WorldWideScience

Sample records for marine turtle population

  1. Status of marine turtle rehabilitation in Queensland

    Directory of Open Access Journals (Sweden)

    Jaylene Flint

    2017-03-01

    Full Text Available Rehabilitation of marine turtles in Queensland has multifaceted objectives. It treats individual animals, serves to educate the public, and contributes to conservation. We examined the outcome from rehabilitation, time in rehabilitation, and subsequent recapture and restranding rates of stranded marine turtles between 1996 and 2013 to determine if the benefits associated with this practice are cost-effective as a conservation tool. Of 13,854 marine turtles reported as stranded during this 18-year period, 5,022 of these turtles were stranded alive with the remainder verified as dead or of unknown condition. A total of 2,970 (59% of these live strandings were transported to a rehabilitation facility. Overall, 1,173/2,970 (39% turtles were released over 18 years, 101 of which were recaptured: 77 reported as restrandings (20 dead, 13 alive subsequently died, 11 alive subsequently euthanized, 33 alive and 24 recaptured during normal marine turtle population monitoring or fishing activities. Of the turtles admitted to rehabilitation exhibiting signs of disease, 88% of them died, either unassisted or by euthanasia and 66% of turtles admitted for unknown causes of stranding died either unassisted or by euthanasia. All turtles recorded as having a buoyancy disorder with no other presenting problem or disorder recorded, were released alive. In Queensland, rehabilitation costs approximately $1,000 per animal per year admitted to a center, $2,583 per animal per year released, and $123,750 per animal per year for marine turtles which are presumably successfully returned to the functional population. This practice may not be economically viable in its present configuration, but may be more cost effective as a mobile response unit. Further there is certainly benefit giving individual turtles a chance at survival and educating the public in the perils facing marine turtles. As well, rehabilitation can provide insight into the diseases and environmental

  2. Status of marine turtle rehabilitation in Queensland.

    Science.gov (United States)

    Flint, Jaylene; Flint, Mark; Limpus, Colin James; Mills, Paul

    2017-01-01

    Rehabilitation of marine turtles in Queensland has multifaceted objectives. It treats individual animals, serves to educate the public, and contributes to conservation. We examined the outcome from rehabilitation, time in rehabilitation, and subsequent recapture and restranding rates of stranded marine turtles between 1996 and 2013 to determine if the benefits associated with this practice are cost-effective as a conservation tool. Of 13,854 marine turtles reported as stranded during this 18-year period, 5,022 of these turtles were stranded alive with the remainder verified as dead or of unknown condition. A total of 2,970 (59%) of these live strandings were transported to a rehabilitation facility. Overall, 1,173/2,970 (39%) turtles were released over 18 years, 101 of which were recaptured: 77 reported as restrandings (20 dead, 13 alive subsequently died, 11 alive subsequently euthanized, 33 alive) and 24 recaptured during normal marine turtle population monitoring or fishing activities. Of the turtles admitted to rehabilitation exhibiting signs of disease, 88% of them died, either unassisted or by euthanasia and 66% of turtles admitted for unknown causes of stranding died either unassisted or by euthanasia. All turtles recorded as having a buoyancy disorder with no other presenting problem or disorder recorded, were released alive. In Queensland, rehabilitation costs approximately $1,000 per animal per year admitted to a center, $2,583 per animal per year released, and $123,750 per animal per year for marine turtles which are presumably successfully returned to the functional population. This practice may not be economically viable in its present configuration, but may be more cost effective as a mobile response unit. Further there is certainly benefit giving individual turtles a chance at survival and educating the public in the perils facing marine turtles. As well, rehabilitation can provide insight into the diseases and environmental stressors causing

  3. Status of marine turtle rehabilitation in Queensland

    Science.gov (United States)

    Flint, Mark; Limpus, Colin James; Mills, Paul

    2017-01-01

    Rehabilitation of marine turtles in Queensland has multifaceted objectives. It treats individual animals, serves to educate the public, and contributes to conservation. We examined the outcome from rehabilitation, time in rehabilitation, and subsequent recapture and restranding rates of stranded marine turtles between 1996 and 2013 to determine if the benefits associated with this practice are cost-effective as a conservation tool. Of 13,854 marine turtles reported as stranded during this 18-year period, 5,022 of these turtles were stranded alive with the remainder verified as dead or of unknown condition. A total of 2,970 (59%) of these live strandings were transported to a rehabilitation facility. Overall, 1,173/2,970 (39%) turtles were released over 18 years, 101 of which were recaptured: 77 reported as restrandings (20 dead, 13 alive subsequently died, 11 alive subsequently euthanized, 33 alive) and 24 recaptured during normal marine turtle population monitoring or fishing activities. Of the turtles admitted to rehabilitation exhibiting signs of disease, 88% of them died, either unassisted or by euthanasia and 66% of turtles admitted for unknown causes of stranding died either unassisted or by euthanasia. All turtles recorded as having a buoyancy disorder with no other presenting problem or disorder recorded, were released alive. In Queensland, rehabilitation costs approximately $1,000 per animal per year admitted to a center, $2,583 per animal per year released, and $123,750 per animal per year for marine turtles which are presumably successfully returned to the functional population. This practice may not be economically viable in its present configuration, but may be more cost effective as a mobile response unit. Further there is certainly benefit giving individual turtles a chance at survival and educating the public in the perils facing marine turtles. As well, rehabilitation can provide insight into the diseases and environmental stressors causing

  4. Global conservation priorities for marine turtles.

    Directory of Open Access Journals (Sweden)

    Bryan P Wallace

    Full Text Available Where conservation resources are limited and conservation targets are diverse, robust yet flexible priority-setting frameworks are vital. Priority-setting is especially important for geographically widespread species with distinct populations subject to multiple threats that operate on different spatial and temporal scales. Marine turtles are widely distributed and exhibit intra-specific variations in population sizes and trends, as well as reproduction and morphology. However, current global extinction risk assessment frameworks do not assess conservation status of spatially and biologically distinct marine turtle Regional Management Units (RMUs, and thus do not capture variations in population trends, impacts of threats, or necessary conservation actions across individual populations. To address this issue, we developed a new assessment framework that allowed us to evaluate, compare and organize marine turtle RMUs according to status and threats criteria. Because conservation priorities can vary widely (i.e. from avoiding imminent extinction to maintaining long-term monitoring efforts we developed a "conservation priorities portfolio" system using categories of paired risk and threats scores for all RMUs (n = 58. We performed these assessments and rankings globally, by species, by ocean basin, and by recognized geopolitical bodies to identify patterns in risk, threats, and data gaps at different scales. This process resulted in characterization of risk and threats to all marine turtle RMUs, including identification of the world's 11 most endangered marine turtle RMUs based on highest risk and threats scores. This system also highlighted important gaps in available information that is crucial for accurate conservation assessments. Overall, this priority-setting framework can provide guidance for research and conservation priorities at multiple relevant scales, and should serve as a model for conservation status assessments and priority

  5. PIR Marine Turtle Nesting

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Effective management of marine turtle data is essential to maximize their research value and enable timely population assessments and recovery monitoring. To provide...

  6. PIR Marine Turtle Strandings

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Effective management of marine turtle data is essential to maximize their research value and enable timely population assessments and recovery monitoring. To provide...

  7. Willingness to Pay for Marine Turtle Conservation in Asia: A Cross-Country Perspective

    OpenAIRE

    Jin Jiangjun; Rodelio Subade; Orapan Nabangchang; Truong Dang Thuy; Anabeth L. Indab

    2009-01-01

    Marine turtles are important, not only for their economic and intrinsic value, but because an adequate population of marine turtles is often an indicator of healthy marine ecosystem. Of the seven species of marine turtles, four are critically endangered, while two are in the next-highest risk category.

  8. PIR Marine Turtle Ocean Captures & Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Effective management of marine turtle data is essential to maximize their research value and enable timely population assessments and recovery monitoring. To provide...

  9. Post-breeding migration routes of marine turtles from Bonaire and Klein Bonaire, Caribbean Netherlands

    NARCIS (Netherlands)

    Becking, L.E.; Christianen, M.J.A.; Nava, M.I.; Miller, N.; Willis, S.; Dam, Van R.P.

    2016-01-01

    The management of small rookeries is key to conserving the regional genetic diversity of marine turtle populations and requires knowledge on population connectivity between breeding and foraging areas. To elucidate the geographic scope of the populations of marine turtles breeding at Bonaire and

  10. Impact of jaguar Panthera onca(Carnívora: Felidae predation on marine turtle populations in Tortuguero, Caribbean coast of Costa Rica

    Directory of Open Access Journals (Sweden)

    Stephanny Arroyo-Arce

    2015-09-01

    Full Text Available Little is known about the effects of jaguars on the population of marine turtles nesting in Tortuguero National Park, Costa Rica. This study assessed jaguar predation impact on three species of marine turtles (Chelonia mydas, Dermochelys coriáceaand Eretmochelys imbricatathat nest in Tortuguero beach. Jaguar predation data was obtained by using two methodologies, literature review (historical records prior the year 2005 and weekly surveys along the 29 km stretch of beach during the period 2005-2013. Our results indicated that jaguar predation has increased from one marine turtle in 1981 to 198 in 2013. Jaguars consumed annually an average of 120 (SD= 45 and 2 (SD= 3 green turtles and leatherbacks in Tortuguero beach, respectively. Based on our results we concluded that jaguars do not represent a threat to the population of green turtles that nest in Tortuguero beach, and it is not the main cause for population decline for leatherbacks and hawksbills. Future research should focus on continuing to monitor this predator-prey relationship as well as the factors that influence it so the proper management decisions can be taken.

  11. Post-breeding migration routes of marine turtles from Bonaire and Klein Bonaire, Caribbean Netherlands

    OpenAIRE

    Becking, L.E.; Christianen, M.J.A.; Nava, M.I.; Miller, N.; Willis, S.; Dam, Van, R.P.

    2016-01-01

    The management of small rookeries is key to conserving the regional genetic diversity of marine turtle populations and requires knowledge on population connectivity between breeding and foraging areas. To elucidate the geographic scope of the populations of marine turtles breeding at Bonaire and Klein Bonaire (Caribbean Netherlands) we examined the post-breeding migratory behavior of 5 female loggerheads Caretta caretta, 4 female green turtles Chelonia mydas, and 2 male and 13 female hawksbil...

  12. Advances in the Application of Genetics in Marine Turtle Biology and Conservation

    Directory of Open Access Journals (Sweden)

    Lisa M. Komoroske

    2017-06-01

    Full Text Available Marine turtles migrate across long distances, exhibit complex life histories, and occupy habitats that are difficult to observe. These factors present substantial challenges to understanding fundamental aspects of their biology or assessing human impacts, many of which are important for the effective conservation of these threatened and endangered species. The early development and application of genetic tools made important contributions to understanding marine turtle population and evolutionary biology, such as providing evidence of regional natal homing by breeding adults, establishing connectivity between rookeries and foraging habitats, and determining phylogeography and broad scale stock structure for most marine turtle species. Recent innovations in molecular technologies, statistical methods, and creative application of genetic tools have significantly built upon this knowledge to address key questions in marine turtle biology and conservation management. Here, we evaluate the latest major advances and potential of marine turtle genetic applications, including improved resolution and large-scale syntheses of population structure, connectivity and phylogeography, estimation of key demographic rates such as age to maturity and operational or breeding sex ratios, insight into reproductive strategies and behavior, and assessment of differential human impacts among populations. We then discuss remaining challenges and emerging capabilities, such as rapid, multiplexed genotyping, and investigation of the genomic underpinnings of adaptive variation afforded by high-throughput sequencing technologies.

  13. Status of marine turtle rehabilitation in Queensland

    OpenAIRE

    Jaylene Flint; Mark Flint; Colin James Limpus; Paul Mills

    2017-01-01

    Rehabilitation of marine turtles in Queensland has multifaceted objectives. It treats individual animals, serves to educate the public, and contributes to conservation. We examined the outcome from rehabilitation, time in rehabilitation, and subsequent recapture and restranding rates of stranded marine turtles between 1996 and 2013 to determine if the benefits associated with this practice are cost-effective as a conservation tool. Of 13,854 marine turtles reported as stranded during this 18-...

  14. Regional management units for marine turtles: a novel framework for prioritizing conservation and research across multiple scales.

    Science.gov (United States)

    Wallace, Bryan P; DiMatteo, Andrew D; Hurley, Brendan J; Finkbeiner, Elena M; Bolten, Alan B; Chaloupka, Milani Y; Hutchinson, Brian J; Abreu-Grobois, F Alberto; Amorocho, Diego; Bjorndal, Karen A; Bourjea, Jerome; Bowen, Brian W; Dueñas, Raquel Briseño; Casale, Paolo; Choudhury, B C; Costa, Alice; Dutton, Peter H; Fallabrino, Alejandro; Girard, Alexandre; Girondot, Marc; Godfrey, Matthew H; Hamann, Mark; López-Mendilaharsu, Milagros; Marcovaldi, Maria Angela; Mortimer, Jeanne A; Musick, John A; Nel, Ronel; Pilcher, Nicolas J; Seminoff, Jeffrey A; Troëng, Sebastian; Witherington, Blair; Mast, Roderic B

    2010-12-17

    Resolving threats to widely distributed marine megafauna requires definition of the geographic distributions of both the threats as well as the population unit(s) of interest. In turn, because individual threats can operate on varying spatial scales, their impacts can affect different segments of a population of the same species. Therefore, integration of multiple tools and techniques--including site-based monitoring, genetic analyses, mark-recapture studies and telemetry--can facilitate robust definitions of population segments at multiple biological and spatial scales to address different management and research challenges. To address these issues for marine turtles, we collated all available studies on marine turtle biogeography, including nesting sites, population abundances and trends, population genetics, and satellite telemetry. We georeferenced this information to generate separate layers for nesting sites, genetic stocks, and core distributions of population segments of all marine turtle species. We then spatially integrated this information from fine- to coarse-spatial scales to develop nested envelope models, or Regional Management Units (RMUs), for marine turtles globally. The RMU framework is a solution to the challenge of how to organize marine turtles into units of protection above the level of nesting populations, but below the level of species, within regional entities that might be on independent evolutionary trajectories. Among many potential applications, RMUs provide a framework for identifying data gaps, assessing high diversity areas for multiple species and genetic stocks, and evaluating conservation status of marine turtles. Furthermore, RMUs allow for identification of geographic barriers to gene flow, and can provide valuable guidance to marine spatial planning initiatives that integrate spatial distributions of protected species and human activities. In addition, the RMU framework--including maps and supporting metadata--will be an

  15. Regional Management Units for Marine Turtles: A Novel Framework for Prioritizing Conservation and Research across Multiple Scales

    Science.gov (United States)

    Wallace, Bryan P.; DiMatteo, Andrew D.; Hurley, Brendan J.; Finkbeiner, Elena M.; Bolten, Alan B.; Chaloupka, Milani Y.; Hutchinson, Brian J.; Abreu-Grobois, F. Alberto; Amorocho, Diego; Bjorndal, Karen A.; Bourjea, Jerome; Bowen, Brian W.; Dueñas, Raquel Briseño; Casale, Paolo; Choudhury, B. C.; Costa, Alice; Dutton, Peter H.; Fallabrino, Alejandro; Girard, Alexandre; Girondot, Marc; Godfrey, Matthew H.; Hamann, Mark; López-Mendilaharsu, Milagros; Marcovaldi, Maria Angela; Mortimer, Jeanne A.; Musick, John A.; Nel, Ronel; Pilcher, Nicolas J.; Seminoff, Jeffrey A.; Troëng, Sebastian; Witherington, Blair; Mast, Roderic B.

    2010-01-01

    Background Resolving threats to widely distributed marine megafauna requires definition of the geographic distributions of both the threats as well as the population unit(s) of interest. In turn, because individual threats can operate on varying spatial scales, their impacts can affect different segments of a population of the same species. Therefore, integration of multiple tools and techniques — including site-based monitoring, genetic analyses, mark-recapture studies and telemetry — can facilitate robust definitions of population segments at multiple biological and spatial scales to address different management and research challenges. Methodology/Principal Findings To address these issues for marine turtles, we collated all available studies on marine turtle biogeography, including nesting sites, population abundances and trends, population genetics, and satellite telemetry. We georeferenced this information to generate separate layers for nesting sites, genetic stocks, and core distributions of population segments of all marine turtle species. We then spatially integrated this information from fine- to coarse-spatial scales to develop nested envelope models, or Regional Management Units (RMUs), for marine turtles globally. Conclusions/Significance The RMU framework is a solution to the challenge of how to organize marine turtles into units of protection above the level of nesting populations, but below the level of species, within regional entities that might be on independent evolutionary trajectories. Among many potential applications, RMUs provide a framework for identifying data gaps, assessing high diversity areas for multiple species and genetic stocks, and evaluating conservation status of marine turtles. Furthermore, RMUs allow for identification of geographic barriers to gene flow, and can provide valuable guidance to marine spatial planning initiatives that integrate spatial distributions of protected species and human activities. In addition

  16. Risk Analysis Reveals Global Hotspots for Marine Debris Ingestion by Sea Turtles

    Science.gov (United States)

    Schuyler, Q. A.; Wilcox, C.; Townsend, K.; Wedemeyer-Strombel, K.; Balazs, G.; van Sebille, E.; Hardesty, B. D.

    2016-02-01

    Plastic marine debris pollution is rapidly becoming one of the critical environmental concerns facing wildlife in the 21st century. Here we present a risk analysis for plastic ingestion by sea turtles on a global scale. We combined global marine plastic distributions based on ocean drifter data with sea turtle habitat maps to predict exposure levels to plastic pollution. Empirical data from necropsies of deceased animals were then utilised to assess the consequence of exposure to plastics. We modelled the risk (probability of debris ingestion) by incorporating exposure to debris and consequence of exposure, and included life history stage, species of sea turtle, and date of stranding observation as possible additional explanatory factors. Life history stage is the best predictor of debris ingestion, but the best-fit model also incorporates encounter rates within a limited distance from stranding location, marine debris predictions specific to the date of the stranding study, and turtle species. There was no difference in ingestion rates between stranded turtles vs. those caught as bycatch from fishing activity, suggesting that stranded animals are not a biased representation of debris ingestion rates in the background population. Oceanic life-stage sea turtles are at the highest risk of debris ingestion, and olive ridley turtles are the most at-risk species. The regions of highest risk to global sea turtle populations are off of the east coasts of the USA, Australia, and South Africa; the east Indian Ocean, and Southeast Asia. Model results can be used to predict the number of sea turtles globally at risk of debris ingestion. Based on currently available data, initial calculations indicate that up to 52% of sea turtles may have ingested debris.

  17. Risk analysis reveals global hotspots for marine debris ingestion by sea turtles.

    Science.gov (United States)

    Schuyler, Qamar A; Wilcox, Chris; Townsend, Kathy A; Wedemeyer-Strombel, Kathryn R; Balazs, George; van Sebille, Erik; Hardesty, Britta Denise

    2016-02-01

    Plastic marine debris pollution is rapidly becoming one of the critical environmental concerns facing wildlife in the 21st century. Here we present a risk analysis for plastic ingestion by sea turtles on a global scale. We combined global marine plastic distributions based on ocean drifter data with sea turtle habitat maps to predict exposure levels to plastic pollution. Empirical data from necropsies of deceased animals were then utilised to assess the consequence of exposure to plastics. We modelled the risk (probability of debris ingestion) by incorporating exposure to debris and consequence of exposure, and included life history stage, species of sea turtle and date of stranding observation as possible additional explanatory factors. Life history stage is the best predictor of debris ingestion, but the best-fit model also incorporates encounter rates within a limited distance from stranding location, marine debris predictions specific to the date of the stranding study and turtle species. There is no difference in ingestion rates between stranded turtles vs. those caught as bycatch from fishing activity, suggesting that stranded animals are not a biased representation of debris ingestion rates in the background population. Oceanic life-stage sea turtles are at the highest risk of debris ingestion, and olive ridley turtles are the most at-risk species. The regions of highest risk to global sea turtle populations are off of the east coasts of the USA, Australia and South Africa; the east Indian Ocean, and Southeast Asia. Model results can be used to predict the number of sea turtles globally at risk of debris ingestion. Based on currently available data, initial calculations indicate that up to 52% of sea turtles may have ingested debris. © 2015 John Wiley & Sons Ltd.

  18. Turtle riders: remoras on marine turtles in Southwest Atlantic

    Directory of Open Access Journals (Sweden)

    Ivan Sazima

    Full Text Available An overview is presented for a poorly documented relationship between reef vertebrates in Southwest Atlantic: remoras (Echeneidae associated with marine turtles. Two remora species (Echeneis naucrates and Remora remora and four turtle species (Caretta caretta, Chelonia mydas, Eretmochelys imbricata, and Dermochelys coriacea are here recorded in symbiotic associations in the SW Atlantic. Echeneis naucrates was recorded both on the coast and on oceanic islands, whereas R. remora was recorded only at oceanic islands and in the open sea. The remora-turtle association is usually regarded as an instance of phoresis (hitchhiking, albeit feeding by the fish is also involved in this symbiosis type. This association seems to be rare in SW Atlantic.

  19. To eat or not to eat? Debris selectivity by marine turtles.

    Directory of Open Access Journals (Sweden)

    Qamar Schuyler

    Full Text Available Marine debris is a growing problem for wildlife, and has been documented to affect more than 267 species worldwide. We investigated the prevalence of marine debris ingestion in 115 sea turtles stranded in Queensland between 2006-2011, and assessed how the ingestion rates differ between species (Eretmochelys imbricata vs. Chelonia mydas and by turtle size class (smaller oceanic feeders vs. larger benthic feeders. Concurrently, we conducted 25 beach surveys to estimate the composition of the debris present in the marine environment. Based on this proxy measurement of debris availability, we modeled turtles' debris preferences (color and type using a resource selection function, a method traditionally used for habitat and food selection. We found no significant difference in the overall probability of ingesting debris between the two species studied, both of which have similar life histories. Curved carapace length, however, was inversely correlated with the probability of ingesting debris; 54.5% of pelagic sized turtles had ingested debris, whereas only 25% of benthic feeding turtles were found with debris in their gastrointestinal system. Benthic and pelagic sized turtles also exhibited different selectivity ratios for debris ingestion. Benthic phase turtles had a strong selectivity for soft, clear plastic, lending support to the hypothesis that sea turtles ingest debris because it resembles natural prey items such as jellyfish. Pelagic turtles were much less selective in their feeding, though they showed a trend towards selectivity for rubber items such as balloons. Most ingested items were plastic and were positively buoyant. This study highlights the need to address increasing amounts of plastic in the marine environment, and provides evidence for the disproportionate ingestion of balloons by marine turtles.

  20. To Eat or Not to Eat? Debris Selectivity by Marine Turtles

    Science.gov (United States)

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2012-01-01

    Marine debris is a growing problem for wildlife, and has been documented to affect more than 267 species worldwide. We investigated the prevalence of marine debris ingestion in 115 sea turtles stranded in Queensland between 2006–2011, and assessed how the ingestion rates differ between species (Eretmochelys imbricata vs. Chelonia mydas) and by turtle size class (smaller oceanic feeders vs. larger benthic feeders). Concurrently, we conducted 25 beach surveys to estimate the composition of the debris present in the marine environment. Based on this proxy measurement of debris availability, we modeled turtles’ debris preferences (color and type) using a resource selection function, a method traditionally used for habitat and food selection. We found no significant difference in the overall probability of ingesting debris between the two species studied, both of which have similar life histories. Curved carapace length, however, was inversely correlated with the probability of ingesting debris; 54.5% of pelagic sized turtles had ingested debris, whereas only 25% of benthic feeding turtles were found with debris in their gastrointestinal system. Benthic and pelagic sized turtles also exhibited different selectivity ratios for debris ingestion. Benthic phase turtles had a strong selectivity for soft, clear plastic, lending support to the hypothesis that sea turtles ingest debris because it resembles natural prey items such as jellyfish. Pelagic turtles were much less selective in their feeding, though they showed a trend towards selectivity for rubber items such as balloons. Most ingested items were plastic and were positively buoyant. This study highlights the need to address increasing amounts of plastic in the marine environment, and provides evidence for the disproportionate ingestion of balloons by marine turtles. PMID:22829894

  1. Understanding the sources and effects of abandoned, lost, and discarded fishing gear on marine turtles in northern Australia.

    Science.gov (United States)

    Wilcox, Chris; Heathcote, Grace; Goldberg, Jennifer; Gunn, Riki; Peel, David; Hardesty, Britta Denise

    2015-02-01

    Globally, 6.4 million tons of fishing gear are lost in the oceans annually. This gear (i.e., ghost nets), whether accidently lost, abandoned, or deliberately discarded, threatens marine wildlife as it drifts with prevailing currents and continues to entangle marine organisms indiscriminately. Northern Australia has some of the highest densities of ghost nets in the world, with up to 3 tons washing ashore per kilometer of shoreline annually. This region supports globally significant populations of internationally threatened marine fauna, including 6 of the 7 extant marine turtles. We examined the threat ghost nets pose to marine turtles and assessed whether nets associated with particular fisheries are linked with turtle entanglement by analyzing the capture rates of turtles and potential source fisheries from nearly 9000 nets found on Australia's northern coast. Nets with relatively larger mesh and smaller twine sizes (e.g., pelagic drift nets) had the highest probability of entanglement for marine turtles. Net size was important; larger nets appeared to attract turtles, which further increased their catch rates. Our results point to issues with trawl and drift-net fisheries, the former due to the large number of nets and fragments found and the latter due to the very high catch rates resulting from the net design. Catch rates for fine-mesh gill nets can reach as high as 4 turtles/100 m of net length. We estimated that the total number of turtles caught by the 8690 ghost nets we sampled was between 4866 and 14,600, assuming nets drift for 1 year. Ghost nets continue to accumulate on Australia's northern shore due to both legal and illegal fishing; over 13,000 nets have been removed since 2005. This is an important and ongoing transboundary threat to biodiversity in the region that requires attention from the countries surrounding the Arafura and Timor Seas. © 2014 Society for Conservation Biology.

  2. Marine Mammal and Sea Turtle Research Collection (MMASTR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Southwest Fisheries Science Center in La Jolla houses one of the largest marine mammal and marine turtle sample collections in the world, with over 140,000...

  3. Determining sex ratios of turtle hatchlings

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Previous status assessments of marine turtles have assumed that the natural sex ratio of a marine turtle population is 1:1 (e.g. Conant et al. 2009). However, this...

  4. Rate of egg maturation in marine turtles exhibits 'universal temperature dependence'.

    Science.gov (United States)

    Weber, Sam B; Blount, Jonathan D; Godley, Brendan J; Witt, Matthew J; Broderick, Annette C

    2011-09-01

    1. The metabolic theory of ecology (MTE) predicts that, after correcting for body mass variation among organisms, the rates of most biological processes will vary as a universal function of temperature. However, empirical support for 'universal temperature dependence' (UTD) is currently equivocal and based on studies of a limited number of traits. 2. In many ectothermic animals, the rate at which females produce mature eggs is temperature dependent and may be an important factor in determining the costs of reproduction. 3. We tested whether the rate of egg maturation in marine turtles varies with environmental temperature as predicted by MTE, using the time separating successive clutches of individual females to estimate the rate at which eggs are formed. We also assessed the phenotypic contribution to this rate, by using radio telemetry to make repeated measurements of interclutch intervals for individual green turtles (Chelonia mydas). 4. Rates of egg maturation increased with seasonally increasing water temperatures in radio-tracked green turtles, but were not repeatable for individual females, and did not vary according to maternal body size or reproductive investment (number and size of eggs produced). 5. Using a collated data set from several different populations and species of marine turtles, we then show that a single relationship with water temperature explains most of the variation in egg maturation rates, with a slope that is statistically indistinguishable from the UTD predicted by MTE. However, several alternative statistical models also described the relationship between temperature and egg maturation rates equally parsimoniously. 6. Our results offer novel support for the MTE's predicted UTD of biological rates, although the underlying mechanisms require further study. The strong temperature dependence of egg maturation combined with the apparently weak phenotypic contribution to this rate has interesting behavioural implications in ectothermic

  5. An Immunohistochemical Approach to Identify the Sex of Young Marine Turtles.

    Science.gov (United States)

    Tezak, Boris M; Guthrie, Kathleen; Wyneken, Jeanette

    2017-08-01

    Marine turtles exhibit temperature-dependent sex determination (TSD). During critical periods of embryonic development, the nest's thermal environment directs whether an embryo will develop as a male or female. At warmer sand temperatures, nests tend to produce female-biased sex ratios. The rapid increase of global temperature highlights the need for a clear assessment of its effects on sea turtle sex ratios. However, estimating hatchling sex ratios at rookeries remains imprecise due to the lack of sexual dimorphism in young marine turtles. We rely mainly upon laparoscopic procedures to verify hatchling sex; however, in some species, morphological sex can be ambiguous even at the histological level. Recent studies using immunohistochemical (IHC) techniques identified that embryonic snapping turtle (Chelydra serpentina) ovaries overexpressed a particular cold-induced RNA-binding protein in comparison to testes. This feature allows the identification of females vs. males. We modified this technique to successfully identify the sexes of loggerhead sea turtle (Caretta caretta) hatchlings, and independently confirmed the results by standard histological and laparoscopic methods that reliably identify sex in this species. We next tested the CIRBP IHC method on gonad samples from leatherback turtles (Dermochelys coriacea). Leatherbacks display delayed gonad differentiation, when compared to other sea turtles, making hatchling gonads difficult to sex using standard H&E stain histology. The IHC approach was successful in both C. caretta and D. coriacea samples, offering a much-needed tool to establish baseline hatchling sex ratios, particularly for assessing impacts of climate change effects on leatherback turtle hatchlings and sea turtle demographics. Anat Rec, 300:1512-1518, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Do roads reduce painted turtle (Chrysemys picta populations?

    Directory of Open Access Journals (Sweden)

    Alexandra Dorland

    Full Text Available Road mortality is thought to be a leading cause of turtle population decline. However, empirical evidence of the direct negative effects of road mortality on turtle population abundance is lacking. The purpose of this study was to provide a strong test of the prediction that roads reduce turtle population abundance. While controlling for potentially confounding variables, we compared relative abundance of painted turtles (Chrysemys picta in 20 ponds in Eastern Ontario, 10 as close as possible to high traffic roads (Road sites and 10 as far as possible from any major roads (No Road sites. There was no significant effect of roads on painted turtle relative abundance. Furthermore, our data do not support other predictions of the road mortality hypothesis; we observed neither a higher relative frequency of males to females at Road sites than at No Road sites, nor a lower average body size of turtles at Road than at No Road sites. We speculate that, although roads can cause substantial adult mortality in turtles, other factors, such as release from predation on adults and/or nests close to roads counter the negative effect of road mortality in some populations. We suggest that road mitigation for painted turtles can be limited to locations where turtles are forced to migrate across high traffic roads due, for example, to destruction of local nesting habitat or seasonal drying of ponds. This conclusion should not be extrapolated to other species of turtles, where road mortality could have a larger population-level effect than on painted turtles.

  7. Do roads reduce painted turtle (Chrysemys picta) populations?

    Science.gov (United States)

    Dorland, Alexandra; Rytwinski, Trina; Fahrig, Lenore

    2014-01-01

    Road mortality is thought to be a leading cause of turtle population decline. However, empirical evidence of the direct negative effects of road mortality on turtle population abundance is lacking. The purpose of this study was to provide a strong test of the prediction that roads reduce turtle population abundance. While controlling for potentially confounding variables, we compared relative abundance of painted turtles (Chrysemys picta) in 20 ponds in Eastern Ontario, 10 as close as possible to high traffic roads (Road sites) and 10 as far as possible from any major roads (No Road sites). There was no significant effect of roads on painted turtle relative abundance. Furthermore, our data do not support other predictions of the road mortality hypothesis; we observed neither a higher relative frequency of males to females at Road sites than at No Road sites, nor a lower average body size of turtles at Road than at No Road sites. We speculate that, although roads can cause substantial adult mortality in turtles, other factors, such as release from predation on adults and/or nests close to roads counter the negative effect of road mortality in some populations. We suggest that road mitigation for painted turtles can be limited to locations where turtles are forced to migrate across high traffic roads due, for example, to destruction of local nesting habitat or seasonal drying of ponds. This conclusion should not be extrapolated to other species of turtles, where road mortality could have a larger population-level effect than on painted turtles.

  8. Marine turtles use geomagnetic cues during open-sea homing.

    Science.gov (United States)

    Luschi, Paolo; Benhamou, Simon; Girard, Charlotte; Ciccione, Stephane; Roos, David; Sudre, Joël; Benvenuti, Silvano

    2007-01-23

    Marine turtles are renowned long-distance navigators, able to reach remote targets in the oceanic environment; yet the sensory cues and navigational mechanisms they employ remain unclear [1, 3]. Recent arena experiments indicated an involvement of magnetic cues in juvenile turtles' homing ability after simulated displacements [4, 5], but the actual role of geomagnetic information in guiding turtles navigating in their natural environment has remained beyond the reach of experimental investigations. In the present experiment, twenty satellite-tracked green turtles (Chelonia mydas) were transported to four open-sea release sites 100-120 km from their nesting beach on Mayotte island in the Mozambique Channel; 13 of them had magnets attached to their head either during the outward journey or during the homing trip. All but one turtle safely returned to Mayotte to complete their egg-laying cycle, albeit with indirect routes, and showed a general inability to take into account the deflecting action of ocean currents as estimated through remote-sensing oceanographic measurements [7]. Magnetically treated turtles displayed a significant lengthening of their homing paths with respect to controls, either when treated during transportation or when treated during homing. These findings represent the first field evidence for the involvement of geomagnetic cues in sea-turtle navigation.

  9. Ingestion of marine litter by loggerhead sea turtles, Caretta caretta, in Portuguese continental waters.

    Science.gov (United States)

    Nicolau, Lídia; Marçalo, Ana; Ferreira, Marisa; Sá, Sara; Vingada, José; Eira, Catarina

    2016-02-15

    The accumulation of litter in marine and coastal environments is a major threat to marine life. Data on marine litter in the gastrointestinal tract of stranded loggerhead turtles, Caretta caretta, found along the Portuguese continental coast was presented. Out of the 95 analysed loggerheads, litter was present in 56 individuals (59.0%) and most had less than 10 litter items (76.8%) and less than 5 g (dm) (96.8%). Plastic was the main litter category (frequency of occurrence=56.8%), while sheet (45.3%) was the most relevant plastic sub-category. There was no influence of loggerhead stranding season, cause of stranding or size on the amount of litter ingested (mean number and dry mass of litter items per turtle). The high ingested litter occurrence frequency in this study supports the use of the loggerhead turtle as a suitable tool to monitor marine litter trends, as required by the European Marine Strategy Framework Directive. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Economic Incentives, Perceptions and Compliance with Marine Turtle Egg Harvesting Regulation in Nicaragua

    Directory of Open Access Journals (Sweden)

    Róger Madrigal-Ballestero

    2017-01-01

    Full Text Available La Flor Wildlife Refuge and nearby beaches on the Pacific coast of Nicaragua are important nesting sites for various species of endangered marine turtles. However, illegal harvesting of turtle eggs threatens the survival of marine turtles. In this study, we analysed the different motivations of local villagers for complying with a ban on harvesting marine turtle eggs in a context, in which government authorities do not have the means to fully enforce existing regulations. We also analysed the effectiveness and the participation of locals in an incipient performance-based nest conservation payment programme to protect turtle eggs. The analysis of survey-based data from 180 households living in Ostional, the largest village near La Flor Wildlife Refuge, indicates remarkable socio-economic differences between harvesters and non-harvesters. Our findings suggest that harvesters are associated mainly with a lack of income from other activities and the absence of productive assets, such as land for cattle and/or agriculture. In addition, the lack of legitimacy of prevailing institutions (i.e., actual regulations also seems to perpetuate illegal harvesting. The performance-based payments programme is an effective option for protecting nests on isolated beaches, however, it is not clear if it changes harvesting behaviour overall. Normative motivations to protect the turtles are important determinants of participation in this programme, although the financial reward is also an important incentive, particularly since most participants who are egg harvesters depend on this activity as their main source of income.

  11. The status of marine turtles in Montserrat (Eastern Caribbean

    Directory of Open Access Journals (Sweden)

    Martin, C. S.

    2005-12-01

    Full Text Available The status of marine turtles in Montserrat (Eastern Caribbean is reviewed following five years of monitoring (1999-2003. The mean number of nests recorded during the annual nesting season (June-October was 53 (± 24.9 SD; range: 13-43. In accordance with earlier reports, the nesting of hawksbill (Eretmochelys imbricata and green (Chelonia mydas turtles was confirmed on several beaches around the island. Only non-nesting emergences were documented for loggerhead turtles (Caretta caretta and there was no evidence of nesting by leatherback turtles (Dermochelys coriacea; however, it is possible that additional survey effort would reveal low density nesting by these species. Officially reported turtle capture data for 1993-2003 suggest that a mean of 0.9 turtle per year (±1.2 SD; range: 0-4 were landed island-wide, with all harvest having occurred during the annual open season (1 October to 31 May. Informed observers believe that the harvest is significantly under-reported and that fishermen avoid declaring their catch by butchering turtles at sea (both during and outside the open season. Of concern is the fact that breeding adults are potentially included in the harvest, and that the open season partially coincides with the breeding season. The present study has shown that although Montserrat is not a major nesting site for sea turtles, it remains important on a regional basis for the Eastern Caribbean.

  12. Rise and fall over 26 years of a marine epizootic in Hawaiian green sea turtles.

    Science.gov (United States)

    Chaloupka, Milani; Balazs, George H; Work, Thierry M

    2009-10-01

    Estimates of chronic disease prevalence are needed to improve our understanding of marine disease epizootiology, which is poorly known for marine megafauna such as marine turtles. An emerging worldwide threat to green sea turtles (Chelonia mydas) is fibropapillomatosis (FP), which is a pandemic tumor-forming disease associated with herpes-viruses. We report on a 26-yr FP epidemic in the Hawaiian Archipelago and show that apparent disease prevalence in the world's main endemic hot spot increased rapidly following a late 1980s outbreak, peaked during the mid-1990s, and then declined steadily ever since. While this disease is a major cause of sea turtle stranding in Hawaiian waters and can be fatal, we also show that long-term tumor regression can occur even for turtles with advanced FP. The endemic Hawaiian green turtle stock was severely depleted by overexploitation prior to protection under the US Endangered Species Act in 1978. This stock has increased significantly ever since, despite exposure to a major chronic disease epidemic that is currently declining.

  13. 77 FR 75999 - 2013 Annual Determination for Sea Turtle Observer Requirement

    Science.gov (United States)

    2012-12-26

    ... to implement programs to conserve marine life listed as endangered or threatened. All sea turtles... (Dermochelys coriacea), and hawksbill (Eretmochelys imbricata) sea turtles are listed as endangered. Loggerhead... turtles endangered wherever they occur in U.S. waters. While some sea turtle populations have shown signs...

  14. Plastic and marine turtles: a review and call for research

    OpenAIRE

    Nelms, SE; Duncan, EM; Broderick, AC; Galloway, TSG; Godfrey, MH; Hamann, M; Lindeque, PK; Godley, BJ

    2016-01-01

    Plastic debris is now ubiquitous in the marine environment affecting a wide range of taxa, from microscopic zooplankton to large vertebrates. Its persistence and dispersal throughout marine ecosystems has meant that sensitivity toward the scale of threat is growing, particularly for species of conservation concern, such as marine turtles. Their use of a variety of habitats, migratory behaviour, and complex life histories leave them subject to a host of anthropogenic stressors, including expos...

  15. Marine tourism and the locations of protected turtles on Sukamade Beach, Meru Betiri National Park, East Java

    Science.gov (United States)

    Prihadi, D. J.; Shofiyullah, A.; Dhahiyat, Y.

    2018-04-01

    The research was conducted in Sukamade Beach, Meru Betiri National Park, East Java. The purpose of this research was to identify marine tourism activity and to determine the differences in the characteristics of turtle-nesting beaches towards the number and species of turtles that came to the beach. Data collection conducted in August-September 2014. The method used in this research was a survey method at 7 reseach stations to collect primary data (biophysical characteristics) and secondary data. The Primary data was collected by monitoring turtles, width and slope of the beach, temperature, pH, moisture, sand texture, and beach vegetation conditions at each station. The results of the research shows that marine tourisms always involve tourists who attend to see turtle nesting, when turtles arrive at the beach, and turtles return to the sea, how large the turtles and how they lay eggs on the beach, and the release of little turtles (tukik). The number of turtles that landed from station 1 to station 7 is as many as 311 individuals of three species. The most dominant species of turtles that arrived at the beach is green turtle (Chelonia mydas), followed by olive ridley turtles (Lepidochelys olivaceae) and leatherbacks turtles (Dermochelys coriacea).

  16. Clinical pathology reference intervals for an in-water population of juvenile loggerhead sea turtles (Caretta caretta) in Core Sound, North Carolina, USA.

    Science.gov (United States)

    Kelly, Terra R; McNeill, Joanne Braun; Avens, Larisa; Hall, April Goodman; Goshe, Lisa R; Hohn, Aleta A; Godfrey, Matthew H; Mihnovets, A Nicole; Cluse, Wendy M; Harms, Craig A

    2015-01-01

    The loggerhead sea turtle (Caretta caretta) is found throughout the waters of the Atlantic, Pacific, and Indian Oceans. It is a protected species throughout much of its range due to threats such as habitat loss, fisheries interactions, hatchling predation, and marine debris. Loggerheads that occur in the southeastern U.S. are listed as "threatened" on the U.S. Endangered Species List, and receive state and federal protection. As part of an on-going population assessment conducted by the National Marine Fisheries Service, samples were collected from juvenile loggerhead sea turtles in Core Sound, North Carolina, between 2004 and 2007 to gain insight on the baseline health of the threatened Northwest Atlantic Ocean population. The aims of the current study were to establish hematologic and biochemical reference intervals for this population, and to assess variation of the hematologic and plasma biochemical analytes by season, water temperature, and sex and size of the turtles. Reference intervals for the clinical pathology parameters were estimated following Clinical Laboratory Standards Institute guidelines. Season, water temperature, sex, and size of the turtles were found to be significant factors of variation for parameter values. Seasonal variation could be attributed to physiological effects of decreasing photoperiod, cooler water temperature, and migration during the fall months. Packed cell volume, total protein, and albumin increased with increasing size of the turtles. The size-related differences in analytes documented in the present study are consistent with other reports of variation in clinical pathology parameters by size and age in sea turtles. As a component of a health assessment of juvenile loggerhead sea turtles in North Carolina, this study will serve as a baseline aiding in evaluation of trends for this population and as a diagnostic tool for assessing the health and prognosis for loggerhead sea turtles undergoing rehabilitation.

  17. Clinical pathology reference intervals for an in-water population of juvenile loggerhead sea turtles (Caretta caretta in Core Sound, North Carolina, USA.

    Directory of Open Access Journals (Sweden)

    Terra R Kelly

    Full Text Available The loggerhead sea turtle (Caretta caretta is found throughout the waters of the Atlantic, Pacific, and Indian Oceans. It is a protected species throughout much of its range due to threats such as habitat loss, fisheries interactions, hatchling predation, and marine debris. Loggerheads that occur in the southeastern U.S. are listed as "threatened" on the U.S. Endangered Species List, and receive state and federal protection. As part of an on-going population assessment conducted by the National Marine Fisheries Service, samples were collected from juvenile loggerhead sea turtles in Core Sound, North Carolina, between 2004 and 2007 to gain insight on the baseline health of the threatened Northwest Atlantic Ocean population. The aims of the current study were to establish hematologic and biochemical reference intervals for this population, and to assess variation of the hematologic and plasma biochemical analytes by season, water temperature, and sex and size of the turtles. Reference intervals for the clinical pathology parameters were estimated following Clinical Laboratory Standards Institute guidelines. Season, water temperature, sex, and size of the turtles were found to be significant factors of variation for parameter values. Seasonal variation could be attributed to physiological effects of decreasing photoperiod, cooler water temperature, and migration during the fall months. Packed cell volume, total protein, and albumin increased with increasing size of the turtles. The size-related differences in analytes documented in the present study are consistent with other reports of variation in clinical pathology parameters by size and age in sea turtles. As a component of a health assessment of juvenile loggerhead sea turtles in North Carolina, this study will serve as a baseline aiding in evaluation of trends for this population and as a diagnostic tool for assessing the health and prognosis for loggerhead sea turtles undergoing

  18. Studies on transplantation of marine turtle nests at Karachi coast (Sindh), Pakistan

    International Nuclear Information System (INIS)

    Firdous, F.

    2011-01-01

    Egg clutches of two species of marine turtles, namely Chelonia mydas and Lepidochelys olivacea, were collected during 1974 to 1997 and transplanted to the protected enclosures. The emerging hatching were released to the natural environment. The experiment helped to produce an average of 19495.5 hatch lings per year of green and 1174.5 per year of olive ridley turtles. (author)

  19. Incentive-based approaches in marine conservation: Applications for sea turtles

    Directory of Open Access Journals (Sweden)

    Gjertsen Heidi

    2010-01-01

    Full Text Available Conservation practitioners are increasingly turning to incentive-based approaches to encourage local resource users to change behaviors that impact biodiversity and natural habitat. We assess the design and performance of marine conservation interventions with varying types of incentives through an analysis of case studies from around the world. Here we focus on seven examples that are particularly relevant to designing incentives for sea turtle conservation. Four of the cases are focused on sea turtle conservation, and the others contain elements that may be applied to turtle projects. Many more opportunities exist for interventions that combine the strengths of these approaches, such as performance-based agreements that provide funds for education or alternative livelihood development, and leasing fishing rights to reduce bycatch.

  20. Latitudinal diversity gradients in Mesozoic non-marine turtles

    Science.gov (United States)

    Nicholson, David B.; Holroyd, Patricia A.; Valdes, Paul; Barrett, Paul M.

    2016-11-01

    The latitudinal biodiversity gradient (LBG)-the pattern of increasing taxonomic richness with decreasing latitude-is prevalent in the structure of the modern biota. However, some freshwater taxa show peak richness at mid-latitudes; for example, extant Testudines (turtles, terrapins and tortoises) exhibit their greatest diversity at 25° N, a pattern sometimes attributed to recent bursts of climatically mediated species diversification. Here, we test whether this pattern also characterizes the Mesozoic distribution of turtles, to determine whether it was established during either their initial diversification or as a more modern phenomenon. Using global occurrence data for non-marine testudinate genera, we find that subsampled richness peaks at palaeolatitudes of 15-30° N in the Jurassic, 30-45° N through the Cretaceous to the Campanian, and from 30° to 60° N in the Maastrichtian. The absence of a significant diversity peak in southern latitudes is consistent with results from climatic models and turtle niche modelling that demonstrate a dearth of suitable turtle habitat in Gondwana during the Jurassic and Late Cretaceous. Our analyses confirm that the modern testudinate LBG has a deep-time origin and further demonstrate that LBGs are not always expressed as a smooth, equator-to-pole distribution.

  1. Ethogram of Immature Green Turtles: Behavioral Strategies for Somatic Growth in Large Marine Herbivores

    Science.gov (United States)

    Okuyama, Junichi; Nakajima, Kana; Noda, Takuji; Kimura, Satoko; Kamihata, Hiroko; Kobayashi, Masato; Arai, Nobuaki; Kagawa, Shiro; Kawabata, Yuuki; Yamada, Hideaki

    2013-01-01

    Animals are assumed to obtain/conserve energy effectively to maximise their fitness, which manifests itself in a variety of behavioral strategies. For marine animals, however, these behavioral strategies are generally unknown due to the lack of high-resolution monitoring techniques in marine habitats. As large marine herbivores, immature green turtles do not need to allocate energy to reproduction but are at risk of shark predation, although it is a rare occurrence. They are therefore assumed to select/use feeding and resting sites that maximise their fitness in terms of somatic growth, while avoiding predation. We investigated fine-scale behavioral patterns (feeding, resting and other behaviors), microhabitat use and time spent on each behavior for eight immature green turtles using data loggers including: depth, global positioning system, head acceleration, speed and video sensors. Immature green turtles at Iriomote Island, Japan, spent an average of 4.8 h feeding on seagrass each day, with two peaks, between 5∶00 and 9∶00, and between 17∶00 and 20∶00. This feeding pattern appeared to be restricted by gut capacity, and thus maximised energy acquisition. Meanwhile, most of the remaining time was spent resting at locations close to feeding grounds, which allowed turtles to conserve energy spent travelling and reduced the duration of periods exposed to predation. These behavioral patterns and time allocations allow immature green turtles to effectively obtain/conserve energy for growth, thus maximising their fitness. PMID:23840367

  2. Ethogram of Immature Green Turtles: Behavioral Strategies for Somatic Growth in Large Marine Herbivores.

    Directory of Open Access Journals (Sweden)

    Junichi Okuyama

    Full Text Available Animals are assumed to obtain/conserve energy effectively to maximise their fitness, which manifests itself in a variety of behavioral strategies. For marine animals, however, these behavioral strategies are generally unknown due to the lack of high-resolution monitoring techniques in marine habitats. As large marine herbivores, immature green turtles do not need to allocate energy to reproduction but are at risk of shark predation, although it is a rare occurrence. They are therefore assumed to select/use feeding and resting sites that maximise their fitness in terms of somatic growth, while avoiding predation. We investigated fine-scale behavioral patterns (feeding, resting and other behaviors, microhabitat use and time spent on each behavior for eight immature green turtles using data loggers including: depth, global positioning system, head acceleration, speed and video sensors. Immature green turtles at Iriomote Island, Japan, spent an average of 4.8 h feeding on seagrass each day, with two peaks, between 5∶00 and 9∶00, and between 17∶00 and 20∶00. This feeding pattern appeared to be restricted by gut capacity, and thus maximised energy acquisition. Meanwhile, most of the remaining time was spent resting at locations close to feeding grounds, which allowed turtles to conserve energy spent travelling and reduced the duration of periods exposed to predation. These behavioral patterns and time allocations allow immature green turtles to effectively obtain/conserve energy for growth, thus maximising their fitness.

  3. Risk analysis reveals global hotspots for marine debris ingestion by sea turtles

    NARCIS (Netherlands)

    Schuyler, Qamar A.; Wilcox, Chris; Townsend, Kathy A.; Wedemeyer-Strombel, Kathryn R.; Balazs, George; van Sebille, Erik|info:eu-repo/dai/nl/304831921; Hardesty, Britta Denise

    2016-01-01

    Plastic marine debris pollution is rapidly becoming one of the critical environmental concerns facing wildlife in the 21st century. Here we present a risk analysis for plastic ingestion by sea turtles on a global scale. We combined global marine plastic distributions based on ocean drifter data with

  4. The feeding habit of sea turtles influences their reaction to artificial marine debris

    Science.gov (United States)

    Fukuoka, Takuya; Yamane, Misaki; Kinoshita, Chihiro; Narazaki, Tomoko; Marshall, Greg J.; Abernathy, Kyler J.; Miyazaki, Nobuyuki; Sato, Katsufumi

    2016-01-01

    Ingestion of artificial debris is considered as a significant stress for wildlife including sea turtles. To investigate how turtles react to artificial debris under natural conditions, we deployed animal-borne video cameras on loggerhead and green turtles in addition to feces and gut contents analyses from 2007 to 2015. Frequency of occurrences of artificial debris in feces and gut contents collected from loggerhead turtles were 35.7% (10/28) and 84.6% (11/13), respectively. Artificial debris appeared in all green turtles in feces (25/25) and gut contents (10/10), and green turtles ingested more debris (feces; 15.8 ± 33.4 g, gut; 39.8 ± 51.2 g) than loggerhead turtles (feces; 1.6 ± 3.7 g, gut; 9.7 ± 15.0 g). In the video records (60 and 52.5 hours from 10 loggerhead and 6 green turtles, respectively), turtles encountered 46 artificial debris and ingested 23 of them. The encounter-ingestion ratio of artificial debris in green turtles (61.8%) was significantly higher than that in loggerhead turtles (16.7%). Loggerhead turtles frequently fed on gelatinous prey (78/84), however, green turtles mainly fed marine algae (156/210), and partly consumed gelatinous prey (10/210). Turtles seemed to confuse solo drifting debris with their diet, and omnivorous green turtles were more attracted by artificial debris. PMID:27305858

  5. Protection of marine birds and turtles at St Brandon's Rock, Indian ...

    African Journals Online (AJOL)

    Protection of marine birds and turtles at St Brandon's Rock, Indian Ocean, requires conservation of the entire atoll. SW Evans, N Cole, H Kylin, NS Choong Kwet Yive, V Tatayah, J Merven, H Bouwman ...

  6. 75 FR 81201 - 2011 Annual Determination for Sea Turtle Observer Requirement

    Science.gov (United States)

    2010-12-27

    ... implement programs to conserve marine life listed as endangered or threatened. All sea turtles found in U.S... endangered wherever they occur in U.S. waters. While some sea turtle populations have shown signs of recovery... attempting to engage in any such conduct), including incidental take, of endangered sea turtles. Pursuant to...

  7. Risk assessment reveals high exposure of sea turtles to marine debris in French Mediterranean and metropolitan Atlantic waters

    Science.gov (United States)

    Darmon, Gaëlle; Miaud, Claude; Claro, Françoise; Doremus, Ghislain; Galgani, François

    2017-07-01

    Debris impact on marine wildlife has become a major issue of concern. Mainy species have been identified as being threatened by collision, entanglement or ingestion of debris, generally plastics, which constitute the predominant part of the recorded marine debris. Assessing sensitive areas, where exposure to debris are high, is thus crucial, in particular for sea turtles which have been proposed as sentinels of debris levels for the Marine Strategy Framework Directive and for the Unep-MedPol convention. Our objective here was to assess sea turtle exposure to marine debris in the 3 metropolitan French fronts. Using aerial surveys performed in the Channel, the Atlantic and the Mediterranean regions in winter and summer 2011-2012, we evaluated exposure areas and magnitude in terms of spatial overlap, encounter probability and density of surrounding debris at various spatial scales. Major overlapping areas appeared in the Atlantic and Mediterranean fronts, concerning mostly the leatherback and the loggerhead turtles respectively. The probability for individuals to be in contact with debris (around 90% of individuals within a radius of 2 km) and the density of debris surrounding individuals (up to 16 items with a radius of 2 km, 88 items within a radius of 10 km) were very high, whatever the considered spatial scale, especially in the Mediterranean region and during the summer season. The comparison of the observed mean debris density with random distribution suggested that turtles selected debris areas. This may occur if both debris and turtles drift to the same areas due to currents, if turtles meet debris accidentally by selecting high food concentration areas, and/or if turtles actively seek debris out, confounding them with their preys. Various factors such as species-specific foraging strategies or oceanic features which condition the passive diffusion of debris, and sea turtles in part, may explain spatio-temporal variations in sensitive areas. Further research

  8. The Biophysical Characteristics Of Hatching Habitat Of Lekang Turtle (Lepidhochelys olivacea) Eggs In Turtle Conservation And Education Center, Bali

    Science.gov (United States)

    Suryono; Ario, R.; Wibowo, E.; Handoyo, G.

    2018-02-01

    Lekang turtle (Lepidhochelys olivacea) is one of the fauna that is protected as an endangered population. This marine reptile was able to migrate in great distance along the Indian Ocean, the Pacific Ocean, and South East Asia. Its existence has long been threatened, either by nature or human activities that endangered the population directly or indirectly. The decreasing number of sea turtle population that nest in Bali area is one indication of the reducing number of Lekang turtle in Indonesia. If left unchecked, it will result in the loss of Lekang turtle. This study aims to determine the successful percentage of conservation techniques and Lekang turtle hatching eggs (olive ridley sea turtle) in TCEC, Bali. The method used in this research is the method of observation or direct observation done in the field. Data collection is done by direct observation in the field. The results showed that the turtle breeding site is located in an area that is less strategic because too far from the sea, so that the temperature and humidity cannot be stable. Water content is most an important factor in the growth of embryo and egg hatching. This will lead to the decrease of hatching percentage of turtle eggs.

  9. Establishing sex ratios of sea turtle foraging populations: validation of a novel testosterone hormone assay technology and sex assessment for five species.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Demographic data are essential for developing sound management and conservation plans for marine turtle populations. Sex ratios, even though they are an essential...

  10. Applying new genetic approaches to improve quality of population assessment of green and loggerhead turtles

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — As the NOAA-Fisheries? National Sea Turtle Genetics Lab, the SWFSC Marine Turtle Genetics Program has the lead responsibility for generating, analyzing and...

  11. Molecular oxidative stress markers in olive ridley turtles (Lepidochelys olivacea) and their relation to metal concentrations in wild populations.

    Science.gov (United States)

    Cortés-Gómez, Adriana A; Morcillo, Patricia; Guardiola, Francisco A; Espinosa, Cristobal; Esteban, María A; Cuesta, Alberto; Girondot, Marc; Romero, Diego

    2018-02-01

    Due to their longevity and extensive migration areas, marine turtles are able to accumulate diverse contaminants over many years and as a consequence they represent an interesting bioindicator species for marine ecosystem pollution. Metals provoke toxicological effects in many aquatic animal species, but marine turtles have been under-investigated in this area. Thus, we have determined the presence of certain inorganic elements (As, Cd, Cu, Ni, Pb, Se and Zn) in olive ridley turtles (Lepidochelys olivacea) and related them to metallothionein (MT), superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) transcription and/or enzymatic activities. Gene expression of sod, cat and gr was found to be higher in blood than liver or kidney but most of the significant relationships were found in liver, not only for gene expression but also for enzyme activities. This must be related to the role the liver has as the first filter organ. Several positive relationships of sod, cat and gr gene expression in the different tissues were found in this population, as well as very high Cd concentrations. This could mean that these turtles are adapting to the metals-production of ROS and damage through a high transcription of these antioxidants. Multiple positive relationships with GR seem to be part of its compensatory effect due to the decrease of SOD production against the high and chronic exposure to certain xenobiotics. CAT, on the other hand, seems not to be used much, and glutathione detoxification of H 2 O 2 may be more important in this species. Finally, despite the very high Cd concentrations found in this population, no significant relationship was found in any tissue with metallothionein gene expression. These results, along with very high Cd concentrations and a negative relationship with Cu, lead us to consider some kind of disruption in mt gene expression in these turtles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Loggerhead sea turtles (Caretta caretta): A target species for monitoring litter ingested by marine organisms in the Mediterranean Sea.

    Science.gov (United States)

    Matiddi, Marco; Hochsheid, Sandra; Camedda, Andrea; Baini, Matteo; Cocumelli, Cristiano; Serena, Fabrizio; Tomassetti, Paolo; Travaglini, Andrea; Marra, Stefano; Campani, Tommaso; Scholl, Francesco; Mancusi, Cecilia; Amato, Ezio; Briguglio, Paolo; Maffucci, Fulvio; Fossi, Maria Cristina; Bentivegna, Flegra; de Lucia, Giuseppe Andrea

    2017-11-01

    Marine litter is any persistent, manufactured or processed solid material discarded, disposed of or abandoned in the marine and coastal environment. Ingestion of marine litter can have lethal and sub-lethal effects on wildlife that accidentally ingests it, and sea turtles are particularly susceptible to this threat. The European Commission drafted the 2008/56/EC Marine Strategy Framework Directive with the aim to achieve a Good Environmental Status (GES), and the loggerhead sea turtle (Caretta caretta, Linnaeus 1758) was selected for monitoring the amount and composition of litter ingested by marine animals. An analogous decision has been made under the UNEP/MAP Barcelona Convention for the protection of the Mediterranean Sea, following the Ecosystem Approach. This work provides for the first time, two possible scenarios for the Marine Strategy Framework Directive GES, both related to "Trends in the amount and composition of litter ingested by marine animals" in the Mediterranean Sea. The study validates the use of the loggerhead turtle as target indicator for monitoring the impact of litter on marine biota and calls for immediate use of this protocol throughout the Mediterranean basin and European Region. Both GES scenarios are relevant worldwide, where sea turtles and marine litter are present, for measuring the impact of ingested plastics and developing policy strategies to reduce it. In the period between 2011 and 2014, 150 loggerhead sea turtles, found dead, were collected from the Italian Coast, West Mediterranean Sea Sub-Region. The presence of marine litter was investigated using a standardized protocol for necropsies and lab analysis. The collected items were subdivided into 4 main categories, namely, IND-Industrial plastic, USE-User plastic, RUB-Non plastic rubbish, POL-Pollutants and 14 sub-categories, to detect local diversity. Eighty-five percent of the individuals considered (n = 120) were found to have ingested an average of 1.3 ± 0.2 g of

  13. Projected response of an endangered marine turtle population to climate change

    Science.gov (United States)

    Saba, Vincent S.; Stock, Charles A.; Spotila, James R.; Paladino, Frank V.; Tomillo, Pilar Santidrián

    2012-11-01

    Assessing the potential impacts of climate change on individual species and populations is essential for the stewardship of ecosystems and biodiversity. Critically endangered leatherback turtles in the eastern Pacific Ocean are excellent candidates for such an assessment because their sensitivity to contemporary climate variability has been substantially studied. If incidental fisheries mortality is eliminated, this population still faces the challenge of recovery in a rapidly changing climate. Here we combined an Earth system model, climate model projections assessed by the Intergovernmental Panel on Climate Change and a population dynamics model to estimate a 7% per decade decline in the Costa Rica nesting population over the twenty-first century. Whereas changes in ocean conditions had a small effect on the population, the ~2.5°C warming of the nesting beach was the primary driver of the decline through reduced hatching success and hatchling emergence rate. Hatchling sex ratio did not substantially change. Adjusting nesting phenology or changing nesting sites may not entirely prevent the decline, but could offset the decline rate. However, if future observations show a long-term decline in hatching success and emergence rate, anthropogenic climate mitigation of nests (for example, shading, irrigation) may be able to preserve the nesting population.

  14. A continuation of base-line studies for environmentally monitoring Space Transportation Systems (STS) at John F. Kennedy Space Center. Volume 4: Threatened and endangered species of the Kennedy Space Center. Part 1: Marine turtle studies

    Science.gov (United States)

    Ehrhart, L. M.

    1980-01-01

    The status of marine turtle populations in the KSC area was studied using data from previous results from ground and aerial surveillance conducted from 1976 to April 1979. During ground surveillance, various data were recorded on emergent turtles such as: species, weight, tag number (if previously tagged), time discovered, activity at discovery and the location of discovery. Observations were also made on nesting and reproductive characteristics, population estimates, immigration and emigration and growth rate of the turtles. Mortality studies were additionally made and autopsies performed on dead turtles found in the area. It is concluded that further mortality documentation should be done just prior to and just after a future space launch operation in order to accurately assess the cause and effect relationship of such a launch on the turtle population.

  15. Leatherback sea turtle stewardship to attain local, regional, and global marine conservation and management

    Science.gov (United States)

    Randall Arauz; Todd Steiner

    2007-01-01

    The leatherback sea turtle (Dermochelys coriacea) is the largest marine reptile with one of the longest known ocean migrations in the world and an important part of marine biodiversity. It is also important to the economies of coastal communities in developing countries, especially in areas where eco-tourism has replaced unsustainable harvest and...

  16. TurtleCam: A “Smart” Autonomous Underwater Vehicle for Investigating Behaviors and Habitats of Sea Turtles

    Directory of Open Access Journals (Sweden)

    Kara L. Dodge

    2018-03-01

    Full Text Available Sea turtles inhabiting coastal environments routinely encounter anthropogenic hazards, including fisheries, vessel traffic, pollution, dredging, and drilling. To support mitigation of potential threats, it is important to understand fine-scale sea turtle behaviors in a variety of habitats. Recent advancements in autonomous underwater vehicles (AUVs now make it possible to directly observe and study the subsurface behaviors and habitats of marine megafauna, including sea turtles. Here, we describe a “smart” AUV capability developed to study free-swimming marine animals, and demonstrate the utility of this technology in a pilot study investigating the behaviors and habitat of leatherback turtles (Dermochelys coriacea. We used a Remote Environmental Monitoring UnitS (REMUS-100 AUV, designated “TurtleCam,” that was modified to locate, follow and film tagged turtles for up to 8 h while simultaneously collecting environmental data. The TurtleCam system consists of a 100-m depth rated vehicle outfitted with a circular Ultra-Short BaseLine receiver array for omni-directional tracking of a tagged animal via a custom transponder tag that we attached to the turtle with two suction cups. The AUV collects video with six high-definition cameras (five mounted in the vehicle nose and one mounted aft and we added a camera to the animal-borne transponder tag to record behavior from the turtle's perspective. Since behavior is likely a response to habitat factors, we collected concurrent in situ oceanographic data (bathymetry, temperature, salinity, chlorophyll-a, turbidity, currents along the turtle's track. We tested the TurtleCam system during 2016 and 2017 in a densely populated coastal region off Cape Cod, Massachusetts, USA, where foraging leatherbacks overlap with fixed fishing gear and concentrated commercial and recreational vessel traffic. Here we present example data from one leatherback turtle to demonstrate the utility of TurtleCam. The

  17. Turtle Photograph Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Photos collected in marine turtle research programs are diverse, ranging from isolated observations of incidental encounters with turtles on the high-seas to...

  18. Marine turtle mitogenome phylogenetics and evolution

    DEFF Research Database (Denmark)

    Duchene, Sebastián; Frey, Amy; Alfaro-Núñez, Luis Alonso

    2012-01-01

    The sea turtles are a group of cretaceous origin containing seven recognized living species: leatherback, hawksbill, Kemp's ridley, olive ridley, loggerhead, green, and flatback. The leatherback is the single member of the Dermochelidae family, whereas all other sea turtles belong in Cheloniidae...... distributions, shedding light on complex migration patterns and possible geographic or climatic events as driving forces of sea-turtle distribution. We have sequenced complete mitogenomes for all sea-turtle species, including samples from their geographic range extremes, and performed phylogenetic analyses...... to assess sea-turtle evolution with a large molecular dataset. We found variation in the length of the ATP8 gene and a highly variable site in ND4 near a proton translocation channel in the resulting protein. Complete mitogenomes show strong support and resolution for phylogenetic relationships among all...

  19. Marine debris removal: one year of effort by the Georgia Sea Turtle-Center-Marine Debris Initiative.

    Science.gov (United States)

    Martin, Jeannie Miller

    2013-09-15

    Once in the marine environment, debris poses a significant threat to marine life that can be prevented through the help of citizen science. Marine debris is any manufactured item that enters the ocean regardless of source, commonly plastics, metal, wood, glass, foam, cloth, or rubber. Citizen science is an effective way to engage volunteers in conservation initiatives and provide education and skill development. The Georgia Sea Turtle Center Marine Debris Initiative (GSTC-MDI) is a grant funded program developed to engage citizens in the removal of marine debris from the beaches of Jekyll Island, GA, USA and the surrounding areas. During the first year of effort, more than 200 volunteers donated over 460 h of service to the removal of marine debris. Of the debris removed, approximately 89% were plastics, with a significant portion being cigarette materials. Given the successful first year, the GSTC-MDI was funded again for a second year. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Demographics of an ornate box turtle population experiencing minimal human-induced disturbances

    Science.gov (United States)

    Converse, S.J.; Iverson, J.B.; Savidge, J.A.

    2005-01-01

    Human-induced disturbances may threaten the viability of many turtle populations, including populations of North American box turtles. Evaluation of the potential impacts of these disturbances can be aided by long-term studies of populations subject to minimal human activity. In such a population of ornate box turtles (Terrapene ornata ornata) in western Nebraska, we examined survival rates and population growth rates from 1981-2000 based on mark-recapture data. The average annual apparent survival rate of adult males was 0.883 (SE = 0.021) and of adult females was 0.932 (SE = 0.014). Minimum winter temperature was the best of five climate variables as a predictor of adult survival. Survival rates were highest in years with low minimum winter temperatures, suggesting that global warming may result in declining survival. We estimated an average adult population growth rate (????) of 1.006 (SE = 0.065), with an estimated temporal process variance (????2) of 0.029 (95% CI = 0.005-0.176). Stochastic simulations suggest that this mean and temporal process variance would result in a 58% probability of a population decrease over a 20-year period. This research provides evidence that, unless unknown density-dependent mechanisms are operating in the adult age class, significant human disturbances, such as commercial harvest or turtle mortality on roads, represent a potential risk to box turtle populations. ?? 2005 by the Ecological Society of America.

  1. Integrative demographic modeling reveals population level impacts of PCB toxicity to juvenile snapping turtles

    International Nuclear Information System (INIS)

    Salice, Christopher J.; Rowe, Christopher L.; Eisenreich, Karen M.

    2014-01-01

    A significant challenge in ecotoxicology and risk assessment lies in placing observed contaminant effects in a meaningful ecological context. Polychlorinated biphenyls (PCBs) have been shown to affect juvenile snapping turtle survival and growth but the ecological significance of these effects is difficult to discern without a formal, population-level assessment. We used a demographic matrix model to explore the potential population-level effects of PCBs on turtles. Our model showed that effects of PCBs on juvenile survival, growth and size at hatching could translate to negative effects at the population level despite the fact that these life cycle components do not typically contribute strongly to population level processes. This research points to the utility of using integrative demographic modeling approaches to better understand contaminant effects in wildlife. The results indicate that population-level effects are only evident after several years, suggesting that for long-lived species, detecting adverse contaminant effects could prove challenging. -- Highlights: • Previous studies have shown the PCBs can impact juvenile snapping turtles. • We used a demographic model of turtles to evaluate population-level PCB effects. • PCB effects on turtles may translate to negative population responses. • Long-term monitoring is needed to detect contaminant effects on natural turtle populations. • Demographic models can improve our understanding contaminant ecotoxicity. -- A demographic model was used to show that PCB induced effects on young snapping turtles can result in adverse effects at the population level

  2. Palaeoecology of triassic stem turtles sheds new light on turtle origins.

    Science.gov (United States)

    Joyce, Walter G; Gauthier, Jacques A

    2004-01-07

    Competing hypotheses of early turtle evolution contrast sharply in implying very different ecological settings-aquatic versus terrestrial-for the origin of turtles. We investigate the palaeoecology of extinct turtles by first demonstrating that the forelimbs of extant turtles faithfully reflect habitat preferences, with short-handed turtles being terrestrial and long-handed turtles being aquatic. We apply this metric to the two successive outgroups to all living turtles with forelimbs preserved, Proganochelys quenstedti and Palaeochersis talampayensis, to discover that these earliest turtle outgroups were decidedly terrestrial. We then plot the observed distribution of aquatic versus terrestrial habits among living turtles onto their hypothesized phylogenies. Both lines of evidence indicate that although the common ancestor of all living turtles was aquatic, the earliest turtles clearly lived in a terrestrial environment. Additional anatomical and sedimentological evidence favours these conclusions. The freshwater aquatic habitat preference so characteristic of living turtles cannot, consequently, be taken as positive evidence for an aquatic origin of turtles, but must rather be considered a convergence relative to other aquatic amniotes, including the marine sauropterygians to which turtles have sometimes been allied.

  3. Is arsenobetaine the major arsenic compound in the liver of birds marine mammals, and sea turtles?

    Science.gov (United States)

    Kubota, R.; Kunito, T.; Tanabe, S.

    2003-05-01

    Concentrations of total arsenic and individual arsenic compounds were determined in the livers of birds, marine mammals, and sea turtles by using hydride generation-atomic absorption spectrometry (HG-AAS) and high performance liquid chromatography/inductively coupled plasma-mass spectrometry (HPLC/ICP-MS). Marine mammals feeding on cephalopods and crustaceans accumulated higher arsenic concentrations than the species feeding on fishes. No significant age and gender differences in arsenic concentrations were observed for most of the species of marine mammals. Elevated total arsenic concentrations were found in livers of black-footed albatross and loggerhead turtles and these values were comparable to those of lower trophic marine animals. Arsenobetaine was the major arsenical in the livers of most of the species examined. Particularly, in seabirds, mean proportions of arsenobetaine was more than90% of total extractable arsenic In contast, arsenobetaine was a minor constituent in dugong. The compositions of arsenic compounds were different among the species examined. These results might be due to the differences in the metabolic capacity among species and/or the different compositions of arsenic compounds in their preys.

  4. Populations and home range relationships of the box turtle, Terrapene carolina (Linnaeus)

    Science.gov (United States)

    Stickel, L.F.

    1949-01-01

    A population study of Terrapene carolina (Linnaeus) was made at the Patuxent Research Refuge, Maryland, from 1944 to 1947. A thirty acre area in bottomland forest was selected for intensive study. Turtles were marked by filing notches in marginal scutes according to a code. Turtles make extensive use of brushy shelter during the day as well.as at night. Gully banks and woods openings are used for sunning. Nights are usually spent in a 'form,' constructed by the turtle in leaves, debris, or earth. A form may be used once or it may be used repeatedly by the same or different turtles. Weather conditions most favorable to turtle activity are high humidity, warm sunny days, and frequent rains. Periods of activity are alternated with periods of quiet, even in favorable weather. There is no evidence for territorialism. Ranges of turtles of all ages and both sexes overlap grossly. Turtles are frequently found near each other but no antagonistic behavior has been observed. Adult turtles occupy specific home ranges which they maintain from year to year. Turtles retained their ranges even though a flood that completely covered the study area. Maximum home range diameters were determined by measurements of the mapped ranges of individual turtles. There was no significant difference between sizes of male and female ranges: males 33O+ 26 feet, females 37O+29 feet. A trail-laying device was used in following travel routes for 456 turtle days. Normal movements within the home range are characterized by (1) turns, doublings, detours, and criss-crossing paths, (2) interspersion of fairly direct traverses of the home range, (3) frequently repeated travels over certain routes. Maximum limits of the home range are ordinarily reached within a few days or weeks, although some turtles cover only one portion of the range at a time. Some turtles have two home ranges. One of these turtles was followed with a trailer for 161 days in 1946 and 1947. Trips outside the home range are made by

  5. Interaction between loggerhead sea turtles (Caretta caretta) and marine litter in Sardinia (Western Mediterranean Sea).

    Science.gov (United States)

    Camedda, Andrea; Marra, Stefano; Matiddi, Marco; Massaro, Giorgio; Coppa, Stefania; Perilli, Angelo; Ruiu, Angelo; Briguglio, Paolo; de Lucia, G Andrea

    2014-09-01

    Anthropogenic debris in the environment affects many species that accidentally ingest it. The aim of this study is to evaluate the quantity and composition of marine litter ingested by loggerheads in Sardinia, thus supplying for the lack of data in the existing literature for this area. Seventeen of the 121 (14.04%) monitored turtles presented debris in their digestive tracts. Litter in faecal pellet of alive individuals (n = 91) and in gastro-intestinal contents of dead ones (n = 30) was categorized, counted and weighed. User plastic was the main category of ingested debris with a frequency of occurrence of 13.22% of the total sample, while sheet (12.39%) and fragments (9.09%) were the most relevant sub-categories. This study highlights for the first time the incidence of litter in alive turtles in Sardinia. This contribution improves the knowledge about marine litter interaction on Caretta caretta as bio-indicator. Results will be useful for the Marine Strategy implementation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The role of social marketing, marine turtles and sustainable tourism in reducing plastic pollution.

    Science.gov (United States)

    Eagle, Lynne; Hamann, Mark; Low, David R

    2016-06-15

    Environmental plastic pollution constitutes a significant hazard to marine turtles, human health and well-being. We describe a transdisciplinary approach to draw together findings from diverse disciplines in order to highlight key environmental pollution problems and their consequences, together with social marketing-based strategies to address the problems. The example of plastic pollution and impacts to marine turtles illustrates the severity of the problem. Wildlife tourism and sustainable tourism activity have not focussed on specific behaviours to change and have had minimal impact on subsequent human behaviour regarding environmental issues, indicating the need for new strategies. Social marketing principles offer promise, but there is a need to investigate the utility of various theoretical foundations to aid the design and implementation of interventions. We offer insight towards using sophisticated multi-method research to develop insights into behaviours and segmentation-based strategies, that can aid the identification of barriers to, and enablers of, sustained behaviour change. Copyright © 2016. Published by Elsevier Ltd.

  7. Sea Turtle Stranding Network Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sea Turtle Stranding and Salvage Network (STSSN) was formally established in 1980 to collect information on and document the stranding of marine turtles along...

  8. Diversity, habitat distribution, and indigenous hunting of marine turtles in the Calamian Islands, Palawan, Republic of the Philippines

    Directory of Open Access Journals (Sweden)

    Christopher N.S. Poonian

    2016-03-01

    Full Text Available All of the world’s seven species of marine turtle are threatened by a multitude of anthropogenic pressures across all stages of their life history. The Calamian Islands, Palawan, Philippines provide important foraging and nesting grounds for four species: green turtles (Chelonia mydas, hawksbill turtles (Eretmochelys imbricata, loggerheads (Caretta caretta, and leatherbacks (Dermochelys coriacea. This work aimed to assess the relative importance of turtle nesting beaches and local threats using a combination of social science and ecological research approaches. Endangered green turtles and critically endangered hawksbills were found to nest in the Calamianes. The most important nesting sites were located on the islands off the west of Busuanga and Culion, particularly Pamalican and Galoc and along the north coast of Coron, particularly Linamodio Island. Opportunistic hunting and egg collection, conducted legally by indigenous communities, is the most significant threat to sea turtles in the area. Sites particularly vulnerable to hunting were found to be Galoc Island, Pamalican Island, and Panlaitan Island. Raising awareness, community engagement, and understanding of socio-cultural drivers of sea turtle exploitation, particularly among indigenous communities, are essential to gain support for any effective conservation program. Additionally, more effective enforcement of laws related to the trade in sea turtle products is required to close the commercial and export markets.

  9. To Swim or Not to Swim: Potential Transmission of Balaenophilus manatorum (Copepoda: Harpacticoida) in Marine Turtles.

    Science.gov (United States)

    Domènech, Francesc; Tomás, Jesús; Crespo-Picazo, José Luis; García-Párraga, Daniel; Raga, Juan Antonio; Aznar, Francisco Javier

    2017-01-01

    Species of Balaenophilus are the only harpacticoid copepods that exhibit a widespread, obligate association with vertebrates, i.e., B. unisetus with whales and B. manatorum with marine turtles and manatees. In the western Mediterranean, juveniles of the loggerhead sea turtle, Caretta caretta are the only available hosts for B. manatorum, which has been found occurring at high prevalence (>80%) on them. A key question is how these epibionts are transmitted from host to host. We investigated this issue based on experiments with live specimens of B. manatorum that were cultured with turtle skin. Specimens were obtained from head-started hatchlings of C. caretta from the western Mediterranean. Hatched nauplii crawled only on rough substrates and lacked the ability to swim. Only copepodites IV and V, and adults, were able to perform directional swimming. Legs 2, 3 and 4 played a major role in swimming and were only well-developed in these stages. Nauplii reared in wells with turtle skin readily fed on this item. Late copepodites and adults also fed on turtle skin but did not consume other potential food items such as fish skin, baleen plates or planktonic algae. Evidences suggest that the transmission of B. manatorum should rely on hosts' bodily contacts and/or swimming of late developmental stages between spatially close hosts. The possibility of long-ranged dispersal is unlikely for two reasons. First, all developmental stages seem to depend on turtle skin as a food resource. Second, the average clutch size of ovigerous females was small (turtles that occur at very low densities (turtles·km-2) in the western Mediterranean. The high prevalence of B. manatorum in loggerhead turtles in this area raises the question whether these turtles have contacts, or tend to closely aggregate, more than is currently believed.

  10. To Swim or Not to Swim: Potential Transmission of Balaenophilus manatorum (Copepoda: Harpacticoida in Marine Turtles.

    Directory of Open Access Journals (Sweden)

    Francesc Domènech

    Full Text Available Species of Balaenophilus are the only harpacticoid copepods that exhibit a widespread, obligate association with vertebrates, i.e., B. unisetus with whales and B. manatorum with marine turtles and manatees. In the western Mediterranean, juveniles of the loggerhead sea turtle, Caretta caretta are the only available hosts for B. manatorum, which has been found occurring at high prevalence (>80% on them. A key question is how these epibionts are transmitted from host to host. We investigated this issue based on experiments with live specimens of B. manatorum that were cultured with turtle skin. Specimens were obtained from head-started hatchlings of C. caretta from the western Mediterranean. Hatched nauplii crawled only on rough substrates and lacked the ability to swim. Only copepodites IV and V, and adults, were able to perform directional swimming. Legs 2, 3 and 4 played a major role in swimming and were only well-developed in these stages. Nauplii reared in wells with turtle skin readily fed on this item. Late copepodites and adults also fed on turtle skin but did not consume other potential food items such as fish skin, baleen plates or planktonic algae. Evidences suggest that the transmission of B. manatorum should rely on hosts' bodily contacts and/or swimming of late developmental stages between spatially close hosts. The possibility of long-ranged dispersal is unlikely for two reasons. First, all developmental stages seem to depend on turtle skin as a food resource. Second, the average clutch size of ovigerous females was small (< 70 eggs for free-living phases to successfully contact turtles that occur at very low densities (< 0.6 turtles·km-2 in the western Mediterranean. The high prevalence of B. manatorum in loggerhead turtles in this area raises the question whether these turtles have contacts, or tend to closely aggregate, more than is currently believed.

  11. Global analysis of anthropogenic debris ingestion by sea turtles.

    Science.gov (United States)

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-02-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. © 2013 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.

  12. Sedimentology, geochemistry and rock magnetic properties of beach sands in Galapagos Islands - implications for nesting marine turtles

    Science.gov (United States)

    Perez-Cruz, L.; Urrutia-Fucugauchi, J.; Vazquez-Gutierrez, F.; Carranza-Edwards, A.

    2007-12-01

    Marine turtles are well known for their navigation ability in the open ocean and fidelity to nesting beaches. Green turtle adult females migrate from foraging areas to island nesting beaches, traveling hundreds or thousands of kilometers each way. The marine turtle breeding in the Galapagos Islands is the Green Sea Turtle (Chelonia mydas agassisi); fairly common throughout the islands but with nesting sites located at Las Bachas (Santa Cruz), Barahona and Quinta Playa (Isabela), Salinas (Baltra), Gardner Bay (Española) and Bartolomé Islet. In order to characterize and to identify the geochemical signature of nesting marine turtle beaches in Galapagos Islands, sedimentological, geochemical and rock magnetic parameters are used. A total of one hundred and twenty sand samples were collected in four beaches to relate compositional characteristics between equivalent areas, these are: Las Bachas, Salinas, Barahona and Quinta Playa. Grain size is evaluated using laser particle analysis (Model Coulter LS 230). Bulk ICP-MS geochemical analysis is performed, following trace elements are analyzed: Al, V, Cr, Co, Ni, Cu, Zn, Cd, Ba, Pb, Fe, Mn, K, Na, Mg, Sr, Ca and Hg; and low-field magnetic susceptibility is measured in all samples at low and high frequencies. Granulometric analysis showed that Barahona and Quinta Playa are characterized for fine grained sands. In contrast, Salinas and Las Bachas exhibit medium to coarse sands. Trace metals concentrations and magnetic susceptibility show different distribution patterns in the beach sands. Calcium is the most abundant element in the samples. In particular, Co, K, and Na show similar concentrations in the four beaches. Las Bachas beach shows highest concentrations of Pb and Hg (maximum values 101.1 and 118.5 mg/kg, respectively), we suggest that the enrichment corresponds to an anthropogenic signal. Salinas beach samples show high concentrations of Fe, V, Cr, Zn, Mn and the highest values of magnetic susceptibility (maximum

  13. Marine turtles are not fussy nesters: a novel test of small-scale nest site selection using structure from motion beach terrain information

    Directory of Open Access Journals (Sweden)

    Ilana Kelly

    2017-01-01

    Full Text Available Background Nest selection is widely regarded as a key process determining the fitness of individuals and viability of animal populations. For marine turtles that nest on beaches, this is particularly pivotal as the nesting environment can significantly control reproductive success.The aim of this study was to identify the environmental attributes of beaches (i.e., morphology, vegetation, urbanisation that may be associated with successful oviposition in green and loggerhead turtle nests. Methods We quantified the proximity of turtle nests (and surrounding beach locations to urban areas, measured their exposure to artificial light, and used ultra-high resolution (cm-scale digital surface models derived from Structure-from-Motion (SfM algorithms, to characterise geomorphic and vegetation features of beaches on the Sunshine Coast, eastern Australia. Results At small spatial scales (i.e., <100 m, we found no evidence that turtles selected nest sites based on a particular suite of environmental attributes (i.e., the attributes of nest sites were not consistently different from those of surrounding beach locations. Nest sites were, however, typically characterised by occurring close to vegetation, on parts of the shore where the beach- and dune-face was concave and not highly rugged, and in areas with moderate exposure to artificial light. Conclusion This study used a novel empirical approach to identify the attributes of turtle nest sites from a broader ‘envelope’ of environmental nest traits, and is the first step towards optimizing conservation actions to mitigate, at the local scale, present and emerging human impacts on turtle nesting beaches.

  14. Fifty-year trends in a box turtle population in Maryland

    Science.gov (United States)

    Hall, R.J.; Henry, P.F.P.; Bunck, C.M.

    1999-01-01

    A survey conducted in 1995 investigated long term declines reported in a population of box turtles Terrapene Carolina monitored each decade since 1945 in bottomland hardwood forest at the Patuxent Wildlife Research Center, Maryland. Methods duplicated past surveys in most respects, but were supplemented by radiotelemetry and a survey of dominant vegetation. Seventy different turtles were found on the 11.8 ha study area, a decline of >75% since peak populations were recorded in 1955. Searchers were less efficient in 1995 than in 1945-1975 for a variety of possible reasons. Among turtles recorded, approximately equal numbers persisted from each of the past five decades, with some individuals surviving >70 years. A sex ratio strongly favoring males was first recorded in 1975 and continued in 1995, but juveniles and subadults were found in greater proportion in 1995 than in any other survey. Six of nine radio-marked turtles left the bottomland study area and migrated to the adjoining bluffs to hibernate, suggesting more extensive movements and perhaps less stable home ranges than formerly thought. Age structure of trees indicated a gradual change to more shade-tolerant species. Examination of rates of change from survey data suggested that major losses probably resulted from changes in hydrology that exacerbated flooding in 1972, with recovery only beginning in 1995 and perhaps limited both by repeated flood events and successional changes in the forest. Slow recovery from losses may indicate that populations of the species would respond poorly to exploitation.

  15. 50 CFR 223.205 - Sea turtles.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Sea turtles. 223.205 Section 223.205... Threatened Marine and Anadromous Species § 223.205 Sea turtles. (a) The prohibitions of section 9 of the Act (16 U.S.C. 1538) relating to endangered species apply to threatened species of sea turtle, except as...

  16. The role of turtles as coral reef macroherbivores

    KAUST Repository

    Goatley, Christopher H. R.

    2012-06-29

    Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood. © 2012 Goatley et al.

  17. The role of turtles as coral reef macroherbivores

    KAUST Repository

    Goatley, Christopher H. R.; Hoey, Andrew; Bellwood, David R.

    2012-01-01

    Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood. © 2012 Goatley et al.

  18. The role of turtles as coral reef macroherbivores.

    Directory of Open Access Journals (Sweden)

    Christopher H R Goatley

    Full Text Available Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas and hawksbill turtles (Eretmochelys imbricata showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood.

  19. Coastal leatherback turtles reveal conservation hotspot

    Science.gov (United States)

    Robinson, Nathan J.; Morreale, Stephen J.; Nel, Ronel; Paladino, Frank V.

    2016-01-01

    Previous studies have shown that the world’s largest reptile – the leatherback turtle Dermochelys coriacea – conducts flexible foraging migrations that can cover thousands of kilometres between nesting sites and distant foraging areas. The vast distances that may be travelled by migrating leatherback turtles have greatly complicated conservation efforts for this species worldwide. However, we demonstrate, using a combination of satellite telemetry and stable isotope analysis, that approximately half of the nesting leatherbacks from an important rookery in South Africa do not migrate to distant foraging areas, but rather, forage in the coastal waters of the nearby Mozambique Channel. Moreover, this coastal cohort appears to remain resident year-round in shallow waters (turtles Caretta caretta. The rare presence of a resident coastal aggregation of leatherback turtles not only presents a unique opportunity for conservation, but alongside the presence of loggerhead turtles and other endangered marine megafauna in the Mozambique Channel, highlights the importance of this area as a marine biodiversity hotspot. PMID:27886262

  20. Software for improved field surveys of nesting marine turtles.

    Science.gov (United States)

    Anastácio, R; Gonzalez, J M; Slater, K; Pereira, M J

    2017-09-07

    Field data are still recorded on paper in many worldwide beach surveys of nesting marine turtles. The data must be subsequently transferred into an electronic database, and this can introduce errors in the dataset. To minimize such errors, the "Turtles" software was developed and piloted to record field data by one software user accompanying one Tortuguero in Akumal beaches, Quintana Roo, Mexico, from June 1 st to July 31 st during the night patrols. Comparisons were made between exported data from the software with the paper forms entered into a database (henceforth traditional). Preliminary assessment indicated that the software user tended to record a greater amount of metrics (i.e., an average of 18.3 fields ± 5.4 sd vs. 8.6 fields ± 2.1 sd recorded by the traditional method). The traditional method introduce three types of "errors" into a dataset: missing values in relevant fields (40.1%), different answers for the same value (9.8%), and inconsistent data (0.9%). Only 5.8% of these (missing values) were found with the software methodology. Although only tested by a single user, the software may suggest increased efficacy and warrants further examination to accurately assess the merit of replacing traditional methods of data recording for beach monitoring programmes.

  1. Breeding sex ratio and population size of loggerhead turtles from Southwestern Florida.

    Directory of Open Access Journals (Sweden)

    Jacob A Lasala

    Full Text Available Species that display temperature-dependent sex determination are at risk as a result of increasing global temperatures. For marine turtles, high incubation temperatures can skew sex ratios towards females. There are concerns that temperature increases may result in highly female-biased offspring sex ratios, which would drive a future sex ratio skew. Studying the sex ratios of adults in the ocean is logistically very difficult because individuals are widely distributed and males are inaccessible because they remain in the ocean. Breeding sex ratios (BSR are sought as a functional alternative to study adult sex ratios. One way to examine BSR is to determine the number of males that contribute to nests. Our goal was to evaluate the BSR for loggerhead turtles (Caretta caretta nesting along the eastern Gulf of Mexico in Florida, from 2013-2015, encompassing three nesting seasons. We genotyped 64 nesting females (approximately 28% of all turtles nesting at that time and up to 20 hatchlings from their nests (n = 989 using 7 polymorphic microsatellite markers. We identified multiple paternal contributions in 70% of the nests analyzed and 126 individual males. The breeding sex ratio was approximately 1 female for every 2.5 males. We did not find repeat males in any of our nests. The sex ratio and lack of repeating males was surprising because of female-biased primary sex ratios. We hypothesize that females mate offshore of their nesting beaches as well as en route. We recommend further comparisons of subsequent nesting events and of other beaches as it is imperative to establish baseline breeding sex ratios to understand how growing populations behave before extreme environmental effects are evident.

  2. 77 FR 45571 - Endangered and Threatened Wildlife; 90-Day Finding on a Petition To Delist the Green Turtle in...

    Science.gov (United States)

    2012-08-01

    ... [Docket No. 120425024-1024-01] RIN 0648-XB089 Endangered and Threatened Wildlife; 90-Day Finding on a Petition To Delist the Green Turtle in Hawaii and Notice of Status Review AGENCY: National Marine Fisheries... 90-day finding on a petition to identify the Hawaiian population of the green turtle (Chelonia mydas...

  3. 76 FR 15932 - Endangered and Threatened Species; Proposed Listing of Nine Distinct Population Segments of...

    Science.gov (United States)

    2011-03-22

    ... Loggerhead Sea Turtles as Endangered or Threatened AGENCIES: National Marine Fisheries Service (NMFS... Distinct Population Segments (DPS) of loggerhead sea turtles, Caretta caretta, as endangered or threatened... populations of loggerhead sea turtle'' as an endangered species under the ESA. NMFS published a notice in the...

  4. Biochemical indices and life traits of loggerhead turtles (Caretta caretta from Cape Verde Islands.

    Directory of Open Access Journals (Sweden)

    Sara Vieira

    Full Text Available The loggerhead turtle (Caretta caretta is an endangered marine reptile for whom assessing population health requires knowledge of demographic parameters such as individual growth rate. In Cape Verde, as within several populations, adult female loggerhead sea turtles show a size-related behavioral and trophic dichotomy. While smaller females are associated with oceanic habitats, larger females tend to feed in neritic habitats, which is reflected in their physiological condition and in their offspring. The ratio of RNA/DNA provides a measure of cellular protein synthesis capacity, which varies depending on changes in environmental conditions such as temperature and food availability. The purpose of this study was to evaluate the combined use of morphometric data and biochemical indices as predictors of the physiological condition of the females of distinct sizes and hatchlings during their nesting season and how temperature may influence the physiological condition on the offspring. Here we employed biochemical indices based on nucleic acid derived indices (standardized RNA/DNA ratio-sRD, RNA concentration and DNA concentration in skin tissue as a potential predictor of recent growth rate in nesting females and hatchling loggerhead turtles. Our major findings were that the physiological condition of all nesting females (sRD decreased during the nesting season, but that females associated with neritic habitats had a higher physiological condition than females associated with oceanic habitats. In addition, the amount of time required for a hatchling to right itself was negatively correlated with its physiological condition (sRD and shaded nests produced hatchlings with lower sRD. Overall, our results showed that nucleic acid concentrations and ratios of RNA to DNA are an important tool as potential biomarkers of recent growth in marine turtles. Hence, as biochemical indices of instantaneous growth are likely temperature-, size- and age

  5. Specific accumulation of arsenic compounds in green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Ishigaki Island, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Agusa, Tetsuro; Takagi, Kozue [Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577 (Japan); Kubota, Reiji [Division of Environmental Chemistry, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501 (Japan); Anan, Yasumi [Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan); Iwata, Hisato [Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577 (Japan); Tanabe, Shinsuke [Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577 (Japan)], E-mail: shinsuke@agr.ehime-u.ac.jp

    2008-05-15

    Concentrations of total arsenic (As) and individual compounds were determined in green and hawksbill turtles from Ishigaki Island, Japan. In both species, total As concentrations were highest in muscle among the tissues. Arsenobetaine was a major compound in most tissues of both turtles. High concentrations of trimethylarsine oxide were detected in hawksbill turtles. A significant negative correlation between standard carapace length (SCL), an indicator of age, and total As levels in green turtles was found. In contrast, the levels increased with SCL of hawksbill turtles. Shifts in feeding habitats with growth may account for such a growth-dependent accumulation of As. Although concentrations of As in marine sponges, the major food of hawksbill turtles are not high compared to those in algae eaten by green turtles, As concentrations in hawksbill turtles were higher than those in green turtles, indicating that hawksbill turtles may have a specific accumulation mechanism for As. - Green turtles and hawksbill turtles have specific accumulation features of arsenic.

  6. Specific accumulation of arsenic compounds in green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Ishigaki Island, Japan

    International Nuclear Information System (INIS)

    Agusa, Tetsuro; Takagi, Kozue; Kubota, Reiji; Anan, Yasumi; Iwata, Hisato; Tanabe, Shinsuke

    2008-01-01

    Concentrations of total arsenic (As) and individual compounds were determined in green and hawksbill turtles from Ishigaki Island, Japan. In both species, total As concentrations were highest in muscle among the tissues. Arsenobetaine was a major compound in most tissues of both turtles. High concentrations of trimethylarsine oxide were detected in hawksbill turtles. A significant negative correlation between standard carapace length (SCL), an indicator of age, and total As levels in green turtles was found. In contrast, the levels increased with SCL of hawksbill turtles. Shifts in feeding habitats with growth may account for such a growth-dependent accumulation of As. Although concentrations of As in marine sponges, the major food of hawksbill turtles are not high compared to those in algae eaten by green turtles, As concentrations in hawksbill turtles were higher than those in green turtles, indicating that hawksbill turtles may have a specific accumulation mechanism for As. - Green turtles and hawksbill turtles have specific accumulation features of arsenic

  7. Persistent leatherback turtle migrations present opportunities for conservation.

    Directory of Open Access Journals (Sweden)

    George L Shillinger

    2008-07-01

    Full Text Available Effective transboundary conservation of highly migratory marine animals requires international management cooperation as well as clear scientific information about habitat use by these species. Populations of leatherback turtles (Dermochelys coriacea in the eastern Pacific have declined by >90% during the past two decades, primarily due to unsustainable egg harvest and fisheries bycatch mortality. While research and conservation efforts on nesting beaches are ongoing, relatively little is known about this population of leatherbacks' oceanic habitat use and migration pathways. We present the largest multi-year (2004-2005, 2005-2006, and 2007 satellite tracking dataset (12,095 cumulative satellite tracking days collected for leatherback turtles. Forty-six females were electronically tagged during three field seasons at Playa Grande, Costa Rica, the largest extant nesting colony in the eastern Pacific. After completing nesting, the turtles headed southward, traversing the dynamic equatorial currents with rapid, directed movements. In contrast to the highly varied dispersal patterns seen in many other sea turtle populations, leatherbacks from Playa Grande traveled within a persistent migration corridor from Costa Rica, past the equator, and into the South Pacific Gyre, a vast, low-energy, low-productivity region. We describe the predictable effects of ocean currents on a leatherback migration corridor and characterize long-distance movements by the turtles in the eastern South Pacific. These data from high seas habitats will also elucidate potential areas for mitigating fisheries bycatch interactions. These findings directly inform existing multinational conservation frameworks and provide immediate regions in the migration corridor where conservation can be implemented. We identify high seas locations for focusing future conservation efforts within the leatherback dispersal zone in the South Pacific Gyre.

  8. Persistent Leatherback Turtle Migrations Present Opportunities for Conservation

    Science.gov (United States)

    Shillinger, George L; Palacios, Daniel M; Bailey, Helen; Bograd, Steven J; Swithenbank, Alan M; Gaspar, Philippe; Wallace, Bryan P; Spotila, James R; Paladino, Frank V; Piedra, Rotney; Eckert, Scott A; Block, Barbara A

    2008-01-01

    Effective transboundary conservation of highly migratory marine animals requires international management cooperation as well as clear scientific information about habitat use by these species. Populations of leatherback turtles (Dermochelys coriacea) in the eastern Pacific have declined by >90% during the past two decades, primarily due to unsustainable egg harvest and fisheries bycatch mortality. While research and conservation efforts on nesting beaches are ongoing, relatively little is known about this population of leatherbacks' oceanic habitat use and migration pathways. We present the largest multi-year (2004–2005, 2005–2006, and 2007) satellite tracking dataset (12,095 cumulative satellite tracking days) collected for leatherback turtles. Forty-six females were electronically tagged during three field seasons at Playa Grande, Costa Rica, the largest extant nesting colony in the eastern Pacific. After completing nesting, the turtles headed southward, traversing the dynamic equatorial currents with rapid, directed movements. In contrast to the highly varied dispersal patterns seen in many other sea turtle populations, leatherbacks from Playa Grande traveled within a persistent migration corridor from Costa Rica, past the equator, and into the South Pacific Gyre, a vast, low-energy, low-productivity region. We describe the predictable effects of ocean currents on a leatherback migration corridor and characterize long-distance movements by the turtles in the eastern South Pacific. These data from high seas habitats will also elucidate potential areas for mitigating fisheries bycatch interactions. These findings directly inform existing multinational conservation frameworks and provide immediate regions in the migration corridor where conservation can be implemented. We identify high seas locations for focusing future conservation efforts within the leatherback dispersal zone in the South Pacific Gyre. PMID:18630987

  9. Populations and home range relationships of the box turtle, Terrapene c. carolina (Linnaeus)

    Science.gov (United States)

    Stickel, L.F.

    1950-01-01

    SUMMARY: A population study of the box turtle (Terrapene c. carolina Linnaeus) was made during the years 1944 to 1947 at the Patuxent Research Refuge, Maryland. A thirty acre area in well drained bottomland forest on the flood plain of the Patuxent River was selected for intensive study. Similarly forested land extended in all directions from the study plot. Markers were established at eighty-three foot intervals over the study plot for reference in recording locality data. Individuals were marked by filing notches in the marginal scutes according to a code system. There were 2109 collections of study area turtles. Records of collecting sites and turtle behavior showed that in the bottomlands habitat cover is utilized extensively during the day as well as at night. Turtles not actively moving about are almost always found in or around brush piles, heaps of debris, and tangles of vines and briars. Gully banks and woods openings are used for sunning. Turtles are occasionally found in the mud or water of the gullies. The commonest type of night retreat is a cavity constructed by the turtle in leaves, debris, or earth. These cavities, termed 'forms,' may be used only once, but are sometimes used repeatedly, often at intervals of several days or more. Different turtles sometimes use the same form on successive nights. Weather conditions most favorable to turtle activity are high humidity, warm sunny days, and frequent rains. The most unfavorable influences are low temperatures and drought. On most summer days there are some active turtles but individual turtles are not active every day. Periods of activity are alternated with periods of quiet even in favorable weather. This behavior is most pronounced in early spring and late fall when inactive days are often more numerous than active ones. Adult turtles occupy specific home ranges which they maintain from year to year. The turtles living in the study plot retained their ranges even through a flood that completely

  10. Loggerhead sea turtle bycatch data in artisanal fisheries within a marine protected area: fishermen surveys versus scientific observations

    Directory of Open Access Journals (Sweden)

    Lozano, M.

    2011-06-01

    Full Text Available Loggerhead sea turtles can be incidentally captured by artisanal gears but information about the impact of this fishing is inconsistent and scarce. Recent studies have observed that the bycatch, or incidental catch rate, in fishermen surveys is irregular. The aim of this study was to compare direct data (onboard observers concerning the incidental catch of loggerhead sea turtles by the artisanal vessels versus data from fishermen surveys. The study area was the Cabo de Gata-Níjar marine protected area, situated in the western Mediterranean (southeast of the Iberian peninsula. We observed two loggerhead turtles that were incidentally caught in a total of 165 fishing operations. According to fishermen surveys, a total of nine loggerheads were incidentally caught in 861 fishing operations. The differences between the loggerhead sea turtle bycatch reported by fishermen surveys and scientific observations versus random distribution (x2 = 0.3146, P = 0.575, df = 1 were not significant. We conclude that the surveys are useful but that findings should be interpreted with caution.

  11. Analysis of epibiont data in relation with the Debilitated Turtle Syndrome of sea turtles in Chelonia mydas and Lepidochelys olivacea from Concepción coast, Chile

    Directory of Open Access Journals (Sweden)

    Italo Fernández

    2015-11-01

    Full Text Available Epibionts on the surface of the skin and shell of a specimen of Chelonia mydas and three Lepidochelys olivacea found floating on the coast of Concepción, Chile, between June 2010 and December 2012, were analyzed. These epibionts were analyzed during the clinical inspection and the tissue changes related to its settlement, with filamentous algae around, were observed. Subsequently, the epibionts were identified by morphological observation. The knowledge about theses epibionts in Chile is reviewed and the potential occurrence of Debilitated Turtle Syndrome (DTS in these turtles is discussed. The presence of sea turtles in the Chilean coast is considered a casual event, so there is little information on this issue. We propose it is necessary to carry out more studies on the association between turtles and epibionts because their identification, colonizing reptiles’ surface may give relevant information to a better understanding of different diseases, including DTS, that affect these marine reptiles and facilitates the development of strategies intended to recover their populations.

  12. Environmental effects of dredging: Alternative dredging equipment and operational methods to minimize sea turtle mortalities. Technical notes

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, D.D.; Nelson, D.A.

    1990-12-01

    Five species of sea turtles occur along the United States coastlines and are listed as threatened or endangered. The loggerhead sea turtle (Caretta caretta) is listed as threatened, while the Kemp`s ridley (Lepidochelys kenipi), the hawksbill (Eretmochelys imbricata), and the leatherback (Dermochelys coriacea) are all less abundant and listed as endangered. Florida breeding populations of the green sea turtle (Chelonia mydas) are listed as endangered, but green turtles in other US waters are considered threatened. The National Marine Fisheries Service (NMFS) has determined, based on the best available information, that because of their life cycle and behavioral patterns only the loggerhead, the green, and the Kemp`s ridley are put at risk by hopper dredging activities (Studt 1987).

  13. Population structure and phylogeography reveal pathways of colonization by a migratory marine reptile (Chelonia mydas) in the central and eastern Pacific.

    Science.gov (United States)

    Dutton, Peter H; Jensen, Michael P; Frey, Amy; LaCasella, Erin; Balazs, George H; Zárate, Patricia; Chassin-Noria, Omar; Sarti-Martinez, Adriana Laura; Velez, Elizabeth

    2014-11-01

    Climate, behavior, ecology, and oceanography shape patterns of biodiversity in marine faunas in the absence of obvious geographic barriers. Marine turtles are an example of highly migratory creatures with deep evolutionary lineages and complex life histories that span both terrestrial and marine environments. Previous studies have focused on the deep isolation of evolutionary lineages (>3 mya) through vicariance; however, little attention has been given to the pathways of colonization of the eastern Pacific and the processes that have shaped diversity within the most recent evolutionary time. We sequenced 770 bp of the mtDNA control region to examine the stock structure and phylogeography of 545 green turtles from eight different rookeries in the central and eastern Pacific. We found significant differentiation between the geographically separated nesting populations and identified five distinct stocks (F ST = 0.08-0.44, P eastern Pacific Chelonia mydas form a monophyletic group containing 3 subclades, with Hawaii more closely related to the eastern Pacific than western Pacific populations. The split between sampled central/eastern and western Pacific haplotypes was estimated at around 0.34 mya, suggesting that the Pacific region west of Hawaii has been a more formidable barrier to gene flow in C. mydas than the East Pacific Barrier. Our results suggest that the eastern Pacific was colonized from the western Pacific via the Central North Pacific and that the Revillagigedos Islands provided a stepping-stone for radiation of green turtles from the Hawaiian Archipelago to the eastern Pacific. Our results fit with a broader paradigm that has been described for marine biodiversity, where oceanic islands, such as Hawaii and Revillagigedo, rather than being peripheral evolutionary "graveyards", serve as sources and recipients of diversity and provide a mechanism for further radiation.

  14. Elucidation of the first definitively identified life cycle for a marine turtle blood fluke (Trematoda: Spirorchiidae) enables informed control.

    Science.gov (United States)

    Cribb, Thomas H; Crespo-Picazo, Jose L; Cutmore, Scott C; Stacy, Brian A; Chapman, Phoebe A; García-Párraga, Daniel

    2017-01-01

    Blood flukes of the family Spirorchiidae are significant pathogens of both free-ranging and captive marine turtles. Despite a significant proportion of marine turtle mortality being attributable to spirorchiid infections, details of their life cycles remain almost entirely unknown. Here we report on the molecular elucidation of the complete life cycle of a marine spirorchiid, identified as Amphiorchis sp., infecting vermetid gastropods and captive hatched neonate Caretta caretta in the Oceanogràfic Aquarium, in Valencia, Spain. Specimens of a vermetid gastropod, Thylaeodus cf. rugulosus (Monterosato, 1878), collected from the aquarium filtration system housing diseased C. caretta, were infected with sporocysts and cercariae consistent with the family Spirorchiidae. We generated rDNA sequence data [internal transcribed spacer 2 (ITS2) and partial 28S rDNA] from infections from the vermetid which were identical to sequences generated from eggs from the serosa of the intestine of neonate C. caretta, and an adult spirorchiid from the liver of a C. caretta from Florida, USA. Given the reliability of these markers in the delineation of trematode species, we consider all three stages to represent the same species and tentatively identify it as a species of Amphiorchis Price, 1934. The source of infection at the Oceanogràfic Foundation Rehabilitation Centre, Valencia, Spain, is inferred to be an adult C. caretta from the western Mediterranean being rehabilitated in the same facility. Phylogenetic analysis suggests that this Amphiorchis sp. is closely related to other spirorchiids of marine turtles (species of Carettacola Manter & Larson, 1950, Hapalotrema Looss, 1899 and Learedius Price, 1934). We discuss implications of the present findings for the control of spirorchiidiasis in captivity, for the better understanding of epidemiology in wild individuals, and the elucidation of further life cycles. Copyright © 2016 Australian Society for Parasitology. Published by

  15. Heavy metal residues in tissues of marine turtles

    International Nuclear Information System (INIS)

    Storelli, M.M.; Marcotrigiano, G.O.

    2003-01-01

    Heavy metal concentrations in the tissues of marine turtles are presented. The most frequently monitored elements are mercury, cadmium and lead; and the tissues mainly analysed in nearly all the stranded individuals are muscle, liver and kidney. The highest mercury and cadmium levels were found in liver and kidney respectively; the majority of the lead burden existed in bones and carapace, while arsenic was present mainly in muscle tissue. Mercury occurred quite completely as methylmercury in muscle, whereas in liver the main form was the inorganic one. Arsenic was exclusively present in the metallorganic form either in muscle tissue or in liver. Metals in the eggs were mainly present in the yolk. Significantly higher concentration of mercury, copper, zinc and iron were found in yolk than albumen, while shell contained highest levels of manganese and copper. The load of trace metals in these animals strictly correlated with the species seems to depend on their different food behaviour

  16. Heavy metal residues in tissues of marine turtles

    Energy Technology Data Exchange (ETDEWEB)

    Storelli, M.M.; Marcotrigiano, G.O

    2003-04-01

    Heavy metal concentrations in the tissues of marine turtles are presented. The most frequently monitored elements are mercury, cadmium and lead; and the tissues mainly analysed in nearly all the stranded individuals are muscle, liver and kidney. The highest mercury and cadmium levels were found in liver and kidney respectively; the majority of the lead burden existed in bones and carapace, while arsenic was present mainly in muscle tissue. Mercury occurred quite completely as methylmercury in muscle, whereas in liver the main form was the inorganic one. Arsenic was exclusively present in the metallorganic form either in muscle tissue or in liver. Metals in the eggs were mainly present in the yolk. Significantly higher concentration of mercury, copper, zinc and iron were found in yolk than albumen, while shell contained highest levels of manganese and copper. The load of trace metals in these animals strictly correlated with the species seems to depend on their different food behaviour.

  17. Unusual population attributes of invasive red-eared slider turtles (Trachemys scripta elegans) in Japan: do they have a performance advantage?

    Science.gov (United States)

    Taniguchi, Mari; Lovich, Jeffrey E.; Mine, Kanako; Ueno, Shintaro; Kamezaki, Naoki

    2017-01-01

    The slider turtle (Trachemys scripta Thunberg in Schoepff, 1792) is native to the USA and Mexico. Due to the popularity of their colorful hatchlings as pets, they have been exported worldwide and are now present on all continents, except Antarctica. Slider turtles are well-established in Japan and occupy aquatic habitats in urban and agricultural areas, to the detriment of native turtles with which they compete. We asked the overall question, do slider turtles in Japan have a performance advantage because they are liberated from the numerous competing turtle species in their native range and released from many of their natural predators? Traits compared included various measures of adult body size (mean, maximum), female size at maturity as measured by size of gravid females, clutch size, population density and biomass, sex ratio, and sexual size dimorphism, the latter two a partial reflection of growth and maturity differences between the sexes. We sampled slider turtle populations in three habitats in Japan and compared population attributes with published data for the species from throughout its native range in the USA. Mean male body sizes were at the lower end of values from the USA suggesting that males in Japan may mature at smaller body sizes. The smallest gravid females in Japan mature at smaller body sizes but have mean clutch sizes larger than some populations in the USA. Compared to most populations in the USA, slider turtles achieve higher densities and biomasses in Japanese wetlands, especially the lotic system we sampled. Sex ratios were female-biased, the opposite of what is reported for many populations in protected areas of the USA. Sexual size dimorphism was enhanced relative to native populations with females as the larger sex. The enhanced dimorphism is likely a result of earlier size of maturity in Japanese males and the large size of mature (gravid) Japanese females. Slider turtles appear to have a performance advantage over native turtles in

  18. Distribution pattern of anthropogenic marine debris along the gastrointestinal tract of green turtles (Chelonia mydas) as implications for rehabilitation.

    Science.gov (United States)

    Colferai, André S; Silva-Filho, Rodolfo Pinho; Martins, Aryse Moreira; Bugoni, Leandro

    2017-06-15

    Pollution from anthropogenic marine debris (AMD) is currently the most widely distributed and lasting anthropic impact in the marine environment, affecting hundreds of species, including all sea turtles. In this study, the patterns of AMD distribution along the gastrointestinal tract (GT) and their relationship with obstructions and faecalomas in 62 green turtles (Chelonia mydas) that died during rehabilitation in southern Brazil were determined. The GT was split in seven sections, corresponding to the natural organs and intestinal areas morphologically and physiologically distinct. Mean mass (4.24g) and area (146.74cm 2 ) of AMD in the stomach were higher than in other sections. The anterior portion of the rectum had the highest number of obstructions, followed by the stomach. AMD was associated with the obstructions, with positive correlation between faecalomas and AMD masses. Organs and subdivisions showed marked differences in susceptibility to obstructions caused by AMD, which deserves attention in clinical interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Stable isotope tracking of endangered sea turtles: validation with satellite telemetry and δ15N analysis of amino acids.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Seminoff

    Full Text Available Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ(15N values of bulk skin, with distinct "low δ(15N" and "high δ(15N" groups. δ(15N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ(15N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation

  20. Stable isotope tracking of endangered sea turtles: validation with satellite telemetry and δ15N analysis of amino acids.

    Science.gov (United States)

    Seminoff, Jeffrey A; Benson, Scott R; Arthur, Karen E; Eguchi, Tomoharu; Dutton, Peter H; Tapilatu, Ricardo F; Popp, Brian N

    2012-01-01

    Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea) across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ(15)N values of bulk skin, with distinct "low δ(15)N" and "high δ(15)N" groups. δ(15)N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ(15)N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation efforts in

  1. Inorganic elements in green sea turtles (Chelonia mydas): relationships among external and internal tissues

    Science.gov (United States)

    Faust, Derek R.; Hooper, Michael J.; Cobb, George P.; Barnes, Melanie; Shaver, Donna; Ertolacci, Shauna; Smith, Philip N.

    2014-01-01

    Inorganic elements from anthropogenic sources have entered marine environments worldwide and are detectable in marine organisms, including sea turtles. Threatened and endangered classifications of sea turtles have heretofore made assessments of contaminant concentrations difficult because of regulatory restrictions on obtaining samples using nonlethal techniques. In the present study, claw and skin biopsy samples were examined as potential indicators of internal tissue burdens in green sea turtles (Chelonia mydas). Significant relationships were observed between claw and liver, and claw and muscle concentrations of mercury, nickel, arsenic, and selenium (p turtles.

  2. Green turtle (Chelonia mydas genetic diversity at Paranaguá Estuarine Complex feeding grounds in Brazil

    Directory of Open Access Journals (Sweden)

    Juliana Costa Jordão

    2015-09-01

    Full Text Available Sea turtles are marine reptiles that undertake long migrations through their life, with limited information regarding juvenile stages. Feeding grounds (FGs, where they spend most of their lives, are composed by individuals from different natal origins, known as mixed stock populations. The aim of this study was to assess genetic composition, natal origins and demographic history of juvenile green turtles (Chelonia mydas at the Paranaguá Estuarine Complex (PEC, Brazil, considered a Natural World Heritage site. Tissue samples of stranded animals were collected (n = 60, and 700 bp mitochondrial DNA sequences were generated and compared to shorter sequences from previously published studies. Global exact tests of differentiation revealed significant differences among PEC and the other FGs, except those at the South Atlantic Ocean. Green turtles at PEC present genetic signatures similar to those of nesting females from Ascension Island, Guinea Bissau and Aves Island/Surinam. Population expansion was evidenced to have occurred 20–25 kYA, reinforcing the hypothesis of recovery from Southern Atlantic refugia after the last Glacial Maximum. These results contribute to a better understanding of the dynamics of green turtle populations at a protected area by providing knowledge on the dispersion patterns and reinforcing the importance of the interconnectivity between nesting and foraging populations.

  3. Persistent organic pollutants in fat of three species of Pacific pelagic longline caught sea turtles: Accumulation in relation to ingested plastic marine debris

    Science.gov (United States)

    Clukey, Katharine; Lepczyk, Christopher A.; Balazs, George H.; Work, Thierry M.; Li, Qing X.; Bachman, Melanie J.; Lynch, Jennifer M.

    2017-01-01

    In addition to eating contaminated prey, sea turtles may be exposed to persistent organic pollutants (POPs) from ingesting plastic debris that has absorbed these chemicals. Given the limited knowledge about POPs in pelagic sea turtles and how plastic ingestion influences POP exposure, our objectives were to: 1) provide baseline contaminant levels of three species of pelagic Pacific sea turtles; and 2) assess trends of contaminant levels in relation to species, sex, length, body condition and capture location. In addition, we hypothesized that if ingesting plastic is a significant source of POP exposure, then the amount of ingested plastic may be correlated to POP concentrations accumulated in fat. To address our objectives we compared POP concentrations in fat samples to previously described amounts of ingested plastic from the same turtles. Fat samples from 25 Pacific pelagic sea turtles [2 loggerhead (Caretta caretta), 6 green (Chelonia mydas) and 17 olive ridley (Lepidochelys olivacea) turtles] were analyzed for 81 polychlorinated biphenyls (PCBs), 20 organochlorine pesticides, and 35 brominated flame-retardants. The olive ridley and loggerhead turtles had higher ΣDDTs (dichlorodiphenyltrichloroethane and metabolites) than ΣPCBs, at a ratio similar to biota measured in the South China Sea and southern California. Green turtles had a ratio close to 1:1. These pelagic turtles had lower POP levels than previously reported in nearshore turtles. POP concentrations were unrelated to the amounts of ingested plastic in olive ridleys, suggesting that their exposure to POPs is mainly through prey. In green turtles, concentrations of ΣPCBs were positively correlated with the number of plastic pieces ingested, but these findings were confounded by covariance with body condition index (BCI). Green turtles with a higher BCI had eaten more plastic and also had higher POPs. Taken together, our findings suggest that sea turtles accumulate most POPs through their prey rather

  4. Neuroanatomy of the marine Jurassic turtle Plesiochelys etalloni (Testudinata, Plesiochelyidae).

    Science.gov (United States)

    Carabajal, Ariana Paulina; Sterli, Juliana; Müller, Johannes; Hilger, André

    2013-01-01

    Turtles are one of the least explored clades regarding endocranial anatomy with few available descriptions of the brain and inner ear of extant representatives. In addition, the paleoneurology of extinct turtles is poorly known and based on only a few natural cranial endocasts. The main goal of this study is to provide for the first time a detailed description of the neuroanatomy of an extinct turtle, the Late Jurassic Plesiochelysetalloni, including internal carotid circulation, cranial endocast and inner ear, based on the first digital 3D reconstruction using micro CT scans. The general shape of the cranial endocast of P. etalloni is tubular, with poorly marked cephalic and pontine flexures. Anteriorly, the olfactory bulbs are clearly differentiated suggesting larger bulbs than in any other described extinct or extant turtle, and indicating a higher capacity of olfaction in this taxon. The morphology of the inner ear of P. etalloni is comparable to that of extant turtles and resembles those of slow-moving terrestrial vertebrates, with markedly low, short and robust semicircular canals, and a reduced lagena. In P. etalloni the arterial pattern is similar to that found in extant cryptodires, where all the internal carotid branches are protected by bone. As the knowledge of paleoneurology in turtles is scarce and the application of modern techniques such as 3D reconstructions based on CT scans is almost unexplored in this clade, we hope this paper will trigger similar investigations of this type in other turtle taxa.

  5. Factors influencing survivorship of rehabilitating green sea turtles (Chelonia mydas) with fibropapillomatosis.

    Science.gov (United States)

    Page-Karjian, Annie; Norton, Terry M; Krimer, Paula; Groner, Maya; Nelson, Steven E; Gottdenker, Nicole L

    2014-09-01

    Marine turtle fibropapillomatosis (FP) is a debilitating, infectious neoplastic disease that has reached epizootic proportions in several tropical and subtropical populations of green turtles (Chelonia mydas). FP represents an important health concern in sea turtle rehabilitation facilities. The objectives of this study were to describe the observed epidemiology, biology, and survival rates of turtles affected by FP (FP+ turtles) in a rehabilitation environment; to evaluate clinical parameters as predictors of survival in affected rehabilitating turtles; and to provide information about case progression scenarios and potential outcomes for FP+ sea turtle patients. A retrospective case series analysis was performed using the medical records of the Georgia Sea Turtle Center (GSTC), Jekyll Island, Georgia, USA, during 2009-2013. Information evaluated included signalment, morphometrics, presenting complaint, time to FP onset, tumor score (0-3), co-morbid conditions, diagnostic test results, therapeutic interventions, and case outcomes. Overall, FP was present in 27/362 (7.5%) of all sea turtles admitted to the GSTC for rehabilitation, either upon admittance or during their rehabilitation. Of these, 25 were green and 2 were Kemp's ridley turtles. Of 10 turtles that had only plaque-like FP lesions, 60% had natural tumor regression, all were released, and they were significantly more likely to survive than those with classic FP (P = 0.02 [0.27-0.75, 95% CI]). Turtles without ocular FP were eight times more likely to survive than those with ocular FP (odds ratio = 8.75, P = 0.032 [1.21-63.43, 95% CI]). Laser-mediated tumor removal surgery is the treatment of choice for FP+ patients at the GSTC; number of surgeries was not significantly related to case outcome.

  6. Changes in a box turtle population during three decades

    Science.gov (United States)

    Stickel, L.F.

    1978-01-01

    Studies of a Maryland population of marked box-turtles (Terrapene carolina) in 1945, 1955, 1965 and 1975 showed a pronounced decline in population size during the three decades; the greatest change came between 1965 and 1975, when numbers were reduced by half. Proportions of females and of young also declined. Fifteen % of the males and 11% of the females that were more than 20 years old in 1945 still were present in 1975; some probably were more than 80 years old.

  7. Background matching and camouflage efficiency predict population density in four-eyed turtle (Sacalia quadriocellata).

    Science.gov (United States)

    Xiao, Fanrong; Yang, Canchao; Shi, Haitao; Wang, Jichao; Sun, Liang; Lin, Liu

    2016-10-01

    Background matching is an important way to camouflage and is widespread among animals. In the field, however, few studies have addressed background matching, and there has been no reported camouflage efficiency in freshwater turtles. Background matching and camouflage efficiency of the four-eyed turtle, Sacalia quadriocellata, among three microhabitat sections of Hezonggou stream were investigated by measuring carapace components of CIE L*a*b* (International Commission on Illumination; lightness, red/green and yellow/blue) color space, and scoring camouflage efficiency through the use of humans as predators. The results showed that the color difference (ΔE), lightness difference (ΔL(*)), and chroma difference (Δa(*)b(*)) between carapace and the substrate background in midstream were significantly lower than that upstream and downstream, indicating that the four-eyed turtle carapace color most closely matched the substrate of midstream. In line with these findings, the camouflage efficiency was the best for the turtles that inhabit midstream. These results suggest that the four-eyed turtles may enhance camouflage efficiency by selecting microhabitat that best match their carapace color. This finding may explain the high population density of the four-eyed turtle in the midstream section of Hezonggou stream. To the best of our knowledge, this study is among the first to quantify camouflage of freshwater turtles in the wild, laying the groundwork to further study the function and mechanisms of turtle camouflage. Copyright © 2016. Published by Elsevier B.V.

  8. Review of scientific information on impacts of seismic sound on fish, invertebrates, marine turtles and marine mammals

    Energy Technology Data Exchange (ETDEWEB)

    Bain, H.

    2004-09-01

    This review of scientific literature on impacts of seismic sound on aquatic organisms was initiated following a 2003 workshop to develop a decision framework for seismic survey referrals in Canadian waters. That workshop revealed that there are sources of uncertainty about the effects of seismic sound on aquatic organisms. It was determined that seismic sounds on the marine environment are not completely without consequence nor are they certain to result in serious harm. Following the workshop, and in order to clearly determine the level of risk posed by seismic sounds, teams of scientists prepared reviews of literature on experimental studies and field monitoring on the effects of seismic sound on marine organisms. Standards and mitigation methods were also reviewed. The scientific deliberations resulted in a body of information that allowed several conclusions to be reached that provide a scientific basis for developing a regulatory framework for conducting seismic surveys in marine environments. This paper presented literature highlights regarding: habitat concern; management considerations; physical and behavioural effects on fish; functional uses of sound; physical, physiological and behavioural effects on invertebrates; effects of seismic sound on zooplankton, eggs, larvae of fish and invertebrates; effect of seismic sound on marine turtles; and mortality, physical and behavioural effects on marine mammals. The literature review sought to seek if seismic sound contributed to displacement and migratory diversion; changes in dive and respiratory patterns; changes in social behaviour; and changes in vocalisation patterns. Several areas of future research needs were identified following this literature review which revealed that the long-term effects of seismic sound on marine animals remain inconclusive. 2 refs., 1 fig.

  9. The current situation of inorganic elements in marine turtles: A general review and meta-analysis.

    Science.gov (United States)

    Cortés-Gómez, Adriana A; Romero, Diego; Girondot, Marc

    2017-10-01

    Inorganic elements (Pb, Cd, Hg, Al, As, Cr, Cu, Fe, Mn, Ni, Se and Zn) are present globally in aquatic systems and their potential transfer to marine turtles can be a serious threat to their health status. The environmental fate of these contaminants may be traced by the analysis of turtle tissues. Loggerhead turtles (Caretta caretta) are the most frequently investigated of all the sea turtle species with regards to inorganic elements, followed by Green turtles (Chelonia mydas); all the other species have considerably fewer studies. Literature shows that blood, liver, kidney and muscle are the tissues most frequently used for the quantification of inorganic elements, with Pb, Cd, Cu and Zn being the most studied elements. Chelonia mydas showed the highest concentrations of Cr in muscle (4.8 ± 0.12), Cu in liver (37 ± 7) and Mg in kidney (17 μg g -1 ww), Cr and Cu from the Gulf of Mexico and Mg from Japanese coasts; Lepidochelys olivacea presented the highest concentrations of Pb in blood (4.46 5) and Cd in kidney (150 ± 110 μg g -1 ww), both from the Mexican Pacific; Caretta caretta from the Mediterranean Egyptian coast had the highest report of Hg in blood (0.66 ± 0.13 μg g -1 ww); and Eretmochelys imbricata from Japan had the highest concentration of As in muscle (30 ± 13 13 μg g -1 ww). The meta-analysis allows us to examine some features that were not visible when data was analyzed alone. For instance, Leatherbacks show a unique pattern of concentration compared to other species. Additionally, contamination of different tissues shows some tendencies independent of the species with liver and kidney on one side and bone on the other being different from other tissues. This review provides a general perspective on the accumulation and distribution of these inorganic elements alongside existing information for the 7 sea turtle species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Hydrodynamic role of longitudinal ridges in a leatherback turtle swimming

    Science.gov (United States)

    Bang, Kyeongtae; Kim, Jooha; Lee, Sang-Im; Choi, Haecheon

    2015-11-01

    The leatherback sea turtle (Dermochelys coriacea), the fastest swimmer and the deepest diver among marine turtles, has five longitudinal ridges on its carapace. These ridges are the most remarkable morphological features distinguished from other marine turtles. To investigate the hydrodynamic role of these ridges in the leatherback turtle swimming, we model a carapace with and without ridges by using three dimensional surface data of a stuffed leatherback turtle in the National Science Museum, Korea. The experiment is conducted in a wind tunnel in the ranges of the real leatherback turtle's Reynolds number (Re) and angle of attack (α). The longitudinal ridges function differently according to the flow condition (i.e. Re and α). At low Re and negative α that represent the swimming condition of hatchlings and juveniles, the ridges significantly decrease the drag by generating streamwise vortices and delaying the main separation. On the other hand, at high Re and positive α that represent the swimming condition of adults, the ridges suppress the laminar separation bubble near the front part by generating streamwise vortices and enhance the lift and lift-to-drag ratio. Supported by the NRF program (2011-0028032).

  11. The cytotoxicity and genotoxicity of particulate and soluble hexavalent chromium in leatherback sea turtle lung cells.

    Science.gov (United States)

    Speer, Rachel M; Wise, Catherine F; Young, Jamie L; Aboueissa, AbouEl-Makarim; Martin Bras, Mark; Barandiaran, Mike; Bermúdez, Erick; Márquez-D'Acunti, Lirio; Wise, John Pierce

    2018-05-01

    Hexavalent chromium [Cr(VI)] is a marine pollution of concern as recent studies show it has a global distribution, with some regions showing high Cr concentrations in marine animal tissue, and it is extensively used. Leatherback sea turtles (Dermochelys coriacea) are an endangered marine species that may experience prolonged exposures to environmental contaminants including Cr(VI). Human activities have led to global Cr(VI) contamination of the marine environment. While Cr(VI) has been identified as a known human carcinogen, the health effects in marine species are poorly understood. In this study, we assessed the cytotoxic and genotoxic effects of particulate and soluble Cr(VI) in leatherback sea turtle lung cells. Both particulate and soluble Cr(VI) induced a concentration-dependent increase in cytotoxicity. Next, using a chromosome aberration assay, we assessed the genotoxic effects of Cr(VI) in leatherback sea turtle lung cells. Particulate and soluble Cr(VI) induced a concentration-dependent increase in clastogenicity in leatherback sea turtle lung cells. These data indicate that Cr(VI) may be a health concern for leatherback sea turtles and other long-lived marine species. Additionally, these data provide foundational support to use leatherback sea turtles as a valuable model species for monitoring the health effects of Cr(VI) in the environment and possibly as an indicator species to assess environmental human exposures and effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. The Ozobranchus leech is a candidate mechanical vector for the fibropapilloma-associated turtle herpesvirus found latently infecting skin tumors on Hawaiian green turtles (Chelonia mydas)

    International Nuclear Information System (INIS)

    Greenblatt, Rebecca J.; Work, Thierry M.; Balazs, George H.; Sutton, Claudia A.; Casey, Rufina N.; Casey, James W.

    2004-01-01

    Fibropapillomatosis (FP) of marine turtles is a neoplastic disease of ecological concern. A fibropapilloma-associated turtle herpesvirus (FPTHV) is consistently present, usually at loads exceeding one virus copy per tumor cell. DNA from an array of parasites of green turtles (Chelonia mydas) was examined with quantitative PCR (qPCR) to determine whether any carried viral loads are sufficient to implicate them as vectors for FPTHV. Marine leeches (Ozobranchus spp.) were found to carry high viral DNA loads; some samples approached 10 million copies per leech. Isopycnic sucrose density gradient/qPCR analysis confirmed that some of these copies were associated with particles of the density of enveloped viruses. The data implicate the marine leech Ozobranchus as a mechanical vector for FPTHV. Quantitative RT-PCR analysis of FPTHV gene expression indicated that most of the FPTHV copies in a fibropapilloma have restricted DNA polymerase expression, suggestive of latent infection

  13. Geomagnetic imprinting: A unifying hypothesis of long-distance natal homing in salmon and sea turtles.

    Science.gov (United States)

    Lohmann, Kenneth J; Putman, Nathan F; Lohmann, Catherine M F

    2008-12-09

    Several marine animals, including salmon and sea turtles, disperse across vast expanses of ocean before returning as adults to their natal areas to reproduce. How animals accomplish such feats of natal homing has remained an enduring mystery. Salmon are known to use chemical cues to identify their home rivers at the end of spawning migrations. Such cues, however, do not extend far enough into the ocean to guide migratory movements that begin in open-sea locations hundreds or thousands of kilometers away. Similarly, how sea turtles reach their nesting areas from distant sites is unknown. However, both salmon and sea turtles detect the magnetic field of the Earth and use it as a directional cue. In addition, sea turtles derive positional information from two magnetic elements (inclination angle and intensity) that vary predictably across the globe and endow different geographic areas with unique magnetic signatures. Here we propose that salmon and sea turtles imprint on the magnetic field of their natal areas and later use this information to direct natal homing. This novel hypothesis provides the first plausible explanation for how marine animals can navigate to natal areas from distant oceanic locations. The hypothesis appears to be compatible with present and recent rates of field change (secular variation); one implication, however, is that unusually rapid changes in the Earth's field, as occasionally occur during geomagnetic polarity reversals, may affect ecological processes by disrupting natal homing, resulting in widespread colonization events and changes in population structure.

  14. Geomagnetic imprinting: A unifying hypothesis of long-distance natal homing in salmon and sea turtles

    Science.gov (United States)

    Lohmann, Kenneth J.; Putman, Nathan F.; Lohmann, Catherine M. F.

    2008-01-01

    Several marine animals, including salmon and sea turtles, disperse across vast expanses of ocean before returning as adults to their natal areas to reproduce. How animals accomplish such feats of natal homing has remained an enduring mystery. Salmon are known to use chemical cues to identify their home rivers at the end of spawning migrations. Such cues, however, do not extend far enough into the ocean to guide migratory movements that begin in open-sea locations hundreds or thousands of kilometers away. Similarly, how sea turtles reach their nesting areas from distant sites is unknown. However, both salmon and sea turtles detect the magnetic field of the Earth and use it as a directional cue. In addition, sea turtles derive positional information from two magnetic elements (inclination angle and intensity) that vary predictably across the globe and endow different geographic areas with unique magnetic signatures. Here we propose that salmon and sea turtles imprint on the magnetic field of their natal areas and later use this information to direct natal homing. This novel hypothesis provides the first plausible explanation for how marine animals can navigate to natal areas from distant oceanic locations. The hypothesis appears to be compatible with present and recent rates of field change (secular variation); one implication, however, is that unusually rapid changes in the Earth's field, as occasionally occur during geomagnetic polarity reversals, may affect ecological processes by disrupting natal homing, resulting in widespread colonization events and changes in population structure. PMID:19060188

  15. A Giant Chelonioid Turtle from the Late Cretaceous of Morocco with a Suction Feeding Apparatus Unique among Tetrapods

    Science.gov (United States)

    Bardet, Nathalie; Jalil, Nour-Eddine; de Lapparent de Broin, France; Germain, Damien; Lambert, Olivier; Amaghzaz, Mbarek

    2013-01-01

    Background Secondary adaptation to aquatic life occurred independently in several amniote lineages, including reptiles during the Mesozoic and mammals during the Cenozoic. These evolutionary shifts to aquatic environments imply major morphological modifications, especially of the feeding apparatus. Mesozoic (250–65 Myr) marine reptiles, such as ichthyosaurs, plesiosaurs, mosasaurid squamates, crocodiles, and turtles, exhibit a wide range of adaptations to aquatic feeding and a broad overlap of their tooth morphospaces with those of Cenozoic marine mammals. However, despite these multiple feeding behavior convergences, suction feeding, though being a common feeding strategy in aquatic vertebrates and in marine mammals in particular, has been extremely rarely reported for Mesozoic marine reptiles. Principal Findings A relative of fossil protostegid and dermochelyoid sea turtles, Ocepechelon bouyai gen. et sp. nov. is a new giant chelonioid from the Late Maastrichtian (67 Myr) of Morocco exhibiting remarkable adaptations to marine life (among others, very dorsally and posteriorly located nostrils). The 70-cm-long skull of Ocepechelon not only makes it one of the largest marine turtles ever described, but also deviates significantly from typical turtle cranial morphology. It shares unique convergences with both syngnathid fishes (unique long tubular bony snout ending in a rounded and anteriorly directed mouth) and beaked whales (large size and elongated edentulous jaws). This striking anatomy suggests extreme adaptation for suction feeding unmatched among known turtles. Conclusion/Significance The feeding apparatus of Ocepechelon, a bony pipette-like snout, is unique among tetrapods. This new taxon exemplifies the successful systematic and ecological diversification of chelonioid turtles during the Late Cretaceous. This new evidence for a unique trophic specialization in turtles, along with the abundant marine vertebrate faunas associated to Ocepechelon in the Late

  16. A giant chelonioid turtle from the late Cretaceous of Morocco with a suction feeding apparatus unique among tetrapods.

    Science.gov (United States)

    Bardet, Nathalie; Jalil, Nour-Eddine; de Lapparent de Broin, France; Germain, Damien; Lambert, Olivier; Amaghzaz, Mbarek

    2013-01-01

    Secondary adaptation to aquatic life occurred independently in several amniote lineages, including reptiles during the Mesozoic and mammals during the Cenozoic. These evolutionary shifts to aquatic environments imply major morphological modifications, especially of the feeding apparatus. Mesozoic (250-65 Myr) marine reptiles, such as ichthyosaurs, plesiosaurs, mosasaurid squamates, crocodiles, and turtles, exhibit a wide range of adaptations to aquatic feeding and a broad overlap of their tooth morphospaces with those of Cenozoic marine mammals. However, despite these multiple feeding behavior convergences, suction feeding, though being a common feeding strategy in aquatic vertebrates and in marine mammals in particular, has been extremely rarely reported for Mesozoic marine reptiles. A relative of fossil protostegid and dermochelyoid sea turtles, Ocepechelon bouyai gen. et sp. nov. is a new giant chelonioid from the Late Maastrichtian (67 Myr) of Morocco exhibiting remarkable adaptations to marine life (among others, very dorsally and posteriorly located nostrils). The 70-cm-long skull of Ocepechelon not only makes it one of the largest marine turtles ever described, but also deviates significantly from typical turtle cranial morphology. It shares unique convergences with both syngnathid fishes (unique long tubular bony snout ending in a rounded and anteriorly directed mouth) and beaked whales (large size and elongated edentulous jaws). This striking anatomy suggests extreme adaptation for suction feeding unmatched among known turtles. The feeding apparatus of Ocepechelon, a bony pipette-like snout, is unique among tetrapods. This new taxon exemplifies the successful systematic and ecological diversification of chelonioid turtles during the Late Cretaceous. This new evidence for a unique trophic specialization in turtles, along with the abundant marine vertebrate faunas associated to Ocepechelon in the Late Maastrichtian phosphatic beds of Morocco, further

  17. A giant chelonioid turtle from the late Cretaceous of Morocco with a suction feeding apparatus unique among tetrapods.

    Directory of Open Access Journals (Sweden)

    Nathalie Bardet

    Full Text Available BACKGROUND: Secondary adaptation to aquatic life occurred independently in several amniote lineages, including reptiles during the Mesozoic and mammals during the Cenozoic. These evolutionary shifts to aquatic environments imply major morphological modifications, especially of the feeding apparatus. Mesozoic (250-65 Myr marine reptiles, such as ichthyosaurs, plesiosaurs, mosasaurid squamates, crocodiles, and turtles, exhibit a wide range of adaptations to aquatic feeding and a broad overlap of their tooth morphospaces with those of Cenozoic marine mammals. However, despite these multiple feeding behavior convergences, suction feeding, though being a common feeding strategy in aquatic vertebrates and in marine mammals in particular, has been extremely rarely reported for Mesozoic marine reptiles. PRINCIPAL FINDINGS: A relative of fossil protostegid and dermochelyoid sea turtles, Ocepechelon bouyai gen. et sp. nov. is a new giant chelonioid from the Late Maastrichtian (67 Myr of Morocco exhibiting remarkable adaptations to marine life (among others, very dorsally and posteriorly located nostrils. The 70-cm-long skull of Ocepechelon not only makes it one of the largest marine turtles ever described, but also deviates significantly from typical turtle cranial morphology. It shares unique convergences with both syngnathid fishes (unique long tubular bony snout ending in a rounded and anteriorly directed mouth and beaked whales (large size and elongated edentulous jaws. This striking anatomy suggests extreme adaptation for suction feeding unmatched among known turtles. CONCLUSION/SIGNIFICANCE: The feeding apparatus of Ocepechelon, a bony pipette-like snout, is unique among tetrapods. This new taxon exemplifies the successful systematic and ecological diversification of chelonioid turtles during the Late Cretaceous. This new evidence for a unique trophic specialization in turtles, along with the abundant marine vertebrate faunas associated to

  18. Mitochondrial DNA markers of loggerhead marine turtles (Caretta caretta (Testudines: Cheloniidae nesting at Kyparissia Bay, Greece, confirm the western Greece unit and regional structuring

    Directory of Open Access Journals (Sweden)

    Carlos Carreras

    2014-03-01

    Full Text Available Genetic markers have been widely used in marine turtles to assess population structuring and origin of individuals in common feeding grounds, which are key elements for understanding their ecology and for developing conservation strategies. However, these analyses are very sensitive to missing information, especially from abundant nesting sites. Kyparissia Bay (western Greece hosts the second largest Mediterranean nesting aggregation of the loggerhead turtle (Caretta caretta, but the genetic profile of this nesting site has not, as yet, been described using the extended version of the historically used mitochondrial DNA (mtDNA marker. This marker was genotyped for 36 individuals nesting at Kyparissia Bay and haplotype frequencies obtained were compared with published data from other Mediterranean nesting sites. The results confirmed the connection between Kyparissia and other western Greek nesting sites and the isolation of this western Greek group from other Mediterranean nesting areas. As a consequence of this isolation, this abundant group of nesting aggregations (almost 30% of the Mediterranean stock is not likely to significantly contribute to the recovery of other declining Mediterranean units.

  19. Movement patterns for a critically endangered species, the leatherback turtle (Dermochelys coriacea), linked to foraging success and population status.

    Science.gov (United States)

    Bailey, Helen; Fossette, Sabrina; Bograd, Steven J; Shillinger, George L; Swithenbank, Alan M; Georges, Jean-Yves; Gaspar, Philippe; Strömberg, K H Patrik; Paladino, Frank V; Spotila, James R; Block, Barbara A; Hays, Graeme C

    2012-01-01

    Foraging success for pelagic vertebrates may be revealed by horizontal and vertical movement patterns. We show markedly different patterns for leatherback turtles in the North Atlantic versus Eastern Pacific, which feed on gelatinous zooplankton that are only occasionally found in high densities. In the Atlantic, travel speed was characterized by two modes, indicative of high foraging success at low speeds (turtles. The most parsimonious explanation for these findings is that Eastern Pacific turtles rarely achieve high foraging success. This is the first support for foraging behaviour differences between populations of this critically endangered species and suggests that longer periods searching for prey may be hindering population recovery in the Pacific while aiding population maintenance in the Atlantic.

  20. LEGACY - Photographs resulting from experiment remote camera viewing of sea turtles and habitats

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Photos collected in marine turtle research programs are diverse, ranging from isolated observations of incidental encounters with turtles to voluminous, complex...

  1. Evaluating spatial patterns of dioxins in sediments to aid determination of potential implications for marine reptiles

    Energy Technology Data Exchange (ETDEWEB)

    Hermanussen, S.; Gaus, C. [National Research Centre for Environmental Toxicology, Brisbane (Australia); Limpus, C.J. [Queensland Environmental Protection Agency, Brisbane (Australia); Paepke, O. [ERGO Forschungsgesellschaft mbH, Hamburg (Germany); Blanshard, W. [Sea World, Gold Coast (Australia); Connell, D. [School of Public Health, Griffith Univ., Brisbane (Australia)

    2004-09-15

    Recent investigations have identified elevated concentrations of polychlorinated dibenzo-p-dioxins (dioxins) in marine sediments and wildlife of Queensland, Australia. While it has been demonstrated that the contamination is widespread and predominantly land-based, limited information exists on the pathways and fate of these compounds within the near-shore marine system. This environment supports unique and threatened species including green sea turtles (Chelonia mydas). Adult green turtles are predominantly herbivorous, feeding on seagrass and algae. Apart from initial migration to feeding grounds (at {proportional_to}10 years of age) and intermittent migrations to breeding grounds (at {proportional_to}30-50 years and thereafter), green turtles remain and feed within relatively small home ranges. Long life-span (50 years or more), near-shore feeding grounds and highly specialized food requirements render green turtles potentially vulnerable to contaminant exposure. Recent studies have shown a relationship between PCDD/F concentrations found in herbivorous marine wildlife and concentrations in sediments of their habitats. Hence, the spatial evaluation of sediment PCDD/F distribution may assist the assessment of green turtle exposure and its potential implications. The present study provides baseline information on green turtle PCDD/F concentrations in Queensland, Australia and investigates exposure pathways. In addition, spatial distribution of PCDD/Fs in sediments from known green turtle feeding regions is assessed using geographic information systems. This represents the first stage of a large scale investigation into the exposure and sensitivity of marine reptiles to dioxins and dioxin-like compounds and to evaluate whether poor health status observed in some populations may be related to contaminant exposure.

  2. Geographic patterns of genetic variation in a broadly distributed marine vertebrate: new insights into loggerhead turtle stock structure from expanded mitochondrial DNA sequences.

    Directory of Open Access Journals (Sweden)

    Brian M Shamblin

    Full Text Available Previous genetic studies have demonstrated that natal homing shapes the stock structure of marine turtle nesting populations. However, widespread sharing of common haplotypes based on short segments of the mitochondrial control region often limits resolution of the demographic connectivity of populations. Recent studies employing longer control region sequences to resolve haplotype sharing have focused on regional assessments of genetic structure and phylogeography. Here we synthesize available control region sequences for loggerhead turtles from the Mediterranean Sea, Atlantic, and western Indian Ocean basins. These data represent six of the nine globally significant regional management units (RMUs for the species and include novel sequence data from Brazil, Cape Verde, South Africa and Oman. Genetic tests of differentiation among 42 rookeries represented by short sequences (380 bp haplotypes from 3,486 samples and 40 rookeries represented by long sequences (∼800 bp haplotypes from 3,434 samples supported the distinction of the six RMUs analyzed as well as recognition of at least 18 demographically independent management units (MUs with respect to female natal homing. A total of 59 haplotypes were resolved. These haplotypes belonged to two highly divergent global lineages, with haplogroup I represented primarily by CC-A1, CC-A4, and CC-A11 variants and haplogroup II represented by CC-A2 and derived variants. Geographic distribution patterns of haplogroup II haplotypes and the nested position of CC-A11.6 from Oman among the Atlantic haplotypes invoke recent colonization of the Indian Ocean from the Atlantic for both global lineages. The haplotypes we confirmed for western Indian Ocean RMUs allow reinterpretation of previous mixed stock analysis and further suggest that contemporary migratory connectivity between the Indian and Atlantic Oceans occurs on a broader scale than previously hypothesized. This study represents a valuable model for

  3. Tracking sea turtles in the Everglades

    Science.gov (United States)

    Hart, Kristin M.

    2008-01-01

    The U.S. Geological Survey (USGS) has a long history of conducting research on threatened, endangered, and at-risk species inhabiting both terrestrial and marine environments, particularly those found within national parks and protected areas. In the coastal Gulf of Mexico region, for example, USGS scientist Donna Shaver at Padre Island National Seashore in Texas has focused on “headstarting” hatchlings of the rare Kemp’s ridley sea turtle (Lepidochelys kempii). She is also analyzing trends in sea turtle strandings onshore and interactions with Gulf shrimp fisheries. Along south Florida’s Gulf coast, the USGS has focused on research and monitoring for managing the greater Everglades ecosystem. One novel project involves the endangered green sea turtle (Chelonia mydas). The ecology and movements of adult green turtles are reasonably well understood, largely due to decades of nesting beach monitoring by a network of researchers and volunteers. In contrast, relatively little is known about the habitat requirements and movements of juvenile and subadult sea turtles of any species in their aquatic environment.

  4. Spatial Dynamics of Sea Turtle Abundance and Shrimping Intensity in the U.S. Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Carrie J. McDaniel

    2000-07-01

    Full Text Available In order to examine the scientific feasibility of area closures for sea turtle protection, we determined the spatial dynamics of sea turtles for the U.S. Gulf of Mexico by analyzing National Marine Fisheries Service (NMFS aerial survey data in September, October, and November of 1992, 1993, and 1994. Turtle sightings were grouped into depth zones and NMFS fishery statistical zones, and strip transect methods were used to estimate the relative abundance of sea turtles in each subzone. Average shrimping intensity was calculated for each subzone for all months of 1992, 1993, and 1994, as well as for the months and locations of the aerial survey. The spatial overlap of sea turtle abundance and shrimping intensity suggested regions where interactions are likely to occur. Sea turtles were observed at much higher rates along the coast of Florida than in the Western Gulf; the highest density of sea turtles was observed in the Florida Keys region (0.525 turtles/km2. Shrimping intensity was highest in the Western Gulf along the coast of Texas and Louisiana, for both annual and fall estimates. Among alternative management scenarios, area closures in conjunction with continued Turtle Excluder Device (TED requirements would probably best prevent sea turtles from future extinction. By implementing shrimping closures off of South Padre Island, Texas, a potential second nesting population of Kemp's ridleys (Lepidochelys kempi could be protected. Closing waters where shrimping intensity is low and sea turtle abundance is high (e.g., South Florida waters would protect sea turtles without economically impacting a large number of shrimpers.

  5. Applying new genetic approaches to improve quality of population assessment of leatherback turtles

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project addresses gaps in life history information for sea turtles that have been long-standing needs for building accurate population models. The goal is to...

  6. Salinity tolerances and use of saline environments by freshwater turtles: implications of sea level rise.

    Science.gov (United States)

    Agha, Mickey; Ennen, Joshua R; Bower, Deborah S; Nowakowski, A Justin; Sweat, Sarah C; Todd, Brian D

    2018-03-25

    brackish water habitats are likely to be vulnerable to SLR because of their exclusive coastal distributions and adaptations to a narrow range of salinities. Most species, however, have not been documented in brackish water habitats but may also be highly vulnerable to projected SLR. Our analysis suggests that approximately 90% of coastal freshwater turtle species assessed in our study will be affected by a 1-m increase in global mean SLR by 2100. Most at risk are freshwater turtles found in New Guinea, Southeast Asia, Australia, and North and South America that may lose more than 10% of their present geographic range. In addition, turtle species in the families Chelidae, Emydidae, and Trionychidae may experience the greatest exposure to projected SLR in their present geographic ranges. Better understanding of survival, growth, reproductive and population-level responses to SLR will improve region-specific population viability predictions of freshwater turtles that are increasingly exposed to SLR. Integrating phylogenetic, physiological, and spatial frameworks to assess the effects of projected SLR may improve identification of vulnerable species, guilds, and geographic regions in need of conservation prioritization. We conclude that the use of brackish and marine environments by freshwater turtles provides clues about the evolutionary processes that have prolonged their existence, shaped their unique coastal distributions, and may prove useful in predicting their response to a changing world. © 2018 Cambridge Philosophical Society.

  7. Marine debris and human impacts on sea turtles in southern Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Bugoni, Leandro; Krause, Ligia [Universidade Federal do Rio Grande do Sul, Dept. de Zoologia, Porto Alegre, RS (Brazil); Petry, Maria Virginia [Universidade do Rio dos Sinos, Museu de Zoologia, Sao Leopoldo, RS (Brazil)

    2001-07-01

    Dead stranded sea turtles were recovered and examined to determine the impact of anthropogenic debris and fishery activities on sea turtles on the coast of Rio Grande do Sul State, Brazil. Esophagus/stomach contents of 38 juvenile green Chelonia mydas, 10 adults and sub-adults loggerhead Caretta caretta, and two leatherback Dermochelys coriacea turtle (adult or sub-adult) included plastic bags as the main debris ingested, predominated by white and colorless pieces. The ingestion of anthropogenic debris accounted for the death of 13.2% of the green turtles examined. Signs of damage over the body and carapace indicated that fishing activities caused the death of 13.6% (3/22) of loggerheads and 1.5% (1/56) of green turtles. Therefore, it appears that direct and indirect effects of fishing activities may pose a threat to these species in Brazilian waters. Other sources of plastic debris should be investigated as well a the direct impact of fisheries, especially bottom trawl and gill nets, in order to establish effective conservation action. (Author)

  8. Methods of Developing User-Friendly Keys to Identify Green Sea Turtles (Chelonia mydas L. from Photographs

    Directory of Open Access Journals (Sweden)

    Jane R. Lloyd

    2012-01-01

    Full Text Available Identifying individual animals is important in understanding their ecology and behaviour, as well as providing estimates of population sizes for conservation efforts. We produce identification keys from photographs of green sea turtles to identify them while foraging in Akumal Bay, Mexico. We create three keys, which (a minimise the length of the key, (b present the most obvious differential characteristics first, and (c remove the strict dichotomy from key b. Keys were capable of identifying >99% of turtles in >2500 photographs during the six-month study period. The keys differed significantly in success rate for students to identify individual turtles, with key (c being the best with >70% success and correctly being followed further than other keys before making a mistake. User-friendly keys are, therefore, a suitable method for the photographic identification of turtles and could be used for other large marine vertebrates in conservation or behavioural studies.

  9. Decline of the Sea Turtles: Causes and Prevention.

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Life Sciences.

    A report submitted by the Committee on Sea Turtle Conservation, addresses threats to the world's sea turtle populations to fulfill a mandate of the Endangered Species Act Amendments of 1988. It presents information on the populations, biology, ecology, and behavior of five endangered or threatened turtle species: the Kemp's ridley, loggerhead,…

  10. 50 CFR 224.104 - Special requirements for fishing activities to protect endangered sea turtles.

    Science.gov (United States)

    2010-10-01

    ... activities to protect endangered sea turtles. 224.104 Section 224.104 Wildlife and Fisheries NATIONAL MARINE... endangered sea turtles. (a) Shrimp fishermen in the southeastern United States and the Gulf of Mexico who comply with rules for threatened sea turtles specified in § 223.206 of this chapter will not be subject...

  11. Active dispersal in loggerhead sea turtles (Caretta caretta) during the 'lost years'.

    Science.gov (United States)

    Briscoe, D K; Parker, D M; Balazs, G H; Kurita, M; Saito, T; Okamoto, H; Rice, M; Polovina, J J; Crowder, L B

    2016-06-15

    Highly migratory marine species can travel long distances and across entire ocean basins to reach foraging and breeding grounds, yet gaps persist in our knowledge of oceanic dispersal and habitat use. This is especially true for sea turtles, whose complex life history and lengthy pelagic stage present unique conservation challenges. Few studies have explored how these young at-sea turtles navigate their environment, but advancements in satellite technology and numerical models have shown that active and passive movements are used in relation to open ocean features. Here, we provide the first study, to the best of our knowledge, to simultaneously combine a high-resolution physical forcing ocean circulation model with long-term multi-year tracking data of young, trans-oceanic North Pacific loggerhead sea turtles during their 'lost years' at sea. From 2010 to 2014, we compare simulated trajectories of passive transport with empirical data of 1-3 year old turtles released off Japan (29.7-37.5 straight carapace length cm). After several years, the at-sea distribution of simulated current-driven trajectories significantly differed from that of the observed turtle tracks. These results underscore current theories on active dispersal by young oceanic-stage sea turtles and give further weight to hypotheses of juvenile foraging strategies for this species. Such information can also provide critical geographical information for spatially explicit conservation approaches to this endangered population. © 2016 The Author(s).

  12. Shared Epizoic Taxa and Differences in Diatom Community Structure Between Green Turtles (Chelonia mydas) from Distant Habitats.

    Science.gov (United States)

    Majewska, Roksana; de Vijver, Bart Van; Nasrolahi, Ali; Ehsanpour, Maryam; Afkhami, Majid; Bolaños, Federico; Iamunno, Franco; Santoro, Mario; De Stefano, Mario

    2017-11-01

    The first reports of diatoms growing on marine mammals date back to the early 1900s. However, only recently has direct evidence been provided for similar associations between diatoms and sea turtles. We present a comparison of diatom communities inhabiting carapaces of green turtles Chelonia mydas sampled at two remote sites located within the Indian (Iran) and Atlantic (Costa Rica) Ocean basins. Diatom observations and counts were carried out using scanning electron microscopy. Techniques involving critical point drying enabled observations of diatoms and other microepibionts still attached to sea turtle carapace and revealed specific aspects of the epizoic community structure. Species-poor, well-developed diatom communities were found on all examined sea turtles. Significant differences between the two host sea turtle populations were observed in terms of diatom abundance and their community structure (including growth form structure). A total of 12 and 22 diatom taxa were found from sea turtles in Iran and Costa Rica, respectively, and eight of these species belonging to Amphora, Chelonicola, Cocconeis, Navicula, Nitzschia and Poulinea genera were observed in samples from both locations. Potential mechanisms of diatom dispersal and the influence of the external environment, sea turtle behaviour, its life stage, and foraging and breeding habitats, as well as epibiotic bacterial flora on epizoic communities, are discussed.

  13. The feeding habit of sea turtles influences their reaction to artificial marine debris

    OpenAIRE

    Takuya Fukuoka; Misaki Yamane; Chihiro Kinoshita; Tomoko Narazaki; Greg J. Marshall; Kyler J. Abernathy; Nobuyuki Miyazaki; Katsufumi Sato

    2016-01-01

    Ingestion of artificial debris is considered as a significant stress for wildlife including sea turtles. To investigate how turtles react to artificial debris under natural conditions, we deployed animal-borne video cameras on loggerhead and green turtles in addition to feces and gut contents analyses from 2007 to 2015. Frequency of occurrences of artificial debris in feces and gut contents collected from loggerhead turtles were 35.7% (10/28) and 84.6% (11/13), respectively. Artificial debris...

  14. Wood mouse and box turtle populations in an area treated annually with DDT for five years

    Science.gov (United States)

    Stickel, L.F.

    1951-01-01

    A 117-acre area of dense woodland on the Patuxent Research Refuge received an aerial application of DDT in oil at the rate of 2 pounds per acre gnnually for five years. DDT reached ground level in a much smaller amount (thousandths to hundredths of a pound per acre). Treatment was made during the first week of June of each year from 1945 through 1949. Field studies of the wood mouse population in DDT and check areas showed no significant differences in the two areas before and after the 1949 DDT treatment. There was no significant difference between trapping samples taken in DDT and check areas in 1945 and those taken in 1949. Field studies of the box turtles in DDT and check areas in 1945 and 1949 showed no significant difference in population size. Growth of the four young turtles taken in the DDT area in both 1945 and 1949 appeared to be normal in comparison with growth of check area turtles.

  15. Thalassemys bruntrutana n. sp., a new coastal marine turtle from the Late Jurassic of Porrentruy (Switzerland, and the paleobiogeography of the Thalassemydidae

    Directory of Open Access Journals (Sweden)

    Christian Püntener

    2015-09-01

    Full Text Available Background. The Swiss Jura Mountains are a key region for Late Jurassic eucryptodiran turtles. Already in the mid 19th century, the Solothurn Turtle Limestone (Solothurn, NW Switzerland yielded a great amount of Kimmeridgian turtles that are traditionally referred to Plesiochelyidae, Thalassemydidae, and Eurysternidae. In the past few years, fossils of these coastal marine turtles were also abundantly discovered in the Kimmeridgian of the Porrentruy region (NW Switzerland. These findings include numerous sub-complete shells, out of which we present two new specimens of Thalassemys (Thalassemydidae in this study.Methods. We compare the new material from Porrentruy to the type species Th. hugii, which is based on a well preserved specimen from the Solothurn Turtle Limestone (Solothurn, Switzerland. In order to improve our understanding of the paleogeographic distribution of Thalassemys, anatomical comparisons are extended to Thalassemys remains from other European countries, notably Germany and England.Results. While one of the two Thalassemys specimens from Porrentruy can be attributed to Th. hugii, the other specimen represents a new species, Th. bruntrutana n. sp. It differs from Th. hugii by several features: more elongated nuchal that strongly thickens anterolaterally; wider vertebral scales; proportionally longer plastron; broader and less inclined xiphiplastron; wider angle between scapular process and acromion process. Our results show that Th. hugii and Th. bruntrutana also occur simultaneously in the Kimmeridgian of Solothurn as well as in the Kimmeridgian of England (Kimmeridge Clay. This study is an important step towards a better understanding of the paleobiogeographic distribution of Late Jurassic turtles in Europe.

  16. Nesting phenology of marine turtles: insights from a regional comparative analysis on green turtle (Chelonia mydas.

    Directory of Open Access Journals (Sweden)

    Mayeul Dalleau

    Full Text Available Changes in phenology, the timing of seasonal activities, are among the most frequently observed responses to environmental disturbances and in marine species are known to occur in response to climate changes that directly affects ocean temperature, biogeochemical composition and sea level. We examined nesting seasonality data from long-term studies at 8 green turtle (Chelonia mydas rookeries that include 21 specific nesting sites in the South-West Indian Ocean (SWIO. We demonstrated that temperature drives patterns of nesting seasonality at the regional scale. We found a significant correlation between mean annual Sea Surface Temperature (SST and dates of peak nesting with rookeries exposed to higher SST having a delayed nesting peak. This supports the hypothesis that temperature is the main factor determining peak nesting dates. We also demonstrated a spatial synchrony in nesting activity amongst multiple rookeries in the northern part of the SWIO (Aldabra, Glorieuses, Mohéli, Mayotte but not with the eastern and southern rookeries (Europa, Tromelin, differences which could be attributed to females with sharply different adult foraging conditions. However, we did not detect a temporal trend in the nesting peak date over the study period or an inter-annual relation between nesting peak date and SST. The findings of our study provide a better understanding of the processes that drive marine species phenology. The findings will also help to predict their ability to cope with climate change and other environmental perturbations. Despite demonstrating this spatial shift in nesting phenology, no trend in the alteration of nesting dates over more than 20 years was found.

  17. Nesting Ecology of Hawksbill Sea Turtles (Eretmochelys imbricata) on Utila, Honduras

    Science.gov (United States)

    Damazo, Lindsey Renee Eggers

    The hawksbill sea turtle (Eretmochelys imbricata) has a circumtropical distribution and plays an important role in maintaining the health of coral reefs. Unfortunately, hawksbill populations have been decimated, and estimated numbers in the Caribbean are less than 10% of populations a century ago. The hawksbill is considered Critically Endangered, and researchers are coordinating worldwide efforts to protect this species. One country where we lack knowledge regarding hawksbills is Honduras. This study aimed to increase our understanding of hawksbill nesting ecology in Caribbean Honduras. Characteristics of hawksbill nesting activity and a nesting beach on the island of Utila were elucidated using satellite telemetry, beach profiling, vegetation surveys, beach monitoring, and nest temperature profiles. We affixed satellite transmitters to two nesting hawksbills, and found the turtles migrated to different countries. One turtle traveled 403 km to a bay in Mexico, and the other traveled 181 km to a Marine Protected Area off Belize. This study presents the first description of hawksbill migration routes from Honduras, facilitating protection efforts for turtles that traverse international waters. To investigate nesting beach and turtle characteristics, we conducted beach monitoring during the 2012 nesting season. Nesting turtle carapace sizes were similar to worldwide values, but hatchlings were heavier. To measure nest temperatures, we placed thermocouple data loggers in four nests and four pseudo-nests. Data suggested metabolic heating may be maintaining nest temperatures above the pivotal temperature. However, large temperature fluctuations corresponding to rainfall from Hurricane Ernesto (as determined using a time series cross-correlation analysis) make it difficult to predict sex ratios, and underscore the impact stochastic events can have on nest temperatures. We created topographic and substrate profiles of the beach, and found it was 475 m long, yet hawksbills

  18. Demographic evidence of illegal harvesting of an endangered asian turtle.

    Science.gov (United States)

    Sung, Yik-Hei; Karraker, Nancy E; Hau, Billy C H

    2013-12-01

    Harvesting pressure on Asian freshwater turtles is severe, and dramatic population declines of these turtles are being driven by unsustainable collection for food markets, pet trade, and traditional Chinese medicine. Populations of big-headed turtle (Platysternon megacephalum) have declined substantially across its distribution, particularly in China, because of overcollection. To understand the effects of chronic harvesting pressure on big-headed turtle populations, we examined the effects of illegal harvesting on the demography of populations in Hong Kong, where some populations still exist. We used mark-recapture methods to compare demographic characteristics between sites with harvesting histories and one site in a fully protected area. Sites with a history of illegal turtle harvesting were characterized by the absence of large adults and skewed ratios of juveniles to adults, which may have negative implications for the long-term viability of populations. These sites also had lower densities of adults and smaller adult body sizes than the protected site. Given that populations throughout most of the species' range are heavily harvested and individuals are increasingly difficult to find in mainland China, the illegal collection of turtles from populations in Hong Kong may increase over time. Long-term monitoring of populations is essential to track effects of illegal collection, and increased patrolling is needed to help control illegal harvesting of populations, particularly in national parks. Because few, if any, other completely protected populations remain in the region, our data on an unharvested population of big-headed turtles serve as an important reference for assessing the negative consequences of harvesting on populations of stream turtles. Evidencia Demográfica de la Captura Ilegal de una Tortuga Asiática en Peligro. © 2013 Society for Conservation Biology.

  19. The Effects of Inter-annual Climate Variability on the Departures of Leatherback Marine Turtles from the California Current Ecosystem

    OpenAIRE

    Van Zerr, Vanessa E

    2013-01-01

    The Pacific Ocean is a highly variable environment, and changes in oceanographic conditions impact the distributions of many organisms. Inter-annual climate variability, especially the El Niño/Southern Oscillation, is known to have wide-ranging impacts on organisms in the California Current. Understanding the factors that drive changes in the spatial ecology of organisms, such as inter-annual climate variability, is essential in many cases for effective conservation. Leatherback marine turtle...

  20. Sea Turtle Research Program Summary Report

    National Research Council Canada - National Science Library

    1997-01-01

    The USACE Sea Turtle Research Program (STRP) was conducted to minimize the risk to sea turtle populations in channels along the southeast Atlantic region of the United States from hopper-dredging activities...

  1. Notes upon some Sea Turtles

    NARCIS (Netherlands)

    Brongersma, L.D.

    1961-01-01

    In recent years much attention is being paid to marine turtles, and it is the merit of Deraniyagala, Carr, and others to have contributed much to our knowledge of this group. Nevertheless, our knowledge of the species and subspecies that may be recognized, and that of their distribution is as yet

  2. Global sea turtle conservation successes.

    Science.gov (United States)

    Mazaris, Antonios D; Schofield, Gail; Gkazinou, Chrysoula; Almpanidou, Vasiliki; Hays, Graeme C

    2017-09-01

    We document a tendency for published estimates of population size in sea turtles to be increasing rather than decreasing across the globe. To examine the population status of the seven species of sea turtle globally, we obtained 299 time series of annual nesting abundance with a total of 4417 annual estimates. The time series ranged in length from 6 to 47 years (mean, 16.2 years). When levels of abundance were summed within regional management units (RMUs) for each species, there were upward trends in 12 RMUs versus downward trends in 5 RMUs. This prevalence of more upward than downward trends was also evident in the individual time series, where we found 95 significant increases in abundance and 35 significant decreases. Adding to this encouraging news for sea turtle conservation, we show that even small sea turtle populations have the capacity to recover, that is, Allee effects appear unimportant. Positive trends in abundance are likely linked to the effective protection of eggs and nesting females, as well as reduced bycatch. However, conservation concerns remain, such as the decline in leatherback turtles in the Eastern and Western Pacific. Furthermore, we also show that, often, time series are too short to identify trends in abundance. Our findings highlight the importance of continued conservation and monitoring efforts that underpin this global conservation success story.

  3. Monitoring organic and inorganic pollutants in juvenile live sea turtles: results from a study of Chelonia mydas and Eretmochelys imbricata in Cape Verde.

    Science.gov (United States)

    Camacho, María; Boada, Luis D; Orós, Jorge; López, Pedro; Zumbado, Manuel; Almeida-González, Maira; Luzardo, Octavio P

    2014-05-15

    Despite the current environmental concern regarding the risk posed by contamination in marine ecosystems, the concentrations of pollutants in sea turtles have not been thoroughly elucidated. In the current study, we determined the concentrations of 18 organochlorine pesticides (OCPs), 18 polychlorinated biphenyls (PCBs), 16 polycyclic aromatic hydrocarbons (PAHs) and 11 inorganic elements (Cu, Mn, Pb, Zn, Cd, Ni, Cr, As, Al, Hg and Se) for the first time in two sea turtle species (Chelonia mydas and Eretmochelys imbricata). Only five of the 18 analyzed OCPs were detected in both species. The average total OCP concentration was higher in green turtles than in hawksbills (0.33 ng/ml versus 0.20 ng/ml). Higher concentrations of individual congeners and total PCBs were also detected in green turtles than in hawksbills (∑PCBs=0.73ng/ml versus 0.19 ng/ml), and different PCB contamination profiles were observed in these two species. Concerning PAHs, we also observed a different contamination profile and higher levels of contamination in green turtles (∑PAHs=12.06 ng/ml versus 2.95 ng/ml). Di- and tri-cyclic PAHs were predominant in both populations, suggesting a petrogenic origin, rather than urban sources of PAHs. Additionally, all of the samples exhibited detectable levels of the 11 inorganic elements. In this case, we also observed relevant differences between both species. Thus, Zn was the most abundant inorganic element in hawksbills (an essential inorganic element), whereas Ni, a well-known toxicant, was the most abundant inorganic element in green turtles. The presence of contaminants is greater in green turtles relative to hawksbill turtles, suggesting a greater exposure to hazardous chemical contaminants for green turtles. These results provide baseline data for these species that can serve for future monitoring purposes outlined in the EU's Marine Strategy Framework Directive. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. 77 FR 27719 - Marine Mammals; File Nos. 16109 and 15575

    Science.gov (United States)

    2012-05-11

    ...., Riverhead, NY 11901 to conduct research on marine mammals and sea turtles. ADDRESSES: The permits and... Register (76 FR 51001) that requests for permits to conduct research on marine mammals and sea turtles had... governing the taking and importing of marine mammals (50 CFR part 216), the Endangered Species Act of 1973...

  5. Marine megaherbivore grazing may increase seagrass tolerance to high nutrient loads

    NARCIS (Netherlands)

    Christianen, M.J.A.; Govers, L.L.; Bouma, T.J.; Kiswara, W.; Roelofs, J.G.M.; Lamers, L.P.M.; Van Katwijk, M.

    2012-01-01

    1.Populations of marine megaherbivores including green turtle (Chelonia mydas) have declined dramatically at a global scale as a result of overharvesting and habitat loss. This decline can be expected to also affect the tolerance of seagrass systems to coastal eutrophication. Until now, however,

  6. An ancestral turtle from the Late Triassic of southwestern China.

    Science.gov (United States)

    Li, Chun; Wu, Xiao-Chun; Rieppel, Olivier; Wang, Li-Ting; Zhao, Li-Jun

    2008-11-27

    The origin of the turtle body plan remains one of the great mysteries of reptile evolution. The anatomy of turtles is highly derived, which renders it difficult to establish the relationships of turtles with other groups of reptiles. The oldest known turtle, Proganochelys from the Late Triassic period of Germany, has a fully formed shell and offers no clue as to its origin. Here we describe a new 220-million-year-old turtle from China, somewhat older than Proganochelys, that documents an intermediate step in the evolution of the shell and associated structures. A ventral plastron is fully developed, but the dorsal carapace consists of neural plates only. The dorsal ribs are expanded, and osteoderms are absent. The new species shows that the plastron evolved before the carapace and that the first step of carapace formation is the ossification of the neural plates coupled with a broadening of the ribs. This corresponds to early embryonic stages of carapace formation in extant turtles, and shows that the turtle shell is not derived from a fusion of osteoderms. Phylogenetic analysis places the new species basal to all known turtles, fossil and extant. The marine deposits that yielded the fossils indicate that this primitive turtle inhabited marginal areas of the sea or river deltas.

  7. Plasma levels of pollutants are much higher in loggerhead turtle populations from the Adriatic Sea than in those from open waters (Eastern Atlantic Ocean).

    Science.gov (United States)

    Bucchia, Matteo; Camacho, María; Santos, Marcelo R D; Boada, Luis D; Roncada, Paola; Mateo, Rafael; Ortiz-Santaliestra, Manuel E; Rodríguez-Estival, Jaime; Zumbado, Manuel; Orós, Jorge; Henríquez-Hernández, Luis A; García-Álvarez, Natalia; Luzardo, Octavio P

    2015-08-01

    In this paper we determined the levels of 63 environmental contaminants, including organic (PCBs, organochlorine pesticides, and PAHs) and inorganic (As, Cd, Cu, Pb, Hg and Zn) compounds in the blood of loggerhead turtles (Caretta caretta) from two comparable populations that inhabit distinct geographic areas: the Adriatic Sea (Mediterranean basin) and the Canary Islands (Eastern Atlantic Ocean). All animals were sampled at the end of a period of rehabilitation in centers of wildlife recovery, before being released back into the wild, so they can be considered to be in good health condition. The dual purpose of this paper is to provide reliable data on the current levels of contamination of this species in these geographic areas, and secondly to compare the results of both populations, as it has been reported that marine biota inhabiting the Mediterranean basin is exposed to much higher pollution levels than that which inhabit in other areas of the planet. According to our results it is found that current levels of contamination by organic compounds are considerably higher in Adriatic turtles than in the Atlantic ones (∑PCBs, 28.45 vs. 1.12ng/ml; ∑OCPs, 1.63 vs. 0.19ng/ml; ∑PAHs, 13.39 vs. 4.91ng/ml; pmercury (5.74 vs. 7.59μg/ml, p<0.01). The results of this study confirm that the concentrations are larger in turtles from the Mediterranean, probably related to the high degree of anthropogenic pressure in this basin, and thus they are more likely to suffer adverse effects related to contaminants. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Plastic ingestion by sea turtles in Paraíba State, Northeast Brazil

    OpenAIRE

    Camila Poli; Daniel Oliveira Mesquita; Cinthia Saska; Rita Mascarenhas

    2015-01-01

    ABSTRACT Currently, plastics are recognized as a major pollutant of the marine environment, representing a serious threat to ocean wildlife. Here, we examined the occurrence and effects of plastic ingestion by sea turtles found stranded along the coast of Paraíba State, Brazil from August 2009 to July 2010. Ninety-eight digestive tracts were examined, with plastic found in 20 (20.4%). Sixty five percent (n = 13) of turtles with plastic in the digestive tract were green turtles (Chelonia mydas...

  9. Land use, macroalgae, and a tumor-forming disease in marine turtles.

    Directory of Open Access Journals (Sweden)

    Kyle S Van Houtan

    Full Text Available Wildlife diseases are an increasing concern for endangered species conservation, but their occurrence, causes, and human influences are often unknown. We analyzed 3,939 records of stranded Hawaiian green sea turtles (Chelonia mydas over 28 years to understand fibropapillomatosis, a tumor-forming disease linked to a herpesvirus. Turtle size is a consistent risk factor and size-standardized models revealed considerable spatial and temporal variability. The disease peaked in some areas in the 1990s, in some regions rates remained constant, and elsewhere rates increased. Land use, onshore of where the turtles feed, may play a role. Elevated disease rates were clustered in watersheds with high nitrogen-footprints; an index of natural and anthropogenic factors that affect coastal eutrophication. Further analysis shows strong epidemiological links between disease rates, nitrogen-footprints, and invasive macroalgae and points to foraging ecology. These turtles now forage on invasive macroalgae, which can dominate nutrient rich waters and sequester environmental N in the amino acid arginine. Arginine is known to regulate immune activity, promote herpesviruses, and contribute to tumor formation. Our results have implications for understanding diseases in aquatic organisms, eutrophication, herpesviruses, and tumor formation.

  10. 78 FR 39258 - Marine Mammals; File No. 17355

    Science.gov (United States)

    2013-07-01

    ... Investigator: Peter Corkeron] to conduct research on marine mammals and sea turtles. ADDRESSES: The permit and... to conduct research on marine mammals and sea turtles had been submitted by the above-named applicant... mammals (50 CFR part 216), the Endangered Species Act of 1973, as amended (ESA; 16 U.S.C. 1531 et seq...

  11. Review of potential impacts to sea turtles from underwater explosive removal of offshore structures

    International Nuclear Information System (INIS)

    Viada, Stephen T.; Hammer, Richard M.; Racca, Roberto; Hannay, David; Thompson, M. John; Balcom, Brian J.; Phillips, Neal W.

    2008-01-01

    The purpose of this study was to collect and synthesize existing information relevant to the explosive removal of offshore structures (EROS) in aquatic environments. Data sources were organized and summarized by topic - explosive removal methods, physics of underwater explosions, sea turtle resources, documented impacts to sea turtles, and mitigation of effects. Information was gathered via electronic database searches and literature source review. Bulk explosive charges are the most commonly used technique in EROS. While the physical principles of underwater detonations and the propagation of pressure and acoustic waves are well understood, there are significant gaps in the application of this knowledge. Impacts to sea turtles from explosive removal operations may range from non-injurious effects (e.g. acoustic annoyance; mild tactile detection or physical discomfort) to varying levels of injury (i.e. non-lethal and lethal injuries). Very little information exists regarding the impacts of underwater explosions on sea turtles. Effects of explosions on turtles often must be inferred from documented effects to other vertebrates with lungs or other gas-containing organs, such as mammals and most fishes. However, a cautious approach should be used when determining impacts to sea turtles based on extrapolations from other vertebrates. The discovery of beached sea turtles and bottlenose dolphins following an explosive platform removal event in 1986 prompted the initiation of formal consultation between the U.S. Department of the Interior, Minerals Management Service (MMS) and the National Marine Fisheries Service (NMFS), authorized through the Endangered Species Act Section 7, to determine a mechanism to minimize potential impacts to listed species. The initial consultation resulted in a requirement for oil and gas companies to obtain a permit (through separate consultations on a case-by-case basis) prior to using explosives in Federal waters. Because many offshore

  12. A toothed turtle from the Late Jurassic of China and the global biogeographic history of turtles.

    Science.gov (United States)

    Joyce, Walter G; Rabi, Márton; Clark, James M; Xu, Xing

    2016-10-28

    the ambiguous phylogenetic relationships of these three lineages, it is unclear if their diversification was driven by vicariance as well, or if they display a vicariance-like pattern. The clean, primary signal apparent among early turtles is secondarily obliterated throughout the Late Cretaceous to Recent by extensive dispersal of continental turtles and by multiple invasions of marine habitats.

  13. Notes on the status and incidental capture of marine turtles by the ...

    African Journals Online (AJOL)

    turtle by eight subsistence fishing communities in south west Madagascar. Data were collected through semi-structured interviews with fishers from each community over a period of three weeks during March 2002. Turtles were captured as part of a seasonal, multi-species fishery using spear guns and shark gill nets.

  14. Recovery trends in marine mammal populations.

    Directory of Open Access Journals (Sweden)

    Anna M Magera

    Full Text Available Marine mammals have greatly benefitted from a shift from resource exploitation towards conservation. Often lauded as symbols of conservation success, some marine mammal populations have shown remarkable recoveries after severe depletions. Others have remained at low abundance levels, continued to decline, or become extinct or extirpated. Here we provide a quantitative assessment of (1 publicly available population-level abundance data for marine mammals worldwide, (2 abundance trends and recovery status, and (3 historic population decline and recent recovery. We compiled 182 population abundance time series for 47 species and identified major data gaps. In order to compare across the largest possible set of time series with varying data quality, quantity and frequency, we considered an increase in population abundance as evidence of recovery. Using robust log-linear regression over three generations, we were able to classify abundance trends for 92 spatially non-overlapping populations as Significantly Increasing (42%, Significantly Decreasing (10%, Non-Significant Change (28% and Unknown (20%. Our results were comparable to IUCN classifications for equivalent species. Among different groupings, pinnipeds and other marine mammals (sirenians, polar bears and otters showed the highest proportion of recovering populations, likely benefiting from relatively fast life histories and nearshore habitats that provided visibility and protective management measures. Recovery was less frequent among cetaceans, but more common in coastal than offshore populations. For marine mammals with available historical abundance estimates (n = 47, larger historical population declines were associated with low or variable recent recoveries so far. Overall, our results show that many formerly depleted marine mammal populations are recovering. However, data-deficient populations and those with decreasing and non-significant trends require attention. In particular

  15. Use of Dry Tortugas National Park by threatened and endangered marine turtles: Chapter 5

    Science.gov (United States)

    Hart, Kristin M.; Fujisaki, Ikuko; Sartain-Iverson, Autumn R.

    2012-01-01

    Satellite and acoustic tracking results for green turtles, hawksbills, and loggerheads have revealed patterns in the proportion of time that tagged turtles spend within various zones of the park, including the RNA. Green turtles primarily utilize the shallow areas in the northern portion of the park. Hawksbills were mostly observed near Garden Key and loggerheads were observed throughout DRTO. Our record of turtle captures, recaptures, and sightings over the last 4 years serves as a baseline database for understanding the size classes of each species present in the park, as well as species-specific habitats in DRTO waters.

  16. Potential adverse health effects of persistent organic pollutants on sea turtles: evidences from a cross-sectional study on Cape Verde loggerhead sea turtles.

    Science.gov (United States)

    Camacho, María; Luzardo, Octavio P; Boada, Luis D; López Jurado, Luis F; Medina, María; Zumbado, Manuel; Orós, Jorge

    2013-08-01

    The Cape Verde nesting population of loggerhead sea turtles (Caretta caretta) is the third largest population of this species in the world. For conservation purposes, it is essential to determine how these reptiles respond to different types of anthropogenic contaminants. We evaluated the presence of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) in the plasma of adult nesting loggerheads from Boa Vista Island, Cape Verde, and studied the effects of the contaminants on the health status of the turtles using hematological and biochemical parameters. All turtles had detectable levels of non-dioxin like PCBs, whereas dioxin-like congeners (DL-PCBs) were detected in only 30% of the turtles. Packed cell volume decreased with higher concentrations of PCBs, which suggests that PCB exposure could result in anemia in sea turtles. In addition, a negative association between some OCPs and white blood cells (WBC) and thrombocyte estimate was noted. The DDT-metabolite, p,p'-DDE was negatively correlated with the Na/K ratio and, additionally, a number of correlations between certain PAHs and electrolyte balances were found, which suggest that exposure to these environmental contaminants could affect the kidneys and salt glands in sea turtles. Additionally, several correlations were observed between these environmental pollutants (OCPs and PAHs) and enzyme activity (GGT, ALT, ALP and amylase) and serum protein levels, pointing to the possibility that these contaminants could induce adverse metabolic effects in sea turtles. Our results indicate that anthropogenic pollutants are present in the Cape Verde loggerhead turtle nesting population and could exert negative effects on several health parameters. Because of the importance of this loggerhead nesting population, protective regulations at national and international levels as well as international action are necessary for assuring the conservation of this population

  17. Potential Applicability of Persuasive Communication to Light-Glow Reduction Efforts: A Case Study of Marine Turtle Conservation

    Science.gov (United States)

    Kamrowski, Ruth L.; Sutton, Stephen G.; Tobin, Renae C.; Hamann, Mark

    2014-09-01

    Artificial lighting along coastlines poses a significant threat to marine turtles due to the importance of light for their natural orientation at the nesting beach. Effective lighting management requires widespread support and participation, yet engaging the public with light reduction initiatives is difficult because benefits associated with artificial lighting are deeply entrenched within modern society. We present a case study from Queensland, Australia, where an active light-glow reduction campaign has been in place since 2008 to protect nesting turtles. Semi-structured questionnaires explored community beliefs about reducing light and evaluated the potential for using persuasive communication techniques based on the theory of planned behavior (TPB) to increase engagement with light reduction. Respondents ( n = 352) had moderate to strong intentions to reduce light. TPB variables explained a significant proportion of variance in intention (multiple regression: R 2 = 0.54-0.69, P benefits to the local economy" ( P Selective legislation and commitment strategies may be further useful strategies to increase community light reduction. As artificial light continues to gain attention as a pollutant, our methods and findings will be of interest to anyone needing to manage public artificial lighting.

  18. Population structure and the evolution of sexual size dimorphism and sex ratios in an insular population of Florida box turtles (Terrapene carolina bauri)

    Science.gov (United States)

    Dodd, C.K.

    1997-01-01

    Hypotheses in the chelonian literature suggest that in species with sexual size dimorphism, the smaller sex will mature at a smaller size and a younger age than the larger sex, sex ratios should be biased in favor of the earlier maturing sex, and deviations from a 1:1 sex ratio result from maturation of the smaller sex at a younger age. I tested these hypotheses using data collected from 1991 to 1995 on an insular (Egmont Key) population of Florida box turtles, Terrapene carolina bauri. Contrary to predictions, the earlier maturing sex (males) grew to larger sizes than the late maturing sex. Males were significantly larger than females in mean carapace length but not mean body mass. Sex ratios were not balanced, favoring the earlier maturing sex (1.6 males:1 female), but the sex-ratio imbalance did not result from faster maturation of the smaller sex. The imbalance in the sex ratio in Egmont Key's box turtles is not the result of sampling biases; it may result from nest placement. Size-class structure and sex ratios can provide valuable insights into the status and trends of populations of long-lived turtles.

  19. Biomarkers reveal sea turtles remained in oiled areas following the Deepwater Horizon oil spill

    Science.gov (United States)

    Vander Zanden, Hannah B.; Bolten, Alan B.; Tucker, Anton D.; Hart, Kristen M.; Lamont, Margaret M.; Fujisaki, Ikuko; Reich, Kimberly J.; Addison, David S.; Mansfield, Katherine L.; Phillips, Katrina F.; Pajuelo, Mariela; Bjorndal, Karen A.

    2016-01-01

    Assessments of large-scale disasters, such as the Deepwater Horizon oil spill, are problematic because while measurements of post-disturbance conditions are common, measurements of pre-disturbance baselines are only rarely available. Without adequate observations of pre-disaster organismal and environmental conditions, it is impossible to assess the impact of such catastrophes on animal populations and ecological communities. Here, we use long-term biological tissue records to provide pre-disaster data for a vulnerable marine organism. Keratin samples from the carapace of loggerhead sea turtles record the foraging history for up to 18 years, allowing us to evaluate the effect of the oil spill on sea turtle foraging patterns. Samples were collected from 76 satellite-tracked adult loggerheads in 2011 and 2012, approximately one to two years after the spill. Of the 10 individuals that foraged in areas exposed to surface oil, none demonstrated significant changes in foraging patterns post spill. The observed long-term fidelity to foraging sites indicates that loggerheads in the northern Gulf of Mexico likely remained in established foraging sites, regardless of the introduction of oil and chemical dispersants. More research is needed to address potential long-term health consequences to turtles in this region. Mobile marine organisms present challenges for researchers to monitor effects of environmental disasters, both spatially and temporally. We demonstrate that biological tissues can reveal long-term histories of animal behavior and provide critical pre-disaster baselines following an anthropogenic disturbance or natural disaster.

  20. Effects of glyphosate herbicide on the gastrointestinal microflora of Hawaiian green turtles (Chelonia mydas) Linnaeus.

    Science.gov (United States)

    Kittle, Ronald P; McDermid, Karla J; Muehlstein, Lisa; Balazs, George H

    2018-02-01

    In Hawaii, glyphosate-based herbicides frequently sprayed near shorelines may be affecting non-target marine species. Glyphosate inhibits aromatic amino acid biosynthesis (shikimate pathway), and is toxic to beneficial gut bacteria in cattle and chickens. Effects of glyphosate on gut bacteria in marine herbivorous turtles were assessed in vitro. When cultures of mixed bacterial communities from gastrointestinal tracts of freshly euthanized green turtles (Chelonia mydas), were exposed for 24h to six glyphosate concentrations (plus deionized water control), bacterial density was significantly lower at glyphosate concentrations≥2.2×10 -4 gL -1 (absorbance measured at 600nm wavelength). Using a modified Kirby-Bauer disk diffusion assay, the growth of four bacterial isolates (Pantoea, Proteus, Shigella, and Staphylococcus) was significantly inhibited by glyphosate concentrations≥1.76×10 -3 gL -1 . Reduced growth or lower survival of gut bacteria in green turtles exposed to glyphosate could have adverse effects on turtle digestion and overall health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Conservation genomics of the endangered Burmese roofed turtle.

    Science.gov (United States)

    Çilingir, F Gözde; Rheindt, Frank E; Garg, Kritika M; Platt, Kalyar; Platt, Steven G; Bickford, David P

    2017-12-01

    The Burmese roofed turtle (Batagur trivittata) is one of the world's most endangered turtles. Only one wild population remains in Myanmar. There are thought to be 12 breeding turtles in the wild. Conservation efforts for the species have raised >700 captive turtles since 2002, predominantly from eggs collected in the wild. We collected tissue samples from 445 individuals (approximately 40% of the turtles' remaining global population), applied double-digest restriction-site associated DNA sequencing (ddRAD-Seq), and obtained approximately 1500 unlinked genome-wide single nucleotide polymorphisms. Individuals fell into 5 distinct genetic clusters, 4 of which represented full-sib families. We inferred a low effective population size (≤10 individuals) but did not detect signs of severe inbreeding, possibly because the population bottleneck occurred recently. Two groups of 30 individuals from the captive pool that were the most genetically diverse were reintroduced to the wild, leading to an increase in the number of fertile eggs (n = 27) in the wild. Another 25 individuals, selected based on the same criteria, were transferred to the Singapore Zoo as an assurance colony. Our study demonstrates that the research-to-application gap in conservation can be bridged through application of cutting-edge genomic methods. © 2017 Society for Conservation Biology.

  2. Asynchronous emergence by loggerhead turtle (Caretta caretta) hatchlings.

    Science.gov (United States)

    Houghton, J D; Hays, G C

    2001-03-01

    For many decades it has been accepted that marine turtle hatchlings from the same nest generally emerge from the sand together. However, for loggerhead turtles (Caretta caretta) nesting on the Greek Island of Kefalonia, a more asynchronous pattern of emergence has been documented. By placing temperature loggers at the top and bottom of nests laid on Kefalonia during 1998, we examined whether this asynchronous emergence was related to the thermal conditions within nests. Pronounced thermal variation existed not only between, but also within, individual nests. These within-nest temperature differences were related to the patterns of hatchling emergence, with hatchlings from nests displaying large thermal ranges emerging over a longer time-scale than those characterised by more uniform temperatures. In many egg-laying animals, parental care of the offspring may continue while the eggs are incubating and also after they have hatched. Consequently, the importance of the nest site for determining incubation conditions may be reduced since the parents themselves may alter the local environment. By contrast, in marine turtles, parental care ceases once the eggs have been laid and the nest site covered. The positioning of the nest site, in both space and time, may therefore have profound effects for marine turtles by affecting, for example, the survival of the eggs and hatchlings as well as their sex (Janzen and Paukstis 1991). During incubation, sea turtle embryos grow from a few cells at oviposition to a self-sufficient organism at hatching some 50-80 days later (Ackerman 1997). After hatching, the young turtles dig up through the sand and emerge typically en masse at the surface 1-7 nights later, with a number of stragglers following over the next few nights (Christens 1990). This contrasts with the frequently observed pattern of hatching asynchrony in birds. It has been suggested that the cause of mass emergence in turtles is that eggs within a clutch are fertilised

  3. The aquatic turtle assemblage inhabiting a highly altered landscape in southeast Missouri

    Science.gov (United States)

    Glorioso, Brad M.; Vaughn, Allison J.; Waddle, J. Hardin

    2010-01-01

    Turtles are linked to energetic food webs as both consumers of plants and animals and prey for many species. Turtle biomass in freshwater systems can be an order of magnitude greater than that of endotherms. Therefore, declines in freshwater turtle populations can change energy transfer in freshwater systems. Here we report on a mark–recapture study at a lake and adjacent borrow pit in a relict tract of bottomland hardwood forest in the Mississippi River floodplain in southeast Missouri, which was designed to gather baseline data, including sex ratio, size structure, and population size, density, and biomass, for the freshwater turtle population. Using a variety of capture methods, we captured seven species of freshwater turtles (snapping turtle Chelydra serpentina; red-eared slider Trachemys scripta; southern painted turtle Chrysemys dorsalis; river cooter Pseudemys concinna; false map turtle Graptemys pseudogeographica; eastern musk turtle Sternotherus odoratus; spiny softshell Apalone spinifera) comprising four families (Chelydridae, Emydidae, Kinosternidae, Trinoychidae). With the exception of red-eared sliders, nearly all individuals captured were adults. Most turtles were captured by baited hoop-nets, and this was the only capture method that caught all seven species. The unbaited fyke net was very successful in the borrow pit, but only captured four of the seven species. Basking traps and deep-water crawfish nets had minimal success. Red-eared sliders had the greatest population estimate (2,675), density (205/ha), and biomass (178 kg/ha). Two species exhibited a sex-ratio bias: snapping turtles C. serpentina in favor of males, and spiny softshells A. spinifera in favor of females.

  4. Three novel herpesviruses of endangered Clemmys and Glyptemys turtles.

    Science.gov (United States)

    Ossiboff, Robert J; Raphael, Bonnie L; Ammazzalorso, Alyssa D; Seimon, Tracie A; Newton, Alisa L; Chang, Tylis Y; Zarate, Brian; Whitlock, Alison L; McAloose, Denise

    2015-01-01

    The rich diversity of the world's reptiles is at risk due to significant population declines of broad taxonomic and geographic scope. Significant factors attributed to these declines include habitat loss, pollution, unsustainable collection and infectious disease. To investigate the presence and significance of a potential pathogen on populations of critically endangered bog turtles (Glyptemys muhlenbergii) as well sympatric endangered wood (G. insculpta) and endangered spotted (Clemmys guttata) turtles in the northeastern United States, choanal and cloacal swabs collected from 230 turtles from 19 sites in 5 states were screened for herpesvirus by polymerase chain reaction. We found a high incidence of herpesvirus infection in bog turtles (51.5%; 105/204) and smaller numbers of positive wood (5) and spotted (1) turtles. Sequence and phylogenetic analysis revealed three previously uncharacterized alphaherpesviruses. Glyptemys herpesvirus 1 was the predominant herpesvirus detected and was found exclusively in bog turtles in all states sampled. Glyptemys herpesvirus 2 was found only in wood turtles. Emydid herpesvirus 2 was found in a small number of bog turtles and a single spotted turtle from one state. Based on these findings, Glyptemys herpesvirus 1 appears to be a common infection in the study population, whereas Glyptemys herpesvirus 2 and Emydid herpesvirus 2 were not as frequently detected. Emydid herpesvirus 2 was the only virus detected in more than one species. Herpesviruses are most often associated with subclinical or mild infections in their natural hosts, and no sampled turtles showed overt signs of disease at sampling. However, infection of host-adapted viruses in closely related species can result in significant disease. The pathogenic potential of these viruses, particularly Emydid herpesvirus 2, in sympatric chelonians warrants additional study in order to better understand the relationship of these viruses with their endangered hosts.

  5. Three Novel Herpesviruses of Endangered Clemmys and Glyptemys Turtles

    Science.gov (United States)

    Ossiboff, Robert J.; Raphael, Bonnie L.; Ammazzalorso, Alyssa D.; Seimon, Tracie A.; Newton, Alisa L.; Chang, Tylis Y.; Zarate, Brian; Whitlock, Alison L.; McAloose, Denise

    2015-01-01

    The rich diversity of the world’s reptiles is at risk due to significant population declines of broad taxonomic and geographic scope. Significant factors attributed to these declines include habitat loss, pollution, unsustainable collection and infectious disease. To investigate the presence and significance of a potential pathogen on populations of critically endangered bog turtles (Glyptemys muhlenbergii) as well sympatric endangered wood (G. insculpta) and endangered spotted (Clemmys guttata) turtles in the northeastern United States, choanal and cloacal swabs collected from 230 turtles from 19 sites in 5 states were screened for herpesvirus by polymerase chain reaction. We found a high incidence of herpesvirus infection in bog turtles (51.5%; 105/204) and smaller numbers of positive wood (5) and spotted (1) turtles. Sequence and phylogenetic analysis revealed three previously uncharacterized alphaherpesviruses. Glyptemys herpesvirus 1 was the predominant herpesvirus detected and was found exclusively in bog turtles in all states sampled. Glyptemys herpesvirus 2 was found only in wood turtles. Emydid herpesvirus 2 was found in a small number of bog turtles and a single spotted turtle from one state. Based on these findings, Glyptemys herpesvirus 1 appears to be a common infection in the study population, whereas Glyptemys herpesvirus 2 and Emydid herpesvirus 2 were not as frequently detected. Emydid herpesvirus 2 was the only virus detected in more than one species. Herpesviruses are most often associated with subclinical or mild infections in their natural hosts, and no sampled turtles showed overt signs of disease at sampling. However, infection of host-adapted viruses in closely related species can result in significant disease. The pathogenic potential of these viruses, particularly Emydid herpesvirus 2, in sympatric chelonians warrants additional study in order to better understand the relationship of these viruses with their endangered hosts. PMID

  6. Three novel herpesviruses of endangered Clemmys and Glyptemys turtles.

    Directory of Open Access Journals (Sweden)

    Robert J Ossiboff

    Full Text Available The rich diversity of the world's reptiles is at risk due to significant population declines of broad taxonomic and geographic scope. Significant factors attributed to these declines include habitat loss, pollution, unsustainable collection and infectious disease. To investigate the presence and significance of a potential pathogen on populations of critically endangered bog turtles (Glyptemys muhlenbergii as well sympatric endangered wood (G. insculpta and endangered spotted (Clemmys guttata turtles in the northeastern United States, choanal and cloacal swabs collected from 230 turtles from 19 sites in 5 states were screened for herpesvirus by polymerase chain reaction. We found a high incidence of herpesvirus infection in bog turtles (51.5%; 105/204 and smaller numbers of positive wood (5 and spotted (1 turtles. Sequence and phylogenetic analysis revealed three previously uncharacterized alphaherpesviruses. Glyptemys herpesvirus 1 was the predominant herpesvirus detected and was found exclusively in bog turtles in all states sampled. Glyptemys herpesvirus 2 was found only in wood turtles. Emydid herpesvirus 2 was found in a small number of bog turtles and a single spotted turtle from one state. Based on these findings, Glyptemys herpesvirus 1 appears to be a common infection in the study population, whereas Glyptemys herpesvirus 2 and Emydid herpesvirus 2 were not as frequently detected. Emydid herpesvirus 2 was the only virus detected in more than one species. Herpesviruses are most often associated with subclinical or mild infections in their natural hosts, and no sampled turtles showed overt signs of disease at sampling. However, infection of host-adapted viruses in closely related species can result in significant disease. The pathogenic potential of these viruses, particularly Emydid herpesvirus 2, in sympatric chelonians warrants additional study in order to better understand the relationship of these viruses with their endangered hosts.

  7. An Analysis of Sea Turtle Demographics along Maryland Shores, 1990-2015

    Science.gov (United States)

    Rhoades, C.; Driscoll, C.; Weschler, A.; Crawford, M.

    2016-02-01

    The Maryland Department of Natural Resources Marine Mammal and Sea Turtle Stranding Program was established in the fall of 1990, and responded to their first documented sea turtle stranding in the summer of 1991. Over this twenty-five year period, 575 dead strandings of sea turtles have been documented. This research project analyzes all sea turtle case files from the initiation of this program for the following parameters in order to associate stranding trends; species, location (Atlantic Ocean v. Chesapeake Bay), seasonality, length, relative age, condition code, and sex. Further understanding these protected species will assist in conserving their coastal ecosystem and securing these species a sustainable future. Along with the parameters previously discussed, this study will also consider the factors contributing to the animal's death, if determined. These potential causes incorporate natural causes such as disease, and also detail instances of human interaction, including: dredge takes, commercial or recreational fishing interaction, power plant entrainment, propeller and boat strikes. A total of approximately 17% of the dead stranded sea turtles Maryland Department of Natural Resources responded to were found to have some proven aspect of human interaction. Lastly, in order to further investigate for human interaction stomach contents were analyzed for plastics or other forms of marine debris. This project will contribute to MD DNR and NOAA's mission, goals, and objectives by further understanding these protected species in order to conserve their coastal ecosystem and secure these species a sustainable future.

  8. 77 FR 27411 - Sea Turtle Conservation; Shrimp Trawling Requirements

    Science.gov (United States)

    2012-05-10

    ... imbricata) turtles are listed as endangered. The loggerhead (Caretta caretta; Northwest Atlantic distinct... populations of green turtles in Florida and on the Pacific coast of Mexico, which are listed as endangered... regulations (50 CFR 223.206) are followed. The same conservation measures also apply to endangered sea turtles...

  9. Challenges in Evaluating the Severity of Fibropapillomatosis: A Proposal for Objective Index and Score System for Green Sea Turtles (Chelonia mydas) in Brazil.

    Science.gov (United States)

    Rossi, Silmara; Sánchez-Sarmiento, Angélica María; Vanstreels, Ralph Eric Thijl; Dos Santos, Robson Guimarães; Prioste, Fabiola Eloisa Setim; Gattamorta, Marco Aurélio; Grisi-Filho, José Henrique Hildebrand; Matushima, Eliana Reiko

    2016-01-01

    Fibropapillomatosis (FP) is a neoplastic disease that affects marine turtles worldwide, especially green sea turtles (Chelonia mydas). FP tumors can develop on the body surface of marine turtles and also internally in the oral cavity and viscera. Depending on their quantity, size and anatomical distribution, these tumors can interfere with hydrodynamics and the ability to feed, hence scoring systems have been proposed in an attempt to quantify the clinical manifestation of FP. In order to establish a new scoring system adapted to geographic regions, we examined 214 juvenile green sea turtles with FP caught or rescued at Brazilian feeding areas, counted their 7466 tumors and classified them in relation to their size and anatomical distribution. The patterns in quantity, size and distribution of tumors revealed interesting aspects in the clinical manifestation of FP in specimens studied in Brazil, and that FP scoring systems developed for other areas might not perform adequately when applied to sea turtles on the Southwest Atlantic Ocean. We therefore propose a novel method to evaluate the clinical manifestation of FP: fibropapillomatosis index (FPI) that provides the Southwest Atlantic fibropapillomatosis score (FPSSWA). In combination, these indexing and scoring systems allow for a more objective, rapid and detailed evaluation of the severity of FP in green sea turtles. While primarily designed for the clinical manifestation of FP currently witnessed in our dataset, this index and the score system can be adapted for other areas and compare the characteristics of the disease across regions. In conclusion, scoring systems to classify the severity of FP can assist our understanding on the environmental factors that modulate its development and its impacts on the individual and population health of green sea turtles.

  10. Green sea turtle age, growth, population characteristics

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Morphology, sex ratio, body condition, disease status, age structure, and growth patterns were characterized for 448 green sea turtles cold stunned in St. Joseph...

  11. Chemical Contaminants Found in the Gastrointestinal Tract of Loggerhead Sea Turtles (Caretta caretta)

    Science.gov (United States)

    Athey, S. N.; Seaton, P. J.; Mead, R. N.

    2016-02-01

    Plastic is becoming increasingly more abundant in the marine environment. Plastic ingestion has been shown to be a source of exposure to a variety of harmful compounds, such as polycyclic aromatic hydrocarbons (PAHs), bisphenol A (BPA), and phthalates, which are known for their negative physiological effects on the endocrine system as well as their ability to adsorb and leach from plastic into the bodies of marine organisms. The physiological effects of these compounds on loggerhead sea turtles (Caretta caretta) still remain unknown. This study investigated the presence of toxicants on marine plastic samples collected from Bermuda, the Sargasso Sea, and the North Atlantic Ocean. Gas chromatography/triple quadruple mass spectrometry (GC/MS) analysis showed PAHs were present on many plastic debris samples. Plastic additives such as phthalates and (BPA) were also found. ΣPAH concentrations for anthracene, chrysene, benzo[b]fluoranthene, and benzo[k]fluoranthene for 2013 environmental plastic samples averaged 26.7ng/g of plastic. This study also examined the presence of these compounds in fluids from the stomach, small intestine, and large intestine from two adult loggerhead turtles. GC/MS analysis also showed the presence of BPA and phthalates on plastic samples, as well as in two out of the six gastrointestinal fluids samples. Average ΣPAH concentration for GI fluids for the loggerheads in the study was 58.7 ng/mL. This study showed plastic could be a significant source of PAHs in sea turtles and the first to detect PAHs in sea turtle GI fluid. Loggerhead sea turtles are a long living species and could accumulate high concentrations of these endocrine-disrupting chemicals throughout their lifetime.

  12. Movement patterns for a critically endangered species, the leatherback turtle (Dermochelys coriacea, linked to foraging success and population status.

    Directory of Open Access Journals (Sweden)

    Helen Bailey

    Full Text Available Foraging success for pelagic vertebrates may be revealed by horizontal and vertical movement patterns. We show markedly different patterns for leatherback turtles in the North Atlantic versus Eastern Pacific, which feed on gelatinous zooplankton that are only occasionally found in high densities. In the Atlantic, travel speed was characterized by two modes, indicative of high foraging success at low speeds (<15 km d(-1 and transit at high speeds (20-45 km d(-1. Only a single mode was evident in the Pacific, which occurred at speeds of 21 km d(-1 indicative of transit. The mean dive depth was more variable in relation to latitude but closer to the mean annual depth of the thermocline and nutricline for North Atlantic than Eastern Pacific turtles. The most parsimonious explanation for these findings is that Eastern Pacific turtles rarely achieve high foraging success. This is the first support for foraging behaviour differences between populations of this critically endangered species and suggests that longer periods searching for prey may be hindering population recovery in the Pacific while aiding population maintenance in the Atlantic.

  13. Shifting the life-history paradigm: discovery of novel habitat use by hawksbill turtles

    Science.gov (United States)

    Gaos, Alexander R.; Lewison, Rebecca L.; Yañez, Ingrid L.; Wallace, Bryan P.; Liles, Michael J.; Nichols, Wallace J.; Baquero, Andres; Hasbún, Carlos R.; Vasquez, Mauricio; Urteaga, José; Seminoff, Jeffrey A.

    2012-01-01

    Adult hawksbill turtles (Eretmochelys imbricata) are typically described as open-coast, coral reef and hard substrate dwellers. Here, we report new satellite tracking data on female hawksbills from several countries in the eastern Pacific that revealed previously undocumented behaviour for adults of the species. In contrast to patterns of habitat use exhibited by their Caribbean and Indo-Pacific counterparts, eastern Pacific hawksbills generally occupied inshore estuaries, wherein they had strong associations with mangrove saltwater forests. The use of inshore habitats and affinities with mangrove saltwater forests presents a previously unknown life-history paradigm for adult hawksbill turtles and suggests a potentially unique evolutionary trajectory for the species. Our findings highlight the variability in life-history strategies that marine turtles and other wide-ranging marine wildlife may exhibit among ocean regions, and the importance of understanding such disparities from an ecological and management perspective. PMID:21880620

  14. Hatchlings of the Marine Turtle Lepidochelys olivacea Display Signs of Prenatal Stress at Emergence after Being Incubated in Man-Made Nests: A Preliminary Report

    Directory of Open Access Journals (Sweden)

    Ma. A. Herrera-Vargas

    2017-12-01

    Full Text Available Egg translocation and incubation in man-made nests (MMN are common conservation practices through marine turtle hatcheries worldwide. These measures have been associated with reduced hatching rates, altered hatchling sex ratio, fetal dysmorphic anatomical features, and feeble hatchlings health. Previous studies have shown that MMN and natural nests (NN provide different incubatory conditions. Therefore, incubatory challenges imposed by MMN conditions on fetal development could induce stress responses affecting hatchlings functional morphology later on life. There is no evidence of incubatory stress associated with conservation measures in turtle fetuses or hatchlings. Thus, in this paper we tested the hypothesis that MMN incubation exposes turtle fetuses to stressing conditions. Given that the hypothalamic-pituitary-interrenal axis begins functioning by day 11 of incubation in reptiles, our experiments explored the effects of incubatory conditions, rather than those associated with translocation, on fetal stress responses. We showed that Lepidochelys olivacea hatchlings incubated in MMN displayed reduced body weight, hypertrophic inter-renal glands, testicular hypotrophy and hypotrophic dorso-medial cortical pyramidal neurons, when compared with hatchlings emerging from NN. Furthermore, MMN hatchlings had higher serum levels of corticosterone at emergence, and displayed an attenuated acute stress response after traversing the beach. Therefore, the relocation of nests to protect them could negatively impact the health and survival of sea turtles. Thus, this action should only be undertaken when no alternative is available.

  15. Global Analysis of Anthropogenic Debris Ingestion by Sea Turtles

    Science.gov (United States)

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-01-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. Análisis Global de la Ingesta de Residuos Antropogénicos por Tortugas Marinas La ingesta de residuos marinos puede tener efectos letales y subletales sobre las tortugas marinas y otros animales. Aunque hay investigadores que han reportado la ingesta de residuos antropogénicos por tortugas marinas y la incidencia de la ingesta de residuos ha incrementado con el tiempo, no ha habido una síntesis global del fenómeno desde 1985. Por esto analizamos 37 estudios publicados, desde

  16. Removal of nonnative slider turtles (Trachemys scripta) and effects on native Sonora mud turtles (Kinosternon sonoriense) at Montezuma Well, Yavapai County, Arizona

    Science.gov (United States)

    Drost, Charles A.; Lovich, Jeffrey E.; Madrak, Sheila V.; Monatesti, A.J.

    2011-01-01

    The National Park Service (NPS) estimates that 234 national parks contain nonnative, invasive animal species that are of management concern (National Park Service, 2004). Understanding and controlling invasive species is thus an important priority within the NPS (National Park Service, 1996). The slider turtle (Trachemys scripta) is one such invasive species. Native to the Southeastern United States (Ernst and Lovich, 2009), as well as Mexico, Central America, and portions of South America (Ernst and Barbour, 1989), the slider turtle has become established throughout the continental United States and in other locations around the world (Burke and others, 2000). Slider turtle introductions have been suspected to be a threat to native turtles (Holland 1994; da Silva and Blasco, 1995), however, there has not been serious study of their effects until recently. Cadi and Joly (2003) found that slider turtles outcompeted European pond turtles (Emys orbicularis) for preferred basking sites under controlled experimental conditions, demonstrating for the first time direct competition for resources between a native and an exotic turtle species. Similarly, Spinks and others (2003) suggested that competition for basking sites between slider turtles and Pacific pond turtles (Actinemys marmorata) was partly responsible for the decline of Pacific pond turtles observed at their study site in California. They concluded that the impact of introduced slider turtles was 'almost certainly negative' for the western pond turtle. In the most recent critical study to assess the effects of introduced slider turtles on native turtles, Cadi and Joly (2004) demonstrated that European pond turtles that were kept under experimentally controlled conditions with slider turtles lost body weight and exhibited higher rates of mortality than in control groups of turtles comprised of the same species, demonstrating potential population-level effects on native species. Slider turtles are not native to

  17. Reproductive biology and genetic diversity of the green turtle (Chelonia mydas) in Vamizi island, Mozambique.

    Science.gov (United States)

    Anastácio, Rita; Santos, Camila; Lopes, Cardoso; Moreira, Helena; Souto, Luis; Ferrão, Jorge; Garnier, Julie; Pereira, Mário J

    2014-01-01

    Vamizi, an Island located in the Western Indian Ocean, is visited by a small and not fully characterized green turtle (Chelonia mydas (L.)) population. This population is threatened by natural hazards and several human activities, which are used to identify conservation priorities for marine turtles. It was our aim to contribute to the knowledge of marine turtles that nest in Vamizi, with respect to its regional management, and to an area that may possibly be included on the UNESCO World Heritage List due to its potential Outstanding Universal Value. Here, we evaluate the nesting parameters (incubation period, clutch size, hatching and emergence successes rates) and patterns over an 8-year (2003 - 2010) conservation program. We also present the results of genetic diversity based on the analysis of approximately an 850 pb fragment of the mitochondrial DNA control region. We found that Vamizi beaches host a small number of nesting females, approximately 52 per year, but these have shown a reduction in their length. High hatching success (88.5 ± SD 17.2%, N = 649), emergence success rates (84.5 ± SD 20.4%, N = 649) were observed, and genetic diversity (N = 135), with 11 haplotypes found (7 new). It was also observed, in the later years of this study, a reduction in the incubation period, a dislocation of the nesting peak activity and an increase in the number of flooded nests and an increase of the number of nests in areas with lower human activity. Some resilience and behavioral plasticity seems to occur regarding human territory occupancy and climate changes. However, regardless of the results, aspects like what seems to be the reduction of some cohorts, the number of flooded nests and the diminishing of the incubation period (East and South facing beaches), show that conservation efforts have to be improved.

  18. The developmental biogeography of hawksbill sea turtles in the North Pacific.

    Science.gov (United States)

    Van Houtan, Kyle S; Francke, Devon L; Alessi, Sarah; Jones, T Todd; Martin, Summer L; Kurpita, Lauren; King, Cheryl S; Baird, Robin W

    2016-04-01

    High seas oceanic ecosystems are considered important habitat for juvenile sea turtles, yet much remains cryptic about this important life-history period. Recent progress on climate and fishery impacts in these so-called lost years is promising, but the developmental biogeography of hawksbill sea turtles (Eretmochelys imbricata) has not been widely described in the Pacific Ocean. This knowledge gap limits the effectiveness of conservation management for this globally endangered species. We address this with 30 years of stranding observations, 20 years of bycatch records, and recent simulations of natal dispersal trajectories in the Hawaiian Archipelago. We synthesize the analyses of these data in the context of direct empirical observations, anecdotal sightings, and historical commercial harvests from the insular Pacific. We find hawksbills 0-4 years of age, measuring 8-34 cm straight carapace length, are found predominantly in the coastal pelagic waters of Hawaii. Unlike other species, we find no direct evidence of a prolonged presence in oceanic habitats, yet satellite tracks of passive drifters (simulating natal dispersal) and our small sample sizes suggest that an oceanic phase for hawksbills cannot be dismissed. Importantly, despite over 600 million hooks deployed and nearly 6000 turtle interactions, longline fisheries have never recorded a single hawksbill take. We address whether the patterns we observe are due to population size and gear selectivity. Although most sea turtle species demonstrate clear patterns of oceanic development, hawksbills in the North Pacific may by contrast occupy a variety of ecosystems including coastal pelagic waters and shallow reefs in remote atolls. This focuses attention on hazards in these ecosystems - entanglement and ingestion of marine debris - and perhaps away from longline bycatch and decadal climate regimes that affect sea turtle development in oceanic regions.

  19. Blood gases, biochemistry, and hematology of Galapagos green turtles (Chelonia mydas.

    Directory of Open Access Journals (Sweden)

    Gregory A Lewbart

    Full Text Available The green turtle, Chelonia mydas, is an endangered marine chelonian with a circum-global distribution. Reference blood parameter intervals have been published for some chelonian species, but baseline hematology, biochemical, and blood gas values are lacking from the Galapagos sea turtles. Analyses were done on blood samples drawn from 28 green turtles captured in two foraging locations on San Cristóbal Island (14 from each site. Of these turtles, 20 were immature and of unknown sex; the other eight were males (five mature, three immature. A portable blood analyzer (iSTAT was used to obtain near immediate field results for pH, lactate, pO2, pCO2, HCO3-, Hct, Hb, Na, K, iCa, and Glu. Parameter values affected by temperature were corrected in two ways: (1 with standard formulas; and (2 with auto-corrections made by the iSTAT. The two methods yielded clinically equivalent results. Standard laboratory hematology techniques were employed for the red and white blood cell counts and the hematocrit determination, which was also compared to the hematocrit values generated by the iSTAT. Of all blood analytes, only lactate concentrations were positively correlated with body size. All other values showed no significant difference between the two sample locations nor were they correlated with body size or internal temperature. For hematocrit count, the iSTAT blood analyzer yielded results indistinguishable from those obtained with high-speed centrifugation. The values reported in this study provide baseline data that may be useful in comparisons among populations and in detecting changes in health status among Galapagos sea turtles. The findings might also be helpful in future efforts to demonstrate associations between specific biochemical parameters and disease.

  20. CHARACTERIZING THE 25-HYDROXYVITAMIN D STATUS OF TWO POPULATIONS OF FREE-RANGING EASTERN BOX TURTLES (TERRAPENE CAROLINA CAROLINA).

    Science.gov (United States)

    Watson, Megan K; Byrd, John; Phillips, Christopher A; Allender, Matthew C

    2017-09-01

    Ultraviolet B radiation is recommended for captive reptiles to stimulate production of adequate levels of vitamin D; however, little is known regarding the vitamin D status in many free-ranging populations. Current reference ranges for vitamin D in eastern box turtles have not yet been established. Sixty free-ranging eastern box turtles (Terrapene carolina carolina) from two well-studied populations in Illinois (n = 24) and Tennessee (n = 36) were assayed for plasma vitamin D concentration in 2014. There were no significant differences in concentrations between individuals in Illinois (mean: 117.5 nM/L) and Tennessee (mean: 98.7 nM/L) (P = 0.129) populations. Similarly, there were no differences in concentrations based on age class (P = 0.533) or sex (P = 0.532). There was a significant correlation between UV at the time of capture and vitamin D concentrations (R = 0.301, P = 0.030). Vitamin D was not correlated with total calcium (R = 0.018, P = 0.89) or Ca : P ratio (R = 0.025, P = 0.85). Diseases in captive individuals, including secondary nutritional hyperparathyroidism, may commonly be associated with vitamin D deficiencies, and clinical intervention relies on reference data. Vitamin D supplementation may be recommended if animals are deemed to be deficient. Data obtained can be used to improve the care of captive and free-ranging turtles by providing reference ranges, as well as better characterize the health of wild populations.

  1. Turtle soup, Prohibition, and the population genetic structure of Diamondback Terrapins (Malaclemys terrapin).

    Science.gov (United States)

    Converse, Paul E; Kuchta, Shawn R; Hauswaldt, J Susanne; Roosenburg, Willem M

    2017-01-01

    Diamondback terrapins (Malaclemys terrapin) were a popular food item in early twentieth century America, and were consumed in soup with sherry. Intense market demand for terrapin meat resulted in population declines, notably along the Atlantic seaboard. Efforts to supply terrapins to markets resulted in translocation events, as individuals were moved about to stock terrapin farms. However, in 1920 the market for turtle soup buckled with the enactment of the eighteenth amendment to the United States' Constitution-which initiated the prohibition of alcoholic drinks-and many terrapin fisheries dumped their stocks into local waters. We used microsatellite data to show that patterns of genetic diversity along the terrapin's coastal range are consistent with historical accounts of translocation and cultivation activities. We identified possible instances of human-mediated dispersal by estimating gene flow over historical and contemporary timescales, Bayesian model testing, and bottleneck tests. We recovered six genotypic clusters along the Gulf and Atlantic coasts with varying degrees of admixture, including increased contemporary gene flow from Texas to South Carolina, from North Carolina to Maryland, and from North Carolina to New York. In addition, Bayesian models incorporating translocation events outperformed stepping-stone models. Finally, we were unable to detect population bottlenecks, possibly due to translocation reintroducing genetic diversity into bottlenecked populations. Our data suggest that current patterns of genetic diversity in the terrapin were altered by the demand for turtle soup followed by the enactment of alcohol prohibition. In addition, our study shows that population genetic tools can elucidate metapopulation dynamics in taxa with complex genetic histories impacted by anthropogenic activities.

  2. Population trends and survival of nesting green sea turtles Chelonia mydas on Aves Island, Venezuela

    Science.gov (United States)

    Garcia-Cruz, Marco A.; Lampo, Margarita; Peñaloza, Claudia L.; Kendall, William L.; Solé, Genaro; Rodriguez-Clark, Kathryn M.

    2015-01-01

    Long-term demographic data are valuable for assessing the effect of anthropogenic impacts on endangered species and evaluating recovery programs. Using a 2-state open robust design model, we analyzed mark-recapture data from green turtles Chelonia mydas sighted between 1979 and 2009 on Aves Island, Venezuela, a rookery heavily impacted by human activities before it was declared a wildlife refuge in 1972. Based on the encounter histories of 7689 nesting females, we estimated the abundance, annual survival, and remigration intervals for this population. Female survival varied from 0.14-0.91, with a mean of 0.79, which is low compared to survival of other populations from the Caribbean (mean = 0.84) and Australia (mean = 0.95), even though we partially corrected for tag loss, which is known to negatively bias survival estimates. This supports prior suggestions that Caribbean populations in general, and the Aves Island population in particular, may be more strongly impacted than populations elsewhere. It is likely that nesters from this rookery are extracted while foraging in remote feeding grounds where hunting still occurs. Despite its relatively low survival, the nesting population at Aves Island increased during the past 30 years from approx. 500 to >1000 nesting females in 2009. Thus, this population, like others in the Caribbean and the Atlantic, seems to be slowly recovering following protective management. Although these findings support the importance of long-term conservation programs aimed at protecting nesting grounds, they also highlight the need to extend management actions to foraging grounds where human activities may still impact green turtle populations.

  3. Palaeoecology of triassic stem turtles sheds new light on turtle origins.

    OpenAIRE

    Joyce, Walter G.; Gauthier, Jacques A.

    2004-01-01

    Competing hypotheses of early turtle evolution contrast sharply in implying very different ecological settings-aquatic versus terrestrial-for the origin of turtles. We investigate the palaeoecology of extinct turtles by first demonstrating that the forelimbs of extant turtles faithfully reflect habitat preferences, with short-handed turtles being terrestrial and long-handed turtles being aquatic. We apply this metric to the two successive outgroups to all living turtles with forelimbs preserv...

  4. North American box turtles: A natural history

    Science.gov (United States)

    Dodd, C. Kenneth

    2002-01-01

    Once a familiar backyard visitor in many parts of the United States and Mexico, the box turtle is losing the battle against extinction. In North American Box Turtles, C. Kenneth Dodd, Jr., has written the first book-length natural history of the twelve species and subspecies of this endangered animal. This volume includes comprehensive information on the species’ evolution, behavior, courtship and reproduction, habitat use, diet, population structure, systematics, and disease. Special features include color photos of all species, subspecies, and their habitats; a simple identification guide to both living and fossil species; and a summary of information on fossil Terrapene and Native uses of box turtles. End-of-chapter sections highlight future research directions, including the need for long-term monitoring and observation of box turtles within their natural habitat and conservation applications. A glossary and a bibliography of literature on box turtles accompany the text.

  5. Turtle bycatch in the pelagic longline fishery off southern Africa ...

    African Journals Online (AJOL)

    Capture by pelagic longline fisheries has been identified as a key threat to turtle populations. This study is the first assessment of turtle bycatch in the South African pelagic longline fishery for tunas Thunnus spp. and swordfish Xiphias gladius. A total of 181 turtles was caught on observed sets between 1998 and 2005, at a ...

  6. Conservation Status of Marine Biodiversity in Oceania: An Analysis of Marine Species on the IUCN Red List of Threatened Species

    Directory of Open Access Journals (Sweden)

    Beth A. Polidoro

    2011-01-01

    Full Text Available Given the economic and cultural dependence on the marine environment in Oceania and a rapidly expanding human population, many marine species populations are in decline and may be vulnerable to extinction from a number of local and regional threats. IUCN Red List assessments, a widely used system for quantifying threats to species and assessing species extinction risk, have been completed for 1190 marine species in Oceania to date, including all known species of corals, mangroves, seagrasses, sea snakes, marine mammals, sea birds, sea turtles, sharks, and rays present in Oceania, plus all species in five important perciform fish groups. Many of the species in these groups are threatened by the modification or destruction of coastal habitats, overfishing from direct or indirect exploitation, pollution, and other ecological or environmental changes associated with climate change. Spatial analyses of threatened species highlight priority areas for both site- and species-specific conservation action. Although increased knowledge and use of newly available IUCN Red List assessments for marine species can greatly improve conservation priorities for marine species in Oceania, many important fish groups are still in urgent need of assessment.

  7. In vitro cultivation of Cymatocarpus solearis (Brachycoeliidae) metacercariae to obtain the adult stage without the marine turtle definitive host.

    Science.gov (United States)

    Grano-Maldonado, Mayra; Alvarez-Cadena, José

    2010-03-01

    In vitro cultivation of trematodes would assist studies on the basic biology of the parasites and their hosts. This is the first study to use the yolk of unfertilized chicken eggs as a simple and successful method of ovocultivation and the first time to obtain the adult-stage of the trematode Cymatocarpus solearis Braun, 1899 (Digenea: Brachycoeliidae). Chicken eggs were inoculated with metacercariae from the muscle of the spiny lobster, Panulirus argus (Latreille, 1804). The metacercariae were excysted and incubated for 576 hr (24 days) at 38 to obtain the adult stage. Eggs in utero were normal in shape and light brown color. The metacercariae developed into mature parasites that have been identified as the adult-stage found in marine turtles. The adult lobsters collected in Quintana Roo State, Mexico, showed the prevalence of 49.4% and the mean intensity of 26.0 per host (n = 87). A statistical study was performed to determine that no parasitic preference was detected for male versus female parasitized lobsters. Morphometric measurements of the adult-stage of C. solearis obtained in our study have been deposited in the National Helminths Collection of the Institute of Biology of the National Autonomous University of Mexico. This study is significant because it is the first time that a digenean of the family Brachycoeliidae has been demonstrated to develop in vitro from metacercariae into adults capable of producing eggs using the yolk of unfertilized chicken eggs. Secondly, this technique allows to obtain the adult stage of C. solearis without the presence of its marine turtle host, allows us to describe the mature parasites, and thus contribute to our understanding of the biology of C. solearis.

  8. Anatomical Evidence for Intracardiac Blood Shunting in Marine Turtles

    African Journals Online (AJOL)

    ... suggests that right to left intra-cardiac blood shunts may be a feature of diving in sea turtles; the sphincter providing a mechanism for the control of blood flow through the heart. The comparative anatomy of the pulmonary arteries of selected terrestrial reptiles suggests that a similar mechanism exists in non-diving species.

  9. Navigational challenges in the oceanic migrations of leatherback sea turtles

    Science.gov (United States)

    Sale, Alessandro; Luschi, Paolo

    2009-01-01

    The open-sea movements of marine animals are affected by the drifting action of currents that, if not compensated for, can produce non-negligible deviations from the correct route towards a given target. Marine turtles are paradigmatic skilful oceanic navigators that are able to reach remote goals at the end of long-distance migrations, apparently overcoming current drift effects. Particularly relevant is the case of leatherback turtles (Dermochelys coriacea), which spend entire years in the ocean, wandering in search of planktonic prey. Recent analyses have revealed how the movements of satellite-tracked leatherbacks in the Indian, Atlantic and Pacific Oceans are strongly dependent on the oceanic currents, up to the point that turtles are often passively transported over long distances. However, leatherbacks are known to return to specific areas to breed every 2–3 years, thus finding their way back home after long periods in the oceanic environment. Here we examine the navigational consequences of the leatherbacks' close association with currents and discuss how the combined reliance on mechanisms of map-based navigation and local orientation cues close to the target may allow leatherbacks to accomplish the difficult task of returning to specific sites after years spent wandering in a moving medium. PMID:19625321

  10. Experimental degradation of polymer shopping bags (standard and degradable plastic, and biodegradable) in the gastrointestinal fluids of sea turtles.

    Science.gov (United States)

    Müller, Christin; Townsend, Kathy; Matschullat, Jörg

    2012-02-01

    The persistence of marine debris such as discarded polymer bags has become globally an increasing hazard to marine life. To date, over 177 marine species have been recorded to ingest man-made polymers that cause life-threatening complications such as gut impaction and perforation. This study set out to test the decay characteristics of three common types of shopping bag polymers in sea turtle gastrointestinal fluids (GIF): standard and degradable plastic, and biodegradable. Fluids were obtained from the stomachs, small intestines and large intestines of a freshly dead Green turtle (Chelonia mydas) and a Loggerhead turtle (Caretta caretta). Controls were carried out with salt and freshwater. The degradation rate was measured over 49 days, based on mass loss. Degradation rates of the standard and the degradable plastic bags after 49 days across all treatments and controls were negligible. The biodegradable bags showed mass losses between 3 and 9%. This was a much slower rate than reported by the manufacturers in an industrial composting situation (100% in 49 days). The GIF of the herbivorous Green turtle showed an increased capacity to break down the biodegradable polymer relative to the carnivorous Loggerhead, but at a much lower rate than digestion of natural vegetative matter. While the breakdown rate of biodegradable polymers in the intestinal fluids of sea turtles is greater than standard and degradable plastics, it is proposed that this is not rapid enough to prevent morbidity. Further study is recommended to investigate the speed at which biodegradable polymers decompose outside of industrial composting situations, and their durability in marine and freshwater systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Dispersion of radioactively contamination turtles on the SRP: research and reconnaissance

    International Nuclear Information System (INIS)

    Lamb, T.; Taylor, B.; Gibbons, J.W.

    1986-01-01

    Although SREL continued long-term studies on turtles during 1986, much research effort centered on contaminated turtle dispersion. The problem of radionuclide contamination in turtles and their dispersal through aquatic sites on and off the Savannah River Plant (SRP) was approached along three fronts. The first involved site reconnaissance, where aquatic habitats, adjacent to contaminated areas on the SRP were identified and surveyed for contaminated turtles. The second approach involved the development of a dispersal model. Third, mitochondrial DNA analysis was conducted to assess genetic differentiation between turtle populations inhabiting either side of the Savannah River near SRP. 1 figures, 2 tables

  12. Genetic structure of Florida green turtle rookeries as indicated by mitochondrial DNA control region sequences

    Science.gov (United States)

    Shamblin, Brian M.; Bagley, Dean A.; Ehrhart, Llewellyn M.; Desjardin, Nicole A.; Martin, R. Erik; Hart, Kristen M.; Naro-Maciel, Eugenia; Rusenko, Kirt; Stiner, John C.; Sobel, Debra; Johnson, Chris; Wilmers, Thomas; Wright, Laura J.; Nairn, Campbell J.

    2014-01-01

    Green turtle (Chelonia mydas) nesting has increased dramatically in Florida over the past two decades, ranking the Florida nesting aggregation among the largest in the Greater Caribbean region. Individual beaches that comprise several hundred kilometers of Florida’s east coast and Keys support tens to thousands of nests annually. These beaches encompass natural to highly developed habitats, and the degree of demographic partitioning among rookeries was previously unresolved. We characterized the genetic structure of ten Florida rookeries from Cape Canaveral to the Dry Tortugas through analysis of 817 base pair mitochondrial DNA (mtDNA) control region sequences from 485 nesting turtles. Two common haplotypes, CM-A1.1 and CM-A3.1, accounted for 87 % of samples, and the haplotype frequencies were strongly partitioned by latitude along Florida’s Atlantic coast. Most genetic structure occurred between rookeries on either side of an apparent genetic break in the vicinity of the St. Lucie Inlet that separates Hutchinson Island and Jupiter Island, representing the finest scale at which mtDNA structure has been documented in marine turtle rookeries. Florida and Caribbean scale analyses of population structure support recognition of at least two management units: central eastern Florida and southern Florida. More thorough sampling and deeper sequencing are necessary to better characterize connectivity among Florida green turtle rookeries as well as between the Florida nesting aggregation and others in the Greater Caribbean region.

  13. Global distribution of Chelonid fibropapilloma-associated herpesvirus among clinically healthy sea turtles.

    Science.gov (United States)

    Alfaro-Núñez, Alonzo; Frost Bertelsen, Mads; Bojesen, Anders Miki; Rasmussen, Isabel; Zepeda-Mendoza, Lisandra; Tange Olsen, Morten; Gilbert, Marcus Thomas Pius

    2014-10-25

    Fibropapillomatosis (FP) is a neoplastic disease characterized by cutaneous tumours that has been documented to infect all sea turtle species. Chelonid fibropapilloma-associated herpesvirus (CFPHV) is believed to be the aetiological agent of FP, based principally on consistent PCR-based detection of herpesvirus DNA sequences from FP tumours. We used a recently described PCR-based assay that targets 3 conserved CFPHV genes, to survey 208 green turtles (Chelonia mydas). This included both FP tumour exhibiting and clinically healthy individuals. An additional 129 globally distributed clinically healthy individual sea turtles; representing four other species were also screened. CFPHV DNA sequences were obtained from 37/37 (100%) FP exhibiting green turtles, and 45/300 (15%) clinically healthy animals spanning all five species. Although the frequency of infected individuals per turtle population varied considerably, most global populations contained at least one CFPHV positive individual, with the exception of various turtle species from the Arabian Gulf, Northern Indian Ocean and Puerto Rico. Haplotype analysis of the different gene markers clustered the CFPHV DNA sequences for two of the markers (UL18 and UL22) in turtles from Turks and Caicos separate to all others, regardless of host species or geographic origin. Presence of CFPHV DNA within globally distributed samples for all five species of sea turtle was confirmed. While 100% of the FP exhibiting green turtles yielded CFPHV sequences, surprisingly, so did 15% of the clinically healthy turtles. We hypothesize that turtle populations with zero (0%) CFPHV frequency may be attributed to possible environmental differences, diet and/or genetic resistance in these individuals. Our results provide first data on the prevalence of CFPHV among seemingly healthy turtles; a factor that may not be directly correlated to the disease incidence, but may suggest of a long-term co-evolutionary latent infection interaction between

  14. Pacific Islands Regional Office — National Marine Fisheries Service -

    Science.gov (United States)

    ? Report Marine Animals State-Wide Hotline 888-256-9840 Report sea turtle, monk seal, dolphin and whales (ESA) Marine Mammal Response and Rescue Protected Resources Outreach and Education Volunteer PRGC Contacts Marine National Monument Program About the Marine National Monument Program Frequently

  15. Resource requirements of the Pacific leatherback turtle population.

    Directory of Open Access Journals (Sweden)

    T Todd Jones

    Full Text Available The Pacific population of leatherback sea turtles (Dermochelys coriacea has drastically declined in the last 25 years. This decline has been linked to incidental capture by fisheries, egg and meat harvesting, and recently, to climate variability and resource limitation. Here we couple growth rates with feeding experiments and food intake functions to estimate daily energy requirements of leatherbacks throughout their development. We then estimate mortality rates from available data, enabling us to raise food intake (energy requirements of the individual to the population level. We place energy requirements in context of available resources (i.e., gelatinous zooplankton abundance. Estimated consumption rates suggest that a single leatherback will eat upward of 1000 metric tonnes (t of jellyfish in its lifetime (range 924-1112 with the Pacific population consuming 2.1×10(6 t of jellyfish annually (range 1.0-3.7×10(6 equivalent to 4.2×10(8 megajoules (MJ (range 2.0-7.4×10(8. Model estimates suggest 2-7 yr-old juveniles comprise the majority of the Pacific leatherback population biomass and account for most of the jellyfish consumption (1.1×10(6 t of jellyfish or 2.2×10(8 MJ per year. Leatherbacks are large gelatinous zooplanktivores with consumption to biomass ratios of 96 (up to 192 if feeding strictly on low energy density Cnidarians; they, therefore, have a large capacity to impact gelatinous zooplankton landscapes. Understanding the leatherback's needs for gelatinous zooplankton, versus the availability of these resources, can help us better assess population trends and the influence of climate induced resource limitations to reproductive output.

  16. Solomon Islands largest hawksbill turtle rookery shows signs of recovery after 150 years of excessive exploitation.

    Directory of Open Access Journals (Sweden)

    Richard J Hamilton

    Full Text Available The largest rookery for hawksbill turtles in the oceanic South Pacific is the Arnavon Islands, which are located in the Manning Strait between Isabel and Choiseul Province, Solomon Islands. The history of this rookery is one of overexploitation, conflict and violence. Throughout the 1800s Roviana headhunters from New Georgia repeatedly raided the Manning Strait to collect hawksbill shell which they traded with European whalers. By the 1970s the Arnavons hawksbill population was in severe decline and the national government intervened, declaring the Arnavons a sanctuary in 1976. But this government led initiative was short lived, with traditional owners burning down the government infrastructure and resuming intensive harvesting in 1982. In 1991 routine beach monitoring and turtle tagging commenced at the Arnavons along with extensive community consultations regarding the islands' future, and in 1995 the Arnavon Community Marine Conservation Area (ACMCA was established. Around the same time national legislation banning the sale of all turtle products was passed. This paper represents the first analysis of data from 4536 beach surveys and 845 individual turtle tagging histories obtained from the Arnavons between 1991-2012. Our results and the results of others, reveal that many of the hawksbill turtles that nest at the ACMCA forage in distant Australian waters, and that nesting on the Arnavons occurs throughout the year with peak nesting activity coinciding with the austral winter. Our results also provide the first known evidence of recovery for a western pacific hawksbill rookery, with the number of nests laid at the ACMCA and the remigration rates of turtles doubling since the establishment of the ACMCA in 1995. The Arnavons case study provides an example of how changes in policy, inclusive community-based management and long term commitment can turn the tide for one of the most charismatic and endangered species on our planet.

  17. In Vitro Cultivation of Cymatocarpus solearis (Brachycoeliidae) Metacercariae to Obtain the Adult Stage without the Marine Turtle Definitive Host

    Science.gov (United States)

    Álvarez-Cadena, José

    2010-01-01

    In vitro cultivation of trematodes would assist studies on the basic biology of the parasites and their hosts. This is the first study to use the yolk of unfertilized chicken eggs as a simple and successful method of ovocultivation and the first time to obtain the adult-stage of the trematode Cymatocarpus solearis Braun, 1899 (Digenea: Brachycoeliidae). Chicken eggs were inoculated with metacercariae from the muscle of the spiny lobster, Panulirus argus (Latreille, 1804). The metacercariae were excysted and incubated for 576 hr (24 days) at 38℃ to obtain the adult stage. Eggs in utero were normal in shape and light brown color. The metacercariae developed into mature parasites that have been identified as the adult-stage found in marine turtles. The adult lobsters collected in Quintana Roo State, Mexico, showed the prevalence of 49.4% and the mean intensity of 26.0 per host (n = 87). A statistical study was performed to determine that no parasitic preference was detected for male versus female parasitized lobsters. Morphometric measurements of the adult-stage of C. solearis obtained in our study have been deposited in the National Helminths Collection of the Institute of Biology of the National Autonomous University of Mexico. This study is significant because it is the first time that a digenean of the family Brachycoeliidae has been demonstrated to develop in vitro from metacercariae into adults capable of producing eggs using the yolk of unfertilized chicken eggs. Secondly, this technique allows to obtain the adult stage of C. solearis without the presence of its marine turtle host, allows us to describe the mature parasites, and thus contribute to our understanding of the biology of C. solearis. PMID:20333285

  18. Phylogeny, biogeography and diversification patterns of side-necked turtles (Testudines: Pleurodira)

    Science.gov (United States)

    Langer, Max C.; Sterli, Juliana

    2018-01-01

    Pleurodires or side-necked turtles are today restricted to freshwater environments of South America, Africa–Madagascar and Australia, but in the past they were distributed much more broadly, being found also on Eurasia, India and North America, and marine environments. Two hypotheses were proposed to explain this distribution; in the first, vicariance would have shaped the current geographical distribution and, in the second, extinctions constrained a previously widespread distribution. Here, we aim to reconstruct pleurodiran biogeographic history and diversification patterns based on a new phylogenetic hypothesis recovered from the analysis of the largest morphological dataset yet compiled for the lineage, testing which biogeographical process prevailed during its evolutionary history. The resulting topology generally agrees with previous hypotheses of the group and shows that most diversification shifts were related to the exploration of new niches, e.g. littoral or marine radiations. In addition, as other turtles, pleurodires do not seem to have been much affected by either the Cretaceous–Palaeogene or the Eocene–Oligocene mass extinctions. The biogeographic analyses highlight the predominance of both anagenetic and cladogenetic dispersal events and support the importance of transoceanic dispersals as a more common driver of area changes than previously thought, agreeing with previous studies with other non-turtle lineages. PMID:29657780

  19. A carapace-like bony 'body tube' in an early triassic marine reptile and the onset of marine tetrapod predation.

    Science.gov (United States)

    Chen, Xiao-hong; Motani, Ryosuke; Cheng, Long; Jiang, Da-yong; Rieppel, Olivier

    2014-01-01

    Parahupehsuchus longus is a new species of marine reptile from the Lower Triassic of Yuan'an County, Hubei Province, China. It is unique among vertebrates for having a body wall that is completely surrounded by a bony tube, about 50 cm long and 6.5 cm deep, comprising overlapping ribs and gastralia. This tube and bony ossicles on the back are best interpreted as anti-predatory features, suggesting that there was predation pressure upon marine tetrapods in the Early Triassic. There is at least one sauropterygian that is sufficiently large to feed on Parahupehsuchus in the Nanzhang-Yuan'an fauna, together with six more species of potential prey marine reptiles with various degrees of body protection. Modern predators of marine tetrapods belong to the highest trophic levels in the marine ecosystem but such predators did not always exist through geologic time. The indication of marine-tetrapod feeding in the Nanzhang-Yuan'an fauna suggests that such a trophic level emerged for the first time in the Early Triassic. The recovery from the end-Permian extinction probably proceeded faster than traditionally thought for marine predators. Parahupehsuchus has superficially turtle-like features, namely expanded ribs without intercostal space, very short transverse processes, and a dorsal outgrowth from the neural spine. However, these features are structurally different from their turtle counterparts. Phylogeny suggests that they are convergent with the condition in turtles, which has a fundamentally different body plan that involves the folding of the body wall. Expanded ribs without intercostal space evolved at least twice and probably even more among reptiles.

  20. A carapace-like bony 'body tube' in an early triassic marine reptile and the onset of marine tetrapod predation.

    Directory of Open Access Journals (Sweden)

    Xiao-hong Chen

    Full Text Available Parahupehsuchus longus is a new species of marine reptile from the Lower Triassic of Yuan'an County, Hubei Province, China. It is unique among vertebrates for having a body wall that is completely surrounded by a bony tube, about 50 cm long and 6.5 cm deep, comprising overlapping ribs and gastralia. This tube and bony ossicles on the back are best interpreted as anti-predatory features, suggesting that there was predation pressure upon marine tetrapods in the Early Triassic. There is at least one sauropterygian that is sufficiently large to feed on Parahupehsuchus in the Nanzhang-Yuan'an fauna, together with six more species of potential prey marine reptiles with various degrees of body protection. Modern predators of marine tetrapods belong to the highest trophic levels in the marine ecosystem but such predators did not always exist through geologic time. The indication of marine-tetrapod feeding in the Nanzhang-Yuan'an fauna suggests that such a trophic level emerged for the first time in the Early Triassic. The recovery from the end-Permian extinction probably proceeded faster than traditionally thought for marine predators. Parahupehsuchus has superficially turtle-like features, namely expanded ribs without intercostal space, very short transverse processes, and a dorsal outgrowth from the neural spine. However, these features are structurally different from their turtle counterparts. Phylogeny suggests that they are convergent with the condition in turtles, which has a fundamentally different body plan that involves the folding of the body wall. Expanded ribs without intercostal space evolved at least twice and probably even more among reptiles.

  1. Hexavalent chromium is cytotoxic and genotoxic to hawksbill sea turtle cells

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Sandra S., E-mail: sandra.wise@maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Xie, Hong, E-mail: hongxie@usm.maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Fukuda, Tomokazu, E-mail: tomofukuda009@gmail.com [Graduate School of Agricultural Sciences, Tohoku University, Laboratory of Animal Breeding and Genetics, Second Research Building, Rm 112, 1-1 Amamiyamachi, Aoba-ku, Sendai 981-8555 (Japan); Douglas Thompson, W., E-mail: dougt@usm.maine.edu [Maine Center for Toxicology and Environmental Health, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); and others

    2014-09-01

    Sea turtles are a charismatic and ancient ocean species and can serve as key indicators for ocean ecosystems, including coral reefs and sea grass beds as well as coastal beaches. Genotoxicity studies in the species are absent, limiting our understanding of the impact of environmental toxicants on sea turtles. Hexavalent chromium (Cr(VI)) is a ubiquitous environmental problem worldwide, and recent studies show it is a global marine pollutant of concern. Thus, we evaluated the cytotoxicity and genotoxicity of soluble and particulate Cr(VI) in hawksbill sea turtle cells. Particulate Cr(VI) was both cytotoxic and genotoxic to sea turtle cells. Concentrations of 0.1, 0.5, 1, and 5 μg/cm{sup 2} lead chromate induced 108, 79, 54, and 7% relative survival, respectively. Additionally, concentrations of 0, 0.1, 0.5, 1, and 5 μg/cm{sup 2} lead chromate induced damage in 4, 10, 15, 26, and 36% of cells and caused 4, 11, 17, 30, and 56 chromosome aberrations in 100 metaphases, respectively. For soluble Cr, concentrations of 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate induced 84, 69, 46, 25, and 3% relative survival, respectively. Sodium chromate induced 3, 9, 9, 14, 21, and 29% of metaphases with damage, and caused 3, 10, 10, 16, 26, and 39 damaged chromosomes in 100 metaphases at concentrations of 0, 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate, respectively. These data suggest that Cr(VI) may be a concern for hawksbill sea turtles and sea turtles in general. - Highlights: • Particulate Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Soluble Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Cr(VI) may be a risk factor for hawksbill sea turtle health.

  2. Hexavalent chromium is cytotoxic and genotoxic to hawksbill sea turtle cells

    International Nuclear Information System (INIS)

    Wise, Sandra S.; Xie, Hong; Fukuda, Tomokazu; Douglas Thompson, W.

    2014-01-01

    Sea turtles are a charismatic and ancient ocean species and can serve as key indicators for ocean ecosystems, including coral reefs and sea grass beds as well as coastal beaches. Genotoxicity studies in the species are absent, limiting our understanding of the impact of environmental toxicants on sea turtles. Hexavalent chromium (Cr(VI)) is a ubiquitous environmental problem worldwide, and recent studies show it is a global marine pollutant of concern. Thus, we evaluated the cytotoxicity and genotoxicity of soluble and particulate Cr(VI) in hawksbill sea turtle cells. Particulate Cr(VI) was both cytotoxic and genotoxic to sea turtle cells. Concentrations of 0.1, 0.5, 1, and 5 μg/cm 2 lead chromate induced 108, 79, 54, and 7% relative survival, respectively. Additionally, concentrations of 0, 0.1, 0.5, 1, and 5 μg/cm 2 lead chromate induced damage in 4, 10, 15, 26, and 36% of cells and caused 4, 11, 17, 30, and 56 chromosome aberrations in 100 metaphases, respectively. For soluble Cr, concentrations of 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate induced 84, 69, 46, 25, and 3% relative survival, respectively. Sodium chromate induced 3, 9, 9, 14, 21, and 29% of metaphases with damage, and caused 3, 10, 10, 16, 26, and 39 damaged chromosomes in 100 metaphases at concentrations of 0, 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate, respectively. These data suggest that Cr(VI) may be a concern for hawksbill sea turtles and sea turtles in general. - Highlights: • Particulate Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Soluble Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Cr(VI) may be a risk factor for hawksbill sea turtle health

  3. Comparative cytotoxicity and genotoxicity of soluble and particulate hexavalent chromium in human and hawksbill sea turtle (Eretmochelys imbricate) skin cells

    Science.gov (United States)

    Young, Jamie L.; Wise, Sandra S.; Xie, Hong; Zhu, Cairong; Fukuda, Tomokazu; Wise, John Pierce

    2015-01-01

    Chromium is both a global marine pollutant and a known human health hazard. In this study, we compare the cytotoxicity and genotoxicity of both soluble and particulate chromate in human and hawksbill sea turtle (Eretmochelys imbricata) skin fibroblasts. Our data show that both soluble and particulate Cr(VI) induce concentration-dependent increases in cytotoxicity, genotoxicity, and intracellular Cr ion concentrations in both human and hawksbill sea turtle fibroblasts. Based on administered concentration, particulate and soluble Cr(VI) were more cytotoxic and clastogenic to human cells than sea turtle cells. When the analysis was based on the intracellular concentration of Cr, the data showed the response of both species was similar. The one exception was the cytotoxicity of intracellular Cr ions from soluble Cr(VI), which caused more cytotoxicity in sea turtle cells (LC50=271 uM) that human cells (LC50=471 uM), but its clastogenicity was similar between the two species. Thus, adjusting for differences in uptake indicated the explanation for the difference in potency was mostly due to uptake rather than differently affected mechanisms. Overall these data indicate sea turtles may be a useful sentinel for human health responses to marine pollution. PMID:26440299

  4. Blood profiles for a wild population of green turtles (Chelonia mydas) in the southern Bahamas: size-specific and sex-specific relationships.

    Science.gov (United States)

    Bolten, A B; Bjorndal, K A

    1992-07-01

    Blood biochemical profiles and packed cell volumes were determined for 100 juvenile green turtles, Chelonia mydas, from a wild population in the southern Bahamas. There was a significant correlation of body size to 13 of the 26 blood parameters measured. Only plasma uric acid and cholesterol were significantly different between male and female turtles. The relationship between total plasma proteins and plasma refractive index was significant. The equation for converting refractive index (Y) to total plasma proteins (X) is Y = 1.34 + 0.00217(X).

  5. Strandings of cetaceans and sea turtles in the Alboran Sea and Strait of Gibraltar: a long–time glimpse of the north coast (Spain and the south coast (Morocco

    Directory of Open Access Journals (Sweden)

    Rojo–Nieto, E.

    2011-06-01

    Full Text Available A total of 13 species of cetaceans and three species of marine turtles were found in this study. Data were collected by eight independent and self-regulated stranding networks, providing information about 1,198 marine mammal (10 odontocetii, three mysticetii and one phocidae and 574 sea turtle stranding events between 1991 and 2008. Trends in the strandings were analysed in relation to species composition and abundance, and their geographic and seasonal distribution. The most abundant species recorded were the striped dolphin and the loggerhead turtle. Some of the strandings, such as the humpback whale, harbour porpoise, hooded seal and olive ridley turtle, were considered ‘rare’ because their distribution did not match the pattern of the study. When the north and south coasts in the study area were compared, pilot whales stranded more frequently in the north, while delphinid species stranded more in the south coast, and loggerhead turtles stranded more frequently in the north while leatherback turtles stranded more in south coast.

  6. A Carapace-Like Bony ‘Body Tube’ in an Early Triassic Marine Reptile and the Onset of Marine Tetrapod Predation

    Science.gov (United States)

    Chen, Xiao-hong; Motani, Ryosuke; Cheng, Long; Jiang, Da-yong; Rieppel, Olivier

    2014-01-01

    Parahupehsuchus longus is a new species of marine reptile from the Lower Triassic of Yuan’an County, Hubei Province, China. It is unique among vertebrates for having a body wall that is completely surrounded by a bony tube, about 50 cm long and 6.5 cm deep, comprising overlapping ribs and gastralia. This tube and bony ossicles on the back are best interpreted as anti-predatory features, suggesting that there was predation pressure upon marine tetrapods in the Early Triassic. There is at least one sauropterygian that is sufficiently large to feed on Parahupehsuchus in the Nanzhang-Yuan’an fauna, together with six more species of potential prey marine reptiles with various degrees of body protection. Modern predators of marine tetrapods belong to the highest trophic levels in the marine ecosystem but such predators did not always exist through geologic time. The indication of marine-tetrapod feeding in the Nanzhang-Yuan’an fauna suggests that such a trophic level emerged for the first time in the Early Triassic. The recovery from the end-Permian extinction probably proceeded faster than traditionally thought for marine predators. Parahupehsuchus has superficially turtle-like features, namely expanded ribs without intercostal space, very short transverse processes, and a dorsal outgrowth from the neural spine. However, these features are structurally different from their turtle counterparts. Phylogeny suggests that they are convergent with the condition in turtles, which has a fundamentally different body plan that involves the folding of the body wall. Expanded ribs without intercostal space evolved at least twice and probably even more among reptiles. PMID:24718682

  7. Population study of the Hawksbill Turtle eretmochelys imbricata (Cheloniidae) in the southern pacific region of Colombia

    International Nuclear Information System (INIS)

    Tobon Lopez, Alexander; Amorocho Llanos, Diego Fernando

    2014-01-01

    The objective of this research was to determine biological and ecological population characteristics of the hawksbill turtle (Eretmochelys imbricata) found in the southern Colombian Pacific Department of Cauca. Morphometric measurements were recorded, the health status of individuals was reviewed, and blood samples were taken for a biochemistry assessment. During the seven months of the investigation, 25 hawksbill turtles were caught (16 different individuals) on the reefs of Gorgona Natural National Park. Forty-six percent of the total numbers of turtles assessed were recaptured during the study period. While no obvious health problems were noted, most animals possessed epibionts and filamentous algae covering the carapace, some parts of the limbs, as well as on their neck. Curved carapace length (CCL) showed the highest proportion of individuals were between 37 and 45 cm. Sixteen individuals captured in Gorgona Natural National Park were compared with 11 individuals captured in the coastal zone of the Department of Cauca. Using the Mann-Whitney U test, a significant difference in CCL was found between these two groups; the animals from Gorgona National Park were larger than those present on the coast of the mainland (Z = -2.59, p = 0.007). Uric acid concentrations were found to be higher than previously referenced values.

  8. Endangered species: where leatherback turtles meet fisheries.

    Science.gov (United States)

    Ferraroli, Sandra; Georges, Jean-Yves; Gaspar, Philippe; Le Maho, Yvon

    2004-06-03

    The dramatic worldwide decline in populations of the leatherback turtle (Dermochelys coriacea) is largely due to the high mortality associated with their interaction with fisheries, so a reduction of this overlap is critical to their survival. The discovery of narrow migration corridors used by the leatherbacks in the Pacific Ocean raised the possibility of protecting the turtles by restricting fishing in these key areas. Here we use satellite tracking to show that there is no equivalent of these corridors in the North Atlantic Ocean, because the turtles disperse actively over the whole area. But we are able to identify a few 'hot spots' where leatherbacks meet fisheries and where conservation efforts should be focused.

  9. Endangered species: where leatherback turtles meet fisheries.

    OpenAIRE

    Ferraroli , S.; Georges , J.-Y.; Gaspar , P.; Le Maho , Y.

    2004-01-01

    International audience; The dramatic worldwide decline in populations of the leatherback turtle (Dermochelys coriacea) is largely due to the high mortality associated with their interaction with fisheries, so a reduction of this overlap is critical to their survival. The discovery of narrow migration corridors used by the leatherbacks in the Pacific Ocean raised the possibility of protecting the turtles by restricting fishing in these key areas. Here we use satellite tracking to show that the...

  10. Western Pond Turtle Head-starting and Reintroduction, 2005-2006 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Van Leuven, Susan; Allen, Harriet; Slavens, Kate (Washington Department of Fish and Wildlife, Wildlife Management Program, Olympia, WA)

    2006-11-01

    This report covers the results of the western pond turtle head-starting and reintroduction project for the period of October 2005-September 2006. Wild hatchling western pond turtles from the Columbia River Gorge were reared at the Woodland Park and Oregon zoos in 2005 and 2006 as part of the recovery effort for this Washington State endangered species. The objective of the program is to reduce losses to introduced predators like bullfrogs and largemouth bass by raising the hatchlings to a size where they are too large to be eaten by most of these predators. Twenty-six turtles were placed at the Woodland Park Zoo and 62 at the Oregon Zoo in fall 2005. These turtles joined two that were held back from release in summer 2005 due to their small size. All 90 juvenile turtles were released at three sites in the Columbia Gorge in 2006. Twenty-eight juvenile turtles were released at the Klickitat ponds, 22 at the Klickitat lake, 21 at the Skamania site, and 19 at Pierce National Wildlife Refuge (NWR). This brought the total number of head-start turtles released since 1991 to 944; 285 for the Klickitat ponds, 158 for the Klickitat lake, 227 for the Skamania pond complex, and 274 at Pierce NWR. In 2006, 20 females from the Klickitat population were equipped with transmitters and monitored for nesting activity. Fifteen nests were located and protected; these produced 55 hatchlings. The hatchlings were collected in September and transported to the Oregon and Woodland Park zoos for rearing in the head-start program. One wild hatchling captured in spring 2006 was placed in the head-start program to attain more growth in captivity. During the 2006 field season trapping effort, 414 western pond turtles were captured in the Columbia Gorge, including 374 previously head-started turtles. These recaptures, together with confirmed nesting by head-start females and visual resightings, indicate the program is succeeding in boosting juvenile recruitment to increase the populations

  11. Evidence of opposing fitness effects of parental heterozygosity and relatedness in a critically endangered marine turtle?

    Science.gov (United States)

    Phillips, K P; Jorgensen, T H; Jolliffe, K G; Richardson, D S

    2017-11-01

    How individual genetic variability relates to fitness is important in understanding evolution and the processes affecting populations of conservation concern. Heterozygosity-fitness correlations (HFCs) have been widely used to study this link in wild populations, where key parameters that affect both variability and fitness, such as inbreeding, can be difficult to measure. We used estimates of parental heterozygosity and genetic similarity ('relatedness') derived from 32 microsatellite markers to explore the relationship between genetic variability and fitness in a population of the critically endangered hawksbill turtle, Eretmochelys imbricata. We found no effect of maternal MLH (multilocus heterozygosity) on clutch size or egg success rate, and no single-locus effects. However, we found effects of paternal MLH and parental relatedness on egg success rate that interacted in a way that may result in both positive and negative effects of genetic variability. Multicollinearity in these tests was within safe limits, and null simulations suggested that the effect was not an artefact of using paternal genotypes reconstructed from large samples of offspring. Our results could imply a tension between inbreeding and outbreeding depression in this system, which is biologically feasible in turtles: female-biased natal philopatry may elevate inbreeding risk and local adaptation, and both processes may be disrupted by male-biased dispersal. Although this conclusion should be treated with caution due to a lack of significant identity disequilibrium, our study shows the importance of considering both positive and negative effects when assessing how variation in genetic variability affects fitness in wild systems. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  12. Mass poisoning after consumption of a hawksbill turtle, Federated States of Micronesia, 2010

    Directory of Open Access Journals (Sweden)

    Boris Pavlin

    2015-01-01

    Full Text Available Background: Marine turtles of all species are capable of being toxic. On 17 October 2010, health authorities in the Federated States of Micronesia were notified of the sudden death of three children and the sickening of approximately 20 other people on Murilo Atoll in Chuuk State. The illnesses were suspected to be the result of mass consumption of a hawksbill turtle (Eretmochelys imbricata. An investigation team was assembled to confirm the cause of the outbreak, describe the epidemiology of cases and provide recommendations for control. Methods: We conducted chart reviews, interviewed key informants, collected samples for laboratory analysis, performed environmental investigations and conducted a cohort study. Results: Four children and two adults died in the outbreak and 95 others were sickened; 84% of those who ate the turtle became ill (n = 101. The relative risk for developing illness after consuming the turtle was 11.1 (95% confidence inteval: 4.8–25.9; there was a dose-dependent relationship between amount of turtle meat consumed and risk of illness. Environmental and epidemiological investigations revealed no alternative explanation for the mass illness. Laboratory testing failed to identify a causative agent. Conclusion: We concluded that turtle poisoning (also called chelonitoxism was the cause of the outbreak on Murilo. The range of illness described in this investigation is consistent with previously reported cases of chelonitoxism. This devastating incident highlights the dangers, particularly to children, of consuming turtle meat. Future incidents are certain to occur unless action is taken to alter turtle-eating behaviour in coastal communities throughout the world.

  13. Comparative cytotoxicity and genotoxicity of soluble and particulate hexavalent chromium in human and hawksbill sea turtle (Eretmochelys imbricata) skin cells.

    Science.gov (United States)

    Young, Jamie L; Wise, Sandra S; Xie, Hong; Zhu, Cairong; Fukuda, Tomokazu; Wise, John Pierce

    2015-12-01

    Chromium is both a global marine pollutant and a known human health hazard. In this study, we compare the cytotoxicity and genotoxicity of both soluble and particulate chromate in human and hawksbill sea turtle (Eretmochelys imbricata) skin fibroblasts. Our data show that both soluble and particulate Cr(VI) induce concentration-dependent increases in cytotoxicity, genotoxicity, and intracellular Cr ion concentrations in both human and hawksbill sea turtle fibroblasts. Based on administered concentration, particulate and soluble Cr(VI) were more cytotoxic and clastogenic to human cells than sea turtle cells. When the analysis was based on the intracellular concentration of Cr, the data showed that the response of both species was similar. The one exception was the cytotoxicity of intracellular Cr ions from soluble Cr(VI), which caused more cytotoxicity in sea turtle cells (LC50=271μM) than that of human cells (LC50=471μM), but its clastogenicity was similar between the two species. Thus, adjusting for differences in uptake indicated that the explanation for the difference in potency was mostly due to uptake rather than differently affected mechanisms. Overall these data indicate that sea turtles may be a useful sentinel for human health responses to marine pollution. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Incidental catch of marine turtles by the artisanal fisheries on Santa Catarina Island, SC, Brazil

    Directory of Open Access Journals (Sweden)

    Natalia Hanazaki

    2006-12-01

    Full Text Available The five species of sea turtles, which inhabit the Brazilian shore, have a wordwide distribution and are threatened with extinction. The south of Brazil is characterized as a feeding and breeding area of at least three of these species. The presence of turtles close to the shore and their incidental catch are occurrences reported by artisan fishermen of the Island of Santa Catarina in this work. The study was based on a questionnaire, applied to fishermen and fishfarmers at selected spots on the island. Scientific and popular names were matched using illustrations. The spots with the highest number of events and captures were close to the islands, rocky coasts and stony grounds, i.e. areas related with the foraging habits of the most abundant species, Chelonia mydas. The place, depth and size of the net are characteristics, which influence the capture. The time the net remains in the water is a factor which is fundamental to the survival of the captured turtles. The flesh of the turtle is used as an occasional feeding resource. Capacitation programs and training applied to the communities involved are recommended.

  15. Determining origin in a migratory marine vertebrate: a novel method to integrate stable isotopes and satellite tracking

    Science.gov (United States)

    Vander Zanden, Hannah B.; Tucker, Anton D.; Hart, Kristen M.; Lamont, Margaret M.; Fujisaki, Ikuko; Addison, David S.; Mansfield, Katherine L.; Phillips, Katrina F.; Wunder, Michael B.; Bowen, Gabriel J.; Pajuelo, Mariela; Bolten, Alan B.; Bjorndal, Karen A.

    2015-01-01

    Stable isotope analysis is a useful tool to track animal movements in both terrestrial and marine environments. These intrinsic markers are assimilated through the diet and may exhibit spatial gradients as a result of biogeochemical processes at the base of the food web. In the marine environment, maps to predict the spatial distribution of stable isotopes are limited, and thus determining geographic origin has been reliant upon integrating satellite telemetry and stable isotope data. Migratory sea turtles regularly move between foraging and reproductive areas. Whereas most nesting populations can be easily accessed and regularly monitored, little is known about the demographic trends in foraging populations. The purpose of the present study was to examine migration patterns of loggerhead nesting aggregations in the Gulf of Mexico (GoM), where sea turtles have been historically understudied. Two methods of geographic assignment using stable isotope values in known-origin samples from satellite telemetry were compared: 1) a nominal approach through discriminant analysis and 2) a novel continuous-surface approach using bivariate carbon and nitrogen isoscapes (isotopic landscapes) developed for this study. Tissue samples for stable isotope analysis were obtained from 60 satellite-tracked individuals at five nesting beaches within the GoM. Both methodological approaches for assignment resulted in high accuracy of foraging area determination, though each has advantages and disadvantages. The nominal approach is more appropriate when defined boundaries are necessary, but up to 42% of the individuals could not be considered in this approach. All individuals can be included in the continuous-surface approach, and individual results can be aggregated to identify geographic hotspots of foraging area use, though the accuracy rate was lower than nominal assignment. The methodological validation provides a foundation for future sea turtle studies in the region to inexpensively

  16. Fecal bacterial communities of wild-captured and stranded green turtles (Chelonia mydas) on the Great Barrier Reef.

    Science.gov (United States)

    Ahasan, Md Shamim; Waltzek, Thomas B; Huerlimann, Roger; Ariel, Ellen

    2017-12-01

    Green turtles (Chelonia mydas) are endangered marine herbivores that break down food particles, primarily sea grasses, through microbial fermentation. However, the microbial community and its role in health and disease is still largely unexplored. In this study, we investigated and compared the fecal bacterial communities of eight wild-captured green turtles to four stranded turtles in the central Great Barrier Reef regions that include Bowen and Townsville. We used high-throughput sequencing analysis targeting the hypervariable V1-V3 regions of the bacterial 16S rRNA gene. At the phylum level, Firmicutes predominated among wild-captured green turtles, followed by Bacteroidetes and Proteobacteria. In contrast, Proteobacteria (Gammaproteobacteria) was the most significantly dominant phylum among all stranded turtles, followed by Bacteroidetes and Firmicutes. In addition, Fusobacteria was also significantly abundant in stranded turtles. No significant differences were found between the wild-captured turtles in Bowen and Townsville. At the family level, the core bacterial community consisted of 25 families that were identified in both the wild-captured and stranded green turtles, while two unique sets of 14 families each were only found in stranded or wild-captured turtles. The predominance of Bacteroides in all groups indicates the importance of these bacteria in turtle gut health. In terms of bacterial diversity and richness, wild-captured green turtles showed a higher bacterial diversity and richness compared with stranded turtles. The marked differences in the bacterial communities between wild-captured and stranded turtles suggest the possible dysbiosis in stranded turtles in addition to potential causal agents. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. A model for simulating the active dispersal of juvenile sea turtles with a case study on western Pacific leatherback turtles

    Science.gov (United States)

    Lalire, Maxime

    2017-01-01

    Oceanic currents are known to broadly shape the dispersal of juvenile sea turtles during their pelagic stage. Accordingly, simple passive drift models are widely used to investigate the distribution at sea of various juvenile sea turtle populations. However, evidence is growing that juveniles do not drift purely passively but also display some swimming activity likely directed towards favorable habitats. We therefore present here a novel Sea Turtle Active Movement Model (STAMM) in which juvenile sea turtles actively disperse under the combined effects of oceanic currents and habitat-driven movements. This model applies to all sea turtle species but is calibrated here for leatherback turtles (Dermochelys coriacea). It is first tested in a simulation of the active dispersal of juveniles originating from Jamursba-Medi, a main nesting beach of the western Pacific leatherback population. Dispersal into the North Pacific Ocean is specifically investigated. Simulation results demonstrate that, while oceanic currents broadly shape the dispersal area, modeled habitat-driven movements strongly structure the spatial and temporal distribution of juveniles within this area. In particular, these movements lead juveniles to gather in the North Pacific Transition Zone (NPTZ) and to undertake seasonal north-south migrations. More surprisingly, juveniles in the NPTZ are simulated to swim mostly towards west which considerably slows down their progression towards the American west coast. This increases their residence time, and hence the risk of interactions with fisheries, in the central and eastern part of the North Pacific basin. Simulated habitat-driven movements also strongly reduce the risk of cold-induced mortality. This risk appears to be larger among the juveniles that rapidly circulate into the Kuroshio than among those that first drift into the North Equatorial Counter Current (NECC). This mechanism might induce marked interannual variability in juvenile survival as the

  18. A model for simulating the active dispersal of juvenile sea turtles with a case study on western Pacific leatherback turtles.

    Science.gov (United States)

    Gaspar, Philippe; Lalire, Maxime

    2017-01-01

    Oceanic currents are known to broadly shape the dispersal of juvenile sea turtles during their pelagic stage. Accordingly, simple passive drift models are widely used to investigate the distribution at sea of various juvenile sea turtle populations. However, evidence is growing that juveniles do not drift purely passively but also display some swimming activity likely directed towards favorable habitats. We therefore present here a novel Sea Turtle Active Movement Model (STAMM) in which juvenile sea turtles actively disperse under the combined effects of oceanic currents and habitat-driven movements. This model applies to all sea turtle species but is calibrated here for leatherback turtles (Dermochelys coriacea). It is first tested in a simulation of the active dispersal of juveniles originating from Jamursba-Medi, a main nesting beach of the western Pacific leatherback population. Dispersal into the North Pacific Ocean is specifically investigated. Simulation results demonstrate that, while oceanic currents broadly shape the dispersal area, modeled habitat-driven movements strongly structure the spatial and temporal distribution of juveniles within this area. In particular, these movements lead juveniles to gather in the North Pacific Transition Zone (NPTZ) and to undertake seasonal north-south migrations. More surprisingly, juveniles in the NPTZ are simulated to swim mostly towards west which considerably slows down their progression towards the American west coast. This increases their residence time, and hence the risk of interactions with fisheries, in the central and eastern part of the North Pacific basin. Simulated habitat-driven movements also strongly reduce the risk of cold-induced mortality. This risk appears to be larger among the juveniles that rapidly circulate into the Kuroshio than among those that first drift into the North Equatorial Counter Current (NECC). This mechanism might induce marked interannual variability in juvenile survival as the

  19. Plastic ingestion by sea turtles in Paraíba State, Northeast Brazil

    Directory of Open Access Journals (Sweden)

    Camila Poli

    2015-09-01

    Full Text Available ABSTRACT Currently, plastics are recognized as a major pollutant of the marine environment, representing a serious threat to ocean wildlife. Here, we examined the occurrence and effects of plastic ingestion by sea turtles found stranded along the coast of Paraíba State, Brazil from August 2009 to July 2010. Ninety-eight digestive tracts were examined, with plastic found in 20 (20.4%. Sixty five percent (n = 13 of turtles with plastic in the digestive tract were green turtles (Chelonia mydas, 25% (n = 5 were hawksbills (Eretmochelys imbricata, and 10% (n = 2 were olive ridley (Lepidochelys olivacea. More plastic was found in the intestine (85% than in other parts of the gastrointestinal tract. We observed complete blockage of the gastrointestinal tract due to the presence of plastic in 13 of the 20 turtles that had ingested plastic. No correlation was found between the curved carapace length (CCL and the number or mass of the plastic ingested items. Significant differences were found between the intake of hard and soft plastic and the ingestion of white/transparent and colored plastic, with soft and white/transparent plastics being more commonly ingested. This study reveals the serious problem of plastic pollution to sea turtles at the area.

  20. Molecular identification of fungal isolates and hatching success of green turtle (Chelonia mydas) nests.

    Science.gov (United States)

    Candan, Esra Deniz

    2018-02-26

    The aim of this study is to investigate the fungal diversity of green turtle nests and to examine phylogenetic relationships among these isolates. During the nesting season, samples of intra-nest sand and failed eggs were collected from 25% of the surviving nests in Sugözü Beaches, which are amongst the most important nesting beaches for endangered green turtles in the Mediterranean. Twenty-three fungi were identified by molecular techniques. Fungal isolates belonged to genera Aspergillus, Emericella, Rhizopus, Actinomucor and Apophysomyces with two undescribed species. Aspergillus variecolor, Aspergillus quadrilinieatus, Aspergillus tubingensis, Rhizopus oryzae, Actinomucor elegans and Apophysomyces variabilis were firstly detected in all sea turtle nests within this study. Our results demonstrate that 36.4% of the nests had fungal contamination. Also hatching success of the nests contaminated by fungi were significantly lower than the uncontaminated nests (P = 0.029). Also, this may represent a threat to marine turtles and a risk for the health of conservation workers. This study is the first molecular phylogenetic study associated with sea turtle nests in the eastern Mediterranean coast and contributes to the wider body of literature on fungal invasion of sea turtle nests with firstly isolated species. These findings are important for improving potential conservation measures for the nest sites.

  1. Host-specific phenotypic plasticity of the turtle barnacle Chelonibia testudinaria: a widespread generalist rather than a specialist.

    Directory of Open Access Journals (Sweden)

    Chi Chiu Cheang

    Full Text Available Turtle barnacles are common epibionts on marine organisms. Chelonibia testudinaria is specific on marine turtles whereas C. patula is a host generalist, but rarely found on turtles. It has been questioned why C. patula, being abundant on a variety of live substrata, is almost absent from turtles. We evaluated the genetic (mitochondrial COI, 16S and 12S rRNA, and amplified fragment length polymorphism (AFLP and morphological differentiation of C. testudinaia and C. patula from different hosts, to determine the mode of adaptation exhibited by Chelonibia species on different hosts. The two taxa demonstrate clear differences in shell morphology and length of 4-6(th cirri, but very similar in arthropodal characters. Moreover, we detected no genetic differentiation in mitochondrial DNA and AFLP analyses. Outlier detection infers insignificant selection across loci investigated. Based on combined morphological and molecular evidence, we proposed that C. testudinaria and C. patula are conspecific, and the two morphs with contrasting shell morphologies and cirral length found on different host are predominantly shaped by developmental plasticity in response to environmental setting on different hosts. Chelonibia testudinaria is, thus, a successful general epibiotic fouler and the phenotypic responses postulated can increase the fitness of the animals when they attach on hosts with contrasting life-styles.

  2. The potential of unmanned aerial systems for sea turtle research and conservation: a review and future directions

    Science.gov (United States)

    Rees, Alan F.; Avens, Larisa; Ballorain, Katia; Bevan, Elizabeth; Broderick, Annette C.; Carthy, Raymond R.; Christianen, Marjolijn J. A.; Duclos, Gwénaël; Heithaus, Michael R.; Johnston, David W.; Mangel, Jeffrey C.; Paladino, Frank V.; Pendoley, Kellie; Reina, Richard D.; Robinson, Nathan J.; Ryan, Robert; Sykora-Bodie, Seth T.; Tilley, Dominic; Varela, Miguel R.; Whitman, Elizabeth R.; Whittock, Paul A.; Wibbels, Thane; Godley, Brendan J.

    2018-01-01

    The use of satellite systems and manned aircraft surveys for remote data collection has been shown to be transformative for sea turtle conservation and research by enabling the collection of data on turtles and their habitats over larger areas than can be achieved by surveys on foot or by boat. Unmanned aerial vehicles (UAVs) or drones are increasingly being adopted to gather data, at previously unprecedented spatial and temporal resolutions in diverse geographic locations. This easily accessible, low-cost tool is improving existing research methods and enabling novel approaches in marine turtle ecology and conservation. Here we review the diverse ways in which incorporating inexpensive UAVs may reduce costs and field time while improving safety and data quality and quantity over existing methods for studies on turtle nesting, at-sea distribution and behaviour surveys, as well as expanding into new avenues such as surveillance against illegal take. Furthermore, we highlight the impact that high-quality aerial imagery captured by UAVs can have for public outreach and engagement. This technology does not come without challenges. We discuss the potential constraints of these systems within the ethical and legal frameworks which researchers must operate and the difficulties that can result with regard to storage and analysis of large amounts of imagery. We then suggest areas where technological development could further expand the utility of UAVs as data-gathering tools; for example, functioning as downloading nodes for data collected by sensors placed on turtles. Development of methods for the use of UAVs in sea turtle research will serve as case studies for use with other marine and terrestrial taxa.

  3. Turtles From an Arkadelphia Formation—Midway Group Lag Deposit (Maastrichtian—Paleocene, Hot Spring County, Arkansas, USA

    Directory of Open Access Journals (Sweden)

    Martin A. Becker

    2016-09-01

    Full Text Available The Arkadelphia Formation—Midway Group (Maastrichtian—Paleocene contact near Malvern, Arkansas preserves a K-Pg boundary assemblage of turtle species consisting of skull, shell, and non-shell postcranial skeletal elements. The Malvern turtles are preserved within a coquina lag deposit that comprises the basalmost Midway Group and also contains an abundance of other reptiles, as well as chondrichthyans, osteichthyans, and invertebrates. This coquina lag deposit records a complex taphonomic history of exhumation and reburial of vertebrate skeletal elements along a dynamic ancestral shoreline in southwestern Arkansas during the late Cretaceous-early Paleocene. Based on stratigraphic occurrence, the Malvern turtle assemblage indicates that these marine reptiles were living at or near the time of the K-Pg mass extinction and represent some of the latest Cretaceous turtles yet recovered from the Gulf Coastal Plain of the United States.

  4. Turtle carapace anomalies: the roles of genetic diversity and environment.

    Directory of Open Access Journals (Sweden)

    Guillermo Velo-Antón

    2011-04-01

    Full Text Available Phenotypic anomalies are common in wild populations and multiple genetic, biotic and abiotic factors might contribute to their formation. Turtles are excellent models for the study of developmental instability because anomalies are easily detected in the form of malformations, additions, or reductions in the number of scutes or scales.In this study, we integrated field observations, manipulative experiments, and climatic and genetic approaches to investigate the origin of carapace scute anomalies across Iberian populations of the European pond turtle, Emys orbicularis. The proportion of anomalous individuals varied from 3% to 69% in local populations, with increasing frequency of anomalies in northern regions. We found no significant effect of climatic and soil moisture, or climatic temperature on the occurrence of anomalies. However, lower genetic diversity and inbreeding were good predictors of the prevalence of scute anomalies among populations. Both decreasing genetic diversity and increasing proportion of anomalous individuals in northern parts of the Iberian distribution may be linked to recolonization events from the Southern Pleistocene refugium.Overall, our results suggest that developmental instability in turtle carapace formation might be caused, at least in part, by genetic factors, although the influence of environmental factors affecting the developmental stability of turtle carapace cannot be ruled out. Further studies of the effects of environmental factors, pollutants and heritability of anomalies would be useful to better understand the complex origin of anomalies in natural populations.

  5. Movements and habitat-use of loggerhead sea turtles in the northern Gulf of Mexico during the reproductive period.

    Directory of Open Access Journals (Sweden)

    Kristen M Hart

    Full Text Available Nesting strategies and use of important in-water habitats for far-ranging marine turtles can be determined using satellite telemetry. Because of a lack of information on habitat-use by marine turtles in the northern Gulf of Mexico, we used satellite transmitters in 2010 through 2012 to track movements of 39 adult female breeding loggerhead turtles (Caretta caretta tagged on nesting beaches at three sites in Florida and Alabama. During the nesting season, recaptured turtles emerged to nest 1 to 5 times, with mean distance between emergences of 27.5 km; however, several turtles nested on beaches separated by ~250 km within a single season. Mean total distances traveled throughout inter-nesting periods for all turtles was 1422.0 ± 930.8 km. In-water inter-nesting sites, delineated using 50% kernel density estimation (KDE, were located a mean distance of 33.0 km from land, in water with mean depth of -31.6 m; other in-water inter-nesting sites, delineated using minimum convex polygon (MCP approach, were located a mean 13.8 km from land and in water with a mean depth of -15.8 m. Mean size of in-water inter-nesting habitats were 61.9 km(2 (50% KDEs, n = 10 and 741.4 km(2 (MCPs, n = 30; these areas overlapped significantly with trawling and oil and gas extraction activities. Abundance estimates for this nesting subpopulation may be inaccurate in light of how much spread there is between nests of the same individual. Further, our results also have consequences for critical habitat designations for northern Gulf loggerheads, as protection of one nesting beach would not encompass the entire range used by turtles during breeding seasons.

  6. Movements and Habitat-Use of Loggerhead Sea Turtles in the Northern Gulf of Mexico during the Reproductive Period

    Science.gov (United States)

    Hart, Kristen M.; Lamont, Margaret M.; Sartain, Autumn R.; Fujisaki, Ikuko; Stephens, Brail S.

    2013-01-01

    Nesting strategies and use of important in-water habitats for far-ranging marine turtles can be determined using satellite telemetry. Because of a lack of information on habitat-use by marine turtles in the northern Gulf of Mexico, we used satellite transmitters in 2010 through 2012 to track movements of 39 adult female breeding loggerhead turtles (Caretta caretta) tagged on nesting beaches at three sites in Florida and Alabama. During the nesting season, recaptured turtles emerged to nest 1 to 5 times, with mean distance between emergences of 27.5 km; however, several turtles nested on beaches separated by ∼250 km within a single season. Mean total distances traveled throughout inter-nesting periods for all turtles was 1422.0±930.8 km. In-water inter-nesting sites, delineated using 50% kernel density estimation (KDE), were located a mean distance of 33.0 km from land, in water with mean depth of −31.6 m; other in-water inter-nesting sites, delineated using minimum convex polygon (MCP) approach, were located a mean 13.8 km from land and in water with a mean depth of −15.8 m. Mean size of in-water inter-nesting habitats were 61.9 km2 (50% KDEs, n = 10) and 741.4 km2 (MCPs, n = 30); these areas overlapped significantly with trawling and oil and gas extraction activities. Abundance estimates for this nesting subpopulation may be inaccurate in light of how much spread there is between nests of the same individual. Further, our results also have consequences for critical habitat designations for northern Gulf loggerheads, as protection of one nesting beach would not encompass the entire range used by turtles during breeding seasons. PMID:23843971

  7. Rhinochelys amaberti Moret (1935, a protostegid turtle from the Early Cretaceous of France

    Directory of Open Access Journals (Sweden)

    Isaure Scavezzoni

    2018-04-01

    Full Text Available Modern marine turtles (chelonioids are the remnants of an ancient radiation that roots in the Cretaceous. The oldest members of that radiation are first recorded from the Early Cretaceous and a series of species are known from the Albian-Cenomanian interval, many of which have been allocated to the widespread but poorly defined genus Rhinochelys, possibly concealing the diversity and the evolution of early marine turtles. In order to better understand the radiation of chelonioids, we redescribe the holotype and assess the taxonomy of Rhinochelys amaberti Moret (1935 (UJF-ID.11167 from the Late Albian (Stoliczkaia dispar Zone of the Vallon de la Fauge (Isère, France. We also make preliminary assessments of the phylogenetic relationships of Chelonioidea using two updated datasets that widely sample Cretaceous taxa, especially Rhinochelys. Rhinochelys amaberti is a valid taxon that is supported by eight autapomorphies; an emended diagnosisis proposed. Our phylogenetic analyses suggest that Rhinochelys could be polyphyletic, but constraining it as a monophyletic entity does not produce trees that are significantly less parsimonious. Moreover, support values and stratigraphic congruence indexes are fairly low for the recovered typologies, suggesting that missing data still strongly affect our understanding of the Cretaceous diversification of sea turtles.

  8. The influence of disturbance events on survival and dispersal rates of Florida box turtles

    Science.gov (United States)

    Dodd, C.K.; Ozgul, A.; Oli, M.K.

    2006-01-01

    Disturbances have the potential to cause long-term effects to ecosystem structure and function, and they may affect individual species in different ways. Long-lived vertebrates such as turtles may be at risk from such events, inasmuch as their life histories preclude rapid recovery should extensive mortality occur. We applied capture–mark–recapture models to assess disturbance effects on a population of Florida box turtles (Terrapene carolina bauri) on Egmont Key, Florida, USA. Near the midpoint of the study, a series of physical disturbances affected the island, from salt water overwash associated with several tropical storms to extensive removal of nonindigenous vegetation. These disturbances allowed us to examine demographic responses of the turtle population and to determine if they affected dispersal throughout the island. Adult survival rates did not vary significantly either between sexes or among years of the study. Survival rates did not vary significantly between juvenile and adult turtles, or among years of the study. Furthermore, neither adult nor juvenile survival rates differed significantly between pre- and post-disturbance. However, dispersal rates varied significantly among the four major study sites, and dispersal rates were higher during the pre-disturbance sampling periods compared to post-disturbance. Our results suggest few long-term effects on the demography of the turtle population. Florida box turtles responded to tropical storms and vegetation control by moving to favorable habitats minimally affected by the disturbances and remaining there. As long as turtles and perhaps other long-lived vertebrates can disperse to non-disturbed habitat, and high levels of mortality do not occur in a population, a long life span may allow them to wait out the impact of disturbance with potentially little effect on long-term population processes.

  9. Measuring the impact of invasive species on popular culture: a case study based on toy turtles from Japan

    Science.gov (United States)

    Lovich, Jeffrey E.; Yamamoto, Katsuya

    2016-01-01

    The red-eared slider turtle (Trachemys scripta elegans) is native to portions of the United States of America (USA) and adjacent northeastern Mexico. The bright and colorful hatchlings have long been popular as pets globally but numerous individuals have been released into the wild establishing populations in areas well outside their native range. As a result, slider turtles are now introduced worldwide on all continents, with the exception of Antarctica, and many temperate and tropical islands, including Japan. They are very successful at establishing breeding populations in a variety of habitats, even those in proximity to human development. Once established in large populations, they compete with native turtle species sometimes to the detriment of the latter. Tin toy turtles were popular in Japan for decades, and they were an important export item after World War II. From the 1920s to the 1950s, prior to the widespread establishment of slider populations in Japan, the toys were characterized by muted earth-tone colors representative of native species of Japanese turtles. After the 1950s, toy turtles exhibited brighter combinations of yellow, red and green more typical of slider turtles. This transition may reflect demand for more colorful toys by importing countries like the USA. Alternatively, the change was coincident with the importation of large numbers of colorful slider turtles to Japan via the pet trade and their subsequent establishment and numerical dominance in Japanese wetlands. This switch in toy turtle colors may reflect a cultural transition in awareness of what constitutes the appearance of a typical turtle in Japan. Sliders appear to have been accepted by Japanese consumers as a new cultural norm in the appearance of turtles, a case of art imitating life.

  10. Baseline heavy metals and metalloid values in blood of loggerhead turtles (Caretta caretta) from Baja California Sur, Mexico

    International Nuclear Information System (INIS)

    Ley-Quinonez, C.; Zavala-Norzagaray, A.A.; Espinosa-Carreon, T.L.; Peckham, H.; Marquez-Herrera, C.; Campos-Villegas, L.; Aguirre, A.A.

    2011-01-01

    Highlights: → We report baseline levels of selected heavy metals in blood of Pacific loggerhead turtles. → Blood was used to measure in a relatively non-invasive way baseline values of heavy metals. → Zn and Cd were found in high concentrations compared to levels reported in other parts of the world. → Cu concentrations in blood are high as they relate to concentrations in muscle. → No correlations were found between of heavy metals and metalloids analyzed and the size of the turtles. - Abstract: Environmental pollution due to heavy metals is having an increased impact on marine wildlife accentuated by anthropogenic changes in the planet including overfishing, agricultural runoff and marine emerging infectious diseases. Sea turtles are considered sentinels of ecological health in marine ecosystems. The objective of this study was to determine baseline concentrations of zinc, cadmium, copper, nickel, selenium, manganese, mercury and lead in blood of 22 clinically healthy, loggerhead turtles (Caretta caretta), captured for several reasons in Puerto Lopez Mateos, Baja California Sur, Mexico. Zinc was the most prevalent metal in blood (41.89 μg g -1 ), followed by Selenium (10.92 μg g -1 ). The mean concentration of toxic metal Cadmium was 6.12 μg g -1 and 1.01 μg g -1 respectively. Mean concentrations of metals followed this pattern: Zn > Se > Ni > Cu > Mn > Cd > Pb and Hg. We can conclude that blood is an excellent tissue to measure in relatively non-invasive way baseline values of heavy metals in Caretta caretta.

  11. Legal and institutional tools to mitigate plastic pollution affecting marine species: Argentina as a case study

    International Nuclear Information System (INIS)

    González Carman, Victoria; Machain, Natalia; Campagna, Claudio

    2015-01-01

    Highlights: • Plastic pollution in Argentina harms vulnerable marine species of turtles and mammals. • One tool to advance their conservation is policy. • The legal and institutional framework pertinent to plastic pollution is explored. • Laws and agencies are in place, yet implementation and enforcement is deficient. • Interventions to mitigate plastic pollution and protect marine species are advanced. - Abstract: Plastics are the most common form of debris found along the Argentine coastline. The Río de la Plata estuarine area is a relevant case study to describe a situation where ample policy exists against a backdrop of plastics disposed by populated coastal areas, industries, and vessels; with resultant high impacts of plastic pollution on marine turtles and mammals. Policy and institutions are in place but the impact remains due to ineffective waste management, limited public education and awareness, and weaknesses in enforcement of regulations. This context is frequently repeated all over the world. We list possible interventions to increase the effectiveness of policy that require integrating efforts among governments, the private sector, non-governmental organizations and the inhabitants of coastal cities to reduce the amount of plastics reaching the Río de la Plata and protect threatened marine species. What has been identified for Argentina applies to the region and globally

  12. Hydrodynamic effect of a satellite transmitter on a juvenile green turtle (Chelonia mydas)

    Science.gov (United States)

    Watson; Granger

    1998-09-01

    Wind tunnel tests were performed to measure the effect of a satellite transmitter on a juvenile green turtle (Chelonia mydas). A full-scale turtle model was constructed from an 11.5 kg specimen with a 48 cm carapace length, and a transmitter model was constructed from a Telonics ST-6. The turtle model was tested in a wind tunnel with and without the transmitter, which was mounted on the forward, topmost part of the carapace. Drag, lift and pitch moment were measured for several speeds and flow angles, and the data were scaled for application to the marine environment. At small flow angles representative of straight-line swimming, the transmitter increased drag by 27-30 %, reduced lift by less than 10 % and increased the pitch moment by 11-42 %. On the basis of the drag data at zero angle of attack, it is estimated that the backpack will reduce swimming speed by 11 %, assuming that the turtle produces the same thrust with the unit attached. The drag data are also used to estimate the effect of a transmitter on the swimming energetics of an adult green turtle. Design guidelines are included to minimize the adverse forces and moments caused by the transmitter.

  13. Levels of trace elements in green turtle eggs collected from Hong Kong: Evidence of risks due to selenium and nickel

    International Nuclear Information System (INIS)

    Lam, James C.W.; Tanabe, Shinsuke; Chan, Simon K.F.; Lam, Michael H.W.; Martin, Michael; Lam, Paul K.S.

    2006-01-01

    Concentrations of 22 trace elements were determined in green turtle (Chelonia mydas) eggs collected from Hong Kong. Concentrations of selenium, lead and nickel in these eggs were generally higher than those reported in other studies. The predicted no effect concentrations (PNEC; ng/g wet weight) of Pb (1000), Se (340 and 6000 for the worst-case and best-case scenarios, respectively) and Ni (17) in the green turtle eggs were estimated. Hazard quotients (HQs) estimate that Se (HQs: 0.2-24.5) and Ni (HQs: 4.0-26.4) may pose some risks to the turtles. Our study also found that concentrations of Ag, Se, Zn, Hg and Pb in the shell of the turtle eggs were significantly correlated with levels in the whole egg contents (yolk + albumen). Once the precise relationships of specific elements are established, egg-shell concentrations may be used as a non-lethal, non-invasive, surrogate for predicting whole egg burden of certain contaminants in marine turtles. - Concentrations of selenium and nickel in green turtle eggs from Hong Kong might pose some risks to the turtles

  14. Levels of trace elements in green turtle eggs collected from Hong Kong: Evidence of risks due to selenium and nickel

    Energy Technology Data Exchange (ETDEWEB)

    Lam, James C.W. [Center for Coastal Pollution and Conservation, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong (China); Tanabe, Shinsuke [Center for Marine Environmental Studies, Ehime University, Tarumi 3-5-7, Matsuyama 790-8556 (Japan); Chan, Simon K.F. [Agriculture, Fisheries and Conservation Department, Hong Kong SAR Government, Hong Kong, (China); Lam, Michael H.W. [Center for Coastal Pollution and Conservation, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong (China); Martin, Michael [Center for Coastal Pollution and Conservation, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong (China); Lam, Paul K.S. [Center for Coastal Pollution and Conservation, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong (China)]. E-mail: bhpksl@cityu.edu.hk

    2006-12-15

    Concentrations of 22 trace elements were determined in green turtle (Chelonia mydas) eggs collected from Hong Kong. Concentrations of selenium, lead and nickel in these eggs were generally higher than those reported in other studies. The predicted no effect concentrations (PNEC; ng/g wet weight) of Pb (1000), Se (340 and 6000 for the worst-case and best-case scenarios, respectively) and Ni (17) in the green turtle eggs were estimated. Hazard quotients (HQs) estimate that Se (HQs: 0.2-24.5) and Ni (HQs: 4.0-26.4) may pose some risks to the turtles. Our study also found that concentrations of Ag, Se, Zn, Hg and Pb in the shell of the turtle eggs were significantly correlated with levels in the whole egg contents (yolk + albumen). Once the precise relationships of specific elements are established, egg-shell concentrations may be used as a non-lethal, non-invasive, surrogate for predicting whole egg burden of certain contaminants in marine turtles. - Concentrations of selenium and nickel in green turtle eggs from Hong Kong might pose some risks to the turtles.

  15. MARINE LEECH ANTICOAGULANT DIVERSITY AND EVOLUTION.

    Science.gov (United States)

    Tessler, Michael; Marancik, David; Champagne, Donald; Dove, Alistair; Camus, Alvin; Siddall, Mark E; Kvist, Sebastian

    2018-03-16

    Leeches (Annelida: Hirudinea) possess powerful salivary anticoagulants and, accordingly, are frequently employed in modern, authoritative medicine. Members of the almost exclusively marine family Piscicolidae account for 20% of leech species diversity, and feed on host groups (e.g., sharks) not encountered by their freshwater and terrestrial counterparts. Moreover, some species of Ozobranchidae feed on endangered marine turtles and have been implicated as potential vectors for the tumor-associated turtle herpesvirus. In spite of their ecological importance and unique host associations, there is a distinct paucity of data regarding the salivary transcriptomes of either of these families. Using next generation sequencing, we profiled transcribed, putative anticoagulants and other salivary bioactive compounds that have previously been linked to bloodfeeding from 7 piscicolid species (3 elasmobranch-feeders; 4 non-cartilaginous fish-feeders) and 1 ozobranchid species (2 samples). In total, 149 putative anticoagulants and bioactive loci were discovered in varying constellations throughout the different samples. The putative anticoagulants showed a broad spectrum of described antagonistic pathways, such as inhibition of factor Xa and platelet aggregation, that likely have similar bioactive roles in marine fish and turtles. A transcript with homology to ohanin, originally isolated from king cobras, was found in Cystobranchus vividus but is otherwise unknown from leeches. Estimation of selection pressures for the putative anticoagulants recovered evidence for both positive and purifying selection along several isolated branches in the gene trees and positive selection was also estimated for a few select codons in a variety of marine species. Similarly, phylogenetic analyses of the amino acid sequences for several anticoagulants indicated divergent evolution.

  16. High incidence of deformity in aquatic turtles in the John Heinz National Wildlife Refuge

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Barbara [Department of Bioscience and Biotechnology, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Spotila, James R [Department of Bioscience and Biotechnology, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Congdon, Justin [Savannah River Ecology Laboratory, University of Georgia, Drawer E., Aiken, SC (United States)

    2006-08-15

    The John Heinz National Wildlife Refuge is subject to pollution from multiple sources. We studied development of snapping turtle (Chelydra serpentina) and painted turtle (Chrysemys picta) embryos from the refuge from 2000 through 2003. Mean annual deformity rate of pooled painted turtle clutches over four years ranged from 45 to 71%, while that of snapping turtle clutches ranged from 13 to 19%. Lethal deformities were more common than minor or moderate deformities in embryos of both species. Adult painted turtles had a higher deformity rate than adult snapping turtles. Snapping turtles at JHNWR had high levels of PAH contamination in their fat. This suggests that PAHs are involved in the high level of deformities. Other contaminants may also play a role. Although the refuge offers many advantages to resident turtle populations, pollution appears to place a developmental burden on the life history of these turtles. - This paper presents findings on the prevalence of developmental abnormalities in turtles at a national wildlife refuge that have direct relevance to studies on the effects of contamination on development and morphology of vertebrates.

  17. High incidence of deformity in aquatic turtles in the John Heinz National Wildlife Refuge

    International Nuclear Information System (INIS)

    Bell, Barbara; Spotila, James R.; Congdon, Justin

    2006-01-01

    The John Heinz National Wildlife Refuge is subject to pollution from multiple sources. We studied development of snapping turtle (Chelydra serpentina) and painted turtle (Chrysemys picta) embryos from the refuge from 2000 through 2003. Mean annual deformity rate of pooled painted turtle clutches over four years ranged from 45 to 71%, while that of snapping turtle clutches ranged from 13 to 19%. Lethal deformities were more common than minor or moderate deformities in embryos of both species. Adult painted turtles had a higher deformity rate than adult snapping turtles. Snapping turtles at JHNWR had high levels of PAH contamination in their fat. This suggests that PAHs are involved in the high level of deformities. Other contaminants may also play a role. Although the refuge offers many advantages to resident turtle populations, pollution appears to place a developmental burden on the life history of these turtles. - This paper presents findings on the prevalence of developmental abnormalities in turtles at a national wildlife refuge that have direct relevance to studies on the effects of contamination on development and morphology of vertebrates

  18. EFFECTS OF "SWIM WITH THE TURTLES" TOURIST ATTRACTIONS ON GREEN SEA TURTLE (CHELONIA MYDAS) HEALTH IN BARBADOS, WEST INDIES.

    Science.gov (United States)

    Stewart, Kimberly; Norton, Terry; Mohammed, Hamish; Browne, Darren; Clements, Kathleen; Thomas, Kirsten; Yaw, Taylor; Horrocks, Julia

    2016-04-01

    Along the West Coast of Barbados a unique relationship has developed between endangered green sea turtles (Chelonia mydas) and humans. Fishermen began inadvertently provisioning these foraging turtles with fish offal discarded from their boats. Although initially an indirect supplementation, this activity became a popular attraction for visitors. Subsequently, demand for this activity increased, and direct supplementation or provisioning with food began. Food items offered included raw whole fish (typically a mixture of false herring [Harengula clupeola] and pilchard [Harengula humeralis]), filleted fish, and lesser amounts of processed food such as hot dogs, chicken, bread, or various other leftovers. Alterations in behavior and growth rates as a result of the provisioning have been documented in this population. The purpose of this study was to determine how tourism-based human interactions are affecting the overall health of this foraging population and to determine what potential health risks these interactions may create for sea turtles. Juvenile green sea turtles (n=29) were captured from four sites off the coast of Barbados, West Indies, and categorized into a group that received supplemental feeding as part of a tour (n=11) or an unsupplemented group (n=18) that consisted of individuals that were captured at sites that did not provide supplemental feeding. Following capture, a general health assessment of each animal was conducted. This included weight and morphometric measurements, a systematic physical examination, determination of body condition score and body condition index, epibiota assessment and quantification, and clinical pathology including hematologic and biochemical testing and nutritional assessments. The supplemented group was found to have changes to body condition, vitamin, mineral, hematologic, and biochemical values. Based on these results, recommendations were made to decrease negative behaviors and health impacts for turtles as a result

  19. Western Pond Turtle Head-starting and Reintroduction; 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Van Leuven, Susan; Allen, Harriet; Slavin, Kate (Washington Department of Fish and Wildlife, Wildlife Management Program, Olympia, WA)

    2005-09-01

    This report covers the results of the western pond turtle head-starting and reintroduction project for the period of October 2004-September 2005. Wild hatchling western pond turtles from the Columbia River Gorge were reared at the Woodland Park and Oregon Zoos in 2004 and 2005 as part of the recovery effort for this Washington State endangered species. The objective of the program is to reduce losses to introduced predators like bullfrogs and largemouth bass by raising the hatchlings to a size where they are too large to be eaten by most of these predators. Thirty-five turtles were placed at the Woodland Park Zoo and 53 at the Oregon Zoo. Of these, 77 head-started juvenile turtles were released at three sites in the Columbia Gorge in 2005. Four were held back to attain more growth in captivity. Eleven were released at the Klickitat ponds, 22 at the Klickitat lake, 39 at the Skamania site, and 5 at Pierce National Wildlife Refuge (NWR). This brought the total number of head-start turtles released since 1991 to 257 for the Klickitat ponds, 136 for the Klickitat lake, 206 for the Skamania pond complex, and 255 at Pierce NWR. In 2005, 34 females from the two Columbia Gorge populations were equipped with transmitters and monitored for nesting activity. Twenty-four nests were located and protected; these produced 90 hatchlings. The hatchlings were collected in September and transported to the Oregon and Woodland Park zoos for rearing in the head-start program. During the 2005 field season trapping effort, 486 western pond turtles were captured in the Columbia Gorge, including 430 previously head-started turtles. These recaptures, together with confirmed nesting by head-start females and visual resightings, indicate the program is succeeding in boosting juvenile recruitment to increase the populations. Records were also collected on 216 individual painted turtles captured in 2005 during trapping efforts at Pierce NWR, to gather baseline information on this native

  20. Hexavalent Chromium Is Cytotoxic and Genotoxic to Hawksbill Sea Turtle Cells

    Science.gov (United States)

    Wise, Sandra S.; Xie, Hong; Fukuda, Tomokazu; Thompson, W. Douglas; Wise, John Pierce

    2014-01-01

    Sea turtles are a charismatic and ancient ocean species and can serve as key indicators for ocean ecosystems, including coral reefs and sea grass beds as well as coastal beaches. Genotoxicity studies in the species are absent, limiting our understanding of the impact of environmental toxicants on sea turtles. Hexavalent chromium (Cr(VI)) is a ubiquitous environmental problem worldwide, and recent studies show it is a global marine pollutant of concern. Thus, we evaluated the cytotoxicity and genotoxicity of soluble and particulate Cr(VI) in hawksbill sea turtle cells. Particulate Cr(VI) was both cytotoxic and genotoxic to sea turtle cells. Concentrations of 0.1, 0.5, 1, and 5 μg/cm2 lead chromate induced 108, 79, 54, and 7 percent relative survival, respectively. Additionally, concentrations of 0, 0.1, 0.5, 1, and 5 μg/cm2 lead chromate induced damage in 4, 10, 15, 26, and 36 percent of cells and caused 4, 11, 17, 30, and 56 chromosome aberrations in 100 metaphases, respectively. For soluble Cr, concentrations of 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate induced 84, 69, 46, 25, and 3 percent relative survival, respectively. Sodium chromate induced 3, 9, 9, 14, 21, and 29 percent of metaphases with damage, and caused 3, 10, 10, 16, 26, and 39 damaged chromosomes in 100 metaphases at concentrations of 0, 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate, respectively. These data suggest that Cr(VI) may be a concern for hawksbill sea turtles and sea turtles in general. PMID:24952338

  1. Comparing Acoustic Tag Attachments Designed for Mobile Tracking of Hatchling Sea Turtles

    Directory of Open Access Journals (Sweden)

    Aimee L. Hoover

    2017-07-01

    Full Text Available The poorly understood movements of sea turtles during the “lost years” of their early life history have been characterized as a “passive drifter” stage. Biologging technology allows us to study patterns of dispersal, but the small body size of young life stages requires particular consideration that such tagging does not significantly impede animal movements. We tested the effect of instrument attachment methods for mobile acoustic tracking of hatchling sea turtles, including a design that would be suitable for leatherback turtles (Dermochelys coriacea. We obtained 8-week-old hatchery-reared green sea turtles (Chelonia mydas (n = 12 individuals and examined the effect of attaching Vemco V5 acoustic tags. Each animal's swim speed, swimming depth, and stroke frequency were determined under three scenarios: control, direct Velcro® attachment to the carapace, and harness attachment, to determine if there was a significant difference amongst treatments. Turtle swimming speed was significantly slower during the middle period of the trial for the harness attachment compared with the control. No significant change in swim speed was observed when the tag was attached directly with Velcro®, and no significant change in dive depth was observed for either treatment compared to the control. Stroke frequency was significantly greater compared to the control at the end of the trial for the Velcro® attachment only, although there was no corresponding increase in swimming speed. This information can be used to design effective approaches for actively tracking free-ranging hatchling sea turtles to understand dispersal and survival of these vulnerable marine species.

  2. Videography reveals in-water behavior of loggerhead turtles (Caretta caretta at a foraging ground

    Directory of Open Access Journals (Sweden)

    Samir Harshad Patel

    2016-12-01

    Full Text Available Assessing sea turtle behavior at the foraging grounds has been primarily limited to the interpretation of remotely-sensed data. As a result, there is a general lack of detailed understanding regarding the habitat use of sea turtles during a phase that accounts for a majority of their lives. Thus, this study aimed to fill these data gaps by providing detailed information about the feeding habits, prey availability, buoyancy control and water column usage by 73 loggerhead turtles across 45.7 hours of video footage obtained from a remotely operated vehicle (ROV from 2008 – 2014. We developed an ethogram to account for 27 potential environmental and behavioral parameters. Turtles were filmed through the entire water column and we quantified the frequency of behaviors such as flipper beats, breaths, defecations, feedings and reactions to the ROV. We used the ROV’s depth sensor and visible cues (i.e. water surface or benthic zone in view to distinguish depth zones and assess the turtles’ use of the water column. We also quantified interactions with sympatric biota, including potential gelatinous and non-gelatinous prey species, fish (including sharks, marine mammals and other sea turtles. We discovered that turtles tended to remain within the near surface and surface zones of the water column through the majority of the footage. During benthic dives, turtles consistently exhibited negative buoyancy and some turtles exhibited a dichotomous foraging behavior, first foraging within the water column, then diving to the benthic environment. Videography allowed us to combine behavioral observations and habitat features that cannot be captured by traditional telemetry methods, resulting in a broader understanding of loggerheads’ ecological role in the U.S. Mid-Atlantic.

  3. Mass mortality of eastern box turtles with upper respiratory disease following atypical cold weather.

    Science.gov (United States)

    Agha, Mickey; Price, Steven J; Nowakowski, A Justin; Augustine, Ben; Todd, Brian D

    2017-04-20

    Emerging infectious diseases cause population declines in many ectotherms, with outbreaks frequently punctuated by periods of mass mortality. It remains unclear, however, whether thermoregulation by ectotherms and variation in environmental temperature is associated with mortality risk and disease progression, especially in wild populations. Here, we examined environmental and body temperatures of free-ranging eastern box turtles Terrapene carolina during a mass die-off coincident with upper respiratory disease. We recorded deaths of 17 turtles that showed clinical signs of upper respiratory disease among 76 adult turtles encountered in Berea, Kentucky (USA), in 2014. Of the 17 mortalities, 11 occurred approximately 14 d after mean environmental temperature dropped 2.5 SD below the 3 mo mean. Partial genomic sequencing of the major capsid protein from 1 sick turtle identified a ranavirus isolate similar to frog virus 3. Turtles that lacked clinical signs of disease had significantly higher body temperatures (23°C) than sick turtles (21°C) during the mass mortality, but sick turtles that survived and recovered eventually warmed (measured by temperature loggers). Finally, there was a significant negative effect of daily environmental temperature deviation from the 3 mo mean on survival, suggesting that rapid decreases in environmental temperature were correlated with mortality. Our results point to a potential role for environmental temperature variation and body temperature in disease progression and mortality risk of eastern box turtles affected by upper respiratory disease. Given our findings, it is possible that colder or more variable environmental temperatures and an inability to effectively thermoregulate are associated with poorer disease outcomes in eastern box turtles.

  4. The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan.

    Science.gov (United States)

    Wang, Zhuo; Pascual-Anaya, Juan; Zadissa, Amonida; Li, Wenqi; Niimura, Yoshihito; Huang, Zhiyong; Li, Chunyi; White, Simon; Xiong, Zhiqiang; Fang, Dongming; Wang, Bo; Ming, Yao; Chen, Yan; Zheng, Yuan; Kuraku, Shigehiro; Pignatelli, Miguel; Herrero, Javier; Beal, Kathryn; Nozawa, Masafumi; Li, Qiye; Wang, Juan; Zhang, Hongyan; Yu, Lili; Shigenobu, Shuji; Wang, Junyi; Liu, Jiannan; Flicek, Paul; Searle, Steve; Wang, Jun; Kuratani, Shigeru; Yin, Ye; Aken, Bronwen; Zhang, Guojie; Irie, Naoki

    2013-06-01

    The unique anatomical features of turtles have raised unanswered questions about the origin of their unique body plan. We generated and analyzed draft genomes of the soft-shell turtle (Pelodiscus sinensis) and the green sea turtle (Chelonia mydas); our results indicated the close relationship of the turtles to the bird-crocodilian lineage, from which they split ∼267.9-248.3 million years ago (Upper Permian to Triassic). We also found extensive expansion of olfactory receptor genes in these turtles. Embryonic gene expression analysis identified an hourglass-like divergence of turtle and chicken embryogenesis, with maximal conservation around the vertebrate phylotypic period, rather than at later stages that show the amniote-common pattern. Wnt5a expression was found in the growth zone of the dorsal shell, supporting the possible co-option of limb-associated Wnt signaling in the acquisition of this turtle-specific novelty. Our results suggest that turtle evolution was accompanied by an unexpectedly conservative vertebrate phylotypic period, followed by turtle-specific repatterning of development to yield the novel structure of the shell.

  5. Investigation of plastic debris ingestion by four species of sea turtles collected as bycatch in pelagic Pacific longline fisheries.

    Science.gov (United States)

    Clukey, Katharine E; Lepczyk, Christopher A; Balazs, George H; Work, Thierry M; Lynch, Jennifer M

    2017-07-15

    Ingestion of marine debris is an established threat to sea turtles. The amount, type, color and location of ingested plastics in the gastrointestinal tracts of 55 sea turtles from Pacific longline fisheries from 2012 to 2016 were quantified, and compared across species, turtle length, body condition, sex, capture location, season and year. Six approaches for quantifying amounts of ingested plastic strongly correlated with one another and included: number of pieces, mass, volume and surface area of plastics, ratio of plastic mass to body mass, and percentage of the mass of gut contents consisting of plastic. All olive ridley (n=37), 90% of green (n=10), 80% of loggerhead (n=5) and 0% of leatherback (n=3) turtles had ingested plastic; green turtles ingested significantly more than olive ridleys. Most debris was in the large intestines. No adverse health impacts (intestinal lesions, blockage, or poor body condition) due directly to plastic ingestion were noted. Copyright © 2017. Published by Elsevier Ltd.

  6. A comparison of turtle sampling methods in a small lake in Standing Stone State Park, Overton County, Tennessee

    Science.gov (United States)

    Weber, A.; Layzer, James B.

    2011-01-01

    We used basking traps and hoop nets to sample turtles in Standing Stone Lake at 2-week intervals from May to November 2006. In alternate weeks, we conducted visual basking surveys. We collected and observed four species of turtles: spiny softshell (Apalone spinifera), northern map turtle (Graptemys geographica), pond slider (Trachernys scripta), and snapping turtle (Chelydra serpentina). Relative abundances varied greatly among sampling methods. To varying degrees, all methods were species selective. Population estimates from mark and recaptures of three species, basking counts, and hoop net catches indicated that pond sliders were the most abundant species, but northern map turtles were 8× more abundant than pond sliders in basking trap catches. We saw relatively few snapping turtles basking even though population estimates indicated they were the second most abundant species. Populations of all species were dominated by adult individuals. Sex ratios of three species differed significantly from 1:1. Visual surveys were the most efficient method for determining the presence of species, but capture methods were necessary to obtain size and sex data.

  7. Recent Demographic History and Present Fine-Scale Structure in the Northwest Atlantic Leatherback (Dermochelys coriacea) Turtle Population

    Science.gov (United States)

    Molfetti, Érica; Torres Vilaça, Sibelle; Georges, Jean-Yves; Plot, Virginie; Delcroix, Eric; Le Scao, Rozen; Lavergne, Anne; Barrioz, Sébastien; dos Santos, Fabrício Rodrigues; de Thoisy, Benoît

    2013-01-01

    The leatherback turtle Dermochelys coriacea is the most widely distributed sea turtle species in the world. It exhibits complex life traits: female homing and migration, migrations of juveniles and males that remain poorly known, and a strong climatic influence on resources, breeding success and sex-ratio. It is consequently challenging to understand population dynamics. Leatherbacks are critically endangered, yet the group from the Northwest Atlantic is currently considered to be under lower risk than other populations while hosting some of the largest rookeries. Here, we investigated the genetic diversity and the demographic history of contrasted rookeries from this group, namely two large nesting populations in French Guiana, and a smaller one in the French West Indies. We used 10 microsatellite loci, of which four are newly isolated, and mitochondrial DNA sequences of the control region and cytochrome b. Both mitochondrial and nuclear markers revealed that the Northwest Atlantic stock of leatherbacks derives from a single ancestral origin, but show current genetic structuration at the scale of nesting sites, with the maintenance of migrants amongst rookeries. Low nuclear genetic diversities are related to founder effects that followed consequent bottlenecks during the late Pleistocene/Holocene. Most probably in response to climatic oscillations, with a possible influence of early human hunting, female effective population sizes collapsed from 2 million to 200. Evidence of founder effects and high numbers of migrants make it possible to reconsider the population dynamics of the species, formerly considered as a metapopulation model: we propose a more relaxed island model, which we expect to be a key element in the currently observed recovering of populations. Although these Northwest Atlantic rookeries should be considered as a single evolutionary unit, we stress that local conservation efforts remain necessary since each nesting site hosts part of the genetic

  8. Sea Turtle Conservation on Bonaire. Sea Turtle Club Bonaire 1997. Project Report

    NARCIS (Netherlands)

    Schuit, M.; Put, van A.L.L.M.; Valkering, N.P.; Eijck, van T.J.W.

    1998-01-01

    The Sea Turtle Club Bonaire (STCB) is a non-governmental, non-profit organization. Its main goal is the conservation of the sea turtles that occur on Bonaire. To reach this goal, annual projects are undertaken, such as research and the promotion of public awareness on sea turtle conservation. The

  9. Identification of Chelonid herpesvirus 5 (ChHV5) in endangered green turtles (Chelonia mydas) with fibropapillomatosis in Asia

    Science.gov (United States)

    Li, Tsung-Hsien; Hsu, Wei-Li; Lan, Yu-Ching; Balazs, George H.; Work, Thierry M.; Tseng, Cheng-Tsung; Chang, Chao-Chin

    2017-01-01

    Fibropapillomatosis (FP), a debilitating tumor disease of sea turtles, was first identified in green turtles [Chelonia mydas (Linnaeus, 1758)] in Florida in 1938. In recent decades, FP has been observed globally and is an emerging panzootic disease in sea turtles. However, few reports of FP in Asia exist. Here, we provide the first evidence of Chelonid herpesvirus 5 (ChHV5) DNA associated with FP in endangered green turtles from Taiwan, through molecular characterization, phylogenetic analysis, and histopathological examination. In our study, ChHV5 was successfully detected by PCR in the FP tumor lesions of green turtles. The sequences were found to be consistent with those of tumor-inducing viruses shown to affect sea turtles in the other parts of the world. ChHV5 RNA from the FP tissues was further detected by RT-PCR, indicating active replication of the viruses inside FP tumors. In addition to the molecular evidence of ChHV5 in FP, epidermal intranuclear inclusions were identified in tumor lesions upon histopathological examination. This further suggests that ChHV5 should be in a transcriptionally active (i.e., non-latent) state in FP tumors of affected green turtles. The phylogenetic tree revealed that ChHV5 from the green turtles in Taiwan were closest to the ChHV5 from Hawaii, Puerto Rico, and Sao Tome. For conservation of endangered sea turtles, ChHV5 should be considered an emerging virus, which threatens sea turtles in marine waters in Asia.

  10. 76 FR 52888 - Western Pacific Pelagic Fisheries; American Samoa Longline Gear Modifications To Reduce Turtle...

    Science.gov (United States)

    2011-08-24

    ... Modifications To Reduce Turtle Interactions AGENCY: National Marine Fisheries Service (NMFS), National Oceanic... Pacific Region (Pelagics FEP), including an environmental assessment, that presents background information on this rule. The Pelagics FEP and Amendment 5 are available from the Council, 1164 Bishop St., Suite...

  11. Turtles: Freshwater

    Science.gov (United States)

    Gibbons, J. Whitfield; Lovich, Jeffrey E.; Bowden, R.M.

    2017-01-01

    With their iconic shells, turtles are morphologically distinct in being the only extant or extinct vertebrate animals to have their shoulders and hips inside their rib cages. By the time an asteroid hit the earth 65.5 million years ago, causing the extinction of dinosaurs, turtles were already an ancient lineage that was 70% through their evolutionary history to date. The remarkable evolutionary success of turtles over 220 million years is due to a combination of both conservative and effective life history traits and an essentially unchanging morphology that withstood the test of time. However, the life history traits of many species make them particularly susceptible to overharvest and habitat destruction in the modern world, and a majority of the world’s species face serious conservation challenges with several extinctions documented in modern times. The global plight of turtles is underscored by the fact that the percentage of imperiled species exceeds that of even the critically endangered primates.Freshwater turtles, with over 260 recognized species, have become a focus on a worldwide scale for many conservation issues. This article is a synthesis of a diverse body of information on the general biology of freshwater turtles, with particular emphasis on the extensive research on ecology, life history, and behavior that has been accomplished in the last half century. Much of the research has been applicable to the aforementioned conservation challenges. The studies presented include a combination of laboratory and field experiments and observational studies on this intriguing group of animals.

  12. Multi-modal homing in sea turtles: modeling dual use of geomagnetic and chemical cues in island-finding

    Directory of Open Access Journals (Sweden)

    Courtney S Endres

    2016-02-01

    Full Text Available Sea turtles are capable of navigating across large expanses of ocean to arrive at remote islands for nesting, but how they do so has remained enigmatic. An interesting example involves green turtles (Chelonia mydas that nest on Ascension Island, a tiny land mass located approximately 2000 km from the turtles' foraging grounds along the coast of Brazil. Sensory cues that turtles are known to detect, and which might hypothetically be used to help locate Ascension Island, include the geomagnetic field, airborne odorants, and waterborne odorants. One possibility is that turtles use magnetic cues to arrive in the vicinity of the island, then use chemical cues to pinpoint its location. As a first step toward investigating this hypothesis, we used oceanic, atmospheric, and geomagnetic models to assess whether magnetic and chemical cues might plausibly be used by turtles to locate Ascension Island. Results suggest that waterborne and airborne odorants alone are insufficient to guide turtles from Brazil to Ascension, but might permit localization of the island once turtles arrive in its vicinity. By contrast, magnetic cues might lead turtles into the vicinity of the island, but would not typically permit its localization because the field shifts gradually over time. Simulations reveal, however, that the sequential use of magnetic and chemical cues can potentially provide a robust navigational strategy for locating Ascension Island. Specifically, one strategy that appears viable is following a magnetic isoline into the vicinity of Ascension Island until an odor plume emanating from the island is encountered, after which turtles might either: (1 initiate a search strategy; or (2 follow the plume to its island source. These findings are consistent with the hypothesis that sea turtles, and perhaps other marine animals, use a multi-modal navigational strategy for locating remote islands.

  13. Multi-Modal Homing in Sea Turtles: Modeling Dual Use of Geomagnetic and Chemical Cues in Island-Finding.

    Science.gov (United States)

    Endres, Courtney S; Putman, Nathan F; Ernst, David A; Kurth, Jessica A; Lohmann, Catherine M F; Lohmann, Kenneth J

    2016-01-01

    Sea turtles are capable of navigating across large expanses of ocean to arrive at remote islands for nesting, but how they do so has remained enigmatic. An interesting example involves green turtles (Chelonia mydas) that nest on Ascension Island, a tiny land mass located approximately 2000 km from the turtles' foraging grounds along the coast of Brazil. Sensory cues that turtles are known to detect, and which might hypothetically be used to help locate Ascension Island, include the geomagnetic field, airborne odorants, and waterborne odorants. One possibility is that turtles use magnetic cues to arrive in the vicinity of the island, then use chemical cues to pinpoint its location. As a first step toward investigating this hypothesis, we used oceanic, atmospheric, and geomagnetic models to assess whether magnetic and chemical cues might plausibly be used by turtles to locate Ascension Island. Results suggest that waterborne and airborne odorants alone are insufficient to guide turtles from Brazil to Ascension, but might permit localization of the island once turtles arrive in its vicinity. By contrast, magnetic cues might lead turtles into the vicinity of the island, but would not typically permit its localization because the field shifts gradually over time. Simulations reveal, however, that the sequential use of magnetic and chemical cues can potentially provide a robust navigational strategy for locating Ascension Island. Specifically, one strategy that appears viable is following a magnetic isoline into the vicinity of Ascension Island until an odor plume emanating from the island is encountered, after which turtles might either: (1) initiate a search strategy; or (2) follow the plume to its island source. These findings are consistent with the hypothesis that sea turtles, and perhaps other marine animals, use a multi-modal navigational strategy for locating remote islands.

  14. Proceedings fo the Seventeenth Annual Sea Turtle Symposium, 4-8 March 1997, Orlando, Florida, U.S.A.

    OpenAIRE

    Epperly, Sheryan P.; Braun, Joanne

    1998-01-01

    The 17th Annual Sea Turtle Symposium was held at the Delta Orlando Resort in Orlando, Florida U.S.A. from March 4-8, 1997. The symposium was hosted by Florida Atlantic University, Mote Marine Laboratory, University of Central Florida, University of Florida, Florida Atlantic University and the Comité Nacional para la Conservación y Protección de las Totugas Marinas. The 17th was the largest symposium to date. A total of 720 participants registered, including sea turtle biologists, stu...

  15. Emydid herpesvirus 1 infection in northern map turtles (Graptemys geographica) and painted turtles (Chrysemys picta).

    Science.gov (United States)

    Ossiboff, Robert J; Newton, Alisa L; Seimon, Tracie A; Moore, Robert P; McAloose, Denise

    2015-05-01

    A captive, juvenile, female northern map turtle (Graptemys geographica) was found dead following a brief period of weakness and nasal discharge. Postmortem examination identified pneumonia with necrosis and numerous epithelial, intranuclear viral inclusion bodies, consistent with herpesviral pneumonia. Similar intranuclear inclusions were also associated with foci of hepatocellular and splenic necrosis. Polymerase chain reaction (PCR) screening of fresh, frozen liver for the herpesviral DNA-dependent DNA polymerase gene yielded an amplicon with 99.2% similarity to recently described emydid herpesvirus 1 (EmyHV-1). Molecular screening of turtles housed in enclosures that shared a common circulation system with the affected map turtle identified 4 asymptomatic, EmyHV-1 PCR-positive painted turtles (Chrysemys picta) and 1 asymptomatic northern map turtle. Herpesvirus transmission between painted and map turtles has been previously suggested, and our report provides the molecular characterization of a herpesvirus in asymptomatic painted turtles that can cause fatal herpesvirus-associated disease in northern map turtles. © 2015 The Author(s).

  16. Tracing the Co-evolutionary History of the Chelonid Fibropapilloma-associated Herpesvirus and Its Host Sea Turtles

    DEFF Research Database (Denmark)

    Alfaro Nuñez, Luis Alonso

    This thesis describes various aspects of marine turtle (Testudines) evolution and tackles a well-described and controversial disease of these animals, fibropapillomatosis (FP), which is believed to be caused by the Chelonid fibropapilloma-associated herpesvirus (CFPHV). A large dataset of samples...

  17. Comparative cytotoxicity and genotoxicity of soluble and particulate hexavalent chromium in human and hawksbill sea turtle (Eretmochelys imbricate) skin cells

    OpenAIRE

    Young, Jamie L.; Wise, Sandra S.; Xie, Hong; Zhu, Cairong; Fukuda, Tomokazu; Wise, John Pierce

    2015-01-01

    Chromium is both a global marine pollutant and a known human health hazard. In this study, we compare the cytotoxicity and genotoxicity of both soluble and particulate chromate in human and hawksbill sea turtle (Eretmochelys imbricata) skin fibroblasts. Our data show that both soluble and particulate Cr(VI) induce concentration-dependent increases in cytotoxicity, genotoxicity, and intracellular Cr ion concentrations in both human and hawksbill sea turtle fibroblasts. Based on administered co...

  18. Deepwater Horizon oil spill impacts on sea turtles could span the Atlantic.

    Science.gov (United States)

    Putman, Nathan F; Abreu-Grobois, F Alberto; Iturbe-Darkistade, Iñaky; Putman, Emily M; Richards, Paul M; Verley, Philippe

    2015-12-01

    We investigated the extent that the 2010 Deepwater Horizon oil spill potentially affected oceanic-stage sea turtles from populations across the Atlantic. Within an ocean-circulation model, particles were backtracked from the Gulf of Mexico spill site to determine the probability of young turtles arriving in this area from major nesting beaches. The abundance of turtles in the vicinity of the oil spill was derived by forward-tracking particles from focal beaches and integrating population size, oceanic-stage duration and stage-specific survival rates. Simulations indicated that 321 401 (66 199-397 864) green (Chelonia mydas), loggerhead (Caretta caretta) and Kemp's ridley (Lepidochelys kempii) turtles were likely within the spill site. These predictions compared favourably with estimates from in-water observations recently made available to the public (though our initial predictions for Kemp's ridley were substantially lower than in-water estimates, better agreement was obtained with modifications to mimic behaviour of young Kemp's ridley turtles in the northern Gulf). Simulations predicted 75.2% (71.9-76.3%) of turtles came from Mexico, 14.8% (11-18%) from Costa Rica, 5.9% (4.8-7.9%) from countries in northern South America, 3.4% (2.4-3.5%) from the United States and 1.6% (0.6-2.0%) from West African countries. Thus, the spill's impacts may extend far beyond the current focus on the northern Gulf of Mexico. © 2015 The Authors.

  19. First record of a Caribbean green turtle (Chelonia mydas) grazing on invasive seagrass (Halophila stipulacea)

    NARCIS (Netherlands)

    Becking, L.E.; Bussel, T.; Debrot, A.O.; Christianen, M.

    2014-01-01

    From Bonaire, we here provide the first documented case of the green turtle feeding on the invasive seagrass, Halophila stipulacea, in the Caribbean. The seagrass is rapidly invading existing seagrass meadows and altering key foraging habitat of this endangered marine reptile throughout the eastern

  20. Identifying Critical Habitat for Australian Freshwater Turtles in a Large Regulated Floodplain: Implications for Environmental Water Management

    Science.gov (United States)

    Ocock, J. F.; Bino, G.; Wassens, S.; Spencer, J.; Thomas, R. F.; Kingsford, R. T.

    2018-03-01

    Freshwater turtles face many threats, including habitat loss and river regulation reducing occupancy and contributing to population decline. Limited knowledge of hydrological conditions required to maintain viable turtle populations in large floodplain wetlands hinders effective adaptive management of environmental water in regulated rivers. We surveyed three turtle species over 4 years across the Lower Murrumbidgee River floodplain, a large wetland complex with a long history of water resource development. Using site and floodplain metrics and generalized linear models, within a Bayesian Model Averaging framework, we quantified the main drivers affecting turtle abundance. We also used a hierarchical modeling approach, requiring large sample sizes, quantifying possible environmental effects while accounting for detection probabilities of the eastern long-necked turtle ( Chelodina longicollis). The three species varied in their responses to hydrological conditions and connectivity to the main river channel. Broad-shelled turtles ( Chelodina expansa) and Macquarie River turtles ( Emydura macquarii macquarii) had restricted distributions, centered on frequently inundated wetlands close to the river, whereas the eastern long-necked turtles were more widely distributed, indicating an ability to exploit variable habitats. We conclude that turtle communities would benefit from long-term management strategies that maintain a spatiotemporal mosaic of hydrological conditions. More specifically, we identified characteristics of refuge habitats and stress the importance of maintaining their integrity during dry periods. Neighboring habitats can be targeted during increased water availability years to enhance feeding and dispersal opportunities for freshwater turtles.

  1. Turtle Watch: Community Engagement and Action

    Science.gov (United States)

    Lewis, Elaine; Baudains, Catherine

    2015-01-01

    Many threats face the freshwater turtle, Chelodina colliei, also known as the oblong turtle. A community education project, Turtle Watch, focused on this target species and enabled effective conservation action to be implemented. Turtle Watch was conducted in the Perth Metropolitan Area of Western Australia, as the oblong turtle inhabits the…

  2. Detection of Salmonella enterica Serovar Montevideo and Newport in Free-ranging Sea Turtles and Beach Sand in the Caribbean and Persistence in Sand and Seawater Microcosms.

    Science.gov (United States)

    Ives, A-K; Antaki, E; Stewart, K; Francis, S; Jay-Russell, M T; Sithole, F; Kearney, M T; Griffin, M J; Soto, E

    2017-09-01

    Salmonellae are Gram-negative zoonotic bacteria that are frequently part of the normal reptilian gastrointestinal flora. The main objective of this project was to estimate the prevalence of non-typhoidal Salmonella enterica in the nesting and foraging populations of sea turtles on St. Kitts and in sand from known nesting beaches. Results suggest a higher prevalence of Salmonella in nesting leatherback sea turtles compared with foraging green and hawksbill sea turtles. Salmonella was cultured from 2/9 and identified by molecular diagnostic methods in 3/9 leatherback sea turtle samples. Salmonella DNA was detected in one hawksbill turtle, but viable isolates were not recovered from any hawksbill sea turtles. No Salmonella was detected in green sea turtles. In samples collected from nesting beaches, Salmonella was only recovered from a single dry sand sample. All recovered isolates were positive for the wzx gene, consistent with the O:7 serogroup. Further serotyping characterized serovars Montevideo and Newport present in cloacal and sand samples. Repetitive-element palindromic PCR (rep-PCR) fingerprint analysis and pulsed-field gel electrophoresis of the 2014 isolates from turtles and sand as well as archived Salmonella isolates recovered from leatherback sea turtles in 2012 and 2013, identified two distinct genotypes and four different pulsotypes, respectively. The genotyping and serotyping were directly correlated. To determine the persistence of representative strains of each serotype/genotype in these environments, laboratory-controlled microcosm studies were performed in water and sand (dry and wet) incubated at 25 or 35°C. Isolates persisted for at least 32 days in most microcosms, although there were significant decreases in culturable bacteria in several microcosms, with the greatest reduction in dry sand incubated at 35°C. This information provides a better understanding of the epizootiology of Salmonella in free-ranging marine reptiles and the potential

  3. The head and neck anatomy of sea turtles (Cryptodira: Chelonioidea) and skull shape in Testudines.

    Science.gov (United States)

    Jones, Marc E H; Werneburg, Ingmar; Curtis, Neil; Penrose, Rod; O'Higgins, Paul; Fagan, Michael J; Evans, Susan E

    2012-01-01

    Sea turtles (Chelonoidea) are a charismatic group of marine reptiles that occupy a range of important ecological roles. However, the diversity and evolution of their feeding anatomy remain incompletely known. Using computed tomography and classical comparative anatomy we describe the cranial anatomy in two sea turtles, the loggerhead (Caretta caretta) and Kemp's ridley (Lepidochelys kempii), for a better understanding of sea turtle functional anatomy and morphological variation. In both taxa the temporal region of the skull is enclosed by bone and the jaw joint structure and muscle arrangement indicate that palinal jaw movement is possible. The tongue is relatively small, and the hyoid apparatus is not as conspicuous as in some freshwater aquatic turtles. We find several similarities between the muscles of C. caretta and L. kempii, but comparison with other turtles suggests only one of these characters may be derived: connection of the m. adductor mandibulae internus into the Pars intramandibularis via the Zwischensehne. The large fleshy origin of the m. adductor mandibulae externus Pars superficialis from the jugal seems to be a characteristic feature of sea turtles. In C. caretta and L. kempii the ability to suction feed does not seem to be as well developed as that found in some freshwater aquatic turtles. Instead both have skulls suited to forceful biting. This is consistent with the observation that both taxa tend to feed on relatively slow moving but sometimes armoured prey. The broad fleshy origin of the m. adductor mandibulae externus Pars superficialis may be linked to thecheek region being almost fully enclosed in bone but the relationship is complex.

  4. Caught in the Same Net? Small-Scale Fishermen's Perceptions of Fisheries Interactions with Sea Turtles and Other Protected Species

    Directory of Open Access Journals (Sweden)

    Aliki Panagopoulou

    2017-06-01

    Full Text Available Small-scale fisheries are responsible for high numbers of animals caught as bycatch, such as turtles, cetaceans, and seals. Bycatch and its associated mortality is a major conservation challenge for these species and is considered undesirable by fishermen. To gain insights on the impact of bycatch on small-scale fishermen and put it in context with other financial and environmental challenges they face, we conducted questionnaire-based interviews on fishermen working on Crete, Greece. We investigated fishermen's perceptions of sea turtle and other protected species interactions, and the impacts of such interactions on their profession and livelihoods. Our results indicate a connection between declining fish stocks, related increased fishing effort, and reported increased frequency of interactions between fishermen and sea turtles. Respondents believed that their livelihoods were endangered by industrial fishing and environmental problems, but thought that combined interactions with turtles and other marine megafauna species were a larger problem. Responses suggested that extending compensation to fishermen may be a good conservation intervention. Small-scale fishermen hold a wealth of knowledge about the marine environment and its resources. This may be of help to researchers and policy makers as it could be used to achieve a better managed, sustainable fishery. Including small-scale fishermen in the process of developing regulations will both enhance those regulations and increase compliance with them.

  5. Antibiotic Resistance of Gram Negatives isolates from loggerhead sea turtles (Caretta caretta) in the central Mediterranean Sea.

    Science.gov (United States)

    Foti, M; Giacopello, C; Bottari, Teresa; Fisichella, V; Rinaldo, D; Mammina, C

    2009-09-01

    Previous studies on fish and marine mammals support the hypothesis that marine species harbor antibiotic resistance and therefore may serve as reservoirs for antibiotic-resistance genetic determinants. The aim of this study was to assess the resistance to antimicrobial agents of Gram negative strains isolated from loggerhead sea turtles (Carettacaretta). Oral and cloacal swabs from 19 live-stranded loggerhead sea turtles, with hooks fixed into the gut, were analyzed. The antimicrobial resistance of the isolates to 31 antibiotics was assessed using the disk-diffusion method. Conventional biochemical tests identified Citrobacter spp., Proteus spp., Enterobacter spp., Escherichia spp., Providencia spp., Morganella spp., Pantoea spp., Pseudomonas spp. and Shewanella spp. Highest prevalences of resistance was detected to carbenicillin (100%), cephalothin (92.6%), oxytetracycline (81.3%) and amoxicillin (77.8%). The isolates showing resistance to the widest range of antibiotics were identified as Citrobacterfreundii, Proteusvulgaris, Providenciarettgeri and Pseudomonasaeruginosa. In this study, antibiotic resistant bacteria reflect marine contamination by polluted effluents and C.caretta is considered a bioindicator which can be used as a monitor for pollution.

  6. Antibiotic Resistant Bacterial Isolates from Captive Green Turtles and In Vitro Sensitivity to Bacteriophages

    Directory of Open Access Journals (Sweden)

    Alessandro Delli Paoli Carini

    2017-01-01

    Full Text Available This study aimed to test multidrug resistant isolates from hospitalised green turtles (Chelonia mydas and their environment in North Queensland, Australia, for in vitro susceptibility to bacteriophages. Seventy-one Gram-negative bacteria were isolated from green turtle eye swabs and water samples. Broth microdilution tests were used to determine antibiotic susceptibility. All isolates were resistant to at least two antibiotics, with 24% being resistant to seven of the eight antibiotics. Highest resistance rates were detected to enrofloxacin (77% and ampicillin (69.2%. More than 50% resistance was also found to amoxicillin/clavulanic acid (62.5%, ceftiofur (53.8%, and erythromycin (53.3%. All the enriched phage filtrate mixtures resulted in the lysis of one or more of the multidrug resistant bacteria, including Vibrio harveyi and V. parahaemolyticus. These results indicate that antibiotic resistance is common in Gram-negative bacteria isolated from hospitalised sea turtles and their marine environment in North Queensland, supporting global concern over the rapid evolution of multidrug resistant genes in the environment. Using virulent bacteriophages as antibiotic alternatives would not only be beneficial to turtle health but also prevent further addition of multidrug resistant genes to coastal waters.

  7. 77 FR 60637 - Western Pacific Pelagic Fisheries; Revised Limits on Sea Turtle Interactions in the Hawaii...

    Science.gov (United States)

    2012-10-04

    ..., effect on the loggerhead sea turtle population. This meets the regulatory definition of an action that is...: Hawaii's sea turtles and monk seals are important for tourism, because people enjoy diving and swimming...

  8. Subsistence hunting for turtles in Northwestern Ecuador

    International Nuclear Information System (INIS)

    Carr, John L; Almendariz, Ana; Simmons, John E; Nielsen, Mark T

    2014-01-01

    We describe the subsistence exploitation of an entire turtle fauna in Esmerald's Province, Ecuador. We collected first hand accounts and witnessed a number of capture techniques used by rural afroecuadorian and chachi inhabitants of the Cayapas Santiago River basin. The diversity of techniques indicated a practical knowledge of the ecology of the species. Chelydra acutirostris, Kinosternon leucostomum, Rhinoclemmys annulata, Melanosterna, and R. nasuta were captured and eaten. Poziando involved cleaning pools in a stream bed during the relatively dry season by removing live plants, organic detritus, and then seining with baskets; we observed R. melanosterna and K. leucostomum captured in this way. Pitfall traps baited with fruit were used to catch R. melanosterna during forays on land. Basket traps (Canasto tortuguero) with a wooden slat funnel across the opening are floated with balsa lashed to the sides. Banana or Xanthosoma leaf bait in the basket traps caught R. melanosterna, R. nasuta, and K. leucostomum. Marshy areas were probed for R. melanosterna and K. leucostomum. Direct capture by hand was also common. Turtles were relished as food items; all turtles captured were consumed, usually in soup or stew. Use of turtles for food in the region was pervasive, perhaps because fish and game populations were depleted.

  9. Movements and diving behavior of internesting green turtles along Pacific Costa Rica.

    Science.gov (United States)

    Blanco, Gabriela S; Morreale, Stephen J; Seminoff, Jeffrey A; Paladino, Frank V; Piedra, Rotney; Spotila, James R

    2013-09-01

    Using satellite transmitters, we determined the internesting movements, spatial ecology and diving behavior of East Pacific green turtles (Chelonia mydas) nesting on Nombre de Jesús and Zapotillal beaches along the Pacific coast of northwestern Costa Rica. Kernel density analysis indicated that turtles spent most of their time in a particularly small area in the vicinity of the nesting beaches (50% utilization distribution was an area of 3 km(2) ). Minimum daily distance traveled during a 12 day internesting period was 4.6 ± 3.5 km. Dives were short and primarily occupied the upper 10 m of the water column. Turtles spent most of their time resting at the surface and conducting U-dives (ranging from 60 to 81% of the total tracking time involved in those activities). Turtles showed a strong diel pattern, U-dives mainly took place during the day and turtles spent a large amount of time resting at the surface at night. The lack of long-distance movements demonstrated that this area was heavily utilized by turtles during the nesting season and, therefore, was a crucial location for conservation of this highly endangered green turtle population. The unique behavior of these turtles in resting at the surface at night might make them particularly vulnerable to fishing activities near the nesting beaches. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  10. Turtle Girls

    Science.gov (United States)

    Nelson, Charles; Ponder, Jennifer

    2010-01-01

    The day the Turtle Girls received Montel's adoption papers, piercing screams ricocheted across the school grounds instantaneously and simultaneously--in that moment, each student felt the joy of civic stewardship. Read on to find out how a visit to The Turtle Hospital inspired a group of elementary students to create a club devoted to supporting…

  11. Physiological ramifications for loggerhead turtles captured in pelagic longlines.

    Science.gov (United States)

    Williard, Amanda; Parga, Mariluz; Sagarminaga, Ricardo; Swimmer, Yonat

    2015-10-01

    Bycatch of endangered loggerhead turtles in longline fisheries results in high rates of post-release mortality that may negatively impact populations. The factors contributing to post-release mortality have not been well studied, but traumatic injuries and physiological disturbances experienced as a result of capture are thought to play a role. The goal of our study was to gauge the physiological status of loggerhead turtles immediately upon removal from longline gear in order to refine our understanding of the impacts of capture and the potential for post-release mortality. We analysed blood samples collected from longline- and hand-captured loggerhead turtles, and discovered that capture in longline gear results in blood loss, induction of the systemic stress response, and a moderate increase in lactate. The method by which turtles are landed and released, particularly if released with the hook or line still attached, may exacerbate stress and lead to chronic injuries, sublethal effects or delayed mortality. Our study is the first, to the best of our knowledge, to document the physiological impacts of capture in longline gear, and our findings underscore the importance of best practices gear removal to promote post-release survival in longline-captured turtles. © 2015 The Author(s).

  12. Sea Turtle Bycatch Mitigation in U.S. Longline Fisheries

    Directory of Open Access Journals (Sweden)

    Yonat Swimmer

    2017-08-01

    Full Text Available Capture of sea turtles in longline fisheries has been implicated in population declines of loggerhead (Caretta caretta and leatherback (Dermochelys coriacea turtles. Since 2004, United States (U.S. longline vessels targeting swordfish and tunas in the Pacific and regions in the Atlantic Ocean have operated under extensive fisheries regulations to reduce the capture and mortality of endangered and threatened sea turtles. We analyzed 20+ years of longline observer data from both ocean basins during periods before and after the regulations to assess the effectiveness of the regulations. Using generalized additive mixed models (GAMMs, we investigated relationships between the probability of expected turtle interactions and operational components such as fishing location, hook type, bait type, sea surface temperature, and use of light sticks. GAMMs identified a two to three-fold lower probability of expected capture of loggerhead and leatherback turtle bycatch in the Atlantic and Pacific when circle hooks are used (vs. J hook. Use of fish bait (vs. squid was also found to significantly reduce the capture probability of loggerheads in both ocean basins, and for leatherbacks in the Atlantic only. Capture probabilities are lowest when using a combination of circle hook and fish bait. Influences of light sticks, hook depth, geographic location, and sea surface temperature are discussed specific to species and regions. Results confirmed that in two U.S.-managed longline fisheries, rates of sea turtle bycatch significantly declined after the regulations. In the Atlantic (all regions, rates declined by 40 and 61% for leatherback and loggerhead turtles, respectively, after the regulations. Within the NED area alone, where additional restrictions include a large circle hook (18/0 and limited use of squid bait, rates declined by 64 and 55% for leatherback and loggerhead turtles, respectively. Gains were even more pronounced for the Pacific shallow set fishery

  13. Checklist of marine tetrapods (reptiles, seabirds, and mammals) of Turkey

    OpenAIRE

    GÜÇLÜSOY, Harun; KARAUZ, Emine Sühendan; KIRAÇ, Cem Orkun; BİLECENOĞLU, Murat

    2014-01-01

    The occurrence of a total of 61 marine tetrapod species is presented in this paper, including 3 sea turtles, 43 sea birds, and 15 marine mammals. Distribution of each reported species along the Black Sea, Sea of Marmara, Aegean, and Levantine coasts of Turkey is mentioned, associated with key references.

  14. Asymmetry of righting reflexes in sea turtles and its behavioral correlates.

    Science.gov (United States)

    Malashichev, Yegor

    2016-04-01

    The righting responses, when the animal rights itself over one side of the body after been overturned on the back, are one of the simplest ways to test for laterality, especially in lower vertebrates. In anuran amphibians unilateral preferences in righting responses correlated to the degree of the use of alternating-limb (asynchronous) movements during locomotion. Turtles is one of the underrepresented vertebrate groups in the studies of laterality, while possess also different types of locomotion (with synchronous or asynchronous use of the contralateral limbs), which allows testing the hypothesis on functional relationship between the mode of locomotion and the strength of laterality. We studied two species of sea turtles, Green turtle (Chelonia mydas) and Olive Ridley turtle (Lepidochelys olivacea), which differ from the majority of other representatives of the order in that they mostly utilize synchronous locomotion, when all four limbs move simultaneously in strokes (scratching). In righting response tests turtles demonstrated individual and weak population level laterality, which differed in strength. The Green turtle was less lateralized with the majority of individuals being ambipreferent. The Olive Ridley turtle had a greater number of lateralized individuals and a greater average strength of laterality. Interspecies comparison to land tortoises, which use only asynchronous (alternating-limb) walking (crawling), confirmed the rule found in amphibians: the more asynchronous locomotion is used, the greater is the strength of laterality in righting. Hence, data from turtles and amphibians may represent a phenomenon common for all quadruped vertebrates. We also discuss possible biomechanical and neurological correlates of this evolutionary change in locomotory patterns and lateralization in sea turtles when adapting to sea life. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Global distribution of two fungal pathogens threatening endangered sea turtles.

    Science.gov (United States)

    Sarmiento-Ramírez, Jullie M; Abella-Pérez, Elena; Phillott, Andrea D; Sim, Jolene; van West, Pieter; Martín, María P; Marco, Adolfo; Diéguez-Uribeondo, Javier

    2014-01-01

    Nascent fungal infections are currently considered as one of the main threats for biodiversity and ecosystem health, and have driven several animal species into critical risk of extinction. Sea turtles are one of the most endangered groups of animals and only seven species have survived to date. Here, we described two pathogenic species, i.e., Fusarium falciforme and Fusarium keratoplasticum, that are globally distributed in major turtle nesting areas for six sea turtle species and that are implicated in low hatch success. These two fungi possess key biological features that are similar to emerging pathogens leading to host extinction, e.g., high virulence, and a broad host range style of life. Their optimal growth temperature overlap with the optimal incubation temperature for eggs, and they are able to kill up to 90% of the embryos. Environmental forcing, e.g., tidal inundation and clay/silt content of nests, were correlated to disease development. Thus, these Fusarium species constitute a major threat to sea turtle nests, especially to those experiencing environmental stressors. These findings have serious implications for the survival of endangered sea turtle populations and the success of conservation programs worldwide.

  16. Global distribution of two fungal pathogens threatening endangered sea turtles.

    Directory of Open Access Journals (Sweden)

    Jullie M Sarmiento-Ramírez

    Full Text Available Nascent fungal infections are currently considered as one of the main threats for biodiversity and ecosystem health, and have driven several animal species into critical risk of extinction. Sea turtles are one of the most endangered groups of animals and only seven species have survived to date. Here, we described two pathogenic species, i.e., Fusarium falciforme and Fusarium keratoplasticum, that are globally distributed in major turtle nesting areas for six sea turtle species and that are implicated in low hatch success. These two fungi possess key biological features that are similar to emerging pathogens leading to host extinction, e.g., high virulence, and a broad host range style of life. Their optimal growth temperature overlap with the optimal incubation temperature for eggs, and they are able to kill up to 90% of the embryos. Environmental forcing, e.g., tidal inundation and clay/silt content of nests, were correlated to disease development. Thus, these Fusarium species constitute a major threat to sea turtle nests, especially to those experiencing environmental stressors. These findings have serious implications for the survival of endangered sea turtle populations and the success of conservation programs worldwide.

  17. Conservation of freshwater turtles in Amazonia: retrospective and future prospects

    Directory of Open Access Journals (Sweden)

    Aderson de Souza Alcântara

    2014-08-01

    Full Text Available This paper aims to discuss the current status of conservation of freshwater turtles of the Amazon and the absence of the genus Podocnemis the Official List of Species of Brazilian Fauna Threatened with Extinction. Amazonian turtles are used as food by indigenous people and fisherman communities. However, fishing of adult females, uncontrolled egg collecting, habitat degradation and trafficking in wildlife have caused the decline of these populations. Nevertheless, Podocnemis expansa and Podocnemis unifilis were not included in the Brazil’s official list of animals threatened. Therefore, the turtles remain at great risk, due to the intense pressure that they are suffering. It is recommended that the criteria and the conservation status are reviewed including those animals in the category of vulnerable and to ensure a thorough review and modification in the current Brazilian law to be covered studies and management of turtles for subsistence, respecting and adding value to way of life of Amazonian peoples.

  18. Modeling neck mobility in fossil turtles.

    Science.gov (United States)

    Werneburg, Ingmar; Hinz, Juliane K; Gumpenberger, Michaela; Volpato, Virginie; Natchev, Nikolay; Joyce, Walter G

    2015-05-01

    Turtles have the unparalleled ability to retract their heads and necks within their shell but little is known about the evolution of this trait. Extensive analysis of neck mobility in turtles using radiographs, CT scans, and morphometry reveals that basal turtles possessed less mobility in the neck relative to their extant relatives, although the anatomical prerequisites for modern mobility were already established. Many extant turtles are able to achieve hypermobility by dislocating the central articulations, which raises cautions about reconstructing the mobility of fossil vertebrates. A 3D-model of the Late Triassic turtle Proganochelys quenstedti reveals that this early stem turtle was able to retract its head by tucking it sideways below the shell. The simple ventrolateral bend seen in this stem turtle, however, contrasts with the complex double-bend of extant turtles. The initial evolution of neck retraction therefore occurred in a near-synchrony with the origin of the turtle shell as a place to hide the unprotected neck. In this early, simplified retraction mode, the conical osteoderms on the neck provided further protection. © 2014 Wiley Periodicals, Inc.

  19. Establishment of reference intervals for plasma protein electrophoresis in Indo-Pacific green sea turtles, Chelonia mydas.

    Science.gov (United States)

    Flint, Mark; Matthews, Beren J; Limpus, Colin J; Mills, Paul C

    2015-01-01

    Biochemical and haematological parameters are increasingly used to diagnose disease in green sea turtles. Specific clinical pathology tools, such as plasma protein electrophoresis analysis, are now being used more frequently to improve our ability to diagnose disease in the live animal. Plasma protein reference intervals were calculated from 55 clinically healthy green sea turtles using pulsed field electrophoresis to determine pre-albumin, albumin, α-, β- and γ-globulin concentrations. The estimated reference intervals were then compared with data profiles from clinically unhealthy turtles admitted to a local wildlife hospital to assess the validity of the derived intervals and identify the clinically useful plasma protein fractions. Eighty-six per cent {19 of 22 [95% confidence interval (CI) 65-97]} of clinically unhealthy turtles had values outside the derived reference intervals, including the following: total protein [six of 22 turtles or 27% (95% CI 11-50%)], pre-albumin [two of five, 40% (95% CI 5-85%)], albumin [13 of 22, 59% (95% CI 36-79%)], total albumin [13 of 22, 59% (95% CI 36-79%)], α- [10 of 22, 45% (95% CI 24-68%)], β- [two of 10, 20% (95% CI 3-56%)], γ- [one of 10, 10% (95% CI 0.3-45%)] and β-γ-globulin [one of 12, 8% (95% CI 0.2-38%)] and total globulin [five of 22, 23% (8-45%)]. Plasma protein electrophoresis shows promise as an accurate adjunct tool to identify a disease state in marine turtles. This study presents the first reference interval for plasma protein electrophoresis in the Indo-Pacific green sea turtle.

  20. Use of coral reefs by hawksbill turtles in the Florida Keys National Marine Sanctuary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ongoing mark-recapture and satellite tagging are being conducted to understand how public use of reefs impacts hawksbill turtle habitat use and relative abundance

  1. The Head and Neck Anatomy of Sea Turtles (Cryptodira: Chelonioidea) and Skull Shape in Testudines

    Science.gov (United States)

    Jones, Marc E. H.; Werneburg, Ingmar; Curtis, Neil; Penrose, Rod; O’Higgins, Paul; Fagan, Michael J.; Evans, Susan E.

    2012-01-01

    Background Sea turtles (Chelonoidea) are a charismatic group of marine reptiles that occupy a range of important ecological roles. However, the diversity and evolution of their feeding anatomy remain incompletely known. Methodology/Principal Findings Using computed tomography and classical comparative anatomy we describe the cranial anatomy in two sea turtles, the loggerhead (Caretta caretta) and Kemp’s ridley (Lepidochelys kempii), for a better understanding of sea turtle functional anatomy and morphological variation. In both taxa the temporal region of the skull is enclosed by bone and the jaw joint structure and muscle arrangement indicate that palinal jaw movement is possible. The tongue is relatively small, and the hyoid apparatus is not as conspicuous as in some freshwater aquatic turtles. We find several similarities between the muscles of C. caretta and L. kempii, but comparison with other turtles suggests only one of these characters may be derived: connection of the m. adductor mandibulae internus into the Pars intramandibularis via the Zwischensehne. The large fleshy origin of the m. adductor mandibulae externus Pars superficialis from the jugal seems to be a characteristic feature of sea turtles. Conclusions/Significance In C. caretta and L. kempii the ability to suction feed does not seem to be as well developed as that found in some freshwater aquatic turtles. Instead both have skulls suited to forceful biting. This is consistent with the observation that both taxa tend to feed on relatively slow moving but sometimes armoured prey. The broad fleshy origin of the m. adductor mandibulae externus Pars superficialis may be linked to thecheek region being almost fully enclosed in bone but the relationship is complex. PMID:23144831

  2. The head and neck anatomy of sea turtles (Cryptodira: Chelonioidea and skull shape in Testudines.

    Directory of Open Access Journals (Sweden)

    Marc E H Jones

    Full Text Available Sea turtles (Chelonoidea are a charismatic group of marine reptiles that occupy a range of important ecological roles. However, the diversity and evolution of their feeding anatomy remain incompletely known.Using computed tomography and classical comparative anatomy we describe the cranial anatomy in two sea turtles, the loggerhead (Caretta caretta and Kemp's ridley (Lepidochelys kempii, for a better understanding of sea turtle functional anatomy and morphological variation. In both taxa the temporal region of the skull is enclosed by bone and the jaw joint structure and muscle arrangement indicate that palinal jaw movement is possible. The tongue is relatively small, and the hyoid apparatus is not as conspicuous as in some freshwater aquatic turtles. We find several similarities between the muscles of C. caretta and L. kempii, but comparison with other turtles suggests only one of these characters may be derived: connection of the m. adductor mandibulae internus into the Pars intramandibularis via the Zwischensehne. The large fleshy origin of the m. adductor mandibulae externus Pars superficialis from the jugal seems to be a characteristic feature of sea turtles.In C. caretta and L. kempii the ability to suction feed does not seem to be as well developed as that found in some freshwater aquatic turtles. Instead both have skulls suited to forceful biting. This is consistent with the observation that both taxa tend to feed on relatively slow moving but sometimes armoured prey. The broad fleshy origin of the m. adductor mandibulae externus Pars superficialis may be linked to thecheek region being almost fully enclosed in bone but the relationship is complex.

  3. Baseline heavy metals and metalloid values in blood of loggerhead turtles (Caretta caretta) from Baja California Sur, Mexico.

    Science.gov (United States)

    Ley-Quiñónez, C; Zavala-Norzagaray, A A; Espinosa-Carreón, T L; Peckham, H; Marquez-Herrera, C; Campos-Villegas, L; Aguirre, A A

    2011-09-01

    Environmental pollution due to heavy metals is having an increased impact on marine wildlife accentuated by anthropogenic changes in the planet including overfishing, agricultural runoff and marine emerging infectious diseases. Sea turtles are considered sentinels of ecological health in marine ecosystems. The objective of this study was to determine baseline concentrations of zinc, cadmium, copper, nickel, selenium, manganese, mercury and lead in blood of 22 clinically healthy, loggerhead turtles (Caretta caretta), captured for several reasons in Puerto López Mateos, Baja California Sur, Mexico. Zinc was the most prevalent metal in blood (41.89 μg g⁻¹), followed by Selenium (10.92 μg g⁻¹). The mean concentration of toxic metal Cadmium was 6.12 μg g⁻¹ and 1.01μg g⁻¹ respectively. Mean concentrations of metals followed this pattern: Zn>Se>Ni>Cu>Mn>Cd>Pb and Hg. We can conclude that blood is an excellent tissue to measure in relatively non-invasive way baseline values of heavy metals in Caretta caretta. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Isolation, Characterization, and Antibiotic Resistance of Vibrio spp. in Sea Turtles from Northwestern Mexico

    Directory of Open Access Journals (Sweden)

    Alan A. eZavala-Norzagaray

    2015-06-01

    Full Text Available The aerobic oral and cloacal bacterial microbiota and their antimicrobial resistance were characterized for 64 apparently healthy sea turtles captured at their foraging grounds in Ojo de Liebre Lagoon (OLL, Baja California Sur, Mexico (Pacific Ocean and the lagoon system of Navachiste (LSN and Marine Area of Influence (MAI, Guasave, Sinaloa (Gulf of California. A total of 34 black turtles (Chelonia mydas agassizii were sampled in OLL and eight black turtles and 22 olive ridley turtles (Lepidochelys olivacea were sampled in LSN and MAI, respectively from January to December 2012. We isolated 13 different species of Gram-negative bacteria. The most frequently isolated bacteria were Vibrio alginolyticus in 39/64 (60%, V. parahaemolyticus in 17/64 (26% and V. cholerae in 6/64 (9%,. However, V. cholerae was isolated only from turtles captured from the Gulf of California (MAI. Among V. parahaemolyticus strains, six O serogroups and eight serovars were identified from which 5/17 (29.4% belonged to the pathogenic strains (tdh+ gene and 2/17 (11.7% had the pandemic clone (tdh+ and toxRS/new+. Among V. cholerae strains, all were identified as non-O1/non-O139, and in 4/6 (66% the accessory cholera enterotoxin gene (ace was identified but without virulence gene zot, ctxA and ctxB. Of the isolated V. parahaemolyticus, V. cholerae and V. alginolyticus strains, 94.1%, 33.4% and 100% demonstrated resistance to at least one commonly prescribed antibiotic (primarily to ampicillin, respectively. In conclusion, the presence of several potential (toxigenic human pathogens in sea turtles may represent transmission of environmental microbes and a high-risk of food-borne disease. Therefore, based on the fact that it is illegal and unhealthy, we discourage the consumption of sea turtle meat or eggs in northwestern Mexico.

  5. Isolation, characterization, and antibiotic resistance of Vibrio spp. in sea turtles from Northwestern Mexico.

    Science.gov (United States)

    Zavala-Norzagaray, Alan A; Aguirre, A Alonso; Velazquez-Roman, Jorge; Flores-Villaseñor, Héctor; León-Sicairos, Nidia; Ley-Quiñonez, C P; Hernández-Díaz, Lucio De Jesús; Canizalez-Roman, Adrian

    2015-01-01

    The aerobic oral and cloacal bacterial microbiota and their antimicrobial resistance were characterized for 64 apparently healthy sea turtles captured at their foraging grounds in Ojo de Liebre Lagoon (OLL), Baja California Sur (BCS), Mexico (Pacific Ocean) and the lagoon system of Navachiste (LSN) and Marine Area of Influence (MAI), Guasave, Sinaloa (Gulf of California). A total of 34 black turtles (Chelonia mydas agassizii) were sampled in OLL and eight black turtles and 22 olive ridley turtles (Lepidochelys olivacea) were sampled in LSN and MAI, respectively from January to December 2012. We isolated 13 different species of Gram-negative bacteria. The most frequently isolated bacteria were Vibrio alginolyticus in 39/64 (60%), V. parahaemolyticus in 17/64 (26%), and V. cholerae in 6/64 (9%). However, V. cholerae was isolated only from turtles captured from the Gulf of California (MAI). Among V. parahaemolyticus strains, six O serogroups and eight serovars were identified from which 5/17 (29.4%) belonged to the pathogenic strains (tdh (+) gene) and 2/17 (11.7%) had the pandemic clone (tdh (+) and toxRS/new (+)). Among V. cholerae strains, all were identified as non-O1/non-O139, and in 4/6 (66%) the accessory cholera enterotoxin gene (ace) was identified but without virulence gene zot, ctxA, and ctxB. Of the isolated V. parahaemolyticus, V. cholerae, and V. alginolyticus strains, 94.1, 33.4, and 100% demonstrated resistance to at least one commonly prescribed antibiotic (primarily to ampicillin), respectively. In conclusion, the presence of several potential (toxigenic) human pathogens in sea turtles may represent transmission of environmental microbes and a high-risk of food-borne disease. Therefore, based on the fact that it is illegal and unhealthy, we discourage the consumption of sea turtle meat or eggs in northwestern Mexico.

  6. Isolation, characterization, and antibiotic resistance of Vibrio spp. in sea turtles from Northwestern Mexico

    Science.gov (United States)

    Zavala-Norzagaray, Alan A.; Aguirre, A. Alonso; Velazquez-Roman, Jorge; Flores-Villaseñor, Héctor; León-Sicairos, Nidia; Ley-Quiñonez, C. P.; Hernández-Díaz, Lucio De Jesús; Canizalez-Roman, Adrian

    2015-01-01

    The aerobic oral and cloacal bacterial microbiota and their antimicrobial resistance were characterized for 64 apparently healthy sea turtles captured at their foraging grounds in Ojo de Liebre Lagoon (OLL), Baja California Sur (BCS), Mexico (Pacific Ocean) and the lagoon system of Navachiste (LSN) and Marine Area of Influence (MAI), Guasave, Sinaloa (Gulf of California). A total of 34 black turtles (Chelonia mydas agassizii) were sampled in OLL and eight black turtles and 22 olive ridley turtles (Lepidochelys olivacea) were sampled in LSN and MAI, respectively from January to December 2012. We isolated 13 different species of Gram-negative bacteria. The most frequently isolated bacteria were Vibrio alginolyticus in 39/64 (60%), V. parahaemolyticus in 17/64 (26%), and V. cholerae in 6/64 (9%). However, V. cholerae was isolated only from turtles captured from the Gulf of California (MAI). Among V. parahaemolyticus strains, six O serogroups and eight serovars were identified from which 5/17 (29.4%) belonged to the pathogenic strains (tdh+ gene) and 2/17 (11.7%) had the pandemic clone (tdh+ and toxRS/new+). Among V. cholerae strains, all were identified as non-O1/non-O139, and in 4/6 (66%) the accessory cholera enterotoxin gene (ace) was identified but without virulence gene zot, ctxA, and ctxB. Of the isolated V. parahaemolyticus, V. cholerae, and V. alginolyticus strains, 94.1, 33.4, and 100% demonstrated resistance to at least one commonly prescribed antibiotic (primarily to ampicillin), respectively. In conclusion, the presence of several potential (toxigenic) human pathogens in sea turtles may represent transmission of environmental microbes and a high-risk of food-borne disease. Therefore, based on the fact that it is illegal and unhealthy, we discourage the consumption of sea turtle meat or eggs in northwestern Mexico. PMID:26161078

  7. Modeling Commercial Freshwater Turtle Production on US Farms for Pet and Meat Markets.

    Directory of Open Access Journals (Sweden)

    Ivana Mali

    Full Text Available Freshwater turtles are being exploited for meat, eggs, traditional medicine, and pet trade. As a response, turtle farming became a booming aquaculture industry in the past two decades, specifically in the southeastern states of the United States of America (US and across Southeast Asia. However, US turtle farms are currently producing turtles only for the pet trade while commercial trappers remain focused on catching the largest individuals from the wild. In our analyses we have created a biological and economic model that describes farming operations on a representative turtle farm in Louisiana. We first modeled current production of hatchling and yearling red-eared slider turtles (Trachemys scripta elegans (i.e., traditional farming for foreign and domestic pet markets, respectively. We tested the possibility of harvesting adult turtles from the breeding stock for sale to meat markets to enable alternative markets for the farmers, while decreasing the continued pressures on wild populations (i.e., non-traditional farming. Our economic model required current profit requirements of ~$13/turtle or ~$20.31/kg of meat from non-traditional farming in order to acquire the same profit as traditional farming, a value which currently exceeds market values of red-eared sliders. However, increasing competition with Asian turtle farms and decreasing hatchling prices may force the shift in the US toward producing turtles for meat markets. In addition, our model can be modified and applied to more desirable species on the meat market once more knowledge is acquired about species life histories and space requirements under farmed conditions.

  8. Modeling Commercial Freshwater Turtle Production on US Farms for Pet and Meat Markets

    Science.gov (United States)

    Mali, Ivana; Wang, Hsiao-Hsuan; Grant, William E.; Feldman, Mark; Forstner, Michael R. J.

    2015-01-01

    Freshwater turtles are being exploited for meat, eggs, traditional medicine, and pet trade. As a response, turtle farming became a booming aquaculture industry in the past two decades, specifically in the southeastern states of the United States of America (US) and across Southeast Asia. However, US turtle farms are currently producing turtles only for the pet trade while commercial trappers remain focused on catching the largest individuals from the wild. In our analyses we have created a biological and economic model that describes farming operations on a representative turtle farm in Louisiana. We first modeled current production of hatchling and yearling red-eared slider turtles (Trachemys scripta elegans) (i.e., traditional farming) for foreign and domestic pet markets, respectively. We tested the possibility of harvesting adult turtles from the breeding stock for sale to meat markets to enable alternative markets for the farmers, while decreasing the continued pressures on wild populations (i.e., non-traditional farming). Our economic model required current profit requirements of ~$13/turtle or ~$20.31/kg of meat from non-traditional farming in order to acquire the same profit as traditional farming, a value which currently exceeds market values of red-eared sliders. However, increasing competition with Asian turtle farms and decreasing hatchling prices may force the shift in the US toward producing turtles for meat markets. In addition, our model can be modified and applied to more desirable species on the meat market once more knowledge is acquired about species life histories and space requirements under farmed conditions. PMID:26407157

  9. Modeling Commercial Freshwater Turtle Production on US Farms for Pet and Meat Markets.

    Science.gov (United States)

    Mali, Ivana; Wang, Hsiao-Hsuan; Grant, William E; Feldman, Mark; Forstner, Michael R J

    2015-01-01

    Freshwater turtles are being exploited for meat, eggs, traditional medicine, and pet trade. As a response, turtle farming became a booming aquaculture industry in the past two decades, specifically in the southeastern states of the United States of America (US) and across Southeast Asia. However, US turtle farms are currently producing turtles only for the pet trade while commercial trappers remain focused on catching the largest individuals from the wild. In our analyses we have created a biological and economic model that describes farming operations on a representative turtle farm in Louisiana. We first modeled current production of hatchling and yearling red-eared slider turtles (Trachemys scripta elegans) (i.e., traditional farming) for foreign and domestic pet markets, respectively. We tested the possibility of harvesting adult turtles from the breeding stock for sale to meat markets to enable alternative markets for the farmers, while decreasing the continued pressures on wild populations (i.e., non-traditional farming). Our economic model required current profit requirements of ~$13/turtle or ~$20.31/kg of meat from non-traditional farming in order to acquire the same profit as traditional farming, a value which currently exceeds market values of red-eared sliders. However, increasing competition with Asian turtle farms and decreasing hatchling prices may force the shift in the US toward producing turtles for meat markets. In addition, our model can be modified and applied to more desirable species on the meat market once more knowledge is acquired about species life histories and space requirements under farmed conditions.

  10. Genetic studies of freshwater turtle and tortoises: a review of the past 70 years

    Science.gov (United States)

    FitzSimmons, Nancy N.; Hart, Kristen M.

    2007-01-01

    Powerful molecular techniques have been developed over many decades for resolving genetic relationships, population genetic structure, patterns of gene flow, mating systems, and the amount of genetic diversity in animals. Genetic studies of turtles were among the earliest and the rapid application of new genetic tools and analytical techniques is still apparent in the literature on turtles. At present, of the 198 freshwater turtles and tortoises that are listed as not extinct by the IUCN Red List, 69 species worldwide are listed as endangered or critically endangered, and an additional 56 species are listed as vulnerable. Of the ca. 300 species of the freshwater turtles and tortoises in the world, ca. 42% are considered to be facing a high risk extinction, and there is a need to focus intense conservation attention on these species. This includes a need to (i) assess our current state of knowledge regarding the application of genetics to studies of freshwater turtles and tortoises and (ii) determine future research directions. Here, we review all available published studies for the past 70 years that were written in English and used genetic markers (e.g. karyotypes, allozymes, DNA loci) to better understand the biology of freshwater turtles and tortoises. We review the types of studies conducted in relation to the species studied and quantify the countries where the studies were performed. We rack the changing use of different genetic markers through time and report on studies focused on aspects of molecular evolution within turtle genomes. We address the usefulness of particular genetic markers to answer phylogenetic questions and present data comparing population genetic structure and mating systems across species. We draw specific attention to whether authors have considered issues to turtle conservation in their research or provided new insights that have been translated into recommendations for conservation management.

  11. ARSENIC, CADMIUM, CHROMIUM, LEAD, MERCURY, AND SELENIUM LEVELS IN BLOOD OF FOUR SPECIES OF TURTLES FROM THE AMAZON IN BRAZIL

    OpenAIRE

    Burger, Joanna; Jeitner, Christian; Schneider, Larissa; Vogt, Richard; Gochfeld, Michael

    2010-01-01

    Using blood as a method of assessing metal levels in turtles may be useful for populations that are threatened or endangered or are decreasing. In this study the levels of arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and selenium (Se) in blood of four species of turtles from the tributaries of the Rio Negro in the Amazon of Brazil were examined. The turtles included the six-tubercled Amazon (river) turtle (Podocnemis sextuberculata), red-headed Amazon (river) turtle (Po...

  12. Helminth communities of the exotic introduced turtle, Trachemys scripta elegans in southwestern Spain: Transmission from native turtles.

    Science.gov (United States)

    Hidalgo-Vila, J; Díaz-Paniagua, C; Ribas, A; Florencio, M; Pérez-Santigosa, N; Casanova, J C

    2009-06-01

    We report the prevalence and diversity of helminth parasites found in native turtles Mauremys leprosa and Emys orbicularis from three localities in southwestern Spain and we describe the helminth communities of exotic turtles Trachemys scripta elegans coexisting in the wild with both native turtle species. Five nematodes species were identified, of which Serpinema microcephalus was the only species common between two localities, although infection parameters were different between them. This is the first report of cross transmission of S. microcephalus and Falcaustra donanaensis from native to exotic turtles and the first report of genus Physaloptera in turtles of the Palearctic Region. Continuous releasing of exotic pet turtles in wildlife ecosystems increases the risk of parasite introductions and, consequently, potential transmission to native species, and highlights the impending need for regulation of pet turtle trade in Europe.

  13. "Sea Turtles" and "Ground Beetles" [Land Turtles] Should Shake Hands

    Science.gov (United States)

    Kan, Da

    2004-01-01

    This article talks about those who come back to China after studies abroad, characterized as "sea turtles" and those scholars who have remained in China to arduously pursue their studies, characterized as "ground beetles". " Sea turtles" are those foreign MBAs and Ph.D.s who are objects of praise, admiration and are…

  14. Stress hormone levels in a freshwater turtle from sites differing in human activity.

    Science.gov (United States)

    Polich, Rebecca L

    2016-01-01

    Glucocorticoids, such as corticosterone (CORT), commonly serve as a measure of stress levels in vertebrate populations. These hormones have been implicated in regulation of feeding behaviour, locomotor activity, body mass, lipid metabolism and other crucial behaviours and physiological processes. Thus, understanding how glucocorticoids fluctuate seasonally and in response to specific stressors can yield insight into organismal health and the overall health of populations. I compared circulating CORT concentrations between two similar populations of painted turtle, Chrysemys picta, which differed primarily in the level of exposure to human recreational activities. I measured basal CORT concentrations as well as the CORT stress response and did not find any substantive difference between the two populations. This similarity may indicate that painted turtles are not stressed by the presence of humans during the nesting season. The results of this study contribute to our understanding of CORT concentrations in freshwater reptiles, a group that is historically under-represented in studies of circulating hormone concentrations; specifically, studies that seek to use circulating concentrations of stress hormones, such as CORT, as a measure of the effect of human activities on wild populations. They also give insight into how these species as a whole may respond to human recreational activities during crucial life-history stages, such as the nesting season. Although there was no discernable difference between circulating CORT concentrations between the urban and rural populations studied, I did find a significant difference in circulating CORT concentrations between male and female C. picta. This important finding provides better understanding of the sex differences between male and female painted turtles and adds to our understanding of this species and other species of freshwater turtle.

  15. Turtles for tessellations

    NARCIS (Netherlands)

    Feijs, L.M.G.; Hu, J.

    2013-01-01

    We developed an approach to creating vector graphics representations of tessellations for purposes of teaching creative programming and laser cutting. The approach is based on turtle graphics. The lines of the turtle’s trail define the tiles of the tessellation. The turtle is defined in an

  16. 78 FR 44915 - Turtles Intrastate and Interstate Requirements

    Science.gov (United States)

    2013-07-25

    .... FDA-2013-N-0639] Turtles Intrastate and Interstate Requirements AGENCY: Food and Drug Administration... turtle eggs and live turtles with a carapace length of less than 4 inches to remove procedures for... viable turtle eggs and turtles with a carapace length of less than 4 inches to stop the spread of turtle...

  17. Turtle Hearing Capability Based on ABR Signal assessment

    Directory of Open Access Journals (Sweden)

    Raja Bidin Raja Hassan

    2010-08-01

    Full Text Available Sea turtles have existed for millions of years. International Union for Conservation of Nature (IUCN has reported that the Hawksbill Turtle (Eretmochelys imbricata is classified as critically endangered. Turtle excluder device (TED deployment on shrimpnet fisheries is needed for turtle conservation.TED using sound technique is challenge method in fisheries development.The knowledge on turtle hearing capability is limited. The auditory brainstem response (ABR assessment is method to determine turtle hearing capability. Turtle hearing assessment is basis to design TED. The objective of this paper is to determine turtle hearing cability by analyze its ABR spectral.The subject is Hawksbill turtle with number 2 turtles ie: 3 and 2 years. The measurement was taken at Pusat Pengurusan Penyu (Turtle Management Centre Padang Kemunting Masjid Tanah Melaka Malaysia. The results shows that turtle 3 years have peak power frequencies 50.78, 101.6, 152.3, 304.7, 355.5, 457, and 507.8Hz respectively whereas the spectral amplitude is ranging 0.03-32.44% spectral. Turtle 2 years has peak power at 457Hz in whole stimulus frequencies while the spectral amplitude is ranging 0.01-2.5% spectral.

  18. Survey of Hawksbill Turtle (Eretmochelys imbricate Health Condition in Terms of Parasites and Microbes in Alas Purwo National Park, Indonesia

    Directory of Open Access Journals (Sweden)

    Qurrota A'yunin

    2017-07-01

    Full Text Available Indonesian waters have six types of turtles that can live, spawn and breed. Sea turtle conservation becomes an important and urgent program to be done in order to protect and save sea turtle population in Indonesia. One of the factors that most affect the turtle population is the cause of degradation of pathogenic factors. Alas Purwo National Park, East Java, there is some communities that have activities turtle conservation. Conservation is done by securing and protecting turtle eggs. Turtle eggs that have hatched are released into the sea once it is ready. This study aims was to determine the type of bacteria and fungi that infect hatchlings and environmental factors that influence. This research is descriptive method to Hawksbill turtle (Eretmochelys imbricate is by way of random sampling. Sampling of microbes in sea turtle was conducted using cotton swab method and then microbes was cultured and indentified in laboratory. The results showed The kind of parasites and microbes which were indentified in hatching and adult Hawksbill sea turtles were fungus with genus Aspergillus sp., Geotrichum sp., Fusarium sp., and Gliocladium sp. ; bacteria are Pseudomonas aeruginosa and Enterobacter cloaceae; and parasite is Chelonibia testudinaria barnacles.  The parameter average value of water in pond indicated 28.1 – 29.2°C for temperature, 32 - 34 ‰ for salinity, 7.78 – 8.2 for pH, and 3.86 – 4.21 mg/L for DO.

  19. Using expert opinion surveys to rank threats to endangered species: a case study with sea turtles.

    Science.gov (United States)

    Donlan, C Josh; Wingfield, Dana K; Crowder, Larry B; Wilcox, Chris

    2010-12-01

    Little is known about how specific anthropogenic hazards affect the biology of organisms. Quantifying the effect of regional hazards is particularly challenging for species such as sea turtles because they are migratory, difficult to study, long lived, and face multiple anthropogenic threats. Expert elicitation, a technique used to synthesize opinions of experts while assessing uncertainty around those views, has been in use for several decades in the social science and risk assessment sectors. We conducted an internet-based survey to quantify expert opinion on the relative magnitude of anthropogenic hazards to sea turtle populations at the regional level. Fisheries bycatch and coastal development were most often ranked as the top hazards to sea turtle species in a geographic region. Nest predation and direct take followed as the second and third greatest threats, respectively. Survey results suggest most experts believe sea turtles are threatened by multiple factors, including substantial at-sea threats such as fisheries bycatch. Resources invested by the sea turtle community, however, appear biased toward terrestrial-based impacts. Results from the survey are useful for conservation planning because they provide estimates of relative impacts of hazards on sea turtles and a measure of consensus on the magnitude of those impacts among researchers and practitioners. Our survey results also revealed patterns of expert bias, which we controlled for in our analysis. Respondents with no experience with respect to a sea turtle species tended to rank hazards affecting that sea turtle species higher than respondents with experience. A more-striking pattern was with hazard-based expertise: the more experience a respondent had with a specific hazard, the higher the respondent scored the impact of that hazard on sea turtle populations. Bias-controlled expert opinion surveys focused on threatened species and their hazards can help guide and expedite species recovery plans.

  20. Seasonal change in the capacity for supercooling by neonatal painted turtles.

    Science.gov (United States)

    Packard, G C; Packard, M J; McDaniel, L L

    2001-05-01

    Hatchlings of the North American painted turtle (Chrysemys picta) typically spend their first winter of life inside the shallow, subterranean nest where they completed incubation the preceding summer. This facet of their natural history commonly causes neonates in northerly populations to be exposed in mid-winter to ice and cold, which many animals survive by remaining unfrozen and supercooled. We measured the limit of supercooling in samples of turtles taken shortly after hatching and in other samples after 2 months of acclimation (or acclimatization) to a reduced temperature in the laboratory or field. Animals initially had only a limited capacity for supercooling, but they acquired an ability to undergo deeper supercooling during the course of acclimation. The gut of most turtles was packed with particles of soil and eggshell shortly after hatching, but not after acclimation. Thus, the relatively high limit of supercooling for turtles in the days immediately after hatching may have resulted from the ingestion of soil (and associated nucleating agents) by the animals as they were freeing themselves from their eggshell, whereas the relatively low limit of supercooling attained by acclimated turtles may have resulted from their purging their gut of its contents. Parallels may, therefore, exist between the natural-history strategy expressed by hatchling painted turtles and that expressed by numerous terrestrial arthropods that withstand the cold of winter by sustaining a state of supercooling.

  1. Stable isotopes of C and N reveal habitat dependent dietary overlap between native and introduced turtles Pseudemys rubriventris and Trachemys scripta.

    Science.gov (United States)

    Pearson, Steven H; Avery, Harold W; Kilham, Susan S; Velinsky, David J; Spotila, James R

    2013-01-01

    Habitat degradation and species introductions are two of the leading causes of species declines on a global scale. Invasive species negatively impact native species through predation and competition for limited resources. The impacts of invasive species may be increased in habitats where habitat degradation is higher due to reductions of prey abundance and distribution. Using stable isotope analyses and extensive measurements of resource availability we determined how resource availability impacts the long term carbon and nitrogen assimilation of the invasive red-eared slider turtle (Trachemys scripta elegans) and a native, threatened species, the red-bellied turtle (Pseudemys rubriventris) at two different freshwater wetland complexes in Pennsylvania, USA. At a larger wetland complex with greater vegetative species richness and diversity, our stable isotope analyses showed dietary niche partitioning between species, whereas analyses from a smaller wetland complex with lower vegetative species richness and diversity showed significant dietary niche overlap. Determining the potential for competition between these two turtle species is important to understanding the ecological impacts of red-eared slider turtles in wetland habitats. In smaller wetlands with increased potential for competition between native turtles and invasive red-eared slider turtles we expect that when shared resources become limited, red-eared slider turtles will negatively impact native turtle species leading to long term population declines. Protection of intact wetland complexes and the reduction of introduced species populations are paramount to preserving populations of native species.

  2. Stable isotopes of C and N reveal habitat dependent dietary overlap between native and introduced turtles Pseudemys rubriventris and Trachemys scripta.

    Directory of Open Access Journals (Sweden)

    Steven H Pearson

    Full Text Available Habitat degradation and species introductions are two of the leading causes of species declines on a global scale. Invasive species negatively impact native species through predation and competition for limited resources. The impacts of invasive species may be increased in habitats where habitat degradation is higher due to reductions of prey abundance and distribution. Using stable isotope analyses and extensive measurements of resource availability we determined how resource availability impacts the long term carbon and nitrogen assimilation of the invasive red-eared slider turtle (Trachemys scripta elegans and a native, threatened species, the red-bellied turtle (Pseudemys rubriventris at two different freshwater wetland complexes in Pennsylvania, USA. At a larger wetland complex with greater vegetative species richness and diversity, our stable isotope analyses showed dietary niche partitioning between species, whereas analyses from a smaller wetland complex with lower vegetative species richness and diversity showed significant dietary niche overlap. Determining the potential for competition between these two turtle species is important to understanding the ecological impacts of red-eared slider turtles in wetland habitats. In smaller wetlands with increased potential for competition between native turtles and invasive red-eared slider turtles we expect that when shared resources become limited, red-eared slider turtles will negatively impact native turtle species leading to long term population declines. Protection of intact wetland complexes and the reduction of introduced species populations are paramount to preserving populations of native species.

  3. Understanding the biological invasion risk posed by the global wildlife trade: propagule pressure drives the introduction and establishment of Nearctic turtles.

    Science.gov (United States)

    García-Díaz, Pablo; Ross, Joshua V; Ayres, César; Cassey, Phillip

    2015-03-01

    Biological invasions are a key component of human-induced global change. The continuing increase in global wildlife trade has raised concerns about the parallel increase in the number of new invasive species. However, the factors that link the wildlife trade to the biological invasion process are still poorly understood. Moreover, there are analytical challenges in researching the role of global wildlife trade in biological invasions, particularly issues related to the under-reporting of introduced and established populations in areas with reduced sampling effort. In this work, we use high-quality data on the international trade in Nearctic turtles (1999-2009) coupled with a statistical modelling framework, which explicitly accounts for detection, to investigate the factors that influence the introduction (release, or escape into the wild) of globally traded Nearctic turtles and the establishment success (self-sustaining exotic populations) of slider turtles (Trachemys scripta), the most frequently traded turtle species. We found that the introduction of a species was influenced by the total number of turtles exported to a jurisdiction and the age at maturity of the species, while the establishment success of slider turtles was best associated with the propagule number (number of release events), and the number of native turtles in the jurisdiction of introduction. These results indicate both a direct and indirect association between the wildlife trade and the introduction of turtles and establishment success of slider turtles, respectively. Our results highlight the existence of gaps in the number of globally recorded introduction events and established populations of slider turtles, although the expected bias is low. We emphasize the importance of researching independently the factors that affect the different stages of the invasion pathway. Critically, we observe that the number of traded individuals might not always be an adequate proxy for propagule pressure

  4. Select metal and metalloid surveillance of free-ranging Eastern box turtles from Illinois and Tennessee (Terrapene carolina carolina).

    Science.gov (United States)

    Allender, Matthew C; Dreslik, Michael J; Patel, Bishap; Luber, Elizabeth L; Byrd, John; Phillips, Christopher A; Scott, John W

    2015-08-01

    The Eastern box turtle (Terrapene carolina carolina) is a primarily terrestrial chelonian distributed across the eastern US. It has been proposed as a biomonitor due to its longevity, small home range, and reliance on the environment to meet its metabolic needs. Plasma samples from 273 free-ranging box turtles from populations in Tennessee and Illinois in 2011 and 2012 were evaluated for presence of heavy metals and to characterize hematologic variables. Lead (Pb), arsenic (As), zinc (Zn), chromium (Cr), selenium (Se), and copper (Cu) were detected, while cadmium (Cd) and silver (Ag) were not. There were no differences in any metal detected among age class or sex. However, Cr and Pb were higher in turtles from Tennessee, while As, Zn, Se, and Cu were higher in turtles from Illinois. Seasonal differences in metal concentrations were observed for Cr, Zn, and As. Health of turtles was assessed using hematologic variables. Packed cell volume was positively correlated with Cu, Se, and Pb in Tennessee. Total solids, a measure of plasma proteins, in Tennessee turtles were positively correlated with Cu and Zn. White blood cell count, a measure of inflammation, in Tennessee turtles was negatively correlated with Cu and As, and positively correlated with Pb. Metals are a threat to human health and the health of an ecosystem, and the Eastern Box Turtle can serve as a monitor of these contaminants. Differences established in this study can serve as baseline for future studies of these or related populations.

  5. First record of hybridization between green Chelonia mydas and hawksbill Eretmochelys imbricata sea turtles in the Southeast Pacific

    Directory of Open Access Journals (Sweden)

    Shaleyla Kelez

    2016-02-01

    Full Text Available Hybridization among sea turtle species has been widely reported in the Atlantic Ocean, but their detection in the Pacific Ocean is limited to just two individual hybrid turtles, in the northern hemisphere. Herein, we report, for the first time in the southeast Pacific, the presence of a sea turtle hybrid between the green turtle Chelonia mydas and the hawksbill turtle Eretmochelys imbricata. This juvenile sea turtle was captured in northern Peru (4°13′S; 81°10′W on the 5th of January, 2014. The individual exhibited morphological characteristics of C. mydas such as dark green coloration, single pair of pre-frontal scales, four post-orbital scales, and mandibular median ridge, while the presence of two claws in each frontal flipper, and elongated snout resembled the features of E. imbricata. In addition to morphological evidence, we confirmed the hybrid status of this animal using genetic analysis of the mitochondrial gene cytochrome oxidase I, which revealed that the hybrid individual resulted from the cross between a female E. imbricata and a male C. mydas. Our report extends the geographical range of occurrence of hybrid sea turtles in the Pacific Ocean, and is a significant observation of interspecific breeding between one of the world’s most critically endangered populations of sea turtles, the east Pacific E. imbricata, and a relatively healthy population, the east Pacific C. mydas.

  6. Use of Particle Tracking to Determine Optimal Release Dates and Locations for Rehabilitated Neonate Sea Turtles

    Directory of Open Access Journals (Sweden)

    Natalie A. Robson

    2017-06-01

    Full Text Available Sea turtles found stranded on beaches are often rehabilitated before being released back into the wild. The location and date of release is largely selected on an informal basis, which may not maximize the chance of survival. As oceanic conditions have a large influence on the movements of neonate sea turtles, this study aimed to identify the best locations and months to release rehabilitated sea turtles that would assist in their transport by ocean currents to the habitat and thermal conditions required for their survival. A particle tracking model, forced by ocean surface velocity fields, was used to simulate the dispersal pathways of millions of passively drifting particles released from different locations in Western Australia. The particles represented rehabilitated, neonate turtles requiring oceanic habitats [green (Chelonia mydas, hawksbill (Eretmochelys imbricata and loggerheads (Caretta caretta] and flatback turtles (Natator depressus which require neritic habitats. The results clearly identified regions and months where ocean currents were more favorable for transport to suitable habitats. Tantabiddi, near Exmouth on the north-west coast, was consistently the best location for release for the oceanic species, with dominant offshore-directed currents and a very narrow continental shelf reducing the time taken for particles to be transported into deep water. In contrast, release locations with more enclosed geography, wide continental shelves, and/or proximity to cooler ocean temperatures were less successful. Our results produced a decision support system for the release of neonate marine turtles in Western Australia and our particle tracking approach has global transferability.

  7. The origin of turtles: a paleontological perspective.

    Science.gov (United States)

    Joyce, Walter G

    2015-05-01

    The origin of turtles and their unusual body plan has fascinated scientists for the last two centuries. Over the course of the last decades, a broad sample of molecular analyses have favored a sister group relationship of turtles with archosaurs, but recent studies reveal that this signal may be the result of systematic biases affecting molecular approaches, in particular sampling, non-randomly distributed rate heterogeneity among taxa, and the use of concatenated data sets. Morphological studies, by contrast, disfavor archosaurian relationships for turtles, but the proposed alternative topologies are poorly supported as well. The recently revived paleontological hypothesis that the Middle Permian Eunotosaurus africanus is an intermediate stem turtle is now robustly supported by numerous characters that were previously thought to be unique to turtles and that are now shown to have originated over the course of tens of millions of years unrelated to the origin of the turtle shell. Although E. africanus does not solve the placement of turtles within Amniota, it successfully extends the stem lineage of turtles to the Permian and helps resolve some questions associated with the origin of turtles, in particular the non-composite origin of the shell, the slow origin of the shell, and the terrestrial setting for the origin of turtles. © 2015 Wiley Periodicals, Inc.

  8. Reptilian prey of the sonora mud turtle (Kinosternon sonoriense) with comments on saurophagy and ophiophagy in North American Turtles

    Science.gov (United States)

    Lovich, J.; Drost, C.; Monatesti, A.J.; Casper, D.; Wood, D.A.; Girard, M.

    2010-01-01

    We detected evidence of predation by the Sonora mud turtle (Kinosternon sonoriense) on the Arizona alligator lizard (Elgaria kingii nobilis) and the ground snake (Sonora semiannulata) at Montezuma Well, Yavapai County, Arizona. Lizards have not been reported in the diet of K. sonoriense, and saurophagy is rare in turtles of the United States, having been reported previously in only two other species:, the false map turtle (Graptemys pseudogeographica) and the eastern box turtle (Terrapene carolina). While the diet of K. sonoriense includes snakes, ours is the first record of S. semiannulata as food of this turtle. Ophiophagy also is rare in turtles of the United States with records for only five other species of turtles. Given the opportunistic diets of many North American turtles, including K. sonoriense, the scarcity of published records of saurophagy and ophiophagy likely represents a shortage of observations, not rarity of occurrence.

  9. Advancing development of a limit reference point estimator for sea turtles, and evaluating methods for applying local management to highly migratory species

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC is developing tools for estimation of limit reference points for marine turtles. These tools are being applied initially to estimate a limit reference point...

  10. Home range and habitat use of juvenile green turtles (Chelonia mydas) in the northern Gulf of Mexico

    Science.gov (United States)

    Lamont, Margaret M.; Fujisaki, Ikuko; Stephens, Brail S.; Hackett, Caitlin

    2015-01-01

    Background: For imperiled marine turtles, use of satellite telemetry has proven to be an effective method in determining long distance movements. However, the large size of the tag, relatively high cost and low spatial resolution of this method make it more difficult to examine fine-scale movements of individuals, particularly at foraging grounds where animals are frequently submerged. Acoustic telemetry offers a more suitable method of assessing fine-scale movement patterns with a smaller tag that provides more precise locations. We used acoustic telemetry to define home ranges and describe habitat use of juvenile green turtles at a temperate foraging ground in the northern Gulf of Mexico.

  11. Fast acquisition of a polysaccharide fermenting gut microbiome by juvenile green turtles Chelonia mydas after settlement in coastal habitats.

    Science.gov (United States)

    Campos, Patricia; Guivernau, Miriam; Prenafeta-Boldú, Francesc X; Cardona, Luis

    2018-04-10

    Tetrapods do not express hydrolases for cellulose and hemicellulose assimilation, and hence, the independent acquisition of herbivory required the establishment of new endosymbiotic relationships between tetrapods and microbes. Green turtles (Chelonia mydas) are one of the three groups of marine tetrapods with an herbivorous diet and which acquire it after several years consuming pelagic animals. We characterized the microbiota present in the feces and rectum of 24 young wild and captive green turtles from the coastal waters of Brazil, with curved carapace length ranging from 31.1 to 64.7 cm, to test the hypotheses that (1) the ontogenetic dietary shift after settlement is followed by a gradual change in the composition and diversity of the gut microbiome, (2) differences exist between the composition and diversity of the gut microbiome of green turtles from tropical and subtropical regions, and (3) the consumption of omnivorous diets modifies the gut microbiota of green turtles. A genomic library of 2,186,596 valid bacterial 16S rRNA reads was obtained and these sequences were grouped into 6321 different operational taxonomic units (at 97% sequence homology cutoff). The results indicated that most of the juvenile green turtles less than 45 cm of curved carapace length exhibited a fecal microbiota co-dominated by representatives of the phyla Bacteroidetes and Firmicutes and high levels of Clostridiaceae, Prophyromonas, Ruminococaceae, and Lachnospiraceae within the latter phylum. Furthermore, this was the only microbiota profile found in wild green turtles > 45 cm CCL and in most of the captive green turtles of any size feeding on a macroalgae/fish mixed diet. Nevertheless, microbial diversity increased with turtle size and was higher in turtles from tropical than from subtropical regions. These results indicate that juvenile green turtles from the coastal waters of Brazil had the same general microbiota, regardless of body size and origin, and suggest a fast

  12. Modeling neck mobility in fossil turtles

    OpenAIRE

    Werneburg, Ingmar; Hinz, Juliane K.; Gumpenberger, Michaela; Volpato, Virginie; Natchev, Nikolay; Joyce, Walter G.

    2014-01-01

    Turtles have the unparalleled ability to retract their heads and necks within their shell but little is known about the evolution of this trait. Extensive analysis of neck mobility in turtles using radiographs, CT scans, and morphometry reveals that basal turtles possessed less mobility in the neck relative to their extant relatives, although the anatomical prerequisites for modern mobility were already established. Many extant turtles are able to achieve hypermobility by dislocating the cent...

  13. The ontogeny of morphological defenses in Kemp's ridley (Lepidochelys kempii) and loggerhead (Caretta caretta) sea turtles.

    Science.gov (United States)

    Salmon, Michael; Higgins, Benjamin; Stewart, Joshua; Wyneken, Jeanette

    2015-08-01

    Marine turtles are large reptiles that compensate for high juvenile mortality by producing hundreds of hatchlings during a long reproductive lifespan. Most hatchlings are taken by predators during their migration to, and while resident in, the open ocean. Their survival depends upon crypticity, minimizing movement to avoid detection, and foraging efficiently to grow to a size too difficult for predators to either handle or swallow. While these behavioral antipredator tactics are known, changes in morphology accompanying growth may also improve survival prospects. These have been only superficially described in the literature. Here, we compare the similarities and differences in presumed morphological defenses of growing loggerhead (Caretta caretta) and Kemp's ridley (Lepidochelys kempii) posthatchlings, related species that differ in growth rate, timing of habitat shift (the return from oceanic to neritic locations), and size at maturity. In both species, vertebral spination and carapace widening increase disproportionally as small turtles grow, but later in ontogeny, the spines regress, sooner in ridley than in loggerhead turtles. Carapace widening occurs in both species but loggerheads are always longer than they are wide whereas in Kemp's ridley turtles, the carapace becomes as wide as long. Our analysis indicates that these changes are unrelated to when each species shifts habitat but are related to turtle size. We hypothesize that the spines function in small turtles as an early defense against gape-limited predators, but changes in body shape function throughout ontogeny-initially to make small turtles too wide to swallow and later by presenting an almost flat and hardened surface that large predators (such as a sharks) are unable to grasp. The extremely wide carapace of the Kemp's ridley may compensate for its smaller adult size (and presumed greater vulnerability) than the loggerhead. © 2015 Wiley Periodicals, Inc.

  14. Habitat selection by green turtles in a spatially heterogeneous benthic landscape in Dry Tortugas National Park, Florida

    Science.gov (United States)

    Fujisaki, Ikuko; Hart, Kristen M.; Sartain-Iverson, Autumn R.

    2016-01-01

    We examined habitat selection by green turtles Chelonia mydas at Dry Tortugas National Park, Florida, USA. We tracked 15 turtles (6 females and 9 males) using platform transmitter terminals (PTTs); 13 of these turtles were equipped with additional acoustic transmitters. Location data by PTTs comprised periods of 40 to 226 d in varying months from 2009 to 2012. Core areas were concentrated in shallow water (mean bathymetry depth of 7.7 m) with a comparably dense coverage of seagrass; however, the utilization distribution overlap index indicated a low degree of habitat sharing. The probability of detecting a turtle on an acoustic receiver was inversely associated with the distance from the receiver to turtle capture sites and was lower in shallower water. The estimated daily detection probability of a single turtle at a given acoustic station throughout the acoustic array was small (turtle detections was even smaller. However, the conditional probability of multiple turtle detections, given at least one turtle detection at a receiver, was much higher despite the small number of tagged turtles in each year (n = 1 to 5). Also, multiple detections of different turtles at a receiver frequently occurred within a few minutes (40%, or 164 of 415, occurred within 1 min). Our numerical estimates of core area overlap, co-occupancy probabilities, and habitat characterization for green turtles could be used to guide conservation of the area to sustain the population of this species.

  15. First genealogy for a wild marine fish population reveals multigenerational philopatry

    KAUST Repository

    Salles, Océ ane C.; Pujol, Benoit; Maynard, Jeffrey A.; Almany, Glenn R.; Berumen, Michael L.; Jones, Geoffrey P.; Saenz-Agudelo, Pablo; Srinivasan, Maya; Thorrold, Simon R.; Planes, Serge

    2016-01-01

    Natal philopatry, the return of individuals to their natal area for reproduction, has advantages and disadvantages for animal populations. Natal philopatry may generate local genetic adaptation, but it may also increase the probability of inbreeding that can compromise persistence. Although natal philopatry is well documented in anadromous fishes, marine fish may also return to their birth site to spawn. How philopatry shapes wild fish populations is, however, unclear because it requires constructing multigenerational pedigrees that are currently lacking for marine fishes. Here we present the first multigenerational pedigree for a marine fish population by repeatedly genotyping all individuals in a population of the orange clownfish (Amphiprion percula) at Kimbe Island (Papua New Guinea) during a 10-y period. Based on 2927 individuals, our pedigree analysis revealed that longitudinal philopatry was recurrent over five generations. Progeny tended to settle close to their parents, with related individuals often sharing the same colony. However, successful inbreeding was rare, and genetic diversity remained high, suggesting occasional inbreeding does not impair local population persistence. Local reproductive success was dependent on the habitat larvae settled into, rather than the habitat they came from. Our study suggests that longitudinal philopatry can influence both population replenishment and local adaptation of marine fishes. Resolving multigenerational pedigrees during a relatively short period, as we present here, provides a framework for assessing the ability of marine populations to persist and adapt to accelerating climate change.

  16. First genealogy for a wild marine fish population reveals multigenerational philopatry

    KAUST Repository

    Salles, Océane C.

    2016-11-01

    Natal philopatry, the return of individuals to their natal area for reproduction, has advantages and disadvantages for animal populations. Natal philopatry may generate local genetic adaptation, but it may also increase the probability of inbreeding that can compromise persistence. Although natal philopatry is well documented in anadromous fishes, marine fish may also return to their birth site to spawn. How philopatry shapes wild fish populations is, however, unclear because it requires constructing multigenerational pedigrees that are currently lacking for marine fishes. Here we present the first multigenerational pedigree for a marine fish population by repeatedly genotyping all individuals in a population of the orange clownfish (Amphiprion percula) at Kimbe Island (Papua New Guinea) during a 10-y period. Based on 2927 individuals, our pedigree analysis revealed that longitudinal philopatry was recurrent over five generations. Progeny tended to settle close to their parents, with related individuals often sharing the same colony. However, successful inbreeding was rare, and genetic diversity remained high, suggesting occasional inbreeding does not impair local population persistence. Local reproductive success was dependent on the habitat larvae settled into, rather than the habitat they came from. Our study suggests that longitudinal philopatry can influence both population replenishment and local adaptation of marine fishes. Resolving multigenerational pedigrees during a relatively short period, as we present here, provides a framework for assessing the ability of marine populations to persist and adapt to accelerating climate change.

  17. Behavioral Response of Reef Fish and Green Sea Turtles to Midfrequency Sonar.

    Science.gov (United States)

    Watwood, Stephanie L; Iafrate, Joseph D; Reyier, Eric A; Redfoot, William E

    2016-01-01

    There is growing concern over the potential effects of high-intensity sonar on wild fish populations and commercial fisheries. Acoustic telemetry was employed to measure the movements of free-ranging reef fish and sea turtles in Port Canaveral, FL, in response to routine submarine sonar testing. Twenty-five sheepshead (Archosargus probatocephalus), 28 gray snapper (Lutjanus griseus), and 29 green sea turtles (Chelonia mydas) were tagged, with movements monitored for a period of up to 4 months using an array of passive acoustic receivers. Baseline residency was examined for fish and sea turtles before, during, and after the test event. No mortality of tagged fish or sea turtles was evident from the sonar test event. There was a significant increase in the daily residency index for both sheepshead and gray snapper at the testing wharf subsequent to the event. No broad-scale movement from the study site was observed during or immediately after the test.

  18. Different male versus female breeding periodicity helps mitigate offspring sex ratio skews in sea turtles

    Directory of Open Access Journals (Sweden)

    Graeme Clive Hays

    2014-09-01

    Full Text Available The implications of climate change for global biodiversity may be profound with those species with little capacity for adaptation being thought to be particularly vulnerable to warming. A classic case of groups for concern are those animals exhibiting temperature-dependent sex-determination (TSD, such as sea turtles, where climate warming may produce single sex populations and hence extinction. We show that, globally, female biased hatchling sex ratios dominate sea turtle populations (exceeding 3:1 in >50% records, which, at-a-glance, reiterates concerns for extinction. However, we also demonstrate that more frequent breeding by males, empirically shown by satellite tracking 23 individuals and supported by a generalized bio-energetic life history model, generates more balanced operational sex ratios (OSRs. Hence, concerns of increasingly skewed hatchling sex ratios and reduced population viability are less acute than previously thought for sea turtles. In fact, in some scenarios skewed hatchling sex ratios in groups with TSD may be adaptive to ensure optimum OSRs.

  19. Male hatchling production in sea turtles from one of the world’s largest marine protected areas, the Chagos Archipelago

    Science.gov (United States)

    Esteban, Nicole; Laloë, Jacques-Olivier; Mortimer, Jeanne A.; Guzman, Antenor N.; Hays, Graeme C.

    2016-02-01

    Sand temperatures at nest depths and implications for hatchling sex ratios of hawksbill turtles (Eretmochelys imbricata) and green turtles (Chelonia mydas) nesting in the Chagos Archipelago, Indian Ocean are reported and compared to similar measurements at rookeries in the Atlantic and Caribbean. During 2012-2014, temperature loggers were buried at depths and in beach zones representative of turtle nesting sites. Data collected for 12,546 days revealed seasonal and spatial patterns of sand temperature. Depth effects were minimal, perhaps modulated by shade from vegetation. Coolest and warmest temperatures were recorded in the sites heavily shaded in vegetation during the austral winter and in sites partially shaded in vegetation during summer respectively. Overall, sand temperatures were relatively cool during the nesting seasons of both species which would likely produce fairly balanced hatchling sex ratios of 53% and 63% male hatchlings, respectively, for hawksbill and green turtles. This result contrasts with the predominantly high female skew reported for offspring at most rookeries around the globe and highlights how local beach characteristics can drive incubation temperatures. Our evidence suggests that sites characterized by heavy shade associated with intact natural vegetation are likely to provide conditions suitable for male hatchling production in a warming world.

  20. Temperature Effects on Development and Phenotype in a Free-Living Population of Western Pond Turtles (Emys marmorata).

    Science.gov (United States)

    Christie, Nicole E; Geist, Nicholas R

    Changes in temperature regimes are occurring globally due to climate change as well as habitat alterations. Temperatures are expected to continue to rise in the future, along with a greater degree of climatic instability. Such changes could have potentially serious consequences for oviparous ectotherms, especially those with temperature-dependent sex determination. To investigate the effects of temperature on a range of developmental phenomena in a population of western pond turtles (Emys marmorata), we placed temperature sensors on top of each layer of eggs within nests and recorded temperatures hourly through the first 2-3 mo of incubation. These methods allowed us to look at in situ nest temperatures with high resolution. We found that mean incubation temperatures were similar between different nests and at different levels within nests but that incubation temperature fluctuations and maximum incubation temperatures differed greatly in both cases. The hatchling turtles were more likely to be female if they spent 30% or more of their sex-determining period of incubation above 29°C. Hatching success was best predicted by the maximum incubation temperature. We also found that incubation duration tended to be shorter as the mean temperature increased. However, exposure to either extremely high or low temperatures extended incubation times.

  1. The status of marine biodiversity in the Eastern Central Atlantic (West and Central Africa)

    DEFF Research Database (Denmark)

    Polidoro, Beth A.; Ralph, Gina M.; Strongin, Kyle

    2017-01-01

    . This study provides the first comprehensive documentation of the presence, status, and level of extinction risk, based on IUCN Red List assessment methodology, for more than 1800 marine species, including all taxonomically described marine vertebrates (marine mammals, sea turtles, seabirds, fishes); complete...... clades of selected marine invertebrates (sea cucumbers, cone snails, cephalopods, lobsters, reef-building corals); and marine plants (mangroves, seagrasses). Approximately 8% of all marine species assessed in the ECA are in threatened categories, while 4% are listed as Near Threatened, 73% are Least...

  2. The Classroom Animal: Box Turtles.

    Science.gov (United States)

    Kramer, David C.

    1986-01-01

    Provides basic information on the anatomy, physiology, behaviors, and distribution patterns of the box turtle. Offers suggestions for the turtle's care and maintenance in a classroom environment. (ML)

  3. The advantages of going large: genome-wide SNPs clarify the complex population history and systematics of the threatened western pond turtle.

    Science.gov (United States)

    Spinks, Phillip Q; Thomson, Robert C; Shaffer, H Bradley

    2014-05-01

    As the field of phylogeography has matured, it has become clear that analyses of one or a few genes may reveal more about the history of those genes than the populations and species that are the targets of study. To alleviate these concerns, the discipline has moved towards larger analyses of more individuals and more genes, although little attention has been paid to the qualitative or quantitative gains that such increases in scale and scope may yield. Here, we increase the number of individuals and markers by an order of magnitude over previously published work to comprehensively assess the phylogeographical history of a well-studied declining species, the western pond turtle (Emys marmorata). We present a new analysis of 89 independent nuclear SNP markers and one mitochondrial gene sequence scored for rangewide sampling of >900 individuals, and compare these to smaller-scale, rangewide genetic and morphological analyses. Our enlarged SNP data fundamentally revise our understanding of evolutionary history for this lineage. Our results indicate that the gains from greatly increasing both the number of markers and individuals are substantial and worth the effort, particularly for species of high conservation concern such as the pond turtle, where accurate assessments of population history are a prerequisite for effective management. © 2014 John Wiley & Sons Ltd.

  4. Checklist of sea turtles endohelminth in Neotropical region

    Directory of Open Access Journals (Sweden)

    Werneck M. R.

    2016-09-01

    Full Text Available This paper presents a list of parasites described in sea turtles from the Neotropical region. Through the review of literature the occurrence of 79 taxa of helminthes parasites were observed, mostly consisting of the Phylum Platyhelminthes with 76 species distributed in 14 families and 2 families of the Phylum Nematoda within 3 species. Regarding the parasite records, the most studied host was the green turtle (Chelonia mydas followed by the hawksbill turtle (Eretmochelys imbricata, olive ridley turtle (Lepidochelys olivacea, loggerhead turtle (Caretta caretta and leatherback turtle (Dermochelys coriacea. Overall helminths were reported in 12 countries and in the Caribbean Sea region. This checklist is the largest compilation of data on helminths found in sea turtles in the Neotropical region.

  5. Evolutionary origin of the turtle skull.

    Science.gov (United States)

    Bever, G S; Lyson, Tyler R; Field, Daniel J; Bhullar, Bhart-Anjan S

    2015-09-10

    Transitional fossils informing the origin of turtles are among the most sought-after discoveries in palaeontology. Despite strong genomic evidence indicating that turtles evolved from within the diapsid radiation (which includes all other living reptiles), evidence of the inferred transformation between an ancestral turtle with an open, diapsid skull to the closed, anapsid condition of modern turtles remains elusive. Here we use high-resolution computed tomography and a novel character/taxon matrix to study the skull of Eunotosaurus africanus, a 260-million-year-old fossil reptile from the Karoo Basin of South Africa, whose distinctive postcranial skeleton shares many unique features with the shelled body plan of turtles. Scepticism regarding the status of Eunotosaurus as the earliest stem turtle arises from the possibility that these shell-related features are the products of evolutionary convergence. Our phylogenetic analyses indicate strong cranial support for Eunotosaurus as a critical transitional form in turtle evolution, thus fortifying a 40-million-year extension to the turtle stem and moving the ecological context of its origin back onto land. Furthermore, we find unexpected evidence that Eunotosaurus is a diapsid reptile in the process of becoming secondarily anapsid. This is important because categorizing the skull based on the number of openings in the complex of dermal bone covering the adductor chamber has long held sway in amniote systematics, and still represents a common organizational scheme for teaching the evolutionary history of the group. These discoveries allow us to articulate a detailed and testable hypothesis of fenestral closure along the turtle stem. Our results suggest that Eunotosaurus represents a crucially important link in a chain that will eventually lead to consilience in reptile systematics, paving the way for synthetic studies of amniote evolution and development.

  6. In Vitro Replication of Chelonid Herpesvirus 5 in Organotypic Skin Cultures from Hawaiian Green Turtles (Chelonia mydas).

    Science.gov (United States)

    Work, Thierry M; Dagenais, Julie; Weatherby, Tina M; Balazs, George H; Ackermann, Mathias

    2017-09-01

    Fibropapillomatosis (FP) is a tumor disease of marine turtles associated with chelonid herpesvirus 5 (ChHV5), which has historically been refractory to growth in tissue culture. Here we show, for the first time, de novo formation of ChHV5-positive intranuclear inclusions in cultured green turtle cells, which is indicative of active lytic replication of the virus. The minimal requirements to achieve lytic replication in cultured cells included (i) either in vitro cultures of ChHV5-positive tumor biopsy specimens (plugs) or organotypic cultures (rafts) consisting of ChHV5-positive turtle fibroblasts in collagen rafts seeded with turtle keratinocytes and (ii) keratinocyte maturation induced by raising raft or biopsy cultures to the air-liquid interface. Virus growth was confirmed by detailed electron microscopic studies that revealed intranuclear sun-shaped capsid factories, tubules, various stages of capsid formation, nuclear export by budding into the perinuclear space, tegument formation, and envelopment to complete de novo virus production. Membrane synthesis was also observed as a sign of active viral replication. Interestingly, cytoplasmic particles became associated with keratin filaments, a feature not seen in conventional monolayer cell cultures, in which most studies of herpesvirus replication have been performed. Our findings draw a rich and realistic picture of ChHV5 replication in cells derived from its natural host and may be crucial not only to better understand ChHV5 circulation but also to eventually complete Koch's postulates for FP. Moreover, the principles described here may serve as a model for culture of other viruses that are resistant to replication in conventional cell culture. IMPORTANCE A major challenge in virology is the study of viruses that cannot be grown in the laboratory. One example is chelonid herpesvirus 5 (ChHV5), which is associated with fibropapillomatosis, a globally distributed, debilitating, and fatal tumor disease of

  7. A Mycoplasma species of Emydidae turtles in the northeastern USA.

    Science.gov (United States)

    Ossiboff, Robert J; Raphael, Bonnie L; Ammazzalorso, Alyssa D; Seimon, Tracie A; Niederriter, Holly; Zarate, Brian; Newton, Alisa L; McAloose, Denise

    2015-04-01

    Mycoplasma infections can cause significant morbidity and mortality in captive and wild chelonians. As part of a health assessment of endangered bog turtles (Glyptemys muhlenbergii) in the northeastern US, choanal and cloacal swabs from these and other sympatric species, including spotted turtles (Clemmys guttata), eastern box turtles (Terrapene carolina carolina), wood turtles (Glyptemys insculpta), and common snapping turtles (Chelydra serpentina) from 10 sampling sites in the states (US) of Delaware, New Jersey, and Pennsylvania, were tested by PCR for Mycoplasma. Of 108 turtles tested, 63 (58.3%) were PCR positive for Mycoplasma including 58 of 83 bog turtles (70%), three of three (100%) eastern box turtles, and two of 11 (18%) spotted turtles; all snapping turtles (n = 7) and wood turtles (n = 4) were negative. Sequence analysis of portions of the 16S-23S intergenic spacer region and the 16S ribosomal RNA gene revealed a single, unclassified species of Mycoplasma that has been previously reported in eastern box turtles, ornate box turtles (Terrapene ornata ornata), western pond turtles (Emys marmorata), and red-eared sliders (Trachemys scripta elegans). We document a high incidence of Mycoplasma, in the absence of clinical disease, in wild emydid turtles. These findings, along with wide distribution of the identified Mycoplasma sp. across a broad geographic region, suggest this bacterium is likely a commensal inhabitant of bog turtles, and possibly other species of emydid turtles, in the northeastern US.

  8. Arsenic, cadmium, chromium, lead, mercury, and selenium levels in blood of four species of turtles from the Amazon in Brazil.

    Science.gov (United States)

    Burger, Joanna; Jeitner, Christian; Schneider, Larissa; Vogt, Richard; Gochfeld, Michael

    2010-01-01

    Using blood as a method of assessing metal levels in turtles may be useful for populations that are threatened or endangered or are decreasing. In this study the levels of arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and selenium (Se) in blood of four species of turtles from the tributaries of the Rio Negro in the Amazon of Brazil were examined. The turtles included the six-tubercled Amazon (river) turtle (Podocnemis sextuberculata), red-headed Amazon (river) turtle (Podocnemis erythrocephala), big-headed Amazon (river) turtle (Peltocephalus dumerilianus), and matamata turtle (Chelus fimbriatus). Blood samples were taken from the vein in the left hind leg of each turtle. There were significant interspecific differences in the sizes of the turtles from the Rio Negro, and in concentrations of Pb, Hg, and Se; the smallest species (red-headed turtles) had the highest levels of Pb in their blood, while Se levels were highest in big-headed turtles and lowest in red-headed turtles. Hg in blood was highest in matamata, intermediate in big-headed, and lowest in the other two turtles. Even though females were significantly larger than males, there were no significant differences in metal levels as a function of gender, and the only relationship of metals to size was for Cd. Variations in metal levels among species suggest that blood may be a useful bioindicator. Metal levels were not high enough to pose a health risk to the turtles or to consumers, such as humans.

  9. Survey of ophthalmic anterior segment findings and intraocular pressure in 95 North American box turtles (Terrapene spp.).

    Science.gov (United States)

    Espinheira Gomes, Filipe; Brandão, João; Sumner, Julia; Kearney, Michael; Freitas, Inês; Johnson, James; Cutler, Daniel; Nevarez, Javier

    2016-03-01

    To describe the ophthalmic biomicroscopy findings and intraocular pressures (IOP) in a captive population of box turtles and to determine whether a relationship exists between body morphometrics or health status and IOP. Hundred and three box turtles (69 Gulf coast, 24 three-toed, one ornate, one eastern, and eight unidentified) were triaged into three different color-coded groups: green (healthy), yellow (abnormal physical examination with no need for immediate care), and red (immediate care required). Both eyes were evaluated by rebound tonometry and slit-lamp biomicroscopy. Body weight and morphometric data were recorded. Intraocular pressures measurements were available for 190 eyes, slit-lamp biomicroscopy was available for 170 eyes, and morphometric data were available for 81 turtles. IOP in Gulf coast turtles (138 eyes) was 6.7 ± 1.4 mmHg OU. IOP in three-toed turtles (48 eyes) was 8.3 ± 1.5 mmHg OU, which was significantly higher than in Gulf coast turtles (P turtles only. There was a mild negative correlation between morphometrics and IOP in Gulf coast and three-toed turtles. Fifteen of 87 turtles had unilateral corneal or lenticular opacities; 3/87 had bilateral corneal or lenticular disease; and 3/87 had adnexal abnormalities. Different subspecies of box turtles have different normal intraocular pressures as measured by rebound tonometry, which was influenced by the animals' health status in one subspecies. Some morphometric parameters were found to be associated with IOP. Box turtles are often affected with ophthalmic abnormalities of unknown clinical significance. © 2015 American College of Veterinary Ophthalmologists.

  10. 42 CFR 71.52 - Turtles, tortoises, and terrapins.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Turtles, tortoises, and terrapins. 71.52 Section 71..., INSPECTION, LICENSING FOREIGN QUARANTINE Importations § 71.52 Turtles, tortoises, and terrapins. (a) Definitions. As used in this section the term: Turtles includes all animals commonly known as turtles...

  11. The Classroom Animal: Snapping Turtles.

    Science.gov (United States)

    Kramer, David C.

    1987-01-01

    Describes the distinctive features of the common snapping turtle. Discusses facts and misconceptions held about the turtle. Provides guidelines for proper care and treatment of a young snapper in a classroom environment. (ML)

  12. Captive sea turtle rearing inventory, feeding, and water chemistry in sea turtle rearing tanks at NOAA Galveston 1995-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The database contains daily records of sea turtle inventories by species feeding rates type of food fed sick sea turtles sea turtles that have died log of tanks...

  13. Sea Turtle Radio Telemetry Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radio transmitters attached to sea turtles captured in various fishing gear enabled us to track and measure surfacing time of each turtle. Determining location of...

  14. The eastern box turtle at the Patuxent Wildlife Research Center 1940s to the present: another view

    Science.gov (United States)

    Henry, P.F.P.

    2003-01-01

    Several long-term mark recapture studies have been conducted on box turtles (Terrapene c. carolina) providing valuable information on life span, basic demography, home range, and apparent effects of environmental changes on box turtle survival. One of the longest studied populations was first marked in 1942 on the Patuxent Wildlife Research Center in Maryland, and has been surveyed every 10 years until 1995. The age structure and gender ratio of these turtles in the field may support differential habitat use and survival estimates. A few of the turtles first marked during the 1945 study are still observed throughout the Center. Data collected from turtles marked in the more upland habitats during 1985-2002 indicate a younger age class distribution than that observed in the more protected biota of the bottomland floodplain study area. Extrapolating ages of turtles described in data collected throughout the long-term study, it was estimated that turtles, both males and females, can show reproduction-intent behaviors at ages greater than 54 years old. It is suggested that count data collection be continued on a more frequent cycle, extending over a larger part of the Center.

  15. 78 FR 44878 - Turtles Intrastate and Interstate Requirements

    Science.gov (United States)

    2013-07-25

    .... FDA-2013-N-0639] Turtles Intrastate and Interstate Requirements AGENCY: Food and Drug Administration... turtle eggs and live turtles with a carapace length of less than 4 inches to remove procedures for... 21 CFR 1240.62 on May 23, 1975 (40 FR 22543), that ban the sale and distribution of viable turtle...

  16. Sea turtle photo-identification database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ability to correctly and consistently identify sea turtles over time was evaluated using digital imagery of the turtles dorsal and side views of their heads and...

  17. A Middle Triassic stem-turtle and the evolution of the turtle body plan.

    Science.gov (United States)

    Schoch, Rainer R; Sues, Hans-Dieter

    2015-07-30

    The origin and early evolution of turtles have long been major contentious issues in vertebrate zoology. This is due to conflicting character evidence from molecules and morphology and a lack of transitional fossils from the critical time interval. The ∼220-million-year-old stem-turtle Odontochelys from China has a partly formed shell and many turtle-like features in its postcranial skeleton. Unlike the 214-million-year-old Proganochelys from Germany and Thailand, it retains marginal teeth and lacks a carapace. Odontochelys is separated by a large temporal gap from the ∼260-million-year-old Eunotosaurus from South Africa, which has been hypothesized as the earliest stem-turtle. Here we report a new reptile, Pappochelys, that is structurally and chronologically intermediate between Eunotosaurus and Odontochelys and dates from the Middle Triassic period (∼240 million years ago). The three taxa share anteroposteriorly broad trunk ribs that are T-shaped in cross-section and bear sculpturing, elongate dorsal vertebrae, and modified limb girdles. Pappochelys closely resembles Odontochelys in various features of the limb girdles. Unlike Odontochelys, it has a cuirass of robust paired gastralia in place of a plastron. Pappochelys provides new evidence that the plastron partly formed through serial fusion of gastralia. Its skull has small upper and ventrally open lower temporal fenestrae, supporting the hypothesis of diapsid affinities of turtles.

  18. A sinemydid turtle from the Jehol Biota provides insights into the basal divergence of crown turtles.

    Science.gov (United States)

    Zhou, Chang-Fu; Rabi, Márton

    2015-11-10

    Morphological phylogenies stand in a major conflict with molecular hypotheses regarding the phylogeny of Cryptodira, the most diverse and widely distributed clade of extant turtles. However, molecular hypotheses are often considered a better estimate of phylogeny given that it is more consistent with the stratigraphic and geographic distribution of extinct taxa. That morphology fails to reproduce the molecular topology partly originates from problematic character polarization due to yet another contradiction around the composition of the cryptodiran stem lineage. Extinct sinemydids are one of these problematic clades: they have been either placed among stem-cryptodires, stem-chelonioid sea turtles, or even stem-turtles. A new sinemydid from the Early Cretaceous Jehol Biota (Yixian Formation, Barremian-Early Aptian) of China, Xiaochelys ningchengensis gen. et sp. nov., allows for a reassessment of the phylogenetic position of Sinemydidae. Our analysis indicates that sinemydids mostly share symplesiomorphies with sea turtles and their purported placement outside the crown-group of turtles is an artefact of previous datasets. The best current phylogenetic estimate is therefore that sinemydids are part of the stem lineage of Cryptodira together with an array of other Jurassic to Cretaceous taxa. Our study further emphasises the importance of using molecular scaffolds in global turtle analyses.

  19. The western pond turtle: Habitat and history. Final report

    International Nuclear Information System (INIS)

    Holland, D.C.

    1994-08-01

    The western pond turtle is known from many areas of Oregon. The majority of sightings and other records occur in the major drainages of the Klamath, Rogue, Umpqua, Willamette and Columbia River systems. A brief overview is presented of the evolution of the Willamette-Puget Sound hydrographic basin. A synopsis is also presented of the natural history of the western pond turtle, as well as, the status of this turtle in the Willamette drainage basin. The reproductive ecology and molecular genetics of the western pond turtle are discussed. Aquatic movements and overwintering of the western pond turtle are evaluated. The effect of introduced turtle species on the status of the western pond turtle was investigated in a central California Pond. Experiments were performed to determine if this turtle could be translocated as a mitigation strategy

  20. Transitional fossils and the origin of turtles.

    Science.gov (United States)

    Lyson, Tyler R; Bever, Gabe S; Bhullar, Bhart-Anjan S; Joyce, Walter G; Gauthier, Jacques A

    2010-12-23

    The origin of turtles is one of the most contentious issues in systematics with three currently viable hypotheses: turtles as the extant sister to (i) the crocodile-bird clade, (ii) the lizard-tuatara clade, or (iii) Diapsida (a clade composed of (i) and (ii)). We reanalysed a recent dataset that allied turtles with the lizard-tuatara clade and found that the inclusion of the stem turtle Proganochelys quenstedti and the 'parareptile' Eunotosaurus africanus results in a single overriding morphological signal, with turtles outside Diapsida. This result reflects the importance of transitional fossils when long branches separate crown clades, and highlights unexplored issues such as the role of topological congruence when using fossils to calibrate molecular clocks.

  1. Loggerhead turtles (Caretta caretta use vision to forage on gelatinous prey in mid-water.

    Directory of Open Access Journals (Sweden)

    Tomoko Narazaki

    Full Text Available Identifying characteristics of foraging activity is fundamental to understanding an animals' lifestyle and foraging ecology. Despite its importance, monitoring the foraging activities of marine animals is difficult because direct observation is rarely possible. In this study, we use an animal-borne imaging system and three-dimensional data logger simultaneously to observe the foraging behaviour of large juvenile and adult sized loggerhead turtles (Caretta caretta in their natural environment. Video recordings showed that the turtles foraged on gelatinous prey while swimming in mid-water (i.e., defined as epipelagic water column deeper than 1 m in this study. By linking video and 3D data, we found that mid-water foraging events share the common feature of a marked deceleration phase associated with the capture and handling of the sluggish prey. Analysis of high-resolution 3D movements during mid-water foraging events, including presumptive events extracted from 3D data using deceleration in swim speed as a proxy for foraging (detection rate = 0.67, showed that turtles swam straight toward prey in 171 events (i.e., turning point absent but made a single turn toward the prey an average of 5.7±6.0 m before reaching the prey in 229 events (i.e., turning point present. Foraging events with a turning point tended to occur during the daytime, suggesting that turtles primarily used visual cues to locate prey. In addition, an incident of a turtle encountering a plastic bag while swimming in mid-water was recorded. The fact that the turtle's movements while approaching the plastic bag were analogous to those of a true foraging event, having a turning point and deceleration phase, also support the use of vision in mid-water foraging. Our study shows that integrated video and high-resolution 3D data analysis provides unique opportunities to understand foraging behaviours in the context of the sensory ecology involved in prey location.

  2. Transitional fossils and the origin of turtles

    OpenAIRE

    Lyson, Tyler R.; Bever, Gabe S.; Bhullar, Bhart-Anjan S.; Joyce, Walter G.; Gauthier, Jacques A.

    2010-01-01

    The origin of turtles is one of the most contentious issues in systematics with three currently viable hypotheses: turtles as the extant sister to (i) the crocodile–bird clade, (ii) the lizard–tuatara clade, or (iii) Diapsida (a clade composed of (i) and (ii)). We reanalysed a recent dataset that allied turtles with the lizard–tuatara clade and found that the inclusion of the stem turtle Proganochelys quenstedti and the ‘parareptile’ Eunotosaurus africanus results in a single overriding morph...

  3. The endoskeletal origin of the turtle carapace

    Science.gov (United States)

    Hirasawa, Tatsuya; Nagashima, Hiroshi; Kuratani, Shigeru

    2013-01-01

    The turtle body plan, with its solid shell, deviates radically from those of other tetrapods. The dorsal part of the turtle shell, or the carapace, consists mainly of costal and neural bony plates, which are continuous with the underlying thoracic ribs and vertebrae, respectively. Because of their superficial position, the evolutionary origins of these costo-neural elements have long remained elusive. Here we show, through comparative morphological and embryological analyses, that the major part of the carapace is derived purely from endoskeletal ribs. We examine turtle embryos and find that the costal and neural plates develop not within the dermis, but within deeper connective tissue where the rib and intercostal muscle anlagen develop. We also examine the fossils of an outgroup of turtles to confirm that the structure equivalent to the turtle carapace developed independently of the true osteoderm. Our results highlight the hitherto unravelled evolutionary course of the turtle shell. PMID:23836118

  4. Impact of marine debris on Antarctic fur seals Arctocephalus gazella at Cape Shirreff: diet dependent ingestion and entanglement

    NARCIS (Netherlands)

    Bravo Rebolledo, Elisa; Franeker, van J.A.

    2015-01-01

    For several decades it has been known that plastics in the marine environment can harm marine organisms, most visibly birds, turtles and mammals (Shomura and Yoshida, 1985). These animals can become entangled in this synthetic debris and can ingest macro- and micro-plastics. Recently, increased

  5. Modern turtle origins: the oldest known cryptodire.

    Science.gov (United States)

    Gaffney, E S; Hutchison, J H; Jenkins, F A; Meeker, L J

    1987-07-17

    The discovery of a turtle in the Early Jurassic(185 million years before present) Kayenta Formation of northeastern Arizona provides significant evidence about the origin of modern turtles. This new taxon possesses many of the primitive features expected in the hypothetical common ancestor of pleurodires and cryptodires, the two groups of modern turtles. It is identified as the oldest known cryptodire because of the presence of a distinctive cryptodiran jaw mechanism consisting of a trochlea over the otic chamber that redirects the line of action of the adductor muscle. Aquatic habits appear to have developed very early in turtle evolution. Kayentachelys extends the known record of cryptodires back at least 45 million years and documents a very early stage in the evolution of modern turtles.

  6. The girdles of the oldest fossil turtle, Proterochersis robusta, and the age of the turtle crown

    OpenAIRE

    Joyce, Walter G; Schoch, Rainer R; Lyson, Tyler R

    2013-01-01

    Background: Proterochersis robusta from the Late Triassic (Middle Norian) of Germany is the oldest known fossil turtle (i.e. amniote with a fully formed turtle shell), but little is known about its anatomy. A newly prepared, historic specimen provides novel insights into the morphology of the girdles and vertebral column of this taxon and the opportunity to reassess its phylogenetic position.Results: The anatomy of the pectoral girdle of P. robusta is similar to that of other primitive turtle...

  7. Vibrio cholerae Colonization of Soft-Shelled Turtles.

    Science.gov (United States)

    Wang, Jiazheng; Yan, Meiying; Gao, He; Lu, Xin; Kan, Biao

    2017-07-15

    Vibrio cholerae is an important human pathogen and environmental microflora species that can both propagate in the human intestine and proliferate in zooplankton and aquatic organisms. Cholera is transmitted through food and water. In recent years, outbreaks caused by V. cholerae -contaminated soft-shelled turtles, contaminated mainly with toxigenic serogroup O139, have been frequently reported, posing a new foodborne disease public health problem. In this study, the colonization by toxigenic V. cholerae on the body surfaces and intestines of soft-shelled turtles was explored. Preferred colonization sites on the turtle body surfaces, mainly the carapace and calipash of the dorsal side, were observed for the O139 and O1 strains. Intestinal colonization was also found. The colonization factors of V. cholerae played different roles in the colonization of the soft-shelled turtle's body surface and intestine. Mannose-sensitive hemagglutinin (MSHA) of V. cholerae was necessary for body surface colonization, but no roles were found for toxin-coregulated pili (TCP) or N -acetylglucosamine-binding protein A (GBPA). Both TCP and GBPA play important roles for colonization in the intestine, whereas the deletion of MSHA revealed only a minor colonization-promoting role for this factor. Our study demonstrated that V. cholerae can colonize the surfaces and the intestines of soft-shelled turtles and indicated that the soft-shelled turtles played a role in the transmission of cholera. In addition, this study showed that the soft-shelled turtle has potential value as an animal model in studies of the colonization and environmental adaption mechanisms of V. cholerae in aquatic organisms. IMPORTANCE Cholera is transmitted through water and food. Soft-shelled turtles contaminated with Vibrio cholerae (commonly the serogroup O139 strains) have caused many foodborne infections and outbreaks in recent years, and they have become a foodborne disease problem. Except for epidemiological

  8. Corticosterone and thyroxine in cold-stunned Kemp's ridley sea turtles (Lepidochelys kempii).

    Science.gov (United States)

    Hunt, Kathleen E; Innis, Charles; Rolland, Rosalind M

    2012-09-01

    Kemp's ridley sea turtles (Lepidochelys kempii), a critically endangered species, frequently strand on the shores of Cape Cod (Massachusetts, USA) in late autumn in a state of "cold-stunning" exhibiting low body temperature and related clinical issues. Stranded turtles are transported to the New England Aquarium (Boston, Massachusetts, USA) for treatment and rehabilitation. This study tested the hypothesis that cold-stunned sea turtles might exhibit high corticosterone ("stress hormone") or low thyroxine (which is often affected by temperature), or both, and that monitoring of both hormones may be useful for assessing recovery. In a retrospective analysis, 87 archived plasma samples were assayed from 56 cold-stunned juvenile Kemp's ridley sea turtles for corticosterone and free thyroxine (fT4). Upon admission, mean corticosterone was the highest yet reported for a population of sea turtles (39.3 +/- 2.5 ng/ml; mean +/- standard error of the mean [SEM]) and fT4 was usually undetectable. On admission, corticosterone was negatively correlated with white blood cell count but was not correlated with blood glucose. There were no differences in either hormone between survivors and nonsurvivors on admission. After 18+ days in recovery, surviving turtles' corticosterone dropped significantly to levels typical of baseline in other species (0.9 +/- 1.0 ng/ml) while fT4 increased significantly (1.3 +/- 1.5 pg/ml). During recovery, corticosterone was positively correlated with blood glucose and was not correlated with white blood cell count. Turtles that showed persistent deficits in feeding, activity, or both during recovery had significantly lower fT4 than did turtles with no such deficits. The "high corticosterone, low fT4" endocrine profile seen on admission may be a useful marker of cold-stunning in this and other species. Further studies are necessary to determine whether low thyroid hormones play a causal role in deficits in feeding and activity during recovery

  9. In vitro biology of fibropapilloma-associated turtle herpesvirus and host cells in Hawaiian green turtles (Chelonia mydas)

    Science.gov (United States)

    Work, Thierry M.; Dagenais, Julie; Balazs, George H.; Schumacher, Joanne; Lewis, Teresa D.; Leong, Jo-Ann C.; Casey, Rufina N.; Casey, James W.

    2009-01-01

    Fibropapillomatosis (FP) of green turtles has a global distribution and causes debilitating tumours of the skin and internal organs in several species of marine turtles. FP is associated with a presently non-cultivable alphaherpesvirus Chelonid fibropapilloma-associated herpesvirus (CFPHV). Our aims were to employ quantitative PCR targeted to pol DNA of CFPHV to determine (i) if DNA sequesters by tumour size and/or cell type, (ii) whether subculturing of cells is a viable strategy for isolating CFPHV and (iii) whether CFPHV can be induced to a lytic growth cycle in vitro using chemical modulators of replication (CMRs), temperature variation or co-cultivation. Additional objectives included determining whether non-tumour and tumour cells behave differently in vitro and confirming the phenotype of cultured cells using cell-type-specific antigens. CFPHV pol DNA was preferentially concentrated in dermal fibroblasts of skin tumours and the amount of viral DNA per cell was independent of tumour size. Copy number of CFPHV pol DNA per cell rapidly decreased with cell doubling of tumour-derived fibroblasts in culture. Attempts to induce viral replication in known CFPHV-DNA-positive cells using temperature or CMR failed. No significant differences were seen in in vitro morphology or growth characteristics of fibroblasts from tumour cells and paired normal skin, nor from CFPHV pol-DNA-positive intestinal tumour cells. Tumour cells were confirmed as fibroblasts or keratinocytes by positive staining with anti-vimentin and anti-pancytokeratin antibodies, respectively. CFPHV continues to be refractory to in vitro cultivation.

  10. Breeding loggerhead marine turtles Caretta caretta in Dry Tortugas National Park, USA, show high fidelity to diverse habitats near nesting beaches

    Science.gov (United States)

    Hart, Kristen M.; Zawada, David G.; Sartain-Iverson, Autumn R.; Fujisaki, Ikuko

    2016-01-01

    We used satellite telemetry to identify in-water habitat used by individuals in the smallest North-west Atlantic subpopulation of adult nesting loggerhead turtles Caretta caretta during the breeding season. During 2010, 2011 and 2012 breeding periods, a total of 20 adult females used habitats proximal to nesting beaches with various levels of protection within Dry Tortugas National Park. We then used a rapid, high-resolution, digital imaging system to map habitat adjacent to nesting beaches, revealing the diversity and distribution of available benthic cover. Turtle behaviour showing measurable site-fidelity to these diverse habitats has implications for managing protected areas and human activities within them. Protecting diverse benthic areas adjacent to loggerhead turtle nesting beaches here and elsewhere could provide benefits for overall biodiversity conservation.

  11. Radial glia in the proliferative ventricular zone of the embryonic and adult turtle, Trachemys scripta elegans.

    Science.gov (United States)

    Clinton, Brian K; Cunningham, Christopher L; Kriegstein, Arnold R; Noctor, Stephen C; Martínez-Cerdeño, Verónica

    2014-01-01

    To better understand the role of radial glial (RG) cells in the evolution of the mammalian cerebral cortex, we investigated the role of RG cells in the dorsal cortex and dorsal ventricular ridge of the turtle, Trachemys scripta elegans. Unlike mammals, the glial architecture of adult reptile consists mainly of ependymoradial glia, which share features with mammalian RG cells, and which may contribute to neurogenesis that continues throughout the lifespan of the turtle. To evaluate the morphology and proliferative capacity of ependymoradial glia (here referred to as RG cells) in the dorsal cortex of embryonic and adult turtle, we adapted the cortical electroporation technique, commonly used in rodents, to the turtle telencephalon. Here, we demonstrate the morphological and functional characteristics of RG cells in the developing turtle dorsal cortex. We show that cell division occurs both at the ventricle and away from the ventricle, that RG cells undergo division at the ventricle during neurogenic stages of development, and that mitotic Tbr2+ precursor cells, a hallmark of the mammalian SVZ, are present in the turtle cortex. In the adult turtle, we show that RG cells encompass a morphologically heterogeneous population, particularly in the subpallium where proliferation is most prevalent. One RG subtype is similar to RG cells in the developing mammalian cortex, while 2 other RG subtypes appear to be distinct from those seen in mammal. We propose that the different subtypes of RG cells in the adult turtle perform distinct functions.

  12. Use of artificial nests to investigate predation on freshwater turtle nests

    Science.gov (United States)

    Michael N. Marchand; John A. Litvaitis; Thomas J. Maier; Richard M. DeGraaf

    2002-01-01

    Habitat fragmentation has raised concerns that populations of generalist predators have increased and are affecting a diverse group of prey. Previous research has included the use of artificial nests to investigate the role of predation on birds that nest on or near the ground. Because predation also is a major factor limiting populations of freshwater turtles, we...

  13. Shell bone histology indicates terrestrial palaeoecology of basal turtles.

    Science.gov (United States)

    Scheyer, Torsten M; Sander, P Martin

    2007-08-07

    The palaeoecology of basal turtles from the Late Triassic was classically viewed as being semi-aquatic, similar to the lifestyle of modern snapping turtles. Lately, this view was questioned based on limb bone proportions, and a terrestrial palaeoecology was suggested for the turtle stem. Here, we present independent shell bone microstructural evidence for a terrestrial habitat of the oldest and basal most well-known turtles, i.e. the Upper Triassic Proterochersis robusta and Proganochelys quenstedti. Comparison of their shell bone histology with that of extant turtles preferring either aquatic habitats or terrestrial habitats clearly reveals congruence with terrestrial turtle taxa. Similarities in the shell bones of these turtles are a diploe structure with well-developed external and internal cortices, weak vascularization of the compact bone layers and a dense nature of the interior cancellous bone with overall short trabeculae. On the other hand, 'aquatic' turtles tend to reduce cortical bone layers, while increasing overall vascularization of the bone tissue. In contrast to the study of limb bone proportions, the present study is independent from the uncommon preservation of appendicular skeletal elements in fossil turtles, enabling the palaeoecological study of a much broader range of incompletely known turtle taxa in the fossil record.

  14. Migrations of green turtles (Chelonia mydas between nesting and foraging grounds across the Coral Sea.

    Directory of Open Access Journals (Sweden)

    Tyffen C Read

    Full Text Available Marine megafauna tend to migrate vast distances, often crossing national borders and pose a significant challenge to managers. This challenge is particularly acute in the Pacific, which contains numerous small island nations and thousands of kilometers of continental margins. The green sea turtle, Chelonia mydas, is one such megafauna that is endangered in Pacific waters due to the overexploitation of eggs and adults for human consumption. Data from long-term tagging programs in Queensland (Australia and New Caledonia were analysed to investigate the migrations by C. mydas across the Coral Sea between their nesting site and their feeding grounds. A review of data collected over the last 50 years by different projects identified multiple migrations of C. mydas to and from New Caledonia (n = 97 and indicate that turtles foraging in New Caledonia nest in the Great Barrier Reef (Australia and vice versa. Several explanations exist for turtles exhibiting this energetically costly movement pattern from breeding to distant foraging grounds (1200-2680 km away despite viable foraging habitat being available in the local vicinity. These include hatchling drift, oceanic movements and food abundance predictability. Most of the tag recoveries in New Caledonia belonged to females from the south Great Barrier Reef genetic stock. Some females (n = 2 even showed fidelity to foraging sites located 1200 km away from the nesting site located in New Caledonia. This study also reveals previously unknown migrations pathways of turtles within the Coral Sea.

  15. Stable isotopes in barnacles as a tool to understand green sea turtle (Chelonia mydas) regional movement patterns

    Science.gov (United States)

    Detjen, M.; Sterling, E.; Gómez, A.

    2015-12-01

    Sea turtles are migratory animals that travel long distances between their feeding and breeding grounds. Traditional methods for researching sea turtle migratory behavior have important disadvantages, and the development of alternatives would enhance our ability to monitor and manage these globally endangered species. Here we report on the isotope signatures in green sea-turtle (Chelonia mydas) barnacles (Platylepas sp.) and discuss their potential relevance as tools with which to study green sea turtle migration and habitat use patterns. We analyzed oxygen (δ18O) and carbon (δ13C) isotope ratios in barnacle calcite layers from specimens collected from green turtles captured at the Palmyra Atoll National Wildlife Refuge (PANWR) in the central Pacific. Carbon isotopes were not informative in this study. However, the oxygen isotope results suggest likely regional movement patterns when mapped onto a predictive oxygen isotope map of the Pacific. Barnacle proxies could therefore complement other methods in understanding regional movement patterns, informing more effective conservation policy that takes into account connectivity between populations.

  16. Hierarchical, quantitative biogeographic provinces for all North American turtles and their contribution to the biogeography of turtles and the continent

    Science.gov (United States)

    Ennen, Joshua R.; Matamoros, Wilfredo A.; Agha, Mickey; Lovich, Jeffrey E.; Sweat, Sarah C.; Hoagstrom, Christopher W.

    2017-01-01

    Our study represents the first attempt to describe biogeographic provinces for North American (México, United States, and Canada) turtles. We analyzed three nested data sets separately: (1) all turtles, (2) freshwater turtles, and (3) aquatic turtles. We georeferenced North American turtle distributions, then we created presence–absence matrices for each of the three data sets. We used watershed unit as biogeographic units. We conducted an unweighted pair-group method with arithmetic mean clustering analysis on each Jaccard index distance matrix from our watershed species matrices to delineate biogeographic provinces. Provinces were then tested for significant differences in species compositions in a global model with the use of a one-way analysis of similarity. We conducted a best subset of environmental variables with maximum (rank) correlation with community dissimilarities that determined the best model of abiotic variables explaining province delineation (i.e., climate, topography, and stream channel). To identify which species contributed the most to province delineations, we conducted an indicator species analysis and a similarity-percentage analysis. There were 16 all-turtle provinces, 15 freshwater provinces, and 13 aquatic provinces. Species compositions delineating the provinces were explained by abiotic variables, including mean annual precipitation, mean precipitation seasonality, and diversity of streams. Province delineations correspond closely with geographical boundaries, many of which have Pleistocene origins. For example, rivers with a history of carrying glacial runoff (e.g., Arkansas, Mississippi) sometimes dissect upland provinces, especially for aquatic and semiaquatic turtles. Compared with freshwater fishes, turtles show greater sensitivity to decreased temperature with restriction of most taxa south of the last permafrost maximum. Turtles also exhibit higher sensitivity to climatic, geomorphic, and tectonic instability, with richness

  17. Phylogeography of the sponge Suberites diversicolor in Indonesia: insights into the evolution of marine lake populations.

    Science.gov (United States)

    Becking, Leontine E; Erpenbeck, Dirk; Peijnenburg, Katja T C A; de Voogd, Nicole J

    2013-01-01

    The existence of multiple independently derived populations in landlocked marine lakes provides an opportunity for fundamental research into the role of isolation in population divergence and speciation in marine taxa. Marine lakes are landlocked water bodies that maintain a marine character through narrow submarine connections to the sea and could be regarded as the marine equivalents of terrestrial islands. The sponge Suberites diversicolor (Porifera: Demospongiae: Suberitidae) is typical of marine lake habitats in the Indo-Australian Archipelago. Four molecular markers (two mitochondrial and two nuclear) were employed to study genetic structure of populations within and between marine lakes in Indonesia and three coastal locations in Indonesia, Singapore and Australia. Within populations of S. diversicolor two strongly divergent lineages (A & B) (COI: p = 0.4% and ITS: p = 7.3%) were found, that may constitute cryptic species. Lineage A only occurred in Kakaban lake (East Kalimantan), while lineage B was present in all sampled populations. Within lineage B, we found low levels of genetic diversity in lakes, though there was spatial genetic population structuring. The Australian population is genetically differentiated from the Indonesian populations. Within Indonesia we did not record an East-West barrier, which has frequently been reported for other marine invertebrates. Kakaban lake is the largest and most isolated marine lake in Indonesia and contains the highest genetic diversity with genetic variants not observed elsewhere. Kakaban lake may be an area where multiple putative refugia populations have come into secondary contact, resulting in high levels of genetic diversity and a high number of endemic species.

  18. Phylogeography of the Sponge Suberites diversicolor in Indonesia: Insights into the Evolution of Marine Lake Populations

    Science.gov (United States)

    Becking, Leontine E.; Erpenbeck, Dirk; Peijnenburg, Katja T. C. A.; de Voogd, Nicole J.

    2013-01-01

    The existence of multiple independently derived populations in landlocked marine lakes provides an opportunity for fundamental research into the role of isolation in population divergence and speciation in marine taxa. Marine lakes are landlocked water bodies that maintain a marine character through narrow submarine connections to the sea and could be regarded as the marine equivalents of terrestrial islands. The sponge Suberites diversicolor (Porifera: Demospongiae: Suberitidae) is typical of marine lake habitats in the Indo-Australian Archipelago. Four molecular markers (two mitochondrial and two nuclear) were employed to study genetic structure of populations within and between marine lakes in Indonesia and three coastal locations in Indonesia, Singapore and Australia. Within populations of S. diversicolor two strongly divergent lineages (A & B) (COI: p = 0.4% and ITS: p = 7.3%) were found, that may constitute cryptic species. Lineage A only occurred in Kakaban lake (East Kalimantan), while lineage B was present in all sampled populations. Within lineage B, we found low levels of genetic diversity in lakes, though there was spatial genetic population structuring. The Australian population is genetically differentiated from the Indonesian populations. Within Indonesia we did not record an East-West barrier, which has frequently been reported for other marine invertebrates. Kakaban lake is the largest and most isolated marine lake in Indonesia and contains the highest genetic diversity with genetic variants not observed elsewhere. Kakaban lake may be an area where multiple putative refugia populations have come into secondary contact, resulting in high levels of genetic diversity and a high number of endemic species. PMID:24098416

  19. Phylogeography of the Sponge Suberites diversicolor in Indonesia: insights into the evolution of marine lake populations

    NARCIS (Netherlands)

    Becking, L.E.; Erpenbeck, D.; Peijnenburg, K.T.C.A.; Voogd, de N.J.

    2013-01-01

    The existence of multiple independently derived populations in landlocked marine lakes provides an opportunity for fundamental research into the role of isolation in population divergence and speciation in marine taxa. Marine lakes are landlocked water bodies that maintain a marine character through

  20. Phylogeography of the Sponge Suberites diversicolor in Indonesia: Insights into the Evolution of Marine Lake Populations

    NARCIS (Netherlands)

    Becking, L.E.; Erpenbeck, D.; Peijnenburg, K.T.C.A.; Voogd, de N.J.

    2013-01-01

    The existence of multiple independently derived populations in landlocked marine lakes provides an opportunity for fundamental research into the role of isolation in population divergence and speciation in marine taxa. Marine lakes are landlocked water bodies that maintain a marine character through

  1. Multiple distant origins for green sea turtles aggregating off Gorgona Island in the Colombian eastern Pacific.

    Directory of Open Access Journals (Sweden)

    Diego F Amorocho

    Full Text Available Mitochondrial DNA analyses have been useful for resolving maternal lineages and migratory behavior to foraging grounds (FG in sea turtles. However, little is known about source rookeries and haplotype composition of foraging green turtle aggregations in the southeastern Pacific. We used mitochondrial DNA control region sequences to identify the haplotype composition of 55 green turtles, Chelonia mydas, captured in foraging grounds of Gorgona National Park in the Colombian Pacific. Amplified fragments of the control region (457 bp revealed the presence of seven haplotypes, with haplotype (h and nucleotide (π diversities of h = 0.300±0.080 and π = 0.009±0.005 respectively. The most common haplotype was CMP4 observed in 83% of individuals, followed by CMP22 (5%. The genetic composition of the Gorgona foraging population primarily comprised haplotypes that have been found at eastern Pacific rookeries including Mexico and the Galapagos, as well as haplotypes of unknown stock origin that likely originated from more distant western Pacific rookeries. Mixed stock analysis suggests that the Gorgona FG population is comprised mostly of animals from the Galapagos rookery (80%. Lagrangian drifter data showed that movement of turtles along the eastern Pacific coast and eastward from distant western and central Pacific sites was possible through passive drift. Our results highlight the importance of this protected area for conservation management of green turtles recruited from distant sites along the eastern Pacific Ocean.

  2. Multiple distant origins for green sea turtles aggregating off Gorgona Island in the Colombian eastern Pacific.

    Science.gov (United States)

    Amorocho, Diego F; Abreu-Grobois, F Alberto; Dutton, Peter H; Reina, Richard D

    2012-01-01

    Mitochondrial DNA analyses have been useful for resolving maternal lineages and migratory behavior to foraging grounds (FG) in sea turtles. However, little is known about source rookeries and haplotype composition of foraging green turtle aggregations in the southeastern Pacific. We used mitochondrial DNA control region sequences to identify the haplotype composition of 55 green turtles, Chelonia mydas, captured in foraging grounds of Gorgona National Park in the Colombian Pacific. Amplified fragments of the control region (457 bp) revealed the presence of seven haplotypes, with haplotype (h) and nucleotide (π) diversities of h = 0.300±0.080 and π = 0.009±0.005 respectively. The most common haplotype was CMP4 observed in 83% of individuals, followed by CMP22 (5%). The genetic composition of the Gorgona foraging population primarily comprised haplotypes that have been found at eastern Pacific rookeries including Mexico and the Galapagos, as well as haplotypes of unknown stock origin that likely originated from more distant western Pacific rookeries. Mixed stock analysis suggests that the Gorgona FG population is comprised mostly of animals from the Galapagos rookery (80%). Lagrangian drifter data showed that movement of turtles along the eastern Pacific coast and eastward from distant western and central Pacific sites was possible through passive drift. Our results highlight the importance of this protected area for conservation management of green turtles recruited from distant sites along the eastern Pacific Ocean.

  3. Hox code in embryos of Chinese soft-shelled turtle Pelodiscus sinensis correlates with the evolutionary innovation in the turtle.

    Science.gov (United States)

    Ohya, Yoshie Kawashima; Kuraku, Shigehiro; Kuratani, Shigeru

    2005-03-15

    Turtles have the most unusual body plan of the amniotes, with a dorsal shell consisting of modified ribs. Because this morphological change in the ribs can be described as an axial-level specific alteration, the evolution of the turtle carapace should depend on changes in the Hox code. To identify turtle-specific changes in developmental patterns, we cloned several Hox genes from the Chinese soft-shelled turtle, Pelodiscus sinensis, examined their expression patterns during embryogenesis, and compared them with those of chicken and mouse embryos. We detected possibly turtle-specific derived traits in Hoxc-6 expression, which is restricted to the paraxial part of the embryo; in the expression of Hoxa-5 and Hoxb-5, the transcripts of which were detected only at the cervical level; and in Hoxc-8 and Hoxa-7 expression, which is shifted anteriorly relative to that of the other two amniote groups. From the known functions of the Hox orthologs in model animals, these P. sinensis-specific changes apparently correlate with specializations in the turtle-specific body plan. Copyright 2005 Wiley-Liss, Inc.

  4. Mitochondrial DNA reveals regional and interregional importance of the central Mediterranean African shelf for loggerhead sea turtles (Caretta caretta

    Directory of Open Access Journals (Sweden)

    Paolo Casale

    2008-09-01

    Full Text Available The wide north African continental shelf in the central Mediterranean is known to be one of the few important areas in the basin for loggerhead turtles in the neritic stage. In order to assess the origin of these turtles, sequences of the mtDNA control region were obtained from 70 turtles caught by bottom trawlers in the area, and compared with known sequences from turtles from Mediterranean and Atlantic nesting sites. Five haplotypes were identified (Haplotype diversity = 0.262; nucleotide diversity = 5.4×10-3. Specific haplotypes indicate contributions from distant rookeries such as Turkey and the Atlantic, which shows that Atlantic turtles entering the Mediterranean while in the oceanic phase use at least one Mediterranean continental shelf as a neritic foraging ground. A new haplotype and another one previously found only in foraging areas, highlight the genetic information gaps for nesting sites, which undermine powerful mixed stock analyses. Despite these limitations, the results reveal the regional importance of the study area as a neritic foraging ground for turtles that are probably from most of the Mediterranean nesting aggregates. Therefore, reducing turtle mortality resulting from the high fishing effort in the area should be regarded as key for Mediterranean turtle conservation and is also possibly important for Atlantic populations.

  5. Trace elements in loggerhead turtles (Caretta caretta) stranded in mainland Portugal: Bioaccumulation and tissue distribution.

    Science.gov (United States)

    Nicolau, Lídia; Monteiro, Sílvia S; Pereira, Andreia T; Marçalo, Ana; Ferreira, Marisa; Torres, Jordi; Vingada, José; Eira, Catarina

    2017-07-01

    Pollution is among the most significant threats that endanger sea turtles worldwide. Waters off the Portuguese mainland are acknowledged as important feeding grounds for juvenile loggerheads. However, there is no data on trace element concentrations in marine turtles occurring in these waters. We present the first assessment of trace element concentrations in loggerhead turtles (Caretta caretta) occurring off the coast of mainland Portugal. Also, we compare our results with those from other areas and discuss parameters that may affect element concentrations. Trace element concentrations (As, Cd, Cu, Pb, Mn, Hg, Ni, Se, Zn) were determined in kidney, liver and muscle samples from 38 loggerheads stranded between 2011 and 2013. As was the only element with higher concentrations in muscle (14.78 μg g -1 ww) than in liver or kidney. Considering non-essential elements, Cd presented the highest concentrations in kidney (34.67 μg g -1 ) and liver (5.03 μg g -1 ). Only a weak positive link was found between renal Cd and turtle size. Inter-elemental correlations were observed in both liver and kidney tissues. Hepatic Hg values (0.30 ± 0.03 μg g -1 ) were higher than values reported in loggerheads in the Canary Islands but lower than in Mediterranean loggerheads. Cd concentrations in the present study were only exceeded by values found in turtles from the Pacific. Although many endogenous and exogenous parameters related with complex life cycle changes and wide geographic range may influence trace element accumulation, the concentrations of Cd are probably related to the importance of crustaceans in loggerhead diet in the Portuguese coast. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The draft genomes of soft–shell turtle and green sea turtle yield insights into the development and evolution of the turtle–specific body plan

    Science.gov (United States)

    Niimura, Yoshihito; Huang, Zhiyong; Li, Chunyi; White, Simon; Xiong, Zhiqiang; Fang, Dongming; Wang, Bo; Ming, Yao; Chen, Yan; Zheng, Yuan; Kuraku, Shigehiro; Pignatelli, Miguel; Herrero, Javier; Beal, Kathryn; Nozawa, Masafumi; Li, Qiye; Wang, Juan; Zhang, Hongyan; Yu, Lili; Shigenobu, Shuji; Wang, Junyi; Liu, Jiannan; Flicek, Paul; Searle, Steve; Wang, Jun; Kuratani, Shigeru; Yin, Ye; Aken, Bronwen; Zhang, Guojie; Irie, Naoki

    2014-01-01

    The unique anatomical features of turtles have raised unanswered questions about the origin of their unique body plan. We generated and analyzed draft genomes of the soft-shell turtle (Pelodiscus sinensis) and the green sea turtle (Chelonia mydas); our results indicated the close relationship of the turtles to the bird-crocodilian lineage, from which they split ~267.9–248.3 million years ago (Upper Permian to Triassic). We also found extensive expansion of olfactory receptor genes in these turtles. Embryonic gene expression analysis identified an hourglass-like divergence of turtle and chicken embryogenesis, with maximal conservation around the vertebrate phylotypic period, rather than at later stages that show the amniote-common pattern. Wnt5a expression was found in the growth zone of the dorsal shell, supporting the possible co-option of limb-associated Wnt signaling in the acquisition of this turtle-specific novelty. Our results suggest that turtle evolution was accompanied by an unexpectedly conservative vertebrate phylotypic period, followed by turtle-specific repatterning of development to yield the novel structure of the shell. PMID:23624526

  7. Ocular fibropapillomas of green turtles (Chelonia mydas).

    Science.gov (United States)

    Brooks, D E; Ginn, P E; Miller, T R; Bramson, L; Jacobson, E R

    1994-05-01

    Histologic evaluation of four eyes from three stranded juvenile green turtles (Chelonia mydas) from Florida, USA revealed ocular fibropapillomas composed of an overlying hyperplastic epithelium, various amounts of a thickened, well vascularized, collagenous stroma, and a moderate-to-dense population of reactive fibroblasts. The histologic morphology of the ocular fibropapillomas varied depending on whether the eyelid, conjunctiva, limbus, or cornea was the primary site of tumor origin. Fibropapillomas arising from the limbus, conjunctiva, or eyelid tended to be polyploid or pedunculated with a high degree of arborization. They often filled the conjunctival fornices and extended externally to be ulcerated on the distal aspects. Corneal fibropapillomas were more sessile and multinodular with less arborization. Some corneal tumors consisted primarily of a broad fibrovascular stroma and mild epithelial hyperplasia, whereas others had a markedly hyperplastic epithelium supported by stalks of fibrovascular stromal tissue. In green turtles ocular fibropapillomas may be locally invasive and associated with severe blindness and systemic debilitation.

  8. Assessment of MEGA BORG impacts on sea turtles

    International Nuclear Information System (INIS)

    Gitschlag, G.

    1993-01-01

    Studies were conducted to assess the impacts of the MEGA BORG oil spill on sea turtles in the path of the oil plume. Aerial surveys were performed to determine the presence of turtles and provide a gross visual assessment of potential impacts. Although extensive efforts were made to capture sea turtles around oil and gas platforms only one loggerhead sea turtle, Caretta caretta, was captured. Neither external visual inspection nor laboratory fecal analysis showed evidence of petroleum contamination

  9. Sea turtles sightings in North Carolina

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea turtles sightings are reported to the NMFS Beaufort Laboratory sea turtle program by the general public as they are fishing, boating, etc. These sightings...

  10. A Multi-Temporal Remote Sensing Approach to Freshwater Turtle Conservation

    Science.gov (United States)

    Mui, Amy B.

    Freshwater turtles are a globally declining taxa, and estimates of population status are not available for many species. Primary causes of decline stem from widespread habitat loss and degradation, and obtaining spatially-explicit information on remaining habitat across a relevant spatial scale has proven challenging. The discipline of remote sensing science has been employed widely in studies of biodiversity conservation, but it has not been utilized as frequently for cryptic, and less vagile species such as turtles, despite their vulnerable status. The work presented in this thesis investigates how multi-temporal remote sensing imagery can contribute key information for building spatially-explicit and temporally dynamic models of habitat and connectivity for the threatened, Blanding's turtle (Emydoidea blandingii) in southern Ontario, Canada. I began with outlining a methodological approach for delineating freshwater wetlands from high spatial resolution remote sensing imagery, using a geographic object-based image analysis (GEOBIA) approach. This method was applied to three different landscapes in southern Ontario, and across two biologically relevant seasons during the active (non-hibernating) period of Blanding's turtles. Next, relevant environmental variables associated with turtle presence were extracted from remote sensing imagery, and a boosted regression tree model was developed to predict the probability of occurrence of this species. Finally, I analysed the movement potential for Blanding's turtles in a disturbed landscape using a combination of approaches. Results indicate that (1) a parsimonious GEOBIA approach to land cover mapping, incorporating texture, spectral indices, and topographic information can map heterogeneous land cover with high accuracy, (2) remote-sensing derived environmental variables can be used to build habitat models with strong predictive power, and (3) connectivity potential is best estimated using a variety of approaches

  11. Genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV)

    DEFF Research Database (Denmark)

    Snow, M.; Bain, N.; Black, J.

    2004-01-01

    The nucleotide sequences of a specific region of the nucleoprotein gene were compared in order to investigate the genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV). Analysis of the sequence from 128 isolates of diverse geographic and host origin renders this the m......The nucleotide sequences of a specific region of the nucleoprotein gene were compared in order to investigate the genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV). Analysis of the sequence from 128 isolates of diverse geographic and host origin renders...... this the most comprehensive molecular epidemiological study of marine VHSV conducted to date. Phylogenetic analysis of nucleoprotein gene sequences confirmed the existence of the 4 major genotypes previously identified based on N- and subsequent G-gene based analyses. The range of Genotype I included subgroups...... of isolates associated with rainbow trout aquaculture (Genotype la) and those from the Baltic marine environment (Genotype Ib) to emphasise the relatively close genetic relationship between these isolates. The existence of an additional genotype circulating within the Baltic Sea (Genotype II) was also...

  12. Endangered Green Turtles (Chelonia mydas of the Northern Mariana Islands: Nesting Ecology, Poaching, and Climate Concerns

    Directory of Open Access Journals (Sweden)

    Tammy M. Summers

    2018-01-01

    Full Text Available Marine turtles in the western Pacific remain threatened by anthropogenic impacts, but the region lacks long-term biological data for assessing conservation status and trends. The Central West Pacific (CWP population of green turtles (Chelonia mydas was listed as Endangered by the U.S. in 2016, highlighting a need to fill existing data gaps. This study focuses on the subset of this population nesting in the Commonwealth of the Northern Mariana Islands (CNMI. Using 11 years of nesting data, we (i estimate reproductive demographic parameters, (ii quantify abundance and trends, and (iii estimate the impacts of anthropogenic threats, such as poaching of nesting females and increasing sand temperatures. In 2006–2016, nesting beach surveys, identification tagging, and nest excavations were conducted on Saipan, and rapid assessments of nesting activity were conducted on Tinian and Rota. On Saipan, temperature data-loggers were deployed inside nests and evidence of poaching (adults and eggs was recorded. This study documents year-round nesting with a peak in March–July. Nester abundance for the three islands combined was 11.9 ± 5.7 (mean ± standard deviation females annually, with at least 62.8 ± 35.1 nests observed per year. For 39 tagged individuals, straight carapace length was 95.6 ± 4.5 cm, remigration interval was 4.6 ± 1.3 years, and somatic growth was 0.3 ± 0.2 cm/yr. Reproductive parameter estimates included clutch frequency of 7.0 ± 1.3 nests per female, inter-nesting interval of 11.4 ± 1.0 days, clutch size of 93.5 ± 21.4 eggs, incubation period of 56.7 ± 6.4 days, hatching success of 77.9 ± 27.0%, and emergence success of 69.6 ± 30.3%. Mean nest temperature of 30.9 ± 1.5°C was above the pivotal threshold of 29.0°C for temperature dependent sex determination, suggesting a female bias may already exist. Model results suggest (i hatching success decreases and embryonic death increases when nests experience maximum temperatures

  13. Body burdens of heavy metals in Lake Michigan wetland turtles.

    Science.gov (United States)

    Smith, Dayna L; Cooper, Matthew J; Kosiara, Jessica M; Lamberti, Gary A

    2016-02-01

    Tissue heavy metal concentrations in painted (Chrysemys picta) and snapping (Chelydra serpentina) turtles from Lake Michigan coastal wetlands were analyzed to determine (1) whether turtles accumulated heavy metals, (2) if tissue metal concentrations were related to environmental metal concentrations, and (3) the potential for non-lethal sampling techniques to be used for monitoring heavy metal body burdens in freshwater turtles. Muscle, liver, shell, and claw samples were collected from painted and snapping turtles and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, and zinc. Turtle tissues had measurable quantities of all eight metals analyzed. Statistically significant correlations between tissue metal concentrations and sediment metal concentrations were found for a subset of metals. Metals were generally found in higher concentrations in the larger snapping turtles than in painted turtles. In addition, non-lethal samples of shell and claw were found to be possible alternatives to lethal liver and muscle samples for some metals. Human consumption of snapping turtles presents potential health risks if turtles are harvested from contaminated areas. Overall, our results suggest that turtles could be a valuable component of contaminant monitoring programs for wetland ecosystems.

  14. Seasonal and diel environmental conditions predict western pond turtle (Emys marmorata) behavior at a perennial and an ephemeral stream in Sequoia National Park, California

    Science.gov (United States)

    Ruso, Gabrielle; Meyer, Erik; Das, Adrian J.

    2017-01-01

    Managers making decisions may benefit from a well-informed understanding of a species' population size and trends. Given the cryptic nature and habitat characteristics of the western pond turtle (Emys marmorata), however, imperfect detection may be high and population estimates are frequently varied and unreliable. As a case study to investigate this issue, we used temperature dataloggers to examine turtle behavior at 2 long-term monitoring sites with different hydrological characteristics in Sequoia National Park, California, to determine if common stream-survey techniques are consistent with site-specific turtle behavior. Sycamore Creek is an intermittent stream that dries up every summer while the North Fork Kaweah River flows year-round. We found that while turtles spent most of the recorded time in the water (55% in Sycamore Creek and 82% in the North Fork Kaweah River), the timing of traditional surveys only coincided with the turtles' aquatic activity in the North Fork Kaweah River. At Sycamore Creek, turtles were most likely to be in the water at night. In contrast, failure to detect turtles in North Fork Kaweah River is likely owing to the larger size and complexity of the underwater habitat. In both streams, turtles were also more likely to be in the water in the weeks leading up to important changes in hydroperiods. Our findings illustrate the effects that differences in water permanence can have on turtle behavior within the same watershed and how phenotypic plasticity may then affect detection during surveys. Our study highlights the importance of tailoring survey practices to the site-specific behavioral traits of the target species.

  15. The elusive baseline of marine disease: are diseases in ocean ecosystems increasing?

    Directory of Open Access Journals (Sweden)

    Jessica R Ward

    2004-04-01

    Full Text Available Disease outbreaks alter the structure and function of marine ecosystems, directly affecting vertebrates (mammals, turtles, fish, invertebrates (corals, crustaceans, echinoderms, and plants (seagrasses. Previous studies suggest a recent increase in marine disease. However, lack of baseline data in most communities prevents a direct test of this hypothesis. We developed a proxy to evaluate a prediction of the increasing disease hypothesis: the proportion of scientific publications reporting disease increased in recent decades. This represents, to our knowledge, the first quantitative use of normalized trends in the literature to investigate an ecological hypothesis. We searched a literature database for reports of parasites and disease (hereafter "disease" in nine marine taxonomic groups from 1970 to 2001. Reports, normalized for research effort, increased in turtles, corals, mammals, urchins, and molluscs. No significant trends were detected for seagrasses, decapods, or sharks/rays (though disease occurred in these groups. Counter to the prediction, disease reports decreased in fishes. Formulating effective resource management policy requires understanding the basis and timing of marine disease events. Why disease outbreaks increased in some groups but not in others should be a priority for future investigation. The increase in several groups lends urgency to understanding disease dynamics, particularly since few viable options currently exist to mitigate disease in the oceans.

  16. Residency and movement patterns of an apex predatory shark (Galeocerdo cuvier at the Galapagos Marine Reserve.

    Directory of Open Access Journals (Sweden)

    David Acuña-Marrero

    Full Text Available The potential effectiveness of marine protected areas (MPAs as a conservation tool for large sharks has been questioned due to the limited spatial extent of most MPAs in contrast to the complex life history and high mobility of many sharks. Here we evaluated the movement dynamics of a highly migratory apex predatory shark (tiger shark Galeocerdo cuvier at the Galapagos Marine Reserve (GMR. Using data from satellite tracking passive acoustic telemetry, and stereo baited remote underwater video, we estimated residency, activity spaces, site fidelity, distributional abundances and migration patterns from the GMR and in relation to nesting beaches of green sea turtles (Chelonia mydas, a seasonally abundant and predictable prey source for large tiger sharks. Tiger sharks exhibited a high degree of philopatry, with 93% of the total satellite-tracked time across all individuals occurring within the GMR. Large sharks (> 200 cm TL concentrated their movements in front of the two most important green sea turtle-nesting beaches in the GMR, visiting them on a daily basis during nocturnal hours. In contrast, small sharks (< 200 cm TL rarely visited turtle-nesting areas and displayed diurnal presence at a third location where only immature sharks were found. Small and some large individuals remained in the three study areas even outside of the turtle-nesting season. Only two sharks were satellite-tracked outside of the GMR, and following long-distance migrations, both individuals returned to turtle-nesting beaches at the subsequent turtle-nesting season. The spatial patterns of residency and site fidelity of tiger sharks suggest that the presence of a predictable source of prey and suitable habitats might reduce the spatial extent of this large shark that is highly migratory in other parts of its range. This highly philopatric behaviour enhances the potential effectiveness of the GMR for their protection.

  17. Origin of the unique ventilatory apparatus of turtles.

    Science.gov (United States)

    Lyson, Tyler R; Schachner, Emma R; Botha-Brink, Jennifer; Scheyer, Torsten M; Lambertz, Markus; Bever, G S; Rubidge, Bruce S; de Queiroz, Kevin

    2014-11-07

    The turtle body plan differs markedly from that of other vertebrates and serves as a model system for studying structural and developmental evolution. Incorporation of the ribs into the turtle shell negates the costal movements that effect lung ventilation in other air-breathing amniotes. Instead, turtles have a unique abdominal-muscle-based ventilatory apparatus whose evolutionary origins have remained mysterious. Here we show through broadly comparative anatomical and histological analyses that an early member of the turtle stem lineage has several turtle-specific ventilation characters: rigid ribcage, inferred loss of intercostal muscles and osteological correlates of the primary expiratory muscle. Our results suggest that the ventilation mechanism of turtles evolved through a division of labour between the ribs and muscles of the trunk in which the abdominal muscles took on the primary ventilatory function, whereas the broadened ribs became the primary means of stabilizing the trunk. These changes occurred approximately 50 million years before the evolution of the fully ossified shell.

  18. Impact of gas emboli and hyperbaric treatment on respiratory function of loggerhead sea turtles (Caretta caretta).

    Science.gov (United States)

    Portugues, Cyril; Crespo-Picazo, Jose Luis; García-Párraga, Daniel; Altimiras, Jordi; Lorenzo, Teresa; Borque-Espinosa, Alicia; Fahlman, Andreas

    2018-01-01

    Fisheries interactions are the most serious threats for sea turtle populations. Despite the existence of some rescue centres providing post-traumatic care and rehabilitation, adequate treatment is hampered by the lack of understanding of the problems incurred while turtles remain entrapped in fishing gears. Recently it was shown that bycaught loggerhead sea turtles ( Caretta caretta ) could experience formation of gas emboli (GE) and develop decompression sickness (DCS) after trawl and gillnet interaction. This condition could be reversed by hyperbaric O 2 treatment (HBOT). The goal of this study was to assess how GE alters respiratory function in bycaught turtles before recompression therapy and measure the improvement after this treatment. Specifically, we assessed the effect of DCS on breath duration, expiratory and inspiratory flow and tidal volume ( V T ), and the effectiveness of HBOT to improve these parameters. HBOT significantly increased respiratory flows by 32-45% while V T increased by 33-35% immediately after HBOT. Repeated lung function testing indicated a temporal increase in both respiratory flow and V T for all bycaught turtles, but the changes were smaller than those seen immediately following HBOT. The current study suggests that respiratory function is significantly compromised in bycaught turtles with GE and that HBOT effectively restores lung function. Lung function testing may provide a novel means to help diagnose the presence of GE, be used to assess treatment efficacy, and contribute to sea turtle conservation efforts.

  19. Can schooling regulate marine populations and ecosystems?

    Science.gov (United States)

    Maury, Olivier

    2017-08-01

    Schools, shoals and swarms are pervasive in the oceans. They have to provide very strong advantages to have been selected and generalized in the course of evolution. Auto-organized groups are usually assumed to provide facilitated encounters of reproduction partners, improved protection against predation, better foraging efficiency, and hydrodynamic gains. However, present theories regarding their evolutionary advantages do not provide an unambiguous explanation to their universality. In particular, the mechanisms commonly proposed to explain grouping provide little support to the formation of very large groups that are common in the sea (e.g. Rieucau et al., 2014). From literature review, data analysis and using a simple mathematical model, I show that large auto-organized groups appear at high population density while only small groups or dispersed individuals remain at low population density. Following, an analysis of tuna tagging data and simple theoretical developments show that large groups are likely to expose individuals to a dramatic decrease of individual foraging success and simultaneous increase of predatory and disease mortality, while small groups avoid those adverse feedbacks and provide maximum foraging success and protection against predation, as it is usually assumed. This would create an emergent density-dependent regulation of marine populations, preventing them from outbursts at high density, and protecting them at low density. This would be a major contribution to their resilience and a crucial process of ecosystems dynamics. A two-step evolutionary process acting at the individual level is proposed to explain how this apparently suicidal behaviour could have been selected and generalized. It explains how grouping would have permitted the emergence of extremely high fecundity life histories, despite their notorious propensity to destabilize populations. The potential implications of the ;grouping feedback; on population resilience, ecosystem

  20. The first “lost year” of Mediterranean sea turtles: dispersal patterns indicate subregional management units for conservation

    DEFF Research Database (Denmark)

    Casale, Paolo; Mariani, Patrizio

    2014-01-01

    Identifying highly frequented areas is a priority for sea turtle conservation, and the distribution of young individuals in open waters represents a major knowledge gap due to methodological biases. The drift of hatchlings from 38 loggerhead and 10 green turtle nesting sites in the Mediterranean......-scale international approach. In-water studies in specific zones are identified as a research priority for improving the current knowledge and inform conservation plans....... The Levantine zone may be particularly key for the conservation of the Mediterranean populations of both species, since it may host the highest concentration of individuals. Subregional management units identified by dispersal patterns may facilitate turtle conservation through a relatively small...

  1. African Journal of Marine Science - Vol 38, No 3 (2016)

    African Journals Online (AJOL)

    Protection of marine birds and turtles at St Brandon's Rock, Indian Ocean, requires conservation of the entire atoll · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. SW Evans, N Cole, H Kylin, NS Choong Kwet Yive, V Tatayah, J Merven, H Bouwman, 317-327.

  2. Turtles as hopeful monsters.

    Science.gov (United States)

    Rieppel, O

    2001-11-01

    A recently published study on the development of the turtle shell highlights the important role that development plays in the origin of evolutionary novelties. The evolution of the highly derived adult anatomy of turtles is a prime example of a macroevolutionary event triggered by changes in early embryonic development. Early ontogenetic deviation may cause patterns of morphological change that are not compatible with scenarios of gradualistic, stepwise transformation. Copyright 2001 John Wiley & Sons, Inc.

  3. Bacterial flora and antibiotic resistance from eggs of green turtles Chelonia mydas: An indication of polluted effluents

    International Nuclear Information System (INIS)

    Al-Bahry, Saif; Mahmoud, Ibrahim; Elshafie, Abdulkader; Al-Harthy, Asila; Al-Ghafri, Sabha; Al-Amri, Issa; Alkindi, Abdulaziz

    2009-01-01

    Sea turtles migrate to various habitats where they can be exposed to different pollutants. Bacteria were collected from turtle eggs and their resistance to antibiotics was used as pollutant bio-indicators of contaminated effluents. Eggs were collected randomly from turtles when they were laying their eggs. A total of 90 eggs were collected and placed into sterile plastic bags (3 eggs/turtle) during June-December of 2003. The bacteria located in the eggshell, albumen and yolk were examined, and 42% of the eggs were contaminated with 10 genera of bacteria. Pseudomonas spp. were the most frequent isolates. The albumen was found to be the part of the egg to be the least contaminated by bacterial infection. Bacterial isolates tested with 14 antibiotics showed variations in resistance. Resistance to ampicillin was the highest. The presence of antibiotic resistant bacteria in eggs indicates that the green turtle populations were subjected to polluted effluents during some of their migratory routes and feeding habitats. Scanning electron microscopy revealed that Salmonella typhimurium penetrated all eggshell layers.

  4. Patterning of the turtle shell.

    Science.gov (United States)

    Moustakas-Verho, Jacqueline E; Cebra-Thomas, Judith; Gilbert, Scott F

    2017-08-01

    Interest in the origin and evolution of the turtle shell has resulted in a most unlikely clade becoming an important research group for investigating morphological diversity in developmental biology. Many turtles generate a two-component shell that nearly surrounds the body in a bony exoskeleton. The ectoderm covering the shell produces epidermal scutes that form a phylogenetically stable pattern. In some lineages, the bones of the shell and their ectodermal covering become reduced or lost, and this is generally associated with different ecological habits. The similarity and diversity of turtles allows research into how changes in development create evolutionary novelty, interacting modules, and adaptive physiology and anatomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Metal contamination as a possible etiology of fibropapillomatosis in juvenile female green sea turtles Chelonia mydas from the southern Atlantic Ocean.

    Science.gov (United States)

    da Silva, Cinthia Carneiro; Klein, Roberta Daniele; Barcarolli, Indianara Fernanda; Bianchini, Adalto

    2016-01-01

    Environmental contaminants have been suggested as a possible cause of fibropapillomatosis (FP) in green sea turtles. In turn, a reduced concentration of serum cholesterol has been indicated as a reliable biomarker of malignancy in vertebrates, including marine turtles. In the present study, metal (Ag, Cd, Cu, Fe, Ni, Pb and Zn) concentrations, oxidative stress parameters [antioxidant capacity against peroxyl radicals (ACAP), protein carbonyls (PC), lipid peroxidation (LPO), frequency of micronucleated cells (FMC)], water content, cholesterol concentration and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) activity were analyzed in the blood/serum of juvenile (29.3-59.5cm) female green sea turtles (Chelonia mydas) with FP (n=14) and without FP (n=13) sampled at Ubatuba coast (São Paulo State, southeastern Brazil). Green sea turtles were grouped and analyzed according to the severity of tumors. Individuals heavily afflicted with FP showed significantly higher blood Cu, Pb and Fe concentrations, blood LPO levels, as well as significantly lower serum cholesterol concentrations and HMGR activity than turtles without FP. Significant and positive correlations were observed between HMGR activity and cholesterol concentrations, as well as LPO levels and Fe and Pb concentrations. In turn, Cu and Pb concentrations were significantly and negatively correlated with HMGR activity and cholesterol concentration. Furthermore, Cu, Fe and Pb were positively correlated with each other. Therefore, the reduced concentration of serum cholesterol observed in green sea turtles heavily afflicted with FP is related to a Cu- and Pb-induced inhibition of HMGR activity paralleled by a higher LPO rate induced by increased Fe and Pb concentrations. As oxidative stress is implicated in the pathogenesis of viral infections, our findings support the idea that metal contamination, especially by Cu, Fe and Pb, may be implicated in the etiology of FP in green sea turtles through oxidative stress

  6. Inferring physiological energetics of loggerhead turtle (Caretta caretta) from existing data using a general metabolic theory.

    Science.gov (United States)

    Marn, Nina; Kooijman, S A L M; Jusup, Marko; Legović, Tarzan; Klanjšček, Tin

    2017-05-01

    Loggerhead turtle is an endangered sea turtle species with a migratory lifestyle and worldwide distribution, experiencing markedly different habitats throughout its lifetime. Environmental conditions, especially food availability and temperature, constrain the acquisition and the use of available energy, thus affecting physiological processes such as growth, maturation, and reproduction. These physiological processes at the population level determine survival, fecundity, and ultimately the population growth rate-a key indicator of the success of conservation efforts. As a first step towards the comprehensive understanding of how environment shapes the physiology and the life cycle of a loggerhead turtle, we constructed a full life cycle model based on the principles of energy acquisition and utilization embedded in the Dynamic Energy Budget (DEB) theory. We adapted the standard DEB model using data from published and unpublished sources to obtain parameter estimates and model predictions that could be compared with data. The outcome was a successful mathematical description of ontogeny and life history traits of the loggerhead turtle. Some deviations between the model and the data existed (such as an earlier age at sexual maturity and faster growth of the post-hatchlings), yet probable causes for these deviations were found informative and discussed in great detail. Physiological traits such as the capacity to withstand starvation, trade-offs between reproduction and growth, and changes in the energy budget throughout the ontogeny were inferred from the model. The results offer new insights into physiology and ecology of loggerhead turtle with the potential to lead to novel approaches in conservation of this endangered species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Oxidative stress induced by glyphosate-based herbicide on freshwater turtles.

    Science.gov (United States)

    Héritier, Laurent; Duval, David; Galinier, Richard; Meistertzheim, Anne-Leila; Verneau, Olivier

    2017-12-01

    Freshwater ecosystems face very strong anthropogenic pressures, among which overexploitation, habitat degradation, flow modification, species invasion, and water pollution lead to growing threats on biodiversity. Urbanization through wastewater treatment, industry through the release of inorganic and organic chemicals, and agriculture through the use of pesticides and herbicides are the main factors involved in water pollution. In France, more precisely in the Pyrénées-Orientales department, the poor quality of the watercourses is attributable overall to the use of glyphosate-based herbicides in agricultural activities. Because these chemicals can impact individuals, populations, and biodiversity, we investigated, under experimental conditions, the physiological response of animals facing abiotic contaminants. We selected as a model, juveniles of the freshwater turtle Trachemys scripta elegans. We measured the gene expression and activity of the catalase and superoxide dismutase enzymes as well as the levels of lipid peroxidation, which are all oxidative stress biomarkers, in turtles challenged with high concentrations of glyphosate-based herbicides, on the one hand, and with degraded waters collected from a local watercourse, on the other. We also measured the acetylcholinesterase activity across the same animals. We showed through variations in gene expression and enzyme activity that a glyphosate commercial formulation induced a stress in turtles. A similar outcome was obtained when turtles faced degraded waters. The results indicated that the poor quality of regional waters could be a real threat for animal health. Because turtles are globally less sensitive to contaminants than amphibians, which are lacking in the degraded waters of the Pyrénées-Orientales department, they could constitute an excellent model to follow the evolution of water quality through the study of oxidative stress biomarkers. Environ Toxicol Chem 2017;36:3343-3350. © 2017 SETAC.

  8. Detection of low plasma estradiol concentrations in nesting green turtles (Chelonia mydas) by HPLC/Ms-Ms.

    Science.gov (United States)

    Mahmoud, I Y; Alkindi, A Y; Khan, T; Al-Bahry, S N

    2011-03-01

    In previous studies on nesting green turtles under natural conditions from different geographical regions, 17-β-estradiol (E(2) ) was either undetectable or detected at very low levels. RIA and other related techniques were not sensitive enough to measure low E(2) values in the green turtles. In this study, a sensitive method was used in detecting low hormone concentrations: high performance liquid chromatography with tandem quadruple mass spectrometry (HPLC-MS/MS). Using this technique, estradiol for the first time was detected in nesting green turtles during the peak season (June-October) at Ras Al-Hadd Reserve, Oman. The E(2) values recorded from this study were the highest ever recorded from nesting green turtles in any geographical region, but the levels did not vary significantly throughout different phases of nesting. The presence of E(2) during nesting presumably plays a role in the physiology and behavior of this species. Ras Al-Hadd hosts one of the largest nesting populations of green turtles in the world, and an understanding of their nesting patterns may be of value in conservation and management programs for this endangered species. Copyright © 2011 Wiley-Liss, Inc., A Wiley Company.

  9. Small-scale fisheries bycatch jeopardizes endangered Pacific loggerhead turtles.

    Directory of Open Access Journals (Sweden)

    S Hoyt Peckham

    2007-10-01

    Full Text Available Although bycatch of industrial-scale fisheries can cause declines in migratory megafauna including seabirds, marine mammals, and sea turtles, the impacts of small-scale fisheries have been largely overlooked. Small-scale fisheries occur in coastal waters worldwide, employing over 99% of the world's 51 million fishers. New telemetry data reveal that migratory megafauna frequent coastal habitats well within the range of small-scale fisheries, potentially producing high bycatch. These fisheries occur primarily in developing nations, and their documentation and management are limited or non-existent, precluding evaluation of their impacts on non-target megafauna.30 North Pacific loggerhead turtles that we satellite-tracked from 1996-2005 ranged oceanwide, but juveniles spent 70% of their time at a high use area coincident with small-scale fisheries in Baja California Sur, Mexico (BCS. We assessed loggerhead bycatch mortality in this area by partnering with local fishers to 1 observe two small-scale fleets that operated closest to the high use area and 2 through shoreline surveys for discarded carcasses. Minimum annual bycatch mortality in just these two fleets at the high use area exceeded 1000 loggerheads year(-1, rivaling that of oceanwide industrial-scale fisheries, and threatening the persistence of this critically endangered population. As a result of fisher participation in this study and a bycatch awareness campaign, a consortium of local fishers and other citizens are working to eliminate their bycatch and to establish a national loggerhead refuge.Because of the overlap of ubiquitous small-scale fisheries with newly documented high-use areas in coastal waters worldwide, our case study suggests that small-scale fisheries may be among the greatest current threats to non-target megafauna. Future research is urgently needed to quantify small-scale fisheries bycatch worldwide. Localizing coastal high use areas and mitigating bycatch in

  10. Small-scale fisheries bycatch jeopardizes endangered Pacific loggerhead turtles.

    Science.gov (United States)

    Peckham, S Hoyt; Maldonado Diaz, David; Walli, Andreas; Ruiz, Georgita; Crowder, Larry B; Nichols, Wallace J

    2007-10-17

    Although bycatch of industrial-scale fisheries can cause declines in migratory megafauna including seabirds, marine mammals, and sea turtles, the impacts of small-scale fisheries have been largely overlooked. Small-scale fisheries occur in coastal waters worldwide, employing over 99% of the world's 51 million fishers. New telemetry data reveal that migratory megafauna frequent coastal habitats well within the range of small-scale fisheries, potentially producing high bycatch. These fisheries occur primarily in developing nations, and their documentation and management are limited or non-existent, precluding evaluation of their impacts on non-target megafauna. 30 North Pacific loggerhead turtles that we satellite-tracked from 1996-2005 ranged oceanwide, but juveniles spent 70% of their time at a high use area coincident with small-scale fisheries in Baja California Sur, Mexico (BCS). We assessed loggerhead bycatch mortality in this area by partnering with local fishers to 1) observe two small-scale fleets that operated closest to the high use area and 2) through shoreline surveys for discarded carcasses. Minimum annual bycatch mortality in just these two fleets at the high use area exceeded 1000 loggerheads year(-1), rivaling that of oceanwide industrial-scale fisheries, and threatening the persistence of this critically endangered population. As a result of fisher participation in this study and a bycatch awareness campaign, a consortium of local fishers and other citizens are working to eliminate their bycatch and to establish a national loggerhead refuge. Because of the overlap of ubiquitous small-scale fisheries with newly documented high-use areas in coastal waters worldwide, our case study suggests that small-scale fisheries may be among the greatest current threats to non-target megafauna. Future research is urgently needed to quantify small-scale fisheries bycatch worldwide. Localizing coastal high use areas and mitigating bycatch in partnership with small

  11. Phylogenetic relationships among extinct and extant turtles: the position of Pleurodira and the effects of the fossils on rooting crown-group turtles

    NARCIS (Netherlands)

    Sterli, J.

    2010-01-01

    The origin and evolution of the crown-group of turtles (Cryptodira + Pleurodira) is one of the most interesting topics in turtle evolution, second perhaps only to the phylogenetic position of turtles among amniotes. The present contribution focuses on the former problem, exploring the phylogenetic

  12. Predicting bycatch hotspots for endangered leatherback turtles on longlines in the Pacific Ocean.

    Science.gov (United States)

    Roe, John H; Morreale, Stephen J; Paladino, Frank V; Shillinger, George L; Benson, Scott R; Eckert, Scott A; Bailey, Helen; Tomillo, Pilar Santidrián; Bograd, Steven J; Eguchi, Tomoharu; Dutton, Peter H; Seminoff, Jeffrey A; Block, Barbara A; Spotila, James R

    2014-02-22

    Fisheries bycatch is a critical source of mortality for rapidly declining populations of leatherback turtles, Dermochelys coriacea. We integrated use-intensity distributions for 135 satellite-tracked adult turtles with longline fishing effort to estimate predicted bycatch risk over space and time in the Pacific Ocean. Areas of predicted bycatch risk did not overlap for eastern and western Pacific nesting populations, warranting their consideration as distinct management units with respect to fisheries bycatch. For western Pacific nesting populations, we identified several areas of high risk in the north and central Pacific, but greatest risk was adjacent to primary nesting beaches in tropical seas of Indo-Pacific islands, largely confined to several exclusive economic zones under the jurisdiction of national authorities. For eastern Pacific nesting populations, we identified moderate risk associated with migrations to nesting beaches, but the greatest risk was in the South Pacific Gyre, a broad pelagic zone outside national waters where management is currently lacking and may prove difficult to implement. Efforts should focus on these predicted hotspots to develop more targeted management approaches to alleviate leatherback bycatch.

  13. Allometry of sexual size dimorphism in turtles: a comparison of mass and length data.

    Science.gov (United States)

    Regis, Koy W; Meik, Jesse M

    2017-01-01

    The macroevolutionary pattern of Rensch's Rule (positive allometry of sexual size dimorphism) has had mixed support in turtles. Using the largest carapace length dataset and only large-scale body mass dataset assembled for this group, we determine (a) whether turtles conform to Rensch's Rule at the order, suborder, and family levels, and (b) whether inferences regarding allometry of sexual size dimorphism differ based on choice of body size metric used for analyses. We compiled databases of mean body mass and carapace length for males and females for as many populations and species of turtles as possible. We then determined scaling relationships between males and females for average body mass and straight carapace length using traditional and phylogenetic comparative methods. We also used regression analyses to evalutate sex-specific differences in the variance explained by carapace length on body mass. Using traditional (non-phylogenetic) analyses, body mass supports Rensch's Rule, whereas straight carapace length supports isometry. Using phylogenetic independent contrasts, both body mass and straight carapace length support Rensch's Rule with strong congruence between metrics. At the family level, support for Rensch's Rule is more frequent when mass is used and in phylogenetic comparative analyses. Turtles do not differ in slopes of sex-specific mass-to-length regressions and more variance in body size within each sex is explained by mass than by carapace length. Turtles display Rensch's Rule overall and within families of Cryptodires, but not within Pleurodire families. Mass and length are strongly congruent with respect to Rensch's Rule across turtles, and discrepancies are observed mostly at the family level (the level where Rensch's Rule is most often evaluated). At macroevolutionary scales, the purported advantages of length measurements over weight are not supported in turtles.

  14. Shell bone histology indicates terrestrial palaeoecology of basal turtles

    OpenAIRE

    Scheyer, Torsten; Sander, P. Martin

    2009-01-01

    The palaeoecology of basal turtles from the Late Triassic was classically viewed as being semi-aquatic, similar to the lifestyle of modern snapping turtles. Lately, this view was questioned based on limb bone proportions, and a terrestrial palaeoecology was suggested for the turtle stem. Here, we present independent shell bone microstructural evidence for a terrestrial habitat of the oldest and basal most well-known turtles, i.e. the Upper Triassic Proterochersis robusta and Proganochelys que...

  15. Sea Turtle Conservation on Bonaire. Sea Turtle Club Bonaire 1995 Project Report and Long Term Proposal

    NARCIS (Netherlands)

    Valkering, N.P.; Nugteren, Van P.; Eijck, Van T.J.W.

    1996-01-01

    Bonaire (12°12’N, 68°77’W), Netherlands Antilles, is famous for its unspoiled coral reefs. Reefs and lush sea grass provide forage and refuge for two species of endangered sea turtle, the green turtle ( Chelonia mydas) and the hawksbill (Eretmochelys imbricata). Loggerhead ( Caretta caretta ) and

  16. Mercury and selenium ingestion rates of Atlantic leatherback sea turtles (Dermochelys coriacea): a cause for concern in this species?

    Science.gov (United States)

    Perrault, Justin R

    2014-08-01

    Bodily accumulation of certain toxic elements can cause physiologic harm to marine organisms and be detrimental to their health and survival. The leatherback sea turtle (Dermochelys coriacea) is a broadly distributed marine reptile capable of consuming hundreds of kilograms of gelatinous zooplankton each day. Little is known about toxicants present in these prey items. Specifically, mercury is a known neurotoxin with no known essential function, while selenium detoxifies bodily mercury, but can be toxic at elevated concentrations. I collected 121 leatherback prey items (i.e., gelatinous zooplankton) from known leatherback foraging grounds and sampled the esophagus and stomach contents of stranded turtles. All samples were analyzed for total mercury and selenium. Additionally, two prey items and three liver samples were analyzed for methylmercury, the most toxic form of the element. Total mercury concentrations in prey items ranged from 0.2 to 17 ppb, while selenium concentrations ranged from concerning, especially since bodily mercury and selenium concentrations increase as organisms age. Because leatherbacks are long-lived and have large daily prey consumption rates, mercury and selenium loads may increase to physiologically harmful levels in this imperiled species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The most vagile host as the main determinant of population connectivity in marine macroparasites

    DEFF Research Database (Denmark)

    Feis, Marieke; Thieltges, David W.; Jensen, K.T.

    2015-01-01

    in the sea. Here, we tested whether a marine trematode parasite that utilises migratory birds exhibited weaker population genetic structure than those whose life cycle utilises marine fish as the vagile host. Part of the mitochondrial cytochrome c oxidase 1 (COI) gene was sequenced from individual sporocysts...... that populations of parasites with only freshwater hosts are more structured than those with terrestrial or airborne hosts. Until now, the same has not been tested for marine systems, where, in theory, a fully marine life cycle might sustain high dispersal rates because of the absence of obvious physical barriers...

  18. Geometry and self-righting of turtles.

    Science.gov (United States)

    Domokos, Gábor; Várkonyi, Péter L

    2008-01-07

    Terrestrial animals with rigid shells face imminent danger when turned upside down. A rich variety of righting strategies of beetle and turtle species have been described, but the exact role of the shell's geometry in righting is so far unknown. These strategies are often based on active mechanisms, e.g. most beetles self-right via motion of their legs or wings; flat, aquatic turtles use their muscular neck to flip back. On the other hand, highly domed, terrestrial turtles with short limbs and necks have virtually no active control: here shape itself may serve as a fundamental tool. Based on field data gathered on a broad spectrum of aquatic and terrestrial turtle species we develop a geometric model of the shell. Inspired by recent mathematical results, we demonstrate that a simple mechanical classification of the model is closely linked to the animals' righting strategy. Specifically, we show that the exact geometry of highly domed terrestrial species is close to optimal for self-righting, and the shell's shape is the predominant factor of their ability to flip back. Our study illustrates how evolution solved a far-from-trivial geometrical problem and equipped some turtles with monostatic shells: beautiful forms, which rarely appear in nature otherwise.

  19. Evolutionary origin of the turtle shell.

    Science.gov (United States)

    Lyson, Tyler R; Bever, Gabe S; Scheyer, Torsten M; Hsiang, Allison Y; Gauthier, Jacques A

    2013-06-17

    The origin of the turtle shell has perplexed biologists for more than two centuries. It was not until Odontochelys semitestacea was discovered, however, that the fossil and developmental data could be synthesized into a model of shell assembly that makes predictions for the as-yet unestablished history of the turtle stem group. We build on this model by integrating novel data for Eunotosaurus africanus-a Late Guadalupian (∼260 mya) Permian reptile inferred to be an early stem turtle. Eunotosaurus expresses a number of relevant characters, including a reduced number of elongate trunk vertebrae (nine), nine pairs of T-shaped ribs, inferred loss of intercostal muscles, reorganization of respiratory muscles to the ventral side of the ribs, (sub)dermal outgrowth of bone from the developing perichondral collar of the ribs, and paired gastralia that lack both lateral and median elements. These features conform to the predicted sequence of character acquisition and provide further support that E. africanus, O. semitestacea, and Proganochelys quenstedti represent successive divergences from the turtle stem lineage. The initial transformations of the model thus occurred by the Middle Permian, which is congruent with molecular-based divergence estimates for the lineage, and remain viable whether turtles originated inside or outside crown Diapsida. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Causes of Stranding and Mortality, and Final Disposition of Loggerhead Sea Turtles (Caretta caretta) Admitted to a Wildlife Rehabilitation Center in Gran Canaria Island, Spain (1998-2014): A Long-Term Retrospective Study.

    Science.gov (United States)

    Orós, Jorge; Montesdeoca, Natalia; Camacho, María; Arencibia, Alberto; Calabuig, Pascual

    2016-01-01

    The aims of this study were to analyze the causes of stranding of 1,860 loggerhead turtles (Caretta caretta) admitted at the Tafira Wildlife Rehabilitation Center in Gran Canaria Island, Spain, from 1998 to 2014, and to analyze the outcomes of the rehabilitation process to allow meaningful auditing of its quality. Primary causes of morbidity were classified into seven categories: entanglement in fishing gear and/or plastics, ingestion of hooks and monofilament lines, trauma, infectious disease, crude oil, other causes, and unknown/undetermined. Final dispositions were calculated as euthanasia (Er), unassisted mortality (Mr), and release (Rr) rates. Time to death (Td) for euthanized and dead turtles, and length of stay for released (Tr) turtles were evaluated. The most frequent causes of morbidity were entanglement in fishing gear and/or plastics (50.81%), unknown/undetermined (20.37%), and ingestion of hooks (11.88%). The final disposition of the 1,634 loggerhead turtles admitted alive were: Er = 3.37%, Mr = 10.34%, and Rr = 86.29%. Er was significantly higher in the trauma category (18.67%) compared to the other causes of admission. The highest Mr was observed for turtles admitted due to trauma (30.67%). The highest Rr was observed in the crude oil (93.87%) and entanglement (92.38%) categories. The median Tr ranged from 12 days (unknown) to 70 days (trauma). This survey is the first large-scale epidemiological study on causes of stranding and mortality of Eastern Atlantic loggerheads and demonstrates that at least 71.72% of turtles stranded due to anthropogenic causes. The high Rr (86.29%) emphasizes the importance of marine rehabilitation centers for conservation purposes. The stratified analysis by causes of admission of the three final disposition rates, and the parameters Td and Tr should be included in the outcome research of the rehabilitation process of sea turtles in order to allow comparative studies between marine rehabilitation centers around the world.

  1. Causes of Stranding and Mortality, and Final Disposition of Loggerhead Sea Turtles (Caretta caretta Admitted to a Wildlife Rehabilitation Center in Gran Canaria Island, Spain (1998-2014: A Long-Term Retrospective Study.

    Directory of Open Access Journals (Sweden)

    Jorge Orós

    Full Text Available The aims of this study were to analyze the causes of stranding of 1,860 loggerhead turtles (Caretta caretta admitted at the Tafira Wildlife Rehabilitation Center in Gran Canaria Island, Spain, from 1998 to 2014, and to analyze the outcomes of the rehabilitation process to allow meaningful auditing of its quality.Primary causes of morbidity were classified into seven categories: entanglement in fishing gear and/or plastics, ingestion of hooks and monofilament lines, trauma, infectious disease, crude oil, other causes, and unknown/undetermined. Final dispositions were calculated as euthanasia (Er, unassisted mortality (Mr, and release (Rr rates. Time to death (Td for euthanized and dead turtles, and length of stay for released (Tr turtles were evaluated.The most frequent causes of morbidity were entanglement in fishing gear and/or plastics (50.81%, unknown/undetermined (20.37%, and ingestion of hooks (11.88%. The final disposition of the 1,634 loggerhead turtles admitted alive were: Er = 3.37%, Mr = 10.34%, and Rr = 86.29%. Er was significantly higher in the trauma category (18.67% compared to the other causes of admission. The highest Mr was observed for turtles admitted due to trauma (30.67%. The highest Rr was observed in the crude oil (93.87% and entanglement (92.38% categories. The median Tr ranged from 12 days (unknown to 70 days (trauma.This survey is the first large-scale epidemiological study on causes of stranding and mortality of Eastern Atlantic loggerheads and demonstrates that at least 71.72% of turtles stranded due to anthropogenic causes. The high Rr (86.29% emphasizes the importance of marine rehabilitation centers for conservation purposes. The stratified analysis by causes of admission of the three final disposition rates, and the parameters Td and Tr should be included in the outcome research of the rehabilitation process of sea turtles in order to allow comparative studies between marine rehabilitation centers around the world.

  2. Observations of sea turtles nesting on Misali islan, Pemba | Pharoah ...

    African Journals Online (AJOL)

    A nest-recording programme has collected data over five years from turtles nesting on Misali Island, off the West coast of Pemba, Tanzania. Five species of sea turtle are known to occur in Zanzibar waters, two of these species nested regularly on the island, with green turtle nests outnumbering hawksbill turtle nests by a ...

  3. Quantifying ingested debris in marine megafauna: a review and recommendations for standardization

    OpenAIRE

    Provencher, Jennifer F.; Bond, Alexander L.; Avery-gomm, Stephanie; Borrelle, Stephanie B.; Bravo Rebolledo, Elisa L.; Hammer, Sjúrður; Kühn, Suse; Lavers, Jennifer L.; Mallory, Mark L.; Trevail, Alice; Franeker, van, Jan A.

    2017-01-01

    Plastic pollution has become one of the largest environmental challenges we currently face. The United\\ud Nations Environment Program (UNEP) has listed it as a critical problem, comparable to climate change,\\ud demonstrating both the scale and degree of the environmental problem. Mortalities due to entanglement\\ud in plastic fishing nets and bags have been reported for marine mammals, turtles and seabirds, and to date\\ud over 690 marine species have been reported to ingest plastics. The body ...

  4. Coinfection with a novel fibropapilloma-associated herpesvirus and a novel Spirorchis sp. in an eastern box turtle (Terrapene carolina) in Florida.

    Science.gov (United States)

    Yonkers, Sara B; Schneider, Renata; Reavill, Drury R; Archer, Linda L; Childress, April L; Wellehan, James F X

    2015-07-01

    Herpesviruses are important pathogens of chelonians, and include Chelonid herpesvirus 5, which is associated with fibropapillomatosis in sea turtles. Spirorchid trematodes are blood flukes that reside within the cardiovascular system of marine turtles and may be associated with severe disease. An eastern box turtle (Terrapene carolina) at the South Florida Wildlife Care Center (Fort Lauderdale, Florida) was presented to the facility with papillomatous growths behind both rear legs. Surgical removal resulted in remission for 8 months; however, lesions recurred, prompting a second surgery and acyclovir therapy. Surgical biopsies revealed subacute superficial inflammation associated with the supporting stroma of the cutaneous papillomas and granulomas within the superficial dermis containing fragmented and collapsed brown trematode eggs surrounded by multinucleated giant cells and epithelioid macrophages. Pan-herpesviral and pan-trematode consensus polymerase chain reaction and sequencing were run on tissue samples. Comparative sequence analysis revealed a novel alphaherpesvirus and a novel trematode in the genus Spirorchis. The animal became anorexic and was euthanized due to poor quality of life. While we do not yet have a complete understanding of the effects of herpesvirus and trematode infections in eastern box turtles, the findings thus presented provide initial insights into the disease relationships among these chelonians. © 2015 The Author(s).

  5. SPECIAL-INTEREST MARINE TOURISM DEVELOPMENT IN SERANGAN VILLAGE, DENPASAR

    Directory of Open Access Journals (Sweden)

    I Ketut Suarta

    2017-12-01

    Full Text Available This resarch is held in Serangan Village, Denpasar Selatan District, Denpasar Municipility. Purpose of this researchis to identify the potencies of Serangan Island which could be developed as tourism product such as special-interest marine tourism and to know the visitors’ perceptions to the objects and attractions they visit in order to determine the most favorite tourist attraction in Serangan Village.Data of this research was collected by survey, interview, documentation and library study. The data is analyzed by using quantitative analysis (descriptive statisticsand qualitative analysis (descriptive and comparative analysis. The resultsshowed that there are five potencies of natural attractions identified in Serangan Island which could be developed as tourist objects and special-interest marine tourism. They are the white sand beach, seaweed, clean blue sea, coral garden, and mangrove forest. The special interest-marine tourism are surfing, parasailing, waterski, snorkeling, diving, flying fish, underwater seawalker, banana boat, jetski, donat boat, glass bottom boat, horse riding, fishing, fast boat, turtle conservation and coral transplantation. The biggest market segment of those special marine attractions are 95 % Chinese. The foreign visitors that visit Serangan Island about 94.41 %, and the domestic visitors are about 5.59 %. The most favorite marine attractions in Serangan Village is travelling through the quay by fast boat, it is 311,344 people. Then the second and third favorite are turtle conservation and parasailing, they are 18,040 people and 1,890 people. From the capacity ratio, the most favorite attraction is travelling through the quay by fast boat, it is 276.75, the second and third favorites are flying fish and underwater sea walker with ratio 157.50 and 132.38.

  6. Jellyfish support high energy intake of leatherback sea turtles (Dermochelys coriacea: video evidence from animal-borne cameras.

    Directory of Open Access Journals (Sweden)

    Susan G Heaslip

    Full Text Available The endangered leatherback turtle is a large, highly migratory marine predator that inexplicably relies upon a diet of low-energy gelatinous zooplankton. The location of these prey may be predictable at large oceanographic scales, given that leatherback turtles perform long distance migrations (1000s of km from nesting beaches to high latitude foraging grounds. However, little is known about the profitability of this migration and foraging strategy. We used GPS location data and video from animal-borne cameras to examine how prey characteristics (i.e., prey size, prey type, prey encounter rate correlate with the daytime foraging behavior of leatherbacks (n = 19 in shelf waters off Cape Breton Island, NS, Canada, during August and September. Video was recorded continuously, averaged 1:53 h per turtle (range 0:08-3:38 h, and documented a total of 601 prey captures. Lion's mane jellyfish (Cyanea capillata was the dominant prey (83-100%, but moon jellyfish (Aurelia aurita were also consumed. Turtles approached and attacked most jellyfish within the camera's field of view and appeared to consume prey completely. There was no significant relationship between encounter rate and dive duration (p = 0.74, linear mixed-effects models. Handling time increased with prey size regardless of prey species (p = 0.0001. Estimates of energy intake averaged 66,018 kJ • d(-1 but were as high as 167,797 kJ • d(-1 corresponding to turtles consuming an average of 330 kg wet mass • d(-1 (up to 840 kg • d(-1 or approximately 261 (up to 664 jellyfish • d(-1. Assuming our turtles averaged 455 kg body mass, they consumed an average of 73% of their body mass • d(-1 equating to an average energy intake of 3-7 times their daily metabolic requirements, depending on estimates used. This study provides evidence that feeding tactics used by leatherbacks in Atlantic Canadian waters are highly profitable and our results are consistent with estimates of mass gain prior to

  7. First application of comet assay in blood cells of Mediterranean loggerhead sea turtle (Caretta caretta).

    Science.gov (United States)

    Caliani, Ilaria; Campani, Tommaso; Giannetti, Matteo; Marsili, Letizia; Casini, Silvia; Fossi, Maria Cristina

    2014-05-01

    The aim of this study was to validate the comet assay in erythrocytes of Caretta caretta, a species never investigated for genotoxicity. We studied 31 loggerhead sea turtles from three Italian marine rescue centres. Peripheral blood samples were collected from all the animals and the comet assay applied. All comet cells were analysed using two methods: visual scoring and computer image analysis. The % DNA in tail mean value ± SD and Damage Index were 21.56 ± 15.41 and 134.83 ± 94.12, respectively. A strong and statistically significant statistically correlation between the two analytical methods was observed (r = 0.95; p comet assay is a useful method to detect the possible effects of genotoxic agents in loggerhead sea turtle and to increase the knowledge about the ecotoxicological health status of this threatened species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Satellite tracking reveals habitat use by juvenile green sea turtles Chelonia mydas in the Everglades, Florida, USA

    Science.gov (United States)

    Hart, Kristen M.; Fujisaki, Ikuko

    2010-01-01

    We tracked the movements of 6 juvenile green sea turtles captured in coastal areas of southwest Florida within Everglades National Park (ENP) using satellite transmitters for periods of 27 to 62 d in 2007 and 2008 (mean ± SD: 47.7 ± 12.9 d). Turtles ranged in size from 33.4 to 67.5 cm straight carapace length (45.7 ± 12.9 cm) and 4.4 to 40.8 kg in mass (16.0 ± 13.8 kg). These data represent the first satellite tracking data gathered on juveniles of this endangered species at this remote study site, which may represent an important developmental habitat and foraging ground. Satellite tracking results suggested that these immature turtles were resident for several months very close to capture and release sites, in waters from 0 to 10 m in depth. Mean home range for this springtime tracking period as represented by minimum convex polygon (MCP) was 1004.9 ± 618.8 km2 (range 374.1 to 2060.1 km2), with 4 of 6 individuals spending a significant proportion of time within the ENP boundaries in 2008 in areas with dense patches of marine algae. Core use areas determined by 50% kernel density estimates (KDE) ranged from 5.0 to 54.4 km2, with a mean of 22.5 ± 22.1 km2. Overlap of 50% KDE plots for 6 turtles confirmed use of shallow-water nearshore habitats =0.6 m deep within the park boundary. Delineating specific habitats used by juvenile green turtles in this and other remote coastal areas with protected status will help conservation managers to prioritize their efforts and increase efficacy in protecting endangered species.

  9. TURTLE 24.0 diffusion depletion code

    International Nuclear Information System (INIS)

    Altomare, S.; Barry, R.F.

    1971-09-01

    TURTLE is a two-group, two-dimensional (x-y, x-z, r-z) neutron diffusion code featuring a direct treatment of the nonlinear effects of xenon, enthalpy, and Doppler. Fuel depletion is allowed. TURTLE was written for the study of azimuthal xenon oscillations, but the code is useful for general analysis. The input is simple, fuel management is handled directly, and a boron criticality search is allowed. Ten thousand space points are allowed (over 20,000 with diagonal symmetry). TURTLE is written in FORTRAN IV and is tailored for the present CDC-6600. The program is core-contained. Provision is made to save data on tape for future reference. (auth)

  10. A turtle-like swimming robot using a smart soft composite (SSC) structure

    International Nuclear Information System (INIS)

    Kim, Hyung-Jung; Song, Sung-Hyuk; Ahn, Sung-Hoon

    2013-01-01

    This paper describes the development of a biomimetic swimming robot based on the locomotion of a marine turtle. To realize the smooth, soft flapping motions of this type of turtle, a novel actuator was also developed, using a smart soft composite (SSC) structure that can generate bending and twisting motions in a simple, lightweight structure. The SSC structure is a composite consisting of an active component to generate the actuation force, a passive component to determine the twisting angle of the structure, and a matrix to combine the components. The motion of such a structure can be designed by specifying the angle between a filament of the scaffold structure and a shape-memory alloy (SMA) wire. The bending and twisting motion of the SSC structure is explained in terms of classical laminate theory, and cross-ply and angled-ply structures were fabricated to evaluate its motion. Finally, the turtle-like motion of a swimming robot was realized by employing a specially designed SSC structure. To mimic the posterior positive twisting angle of a turtle’s flipper during the upstroke, the SMA wire on the upper side was offset, and a positive ply-angled scaffold was used. Likewise, for the anterior negative twisting angle of the flipper during the downstroke, an offset SMA wire on the lower side and a positive ply-angled scaffold were also required. The fabricated flipper’s length is 64.3 mm and it realizes 55 mm bending and 24° twisting. The resulting robot achieved a swimming speed of 22.5 mm s −1 . (paper)

  11. 21 CFR 1240.62 - Turtles intrastate and interstate requirements.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Turtles intrastate and interstate requirements....62 Turtles intrastate and interstate requirements. (a) Definition. As used in this section the term “turtles” includes all animals commonly known as turtles, tortoises, terrapins, and all other animals of...

  12. Multiple paternity in the cultured yellow pond turtles (Mauremys mutica).

    Science.gov (United States)

    Zhang, Xin-Cheng; Zhao, Jian; Li, Wei; Wei, Cheng-Qing; Zhu, Xin-Ping

    2017-08-01

    As a result of hunting and habitat loss, wild populations of the yellow pond turtle, Mauremys mutica, are decreasing. The International Union for Conservation of Nature considers M. mutica to be an endangered species. All studied freshwater turtles have polyandrous mating with multiple paternity. To survey the mating strategies of M. mutica, 1year's genetic data of parents and all offspring in an artificially captive population were analyzed. Two groups of multiplex PCR containing 16 microsatellite loci were used to analyze the paternity of 302 hatchlings from 132 parents and from 159 clutches. The genetic data indicated that multiple paternity is rare in M. mutica, occurring in only seven of 138 clutches. Although the frequency of multiple paternity was only 5.07%, results of the present research indicate that M. mutica has a polyandrous mating system. In the breeding season, the successive clutches of 34 females each had the same paternity as the previous clutches. It was observed that four males (f85, f58, f87, and f76) had more than 20 offspring each, totaling 99 and representing 32.78% of all offspring. This finding implies that paternity is competitive in this artificially captive population and might bias the genetic diversity of the offspring. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Using Expert Elicitation to Estimate the Impacts of Plastic Pollution on Marine Wildlife

    Science.gov (United States)

    Mallos, N. J.; Wilcox, C.; Leonard, G. H.; Rodriquez, A. G.; Hardesty, B. D.

    2016-02-01

    With the rapid increase in global plastics production and the resulting large volume of litter that enters the marine environment, determining the consequences of this debris on marine fauna and ocean health has now become a critical environmental priority, particularly for threatened and endangered species. However, there are limited data about the impacts on debris on marine species from which to draw conclusions about the population consequences of anthropogenic debris. To address this knowledge gap, information was elicited from experts on the ecological threat of entanglement, ingestion and chemical contamination for three major marine taxa: seabirds, sea turtles and marine mammals. The threat assessment focused on the most common types of litter that are found along the world's coastlines, based on data gathered during three decades of international coastal clean-up efforts. Fishing related gear, balloons and plastic bags were estimated to pose the greatest entanglement risk to marine fauna. In contrast, experts identified a broader suite of items of concern for ingestion, with plastic bags and plastic utensils ranked as the greatest threats. Entanglement and ingestion affected a similar range of taxa, although entanglement was slightly worse as it is more likely to be lethal. Contamination was scored the lowest in terms of its impact, affecting a smaller portion of the taxa and being rated as having solely non-lethal impacts. Research designed to better understand and quantify the impacts of chemical contamination on marine fauna at individual, population and species levels should be a priority for conservation biologists. This work points towards a number of opportunities for both policy-based and consumer-driven changes in plastics use that could have demonstrable affects for a range of taxa that are ecologically important and serve as indicators of marine ecosystem health. Based on threat rankings, entanglement and ingestion should be a similar priority

  14. 77 FR 474 - 2012 Annual Determination for Sea Turtle Observer Requirement

    Science.gov (United States)

    2012-01-05

    ... listed as endangered or threatened. All sea turtles found in U.S. waters are listed as either endangered... (Dermochelys coriacea), and hawksbill (Eretmochelys imbricata) sea turtles are listed as endangered. Loggerhead... ridley turtles away from the nesting beach, NMFS considers these turtles endangered wherever they occur...

  15. 78 FR 77428 - 2014 Annual Determination for Sea Turtle Observer Requirement

    Science.gov (United States)

    2013-12-23

    ... listed as endangered or threatened. All sea turtles found in U.S. waters are listed as either endangered... imbricata) sea turtles are listed as endangered. Loggerhead (Caretta caretta; Northwest Atlantic distinct... and olive ridley turtles away from the nesting beach, NMFS considers these turtles endangered wherever...

  16. The girdles of the oldest fossil turtle, Proterochersis robusta, and the age of the turtle crown.

    Science.gov (United States)

    Joyce, Walter G; Schoch, Rainer R; Lyson, Tyler R

    2013-12-06

    Proterochersis robusta from the Late Triassic (Middle Norian) of Germany is the oldest known fossil turtle (i.e. amniote with a fully formed turtle shell), but little is known about its anatomy. A newly prepared, historic specimen provides novel insights into the morphology of the girdles and vertebral column of this taxon and the opportunity to reassess its phylogenetic position. The anatomy of the pectoral girdle of P. robusta is similar to that of other primitive turtles, including the Late Triassic (Carnian) Proganochelys quenstedti, in having a vertically oriented scapula, a large coracoid foramen, a short acromion process, and bony ridges that connect the acromion process with the dorsal process, glenoid, and coracoid, and by being able to rotate along a vertical axis. The pelvic elements are expanded distally and suturally attached to the shell, but in contrast to modern pleurodiran turtles the pelvis is associated with the sacral ribs. The primary homology of the character "sutured pelvis" is unproblematic between P. robusta and extant pleurodires. However, integration of all new observations into the most complete phylogenetic analysis that support the pleurodiran nature of P. robusta reveals that this taxon is more parsimoniously placed along the phylogenetic stem of crown Testudines. All current phylogenetic hypotheses therefore support the basal placement of this taxon, imply that the sutured pelvis of this taxon developed independently from that of pleurodires, and conclude that the age of the turtle crown is Middle Jurassic.

  17. Variation in osteocytes morphology vs bone type in turtle shell and their exceptional preservation from the Jurassic to the present.

    Science.gov (United States)

    Cadena, Edwin A; Schweitzer, Mary H

    2012-09-01

    Here we describe variations in osteocytes derived from each of the three bone layers that comprise the turtle shell. We examine osteocytes in bone from four extant turtle species to form a morphological 'baseline', and then compare these with morphologies of osteocytes preserved in Cenozoic and Mesozoic fossils. Two different morphotypes of osteocytes are recognized: flattened-oblate osteocytes (FO osteocytes), which are particularly abundant in the internal cortex and lamellae of secondary osteons in cancellous bone, and stellate osteocytes (SO osteocytes), principally present in the interstitial lamellae between secondary osteons and external cortex. We show that the morphology of osteocytes in each of the three bone layers is conserved through ontogeny. We also demonstrate that these morphological variations are phylogenetically independent, as well as independent of the bone origin (intramembranous or endochondral). Preservation of microstructures consistent with osteocytes in the morphology in Cenozoic and Mesozoic fossil turtle bones appears to be common, and occurs in diverse diagenetic environments including marine, freshwater, and terrestrial deposits. These data have potential to illuminate aspects of turtle biology and evolution previously unapproachable, such as estimates of genome size of extinct species, differences in metabolic rates among different bones from a single individual, and potential function of osteocytes as capsules for preservation of ancient biomolecules. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Diel foraging behavior of gravid leatherback sea turtles in deep waters of the Caribbean Sea.

    Science.gov (United States)

    Casey, James; Garner, Jeanne; Garner, Steve; Williard, Amanda Southwood

    2010-12-01

    It is generally assumed that leatherback turtles (Dermochelys coriacea), like other species of sea turtle, do not feed while offshore from nesting beaches, and rely instead on fat reserves to fuel reproductive activities. Recent studies, however, provide evidence that leatherbacks may forage during the internesting interval while offshore in the Western Atlantic Ocean and Caribbean Sea. Bio-logging technology was used to investigate the foraging behavior of female leatherback turtles at St Croix, US Virgin Islands. Leatherback gastrointestinal tract temperatures (T(GT)) were analyzed for sudden fluctuations indicative of ingestions, and laboratory ingestion simulations were used to characterize temperature fluctuations associated with ingestion of prey versus seawater. Dive patterns associated with prey ingestion were characterized and the proportion of prey ingestion during the day (05:00-18:59 h) and night (19:00-04:59 h) were compared. A combined total of 111 prey ingestions for seven leatherback turtles were documented during the internesting interval. The number of prey ingestions ranged from six to 48 for individual turtles, and the majority (87.4%) of these events occurred during the daytime. Prey ingestions were most frequently associated with V-shaped dives, and the mean (±1 s.d.) maximum dive depth with prey ingestion ranged from 154±51 to 232±101 m for individual turtles. Although leatherbacks were found to opportunistically feed during the internesting interval, the low prey ingestion rates indicate that energy reserves acquired prior to the breeding season are critical for successful reproduction by leatherbacks from the St Croix, USVI nesting population.

  19. Turtle cleaners: reef fishes foraging on epibionts of sea turtles in the tropical Southwestern Atlantic, with a summary of this association type

    Directory of Open Access Journals (Sweden)

    Cristina Sazima

    Full Text Available In the present study we record several instances of reef fish species foraging on epibionts of sea turtles (cleaning symbiosis at the oceanic islands of Fernando de Noronha Archipelago and near a shipwreck, both off the coast of Pernambuco State, northeast Brazil. Nine reef fish species and three turtle species involved in cleaning are herein recorded. Besides our records, a summary of the literature on this association type is presented. Postures adopted by turtles during the interaction are related to the habits of associated fishes. Feeding associations between fishes and turtles seem a localized, albeit common, phenomenon.

  20. Non-parallel divergence across freshwater and marine three-spined stickleback Gasterosteus aculeatus populations.

    Science.gov (United States)

    Pujolar, J M; Ferchaud, A L; Bekkevold, D; Hansen, M M

    2017-07-01

    This work investigated whether multiple freshwater populations of three-spined stickleback Gasterosteus aculeatus in different freshwater catchments in the Jutland Peninsula, Denmark, derived from the same marine populations show repeated adaptive responses. A total of 327 G. aculeatus collected at 13 sampling locations were screened for genetic variation using a combination of 70 genes putatively under selection and 26 neutral genes along with a marker linked to the ectodysplasin gene (eda), which is strongly correlated with plate armour morphs in the species. A highly significant genetic differentiation was found that was higher among different freshwater samples than between marine-freshwater samples. Tests for selection between marine and freshwater populations showed a very low degree of parallelism and no single nucleotide polymorphism was detected as outlier in all freshwater-marine pairwise comparisons, including the eda. This suggests that G. aculeatus is not necessarily the prime example of parallel local adaptation suggested in much of the literature and that important exceptions exist (i.e. the Jutland Peninsula). While marine populations in the results described here showed a high phenotype-genotype correlation at eda, a low association was found for most of the freshwater populations. The most extreme case was found in the freshwater Lake Hald where all low-plated phenotypes were either homozygotes for the allele supposed to be associated with completely plated morphs or heterozygotes, but none were homozygotes for the putative low-plated allele. Re-examination of data from seven G. aculeatus studies agrees in showing a high but partial association between phenotype-genotype at eda in G. aculeatus freshwater populations and that mismatches occur everywhere in the European regions studied (higher in some areas, i.e. Denmark). This is independent of the eda marker used. © 2017 The Fisheries Society of the British Isles.

  1. Phylogeography, Genetic Diversity, and Management Units of Hawksbill Turtles in the Indo-Pacific.

    Science.gov (United States)

    Vargas, Sarah M; Jensen, Michael P; Ho, Simon Y W; Mobaraki, Asghar; Broderick, Damien; Mortimer, Jeanne A; Whiting, Scott D; Miller, Jeff; Prince, Robert I T; Bell, Ian P; Hoenner, Xavier; Limpus, Colin J; Santos, Fabrício R; FitzSimmons, Nancy N

    2016-05-01

    Hawksbill turtle (Eretmochelys imbricata) populations have experienced global decline because of a history of intense commercial exploitation for shell and stuffed taxidermied whole animals, and harvest for eggs and meat. Improved understanding of genetic diversity and phylogeography is needed to aid conservation. In this study, we analyzed the most geographically comprehensive sample of hawksbill turtles from the Indo-Pacific Ocean, sequencing 766 bp of the mitochondrial control region from 13 locations (plus Aldabra, n = 4) spanning over 13500 km. Our analysis of 492 samples revealed 52 haplotypes distributed in 5 divergent clades. Diversification times differed between the Indo-Pacific and Atlantic lineages and appear to be related to the sea-level changes that occurred during the Last Glacial Maximum. We found signals of demographic expansion only for turtles from the Persian Gulf region, which can be tied to a more recent colonization event. Our analyses revealed evidence of transoceanic migration, including connections between feeding grounds from the Atlantic Ocean and Indo-Pacific rookeries. Hawksbill turtles appear to have a complex pattern of phylogeography, showing a weak isolation by distance and evidence of multiple colonization events. Our novel dataset will allow mixed-stock analyses of hawksbill turtle feeding grounds in the Indo-Pacific by providing baseline data needed for conservation efforts in the region. Eight management units are proposed in our study for the Indo-Pacific region that can be incorporated in conservation plans of this critically endangered species. © The American Genetic Association. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Aspects of the reproductive ecology of female turtles in New Mexico

    Science.gov (United States)

    Lovich, Jeffrey E.; Agha, Mickey; Painter, Charlie; Cole, Levi; Fitzgerald, Austin; Narum, Kevin; Jennings, Randy

    2016-01-01

    Data on reproductive ecology of turtles in New Mexico are limited, and some species living there are among the least studied in the United States. We trapped 4 native species of turtles (Apalone spinifera, Chrysemys picta, Pseudemys gorzugi, and Trachemys gaigeae gaigeae) in the Rio Grande and Black River (Pecos River drainage) of New Mexico in June 2012 and 2013 to collect data on female reproductive ecology, including clutch size, egg size, timing of egg production, and percentage of gravid females. During our sampling, we found shelled eggs via X-radiography in only 3 native species: C. picta, P. gorzugi, and T. g. gaigeae. Clutch and egg sizes were within the range of previously reported values, although clutch size for P. gorzugi (10 eggs) is only the second published record for that data-deficient species. Clutch size increased with body size in T. g. gaigeae. We observed few differences between reproductive parameters for turtles in New Mexico and their conspecifics and congeners elsewhere in the United States, other than the observation that female C. picta may mature at smaller body sizes in New Mexico relative to other western populations elsewhere in its vast, primarily eastern North American range.

  3. Survival and behavior of freshwater turtles after rehabilitation from an oil spill

    International Nuclear Information System (INIS)

    Saba, V.S.; Spotila, J.R.

    2003-01-01

    An oil spill in February 2000 at the John Heinz National Wildlife Refuge in southeastern Pennsylvania affected four species of freshwater turtles including painted turtles (Chrysemys picta), snapping turtles (Chelydra serpentina), red-eared slider turtles (Trachemys scripta), and red-bellied turtles (Pseudemys rubriventris). In the summer and fall of 2000, there were no differences in survival, home range, and temperature preference of 16 oil exposed/rehabilitated (OER) turtles, 18 possibly exposed (PE) turtles, and 32 non-exposed (NE) turtles as measured with temperature sensitive radio transmitters. Post-release mortality or transmitter loss was not correlated to oil exposure (OER=25%, PE=22%, NE=31%). There were no statistically significant differences in home range minimum convex polygon area, (0.28 o C±6.9 (female C. serpentina) to 22.3 o C±8.5 (female C. picta). Rehabilitation of oil exposed freshwater turtles is effective in restoring these animals to normal behavior in nature.(author)

  4. Plastic ingestion in oceanic-stage loggerhead sea turtles (Caretta caretta) off the North Atlantic subtropical gyre.

    Science.gov (United States)

    Pham, Christopher K; Rodríguez, Yasmina; Dauphin, Axelle; Carriço, Rita; Frias, João P G L; Vandeperre, Frederic; Otero, Vanessa; Santos, Marco R; Martins, Helen R; Bolten, Alan B; Bjorndal, Karen A

    2017-08-15

    Juvenile oceanic-stage sea turtles are particularly vulnerable to the increasing quantity of plastic coming into the oceans. In this study, we analysed the gastrointestinal tracts of 24 juvenile oceanic-stage loggerheads (Caretta caretta) collected off the North Atlantic subtropical gyre, in the Azores region, a key feeding ground for juvenile loggerheads. Twenty individuals were found to have ingested marine debris (83%), composed exclusively of plastic items (primarily polyethylene and polypropylene) identified by μ-Fourier Transform Infrared Spectroscopy. Large microplastics (1-5mm) represented 25% of the total number of debris and were found in 58% of the individuals sampled. Average number of items was 15.83±6.09 (±SE) per individual, corresponding to a mean dry mass of 1.07±0.41g. The results of this study demonstrate that plastic pollution acts as another stressor for this critical life stage of loggerhead turtles in the North Atlantic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. In-vitro replication of Chelonid herpesvirus 5 in organotypic skin cultures from Hawaiian green turtles (Chelonia mydas)

    Science.gov (United States)

    Work, Thierry M.; Dagenais, Julie; Weatherby, Tina; Ackermann, Mathias; Balazs, George H.

    2017-01-01

    Fibropapillomatosis (FP) is a tumor disease of marine turtles associated with Chelonid herpesvirus 5 (ChHV5) that has historically been refractory to growth in tissue culture. Here, we show for the first time de novo formation of ChHV5-positive intranuclear inclusions in cultured green turtle cells, which is indicative for active lytic replication of the virus. The minimal requirements to achieve lytic replication in cultured cells included 1) either in-vitro culturing of ChHV5-positive tumor biopsies (plugs) or organotypic cultures (rafts) consisting of ChHV5-positive turtle fibroblasts in collagen rafts seeded with turtle keratinocytes and 2) keratinocyte maturation induced by raising raft or biopsy cultures to the air-liquid interface. Virus growth was confirmed by detailed electron microscopic studies revealing intranuclear sun-shaped capsid factories, tubules, various stages of capsid formation, nuclear export by budding into the perinuclear space, tegumentation, and envelopment to complete de novo virus production. Membrane synthesis was also observed as a sign for active viral replication. Interestingly, cytoplasmic particles became associated with keratin filaments, a feature not seen in conventional monolayer cell cultures where most studies of herpesvirus replication have been performed. Our findings draw a rich and realistic picture of ChHV5 replication in cells derived from its natural host and may be crucial not only to better understand ChHV5 circulation but also to eventually complete Koch's postulates for FP. Moreover, the principles described here may serve as model to culture other viruses that are resistant to replication in conventional cell culture.

  6. Epibiotic Diatoms Are Universally Present on All Sea Turtle Species

    Science.gov (United States)

    Majewska, Roksana; Lazo-Wasem, Eric A.; Nel, Ronel; Paladino, Frank V.; Rojas, Lourdes; Zardus, John D.; Pinou, Theodora

    2016-01-01

    The macro-epibiotic communities of sea turtles have been subject to growing interest in recent years, yet their micro-epibiotic counterparts are almost entirely unknown. Here, we provide the first evidence that diatoms are epibionts for all seven extant species of sea turtle. Using Scanning Electron Microscopy, we inspected superficial carapace or skin samples from a single representative of each turtle species. We distinguished 18 diatom taxa from these seven individuals, with each sea turtle species hosting at least two diatom taxa. We recommend that future research is undertaken to confirm whether diatom communities vary between sea turtle species and whether these diatom taxa are facultative or obligate commensals. PMID:27257972

  7. Epibiotic Diatoms Are Universally Present on All Sea Turtle Species

    OpenAIRE

    Robinson, Nathan J.; Majewska, Roksana; Lazo-Wasem, Eric A.; Nel, Ronel; Paladino, Frank V.; Rojas, Lourdes; Zardus, John D.; Pinou, Theodora

    2016-01-01

    The macro-epibiotic communities of sea turtles have been subject to growing interest in recent years, yet their micro-epibiotic counterparts are almost entirely unknown. Here, we provide the first evidence that diatoms are epibionts for all seven extant species of sea turtle. Using Scanning Electron Microscopy, we inspected superficial carapace or skin samples from a single representative of each turtle species. We distinguished 18 diatom taxa from these seven individuals, with each sea turtl...

  8. Isotope analysis reveals foraging area dichotomy for atlantic leatherback turtles.

    Directory of Open Access Journals (Sweden)

    Stéphane Caut

    Full Text Available BACKGROUND: The leatherback turtle (Dermochelys coriacea has undergone a dramatic decline over the last 25 years, and this is believed to be primarily the result of mortality associated with fisheries bycatch followed by egg and nesting female harvest. Atlantic leatherback turtles undertake long migrations across ocean basins from subtropical and tropical nesting beaches to productive frontal areas. Migration between two nesting seasons can last 2 or 3 years, a time period termed the remigration interval (RI. Recent satellite transmitter data revealed that Atlantic leatherbacks follow two major dispersion patterns after nesting season, through the North Gulf Stream area or more eastward across the North Equatorial Current. However, information on the whole RI is lacking, precluding the accurate identification of feeding areas where conservation measures may need to be applied. METHODOLOGY/PRINCIPAL FINDINGS: Using stable isotopes as dietary tracers we determined the characteristics of feeding grounds of leatherback females nesting in French Guiana. During migration, 3-year RI females differed from 2-year RI females in their isotope values, implying differences in their choice of feeding habitats (offshore vs. more coastal and foraging latitude (North Atlantic vs. West African coasts, respectively. Egg-yolk and blood isotope values are correlated in nesting females, indicating that egg analysis is a useful tool for assessing isotope values in these turtles, including adults when not available. CONCLUSIONS/SIGNIFICANCE: Our results complement previous data on turtle movements during the first year following the nesting season, integrating the diet consumed during the year before nesting. We suggest that the French Guiana leatherback population segregates into two distinct isotopic groupings, and highlight the urgent need to determine the feeding habitats of the turtle in the Atlantic in order to protect this species from incidental take by

  9. The draft genomes of soft–shell turtle and green sea turtle yield insights into the development and evolution of the turtle–specific body plan

    OpenAIRE

    Wang, Zhuo; Pascual-Anaya, Juan; Zadissa, Amonida; Li, Wenqi; Niimura, Yoshihito; Huang, Zhiyong; Li, Chunyi; White, Simon; Xiong, Zhiqiang; Fang, Dongming; Wang, Bo; Ming, Yao; Chen, Yan; Zheng, Yuan; Kuraku, Shigehiro

    2013-01-01

    The unique anatomical features of turtles have raised unanswered questions about the origin of their unique body plan. We generated and analyzed draft genomes of the soft-shell turtle (Pelodiscus sinensis) and the green sea turtle (Chelonia mydas); our results indicated the close relationship of the turtles to the bird-crocodilian lineage, from which they split ~267.9–248.3 million years ago (Upper Permian to Triassic). We also found extensive expansion of olfactory receptor genes in these tu...

  10. Population genomics of marine fishes: next generation prospects and challenges

    DEFF Research Database (Denmark)

    Hansen, Jakob Hemmer; Therkildsen, Nina Overgaard; Pujolar, J.M.

    2014-01-01

    Over the past few years, technological advances have facilitated giant leaps forward in our ability to generate genome-wide molecular data, offering exciting opportunities for gaining new insights into the ecology and evolution of species where genomic information is still limited. Marine fishes...... time scales, identifying genomic signatures associated with population divergence under gene flow, and determining the genetic basis of phenotypic traits. We also consider future challenges pertaining to the implementation of genome-wide coverage through next-generation sequencing and genotyping...... methods in marine fishes. Complications associated with fast decay of linkage disequilibrium, as expected for species with large effective population sizes, and the possibility that adaptation is associated with both soft selective sweeps and polygenic selection, leaving complex genomic signatures...

  11. Tourists and turtles: Searching for a balance in Tortuguero, Costa Rica

    Directory of Open Access Journals (Sweden)

    Meletis Zoe

    2010-01-01

    Full Text Available Tourism is seen as an important part of the turtle conservation ′toolbox′ that can be used to (1 raise awareness about sea turtles, (2 provide funding for conservation and management, and (3 create ′alternative livelihoods′ and revenues for communities who engage(d in direct consumption or sale of sea turtle products. With some exceptions, however, few studies of sea turtle tourism dedicate adequate attention to the wants, needs, and perceptions of tourists (exceptions include Wilson & Tisdell 2001; Smith 2002; Gray 2003; Meletis 2007; Ballantyne et al. 2009. In this paper, we focus on tourist perceptions of turtle tours in Tortuguero, Costa Rica, home to Tortuguero National Park (TNP; est. 1975 and among the oldest turtle tour systems in the world. In 2004, the tour system was changed to mitigate potential negative impacts of tourist activity on nesting turtles. Whereas tourists and their guides once walked the beach ′looking′ for nesting turtles, they now wait behind the beach and are radioed by TNP-affiliated ′turtle spotters′ when turtles are ′ready′ to be viewed. Impact mitigation was the primary motivation for this alteration to the tour system; resulting changes in the nature of the tour were not central considerations. Are the tourists enjoying the new tour format? Do they like/dislike the more passive waiting? Do the tourists know about, and understand the new tour system? In this paper, we address questions such as these, using a sample of 147 tourist surveys collected in 2008. We designed our survey to (1 add to the existing data on tourism in Tortuguero, (2 collect data on tourist perceptions of the (new tour system, and (3 gauge tourist awareness of the Turtle Spotter Program (TSP and the reasons for the new turtle tour system. The main purpose of this study was to collect data requested by interested stakeholders, and to consider the results with respect to implications for the future of turtle tour management

  12. AMAPPS turtle data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Satellite tags were deployed on 60 loggerhead turtles to assess dive behavior to improve estimates of abundance in aerial surveys

  13. The green turtle Chelonia mydas as a marine and coastal environmental sentinels: anthropogenic activities and diseases

    Directory of Open Access Journals (Sweden)

    Isabela Guarnier Domiciano

    2017-10-01

    Full Text Available The green turtle Chelonia mydas is a widely distributed, slowly maturing species with a complex life cycle, using both oceanic and coastal environments. The species is exposed to different threats and is considered an environmental sentinel that indicates variation among, and the severity of hazards to marine ecosystems. This study aimed to describe both anthropogenic impacts, and infectious and parasitic diseases in C. mydas - including cases along the Brazilian coast - and implications for conservation. Bycatch is reported as the main threat to the conservation of this species, followed by debris ingestion, collisions with boats, dredging, and chronic environmental contamination. All of these impacts may directly or indirectly cause death, by facilitating contact with pathological agents and by increasing vulnerability to secondary diseases. The pathological agents associated with lesions include viruses, bacteria, fungi, protozoa, and helminths. Fibropapillomatosis is an example of a chronic disease characterized by cutaneous and visceral tumors that affects mostly juvenile C. mydas worldwide and is associated with the Chelonid herpesvirus 5. The bacterias Vibrio alginolyticus, Aeromonas hydrophila, and Pseudomonas fluorescens are found in the aquatic environment and among C. mydas lesions in various organs. Trematode adults and eggs of the family Spirorchiidae are also frequent in systemic cardiovascular diseases of C. mydas. The direct impacts of anthropogenic activities and diseases are synergistic and may affect the specie’s health and conservation. Therefore, the monitoring and systematic diagnosing of diseases and causes of death - including necropsy, histopathology, and molecular exams - are necessary to assess a population’s health, to support appropriate decisions of coastal management and to target future research topics that optimize C. mydas conservation.

  14. Metals and metalloids in whole blood and tissues of Olive Ridley turtles (Lepidochelys olivacea) from La Escobilla Beach (Oaxaca, Mexico)

    International Nuclear Information System (INIS)

    Cortés-Gómez, Adriana A.; Fuentes-Mascorro, Gisela; Romero, Diego

    2014-01-01

    Highlights: • We evaluate the concentrations of inorganic pollutants in Olive Ridley turtles. • Information can be used to monitoring the pollutants in habitats of sea turtles. • The renal cadmium levels is the highest ever reported worldwide for any sea turtle species. • Pb levels have declined in recent years in this population. - Abstract: Concentrations of eight metals and metalloids (Pb, Cd, Cu, Zn, Mn, Se, Ni and As) were evaluated from 41 nesting females (blood) and 13 dead (tissues) Olive Ridley turtles (Lepidochelys olivacea), a species classified as vulnerable and also listed in Appendix I of the Convention of International Trade in Endangered Species (CITES). The mean blood, liver and kidney lead concentration were 0.02 ± 0.01, 0.11 ± 0.08 and 0.06 ± 0.03 μg g −1 ww respectively, values lower than other turtle species and locations, which it could be due to the gradual disuse of leaded gasoline in Mexico and Central America since the 1990s. Mean concentration of cadmium was 0.17 ± 0.08 (blood), 82.88 ± 36.65 (liver) and 150.88 ± 110.99 μg g −1 (kidney). To our knowledge, the mean renal cadmium levels found is the highest ever reported worldwide for any sea turtle species, while other six elements showed a concentration similar to other studies in sea turtles

  15. Induction of oviposition by the administration of oxytocin in hawksbill turtles.

    Science.gov (United States)

    Kawazu, Isao; Kino, Masakatsu; Maeda, Konomi; Yamaguchi, Yasuhiro; Sawamukai, Yutaka

    2014-12-01

    We set out to develop an oviposition induction technique for captive female hawksbill turtles Eretmochelys imbricata. The infertile eggs of nine females were induced to develop by the administration of follicle-stimulating hormone, after which we investigated the effects of administering oxytocin on oviposition. Seven of the turtles were held in a stationary horizontal position on a retention stand, and then oxytocin was administrated (0.6-0.8 units/kg of body weight; 5 mL). The seven turtles were retained for a mandatory 2 h period after oxytocin administration, and were then returned to the holding tanks. As the control, normal saline (5 mL) was administered to the other two turtles, followed by the administration of oxytocin after 24 h. The eggs in oviducts of all nine turtles were observed by ultrasonography at 24 h after oxytocin administration. The control experiment validated that stationary retention and normal saline administration had no effect on egg oviposition. Eight of the turtles began ovipositing eggs at 17-43 min after oxytocin administration, while one began ovipositing in the holding tank immediately after retention. All turtles finished ovipositing eggs within 24 h of oxytocin administration. This report is the first to demonstrate successful induced oviposition in sea turtles. We suggest that the muscles in the oviducts of hawksbill turtles may respond to relatively lower doses of oxytocin (inducing contractions) compared to land and freshwater turtles (4-40 units/kg) based on existing studies.

  16. Comparison of two freshwater turtle species as monitors of radionuclide and chemical contamination: DNA damage and residue analysis

    International Nuclear Information System (INIS)

    Meyers-Schoene, L.; Shugart, L.R.; Beauchamp, J.J.; Walton, B.T.

    1993-01-01

    Two species of turtles that occupy different ecological niches were compared for their usefulness as monitors of freshwater ecosystems where both low-level radioactive and nonradioactive contaminants are present. The pond slider (Trachemys scripta) and common snapping turtle (Chelydra serpentina) were analyzed for the presence of 90 Sr, 137 Cs, 60 Co, and Hg, radionuclides and chemicals known to be present at the contaminated site, and single-strand breaks in liver DNA. The integrity of the DNA was examined by the alkaline unwinding assay, a technique that detects strand breaks as a biological marker of possible exposure to genotoxic agents. This measure of DNA damage was significantly increased in both species of turtles at the contaminated site compared with turtles of the same species at a reference site, and shows that contaminant-exposed populations were under more severe genotoxic stress than those at the reference site. The level of strand breaks observed at the contaminated site was high and in the range reported for other aquatic species exposed to deleterious concentrations of genotoxic agents such as chemicals and ionizing radiation. Statistically significantly higher concentrations of radionuclides and Hg were detected in the turtles from the contaminated area. Mercury concentrations were significantly higher in the more carnivorous snapping turtle compared with the slider; however, both species were effective monitors of the contaminants

  17. Migration routes and staging areas of trans-Saharan Turtle Doves appraised from light-level geolocators.

    Directory of Open Access Journals (Sweden)

    Cyril Eraud

    Full Text Available The identification of migration routes, wintering grounds and stopover sites are crucial issues for the understanding of the Palearctic-African bird migration system as well as for the development of relevant conservation strategies for trans-Saharan migrants. Using miniaturized light-level geolocators we report a comprehensive and detailed year round track of a granivorous trans-Saharan migrant, the European Turtle Dove (Streptopelia turtur. From five recovered loggers, our data provide new insights on migratory journeys and winter destinations of Turtle Doves originating from a breeding population in Western France. Data confirm that Turtle Doves wintered in West Africa. The main wintering area encompassed Western Mali, the Inner Delta Niger and the Malian/Mauritanian border. Some individuals also extended their wintering ranges over North Guinea, North-West of Burkina Faso and the Ivory-Coast. Our results reveal that all individuals did not spend the winter period at a single location; some of them experienced a clear eastward shift of several hundred kilometres. We also found evidence for a loop migration pattern, with a post-breeding migration flyway lying west of the spring route. Finally, we found that on their way back to breeding grounds Turtle Doves needed to refuel after crossing the Sahara desert. Contrary to previous suggestions, our data reveal that birds used stopover sites for several weeks, presumably in Morocco and North Algeria. This later finding is a crucial issue for future conservation strategies because environmental conditions on these staging areas might play a pivotal role in population dynamics of this declining species.

  18. NWHI Basking Green Turtle Data (Turtle Sightings from Seal Surveys)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains records of green turtle sightings in the Northwestern Hawaiian Islands (NWHI) since 1982 at Lisianski Island, and since 1983 for most other...

  19. Predaceous ants, beach replenishment, and nest placement by sea turtles.

    Science.gov (United States)

    Wetterer, James K; Wood, Lawrence D; Johnson, Chris; Krahe, Holly; Fitchett, Stephanie

    2007-10-01

    Ants known for attacking and killing hatchling birds and reptiles include the red imported fire ant (Solenopsis invicta Buren), tropical fire ant [Solenopsis geminata (Fabr.)], and little fire ant [Wasmannia auropunctata (Roger)]. We tested whether sea turtle nest placement influenced exposure to predaceous ants. In 2000 and 2001, we surveyed ants along a Florida beach where green turtles (Chelonia mydas L.), leatherbacks (Dermochelys coriacea Vandelli), and loggerheads (Caretta caretta L.) nest. Part of the beach was artificially replenished between our two surveys. As a result, mean beach width experienced by nesting turtles differed greatly between the two nesting seasons. We surveyed 1,548 sea turtle nests (2000: 909 nests; 2001: 639 nests) and found 22 ant species. S. invicta was by far the most common species (on 431 nests); S. geminata and W. auropunctata were uncommon (on 3 and 16 nests, respectively). In 2000, 62.5% of nests had ants present (35.9% with S. invicta), but in 2001, only 30.5% of the nests had ants present (16.4% with S. invicta). Turtle nests closer to dune vegetation had significantly greater exposure to ants. Differences in ant presence on turtle nests between years and among turtle species were closely related to differences in nest placement relative to dune vegetation. Beach replenishment significantly lowered exposure of nests to ants because on the wider beaches turtles nested farther from the dune vegetation. Selective pressures on nesting sea turtles are altered both by the presence of predaceous ants and the practice of beach replenishment.

  20. Body plan of turtles: an anatomical, developmental and evolutionary perspective.

    Science.gov (United States)

    Nagashima, Hiroshi; Kuraku, Shigehiro; Uchida, Katsuhisa; Kawashima-Ohya, Yoshie; Narita, Yuichi; Kuratani, Shigeru

    2012-03-01

    The evolution of the turtle shell has long been one of the central debates in comparative anatomy. The turtle shell consists of dorsal and ventral parts: the carapace and plastron, respectively. The basic structure of the carapace comprises vertebrae and ribs. The pectoral girdle of turtles sits inside the carapace or the rib cage, in striking contrast to the body plan of other tetrapods. Due to this topological change in the arrangement of skeletal elements, the carapace has been regarded as an example of evolutionary novelty that violates the ancestral body plan of tetrapods. Comparing the spatial relationships of anatomical structures in the embryos of turtles and other amniotes, we have shown that the topology of the musculoskeletal system is largely conserved even in turtles. The positional changes seen in the ribs and pectoral girdle can be ascribed to turtle-specific folding of the lateral body wall in the late developmental stages. Whereas the ribs of other amniotes grow from the axial domain to the lateral body wall, turtle ribs remain arrested axially. Marginal growth of the axial domain in turtle embryos brings the morphologically short ribs in to cover the scapula dorsocaudally. This concentric growth appears to be induced by the margin of the carapace, which involves an ancestral gene expression cascade in a new location. These comparative developmental data allow us to hypothesize the gradual evolution of turtles, which is consistent with the recent finding of a transitional fossil animal, Odontochelys, which did not have the carapace but already possessed the plastron.

  1. Epibiotic Diatoms Are Universally Present on All Sea Turtle Species.

    Directory of Open Access Journals (Sweden)

    Nathan J Robinson

    Full Text Available The macro-epibiotic communities of sea turtles have been subject to growing interest in recent years, yet their micro-epibiotic counterparts are almost entirely unknown. Here, we provide the first evidence that diatoms are epibionts for all seven extant species of sea turtle. Using Scanning Electron Microscopy, we inspected superficial carapace or skin samples from a single representative of each turtle species. We distinguished 18 diatom taxa from these seven individuals, with each sea turtle species hosting at least two diatom taxa. We recommend that future research is undertaken to confirm whether diatom communities vary between sea turtle species and whether these diatom taxa are facultative or obligate commensals.

  2. Diet of the endangered big-headed turtle Platysternon megacephalum

    Directory of Open Access Journals (Sweden)

    Yik-Hei Sung

    2016-12-01

    Full Text Available Populations of the big-headed turtle Platysternon megacephalum are declining at unprecedented rates across most of its distribution in Southeast Asia owing to unsustainable harvest for pet, food, and Chinese medicine markets. Research on Asian freshwater turtles becomes more challenging as populations decline and basic ecological information is needed to inform conservation efforts. We examined fecal samples collected from P. megacephalum in five streams in Hong Kong to quantify the diet, and we compared the germination success of ingested and uningested seeds. Fruits, primarily of Machilus spp., were most frequently consumed, followed by insects, plant matter, crabs and mollusks. The niche breadth of adults was wider than that of juveniles. Diet composition differed between sites, which may be attributable to the history of illegal trapping at some sites, which reduced the proportion of larger and older individuals. Digestion of Machilus spp. fruits by P. megacephalum enhanced germination success of seeds by about 30%. However, most digested seeds are likely defecated in water in this highly aquatic species, which limits the potential benefit to dispersal. The results of our study can be used by conservation-related captive breeding programs to ensure a more optimal diet is provided to captive P. megacephalum.

  3. Measuring Energy Expenditure in Sub-Adult and Hatchling Sea Turtles via Accelerometry

    Science.gov (United States)

    Halsey, Lewis G.; Jones, T. Todd; Jones, David R.; Liebsch, Nikolai; Booth, David T.

    2011-01-01

    Measuring the metabolic of sea turtles is fundamental to understanding their ecology yet the presently available methods are limited. Accelerometry is a relatively new technique for estimating metabolic rate that has shown promise with a number of species but its utility with air-breathing divers is not yet established. The present study undertakes laboratory experiments to investigate whether rate of oxygen uptake ( o 2) at the surface in active sub-adult green turtles Chelonia mydas and hatchling loggerhead turtles Caretta caretta correlates with overall dynamic body acceleration (ODBA), a derivative of acceleration used as a proxy for metabolic rate. Six green turtles (25–44 kg) and two loggerhead turtles (20 g) were instrumented with tri-axial acceleration logging devices and placed singly into a respirometry chamber. The green turtles were able to submerge freely within a 1.5 m deep tank and the loggerhead turtles were tethered in water 16 cm deep so that they swam at the surface. A significant prediction equation for mean o 2 over an hour in a green turtle from measures of ODBA and mean flipper length (R2 = 0.56) returned a mean estimate error across turtles of 8.0%. The range of temperatures used in the green turtle experiments (22–30°C) had only a small effect on o 2. A o 2-ODBA equation for the loggerhead hatchling data was also significant (R2 = 0.67). Together these data indicate the potential of the accelerometry technique for estimating energy expenditure in sea turtles, which may have important applications in sea turtle diving ecology, and also in conservation such as assessing turtle survival times when trapped underwater in fishing nets. PMID:21829613

  4. European Atlantic Turtles

    NARCIS (Netherlands)

    Brongersma, L.D.

    1972-01-01

    CONTENTS Preface ................... 3 Introduction .................. 5 Identification.................. 13 The records................... 25 I. Dermochelys coriacea (L.), Leathery Turtle......... 30 IA. List of records of Dermochelys coriacea (L.)......... 31 IB. List of records of unidentified

  5. Pan-Atlantic analysis of the overlap of a highly migratory species, the leatherback turtle, with pelagic longline fisheries

    Science.gov (United States)

    Fossette, S.; Witt, M. J.; Miller, P.; Nalovic, M. A.; Albareda, D.; Almeida, A. P.; Broderick, A. C.; Chacón-Chaverri, D.; Coyne, M. S.; Domingo, A.; Eckert, S.; Evans, D.; Fallabrino, A.; Ferraroli, S.; Formia, A.; Giffoni, B.; Hays, G. C.; Hughes, G.; Kelle, L.; Leslie, A.; López-Mendilaharsu, M.; Luschi, P.; Prosdocimi, L.; Rodriguez-Heredia, S.; Turny, A.; Verhage, S.; Godley, B. J.

    2014-01-01

    Large oceanic migrants play important roles in ecosystems, yet many species are of conservation concern as a result of anthropogenic threats, of which incidental capture by fisheries is frequently identified. The last large populations of the leatherback turtle, Dermochelys coriacea, occur in the Atlantic Ocean, but interactions with industrial fisheries could jeopardize recent positive population trends, making bycatch mitigation a priority. Here, we perform the first pan-Atlantic analysis of spatio-temporal distribution of the leatherback turtle and ascertain overlap with longline fishing effort. Data suggest that the Atlantic probably consists of two regional management units: northern and southern (the latter including turtles breeding in South Africa). Although turtles and fisheries show highly diverse distributions, we highlight nine areas of high susceptibility to potential bycatch (four in the northern Atlantic and five in the southern/equatorial Atlantic) that are worthy of further targeted investigation and mitigation. These are reinforced by reports of leatherback bycatch at eight of these sites. International collaborative efforts are needed, especially from nations hosting regions where susceptibility to bycatch is likely to be high within their exclusive economic zone (northern Atlantic: Cape Verde, Gambia, Guinea Bissau, Mauritania, Senegal, Spain, USA and Western Sahara; southern Atlantic: Angola, Brazil, Namibia and UK) and from nations fishing in these high-susceptibility areas, including those located in international waters. PMID:24523271

  6. Disappearance of endangered turtles within China's nature reserves.

    Science.gov (United States)

    Gong, Shi-Ping; Shi, Hai-Tao; Jiang, Ai-Wu; Fong, Jonathan J; Gaillard, Daniel; Wang, Ji-Chao

    2017-03-06

    China ranks first among Northern hemisphere countries for species richness, but approximately 43% of its species are threatened [1], with harvesting being the major threat to vertebrates [2]. To protect its biodiversity, China has established about 2,700 nature reserves covering 1.46 million km 2 ( about 15% of China's territory, a percentage higher than the world average [3]). With increasing habitat destruction and harvesting, nature reserves are the final refugia for threatened species. However, many Chinese nature reserves are poorly managed, leaving them vulnerable to poaching and other human encroachment [4]. In this study, we conducted a 12-year (2002-2013) case study on turtles to illustrate the damaging impacts China's nature reserves have on wildlife conservation. We discovered that poaching occurred in all of the 56 reserves surveyed, resulting in dramatically reduced turtle populations. In a majority of the reserves, the reserve staff themselves were involved in poaching. Although nature reserves were created to protect plants and animals, they have become part of the problem due to weak enforcement of rules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Western Indian Ocean Journal of Marine Science - Vol 4, No 2 (2005)

    African Journals Online (AJOL)

    Notes on the status and incidental capture of marine turtles by the subsistence fishing communities of South West Madagascar · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. R C Walker, E Roberts, 219-226. http://dx.doi.org/10.4314/wiojms.v4i2.28491 ...

  8. First Assessment of the Sex Ratio for an East Pacific Green Sea Turtle Foraging Aggregation: Validation and Application of a Testosterone ELISA.

    Directory of Open Access Journals (Sweden)

    Camryn D Allen

    Full Text Available Determining sex ratios of endangered populations is important for wildlife management, particularly species subject to sex-specific threats or that exhibit temperature-dependent sex determination. Sea turtle sex is determined by incubation temperature and individuals lack external sex-based traits until sexual maturity. Previous research utilized serum/plasma testosterone radioimmunoassays (RIA to determine sex in immature/juvenile sea turtles. However, there has been a growing application of enzyme-linked immunosorbent assay (ELISA for wildlife endocrinology studies, but no study on sea turtles has compared the results of ELISA and RIA. This study provides the first sex ratio for a threatened East Pacific green sea turtle (Chelonia mydas foraging aggregation, a critical step for future management of this species. Here, we validate a testosterone ELISA and compare results between RIA and ELISA of duplicate samples. The ELISA demonstrated excellent correspondence with the RIA for providing testosterone concentrations for sex determination. Neither assay proved reliable for predicting the sex of reproductively active females with increased testosterone production. We then applied ELISA to examine the sex ratio of 69 green turtles foraging in San Diego Bay, California. Of 45 immature turtles sampled, sex could not be determined for three turtles because testosterone concentrations fell between the ranges for either sex (females: 4.1-113.1 pg/mL, males: 198.4-2,613.0 pg/mL and these turtles were not subsequently recaptured to enable sex determination; using a Bayesian model to predict probabilities of turtle sex we predicted all three 'unknowns' were female (> 0.86. Additionally, the model assigned all turtles with their correct sex (if determined at recapture with 100% accuracy. Results indicated a female bias (2.83F:1M among all turtles in the aggregation; when focusing only on putative immature turtles the sex ratio was 3.5F:1M. With appropriate

  9. Helminth fauna of a turtle species introduced in Japan, the red-eared slider turtle (Trachemys scripta elegans).

    Science.gov (United States)

    Oi, M; Araki, J; Matsumoto, J; Nogami, S

    2012-10-01

    The red-eared slider turtle (Trachemys scripta elegans) was intentionally introduced from the United States to Japan as a pet in the 1950s and has become established throughout much of the country. We examined red-eared slider turtles from two localities in Japan for foreign parasitic helminths. Consequently, a total of seven species of helminths were found: two monogeneans (Neopolystoma exhamatum and Polystomoides japonicum), three digeneans (Spirorchisartericola, Spi.elegans and Telorchis clemmydis) and two nematodes (Serpinema microcephalum and Falcaustra wardi). Of these, three helminths are alien to Japan-Spi.artericola, Spi. elegans and F. wardi-which represent the first report of their presence in the red-eared slider turtle from Japan. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. The role of geomagnetic cues in green turtle open sea navigation.

    Directory of Open Access Journals (Sweden)

    Simon Benhamou

    Full Text Available BACKGROUND: Laboratory and field experiments have provided evidence that sea turtles use geomagnetic cues to navigate in the open sea. For instance, green turtles (Chelonia mydas displaced 100 km away from their nesting site were impaired in returning home when carrying a strong magnet glued on the head. However, the actual role of geomagnetic cues remains unclear, since magnetically treated green turtles can perform large scale (>2000 km post-nesting migrations no differently from controls. METHODOLOGY/PRINCIPAL FINDINGS: In the present homing experiment, 24 green turtles were displaced 200 km away from their nesting site on an oceanic island, and tracked, for the first time in this type of experiment, with Global Positioning System (GPS, which is able to provide much more frequent and accurate locations than previously used tracking methods. Eight turtles were magnetically treated for 24-48 h on the nesting beach prior to displacement, and another eight turtles had a magnet glued on the head at the release site. The last eight turtles were used as controls. Detailed analyses of water masses-related (i.e., current-corrected homing paths showed that magnetically treated turtles were able to navigate toward their nesting site as efficiently as controls, but those carrying magnets were significantly impaired once they arrived within 50 km of home. CONCLUSIONS/SIGNIFICANCE: While green turtles do not seem to need geomagnetic cues to navigate far from the goal, these cues become necessary when turtles get closer to home. As the very last part of the homing trip (within a few kilometers of home likely depends on non-magnetic cues, our results suggest that magnetic cues play a key role in sea turtle navigation at an intermediate scale by bridging the gap between large and small scale navigational processes, which both appear to depend on non-magnetic cues.

  11. Legal and institutional tools to mitigate plastic pollution affecting marine species: Argentina as a case study.

    Science.gov (United States)

    González Carman, Victoria; Machain, Natalia; Campagna, Claudio

    2015-03-15

    Plastics are the most common form of debris found along the Argentine coastline. The Río de la Plata estuarine area is a relevant case study to describe a situation where ample policy exists against a backdrop of plastics disposed by populated coastal areas, industries, and vessels; with resultant high impacts of plastic pollution on marine turtles and mammals. Policy and institutions are in place but the impact remains due to ineffective waste management, limited public education and awareness, and weaknesses in enforcement of regulations. This context is frequently repeated all over the world. We list possible interventions to increase the effectiveness of policy that require integrating efforts among governments, the private sector, non-governmental organizations and the inhabitants of coastal cities to reduce the amount of plastics reaching the Río de la Plata and protect threatened marine species. What has been identified for Argentina applies to the region and globally. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Helminth component community of the loggerhead sea turtle, Caretta caretta, from Madeira Archipelago, Portugal.

    Science.gov (United States)

    Valente, Ana Luisa; Delgado, Cláudia; Moreira, Cláudia; Ferreira, Sandra; Dellinger, Thomas; Pinheiro de Carvalho, Miguel A A; Costa, Graça

    2009-02-01

    The helminth fauna of pelagic-stage loggerhead sea turtles, Caretta caretta, is still poorly known. Here, we describe the helminth-component community of healthy, free-ranging juvenile loggerhead sea turtles captured in the waters around Madeira Island, Portugal. Fifty-seven were used in this study. The esophagus, stomach, intestine, liver, gallbladder, spleen, kidneys, trachea, bronchi, urinary bladder, heart, left and right aortas, and coelomic cavity were macroscopically inspected; organs and tissues were removed and washed through a sieve. A search for parasites was made using a stereoscopic microscope; recovered parasites were fixed and stored in 70% alcohol until staining and identification. Prevalence, mean intensity, and mean abundance values were recorded. In total, 156 parasite specimens belonging to 9 species were found: nematodes included Anisakis simplex s.l. (larvae) and an unidentified species; digenetic trematodes present were Enodiotrema megachondrus, Rhytidodes gelatinosus, Pyelosomum renicapite, and Calycodes anthos; acanthocephalans included Bolbosoma vasculosum and Rhadinorhynchus pristis; a single cestode, Nybelinia sp., was present. Parasite infections were found to have both low prevalences and intensities. Possible reasons for this include the oligotrophic conditions of the pelagic habitat around Madeira; a 'dilution effect' because of the vastness of the area; and the small size, and thus ingestion rate, of the turtles. Results are discussed in terms of the various turtle populations that may use the waters surrounding Madeira. This work provides valuable information on the parasite fauna of a poorly known stage in the life of loggerhead sea turtles, thereby filling a fundamental gap with regard to features of the parasite fauna in this species.

  13. Impacts of plastic ingestion on post-hatchling loggerhead turtles off South Africa.

    Science.gov (United States)

    Ryan, Peter G; Cole, Georgina; Spiby, Kevin; Nel, Ronel; Osborne, Alexis; Perold, Vonica

    2016-06-15

    Twenty-four of 40 (60%) loggerhead turtle Caretta caretta post-hatchlings (carapaceTurtles selected for white (38%) and blue (19%) items, but translucent items (23%) were under-represented compared to beach mesodebris. Ingested loads did not decrease up to 52days in captivity, indicating long retention times. Plastic killed 11 turtles by blocking their digestive tracts or bladders, and contributed to the deaths of five other turtles. Our results indicate that the amount and diversity of plastic ingested by post-hatchling loggerhead turtles off South Africa have increased over the last four decades, and now kill some turtles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Unexpected early extinction of the European pond turtle (Emys orbicularis) in Sweden and climatic impact on its Holocene range.

    Science.gov (United States)

    Sommer, Robert S; Lindqvist, Charlotte; Persson, Arne; Bringsøe, Henrik; Rhodin, Anders G J; Schneeweiss, Norbert; Siroký, Pavel; Bachmann, Lutz; Fritz, Uwe

    2009-03-01

    Using ancient DNA sequences of subfossil European pond turtles (Emys orbicularis) from Britain, Central and North Europe and accelerator mass spectrometry radiocarbon dating for turtle remains from most Swedish sites, we provide evidence for a Holocene range expansion of the pond turtle from the southeastern Balkans into Britain, Central Europe and Scandinavia, according to the 'grasshopper pattern' of Hewitt. Northeastern Europe and adjacent Asia were colonized from another refuge located further east. With increasing annual mean temperatures, pond turtles reached southern Sweden approximately 9800 years ago. Until approximately 5500 years ago, rising temperatures facilitated a further range expansion up to Ostergötland, Sweden (approximately 58 degrees 30'N). However, around 5500 years ago pond turtle records suddenly terminate in Sweden, some 1500 years before the Holocene thermal maximum ended in Scandinavia and distinctly earlier than previously thought. This extinction coincides with a temporary cooling oscillation during the Holocene thermal maximum and is likely related to lower summer temperatures deteriorating reproductive success. Although climatic conditions improved later again, recolonization of Sweden from southern source populations was prevented by the Holocene submergence of the previous land connection via the Danish Straits that occurred approximately 8500 years ago.

  15. Replication and persistence of VHSV IVb in freshwater turtles.

    Science.gov (United States)

    Goodwin, Andrew E; Merry, Gwenn E

    2011-05-09

    With the emergence of viral hemorrhagic septicemia virus (VHSV) strain IVb in the Great Lakes of North America, hatchery managers have become concerned that this important pathogen could be transmitted by animals other than fish. Turtles are likely candidates because they are poikilotherms that feed on dead fish, but there are very few reports of rhabdovirus infections in reptiles and no reports of the fish rhabdoviruses in animals other than teleosts. We injected common snapping turtles Chelydra serpentine and red-eared sliders Trachemys scripta elegans intraperitoneally with 10(4) median tissue culture infectious dose (TCID50) of VHSV-IVb and 21 d later were able to detect the virus by quantitative real-time reverse transcriptase PCR (qrt-RTPCR) in pools of kidney, liver, and spleen. In a second experiment, snapping turtles, red-eared sliders, yellow-bellied sliders T. scripta scripta, and northern map turtles Grapetemys geographica at 14 degrees C were allowed to feed on tissues from bluegill dying of VHSV IVb disease. Turtle kidney, spleen, and brain pools were not positive by qrt-RTPCR on Day 3 post feeding, but were positive on Days 10 and 20. Map turtles on Day 20 post-feeding were positive by both qrt-RTPCR and by cell culture. Our work shows that turtles that consume infected fish are a possible vector for VHSV IVb, and that the fish rhabdoviruses may have a broader host range than previously suspected.

  16. Who are the important predators of sea turtle nests at Wreck Rock beach?

    Directory of Open Access Journals (Sweden)

    Juan Lei

    2017-06-01

    Full Text Available Excessive sea turtle nest predation is a problem for conservation management of sea turtle populations. This study assessed predation on nests of the endangered loggerhead sea turtle (Caretta caretta at Wreck Rock beach adjacent to Deepwater National Park in Southeast Queensland, Australia after a control program for feral foxes was instigated. The presence of predators on the nesting dune was evaluated by tracking plots (2 × 1 m every 100 m along the dune front. There were 21 (2014–2015 and 41 (2015–2016 plots established along the dune, and these were monitored for predator tracks daily over three consecutive months in both nesting seasons. Predator activities at nests were also recorded by the presence of tracks on top of nests until hatchlings emerged. In addition, camera traps were set to record the predator activity around selected nests. The tracks of the fox (Vulpes vulpes and goanna (Varanus spp were found on tracking plots. Tracking plots, nest tracks and camera traps indicated goanna abundance varied strongly between years. Goannas were widely distributed along the beach and had a Passive Activity Index (PAI (0.31 in 2014–2015 and 0.16 in 2015–2016 approximately seven times higher than that of foxes (PAI 0.04 in 2014–2015 and 0.02 in 2015–2016. Five hundred and twenty goanna nest visitation events were recorded by tracks but no fox tracks were found at turtle nests. Camera trap data indicated that yellow-spotted goannas (Varanus panoptes appeared at loggerhead turtle nests more frequently than lace monitors (V. varius did, and further that lace monitors only predated nests previously opened by yellow-spotted goannas. No foxes were recorded at nests with camera traps. This study suggests that large male yellow-spotted goannas are the major predator of sea turtle nests at the Wreck Rock beach nesting aggregation and that goanna activity varies between years.

  17. Who are the important predators of sea turtle nests at Wreck Rock beach?

    Science.gov (United States)

    Lei, Juan; Booth, David T

    2017-01-01

    Excessive sea turtle nest predation is a problem for conservation management of sea turtle populations. This study assessed predation on nests of the endangered loggerhead sea turtle ( Caretta caretta ) at Wreck Rock beach adjacent to Deepwater National Park in Southeast Queensland, Australia after a control program for feral foxes was instigated. The presence of predators on the nesting dune was evaluated by tracking plots (2 × 1 m) every 100 m along the dune front. There were 21 (2014-2015) and 41 (2015-2016) plots established along the dune, and these were monitored for predator tracks daily over three consecutive months in both nesting seasons. Predator activities at nests were also recorded by the presence of tracks on top of nests until hatchlings emerged. In addition, camera traps were set to record the predator activity around selected nests. The tracks of the fox ( Vulpes vulpes ) and goanna ( Varanus spp ) were found on tracking plots. Tracking plots, nest tracks and camera traps indicated goanna abundance varied strongly between years. Goannas were widely distributed along the beach and had a Passive Activity Index (PAI) (0.31 in 2014-2015 and 0.16 in 2015-2016) approximately seven times higher than that of foxes (PAI 0.04 in 2014-2015 and 0.02 in 2015-2016). Five hundred and twenty goanna nest visitation events were recorded by tracks but no fox tracks were found at turtle nests. Camera trap data indicated that yellow-spotted goannas ( Varanus panoptes ) appeared at loggerhead turtle nests more frequently than lace monitors ( V. varius ) did, and further that lace monitors only predated nests previously opened by yellow-spotted goannas. No foxes were recorded at nests with camera traps. This study suggests that large male yellow-spotted goannas are the major predator of sea turtle nests at the Wreck Rock beach nesting aggregation and that goanna activity varies between years.

  18. Morphological study of the plastron of the African sideneck turtle ...

    African Journals Online (AJOL)

    The morphological analysis of the plastron of the African sideneck turtle (Pelusios castaneus) was carried out using fifty adult turtles comprising twenty female and thirty male turtles picked up at different times from various river banks in Ibadan, Nigeria. The aim of the study was to provide baseline information that could be ...

  19. Health implications associated with exposure to farmed and wild sea turtles.

    Science.gov (United States)

    Warwick, Clifford; Arena, Phillip C; Steedman, Catrina

    2013-01-01

    Exposure to sea turtles may be increasing with expanding tourism, although reports of problems arising from interaction with free-living animals appear of negligible human health and safety concern. Exposure both to wild-caught and captive-housed sea turtles, including consumption of turtle products, raises several health concerns for the public, including: microbiological (bacteria, viruses, parasites and fungi), macrobiological (macroparasites), and organic and inorganic toxic contaminants (biotoxins, organochlorines and heavy metals). We conducted a review of sea turtle associated human disease and its causative agents as well as a case study of the commercial sea turtle facility known as the Cayman Turtle Farm (which receives approximately 240,000 visitors annually) including the use of water sampling and laboratory microbial analysis which identified Pseudomonas aeruginosa, Aeromonas spp., Vibrio spp. and Salmonella spp. Our assessment is that pathogens and toxic contaminants may be loosely categorized to represent the following levels of potential risk: viruses and fungi = very low; protozoan parasites = very low to low; metazoan parasites, bacteria and environmental toxic contaminants = low or moderate to high; and biotoxin contaminant = moderate to very high. Farmed turtles and their consumable products may constitute a significant reservoir of potential human pathogen and toxin contamination. Greater awareness among health-care professionals regarding both potential pathogens and toxic contaminants from sea turtles, as well as key signs and symptoms of sea turtle-related human disease, is important for the prevention and control of salient disease.

  20. Emerging from the rib: resolving the turtle controversies.

    Science.gov (United States)

    Rice, Ritva; Riccio, Paul; Gilbert, Scott F; Cebra-Thomas, Judith

    2015-05-01

    Two of the major controversies in the present study of turtle shell development involve the mechanism by which the carapacial ridge initiates shell formation and the mechanism by which each rib forms the costal bones adjacent to it. This paper claims that both sides of each debate might be correct-but within the species examined. Mechanism is more properly "mechanisms," and there is more than one single way to initiate carapace formation and to form the costal bones. In the initiation of the shell, the rib precursors may be kept dorsal by either "axial displacement" (in the hard-shell turtles) or "axial arrest" (in the soft-shell turtle Pelodiscus), or by a combination of these. The former process would deflect the rib into the dorsal dermis and allow it to continue its growth there, while the latter process would truncate rib growth. In both instances, though, the result is to keep the ribs from extending into the ventral body wall. Our recent work has shown that the properties of the carapacial ridge, a key evolutionary innovation of turtles, differ greatly between these two groups. Similarly, the mechanism of costal bone formation may differ between soft-shell and hard-shell turtles, in that the hard-shell species may have both periosteal flattening as well as dermal bone induction, while the soft-shelled turtles may have only the first of these processes. © 2015 Wiley Periodicals, Inc.

  1. Predicting the impacts of anthropogenic disturbances on marine populations

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Jacob; van Beest, Floris; Grimm, Volker

    Marine ecosystems are increasingly exposed to anthropogenic disturbances that cause animals to change behavior and move away from potential foraging grounds. Here we present a process-based modeling framework for assessing population consequences of such sub-lethal behavioral effects. It builds...... on how disturbances influence animal movements, and how this in turn affect their foraging and energetics. The animals’ tendency to move away from disturbances is directly related to the experienced noise level. The reduced foraging in noisy areas affects the animals’ energy budget, fitness...... that determine animal fitness, are expected to have high predictive power in novel environments, making them ideal tools for marine management....

  2. Research on intact marine ecosystems: a lost era.

    Science.gov (United States)

    Stachowitsch, Michael

    2003-07-01

    It is proposed that a new, fifth era should be added to the four historical phases of marine research identified by Rupert Riedl, specifically an era devoted to studying and ameliorating disturbed marine ecosystems. In an age of global environmental deterioration, many marine ecosystems and organisms are high on the list of threatened entities. This poor status prompts research that would otherwise have been unnecessary and hinders research that would normally have been conducted. I argue that research into intact marine ecosystems is becoming increasingly difficult, and that most of our future insights into marine habitats will stem from knowledge gained by examining various disfunctions of those systems rather than their functions. The new era will therefore differ from past research in its underlying aim, the range of topics studied, the selection and funding of those topics, the validity of its conclusions, and in its urgency. Sea turtles and cetaceans are cited as case studies at the organismic level, shallow-water benthic communities, including coral reefs, at the ecosystem level.

  3. Survival and behavior of freshwater turtles after rehabilitation from an oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Saba, V S; Spotila, J R [Drexel Univ., Philadelphia, PA (United States). School of Environmental Science, Engineering and Policy

    2003-11-01

    An oil spill in February 2000 at the John Heinz National Wildlife Refuge in southeastern Pennsylvania affected four species of freshwater turtles including painted turtles (Chrysemys picta), snapping turtles (Chelydra serpentina), red-eared slider turtles (Trachemys scripta), and red-bellied turtles (Pseudemys rubriventris). In the summer and fall of 2000, there were no differences in survival, home range, and temperature preference of 16 oil exposed/rehabilitated (OER) turtles, 18 possibly exposed (PE) turtles, and 32 non-exposed (NE) turtles as measured with temperature sensitive radio transmitters. Post-release mortality or transmitter loss was not correlated to oil exposure (OER=25%, PE=22%, NE=31%). There were no statistically significant differences in home range minimum convex polygon area, (0.28turtles is effective in restoring these animals to normal behavior in nature.(author)

  4. Temporal variation in demography of the Chocoan River turtle, Rhinoclemmys nasuta (Geoemydidae), on Isla Palma, Malaga Bay, pacific coast of Valle del Cauca

    International Nuclear Information System (INIS)

    Garces Restrepo, Mario Fernando; Giraldo, Alan; Carr, John L

    2014-01-01

    Few long-term demographic studies have been conducted in freshwater turtles of South America despite the need for this type of inquiry to investigate natural variation and strengthen conservation efforts for these species. In this study, we examined variation in demography of the Chocoan River turtle (Rhinoclemmys nasuta) based on a population from an island locality in the Colombian pacific region between 2005 and 2012. At this locality we captured turtles by hand in five streams with a total area of 0.4 ha. We calculated population size with the jolly-seber method and compared the population structure of four time periods (2005-06, 2007, 2011 and 2012). we calculated the probability of survival and capture probability for males, females and juveniles using the cormack jolly seber model and we estimated the rate of population growth with the Popan model. We found increases and decreases in population size, and a significant increase in the percentage of juveniles in 2011 and 2012. In all periods, females dominated the sex structure of the population. Temporal variation in population size may be due to natural changes in habitat or density dependent effects. However, it may correspond with normal fluctuations in population parameters, therefore continuous monitoring that can be correlated with environmental and physical factors of the habitat could elucidate the causes of the variation.

  5. On the stochastic approach to marine population dynamics

    Directory of Open Access Journals (Sweden)

    Eduardo Ferrandis

    2007-03-01

    Full Text Available The purpose of this article is to deepen and structure the statistical basis of marine population dynamics. The starting point is the correspondence between the concepts of mortality, survival and lifetime distribution. This is the kernel of the possibilities that survival analysis techniques offer to marine population dynamics. A rigorous definition of survival and mortality based on their properties and their probabilistic versions is briefly presented. Some well established models for lifetime distribution, which generalise the usual simple exponential distribution, might be used with their corresponding survivals and mortalities. A critical review of some published models is also made, including original models proposed in the way opened by Caddy (1991 and Sparholt (1990, which allow for a continuously decreasing natural mortality. Considering these elements, the pure death process dealt with in the literature is used as a theoretical basis for the evolution of a marine cohort. The elaboration of this process is based on Chiang´s study of the probability distribution of the life table (Chiang, 1960 and provides specific structured models for stock evolution as a Markovian process. These models may introduce new ideas in the line of thinking developed by Gudmundsson (1987 and Sampson (1990 in order to model the evolution of a marine cohort by stochastic processes. The suitable approximation of these processes by means of Gaussian processes may allow theoretical and computational multivariate Gaussian analysis to be applied to the probabilistic treatment of fisheries issues. As a consequence, the necessary catch equation appears as a stochastic integral with respect to the mentioned Markovian process of the stock. The solution of this equation is available when the mortalities are proportional, hence the use of the proportional hazards model (Cox, 1959. The assumption of these proportional mortalities leads naturally to the construction of a

  6. Slow and steady wins the race? Future climate and land use change leaves the imperiled Blanding's turtle (Emydoidea blandingii) behind

    Science.gov (United States)

    Hamilton, Christopher M.; Bateman, Brooke L.; Gorzo, Jessica M.; Reid, Brendan; Thogmartin, Wayne E.; Peery, M. Zachariah; Heglund, Patricia J.; Radeloff, Volker C.; Pidgeon, Anna M.

    2018-01-01

    Climate change is accompanied by shifts in species distributions, as portions of current ranges become less suitable. Maintaining or improving landscape connectivity to facilitate species movements is a primary approach to mitigate the effects of climate change on biodiversity. However, it is not clear how ongoing changes in land use and climate may affect the existing connectivity of landscapes. We evaluated shifts in habitat suitability and connectivity for the imperiled Blanding's turtle (Emydoidea blandingii) in Wisconsin using species distribution modeling in combination with different future scenarios of both land use change and climate change for the 2050s. We found that climate change had significant effects on both habitat suitability and connectivity, however, there was little difference in the magnitude of effects among different economic scenarios. Under both our low- and high-CO2 emissions scenarios, suitable habitat for the Blanding's turtle shifted northward. In the high-emissions scenario, almost no suitable habitat remained for Blanding's turtle in Wisconsin by the 2050s and there was up to a 100,000-fold increase in landscape resistance to turtle movement, suggesting the landscape essentially becomes impassable. Habitat loss and landscape resistance were exponentially greater in southern versus northern Wisconsin, indicating a strong trailing edge effect. Thus, populations at the southern edge of the range are likely to “fall behind” shifts in suitable habitat faster than northern populations. Given its limited dispersal capability, loss of suitable habitat may occur at a rate far faster than the Blanding's turtle can adjust to changing conditions via shifts in range.

  7. Deep time perspective on turtle neck evolution: chasing the Hox code by vertebral morphology.

    Science.gov (United States)

    Böhmer, Christine; Werneburg, Ingmar

    2017-08-21

    The unparalleled ability of turtle neck retraction is possible in three different modes, which characterize stem turtles, living side-necked (Pleurodira), and hidden-necked (Cryptodira) turtles, respectively. Despite the conservatism in vertebral count among turtles, there is significant functional and morphological regionalization in the cervical vertebral column. Since Hox genes play a fundamental role in determining the differentiation in vertebra morphology and based on our reconstruction of evolutionary genetics in deep time, we hypothesize genetic differences among the turtle groups and between turtles and other land vertebrates. We correlated anterior Hox gene expression and the quantifiable shape of the vertebrae to investigate the morphological modularity in the neck across living and extinct turtles. This permitted the reconstruction of the hypothetical ancestral Hox code pattern of the whole turtle clade. The scenario of the evolution of axial patterning in turtles indicates shifts in the spatial expression of HoxA-5 in relation to the reduction of cervical ribs in modern turtles and of HoxB-5 linked with a lower morphological differentiation between the anterior cervical vertebrae observed in cryptodirans. By comparison with the mammalian pattern, we illustrate how the fixed count of eight cervical vertebrae in turtles resulted from the emergence of the unique turtle shell.

  8. Population-specific plasma proteomes of marine and freshwater three-spined sticklebacks (Gasterosteus aculeatus).

    Science.gov (United States)

    Kültz, Dietmar; Li, Johnathon; Zhang, Xuezhen; Villarreal, Fernando; Pham, Tuan; Paguio, Darlene

    2015-12-01

    Molecular phenotypes that distinguish resident marine (Bodega Harbor) from landlocked freshwater (FW, Lake Solano) three-spined sticklebacks were revealed by label-free quantitative proteomics. Secreted plasma proteins involved in lipid transport, blood coagulation, proteolysis, plasminogen-activating cascades, extracellular stimulus responses, and immunity are most abundant in this species. Globulins and albumins are much less abundant than in mammalian plasma. Unbiased quantitative proteome profiling identified 45 highly population-specific plasma proteins. Population-specific abundance differences were validated by targeted proteomics based on data-independent acquisition. Gene ontology enrichment analyses and known functions of population-specific plasma proteins indicate enrichment of processes controlling cell adhesion, tissue remodeling, proteolytic processing, and defense signaling in marine sticklebacks. Moreover, fetuin B and leukocyte cell derived chemotaxin 2 are much more abundant in marine fish. These proteins promote bone morphogenesis and likely contribute to population-specific body armor differences. Plasma proteins enriched in FW fish promote translation, heme biosynthesis, and lipid transport, suggesting a greater presence of plasma microparticles. Many prominent population-specific plasma proteins (e.g. apoptosis-associated speck-like protein containing a CARD) lack any homolog of known function or adequate functional characterization. Their functional characterization and the identification of population-specific environmental contexts and selective pressures that cause plasma proteome diversification are future directions emerging from this study. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Efferent innervation of turtle semicircular canal cristae: comparisons with bird and mouse

    Science.gov (United States)

    Jordan, Paivi M.; Fettis, Margaret; Holt, Joseph C.

    2014-01-01

    In the vestibular periphery of nearly every vertebrate, cholinergic vestibular efferent neurons give rise to numerous presynaptic varicosities that target hair cells and afferent processes in the sensory neuroepithelium. Although pharmacological studies have described the postsynaptic actions of vestibular efferent stimulation in several species, characterization of efferent innervation patterns and the relative distribution of efferent varicosities among hair cells and afferents are also integral to understanding how efferent synapses operate. Vestibular efferent markers, however, have not been well characterized in the turtle, one of the animal models utilized by our laboratory. Here, we sought to identify reliable efferent neuronal markers in the vestibular periphery of turtle, to utilize these markers to understand how efferent synapses are organized, and to compare efferent neuronal labeling patterns in turtle with two other amniotes using some of the same markers. Efferent fibers and varicosities were visualized in the semicircular canal of Red-Eared Turtles (Trachemys scripta elegans), Zebra Finches (Taeniopygia guttata), and mice (Mus musculus) utilizing fluorescent immunohistochemistry with antibodies against choline acetyltransferase (ChAT). Vestibular hair cells and afferents were counterstained using antibodies to myosin VIIa and calretinin. In all species, ChAT labeled a population of small diameter fibers giving rise to numerous spherical varicosities abutting type II hair cells and afferent processes. That these ChAT-positive varicosities represent presynaptic release sites were demonstrated by colabeling with antibodies against the synaptic vesicle proteins synapsin I, SV2, or syntaxin and the neuropeptide calcitonin gene-related peptide (CGRP). Comparisons of efferent innervation patterns among the three species are discussed. PMID:25560461

  10. Effects of environmental contaminants on snapping turtles of a tidal wetland

    Energy Technology Data Exchange (ETDEWEB)

    Albers, P H; Sileo, L; Mulhern, B M

    1986-01-01

    Snapping turtles (Chelydra serpentina) were collected from a brackish-water and a nearly freshwater area in the contaminated Hackensack Meadowlands of New Jersey and an uncontaminated freshwater area in Maryland to determine the effects of environmental contaminants on a resident wetland species. No turtles were observed or caught in Meadowlands at two trapping sites that were the most heavily contaminated by metals. Snapping turtles from the brackish-water area had an unusually low lipid content of body fat and reduced growth compared to turtles from the freshwater areas in New Jersey and Maryland. Despite the serious metal contamination of the Hackensack Meadowlands, the metal content of kidneys and livers from New Jersey turtles was low and not greatly different from that of the Maryland turtles. Organochlorine pesticide concentrations in body fat were generally low at all three study areas. Polychlorinated biphenyls (PCBs) concentrations in fat were highest in male turtles from the New Jersey brackish-water area. Analysis of blood for amino-levulinic acid dehydratase, albumin, glucose, hemoglobin, osmolatility, packed cell volume, total protein, triglycerides, and uric acid failed to reveal any differences among groups that would indicated physiological impairment related to contaminants.

  11. Effects of environmental contaminants on snapping turtles of a tidal wetland

    Science.gov (United States)

    Albers, P.H.; Sileo, L.; Mulhern, B.M.

    1986-01-01

    Snapping turtles (Chelydra serpentina) were collected from a brackish-water and a nearly freshwater area in the contaminated Hackensack Meadowlands of New Jersey and an uncontaminated freshwater area in Maryland to determine the effects of environmental contaminants on a resident wetland species. No turtles were observed or caught in the Meadowlands at two trapping sites that were the most heavily contaminated by metals. Snapping turtles from the brackish-water area had an unusually low lipid content of body fat and reduced growth compared to turtles from the fresh-water areas in New Jersey and Maryland. Despite the serious metal contamination of the Hackensack Meadowlands, the metal content of kidneys and livers from New Jersey turtles was low and not greatly different from that of the Maryland turtles. Organochlorine pesticide concentrations in body fat were generally low at all three study areas. Polychlorinated biphenyls (PCBs) concentrations in fat were highest in male turtles from the New Jersey brackish-water area. Analysis of blood for amino-levulinic acid dehydratase, albumin, glucose, hemoglobin, osmolality, packed cell volume, total protein, triglycerides, and uric acid failed to reveal any differences among groups that would indicate physiological impairment related to contaminants.

  12. One foot out the door: limb function during swimming in terrestrial versus aquatic turtles.

    Science.gov (United States)

    Young, Vanessa K Hilliard; Vest, Kaitlyn G; Rivera, Angela R V; Espinoza, Nora R; Blob, Richard W

    2017-01-01

    Specialization for a new habitat often entails a cost to performance in the ancestral habitat. Although aquatic lifestyles are ancestral among extant cryptodiran turtles, multiple lineages, including tortoises (Testudinidae) and emydid box turtles (genus Terrapene), independently specialized for terrestrial habitats. To what extent is swimming function retained in such lineages despite terrestrial specialization? Because tortoises diverged from other turtles over 50 Ma, but box turtles did so only 5 Ma, we hypothesized that swimming kinematics for box turtles would more closely resemble those of aquatic relatives than those of tortoises. To test this prediction, we compared high-speed video of swimming Russian tortoises (Testudo horsfieldii), box turtles (Terrapene carolina) and two semi-aquatic emydid species: sliders (Trachemys scripta) and painted turtles (Chrysemys picta). We identified different kinematic patterns between limbs. In the forelimb, box turtle strokes most resemble those of tortoises; for the hindlimb, box turtles are more similar to semi-aquatic species. Such patterns indicate functional convergence of the forelimb of terrestrial species, whereas the box turtle hindlimb exhibits greater retention of ancestral swimming motions. © 2017 The Author(s).

  13. Histology and Immunohistochemistry of the Cardiac Ventricular Structure in the Green Turtle (Chelonia mydas).

    Science.gov (United States)

    Braz, J K F S; Freitas, M L; Magalhães, M S; Oliveira, M F; Costa, M S M O; Resende, N S; Clebis, N K; Silva, N B; Moura, C E B

    2016-08-01

    This study describes the implications of cardiac ventricular microscopy in Chelonia mydas relating to its ability to dive. For this work, 11 specimens of the marine turtle species C. mydas found dead on the coast of Rio Grande do Norte (Northeast Brazil) were used. After necropsy, fragments of the cardiac ventricular wall were fixed in 10% buffered formaldehyde solution for 24 h and then subjected to routine processing for light and scanning electron microscopy (SEM). The ventricle in this species is formed by the epicardium, myocardium and endocardium. The subepicardial layer consists of highly vascularised connective tissue that emits septa to reinforce the myocardium surface. There is an abundant and diffuse subepicardial nerve plexus shown by immunostaining technique. The thickness of the spongy myocardium and the nature of its trabeculae varied between the heart chambers. The endocardium shows no characteristic elements of the heart conduction system. The valves have a hyaline cartilage skeleton, coated by dense irregular connective tissues characterised by elastic fibres. These findings in the green turtle ventricular microscopy are related to hypoxia resistance during diving. © 2015 Blackwell Verlag GmbH.

  14. 50 CFR 648.126 - Protection of threatened and endangered sea turtles.

    Science.gov (United States)

    2010-10-01

    ... sea turtles. 648.126 Section 648.126 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... sea turtles. This section supplements existing regulations issued to regulate incidental take of sea turtles under authority of the Endangered Species Act under 50 CFR parts 222 and 223. In addition to the...

  15. Changing taste preferences, market demands and traditions in Pearl Lagoon, Nicaragua: A community reliant on green turtles for income and nutrition

    Directory of Open Access Journals (Sweden)

    Garland Kathryn

    2010-01-01

    Full Text Available Caribbean Nicaragua has its own cultural logic that helps to explain the eating habits of indigenous communities that rely on sea turtle meat for nutrition and prefer its taste to that of other available meats. Nutritional costs and benefits form a fundamental part of this reliance, yet there are ecological, economic, cultural, and other factors that may be just as if not more important than the nutritional value of turtle meat. Caribbean Nicaraguans have legally harvested green turtles (Chelonia mydas for more than 400 years, and continue to rely on the species as an inexpensive and tasty source of protein and income. From 1967 to 1977, green turtles were harvested for both local and foreign consumption, including annual exports to the US and Europe from turtle packing plants in Nicaragua in excess of 10,000 turtles. Although the processing plants have been closed for over 30 years after Nicaragua became a signatory of CITES in 1977, the local demand for turtle meat in coastal communities has continued. Following themes of cultural ecology and ecological anthropology, we first discuss what is known about the traditional culture of Caribbean Nicaragua, in particular the history of its changing economy (after European contact and settlement on the coast and subsistence lifestyle of Miskito and Creole societies on the coast. Second, we provide background information on regional ethnic identity and the human ecology of the Caribbean Nicaragua sea turtle fishery. We then present a quantitative analysis of the relationship between protein preference and various demographic characteristics, and speculate whether protein preferences have been altered in the coastal culture, providing recommendations for future research. Recent studies present disparate views on whether nesting and foraging green turtle populations are increasing or decreasing in the region: in either case the level of harvest makes the topic of protein preference an important and

  16. Survey on the presence of non-dioxine-like PCBs (NDL-PCBs) in loggerhead turtles (Caretta caretta) stranded in south Mediterranean coasts (Sicily, Southern Italy).

    Science.gov (United States)

    Cammilleri, Gaetano; Calvaruso, Enza; Pantano, Licia; Cascio, Giovanni Lo; Randisi, Barbara; Macaluso, Andrea; Vazzana, Mirella; Caracappa, Giulia; Giangrosso, Giuseppe; Vella, Antonio; Ferrantelli, Vincenzo

    2017-11-01

    A total of 71 loggerhead turtles (Caretta caretta) stranded along the coasts of Sicily (Southern Italy) were examined for non-dioxine like polychlorinated biphenyl (NDL-PCB) levels in muscle and adipose tissue by a gas chromatography-mass spectrometry/mass spectrometry (GC-MS/MS) method. The results revealed 6 high-indicator congener (∑ 6 PCB IND ) levels in 45% of the loggerhead turtles examined, with mean values of 980.39 ± 2508.39 ng/g wet weight in adipose tissue and 102.53 ± 238.58 ng/g wet weight in muscle tissue. The hexachloro and heptachloro PCB congeners were the most abundant in both the sample types. The highest NDL-PCB levels were reached in an adipose tissue sample of a loggerhead turtle of 80 kg stranded along the coasts of Termini Imerese (14 183.85 ng/g wet wt). No significant correlation was found between modified Fulton's K values of the loggerhead turtles and PCB contents (S = 47 151, p > 0.05). Furthermore, no significant differences were found between sexes (W = 365, p >  0.05). The PCB levels found in the present study were much higher than those found in the literature. The present study is the first report on the existence of NDL-PCBs in loggerhead turtles stranded in Sicilian coasts confirming C. caretta as a valuable indicator of contaminant exposure in the marine environment because of their specific biological and ecological characteristics. Environ Toxicol Chem 2017;36:2997-3002. © 2017 SETAC. © 2017 SETAC.

  17. Hazards in hanging gardens: A report on failures of recognition by green turtles and their conservation implications.

    Science.gov (United States)

    de Carvalho-Souza, Gustavo Freire; de A Miranda, Daniele; Pataro, Luciano

    2016-04-15

    Marine species are experiencing unprecedented global impacts due to anthropogenic debris. Many recent studies have pointed out the hazards associated with marine litter ingestion, especially plastic debris - the most abundant and ubiquitous items in coastal and oceanic environments worldwide. In this study we provide the first in situ evidence of consumption of non-discarded synthetic rope fragments by green turtles. We explored the environmental risks to this endangered species associated with the grazing and consumption of anthropogenic debris in zones of human activity. Efforts to combat debris ingestion and reduce anthropogenic debris discharged into the world's oceans should be a priority for decision-makers and will need to involve multiple-approaches and the adoption of more environmentally friendly products and practices by the international community. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The Use of Green Turtles in Bali, When Conservation Meets Culture

    OpenAIRE

    Westerlaken, Rodney

    2016-01-01

    The use of green turtles in ceremonies, as delicacy or for the use of the shell has been a vast problem in history and recent years on Bali. The number of turtles living in the waters surrounding Bali is decreasing and the illegal trade is vivid.   Several projects are fighting for conservation of turtles and the Parisada Hindu Dharma Indonesia (the highest Hindu council) issued a decree against the use of turtles in ceremonies, but illegal trade remains. On April 7, 2016 40 green ...

  19. Dispersal and Diving Adjustments of the Green Turtle Chelonia mydas in Response to Dynamic Environmental Conditions during Post-Nesting Migration.

    Directory of Open Access Journals (Sweden)

    Philippine Chambault

    Full Text Available In response to seasonality and spatial segregation of resources, sea turtles undertake long journeys between their nesting sites and foraging grounds. While satellite tracking has made it possible to outline their migration routes, we still have little knowledge of how they select their foraging grounds and adapt their migration to dynamic environmental conditions. Here, we analyzed the trajectories and diving behavior of 19 adult green turtles (Chelonia mydas during their post-nesting migration from French Guiana and Suriname to their foraging grounds off the coast of Brazil. First Passage Time analysis was used to identify foraging areas located off Ceará state of Brazil, where the associated habitat corresponds to favorable conditions for seagrass growth, i.e. clear and shallow waters. The dispersal and diving patterns of the turtles revealed several behavioral adaptations to the strong hydrodynamic processes induced by both the North Brazil current and the Amazon River plume. All green turtles migrated south-eastward after the nesting season, confirming that they coped with the strong counter North Brazil current by using a tight corridor close to the shore. The time spent within the Amazon plume also altered the location of their feeding habitats as the longer individuals stayed within the plume, the sooner they initiated foraging. The green turtles performed deeper and shorter dives while crossing the mouth of the Amazon, a strategy which would help turtles avoid the most turbulent upper surface layers of the plume. These adjustments reveal the remarkable plasticity of this green turtle population when reducing energy costs induced by migration.

  20. Estimates of the non-market value of sea turtles in Tobago using stated preference techniques.

    Science.gov (United States)

    Cazabon-Mannette, Michelle; Schuhmann, Peter W; Hailey, Adrian; Horrocks, Julia

    2017-05-01

    Economic benefits are derived from sea turtle tourism all over the world. Sea turtles also add value to underwater recreation and convey non-use values. This study examines the non-market value of sea turtles in Tobago. We use a choice experiment to estimate the value of sea turtle encounters to recreational SCUBA divers and the contingent valuation method to estimate the value of sea turtles to international tourists. Results indicate that turtle encounters were the most important dive attribute among those examined. Divers are willing to pay over US$62 per two tank dive for the first turtle encounter. The mean WTP for turtle conservation among international visitors to Tobago was US$31.13 which reflects a significant non-use value associated with actions targeted at keeping sea turtles from going extinct. These results illustrate significant non-use and non-consumptive use value of sea turtles, and highlight the importance of sea turtle conservation efforts in Tobago and throughout the Caribbean region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Population study of the Hawksbill Turtle eretmochelys imbricata (Cheloniidae) in the southern pacific region of Colombia; Estudio poblacional de la Tortuga Carey Eretmochelys imbricata (Cheloniidae) en el pacifico sur de Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Tobon Lopez, Alexander; Amorocho Llanos, Diego Fernando

    2014-07-01

    The objective of this research was to determine biological and ecological population characteristics of the hawksbill turtle (Eretmochelys imbricata) found in the southern Colombian Pacific Department of Cauca. Morphometric measurements were recorded, the health status of individuals was reviewed, and blood samples were taken for a biochemistry assessment. During the seven months of the investigation, 25 hawksbill turtles were caught (16 different individuals) on the reefs of Gorgona Natural National Park. Forty-six percent of the total numbers of turtles assessed were recaptured during the study period. While no obvious health problems were noted, most animals possessed epibionts and filamentous algae covering the carapace, some parts of the limbs, as well as on their neck. Curved carapace length (CCL) showed the highest proportion of individuals were between 37 and 45 cm. Sixteen individuals captured in Gorgona Natural National Park were compared with 11 individuals captured in the coastal zone of the Department of Cauca. Using the Mann-Whitney U test, a significant difference in CCL was found between these two groups; the animals from Gorgona National Park were larger than those present on the coast of the mainland (Z = -2.59, p = 0.007). Uric acid concentrations were found to be higher than previously referenced values.

  2. Managing Marine Litter: Exploring the Evolving Role of International and European Law in Confronting a Persistent Environmental Problem

    OpenAIRE

    Arie Trouwborst

    2011-01-01

     The contamination of the world's oceans by human garbage, especially plastics, ranks among those environmental problems whose resolution appears remote, despite the considerable public attention paid to the 'Great Garbage Patch' in the Pacific, 'plastic soup', and the like. This 'marine litter' (or 'marine debris') problem is characterized by diffuse sources and an array of adverse environmental impacts, including entanglement of and ingestion by albatrosses, fulmars, turtles, seals and a va...

  3. Aging the oldest turtles: the placodont affinities of Priscochelys hegnabrunnensis

    Science.gov (United States)

    Scheyer, Torsten M.

    2008-09-01

    Priscochelys hegnabrunnensis, a fragmentary piece of armour shell from the Muschelkalk of Germany (Upper Triassic) with few diagnostic morphological features, was recently proposed to represent the oldest known stem turtle. As such, the specimen is of high importance because it shifts the date of the first appearance of turtles back about 20 Ma, which equals about 10% of the total stratigraphic range of the group. In this paper, I present new morphologic, histologic and neutron tomographic (NT) data that relate to the microstructure of the bone of the specimen itself. In opposition to the previous morphologic descriptions, P. hegnabrunnensis was found to share several distinctive features (i.e. bone sutures congruent with scute sulci, absence of a diploe structure with interior cancellous bone, thin vascular canals radiating outwards from distinct centres in each field and rugose ventral bone surface texture consisting of mineralised fibre bundles) with cyamodontoid placodonts (Diapsida: Sauropterygia) and fewer with stem turtles (i.e. depth of sulci). Two aspects that were previously thought to be relevant for the assignment to the turtle stem (conical scutes and presence of foramina) are argued to be of dubious value. P. hegnabrunnensis is proposed to represent a fragmentary piece of cyamodontoid armour consisting of fused conical plates herein. The specimen is not a part of the turtle stem and thus does not represent the oldest turtle. Accordingly, P. hegnabrunnensis does not shorten the ghost lineage to the potential sister group of turtles.

  4. The Role of Taboos in the Protection and Recovery of Sea Turtles

    Directory of Open Access Journals (Sweden)

    LoriKim Alexander

    2017-08-01

    Full Text Available Despite increased efforts from government agencies, scientists, and non-government organizations over the past few decades, anthropogenic sources of sea turtle mortality continue to threaten the survivorship of sea turtle species around the globe. More recent efforts to engage local people with community-based sea turtle conservation programs have been based primarily on economic incentives and less on cultural and social traditions. But there is growing evidence that informal institutions such as, taboos can be extremely effective at promoting wildlife conservation. Ghana is a culturally diverse country where local traditions have shown to improve protection for primates, crocodiles, and many bird species. This study explores the presence of a sea turtle taboo in fishing communities to demonstrate that traditional practices make residents more receptive to sea turtle conservation and more willing to follow government regulations. Fishers in the communities that are aware of the taboo are also more willing to adjust fishing methods to better protect sea turtles. The traditional taboo and national laws appear to be working synergistically to enhance sea turtle conservation in some regions of Ghana. This paper extends the argument that sea turtle conservation strategies succeed when the cultural and social traditions of local communities are integrated with management activities.

  5. A critical review of the Mediterranean sea turtle rescue network: a web looking for a weaver

    Directory of Open Access Journals (Sweden)

    Judith Ullmann

    2015-06-01

    Full Text Available A key issue in conservation biology is recognizing and bridging the gap between scientific results and specific action. We examine sea turtles—charismatic yet endangered flagship species—in the Mediterranean, a sea with historically high levels of exploitation and 22 coastal nations. We take sea turtle rescue facilities as a visible measure for implemented conservation action. Our study yielded 34 confirmed sea turtle rescue centers, 8 first-aid stations, and 7 informal rescue institutions currently in operation. Juxtaposing these facilities to known sea turtle distribution and threat hotspots reveals a clear disconnect. Only 14 of the 22 coastal countries had centers, with clear gaps in the Middle East and Africa. Moreover, the information flow between centers is apparently limited. The populations of the two species nesting in the Mediterranean, the loggerhead Caretta caretta and the green turtle Chelonia mydas, are far below historical levels and face a range of anthropogenic threats at sea and on land. Sea turtle rescue centers are acknowledged to reduce mortality in bycatch hotspots, provide a wealth of scientific data, and raise public awareness. The proposal for a Mediterranean-wide rescue network as published by the Regional Activity Centre for Specially Protected Areas a decade ago has not materialized in its envisioned scope. We discuss the efficiency, gaps, and needs for a rescue network and call for establishing additional rescue centers and an accompanying common online database to connect existing centers. This would provide better information on the number and types of rescue facilities on a Mediterranean scale, improve communication between these facilities, enhance standardization of procedures, yield large-scale data on the number of treated turtles and their injuries, and thus provide valuable input for targeted conservation measures.

  6. The origin of the turtle body plan: bridging a famous morphological gap.

    Science.gov (United States)

    Lee, M S

    1993-09-24

    A restudy of pareiasaurs reveals that these primitive reptiles are the nearest relatives of turtles. The two groups share numerous derived characters, such as a reduced presacral count, an acromion process, and a trochanter major, which are absent in other basal amniotes. Many traits long thought specific to chelonians also occur in pareiasaurs and must have evolved before the distinctive turtle shell appeared. Evidence uniting captorhinid or procolophonoids with turtles is shown to be weak. The phylogeny proposed here also suggests that certain features of the earliest turtle (Proganochelys) that have been interpreted as specializations, such as the large supratemporal and robust metacarpals, are primitive for turtles. In pareiasaurs, the osteoderms represent the precursors of the chelonian shell and the morphology of the anterior region is consistent with the idea that the shoulder girdle in turtles has migrated posteriorly into the rib cage.

  7. Skeletal remodelling suggests the turtle's shell is not an evolutionary straitjacket.

    Science.gov (United States)

    Cordero, Gerardo Antonio; Quinteros, Kevin

    2015-04-01

    Recent efforts to decipher the enigma of the turtle's shell revealed that distantly related turtle species deploy diverse processes during shell development. Even so, extant species share in common a shoulder blade (scapula) that is encapsulated within the shell. Thus, evolutionary change in the correlated development of the shell and scapula probably underpins the evolution of highly derived shell morphologies. To address this expectation, we conducted one of the most phylogenetically comprehensive surveys of turtle development, focusing on scapula growth and differentiation in embryos, hatchlings and adults of 13 species. We report, to our knowledge, the first description of secondary differentiation owing to skeletal remodelling of the tetrapod scapula in turtles with the most structurally derived shell phenotypes. Remodelling and secondary differentiation late in embryogenesis of box turtles (Emys and Terrapene) yielded a novel skeletal segment (i.e. the suprascapula) of high functional value to their complex shell-closing system. Remarkably, our analyses suggest that, in soft-shelled turtles (Trionychidae) with extremely flattened shells, a similar transformation is linked to truncated scapula growth. Skeletal remodelling, as a form of developmental plasticity, might enable the seemingly constrained turtle body plan to diversify, suggesting the shell is not an evolutionary straitjacket. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  8. The origin and loss of periodic patterning in the turtle shell.

    Science.gov (United States)

    Moustakas-Verho, Jacqueline E; Zimm, Roland; Cebra-Thomas, Judith; Lempiäinen, Netta K; Kallonen, Aki; Mitchell, Katherine L; Hämäläinen, Keijo; Salazar-Ciudad, Isaac; Jernvall, Jukka; Gilbert, Scott F

    2014-08-01

    The origin of the turtle shell over 200 million years ago greatly modified the amniote body plan, and the morphological plasticity of the shell has promoted the adaptive radiation of turtles. The shell, comprising a dorsal carapace and a ventral plastron, is a layered structure formed by basal endochondral axial skeletal elements (ribs, vertebrae) and plates of bone, which are overlain by keratinous ectodermal scutes. Studies of turtle development have mostly focused on the bones of the shell; however, the genetic regulation of the epidermal scutes has not been investigated. Here, we show that scutes develop from an array of patterned placodes and that these placodes are absent from a soft-shelled turtle in which scutes were lost secondarily. Experimentally inhibiting Shh, Bmp or Fgf signaling results in the disruption of the placodal pattern. Finally, a computational model is used to show how two coupled reaction-diffusion systems reproduce both natural and abnormal variation in turtle scutes. Taken together, these placodal signaling centers are likely to represent developmental modules that are responsible for the evolution of scutes in turtles, and the regulation of these centers has allowed for the diversification of the turtle shell. © 2014. Published by The Company of Biologists Ltd.

  9. Inter-nesting movements and habitat-use of adult female Kemp's ridley turtles in the Gulf of Mexico.

    Directory of Open Access Journals (Sweden)

    Donna J Shaver

    Full Text Available Species vulnerability is increased when individuals congregate in restricted areas for breeding; yet, breeding habitats are not well defined for many marine species. Identification and quantification of these breeding habitats are essential to effective conservation. Satellite telemetry and switching state-space modeling (SSM were used to define inter-nesting habitat of endangered Kemp's ridley turtles (Lepidochelys kempii in the Gulf of Mexico. Turtles were outfitted with satellite transmitters after nesting at Padre Island National Seashore, Texas, USA, from 1998 through 2013 (n = 60; Rancho Nuevo, Tamaulipas, Mexico, during 2010 and 2011 (n = 11; and Tecolutla, Veracruz, Mexico, during 2012 and 2013 (n = 11. These sites span the range of nearly all nesting by this species. Inter-nesting habitat lies in a narrow band of nearshore western Gulf of Mexico waters in the USA and Mexico, with mean water depth of 14 to 19 m within a mean distance to shore of 6 to 11 km as estimated by 50% kernel density estimate, α-Hull, and minimum convex polygon methodologies. Turtles tracked during the inter-nesting period moved, on average, 17.5 km/day and a mean total distance of 398 km. Mean home ranges occupied were 725 to 2948 km2. Our results indicate that these nearshore western Gulf waters represent critical inter-nesting habitat for this species, where threats such as shrimp trawling and oil and gas platforms also occur. Up to half of all adult female Kemp's ridleys occupy this habitat for weeks to months during each nesting season. Because inter-nesting habitat for this species is concentrated in nearshore waters of the western Gulf of Mexico in both Mexico and the USA, international collaboration is needed to protect this essential habitat and the turtles occurring within it.

  10. Saving turtles: Talisman, Elf and BHP make room for reptiles

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, A.

    1999-05-03

    Cooperation between Australia`s BHP Petroleum, Canada`s Talisman Energy and France`s El Aquitaine to help the Trinidadian government and conservation groups to save the nesting grounds of the Carribean sea turtle is described. The nesting ground is located near one of the projects the three companies are working on. The giant turtle, also called the leatherback, can weigh as much as a tonne and have a 2.4 metre flipper span, have their nesting places on Trinidad`s northeastern shore. The three companies are working in 36 metres of water opposite two of the turtles` last nesting places. Had the companies proceeded as planned, the project could have destroyed their nesting place. Instead, the companies put up $90,000 for a three-month research project to monitor the movement of the turtles with satellite telemetry. In order to assess the turtles` hearing, tiny wires were inserted in the the turtles` brain to measure brain wave patterns - a method similar to that used on human neo-natals. When it was discovered that the turtles did not adapt well to captivity, they were fitted with earphones and transmitter during 10-minute period when they were in the quiescent state of egg-laying. The companies proceeded with a seismic program that used cables on the sea floor. Rather than use a large and noisy survey vessel to lay long streamers on a wide area, they laid shorter strips on a grid with smaller, quieter boats. That was sufficient for the turtles to continue normal activity as females arrived on the beach in the usual numbers to nest and to lay eggs. The documentation provided to the Trinidadian government was well received and plans are afoot to use it as a benchmark in assessing future exploratory applications within Trinidadian jurisdiction.

  11. Habitat characteristics of nesting areas and of predated nests in a Mediterranean population of the European pond turtle, Emys orbicularis galloitalica

    Directory of Open Access Journals (Sweden)

    Marco A.L. Zuffi

    2006-01-01

    Full Text Available one of the largest population of Emys orbicularis galloitalica of central Italy inhabits the canal system wet areas within a natural protected park. Features of nesting habitats, nest structure, and predation patterns of 209 nests of a large population of the European pond turtle are here presented and analysed. Nest sites were characterised by sunny bushy areas in strip habitat, digged along north-south oriented canals, on average with about 26% of the area covered by vegetation, less than one meter distant from 30 cm height bushes, at about 11 m from water and at about 13 m distance from wooded areas, 28 m away from a road. Principal Component and discriminant analyses were used on 20 selected variables in order to reduce the number of physical variables, and indicate that canal border, strip habitat, and canal orientation are grouping variables, that correctly classified 41.6%, 66.5%, and 100 % respectively of nest presence.

  12. Managing Marine Litter: Exploring the Evolving Role of International and European Law in Confronting a Persistent Environmental Problem

    Directory of Open Access Journals (Sweden)

    Arie Trouwborst

    2011-06-01

    Full Text Available The contamination of the world's oceans by human garbage, especially plastics, ranks among those environmental problems whose resolution appears remote, despite the considerable public attention paid to the 'Great Garbage Patch' in the Pacific, 'plastic soup', and the like. This 'marine litter' (or 'marine debris' problem is characterized by diffuse sources and an array of adverse environmental impacts, including entanglement of and ingestion by albatrosses, fulmars, turtles, seals and a variety of other marine wildlife. This article explores the evolving role of international law in the efforts to manage marine litter, including recent developments involving the Convention for the Protection of the Marine Environment of the North-East Atlantic (OSPAR Convention and the European Union's Marine Strategy Framework Directive (MSFD.

  13. Managing Marine Litter: Exploring the Evolving Role of International and European Law in Confronting a Persistent Environmental Problem

    Directory of Open Access Journals (Sweden)

    Arie Trouwborst

    2011-06-01

    Full Text Available  The contamination of the world's oceans by human garbage, especially plastics, ranks among those environmental problems whose resolution appears remote, despite the considerable public attention paid to the 'Great Garbage Patch' in the Pacific, 'plastic soup', and the like. This 'marine litter' (or 'marine debris' problem is characterized by diffuse sources and an array of adverse environmental impacts, including entanglement of and ingestion by albatrosses, fulmars, turtles, seals and a variety of other marine wildlife. This article explores the evolving role of international law in the efforts to manage marine litter, including recent developments involving the Convention for the Protection of the Marine Environment of the North-East Atlantic (OSPAR Convention and the European Union's Marine Strategy Framework Directive (MSFD.

  14. A new xinjiangchelyid turtle from the Middle Jurassic of Xinjiang, China and the evolution of the basipterygoid process in Mesozoic turtles

    Science.gov (United States)

    2013-01-01

    Background Most turtles from the Middle and Late Jurassic of Asia are referred to the newly defined clade Xinjiangchelyidae, a group of mostly shell-based, generalized, small to mid-sized aquatic froms that are widely considered to represent the stem lineage of Cryptodira. Xinjiangchelyids provide us with great insights into the plesiomorphic anatomy of crown-cryptodires, the most diverse group of living turtles, and they are particularly relevant for understanding the origin and early divergence of the primary clades of extant turtles. Results Exceptionally complete new xinjiangchelyid material from the ?Qigu Formation of the Turpan Basin (Xinjiang Autonomous Province, China) provides new insights into the anatomy of this group and is assigned to Xinjiangchelys wusu n. sp. A phylogenetic analysis places Xinjiangchelys wusu n. sp. in a monophyletic polytomy with other xinjiangchelyids, including Xinjiangchelys junggarensis, X. radiplicatoides, X. levensis and X. latiens. However, the analysis supports the unorthodox, though tentative placement of xinjiangchelyids and sinemydids outside of crown-group Testudines. A particularly interesting new observation is that the skull of this xinjiangchelyid retains such primitive features as a reduced interpterygoid vacuity and basipterygoid processes. Conclusions The homology of basipterygoid processes is confidently demonstrated based on a comprehensive review of the basicranial anatomy of Mesozoic turtles and a new nomenclatural system is introduced for the carotid canal system of turtles. The loss of the basipterygoid process and the bony enclosure of the carotid circulation system occurred a number of times independently during turtle evolution suggesting that the reinforcement of the basicranial region was essential for developing a rigid skull, thus paralleling the evolution of other amniote groups with massive skulls. PMID:24053145

  15. A new xinjiangchelyid turtle from the Middle Jurassic of Xinjiang, China and the evolution of the basipterygoid process in Mesozoic turtles.

    Science.gov (United States)

    Rabi, Márton; Zhou, Chang-Fu; Wings, Oliver; Ge, Sun; Joyce, Walter G

    2013-09-22

    Most turtles from the Middle and Late Jurassic of Asia are referred to the newly defined clade Xinjiangchelyidae, a group of mostly shell-based, generalized, small to mid-sized aquatic froms that are widely considered to represent the stem lineage of Cryptodira. Xinjiangchelyids provide us with great insights into the plesiomorphic anatomy of crown-cryptodires, the most diverse group of living turtles, and they are particularly relevant for understanding the origin and early divergence of the primary clades of extant turtles. Exceptionally complete new xinjiangchelyid material from the ?Qigu Formation of the Turpan Basin (Xinjiang Autonomous Province, China) provides new insights into the anatomy of this group and is assigned to Xinjiangchelys wusu n. sp. A phylogenetic analysis places Xinjiangchelys wusu n. sp. in a monophyletic polytomy with other xinjiangchelyids, including Xinjiangchelys junggarensis, X. radiplicatoides, X. levensis and X. latiens. However, the analysis supports the unorthodox, though tentative placement of xinjiangchelyids and sinemydids outside of crown-group Testudines. A particularly interesting new observation is that the skull of this xinjiangchelyid retains such primitive features as a reduced interpterygoid vacuity and basipterygoid processes. The homology of basipterygoid processes is confidently demonstrated based on a comprehensive review of the basicranial anatomy of Mesozoic turtles and a new nomenclatural system is introduced for the carotid canal system of turtles. The loss of the basipterygoid process and the bony enclosure of the carotid circulation system occurred a number of times independently during turtle evolution suggesting that the reinforcement of the basicranial region was essential for developing a rigid skull, thus paralleling the evolution of other amniote groups with massive skulls.

  16. Marine mammal observations conducted during US National Science Foundation geophysical research cruises in the global oceans from the platforms Maurice Ewing, Marcus G. Langseth, Thomas G. Thompson, and the R/V Knorr from 28 May 2003 to 25 August 2009 (NODC Accession 0083783)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — All marine mammals and sea turtles that were visually observed during a marine geophysical survey were recorded to: 1) determine whether a mitigation measure needed...

  17. Application of topography survey on the green sea turtle (Chelonia mydas) conservation

    Science.gov (United States)

    Fan, Yuan-Yu; Lo, Liu-Chih; Peng, Kuan-Chieh

    2017-04-01

    Taiwan is located in the Western Pacific monsoon region, typhoon is one of the common natural disasters. Taiwan is hit by typhoons 6 times on average each year, and 2016 have 5. Typhoon not only caused the loss of nature environment in Taiwan but also decreased the endangered species- green sea turtle's breeding success rate. In Wangan island, Penghu, green sea turtle nesting beach's slop is too steep to form the dune cliff, block the way which green sea turtle should nesting above the vegetation line. Nesting under the dune cliff is disturbed easily by the swell from typhoon, Leading to the whole nest was emptied or hatching rate decreased due to water content changed. In order to reduce the threat of typhoon on the green sea turtle, and promote the success of green sea turtle reproduction, we used LiDAR(Light Detection And Ranging) to monitor the topographic change of the green sea turtle nesting habitat and compare the invasion and deposition of the green sea turtle nests before and after the occurrence of typhoons. The results showed that the breeding success rate before the typhoon (2016/09/12) was 93%, which was not affected by the swell. The breeding success rate at the higher position after the typhoon was 95%, and under the dune cliff, 10 nests reproduction failed due to the swell changing the sand layer thickness. The production of dune cliffs is formed by the roots of coastal sand-fixation plants. In the past, the residents collected the coastal plants for fuel, after collecting, sparse vegetation is good to form the flat beach, and to promote green sea turtle nesting on the higher position from the disturbance of typhoon. In the future, to protect the success of green sea turtle's reproduction, should increase the human intervention that disturb the nesting beach's vegetation appropriately, Or cutting the roots directly to reduce the dune cliffs before the nesting season, help the green sea turtle nesting in a higher beach, improve the green sea turtle

  18. Unusual behaviour of an immature loggerhead turtle released in the Alboran Sea

    Directory of Open Access Journals (Sweden)

    Bellido, J. J.

    2010-06-01

    Full Text Available A juvenile loggerhead turtle with buoyancy problems was captured in the Alboran Sea (Mediterranean Sea, south of Spain and released 14 months later after healing. Six days after the release, the turtle was seen swimming 42 km from the point of release, displaying unusual behaviour. We re-captured and released it again, 95 nautical miles offshore, near the Alboran Island. Ten days later the turtle arrived at the beach close to where it had been maintained in captivity. We discuss these findings in the context of behavioural alteration and habituation in released sea turtles. Capture-mark-recapture studies of sea turtles should be approached with caution as manipulated animals may modify their usual behaviour.

  19. Statement of Canadian practice with respect to the mitigation of seismic sound in the marine environment : background paper

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This paper discussed the background research conducted by federal and provincial governments to prepare the statement of Canadian practice with respect to the mitigation of seismic sound in the marine environment. The statement was prepared to establish the minimum standards applicable to all seismic activities that used air source arrays in non-ice covered marine waters. The statement was designed to complement current environmental assessment processes and existing regulatory requirements governing marine seismic activities. The biological impacts of seismic sound on marine life were examined in relation to the physical, physiological and behavioural impacts to marine organisms. A peer review process was used to develop a risk-based approach to direct, indirect, chronic, and cumulative impacts. The background studies showed that biological impacts range from species to species as well as in relation to the proximity of the sound source arrays. Seismic sounds result in auditory impairment or other direct physical impacts to many marine animals. The peer review process demonstrated that mitigation measures should be used where potentially detrimental population-scale impacts may occur, or where adverse impacts may lead to the death, harm or harassment of marine mammals or turtles listed as endangered. Results of the research program and review process were used to develop mitigation requirements for planning seismic surveys; establishing safety zones; prescribing marine mammal and detection measures; and establishing prescribed start-up and shut-down procedures. It was concluded that variations to the mitigative measures can be used when environmental assessment processes point to regional specificities requiring modifications.

  20. Hepatocyte growth factor is crucial for development of the carapace in turtles.

    Science.gov (United States)

    Kawashima-Ohya, Yoshie; Narita, Yuichi; Nagashima, Hiroshi; Usuda, Ryo; Kuratani, Shigeru

    2011-01-01

    Turtles are characterized by their shell, composed of a dorsal carapace and a ventral plastron. The carapace first appears as the turtle-specific carapacial ridge (CR) on the lateral aspect of the embryonic flank. Accompanying the acquisition of the shell, unlike in other amniotes, hypaxial muscles in turtle embryos appear as thin threads of fibrous tissue. To understand carapacial evolution from the perspective of muscle development, we compared the development of the muscle plate, the anlage of hypaxial muscles, between the Chinese soft-shelled turtle, Pelodiscus sinensis, and chicken embryos. We found that the ventrolateral lip (VLL) of the thoracic dermomyotome of P. sinensis delaminates early and produces sparse muscle plate in the lateral body wall. Expression patterns of the regulatory genes for myotome differentiation, such as Myf5, myogenin, Pax3, and Pax7 have been conserved among amniotes, including turtles. However, in P. sinensis embryos, the gene hepatocyte growth factor (HGF), encoding a regulatory factor for delamination of the dermomyotomal VLL, was uniquely expressed in sclerotome and the lateral body wall at the interlimb level. Implantation of COS-7 cells expressing a HGF antagonist into the turtle embryo inhibited CR formation. We conclude that the de novo expression of HGF in the turtle mesoderm would have played an innovative role resulting in the acquisition of the turtle-specific body plan. © 2011 Wiley Periodicals, Inc.