear power costs in relation to their specific situations

  15. Design specifications for ASME B and PV Code Section III nuclear class 1 piping

    International Nuclear Information System (INIS)

    Richardson, J.A.

    1978-01-01

    ASME B and PV Code Section III code regulations for nuclear piping requires that a comprehensive Design Specification be developed for ensuring that the design and installation of the piping meets all code requirements. The intent of this paper is to describe the code requirements, discuss the implementation of these requirements in a typical Class 1 piping design specification, and to report on recent piping failures in operating light water nuclear power plants in the US. (author)

  16. Nuclear Power Station Kalkar, 300 MWe Prototype Nuclear Power Plant with Fast Sodium Cooled Reactor (SNR-300), Plant description

    International Nuclear Information System (INIS)

    1984-06-01

    The nuclear power station Kalkar (SNR-300) is a prototype with a sodium cooled fast reactor and a thermal power of 762 MW. The present plant description has been made available in parallel to the licensing procedure for the reactor plant and its core Mark-Ia as supplementary information for the public. The report gives a detailed description of the whole plant including the prevention measures against the impact of external and plant internal events. The radioactive materials within the reactor cooling system and the irradiation protection and surveillance measures are outlined. Finally, the operation of the plant is described with the start-up procedures, power operation, shutdown phases with decay heat removal and handling procedures

  17. Guides about nuclear energy in South Korea; Reperes sur l'energie nucleaire en Coree du Sud

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    This document summarizes the main information on nuclear energy in South Korea: number of reactors in operation, type, date of commissioning, nuclear facilities under construction, nuclear share in power production, companies and organizations (Korea electric power company (KEPCO), Korea atomic energy institute (KAERI), Korea institute of nuclear safety (KINS), Korea nuclear energy foundation (KNEF), Korea hydro and nuclear power (KHNP), nuclear environment technology institute (NETEC), Korea basic science institute (KBSI)), nuclear fuel fabrication, research works on waste disposal, nuclear R and D in fission and fusion, safety of nuclear facilities, strategies under study (1000 MWe Korea standard nuclear power plant (KSNP), 1400 MWe advanced power reactor (APR), small power water cooled reactors (system-integrated modular advanced reactor (SMART) research program), development of fast reactors (Kalimer research program), development of the process of direct use of PWR fuel in Candu (DUPIC), use of reprocessing uranium, transmutation of trans-uranian and wastes (KOMAC program), first dismantling experience (Triga Mark II and III research reactors). (J.S.)

  18. Fatigue assessments in operating nuclear power plants

    International Nuclear Information System (INIS)

    Gosselin, S.R.; Deardorff, A.F.; Peltola, D.W.

    1994-01-01

    In November 1991, the ASME Section XI Task Group on Operating Plant Fatigue Assessment was formed to develop criteria and evaluation methodology for evaluating the effects of cyclic operation in operating nuclear power plants. The objective was to develop guidelines for inclusion in Section XI that could be used by plant operators in evaluating fatigue concerns and their impact on serviceability. This paper discusses the work performed by the Task Group. It explores the concept of ''Fatigue Design Basis'' versus ''Fatigue Operating Basis'' by examining the roles of ASME Section III and ASME Section XI in the design and operation of the nuclear power plants. Guidelines are summarized that may help plant operators perform effective design transient cycle evaluations and optimize cycle counting and fatigue usage tracking. The alternative fatigue evaluation approach using flaw tolerance is also introduced

  19. Computer aided design (CAD) for electronics improvement of the nuclear channels of TRIGA Mark III reactor of the ININ

    International Nuclear Information System (INIS)

    Gonzalez M, J.L.; Rivero G, T.; Aguilar H, F.

    2007-01-01

    The 4 neutron measurement channels of the digital control console (CCD) of the TRIGA Mark III reactor (RTMIII) of the ININ, its were designed and built with the corresponding Quality Guarantee program, being achieved the one licensing to replace the old console. With the time they were carried out some changes to improve and to not solve some problems detected in the tests, verification and validation, requiring to modify the circuits originally designed. In this work the corrective actions carried out to eliminate the Non Conformity generated by these problems, being mentioned the advantages of using modern tools, as the software applied to the Attended Engineering by Computer, and those obtained results are presented. (Author)

  20. Nuclear power in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Ronald E.

    1998-08-01

    Contains Executive Summary and Chapters on: Nuclear Energy in the Asian context; Types of nuclear power reactors used in Asia; A survey of nuclear power by country; The economics of nuclear power; Fuels, fuel cycles and reprocessing; Environmental issues and waste disposal; The weapons issues and nuclear power; Conclusions. (Author)

  1. Nuclear power

    International Nuclear Information System (INIS)

    Bupp, I.C.

    1991-01-01

    Is a nuclear power renaissance likely to occur in the United States? This paper investigates the many driving forces that will determine the answer to that question. This analysis reveals some frequently overlooked truths about the current state of nuclear technology: An examination of the issues also produces some noteworthy insights concerning government regulations and related technologies. Public opinion will play a major role in the unfolding story of the nuclear power renaissance. Some observers are betting that psychological, sociological, and political considerations will hod sway over public attitudes. Others wager that economic and technical concerns will prevail. The implications for the nuclear power renaissance are striking

  2. Nuclear power in perspective

    International Nuclear Information System (INIS)

    Addinall, E.; Ellington, H.

    1982-01-01

    The subject is covered in chapters: (the nature of nuclear power) the atomic nucleus - a potential source of energy; how nuclear reactors work; the nuclear fuel cycle; radioactivity - its nature and biological effects; (why we need nuclear power) use of energy in the non-communist world -the changing pattern since 1950; use of energy - possible future scenarios; how our future energy needs might be met; (a possible long term nuclear strategy) the history of nuclear power; a possible nuclear power strategy for the Western World; (social and environmental considerations) the hazards to workers in the nuclear power industry; the hazards to the general public (nuclear power industry; reactor operation; transport of radioactive materials; fuel reprocessing; radioactive waste disposal; genetic hazards); the threat to democratic freedom and world peace. (U.K.)

  3. Characterization of the neutron flux in the Hohlraum of the thermal column of the TRIGA Mark III reactor of the ININ

    International Nuclear Information System (INIS)

    Delfin L, A.; Palacios, J.C.; Alonso, G.

    2006-01-01

    Knowing the magnitude of the neutron flux in the reactor irradiation facilities, is so much importance for the operation of the same one, like for the investigation developing. Particularly, knowing with certain precision the spectrum and the neutron flux in the different positions of irradiation of a reactor, it is essential for the evaluation of the results obtained for a certain irradiation experiment. The TRIGA Mark III reactor account with irradiation facilities designed to carry out experimentation, where the reactor is used like an intense neutron source and gamma radiation, what allows to make irradiations of samples or equipment in radiation fields with components and diverse levels in the different facilities, one of these irradiation facilities is the Thermal Column where the Hohlraum is. In this work it was carried out a characterization of the neutron flux inside the 'Hohlraum' of the irradiation facility Thermal Column of the TRIGA Mark III reactor of the Nuclear Center of Mexico to 1 MW of power. It was determined the sub cadmic neutron flux and the epi cadmic by means of the neutron activation technique of thin sheets of gold. The maps of the distribution of the neutron flux for both energy groups in three different positions inside the 'Hohlraum' are presented, these maps were obtained by means of the irradiation of undressed thin activation sheets of gold and covered with cadmium in arrangements of 10 x 12, located parallel to 11.5 cm, 40.5 cm and 70.5 cm to the internal wall of graphite of the installation in inverse address to the position of the reactor core. Starting from the obtained values of neutron flux it was found that, for the same position of the surface of irradiation of the experimental arrangement, the relative differences among the values of neutron flux can be of 80%, and that the differences among different positions of the irradiation surfaces can vary until in a one order of magnitude. (Author)

  4. Regional economic impacts of nuclear power plants

    International Nuclear Information System (INIS)

    Isard, W.; Reiner, T.; Van Zele, R.; Stratham, J.

    1976-08-01

    This study of economic and social impacts of nuclear power facilities compares a nuclear energy center (NEC) consisting of three surrogate sites in Ocean County, New Jersey with nuclear facilities dispersed in the Pennsylvania - New Jersey - Maryland area. The NEC studied in this report is assumed to contain 20 reactors of 1200 MW(e) each, for a total NEC capacity of 24,000 MW(e). Following the Introductory chapter, Chapter II discusses briefly the methodological basis for estimating impacts. This part of the analysis only considers impacts of wages and salaries and not purchase of construction materials within the region. Chapters III and IV, respectively, set forth the scenarios of an NEC at each of three sites in Ocean County, N.J. and of a pattern of dispersed nuclear power plants of total equivalent generating capacity. In each case, the economic impacts (employment and income) are calculated, emphasizing the regional effects. In Chapter V these impacts are compared and some more general conclusions are reported. A more detailed analysis of the consequences of the construction of a nuclear power plant is given in Chapter VI. An interindustry (input-output) study, which uses rather finely disaggregated data to estimate the impacts of a prototype plant that might be constructed either as a component of the dispersed scenario or as part of an NEC, is given. Some concluding remarks are given in Chapter VII, and policy questions are emphasized

  5. The Spanish Nuclear Safety Council and nuclear power stations in operation in Spain

    International Nuclear Information System (INIS)

    Perello, M.

    1984-01-01

    On 20 April 1980 the Spanish Congress of Deputies passed an Act setting up the Nuclear Safety Council (CSN) as the sole organization responsible for nuclear safety and radiation protection. In this paper it is stated that that date marked the beginning of a new nuclear safety policy in Spain. As one of its objectives, this policy is aimed at the monitoring and testing of operating nuclear installations. A detailed description is given of the Operating Nuclear Installation Service (SINE), including its basic structure, its functions and the technical and manpower resources available to it. The maintenance of close relations with other organs of the CSN is considered of paramount importance in order for the tasks allotted to SINE to be fulfilled. International co-operation and outside contracting greatly assist importing countries which have limited manpower resources. A description is then given of the present state of the nuclear power stations in operation in Spain together with an account of the most important initiatives which have been taken so far. The year 1968 saw the beginning of commercial operation of the Jose Cabrera nuclear power station, which has the only single-loop PWR reactor in the world. At present, it is being subjected to the Systematic Evaluation Programme (SEP). The Santa Maria de Garona nuclear power station has been operating for over twelve years and is also being subjected to the SEP although design modifications derived from operating experience have already been introduced. The Vandellos I station was the last of the first generation and has also benefited from the operating experience of similar French plants. Unit 1 of the Almaraz power station opens the door to the second generation and the generic problem which has occurred with the steam generators is in process of being solved. Lastly, some general conclusions are presented about the organization of and experience acquired with operating nuclear power stations. (author)

  6. Optimization in the scale of nuclear power generation and the economy of nuclear power

    International Nuclear Information System (INIS)

    Suzuki, Toshiharu

    1983-01-01

    In the not too distant future, the economy of nuclear power will have to be restudied. Various conditions and circumstances supporting this economy of nuclear power tend to change, such as the decrease in power demand and supply, the diversification in base load supply sources, etc. The fragility in the economic advantage of nuclear power may thus be revealed. In the above connection, on the basis of the future outlook of the scale of nuclear power generation, that is, the further reduction of the current nuclear power program, and of the corresponding supply and demand of nuclear fuel cycle quantities, the aspect of the economic advantage of nuclear power was examined, for the purpose of optimizing the future scale of nuclear power generation (the downward revision of the scale, the establishment of the schedule of nuclear fuel cycle the stagnation of power demand and nuclear power generation costs). (Mori, K.)

  7. Piping engineering for nuclear power plant

    International Nuclear Information System (INIS)

    Curto, N.; Schmidt, H.; Muller, R.

    1988-01-01

    In order to develop piping engineering, an adequate dimensioning and correct selection of materials must be secured. A correct selection of materials together with calculations and stress analysis must be carried out with a view to minimizing or avoiding possible failures or damages in piping assembling, which could be caused by internal pressure, weight, temperature, oscillation, etc. The piping project for a nuclear power plant is divided into the following three phases. Phase I: Basic piping design. Phase II: Final piping design. Phase III: Detail engineering. (Author)

  8. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2003-01-01

    This chapter discuss on nuclear power and its advantages. The concept of nucleus fission, fusion, electric generation are discussed in this chapter. Nuclear power has big potential to become alternative energy to substitute current conventional energy from coal, oil and gas

  9. Progress of nuclear safety for symbiosis and sustainability advanced digital instrumentation, control and information systems for nuclear power plants

    CERN Document Server

    Yoshikawa, Hidekazu

    2014-01-01

    This book introduces advanced methods of computational and information systems allowing readers to better understand the state-of-the-art design and implementation technology needed to maintain and enhance the safe operation of nuclear power plants. The subjects dealt with in the book are (i) Full digital instrumentation and control systems and human?machine interface technologies (ii) Risk? monitoring methods for large and? complex? plants (iii) Condition monitors for plant components (iv) Virtual and augmented reality for nuclear power plants and (v) Software reliability verification and val

  10. Non-advertising program in promoting nuclear power in Finland

    International Nuclear Information System (INIS)

    Ruuskanen, Antti

    1989-01-01

    In Finland, there are two nuclear power plants with four reactors totalling about 2 200 MWe. The oldest reactor has been operating just over ten years. In the Finnish power supply the share of nuclear power makes up one third. The optimum would be about 40%. Based on energy and nuclear attitude surveys showed that these issues are not independent in the society. Quite the opposite, the nuclear attitudes especially are tightly connected to general views like the pessimism toward the future, the credibility of large institutions, or politics, the acceptability of continuous economic growth, etc. The role of technical or economic facts, we engineers love, is found to be small, too. To change people's nuclear attitude one should be able to influence all the complex issues related to nuclear power. In theory, this is possible by ads. In that case the campaigning ought to be huge, it should last for years, and still would have basic question marks. The first question is how credible people see ads, in general, and, especially, in case of highly disputed and societal issues. Although there have been some educational ad campaigns in Finland, nuclear campaign would be a step to the unknown. Knowing that the nuclear attitudes are tightly connected to very many and quite stable societal views, and seeing the basic difficulties with ads, it is clear to me that there is no other way of promoting nuclear energy than a long and continuous public debate involving. Referring to the nuclear attitude survey results in Finland, advertising is not the solution to win the public confidence. Nuclear industry must be active in other ways than promoting nuclear power by advertising. This was the Finnish opinion. The nuclear issue is national in the sense that no country can copy models from other countries without carefully considering the local circumstances. So, in other countries there may be situations where other kinds of actions are called for

  11. Non-advertising program in promoting nuclear power in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Ruuskanen, Antti [Department of Information, Imatran Voima Oy (IVO) (Finland)

    1989-07-01

    In Finland, there are two nuclear power plants with four reactors totalling about 2 200 MWe. The oldest reactor has been operating just over ten years. In the Finnish power supply the share of nuclear power makes up one third. The optimum would be about 40%. Based on energy and nuclear attitude surveys showed that these issues are not independent in the society. Quite the opposite, the nuclear attitudes especially are tightly connected to general views like the pessimism toward the future, the credibility of large institutions, or politics, the acceptability of continuous economic growth, etc. The role of technical or economic facts, we engineers love, is found to be small, too. To change people's nuclear attitude one should be able to influence all the complex issues related to nuclear power. In theory, this is possible by ads. In that case the campaigning ought to be huge, it should last for years, and still would have basic question marks. The first question is how credible people see ads, in general, and, especially, in case of highly disputed and societal issues. Although there have been some educational ad campaigns in Finland, nuclear campaign would be a step to the unknown. Knowing that the nuclear attitudes are tightly connected to very many and quite stable societal views, and seeing the basic difficulties with ads, it is clear to me that there is no other way of promoting nuclear energy than a long and continuous public debate involving. Referring to the nuclear attitude survey results in Finland, advertising is not the solution to win the public confidence. Nuclear industry must be active in other ways than promoting nuclear power by advertising. This was the Finnish opinion. The nuclear issue is national in the sense that no country can copy models from other countries without carefully considering the local circumstances. So, in other countries there may be situations where other kinds of actions are called for.

  12. Energy Balance of Nuclear Power Generation. Life Cycle Analyses of Nuclear Power

    International Nuclear Information System (INIS)

    Wallner, A.; Wenisch, A.; Baumann, M.; Renner, S.

    2011-01-01

    The accident at the Japanese nuclear power plant Fukushima in March 2011 triggered a debate about phasing out nuclear energy and the safety of nuclear power plants. Several states are preparing to end nuclear power generation. At the same time the operational life time of many nuclear power plants is reaching its end. Governments and utilities now need to take a decision to replace old nuclear power plants or to use other energy sources. In particular the requirement of reducing greenhouse gas emissions (GHG) is used as an argument for a higher share of nuclear energy. To assess the contribution of nuclear power to climate protection, the complete life cycle needs to be taken into account. Some process steps are connected to high CO2 emissions due to the energy used. While the processes before and after conventional fossil-fuel power stations can contribute up to 25% of direct GHG emission, it is up to 90 % for nuclear power (Weisser 2007). This report aims to produce information about the energy balance of nuclear energy production during its life cycle. The following key issues were examined: How will the forecasted decreasing uranium ore grades influence energy intensity and greenhouse emissions and from which ore grade on will no energy be gained anymore? In which range can nuclear energy deliver excess energy and how high are greenhouse gas emissions? Which factors including ore grade have the strongest impact on excess energy? (author)

  13. Nuclear power and nuclear safety 2008

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.

    2009-06-01

    The report is the fifth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2008 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events of nuclear power, and international relations and conflicts. (LN)

  14. Power program and nuclear power

    International Nuclear Information System (INIS)

    Chernilin, Yu.F.

    1990-01-01

    Main points of the USSR power program and the role of nuclear power in fuel and power complex of the country are considered. Data on dynamics of economic indices of electric power generation at nuclear power plants during 1980-1988 and forecasts till 2000 are presented. It is shown that real cost of 1 kW/h of electric power is equal to 1.3-1.8 cop., and total reduced cost is equal to 1.8-2.4 cop

  15. Thermal spectra of the TRIGA Mark III reactor; El espectro termico del reactor TRIGA Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Macias B, L.R.; Palacios G, J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    The diffraction phenomenon is gave in observance of the well known Bragg law in crystalline materials and this can be performance by mean of X-rays, electrons and neutrons among others, which allows to do inside the field of each one of these techniques the obtaining of measurements focussed at each one of them. For the present work, it will be mentioned only the referring to X-ray and neutron techniques. The X-ray diffraction due to its properties just it does measurements which are known in general as superficial measurements of the sample material but for the properties of the neutrons, this diffraction it explores in volumetric form the sample material. Since the neutron diffraction process depends lots of its intensity, then it is important to know the neutron source spectra that in this case is supplied by the TRIGA Mark III reactor. Within of diffraction techniques a great number of them can be found, however some of the traditional will be mentioned such as the identification of crystalline samples, phases identification and the textures measurement. At present this last technique is founded on the dot of a minimum error and the technique of phases identification performs but not compete with that which is obtained by mean of X-rays due to this last one has a major resolution. (Author)

  16. Nuclear power revisited

    International Nuclear Information System (INIS)

    Grear, B.

    2008-01-01

    Modern development of nuclear power technology and the established framework of international agreements and conventions are responding to the major political, economic and environmental issues - high capital costs, the risks posed by nuclear wastes and accidents, and the proliferation of nuclear weaponry - that until recently hindered the expansion of nuclear power.

  17. Limitations of Nuclear Power as a Sustainable Energy Source

    Directory of Open Access Journals (Sweden)

    Joshua M. Pearce

    2012-06-01

    Full Text Available This paper provides a review and analysis of the challenges that nuclear power must overcome in order to be considered sustainable. The results make it clear that not only do innovative technical solutions need to be generated for the fundamental inherent environmental burdens of nuclear energy technology, but the nuclear industry must also address difficult issues of equity both in the present and for future generations. The results show that if the concept of just sustainability is applied to the nuclear energy sector a global large-scale sustainable nuclear energy system to replace fossil fuel combustion requires the following: (i a radical improvement in greenhouse gas emissions intensity by improved technology and efficiency through the entire life cycle to prevent energy cannibalism during rapid growth; (ii the elimination of nuclear insecurity to reduce the risks associated with nuclear power so that the free market can indemnify it without substantial public nuclear energy insurance subsidies; (iii the elimination of radioactive waste at the end of life and minimization of environmental impact during mining and operations; and (iv the nuclear industry must regain public trust or face obsolescence as a swarm of renewable energy technologies quickly improve both technical and economic performance.

  18. Maintenance risk management in Dayabay nuclear power plant

    International Nuclear Information System (INIS)

    He Xuhong; Tong Jiejuan

    2005-01-01

    The importance of proper maintenance to safe and reliable nuclear plant operation has long been recognized by the nuclear utility and regulatory body. This paper presents a process of maintenance risk management developed for a Chinese Nuclear Power Plant (NPP). The process includes three phases: (I) long term maintenance plan risk management, (II) monthly maintenance plan risk management, and (III) detailed risk management for high risk configuration. A risk matrix is developed for phase I whose purpose is to provide a rough guide for risk management in the making of the annual maintenance plan. For Phase II and Phase III, a software tool named Maintenance- Risk-Monitor is developed based on the internal initiating event, level 1 PSA model. The results of Phase II are the risk information of the all plant configurations caused by the unavailability of the components included the monthly maintenance plan. When the increase of core damage frequency (CDF) or the incremental core damage probability (ICDP) of a configuration is higher than the corresponding thresholds, Phase III is needed for this high risk configuration to get the useful information such as risk-importance components, human actions and initial events, from which appropriate preventive measurements could be derived. It is hoped that the provided process of maintenance risk management, together with the developed software tool, could facilitate the maintenance activities in the NPPs of China. (authors)

  19. 600 MW nuclear power database

    International Nuclear Information System (INIS)

    Cao Ruiding; Chen Guorong; Chen Xianfeng; Zhang Yishu

    1996-01-01

    600 MW Nuclear power database, based on ORACLE 6.0, consists of three parts, i.e. nuclear power plant database, nuclear power position database and nuclear power equipment database. In the database, there are a great deal of technique data and picture of nuclear power, provided by engineering designing units and individual. The database can give help to the designers of nuclear power

  20. 1996: nuclear power in the German power industry

    International Nuclear Information System (INIS)

    Wnuk, A.

    1997-01-01

    Also in 1996, nuclear power contributed the largest share among all sources of energy to the supply of electricity in Germany, generating 161,1 TWh. This marks a considerable increase by almost 5% over the previous year's level. Nuclear power held a 29.4% share in the supply of electricity in Germany, and a 33% share in public supply. Hard coal, producing 152.7 TWh, contributed a share of 27.7%. Electricity generation from lignite rose slightly by 1.2%, reaching 144.3 TWh; its share is now 26.2%. Hydrocarbons hold an 11.5% share in gross electricity generation (to which oil merely contributes 1.3%), which is a low level by international standards. After a continuous rise over the past few years, hydroelectricity generation for the first time showed a decrease by 10.5% because of adverse water conditions. The upward trend of the economy raised the electricity requirement in industry by 1.5%. As a consequence of the long spell of cold weather, net consumption by private households rose by 5.5%. For the year under review, the foreign trade balance in electricity for the first time after 1992 again showed an excess of exports over imports of 5.3 TWh. (orig.) [de

  1. Development of a simulator for design and test of power controllers in a TRIGA Mark III reactor

    International Nuclear Information System (INIS)

    Perez M, C.; Benitez R, J.S.; Lopez C, R.

    2003-01-01

    The development of a simulator that uses the Runge-Kutta-Fehlberg method to solve the model of the punctual kinetics of a nuclear research reactor type TRIGA. The simulator includes an algorithm of power control of the reactor based on the fuzzy logic, a friendly graphic interface which responds to the different user's petitions and that it shows numerical and graphically the results in real time. The user can modify the demanded power and to visualize the dynamic behavior of the one system. This simulator was developed in Visual Basic under an open architecture with which its will be prove different controllers for its analysis. (Author)

  2. Nuclear power and nuclear safety 2006

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2007-04-01

    The report is the fourth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2006 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power, and international relations and conflicts. (LN)

  3. Nuclear power and nuclear safety 2004

    International Nuclear Information System (INIS)

    2005-03-01

    The report is the second report in a new series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2004 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  4. Nuclear power and nuclear safety 2005

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampman, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2006-03-01

    The report is the third report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2005 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  5. The Korean nuclear power program

    International Nuclear Information System (INIS)

    Choi, Chang Tong

    1996-01-01

    Although the world nuclear power industry may appear to be in decline, continued nuclear power demand in Korea indicates future opportunities for growth and prosperity in this country. Korea has one of the world's most vigorous nuclear power programs. Korea has been an active promoter of nuclear power generation since 1978, when the country introduced nuclear power as a source of electricity. Korea now takes pride in the outstanding performance of its nuclear power plants, and has established a grand nuclear power scheme. This paper is aimed at introducing the nuclear power program of Korea, including technological development, international cooperation, and CANDU status in Korea. (author). 2 tabs

  6. The politics of nuclear power

    International Nuclear Information System (INIS)

    Elliott, D.

    1978-01-01

    The contents of the book are: introduction; (part 1, the economy of nuclear power) nuclear power and the growth of state corporatism, ownership and control - the power of the multi-nationals, economic and political goals - profit or control, trade union policy and nuclear power; (part 2, nuclear power and employment) nuclear power and workers' health and safety, employment and trade union rights, jobs, energy and industrial strategy, the alternative energy option; (part 3, political strategies) the anti-nuclear movement, trade unions and nuclear power; further reading; UK organisations. (U.K.)

  7. The reality of nuclear power

    International Nuclear Information System (INIS)

    Murphy, D.

    1979-01-01

    The following matters are discussed in relation to the nuclear power programmes in USA and elsewhere: siting of nuclear power plants in relation to a major geological fault; public attitudes to nuclear power; plutonium, radioactive wastes and transfrontier contamination; radiation and other hazards; economics of nuclear power; uranium supply; fast breeder reactors; insurance of nuclear facilities; diversion of nuclear materials and weapons proliferation; possibility of manufacture of nuclear weapons by developing countries; possibility of accidents on nuclear power plants in developing countries; radiation hazards from use of uranium ore tailings; sociological alternative to use of nuclear power. (U.K.)

  8. Plant life management optimized utilization of existing nuclear power plants

    International Nuclear Information System (INIS)

    Watzinger, H.; Erve, M.

    1999-01-01

    For safe, reliable and economical nuclear power generation it is of central importance to understand, analyze and manage aging-related phenomena and to apply this information in the systematic utilization and as-necessary extension of the service life of components and systems. An operator's overall approach to aging and plant life management which also improves performance characteristics can help to optimize plant operating economy. In view of the deregulation of the power generation industry with its increased competition, nuclear power plants must today also increasingly provide for or maintain a high level of plant availability and low power generating costs. This is a difficult challenge even for the newest, most modern plants, and as plants age they can only remain competitive if a plant operator adopts a strategic approach which takes into account the various aging-related effects on a plant-wide basis. The significance of aging and plant life management for nuclear power plants becomes apparent when looking at their age: By the year 2000 roughly fifty of the world's 434 commercial nuclear power plants will have been in operation for thirty years or more. According to the International Atomic Energy Agency, as many as 110 plants will have reached the thirty-year service mark by the year 2005. In many countries human society does not push the construction of new nuclear power plants and presumably will not change mind within the next ten years. New construction licenses cannot be expected so that for economical and ecological reasons existing plants have to be operated unchallengeably. On the other hand the deregulation of the power production market is asking just now for analysis of plant life time to operate the plants at a high technical and economical level until new nuclear power plants can be licensed and constructed. (author)

  9. Similarities and differences between conventional power and nuclear power

    International Nuclear Information System (INIS)

    Wang Yingrong

    2011-01-01

    As the implementation of the national guideline of 'proactively promoting nuclear power development', especially after China decided in 2006 to introduce Westinghouse's AP1000 technology, some of the power groups specialized in conventional power generation, have been participating in the preliminary work and construction of nuclear power projects in certain degrees. Meanwhile, such traditional nuclear power corporations as China National Nuclear Corporation (CNNC) and China Guangdong Nuclear Power Corporation (CGNPC) have also employed some employees with conventional power generation experience. How can these employees who have long been engaged in conventional power generation successfully adapt to the new work pattern, ideology, knowledge, thinking mode and proficiency of nuclear power, so that they can fit in with the work requirements of nuclear power and become qualified as soon as possible? By analyzing the technological, managerial and cultural features of nuclear power, as well as some issues to be kept in mind when engaged in nuclear power, this paper intends to make some contribution to the nuclear power development in the specific period. (author)

  10. Fusion Power Demonstration III

    International Nuclear Information System (INIS)

    Lee, J.D.

    1985-07-01

    This is the third in the series of reports covering the Fusion Power Demonstration (FPD) design study. This volume considers the FPD-III configuration that incorporates an octopole end plug. As compared with the quadrupole end-plugged designs of FPD-I and FPD-II, this octopole configuration reduces the number of end cell magnets and shortens the minimum ignition length of the central cell. The end-cell plasma length is also reduced, which in turn reduces the size and cost of the end cell magnets and shielding. As a contiuation in the series of documents covering the FPD, this report does not stand alone as a design description of FPD-III. Design details of FPD-III subsystems that do not differ significantly from those of the FPD-II configuration are not duplicated in this report

  11. Nuclear power in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Rim, C S [Radioactive Waste Management Centre, Korea Atomic Energy Research Institute, Taejon, Choong-Nam (Korea, Republic of)

    1990-07-01

    Before addressing the issue of public and utility acceptance of nuclear power in Korea, let me briefly explain the Korean nuclear power program and development plan for a passively safe nuclear power plant in Korea. At present, there are eight PWRs and one CANDU in operation; two PWRs are under construction, and contract negotiations are underway for one more CANDU and two more PWRs, which are scheduled to be completed by 1997,1998 and 1999, respectively. According to a recent forecast for electricity demand in Korea, about fifty additional nuclear power plants with a generating capacity of 1000MWe are required by the year 2030. Until around 2006, Korean standardized nuclear power plants with evolutionary features such as those in the ALWR program are to be built, and a new type of nuclear power plant with passive safety features is expected to be constructed after 2006. The Korean government is making a serious effort to increase public understanding of the safety of nuclear power plants and radioactive waste storage and disposal. In addition, the Korean government has recently introduced a program of benefits for residents near nuclear power plants. By this program, common facilities such as community centers and new roads are constructed, and scholarships are given to the local students. Nuclear power is accepted positively by the utility and reasonably well by the public in Korea.

  12. Nuclear power in Korea

    International Nuclear Information System (INIS)

    Rim, C.S.

    1990-01-01

    Before addressing the issue of public and utility acceptance of nuclear power in Korea, let me briefly explain the Korean nuclear power program and development plan for a passively safe nuclear power plant in Korea. At present, there are eight PWRs and one CANDU in operation; two PWRs are under construction, and contract negotiations are underway for one more CANDU and two more PWRs, which are scheduled to be completed by 1997,1998 and 1999, respectively. According to a recent forecast for electricity demand in Korea, about fifty additional nuclear power plants with a generating capacity of 1000MWe are required by the year 2030. Until around 2006, Korean standardized nuclear power plants with evolutionary features such as those in the ALWR program are to be built, and a new type of nuclear power plant with passive safety features is expected to be constructed after 2006. The Korean government is making a serious effort to increase public understanding of the safety of nuclear power plants and radioactive waste storage and disposal. In addition, the Korean government has recently introduced a program of benefits for residents near nuclear power plants. By this program, common facilities such as community centers and new roads are constructed, and scholarships are given to the local students. Nuclear power is accepted positively by the utility and reasonably well by the public in Korea

  13. Efficiency improvement of nuclear power plant operation: the significant role of advanced nuclear fuel technologies

    International Nuclear Information System (INIS)

    Velde Van de, A.; Burtak, F.

    2001-01-01

    Due to the increased liberalisation of the power markets, nuclear power generation is being exposed to high cost reduction pressure. In this paper we highlight the role of advanced nuclear fuel technologies to reduce the fuel cycle costs and therefore increase the efficiency of nuclear power plant operation. The key factor is a more efficient utilisation of the fuel and present developments at Siemens are consequently directed at (i) further increase of batch average burnup, (ii) improvement of fuel reliability, (iii) enlargement of fuel operation margins and (iv) improvement of methods for fuel design and core analysis. As a result, the nuclear fuel cycle costs for a typical LWR have been reduced during the past decades by about US$ 35 million per year. The estimated impact of further burnup increases on the fuel cycle costs is expected to be an additional saving of US$10 - 15 million per year. Due to the fact that the fuel will operate closer to design limits, a careful approach is required when introducing advanced fuel features in reload quantities. Trust and co-operation between the fuel vendors and the utilities is a prerequisite for the common success. (authors)

  14. More on fatigue verification of Class 1 nuclear power piping according to ASME BPV III NB-3600

    International Nuclear Information System (INIS)

    Zeng, Lingfu; Dahlström, Lars; Jansson, Lennart G.

    2011-01-01

    In this paper, fatigue verification of Class 1 nuclear power piping according to ASME Boiler and Pressure Vessel Code, Section III, NB-3600, and relevant issues that are often discussed in connection to the power uprate of several Swedish BWR reactors in recent years, are dealt with. Key parameters involved in the fatigue verification, i.e. the alternating stress intensity S alt , the penalty factor K e and the cumulative damage factor U, and relevant computational procedures applicable for the assessment of low-cycle fatigue failure using strain-controlled data, are particularly addressed. A so-called simplified elastic-plastic discontinuity analysis for alternative verification when basic fatigue requirements found unsatisfactory, and the procedures provided in NB-3600 for evaluating the alternating stress intensity S alt , are reviewed in detail. Our emphasis is placed on other procedures alternative to the simplified elastic-plastic discontinuity analysis. A more in-depth discussion is given to an alternative suggested earlier by the authors using nonlinear finite element analyses. This paper is a continuation of our work presented in ICONE16/17/18, which attempted to categorize design rules in the code into linear design rules and non-linear design rules and to clarify corresponding design requirements and finite element analyses, in particular, those non-linear ones. (author)

  15. Behavior of exposed human lymphocytes to a neutron beam of the Reactor TRIGA Mark III; Comportamiento de linfocitos humanos expuestos a un haz de neutrones del Reactor Triga Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Carbajal R, M. I.; Arceo M, C.; Aguilar H, F.; Guerrero C, C., E-mail: citlali.guerrero@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-10-15

    The living beings are permanently exposed to radiations of natural origin: cosmic and geologic, as well as the artificial radiations that come from sources elaborated by the man. The artificial sources have an important use in the medical area. Particularly has been increased the neutrons use due to the effectiveness that they have to damage the cells with regard to other radiation types. The biological indicator of exposition to ionizing radiation more reliable is the chromosomal aberrations study, specifically the dicentrics in human lymphocytes. This test allows, establishing the exposition dose in function of the damage quantity. The dicentrics have a behavior in function of the dose. The calibration curve that describes this behavior is specific for each type of ionizing radiation. In the year 2006 beginning was given to the expositions of human lymphocytes to a neutron beam generated in the reactor TRIGA Mark III of the Instituto Nacional de Investigaciones Nucleares (ININ) in Mexico. Up to 2008 the response dose curve comprised an interval of exposition time of up to 30 minutes. Moreover, the interval between 10 an 20 minutes is included, since was observed that this last is indispensable for the adjustment waited in a lineal model. (Author)

  16. Cost of nuclear power generation judged by power rate

    International Nuclear Information System (INIS)

    Hirai, Takaharu

    1981-01-01

    According to estimation guidance, power rates in general are the proper cost plus the specific compensation and adjustment addition. However, the current system of power rates is of power-source development promotion type involving its tax. The structure of power rate determination must be restudied now especially in connection of nuclear power generation. The cost of nuclear power generation as viewed from power rate is discussed as follows: the fear of military application of power plants, rising plant construction costs, the loophole in fuel cost calculation, unreasonable unit power cost, depreciation and repair cost, business compensation, undue business compensation in nuclear power, the costs of nuclear waste management, doubt concerning nuclear power cost, personnel, pumping-up and power transmission costs in nuclear power, energy balance analysis, nuclear power viewed in entropy, the suppression of power consumption. (J.P.N.)

  17. Nuclear Power in Korea

    International Nuclear Information System (INIS)

    Ha, Duk-Sang

    2009-01-01

    Full text: Korea's nuclear power program has been promoted by step-by-step approach; the first stage was 1970's when it depended on the foreign contractors' technology and the second was 1980's when it accumulated lots of technology and experience by jointly implementing the project. Lastly in the third stage in 1990's, Korea successfully achieved the nuclear power technological self-reliance and developed its standard nuclear power plant, so-called Optimized Power Reactor 1000 (OPR 1000). Following the development of OPR 1000, Korea has continued to upgrade the design, known as the Advanced Power Reactor 1400 (APR 1400) and APR+. Korea is one of the countries which continuously developed the nuclear power plant projects during the last 30 years while the other advanced countries ceased the project, and therefore, significant reduction of project cost and construction schedule were possible which benefits from the repetition of construction project. And now, its nuclear industry infrastructure possesses the strong competitiveness in this field.The electricity produced from the nuclear power is 150,958 MWh in 2008, which covers approximately 36% of the total electricity demand in Korea, while the installed capacity of nuclear power is 17,716 MW which is 24% of the total installed capacity. We are currently operating 20 units of nuclear power plants in Korea, and also are constructing 8 additional units (9,600 MW). Korea's nuclear power plants have displayed their excellent operating performance; the average plant capacity factor was 93.4% in 2008, which are about 15% higher than the world average of 77.8%. Moreover, the number of unplanned trips per unit was only 0.35 in 2008, which is the world top class performance. Also currently we are operating four CANDU nuclear units in Korea which are the same reactor type and capacity as the Cernavoda Units. They have been showing the excellent operating performance, of which capacity in 2008 is 92.8%. All the Korean

  18. Worldwide nuclear power

    International Nuclear Information System (INIS)

    Royen, J.

    1981-01-01

    Worldwide nuclear power (WNP) is a companion volume to UPDATE. Our objective in the publication of WNP is to provide factual information on nuclear power programs and policies in foreign countries to U.S. policymakers in the Federal Government who are instrumental in defining the direction of nuclear power in the U.S. WNP is prepared by the Office of the Assistant Secretary for Nuclear Energy from reports obtained from foreign Embassies in Washington, U.S. Embassies overseas, foreign and domestic publications, participation in international studies, and personal communications. Domestic nuclear data is included only where its presence is needed to provide easy and immediate comparisons with foreign data

  19. Carbon pricing, nuclear power and electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R.; Keppler, J. H. [OECD Nuclear Energy Agency, 12, boulevard des Iles, 92130 Issy-les-Moulineaux (France)

    2012-07-01

    In 2010, the NEA in conjunction with the International Energy Agency produced an analysis of the Projected Costs of Electricity for almost 200 power plants, covering nuclear, fossil fuel and renewable electricity generation. That analysis used lifetime costs to consider the merits of each technology. However, the lifetime cost analysis is less applicable in liberalised markets and does not look specifically at the viewpoint of the private investor. A follow-up NEA assessment of the competitiveness of nuclear energy against coal- and gas-fired generation under carbon pricing has considered just this question. The economic competition in electricity markets is today between nuclear energy and gas-fired power generation, with coal-fired power generation not being competitive as soon as even modest carbon pricing is introduced. Whether nuclear energy or natural gas comes out ahead in their competition depends on a number of assumptions, which, while all entirely reasonable, yield very different outcomes. The analysis in this study has been developed on the basis of daily data from European power markets over the last five-year period. Three different methodologies, a Profit Analysis looking at historic returns over the past five years, an Investment Analysis projecting the conditions of the past five years over the lifetime of plants and a Carbon Tax Analysis (differentiating the Investment Analysis for different carbon prices) look at the issue of competitiveness from different angles. They show that the competitiveness of nuclear energy depends on a number of variables which in different configurations determine whether electricity produced from nuclear power or from CCGTs generates higher profits for its investors. These are overnight costs, financing costs, gas prices, carbon prices, profit margins (or mark-ups), the amount of coal with carbon capture and electricity prices. This paper will present the outcomes of the analysis in the context of a liberalised

  20. Carbon pricing, nuclear power and electricity markets

    International Nuclear Information System (INIS)

    Cameron, R.; Keppler, J. H.

    2012-01-01

    In 2010, the NEA in conjunction with the International Energy Agency produced an analysis of the Projected Costs of Electricity for almost 200 power plants, covering nuclear, fossil fuel and renewable electricity generation. That analysis used lifetime costs to consider the merits of each technology. However, the lifetime cost analysis is less applicable in liberalised markets and does not look specifically at the viewpoint of the private investor. A follow-up NEA assessment of the competitiveness of nuclear energy against coal- and gas-fired generation under carbon pricing has considered just this question. The economic competition in electricity markets is today between nuclear energy and gas-fired power generation, with coal-fired power generation not being competitive as soon as even modest carbon pricing is introduced. Whether nuclear energy or natural gas comes out ahead in their competition depends on a number of assumptions, which, while all entirely reasonable, yield very different outcomes. The analysis in this study has been developed on the basis of daily data from European power markets over the last five-year period. Three different methodologies, a Profit Analysis looking at historic returns over the past five years, an Investment Analysis projecting the conditions of the past five years over the lifetime of plants and a Carbon Tax Analysis (differentiating the Investment Analysis for different carbon prices) look at the issue of competitiveness from different angles. They show that the competitiveness of nuclear energy depends on a number of variables which in different configurations determine whether electricity produced from nuclear power or from CCGTs generates higher profits for its investors. These are overnight costs, financing costs, gas prices, carbon prices, profit margins (or mark-ups), the amount of coal with carbon capture and electricity prices. This paper will present the outcomes of the analysis in the context of a liberalised

  1. Nuclear power generation

    International Nuclear Information System (INIS)

    Hirao, Katumi; Sato, Akira; Kaimori, Kimihiro; Kumano, Tetsuji

    2001-01-01

    Nuclear power generation for commercial use in Japan has passed 35 years since beginning of operation in the Tokai Nuclear Power Station in 1966, and has 51 machines of reactor and about 44.92 MW of total output of equipment scale in the 21st century. However, an environment around nuclear energy becomes severer at present, and then so many subjects to be overcome are remained such as increased unreliability of the public on nuclear energy at a chance of critical accident of the JCO uranium processing facility, delay of pull-thermal plan, requirement for power generation cost down against liberalization of electric power, highly aging countermeasure of power plant begun its operation as its Genesis, and so on. Under such conditions, in order that nuclear power generation in Japan survives as one of basic electric source in future, it is necessary not only to pursue safety and reliability of the plant reliable to the public, but also to intend to upgrade its operation and maintenance by positively adopting good examples on operational management method on abroad and to endeavor further upgrading of application ratio of equipments and reduction of generation cost. Here were outlined on operation conditions of nuclear power stations in Japan, and introduced on upgrading of their operational management and maintenance management. (G.K.)

  2. Nuclear power: the need, the myths, the realities

    International Nuclear Information System (INIS)

    Shankar, Ravi

    2016-01-01

    Dr. H.J. Bhabha in his presidential address of 1"s"t International Conference on the peaceful uses of Atomic Energy held at Geneva in 1955 said 'In the broad view of human history it is possible to discern three great epochs. The first is marked by the emergence of the early civilizations in the valleys of Euphrates, the Indus and the Nile, the second by the industrial revolution, leading to the civilization in which we live, and the third by the discovery of atomic energy and the dawn of the atomic age, which we are just entering. Each epoch marks a change in the energy pattern of society'. The journey of development from the early man to today's technological man has been possible due to ever-increasing energy consumption. Today, we consume around 100 times more energy per capita as compared to the early man. Even after so many decades of independence, the big question we face today is that how to make our country totally self-dependent. For this, we will have to ensure security and self-sufficiency for every citizen of the country, in the areas of food, shelter, primary education, clean and sufficient potable water and high level health-care. For achieving all this, the availability of cheap and abundant energy is a must. Amongst others, nuclear power is a primary source of energy with lot of scope for development and is free of greenhouse gas effect. Nuclear power therefore has its own place in any energy policy of India. Our uranium resources are modest but abundant resources of thorium are there in the country. The three stage Indian nuclear power programme is essentially based on this fact

  3. Nuclear power plants

    International Nuclear Information System (INIS)

    Margulova, T.Ch.

    1976-01-01

    The textbook focuses on the technology and the operating characteristics of nuclear power plants equiped with pressurized water or boiling water reactors, which are in operation all over the world at present. The following topics are dealt with in relation to the complete plant and to economics: distribution and consumption of electric and thermal energy, types and equipment of nuclear power plants, chemical processes and material balance, economical characteristics concerning heat and energy, regenerative preheating of feed water, degassing and condenser systems, water supply, evaporators, district heating systems, steam generating systems and turbines, coolant loops and pipes, plant siting, ventilation and decontamination systems, reactor operation and management, heat transfer including its calculation, design of reactor buildings, and nuclear power plants with gas or sodium cooled reactors. Numerous technical data of modern Soviet nuclear power plants are included. The book is of interest to graduate and post-graduate students in the field of nuclear engineering as well as to nuclear engineers

  4. Elecnuc. Nuclear power plants worldwide

    International Nuclear Information System (INIS)

    1998-01-01

    This small folder presents a digest of some useful information concerning the nuclear power plants worldwide and the situation of nuclear industry at the end of 1997: power production of nuclear origin, distribution of reactor types, number of installed units, evolution and prediction of reactor orders, connections to the grid and decommissioning, worldwide development of nuclear power, evolution of power production of nuclear origin, the installed power per reactor type, market shares and exports of the main nuclear engineering companies, power plants constructions and orders situation, evolution of reactors performances during the last 10 years, know-how and development of nuclear safety, the remarkable facts of 1997, the future of nuclear power and the energy policy trends. (J.S.)

  5. Visualization of neutron flux and power distributions in TRIGA Mark II reactor as an educational tool

    International Nuclear Information System (INIS)

    Snoj, Luka; Ravnik, Matjaz; Lengar, Igor

    2008-01-01

    Modern Monte Carlo computer codes (e.g. MCNP) for neutron transport allow calculation of detailed neutron flux and power distribution in complex geometries with resolution of ∼1 mm. Moreover they enable the calculation of individual particle tracks, scattering and absorption events. With the use of advanced software for 3D visualization (e.g. Amira, Voxler, etc.) one can create and present neutron flux and power distribution in a 'user friendly' way convenient for educational purposes. One can view axial, radial or any other spatial distribution of the neutron flux and power distribution in a nuclear reactor from various perspectives and in various modalities of presentation. By visualizing the distribution of scattering and absorption events and individual particle tracks one can visualize neutron transport parameters (mean free path, diffusion length, macroscopic cross section, up-scattering, thermalization, etc.) from elementary point of view. Most of the people remember better, if they visualize the processes. Therefore the representation of the reactor and neutron transport parameters is a convenient modern educational tool for the (nuclear power plant) operators, nuclear engineers, students and specialists involved in reactor operation and design. The visualization of neutron flux and power distributions in Jozef Stefan Institute TRIGA Mark II research reactor is treated in the paper. The distributions are calculated with MCNP computer code and presented using Amira and Voxler software. The results in the form of figures are presented in the paper together with comments qualitatively explaining the figures. (authors)

  6. Nuclear power and nuclear weapons

    International Nuclear Information System (INIS)

    Vaughen, V.C.A.

    1983-01-01

    The proliferation of nuclear weapons and the expanded use of nuclear energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with nuclear weapons and nuclear power plants are described

  7. Economics of nuclear power projects

    International Nuclear Information System (INIS)

    Chu, I.H.

    1985-01-01

    Nuclear power development in Taiwan was initiated in 1956. Now Taipower has five nuclear units in smooth operation, one unit under construction, two units under planning. The relatively short construction period, low construction costs and twin unit approach had led to the significant economical advantage of our nuclear power generation. Moreover betterment programmes have further improved the availability and reliability factors of our nuclear power plants. In Taipower, the generation cost of nuclear power was even less than half of that of oil-fired thermal power in the past years ever since the nuclear power was commissioned. This made Taipower have more earnings and power rates was even dropped down in March 1983. As Taiwan is short of energy sources and nuclear power is so well-demonstrated nuclear power will be logically the best choice for Taipower future projects

  8. Atomic energy - Bombs and nuclear power. Drivers and controversies during 65 years

    International Nuclear Information System (INIS)

    Kaerrmarck, Urban

    2010-10-01

    Over the years, written books, scientific papers, conducted parliamentary inquiries and public discussions have been published to describe and explain the Swedish nuclear power program. There is probably no other more thoroughly debated area. Still question marks are piling up. The report provides a broad illumination over the subject and fills in a number of explanations. No new unknown facts are presented, however, a number of factors are highlighted, whose importance has not received attention. One such factor is the well known link between a Swedish nuclear weapons program and the nuclear power program. By combining the information, especially from the last 15 years on nuclear weapons development with the nuclear power program, a new and largely unknown picture emerges. This issue is only superficially touched upon earlier. The ambition to develop Swedish nuclear weapons was the basis for all development until Sweden ratified the CTBT. The handling of the nuclear issue especially during the 1960s created a crisis of confidence which still affects the decisions and attitude toward nuclear power. The report finds it likely that the over-sized nuclear program was not the result of a forecast failure, but a deliberate effort by the power industry to get a hegemony in the heating sector by replacing oil with electricity. The report also shows that the only practical, working tool for an early phase-out of nuclear power was to financially compensate the plant owners. A massive increase of renewable electricity generation or a program for raising the energy use efficiency was not sufficient to compete with the reactors. However, seen in a longer perspective, renewable electricity can compete with nuclear power. With the current ambitious expansion rate, conditions are right for such a competition. Parliament's decision in June 2010 authorizing the replacement of the present 10 reactors does not necessarily mean that the nuclear debate is terminated

  9. Modernization of the facilities of the TRIGA Mark III reactor of ININ

    International Nuclear Information System (INIS)

    Mendez T, D.; Flores C, J.

    2016-09-01

    The TRIGA Mark III reactor of the Instituto Nacional de Investigaciones Nucleares (ININ) has been in operation since 1968 under strict maintenance and component replacement programs, which has allowed its safe operation during this time. Under this scheme, the reactor was operating under suitable conditions, taking into account the different requests for operation that were received for the samples irradiation for the radioisotopes production such as the Sm-153, personnel training, basic research, archaeology and environmental studies and nuclear chemistry of the elements. However, a modernization program of its components and laboratories was required, in order to improve safety in the operation of the same and to increase its use in the analysis of samples by neutron activation and in the training of personnel. This program known as Modernization Program of the Reactor Facilities, was proposed alongside the project to replace high-enrichment fuels with low-enrichment fuels at the end of 2011 and early 2012. The central aspects of this program are described in this work, grouped into generic topics that include instrumentation and control, the radiological monitoring system of the area, the cooling system, the ventilation system, the neutron activation analysis laboratory, the manufacture of graphite elements, inspection submersible system of the pool, temporary storage system for irradiated fuels, traveling crane, Reactor support laboratories and technical meetings, courses and seminars for reactor personnel and associated groups. It also describes some of the most relevant components required for each system and the progress that is made in each one of them. As a fundamental result of the implementation of this Modernization Program of the Reactor Facilities, there has been a substantial improvement in the performance of the systems and components of its facilities, in the reliability of its operation and in the safety of the same. (Author)

  10. Development of a fully-coupled, all atates, all hazards level 2 PSA at leibstadt nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Zvoncek, Pavol; Nusbaumer, Olivier [Safety Compliance and Technical Support Department, Leibstadt Nuclear Power Plant, Leibstadt (Sweden); Torri, Alfred [Risk Management Associates, Inc., Encinitas (United States)

    2017-03-15

    This paper describes the development process, the innovative techniques used and insights gained from the latest integrated, full scope, multistate Level 2 PSA analysis conducted at the Leibstadt Nuclear Power Plant (KKL), Switzerland. KKL is a modern single-unit General Electric Boiling Water Reactor (BWR/6) with Mark III Containment, and a power output of 3600MWth/1200MWe, the highest among the five operating reactors in Switzerland. A Level 2 Probabilistic Safety Assessment (PSA) analyses accident phenomena in nuclear power plants, identifies ways in which radioactive releases from plants can occur and estimates release pathways, magnitude and frequency. This paper attempts to give an overview of the advanced modeling techniques that have been developed and implemented for the recent KKL Level 2 PSA update, with the aim of systematizing the analysis and modeling processes, as well as complying with the relatively prescriptive Swiss requirements for PSA. The analysis provides significant insights into the absolute and relative importance of risk contributors and accident prevention and mitigation measures. Thanks to several newly developed techniques and an integrated approach, the KKL Level 2 PSA report exhibits a high degree of reviewability and maintainability, and transparently highlights the most important risk contributors to Large Early Release Frequency (LERF) with respect to initiating events, components, operator actions or seismic component failure probabilities (fragilities)

  11. Accelerating nuclear power standards development and promoting sound nuclear power development in China

    International Nuclear Information System (INIS)

    Yang Changli

    2008-01-01

    The paper expounds the importance of quickening establishment and perfection of nuclear power standard system in China, analyzes achievements made and problems existed during the development of nuclear power standards, put forward proposals to actively promote the work in this regard, and indicates that CNNC will further strengthen the standardization work, enhance coordination with those trades related to nuclear power standards, and jointly promote the development of nuclear power standards. (authors)

  12. Nuclear Power Newsletter, Vol. 8, No. 3, September 2011

    International Nuclear Information System (INIS)

    2011-09-01

    In the wake of the 11 March 2011 nuclear accident at TEPCO's Fukushima Daiichi Nuclear Power Station in Japan, which was caused by the Great East Japan Earthquake and Tsunami, the IAEA Director General, Mr. Yukiya Amano, convened an IAEA Ministerial Conference on Nuclear Safety in Vienna from 20 to 24 June 2011. The main objective of the Conference was to identify the lessons learned from the accident and strengthen nuclear safety throughout the world. The Conference provided an opportunity to undertake a thorough preliminary assessment of the accident and discuss broader issues relating to nuclear safety including emergency preparedness and response. The specific objectives of the Conference were to: (i) make a preliminary assessment of the accident at TEPCO's Fukushima Daiichi Nuclear Power Station; (ii) assess national and international emergency preparedness and response levels in light of the accident, with a view to strengthening them; (iii) discuss safety implications and identify those areas of the global nuclear safety framework which may be reviewed with a view to strengthening them through launching a process to that effect; (iv) identify lessons learned and possible future actions. These issues were discussed at the ministerial and senior technical level in plenary sessions and in greater depth in three working sessions.

  13. Radioactive waste management plan during the TRIGA Mark II and III decommissioning

    International Nuclear Information System (INIS)

    Jung, K.J.; Park, S.K.; Geong, G.H.; Lee, K.W.; Chung, U.S.; Paik, S.T.

    2001-01-01

    The decontamination and decommissioning (D and D) project of TRIGA Mark-I and Mark-II (KRR 1 and 2) was started in January 1997 and will be completed by December 2002. In the first year of the project, work was performed in preparation of the decommissioning plan, start of the environmental impact assessment and setup licensing procedure and documentation for the project with cooperation of the Korea Institute of Nuclear Safety (KINS). In the second year, Hyundai Engineering Company (HEC) with British Nuclear Fuels pie (BNFL) as technical assisting partner was designated as the contractor to do design and licensing documentation for the D and D of both reactors. After pre-design, a hazard and operability (HAZOP) study checked each step of the work. At the end of 1998, the decommissioning plan documentation including environmental impact assessment report was finished and submitted to the Ministry of Science and Technology (MOST) for licensing. It is expected to be issued by the end of September 1999. Practical work will then be started around the end of 1999. The safe treatment and management of the radioactive waste arising from the D and D activities is of utmost importance for successful completion of the practical dismantling work. This paper summarizes general aspects of radioactive waste treatment and management plan for the TRIGA Mark-I and II decommissioning work. (author)

  14. Nuclear Power Today and Tomorrow

    International Nuclear Information System (INIS)

    Bychkov, Alexander

    2013-01-01

    Worldwide, with 437 nuclear power reactors in operation and 68 new reactors under construction, nuclear power's global generating capacity reached 372.5 GW(e) at the end of 2012. Despite public scepticism, and in some cases fear, which arose following the March 2011 Fukushima Daiichi nuclear accident, two years later the demand for nuclear power continues to grow steadily, albeit at a slower pace. A significant number of countries are pressing ahead with plans to implement or expand their nuclear power programmes because the drivers toward nuclear power that were present before Fukushima have not changed. These drivers include climate change, limited fossil fuel supply, and concerns about energy security. Globally, nuclear power looks set to continue to grow steadily, although more slowly than was expected before the Fukushima Daiichi nuclear accident. The IAEA's latest projections show a steady rise in the number of nuclear power plants in the world in the next 20 years. They project a growth in nuclear power capacity by 23% by 2030 in the low projection and by 100% in the high projection. Most new nuclear power reactors planned or under construction are in Asia. In 2012 construction began on seven nuclear power plants: Fuqing 4, Shidaowan 1, Tianwan 3 and Yangjiang 4 in China; Shin Ulchin 1 in Korea; Baltiisk 1 in Russia; and Barakah 1 in the United Arab Emirates. This increase from the previous year's figures indicates an on-going interest and commitment to nuclear power and demonstrates that nuclear power is resilient. Countries are demanding new, innovative reactor designs from vendors to meet strict requirements for safety, national grid capacity, size and construction time, which is a sign that nuclear power is set to keep growing over the next few decades.

  15. European pathways for Slovak research and education in the nuclear power domain

    International Nuclear Information System (INIS)

    Slugen, Vladimir

    2010-01-01

    New approaches of the European Commission (DG RTD Energy) to the development of nuclear power engineering (focussed on fission and reactor systems) through various support programmes, which can be of use also in Slovak conditions, are discussed. The following topics are described in detail: Globalization of European research and education; Competency in the nuclear power domain; EU platforms for directing EURATOM research activities (SET, SNE-TP, ENEF, ENSREG); ENEN, EHRO-N, ENELA and their position in European education; Objectives of EURATOM research and professional training programmes; Focus on the creation of competencies serving the nuclear sector at the EU level (ECVET); and Towards mutual recognition of nuclear competencies new EURATOM educational programmes in the domain of fission (examples of EFTS: TRASNUSAFE, ENEN III, ENETRAP II, PETRUS II). (orig.)

  16. Adaptive control method for core power control in TRIGA Mark II reactor

    Science.gov (United States)

    Sabri Minhat, Mohd; Selamat, Hazlina; Subha, Nurul Adilla Mohd

    2018-01-01

    The 1MWth Reactor TRIGA PUSPATI (RTP) Mark II type has undergone more than 35 years of operation. The existing core power control uses feedback control algorithm (FCA). It is challenging to keep the core power stable at the desired value within acceptable error bands to meet the safety demand of RTP due to the sensitivity of nuclear research reactor operation. Currently, the system is not satisfied with power tracking performance and can be improved. Therefore, a new design core power control is very important to improve the current performance in tracking and regulate reactor power by control the movement of control rods. In this paper, the adaptive controller and focus on Model Reference Adaptive Control (MRAC) and Self-Tuning Control (STC) were applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, adaptive controller model, and control rods selection programming. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The adaptive control model was presented using Lyapunov method to ensure stable close loop system and STC Generalised Minimum Variance (GMV) Controller was not necessary to know the exact plant transfer function in designing the core power control. The performance between proposed adaptive control and FCA will be compared via computer simulation and analysed the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

  17. Process data validation according VDI 2048 in conventional and nuclear power plants

    International Nuclear Information System (INIS)

    Langenstein, M.; Laipple, B.; Schmid, F.

    2004-01-01

    Process data validation according VDI 2048 in conventional and nuclear power plants is required for acceptance testing, process and component monitoring, and status-oriented maintenance. Once a validation system like VALI III has been certified according to VDI 2048, power plant owners can use the data obtained for efficiency increase. Further, all control variables can be adjusted so as to ensure maximum plant efficiency. (orig.)

  18. Nuclear power and other energy

    International Nuclear Information System (INIS)

    Doederlein, J.M.

    1975-01-01

    A comparison is made between nuclear power plants, gas-fuelled thermal power plants and oil-fired thermal power plants with respect to health factors, economy, environment and resource exploitation, with special reference to the choice of power source to supplement Norwegian hydroelectric power. Resource considerations point clearly to nuclear power, but, while nuclear power has an overall economic advantage, the present economic situation makes its heavy capital investment a disadvantage. It is maintained that nuclear power represents a smaller environmental threat than oil or gas power. Finally, statistics are given showing that nuclear power involves smaller fatality risks for the population than many other hazards accepted without question. (JIW)

  19. Nuclear Security for Floating Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Skiba, James M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scherer, Carolynn P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  20. Nuclear power costs

    International Nuclear Information System (INIS)

    1963-01-01

    A report prepared by the IAEA Secretariat and presented to the seventh session of the Agency's General Conference says that information on nuclear power costs is now rapidly moving from the domain of uncertain estimates to that of tested factual data. As more and more nuclear power stations are being built and put into operation, more information on the actual costs incurred is becoming available. This is the fourth report on nuclear power costs to be submitted to the IAEA General Conference. The report last year gave cost information on 38 nuclear power projects, 17 of which have already gone into operation. Certain significant changes in the data given last year are included-in the present report; besides, information is given on seven new plants. The report is divided into two parts, the first on recent developments and current trends in nuclear power costs and the second on the use of the cost data for economic comparisons. Both stress the fact that the margin of uncertainty in the basic data has lately been drastically reduced. At the same time, it is pointed out, some degree of uncertainty is inherent in the assumptions made in arriving at over-all generating cost figures, especially when - as is usually the case - a nuclear plant is part of an integrated power system

  1. Licensing Process for Nuclear Power Plants in Pakistan and its comparison with other Countries

    International Nuclear Information System (INIS)

    Iqbal, Javed; Choi, Kwang Sik

    2012-01-01

    Pakistan Nuclear Regulatory Authority (PNRA) was established in January 2001 with the promulgation of the Ordinance, No-III of 2001. Pakistan is one of the countries in the world who intend to expand its nuclear power program for energy generation upto 8800 MWe by 2030. Presently, there are two research reactors and three nuclear power plants in operation and two power plants are under various stages of construction which are expected to be in commercial operation in 2016. It is obvious that the primary responsibility of ensuring safety of nuclear power plants (NPPs) operation rests with the Pakistan Atomic Energy Commission (PAEC). However, PNRA's prime mission is to ensure the safe operation of nuclear and radiation facilities, safe use of radioactive sources and protection of the radiation workers, general public and the environment from the harmful hazards of radiation by formulating and implementing effective regulations. Pakistan Nuclear Regulatory Authority issues authorizations for nuclear power plants in three stages i.e. site permit, construction license and operation license after detailed safety review. This paper presents the licensing process for NPPs in Pakistan and its comparison with SSG-12, USA and Finland

  2. An assessment of BWR [boiling water reactor] Mark III containment challenges, failure modes, and potential improvements in performance

    International Nuclear Information System (INIS)

    Schroeder, J.A.; Pafford, D.J.; Kelly, D.L.; Jones, K.R.; Dallman, F.J.

    1991-01-01

    This report describes risk-significant challenges posed to Mark III containment systems by severe accidents as identified for Grand Gulf. Design similarities and differences between the Mark III plants that are important to containment performance are summarized. The accident sequences responsible for the challenges and the postulated containment failure modes associated with each challenge are identified and described. Improvements are discussed that have the potential either to prevent or delay containment failure, or to mitigate the offsite consequences of a fission product release. For each of these potential improvements, a qualitative analysis is provided. A limited quantitative risk analysis is provided for selected potential improvements. 21 refs., 5 figs., 46 tabs

  3. Nuclear power experience

    International Nuclear Information System (INIS)

    1983-01-01

    The International Conference on Nuclear Power Experience, organized by the International Atomic Energy Agency, was held at the Hofburg Conference Center, Vienna, Austria, from 13 to 17 September 1982. Almost 1200 participants and observers from 63 countries and 20 organizations attended the conference. The 239 papers presented were grouped under the following seven main topics: planning and development of nuclear power programmes; technical and economic experience of nuclear power production; the nuclear fuel cycle; nuclear safety experience; advanced systems; international safeguards; international co-operation. The proceedings are published in six volumes. The sixth volume contains a complete Contents of Volume 1 to 5, a List of Participants, Authors and Transliteration Indexes, a Subject Index and an Index of Papers by Number

  4. Worldwide nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Worldwide Nuclear Power (WNP) is a companion volume to Update. Our objective in the publication of WNP is to provide factual information on nuclear power programs and policies in foreign countries to U.S. policymakers in the Federal Government. Facts about the status of nuclear activities abroad should be available to those who are instrumental in defining the direction of nuclear power in the U.S. WNP is prepared by the Office of Nuclear Energy from reports obtained from foreign embassies in Washington, U.S. Embassies overseas, foreign and domestic publications, participation in international studies, and personal communications. It consists of two types of information, tabular and narrative. Domestic nuclear data is included only where its presence is needed to provide easy and immediate comparisons with foreign data. In general, complete U.S. information will be found in Update

  5. Nuclear power in Canada

    International Nuclear Information System (INIS)

    1980-01-01

    The Canadian Nuclear Association believes that the CANDU nuclear power generation system can play a major role in achieving energy self-sufficiency in Canada. The benefits of nuclear power, factors affecting projections of electric power demand, risks and benefits relative to other conventional and non-conventional energy sources, power economics, and uranium supply are discussed from a Canadian perspective. (LL)

  6. Nuclear power and the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-01

    The IAEA is organizing a major conference on nuclear power and the nuclear fuel cycle, which is to be held from 2 to 13 May 1977 in Salzburg, Austria. The programme for the conference was published in the preceding issue of the IAEA Bulletin (Vol.18, No. 3/4). Topics to be covered at the conference include: world energy supply and demand, supply of nuclear fuel and fuel cycle services, radioactivity management (including transport), nuclear safety, public acceptance of nuclear power, safeguarding of nuclear materials, and nuclear power prospects in developing countries. The articles in the section that follows are intended to serve as an introduction to the topics to be discussed at the Salzburg Conference. They deal with the demand for uranium and nuclear fuel cycle services, uranium supplies, a computer simulation of regional fuel cycle centres, nuclear safety codes, management of radioactive wastes, and a pioneering research project on factors that determine public attitudes toward nuclear power. It is planned to present additional background articles, including a review of the world nuclear fuel reprocessing situation and developments in the uranium enrichment industry, in future issues of the Bulletin. (author)

  7. Development of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-01-15

    An extensive discussion of problems concerning the development of nuclear power took place at the fifth regular session of the IAEA General Conference in September-October 1961. Not only were there many references in plenary meetings to the nuclear power plans of Member States, but there was also a more specific and detailed debate on the subject, especially on nuclear power costs, in the Program, Technical and Budget Committee of the Conference. The Conference had before it a report from the Board of Governors on the studies made by the Agency on the economics of nuclear power. In addition, it had been presented with two detailed documents, one containing a review of present-day costs of nuclear power and the other containing technical and economic information on several small and medium-sized power reactors in the United States. The Conference was also informed of the report on methods of estimating nuclear power costs, prepared with the assistance of a panel of experts convened by the Agency, which was reviewed in the July 1961 issue of this Bulletin

  8. Development of nuclear power

    International Nuclear Information System (INIS)

    1962-01-01

    An extensive discussion of problems concerning the development of nuclear power took place at the fifth regular session of the IAEA General Conference in September-October 1961. Not only were there many references in plenary meetings to the nuclear power plans of Member States, but there was also a more specific and detailed debate on the subject, especially on nuclear power costs, in the Program, Technical and Budget Committee of the Conference. The Conference had before it a report from the Board of Governors on the studies made by the Agency on the economics of nuclear power. In addition, it had been presented with two detailed documents, one containing a review of present-day costs of nuclear power and the other containing technical and economic information on several small and medium-sized power reactors in the United States. The Conference was also informed of the report on methods of estimating nuclear power costs, prepared with the assistance of a panel of experts convened by the Agency, which was reviewed in the July 1961 issue of this Bulletin

  9. Nuclear power generation incorporating modern power system practice

    CERN Document Server

    Myerscough, PB

    1992-01-01

    Nuclear power generation has undergone major expansion and developments in recent years; this third edition contains much revised material in presenting the state-of-the-art of nuclear power station designs currently in operation throughout the world. The volume covers nuclear physics and basic technology, nuclear station design, nuclear station operation, and nuclear safety. Each chapter is independent but with the necessary technical overlap to provide a complete work on the safe and economic design and operation of nuclear power stations.

  10. Development of nuclear power

    International Nuclear Information System (INIS)

    1960-01-01

    The discussion on the development of nuclear power took place on 28 September 1960 in Vienna. In his opening remarks, Director General Cole referred to the widespread opinion that 'the prospect of cheap electricity derived from nuclear energy offers the most exciting prospect for improving the lot of mankind of all of the opportunities for uses of atomic energy'. He then introduced the four speakers and the moderator of the discussion, Mr. H. de Laboulaye, IAEA Deputy Director General for Technical Operations. n the first part of the discussion the experts addressed themselves in turn to four topics put forward by the moderator. These were: the present technical status of nuclear power, the present costs of nuclear power, prospects for future reductions in the cost of nuclear power, and applications of nuclear power in less-developed areas

  11. Study on core flow distribution of the reference core design Mark-III of experimental multi-purpose VHTR

    International Nuclear Information System (INIS)

    Satoh, Sadao; Arai, Taketoshi; Miyamoto, Yoshiaki; Hirano, Mitsumasa

    1977-01-01

    Concerning the coolant flow distribution between fuel channels and other flow paths in the core, designated as Reference Core Mark-III of the Multi-purpose Experimental Very High Temperature Reactor, thermal analysis has been made of the control rods and other steel structures around the core to find the coolant flow rates (bypass flow) necessary to cool them to their safe operating temperatures. Calculations showed that adequate cooling could be achieved in the Mark-III Core by the bypass flow of 8% of the total reactor coolant flow, 4% each for the control-rod channels and for other structures. The thermal and coolant flow design bases, including the assumption of a 10% bypass flow, were thus confirmed to first approximation. (auth.)

  12. Nuclear power: European report

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    In 2004, nuclear power plants were operated and/or built in eighteen European countries. Thirteen of these countries are members of EU-25. Five of the ten countries joining the European Union on May 1, 2004 operate nuclear power stations. A total of 206 power reactors with a gross power of 181,941 MWe and a net power of 172,699 MWe were in operation at the end of the year. In 2004, one nuclear power plant was commissioned in Russia (Kalinin 3), two (Kmelnitzki 2 and Rowno 4) in Ukraine. Five nuclear power plants were decommissioned in Europe in the course of 2004. As announced in 2000, the Chapelcross 1 to Chapelcross 4 plants in Britain were shut down for economic reasons. In Lithuania, the Ignalina 1 unit was disconnected from the power grid, as had been demanded by the EU Commission within the framework of the negotiations about the country's accession to the EU. As a result of ongoing technical optimization in some plants, involving increases in reactor power or generator power as well as commissioning of plants of higher capacity, nuclear generating capacity increased by approx. 1.5 GW. In late 2004, four nuclear generating units were under construction in Finland (1), Romania (1), and Russia (2). 150 nuclear power plants were operated in thirteen states of the European Union (EU-25), which is sixteen more than the year before as a consequence of the accession of new countries. They had an aggregate gross power of 137,943 MWe and a net power of 131,267 MWe, generating approx. 983 billion gross kWh of electricity in 2003, thus again contributing some 32% to the public electricity supply in the EU-25. In largest share of nuclear power in electricity generation is found in Lithuania (80%), followed by 78% in France, 57% in the Slovak Republic, 56% in Belgium, and 46% in Ukraine. In several countries not operating nuclear power plants of their own, such as Italy, Portugal, and Austria, nuclear power makes considerable contributions to public electricity supply as

  13. Utilization of Slovenian TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Snoj, L.; Smodis, B.

    2010-01-01

    TRIGA Mark II research reactor at the Jozef Stefan Institute [JSI] is extensively used for various applications, such as: irradiation of various samples, training and education, verification and validation of nuclear data and computer codes, testing and development of experimental equipment used for core physics tests at a nuclear power plant. The paper briefly describes the aforementioned activities and shows that even such small reactors are still indispensable in nuclear science and technology. (author)

  14. Support to the elaboration of the engineering of detail, configuration and programming of the control system of heat removal of the TRIGA Mark III reactor; Apoyo a la elaboracion de la ingenieria de detalle, configuracion y programacion del sistema de control de remocion de calor del reactor Triga Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Diaz G, C. A.

    2016-07-01

    Nowadays, the peaceful and responsible use of nuclear energy in Mexico is of great importance and contributes to economic, social, scientist and technologic development in the country, highlighting the Instituto Nacional de Investigaciones Nucleares (ININ) and the Nuclear Power Plant of Laguna Verde as one of the most important dependences. Among the main facilities and laboratories of ININ is the Nuclear Research Reactor TRIGA Mark III, this is a pool type reactor with mobile core, cooled and moderated by light water and a flow of 1013 n/cm{sup 2}/sec. Due to the technological obsolescence is a growing problem that threatens the information, operation and/or efficacy of elements of control and safety systems of the reactor, these must be changed each time more frequently. In the modernization of reactor was used a Modicon M340 programmable logic control (PLC) and a Twido PLC for the control of heat removal system (Primary Cooling System (PCS) and Secondary Cooling System (SCS) respectively), this because the PLC has proven to be safe and effective devices, addition to reduce the wiring elements and increase the possibilities of performance and design of the digital control console. This document shows and describes the elements of heat removal system (PCS and SCS), and the signals and signal types that such items send or received by the PLC, likewise, is indicated the methodology used to develop the applications for the control of the Primary Cooling System and Secondary Cooling System, beginning with the PLC design, the development of PLC plans and the control logic, and finally, the simulation and debugging of applications on Unity Pro and Twido Suite. All this in compliance with the safety standards to nuclear research reactors (NS-R-4), the rules of industrial programming (IEC 61131-3), and the reactor operating limits postulated in the safety report and the software assurance system used in the ININ. (Author)

  15. Inspection with non destructive assay techniques of the aluminium coating of the TRIGA Mark III reactor vat; Inspeccion con tecnicas de ensayos no destructivos del recubrimiento de aluminio de la tina del reactor TRIGA Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Reyes A, A.I.; Gonzalez M, A.; Castaneda J, G.; Rivera M, H.; Sandoval G, I. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2001-07-01

    In June 2000, the Reactor Department assigned to the Scientific Research Direction of the National Institute of Nuclear Research requested to the Non-destructive Assays Laboratory (LEND), assigned to the Materials Science Management, the inspection and measurement of thickness of the aluminium coating (liner) of the TRIGA Mark III reactor vat with non-destructive assay techniques, due to that the aluminium coating is exposed mainly to undergo slimming on its back side due to corrosion phenomena. Activity that was able to be carried out from april until august 2001. It is worth pointing out that this type of inspection with these techniques was realized by first time. The non-destructive assays (NDA) are techniques which use indirect physical methods for inspecting the sanitation of components in process or in service, for detect lack of continuity or defects which affect their quality or usefulness. The application of those do not alter the physical, chemical, mechanical or dimensional properties of the part subject of inspection. The results of the application of the ultrasound inspection techniques, industrial radiography and penetrating liquids are presented. (Author)

  16. The future of nuclear power

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1987-01-01

    Present conditions and future prospects for the nuclear power industry in the United States are discussed. The presentation includes a review of trends in electrical production, the safety of coal as compared to nuclear generating plants, the dangers of radiation, the economics of nuclear power, the high cost of nuclear power in the United States, and the public fear of nuclear power. 20 refs

  17. Reviewing nuclear power

    International Nuclear Information System (INIS)

    Robinson, Colin

    1990-01-01

    The UK government has proposed a review of the prospects for nuclear power as the Sizewell B pressurized water reactor project nears completion in 1994. However, a delay in the completion of Sizewell B or a change of government could put off the review for some years beyond the mid 1990s. Anticipating, though, that such a review will eventually take place, issues which it should consider are addressed. Three broad categories of possible benefit claimed for nuclear power are examined. These are that nuclear power contributes to the security of energy supply, that it provides protection against long run fossil fuel price increases and that it is a means of mitigating the greenhouse effect. Arguments are presented which cost doubt over the reality of these benefits. Even if these benefits could be demonstrated, they would have to be set against the financial, health and accident costs attendant on nuclear power. It is concluded that the case may be made that nuclear power imposes net costs on society that are not justified by the net benefits conferred. Some comments are made on how a government review, if and when it takes place, should be conducted. (UK)

  18. Computational Analysis of Nuclear Safety Parameters of 3 MW TRIGA Mark-II Research Reactor Based on Evaluated Nuclear Data Libraries JENDL-3.3 and ENDF/B-VII.0

    International Nuclear Information System (INIS)

    Khan, Jahirul Haque

    2013-01-01

    The objective of this study is to explain the main nuclear safety parameters of 3 MW TRIGA Mark-II Research Reactor at AERE, Savar, Dhaka, Bangladesh from the viewpoint of reactor safety and also reactor operator. The most important nuclear reactor physics safety parameters are power distribution, power peaking factors, shutdown margin, control rod worth, excess reactivity and fuel temperature reactivity coefficient. These parameters are calculated using the chain of the computer codes the SRAC-PIJ for cell calculation based on neutron transport theory and the SRAC-CITATION for core calculation based on neutron diffusion equation. To achieve this objective the TRIGA model is developed by the 3-D diffusion code SRAC-CITATION based on the group constants that come from the collision probability transport code SRAC-PIJ. In this study the evaluated nuclear data libraries JENDL-3.3 and ENDF/B-VII.0 are used. The calculated most important reactor physics parameters are compared to the safety analysis report (SAR) values as well as earlier published MCNP results (numerically benchmark). It was found that the calculated results show a good agreement between the said libraries. Besides, in most cases the calculated results reveal a reasonable agreement with the SAR values (by General Atomic) as well as the MCNP results. In addition, this analysis can be used as the inputs for thermal-hydraulic calculations of the TRIGA fresh core in the steady state and pulse mode operation. Because of power peaking factors, power distributions and temperature reactivity coefficients are the most important reactor safety parameters for normal operation and transient safety analysis in research as well as in power reactors. They form the basis for technical specifications and limitations for reactor operation such as loading pattern limitations for pulse operation (in TRIGA). Therefore, this analysis will be very important to develop the nuclear safety parameters data of 3 MW TRIGA Mark

  19. Nuclear power and modern society

    International Nuclear Information System (INIS)

    Komarek, A.

    1999-01-01

    A treatise consisting of the following sections: Development of modern society (Origin of modern society; Industrial society; The year 1968; Post-industrial society; Worldwide civic society); Historic breaks in the development of the stationary power sector (Stationary thermal power; Historic breaks in the development of nuclear power); Czech nuclear power engineering in the globalization era (Major causes of success of Czech nuclear power engineering; Future of Czech nuclear power engineering). (P.A.)

  20. Public perspectives on proposed license renewal regulations for nuclear power plants

    International Nuclear Information System (INIS)

    Ligon, D.; Hughes, A.; Seth, S.

    1991-01-01

    On 17 July 1990, the U.S Nuclear Regulatory Commission (NRC) issued for public comment its proposed rule for renewing the operating licenses of nuclear power plants (55 FR 29043). This solicitation marked the fourth time that NRC has Invited public comments on its efforts to develop regulatory requirements for re licensing nuclear power plants. Previously, NRC solicited public comments on establishing a policy statement on plant life extension, and on the issues and options for license renewal discussed in NUREG-1317. On 13-14 November 1989, NRC held a public workshop where the NRC staff discussed a conceptual approach to the rule and solicited written comments on the regulatory philosophy, conceptual rule, and on certain questions. NRC is taking into account all comments received in its development of the final rule which is scheduled for issuance in the summer of 1991

  1. Careful Determination of Inservice Inspection of piping by Computer Analysis in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lim, H. T.; Lee, S. L.; Lee, J. P.; Kim, B. C.

    1992-01-01

    Stress analysis has been performed using computer program ANSYS in the pressurizer surge line in accordance with ASME Sec. III in order to predict possibility of fatigue failure due to thermal stratification phenomena in pipes connected to reactor coolant system of nuclear power plants. Highly vulnerable area to crack generation has been chosen by the analysis of fatigue due to thermal stress in pressurizer surge line. This kind of result can be helpful to choose the location requiring intensive care during inservice inspection of nuclear power plants

  2. Nuclear power more profitable than coal if funded with low cost capital: A South-African case study

    International Nuclear Information System (INIS)

    Serfontein, Dawid E.

    2014-01-01

    This study summarizes and expands on economic simulation results from the author’s reviews of the South-African Government’s Draft Integrated Energy Plan (IEP) and Integrated Resource Plan Update 2013 (IRP Update). The Levellized Cost of Electricity (LCOE), as a function of the pre-tax Weighted Average Cost of Capital (WACC%) and the pre-tax % rate of return and the pre-tax nominal profit per unit power sold (R/kWh), as a function of the electricity selling price, are compared for a new Generation III nuclear plant and a new pulverized coal plant with Flue Gas Desulphurization (FGD), built in South Africa. All monetary amounts are expressed in constant real 2012 South African Rand (R), i.e. inflation has been removed. An exchange rate of R8.01/$ was assumed. Since the key economic features of HTRs and Generation III water-cooled nuclear plants are similar, e.g. high initial capital cost followed by low fuel and other variable costs and long plant lives, these results for Generation III nuclear plants are also applicable to HTRs. The results show that the LCOE for nuclear increases sharply with the pre-tax WACC%. For low WACC percentages, nuclear power is much cheaper than coal and vice versa. However the pre-tax nominal profit per unit nuclear power sold (R/kWh) greatly outperforms coal for all values of the electricity selling price, even if the nuclear overnight cost increases to the much maligned $7,000/kW-installed. Especially impressive is the result that nuclear already breaks even at R 0.30/kWh while coal will run at a loss until the price is increased to R 0.68/kWh. This result, that nuclear produces the most profitable power of all readily available sources in South Africa, implies the following power plant construction strategy: Supply the minimum expected new base-load with nuclear plants, augmented by peaking plants, such as hydro and gas turbine in order to balance the constant base-load power supply with the varying demand during different times

  3. AN ANTHOLOGY OF THE DISTINGUISHED ACHIEVEMENTS IN SCIENCE AND TECHNIQUE. PART 44: TRADITIONAL POWER ENGINEERING. NUCLEAR POWER STATIONS: RETROSPECTIVE VIEW, STATE AND PROSPECTS OF THEIR DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    M. I. Baranov

    2018-06-01

    Full Text Available Purpose. Preparation of brief scientific and technical review about a retrospective view, modern state, achievements, problems, tendencies and prospects of development of world nuclear energy. Methodology. Known scientific methods of collection, analysis and analytical treatment of the opened scientific and technical information, present in scientific monographs, journals and internet-reports, world level in area of nuclear energy. Results. A brief analytical scientific and technical review is resulted about a retrospective view, modern state, basic achievements, existent problems, tendencies and prospects of development of nuclear energy in the industrially developed countries of the world. Considerable progress is marked in development and creation of technical base of modern nuclear energy, including the nuclear power stations (NPP such their basic devices as nuclear reactors, steam generators, steam turbines and turbogenerators. The basic charts of construction of NPP producing in the world now about 11 % are described annual production electric power. It is indicated that in Ukraine a production of electricity volume at NPP makes more than 50 %, and in France − more than 70 % in annual power balance of country. Nuclear-physical bases of work of nuclear reactor are resulted on thermal-neutron, widely in-use at NPP. The design of most safe water-waters of nuclear power-reactor of type of WWER-1000 is described by thermal power 1000 MW, applied presently at NPP of Ukraine. Basic classification of nuclear reactors is presented. Technical information is resulted about largest NPP of the world. Master data are indicated about a nuclear fuel and radio-active offcuts of nuclear reactors of NPP. Basic measures and facilities are described for the increase of safety of nuclear reactors and NPP. Advantages and lacks of NPP are marked by comparison to the thermal power plants. Nuclear energy of Ukraine is considered and basic technical descriptions

  4. No nuclear power. No disposal facility?

    Energy Technology Data Exchange (ETDEWEB)

    Feinhals, J. [DMT GmbH und Co.KG, Hamburg (Germany)

    2016-07-01

    Countries with a nuclear power programme are making strong efforts to guarantee the safe disposal of radioactive waste. The solutions in those countries are large disposal facilities near surface or in deep geological layers depending on the activity and half-life of the nuclides in the waste. But what will happen with the radioactive waste in countries that do not have NPPs but have only low amounts of radioactive waste from medical, industrial and research facilities as well as from research reactors? Countries producing only low amounts of radioactive waste need convincing solutions for the safe and affordable disposal of their radioactive waste. As they do not have a fund by an operator of nuclear power plants, those countries need an appropriate and commensurate solution for the disposal of their waste. In a first overview five solutions seem to be appropriate: (i) the development of multinational disposal facilities by using the existing international knowhow; (ii) common disposal with hazardous waste; (iii) permanent storage; (iv) use of an existing mine or tunnel; (v) extension of the borehole disposal concept for all the categories of radioactive wastes.

  5. Recent results on weak decays of charmed mesons from the Mark III experiment

    International Nuclear Information System (INIS)

    Browder, T.E.

    1989-01-01

    Recent results from the Mark III experiment on weak decays of charmed mesons are presented. Measurements of the resonant substructure of D 0 → K - π + π - π + decays, the first model independent result on D s → φπ + , as well as limits on D s → ηπ + and D s → η'π + are described. The implications of these new results are also discussed. 37 refs., 7 figs., 4 tabs

  6. Dynamics of TRIGA-3 Salazar Reactor.; Dinamica del Reactor TRIGA Mark III del Centro Nuclear de Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo S, L F

    1991-12-31

    The theoretical study of temporal behavior of a nuclear reactor is of great importance, since it allows to know, in advance, the conditions to which a reactor is going to be submitted. The reliability of two computer codes (AIREK-JEN and PLANKIN) designed to reproduce the temporal behavior of nuclear reactors, generally power reactors, when they are applied to reproduce the dynamic behavior of TRIGA-3 Salazar Reactor is analyzed. In the first chapters, the fundamental equations that solve this computer codes are deduced, and also the main characteristics of TRIGA-3 Salazar Reactor and the necessary data to run the programs are presented; later the results obtained with the computer codes and the experimental results reported in the operational logbook of the reactor are compared, with the result that such computer codes are applicable to the temporal study of TRIGA-3 Salazar Reactor. (Author).

  7. Nuclear power in space

    International Nuclear Information System (INIS)

    Anghaie, S.

    2007-01-01

    The development of space nuclear power and propulsion in the United States started in 1955 with the initiation of the ROVER project. The first step in the ROVER program was the KIWI project that included the development and testing of 8 non-flyable ultrahigh temperature nuclear test reactors during 1955-1964. The KIWI project was precursor to the PHOEBUS carbon-based fuel reactor project that resulted in ground testing of three high power reactors during 1965-1968 with the last reactor operated at 4,100 MW. During the same time period a parallel program was pursued to develop a nuclear thermal rocket based on cermet fuel technology. The third component of the ROVER program was the Nuclear Engine for Rocket Vehicle Applications (NERVA) that was initiated in 1961 with the primary goal of designing the first generation of nuclear rocket engine based on the KIWI project experience. The fourth component of the ROVER program was the Reactor In-Flight Test (RIFT) project that was intended to design, fabricate, and flight test a NERVA powered upper stage engine for the Saturn-class lunch vehicle. During the ROVER program era, the Unites States ventured in a comprehensive space nuclear program that included design and testing of several compact reactors and space suitable power conversion systems, and the development of a few light weight heat rejection systems. Contrary to its sister ROVER program, the space nuclear power program resulted in the first ever deployment and in-space operation of the nuclear powered SNAP-10A in 1965. The USSR space nuclear program started in early 70's and resulted in deployment of two 6 kWe TOPAZ reactors into space and ground testing of the prototype of a relatively small nuclear rocket engine in 1984. The US ambition for the development and deployment of space nuclear powered systems was resurrected in mid 1980's and intermittently continued to date with the initiation of several research programs that included the SP-100, Space Exploration

  8. Role of nuclear power

    International Nuclear Information System (INIS)

    Eklund, S.

    1982-01-01

    A survey of world nuclear installations, the operating experiences of power reactors, and estimates of future nuclear growth leads to the conclusion that nuclear power's share of world electric power supply will grow slowly, but steadily during this decade. This growth will lead advanced countries to use the commercial breeder by the end of the century. Nuclear power is economically viable for most industrialized and many developing countries if public acceptance problems can be resolved. A restructuring of operational safety and regulations must occur first, as well as a resolution of the safeguards and technology transfer issue. 7 figures, 7 tables

  9. Role and position of Nuclear Power Plants Research Institute in nuclear power industry

    International Nuclear Information System (INIS)

    Metke, E.

    1984-01-01

    The Nuclear Power Plants Research Institute carries out applied and experimental research of the operating states of nuclear power plants, of new methods of surveillance and diagnosis of technical equipment, it prepares training of personnel, carries out tests, engineering and technical consultancy and the research of automated control systems. The main research programme of the Institute is the rationalization of raising the safety and operating reliability of WWER nuclear power plants. The Institute is also concerned with quality assurance of selected equipment of nuclear power plants and assembly works, with radioactive waste disposal and the decommissioning of nuclear power plants as well as with the preparation and implementation of the nuclear power plant start-up. The Research Institute is developing various types of equipment, such as equipment for the decontamination of the primary part of the steam generator, a continuous analyzer of chloride levels in water, a gas monitoring instrument, etc. The prospects are listed of the Research Institute and its cooperation with other CMEA member countries. (M.D.)

  10. Vent clearing analysis of a Mark III pressure suppression containment

    International Nuclear Information System (INIS)

    Quintana, R.

    1979-01-01

    An analysis of the vent clearing transient in a Mark III pressure suppression containment after a hypothetical LOCA is carried out. A two-dimensional numerical model solving the transient fluid dynamic equations is used. The geometry of the pressure suppression pool is represented and the pressure and velocity fields in the pool are obtained from the moment the LOCA occurs until the first vent in the drywell wall clears. The results are compared to those obtained with the one-diemensional model used for containment design, with special interest on two-dimensional effects. Some conclusions concerning the effect of the water discharged into the suppression pool through the vents on submerged structures are obtained. Future improvements to the model are suggested. (orig.)

  11. Energy and nuclear power planning in developing countries

    International Nuclear Information System (INIS)

    1985-01-01

    In this publication of the IAEA, after the introduction, four substantive parts follow. Part I, Energy demand and rational energy supply, deals with the needs for energy, primary energy resources and reserves, energy transport, storage, distribution and conservation, including the environmental effects on energy development. Part II, Economic aspects of energy development, presents an integrated view of the basic concepts of energy economics, evaluation of alternative energy projects with an in-depth comparison of electricity generation costs of nuclear and fossil-fuelled power plants. Part III, World energy development status and trends, begins with an overview of the world energy status and trends and continues with a presentation of the energy situation in industrialized countries and in developing countries. Part IV, Energy planning, deals with the optimization techniques, energy planning concepts and computerized models. The launching conditions and implementation of a nuclear power programme are described in detail. 582 references are given in the text and a bibliographical list of 356 titles has been added

  12. Banning nuclear power at sea

    International Nuclear Information System (INIS)

    Handler, J.

    1993-01-01

    This article argues that now that the East-West conflict is over, nuclear-powered vessels should be retired. Nuclear-powered ships and submarines lack military missions, are expensive to build and operate, generate large amounts of long-lived deadly nuclear waste from their normal operations and when they are decommissioned, and are subject to accidents or deliberate attack which can result in the sinking of nuclear reactors and the release of radiation. With the costs of nuclear-powered vessels mounting, the time has come to ban nuclear power at sea. (author)

  13. The need for nuclear power

    International Nuclear Information System (INIS)

    1977-12-01

    This leaflet examines our energy future and concludes that nuclear power is an essential part of it. The leaflet also discusses relative costs, but it does not deal with social and environmental implications of nuclear power in any detail, since these are covered by other British Nuclear Forum publications. Headings are: present consumption; how will this change in future; primary energy resources (fossil fuels; renewable resources; nuclear); energy savings; availability of fossil fuels; availability of renewable energy resources; the contribution of thermal nuclear power; electricity; costs for nuclear power. (U.K.)

  14. The long term plan for the integration of nuclear power plants into the Turkish Electrical Power System

    International Nuclear Information System (INIS)

    Kutukcuoglu, A.

    1974-03-01

    The report covers in detail the study of the expansion of the Turkish Electric Power System for the period 1980-1987. Load forecast is done by sectors and regions and inter-regions power balances gave the basis for the high voltage network configurations. Expansion alternatives are defined giving priority to hydroelectric projects, to local resources and nuclear power plants concurrently with conventional plants (lignite and oil). Several reactor strategies are analysed with LWR, HWR, FBR and HTGR power plants. Present worth value method is used for comparison of alternatives and sensitivity analysis is done for those ranked in the first places. Load flow, transient stability and frequency deviation studies of the power system are studied carefully by means of A.C. calculator and digital computer codes in order to see the influence of the introduction of large-sized power plants (600-750MW(e)) and their location in the power system. A 600MW(e) nuclear plant in 1983 and a second one of 750MW(e) in 1987 should, it is found, be commissioned into the system. The economic optimization was done with two computer programmes developed by KFA (Juelich): IACO for fuelling nuclear plant and RESTRAPO for power system with high hydroelectric component. The report is bound in three volumes: Volume I: Summary and Conclusions; Volume II: System Planning; Volume III: Electrical Survey

  15. Nuclear power statistics 1985

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1986-06-01

    In this report an attempt is made to collect literature data on nuclear power production and to present it on graphical form. Data is given not only for 1985, but for a number of years so that the trends in the development of nuclear power can be seen. The global capacity of nuclear power plants in operation and those in operation, under construction, or on order is considered. Further the average capacity factor for nuclear plants of a specific type and for various geographical areas is given. The contribution of nuclear power to the total electricity production is considered for a number of countries and areas. Finally, the accumulated years of commercial operation for the various reactor types up to the end of 1985 is presented. (author)

  16. Nuclear power economics

    International Nuclear Information System (INIS)

    Moynet, G.

    1987-01-01

    The economical comparison of nuclear power plants with coal-fired plants in some countries or areas are analyzed. It is not difficult to show that nuclear power will have a significant and expanding role to play in providing economic electricity in the coming decades. (Liu)

  17. Energy policy and nuclear power. Expectations of the power industry

    International Nuclear Information System (INIS)

    Harig, H.D.

    1995-01-01

    In the opinion of the power industry, using nuclear power in Germany is a responsible attitude, while opting out of nuclear power is not. Electricity utilities will build new nuclear power plants only if the structural economic and ecological advantages of nuclear power are preserved and can be exploited in Germany. The power industry will assume responsibility for new complex, capital-intensive nuclear plants only if a broad societal consensus about this policy can be reached in this country. The power industry expects that the present squandering of nuclear power resources in Germany will be stopped. The power industry is prepared to contribute to finding a speedy consensus in energy policy, which would leave open all decisions which must not be taken today, and which would not constrain the freedom of decision of coming generations. The electricity utilities remain committed proponents of nuclear power. However, what they sell to their customers is electricity, not nuclear power. (orig.) [de

  18. The ethical justification of nuclear power

    International Nuclear Information System (INIS)

    Van Wyk, J.H.

    1985-01-01

    This study pamphlet deals with the questions of ethics, nuclear power and the ethical justification of nuclear power. Nuclear power is not only used for warfare but also in a peaceful way. Ethical questions deal with the use of nuclear weapons. Firstly, a broad discussion of the different types of ethics is given. Secondly, the peaceful uses of nuclear power, such as nuclear power plants, are discussed. In the last place the application of nuclear power in warfare and its disadvantages are discussed. The author came to the conclusion that the use of nuclear power in warfare is in contrary with all Christian ethics

  19. IEEE Std 382-1985: IEEE standard for qualification of actuators for power operated valve assemblies with safety-related functions for nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This standard describes the qualification of all types of power-driven valve actuators, including damper actuators, for safety-related functions in nuclear power generating stations. This standard may also be used to separately qualify actuator components. This standard establishes the minimum requirements for, and guidance regarding, the methods and procedures for qualification of power-driven valve actuators with safety-related functions Part I describes the qualification process. Part II describes the standard qualification cases and their environmental parameters for the usual locations of safety-related equipment in a nuclear generating station. Part III describes the qualification tests outlined in 6.3.3

  20. Dictionary of nuclear power

    International Nuclear Information System (INIS)

    Koelzer, W.

    2012-06-01

    The actualized version (June 2012) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear fuel cycle, nuclear facilities, radioactive waste management, nuclear physics, reactor physics, isotope production, biological radiation effects, and radiation protection.

  1. Italian nuclear power industry after nuclear power moratorium: Current state and future prospects

    International Nuclear Information System (INIS)

    Adinolfi, R.; Previti, G.

    1992-01-01

    Following Italy's nuclear power referendum results and their interpretation, all construction and operation activities in the field of nuclear power were suspended by a political decision with consequent heavy impacts on Italian industry. Nevertheless, a 'nuclear presidium' has been maintained, thanks to the fundamental contribution of activities abroad, succeeding in retaining national know-how and developing the new technologies called for the new generation of nuclear power plants equipped with intrinsic and/or passive reactor safety systems

  2. Managing Siting Activities for Nuclear Power Plants

    International Nuclear Information System (INIS)

    2012-01-01

    One of the IAEA's statutory objectives is to ''seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world''. One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property.' The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. The introduction of nuclear power brings new challenges to States - one of them being the selection of appropriates sites. It is a project that needs to begin early, be well managed, and deploy good communications with all stakeholders; including regulators. This is important, not just for those States introducing nuclear power for the first time, but for any State looking to build a new nuclear power plant. The purpose of the siting activities goes beyond choosing a suitable site and acquiring a licence. A large part of the project is about producing and maintaining a validated

  3. Managing Siting Activities for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    One of the IAEA's statutory objectives is to ''seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world''. One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property.' The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. The introduction of nuclear power brings new challenges to States - one of them being the selection of appropriates sites. It is a project that needs to begin early, be well managed, and deploy good communications with all stakeholders; including regulators. This is important, not just for those States introducing nuclear power for the first time, but for any State looking to build a new nuclear power plant. The purpose of the siting activities goes beyond choosing a suitable site and acquiring a licence. A large part of the project is about producing and maintaining a validated

  4. Nuclear power in Pakistan

    International Nuclear Information System (INIS)

    Siddiqui, Z.H.; Qureshi, I.H.

    2005-01-01

    Pakistan started its nuclear power program by installing a 137 M We Canadian Deuterium Reactor (Candu) at Karachi in 1971 which became operational in 1972. The post-contract technical support for the Karachi Nuclear Power Plant (KANUPP) was withdrawn by Canada in 196 as a consequence of Indian nuclear device test in 1974. In spite of various difficulties PAEC resolved to continue to operate KANUPP and started a process for the indigenous fabrication of spare parts and nuclear fuel. The first fuel bundle fabricated in Pakistan was loaded in the core in 1980. Since then KANUPP has been operating on the indigenously fabricated fuel. The plant computer systems and the most critical instrumentation and Control system were also replaced with up-to date technology. In 2002 KANUPP completed its original design life of 30 year. A program for the life extension of the plant had already been started. The second nuclear power plant of 300 M We pressurized water reactor purchased from China was installed in Chashma in 1997, which started commercial operations in 2001. Another unit of 300 M We will be installed at Chashma in near future. These nuclear power plants have been operating under IAEA safeguards agreements. PAEC through the long-term performance of the two power plants has demonstrated its competence to safely and successfully operate and maintain nuclear power plants. Pakistan foresees an increasingly important and significant share of nuclear power in the energy sector. The Government has recently allocated a share of 8000 MWe for nuclear energy in the total energy scenario of Pakistan by the year 2025. (author)

  5. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1988-06-01

    The percentage of electricity generated by nuclear energy in each of the 26 countries that operated nuclear power plants in 1987 is given. The current policy and programs of some of these countries is described. News concerning uranium mining, enrichment, reprocessing and waste management is also included. Data in the form of a generalized status summary for all power reactors (> 30 MWEN) prepared from the nuclear power reactor data files of ANSTO is shown

  6. Without nuclear power

    International Nuclear Information System (INIS)

    1987-01-01

    The arguments put forward by the SPD point to the following: Backing out of nuclear power is a must, because of the awful quality of the hazards involved; because there can be no real separation guaranteed between civil and military utilisation of nuclear energy; for reasons of international responsibility; because we must not pass the buck on to the next generation; because social compatibility must be achieved; because the story of the 'cheap' nuclear generation of electricity is a fairy tale; because nuclear power pushes back coal as an energy source; because current ecological conditions call for abandonment of nuclear power, and economic arguments do not really contradict them. A reform of our energy system has to fulfill four requirements: Conserve energy; reduce and avoid environmental pollution; use renewable energy sources as the main sources; leave to the next generation the chance of choosing their own way of life. (HSCH) [de

  7. Mobile nuclear power systems

    International Nuclear Information System (INIS)

    Andersson, B.

    1988-11-01

    This report is meant to present a general survey of the mobile nuclear power systems and not a detailed review of their technical accomplishments. It is based in published material mainly up to 1987. Mobile nuclear power systems are of two fundamentally different kinds: nuclear reactors and isotopic generators. In the reactors the energy comes from nuclear fission and in the isotopic generators from the radioactive decay of suitable isotopes. The reactors are primarily used as power sourves on board nuclear submarines and other warships but have also been used in the space and in remote places. Their thermal power has ranged from 30 kWth (in a satellite) to 175 MWth (on board an aircraft carrier). Isotopic generators are suitable only for small power demands and have been used on board satellites and spaceprobes, automatic weatherstations, lighthouses and marine installations for navigation and observation. (author)

  8. Alpha Radiolysis of Nuclear Solvent Extraction Ligands Used for An(III) and Ln(III) Separations

    Energy Technology Data Exchange (ETDEWEB)

    Mezyk, Stephen P. [California State Univ. (CalState), Long Beach, CA (United States); Mincher, Bruce J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nilsson, Mikael [Univ. of California, Irvine, CA (United States)

    2016-08-01

    This document is the final report for the Nuclear Energy Universities Program (NEUP) grant 10-910 (DE-AC07-05ID14517) “Alpha Radiolysis of Nuclear Solvent Extraction Ligands used for An(III) and Ln(III) Separations”. The goal of this work was to obtain a quantitative understanding of the impacts of both low Linear Energy Transfer (LET, gamma-rays) and high LET (alpha particles) radiation chemistry occurring in future large-scale separations processes. This quantitative understanding of the major radiation effects on diluents and ligands is essential for optimal process implementation, and could result in significant cost savings in the future.

  9. Nuclear power in Asia

    International Nuclear Information System (INIS)

    2007-01-01

    The Australian Uranium Association reports that Asia is the only region in the world where electricity generating capacity and specifically nuclear power is growing significantly. In East and South Asia, there are over 109 nuclear power reactors in operation, 18 under construction and plans to build about a further 100. The greatest growth in nuclear generation is expected in China, Japan, South Korea and India. As a member of the SE Asian community, Australia cannot afford to ignore the existence and growth of nuclear power generation on its door step, even if it has not, up to now, needed to utilise this power source

  10. Nuclear Power Newsletter, Vol. 10, No. 1, January 2013

    International Nuclear Information System (INIS)

    2013-01-01

    Several countries have made a decision to start a nuclear power programme in recent years. The IAEA has been providing them with integrated assistance across a wide range of infrastructure areas. The Integrated Nuclear Infrastructure Review (INIR) missions are a key component in assessing infrastructure status and identifying areas for further action. INIR missions have been conducted to Bangladesh, Belarus, Indonesia, Jordan, Thailand, the United Arab Emirates (UAE) and Vietnam since the mission was established in 2009. In 2013, INIR missions are planned to South Africa - the first country with an operating nuclear power programme that has requested this service - Poland and Turkey. Bangladesh and Jordan may consider follow-up missions while other countries such as Egypt, Kenya, Malaysia, and Nigeria have also expressed interest in receiving this mission. The INIR Mission is an integral part of the IAEA's Milestones approach, which comprises three phases of development of a national nuclear infrastructure programme and covers 19 infrastructure issues, ranging from a government's national position on nuclear power to the procurement of items and services for the first nuclear power plant. The end of each phase is marked by a 'milestone', i.e. when a country is making the decision to move forward with nuclear power (Milestone 1), as a follow-up review of progress and before initiating the bidding process (Milestone 2), and at the end of phase three, when a country is ready to commission and operate its first nuclear power plant (Milestone 3). 'The INIR Mission can support Member States in building confidence that their national infrastructure is adequately established, by identifying areas which need further recommendations on progress towards the next milestone', explained JK Park, Director of the Division of Nuclear Power, who has been the IAEA team leader for most INIR Missions. By providing a comprehensive assessment of all facets of a nuclear power programme

  11. Nuclear Power Newsletter, Vol. 10, No. 1, January 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    Several countries have made a decision to start a nuclear power programme in recent years. The IAEA has been providing them with integrated assistance across a wide range of infrastructure areas. The Integrated Nuclear Infrastructure Review (INIR) missions are a key component in assessing infrastructure status and identifying areas for further action. INIR missions have been conducted to Bangladesh, Belarus, Indonesia, Jordan, Thailand, the United Arab Emirates (UAE) and Vietnam since the mission was established in 2009. In 2013, INIR missions are planned to South Africa - the first country with an operating nuclear power programme that has requested this service - Poland and Turkey. Bangladesh and Jordan may consider follow-up missions while other countries such as Egypt, Kenya, Malaysia, and Nigeria have also expressed interest in receiving this mission. The INIR Mission is an integral part of the IAEA's Milestones approach, which comprises three phases of development of a national nuclear infrastructure programme and covers 19 infrastructure issues, ranging from a government's national position on nuclear power to the procurement of items and services for the first nuclear power plant. The end of each phase is marked by a 'milestone', i.e. when a country is making the decision to move forward with nuclear power (Milestone 1), as a follow-up review of progress and before initiating the bidding process (Milestone 2), and at the end of phase three, when a country is ready to commission and operate its first nuclear power plant (Milestone 3). 'The INIR Mission can support Member States in building confidence that their national infrastructure is adequately established, by identifying areas which need further recommendations on progress towards the next milestone', explained JK Park, Director of the Division of Nuclear Power, who has been the IAEA team leader for most INIR Missions. By providing a comprehensive assessment of all facets of a nuclear power programme

  12. Nuclear power

    International Nuclear Information System (INIS)

    1987-01-01

    ''Nuclear Power'' describes how a reactor works and examines the different designs including Magnox, AGR, RBMK and PWR. It charts the growth of nuclear generation in the world and its contributions to world energy resources. (author)

  13. Competitiveness of nuclear power generation

    International Nuclear Information System (INIS)

    Sumi, Yoshihiko

    1998-01-01

    In view of the various merits of nuclear power generation, Japanese electric utilities will continue to promote nuclear power generation. At the same time, however, it is essential to further enhance cost performance. Japanese electric utilities plan to reduce the cost of nuclear power generation, such as increasing the capacity factor, reducing operation and maintenance costs, and reducing construction costs. In Asia, nuclear power will also play an important role as a stable source of energy in the future. For those countries planning to newly introduce nuclear power, safety is the highest priority, and cost competitiveness is important. Moreover, financing will be an essential issue to be resolved. Japan is willing to support the establishment of nuclear power generation in Asia, through its experience and achievements. In doing this, support should not only be bilateral, but should include all nuclear nations around the Pacific rim in a multilateral support network. (author)

  14. Future nuclear power generation

    International Nuclear Information System (INIS)

    Mosbah, D.S.; Nasreddine, M.

    2006-01-01

    The book includes an introduction then it speaks about the options to secure sources of energy, nuclear power option, nuclear plants to generate energy including light-water reactors (LWR), heavy-water reactors (HWR), advanced gas-cooled reactors (AGR), fast breeder reactors (FBR), development in the manufacture of reactors, fuel, uranium in the world, current status of nuclear power generation, economics of nuclear power, nuclear power and the environment and nuclear power in the Arab world. A conclusion at the end of the book suggests the increasing demand for energy in the industrialized countries and in a number of countries that enjoy special and economic growth such as China and India pushes the world to search for different energy sources to insure the urgent need for current and anticipated demand in the near and long-term future in light of pessimistic and optimistic outlook for energy in the future. This means that states do a scientific and objective analysis of the currently available data for the springboard to future plans to secure the energy required to support economy and welfare insurance.

  15. Nuclear power 2005: European report

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    In 2005, nuclear power plants were operated and/or built in eighteen European countries. Thirteen of these countries are members of EU-25. Five of the ten countries joining the European Union on May 1, 2004 operate nuclear power stations. A total of 204 power reactors with a gross power of 181,030 MWe and a net power of 171,8479 MWe were in operation at the end of the year. In 2005, no nuclear power plant was commissioned. Two nuclear power plants were decommissioned in Europe in the course of 2005. In Germany the Obrigheim NPP and in Sweden the Barsebaeck 2 NPP have been permanently shut down due to political decisions. As a result of ongoing technical optimization in some plants, involving increases in reactor power or generator power as well as commissioning of plants of higher capacity, nuclear generating capacity increased by approx. 1.6 GW. In late 2005, five nuclear generating units were under construction in Finland (1), Romania (1), and Russia (3). 148 nuclear power plants were operated in thirteen states of the European Union (EU-25). They had an aggregate gross power of 137,023 MWe and a net power of 130,415 MWe, generating approx. 970 billion gross kWh of electricity in 2005, thus again contributing some 31% to the public electricity supply in the EU-25. In largest share of nuclear power in electricity generation is found in France (80%), followed by 72% in Lithuania, 55% in the Slovak Republic, 55% in Belgium, and 51% in Ukraine. In several countries not operating nuclear power plants of their own, such as Italy, Portugal, and Austria, nuclear power makes considerable contributions to public electricity supply as a result of electricity imports. (All statistical data in the country report apply to 2004 unless indicated otherwise. This is the year for which sound preliminary data are currently available for the states listed.) (orig.)

  16. Nuclear power development

    International Nuclear Information System (INIS)

    Povolny, M.

    1980-01-01

    The development and uses of nuclear power in Czechoslovakia and other countries are briefly outlined. In the first stage, the Czechoslovak nuclear programme was oriented to the WWER 440 type reactor while the second stage of the nuclear power plant construction is oriented to the WWER 10O0 type reactor. It is envisaged that 12 WWER 440 type reactors and four to five WWER 1000 type reactors will be commissioned till 1990. (J.P.)

  17. Nuclear power experience

    International Nuclear Information System (INIS)

    Daglish, J.

    1982-01-01

    A report is given of a recent international conference convened by the IAEA to consider the technical and economic experience acquired by the nuclear industry during the past 30 years. Quotations are given from a number of contributors. Most authors shared the opinion that nuclear power should play a major role in meeting future energy needs and it was considered that the conference had contributed to make nuclear power more viable. (U.K.)

  18. Nuclear power and nuclear safety 2011

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Aage, H.K.; Kampmann, D.; Nystrup, P.E.; Thomsen, J.

    2012-07-01

    The report is the ninth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2011 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations and conflicts, and the Fukushima accident. (LN)

  19. Nuclear power and nuclear safety 2009

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.; Nystrup, P.E.; Thorlaksen, B.

    2010-05-01

    The report is the seventh report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2009 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations, conflicts and the European safety directive. (LN)

  20. The problem of nuclear power

    International Nuclear Information System (INIS)

    Heimbrecht, J.; Kade, G.; Krusewitz, K.; Moldenhauer, B.; Steinhaus, K.; Weish, P.

    1977-01-01

    The battle over the problems of nuclear power has gone on in the Federal Republic for several years. The Buergerinitiativen, which used to be small and largely unpolitical, have become a major social force during this time. Subjects: 1) Dangers of nuclear power - can the risk be justified; 2)The necessity of nuclear power; 3) The enforcement of nuclear power - political and economic background; 4) Limits of power generation - limits of growth or limits of the system. (orig./HP) [de

  1. Nuclear power renaissance or demise?

    Energy Technology Data Exchange (ETDEWEB)

    Dossani, Umair

    2010-09-15

    Nuclear power is going through a renaissance or demise is widely debated around the world keeping in mind the facts that there are risks related to nuclear technology and at the same time that is it environmentally friendly. My part of the argument is that there is no better alternative than Nuclear power. Firstly Nuclear Power in comparison to all other alternative fuels is environmentally sustainable. Second Nuclear power at present is at the dawn of a new era with new designs and technologies. Third part of the debate is renovation in the nuclear fuel production, reprocessing and disposal.

  2. Liberation of electric power and nuclear power generation

    International Nuclear Information System (INIS)

    Yajima, Masayuki

    2000-01-01

    In Japan, as the Rule on Electric Business was revised after an interval of 35 years in 1995, and a competitive bid on new electric source was adopted after 1996 fiscal year, investigation on further competition introduction to electric power market was begun by establishment of the Basic Group of the Electric Business Council in 1997. By a report proposed on January, 1999 by the Group, the Rule was revised again on March, 1999 to start a partial liberation or retail of the electric power from March, 2000. From a viewpoint of energy security and for solution of global environmental problem in Japan it has been decided to positively promote nuclear power in future. Therefore, it is necessary to investigate how the competition introduction affects to development of nuclear power generation and what is a market liberation model capable of harmonizing with the development on liberation of electric power market. Here was elucidated on effect of the introduction on previous and future nuclear power generation, after introducing new aspects of nuclear power problems and investigating characteristic points and investment risks specific to the nuclear power generation. And, by investigating some possibilities to development of nuclear power generation under liberation models of each market, an implication was shown on how to be future liberation on electric power market in Japan. (G.K.)

  3. Nuclear power. Volume 2: nuclear power project management

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The following topics are discussed: review of nuclear power plants; licensing procedures; safety analysis; project professional services; quality assurance and project organization; construction, scheduling and operation; construction, scheduling and operation; nuclear fuel handling and fuel management; and plant cost management. 116 references, 115 figures, 33 tables

  4. Gaining public acceptance for nuclear power: the Philippine approach

    International Nuclear Information System (INIS)

    Ibe, L.D.; Remedios, A.; Savelano, M.P.A.

    1977-01-01

    This article describes the strategy adopted by the Philippine Atomic Energy Commisssion (PAEC) to gain acceptance for the country's nuclear power program. It explores the various dimensions of Philippine society that affects the attainment of this objective, including cultural obstacles typical of a developing nation. Points of controversy regarding the introduction of nuclear power are identified as are likely change agents in the process of transformation of public reactions of hostility and indifference to general acceptance. The PAEC outreach information program for the nuclear power project has been directed at - the policy makers to persuade them to give maximum support to the project through its integration into the country's development strategy; - the facilitating administrative agencies to provide adequate resources for the project; - the implementing agencies including those in supportive technology, research and training to recognize the top priority ranking of nuclear power for their work plans and programs; and; - the end-users and beneficiaries of an adequate power supply. The time frame for the PAEC information campaign spans three stages of the project: Phase I. Planning (including site selection); Phase II. Construction; and Phase III. Operation. The strategy reaches out to all sectors and involves linkages with educational institutions, scientific societies, technological and civic organizations, and such publics as the studentry, professionals and the community as a whole. It utilizes thought leaders and the mass media, both print and broadcast, in addition to PAEC resources, in the generation of favorable public opinion under a planned and systematic effort at mass appeal. Finally, the article describes in detail the PAEC public information delivery system, its organizational structure, components, linkages and activities within the framework of another PAEC mandated function to regulate nuclear facilities

  5. Development of Czechoslovak nuclear power complex

    International Nuclear Information System (INIS)

    Rajci, T.

    1986-01-01

    The research project ''Development of the Czechoslovak nuclear power complex'' was undertaken by several Czechoslovak institutions and was coordinated by the Research Institute of the Fuel and Power Complex in Bratislava. Involved in the project was a staff of 170 people. 274 reports were pulished and the cost approached 70 mill. Czechoslovak crowns. The results are characterized of all six partial tasks. Basic information was prepared for the forecast of the solution of fuel and power problems in Czechoslovakia up to the year 2000 and their prospects up to the year 2020. Program MORNAP was written for the development of nuclear power, which models the operation of a power generation and transmission system with a selectable number of nuclear power plants. Another partial task related to the fuel cycle of nuclear power plants with respect to long-term provision and management of nuclear fuel. Nuclear safety was split into three problem groups, viz.: system safety of nuclear power plant operation; radiation problems of nuclear power plant safety; quality assurance of nuclear power plant components. The two remaining tasks were devoted to nuclear power engineering and to civil engineering. (Z.M.). 3 tabs., 1 refs

  6. Nuclear power safety

    International Nuclear Information System (INIS)

    1991-11-01

    This paper reports that since the Chernobyl nuclear plant accident in 1986, over 70 of the International Atomic Energy Agency's 112 member states have adopted two conventions to enhance international cooperation by providing timely notification of an accident and emergency assistance. The Agency and other international organizations also developed programs to improve nuclear power plant safety and minimize dangers from radioactive contamination. Despite meaningful improvements, some of the measures have limitations, and serious nuclear safety problems remain in the design and operation of the older, Soviet-designed nuclear power plants. The Agency's ability to select reactors under its operational safety review program is limited. Also, information on the extent and seriousness of safety-related incidents at reactors in foreign countries is not publicly available. No agreements exist among nuclear power countries to make compliance with an nuclear safety standards or principles mandatory. Currently, adherence to international safety standards or principles is voluntary and nonbinding. Some states support the concept of mandatory compliance, but others, including the United States, believe that mandatory compliance infringes on national sovereignty and that the responsibility for nuclear reactor safety remains with each nation

  7. The abuse of nuclear power

    International Nuclear Information System (INIS)

    Hill, J.

    1977-01-01

    Different aspects of possible abuse of nuclear power by countries or individuals are discussed. Special attention is paid to the advantage of nuclear power, despite the risk of weapon proliferation or terrorism. The concepts of some nuclear power critics, concerning health risks in the nuclear sector are rejected as untrue and abusive

  8. The nuclear power decisions

    International Nuclear Information System (INIS)

    Williams, R.

    1980-01-01

    Nuclear power has now become highly controversial and there is violent disagreement about how far this technology can and should contribute to the Western energy economy. More so than any other energy resource, nuclear power has the capacity to provide much of our energy needs but the risk is now seen to be very large indeed. This book discusses the major British decisions in the civil nuclear field, and the way they were made, between 1953 and 1978. That is, it spans the period between the decision to construct Calder Hall - claimed as the world's first nuclear power station - and the Windscale Inquiry - claimed as the world's most thorough study of a nuclear project. For the period up to 1974 this involves a study of the internal processes of British central government - what the author terms 'private' politics to distinguish them from the very 'public' or open politics which have characterised the period since 1974. The private issues include the technical selection of nuclear reactors, the economic arguments about nuclear power and the political clashes between institutions and individuals. The public issues concern nuclear safety and the environment and the rights and opportunities for individuals and groups to protest about nuclear development. The book demonstrates that British civil nuclear power decision making has had many shortcomings and concludes that it was hampered by outdated political and administrative attitudes and machinery and that some of the central issues in the nuclear debate were misunderstood by the decision makers themselves. (author)

  9. Governance of nuclear power

    International Nuclear Information System (INIS)

    Allison, G.; Carnesale, A.; Zigman, P.; DeRosa, F.

    1981-01-01

    Utility decisions on whether to invest in nuclear power plants are complicated by uncertainties over future power demand, regulatory changes, public perceptions of nuclear power, and capital costs. A review of the issues and obstacles confronting nuclear power also covers the factors affecting national policies, focusing on three institutional questions: regulating the industry, regulating the regulators, and regulatory procedures. The specific recommendations made to improve safety, cost, and public acceptance will still not eliminate uncertainties unless the suggested fundamental changes are made. 29 references

  10. Moessbauer study of the behaviour of synthetic corrosion products of nuclear power plants

    International Nuclear Information System (INIS)

    Blesa, M.A.; Maroto, A.J.G.; Passaggio, S.I.; Labenski, F.; Saragovi-Badler, C.

    1978-01-01

    Iron oxides are the main components of the circulating particles carried by the fluid in the primary circuit of nuclear power stations. The oxidation state of iron is (II, III), as in Fe 3 O 4 , or (III), as in Fe 2 O 3 , depending upon the reducing or oxidizing condition of the medium. Moessbauer spectroscopy allows the characterization of different forms of iron oxides, as well as iron and other metal mixed oxides. Also with this technique it is possible to detect the gradual changes in the stoichiometry of the phases due to oxidation. From the results obtained, it is concluded that the change in the oxygen content of the coolant in nuclear power stations will rapidly reflect itself in changes in the stoichiometry of the magnetite-type solids and, if higher levels of oxygen or localized attacks take place, the structure of the particles will suffer more drastic changes to hematite in a short time. (author)

  11. Nuclear power flies high

    International Nuclear Information System (INIS)

    Friedman, S.T.

    1983-01-01

    Nuclear power in aircraft, rockets and satellites is discussed. No nuclear-powered rockets or aircraft have ever flown, but ground tests were successful. Nuclear reactors are used in the Soviet Cosmos serles of satellites, but only one American satellite, the SNAP-10A, contained a reactor. Radioisotope thermoelectric generators, many of which use plutonium 238, have powered more than 20 satellites launched into deep space by the U.S.A

  12. China and nuclear power

    International Nuclear Information System (INIS)

    Fouquoire-Brillet, E.

    1999-01-01

    This book presents the history of nuclear power development in China from the first research works started in the 1950's for the manufacturing of nuclear weapons to the recent development of nuclear power plants. This study tries to answer the main questions raised by the attitude of China with respect to the civil and military nuclear programs. (J.S.)

  13. Safety implications of computerized process control in nuclear power plants

    International Nuclear Information System (INIS)

    1991-02-01

    Modern nuclear power plants are making increasing use of computerized process control because of the number of potential benefits that accrue. This practice not only applies to new plants but also to those in operation. Here, the replacement of both conventional process control systems and outdated computerized systems is seen to be of benefit. Whilst this contribution is obviously of great importance to the viability of nuclear electricity generation, it must be recognized that there are major safety concerns in taking this route. However, there is the potential for enhancing the safety of nuclear power plants if the full power of microcomputers and the associated electronics is applied correctly through well designed, engineered, installed and maintained systems. It is essential that areas where safety can be improved be identified and that the pitfalls are clearly marked so that they can be avoided. The deliberations of this Technical Committee Meeting are a step on the road to this goal of improved safety through computerized process control. This report also contains the papers presented at the technical committee meeting by participants. A separate abstract was prepared for each of these 15 presentations. Refs, figs and tabs

  14. Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.

    Science.gov (United States)

    Whitelaw, Robert L.

    The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…

  15. Nuclear power falling to pieces

    International Nuclear Information System (INIS)

    Moberg, Aa.

    1985-01-01

    The international development during the 80s is reviewed. It is stated that the construction of plants has come to a standstill. The forecasting of nuclear power as a simple and cheap source of energy has been erroneous because of cracks and leakage, unsolved waste problems and incidents. Nuclear power companies go into liquidation and reactors are for sale. Sweden has become the country with most nuclear power per capita mainly due to its controlled decommissioning. The civilian nuclear power makes the proliferation of nuclear weapons possible. With 324 reactors all over the world, a conventional war may cause disasters like Hiroshima. It is stated that the nuclear power is a dangerous and expensive source of energy and impossible to manage. (G.B.)

  16. Torness: proposed nuclear power station

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The need for and desirability of nuclear power, and in particular the proposed nuclear power station at Torness in Scotland, are questioned. Questions are asked, and answered, on the following topics: position, appearance and cost of the proposed Torness plant, and whether necessary; present availability of electricity, and forecast of future needs, in Scotland; energy conservation and alternative energy sources; radiation hazards from nuclear power stations (outside, inside, and in case of an accident); transport of spent fuel from Torness to Windscale; radioactive waste management; possibility of terrorists making a bomb with radioactive fuel from a nuclear power station; cost of electricity from nuclear power; how to stop Torness. (U.K.)

  17. Perspectives of nuclear power plants

    International Nuclear Information System (INIS)

    Vajda, Gy.

    2001-01-01

    In several countries the construction of nuclear power plants has been stopped, and in some counties several plants have been decommissioned or are planned to. Therefore, the question arises: have nuclear power plants any future? According to the author, the question should be reformulated: can mankind survive without nuclear power? To examine this challenge, the global power demand and its trends are analyzed. According to the results, traditional energy sources cannot be adequate to supply power. Therefore, a reconsideration of nuclear power should be imminent. The economic, environmental attractions are discussed as opposite to the lack of social support. (R.P.)

  18. Ecological problems of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Babaev, N S; Demin, V F; Kuz' min, I I; Stepanchikov, V I [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Atomnoj Ehnergii

    1978-10-01

    Modern power sources including nuclear one are characterized. Basic information on radiation protection of man and biosphere is presented. Problems of radiation effect of nuclear fuel cycle enterprises on population and environment are discussed. Comparative evaluation of nuclear and thermal power effect on biosphere is made. It is shown that nuclear power is the safest power source at the present development state. The conclusion is drawn that the use of nuclear energy controlled and limited by scientifically founded norms does not present radiation hazard for population and environment.

  19. Nuclear power and the UK

    International Nuclear Information System (INIS)

    Murphy, St.

    2009-01-01

    This series of slides describes the policy of the UK government concerning nuclear power. In January 2008 the UK Government published the White Paper on the Future of Nuclear Power. The White Paper concluded that new nuclear power stations should have a role to play in this country's future energy mix. The role of the Government is neither to build nuclear power plants nor to finance them. The White Paper set out the facilitative actions the Government planned to take to reduce regulatory and planning risks associated with investing in new nuclear power stations. The White Paper followed a lengthy period of consultation where the UK Government sought a wide variety of views from stakeholders and the public across the country on the future of nuclear power. In total energy companies will need to invest in around 30-35 GW of new electricity generating capacity over the next two decades. This is equivalent to about one-third of our existing capacity. The first plants are expected to enter into service by 2018 or sooner. The Office for Nuclear Development (OND) has been created to facilitate new nuclear investment in the UK while the Nuclear Development Forum (NDF) has been established to lock in momentum to secure the long-term future of nuclear power generation in the UK. (A.C.)

  20. Nuclear power development: History and outlook

    International Nuclear Information System (INIS)

    Char, N.L.; Csik, B.J.

    1987-01-01

    The history of nuclear power development is briefly described (including the boosts from oil price shocks to the promotion of nuclear energy). The role of public opinion in relation to nuclear power is mentioned too, in particular in connection with accidents in nuclear plants. The recent trends in nuclear power development are described and the role of nuclear power is foreseen. Estimates of total and nuclear electrical generating capacity are made

  1. Nuclear power and nuclear safety 2012

    International Nuclear Information System (INIS)

    Lauritzen, B.; Nonboel, E.; Israelson, C.; Kampmann, D.; Nystrup, P.E.; Thomsen, J.

    2013-11-01

    The report is the tenth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is prepared in collaboration between DTU Nutech and the Danish Emergency Management Agency. The report for 2012 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations and conflicts, and the results of the EU stress test. (LN)

  2. Nuclear power perspective in China

    International Nuclear Information System (INIS)

    Liu Xinrong; Xu Changhua

    2003-01-01

    China started developing nuclear technology for power generation in the 1970s. A substantial step toward building nuclear power plants was taken as the beginning of 1980 s. The successful constructions and operations of Qinshan - 1 NPP, which was an indigenous PWR design with the capacity of 300 MWe, and Daya Bay NPP, which was an imported twin-unit PWR plant from France with the capacity of 900 MWe each, give impetus to further Chinese nuclear power development. Now there are 8 units with the total capacity of 6100 MWe in operation and 3 units with the total capacity of 2600 MWe under construction. For the sake of meeting the increasing demand for electricity for the sustainable economic development, changing the energy mix and mitigating the environment pollution impact caused by fossil fuel power plant, a near and middle term electrical power development program will be established soon. It is preliminarily predicted that the total power installation capacity will be 750-800GWe by the year 2020. The nuclear share will account for at least 4.0-4.5 percent of the total. This situation leaves the Chinese nuclear power industry with a good opportunity but also a great challenge. A practical nuclear power program and a consistent policy and strategy for future nuclear power development will be carefully prepared and implemented so as to maintain the nuclear power industry to be healthfully developed. (author)

  3. Development of a simulator for design and test of power controllers in a TRIGA Mark III reactor; Desarrollo de un simulador para diseno y prueba de controladores de potencia en un reactor TRIGA Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Perez M, C.; Benitez R, J.S.; Lopez C, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    The development of a simulator that uses the Runge-Kutta-Fehlberg method to solve the model of the punctual kinetics of a nuclear research reactor type TRIGA. The simulator includes an algorithm of power control of the reactor based on the fuzzy logic, a friendly graphic interface which responds to the different user's petitions and that it shows numerical and graphically the results in real time. The user can modify the demanded power and to visualize the dynamic behavior of the one system. This simulator was developed in Visual Basic under an open architecture with which its will be prove different controllers for its analysis. (Author)

  4. Nuclear power reactors of new generation

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.; Slesarev, I.S.

    1988-01-01

    The paper presents discussions on the following topics: fuel supply for nuclear power; expansion of the sphere of nuclear power applications, such as district heating; comparative estimates of power reactor efficiencies; safety philosophy of advanced nuclear plants, including passive protection and inherent safety concepts; nuclear power unit of enhanced safety for the new generation of nuclear power plants. The emphasis is that designers of new generation reactors face a complicated but technically solvable task of developing highly safe, efficient, and economical nuclear power sources having a wide sphere of application

  5. Pressurizer model for Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Parkansky, D.G.; Bedrossian, G.C.

    1993-01-01

    Since the models normally used for he simulation of eventual accidents at the Embalse nuclear power plant with the FIREBIRD III code did not work satisfactorily when the pressurizer becomes empty of liquid, a new model was developed. This report presents the governing equations as well as the calculation technique, for which a computer program was made. An example of application is also presented. The results show that this new model can easily solve the problem of lack of liquid in the pressurizer, as it lets the fluid enter and exit freely, according to the pressure transient at the reactor outlet headers. (author)

  6. On PA of nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Present state of things relating to the nuclear power generation are described first, focusing on the Chernobyl accident, power control test, old-wave and new-wave antinuclear movements, move toward elimination of nuclear power plants, and trend in government-level argument concerning nuclear power generation. Then the importance of public relations activities for nuclear power generation is emphasized. It is stressed that information should be supplied positively to the public to obtain public understanding and confidence. Various activities currently made to promote public relations for nuclear power generation are also outlined, focusing on the improvement in the nuclear power public relations system and practical plans for these activities. Activities for improvement in the public relations system include the organization of public relations groups, establishment and effective implementation of an overall public relations plan, training of core workers for public relations, and management of the public relations system. Other practical activities include the encouragement of the public to come and see the power generation facilities and distribution of pamphlets, and use of the media. (N.K.)

  7. The future of nuclear power

    International Nuclear Information System (INIS)

    Corak, Z.

    2004-01-01

    Energy production and use will contribute to global warming through greenhouse gas emissions in the next 50 years. Although nuclear power is faced with a lot of problems to be accepted by the public, it is still a significant option for the world to meet future needs without emitting carbon dioxide (CO 2 ) and other atmospheric pollutants. In 2002, nuclear power provided approximately 17% of world energy consumption. There is belief that worldwide electricity consumption will increase in the next few years, especially in the developing countries followed by economic growth and social progress. Official forecasts shows that there will be a mere increase of 5% in nuclear electricity worldwide by 2020. There are also predictions that electricity use may increase at 75%. These predictions require a necessity for construction of new nuclear power plants. There are only a few realistic options for reducing carbon dioxide emissions from electricity generation: Increase efficiency in electricity generation and use; Expand use of renewable energy sources such as wind, solar, biomass and geothermal; Capture carbon dioxide emissions at fossil-fuelled electric generating plants and permanently sequester the carbon; Increase use of nuclear power. In spite of the advantages that nuclear power has, it is faced with stagnation and decline today. Nuclear power is faced with four critical problems that must be successfully defeat for the large expansion of nuclear power to succeed. Those problems are cost, safety, waste and proliferation. Disapproval of nuclear power is strengthened by accidents that occurred at Three Mile Island in 1979, at Chernobyl in 1986 and by accidents at fuel cycle facilities in Japan, Russia and in the United States of America. There is also great concern about the safety and security of transportation of nuclear materials and the security of nuclear facilities from terrorist attack. The paper will provide summarized review regarding cost, safety, waste and

  8. Conflict nuclear power. Theses for current supply with and without nuclear power

    International Nuclear Information System (INIS)

    Schwarz, E.

    2007-01-01

    In the context of a lecture at the 2nd Internationally Renewable Energy Storage Conference at 19th to 21st November, 2007, in Bonn (Federal Republic of Germany), the author of the contribution under consideration reports on theses for current supply with and without nuclear power. (1) Theses for current supply with nuclear energy: Due to a relative amount of 17 % of nuclear energy in the world-wide energy production and due to the present reactor technology, the supplies of uranium amount nearly 50 to 70 years. The security of the nuclear power stations is controversially judged in the public and policy. In a catastrophic accident in a nuclear power station, an amount of nearly 2.5 billion Euro is available for adjustment of damages (cover note). The disposal of radioactive wastes is not solved anywhere in the world. The politically demanded separation between military and civilian use of the nuclear energy technology is not possible. The exit from the nuclear energy is fixed in the atomic law. By any means, the Federal Republic of Germany is not insulated in the European Union according to its politics of nuclear exit. After legal adjustment of the exit from the nuclear energy the Federal Republic of Germany should unfold appropriate activities for the re-orientation of Euratom, Nuclear Energy Agency and the International Atomic Energy Agency. The consideration of the use of nuclear energy in relation to the risks has to result that its current kind of use is not acceptable and to be terminated as fast as possible. (2) Theses for current supply without nuclear energy: The scenario technology enables a transparency of energy future being deliverable for political decisions. In accordance with this scenario, the initial extra costs of the development of the renewable energies and the combined heat and power generation amount approximately 4 billion Euro per year. The conversion of the power generation to renewable energies and combined heat and power generation

  9. Economic benefits of the nuclear power

    International Nuclear Information System (INIS)

    Sutherland, R.J.

    1985-01-01

    The historical and projected benefits of nuclear power are estimated as the cost differential between nuclear power and an alternative baseload generating source times the quantity of electricity generated. From 1976 through 1981 coal and nuclear power were close competitors in most regions, with nuclear power holding a small cost advantage overall in 1976 and 1977 that subsequently eroded. When nuclear power costs are contrasted to coal power costs, national benefits from nuclear power are estimated to be $336 million from 1976 to 1981, with an additional $1.8 billion for the present value of existing plants. Fuel oil has been the dominant source of baseload generation in California, Florida, and New England. When nuclear power costs are contrasted to those of fuel oil, the benefits of nuclear power in these three regions are estimated to be $8.3 billion and $28.1 billion in terms of present value. The present value of benefits of future nuclear plants is estimated to be $8.2 billion under a midcase scenario and $43 billion under an optimistic scenario. 18 references, 10 tables

  10. The nuclear power alternative

    International Nuclear Information System (INIS)

    Blix, H.

    1989-04-01

    The Director General of the IAEA stressed the need for energy policies and other measures which would help to slow and eventually halt the present build-up of carbon dioxide, methane and other so-called greenhouse gases, which are held to cause global warming. He urged that nuclear power and various other sources of energy, none of which contribute to global warming, should not be seen as alternatives, but should all be used to counteract the greenhouse effect. He pointed out that the commercially used renewable energies, apart from hydropower, currently represent only 0.3% of the world's energy consumption and, by contrast, the 5% of the world's energy consumption coming from nuclear power is not insignificant. Dr. Blix noted that opposition for nuclear power stems from fear of accidents and concern about the nuclear wastes. But no generation of electricity, whether by coal, hydro, gas or nuclear power, is without some risk. He emphasized that safety can never be a static concept, and that many new measures are being taken by governments and by the IAEA to further strengthen the safety of nuclear power

  11. Reasons for the nuclear power option

    International Nuclear Information System (INIS)

    Rotaru, I.; Glodeanu, F.; Mauna, T.

    1994-01-01

    Technical, economical and social reasons, strongly supporting the nuclear power option are reviewed. The history of Romanian nuclear power program is outlined with a particular focus on the Cernavoda Nuclear Power Plant project. Finally the prospective of nuclear power in Romania are assessed

  12. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Scurr, I.F.; Silver, J.M.

    1990-01-01

    Australian Nuclear Science and Technology Organization maintains an ongoing assessment of the world's nuclear technology developments, as a core activity of its Strategic Plan. This publication reviews the current status of the nuclear power and the nuclear fuel cycle in Australia and around the world. Main issues discussed include: performances and economics of various types of nuclear reactors, uranium resources and requirements, fuel fabrication and technology, radioactive waste management. A brief account of the large international effort to demonstrate the feasibility of fusion power is also given. 11 tabs., ills

  13. Nuclear power publications

    International Nuclear Information System (INIS)

    1982-01-01

    This booklet lists 69 publications on nuclear energy available free from some of the main organisations concerned with its development and operation in the UK. Headings are: general information; the need for nuclear energy; the nuclear industry; nuclear power stations; fuel cycle; safety; waste management. (U.K.)

  14. Dictionary of nuclear power

    International Nuclear Information System (INIS)

    Koelzer, W.

    2012-04-01

    The actualized version (April 2012) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear facilities, and radiation protection.

  15. Nuclear power in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S. (Sussex Univ., Brighton (UK). Science Policy Research Unit)

    1991-01-01

    The main aim of this article is that of illustrating the experience of the use of nuclear power in Eastern Europe in order to estimate the degree of adequacy or inadequacy of COMECON's nuclear technology. The author examines four areas of interest concerning: the feasibility of new orders for nuclear plants in Eastern Europe; the pros and cons of completing half-built nuclear power plants; current policy towards existing nuclear power plants; and a review of the available evidence on the operating performance of plants in Eastern Europe. The common belief that the nuclear power experience had by old COMECON countries is uniformly bad does not seem to be fully supported by the limited evidence available. In the author's opinion, the prospects for a successful nuclear power industry in these countries depends on a series on interdependent factors among which, human skills hold a prominent position.

  16. Local society and nuclear power stations

    International Nuclear Information System (INIS)

    1984-02-01

    This report was made by the expert committee on region investigation, Japan Atomic Industrial Forum Inc., in fiscal years 1981 and 1982 in order to grasp the social economic influence exerted on regions by the location of nuclear power stations and the actual state of the change due to it, and to search for the way the promotion of local community should be. The influence and the effect were measured in the regions around the Fukushima No. 1 Nuclear Power Station of Tokyo Electric Power Co., Inc., the Mihama Power Station of Kansai Electric Power Co., Inc., and the Genkai Nuclear Power Station of Kyushu Electric Power Co., Inc. The fundamental recognition in this discussion, the policy of locating nuclear power stations and the management of regions, the viewpoint and way of thinking in the investigation of the regions where nuclear power stations are located, the actual state of social economic impact due to the location of nuclear power stations, the connected mechanism accompanying the location of nuclear power stations, and the location of nuclear power stations and the acceleration of planning for regional promotion are reported. In order to economically generate electric power, the rationalization in the location of nuclear power stations is necessary, and the concrete concept of building up local community must be decided. (Kako, I.)

  17. Consideration of nuclear power

    International Nuclear Information System (INIS)

    Smart, I.

    1982-01-01

    Mr. Smart notes that the optimistic promise of nuclear energy for developing countries has not been met, but feels that nuclear power can still provide a growing share of energy during the transition from oil dependence. He observes that cost-benefit analyses vary for each country, but good planning and management can give nuclear power a positive future for those developing countries which can establish a need for it; have access to the economic, technological, and human resources necessary to develop and operate it; and can make nuclear power compatible with the social, economic, and cultural structure. 11 references

  18. Nuclear power in human medicine

    International Nuclear Information System (INIS)

    Kuczera, Bernhard

    2012-01-01

    The public widely associate nuclear power with the megawatt dimensions of nuclear power plants in which nuclear power is released and used for electricity production. While this use of nuclear power for electricity generation is rejected by part of the population adopting the polemic attitude of ''opting out of nuclear,'' the application of nuclear power in medicine is generally accepted. The appreciative, positive term used in this case is nuclear medicine. Both areas, nuclear medicine and environmentally friendly nuclear electricity production, can be traced back to one common origin, i.e. the ''Atoms for Peace'' speech by U.S. President Eisenhower to the U.N. Plenary Assembly on December 8, 1953. The methods of examination and treatment in nuclear medicine are illustrated in a few examples from the perspective of a nuclear engineer. Nuclear medicine is a medical discipline dealing with the use of radionuclides in humans for medical purposes. This is based on 2 principles, namely that the human organism is unable to distinguish among different isotopes in metabolic processes, and the radioactive substances are employed in amounts so small that metabolic processes will not be influenced. As in classical medicine, the application of these principles serves two complementary purposes: diagnosis and therapy. (orig.)

  19. Towards sustainable nuclear power development

    International Nuclear Information System (INIS)

    Andrianov, Andrei A.; Murogov, Victor M.; Kuptsov, Ilya S.

    2014-01-01

    The review of the current situation in the nuclear energy sector carried out in this article brings to light key problems and contradictions, development trends and prospects, which finally determine the role and significance of nuclear power as a factor ensuring a sustainable energy development. Authors perspectives on the most appropriate developments of nuclear power, which should be based on a balanced use of proven innovative nuclear technologies and comprehensive multilateral approaches to the nuclear fuel cycle are expressed. The problems of wording appropriate and essential requirements for new countries with respect to their preparedness to develop nuclear programs, taking into account their development level of industry and infrastructure as well as national heritages and peculiarities, are explained. It is also indicated that one of the major components of sustainability in the development of nuclear power, which legitimates its public image as a power technology, is the necessity of developing and promoting the concepts of nuclear culture, nuclear education, and professional nuclear ethics. (orig.)

  20. Towards sustainable nuclear power development

    Energy Technology Data Exchange (ETDEWEB)

    Andrianov, Andrei A.; Murogov, Victor M.; Kuptsov, Ilya S. [Obninsk Institute for Nuclear Power Engineering of NNRU MEPhl, Obninsk, Kaluga Region (Russian Federation)

    2014-05-15

    The review of the current situation in the nuclear energy sector carried out in this article brings to light key problems and contradictions, development trends and prospects, which finally determine the role and significance of nuclear power as a factor ensuring a sustainable energy development. Authors perspectives on the most appropriate developments of nuclear power, which should be based on a balanced use of proven innovative nuclear technologies and comprehensive multilateral approaches to the nuclear fuel cycle are expressed. The problems of wording appropriate and essential requirements for new countries with respect to their preparedness to develop nuclear programs, taking into account their development level of industry and infrastructure as well as national heritages and peculiarities, are explained. It is also indicated that one of the major components of sustainability in the development of nuclear power, which legitimates its public image as a power technology, is the necessity of developing and promoting the concepts of nuclear culture, nuclear education, and professional nuclear ethics. (orig.)

  1. New approaches to nuclear power

    KAUST Repository

    Dewan, Leslie

    2018-01-21

    The world needs a cheap, carbon-free alternative to fossil fuels to feed its growing electricity demand. Nuclear power can be a good solution to the problem, but is hindered by issues of safety, waste, proliferation, and cost. But what if we could try a new approach to nuclear power, one that solves these problems? In this lecture, the CEO of Transatomic Power will talk about how their company is advancing the design of a compact molten salt reactor to support the future of carbon-free energy production. Can the designs of new reactor push the boundaries of nuclear technology to allow for a safe, clean, and affordable answer to humanityメs energy needs? Nuclear power involves capturing the energy produced in nuclear fission reactions, which emerges as heat. This heat is most frequently used to boil water into steam, which then drives a turbine to produce electricity in a nuclear power plant. Worldwide, there is a renaissance of new nuclear technology development -- a new generation of young engineers are racing to develop more advanced nuclear reactors for a better form of power generation. Transatomic Power, specifically, is advancing the design of an easily contained and controlled, atmospheric pressure, high power density molten salt reactor that can be built at low cost. The road to commercialization is long, and poses many challenges, but the benefits are enormous. These new reactors push the boundaries of technology to allow for better, safer ways to power the world.

  2. Nuclear power: Europa report

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    Last year, 2003, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In 8 of the 15 member countries of the European Union (EU-15) nuclear power plants have been operation. In 7 of the 13 EU Candidate Countries (incl. Turkey) nuclear energy was used for power production. A total of 208 plants with an aggregate net capacity of 171 031 MWe and an aggregate gross capacity of 180 263 MWe were in operation at the end of 2003. No unit reached first criticality in 2003 or was connected to the grid. The unit Calder Hall 1 to Calder Hall 4 have been permanently shut down in Great Britain due to economical reasons and an earlier decision. In Germany the NPP Stade was closed. The utility E.ON has decided to shut down the plant due to the efforts of the liberalisation of the electricity markets. Last year, 8 plants were under construction in Romania (1), Russia (3), Slovakia (2 - suspended), and the Ukraine (2), that is only in East European Countries. The Finnish parliament approved plans for the construction of the country's fifth nuclear power reactor by a majority of 107 votes to 92. The consortium led by Framatome ANP was awarded the contract to build the new nuclear power plant (EPR, 1 600 MW) in Olkiluoto. In eight countries of the European Union 136 nuclear power plants have been operated with an aggregate gross capacity of 127 708 MWe and an aggregate net capacity of 121 709 MWe. Net electricity production in 2003 in the EU amounts to approx. 905 TWh gross, which means a share of about 33 per cent of the total production in the whole EU. Shares of nuclear power differ widely among the operator countries. They reach 80% in Lithuania, 78% in France, 57% in the Slovak Republic, 57% in Belgium, and 46% in the Ukraine. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal, and Austria. (orig.)

  3. Progress of China's nuclear power programme

    International Nuclear Information System (INIS)

    Cai Jianping

    1997-01-01

    From a long-term point of view, nuclear power is the only solution for the shortage of energy resource. Nuclear power development strategy has been specified in China according to national condition: The electricity development of nuclear power optimizes the national energy structure and ensure the power supply, particularly in east China. China's first self-designed and self-constructed nuclear power plant--Qinshan Nuclear Power Plant (300MWe PWR) is now well under commercial operation. China is willing to cooperate with IAEA, other countries and regions in the field of nuclear energy for peaceful use on basis of mutual benefit. (author)

  4. Country nuclear power profiles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The preparation of Country Nuclear Power Profiles was initiated within the framework of the IAEA`s programme for nuclear power plant performance assessment and feedback. It responded to a need for a database and a technical document containing a description of the energy and economic situation and the primary organizations involved in nuclear power in IAEA Member States. The task was included in the IAEA`s programmes for 1993/1994 and 1995/1996. In March 1993, the IAEA organized a Technical Committee meeting to discuss the establishment of country data ``profiles``, to define the information to be included in the profiles and to review the information already available in the IAEA. Two expert meetings were convened in November 1994 to provide guidance to the IAEA on the establishment of the country nuclear profiles, on the structure and content of the profiles, and on the preparation of the publication and the electronic database. In June 1995, an Advisory Group meeting provided the IAEA with comprehensive guidance on the establishment and dissemination of an information package on industrial and organizational aspects of nuclear power to be included in the profiles. The group of experts recommended that the profiles focus on the overall economic, energy and electricity situation in the country and on its nuclear power industrial structure and organizational framework. In its first release, the compilation would cover all countries with operating power plants by the end of 1995. It was also recommended to further promote information exchange on the lessons learned from the countries engaged in nuclear programmes. For the preparation of this publication, the IAEA received contributions from the 29 countries operating nuclear power plants and Italy. A database has been implemented and the profiles are supporting programmatic needs within the IAEA; it is expected that the database will be publicly accessible in the future. Refs, figs, tabs.

  5. Country nuclear power profiles

    International Nuclear Information System (INIS)

    1998-03-01

    The preparation of Country Nuclear Power Profiles was initiated within the framework of the IAEA's programme for nuclear power plant performance assessment and feedback. It responded to a need for a database and a technical document containing a description of the energy and economic situation and the primary organizations involved in nuclear power in IAEA Member States. The task was included in the IAEA's programmes for 1993/1994 and 1995/1996. In March 1993, the IAEA organized a Technical Committee meeting to discuss the establishment of country data ''profiles'', to define the information to be included in the profiles and to review the information already available in the IAEA. Two expert meetings were convened in November 1994 to provide guidance to the IAEA on the establishment of the country nuclear profiles, on the structure and content of the profiles, and on the preparation of the publication and the electronic database. In June 1995, an Advisory Group meeting provided the IAEA with comprehensive guidance on the establishment and dissemination of an information package on industrial and organizational aspects of nuclear power to be included in the profiles. The group of experts recommended that the profiles focus on the overall economic, energy and electricity situation in the country and on its nuclear power industrial structure and organizational framework. In its first release, the compilation would cover all countries with operating power plants by the end of 1995. It was also recommended to further promote information exchange on the lessons learned from the countries engaged in nuclear programmes. For the preparation of this publication, the IAEA received contributions from the 29 countries operating nuclear power plants and Italy. A database has been implemented and the profiles are supporting programmatic needs within the IAEA; it is expected that the database will be publicly accessible in the future

  6. Nuclear power in Europe

    International Nuclear Information System (INIS)

    Perera, J.

    2000-01-01

    Currently nuclear power accounts for more than 25% of total electricity production in Europe (including Eastern Europe and the former Soviet Union) However, significant new construction is planned in Central and Eastern Europe only, apart from some in France and, possibly in Finland. Many countries in Western Europe have put nuclear construction plans on hold and several have cancelled their nuclear programs. This report looks at the history of nuclear power and its current status in both Eastern and Western Europe. It provides an outline of nuclear fuel cycle facilities, from uranium procurement to final waste disposal. Economic and environmental issues are discussed, as well as the prospect of increased East-West trade and cooperation in the new poso-cold war world. Detailed profiles are provided of all the countries in Western Europe with significant nuclear power programs, as well as profiles of major energy and nuclear companies

  7. Ethical aspects of nuclear power

    International Nuclear Information System (INIS)

    Streithofen, H.B.

    1989-01-01

    The nuclear controversy comprises many ethical aspects, e.g. the waste disposal problem. Nuclear opponents should not neglect the environmental protection aspect; for example, the use of nuclear power alone brought about an 8% reduction of the CO 2 burden in 1987. Our responsibility towards nature and humans in the Third World leaves us no alternative to nuclear power. On the other hand, the nuclear power debate should not become a matter of religious beliefs. (DG) [de

  8. The status quo and future of nuclear power in Germany and worldwide

    International Nuclear Information System (INIS)

    Graeber, Ulrich

    2010-01-01

    In the context of predicted energy demand growth, concerns regarding the security of fossil fuel supplies and the need to curb greenhouse gas emissions, a reappraisal of nuclear power has taken place on national, European and international levels. While the Geman government concedes nuclear power only a ''bridging function'' to a world where energy demand is fully covered by renewable energies, international institutions like the International Energy Agency (IEA), the International Atomic Energy Agency (IAEA) and the International Panel on Climate Change (IPCC) see nuclear power as a key element of any sustainable long-term energy strategy compatible with climate protection. They call for a multiplication of nuclear power generation by 2050. In agreement with the international organizations mentioned, nuclear power and renewable energies are seen by AREVA as complementary, not as alternatives and represent today AREVA's core businesses. Over the last two decades, construction of new nuclear power plants has been centering mainly on Asia while in Europe and North America the focus was on lifetime extension of existing plants. In Germany, the government has announced to revise the lifetime restrictions imposed by a former government in 2002. But an upswing in the new-build market can be observed also in Europe, and major new-build programs are being prepared in the US and the UK. Several countries in Europe and abroad are planning new plants, and a growing number of countries, in particular in the Middle and Far East, plan to embark on nuclear power. The IEA scenario consistent with limiting global warming by the year 2100 to 2 C is highly challenging for utilities and the vendor industry, but feasible provided there is a stable political and regulatory environment. Several global vendors offer state-of-the-art designs for generation III+ reactors. (orig.)

  9. Alternative off-site power supply improves nuclear power plant safety

    International Nuclear Information System (INIS)

    Gjorgiev, Blaže; Volkanovski, Andrija; Kančev, Duško; Čepin, Marko

    2014-01-01

    Highlights: • Additional power supply for mitigation of the station blackout event in NPP is used. • A hydro power plant is considered as an off-site alternative power supply. • An upgrade of the probabilistic safety assessment from its traditional use is made. • The obtained results show improvement of nuclear power plant safety. - Abstract: A reliable power system is important for safe operation of the nuclear power plants. The station blackout event is of great importance for nuclear power plant safety. This event is caused by the loss of all alternating current power supply to the safety and non-safety buses of the nuclear power plant. In this study an independent electrical connection between a pumped-storage hydro power plant and a nuclear power plant is assumed as a standpoint for safety and reliability analysis. The pumped-storage hydro power plant is considered as an alternative power supply. The connection with conventional accumulation type of hydro power plant is analysed in addition. The objective of this paper is to investigate the improvement of nuclear power plant safety resulting from the consideration of the alternative power supplies. The safety of the nuclear power plant is analysed through the core damage frequency, a risk measure assess by the probabilistic safety assessment. The presented method upgrades the probabilistic safety assessment from its common traditional use in sense that it considers non-plant sited systems. The obtained results show significant decrease of the core damage frequency, indicating improvement of nuclear safety if hydro power plant is introduced as an alternative off-site power source

  10. Nuclear power economics

    Energy Technology Data Exchange (ETDEWEB)

    Emsley, Ian; Cobb, Jonathan [World Nuclear Association, London (United Kingdom)

    2017-04-15

    Many countries recognize the substantial role which nuclear power has played in providing energy security of supply, reducing import dependence and reducing greenhouse gas and polluting emissions. Nevertheless, as such considerations are far from being fully accounted for in liberalized or deregulated power markets, nuclear plants must demonstrate their viability in these markets on commercial criteria as well as their lifecycle advantages. Nuclear plants are operating more efficiently than in the past and unit operating costs are low relative to those of alternative generating technologies. The political risk facing the economic functioning of nuclear in a number of countries has increased with the imposition of nuclear-specific taxes that in some cases have deprived operators of the economic incentive to continue to operate existing plants.

  11. Nuclear power economics

    International Nuclear Information System (INIS)

    Emsley, Ian; Cobb, Jonathan

    2017-01-01

    Many countries recognize the substantial role which nuclear power has played in providing energy security of supply, reducing import dependence and reducing greenhouse gas and polluting emissions. Nevertheless, as such considerations are far from being fully accounted for in liberalized or deregulated power markets, nuclear plants must demonstrate their viability in these markets on commercial criteria as well as their lifecycle advantages. Nuclear plants are operating more efficiently than in the past and unit operating costs are low relative to those of alternative generating technologies. The political risk facing the economic functioning of nuclear in a number of countries has increased with the imposition of nuclear-specific taxes that in some cases have deprived operators of the economic incentive to continue to operate existing plants.

  12. International nuclear power status 2001

    International Nuclear Information System (INIS)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L.

    2002-04-01

    This report is the eighth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2001, the report contains: 1) General trends in the development of nuclear power; 2) Nuclear terrorism; 3) Statistical information on nuclear power production (in 2000); 4) An overview of safety-relevant incidents in 2001; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  13. Nuclear power - the Hydra's head

    Energy Technology Data Exchange (ETDEWEB)

    Bunyard, P

    1986-01-01

    Following the accident at Chernobyl, the nuclear policies of many governments have been reconsidered and restated. Those in favour of nuclear power are those with highly centralised state bureaucracies, such as France and the USSR, where public opinion is disregarded. In more democratic countries, where referenda are held, such as Austria and Sweden, the people have chosen to do away with nuclear power. Indeed, the author states that nuclear power represents the State against the people, the State against democracy. Reference is made to the IAEA Reactor Safety Conference held in September, 1986, in Vienna, and the declaration sent to it by AntiAtom International. This called for the United Nations to promote the phasing out of nuclear power facilities throughout the world. It also called on the IAEA to support the phasing out of nuclear power and promote benign energy forms instead.

  14. Nuclear power for tomorrow

    International Nuclear Information System (INIS)

    Csik, B.J.; Konstantinov, L.V.; Dastidar, P.

    1989-09-01

    The evolution of nuclear power has established this energy source as a viable mature technology, producing at comparative costs more than 16% of the electricity generated world-wide. After outlining the current status of nuclear power, extreme future scenarios are presented, corresponding respectively to maximum penetration limited by technical-economic characteristics, and nuclear phase-out at medium term. The situation is complex and country specific. The relative perception of the importance of different factors and the compensation of advantages vs. disadvantages, or risk vs. benefits, has predominant influence. In order to proceed with an objective and realistic estimate of the future role of nuclear power worldwide, the fundamental factors indicated below pro nuclear power and against are assessed, including expected trends regarding their evolution: Nuclear safety risk; reduction to levels of high improbability but not zero risk. Reliable source of energy; improvements towards uniform standards of excellence. Economic competitiveness vs. alternatives; stabilization and possible reduction of costs. Financing needs and constraints; availability according to requirements. Environmental effects; comparative analysis with alternatives. Public and political acceptance; emphasis on reason and facts over emotions. Conservation of fossil energy resources; gradual deterioration but no dramatic crisis. Energy supply assurance; continuing concerns. Infrastructure requirements and availability; improvements in many countries due to overall development. Non-proliferation in military uses; separation of issues from nuclear power. IAEA forecasts to the year 2005 are based on current projects, national plans and policies and on prevailing trends. Nuclear electricity generation is expected to reach about 18% of total worldwide electricity generation, with 500 to 580 GW(e) installed capacity. On a longer term, to 2030, a stabilized role and place among available viable

  15. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2003-01-01

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  16. Nuclear power status 1999

    International Nuclear Information System (INIS)

    2000-01-01

    The document gives statistical information on nuclear power plants status in the world in 1999, including the number of reactors in operation or under construction, the electricity supplied by nuclear power reactors and the respective percentage of electricity produced by nuclear energy in 1999, and the total operating experience to 31 December 1999, by country

  17. The UK nuclear power industry

    International Nuclear Information System (INIS)

    Collier, J. G.

    1995-01-01

    In the United Kingdom, nuclear power plants are operated by three companies: Nuclear Electric (NE), Scottish Nuclear (SN), and British Nuclear Fuels plc (BNFL). The state-operated power industry was privatized in 1989 with the exception of nuclear power generation activities, which were made part of the newly founded (state-owned) NE and SN. At the same time, a moratorium on the construction of new nuclear power plants was agreed. Only Sizewell B, the first plant in the UK to be equipped with a pressurized water reactor, was to be completed. That unit was first synchronized with the power grid on February 14, 1995. Another decision in 1989 provided for a review to be conducted in 1994 of the future of the peaceful uses of nuclear power in the country. The results of the review were presented by the government in a white paper on May 9, 1995. Accordingly, NE and SN will be merged and privatized in 1996; the headquarters of the new holding company will be in Scotland. The review does not foresee the construction of more nuclear power plants. However, NE hopes to gain a competitive edge over other sources of primary energy as a result of this privatization, and advocates construction of a dual-unit plant identical with Sizewell B so as to avoid recurrent design and development costs. Outside the UK, the company plans to act jointly with the reactor vendor, Westinghouse, especially in the Pacific region; a bid submitted by the consortium has been shortisted by the future operator of the Lungmen nuclear power plant project in Taiwan. In upgrading the safety of nuclear power plants in Eastern Europe, the new company will be able to work through existing contacts of SN. (orig.) [de

  18. Nuclear power in India

    International Nuclear Information System (INIS)

    Bose, D.K.

    1980-01-01

    India has now nine years of experience with her in nuclear power generation. The system has been acclaimed on various grounds by the authority concerned with its organization in the country. The present paper intends to examine critically the claim for economic superiority of the nuclear power over the thermal power which is asserted often by the spokesmen for the former. Information about the cost of nuclear power that is available to researchers in India is very meagre. Whatever appears in official publications is hardly adequate for working out reasonable estimates for scrutiny. One is therefore left to depend on the public statements made by dignitaries from time to time to form an idea about the economics of nuclear power. Due to gaps in information we are constrained to rely on the foreign literature and make careful guesses about possible costs applicable to India

  19. No to nuclear power

    International Nuclear Information System (INIS)

    2006-01-01

    Kim Beazley has again stated a Labor Government would not pursue nuclear power because the economics 'simply don't stack up'. 'We have significant gas, coal and renewable energy reserves and do not have a solution for the disposal of low-level nuclear waste, let alone waste from nuclear power stations.' The Opposition Leader said developing nuclear power now would have ramifications for Australia's security. 'Such a move could result in our regional neighbours fearing we will use it militarily.' Instead, Labor would focus on the practical measures that 'deliver economic and environmental stability while protecting our national security'. Mr Beazley's comments on nuclear power came in the same week as Prime Minister John Howard declined the request of Indian Prime Minister Manmohan Singh for uranium exports, although seemingly not ruling out a policy change at some stage. The Prime Ministers held talks in New Delhi over whether Australia would sell uranium to India without it signing the Nuclear Non-Proliferation Treaty. An agreement reached during a visit by US President George W. Bush gives India access to long-denied nuclear technology and guaranteed fuel in exchange for allowing international inspection of some civilian nuclear facilities. Copyright (2006) Crown Content Pty Ltd

  20. Canada's nuclear power programme

    International Nuclear Information System (INIS)

    Peden, W.

    1976-01-01

    Although Canada has developed the CANDU type reactor, and has an ambitious programme of nuclear power plant construction, there has been virtually no nuclear controversy. This progress was seen as a means to bring Canada out of the 'resource cow' era, and onto a more equal footing with technologically elite nations. However the Indian nuclear explosion test, waste storage problems, contamination problems arising from use of uranium ore processing waste as land fill and subsidised sale of nuclear power plants to Argentina and South Korea have initiated public and parliamentary interest. Some economists have also maintained that Canada is approaching over-supply of nuclear power and over-investment in plant. Canada has no official overall energy production plan and alternative sources have not been evaluated. (JIW)

  1. The renaissance of Italian nuclear power; La renaissance du nucleaire italien

    Energy Technology Data Exchange (ETDEWEB)

    Bouchter, J.C.; Cassuto, A. [CEA/Ambassade de France a Rome (Italy)

    2010-07-15

    In the fifties Italy was an advanced country in terms of nuclear electricity but as a consequence of the Chernobyl accident Italy changed drastically its energy policy and closed definitely all its nuclear plants. Now in order to be less dependent on energy imports and to reduce its CO{sub 2} emission, Italy has changed its mind and welcomes nuclear power in its future energy mix. The aim is to reach the following contributions for the production of electricity in 2030: 50% from fossil fuels, 25% from renewable energies and 25% from nuclear energy (13.000 MWe) and with a first reactor operating in 2020. The main actors of the renaissance of nuclear power in Italy are: -) ENEL (the second electricity producer in Europe), -) SOGIN, a company that is mainly in charge of the dismantling of nuclear plants, -) ENEA a state agency for the development of new technologies, energy and sustainable development, and -) companies working in the nuclear industry like ANSALDO. Various collaboration agreements have been signed between ENEL and EDF or between ENEA and CEA concerning staff training, nuclear safety or radioactive waste management. The main difficulties of this renaissance of the nuclear energy are to get the agreement of the national and local populations as well as that of the political class that is strongly marked by a division in 2 wings. (A.C.)

  2. Results on charmed meson decays from Mark III

    International Nuclear Information System (INIS)

    Wasserbaech, S.R.

    1987-04-01

    We report recent results on charmed meson decays, obtained using the Mark III detector at SPEAR. The first topic discussed is the observation of e + e - → D/sub s/D/sub s/* at √s = 4.14 GeV. The D/sub s/* is detected as a peak in the mass distribution recoiling from D/sub s/ +- → phiπ +- . The mass of the D/sub s/* is found to be (2109.3 +- 2.1 +- 3.1)MeV/c 2 , yielding a D/sub s/*-D/sub s/ mass difference of (137.9 +- 2.1 +- 4.3) MeV/c 2 . The production cross section times branching ratio is also measured. Next, a search for the decay D + → μ + nu/sub μ/ is described. A preliminary upper limit (90% CL) on B(D + → μ + nu/sub μ/) of 8.4 x 10 -4 is obtained, corresponding to an upper limit on the decay constant f/sub D/ of 340 MeV/c 2 . Finally, we present results of a search for the lepton family number violating decay D 0 → μe. We find B(D 0 → μe) -4 at 90% CL

  3. Nuclear power in Europe

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The increase in electronuclear production is the result of an investment policy which was started twenty years ago and actively pursued, notably by France where the programme was speeded up during the last decade. Over the whole of Europe taken in the widest sense, that is to say over the 10 million sq kms which stretch from the Atlantic to the Eastern borders of the Soviet Union with its population of nearly 664 million inhabitants (a sixth of the world population), the number of reactors continues to grow. In Eastern Europe a major investment programme is in progress and the Soviets have already reached the 1,500 MWe level. In the West, after a period of uncertainty marked by a systematic opposition to nuclear, public opinion is now much more favourable to this form of energy. The next referendum due to be held in Switzerland is likely to confirm this trend. There is still some uncertainty over the size of programmes as in Spain and Italy but it is true that the economic crisis had lead to a cut-back in energy demand. Consumption increases however turn up increasingly often. The following study examines 17 European countries which have already built nuclear power plants or are just about to do so [fr

  4. Inspection with non destructive assay techniques of the aluminium coating of the TRIGA Mark III reactor vat

    International Nuclear Information System (INIS)

    Reyes A, A.I.; Gonzalez M, A.; Castaneda J, G.; Rivera M, H.; Sandoval G, I.

    2001-01-01

    In June 2000, the Reactor Department assigned to the Scientific Research Direction of the National Institute of Nuclear Research requested to the Non-destructive Assays Laboratory (LEND), assigned to the Materials Science Management, the inspection and measurement of thickness of the aluminium coating (liner) of the TRIGA Mark III reactor vat with non-destructive assay techniques, due to that the aluminium coating is exposed mainly to undergo slimming on its back side due to corrosion phenomena. Activity that was able to be carried out from april until august 2001. It is worth pointing out that this type of inspection with these techniques was realized by first time. The non-destructive assays (NDA) are techniques which use indirect physical methods for inspecting the sanitation of components in process or in service, for detect lack of continuity or defects which affect their quality or usefulness. The application of those do not alter the physical, chemical, mechanical or dimensional properties of the part subject of inspection. The results of the application of the ultrasound inspection techniques, industrial radiography and penetrating liquids are presented. (Author)

  5. Nuclear power for environmental protection

    International Nuclear Information System (INIS)

    Souza Marques de, J.A.; Bennett, L.L.

    1989-09-01

    Nuclear power does not produce CO 2 or other greenhouse gases, and also does not produce any SO 2 , NO x or other gases which contribute to acid rain. These characteristics of nuclear power are especially important in comparison to coal-fired generation of electricity. As an example, in comparison with a coal-fired power plant of the same size, with abatement systems, a 1300 MW(e) nuclear power plant eliminates annually emissions to the air of about: 2000 t of particulates; 8.5 million t of CO 2 : 12,000 t of SO 2 ; and 6,000 t of NO x , the precise quantities being dependent on coal quality, power plant design and thermal efficiency, and on the effectiveness of the abatement systems. Opponents of nuclear power concede these facts, but argue that nuclear power is such a small part of the world energy balance that it is insignificant to the big issue of CO 2 . This is hardly correct. Today, 16% of the world's electricity (and 5% of the world's total primary energy) is generated using nuclear power. If this electricity were to have been generated using coal, it would have resulted in about 1600 million tons of CO 2 annually. This is 8% of the 20,000 million tons of CO 2 now emitted annually from the burning of fossil fuels, an amount which the Toronto Conference proposed should be cut by 20% up to the year 2005. A further major difference in the two energy systems is that the relatively smaller amount of nuclear wastes is fully isolated from the environment. In addition to discussing the global contributions of nuclear power to environmental improvement, the paper presents actual results achieved in a number of countries, demonstrating the positive contribution which nuclear power has made to reducing the environmental impacts of electricity production. 7 figs, 12 tabs

  6. Power generation costs. Coal - nuclear power

    International Nuclear Information System (INIS)

    1979-01-01

    This supplement volume contains 17 separate chapters investigating the parameters which determine power generation costs on the basis of coal and nuclear power and a comparison of these. A detailed calculation model is given. The complex nature of this type of cost comparison is shown by a review of selected parameter constellation for coal-fired and nuclear power plants. The most favourable method of power generation can only be determined if all parameters are viewed together. One quite important parameter is the load factor, or rather the hours of operation. (UA) 891 UA/UA 892 AMO [de

  7. Non-power application as an entry point to nuclear power program

    International Nuclear Information System (INIS)

    Nahrul Khair Alang Md Rashid

    2009-01-01

    Nuclear power is usually viewed as the flagship of nuclear technology. A nuclear power plant complex, visible and prominence, is iconic of the technology. That image makes its presence common knowledge to the extent that nuclear technology is equated almost totally with nuclear power by the general public. The downside of this visibility is that it becomes easy target in public misinformation programs. The non-power applications however are not visible, and devoid of icon. The non-power applications, therefore, can grow quite smoothly, attracting only little attention in the negative and in the positive senses. According to a study conducted in the USA in 2000 and in Japan in 2002, the socio-economic impact of non-power and power applications of nuclear technology are comparable. Involvement in non-power applications can be a good grounding for moving into power applications. This paper discusses the non-power nuclear technology applications and in what manner it can serve to prepare the introduction of nuclear power program. (Author)

  8. Current status of nuclear power development

    International Nuclear Information System (INIS)

    Dias, P.M.

    1994-01-01

    Nuclear power is not a viable energy source for Sri Lanka at present because of a number of reasons, the main reason being the non-availability of small and economically viable nuclear power plants. However several suppliers of nuclear power plants are in the process of developing small and medium power plants (SMPRs) which could be economically competitive with coal. The paper deals with past and future trends of nuclear power plants, their economics and safety. It also deals with environmental effects and public acceptance of nuclear power plants

  9. Nuclear safeguards control in nuclear power stations

    International Nuclear Information System (INIS)

    Boedege, R.; Braatz, U.; Heger, H.

    1976-01-01

    The execution of the Non-Proliferation Treaty (NPT) has initiated a third phase in the efforts taken to ensure peace by limiting the number of atomic powers. In this phase it is important, above all, to turn into workable systems the conditions imposed upon technology by the different provisions of the Verification Agreement of the NPT. This is achieved mainly by elaborating annexes to the Agreement specifically geared to certain model plants, typical representatives selected for LWR power stations being the plants at Garigliano, Italy (BWR), and Stade, Federal Republic of Germany (PWR). The surveillance measures taken to prevent any diversion of special nuclear material for purposes of nuclear weapons manufacture must be effective in achieving their specific objective and must not impede the circumspect management of operations of the plants concerned. A VDEW working party has studied the technical details of the planned surveillance measures in nuclear power stations in the Federal Republic of Germany and now presents a concept of material balancing by units which meets the conditions imposed by the inspection authority and could also be accepted by the operators of nuclear power stations. The concept provides for uninterrupted control of the material balance areas of the nuclear power stations concerned, allows continuous control of the whole nuclear fuel cycle, is based exclusively on existing methods and facilities, and can be implemented at low cost. (orig.) [de

  10. Nuclear power in British politics

    International Nuclear Information System (INIS)

    Pocock, R.F.

    1987-01-01

    The paper concerns the subject of nuclear power in British politics in 1986. The policies of the major political parties towards nuclear power are briefly outlined, along with public attitudes to nuclear energy, Chernobyl, and the rise of the anti-nuclear campaigners. (UK)

  11. Nuclear power in western society

    International Nuclear Information System (INIS)

    Franklin, N.L.

    1977-01-01

    The degree to which problems of public acceptance have contributed to the slowdown in progress of nuclear power in Western European countries and the USA is discussed. Some of the effects on the nuclear power industry, i.e. the electrical utilities, the power station suppliers, and the fuel cycle contractors are described. The problem of the lack of public acceptance is examined by consideration of four areas: the position of the employee working in nuclear installations, opposition from the local community, the question of terrorism and its impact on nuclear policy, and finally, what is felt to constitute the greatest anxiety concerning nuclear power, that of proliferation. (U.K.)

  12. Validation of the sterile manufacture of the AAEC MARK III molybdenum-99/techtnetium-99m generator

    International Nuclear Information System (INIS)

    Saunders, M.T.; Drummond, C.M.; Harrison, M.A.

    1982-07-01

    The Mark II molybdenum-99/technetium-99m generator now supplied to hospitals by the Australian Atomic Energy Commission is a non-sterile elution system. The Mark III version will be supplied as a sterile elution system. A validation study has been undertaken to assess the capability of the new production facility, to evaluate up-to-date procedures for manufacturing sterile generators and to demonstrate that a sterile radionuclide generator can be made. Generator manufacturing procedures and a time study of the validation are described. Microbiological methods for monitoring in-process aspects of manufacture, disinfectant efficacy and generator sterility are defined

  13. Nuclear power plant siting

    International Nuclear Information System (INIS)

    Sulkiewicz, M.; Navratil, J.

    The construction of a nuclear power plant is conditioned on territorial requirements and is accompanied by the disturbance of the environment, land occupation, population migration, the emission of radioactive wastes, thermal pollution, etc. On the other hand, a nuclear power plant makes possible the introduction of district heating and increases the economic and civilization activity of the population. Due to the construction of a nuclear power plant the set limits of negative impacts must not be exceeded. The locality should be selected such as to reduce the unfavourable effects of the plant and to fully use its benefits. The decision on the siting of the nuclear power plant is preceded by the processing of a number of surveys and a wide range of documentation to which the given criteria are strictly applied. (B.H.)

  14. The future of nuclear power

    International Nuclear Information System (INIS)

    Burtak, F.

    1993-01-01

    Nuclear power in Germany at present is confronting two challenges: On the one hand, technical innovations are required in order to meet the expectations of nuclear proponents while, on the other hand, a public stand must be taken vis-a-vis the demand to opt out of nuclear power. This means that nuclear engineers not only must perform their technical functions, but increasingly also engage themselves socially. Neglecting just one of these two challenges is likely to impair severely the future of nuclear power in Germany. In the absence of a swing in public opinion it will not be possible to build a new nuclear plant, and nuclear power will be doomed to extinction, at least in a number of countries, within a matter of decades. In the absence of technical innovation, today's LWR technology will cause the fissile uranium available naturally to be consumed, thus killing nuclear power for lack of future fissile material. In responding to the two challenges, nuclear technology must safeguard its future by not retreating into an ivory tower of pure technology; on the other hand, technical innovation is a prerequisite for its continued existence. (orig.) [de

  15. Crunch time for nuclear power

    International Nuclear Information System (INIS)

    Edwards, Rob.

    1994-01-01

    The Federal Republic of Germany, one of the most advanced nations, technically has a thriving nuclear power industry. However there is stiff opposition to nuclear power from political parties and environmental groups. General elections due to be held in mid October hold the future of the nuclear industry in the balance. If the present opposition party comes to power, it is committed to a policy of phasing out nuclear power completely. At the centre of the political uproar is the Gorleben ''interim store'' which is intended to house Germany's spent fuel for at least the next forty years. The nuclear industry must resolve the issue of nuclear waste disposal to the voters' satisfaction if it is to have a viable future. (UK)

  16. Nuclear power generation modern power station practice

    CERN Document Server

    1971-01-01

    Nuclear Power Generation focuses on the use of nuclear reactors as heat sources for electricity generation. This volume explains how nuclear energy can be harnessed to produce power by discussing the fundamental physical facts and the properties of matter underlying the operation of a reactor. This book is comprised of five chapters and opens with an overview of nuclear physics, first by considering the structure of matter and basic physical concepts such as atomic structure and nuclear reactions. The second chapter deals with the requirements of a reactor as a heat source, along with the diff

  17. Nuclear power ecology: comparative analysis

    International Nuclear Information System (INIS)

    Trofimenko, A.P.; Lips'ka, A.Yi.; Pisanko, Zh.Yi.

    2005-01-01

    Ecological effects of different energy sources are compared. Main actions for further nuclear power development - safety increase and waste management, are noted. Reasons of restrained public position to nuclear power and role of social and political factors in it are analyzed. An attempt is undertaken to separate real difficulties of nuclear power from imaginary ones that appear in some mass media. International actions of environment protection are noted. Risk factors at different energy source using are compared. The results of analysis indicate that ecological influence and risk for nuclear power are of minimum

  18. Nuclear power and climate change: The cost of adaptation

    International Nuclear Information System (INIS)

    Pailiere, H.

    2012-01-01

    For more than a decade, the international community has been voicing concern over growing greenhouse gas (GHG) emissions, which are believed to be the largest contributor to global warming and more generally to climate change. According to the Intergovernmental Panel on Climate Change (IPCC), an increase in the frequency of heat waves and droughts is expected in many parts of the world, as is that of storms, flooding and cold episodes. The potential consequences of this projected climate change have prompted calls to reduce the use of fossil fuels and to promote low-carbon energy sources such as renewables and nuclear power. At the same time, there has also been growing concern that without a rapid decrease in GHG emissions, climate change could occur at such a scale that it will have a significant impact on major economic sectors including the power generation sector. Although the expanded use of renewables will reduce emissions from the power sector, it will also increase the dependence of distribution systems and electricity production on climatic conditions. Thermal power plants, such as fossil fuel and nuclear, will be affected primarily by the diminishing availability of water and the increasing likelihood of heat waves, which will have an impact on the cooling capabilities and power output of plants. In its 2012 edition of the World Energy Outlook, the IEA underlined the need to address an additional challenge, the water-energy nexus: water needs for energy production are set to grow at twice the rate of energy demands over the next decades. It has thus become clear that the availability of water for cooling will be an important criterion for assessing the viability of energy projects. Given the long operating life of nuclear reactors (60 years for Generation III designs), the possible impact of climate change on the operation and safety of nuclear power plants needs to be addressed at the design and siting stages in order to limit costly adaptation measures

  19. Nuclear power - the Hydra's head

    International Nuclear Information System (INIS)

    Bunyard, Peter.

    1986-01-01

    Following the accident at Chernobyl, the nuclear policies of many governments have been reconsidered and restated. Those in favour of nuclear power are those with highly centralised state bureaucracies, such as France and the USSR, where public opinion is disregarded. In more democratic countries, where referenda are held, such as Austria and Sweden, the people have chosen to do away with nuclear power. Indeed, the author states that nuclear power represents the State against the people, the State against democracy. Reference is made to the IAEA Reactor Safety Conference held in September, 1986, in Vienna, and the declaration sent to it by AntiAtom International. This called for the United Nations to promote the phasing out of nuclear power facilities throughout the world. It also called on the IAEA to support the phasing out of nuclear power and promote benign energy forms instead. (UK)

  20. International nuclear power status 2002

    International Nuclear Information System (INIS)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L.

    2003-03-01

    This report is the ninth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2002, the report contains: 1) General trends in the development of nuclear power; 2) Decommissioning of the nuclear facilities at Risoe National Laboratory: 3) Statistical information on nuclear power production (in 2001); 4) An overview of safety-relevant incidents in 2002; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  1. Nuclear power - a reliable future

    International Nuclear Information System (INIS)

    Valeca, Serban

    2002-01-01

    The Ministry of Education and Research - Department of Research has implemented a national Research and Development program taking into consideration the following: - the requirements of the European Union on research as a factor of development of the knowledge-based society; - the commitments to the assimilation and enforcement of the recommendations of the European Union on nuclear power prompted by the negotiations of the sections 'Science and Research' and ' Energy' of the aquis communautaire; - the major lines of interest in Romania in the nuclear power field established by National Framework Program of Cooperation with IAEA, signed on April 2001; - the short and medium term nuclear options of the Romanian Government; - the objectives of the National Nuclear Plan. The major elements of the nuclear research and development program MENER (Environment, Energy, Resources) supported by the Department of Research of the Ministry of Education and Research are the following: - reactor physics and nuclear fuel management; - operation safety of the Power Unit 1 of Cernavoda Nuclear Electric Power Station; - improved nuclear technological solutions at the Cernavoda NPP; - development of technologies for nuclear fuel cycle; - operation safety of the other nuclear plants in Romania; - assessment of nuclear risks and estimation of the radiological impact on the environment; - behavior of materials under the reactor service conditions and environmental conditions; - design of nuclear systems and equipment for the nuclear power stations and nuclear facilities; - radiological safety; - application of nuclear techniques and technologies in industry, agriculture, medicine and other fields of social life. Research to develop high performance methods and equipment for monitoring nuclear impact on environment are conducted to endorse the measures for radiation protection. Also mentioned are the research on implementing a new type of nuclear fuel cycle in CANDU reactors as well as

  2. 2006 nuclear power world report

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    At the turn of 2006/2007, 437 nuclear power plants were available for energy supply, or were being commissioned, in 31 countries of the world. This is seven plants less than at the turn of 2005/2006. The aggregate gross power of the plants amounted to approx. 389.5 GWe, the aggregate net power, to 370.5 GWe. This indicates a slight decrease of gross power by some 0.15 GWe compared to the level the year before, while the available net power increased, also slightly, by approx. 0.2 GWe. The Tarapur 3 nuclear generating unit in India, a D 2 O PWR of 540 MWe gross power, was newly commissioned. In 2006, 8 nuclear power plants in Europe (4 in the United Kingdom, 2 in Bulgaria, 1 each in the Slovak Republic and in Spain) discontinued power operation for good. 29 nuclear generating units, i.e. 6 plants more than at the end of 2005, were under construction in late 2006 in 9 countries with an aggregate gross power of approx. 25.5 GWe. Worldwide, some 40 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases, contracts have already been signed. Net electricity generation in nuclear power plants worldwide in 2006 achieved another top ranking level of approx. 2,660 billion kWh (2005: approx. 2,750 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-1 fast breeder (USA) on December 20, 1951, cumulated gross production has reached approx. 56,875 billion kWh, and operating experience has grown to some 12,399 reactor years. (orig.)

  3. External Events Excluding Earthquakes in the Design of Nuclear Power Plants. Safety Guide

    International Nuclear Information System (INIS)

    2008-01-01

    This Safety Guide provides recommendations and guidance on design for the protection of nuclear power plants from the effects of external events (excluding earthquakes), i.e. events that originate either off the site or within the boundaries of the site but from sources that are not directly involved in the operational states of the nuclear power plant units. In addition, it provides recommendations on engineering related matters in order to comply with the safety objectives and requirements established in the IAEA Safety Requirements publication, Safety of Nuclear Power Plants: Design. It is also applicable to the design and safety assessment of items important to the safety of land based stationary nuclear power plants with water cooled reactors. Contents: 1. Introduction; 2. Application of safety criteria to the design; 3. Design basis for external events; 4. Aircraft crash; 5. External fire; 6. Explosions; 7. Asphyxiant and toxic gases; 8. Corrosive and radioactive gases and liquids; 9. Electromagnetic interference; 10. Floods; 11. Extreme winds; 12. Extreme meteorological conditions; 13. Biological phenomena; 14. Volcanism; 15. Collisions of floating bodies with water intakes and UHS components; Annex I: Aircraft crashes; Annex II: Detonation and deflagration; Annex III: Toxicity limits.

  4. Nuclear power in the EC

    International Nuclear Information System (INIS)

    Charrault, J.C.

    1991-01-01

    Nuclear power accounts for some 35% of electricity production in the European Community (EC). Using a mathematical analysis, based on different scenarios, i.e. low/high electricity demand and nuclear moratorium/revival, various demand forecasts are made. A pragmatic approach, considering conventional power generation pollution problems, forecasts a revival of nuclear power

  5. The influence nuclear power has on corporate image and the effect of offering merit information of nuclear power

    International Nuclear Information System (INIS)

    Oiso, Shinichi

    2006-01-01

    Many electric power companies in Japan, irrespective of their nuclear power generation ratio's difference, have nuclear power plants. These days, corporate brand image is becoming more and more important. Therefore, a survey was carried out to study the effect that nuclear power (including comparison with the other type of industry besides electric power) has on the corporate image of an electric power company. Further more, the survey includes a research about the effect on people's attitude change towards nuclear power before and after discovering the merits or benefits of nuclear power. The possibility of enhancing the corporate brand image of electric power companies by providing merit information of nuclear power was studied. (author)

  6. History on foundation of Korea nuclear power

    International Nuclear Information System (INIS)

    Park, Ik Su

    1999-12-01

    This reports the history on foundation of Korea nuclear power from 1955 to 1980, which is divided ten chapters. The contents of this book are domestic and foreign affairs before foundation of nuclear power center, establishment of nuclear power and research center, early activity and internal conflict about nuclear power center, study for nuclear power business and commercialization of the studying ordeal over nuclear power administration and new phase, dispute for jurisdiction on nuclear power business and the process, permission for nuclear reactor, regulation and local administration, the process of deliberation and decision of reactor 3. 4 in Yonggwang, introduction of nuclear reprocessing facilities and activities for social organization.

  7. Some power uprate issues in nuclear power plants

    International Nuclear Information System (INIS)

    Tipping, Philip

    2008-01-01

    Issues and themes concerned with nuclear power plant uprating are examined. Attention is brought to the fact that many candidate nuclear power plants for uprating have anyway been operated below their rated power for a significant part of their operating life. The key issues remain safety and reliability in operation at all times, irrespective of the nuclear power plant's chronological or design age or power rating. The effects of power uprates are discussed in terms of material aspects and expected demands on the systems, structures and components. The impact on operation and maintenance methods is indicated in terms of changes to the ageing surveillance programmes. Attention is brought to the necessity checking or revising operator actions after power up-rating has been implemented

  8. Nuclear power plant outages

    International Nuclear Information System (INIS)

    1998-01-01

    The Finnish Radiation and Nuclear Safety Authority (STUK) controls nuclear power plant safety in Finland. In addition to controlling the design, construction and operation of nuclear power plants, STUK also controls refuelling and repair outages at the plants. According to section 9 of the Nuclear Energy Act (990/87), it shall be the licence-holder's obligation to ensure the safety of the use of nuclear energy. Requirements applicable to the licence-holder as regards the assurance of outage safety are presented in this guide. STUK's regulatory control activities pertaining to outages are also described

  9. 4. Nuclear power plant component failures

    International Nuclear Information System (INIS)

    1990-01-01

    Nuclear power plant component failures are dealt with in relation to reliability in nuclear power engineering. The topics treated include classification of failures, analysis of their causes and impacts, nuclear power plant failure data acquisition and processing, interdependent failures, and human factor reliability in nuclear power engineering. (P.A.). 8 figs., 7 tabs., 23 refs

  10. French lessons in nuclear power

    International Nuclear Information System (INIS)

    Valenti, M.

    1991-01-01

    In stark contrast to the American atomic power experience is that of the French. Even the disaster at Chernobyl in 1986, which chilled nuclear programs throughout Western Europe, did not slow the pace of the nuclear program of the state-owned Electricite de France (EDF), based in Paris. Another five units are under construction and are scheduled to be connected to the French national power grid before the end of 1993. In 1989, the EDF's 58 nuclear reactors supplied 73 percent of French electrical needs, a higher percentage than any other country. In the United States, for example, only about 18 percent of electrical power is derived from the atom. Underpinning the success of nuclear energy in France is its use of standardized plant design and technology. This has been an imperative for the French nuclear power industry since 1974, when an intensive program of nuclear power plant construction began. It was then, in the aftermath of the first oil embargo, that the French government decided to reduce its dependence on imported oil by substituting atomic power sources for hydrocarbons. Other pillars supporting French nuclear success include retrofitting older plants with technological or design advances, intensive training of personnel, using robotic and computer aids to reduce downtime, controlling the entire nuclear fuel cycle, and maintaining a comprehensive public information effort about the nuclear program

  11. Thai Nuclear Power Program

    International Nuclear Information System (INIS)

    Namwong, Ratanachai

    2011-01-01

    The Electricity Generating Authority of Thailand (EGAT), the main power producer in Thailand, was first interested in nuclear power as an electricity option in 1967 when the electricity demand increased considerably for the first time as a result of the economic and industrial growth. Its viability had been assessed several times during the early seventies in relation to the changing factors. Finally in the late 1970s, the proceeding with nuclear option was suspended for a variety of reasons, for instance, public opposition, economic repercussion and the uncovering of the indigenous petroleum resources. Nonetheless, EGAT continued to maintain a core of nuclear expertise. During 1980s, faced with dwindling indigenous fossil fuel resources and restrictions on the use of further hydro as an energy source, EGAT had essentially reconsidered introducing nuclear power plants to provide a significant fraction to the long term future electricity demand. The studies on feasibility, siting and environmental impacts were conducted. However, the project was never implemented due to economics crisis in 1999 and strong opposition by environmentalists and activists groups. The 1986 Chernobyl disaster was an important cause. After a long dormant period, the nuclear power is now reviewed as one part of the solution for future energy supply in the country. Thailand currently relies on natural gas for 70 percent of its electricity, with the rest coming from oil, coal and hydro-power. One-third of the natural gas consumed in Thailand is imported, mainly from neighbouring Myanmar. According to Power Development Plan (PDP) 2007 rev.2, the total installed electricity capacity will increase from 28,530.3 MW in 2007 to 44,281 MW by the end of plan in 2021. Significantly increasing energy demand, concerns over climate change and dependence on overseas supplies of fossil fuels, all turn out in a favor of nuclear power. Under the current PDP (as revised in 2009), two 1,000- megawatt nuclear

  12. Steps to nuclear power

    International Nuclear Information System (INIS)

    1975-01-01

    The recent increase in oil prices will undoubtedly cause the pace at which nuclear power is introduced in developing countries to quicken in the next decade, with many new countries beginning to plan nuclear power programmes. The guidebook is intended for senior government officials, policy makers, economic and power planners, educationalists and economists. It assumes that the reader has relatively little knowledge of nuclear power systems or of nuclear physics but does have a general technical or management background. Nuclear power is described functionally from the point of view of an alternative energy source in power system expansion. The guidebook is based on an idealized approach. Variations on it are naturally possible and will doubtless be necessary in view of the different organizational structures that already exist in different countries. In particular, some countries may prefer an approach with a stronger involvement of their Atomic Energy Commission or Authority, for which this guidebook has foreseen mainly a regulatory and licensing role. It is intended to update this booklet as more experience becomes available. Supplementary guidebooks will be prepared on certain major topics, such as contracting for fuel supply and fuel cycle requirements, which the present book does not go into very deeply

  13. The separation of nuclear power from nuclear proliferation

    International Nuclear Information System (INIS)

    Starr, C.

    1979-01-01

    There exists world wide a strong common desire to limit nuclear weapons proliferation so as to inhibit or remove the threat of nuclear warfare. While this is a primary international political objective, there has also developed a secondary objective to limit any potential contribution to such nuclear weapons proliferation which might arise by the diversion of weapons material from the civilian nuclear power fuel cycle. This secondary objective is the basis of the present US government policy to defer the reprocessing of nuclear fuels anywhere. This policy has been generally recognized as a temporary expedient to provide time for international reexamination of the problems of weapons proliferation associated with nuclear power. A successful development of the proposed combination of the Fast Breeder Reactor and the Civex fuel reprocessing facility would provide an economical nuclear power source for many centuries which inherently separates nuclear power from the issue of weapons material diversion and proliferation. Further, by so doing, it permits great flexibility in international and national planning for nuclear power, as the issues of fuel dependence and terrorist and subnational diversions disappear. In addition, the expansion of the FBR/Civex system would eat into the LWR spent fuel stockpile, diminishing steadily this relatively accessible plutonium source. And finally, a rapid development of the FBR/Civex for the above reasons would substantially reduce the worldwide concern as to the adequacy of uranium ore supply. (Auth.)

  14. Nuclear power in developing countries

    International Nuclear Information System (INIS)

    Morrison, R.W.

    1980-01-01

    A few of the essential issues which arise when we consider nuclear power and development together in the context of energy policy are discussed. Ethical concerns must ultimately be expressed through policies and their impact on people. There are ethical issues associated with nuclear power in the developing countries which deserve our attention. Four aspects of the question of nuclear power in developing countries are considered: their energy situation; the characteristics of nuclear power which are relevant to them; whether developing countries will undertake nuclear power programmes; and finally the ethical implications of such programmes. It is concluded that what happens in developing countries will depend more on the ethical nature of major political decisions and actions than on the particular technology they use to generate their electricity. (LL)

  15. Alternatives of seawater desalination using nuclear power

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Vargas, Samuel; Valle, Edmundo del; Ramirez, Ramon

    2012-01-01

    Highlights: ► Cogeneration is economically assessed using two different size nuclear reactors. ► Mexican northwest region was the case for economical comparisons of cogeneration. ► Medium size nuclear reactors provide more flexibility to meet coupling demands. ► Although there is a higher overnight cost for medium size reactors, they are cost competitive. ► Cogeneration alternative using medium size reactors is less expensive. - Abstract: Nuclear power is a clean energy alternative that is already used to provide water and electricity and it helps to reduce concern of climate change. The new deployments of nuclear power are based on the Generation III reactors which come in sizes from 1100 to 1700 MWe, in addition there is a process in the very close future to provide a new generation of small and medium size reactors, less than 600 MWe. Thus, cogeneration of electricity and potable water from desalination can be based on big or small/medium reactors. This paper performs an economical comparison of nuclear desalination using two PWR (pressurized water reactor) reactor type, a big one, AP1000, against a medium reactor, IRIS. It assesses the electricity and potable water needs for the northwest region of Mexico and presents alternatives of supply based on cogeneration, using the three different single potable water processes, reverse osmosis (RO), multi-stage flash distillation (MSF) and multi-effect distillation (MED), and two hybrid methods for different potable water quality based on the amount of dissolved solids in the potable water. Investment results for the specific need are presented for all the alternatives assessed along with advantages and disadvantages.

  16. Support to the elaboration of the engineering of detail, configuration and programming of the control system of heat removal of the TRIGA Mark III reactor

    International Nuclear Information System (INIS)

    Diaz G, C. A.

    2016-01-01

    Nowadays, the peaceful and responsible use of nuclear energy in Mexico is of great importance and contributes to economic, social, scientist and technologic development in the country, highlighting the Instituto Nacional de Investigaciones Nucleares (ININ) and the Nuclear Power Plant of Laguna Verde as one of the most important dependences. Among the main facilities and laboratories of ININ is the Nuclear Research Reactor TRIGA Mark III, this is a pool type reactor with mobile core, cooled and moderated by light water and a flow of 1013 n/cm"2/sec. Due to the technological obsolescence is a growing problem that threatens the information, operation and/or efficacy of elements of control and safety systems of the reactor, these must be changed each time more frequently. In the modernization of reactor was used a Modicon M340 programmable logic control (PLC) and a Twido PLC for the control of heat removal system (Primary Cooling System (PCS) and Secondary Cooling System (SCS) respectively), this because the PLC has proven to be safe and effective devices, addition to reduce the wiring elements and increase the possibilities of performance and design of the digital control console. This document shows and describes the elements of heat removal system (PCS and SCS), and the signals and signal types that such items send or received by the PLC, likewise, is indicated the methodology used to develop the applications for the control of the Primary Cooling System and Secondary Cooling System, beginning with the PLC design, the development of PLC plans and the control logic, and finally, the simulation and debugging of applications on Unity Pro and Twido Suite. All this in compliance with the safety standards to nuclear research reactors (NS-R-4), the rules of industrial programming (IEC 61131-3), and the reactor operating limits postulated in the safety report and the software assurance system used in the ININ. (Author)

  17. The nuclear power generation

    International Nuclear Information System (INIS)

    Serres, R.

    1999-01-01

    The French nuclear generating industry is highly competitive. The installations have an average age of fifteen years and are half way through their expected life. Nuclear power accounts for 70% of the profits of the French generating company, EDF. Nuclear generation has a minimal effect on the atmosphere and France has a level of CO 2 emissions, thought to be the main cause of the greenhouse effect, half that of Europe as a whole. The air in France is purer than in neighbouring countries, mainly because 75% of all electrical power is generated in nuclear plants and 15% in hydroelectric stations. The operations and maintenance of French nuclear power plants in the service and distribution companies out of a total of 100 000 employees in all, 90 % of whom are based in mainland France. (authors)

  18. Nuclear power and safety

    International Nuclear Information System (INIS)

    Saunders, P.; Tasker, A.

    1991-01-01

    Nuclear power currently provides about a fifth of both Britain's and the world's electricity. It is the largest single source of electricity in Western Europe; in France three quarters of electricity is generated by nuclear power stations. This booklet is about the safety of those plants. It approaches the subject by outlining the basic principles and approaches behind nuclear safety, describing the protective barriers and safety systems that are designed to prevent the escape of radioactive material, and summarising the regulations that govern the construction and operation of nuclear power stations. The aim is to provide a general understanding of the subject by explaining the general principles of the Advanced Gas Cooled Reactor and setting out the UKAEA strategy for nuclear safety, the objective being always to minimize risk. (author)

  19. Nuclear power plants in post-war thought

    International Nuclear Information System (INIS)

    Toya, Hiroshi

    2015-01-01

    This paper overviews how nuclear power plants have been talked about in the post-war thought. Science and technology sometimes significantly change the thinking way of humans, and nuclear power generation is an extreme technology. This paper overviews how nuclear power plants and humans are correlated. The following three points are discussed as the major issues of contemporary thought over nuclear power plants. First, on the danger of nuclear power plants, the risk of destructive power that nuclear energy has, and the danger of unreasoning development in science and technology civilization are discussed. Second, on the ethics issues surrounding nuclear power plants, the ethics that are based on unbalanced power relations, and democratic responsibility ethics based on discussion ethics are discussed. Third, on the issues of nuclear power plants and imagination, the limitations of democratic discussion surrounding nuclear power plants, the formation of imagination commensurate with the destructive power of nuclear power plants, and the formation of imagination that can represent the distant future are discussed. (A.O.)

  20. Nuclear power in developing countries

    International Nuclear Information System (INIS)

    Lane, J.A.; Covarrubias, A.J.; Csik, B.J.; Fattah, A.; Woite, G.

    1977-01-01

    This paper is intended to be a companion to similar papers by OECD/NEA and CMEA and will summarize the nuclear power system plans of developing Member States most likely to have nuclear programmes before the year 2000. The information that is presented is derived from various sources such as the Agency 1974 study of the market for nuclear power in developing countries, the annual publication, ''Power Reactors in Member States - 1976 Edition'', various nuclear power planning studies carried out by the Agency during the period 1975 and 1976, direct correspondence with selected Member States and published information in the open literature. A preliminary survey of the prospects for nuclear power in Member States not belonging to the OECD or having centrally planned economies indicates that about 27 of these countries may have operating nuclear power plants by the end of the century. In the 1974 Edition of the ''Market Survey'' it was estimated that the installed nuclear capacity in these countries might reach 24 GW by 1980, 157 GW by 1190 and 490 GW by the year 2000. It now appears that these figures are too high for a number of reasons. These include 1) the diminished growth in electrical demand which has occurred in many Member States during the last several years, 2) the extremely high cost of nuclear plant construction which has placed financial burdens on countries with existing nuclear programmes, 3) the present lack of commercially available small and medium power reactors which many of the smaller Member States would need in order to expand their electric power systems and 4) the growing awareness of Member States that more attention should be paid to exploitation of indigenous energy sources such as hydroelectric power, coal and lignite

  1. Nuclear power. Europe report

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    Last year, 2001, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In 8 of the 15 member countries of the European Union nuclear power plants have been in operation. In 7 of the 13 EU Candidate Countries nuclear energy was used for power production. A total of 216 plants with an aggregate net capacity of 171 802 MWe and an aggregate gross capacity of 181 212 MWe were in operation. One unit, i.e. Volgodonsk-1 in Russia went critical for the first time and started test operation after having been connected to the grid. Volgodonsk-1 adds about 1 000 MWe (gross) nd 953 MWe (net) to the electricity production capacity. The operator of the Muehlheim-Kaerlich NPP field an application to decommission and dismantle the plant; this plant was only 13 months in operation and has been shut down since 1988 for legal reasons. Last year, 10 plants were under construction in Romania (1), Russia (4), Slovakia (2), the Czech Republic (1) and the Ukraine (2), that is only in East European Countries. In eight countries of the European Union 143 nuclear power plants have been operated with an aggregate gross capacity of 128 758 MWe and an aggregate net capacity of 122 601 MWe. Net electricity production in 2001 in the EU amounts to approx. 880.3 TWh gross, which means a share of 33,1 per cent of the total production in the whole EU. Shares of nuclear power differ widely among the operator countries. The reach 75.6% in France, 74.2% in Lithuania, 58.2% in Belgium, 53.2% in the Slovak Republic, and 47.4% in the Ukraine. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal, and Austria. On May 24th, 2002 the Finnish Parliament voted for the decision in principle to build a fifth nuclear power plant in the country. This launches the next stage in the nuclear power plant project. The electric output of the plant unit will be 1000-1600 MW

  2. Nuclear power in Germany

    International Nuclear Information System (INIS)

    Beckurts, K.H.

    1985-01-01

    On the occasion of the retirement of the Editor-in-chief of 'atomwirtschaft', the author gave a keynote speech on the development of nuclear power in the Federal Republic of Germany at the headquarters of the Handelsblatt Verlag in Duesseldorf on October 30, 1984. He subdivided the period under discussion into five phases, the first of which comprises the 'founding years' of 1955 to 1960. This was the time when activities in nuclear research and nuclear technology in Germany, which were permitted again in mid-1955, began with the establishment of the national research centers, the first Atomic Power Program, the promulgation of the Atomic Energy Act, the foundation of government organizations, including the Federal Ministry for Atomic Energy, etc. In the second phase, between 1960 and 1970, a solid foundation was laid for the industrial peaceful uses of nuclear power in the construction of the first LWR experimental nuclear power stations, the first successful export contracts, the beginnings of the first nuclear fuel cycle plants, such as the WAK reprocessing plant, the Asse experimental repository, the Almelo agreement on centrifuge enrichment. The third phase, between 1970 and 1975, was a period of euphoria, full of programs and forecasts of a tremendous boom in nuclear generating capacities, which were further enhanced by the 1973 oil squeeze. In 1973 and 1974, construction permits for ten nuclear power plants were applied for. The fourth phase, between 1975 and 1980, became a period of crisis. The fifth phase, the eighties, give rise to hope for a return to reason. (orig./UA) [de

  3. Nuclear power and sustainable development

    International Nuclear Information System (INIS)

    Sandklef, S.

    2000-01-01

    Nuclear Power is a new, innovative technology for energy production, seen in the longer historic perspective. Nuclear technology has a large potential for further development and use in new applications. To achieve this potential the industry needs to develop the arguments to convince policy makers and the general public that nuclear power is a real alternative as part of a sustainable energy system. This paper examines the basic concept of sustainable development and gives a quality review of the most important factors and requirements, which have to be met to quality nuclear power as sustainable. This paper intends to demonstrate that it is not only in minimising greenhouse gas emissions that nuclear power is a sustainable technology, also with respect to land use, fuel availability waste disposal, recycling and use of limited economic resources arguments can be developed in favour of nuclear power as a long term sustainable technology. It is demonstrated that nuclear power is in all aspects a sustainable technology, which could serve in the long term with minimal environmental effects and at minimum costs to the society. And the challenge can be met. But to achieve need political leadership is needed, to support and develop the institutional and legal framework that is the basis for a stable and long-term energy policy. Industry leaders are needed as well to stand up for nuclear power, to create a new industry culture of openness and communication with the public that is necessary to get the public acceptance that we have failed to do so far. The basic facts are all in favour of nuclear power and they should be used

  4. Nuclear power: achievement and prospects

    International Nuclear Information System (INIS)

    Roberts, L.E.J.

    1993-01-01

    History of nuclear power generation from the time it was a technological curiosity to the time when it developed into a mature, sizeable international industry is outlined. Nuclear power now accounts for 17% of the world's total electricity generated. However, it is noted that the presently installed capacity of nuclear power generation falls short of early expectations and nuclear power is not as cheap as it was hoped earlier. There is opposition to nuclear power from environmentalists and the public due to fear of radiation and the spread of radioactivity during accidents, even though nuclear reactors by and large have a good safety record. Taking into account the fact that electricity consumption is growing at the rate of 2-3% in the industrialized world and at over 5% in the rest of world and pollution levels are increasing due to burning of fossil fuels and subsequent greenhouse effect, the demand for power will have to be be met by increasing use of non-fossil fuels. One of the most promising non-fossil fuels is the nuclear fuel. In the next 30 years, the nuclear power generation capacity can be increased two to three times the present capacity by: (1) managing economics, (2) extending uranium resources by reprocessing spent fuel and recycling the recovered uranium and plutonium and by using fast reactor technology (3) getting public acceptance of and support for nuclear power by allaying the fear of radiation and the fear of large scale accidents through quantitative risk analysis and (4) establishing public confidence in waste disposal methods. (M.G.B.). 18 refs., 2 tabs

  5. Revisiting the cost escalation curse of nuclear power. New lessons from the French experience

    International Nuclear Information System (INIS)

    Escobar Rangel, Lina; Leveque, Francois

    2012-01-01

    Since the first wave of nuclear reactors in 1970 to the construction of Generation III+ reactors in Finland and France in 2005 and 2007 respectively, nuclear power seems to be doomed to a cost escalation curse. In this paper we reexamine this issue for the French nuclear power fleet. Using the construction costs from the Cour des Comptes report, that was publicly available in 2012, we found that previous studies overestimated the cost escalation. Although, it is undeniable that the scale-up ended up in more costly reactors, we found evidence of a learning curve within the same size and type of reactors. This result confirms that standardization is a good direction to look, in order to overcome the cost escalation curse. (authors)

  6. The development of Chinese power industry and its nuclear power

    International Nuclear Information System (INIS)

    Zhou Dabin

    2002-01-01

    The achievements and disparity of Chinese power industry development is introduced. The position and function of nuclear power in Chinese power industry is described. Nuclear power will play a role in ensuring the reliable and safe supply of primary energy in a long-term and economic way. The development prospects of power source construction in Chinese power industry is presented. Challenge and opportunity in developing nuclear power in China are discussed

  7. Nuclear power infrastructure and planning

    International Nuclear Information System (INIS)

    2005-01-01

    There are several stages in the process of introducing nuclear power in a country. These include feasibility studies; technology evaluation; request for proposals and proposal evaluation; project and contracts development and financing; supply, construction, and commissioning; and finally operation. The IAEA is developing guidance directed to provide criteria for assessing the minimum infrastructure necessary for: a) a host country to consider when engaging in the implementation of nuclear power, or b) a supplier country to consider when assessing that the recipient country would be in an acceptable condition to begin the implementation of nuclear power. There are Member States that may be denied the benefits of nuclear energy if the infrastructure requirements are too large or onerous for the national economy. However if co-operation could be achieved, the infrastructure burden could be shared and economic benefits gained by several countries acting jointly. The IAEA is developing guidance on the potential for sharing of nuclear power infrastructure among countries adopting or extending nuclear power programme

  8. Nuclear power: the turning tide

    International Nuclear Information System (INIS)

    Riley, P.J.; Warren, D.S.

    1981-01-01

    During 1980 and 1981, opposition to the expansion of the nuclear power generation programme grew from about 45% of the population to approximately 53%. Women, young people and labour voters are the most strongly opposed to nuclear power but among no section of the population is there a clear majority in favour of building more nuclear power stations. (author)

  9. Overview paper on nuclear power

    International Nuclear Information System (INIS)

    Spiewak, I.; Cope, D.F.

    1980-09-01

    This paper was prepared as an input to ORNL's Strategic Planning Activity, ORNL National Energy Perspective (ONEP). It is intended to provide historical background on nuclear power, an analysis of the mission of nuclear power, a discussion of the issues, the technology choices, and the suggestion of a strategy for encouraging further growth of nuclear power

  10. Nuclear power and other thermal power

    International Nuclear Information System (INIS)

    Bakke, J.

    1978-01-01

    Some philosophical aspects of mortality statistics are first briefly mentioued, then the environmental problems of, first, nuclear power plants, then fossil fuelled power plants are summarised. The effects of releases of carbon dioxide, sulphur dioxide and nitrogen oxides are briefly discussed. The possible health effects of radiation from nuclear power plants and those of gaseous and particulate effluents from fossil fuel plants are also discussed. It is pointed out that in choosing between alternative evils the worst course is to make no choice at all, that is, failure to install thermal power plants will lead to isolated domestic burning of fossil fuels which is clearly the worst situation regarding pollution. (JIW)

  11. Nuclear power plant operator licensing

    International Nuclear Information System (INIS)

    1997-01-01

    The guide applies to the nuclear power plant operator licensing procedure referred to the section 128 of the Finnish Nuclear Energy Degree. The licensing procedure applies to shift supervisors and those operators of the shift teams of nuclear power plant units who manipulate the controls of nuclear power plants systems in the main control room. The qualification requirements presented in the guide also apply to nuclear safety engineers who work in the main control room and provide support to the shift supervisors, operation engineers who are the immediate superiors of shift supervisors, heads of the operational planning units and simulator instructors. The operator licensing procedure for other nuclear facilities are decided case by case. The requirements for the basic education, work experience and the initial, refresher and complementary training of nuclear power plant operating personnel are presented in the YVL guide 1.7. (2 refs.)

  12. Are atomic power plants saver than nuclear power plants

    International Nuclear Information System (INIS)

    Roeglin, H.C.

    1977-01-01

    It is rather impossible to establish nuclear power plants against the resistance of the population. To prevail over this resistance, a clarification of the citizens-initiatives motives which led to it will be necessary. This is to say: It is quite impossible for our population to understand what really heappens in nuclear power plants. They cannot identify themselves with nuclear power plants and thus feel very uncomfortable. As the total population feels the same way it is prepared for solidarity with the citizens-initiatives even if they believe in the necessity of nuclear power plants. Only an information-policy making transparent the social-psychological reasons of the population for being against nuclear power plants could be able to prevail over the resistance. More information about the technical procedures is not sufficient at all. (orig.) [de

  13. Public perception process of nuclear power risk and some enlightenment to public education for nuclear power acceptance

    International Nuclear Information System (INIS)

    Yang Bo

    2013-01-01

    This paper, based on the international research literatures on perception of risks, designs a conceptual model of public perception of nuclear power risk. In this model, it is considered that the public perception of nuclear power risk is a dynamic, complicate and closed system and is a process from subjective perception to objective risk. Based on the features of the public perception of nuclear power risk and multi-faceted dimension influences as discussed, suggestions for the public education for nuclear power acceptance are given in five aspects with indication that the public education for nuclear power acceptance plays an important role in maintaining the public perception of nuclear power risk system. (author)

  14. Nuclear power in competitive electricity markets

    International Nuclear Information System (INIS)

    2000-01-01

    Economic deregulation in the power sector raises new challenges for the prospects of nuclear power. A key issue is to assess whether nuclear power can be competitive in a de-regulated electricity market. Other important considerations include safety, nuclear liability and insurance, the nuclear power infrastructure, and health and environmental protection. This study, conducted by a group of experts from twelve OECD Member countries and three international organisations, provides a review and analysis of these issues, as related to both existing and future nuclear power plants. It will be of particular interest to energy analysts, as well as to policy makers in the nuclear and government sectors. (author)

  15. Abuse of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Hill, J [UKAEA

    1976-09-01

    This paper reproduces an address by Sir John Hill, Chairman of the United Kingdom Atomic Energy Authority, at a conference in London organised by the Financial Times in July 1976. Actions that, in the author's view, could be regarded as constituting abuse of nuclear power are first summarised, and the various aspects of the use and abuse of nuclear power are discussed. The author considers that achieving the maximum degree of acceptance of the Non-Proliferation Treaty is the most important political objective in nuclear power, but considers that nuclear terrorism would be abortive and that, so far as the UK is concerned, the present precautions are adequate and will remain so. It is considered that much abuse of nuclear power arises from the prevalence of its critics, particularly with reference to Pu hazards, the health of nuclear employees, and possible damage to the health of the public. The Pu problem is considered to be far more emotive than rational. The possibility of lung cancer and leukaemia is discussed. It is concluded that atomic energy is one of the best of industries in which to work, both from the health and interest points of view.

  16. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume III. Resources and fuel cycle facilities

    International Nuclear Information System (INIS)

    1980-06-01

    The ability of uranium supply and the rest of the nuclear fuel cycle to meet the demand for nuclear power is an important consideration in future domestic and international planning. Accordingly, the purpose of this assessment is to evaluate the adequacy of potential supply for various nuclear resources and fuel cycle facilities in the United States and in the world outside centrally planned economy areas (WOCA). Although major emphasis was placed on uranium supply and demand, material resources (thorium and heavy water) and facility resources (separative work, spent fuel storage, and reprocessing) were also considered

  17. Nuclear power strategy: requirements for technology

    International Nuclear Information System (INIS)

    Orlov, V.V.; Rachkov, V.I.

    2001-01-01

    The possible role of nuclear power in sustainable development demands answers to at least three questions: Is large-scale nuclear power essential to future development? - Is it feasible to have modern nuclear power transformed for large-scale deployment? - When will large-scale nuclear power be practically needed? The questions are analysed with the requirements to be fulfilled concerning present-day technologies

  18. The economics of nuclear power

    International Nuclear Information System (INIS)

    Monto, Geethanjali

    2011-01-01

    Nuclear power is seen by some as a partial solution to climate change. The obvious supporters include nuclear establishments, but the 'surprising' supporters comprise some environmentalists like James Lovelock. One of the 15 strategies proposed by Stephen Pacala and Robert Socolow as part of their wedge model is to substitute nuclear power for coal power. The addition of 700 GW of nuclear power, i.e. roughly twice the current global capacity, would constitute one wedge and could reduce one billion tonnes of carbon by mid-century. (The other 14 strategies include: efficient vehicles; reduced use of vehicles; efficient buildings; efficient baseload coal plants; gas baseload power for coal baseload power capture CO 2 at baseload power plant capture CO 2 at H 2 plant; capture CO 2 at coal-to-synfuels plant and geological storage; wind power for coal power; PV power for coal power; wind H 2 in fuel-cell car for gasoline in hybrid car; biomass fuel for fossil fuel; reduced deforestation, plus reforestation, afforestation, and new plantations, and conservation tillage

  19. Development of Czechoslovak nuclear power engineering

    International Nuclear Information System (INIS)

    Keher, J.

    1985-01-01

    The output of Czechoslovak nuclear power plants is envisaged at 2200 MW by 1985, 4400 MW by 1990 and 10,280 MW by the year 2000. The operation so far is assessed of Bohunice V-1 and Bohunice V-2 power plants as is the construction of the Dukovany nuclear power plant. International cooperation in the fulfilment of the nuclear power programme is based on the General Agreement on Cooperation in the Prospective Development and Interlinkage of CMEA Power Systems to the year 1990, the Agreement on Multilateral International Specialization and Cooperation of Production and on Mutual Deliveries of Nuclear Power Plant Equipment. The most important factor in international cooperation is the Programme of Cooperation between the CSSR and the USSR. The primary target in the coming period is the Temelin nuclear power plant project and the establishment of unified control of the nuclear power complex. (M.D.)

  20. Nuclear power complexes and economic-ecological problems of nuclear power development

    International Nuclear Information System (INIS)

    Dollezhal', N.A.; Bobolovich, V.N.; Emel'yanov, I.Ya.

    1977-01-01

    The effect of constructing NPP's at separate sites in densely populated areas on economic efficiency of nuclear power and its ecological implications has been investigated. Locating NPP's and nuclear fuel cycle plants at different sites results in large scale shipments of fresh and spent nuclear fuels and radioactive wastes. The fact increases the risk of a detrimental environmental impact, duration of the external fuel cycle, and worsens, in the end, nuclear power economics. The prudence of creating nuclear parks is discussed. The parks may be especially efficient if the program of developing NPP's with fast breeder reactors is a success. Comparative evaluations show that from economic standpoint deployment of nuclear parks in the European part of the USSR has no disadvantage before construction of separate NPP's and supporting fuel cycle facilities of equivalent capacity, even if the construction of nuclear parks runs dearer by 30% than assumed. The possibility for nuclear parks to meet a part of demand for ''off-peak'' energy production, district heating and process heat production is also shortly discussed

  1. Behavior of exposed human lymphocytes to a neutron beam of the Reactor TRIGA Mark III

    International Nuclear Information System (INIS)

    Carbajal R, M. I.; Arceo M, C.; Aguilar H, F.; Guerrero C, C.

    2012-10-01

    The living beings are permanently exposed to radiations of natural origin: cosmic and geologic, as well as the artificial radiations that come from sources elaborated by the man. The artificial sources have an important use in the medical area. Particularly has been increased the neutrons use due to the effectiveness that they have to damage the cells with regard to other radiation types. The biological indicator of exposition to ionizing radiation more reliable is the chromosomal aberrations study, specifically the dicentrics in human lymphocytes. This test allows, establishing the exposition dose in function of the damage quantity. The dicentrics have a behavior in function of the dose. The calibration curve that describes this behavior is specific for each type of ionizing radiation. In the year 2006 beginning was given to the expositions of human lymphocytes to a neutron beam generated in the reactor TRIGA Mark III of the Instituto Nacional de Investigaciones Nucleares (ININ) in Mexico. Up to 2008 the response dose curve comprised an interval of exposition time of up to 30 minutes. Moreover, the interval between 10 an 20 minutes is included, since was observed that this last is indispensable for the adjustment waited in a lineal model. (Author)

  2. Nuclear security - New challenge to the safety of nuclear power plants

    International Nuclear Information System (INIS)

    Li Ganjie

    2008-01-01

    The safety of nuclear power plants involves two aspects: one is to prevent nuclear accidents resulted from systems and equipments failure or human errors; the other is to refrain nuclear accidents from external intended attack. From this point of view, nuclear security is an organic part of the nuclear safety of power plants since they have basically the same goals and concrete measures with each other. In order to prevent malicious attacks; the concept of physical protection of nuclear facilities has been put forward. In many years, a series of codes and regulations as well as technical standard systems on physical protection had been developed at international level. The United Nations passed No. 1540 resolution as well as 'Convention on the Suppression of Acts of Nuclear terrorism', and revised 'Convention on Physical Protection of Nuclear Materials', which has enhanced a higher level capacity of preparedness by international community to deal with security issues of nuclear facilities. In China, in order to improve the capability of nuclear power plants on preventing and suppressing the external attacks, the Chinese government consecutively developed the related codes and standards as well as technical documents based on the existing laws and regulations, including 'Guide for the Nuclear Security of Nuclear Power Plants' and 'Guide for the Physical Protection of Nuclear Materials', so as to upgrade the legislative requirements for nuclear security in power plants. The government also made greater efforts to support the scientific research and staff training on physical protection, and satisfying the physical protection standards for newly-built nuclear facilities such as large scale nuclear power plants to meet requirement at international level. At the same time old facilities were renovated and the Chinese government established a nuclear emergency preparedness coordination mechanism, developed corresponding emergency preparedness plans, intensified the

  3. Telephone counseling for the public after the Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Horiguchi, T.; Kojima, K.; Itoh, T.

    2011-01-01

    After the Fukushima Daiichi Nuclear Power Plant accident, Kinki University Atomic Energy Research Institute provided telephone counseling services in order to respond the public's growing concerns about radiation and nuclear energy. Three telephone lines were newly installed for the counseling and the number of consultation marked 705 between March 24 and April 2. In this report, by summarizing the contents of the counseling, we will show what the public concerned about shortly after the accident and report how we responded to the concerns. (author)

  4. Case study: Proposed application of project management techniques for construction of nuclear power plant in Malaysia

    International Nuclear Information System (INIS)

    Syahirah Abdul Rahman; Phongsakorn Prak Tom; Wan Abd Hadi Wan Abu Bakar; Shaharum Ramli

    2010-01-01

    This study discusses the techniques of project management for the construction of nuclear power plants that can be used in Malaysia. Nuclear power reactors are expected to apply is the categories of Gen III + reactor where it is safer and more modern than the first generation of reactors built in the 1970s. The objective of this study is that the construction of this reactor to be completed by the stipulated time and not exceed the cost estimates. In addition, project management is also able to meet all the specifications and achieve the quality standard. In this study, the techniques used in project management to ensure the success of construction projects of nuclear power plants are a Gantt Chart, CPM/ PERT and Microsoft Project. From the study, found that these techniques can assist in facilitating the management of the project for the construction of nuclear power plants to ensure that the estimated time and cost can be managed more effectively as well as quality of care. (author)

  5. Nuclear power in crisis

    International Nuclear Information System (INIS)

    Blowers, Andrew.; Pepper, David.

    1987-01-01

    Six themes run through this book: nuclear decision making and democratic accountability, nuclear bias and a narrow-based energy policy, scientific discredit and popular expertise, fusing science with social values, managerial competence and the geography of nuclear power. These are covered in thirteen chapters (all indexed separately) grouped into four parts -the political and planning context, nuclear waste, risk and impact - the social dimension and the future of nuclear power. It considers aspects in France, the United States and the United Kingdom with particular references to the Sizewell-B inquiry and the Sellafield reprocessing plant. (UK)

  6. Nuclear power for beginners

    International Nuclear Information System (INIS)

    Croall, S.; Sempler, K.

    1979-01-01

    Witty, critically, and with expert knowledge, 'Atomic power for beginners' describes the development of nuclear power for military purposes and its 'peaceful uses' against the will of the population. Atomic power, the civil baby of the bomb is not only a danger to our lives - it is enemy to all life as all hard technologies are on which economic systems preoccupied with growth put their hopes. Therefore, 'Atomic power for beginners' does not stop at nuclear engineering but proceeds to investigate its consequences, nationally and with a view to the Third World. And since the consequences are so fatal and it is not enough to say no to nuclear power, it gives some thoughts to a better future - with soft technology and alternative production. (orig.) 891 HP/orig. 892 MKO [de

  7. Nuclear power and the environment

    International Nuclear Information System (INIS)

    Blix, H.

    1989-11-01

    The IAEA Director General pointed out that continued and expanded use of nuclear power must be one among several measures to restrain the use of fossil fuels and thereby limit the emissions of greenhouse gases. With regards to future trends in world electricity demands, the Director General emphasized the existing gap between the frequent claims as to what conservation can achieve and actual energy plans. The objections to nuclear power which are related to safety, waste disposal and the risk of proliferation of nuclear weapons are also discussed. His conclusion is that nuclear power can help significantly to meet growing needs of electricity without contributing to global warming, acid rains or dying forests, responsible management and disposal of nuclear wastes is entirely feasible, and the safety of nuclear power must be continuously strengthened through technological improvement and methods of operation

  8. Nuclear power in the USSR

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, V A

    1981-04-01

    This article examines the role of nuclear power in the USSR. Since the beginning of development of power reactors in the Soviet Union in the 1950s, their contribution had grown to 6% of all electric power by 1980. Reactor development has proceeded rapidly, with a number of reactor designs in use. Fast-breeder reactors and designs for specialized applications are under development. It is anticipated that the contribution of nuclear power will continue to grow. The status of nuclear power stations at 20 locations is summarized in a table.

  9. How nuclear power began

    International Nuclear Information System (INIS)

    Gowing, M.

    1987-01-01

    Many of the features of the story of nuclear power, both in nuclear weapons and nuclear power stations, derive from their timing. Usually, in the history of science the precise timing of discovery does not make much difference, but in the case of nuclear fission there was the coincidence that crucial discoveries were made and openly published in the same year, 1939, as the outbreak of the Second World War. It is these events of the 1930s and the early post-war era that are mainly discussed. However, the story began a lot earlier and even in the early 1900s the potential power within the atom had been foreseen by Soddy and Rutherford. In the 1930s Enrico Fermi and his team saw the technological importance of their discoveries and took out a patent on their process to produce artificial radioactivity from slow neutron beams. The need for secrecy because of the war, and the personal trusts and mistrusts run through the story of nuclear power. (UK)

  10. On nuclear power plant uprating

    International Nuclear Information System (INIS)

    Ho, S. Allen; Bailey, James V.; Maginnis, Stephen T.

    2004-01-01

    Power uprating for commercial nuclear power plants has become increasingly attractive because of pragmatic reasons. It provides quick return on investment and competitive financial benefits, while involving low risks regarding plant safety and public objection. This paper briefly discussed nuclear plant uprating guidelines, scope for design basis analysis and engineering evaluation, and presented the Salem nuclear power plant uprating study for illustration purposes. A cost and benefit evaluation of the Salem power uprating was also included. (author)

  11. Nuclear power in Japan

    International Nuclear Information System (INIS)

    Kishida, J.

    1990-01-01

    The Japanese movement against nuclear energy reached a climax in its upsurge in 1988 two years after the Chernobyl accident. At the outset of that year, this trend was triggered by the government acknowledgement that the Tokyo market was open to foods contaminated by the fallout from Chernobyl. Anti-nuclear activists played an agitating role and many housewives were persuaded to join them. Among many public opinion surveys conducted at that time by newspapers and broadcasting networks, I would like to give you some figures of results from the poll carried out by NHK: Sixty percent of respondents said that nuclear power 'should be promoted', either 'vigorously' 7 or 'carefully' 53%). Sixty-six percent doubted the 'safety of nuclear power', describing it as either 'very dangerous' 20%) or 'rather dangerous' (46%). Only 27% said it was 'safe'. In other words, those who acknowledged the need for nuclear power were almost equal in number with those who found it dangerous. What should these figures be taken to mean? I would take note of the fact that nearly two-thirds of valid responses were in favor of nuclear power even at the time when public opinion reacted most strongly to the impact of the Chernobyl accident. This apparently indicates that the majority of the Japanese people are of the opinion that they would 'promote nuclear power though it is dangerous' or that they would 'promote it, but with the understanding that it is dangerous'. But the anti-nuclear movement is continuing. It remains a headache for both the government and the electric utilities. But we can regard the anti-nuclear movement in Japan as not so serious as that faced by other industrial nations

  12. Nuclear power in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kishida, J [Japan Research Institute, Ltd., Tokyo (Japan)

    1990-07-01

    The Japanese movement against nuclear energy reached a climax in its upsurge in 1988 two years after the Chernobyl accident. At the outset of that year, this trend was triggered by the government acknowledgement that the Tokyo market was open to foods contaminated by the fallout from Chernobyl. Anti-nuclear activists played an agitating role and many housewives were persuaded to join them. Among many public opinion surveys conducted at that time by newspapers and broadcasting networks, I would like to give you some figures of results from the poll carried out by NHK: Sixty percent of respondents said that nuclear power 'should be promoted', either 'vigorously' 7 or 'carefully' 53%). Sixty-six percent doubted the 'safety of nuclear power', describing it as either 'very dangerous' 20%) or 'rather dangerous' (46%). Only 27% said it was 'safe'. In other words, those who acknowledged the need for nuclear power were almost equal in number with those who found it dangerous. What should these figures be taken to mean? I would take note of the fact that nearly two-thirds of valid responses were in favor of nuclear power even at the time when public opinion reacted most strongly to the impact of the Chernobyl accident. This apparently indicates that the majority of the Japanese people are of the opinion that they would 'promote nuclear power though it is dangerous' or that they would 'promote it, but with the understanding that it is dangerous'. But the anti-nuclear movement is continuing. It remains a headache for both the government and the electric utilities. But we can regard the anti-nuclear movement in Japan as not so serious as that faced by other industrial nations.

  13. Nuclear power: 2004 world report - evaluation

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    Last year, 2004, 441 nuclear power plants were available for power supply in 31 countries of the world. Nuclear generating capacity attained its highest level so far at an aggregate gross power of 385,854 MWe and an aggregate net power of 366,682 MWe, respectively. Nine different reactor lines are operated in commercial nuclear power plants. Light water reactors (PWR and BWR) again are in the lead with 362 plants. At year's end, 22 nuclear power plants with an aggregate gross power of 18,553 MWe and an aggregate net power, respectively, of 17,591 MWe were under construction in nine countries. Of these, twelve are light water reactors, nine are CANDU-type reactors, and one is a fast breeder reactor. So far, 104 commercial reactors with powers in excess of 5 MWe have been decommissioned in eighteen countries, most of them low-power prototype plants. 228 nuclear power plants of those in operation, i.e. slightly more than half, were commissioned in the 1980es. Nuclear power plant availabilities in terms of capacity and time again reached record levels. Capacity availability was 84.30%, availability in terms of time, 85.60%. The four nuclear power plants in Finland continue to be world champions in this respect with a cumulated average capacity availability of 90.30%. (orig.)

  14. Country Nuclear Power Profiles - 2009 Edition

    International Nuclear Information System (INIS)

    2009-08-01

    The Country Nuclear Power Profiles compiles background information on the status and development of nuclear power programs in Member States. It consists of organizational and industrial aspects of nuclear power programs and provides information about the relevant legislative, regulatory, and international framework in each country. Its descriptive and statistical overview of the overall economic, energy, and electricity situation in each country, and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programs in the world. The preparation of Country Nuclear Power Profiles (CNPP) was initiated in 1990s. It responded to a need for a database and a technical publication containing a description of the energy and economic situation, the energy and the electricity sector, and the primary organizations involved in nuclear power in IAEA Member States. This is the 2009 edition issued on CD-ROM and Web pages. It updates the country information for 44 countries. The CNPP is updated based on information voluntarily provided by participating IAEA Member States. Participants include the 30 countries that have operating nuclear power plants, as well as 14 countries having past or planned nuclear power programmes (Bangladesh, Egypt, Ghana, Indonesia, the Islamic Republic of Iran, Italy, Kazakhstan, Nigeria, Philippines, Poland, Thailand, Tunisia, Turkey and Vietnam). For the 2009 edition, 26 countries provided updated or new profiles. For the other countries, the IAEA updated the profile statistical tables on nuclear power, energy development, and economic indicators based on information from IAEA and World Bank databases

  15. Country Nuclear Power Profiles - 2011 Edition

    International Nuclear Information System (INIS)

    2011-08-01

    The Country Nuclear Power Profiles compiles background information on the status and development of nuclear power programs in Member States. It consists of organizational and industrial aspects of nuclear power programs and provides information about the relevant legislative, regulatory, and international framework in each country. Its descriptive and statistical overview of the overall economic, energy, and electricity situation in each country, and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programs in the world. The preparation of Country Nuclear Power Profiles (CNPP) was initiated in 1990s. It responded to a need for a database and a technical publication containing a description of the energy and economic situation, the energy and the electricity sector, and the primary organizations involved in nuclear power in IAEA Member States. This is the 2011 edition issued on CD-ROM and Web pages. It updates the country information for 50 countries. The CNPP is updated based on information voluntarily provided by participating IAEA Member States. Participants include the 29 countries that have operating nuclear power plants, as well as 21 countries having past or planned nuclear power programmes (Bangladesh, Belarus, Chile, Egypt, Ghana, Indonesia, the Islamic Republic of Iran, Italy, Jordan, Kazakhstan, Kuwait, Lithuania, Morocco, Nigeria, Philippines, Poland, Syrian Arab Republic, Thailand, Tunisia, Turkey and Vietnam). For the 2011 edition, 23 countries provided updated or new profiles. For the other countries, the IAEA updated the profile statistical tables on nuclear power, energy development, and economic indicators based on information from IAEA and World Bank databases.

  16. Nuclear power: Pt. 3

    International Nuclear Information System (INIS)

    Van Wyk, A.

    1985-01-01

    The use of nuclear power in warfare is viewed from the point of use usefullness, essentiality and demolition. The effects of a H-bomb explosion are discussed as well as the use of nuclear power in warfare, with a Christian ethical background

  17. Development of assessment procedures at the CEGB's nuclear power training centre

    International Nuclear Information System (INIS)

    Chapman, C.R.; Harris, N.D.C.

    1986-01-01

    The work of a power station engineer can be considered under four aspects: technology, diagnosis action and communication. The development, validation and use of assessment procedures can successfully incorporate the same aspects. The purposes of assessment are reporting training achievement and giving feedback to course members and tutorial staff. The development of standardized procedures to produce, evaluate and mark assessments and to optimize feedback ensures objectivity and uniformity. This has been achieved at the Central Electricity Generating Board's Nuclear Power Training Centre by enlisting an educational consultant to provide guidance and assist in training the resident tutors in assessment procedures. (author)

  18. Nuclear power and public opinion

    International Nuclear Information System (INIS)

    Kazanikov, I.A.; Klykov, S.A.

    2000-01-01

    The public opinion on Nuclear Power is not favorable. A purposeful work with public perception is necessary. One way to create a positive image of the nuclear industry is to improve public radiological education. This challenge can be resolved in the close cooperation with state school and preschool education. The formation about nuclear power should be simple and symbolical. Our society can be divided into 4 parts which can be called as target groups: First group - People from the nuclear industry with special education working at nuclear facilities or related to the industry. Second group - People working in the fields connected with nuclear power. Third group - People not related to nuclear power or even with negative impression to the industry. This group is the largest and the work required is the most difficult. Fourth group - The number of this group's members is the least, but it has strong influence on public opinion. 'Greens' and a broad spectrum of ecological organizations can be included in this group. (Authors)

  19. From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the World's First nuclear power plant

    Science.gov (United States)

    Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact

  20. Nuclear power and weapons proliferation

    International Nuclear Information System (INIS)

    Greenwood, T.; Rathjens, C.W.; Ruina, J.

    1977-01-01

    The relationship between nuclear weapons development and nuclear electric power is examined. A brief description of nuclear weapons design is first given. This is then followed by a discussion of various aspects of nuclear power technology and of how they affect a nuclear weapon programme. These include fuel cycles, chemical reprocessing of spent fuel, uranium enrichment, and the control of dissemination of nuclear technology. In conclusion there is a discussion of possible political and institutional controls for limiting nuclear proliferation. (U.K.)

  1. Country Nuclear Power Profiles - 2012 Edition

    International Nuclear Information System (INIS)

    2012-08-01

    The Country Nuclear Power Profiles compile background information on the status and development of nuclear power programmes in Member States. The CNPP's main objectives are to consolidate information about the nuclear power infrastructures in participating countries, and to present factors related to the effective planning, decision making and implementation of nuclear power programmes that together lead to safe and economical operations of nuclear power plants. The CNPP summarizes organizational and industrial aspects of nuclear power programs and provides information about the relevant legislative, regulatory, and international framework in each country. Its descriptive and statistical overview of the overall economic, energy, and electricity situation in each country and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programs in the world. Topics such as reactor safety, nuclear fuel cycle, radioactive waste management and research programmes are for the most part not discussed in detail. Statistical data about nuclear plant operations, population, energy and electricity use are drawn from the PRIS, EEDB, World Development Indicators (WDI) of the World Bank and the national contributions. This publication is updated and the scope of coverage expanded annually. This is the 2012 edition, issued on CD-ROM and Web pages. It contains updated country information for 51 countries. The CNPP is updated based on information voluntarily provided by participating IAEA Member States. Participants include the 29 countries that have operating nuclear power plants, as well as 22 countries with past or planned nuclear power. Each of the 51 profiles in this publication is self-standing, and contains information officially provided by the respective national authorities. For the 2012 edition, 20 countries provided updated or new profiles. These are Argentina, Armenia, Bangladesh, Chile, Germany, Ghana

  2. Country Nuclear Power Profiles. 2016 Edition

    International Nuclear Information System (INIS)

    2016-12-01

    The Country Nuclear Power Profiles compile background information on the status and development of nuclear power programmes in Member States. The publication summarizes organizational and industrial aspects of nuclear power programmes and provides information about the relevant legislative, regulatory and international framework in each State. Its descriptive and statistical overview of the overall economic, energy and electricity situation in each State and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programmes throughout the world. This 2016 edition, issued on CD-ROM, contains updated country information for 51 States.

  3. Country Nuclear Power Profiles - 2015 Edition

    International Nuclear Information System (INIS)

    2015-08-01

    The Country Nuclear Power Profiles compile background information on the status and development of nuclear power programmes in Member States. The publication summarizes organizational and industrial aspects of nuclear power programmes and provides information about the relevant legislative, regulatory and international framework in each State. Its descriptive and statistical overview of the overall economic, energy and electricity situation in each State and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programmes throughout the world. This 2015 edition, issued on CD-ROM, contains updated country information for 51 States

  4. Country Nuclear Power Profiles - 2013 Edition

    International Nuclear Information System (INIS)

    2013-08-01

    The Country Nuclear Power Profiles compile background information on the status and development of nuclear power programmes in Member States. The CNPP summarizes organizational and industrial aspects of nuclear power programs and provides information about the relevant legislative, regulatory, and international framework in each country. Its descriptive and statistical overview of the overall economic, energy, and electricity situation in each country and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programs in the world. This 2013 edition, issued on CD-ROM and Web pages, contains updated country information for 51 countries

  5. Mark III Containment vessel/annulus concrete design

    International Nuclear Information System (INIS)

    Chang, P.S.; Moussa, M.M.

    1981-01-01

    Recently, engineers have been considering the significant dynamic impact of safety/relief valve (S/RV) discharge loads on the containment structures, safety equipment, and piping systems in BWR type reactors. For a plant in the construction stage, extensive modifications will be made to qualify these new loads. The lower portion of the containment vessel serves as a suppression pool pressure boundary and is designed to sustain the effects of postulated loss of coolant accidents, seismic occurrences, S/RV discharge loads, and other effects. Extremely high spectral peak accelerations of the free-standing steel containment vessel can be obtained during the air dearing process of the S/RV discharge. Parametric studies indicated that a substantial reduction in response can be obtained by increasing the stiffness of the steel containment vessel in the lover area. A concrete backing configuration in the suppression pool area of Mark III Containment is proposed in this paper. A composite action is assumed between the steel containment vessel shell and the concrete section. The system is physically separated from the shield building. This approach warrants an early erection of the shield building and a late installation of piping systems in the containment vessel suppression pool area. Finite element analyses are performed by using ASHSD2 and EASE2 computer codes. The results of the analyses have shown the proposed stress criteria are satisfied. The approach pressented is justified to be a workable system for a new plant design. (orig./HP)

  6. Nuclear power: Europe report

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Last year, 1999, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In eight of the fifteen member countries of the European Union nuclear power plants have been in operation. A total of 218 plants with an aggregate net capacity of 181,120 MWe and an aggregate gross capacity of 171,802 MWe were in operation. Two units, i.e. Civaux 2 in France and Mochovce-2 in Slovakia went critical for the first time and started commercial operation after having been connected to the grid. Three further units in France, Chooz 1 and 2 and Civaux 1, started commercial operation in 1999 after the completion of technical measures in the primary circuit. Last year, 13 plants were under construction in Romania, Russia, Slovakia and the Czech Republic, that is only in East European countries. In eight countries of the European Union 146 nuclear power plants have been operated with an aggregate gross capacity of 129.772 MWe and an aggregate net capacity of 123.668 MWe. Net electricity production in 1999 in the EU amounts to approx. 840.2 TWh, which means a share of 35 per cent of the total production. Shares of nuclear power differ widely among the operator countries. They reach 75 per cent in France, 73 per cent in Lithuania, 58 per cent in Belgium and 47 per cent in Bulgaria, Sweden and Slovakia. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal and Austria. (orig.) [de

  7. Nuclear power in the United States

    International Nuclear Information System (INIS)

    Johnston, J.B.

    1985-01-01

    All over the world except in the United States, nuclear energy is a low cost, secure, environmentally acceptable form of energy. In the United States, civilian nuclear power is dead. 112 nuclear power plants have been abandoned or cancelled in the last decade, and there has been no new order for nuclear plants since 1978. It will be fortunate to have 125 operating nuclear plants in the United States in the year 2000. There are almost 90 completed nuclear power plants and about 45 under construction in the United States, but several of those under construction will eventually be abandoned. About 20 % of the electricity in the United States will be generated by nuclear plants in 2000 as compared with 13 % supplied in the last year. Under the present regulatory and institutional arrangement, American electric utilities would not consider to order a new nuclear power plant. Post-TMI nuclear plants became very expensive, and there is also ideological opposition to nuclear power. Coal-firing plants are also in the similar situation. The uncertainty about electric power demand, the cost of money, the inflation of construction cost and regulation caused the situation. (Kako, I.)

  8. Nuclear power generation and nuclear non-proliferation

    International Nuclear Information System (INIS)

    Rathjens, G.

    1979-01-01

    The main points existing between nuclear energy development and nuclear non-proliferation policy are reviewed. The solar energy and other energy will replace for nuclear fission energy in the twenty first century, but it may not occur in the first half, and the structure has to be established to continue the development of nuclear fission technology, including breeder reactor technology. In the near future, it should be encouraged to use advanced thermal reactors if they are economic and operated with safety. Miserable results may be created in the worldwide scale, if a serious accident occurs anywhere or nuclear power reactors are utilized for military object. It is estimated to be possible to develop the ability of manufacturing nuclear weapons within two or three years in the countries where the industry is highly developed so as to generate nuclear power. It is also difficult to take measures so that nuclear power generation does not increase nuclear proliferation problems, and it is necessary to mitigate the motive and to establish the international organization. Concensus exists that as the minimum security action, the storage and transportation of materials, which can be directly utilized for nuclear weapons, should be decided by the international system. The most portions of sensitive nuclear fuel cycle should be put under the international management, as far as possible. This problem is discussed in INFCE. Related to the nuclear nonproliferation, the difference of policy in fuel cycle problems between USA and the other countries, the enrichment of nuclear fuel material, especially the reasons to inhibit the construction of additional enrichment facilities, nuclear fuel reprocessing problems, radioactive waste disposal, plutonium stock and plutonium recycle problems are reviewed. (Nakai, Y.)

  9. Nuclear power in rock. Principal report

    International Nuclear Information System (INIS)

    1977-06-01

    In September 1975 the Swedish Government directed the Swedish State Power Board to study the question of rock-siting nuclear power plants. The study accounted for in this report aims at clarifying the advantages and disadvantages of siting a nuclear power plant in rock, compared to siting on ground level, considering reactor safety, war protection and sabotage. The need for nuclear power production during war situations and the closing down of nuclear power plants after terminated operation are also dealt with. (author)

  10. Nuclear power in space

    International Nuclear Information System (INIS)

    Aftergood, S.; Hafemeister, D.W.; Prilutsky, O.F.; Rodionov, S.N.; Primack, J.R.

    1991-01-01

    Nuclear reactors have provided energy for satellites-with nearly disastrous results. Now the US government is proposing to build nuclear-powered boosters to launch Star Wars defenses. These authors represent scientific groups that are opposed to the use of nuclear power in near space. The authors feel that the best course for space-borne reactors is to ban them from Earth orbit and use them in deep space

  11. Indicators for Nuclear Power Development

    International Nuclear Information System (INIS)

    2015-01-01

    Considering the scale of nuclear power aspirations, the number of planned nuclear new builds and the prospects of a number of countries constructing their first nuclear power plants, there is a need to assess the broader context of nuclear energy programmes in areas of macro-and socioeconomic conditions, energy systems and nuclear power, and the environment. It is important to assess the degree to which introduction or expansion of nuclear power is beneficial under these specific circumstances. This publication provides a set of indicators for nuclear power development that can serve as a tool to help explore these issues. The indicators are meant to provide a first order assessment of the situation and identify the issues that present the benefits and challenges in a balanced and objective manner and thereby help guide more detailed evaluations in the next stage of planning and preparations. Methodology sheets are provided to help users in data collection, quantification and interpretation of the indicators. The application of the indicators set is flexible. Users can select a subset of indicators that are most relevant for the questions they wish to explore in a given study or decision making process

  12. Public attitudes to nuclear power

    International Nuclear Information System (INIS)

    Margerison, T.A.

    1988-01-01

    The British public is very poorly informed about nuclear power. 55 % express concern about it, but few can explain why. Some of the reasons given are extraordinary: 37 % of the public think nuclear power causes acid rain which pollutes lakes and kills trees; 47 % think coal is a safer fuel for making electricity than nuclear; a quarter think natural radiation is less harmful than that from nuclear stations. And a very large number of people have greatly exaggerated views of the amount of radiation released from power stations and the harm that it is doing people. Also, a quarter of everyone asked thought that nuclear power stations make bombs as well as electricity. Most of these concerns come from the media, and in particular from television which has broadcast many programmes which are strongly anti-nuclear, often inaccurate, and usually sensational. Fortunately, the effect of these stories is less damaging than one might think. At present about 42 % of the adult British population are not in favour of nuclear power, so there is still a majority who are not against. About 44 % are positively in favour, and the remainder are not sure or have no view

  13. Projected role of nuclear power in Egypt and problems encountered in implementing the first nuclear power plant

    International Nuclear Information System (INIS)

    Effat, K.E.A.; Sirry, H.; El-Sharkawy, E.

    1977-01-01

    The increasing rise in fossil-fuel prices has favourably affected the economics of nuclear power generation bringing down the economically competitive size of nuclear units closer to small sizes compatible with grid capacities in developing countries. This encouraged Egypt to turn to nuclear power to fulfil its future power needs. In implementing its first nuclear power plant, Egypt is facing various problems. The capacity of the national electric power system and its inherent characteristics pose certain restrictions on the size and design of the nuclear plant required. The availability of sufficient local qualified management, engineering and technical personnel to participate in both precontractual and construction phases of the plant is quite a major problem. Lack of local developed industry to back up the construction phase implies the dependence to a large extent on imported equipment, materials and technology. The paper reviews the present and projected power demands in Egypt and the factors behind the decision to introduce a nuclear power generation programme. Various problems encountered and anticipated in introducing the first nuclear power plant are also discussed. (author)

  14. World status - nuclear power

    International Nuclear Information System (INIS)

    Holmes, A.

    1984-01-01

    The problems of nuclear power are not so much anti-nuclear public opinion, but more the decrease of electricity consumption growth rate and the high cost of building reactors. Because of these factors, forecasts of world nuclear capacity have had to be reduced considerably over the last three years. The performance of reactors is considered. The CANDU reactor remains the world's best performer and overall tends to out-perform larger reactors. The nuclear plant due to come on line in 1984 are listed by country; this shows that nuclear capacity will increase substantially over a short period. At a time of stagnant demand this will make nuclear energy an important factor in the world energy balance. Nuclear power stations in operation and under construction in 1983 are listed and major developments in commercial nuclear power in 1983 are taken country by country. In most, the report is the same; national reactor ordering cut back because the expected increase in energy demand has not happened. Also the cost-benefit of nuclear over other forms of energy is no longer as favourable. The export opportunities have also declined as many of the less developed countries are unable to afford reactors. (U.K.)

  15. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2005-01-01

    This 2005 edition of the Elecnuc booklet summarizes in tables all numerical data relative to the nuclear power plants worldwide. These data come from the PRIS database managed by the IAEA. The following aspects are reviewed: 2004 highlights; main characteristics of reactor types; map of the French nuclear power plants on 2005/01/01; worldwide status of nuclear power plants at the end of 2004; units distributed by countries; nuclear power plants connected to the grid by reactor-type group; nuclear power plants under construction on 2004; evolution of nuclear power plant capacities connected to the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear power plants by country at the end 2004; performance indicator of PWR units in France; trend of the generation indicator worldwide; 2004 load factor by owners; units connected to the grid by countries at 12/31/2004; status of licence renewal applications in USA; nuclear power plants under construction at 12/31/2004; shutdown reactors; exported nuclear capacity in net MWe; exported and national nuclear capacity connected to the grid; exported nuclear power plants under construction or order; exported and national nuclear capacity under construction or order; recycling of plutonium in LWR; Mox licence plant projects; Appendix - historical development; acronyms, glossary

  16. Nuclear power news no 38

    International Nuclear Information System (INIS)

    1986-01-01

    The following matters are treated: What happened at the Chernobyl accident? - The Russian graphite reactor - a comparison with light water reactors. - The Soviet program for nuclear power. - Serious organizational unsatisfactory state of things at the nuclear power plants of Soviet. - Graphite reactors of the nuclear power program of the world. - The radioactive fallout in Sweden after Chernobyl. - The risks involved in radioactive radiation - an experts conception

  17. The Prospective of Nuclear Power in China

    Directory of Open Access Journals (Sweden)

    Yan Xu

    2018-06-01

    Full Text Available From scratch to current stage, China’s nuclear power technology has experienced rapid development, and now China has begun to export nuclear power technology. As a kind of highly efficient and clean energy source, nuclear energy is also a priority option to solve energy crisis, replace traditional fossil fuels and reduce air pollution. By analyzing the short-term and long-term development trend of nuclear power in China, the paper has reached the following conclusions: (1 Under the current situation of excess supply, due to high investment cost of first-kind reactors, the decline of utilization hours and the additional cost of ancillary service obligations, the levelized cost of energy (LCOE of the third generation nuclear power will significantly increase, and the internal rate of return (IRR will significantly fall. In the short term, market competitiveness of nuclear power will be a major problem, which affects investment enthusiasm. (2 With technology learning of third generation technology, the LCOE of nuclear power will be competitive with that of coal power in 2030. (3 The CO2 emissions reduction potential of nuclear power is greater than coal power with CCS and the avoided CO2 costs of nuclear power is much lower. Therefore, nuclear power is an important option for China’s long-term low-carbon energy system transition. The paper proposes to subsidize the technical learning costs of new technology through clean technology fund at the early commercialization stage. When designing power market rules, the technical characteristics of nuclear power should be fully considered to ensure efficient operation of nuclear power.

  18. Nuclear power development in the Far East

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, W C [Pacific Enegineers and Constructors Ltd., Taipei, Taiwan (China)

    1990-06-01

    The nuclear power development of selected Far Eastern countries is presented in this paper. This paper consists of three sections. Section 1 describes the current power/nuclear power status of Japan, South Korea, Taiwan and China. The first three countries already have operating nuclear power units, while mainland China will have a nuclear power commissioned this year according to their schedule. The power development plan for these countries is also presented. All of them have included nuclear power as part of their energy sources for the future. Section 2 briefly describes the nuclear power industry in these countries which basically covers design, manufacturing and R and D activities. Public Acceptance programs (PAPs) will play a significant role in the future of nuclear power. Section 3 discusses the PAPs of these countries. (author)

  19. Nuclear power development in the Far East

    International Nuclear Information System (INIS)

    Hsu, W.C.

    1990-01-01

    The nuclear power development of selected Far Eastern countries is presented in this paper. This paper consists of three sections. Section 1 describes the current power/nuclear power status of Japan, South Korea, Taiwan and China. The first three countries already have operating nuclear power units, while mainland China will have a nuclear power commissioned this year according to their schedule. The power development plan for these countries is also presented. All of them have included nuclear power as part of their energy sources for the future. Section 2 briefly describes the nuclear power industry in these countries which basically covers design, manufacturing and R and D activities. Public Acceptance programs (PAPs) will play a significant role in the future of nuclear power. Section 3 discusses the PAPs of these countries. (author)

  20. Nuclear Power after Fukushima

    International Nuclear Information System (INIS)

    Bigot, B.

    2011-01-01

    On 11 March 2011 Japan suffered an earthquake of very high magnitude, followed by a tsunami that left thousands dead in the Sendai region, the main consequence of which was a major nuclear disaster at the Fukushima power station. The accident ranked at the highest level of severity on the international scale of nuclear events, making it the biggest since Chernobyl in 1986. It is still impossible to gauge the precise scope of the consequences of the disaster, but it has clearly given rise to the most intense renewed debates on the nuclear issue. Futuribles echoes this in the 'Forum' feature of this summer issue which is entirely devoted to energy questions. Bernard Bigot, chief executive officer of the technological research organization CEA, looks back on the Fukushima disaster and what it changes (or does not change) so far as the use of nuclear power is concerned, particularly in France. After recalling the lessons of earlier nuclear disasters, which led to the development of the third generation of power stations, he reminds us of the currently uncontested need to free ourselves from dependence on fossil fuels, which admittedly involves increased use of renewables, but can scarcely be envisaged without nuclear power. Lastly, where the Fukushima disaster is concerned, Bernard Bigot shows how it was, in his view, predominantly the product of a management error, from which lessons must be drawn to improve the safety conditions of existing or projected power stations and enable the staff responsible to deliver the right response as quickly as possible when an accident occurs. In this context and given France's high level of dependence on nuclear power, the level of use of this energy source ought not to be reduced on account of the events of March 2011. (author)

  1. Nuclear power: the fifth horseman

    International Nuclear Information System (INIS)

    Hayes, D.

    1976-01-01

    ''Nuclear Power: The Fifth Horseman,'' is published in an attempt to identify and analyze emerging global trends and problems. This paper evaluates the future of nuclear power, subjecting it to several tests--those of economics, safety, adequacy of fuel supplies, environmental impact, and both national and international security. If the world is to ''go nuclear,'' adopting nuclear power as the principal source of energy, each of these criteria should be satisfied. In fact, none may be satisfied. Nuclear power is being re-examined in many quarters. Local communities throughout the world are concerned over reactor safety. Environmentalists and others are deeply concerned about the lack, or even the prospect, of satisfactory techniques for disposing of radioactive waste. Foreign policy analysts express grave concern over the weapons-proliferation implications of the spread of nuclear power, recognizing that sooner or later an unstable political leader or terrorist group will acquire this awesome weaponry. And, in 1975, the corporate executives who head electrical utilities in the United States cancelled or deferred 25 times as many new reactors as they ordered

  2. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    1998-01-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1997 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1997; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; forecasts; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  3. Nuclear power supply (Japan Nuclear Safety Institute)

    International Nuclear Information System (INIS)

    Kameyama, Masashi

    2013-01-01

    After experienced nuclear disaster occurred on March 11, 2011, role of nuclear power in future energy share in Japan became uncertain because most public seemed to prefer nuclear power phase out to energy security or costs. Whether nuclear power plants were safe shutdown or operational, technologies were requisite for maintaining their equipment by refurbishment, partly replacement or pressure proof function recovery works, all of which were basically performed by welding. Nuclear power plants consisted of tanks, piping and pumps, and considered as giant welded structures welding was mostly used. Reactor pressure vessel subject to high temperature and high pressure was around 200mm thick and made of low-alloy steels (A533B), stainless steels (308, 316) and nickel base alloys (Alloy 600, 690). Kinds of welding at site were mostly shielded-metal arc welding and TIG welding, and sometimes laser welding. Radiation effects on welding of materials were limited although radiation protection was needed for welding works under radiation environment. New welding technologies had been applied after their technical validation by experiments applicable to required regulation standards. Latest developed welding technologies were seal welding to prevent SCC propagation and temper-bead welding for cladding after removal of cracks. Detailed procedures of repair welding of Alloy 600 at the reactor outlet pipe at Oi Nuclear Power Plants unit 3 due to PWSCC were described as an example of crack removal and water jet peening, and then overlay by temper-bead welding using Alloy 600 and clad welding using Alloy 690. (T. Tanaka)

  4. Human resources in nuclear power program

    International Nuclear Information System (INIS)

    Machi, Sueo

    2008-01-01

    Nuclear power utilization within 2020 horizon is expanding in Asia, particularly in Japan, China, India, Republic of Korea, Vietnam and Indonesia. The nuclear energy policy iof Japan sees the increase of nuclear power contribution for energy security and to control CO 2 emission with the contribution ratio through the 21 st century kept at the current level of 30-40% or even higher. Japan expects its first reprocessing plant to be operational in 2007 and its first commercial fast breeder reactor operational in 2050. Starting with her experience with the operation of its first research reactor in 1957, a power demonstration reactor from USA in 1963; the first commercial 166 MW power plant from UK in 1966 and then its first commercial 375 MW light water reactor from USA in 1970, Japan developed her own nuclear reactor technology. Today, Japan has 55 operating nuclear power plants (NPPs) totaling 49 GW which supply 30% of its electricity needs. There are two NPPs under construction and 11 additional NPPs to be completed by 2017. Japan's experience showed that engineers in the nuclear, mechanical, electrical, material and chemical fields are needed to man their nuclear power plant. For the period 1958 to about 1970, there was a rapid increase in the number of students enrolled for their bachelor of science majoring in nuclear science and technology but this number of enrollees leveled off beyond 1970 up to 2002. For those pursuing their masters of science degree in this field, there was a steady but moderate rise in the number of students from 1958 to 2002. The population of students in the Ph.D program in nuclear science and technology had the lowest number of enrollees and lowest level of increase from 1958 to 2002. The courses offered at the university for nuclear power are nuclear reactor physics and engineering, nuclear reactor safety engineering and radiation safety. Prior to graduation, the students undergo training at a nuclear research institute, nuclear power

  5. LDC nuclear power: Brazil

    International Nuclear Information System (INIS)

    Johnson, V.

    1982-01-01

    Brazil has been expanding its nuclear power since 1975, following the Bonn-Brasilia sales agreement and the 1974 denial of US enriched uranium, in an effort to develop an energy mix that will reduce dependence and vulnerability to a single energy source or supplier. An overview of the nuclear program goes on to describe domestic non-nuclear alternatives, none of which has an adequate base. The country's need for transfers of capital, technology, and raw materials raises questions about the advisability of an aggressive nuclear program in pursuit of great power status. 33 references

  6. Nuclear power for developing countries

    International Nuclear Information System (INIS)

    Hirschmann, H.; Vennemann, J.

    1980-01-01

    The paper describes the energy policy quandary of developing countries and explains why nuclear power plants of a suitable size - the KKW 200 MW BWR nuclear power plant for electric power and/or process steam generation is briefly presented here - have an economic advantage over fossil-fuelled power plants. (HP) [de

  7. Climate change and nuclear power

    International Nuclear Information System (INIS)

    Schneider, M.

    2000-04-01

    The nuclear industry has increased its efforts to have nuclear power plants integrated into the post- Kyoto negotiating process of the UN Framework Convention on Climate Change. The Nuclear Energy Institute (NEI) states: ''For many reasons, current and future nuclear energy projects are a superior method of generating emission credits that must be considered as the US expands the use of market- based mechanisms designed around emission credit creation and trading to achieve environmental goals ''. The NEI considers that nuclear energy should be allowed to enter all stages of the Kyoto ''flexibility Mechanisms'': emissions trading, joint implementation and the Clean Development Mechanism. The industry sees the operation of nuclear reactors as emission ''avoidance actions'' and believes that increasing the generation of nuclear power above the 1990 baseline year either through extension and renewal of operating licenses or new nuclear plant should be accepted under the flexibility mechanisms in the same way as wind, solar and hydro power. For the time being, there is no clear definition of the framework conditions for operating the flexibility mechanisms. However, eligible mechanisms must contribute to the ultimate objective of the Climate Convention of preventing ''dangerous anthropogenic interference with the climate system''. The information presented in the following sections of this report underlines that nuclear power is not a sustainable source of energy, for many reasons. In conclusion, an efficient greenhouse gas abatement strategy will be based on energy efficiency and not on the use of nuclear power. (author)

  8. Nuclear power newsletter. Vol. 1, no. 1

    International Nuclear Information System (INIS)

    2004-09-01

    This first issue of newsletter describes the Nuclear Power Division of the Department of Nuclear Energy responsible for implementation of the IAEA programme on Nuclear Power. The mission of the Division is to increase the capability of interested Member States to implement and maintain competitive and sustainable nuclear power programmes and to develop and apply advanced nuclear technologies. The topics covered in this publication are: Engineering and Management Support for Competitive Nuclear Power; Improving Human Performance, Quality and Technical Infrastructure; Co-ordination of International Collaboration for the Development of Innovative Nuclear Technology; Technology Developments and Applications for Advanced Reactors; The International Conference on 'Fifty Years of Nuclear Power - the Next Fifty Years'. A list of documents published recently by the Nuclear Power Division in enclosed

  9. China's nuclear energy demand and CGNPC's nuclear power development

    International Nuclear Information System (INIS)

    Rugang, Sh.

    2007-01-01

    By importation, assimilation and innovation from French nuclear power technology and experience, the China Guangdong Nuclear Power Plant Holding Company (CGNPC) has developed the capabilities of indigenous construction and operation of 1000 MW-class nuclear power plants. Through the industrial development over the past 20 years, four 1000 MW-class reactors have been built and put into commercial operation in China. CGNPC is negotiating with AREVA on the transfer of the EPR technology and the application of this technology for the Yangjang nuclear power plant depends on the negotiation results. Since China became a member of the 4. Generation International Forum, CGNPC as a large state-owned enterprise, will take an active part in the 4. generation nuclear power technology developments under the leadership of China Atomic Energy Authority, particularly it will contribute to the research work on the high-temperature gas-cooled reactor and on the super-critical water reactor

  10. Nuclear power in a changing world

    International Nuclear Information System (INIS)

    Taylor, J.

    1996-01-01

    Nuclear power has a future that will only be fully realised if it is shown to be a solution to some of the world's most pressing energy, and associated environmental, problems. This can only be done if nuclear power itself ceases to be perceived as a problem by the public, interest groups, governments and financial institutions. In public relations terms, this means removing the persistent distortions and misconceptions about the nuclear industry. Environmentally, it involves showing that nuclear power is the only alternative energy source which does not contribute to climate change, preserves rare minerals and recycles its raw materials. Governments must be persuaded to see that nuclear power is the only economic answer to the growing energy demand arising from increased industrialisation and population growth. Financiers need convincing that nuclear power is the investment of the future and generators that it is the lowest cost economic and environmental option. The future of nuclear power depends on meeting these challenges. (UK)

  11. Benchmarking Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jakic, I.

    2016-01-01

    One of the main tasks an owner have is to keep its business competitive on the market while delivering its product. Being owner of nuclear power plant bear the same (or even more complex and stern) responsibility due to safety risks and costs. In the past, nuclear power plant managements could (partly) ignore profit or it was simply expected and to some degree assured through the various regulatory processes governing electricity rate design. It is obvious now that, with the deregulation, utility privatization and competitive electricity market, key measure of success used at nuclear power plants must include traditional metrics of successful business (return on investment, earnings and revenue generation) as well as those of plant performance, safety and reliability. In order to analyze business performance of (specific) nuclear power plant, benchmarking, as one of the well-established concept and usual method was used. Domain was conservatively designed, with well-adjusted framework, but results have still limited application due to many differences, gaps and uncertainties. (author).

  12. Aspect of nuclear power

    International Nuclear Information System (INIS)

    Haghighi Oskoei, R.; Raeis Hosseiny, N.

    2004-01-01

    Over the next 50 years, unless patterns change dramatically, energy production and use will contribute to global warming through large-scale greenhouse gas emissions-hundreds of billions of tonnes of carbon in the form of carbon dioxide. Nuclear power would be one option for reducing carbon emissions. At present, however, this is unlikely: nuclear power faces stagnation and decline. We decided to study the future of nuclear power because we believe this technology , despite the changes it faces, is an important option for the world to meet future energy needs without emitting carbon dioxide and other atmospheric pollutants. Other options include increased efficiency, renewable and sequestration. We believe that all options should be preserved as nations develop strategies at provide energy while meeting important environmental challenges. The nuclear power option will only be exercised, however if the technology demonstrates better economics, improved safety, successful waste management, and low proliferation risk, and if public policies place a significant value on electricity production that does not produce carbon dioxide

  13. Nuclear power training courses

    International Nuclear Information System (INIS)

    1977-01-01

    The training of technical manpower for nuclear power projects in developing countries is now a significant part of the IAEA Technical Assistance Programme. Two basic courses are the cornerstones of the Agency's training programme for nuclear power: a course in planning and implementation, and a course in construction and operation management. These two courses are independent of each other. They are designed to train personnel for two distinct phases of project implementation. The nuclear power project training programme has proven to be successful. A considerable number of highly qualified professionals from developing countries have been given the opportunity to learn through direct contact with experts who have had first-hand experience. It is recognized that the courses are not a substitute for on-the-job training, but their purpose is achieved if they have resulted in the transfer of practical, reliable information and have helped developing countries to prepare themselves for the planning, construction and operation management of nuclear power stations

  14. Nuclear power - facts, trends, problems

    International Nuclear Information System (INIS)

    Spickermann, W.

    1981-01-01

    An attempt has been made to describe the state-of-the-art of nuclear power utilization, particularly for energy production. On the basis of information obtained from study tours through the USSR a rather comprehensive review of nuclear power plants and research establishments in the Soviet Union, of desalination reactors, ship propulsion reactors and fast breeder reactors is given, including nuclear facilities of other countries, e.g. France, USA, GDR. Heat generation, radiation-induced chemical processes and aspects associated with nuclear energy uses, such as risks, environmental protection or radioactive wastes, are also considered. Moreover, the author attempts to outline the social relevance of nuclear power

  15. 76 FR 1469 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2011-01-10

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 Environmental Assessment... Plant, LLC, the licensee, for operation of the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Impact Statement for License Renewal of Nuclear Plants, Calvert Cliffs Nuclear Power Plant (NUREG-1437...

  16. BWR Mark III containment analyses using a GOTHIC 8.0 3D model

    International Nuclear Information System (INIS)

    Jimenez, Gonzalo; Serrano, César; Lopez-Alonso, Emma; Molina, M del Carmen; Calvo, Daniel; García, Javier; Queral, César; Zuriaga, J. Vicente; González, Montserrat

    2015-01-01

    Highlights: • The development of a 3D GOTHIC code model of BWR Mark-III containment is described. • Suppression pool modelling based on the POOLEX STB-20 and STB-16 experimental tests. • LOCA and SBO transient simulated to verify the behaviour of the 3D GOTHIC model. • Comparison between the 3D GOTHIC model and MAAP4.07 model is conducted. • Accurate reproduction of pre severe accident conditions with the 3D GOTHIC model. - Abstract: The purpose of this study is to establish a detailed three-dimensional model of Cofrentes NPP BWR/6 Mark III containment building using the containment code GOTHIC 8.0. This paper presents the model construction, the phenomenology tests conducted and the selected transient for the model evaluation. In order to study the proper settings for the model in the suppression pool, two experiments conducted with the experimental installation POOLEX have been simulated, allowing to obtain a proper behaviour of the model under different suppression pool phenomenology. In the transient analyses, a Loss of Coolant Accident (LOCA) and a Station Blackout (SBO) transient have been performed. The main results of the simulations of those transients were qualitative compared with the results obtained from simulations with MAAP 4.07 Cofrentes NPP model, used by the plant for simulating severe accidents. From this comparison, a verification of the model in terms of pressurization, asymmetric discharges and high pressure release were obtained. The completeness of this model has proved to adequately simulate the thermal hydraulic phenomena which occur in the containment during accidental sequences

  17. Current status of nuclear power

    International Nuclear Information System (INIS)

    Behnke, W.B.

    1984-01-01

    The decision to devote the 1984 conference to nuclear power is timely and appropriate. Illinois has a long, and distinguished history in the development of civilian nuclear power. The concept was born at the University of Chicago, developed at Argonne National Laboratory and demonstrated on the Commonwealth Edison system at our pioneer Dresden Nuclear Station. Today, Illinois ranks number one in the nation in nuclear generation. With over a quarter century of commercial operating experience, nuclear power has proven its worth and become a significant and growing component of electric power supply domestically and throughout the world. Despite its initial acceptance, however, the nuclear power industry in the U.S. is now in the midst of a difficult period of readjustment stemming largely from the economic and regulatory problems of the past decade. As a result, the costs of plants under construction have increased dramatically, causing serious financial difficulties for several projects and their owners. At the same time, the U.S. is facing hard choices concerning its future energy supplies. Conferences such as this have an important role in clarifying the issues and helping to find solutions to today's pressing energy problems. This paper summarizes the status of nuclear power both here and abroad, discussing the implications of current events in the context of national energy policy and economic development here in Illinois

  18. Construction work management for nuclear power stations

    International Nuclear Information System (INIS)

    Yoshikawa, Yuichiro

    1982-01-01

    Nuclear power generation is positioned as the nucleus of petroleum substitution. In the Kansai Electric Power Co., efforts have been made constantly to operate its nuclear power plants in high stability and safety. At present, Kansai Electric Power Co. is constructing Units 3 and 4 in the Takahama Nuclear Power Station in Fukui Prefecture. Under the application of the management of construction works described here, both the nuclear power plants will start operation in 1985. The activities of Kansai Electric Power Co. in the area of this management are described: an outline of the construction works for nuclear power stations, the management of the construction works in nuclear power stations (the stages of design, manufacturing, installation and test operation, respectively), quality assurance activities for the construction works of nuclear power plants, important points in the construction work management (including the aspects of quality control). (J.P.N.)

  19. Characterization of the irradiation facilities SINCA and SIRCA of the TRIGA Mark III reactor using the code MCNPX

    International Nuclear Information System (INIS)

    Delfin L, A.; Garcia M, T.; Lucatero, M. A.; Cruz G, H. S.; Gonzalez, J. A.; Vargas E, S.

    2011-11-01

    The commitment of changing fuels of high enrichment for fuels of low enrichment in the TRIGA Mark III reactor of the Nuclear Center of Mexico generates the necessity to know the distribution of the spectrum of the neutrons flux in the irradiation facilities like they are: the Pneumatic System of Capsules Irradiation and the Rotational System of Capsules Irradiation. Is very important for the experiments design as well as for the reactor safety to know the profiles of the neutrons flux and the spectrum that these maintain with the mixed core with which operates, to effect of conserving the same characteristics when the reactor core will be operated with fuel of low enrichment totally. Also, knowing the profiles of the neutrons flux, the reactor operators can optimize the irradiation conditions of the processed samples and likewise the users can select the irradiation positions more adaptable to their necessities. This work present the characterization of the neutron flux in the irradiation facilities SINCA and SIFCA, calculated with the code MCNPX. (Author)

  20. Nuclear power plant safety

    International Nuclear Information System (INIS)

    Otway, H.J.

    1974-01-01

    Action at the international level will assume greater importance as the number of nuclear power plants increases, especially in the more densely populated parts of the world. Predictions of growth made prior to October 1973 [9] indicated that, by 1980, 14% of the electricity would be supplied by nuclear plants and by the year 2000 this figure would be about 50%. This will make the topic of international co-operation and standards of even greater importance. The IAEA has long been active in providing assistance to Member States in the siting design and operation of nuclear reactors. These activities have been pursued through advisory missions, the publication of codes of practice, guide books, technical reports and in arranging meetings to promote information exchange. During the early development of nuclear power, there was no well-established body of experience which would allow formulation of internationally acceptable safety criteria, except in a few special cases. Hence, nuclear power plant safety and reliability matters often received an ad hoc approach which necessarily entailed a lack of consistency in the criteria used and in the levels of safety required. It is clear that the continuation of an ad hoc approach to safety will prove inadequate in the context of a world-wide nuclear power industry, and the international trade which this implies. As in several other fields, the establishment of internationally acceptable safety standards and appropriate guides for use by regulatory bodies, utilities, designers and constructors, is becoming a necessity. The IAEA is presently planning the development of a comprehensive set of basic requirements for nuclear power plant safety, and the associated reliability requirements, which would be internationally acceptable, and could serve as a standard frame of reference for nuclear plant safety and reliability analyses

  1. The Nuclear Review: the Institution of Nuclear Engineers' response to the Review of Nuclear Power

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The United Kingdom Government's Nuclear Review currently underway, addresses whether and in what form nuclear power should continue to be part of the country's power generation capability. This article sets out the response of the Institution of Nuclear Engineers to the Nuclear Review. This pro-nuclear group emphasises the benefits to be gained from diversity of generation in the energy supply industry. The environmentally benign nature of nuclear power is emphasised, in terms of gaseous emissions. The industry's excellent safety record also argues in favour of nuclear power. Finally, as power demand increases globally, a health U.K. nuclear industry could generate British wealth through power exports and via the construction industry. The Institution's view on radioactive waste management is also set out. (UK)

  2. QA programs in nuclear power plants

    International Nuclear Information System (INIS)

    Ellingson, A.C.

    1976-01-01

    As an overview of quality assurance programs in nuclear power plants, the energy picture as it appears today is reviewed. Nuclear power plants and their operations are described and an attempt is made to place in proper perspective the alleged ''threats'' inherent in nuclear power. Finally, the quality assurance programs being used in the nuclear industry are described

  3. Nuclear power in the Soviet Union

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.

    1989-01-01

    The pros and cons of nuclear power are similar in many countries, but the following pro factors are specific to the Soviet Union: the major sources of conventional fuel are in one area of the country, but energy consumption is concentrated in another; and a large portion of energy is generated using oil and gas. The arguments against nuclear power are as follows: safety requirements and expectations have been increased; and public opinion is negative. A program of nuclear power generation has been developed. New techniques are being implemented to increase safety and enhance operations of different types of nuclear power plants. Its should be obvious in the future that a nuclear power plant has better economic and environmental parameters than existing methods of power generation

  4. Economic competitiveness of nuclear power in China

    International Nuclear Information System (INIS)

    Hu Chuanwen

    2005-01-01

    Development of nuclear power in China has made a good progress. Currently, economic competitiveness of nuclear power compared to fossil-fuelled power plants is one of the major problems which hamper its development. This article presents the economic competitiveness of nuclear power in China with two-level analyses. First, levelized lifetime cost method is adopted for electricity generation cost comparisons. Important factors influencing economic competitiveness of nuclear power are described. Furthermore, a broad economic evaluation of the full fuel chain of nuclear power and fossil-fuelled plants is discussed concerning macro social-economic issues, environmental and health impacts. The comprehensive comparative assessment would be carried out for decision making to implement nuclear power programme. In consideration of external costs and carbon value, the economic competitiveness of nuclear power would be further improved. Facing swift economic growth, huge energy demand and heavy environmental burden, nuclear power could play a significant role in sustainable development in China. (authors)

  5. Nuclear power industry, 1981

    International Nuclear Information System (INIS)

    1981-12-01

    The intent of this publication is to provide a single volume of resource material that offers a timely, comprehensive view of the nuclear option. Chapter 1 discusses the development of commercial nuclear power from a historical perspective, reviewing the factors and events that have and will influence its progress. Chapters 2 through 5 discuss in detail the nuclear powerplant and its supporting fuel cycle, including various aspects of each element from fuel supply to waste management. Additional dimension is brought to the discussion by Chapters 6 and 7, which cover the Federal regulation of nuclear power and the nuclear export industry. This vast body of thoroughly documented information offers the reader a useful tool in evaluating the record and potential of nuclear energy in the United States

  6. Virginia power nuclear power station engineer training program

    International Nuclear Information System (INIS)

    Williams, T.M.; Haberstroh-Timpano, S.

    1987-01-01

    In response to the Institute of Nuclear Power Operations (INPO) accreditation requirements for technical staff and manager, Virginia Power developed the Nuclear Power Station Engineer Training Programs (NPSETP). The NPSETP is directed toward enhancing the specific knowledge and skills of company engineers, especially newly hired engineers. The specific goals of the program are to promote safe and reliable plant operation by providing engineers and appropriate engineering technicians with (1) station-specific basic skills; (2) station-specific specialized skills in the areas of surveillance and test, plant engineering, nuclear safety, and in-service inspection. The training is designed to develop, maintain, and document through demonstration the required knowledge and skills of the engineers in the identified groups at North Anna and Surry Power Stations. The program responds to American National Standards Institute, INPO, and US Nuclear Regulatory Commission standards

  7. Decontamination and decommissioning project status of the TRIGA mark-2±3 research reactors

    International Nuclear Information System (INIS)

    Jung, K. J.; Baek, S. T.; Jung, W. S.; Park, S. K.; Jung, K. H.

    1999-01-01

    TRIGA Mark-II, the first research reactor in Korea, has operated since 1962, and the second one, TRIGA Mark-III since 1972. Both of them had their operation phased out in 1995 due to their lives and operation of the new research reactor, HANARO at the Korea Atomic Energy Research Institute (KAERI) in Taejeon. Decontamination and decommissioning (D and D) project of the TRIGA Mark-II and Mark-III was started in January 1997 and will be completed in December 2002. In the first year of the project, work was performed in preparation of the decommissioning plan, start of the environmental impact assessment and setup licensing procedure and documentation for the project with cooperation of Korea Institute of Nuclear Safety (KINS). In 1998, Hyundai Engineering Company (HEC) is the main contractor to do design and licensing documentation for the D and D of both reactors. British Nuclear Fuels plc (BNFL) is technical assisting partner of HEC. The decommissioning plan document was submitted to the Ministry of Science and Technology (MOST) for the decommissioning license in December 1998, and it expecting to be issued a license at the end of September 1999. The goal of this project is to release the reactor site and buildings as an unrestricted area. This paper summarizes current status and future plan for the D and D project

  8. Waste from nuclear power plants

    International Nuclear Information System (INIS)

    1980-01-01

    The report presents proposals for organizing and financing of the treatment and deposition of spent fuel and radioactive waste. Decommissioning of plants is taken into consideration. The proposals refer to a program of twelve reactors. A relatively complete model for the handling of radioactive waste in Sweden is at hand. The cost for the years 1980 to 2000 is estimated at approx 1040 million SKr. Also the expense to dispose of the rest of the waste is calculated up to the year 2060, when the waste is planned to be put into final deposit. The state must have substantial influence over the organization which should be closely connected to the nuclear industry. Three different types of organization are discussed, namely (i) a company along with a newly created authority, (ii) a company along with the existing Nuclear Power Inspectorate or (iii) a company along with a board of experts. The proposals for financing the cost of handling nuclear waste are given in chief outlines. The nuclear industry should reserve means to special funds. The allocations are calculated to 1.4 oere per delivered kWh up to and including the year 1980. The accumulated allocations for 1979 should thus amount to 1310 million SKr. The charge for supervision and for certain research and development is recommended to be 0.1 oere per kWh which corresponds to approx 23 million SKr for 1980. The funds should be assured by binding agreements which must be approved by the state. The amounts are given in the monetary value of the year 1979. (G.B.)

  9. Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Sung; Lee, Young Ju [Sunchon National University, Suncheon (Korea, Republic of); Oh, Young Jin [KEPCO E and C, Yongin (Korea, Republic of)

    2015-01-15

    High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions.

  10. Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Lee, Young Ju; Oh, Young Jin

    2015-01-01

    High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions

  11. Nuclear power: An evolving scenario

    International Nuclear Information System (INIS)

    ElBaradei, Mohamed

    2004-01-01

    The past two years have found the IAEA often in the spotlight - primarily because of our role as the world's 'nuclear watchdog', as we are sometimes referred to on the evening news. The most visible, and often controversial, peaceful nuclear application is the generation of electricity, the focus of this article largely from a European perspective. At the end of last year there were 440 nuclear power units operating worldwide. Together, they supply about 16% of the world's electricity. That percentage has remained relatively steady for almost 20 years. Expansion and growth prospects for nuclear power are centred in Asia. Of the 31 units under construction worldwide, 18 are located in India, Japan, South Korea and China, including Taiwan. Twenty of the last 29 reactors to be connected to the grid are also in the Far East and South Asia. That is probably more active construction than most Europeans would guess, given how little recent growth has occurred in the West. For Western Europe and North America, nuclear construction has been a frozen playing field - the last plant to be completed being Civaux-2 in France in 1999. That should raise a question: with little to no new construction, how has nuclear power been able to keep up with other energy sources, to maintain its share of electricity generation? Interestingly enough, the answer is tied directly to efforts to improve safety performance. The accident at Chernobyl in 1986 prompted the creation of the World Association of Nuclear Operators (WANO), and revolutionized the IAEA approach to nuclear power plant safety. Some analysts believe the case for new nuclear construction in Europe is gaining new ground, for a number of reasons: efforts to limit greenhouse gas emissions and reduce the risk of climate change; security of energy supply; Comparative Public Health Risk; different set of variables when choosing Each country's and region energy strategy. Looking to the future, certain key challenges are, of direct

  12. Nuclear power in the competitive environment

    International Nuclear Information System (INIS)

    Schlissel, D.A.

    1995-01-01

    Nuclear power was originally promoted as being able to produce electricity that would be open-quotes too cheap to meter.close quotes However, large construction cost overruns and rapidly rising operating costs caused many nuclear power plants instead to be very expensive sources of electricity. As a result, many nuclear utilities will face increasing cost pressures in the future competitive environment from lower-cost producers. In fact, the threat to nuclear utilities is so severe that many industry analysts are projecting that more that $70 billion of the utilities' remaining investments in nuclear plants will be open-quotes stranded,close quotes i.e., unrecoverable in the competitive environment. Others in the industry have speculated that many of the 150 major U.S. electric utilities, a large number of which are nuclear, could be swept away by competition, leaving fewer than fifty utilities. This paper will examine how utilities are attempting to improve the cost competitiveness of operating today's nuclear power plants. It will also identify some of the potential consequences of competition for nuclear power and the regulatory role of the U.S. Nuclear Regulatory Commission (NRC). Finally, this paper will address how the changing power markets will affect the prospects for the next generation of nuclear power plants

  13. Nuclear power in Japan and the USA

    International Nuclear Information System (INIS)

    Titterton, E.

    1979-06-01

    The development of the nuclear power industry in Japan and the USA is discussed. The author lists the number of nuclear power plants operating, under construction and planned and considers the contribution made by nuclear power stations to the total electricity generated. The advantages of nuclear power to both countries are outlined and forecasts are made of the role to be played by nuclear power in future years

  14. Bibliography: books and articles on nuclear waste, nuclear power and power supply during the years 1971-1987

    International Nuclear Information System (INIS)

    Djerf, M.; Hedberg, P.

    1988-06-01

    The bibliography provides a list of the supply published Swedish books and articles in periodicals on nuclear waste and nuclear power. Regarding book publication the bibliography comprises publications on questions of nuclear power and nuclear waste on the whole, whereas the bibliography on the periodical articles solely comprises nuclear waste questions. The book bibliography consists of a selective choice of publications, identified by a mapping of the total supply of information on energy- and nuclear power issues in articles and other publications in Sweden. The literature inventory as a whole is part of a grater research project aiming at a study of the role of mass media in forming public opinion about the nuclear power waste question. (O.S.)

  15. World warms to nuclear power

    International Nuclear Information System (INIS)

    Mortimer, N.

    1989-01-01

    The greenhouse effect and global warming is a major environmental issue. The nuclear industry has taken this opportunity to promote itself as providing clean energy without implication in either the greenhouse effect or acid rain. However, it is acknowledged that nuclear power does have its own environment concerns. Two questions are posed -does nuclear power contribute to carbon dioxide emissions and can nuclear power provide a realistic long-term solution to global warming? Although nuclear power stations do not emit carbon dioxide, emissions occur during the manufacture of reactor components, the operation of the nuclear fuel cycle and especially, during the mining and processing of the uranium ore. It is estimated that the supply of high grade ores will last only 23 years, beyond that the carbon dioxide emitted during the processing is estimated to be as great as the carbon dioxide emitted from an coal-fired reactor. Fast breeder reactors are dismissed as unable to provide an answer, so it is concluded that nuclear technology has only a very limited role to play in countering global warming.(UK)

  16. Aspects related to the introduction of nuclear power in developing countries

    International Nuclear Information System (INIS)

    Ursu, I.

    1994-05-01

    Taking as basic premises a foreseen growth in the world energy demand, a marked trend towards more electricity in power generation, and an increasingly substantial share of the nuclear in the latter the paper examines the part developing countries may play in the process both as determining factors and subjects. Demography, resources, the natural drive for the betterment of the economic performance and improvements in the standard of living as well as for assertion on the international scene, and the awareness on the disparities in these regards in comparison with the developed countries are indicated as major incentives for the developing countries' seeking enhanced access to nuclear power technology in the decades to come. Flaws in infrastructures, finances, labour force average education, and management capabilities are, on the other hand, pointed at as inhibiting factors, while a prolonged world economic recession and the uncertainties introduced by the current political changes at world scale in conjunction with the intrinsic dual nature of the nuclear technology are believed to further compound the situation. It is argued that an internationally concerted monitoring and assistance involving cooperative donors and acceptors is, probably, the only solution to ensure an orderly, economically sound and politically safe expansion of the nuclear power technology in developing countries. (author). 16 refs, 2 figs, 4 tabs

  17. One recommendation of nuclear power export. GDP model application to the countries which expressed nuclear power introduction and consideration

    International Nuclear Information System (INIS)

    Iida, Tekehiko

    2010-01-01

    South Korea has been excited in nuclear business after the success in the contract to build nuclear power plants in UAE. Since more than 60 countries expressed nuclear power introduction and new countries were on the rise with exporting reactor technology accumulated, new era over nuclear renaissance seems to begin. This article at first classified countries, which expressed nuclear power introduction, with an economic level of GDP per capita. Then each classified country's requirements of nuclear power introduction were taken into consideration such as economic development, consumption pattern and technology attitude. As a result recommendation of nuclear power export was proposed. Different approach to each country targeted was suggested as shown in 'nuclear power GDP model'. (T. Tanaka)

  18. Real issue with nuclear power

    International Nuclear Information System (INIS)

    Simpson, J.W.

    1976-01-01

    The voter referendums on nuclear power planned in some states can affect the energy supply and economic health of the public at large more than it affects the industry that provides nuclear power, the author states. He makes the point that those responsible for energy supplies in the U. S.--the President and all relevant Federal agencies, the majority of Congress, the national utility industry, major laboratories, universities and consulting firms, and other energy industries--all favor nuclear power. The complex U.S. energy situation is reviewed, and the hope of alternative energy sources, practice of energy conservation, and benefits of nuclear power are summarized. Specifically, the California Initiative and its three conditions which it says should dictate the future of nuclear power are reviewed. The author does not believe that the reasons that are usually given in opposing nuclear power are the real reasons. He states that ''it seems clear that the principal philosophy behind the initiatives is one of halting economic growth by striking at the energy source that would make that growth possible.'' Attention is called to the morality of nuclear power by asking where is the morality: in leaving future generations an insufficient amount of energy, limiting their abilities to solve the economic and employment problems; in squandering our finite supply of fossil fuels while ignoring nuclear fuels; in forcing the nation into further dependence on unpredictable foreign nations for its energy supply; in expecting other states to provide California with the energy that it does not want to generate itself; and in allowing an arbitrary limit on growth to be set by groups of political activists

  19. Lujan Mark-4

    Energy Technology Data Exchange (ETDEWEB)

    Mocko, Michael Jeffrey [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zavorka, Lukas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Koehler, Paul E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-13

    This is a review of Mark-IV target neutronics design. It involved the major redesign of the upper tier, offering harder neutron spectra for upper-tier FPs; a redesign of the high-resolution (HR) moderator; and a preservation of the rest of Mark-III features.

  20. Dictionary of nuclear power. upd. ed.

    International Nuclear Information System (INIS)

    Koelzer, W.

    2011-10-01

    The updated dictionary on nuclear power contains definitions and explanations on nuclear physics, nuclear engineering, nuclear power, radiation effects and radiation protection in alphabetic order. Attachments on units, their conversion and physical constants are included.

  1. Cooperation of nuclear, thermal and hydroelectric power plants in the power system

    International Nuclear Information System (INIS)

    1984-01-01

    The conference heard 36 papers of which 23 were incorporated in INIS. The subjects discussed were: the development of power industry in Czechoslovakia, methods of statistical analysis of data regarding nuclear power plant operation, the incorporation of WWER nuclear power plants in the power supply system, the standardization of nuclear power plants, the service life of components, use of nuclear energy sources, performance of the reactor accident protection system, the use of nuclear power and heating plants in Hungary, risk analysis, optimization of nuclear power plants, accidents caused by leakage of the primary and secondary circuit. (J.P.)

  2. Nuclear power in Germany

    International Nuclear Information System (INIS)

    Schaefer, A.

    1990-01-01

    I want to give some ideas on the situation of public and utility acceptance of nuclear power in the Federal Republic of Germany and perhaps a little bit on Europe. Let me start with public perception. I think in Germany we have a general trend in the public perception of technology during the last decade that has been investigated in a systematic manner in a recent study. It is clear that the general acceptance of technology decreased substantially during the last twenty years. We can also observe during this time that aspects of the benefits of technology are much less reported in the media, that most reporting by the media now is related to the consequences of technologies, such as negative environmental consequences. hat development has led to a general opposition against new technological projects, in particular unusual and large. That trend is related not only to nuclear power, we see it also for new airports, trains, coal-fired plants. here is almost no new technological project in Germany where there is not very strong opposition against it, at least locally. What is the current public opinion concerning nuclear power? Nuclear power certainly received a big shock after Chernobyl, but actually, about two thirds of the German population wants to keep the operating plants running. Some people want to phase the plants out as they reach the end-of-life, some want to substitute newer nuclear technology, and a smaller part want to increase the use of nuclear power. But only a minority of the German public would really like to abandon nuclear energy

  3. OSART mission highlights 2001-2003. Operational safety practices in nuclear power plants

    International Nuclear Information System (INIS)

    2005-05-01

    The IAEA Operational Safety Review Team (OSART) programme provides advice and assistance to Member States in enhancing the operational safety of nuclear power plants (NPPs). Careful design and high quality of construction are prerequisites for a safe nuclear power plant. However, a plant's safety depends ultimately on the ability and conscientiousness of the operating personnel and on the plant programmes, processes and working methods. An OSART mission compares a facility's operational performance with IAEA Safety Standards and proven good international practices. The OSART reviews are available to all countries with nuclear power plants in operation, but also approaching operation, commissioning or in earlier stages of construction (Pre-OSART). Most countries have participated in the programme by hosting one or more OSART missions or by making experts available to participate in missions. Operational safety missions can also be part of the design review missions of nuclear power plants and are known as Safety Review Missions (SRMs). Teams that review only a few specific areas or a specific issue are called Expert missions. Follow-up visits are a standard part of the OSART programme and are conducted between 12 to 18 months following the OSART mission. This report continues the practice of summarizing mission results so that all the aspects of OSART missions, Pre-OSART missions and OSART good practices are to be found in one document. It also includes the results of follow-up visits. Attempts have been made in this report to highlight the most significant findings while retaining as much of the vital background information as possible. This report is in three parts: Part I summarizes the most significant observations made during the missions and follow-up visits between 2001 and 2003; Part II, in chronological order, reviews the major strengths and opportunities for improvement identified during each OSART mission and summarizes the follow-up visits performed

  4. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2000-01-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1999 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1999; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; grid connection forecasts; world electric power market; electronuclear owners and share holders in EU, capacity and load factor; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; 1999 gross load factor by operator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  5. Country Nuclear Power Profiles - 2010 Edition

    International Nuclear Information System (INIS)

    2010-08-01

    The Country Nuclear Power Profiles compiles background information on the status and development of nuclear power programs in Member States. It consists of organizational and industrial aspects of nuclear power programs and provides information about the relevant legislative, regulatory, and international framework in each country. Its descriptive and statistical overview of the overall economic, energy, and electricity situation in each country, and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programs in the world. The preparation of Country Nuclear Power Profiles (CNPP) was initiated in 1990s. It responded to a need for a database and a technical publication containing a description of the energy and economic situation, the energy and the electricity sector, and the primary organizations involved in nuclear power in IAEA Member States. This is the 2010 edition issued on CD-ROM and Web pages. It updates the country information for 48 countries. The CNPP is updated based on information voluntarily provided by participating IAEA Member States. Participants include the 29 countries that have operating nuclear power plants, as well as 19 countries having past or planned nuclear power programmes (Bangladesh, Belarus, Chile, Egypt, Ghana, Indonesia, the Islamic Republic of Iran, Italy, Jordan, Kazakhstan, Lithuania, Morocco, Nigeria, Philippines, Poland, Thailand, Tunisia, Turkey and Vietnam). For the 2010 edition, 24 countries provided updated or new profiles. For the other countries, the IAEA updated the profile statistical tables on nuclear power, energy development, and economic indicators based on information from IAEA and World Bank databases. The CNPP reports have been prepared by each Member State in accordance with the IAEA format. The IAEA is not responsible for the content of these reports

  6. Nuclear power 1984: Progressive normalisation

    International Nuclear Information System (INIS)

    Popp, M.

    1984-01-01

    The peaceful use of nuclear power is being integrated into the overall concept of a safe long-term power supply in West Germany. The progress of normalisation is shown particularly in the takeover of all stations of the nuclear fuel circuit by the economy, with the exception of the final storage of radioactive waste, which is the responsibility of the West German Government. Normalisation also means the withdrawal of the state from financing projects after completion of the two prototypes SNR-300 and THTR-300 and the German uranium enrichment plant. The state will, however, support future research and development projects in the nuclear field. The expansion of nuclear power capacity is at present being slowed down by the state of the economy, i.e. only nuclear power projects being built are proceeding. (orig./HP) [de

  7. The economics of nuclear power

    International Nuclear Information System (INIS)

    Hunt, H.; Betteridge, G.

    1978-01-01

    It is stated that nuclear power stations throughout the world are now providing consumers with substantially the cheapest electricity, except in areas with extensive hydro-power or cheap, clean, local coal. Thermal nuclear power stations will continue to provide economic electricity until the cost of uranium rises to several times the present level; fast reactors have the potential to continue to stabilise the cost of electricity and by moderating demand for other fuels will keep down their cost also. Headings of this paper include -The historical perspective; methods of comparing nuclear and fossil generating costs; historical comparisons of UK nuclear and fossil generating costs; waste storage and decommissioning; future changes in costs; criteria for future investment in nuclear power; alternative methods of comparison; total system cost analysis; the economics of fast reactors; and the ultimate role of fast reactors. 13 references. (author)

  8. Public acceptance of nuclear power in Taiwan

    International Nuclear Information System (INIS)

    Liao, T.T.L.

    1992-01-01

    It is necessary to reach the public acceptance for nuclear power development program. During the process of the application for the approval from the government to implement the Fourth Nuclear Power Plant program in Taiwan, we initialized a series of communication program in the last two years and are expecting to convince the public that to develops nuclear power is essential to the country from a viewpoint of energy diversified. The basic strategies of the communication program not only emphasized the new nuclear power project, but also for the long term public acceptance on nuclear power. The strategies include: (1) Preview and implement the promotion program for the performance of the existing nuclear power plants. (2) Designate and communicate with the major communication target groups: elected delegates, journalists, local residents, scholars and experts. (3) Edit and incorporate the basic nuclear knowledge into the preliminary school educational materials. (4) Subsidize the adjacent communities of nuclear power plants for the public well-being construction. In order to implement the mentioned strategies, Taipower has reorganized the public service department and the existing nuclear power plants, setup the nuclear exhibition center, conducted fullscale emergency drill biannually for each of nuclear power plant, and prepared the seminars for the teacher

  9. Canada's steps towards nuclear power

    International Nuclear Information System (INIS)

    Lewis, W.B.

    1958-09-01

    This paper describes the policy development of nuclear power in Canada. Canada has a natural abundance of coal, oil, natural gas, water power and uranium. It was recognized that the demand for nuclear power would only materialize if it met an economically competitive range.

  10. Study of the characteristic response of the pressure control system for the design parameters of the new turbine control system, MARK VI, in Cofrentes Nuclear Power Plant; Resultados del estudio de la respuesta caracteristica del sistema de control de presion para el Proyecto OCP-4300 Nuevo Sistema de Control de Turbina MARK VI en la C.N. Cofrentes

    Energy Technology Data Exchange (ETDEWEB)

    Palomo anaya, M. J.; Ruiz Bueno, G.; Mora, J. A.; Vaquer, J. I.; Bucho, L.; Lopez, B.

    2010-07-01

    This paper presents the results of the study of the characteristic response of the ancient Pressure and Turbine Control System for the OCP-4300 Project in the Cofrentes Nuclear Power Plant, made by Titania Servicios Tecnologicos in collaboration with the Institute for Industrial, Radiophysical and Environmental Safety. This work was done as one of the preliminary work necessary for replacing the old control system by Mark VI.

  11. Nuclear power: 2006 world report - evaluation

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    Last year, 2006, 437 nuclear power plants were available for power supply in 31 countries, 7 plants less than in 2005. One unit was commissioned for the first time, 8 nuclear power plants were decommissioned for good in 2006. At a cumulated gross power of 389,488 MWe and a cumulated net power of 370,441 MWe, respectively, worldwide nuclear generating capacity has reached a high level so far. Nine different reactor lines are operated in commercial plants: PWR, PWR-VVER, BWR, CANDU, D 2 O PWR, GCR, AGR, LWGR, and LMFBR. Light water reactors (PWR and BWR) continue to top the list with 358 plants. By the end of the year, 10 countries operated 29 nuclear power plants with an aggregate gross power of 25,367 MWe and an aggregate net power of 23,953 MWe, respectively. Of these, 21 are light water reactors, 5 are CANDU-type reactors, 2 are fast breeder and 1 a LWGR. 123 commercial reactors with an aggregate power in excess of 5 MWe have so far been decommissioned in 19 countries. Most of them are prototype plants of low power. About 70% of the nuclear power plants in operation, namely 304 plants, were commissioned in the eighties and nineties. The energy availability and operating availability factors of the nuclear power plants again reached peak levels: 82% for energy availability, and 83% for operating availability. The 4 nuclear power plants in Finland continue to be in the lead worldwide with a cumulated average operating capacity factor of 94%. (orig.)

  12. Nuclear power. 2008 world report - evaluation

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    In 2008, 438 nuclear power plants were available for power supply in 31 countries, 1 plant less than in 2007. No unit was commissioned for the first time, 1 nuclear power plant was decommissioned for good in 2008. At a cumulated gross power of 392,597 MWe and a cumulated net power of 372,170 MWe, respectively, worldwide nuclear generating capacity has reached a high level. Nine different reactor lines are operated in commercial plants: PWR, PWR-VVER, BWR, CANDU, D2O PWR, GCR, AGR, LWGR, and LMFBR. Light water reactors (PWR and BWR) continue to top the list with 358 plants. By the end of 2008, in 14 countries 43 nuclear power plants with an aggregate gross power of 39,211 MWe and an aggregate net power of 36,953 MWe were under construction. Of these, 37 are light water reactors, 3 are CANDU-type reactors, 2 are fast breeder and 1 D2O-PWR. 124 commercial reactors with an aggregate power in excess of 5 MWe have so far been decommissioned in 19 countries. Most of them are prototype plants of low power. About 70% of the nuclear power plants in operation, namely 304 plants, were commissioned in the eighties and nineties. The energy availability and operating availability factors of the nuclear power plants reached good levels: 80.80% for operating availability and 80,00% for energy availability. The four nuclear power plants in Finland continuecontinue to be in the lead worldwide with a cumulated average operating capacity factor of 91,60%. (orig.)

  13. Benefits and hazards of nuclear power

    International Nuclear Information System (INIS)

    Barnert, H.; Borsch, P.; Feldmann, A.; Merz, E.; Muench, E.; Oesterwind, D.; Voss, A.; Wolters, J.

    1979-09-01

    Compilation of a seminar at the KFA Juelich on topical problems of nuclear power. Subjects: Energy demand, its expected development and possibilities of coverage; physical fundamentals and technical realisation of power generation by nuclear fission; fuel cycle problems and solutions; effects of radioactive radiation; safety of nuclear power plants and the nuclear hazard as compared with other hazards. (orig./RW) [de

  14. The nuclear disaster management system in Taiwan: a case study of the third (Maanshan) nuclear power plant.

    Science.gov (United States)

    Yang, Yung-Nane

    2016-07-01

    This paper explores the effectiveness of the nuclear disaster management system in Taiwan via a review of the third (Maanshan) nuclear power plant. In doing so, the Fukushima Daiichi nuclear disaster in Japan on 11 March 2011 is reviewed and compared with the situation in Taiwan. The latter's nuclear disaster management system is examined with respect to three key variables: information; mobilisation; and inter-organisational cooperation. In-depth interviews with 10 policy stakeholders with different backgrounds serve as the research method. The results point up the need for improvement in all dimensions. In addition, they highlight three principal problems with the nuclear disaster management system: (i) it might not be possible to provide first-hand nuclear disaster information immediately to the communities surrounding the Maanshan facility in Pingtung County, southern Taiwan; (ii) the availability of medical resources for treating radiation in Hengchun Township is limited; and (iii) the inter-organisational relationships for addressing nuclear disasters need to be strengthened. Hence, cooperation among related organisations is necessary. © 2016 The Author(s). Disasters © Overseas Development Institute, 2016.

  15. Energy situation and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Megahid, M R [Reactor and Neutron physics Department Nuclear Research Center A.E., Cairo (Egypt)

    1997-12-31

    A brief general review is given concerning the requirements of power throughout history with an indication to the world capital reserves of energy. The energy released from the conversion of mass in chemical and nuclear processes is also discussed with comparative analysis between conventional fuel fired plant and nuclear power plant having the same energy output. The advantages and disadvantages arising from having a nuclear power programme are also discussed. 1 fig.

  16. Nuclear power in Spain

    International Nuclear Information System (INIS)

    1979-01-01

    the plans of the Spanish Government to reduce their dependence on oil over the next ten years by a considerable increase in nuclear generating capacity are outlined. Data on the type, generating power, location and commissioning data of a number of nuclear power stations in Spain are tabulated. The use of foreign companies for the design and construction of the nuclear stations and the national organisations responsible for different aspects of the programme are considered. (UK)

  17. The nuclear power station

    International Nuclear Information System (INIS)

    Plettner, B.

    1987-04-01

    The processes taking place in a nuclear power plant and the dangers arising from a nuclear power station are described. The means and methods of controlling, monitoring, and protecting the plant and things that can go wrong are presented. There is also a short discourse on the research carried out in the USA and Germany, aimed at assessing the risks of utilising nuclear energy by means of the incident tree analysis and probability calculations. (DG) [de

  18. Climate change and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M

    2000-04-01

    The nuclear industry has increased its efforts to have nuclear power plants integrated into the post- Kyoto negotiating process of the UN Framework Convention on Climate Change. The Nuclear Energy Institute (NEI) states: ''For many reasons, current and future nuclear energy projects are a superior method of generating emission credits that must be considered as the US expands the use of market- based mechanisms designed around emission credit creation and trading to achieve environmental goals ''. The NEI considers that nuclear energy should be allowed to enter all stages of the Kyoto ''flexibility Mechanisms'': emissions trading, joint implementation and the Clean Development Mechanism. The industry sees the operation of nuclear reactors as emission ''avoidance actions'' and believes that increasing the generation of nuclear power above the 1990 baseline year either through extension and renewal of operating licenses or new nuclear plant should be accepted under the flexibility mechanisms in the same way as wind, solar and hydro power. For the time being, there is no clear definition of the framework conditions for operating the flexibility mechanisms. However, eligible mechanisms must contribute to the ultimate objective of the Climate Convention of preventing ''dangerous anthropogenic interference with the climate system''. The information presented in the following sections of this report underlines that nuclear power is not a sustainable source of energy, for many reasons. In conclusion, an efficient greenhouse gas abatement strategy will be based on energy efficiency and not on the use of nuclear power. (author)

  19. Renewable and nuclear power: A common future?

    International Nuclear Information System (INIS)

    Verbruggen, Aviel

    2008-01-01

    Nuclear power and renewable energy are the main options to bring down the carbon intensity of commercial energy supply. What technology is unlimited backstop supply depends on its performance on the sustainability criteria: democratic decided, globally accessible, environmental benign, low risk, affordable. Renewable power meets all criteria, with affordability under debate. Maximizing energy efficiency as prerequisite, the affordable sustainable option in fact is the twin efficiency/renewable power. Nuclear power falls short on the sustainability criteria and its public acceptance is low. Nuclear proponents now propose nuclear and renewable energy as a suitable couple to address the climate change challenge. The two antagonists however are mutually exclusive on the five major directions of future power systems. First, nuclear power has been architect of the expansive 'business-as-usual' energy economy since the 1950s. Second, add-on by fossil-fuelled power plants is bulky and expansive for nuclear power, but is distributed, flexible and contracting over time for renewable power. Third, power grids for spreading bulky nuclear outputs are other than the interconnection between millions of distributed power sources requires. Fourth, risks and externalities and the proper technology itself of nuclear power limit its development perspectives, while efficiency/renewable power are still in their infancy. Fifth, their stalemate for R and D resources and for production capacities will intensify. Nuclear power and renewable power have no common future in safeguarding 'Our Common Future'

  20. Nuclear power plants in populated areas

    International Nuclear Information System (INIS)

    Wachsmann, F.

    1973-01-01

    The article first deals with the permanently increasing demand for electical power. Considering the ever growing energy demand which can no longer be covered by conventional power plants, it has become necessary to set up nuclear power plants of larger range. The author presents in a survey the basic function of nuclear power plants as well as the resulting risks and safety measures. The author concludes that according to present knowledge there is no more need to erect nuclear power plants outside densely populated urban areas but there is now the possibility of erecting nuclear power plants in densely populated areas. (orig./LH) [de