WorldWideScience

Sample records for marine stratiform cloud

  1. The dependence of entrainment and drizzle in marine stratiform clouds on biomass burning aerosols derived from stable isotope and thermodynamic profiles

    Science.gov (United States)

    Henze, D.; Noone, D.

    2017-12-01

    A third of the world's biomass burning aerosol (BBA) particles are generated in southern Africa, and these particles are swept into the midlevel troposphere over the southeast Atlantic Ocean. The presence of these aerosols over the marine environment of the south east Atlantic offers a unique natural laboratory for studying aerosol effects on climate, and specifically a modification to the hydrologic cycle and microphysical characteristics of clouds. Different rates of condensation with high aerosol numbers change the precipitation rates in drizzling stratiform clouds, while the mixing of aerosols into the cloud layer is synonymous with entrainment from above cloud top near the top of the subtropical inversion. To better understanding the magnitude of the aerosol influence on southeast Atlantic boundary layer clouds we analyze the cloud-top entrainment and drizzle as a function of aerosol loading to determine the impact of BBA. Entrainment was determined from mixing line analysis based on profile measurements of moist static energy, total water, and the two most common heavy isotopes of water - HDO and H218O. Data was collected on the P-3 Orion aircraft during the NASA 2017 ORACLES campaign. Using these measurements, a box model was constructed using the combined conservation laws associated with all four of these quantities to estimate the entrainment and rainout of cloud liquid. The population of profiles sampled by the aircraft over the course of the 30 day mission spans varying concentrations of BBA. Initial plots of the water isotope mixing lines show where and to what degree the BBA air mass has mixed into the boundary layer air mass from above. This is demonstrated by the fact that the mixing end-members are the same for the different areas sampled, but the rate at which the various mixing lines are traversed as a function of altitude varies. Further, the mixing lines as a function of height traverse back and forth between end members multiple times over one

  2. A stratiform cloud parameterization for General Circulation Models

    International Nuclear Information System (INIS)

    Ghan, S.J.; Leung, L.R.; Chuang, C.C.; Penner, J.E.; McCaa, J.

    1994-01-01

    The crude treatment of clouds in General Circulation Models (GCMs) is widely recognized as a major limitation in the application of these models to predictions of global climate change. The purpose of this project is to develop a paxameterization for stratiform clouds in GCMs that expresses stratiform clouds in terms of bulk microphysical properties and their subgrid variability. In this parameterization, precipitating cloud species are distinguished from non-precipitating species, and the liquid phase is distinguished from the ice phase. The size of the non-precipitating cloud particles (which influences both the cloud radiative properties and the conversion of non-precipitating cloud species to precipitating species) is determined by predicting both the mass and number concentrations of each species

  3. A stratiform cloud parameterization for general circulation models

    International Nuclear Information System (INIS)

    Ghan, S.J.; Leung, L.R.; Chuang, C.C.; Penner, J.E.; McCaa, J.

    1994-01-01

    The crude treatment of clouds in general circulation models (GCMs) is widely recognized as a major limitation in applying these models to predictions of global climate change. The purpose of this project is to develop in GCMs a stratiform cloud parameterization that expresses clouds in terms of bulk microphysical properties and their subgrid variability. Various clouds variables and their interactions are summarized. Precipitating cloud species are distinguished from non-precipitating species, and the liquid phase is distinguished from the ice phase. The size of the non-precipitating cloud particles (which influences both the cloud radiative properties and the conversion of non-precipitating cloud species to precipitating species) is determined by predicting both the mass and number concentrations of each species

  4. Aerosol processing in stratiform clouds in ECHAM6-HAM

    Science.gov (United States)

    Neubauer, David; Lohmann, Ulrike; Hoose, Corinna

    2013-04-01

    Aerosol processing in stratiform clouds by uptake into cloud particles, collision-coalescence, chemical processing inside the cloud particles and release back into the atmosphere has important effects on aerosol concentration, size distribution, chemical composition and mixing state. Aerosol particles can act as cloud condensation nuclei. Cloud droplets can take up further aerosol particles by collisions. Atmospheric gases may also be transferred into the cloud droplets and undergo chemical reactions, e.g. the production of atmospheric sulphate. Aerosol particles are also processed in ice crystals. They may be taken up by homogeneous freezing of cloud droplets below -38° C or by heterogeneous freezing above -38° C. This includes immersion freezing of already immersed aerosol particles in the droplets and contact freezing of particles colliding with a droplet. Many clouds do not form precipitation and also much of the precipitation evaporates before it reaches the ground. The water soluble part of the aerosol particles concentrates in the hydrometeors and together with the insoluble part forms a single, mixed, larger particle, which is released. We have implemented aerosol processing into the current version of the general circulation model ECHAM6 (Stevens et al., 2013) coupled to the aerosol module HAM (Stier et al., 2005). ECHAM6-HAM solves prognostic equations for the cloud droplet number and ice crystal number concentrations. In the standard version of HAM, seven modes are used to describe the total aerosol. The modes are divided into soluble/mixed and insoluble modes and the number concentrations and masses of different chemical components (sulphate, black carbon, organic carbon, sea salt and mineral dust) are prognostic variables. We extended this by an explicit representation of aerosol particles in cloud droplets and ice crystals in stratiform clouds similar to Hoose et al. (2008a,b). Aerosol particles in cloud droplets are represented by 5 tracers for the

  5. Daytime Low Stratiform Cloud Detection on AVHRR Imagery

    Directory of Open Access Journals (Sweden)

    Jan Pawel Musial

    2014-06-01

    Full Text Available The near-real time retrieval of low stratiform cloud (LSC coverage is of vital interest for such disciplines as meteorology, transport safety, economy and air quality. Within this scope, a novel methodology is proposed which provides the LSC occurrence probability estimates for a satellite scene. The algorithm is suited for the 1 × 1 km Advanced Very High Resolution Radiometer (AVHRR data and was trained and validated against collocated SYNOP observations. Utilisation of these two combined data sources requires a formulation of constraints in order to discriminate cases where the LSC is overlaid by higher clouds. The LSC classification process is based on six features which are first converted to the integer form by step functions and combined by means of bitwise operations. Consequently, a set of values reflecting a unique combination of those features is derived which is further employed to extract the LSC occurrence probability estimates from the precomputed look-up vectors (LUV. Although the validation analyses confirmed good performance of the algorithm, some inevitable misclassification with other optically thick clouds were reported. Moreover, the comparison against Polar Platform System (PPS cloud-type product revealed superior classification accuracy. From the temporal perspective, the acquired results reported a presence of diurnal and annual LSC probability cycles over Europe.

  6. Statistical properties of the ice particle distribution in stratiform clouds

    Science.gov (United States)

    Delanoe, J.; Tinel, C.; Testud, J.

    2003-04-01

    This paper presents an extensive analysis of several microphysical data bases CEPEX, EUCREX, CLARE and CARL to determine statistical properties of the Particle Size Distribution (PSD). The data base covers different type of stratiform clouds : tropical cirrus (CEPEX), mid-latitude cirrus (EUCREX) and mid-latitude cirrus and stratus (CARL,CLARE) The approach for analysis uses the concept of normalisation of the PSD developed by Testud et al. (2001). The normalization aims at isolating three independent characteristics of the PSD : its "intrinsic" shape, the "average size" of the spectrum and the ice water content IWC, "average size" is meant the mean mass weighted diameter. It is shown that concentration should be normalized by N_0^* proportional to IWC/D_m^4. The "intrinsic" shape is defined as F(Deq/D_m)=N(Deq)/N_0^* where Deq is the equivalent melted diameter. The "intrinsic" shape is found to be very stable in the range 001.5, more scatter is observed, but future analysis should decide if it is representative of real physical variation or statistical "error" due to counting problem. Considering an overall statistics over the full data base, a large scatter of the N_0^* against Dm plot is found. But in the case of a particular event or a particular leg of a flight, the N_0^* vs. Dm plot is much less scattered and shows a systematic trend for decaying of N_0^* when Dm increases. This trend is interpreted as the manifestation of the predominance of the aggregation process. Finally an important point for cloud remote sensing is investigated : the normalised relationships IWC/N_0^* against Z/N_0^* is much less scattered that the classical IWC against Z the radar reflectivity factor.

  7. Intercomparison of aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds

    Science.gov (United States)

    Muhlbauer, A.; Hashino, T.; Xue, L.; Teller, A.; Lohmann, U.; Rasmussen, R. M.; Geresdi, I.; Pan, Z.

    2010-09-01

    Anthropogenic aerosols serve as a source of both cloud condensation nuclei (CCN) and ice nuclei (IN) and affect microphysical properties of clouds. Increasing aerosol number concentrations is hypothesized to retard the cloud droplet coalescence and the riming in mixed-phase clouds, thereby decreasing orographic precipitation. This study presents results from a model intercomparison of 2-D simulations of aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds. The sensitivity of orographic precipitation to changes in the aerosol number concentrations is analysed and compared for various dynamical and thermodynamical situations. Furthermore, the sensitivities of microphysical processes such as coalescence, aggregation, riming and diffusional growth to changes in the aerosol number concentrations are evaluated and compared. The participating numerical models are the model from the Consortium for Small-Scale Modeling (COSMO) with bulk microphysics, the Weather Research and Forecasting (WRF) model with bin microphysics and the University of Wisconsin modeling system (UWNMS) with a spectral ice habit prediction microphysics scheme. All models are operated on a cloud-resolving scale with 2 km horizontal grid spacing. The results of the model intercomparison suggest that the sensitivity of orographic precipitation to aerosol modifications varies greatly from case to case and from model to model. Neither a precipitation decrease nor a precipitation increase is found robustly in all simulations. Qualitative robust results can only be found for a subset of the simulations but even then quantitative agreement is scarce. Estimates of the aerosol effect on orographic precipitation are found to range from -19% to 0% depending on the simulated case and the model. Similarly, riming is shown to decrease in some cases and models whereas it increases in others, which implies that a decrease in riming with increasing aerosol load is not a robust result

  8. Evaluation of a stratiform cloud parameterization for general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Ghan, S.J.; Leung, L.R. [Pacific Northwest National Lab., Richland, WA (United States); McCaa, J. [Univ. of Washington, Seattle, WA (United States)

    1996-04-01

    To evaluate the relative importance of horizontal advection of cloud versus cloud formation within the grid cell of a single column model (SCM), we have performed a series of simulations with our SCM driven by a fixed vertical velocity and various rates of horizontal advection.

  9. Changes in Stratiform Clouds of Mesoscale Convective Complex Introduced by Dust Aerosols

    Science.gov (United States)

    Lin, B.; Min, Q.-L.; Li, R.

    2010-01-01

    Aerosols influence the earth s climate through direct, indirect, and semi-direct effects. There are large uncertainties in quantifying these effects due to limited measurements and observations of aerosol-cloud-precipitation interactions. As a major terrestrial source of atmospheric aerosols, dusts may serve as a significant climate forcing for the changing climate because of its effect on solar and thermal radiation as well as on clouds and precipitation processes. Latest satellites measurements enable us to determine dust aerosol loadings and cloud distributions and can potentially be used to reduce the uncertainties in the estimations of aerosol effects on climate. This study uses sensors on various satellites to investigate the impact of mineral dust on cloud microphysical and precipitation processes in mesoscale convective complex (MCC). A trans-Atlantic dust outbreak of Saharan origin occurring in early March 2004 is considered. For the observed MCCs under a given convective strength, small hydrometeors were found more prevalent in the dusty stratiform regions than in those regions that were dust free. Evidence of abundant cloud ice particles in the dust regions, particularly at altitudes where heterogeneous nucleation of mineral dust prevails, further supports the observed changes of clouds and precipitation. The consequences of the microphysical effects of the dust aerosols were to shift the size spectrum of precipitation-sized hydrometeors from heavy precipitation to light precipitation and ultimately to suppress precipitation and increase the lifecycle of cloud systems, especially over stratiform areas.

  10. Fractional activation of accumulation-mode particles in warm continental stratiform clouds

    International Nuclear Information System (INIS)

    Gillani, N.V.; Daum, P.H.; Schwartz, S.E.; Leaitch, W.R.; Strapp, J.W.; Isaac, G.A.

    1991-07-01

    The degree of activation of accumulation-mode particles (AMP) in clouds has been studied using continuous (1 second average) aircraft measurements of the number concentrations of cloud droplets (N cd , 2 to 35 μm diameter) and of unactivated AMP (N amp , 0.17 to 2.07 μm diameter) in cloud interstitial air. The magnitude and spatial variation of the activated fraction (F) of all measured particles (defined as F triple-bond N cd /N tot , where N tot = N cd + N amp ) are investigated, based on measurements made during ten aircraft flights in non-precipitating warm continental stratiform clouds near Syracuse NY in the fall of 1984. Based on instantaneous observations throughout the clouds, the spatial distribution of F was found to be quite nonuniform. In general, F was low in cloud edges and where total particle loading was high and/or cloud convective activity was low. In the interior of clouds, the value of F exceeded 0.9 for 36% of the data, but was below 0.6 for 28%. Factors influencing F the most were the total particle loading (N tot ) and the thermal stability of the cloud layer. The dependence of F on N tot in cloud interior was characterized by two distinct regimes. For N tot -3 , F was generally close to unity and relatively insensitive to N tot . For N tot > 800 cm -3 , F tended to decrease with increasing N tot . This decrease was greatest in a stable stratus deck embedded in a warm moist airmass. The results suggest that, in warm continental stratiform clouds, the process of particle activation becomes nonlinear and self-limiting at high particle loading. The degree of this nonlinearity depends on cloud convective activity (thermal instability)

  11. Marine cloud brightening

    OpenAIRE

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John

    2012-01-01

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identi...

  12. The occurrence of ice production in slightly supercooled Arctic stratiform clouds as observed by ground-based remote sensors at the ARM NSA site

    Science.gov (United States)

    Zhang, Damao; Wang, Zhien; Luo, Tao; Yin, Yan; Flynn, Connor

    2017-03-01

    Ice particle formation in slightly supercooled stratiform clouds is not well documented or understood. In this study, 4 years of combined lidar depolarization and radar reflectivity (Ze) measurements are analyzed to distinguish between cold drizzle and ice crystal formations in slightly supercooled Arctic stratiform clouds over the Atmospheric Radiation Measurement Program Climate Research Facility North Slope of Alaska Utqiaġvik ("Barrow") site. Ice particles are detected and statistically shown to be responsible for the strong precipitation in slightly supercooled Arctic stratiform clouds at cloud top temperatures as high as -4°C. For ice precipitating Arctic stratiform clouds, the lidar particulate linear depolarization ratio (δpar_lin) correlates well with radar Ze at each temperature range, but the δpar_lin-Ze relationship varies with temperature ranges. In addition, lidar depolarization and radar Ze observations of ice generation characteristics in Arctic stratiform clouds are consistent with laboratory-measured temperature-dependent ice growth habits.

  13. Retrieving latent heating vertical structure from cloud and precipitation profiles—Part II: Deep convective and stratiform rain processes

    International Nuclear Information System (INIS)

    Li, Rui; Min, Qilong; Wu, Xiaoqing; Fu, Yunfei

    2013-01-01

    An exploratory study on physical based latent heat (LH) retrieval algorithm is conducted by parameterizing the physical linkages between observed cloud and precipitation profiles to the major processes of phase change of atmospheric water. Specifically, rain is segregated into three rain types: warm, convective, and stratiform rain, based on their dynamical and thermodynamical characteristics. As the second of series, both convective and stratiform rain LH algorithms are presented and evaluated here. For convective and stratiform rain, the major LH-related microphysical processes including condensation, deposition, evaporation, sublimation, and freezing–melting are parameterized with the aid of Cloud Resolving Model (CRM) simulations. The condensation and deposition processes are parameterized in terms of rain formation processes through the precipitation formation theory. LH associated with the freezing–melting process is relatively small and is assumed to be a fraction of total condensation and deposition LH. The evaporation and sublimation processes are parameterized for three unsaturated scenarios: rain out of the cloud body, clouds at cloud boundary and clouds and rain in downdraft region. The evaluation or self-consistency test indicates the retrievals capture the major features of LH profiles and reproduce the double peaks at right altitudes. The LH products are applicable at various stages of cloud system life cycle for high-resolution models, as well as for large-scale climate models. -- Highlights: ► An exploratory study on physics-based cold rain latent heat retrieval algorithm. ► Utilize the full information of the vertical structures of cloud and rainfall. ► Include all major LH-related microphysical processes (in ice and liquid phase). ► Directly link water mass measurements to latent heat at instantaneous pixel level. ► Applicable at various stages of cloud system life cycle

  14. Marine Cloud Brightening

    Energy Technology Data Exchange (ETDEWEB)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, H.; Connolly, P.; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Philip J.; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Robert

    2012-09-07

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could - subject to satisfactory resolution of technical and scientific problems identified herein - have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seedparticle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  15. Marine cloud brightening.

    Science.gov (United States)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-09-13

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could-subject to satisfactory resolution of technical and scientific problems identified herein-have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  16. Ice particle production in mid-level stratiform mixed-phase clouds observed with collocated A-Train measurements

    Directory of Open Access Journals (Sweden)

    D. Zhang

    2018-03-01

    Full Text Available Collocated A-Train CloudSat radar and CALIPSO lidar measurements between 2006 and 2010 are analyzed to study primary ice particle production characteristics in mid-level stratiform mixed-phase clouds on a global scale. For similar clouds in terms of cloud top temperature and liquid water path, Northern Hemisphere latitude bands have layer-maximum radar reflectivity (ZL that is  ∼  1 to 8 dBZ larger than their counterparts in the Southern Hemisphere. The systematically larger ZL under similar cloud conditions suggests larger ice number concentrations in mid-level stratiform mixed-phase clouds over the Northern Hemisphere, which is possibly related to higher background aerosol loadings. Furthermore, we show that springtime northern mid- and high latitudes have ZL that is larger by up to 6 dBZ (a factor of 4 higher ice number concentration than other seasons, which might be related to more dust events that provide effective ice nucleating particles. Our study suggests that aerosol-dependent ice number concentration parameterizations are required in climate models to improve mixed-phase cloud simulations, especially over the Northern Hemisphere.

  17. Marine cloud brightening

    Science.gov (United States)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-01-01

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identified herein—have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud–albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action

  18. A numerical study of aerosol influence on mixed-phase stratiform clouds through modulation of the liquid phase

    Directory of Open Access Journals (Sweden)

    G. de Boer

    2013-02-01

    Full Text Available Numerical simulations were carried out in a high-resolution two-dimensional framework to increase our understanding of aerosol indirect effects in mixed-phase stratiform clouds. Aerosol characteristics explored include insoluble particle type, soluble mass fraction, influence of aerosol-induced freezing point depression and influence of aerosol number concentration. Simulations were analyzed with a focus on the processes related to liquid phase microphysics, and ice formation was limited to droplet freezing. Of the aerosol properties investigated, aerosol insoluble mass type and its associated freezing efficiency was found to be most relevant to cloud lifetime. Secondary effects from aerosol soluble mass fraction and number concentration also alter cloud characteristics and lifetime. These alterations occur via various mechanisms, including changes to the amount of nucleated ice, influence on liquid phase precipitation and ice riming rates, and changes to liquid droplet nucleation and growth rates. Alteration of the aerosol properties in simulations with identical initial and boundary conditions results in large variability in simulated cloud thickness and lifetime, ranging from rapid and complete glaciation of liquid to the production of long-lived, thick stratiform mixed-phase cloud.

  19. Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity tests

    Directory of Open Access Journals (Sweden)

    M. Salzmann

    2010-08-01

    Full Text Available A new stratiform cloud scheme including a two-moment bulk microphysics module, a cloud cover parameterization allowing ice supersaturation, and an ice nucleation parameterization has been implemented into the recently developed GFDL AM3 general circulation model (GCM as part of an effort to treat aerosol-cloud-radiation interactions more realistically. Unlike the original scheme, the new scheme facilitates the study of cloud-ice-aerosol interactions via influences of dust and sulfate on ice nucleation. While liquid and cloud ice water path associated with stratiform clouds are similar for the new and the original scheme, column integrated droplet numbers and global frequency distributions (PDFs of droplet effective radii differ significantly. This difference is in part due to a difference in the implementation of the Wegener-Bergeron-Findeisen (WBF mechanism, which leads to a larger contribution from super-cooled droplets in the original scheme. Clouds are more likely to be either completely glaciated or liquid due to the WBF mechanism in the new scheme. Super-saturations over ice simulated with the new scheme are in qualitative agreement with observations, and PDFs of ice numbers and effective radii appear reasonable in the light of observations. Especially, the temperature dependence of ice numbers qualitatively agrees with in-situ observations. The global average long-wave cloud forcing decreases in comparison to the original scheme as expected when super-saturation over ice is allowed. Anthropogenic aerosols lead to a larger decrease in short-wave absorption (SWABS in the new model setup, but outgoing long-wave radiation (OLR decreases as well, so that the net effect of including anthropogenic aerosols on the net radiation at the top of the atmosphere (netradTOA = SWABS-OLR is of similar magnitude for the new and the original scheme.

  20. Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity tests

    Science.gov (United States)

    Salzmann, M.; Ming, Y.; Golaz, J.-C.; Ginoux, P. A.; Morrison, H.; Gettelman, A.; Krämer, M.; Donner, L. J.

    2010-08-01

    A new stratiform cloud scheme including a two-moment bulk microphysics module, a cloud cover parameterization allowing ice supersaturation, and an ice nucleation parameterization has been implemented into the recently developed GFDL AM3 general circulation model (GCM) as part of an effort to treat aerosol-cloud-radiation interactions more realistically. Unlike the original scheme, the new scheme facilitates the study of cloud-ice-aerosol interactions via influences of dust and sulfate on ice nucleation. While liquid and cloud ice water path associated with stratiform clouds are similar for the new and the original scheme, column integrated droplet numbers and global frequency distributions (PDFs) of droplet effective radii differ significantly. This difference is in part due to a difference in the implementation of the Wegener-Bergeron-Findeisen (WBF) mechanism, which leads to a larger contribution from super-cooled droplets in the original scheme. Clouds are more likely to be either completely glaciated or liquid due to the WBF mechanism in the new scheme. Super-saturations over ice simulated with the new scheme are in qualitative agreement with observations, and PDFs of ice numbers and effective radii appear reasonable in the light of observations. Especially, the temperature dependence of ice numbers qualitatively agrees with in-situ observations. The global average long-wave cloud forcing decreases in comparison to the original scheme as expected when super-saturation over ice is allowed. Anthropogenic aerosols lead to a larger decrease in short-wave absorption (SWABS) in the new model setup, but outgoing long-wave radiation (OLR) decreases as well, so that the net effect of including anthropogenic aerosols on the net radiation at the top of the atmosphere (netradTOA = SWABS-OLR) is of similar magnitude for the new and the original scheme.

  1. Analysis of 35 GHz Cloud Radar polarimetric variables to identify stratiform and convective precipitation.

    Science.gov (United States)

    Fontaine, Emmanuel; Illingworth, Anthony, J.; Stein, Thorwald

    2017-04-01

    This study is performed using vertical profiles of radar measurements at 35GHz, for the period going from 29th of February to 1rst October 2016, at the Chilbolton observatory in United Kingdom. During this period, more than 40 days with precipitation events are investigated. The investigation uses the synergy of radar reflectivity factors, vertical velocity, Doppler spectrum width, and linear depolarization ratio (LDR) to differentiate between stratiform and convective rain events. The depth of the layer with Doppler spectrum width values greater than 0.5 m s-1 is shown to be a suitable proxy to distinguish between convective and stratiform events. Using LDR to detect the radar bright band, bright band characteristics such as depth of the layer and maximum LDR are shown to vary with the amount of turbulence aloft. Profiles of radar measurements are also compared to rain gauge measurements to study the contribution of convective and stratiform rainfall to total rain duration and amount. To conclude, this study points out differences between convective and stratiform rains and quantifies their contributions over a precipitation event, highlighting that convective and stratiform rainfall should be considered as a continuum rather than a dichotomy.

  2. Uncertainty in stratiform cloud optical thickness inferred from pyranometer measurements at the sea surface

    Directory of Open Access Journals (Sweden)

    Anna Rozwadowska

    2004-06-01

    Full Text Available The relative "plane-parallel" error in a mean cloud optical thickness retrieved from ground-based pyranometer measurements is estimated. The plane-parallel error is defined as the bias introduced by the assumption in the radiative transfer model used in cloud optical thickness retrievals that the atmosphere, including clouds, is horizontally homogeneous on the scale of an individual retrieval. The error is estimated for the optical thickness averaged over the whole domain, which simulates the mean cloud optical thickness obtained from a time series of irradiance measurements. The study is based on 3D Monte Carlo radiative transfer simulations for non-absorbing, all-liquid, layer clouds. Liquid water path distributions in the clouds are simulated by a bounded cascade fractal model. The sensitivity of the error is studied with respect to the following factors: averaging time of irradiance used in an individual retrieval, mean cloud optical thickness, cloud variability, cloud base height and solar zenith angle. In the simulations presented in this paper, the relative bias in the domain averaged cloud optical thickness retrieved from pyranometer measurements varies from +1% for optically thin clouds to nearly -20%. The highest absolute value of the relative bias is expected for thick and variable clouds with high bases (e.g. 1 km and retrievals based on long-term mean irradiances (averaging time of the order of several tens of minutes or hours. The bias can be diminished by using short-term irradiance averages, e.g. of one minute, and by limiting retrievals to low-level clouds.

  3. Marine cloud brightening: regional applications.

    Science.gov (United States)

    Latham, John; Gadian, Alan; Fournier, Jim; Parkes, Ben; Wadhams, Peter; Chen, Jack

    2014-12-28

    The general principle behind the marine cloud brightening (MCB) climate engineering technique is that seeding marine stratocumulus clouds with substantial concentrations of roughly monodisperse sub-micrometre-sized seawater particles might significantly enhance cloud albedo and longevity, thereby producing a cooling effect. This paper is concerned with preliminary studies of the possible beneficial application of MCB to three regional issues: (1) recovery of polar ice loss, (2) weakening of developing hurricanes and (3) elimination or reduction of coral bleaching. The primary focus is on Item 1. We focus discussion herein on advantages associated with engaging in limited-area seeding, regional effects rather than global; and the levels of seeding that may be required to address changing current and near-term conditions in the Arctic. We also mention the possibility that MCB might be capable of producing a localized cooling to help stabilize the West Antarctic Ice Sheet.

  4. Dynamics of the Marine Cloud Layers

    National Research Council Canada - National Science Library

    Chi, Joseph

    1999-01-01

    Goals of this research have been to identify physical processes that determine the dynamics of marine cloud layers and to quantify roles of turbulence, convection and thermal radiation that play in formation...

  5. Monte Carlo-based subgrid parameterization of vertical velocity and stratiform cloud microphysics in ECHAM5.5-HAM2

    Directory of Open Access Journals (Sweden)

    J. Tonttila

    2013-08-01

    Full Text Available A new method for parameterizing the subgrid variations of vertical velocity and cloud droplet number concentration (CDNC is presented for general circulation models (GCMs. These parameterizations build on top of existing parameterizations that create stochastic subgrid cloud columns inside the GCM grid cells, which can be employed by the Monte Carlo independent column approximation approach for radiative transfer. The new model version adds a description for vertical velocity in individual subgrid columns, which can be used to compute cloud activation and the subgrid distribution of the number of cloud droplets explicitly. Autoconversion is also treated explicitly in the subcolumn space. This provides a consistent way of simulating the cloud radiative effects with two-moment cloud microphysical properties defined at subgrid scale. The primary impact of the new parameterizations is to decrease the CDNC over polluted continents, while over the oceans the impact is smaller. Moreover, the lower CDNC induces a stronger autoconversion of cloud water to rain. The strongest reduction in CDNC and cloud water content over the continental areas promotes weaker shortwave cloud radiative effects (SW CREs even after retuning the model. However, compared to the reference simulation, a slightly stronger SW CRE is seen e.g. over mid-latitude oceans, where CDNC remains similar to the reference simulation, and the in-cloud liquid water content is slightly increased after retuning the model.

  6. Development and Testing of a Life Cycle Model and a Parameterization of Thin Mid-level Stratiform Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Steven K.

    2008-03-03

    We used a cloud-resolving model (a detailed computer model of cloud systems) to evaluate and improve the representation of clouds in global atmospheric models used for numerical weather prediction and climate modeling. We also used observations of the atmospheric state, including clouds, made at DOE's Atmospheric Radiation Measurement (ARM) Program's Climate Research Facility located in the Southern Great Plains (Kansas and Oklahoma) during Intensive Observation Periods to evaluate our detailed computer model as well as a single-column version of a global atmospheric model used for numerical weather prediction (the Global Forecast System of the NOAA National Centers for Environmental Prediction). This so-called Single-Column Modeling approach has proved to be a very effective method for testing the representation of clouds in global atmospheric models. The method relies on detailed observations of the atmospheric state, including clouds, in an atmospheric column comparable in size to a grid column used in a global atmospheric model. The required observations are made by a combination of in situ and remote sensing instruments. One of the greatest problems facing mankind at the present is climate change. Part of the problem is our limited ability to predict the regional patterns of climate change. In order to increase this ability, uncertainties in climate models must be reduced. One of the greatest of these uncertainties is the representation of clouds and cloud processes. This project, and ARM taken as a whole, has helped to improve the representation of clouds in global atmospheric models.

  7. Balloon-borne aerosol measurements in the planetary boundary layer: particle production associated with a continental stratiform cloud

    Energy Technology Data Exchange (ETDEWEB)

    Kuetz, S. [Inst. for Tropospheric Res., Leipzig (Germany); Dubois, R. [Inst. for Tropospheric Res., Leipzig (Germany)

    1997-05-01

    Vertical profiles of submicrometer Aitken nuclei (AN), temperature, humidity, wind speed and direction have been measured using a tethered balloon as a platform for the instrumentation. Daytime soundings up to 700 m above ground were done over Eastern Germany during a strong and persistent wintertime temperature inversion on 18th January 1996. The inversion at 650 m above ground topped a closed stratus deck with a diffuse cloud base at 250 m. The profiles of temperature, humidity and AN concentrations indicate that the layer below the inversion was well mixed. An upper limit to cloud droplet number concentration of 700 p/cm{sup 3} was inferred from the AN measurements. At the top of the cloud distinct AN concentration maxima were observed. Their evolution as a function of time and space with respect to the profiles of temperature, humidity and wind indicated new particle production. Concurrent with the balloon soundings, continuous ground based measurements of wind by SODAR and of SO{sub 2} were also performed. (orig.)

  8. MAGIC: Marine ARM GPCI Investigation of Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, ER; Wiscombe, WJ; Albrecht, BA; Bland, GL; Flagg, CN; Klein, SA; Kollias, P; Mace, G; Reynolds, RM; Schwartz, SE; Siebesma, AP; Teixeira, J; Wood, R; Zhang, M

    2012-10-03

    The second Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF2) will be deployed aboard the Horizon Lines cargo container ship merchant vessel (M/V) Spirit for MAGIC, the Marine ARM GPCI1 Investigation of Clouds. The Spirit will traverse the route between Los Angeles, California, and Honolulu, Hawaii, from October 2012 through September 2013 (except for a few months in the middle of this time period when the ship will be in dry dock). During this field campaign, AMF2 will observe and characterize the properties of clouds and precipitation, aerosols, and atmospheric radiation; standard meteorological and oceanographic variables; and atmospheric structure. There will also be two intensive observational periods (IOPs), one in January 2013 and one in July 2013, during which more detailed measurements of the atmospheric structure will be made.

  9. Contrasting Cloud Composition Between Coupled and Decoupled Marine Boundary Layer Clouds

    Science.gov (United States)

    WANG, Z.; Mora, M.; Dadashazar, H.; MacDonald, A.; Crosbie, E.; Bates, K. H.; Coggon, M. M.; Craven, J. S.; Xian, P.; Campbell, J. R.; AzadiAghdam, M.; Woods, R. K.; Jonsson, H.; Flagan, R. C.; Seinfeld, J.; Sorooshian, A.

    2016-12-01

    Marine stratocumulus clouds often become decoupled from the vertical layer immediately above the ocean surface. This study contrasts cloud chemical composition between coupled and decoupled marine stratocumulus clouds. Cloud water and droplet residual particle composition were measured in clouds off the California coast during three airborne experiments in July-August of separate years (E-PEACE 2011, NiCE 2013, BOAS 2015). Decoupled clouds exhibited significantly lower overall mass concentrations in both cloud water and droplet residual particles, consistent with reduced cloud droplet number concentration and sub-cloud aerosol (Dp > 100 nm) number concentration, owing to detachment from surface sources. Non-refractory sub-micrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Total cloud water mass concentration in coupled clouds was dominated by sodium and chloride, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea salt constituents (e.g., Cl, Na, Mg, K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. These results suggest that an important variable is the extent to which clouds are coupled to the surface layer when interpreting microphysical data relevant to clouds and aerosol particles.

  10. Cloud Feedback Key to Marine Heatwave off Baja California

    Science.gov (United States)

    Myers, Timothy A.; Mechoso, Carlos R.; Cesana, Gregory V.; DeFlorio, Michael J.; Waliser, Duane E.

    2018-05-01

    Between 2013 and 2015, the northeast Pacific Ocean experienced the warmest surface temperature anomalies in the modern observational record. This "marine heatwave" marked a shift of Pacific decadal variability to its warm phase and was linked to significant impacts on marine species as well as exceptionally arid conditions in western North America. Here we show that the subtropical signature of this warming, off Baja California, was associated with a record deficit in the spatial coverage of co-located marine boundary layer clouds. This deficit coincided with a large increase in downwelling solar radiation that dominated the anomalous energy budget of the upper ocean, resulting in record-breaking warm sea surface temperature anomalies. Our observation-based analysis suggests that a positive cloud-surface temperature feedback was key to the extreme intensity of the heatwave. The results demonstrate the extent to which boundary layer clouds can contribute to regional variations in climate.

  11. Spectral Dependence of MODIS Cloud Droplet Effective Radius Retrievals for Marine Boundary Layer Clouds

    Science.gov (United States)

    Zhang, Zhibo; Platnick, Steven E.; Ackerman, Andrew S.; Cho, Hyoun-Myoung

    2014-01-01

    Low-level warm marine boundary layer (MBL) clouds cover large regions of Earth's surface. They have a significant role in Earth's radiative energy balance and hydrological cycle. Despite the fundamental role of low-level warm water clouds in climate, our understanding of these clouds is still limited. In particular, connections between their properties (e.g. cloud fraction, cloud water path, and cloud droplet size) and environmental factors such as aerosol loading and meteorological conditions continue to be uncertain or unknown. Modeling these clouds in climate models remains a challenging problem. As a result, the influence of aerosols on these clouds in the past and future, and the potential impacts of these clouds on global warming remain open questions leading to substantial uncertainty in climate projections. To improve our understanding of these clouds, we need continuous observations of cloud properties on both a global scale and over a long enough timescale for climate studies. At present, satellite-based remote sensing is the only means of providing such observations.

  12. Marine Corps Private Cloud Computing Environment Strategy

    Science.gov (United States)

    2012-05-15

    leveraging economies of scale through the MCEITS PCCE, the Marine Corps will measure consumed IT resources more effectively, increase or decrease...flexible broad network access, resource pooling, elastic provisioning and measured services. By leveraging economies of scale the Marine Corps will be able...IaaS SaaS / IaaS 1 1 LCE I ACE Dets I I I I ------------------~ GIG / CJ Internet Security Boundary MCEN I DISN r :------------------ MCEN

  13. Convective-stratiform rainfall separation of Typhoon Fitow (2013: A 3D WRF modeling study

    Directory of Open Access Journals (Sweden)

    Huiyan Xu

    2018-01-01

    Full Text Available Surface precipitation budget equation in a three-dimensional (3D WRF model framework is derived. By applying the convective-stratiform partition method to the surface precipitation budget equation in the 3D model, this study separated convective and stratiform rainfall of typhoon Fitow (2013. The separations are further verified by examining statistics of vertical velocity, surface precipitation budget, and cloud microphysical budget. Results show that water vapor convergence moistens local atmosphere and offsets hydrometeor divergence, and producing convective rainfall, while hydrometeor convergence primarily supports stratiform rainfall, since water vapor divergence and local atmospheric drying generally cancelled out. Mean ascending motions are prevailing in the entire troposphere in the convective region, whereas mean descending motions occur below 5 km and mean ascending motions occur above in the stratiform region. The frequency distribution of vertical velocity shows vertical velocity has wide distribution with the maximum values up to 13 m s-1 in the convective regions, whereas it has narrow distribution with absolute values confined within 7 m s-1 in the stratiform region. Liquid cloud microphysics is dominant in convective regions and ice cloud microphysics is dominant in stratiform regions. These indicate that the statistics results are generally consistent with the corresponding physical characteristics of the convective-stratiform rainfall structures generalized by previous studies.

  14. The impact of cloud vertical profile on liquid water path retrieval based on the bispectral method: A theoretical study based on large-eddy simulations of shallow marine boundary layer clouds

    Science.gov (United States)

    Miller, Daniel J.; Zhang, Zhibo; Ackerman, Andrew S.; Platnick, Steven; Baum, Bryan A.

    2018-01-01

    Passive optical retrievals of cloud liquid water path (LWP), like those implemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on cloud vertical profile assumptions to relate optical thickness (τ) and effective radius (re) retrievals to LWP. These techniques typically assume that shallow clouds are vertically homogeneous; however, an adiabatic cloud model is plausibly more realistic for shallow marine boundary layer cloud regimes. In this study a satellite retrieval simulator is used to perform MODIS-like satellite retrievals, which in turn are compared directly to the large-eddy simulation (LES) output. This satellite simulator creates a framework for rigorous quantification of the impact that vertical profile features have on LWP retrievals, and it accomplishes this while also avoiding sources of bias present in previous observational studies. The cloud vertical profiles from the LES are often more complex than either of the two standard assumptions, and the favored assumption was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming previous studies, drizzle and cloud top entrainment of dry air are identified as physical features that bias LWP retrievals away from adiabatic and toward homogeneous assumptions. The mean bias induced by drizzle-influenced profiles was shown to be on the order of 5–10 g/m2. In contrast, the influence of cloud top entrainment was found to be smaller by about a factor of 2. A theoretical framework is developed to explain variability in LWP retrievals by introducing modifications to the adiabatic re profile. In addition to analyzing bispectral retrievals, we also compare results with the vertical profile sensitivity of passive polarimetric retrieval techniques. PMID:29637042

  15. The impact of cloud vertical profile on liquid water path retrieval based on the bispectral method: A theoretical study based on large-eddy simulations of shallow marine boundary layer clouds.

    Science.gov (United States)

    Miller, Daniel J; Zhang, Zhibo; Ackerman, Andrew S; Platnick, Steven; Baum, Bryan A

    2016-04-27

    Passive optical retrievals of cloud liquid water path (LWP), like those implemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on cloud vertical profile assumptions to relate optical thickness ( τ ) and effective radius ( r e ) retrievals to LWP. These techniques typically assume that shallow clouds are vertically homogeneous; however, an adiabatic cloud model is plausibly more realistic for shallow marine boundary layer cloud regimes. In this study a satellite retrieval simulator is used to perform MODIS-like satellite retrievals, which in turn are compared directly to the large-eddy simulation (LES) output. This satellite simulator creates a framework for rigorous quantification of the impact that vertical profile features have on LWP retrievals, and it accomplishes this while also avoiding sources of bias present in previous observational studies. The cloud vertical profiles from the LES are often more complex than either of the two standard assumptions, and the favored assumption was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming previous studies, drizzle and cloud top entrainment of dry air are identified as physical features that bias LWP retrievals away from adiabatic and toward homogeneous assumptions. The mean bias induced by drizzle-influenced profiles was shown to be on the order of 5-10 g/m 2 . In contrast, the influence of cloud top entrainment was found to be smaller by about a factor of 2. A theoretical framework is developed to explain variability in LWP retrievals by introducing modifications to the adiabatic r e profile. In addition to analyzing bispectral retrievals, we also compare results with the vertical profile sensitivity of passive polarimetric retrieval techniques.

  16. Effects of Ocean Ecosystem on Marine Aerosol-Cloud Interaction

    Directory of Open Access Journals (Sweden)

    Nicholas Meskhidze

    2010-01-01

    Full Text Available Using satellite data for the surface ocean, aerosol optical depth (AOD, and cloud microphysical parameters, we show that statistically significant positive correlations exist between ocean ecosystem productivity, the abundance of submicron aerosols, and cloud microphysical properties over different parts of the remote oceans. The correlation coefficient for remotely sensed surface chlorophyll a concentration ([Chl-a] and liquid cloud effective radii over productive areas of the oceans varies between −0.2 and −0.6. Special attention is given to identifying (and addressing problems from correlation analysis used in the previous studies that can lead to erroneous conclusions. A new approach (using the difference between retrieved AOD and predicted sea salt aerosol optical depth, AODdiff is developed to explore causal links between ocean physical and biological systems and the abundance of cloud condensation nuclei (CCN in the remote marine atmosphere. We have found that over multiple time periods, 550 nm AODdiff (sensitive to accumulation mode aerosol, which is the prime contributor to CCN correlates well with [Chl-a] over the productive waters of the Southern Ocean. Since [Chl-a] can be used as a proxy of ocean biological productivity, our analysis demonstrates the role of ocean ecology in contributing CCN, thus shaping the microphysical properties of low-level marine clouds.

  17. Sensitivity to deliberate sea salt seeding of marine clouds - observations and model simulations

    OpenAIRE

    Alterskjaer, K.; Kristjansson, J. E.; Seland, O.

    2012-01-01

    Sea salt seeding of marine clouds to increase their albedo is a proposed technique to counteract or slow global warming. In this study, we first investigate the susceptibility of marine clouds to sea salt injections, using observational data of cloud droplet number concentration, cloud optical depth, and liquid cloud fraction from the MODIS (Moderate Resolution Imaging Spectroradiometer) instruments on board the Aqua and Terra satellites. We then compare the derived susceptibility function to...

  18. Global simulations of aerosol processing in clouds

    Directory of Open Access Journals (Sweden)

    C. Hoose

    2008-12-01

    Full Text Available An explicit and detailed representation of in-droplet and in-crystal aerosol particles in stratiform clouds has been introduced in the global aerosol-climate model ECHAM5-HAM. The new scheme allows an evaluation of the cloud cycling of aerosols and an estimation of the relative contributions of nucleation and collision scavenging, as opposed to evaporation of hydrometeors in the global aerosol processing by clouds. On average an aerosol particle is cycled through stratiform clouds 0.5 times. The new scheme leads to important changes in the simulated fraction of aerosol scavenged in clouds, and consequently in the aerosol wet deposition. In general, less aerosol is scavenged into clouds with the new prognostic treatment than what is prescribed in standard ECHAM5-HAM. Aerosol concentrations, size distributions, scavenged fractions and cloud droplet concentrations are evaluated and compared to different observations. While the scavenged fraction and the aerosol number concentrations in the marine boundary layer are well represented in the new model, aerosol optical thickness, cloud droplet number concentrations in the marine boundary layer and the aerosol volume in the accumulation and coarse modes over the oceans are overestimated. Sensitivity studies suggest that a better representation of below-cloud scavenging, higher in-cloud collision coefficients, or a reduced water uptake by seasalt aerosols could reduce these biases.

  19. Seasonal Scale Convective-Stratiform Pricipitation Variabilities at Tropics

    Science.gov (United States)

    S, Sreekanth T.

    begin{center} Large Seasonal Scale Convective-Stratiform Pricipitation Variabilities at Tropics Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) and V Sasi Kumar (2) *Centre for Earth Science Studies, Akkulam, Thiruvananthapuram (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) 32. NCC Nagar Peroorkada, Thiruvananthapuram ABSTRACT This study investigates the variabilities of convective and stratiform rainfall from 2011 to 2013 at a tropical coastal station in three seasons viz Pre-Monsoon (March-May), Monsoon (June-September) and Post-Monsoon (October-December). Understanding the climatological variability of these two dominant forms of precipitation and their implications in the total rainfall were the main objectives of this investigation. Variabilities in the frequency & duration of events, rain rate & total number of rain drops distribution in different events and the accumulated amount of rain water were analysed. Based on the ground & radar observations from optical & impact disdrometers, Micro Rain Radar and Atmospheric Electric Field Mill, precipitation events were classified into convective and stratiform in three seasons. Classification was done by the method followed by Testud et al (2001) and as an additional information electrical behaviour of clouds from Atmospheric Electric Field Mill is also used. Events which could not be included in both types were termed as 'mixed precipitation' and were included separately. Diurnal variability of the total rainfall in each seasons were also examined. For both convective and stratiform rainfall there exist distinct day-night differences. During nocturnal hours convective rain draged more attention. In all seasons almost 70% of rain duration and 60% of rain events of convective origin were confined to nocturnal hours. But stratiform rain was not affected by diurnal variations greatly because night time occurrences of stratiform duration and events were less than 50%. Also in Monsoon above 35% of

  20. Evaluating aerosol indirect effect through marine stratocumulus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Kogan, Z.N.; Kogan, Y.L.; Lilly, D.K. [Univ. of Oklahoma, Norman, OK (United States)

    1996-04-01

    During the last decade much attention has been focused on anthropogenic aerosols and their radiative influence on the global climate. Charlson et al. and Penner et al. have demonstrated that tropospheric aerosols and particularly anthropogenic sulfate aerosols may significantly contribute to the radiative forcing exerting a cooling influence on climate (-1 to -2 W/m{sup 2}) which is comparable in magnitude to greenhouse forcing, but opposite in sign. Aerosol particles affect the earth`s radiative budget either directly by scattering and absorption of solar radiation by themselves or indirectly by altering the cloud radiative properties through changes in cloud microstructure. Marine stratocumulus cloud layers and their possible cooling influence on the atmosphere as a result of pollution are of special interest because of their high reflectivity, durability, and large global cover. We present an estimate of thet aerosol indirect effect, or, forcing due to anthropogenic sulfate aerosols.

  1. Marine ARM GPCI Investigation of Clouds (MAGIC) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Ernie R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-12-01

    The Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign, which deployed the second ARM Mobile Facility (AMF2) aboard the Horizon Lines cargo container ship Spirit as it ran its regular route between Los Angeles, California and Honolulu, Hawaii, measured properties of clouds and precipitation, aerosols, radiation, and atmospheric, meteorological, and oceanic conditions with the goal of obtaining statistics of these properties to achieve better understanding of the transition between stratocumulus and cumulus cloud regimes that occur in that region. This Sc-Cu transition is poorly represented in models, and a major reason for this is the lack of high-quality and comprehensive data that can be used to constrain, validate, and improve model representation of the transition. MAGIC consisted of 20 round trips between Los Angeles and Honolulu, and thus over three dozen transects through the transition, totaling nearly 200 days at sea between September, 2012 and October, 2013. During this time MAGIC collected a unique and unprecedented data set, including more than 550 successful radiosonde launches. An Intensive Observational Period (IOP) occurred in July, 2013 during which more detailed measurements of the atmospheric structure were made. MAGIC was very successful in its operations and overcame numerous logistical and technological challenges, clearly demonstrating the feasibility of a marine AMF2 deployment and the ability to make accurate measurements of clouds and precipitation, aerosols, and radiation while at sea.

  2. Low cloud precipitation climatology in the southeastern Pacific marine stratocumulus region using CloudSat

    International Nuclear Information System (INIS)

    Rapp, Anita D; Lebsock, Matthew; L’Ecuyer, Tristan

    2013-01-01

    A climatology of low cloud surface precipitation occurrence and intensity from the new CloudSat 2C-RAIN-PROFILE algorithm is presented from June 2006 through December 2010 for the southeastern Pacific region of marine stratocumulus. Results show that over 70% of low cloud precipitation falls as drizzle. Application of an empirical evaporation model suggests that 50–80% of the precipitation evaporates before it reaches the surface. Segregation of the CloudSat ascending and descending overpasses shows that the majority of precipitation occurs at night. Examination of the seasonal cycle shows that the precipitation is most frequent during the austral winter and spring; however there is considerable regional variability. Conditional rain rates increase from east to west with a maximum occurring in the region influenced by the South Pacific Convergence Zone. Area average rain rates are highest in the region where precipitation rates are moderate, but most frequent. The area average surface rain rate for low cloud precipitation for this region is ∼0.22 mm d −1 , in good agreement with in situ estimates, and is greatly improved over earlier CloudSat precipitation products. These results provide a much-needed quantification of surface precipitation in a region that is currently underestimated in existing satellite-based precipitation climatologies. (letter)

  3. Experimental and Modeling Studies of Interactions of Marine Aerosols and Clouds

    National Research Council Canada - National Science Library

    Kreidenweis, Sonia

    1995-01-01

    The specific objectives of the modeling component are to develop models of the marine boundary layer, including models that predict cloud formation and evolution and the effects of such processes on the marine aerosol (and vice versa...

  4. Micro-Physical characterisation of Convective & Stratiform Rainfall at Tropics

    Science.gov (United States)

    Sreekanth, T. S.

    Large Micro-Physical characterisation of Convective & Stratiform Rainfall at Tropics begin{center} begin{center} Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , and V Sasi Kumar (2) *Centre for Earth Science Studies, Akkulam, Thiruvananthapuram (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) 32. NCC Nagar, Peroorkada, Thiruvananthapuram ABSTRACT Micro-physical parameters of rainfall such as rain drop size & fall speed distribution, mass weighted mean diameter, Total no. of rain drops, Normalisation parameters for rain intensity, maximum & minimum drop diameter from different rain intensity ranges, from both stratiform and convective rain events were analysed. Convective -Stratiform classification was done by the method followed by Testud et al (2001) and as an additional information electrical behaviour of clouds from Atmospheric Electric Field Mill was also used. Events which cannot be included in both types are termed as 'mixed precipitation' and identified separately. For the three years 2011, 2012 & 2013, rain events from both convective & stratiform origin are identified from three seasons viz Pre-Monsoon (March-May), Monsoon (June-September) and Post-Monsoon (October-December). Micro-physical characterisation was done for each rain events and analysed. Ground based and radar observations were made and classification of stratiform and convective rainfall was done by the method followed by Testud et al (2001). Radar bright band and non bright band analysis was done for confimation of stratifom and convective rain respectievely. Atmospheric electric field data from electric field mill is also used for confirmation of convection during convective events. Statistical analyses revealed that the standard deviation of rain drop size in higher rain rates are higher than in lower rain rates. Normalised drop size distribution is ploted for selected events from both forms. Inter relations between various precipitation parameters were analysed in three

  5. The use of marine cloud water samples as a diagnostic tool for aqueous chemistry, cloud microphysical processes and dynamics

    Science.gov (United States)

    Crosbie, E.; Ziemba, L. D.; Moore, R.; Shook, M.; Jordan, C.; Thornhill, K. L., II; Winstead, E.; Shingler, T.; Brown, M.; MacDonald, A. B.; Dadashazar, H.; Sorooshian, A.; Weiss-Penzias, P. S.; Anderson, B.

    2017-12-01

    Clouds play several roles in the Earth's climate system. In addition to their clear significance to the hydrological cycle, they strongly modulate the shortwave and longwave radiative balance of the atmosphere, with subsequent feedback on the atmospheric circulation. Furthermore, clouds act as a conduit for the fate and emergence of important trace chemical species and are the predominant removal mechanism for atmospheric aerosols. Marine boundary layer clouds cover large swaths of the global oceans. Because of their global significance, they have attracted significant attention into understanding how changes in aerosols are translated into changes in cloud macro- and microphysical properties. The circular nature of the influence of clouds-on-aerosols and aerosols-on-clouds has been used to explain the chaotic patterns often seen in marine clouds, however, this feedback also presents a substantial hurdle in resolving the uncertain role of anthropogenic aerosols on climate. Here we discuss ways in which the chemical constituents found in cloud water can offer insight into the physical and chemical processes inherent in marine clouds, through the use of aircraft measurements. We focus on observational data from cloud water samples collected during flights conducted over the remote North Atlantic and along coastal California across multiple campaigns. We explore topics related to aqueous processing, wet scavenging and source apportionment.

  6. On the Nature and Extent of Optically Thin Marine low Clouds

    Science.gov (United States)

    Leahy, L. V.; Wood, R.; Charlson, R. J.; Hostetler, C. A.; Rogers, R. R.; Vaughan, M. A.; Winker, D. M.

    2012-01-01

    Macrophysical properties of optically thin marine low clouds over the nonpolar oceans (60 deg S-60 deg N) are measured using 2 years of full-resolution nighttime data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Optically thin clouds, defined as the subset of marine low clouds that do not fully attenuate the lidar signal, comprise almost half of the low clouds over the marine domain. Regionally, the fraction of low clouds that are optically thin (f(sub thin,cld)) exhibits a strong inverse relationship with the low-cloud cover, with maxima in the tropical trades (f(sub thin,cld) greater than 0.8) and minima in regions of persistent marine stratocumulus and in midlatitudes (f(sub thin,cld) less than 0.3). Domain-wide, a power law fit describes the cloud length distribution, with exponent beta = 2.03 +/- 0.06 (+/-95% confidence interval). On average, the fraction of a cloud that is optically thin decreases from approximately 1 for clouds smaller than 2 km to less than 0.3 for clouds larger than 30 km. This relationship is found to be independent of region, so that geographical variations in the cloud length distribution explain three quarters of the variance in f(sub thin,cld). Comparing collocated trade cumulus observations from CALIOP and the airborne High Spectral Resolution Lidar reveals that clouds with lengths smaller than are resolvable with CALIOP contribute approximately half of the low clouds in the region sampled. A bounded cascade model is constructed to match the observations from the trades. The model shows that the observed optically thin cloud behavior is consistent with a power law scaling of cloud optical depth and suggests that most optically thin clouds only partially fill the CALIOP footprint.

  7. Atmospheric System Research Marine Low Clouds Workshop Report, January 27-29,2016

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Wang, J. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Wood, R. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2016-06-01

    Marine low clouds are a major determinant of the Earth?s albedo and are a major source of uncertainty in how the climate responds to changing greenhouse gas levels and anthropogenic aerosol. Marine low clouds are particularly difficult to simulate accurately in climate models, and their remote locations present a significant observational challenge. A complex set of interacting controlling processes determine the coverage, condensate loading, and microphysical and radiative properties of marine low clouds. Marine low clouds are sensitive to atmospheric aerosol in several ways. Interactions at microphysical scales involve changes in the concentration of cloud droplets and precipitation, which induce cloud dynamical impacts including changes in entrainment and mesoscale organization. Marine low clouds are also impacted by atmospheric heating changes due to absorbing aerosols. The response of marine low clouds to aerosol perturbations depends strongly upon the unperturbed aerosol-cloud state, which necessitates greater understanding of processes controlling the budget of aerosol in the marine boundary layer. Entrainment and precipitation mediate the response of low clouds to aerosols but these processes also play leading roles in controlling the aerosol budget. The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research (ASR) program are making major recent investments in observational data sets from fixed and mobile sites dominated by marine low clouds. This report provides specific action items for how these measurements can be used together with process modeling to make progress on understanding and quantifying the key cloud and aerosol controlling processes in the next 5-10 years. Measurements of aerosol composition and its variation with particle size are needed to advance a quantitative, process-level understanding of marine boundary-layer aerosol budget. Quantitative precipitation estimates

  8. Marine low cloud sensitivity to an idealized climate change : The CGILS LES intercomparison

    NARCIS (Netherlands)

    Blossey, P.N.; Bretherton, C.S.; Zhang, M.; Cheng, A.; Endo, S.; Heus, T.; Liu, Y.; Lock, A.P.; De Roode, S.R.; Xu, K.M.

    2013-01-01

    Subtropical marine low cloud sensitivity to an idealized climate change is compared in six large-eddy simulation (LES) models as part of CGILS. July cloud cover is simulated at three locations over the subtropical northeast Pacific Ocean, which are typified by cold sea surface temperatures (SSTs)

  9. Single-Column Model Simulations of Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions

    NARCIS (Netherlands)

    Neggers, R.A.J.; Ackerman, Andrew S.; Angevine, W. M.; Bazile, Eric; Beau, I.; Blossey, P. N.; Boutle, I. A.; de Bruijn, C.; cheng, A; van der Dussen, J.J.; Fletcher, J.; Dal Gesso, S.; Jam, A.; Kawai, H; Cheedela, S. K.; Larson, V. E.; Lefebvre, Marie Pierre; Lock, A. P.; Meyer, N. R.; de Roode, S.R.; de Rooy, WC; Sandu, I; Xiao, H; Xu, K. M.

    2017-01-01

    Results are presented of the GASS/EUCLIPSE single-column model intercomparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate models for this cloud regime, using

  10. Clouds, Aerosol, and Precipitation in the Marine Boundary Layer: An ARM Mobile Facility Deployment

    Science.gov (United States)

    Wood, Robert; Wyant, Matthew; Bretherton, Christopher S.; Remillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; de Szoeke, Simone; Yuter, Sandra; Miller, Matthew; hide

    2015-01-01

    Capsule: A 21-month deployment to Graciosa Island in the northeastern Atlantic Ocean is providing an unprecedented record of the clouds, aerosols and meteorology in a poorly-sampled remote marine environment The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21 month (April 2009- December 2010) comprehensive dataset documenting clouds, aerosols and precipitation using the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean, and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1- 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging. The data from at Graciosa are being compared with short-range forecasts made a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well, but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a

  11. Collaborative Research: Cloudiness transitions within shallow marine clouds near the Azores

    Energy Technology Data Exchange (ETDEWEB)

    Mechem, David B. [Univ. of Kansas, Lawrence, KS (United States). Atmospheric Science Program. Dept. of Geography and Atmospheric Science; de Szoeke, Simon P. [Oregon State Univ., Corvallis, OR (United States). College of Earth, Ocean, and Atmospheric Sciences; Yuter, Sandra E. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Marine, Earth, and Atmospheric Sciences

    2017-01-15

    Marine stratocumulus clouds are low, persistent, liquid phase clouds that cover large areas and play a significant role in moderating the climate by reflecting large quantities of incoming solar radiation. The deficiencies in simulating these clouds in global climate models are widely recognized. Much of the uncertainty arises from sub-grid scale variability in the cloud albedo that is not accurately parameterized in climate models. The Clouds, Aerosol and Precipitation in the Marine Boundary Layer (CAP–MBL) observational campaign and the ongoing ARM site measurements on Graciosa Island in the Azores aim to sample the Northeast Atlantic low cloud regime. These data represent, the longest continuous research quality cloud radar/lidar/radiometer/aerosol data set of open-ocean shallow marine clouds in existence. Data coverage from CAP–MBL and the series of cruises to the southeast Pacific culminating in VOCALS will both be of sufficient length to contrast the two low cloud regimes and explore the joint variability of clouds in response to several environmental factors implicated in cloudiness transitions. Our research seeks to better understand cloud system processes in an underexplored but climatologically important maritime region. Our primary goal is an improved physical understanding of low marine clouds on temporal scales of hours to days. It is well understood that aerosols, synoptic-scale forcing, surface fluxes, mesoscale dynamics, and cloud microphysics all play a role in cloudiness transitions. However, the relative importance of each mechanism as a function of different environmental conditions is unknown. To better understand cloud forcing and response, we are documenting the joint variability of observed environmental factors and associated cloud characteristics. In order to narrow the realm of likely parameter ranges, we assess the relative importance of parameter conditions based primarily on two criteria: how often the condition occurs (frequency

  12. Information content of OCO-2 oxygen A-band channels for retrieving marine liquid cloud properties

    Science.gov (United States)

    Richardson, Mark; Stephens, Graeme L.

    2018-03-01

    Information content analysis is used to select channels for a marine liquid cloud retrieval using the high-spectral-resolution oxygen A-band instrument on NASA's Orbiting Carbon Observatory-2 (OCO-2). Desired retrieval properties are cloud optical depth, cloud-top pressure and cloud pressure thickness, which is the geometric thickness expressed in hectopascals. Based on information content criteria we select a micro-window of 75 of the 853 functioning OCO-2 channels spanning 763.5-764.6 nm and perform a series of synthetic retrievals with perturbed initial conditions. We estimate posterior errors from the sample standard deviations and obtain ±0.75 in optical depth and ±12.9 hPa in both cloud-top pressure and cloud pressure thickness, although removing the 10 % of samples with the highest χ2 reduces posterior error in cloud-top pressure to ±2.9 hPa and cloud pressure thickness to ±2.5 hPa. The application of this retrieval to real OCO-2 measurements is briefly discussed, along with limitations and the greatest caution is urged regarding the assumption of a single homogeneous cloud layer, which is often, but not always, a reasonable approximation for marine boundary layer clouds.

  13. Recent Findings Related to Giant Cloud Condensation Nuclei in the Marine Boundary Layer and Impacts on Clouds and Precipitation

    Science.gov (United States)

    Sorooshian, Armin; Dadashazar, Hossein; Wang, Zhen; Crosbie, Ewan; Brunke, Michael; Zeng, Xubin; Jonsson, Haflidi; Woods, Roy; Flagan, Richard; Seinfeld, John

    2017-04-01

    This presentation reports on findings from multiple airborne field campaigns off the California coast to understand the sources, nature, and impacts of giant cloud condensation nuclei (GCCN). Aside from sea spray emissions, measurements have revealed that ocean-going ships can be a source of GCCN due to wake and stack emissions off the California coast. Observed particle number concentrations behind 10 ships exceeded those in "control" areas, exhibiting number concentration enhancement ratios (ERs) for minimum threshold diameters of 2, 10, and 20 μm as high as 2.7, 5.5, and 7.5, respectively. The data provide insights into how ER is related to a variety of factors (downwind distance, altitude, ship characteristics such as gross tonnage, length, and beam). The data also provide insight into the extent to which a size distribution parameter and a cloud water chemical measurement can capture the effect of sea salt on marine stratocumulus cloud properties. The two GCCN proxy variables, near-surface particle number concentration for diameter > 5 µm and cloud water chloride concentration, are significantly correlated with each other, and both exhibit expected relationships with other parameters that typically coincide with sea salt emissions. Factors influencing the relationship between these two GCCN proxy measurements will be discussed. When comparing twelve pairs of high and low chloride cloud cases (at fixed liquid water path and cloud drop number concentration), the average drop spectra for high chloride cases exhibit enhanced drop number at diameters exceeding 20 µm, especially above 30 µm. In addition, high chloride cases coincide with enhanced mean columnar R and negative values of precipitation susceptibility. The difference in drop effective radius (re) between high and low chloride conditions decreases with height in cloud, suggesting that some GCCN-produced rain drops precipitate before reaching cloud tops. The sign of cloud responses (i.e., re, R) to

  14. Clouds, Aerosols, and Precipitation in the Marine Boundary Layer: An Arm Mobile Facility Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Robert; Wyant, Matthew; Bretherton, Christopher S.; Rémillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; de Szoeke, Simone; Yuter, Sandra; Miller, Matthew; Mechem, David; Tselioudis, George; Chiu, J. Christine; Mann, Julian A. L.; O’Connor, Ewan J.; Hogan, Robin J.; Dong, Xiquan; Miller, Mark; Ghate, Virendra; Jefferson, Anne; Min, Qilong; Minnis, Patrick; Palikonda, Rabindra; Albrecht, Bruce; Luke, Ed; Hannay, Cecile; Lin, Yanluan

    2015-03-01

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) 38 deployment at Graciosa Island in the Azores generated a 21 month (April 2009-December 2010) 39 comprehensive dataset documenting clouds, aerosols and precipitation using the Atmospheric 40 Radiation Measurement (ARM) Mobile Facility (AMF). The scientific aim of the deployment is 41 to gain improved understanding of the interactions of clouds, aerosols and precipitation in the 42 marine boundary layer. 43 Graciosa Island straddles the boundary between the subtropics and midlatitudes in the 44 Northeast Atlantic Ocean, and consequently experiences a great diversity of meteorological and 45 cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus 46 occurring regularly. Approximately half of all clouds contained precipitation detectable as radar 47 echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-48 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide 49 range of aerosol conditions was sampled during the deployment consistent with the diversity of 50 sources as indicated by back trajectory analysis. Preliminary findings suggest important two-way 51 interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation 52 and cloud radiative properties while being controlled in part by precipitation scavenging. 53 The data from at Graciosa are being compared with short-range forecasts made a variety 54 of models. A pilot analysis with two climate and two weather forecast models shows that they 55 reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well, 56 but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to 57 be a long-term ARM site that became operational in October 2013.

  15. Sensitivity of Marine Warm Cloud Retrieval Statistics to Algorithm Choices: Examples from MODIS Collection 6

    Science.gov (United States)

    Platnick, Steven; Wind, Galina; Zhang, Zhibo; Ackerman, Steven A.; Maddux, Brent

    2012-01-01

    The optical and microphysical structure of warm boundary layer marine clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS (Moderate Resolution Imaging Spectroradiometer) on the NASA EOS Terra and Aqua platforms, simultaneous global/daily 1km retrievals of cloud optical thickness and effective particle size are provided, as well as the derived water path. In addition, the cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate effective radii results using the l.6, 2.1, and 3.7 m spectral channels. Cloud retrieval statistics are highly sensitive to how a pixel identified as being "notclear" by a cloud mask (e.g., the MOD35/MYD35 product) is determined to be useful for an optical retrieval based on a 1-D cloud model. The Collection 5 MODIS retrieval algorithm removed pixels associated with cloud'edges as well as ocean pixels with partly cloudy elements in the 250m MODIS cloud mask - part of the so-called Clear Sky Restoral (CSR) algorithm. Collection 6 attempts retrievals for those two pixel populations, but allows a user to isolate or filter out the populations via CSR pixel-level Quality Assessment (QA) assignments. In this paper, using the preliminary Collection 6 MOD06 product, we present global and regional statistical results of marine warm cloud retrieval sensitivities to the cloud edge and 250m partly cloudy pixel populations. As expected, retrievals for these pixels are generally consistent with a breakdown of the ID cloud model. While optical thickness for these suspect pixel populations may have some utility for radiative studies, the retrievals should be used with extreme caution for process and microphysical studies.

  16. Effect of biomass burning on marine stratocumulus clouds off the California coast

    Directory of Open Access Journals (Sweden)

    E.-Y. Hsie

    2009-11-01

    Full Text Available Aerosol-cloud interactions are considered to be one of the most important and least known forcings in the climate system. Biomass burning aerosols are of special interest due to their radiative impact (direct and indirect effect and their potential to increase in the future due to climate change. Combining data from Geostationary Operational Environmental Satellite (GOES and MODerate-resolution Imaging Spectroradiometer (MODIS with passive tracers from the FLEXPART Lagrangian Particle Dispersion Model, the impact of biomass burning aerosols on marine stratocumulus clouds has been examined in June and July of 2006–2008 off the California coast. Using a continental tracer, the indirect effect of biomass burning aerosols has been isolated by comparing the average cloud fraction and cloud albedo for different meteorological situations, and for clean versus polluted (in terms of biomass burning continental air masses at 14:00 local time. Within a 500 km-wide band along the coast of California, biomass burning aerosols, which tend to reside above the marine boundary layer, increased the cloud fraction by 0.143, and the cloud albedo by 0.038. Absorbing aerosols located above the marine boundary layer lead to an increase of the lower tropospheric stability and a reduction in the vertical entrainment of dry air from above, leading to increased cloud formation. The combined effect was an indirect radiative forcing of −7.5% ±1.7% (cooling effect of the outgoing radiative flux at the top of the atmosphere on average, with a bias due to meteorology of +0.9%. Further away from the coast, the biomass burning aerosols, which were located within the boundary layer, reduced the cloud fraction by 0.023 and the cloud albedo by 0.006, resulting in an indirect radiative forcing of +1.3% ±0.3% (warming effect with a bias of +0.5%. These results underscore the dual role that absorbing aerosols play in cloud radiative forcing.

  17. Albedo enhancement of marine clouds to counteract global warming: impacts on the hydrological cycle

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G. [Indian Institute of Science, Divecha Center for Climate Change, Bangalore (India); Indian Institute of Science, Center for Atmospheric and Oceanic Sciences, Bangalore (India); Caldeira, Ken; Cao, Long; Ban-Weiss, George; Shin, Ho-Jeong [Carnegie Institution, Department of Global Ecology, Stanford, CA (United States); Nemani, Rama [NASA Ames Research Center, Moffett Field, CA (United States)

    2011-09-15

    Recent studies have shown that changes in solar radiation affect the hydrological cycle more strongly than equivalent CO{sub 2} changes for the same change in global mean surface temperature. Thus, solar radiation management ''geoengineering'' proposals to completely offset global mean temperature increases by reducing the amount of absorbed sunlight might be expected to slow the global water cycle and reduce runoff over land. However, proposed countering of global warming by increasing the albedo of marine clouds would reduce surface solar radiation only over the oceans. Here, for an idealized scenario, we analyze the response of temperature and the hydrological cycle to increased reflection by clouds over the ocean using an atmospheric general circulation model coupled to a mixed layer ocean model. When cloud droplets are reduced in size over all oceans uniformly to offset the temperature increase from a doubling of atmospheric CO{sub 2}, the global-mean precipitation and evaporation decreases by about 1.3% but runoff over land increases by 7.5% primarily due to increases over tropical land. In the model, more reflective marine clouds cool the atmospheric column over ocean. The result is a sinking motion over oceans and upward motion over land. We attribute the increased runoff over land to this increased upward motion over land when marine clouds are made more reflective. Our results suggest that, in contrast to other proposals to increase planetary albedo, offsetting mean global warming by reducing marine cloud droplet size does not necessarily lead to a drying, on average, of the continents. However, we note that the changes in precipitation, evaporation and P-E are dominated by small but significant areas, and given the highly idealized nature of this study, a more thorough and broader assessment would be required for proposals of altering marine cloud properties on a large scale. (orig.)

  18. Using a second-order turbulence radiative-convective model to study the cloud/radiation interaction with the FIRE data

    International Nuclear Information System (INIS)

    Kao, C.Y.J.

    1992-01-01

    It is well recognized that extended sheets of low-level stratus and stratocumulus clouds are a persistent feature over the eastern parts of the major ocean basins associated with the quasipermanent subtropical high-pressure systems. These clouds exert a strong influence on climate through their high albedo, compared with the underlying surface, and their low altitude. The former leads to a reduction of the net incoming shortwave flux into the atmosphere and the latter leads to an infrared loss in a way essentially the same as the cloud-free conditions. Randall et al.[1984] estimated that an increase of a few percent of global low-level stratiform clouds may offset the warming caused by a doubling of the atmos-pheric CO 2 . The Atmospheric Radiation Measure-ment (ARM) Program, sponsored by the US Department of Energy, is envisioning a locale in the Eastern North Pacific for extensive measure-ments of stratiform boundary-layer clouds and their interaction with atmospheric radiation. Thus, a physically-based parameterization sheme for marine low-level stratiform clouds can be developed for general circulation models (GCMs). This paper is a modeling study with the current understanding of the important physical processes associated with a cloud-capped boundary layer. The numerical model is a high-resolution one-dimensional version of the second-order turbulence convective/radiative model developed at the Los Alamos National Laboratory

  19. Progress in Understanding the Impacts of 3-D Cloud Structure on MODIS Cloud Property Retrievals for Marine Boundary Layer Clouds

    Science.gov (United States)

    Zhang, Zhibo; Werner, Frank; Miller, Daniel; Platnick, Steven; Ackerman, Andrew; DiGirolamo, Larry; Meyer, Kerry; Marshak, Alexander; Wind, Galina; Zhao, Guangyu

    2016-01-01

    Theory: A novel framework based on 2-D Tayler expansion for quantifying the uncertainty in MODIS retrievals caused by sub-pixel reflectance inhomogeneity. (Zhang et al. 2016). How cloud vertical structure influences MODIS LWP retrievals. (Miller et al. 2016). Observation: Analysis of failed MODIS cloud property retrievals. (Cho et al. 2015). Cloud property retrievals from 15m resolution ASTER observations. (Werner et al. 2016). Modeling: LES-Satellite observation simulator (Zhang et al. 2012, Miller et al. 2016).

  20. Coupling spectral-bin cloud microphysics with the MOSAIC aerosol model in WRF-Chem: Methodology and results for marine stratocumulus clouds

    Science.gov (United States)

    Gao, Wenhua; Fan, Jiwen; Easter, R. C.; Yang, Qing; Zhao, Chun; Ghan, Steven J.

    2016-09-01

    Aerosol-cloud interaction processes can be represented more physically with bin cloud microphysics relative to bulk microphysical parameterizations. However, due to computational power limitations in the past, bin cloud microphysics was often run with very simple aerosol treatments. The purpose of this study is to represent better aerosol-cloud interaction processes in the Chemistry version of Weather Research and Forecast model (WRF-Chem) at convection-permitting scales by coupling spectral-bin cloud microphysics (SBM) with the MOSAIC sectional aerosol model. A flexible interface is built that exchanges cloud and aerosol information between them. The interface contains a new bin aerosol activation approach, which replaces the treatments in the original SBM. It also includes the modified aerosol resuspension and in-cloud wet removal processes with the droplet loss tendencies and precipitation fluxes from SBM. The newly coupled system is evaluated for two marine stratocumulus cases over the Southeast Pacific Ocean with either a simplified aerosol setup or full-chemistry. We compare the aerosol activation process in the newly coupled SBM-MOSAIC against the SBM simulation without chemistry using a simplified aerosol setup, and the results show consistent activation rates. A longer time simulation reinforces that aerosol resuspension through cloud drop evaporation plays an important role in replenishing aerosols and impacts cloud and precipitation in marine stratocumulus clouds. Evaluation of the coupled SBM-MOSAIC with full-chemistry using aircraft measurements suggests that the new model works realistically for the marine stratocumulus clouds, and improves the simulation of cloud microphysical properties compared to a simulation using MOSAIC coupled with the Morrison two-moment microphysics.

  1. Sensitivity to deliberate sea salt seeding of marine clouds – observations and model simulations

    Directory of Open Access Journals (Sweden)

    K. Alterskjær

    2012-03-01

    Full Text Available Sea salt seeding of marine clouds to increase their albedo is a proposed technique to counteract or slow global warming. In this study, we first investigate the susceptibility of marine clouds to sea salt injections, using observational data of cloud droplet number concentration, cloud optical depth, and liquid cloud fraction from the MODIS (Moderate Resolution Imaging Spectroradiometer instruments on board the Aqua and Terra satellites. We then compare the derived susceptibility function to a corresponding estimate from the Norwegian Earth System Model (NorESM. Results compare well between simulations and observations, showing that stratocumulus regions off the west coast of the major continents along with large regions over the Pacific and the Indian Oceans are susceptible. At low and mid latitudes the signal is dominated by the cloud fraction.

    We then carry out geo-engineering experiments with a uniform increase over ocean of 10−9 kg m−2 s−1 in emissions of sea salt particles with a dry modal radius of 0.13 μm, an emission strength and areal coverage much greater than proposed in earlier studies. The increased sea salt concentrations and the resulting change in marine cloud properties lead to a globally averaged forcing of −4.8 W m−2 at the top of the atmosphere, more than cancelling the forcing associated with a doubling of CO2 concentrations. The forcing is large in areas found to be sensitive by using the susceptibility function, confirming its usefulness as an indicator of where to inject sea salt for maximum effect.

    Results also show that the effectiveness of sea salt seeding is reduced because the injected sea salt provides a large surface area for water vapor and gaseous sulphuric acid to condense on, thereby lowering the maximum supersaturation and suppressing the formation and lifetime of sulphate particles. In some areas, our simulations show an

  2. The Radiative Role of Free Tropospheric Aerosols and Marine Clouds over the Central North Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Mazzoleni, Claudio [Michigan Technological Univ., Houghton, MI (United States); Kumar, Sumit [Michigan Technological Univ., Houghton, MI (United States); Wright, Kendra [Michigan Technological Univ., Houghton, MI (United States); Kramer, Louisa [Michigan Technological Univ., Houghton, MI (United States); Mazzoleni, Lynn [Michigan Technological Univ., Houghton, MI (United States); Owen, Robert [Michigan Technological Univ., Houghton, MI (United States); Helmig, Detlev [Univ. of Colorado, Boulder, CO (United States)

    2014-12-09

    The scientific scope of the project was to exploit the unique location of the Pico Mountain Observatory (PMO) located in the summit caldera of the Pico Volcano in Pico Island in the Azores, for atmospheric studies. The observatory, located at 2225m a.s.l., typically samples free tropospheric aerosols laying above the marine low-level clouds and long-range transported from North America. The broad purpose of this research was to provide the scientific community with a better understanding of fundamental physical processes governing the effects of aerosols on radiative forcing and climate; with the ultimate goal of improving our abilities to understand past climate and to predict future changes through numerical models. The project was 'exploratory' in nature, with the plan to demonstrate the feasibility of deploying for the first time, an extensive aerosol research package at PMO. One of the primary activities was to test the deployment of these instruments at the site, to collect data during the 2012 summer season, and to further develop the infrastructure and the knowledge for performing novel research at PMO in follow-up longer-term aerosol-cloud studies. In the future, PMO could provide an elevated research outpost to support the renewed DOE effort in the Azores that was intensified in 2013 with the opening of the new sea-level ARM-DOE Eastern North Atlantic permanent facility at Graciosa Island. During the project period, extensive new data sets were collected for the planned 2012 season. Thanks to other synergistic activities and opportunities, data collection was then successfully extended to 2013 and 2014. Highlights of the scientific findings during this project include: a) biomass burning contribute significantly to the aerosol loading in the North Atlantic free troposphere; however, long-range transported black carbon concentrations decreased substantially in the last decade. b) Single black carbon particles – analyzed off-line at the electron

  3. Mesoscale kinematics derived from X-band Doppler radar observations of convective versus stratiform precipitation and comparison with GPS radiosonde profiles

    Science.gov (United States)

    Deshpande, Sachin M.; Dhangar, N.; Das, S. K.; Kalapureddy, M. C. R.; Chakravarty, K.; Sonbawne, S.; Konwar, M.

    2015-11-01

    Single Doppler analysis techniques known as velocity azimuth display (VAD) and volume velocity processing (VVP) are used to analyze kinematics of mesoscale flow such as horizontal wind and divergence using X-band Doppler weather radar observations, for selected cases of convective, stratiform, and shallow cloud systems near tropical Indian sites Pune (18.58°N, 73.92°E, above sea level (asl) 560 m) and Mandhardev (18.51°N, 73.85°E, asl 1297 m). The vertical profiles of horizontal wind estimated from radar VVP/VAD methods agree well with GPS radiosonde profiles, with the low-level jet at about 1.5 km during monsoon season well depicted in both. The vertical structure and temporal variability of divergence and reflectivity profiles are indicative of the dynamical and microphysical characteristics of shallow convective, deep convective, and stratiform cloud systems. In shallow convective systems, vertical development of reflectivity profiles is limited below 5 km. In deep convective systems, reflectivity values as large as 55 dBZ were observed above freezing level. The stratiform system shows the presence of a reflectivity bright band (~35 dBZ) near the melting level. The diagnosed vertical profiles of divergence in convective and stratiform systems are distinct. In shallow convective conditions, convergence was seen below 4 km with divergence above. Low-level convergence and upper level divergence are observed in deep convective profiles, while stratiform precipitation has midlevel convergence present between lower level and upper level divergence. The divergence profiles in stratiform precipitation exhibit intense shallow layers of "melting convergence" at 0°C level, near 4.5 km altitude, with a steep gradient on the both sides of the peak. The level of nondivergence in stratiform situations is lower than that in convective situations. These observed vertical structures of divergence are largely indicative of latent heating profiles in the atmosphere, an

  4. Using Convective Stratiform Technique (CST) method to estimate rainfall (case study in Bali, December 14th 2016)

    Science.gov (United States)

    Vista Wulandari, Ayu; Rizki Pratama, Khafid; Ismail, Prayoga

    2018-05-01

    Accurate and realtime data in wide spatial space at this time is still a problem because of the unavailability of observation of rainfall in each region. Weather satellites have a very wide range of observations and can be used to determine rainfall variability with better resolution compared with a limited direct observation. Utilization of Himawari-8 satellite data in estimating rainfall using Convective Stratiform Technique (CST) method. The CST method is performed by separating convective and stratiform cloud components using infrared channel satellite data. Cloud components are classified by slope because the physical and dynamic growth processes are very different. This research was conducted in Bali area on December 14, 2016 by verifying the result of CST process with rainfall data from Ngurah Rai Meteorology Station Bali. It is found that CST method result had simililar value with data observation in Ngurah Rai meteorological station, so it assumed that CST method can be used for rainfall estimation in Bali region.

  5. Response to marine cloud brightening in a multi-model ensemble

    Directory of Open Access Journals (Sweden)

    C. W. Stjern

    2018-01-01

    Full Text Available Here we show results from Earth system model simulations from the marine cloud brightening experiment G4cdnc of the Geoengineering Model Intercomparison Project (GeoMIP. The nine contributing models prescribe a 50 % increase in the cloud droplet number concentration (CDNC of low clouds over the global oceans in an experiment dubbed G4cdnc, with the purpose of counteracting the radiative forcing due to anthropogenic greenhouse gases under the RCP4.5 scenario. The model ensemble median effective radiative forcing (ERF amounts to −1.9 W m−2, with a substantial inter-model spread of −0.6 to −2.5 W m−2. The large spread is partly related to the considerable differences in clouds and their representation between the models, with an underestimation of low clouds in several of the models. All models predict a statistically significant temperature decrease with a median of (for years 2020–2069 −0.96 [−0.17 to −1.21] K relative to the RCP4.5 scenario, with particularly strong cooling over low-latitude continents. Globally averaged there is a weak but significant precipitation decrease of −2.35 [−0.57 to −2.96] % due to a colder climate, but at low latitudes there is a 1.19 % increase over land. This increase is part of a circulation change where a strong negative top-of-atmosphere (TOA shortwave forcing over subtropical oceans, caused by increased albedo associated with the increasing CDNC, is compensated for by rising motion and positive TOA longwave signals over adjacent land regions.

  6. Satellite retrieved cloud optical thickness sensitive to surface wind speed in the subarctic marine boundary layer

    International Nuclear Information System (INIS)

    Glantz, Paul

    2010-01-01

    The optical and microphysical properties of low level marine clouds, presented over the Norwegian Sea and Barents Sea, have been investigated for the period 2000-2006. The air masses were transported for more or less seven days over the warmer North Atlantic before they arrived at the area investigated. The main focus in this study is on investigating the relationship between cloud optical thickness (COT) and surface wind speed (U 10m ) using satellite retrievals in combination with operational meteorological data. A relatively strong correlation (R 2 = 0.97) is obtained for wind speeds up to 12 m s -1 , in air masses that were probably to a major degree influenced by wind shears and to a minor degree by buoyancy. The relationship (U 2.5 ) is also in between those most commonly found in the literature for water vapor (∼U 1 ) and sea salt (∼U 3.4 ). The present results highlight the magnitude of marine sea-spray influence on COT and their global climatic importance.

  7. Evidence of Chemical Cloud Processing from In Situ Measurements in the Polluted Marine Environment

    Science.gov (United States)

    Hudson, J. G.; Noble, S. R., Jr.

    2017-12-01

    Chemical cloud processing alters activated cloud condensation nuclei (CCN). Aqueous oxidation of trace gases dissolved within cloud droplets adds soluble material. As most cloud droplets evaporate, the residual material produces CCN that are larger and with a different hygroscopicity (κ). This improves the CCN, lowering the critical supersaturation (Sc), making it more easily activated. This process separates the processed (accumulation) and unprocessed (Aitken) modes creating bimodal CCN distributions (Hudson et al., 2015). Various measurements made during the MArine Stratus/stratocumulus Experiment (MASE), including CCN, exhibited aqueous processing signals. Particle size distributions; measured by a differential mobility analyzer; were compared with CCN distributions; measured by the Desert Research Institute CCN spectrometer; by converting size to Sc using κ to overlay concurrent distributions. By tuning each mode to the best agreement, κ for each mode is determined; processed κ (κp), unprocessed κ (κu). In MASE, 59% of bimodal distributions had different κ for the two modes indicating dominance of chemical processing via aqueous oxidation. This is consistent with Hudson et al. (2015). Figure 1A also indicates chemical processing with larger κp between 0.35-0.75. Processed CCN had an influx of soluble material from aqueous oxidation which increased κp versus κu. Above 0.75 κp is lower than κu (Fig. 1A). When κu is high and sulfate material is added, κp tends towards κ of the added material. Thus, κp is reduced by additional material that is less soluble than the original material. Chemistry measurements in MASE also indicate in-cloud aqueous oxidation (Fig. 1B and 1C). Higher fraction of CCN concentrations in the processed mode are also associated with larger amounts of sulfates (Fig. 1B, red) and nitrates (Fig. 1C, orange) while SO2 (Fig. 1B, black) and O3 (Fig. 1C, blue) have lower amounts. This larger amount of sulfate is at the expense of

  8. A 19-Month Climatology of Marine Aerosol-Cloud-Radiation Properties Derived From DOE ARM AMF Deployment at the Azores: Part I: Cloud Fraction and Single-Layered MBL Cloud Properties

    Science.gov (United States)

    Dong, Xiquan; Xi, Baike; Kennedy, Aaron; Minnis, Patrick; Wood, Robert

    2013-01-01

    A 19-month record of total, and single-layered low (0-3 km), middle (3-6 km), and high (> 6 km) cloud fractions (CFs), and the single-layered marine boundary layer (MBL) cloud macrophysical and microphysical properties has been generated from ground-based measurements taken at the ARM Azores site between June 2009 and December 2010. It documents the most comprehensive and longest dataset on marine cloud fraction and MBL cloud properties to date. The annual means of total CF, and single-layered low, middle, and high CFs derived from ARM radar-lidar observations are 0.702, 0.271, 0.01 and 0.106, respectively. More total and single-layered high CFs occurred during winter, while single-layered low CFs were greatest during summer. The diurnal cycles for both total and low CFs are stronger during summer than during winter. The CFs are bimodally distributed in the vertical with a lower peak at approx. 1 km and higher one between 8 and 11 km during all seasons, except summer, when only the low peak occurs. The persistent high pressure and dry conditions produce more single-layered MBL clouds and fewer total clouds during summer, while the low pressure and moist air masses during winter generate more total and multilayered-clouds, and deep frontal clouds associated with midlatitude cyclones.

  9. Advancing global marine biogeography research with open-source GIS software and cloud-computing

    Science.gov (United States)

    Fujioka, Ei; Vanden Berghe, Edward; Donnelly, Ben; Castillo, Julio; Cleary, Jesse; Holmes, Chris; McKnight, Sean; Halpin, patrick

    2012-01-01

    Across many scientific domains, the ability to aggregate disparate datasets enables more meaningful global analyses. Within marine biology, the Census of Marine Life served as the catalyst for such a global data aggregation effort. Under the Census framework, the Ocean Biogeographic Information System was established to coordinate an unprecedented aggregation of global marine biogeography data. The OBIS data system now contains 31.3 million observations, freely accessible through a geospatial portal. The challenges of storing, querying, disseminating, and mapping a global data collection of this complexity and magnitude are significant. In the face of declining performance and expanding feature requests, a redevelopment of the OBIS data system was undertaken. Following an Open Source philosophy, the OBIS technology stack was rebuilt using PostgreSQL, PostGIS, GeoServer and OpenLayers. This approach has markedly improved the performance and online user experience while maintaining a standards-compliant and interoperable framework. Due to the distributed nature of the project and increasing needs for storage, scalability and deployment flexibility, the entire hardware and software stack was built on a Cloud Computing environment. The flexibility of the platform, combined with the power of the application stack, enabled rapid re-development of the OBIS infrastructure, and ensured complete standards-compliance.

  10. Understanding the drivers of marine liquid-water cloud occurrence and properties with global observations using neural networks

    Directory of Open Access Journals (Sweden)

    H. Andersen

    2017-08-01

    Full Text Available The role of aerosols, clouds and their interactions with radiation remain among the largest unknowns in the climate system. Even though the processes involved are complex, aerosol–cloud interactions are often analyzed by means of bivariate relationships. In this study, 15 years (2001–2015 of monthly satellite-retrieved near-global aerosol products are combined with reanalysis data of various meteorological parameters to predict satellite-derived marine liquid-water cloud occurrence and properties by means of region-specific artificial neural networks. The statistical models used are shown to be capable of predicting clouds, especially in regions of high cloud variability. On this monthly scale, lower-tropospheric stability is shown to be the main determinant of cloud fraction and droplet size, especially in stratocumulus regions, while boundary layer height controls the liquid-water amount and thus the optical thickness of clouds. While aerosols show the expected impact on clouds, at this scale they are less relevant than some meteorological factors. Global patterns of the derived sensitivities point to regional characteristics of aerosol and cloud processes.

  11. Precipitating clouds observed by 1.3-GHz boundary layer radars in equatorial Indonesia

    Directory of Open Access Journals (Sweden)

    F. Renggono

    2001-08-01

    Full Text Available Temporal variations of precipitating clouds in equatorial Indonesia have been studied based on observations with 1357.5 MHz boundary layer radars at Serpong (6.4° S, 106.7° E near Jakarta and Bukittinggi (0.2° S, 100.3° E in West Sumatera. We have classified precipitating clouds into four types: stratiform, mixed stratiform-convective, deep convective, and shallow convective clouds, using the Williams et al. (1995 method. Diurnal variations of the occurrence of precipitating clouds at Serpong and Bukittinggi have showed the same characteristics, namely, that the precipitating clouds primarily occur in the afternoon and the peak of the stratiform cloud comes after the peak of the deep convective cloud. The time delay between the peaks of stratiform and deep convective clouds corresponds to the life cycle of the mesoscale convective system. The precipitating clouds which occur in the early morning at Serpong are dominated by stratiform cloud. Concerning seasonal variations of the precipitating clouds, we have found that the occurrence of the stratiform cloud is most frequent in the rainy season, while the occurrence of the deep convective cloud is predominant in the dry season.Key words. Meteorology and atmospheric dynamics (convective processes; precipitation; tropical meteorology

  12. A GCM study of organic matter in marine aerosol and its potential contribution to cloud drop activation

    NARCIS (Netherlands)

    Roelofs, G.J.H.

    2007-01-01

    With the global aerosol-climate model ECHAM5-HAM we investigate the potential influence of organic aerosol originating from the ocean on aerosol mass and chemical composition and the droplet concentration and size of marine clouds. We present sensitivity simulations in which the uptake of organic

  13. A GCM study of organic matter in marine aerosol and its potential contribution to cloud drop activation

    Directory of Open Access Journals (Sweden)

    G. J. Roelofs

    2008-02-01

    Full Text Available With the global aerosol-climate model ECHAM5-HAM we investigate the potential influence of organic aerosol originating from the ocean on aerosol mass and chemical composition and the droplet concentration and size of marine clouds. We present sensitivity simulations in which the uptake of organic matter in the marine aerosol is prescribed for each aerosol mode with varying organic mass and mixing state, and with a geographical distribution and seasonality similar to the oceanic emission of dimethyl sulfide. Measurements of aerosol mass, aerosol chemical composition and cloud drop effective radius are used to assess the representativity of the model initializations. Good agreement with the measurements is obtained when organic matter is added to the Aitken, accumulation and coarse modes simultaneously. Representing marine organics in the model leads to higher cloud drop number concentrations and thus smaller cloud drop effective radii, and this improves the agreement with measurements. The mixing state of the organics and the other aerosol matter, i.e. internal or external depending on the formation process of aerosol organics, is an important factor for this. We estimate that globally about 75 Tg C yr−1 of organic matter from marine origin enters the aerosol phase, with comparable contributions from primary emissions and secondary organic aerosol formation.

  14. Estimates for the Probabilities of Surface-to-Air Cloud-Free Lines-of-Sight and Low Cloud Statistics from Ship Observations. Part 1. Fifteen Marine Locations.

    Science.gov (United States)

    1980-11-24

    time before and after) or cumulus fractus of bad weath’er, or both ( pannus ), usually below altostratus or nimbostratus. 8 = Cumulus and stratocumulus...vibrous upper part by cumulus, stratocumulus, stratus or pannus . + . from Surface Marine Observations Tape Deck TDF-11 *Fog All clouds in the 0-50...Fractus of bad weather, cr V both ( pannus ), usually below Alto- stratus or N~imbostratus. The term "bad weather* denotes the conditions which coenerally

  15. Lagrangian evolution of the marine boundary layer from the Cloud System Evolution in the Trades (CSET) campaign

    Science.gov (United States)

    Mohrmann, J.; Ghate, V. P.; McCoy, I. L.; Bretherton, C. S.; Wood, R.; Minnis, P.; Palikonda, R.

    2017-12-01

    The Cloud System Evolution in the Trades (CSET) field campaign took place July/August 2015 to study the evolution of clouds, precipitation, and aerosols in the stratocumulus-to-cumulus (Sc-Cu) transition region of the northeast Pacific marine boundary layer (MBL). Aircraft observations sampled across a wide range of cloud and aerosol conditions. The sampling strategy, where MBL airmasses were sampled with the NSF/NCAR Gulfstream-V (HIAPER) and resampled then at their advected location two days later, resulted in a dataset of 14 paired flights suitable for Lagrangian analysis. This analysis shows that Lagrangian coherence of long-lived species (namely CO and O3) across 48 hours are high, but that of subcloud aerosol, MBL depth, and cloud properties is limited. Geostationary satellite retrievals are compared against aircraft observations; these are combined with reanalysis data and HYSPLIT trajectories to document the Lagrangian evolution of cloud fraction, cloud droplet number concentration, liquid water path, estimated inversion strength (EIS), and MBL depth, which are used to expand upon and validate the aircraft-based analysis. Many of the trajectories sampled by the aircraft show a clear Sc-Cu transition. Although satellite cloud fraction and EIS were found to be strongly spatiotemporally correlated, changes in MBL cloud fraction along trajectories did not correlate with any measure of EIS forcing.

  16. Dynamical and thermodynamical coupling between the North Atlantic subtropical high and the marine boundary layer clouds in boreal summer

    Science.gov (United States)

    Wei, Wei; Li, Wenhong; Deng, Yi; Yang, Song; Jiang, Jonathan H.; Huang, Lei; Liu, W. Timothy

    2018-04-01

    This study investigates dynamical and thermodynamical coupling between the North Atlantic subtropical high (NASH), marine boundary layer (MBL) clouds, and the local sea surface temperatures (SSTs) over the North Atlantic in boreal summer for 1984-2009 using NCEP/DOE Reanalysis 2 dataset, various cloud data, and the Hadley Centre sea surface temperature. On interannual timescales, the summer mean subtropical MBL clouds to the southeast of the NASH is actively coupled with the NASH and local SSTs: a stronger (weaker) NASH is often accompanied with an increase (a decrease) of MBL clouds and abnormally cooler (warmer) SSTs along the southeast flank of the NASH. To understand the physical processes between the NASH and the MBL clouds, the authors conduct a data diagnostic analysis and implement a numerical modeling investigation using an idealized anomalous atmospheric general circulation model (AGCM). Results suggest that significant northeasterly anomalies in the southeast flank of the NASH associated with an intensified NASH tend to induce stronger cold advection and coastal upwelling in the MBL cloud region, reducing the boundary surface temperature. Meanwhile, warm advection associated with the easterly anomalies from the African continent leads to warming over the MBL cloud region at 700 hPa. Such warming and the surface cooling increase the atmospheric static stability, favoring growth of the MBL clouds. The anomalous diabatic cooling associated with the growth of the MBL clouds dynamically excites an anomalous anticyclone to its north and contributes to strengthening of the NASH circulation in its southeast flank. The dynamical and thermodynamical couplings and their associated variations in the NASH, MBL clouds, and SSTs constitute an important aspect of the summer climate variability over the North Atlantic.

  17. Single-Column Model Simulations of Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions: SCM SIMULATIONS OF CLOUD TRANSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Neggers, R. A. J. [Institute for Geophysics and Meteorology, Department of Geosciences, University of Cologne, Cologne Germany; Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Ackerman, A. S. [NASA Goddard Institute for Space Studies, New York NY USA; Angevine, W. M. [CIRES, University of Colorado, Boulder CO USA; NOAA Earth System Research Laboratory, Boulder CO USA; Bazile, E. [Météo France/CNRM, Toulouse France; Beau, I. [Météo France/ENM, Toulouse France; Blossey, P. N. [Department of Atmospheric Sciences, University of Washington, Seattle WA USA; Boutle, I. A. [Met Office, Exeter UK; de Bruijn, C. [Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Cheng, A. [NOAA Center for Weather and Climate Prediction, Environmental Modeling Center, College Park MD USA; van der Dussen, J. [Department of Geoscience and Remote Sensing, Delft University of Technology, Delft The Netherlands; Fletcher, J. [Department of Atmospheric Sciences, University of Washington, Seattle WA USA; University of Leeds, Leeds UK; Dal Gesso, S. [Institute for Geophysics and Meteorology, Department of Geosciences, University of Cologne, Cologne Germany; Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Jam, A. [Météo-France/CNRM & CNRS/IPSL/LMD, Toulouse France; Kawai, H. [Meteorological Research Institute, Climate Research Department, Japan Meteorological Agency, Tsukuba Japan; Cheedela, S. K. [Department of Atmosphere in the Earth System, Max-Planck Institut für Meteorologie, Hamburg Germany; Larson, V. E. [Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee WI USA; Lefebvre, M. -P. [Météo-France/CNRM & CNRS/IPSL/LMD, Toulouse France; Lock, A. P. [Met Office, Exeter UK; Meyer, N. R. [Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee WI USA; de Roode, S. R. [Department of Geoscience and Remote Sensing, Delft University of Technology, Delft The Netherlands; de Rooy, W. [Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Sandu, I. [Section of Physical Aspects, European Centre for Medium-Range Weather Forecasts, Reading UK; Xiao, H. [University of California at Los Angeles, Los Angeles CA USA; Pacific Northwest National Laboratory, Richland WA USA; Xu, K. -M. [NASA Langley Research Centre, Hampton VI USA

    2017-10-01

    Results are presented of the GASS/EUCLIPSE single-column model inter-comparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate mod- els for this cloud regime, using large-eddy simulations of the same scenes as a reference. A novelty is that the comparison covers four different cases instead of one, in order to broaden the covered parameter space. Three cases are situated in the North-Eastern Pa- cific, while one reflects conditions in the North-Eastern Atlantic. A set of variables is considered that reflects key aspects of the transition process, making use of simple met- rics to establish the model performance. Using this method some longstanding problems in low level cloud representation are identified. Considerable spread exists among models concerning the cloud amount, its vertical structure and the associated impact on radia- tive transfer. The sign and amplitude of these biases differ somewhat per case, depending on how far the transition has progressed. After cloud breakup the ensemble median ex- hibits the well-known “too few too bright” problem. The boundary layer deepening rate and its state of decoupling are both underestimated, while the representation of the thin capping cloud layer appears complicated by a lack of vertical resolution. Encouragingly, some models are successful in representing the full set of variables, in particular the verti- cal structure and diurnal cycle of the cloud layer in transition. An intriguing result is that the median of the model ensemble performs best, inspiring a new approach in subgrid pa- rameterization.

  18. Estimating seasonal variations in cloud droplet number concentration over the boreal forest from satellite observations

    NARCIS (Netherlands)

    Janssen, R.; Ganzeveld, L.N.; Kabat, P.; Kulmala, M.; Nieminen, T.; Roebeling, R.A.

    2011-01-01

    Seasonal variations in cloud droplet number concentration (NCD) in low-level stratiform clouds over the boreal forest are estimated from MODIS observations of cloud optical and microphysical properties, using a sub-adiabatic cloud model to interpret vertical profiles of cloud properties. An

  19. Marine Boundary Layer Cloud Property Retrievals from High-Resolution ASTER Observations: Case Studies and Comparison with Terra MODIS

    Science.gov (United States)

    Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry

    2016-01-01

    A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTERspecific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in Zhao and Di Girolamo (2006). To validate and evaluate the cloud optical thickness (tau) and cloud effective radius (r(sub eff)) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000m resolution as MODIS. Subsequently, tau(sub aA) and r(sub eff, aA) retrieved from the aggregated ASTER radiances are compared with the collocated MODIS retrievals. For overcast pixels, the two data sets agree very well with Pearson's product-moment correlation coefficients of R greater than 0.970. However, for partially cloudy pixels there are significant differences between r(sub eff, aA) and the MODIS results which can exceed 10 micrometers. Moreover, it is shown that the numerous delicate cloud structures in the example marine boundary layer scenes, resolved by the high-resolution ASTER retrievals, are smoothed by the MODIS observations. The overall good agreement between the research-level ASTER results and the operational MODIS C6 products proves the feasibility of MODIS-like retrievals from ASTER reflectance measurements and provides the basis for future studies concerning the scale dependency of satellite observations and three-dimensional radiative effects.

  20. Convective and Stratiform Precipitation Processes and their Relationship to Latent Heating

    Science.gov (United States)

    Tao, Wei-Kuo; Lang, Steve; Zeng, Xiping; Shige, Shoichi; Takayabu, Yukari

    2009-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. An improved convective -stratiform heating (CSH) algorithm has been developed to obtain the 3D structure of cloud heating over the Tropics based on two sources of information: 1) rainfall information, namely its amount and the fraction due to light rain intensity, observed directly from the Precipitation Radar (PR) on board the TRMM satellite and 2) synthetic cloud physics information obtained from cloud-resolving model (CRM) simulations of cloud systems. The cloud simulations provide details on cloud processes, specifically latent heating, eddy heat flux convergence and radiative heating/cooling, that. are not directly observable by satellite. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. One of the major differences between new and old algorithms is that the level of maximum cloud heating occurs 1 to 1.5 km lower in the atmosphere in the new algorithm. This can effect the structure of the implied air currents associated with the general circulation of the atmosphere in the Tropics. The new CSH algorithm will be used provide retrieved heating data to other heating algorithms to supplement their performance.

  1. VHF signal power suppression in stratiform and convective precipitation

    Directory of Open Access Journals (Sweden)

    A. J. McDonald

    2006-03-01

    Full Text Available Previous studies have indicated that VHF clear-air radar return strengths are reduced during periods of precipitation. This study aims to examine whether the type of precipitation, stratiform and convective precipitation types are identified, has any impact on the relationships previously observed and to examine the possible mechanisms which produce this phenomenon. This study uses a combination of UHF and VHF wind-profiler data to define periods associated with stratiform and convective precipitation. This identification is achieved using an algorithm which examines the range squared corrected signal to noise ratio of the UHF returns for a bright band signature for stratiform precipitation. Regions associated with convective rainfall have been defined by identifying regions of enhanced range corrected signal to noise ratio that do not display a bright band structure and that are relatively uniform until a region above the melting layer. This study uses a total of 68 days, which incorporated significant periods of surface rainfall, between 31 August 2000 and 28 February 2002 inclusive from Aberystwyth (52.4° N, 4.1° W. Examination suggests that both precipitation types produce similar magnitude reductions in VHF signal power on average. However, the frequency of occurrence of statistically significant reductions in VHF signal power are very different. In the altitude range 2-4 km stratiform precipitation is related to VHF signal suppression approximately 50% of the time while in convective precipitation suppression is observed only 27% of the time. This statistical result suggests that evaporation, which occurs more often in stratiform precipitation, is important in reducing the small-scale irregularities in humidity and thereby the radio refractive index. A detailed case study presented also suggests that evaporation reducing small-scale irregularities in humidity may contribute to the observed VHF signal suppression.

  2. VHF signal power suppression in stratiform and convective precipitation

    Directory of Open Access Journals (Sweden)

    A. J. McDonald

    2006-03-01

    Full Text Available Previous studies have indicated that VHF clear-air radar return strengths are reduced during periods of precipitation. This study aims to examine whether the type of precipitation, stratiform and convective precipitation types are identified, has any impact on the relationships previously observed and to examine the possible mechanisms which produce this phenomenon. This study uses a combination of UHF and VHF wind-profiler data to define periods associated with stratiform and convective precipitation. This identification is achieved using an algorithm which examines the range squared corrected signal to noise ratio of the UHF returns for a bright band signature for stratiform precipitation. Regions associated with convective rainfall have been defined by identifying regions of enhanced range corrected signal to noise ratio that do not display a bright band structure and that are relatively uniform until a region above the melting layer.

    This study uses a total of 68 days, which incorporated significant periods of surface rainfall, between 31 August 2000 and 28 February 2002 inclusive from Aberystwyth (52.4° N, 4.1° W. Examination suggests that both precipitation types produce similar magnitude reductions in VHF signal power on average. However, the frequency of occurrence of statistically significant reductions in VHF signal power are very different. In the altitude range 2-4 km stratiform precipitation is related to VHF signal suppression approximately 50% of the time while in convective precipitation suppression is observed only 27% of the time. This statistical result suggests that evaporation, which occurs more often in stratiform precipitation, is important in reducing the small-scale irregularities in humidity and thereby the radio refractive index. A detailed case study presented also suggests that evaporation reducing small-scale irregularities in humidity may contribute to the observed VHF signal

  3. A multi-year data set on aerosol-cloud-precipitation-meteorology interactions for marine stratocumulus clouds.

    Science.gov (United States)

    Sorooshian, Armin; MacDonald, Alexander B; Dadashazar, Hossein; Bates, Kelvin H; Coggon, Matthew M; Craven, Jill S; Crosbie, Ewan; Hersey, Scott P; Hodas, Natasha; Lin, Jack J; Negrón Marty, Arnaldo; Maudlin, Lindsay C; Metcalf, Andrew R; Murphy, Shane M; Padró, Luz T; Prabhakar, Gouri; Rissman, Tracey A; Shingler, Taylor; Varutbangkul, Varuntida; Wang, Zhen; Woods, Roy K; Chuang, Patrick Y; Nenes, Athanasios; Jonsson, Haflidi H; Flagan, Richard C; Seinfeld, John H

    2018-02-27

    Airborne measurements of meteorological, aerosol, and stratocumulus cloud properties have been harmonized from six field campaigns during July-August months between 2005 and 2016 off the California coast. A consistent set of core instruments was deployed on the Center for Interdisciplinary Remotely-Piloted Aircraft Studies Twin Otter for 113 flight days, amounting to 514 flight hours. A unique aspect of the compiled data set is detailed measurements of aerosol microphysical properties (size distribution, composition, bioaerosol detection, hygroscopicity, optical), cloud water composition, and different sampling inlets to distinguish between clear air aerosol, interstitial in-cloud aerosol, and droplet residual particles in cloud. Measurements and data analysis follow documented methods for quality assurance. The data set is suitable for studies associated with aerosol-cloud-precipitation-meteorology-radiation interactions, especially owing to sharp aerosol perturbations from ship traffic and biomass burning. The data set can be used for model initialization and synergistic application with meteorological models and remote sensing data to improve understanding of the very interactions that comprise the largest uncertainty in the effect of anthropogenic emissions on radiative forcing.

  4. The Next-Generation Goddard Convective-Stratiform Heating Algorithm: New Model Simulations for Tropical and Continental Summertime Environments

    Science.gov (United States)

    Lang, S. E.; Tao, W. K.; Wu, D.

    2016-12-01

    The Goddard Convective-Stratiform Heating (or CSH) algorithm is used to retrieve estimates of cloud heating over the global Tropics using TRMM rainfall data and a set of look-up-tables (LUTs) derived from a series of multi-week cloud-resolving model (CRM) simulations using the Goddard Cumulus Ensemble model (or GCE). These simulations link satellite observables (i.e., surface rainfall and stratiform fraction) with cloud heating profiles, which are not directly observable. The strength of the algorithm relies in part on the representativeness of the simulations; more realistic simulations provide a stronger link between the observables and simulated heating profiles. The current "TRMM" version of the CSH algorithm relies on 2D GCE simulations using an improved version of the Goddard 3-class ice scheme (3ICE), a moderate-sized domain, and 1-km horizontal resolution. Updating the LUTs, which are suitable for tropical and continental summertime environments requires new, more realistic GCE simulations. New simulations are performed using a new, improved 4-class ice scheme, which has been shown to outperform the 3ICE scheme, especially for intense convection. Additional grid configurations are also tested and evaluated to find the best overall setup to for re-deriving and updating the CSH tropical/summertime LUTs.

  5. CCN Properties of Organic Aerosol Collected Below and within Marine Stratocumulus Clouds near Monterey, California

    Directory of Open Access Journals (Sweden)

    Akua Asa-Awuku

    2015-10-01

    Full Text Available The composition of aerosol from cloud droplets differs from that below cloud. Its implications for the Cloud Condensation Nuclei (CCN activity are the focus of this study. Water-soluble organic matter from below cloud, and cloud droplet residuals off the coast of Monterey, California were collected; offline chemical composition, CCN activity and surface tension measurements coupled with Köhler Theory Analysis are used to infer the molar volume and surfactant characteristics of organics in both samples. Based on the surface tension depression of the samples, it is unlikely that the aerosol contains strong surfactants. The activation kinetics for all samples examined are consistent with rapid (NH42SO4 calibration aerosol. This is consistent with our current understanding of droplet kinetics for ambient CCN. However, the carbonaceous material in cloud drop residuals is far more hygroscopic than in sub-cloud aerosol, suggestive of the impact of cloud chemistry on the hygroscopic properties of organic matter.

  6. Scaling analysis of cloud and rain water in marine stratocumulus and implications for scale-aware microphysical parameterizations

    Science.gov (United States)

    Witte, M.; Morrison, H.; Jensen, J. B.; Bansemer, A.; Gettelman, A.

    2017-12-01

    The spatial covariance of cloud and rain water (or in simpler terms, small and large drops, respectively) is an important quantity for accurate prediction of the accretion rate in bulk microphysical parameterizations that account for subgrid variability using assumed probability density functions (pdfs). Past diagnoses of this covariance from remote sensing, in situ measurements and large eddy simulation output have implicitly assumed that the magnitude of the covariance is insensitive to grain size (i.e. horizontal resolution) and averaging length, but this is not the case because both cloud and rain water exhibit scale invariance across a wide range of scales - from tens of centimeters to tens of kilometers in the case of cloud water, a range that we will show is primarily limited by instrumentation and sampling issues. Since the individual variances systematically vary as a function of spatial scale, it should be expected that the covariance follows a similar relationship. In this study, we quantify the scaling properties of cloud and rain water content and their covariability from high frequency in situ aircraft measurements of marine stratocumulus taken over the southeastern Pacific Ocean aboard the NSF/NCAR C-130 during the VOCALS-REx field experiment of October-November 2008. First we confirm that cloud and rain water scale in distinct manners, indicating that there is a statistically and potentially physically significant difference in the spatial structure of the two fields. Next, we demonstrate that the covariance is a strong function of spatial scale, which implies important caveats regarding the ability of limited-area models with domains smaller than a few tens of kilometers across to accurately reproduce the spatial organization of precipitation. Finally, we present preliminary work on the development of a scale-aware parameterization of cloud-rain water subgrid covariability based in multifractal analysis intended for application in large-scale model

  7. An Evaluation of Marine Boundary Layer Cloud Property Simulations in the Community Atmosphere Model Using Satellite Observations: Conventional Subgrid Parameterization versus CLUBB

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hua [Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, Maryland; Zhang, Zhibo [Joint Center for Earth Systems Technology, and Physics Department, University of Maryland, Baltimore County, Baltimore, Maryland; Ma, Po-Lun [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington; Ghan, Steven J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington; Wang, Minghuai [Institute for Climate and Global Change Research, and School of Atmospheric Sciences, Nanjing University, Nanjing, China

    2018-03-01

    This paper presents a two-step evaluation of the marine boundary layer (MBL) cloud properties from two Community Atmospheric Model (version 5.3, CAM5) simulations, one based on the CAM5 standard parameterization schemes (CAM5-Base), and the other on the Cloud Layers Unified By Binormals (CLUBB) scheme (CAM5-CLUBB). In the first step, we compare the cloud properties directly from model outputs between the two simulations. We find that the CAM5-CLUBB run produces more MBL clouds in the tropical and subtropical large-scale descending regions. Moreover, the stratocumulus (Sc) to cumulus (Cu) cloud regime transition is much smoother in CAM5-CLUBB than in CAM5-Base. In addition, in CAM5-Base we find some grid cells with very small low cloud fraction (<20%) to have very high in-cloud water content (mixing ratio up to 400mg/kg). We find no such grid cells in the CAM5-CLUBB run. However, we also note that both simulations, especially CAM5-CLUBB, produce a significant amount of “empty” low cloud cells with significant cloud fraction (up to 70%) and near-zero in-cloud water content. In the second step, we use satellite observations from CERES, MODIS and CloudSat to evaluate the simulated MBL cloud properties by employing the COSP satellite simulators. We note that a feature of the COSP-MODIS simulator to mimic the minimum detection threshold of MODIS cloud masking removes much more low clouds from CAM5-CLUBB than it does from CAM5-Base. This leads to a surprising result — in the large-scale descending regions CAM5-CLUBB has a smaller COSP-MODIS cloud fraction and weaker shortwave cloud radiative forcing than CAM5-Base. A sensitivity study suggests that this is because CAM5-CLUBB suffers more from the above-mentioned “empty” clouds issue than CAM5-Base. The COSP-MODIS cloud droplet effective radius in CAM5-CLUBB shows a spatial increase from coastal St toward Cu, which is in qualitative agreement with MODIS observations. In contrast, COSP-MODIS cloud droplet

  8. Improving Mixed-phase Cloud Parameterization in Climate Model with the ACRF Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhien [Univ. of Wyoming, Laramie, WY (United States)

    2016-12-13

    Mixed-phase cloud microphysical and dynamical processes are still poorly understood, and their representation in GCMs is a major source of uncertainties in overall cloud feedback in GCMs. Thus improving mixed-phase cloud parameterizations in climate models is critical to reducing the climate forecast uncertainties. This study aims at providing improved knowledge of mixed-phase cloud properties from the long-term ACRF observations and improving mixed-phase clouds simulations in the NCAR Community Atmosphere Model version 5 (CAM5). The key accomplishments are: 1) An improved retrieval algorithm was developed to provide liquid droplet concentration for drizzling or mixed-phase stratiform clouds. 2) A new ice concentration retrieval algorithm for stratiform mixed-phase clouds was developed. 3) A strong seasonal aerosol impact on ice generation in Arctic mixed-phase clouds was identified, which is mainly attributed to the high dust occurrence during the spring season. 4) A suite of multi-senor algorithms was applied to long-term ARM observations at the Barrow site to provide a complete dataset (LWC and effective radius profile for liquid phase, and IWC, Dge profiles and ice concentration for ice phase) to characterize Arctic stratiform mixed-phase clouds. This multi-year stratiform mixed-phase cloud dataset provides necessary information to study related processes, evaluate model stratiform mixed-phase cloud simulations, and improve model stratiform mixed-phase cloud parameterization. 5). A new in situ data analysis method was developed to quantify liquid mass partition in convective mixed-phase clouds. For the first time, we reliably compared liquid mass partitions in stratiform and convective mixed-phase clouds. Due to the different dynamics in stratiform and convective mixed-phase clouds, the temperature dependencies of liquid mass partitions are significantly different due to much higher ice concentrations in convective mixed phase clouds. 6) Systematic evaluations

  9. Drop Size Distribution - Based Separation of Stratiform and Convective Rain

    Science.gov (United States)

    Thurai, Merhala; Gatlin, Patrick; Williams, Christopher

    2014-01-01

    For applications in hydrology and meteorology, it is often desirable to separate regions of stratiform and convective rain from meteorological radar observations, both from ground-based polarimetric radars and from space-based dual frequency radars. In a previous study by Bringi et al. (2009), dual frequency profiler and dual polarization radar (C-POL) observations in Darwin, Australia, had shown that stratiform and convective rain could be separated in the log10(Nw) versus Do domain, where Do is the mean volume diameter and Nw is the scaling parameter which is proportional to the ratio of water content to the mass weighted mean diameter. Note, Nw and Do are two of the main drop size distribution (DSD) parameters. In a later study, Thurai et al (2010) confirmed that both the dual-frequency profiler based stratiform-convective rain separation and the C-POL radar based separation were consistent with each other. In this paper, we test this separation method using DSD measurements from a ground based 2D video disdrometer (2DVD), along with simultaneous observations from a collocated, vertically-pointing, X-band profiling radar (XPR). The measurements were made in Huntsville, Alabama. One-minute DSDs from 2DVD are used as input to an appropriate gamma fitting procedure to determine Nw and Do. The fitted parameters - after averaging over 3-minutes - are plotted against each other and compared with a predefined separation line. An index is used to determine how far the points lie from the separation line (as described in Thurai et al. 2010). Negative index values indicate stratiform rain and positive index indicate convective rain, and, moreover, points which lie somewhat close to the separation line are considered 'mixed' or 'transition' type precipitation. The XPR observations are used to evaluate/test the 2DVD data-based classification. A 'bright-band' detection algorithm was used to classify each vertical reflectivity profile as either stratiform or convective

  10. The Next-Generation Goddard Convective-Stratiform Heating Algorithm: Addressing Higher Latitude, Cold Season, and Synoptic Systems

    Science.gov (United States)

    Wu, D.; Tao, W. K.; Lang, S. E.

    2016-12-01

    The Goddard Convective-Stratiform Heating (or CSH) algorithm is used to retrieve estimates of cloud heating over the global Tropics using TRMM rainfall data and a set of look-up-tables (LUTs) derived from a series of multi-week cloud-resolving model (CRM) simulations using the Goddard Cumulus Ensemble model (or GCE). These simulations link satellite observables (i.e., surface rainfall and stratiform fraction) with cloud heating profiles, which are not directly observable. The current CSH LUTs are differentiated with respect to surface rainfall characteristics, which is effective for tropical and continental summertime environments. However, with the launch of GPM in 2014, the range over which such algorithms can be applied has been extended from the Tropics and mid-latitudes to higher latitudes, including cold season and synoptic weather systems. Accordingly, the CSH algorithm and LUTs need to be updated for higher latitude events. In this study, NU-WRF was employed at 1 km to simulate winter systems in the US. A, new methodology has been adopted to construct LUTs utilizing satellite-observable 3D intensity fields, such as radar reflectivity. The new methodology/LUTs can be then applied to simulated radar fields to derive cloud heating for comparison against the model simulated heating. The model heating is treated as the `truth' as it is self-consistent with the simulated radar fields. This `consistency check' approach is a common well-established first step in algorithm development (e.g., the earlier CSH). The LUTs will be improved by iterating the consistency checks to quantitatively evaluate the similarities between the retrieved and simulated heating. The evaluations will be performed for different weather events, including northeast winter storms and atmospheric rivers.

  11. Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, R. [Univ. of Washington, Seattle, WA (United States)

    2016-01-01

    The extensive coverage of low clouds over the subtropical eastern oceans greatly impacts the current climate. In addition, the response of low clouds to changes in atmospheric greenhouse gases and aerosols is a major source of uncertainty, which thwarts accurate prediction of future climate change. Low clouds are poorly simulated in climate models, partly due to inadequate long-term simultaneous observations of their macrophysical and microphysical structure, radiative effects, and associated aerosol distribution in regions where their impact is greatest. The thickness and extent of subtropical low clouds is dependent on tight couplings between surface fluxes of heat and moisture, radiative cooling, boundary layer turbulence, and precipitation (much of which evaporates before reaching the ocean surface and is closely connected to the abundance of cloud condensation nuclei). These couplings have been documented as a result of past field programs and model studies. However, extensive research is still required to achieve a quantitative understanding sufficient for developing parameterizations, which adequately predict aerosol indirect effects and low cloud response to climate perturbations. This is especially true of the interactions between clouds, aerosol, and precipitation. These processes take place in an ever-changing synoptic environment that can confound interpretation of short time period observations.

  12. Optical and Microphysical Retrievals of Marine Stratocumulus Clouds off the Coast of Namibia from Satellite and Aircraft

    Science.gov (United States)

    Platnick, Steven E.

    2010-01-01

    Though the emphasis of the Southern Africa Regional Science Initiative 2000 (SAFARI-2000) dry season campaign was largely on emission sources and transport, the assemblage of aircraft (including the high altitude NASA ER-2 remote sensing platform and the University of Washington CV-580, UK MRF C-130, and South African Weather Bureau JRA in situ aircrafts) provided a unique opportunity for cloud studies. Therefore, as part of the SAFARI initiative, investigations were undertaken to assess regional aerosol-cloud interactions and cloud remote sensing algorithms. In particular, the latter part of the experiment concentrated on marine boundary layer stratocumulus clouds off the southwest coast of Africa. Associated with cold water upwelling along the Benguela current, the Namibian stratocumulus regime has received limited attention but appears to be unique for several reasons. During the dry season, outflow of continental fires and industrial pollution over this area can be extreme. From below, upwelling provides a rich nutrient source for phytoplankton (a source of atmospheric sulfur through DMS production as well as from decay processes). The impact of these natural and anthropogenic sources on the microphysical and optical properties of the stratocumulus is unknown. Continental and Indian Ocean cloud systems of opportunity were also studied during the campaign. SAFARI 2000 aircraft flights off the coast of Namibia were coordinated with NASA Terra Satellite overpasses for synergy with the Moderate Resolution Imaging Spectroradiometer (MODIS) and other Terra instruments. MODIS was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999 (and Aqua spacecraft on May 4, 2002). Among the remote sensing algorithms developed and applied to this sensor are cloud optical and microphysical properties that include cloud thermodynamic phase, optical thickness, and effective particle radius of both liquid water and ice clouds. The archived products from

  13. Interactions Between Atmospheric Aerosols and Marine Boundary Layer Clouds on Regional and Global Scales

    Science.gov (United States)

    Wang, Zhen

    Airborne aerosols are crucial atmospheric constituents that are involved in global climate change and human life qualities. Understanding the nature and magnitude of aerosol-cloud-precipitation interactions is critical in model predictions for atmospheric radiation budget and the water cycle. The interactions depend on a variety of factors including aerosol physicochemical complexity, cloud types, meteorological and thermodynamic regimes and data processing techniques. This PhD work is an effort to quantify the relationships among aerosol, clouds, and precipitation on both global and regional scales by using satellite retrievals and aircraft measurements. The first study examines spatial distributions of conversion rate of cloud water to rainwater in warm maritime clouds over the globe by using NASA A-Train satellite data. This study compares the time scale of the onset of precipitation with different aerosol categories defined by values of aerosol optical depth, fine mode fraction, and Angstrom Exponent. The results indicate that conversion time scales are actually quite sensitive to lower tropospheric static stability (LTSS) and cloud liquid water path (LWP), in addition to aerosol type. Analysis shows that tropical Pacific Ocean is dominated by the highest average conversion rate while subtropical warm cloud regions (far northeastern Pacific Ocean, far southeastern Pacific Ocean, Western Africa coastal area) exhibit the opposite result. Conversion times are mostly shorter for lower LTSS regimes. When LTSS condition is fixed, higher conversion rates coincide with higher LWP and lower aerosol index categories. After a general global view of physical property quantifications, the rest of the presented PhD studies is focused on regional airborne observations, especially bulk cloud water chemistry and aerosol aqueous-phase reactions during the summertime off the California coast. Local air mass origins are categorized into three distinct types (ocean, ships, and land

  14. Cloud computing solutions for the Marine Corps: an architecture to support expeditionary logistics

    OpenAIRE

    Ibatuan, Charles R., II

    2013-01-01

    Approved for public release; distribution is unlimited The Department of Defense (DoD) is planning an aggressive move toward cloud computing technologies. This concept has been floating around the private information technology sector for a number of years and has benefited organizations with cost savings, increased efficiencies, and flexibility by sharing computer resources through networked connections. The push for cloud computing has been driven by the 25 Point Implementation Plan to R...

  15. O the Size Dependence of the Chemical Properties of Cloud Droplets: Exploratory Studies by Aircraft

    Science.gov (United States)

    Twohy, Cynthia H.

    1992-09-01

    Clouds play an important role in the climate of the earth and in the transport and transformation of chemical species, but many questions about clouds remain unanswered. In particular, the chemical properties of droplets may vary with droplet size, with potentially important consequences. The counterflow virtual impactor (CVI) separates droplets from interstitial particles and gases in a cloud and also can collect droplets in discrete size ranges. As such, the CVI is a useful tool for investigating the chemical components present in droplets of different sizes and their potential interactions with cloud processes. The purpose of this work is twofold. First, the sampling characteristics of the airborne CVI are investigated, using data from a variety of experiments. A thorough understanding of CVI properties is necessary in order to utilize the acquired data judiciously and effectively. Although the impaction characteristics of the CVI seem to be predictable by theory, the airborne instrument is subject to influences that may result in a reduced transmission efficiency for droplets, particularly if the inlet is not properly aligned. Ways to alleviate this problem are being investigated, but currently the imperfect sampling efficiency must be taken into account during data interpretation. Relationships between the physical and chemical properties of residual particles from droplets collected by the CVI and droplet size are then explored in both stratiform and cumulus clouds. The effects of various cloud processes and measurement limitations upon these relationships are discussed. In one study, chemical analysis of different -sized droplets sampled in stratiform clouds showed a dependence of chemical composition on droplet size, with larger droplets containing higher proportions of sodium than non-sea-salt sulfate and ammonium. Larger droplets were also associated with larger residual particles, as expected from simple cloud nucleation theory. In a study of marine

  16. Prediction of cloud droplet number in a general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Ghan, S.J.; Leung, L.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-04-01

    We have applied the Colorado State University Regional Atmospheric Modeling System (RAMS) bulk cloud microphysics parameterization to the treatment of stratiform clouds in the National Center for Atmospheric Research Community Climate Model (CCM2). The RAMS predicts mass concentrations of cloud water, cloud ice, rain and snow, and number concnetration of ice. We have introduced the droplet number conservation equation to predict droplet number and it`s dependence on aerosols.

  17. An example of economical evaluation of stratiform uranium ore deposit

    International Nuclear Information System (INIS)

    Miyata, Hatsuho; Tabuchi, Akihiro; Ushijima, Kenichi.

    1992-01-01

    The Power Reactor and Nuclear Fuel Development corp. has carried out the business of uranium resource investigation and exploration in foreign countries aiming at securing uranium resources. If there is the possibility of economically developing the discovered uranium deposit, it is transferred to a Japanese private enterprise. In this paper, among the economical evaluation works that were carried out for the uranium deposits discovered by the Corp., the example of the initial economical evaluation for a stratiform uranium deposit carried out recently is reported. The deposit is located at the depth of 50 m - 70 m, and is a stratiform deposit having the extension of 4000 m x 1000 m. The boring investigation of about 350 holes was carried out for it. The estimation of the amount of uranium was done, and the production plan was made considering the scale of production, the characteristics of the ore, the circumstances of the site and so on. Based on the production plan, the initial expenses and the operation expenses were calculated. The design of the optimal pit which affects most the profitability and the economical evaluation were carried out. (K.I.)

  18. The Next-Generation Goddard Convective-Stratiform Heating Algorithm: New Retrievals for Tropical and Extra-tropical Environments

    Science.gov (United States)

    Lang, S. E.; Tao, W. K.; Iguchi, T.

    2017-12-01

    The Goddard Convective-Stratiform Heating (or CSH) algorithm has been used to estimate cloud heating over the global Tropics using TRMM rainfall data and a set of look-up-tables (LUTs) derived from a series of multi-week cloud-resolving model (CRM) simulations using the Goddard Cumulus Ensemble model (GCE). These simulations link satellite observables (i.e., surface rainfall and stratiform fraction) with cloud heating profiles, which are not directly observable. However, with the launch of GPM in 2014, the range over which such algorithms can be applied has been extended from the Tropics into higher latitudes, including cold season and synoptic weather systems. In response, the CSH algorithm and its LUTs have been revised both to improve the retrievals in the Tropics as well as expand retrievals to higher latitudes. For the Tropics, the GCE simulations used to build the LUTs were upgraded using larger 2D model domains (512 vs 256 km) and a new, improved Goddard 4-ice scheme as well as expanded with additional cases (4 land and 6 ocean in total). The new tropical LUTs are also re-built using additional metrics. Besides surface type, conditional rain intensity and stratiform fraction, the new LUTs incorporate echo top heights and low-level (0-2 km) vertical reflectivity gradients. CSH retrievals in the Tropics based on the new LUTs show significant differences from previous iterations using TRMM data or the old LUT metrics. For the Extra-tropics, 6 NU-WRF simulations of synoptic events (3 East Coast and 3 West Coast), including snow, were used to build new extra-tropical CSH LUTs. The LUT metrics for the extra-tropics are based on radar characteristics and freezing level height. The extra-tropical retrievals are evaluated with a self-consistency check approach using the model heating as `truth,' and freezing level height is used to transition CSH retrievals from the Tropics to Extra-tropics. Retrieved zonal average heating structures in the Extra-tropics are

  19. Biogenic emissions and biomass burning influences on the chemistry of the fogwater and stratiform precipitations in the African equatorial forest

    Science.gov (United States)

    Lacaux, J. P.; Loemba-Ndembi, J.; Lefeivre, B.; Cros, B.; Delmas, R.

    An automatic wet-only precipitation collector and a fogwater collector were operated in the coastal forest of equatorial Congo (Dimonika), for a complete seasonal cycle (November 1986-September 1987). Inorganic (Na +, K +, NH 4+, Ca 2+, NO 3-, Cl -, SO 42-) and organic (HCOO -, CH 3COO -) ions were determined in 33 stratiform rain events and nine fog events. With the raindrop size distributions, measured over a 1 year period (June 1988-June 1989) at the site of Enyelé in the Equatorial forest of Congo, were established the relationship between the liquid water content ( LWC in gm -3) and the rate of rainfall ( R in mm h -1) for the stratiform rains: LWC = 0.055 × R0.871 with a correlation coefficient of 0.98. Taking into account the dilution effect due to LWC, ionic concentrations of fogwater and stratiform precipitation are enriched during the dry season. In particular, K +, NO 3-, SO 42- and Ca 2+ are considerably enriched indicating the seasonal influence of the biomass burning due to savanna fires and terrigenous source from deserts of the Southern Hemisphere. Comparison of the chemical contents of fogwater—which mainly represents the local emission of the forest—and stratiform precipitation—which represent the air chemical content of the planetary boundary layer—during the dry season enabled us to show the following. Fog and rain with comparable chemical contents in mineral elements indicate a generalized contamination of the boundary layer by marine (Na +, Cl -), terrigenous (Ca 2+) and above all by biomass burning (K +, NO 3-, SO 42-) sources. The organic content (HCOO -, CH 3COO -) higher for the fogs than for rains, unexplainable by the dilution effect, has its source at a local level in the forest ecosystem. The estimation, from the organic content of fog and rain, of the gaseous concentrations of formic and acetic acids confirm the production of carboxylic acids measured in Amazonia during ABLE (for HCOOH : 510 ppt at canopy level and 170 ppt

  20. Comment on 'Modeling of Convective-Stratiform Precipitation Processes: Sensitivity to Partitioning Methods' by Matthias Steiner

    Science.gov (United States)

    Lang, Steve; Tao, W.-K.; Simpson, J.; Ferrier, B.

    2003-01-01

    Despite the obvious notion that the presence of hail or graupel is a good indication of convection, the model results show this does not provide an objective benchmark partly due to the unrealistic presence of small amounts of hail or graupel throughout the anvil in the model but mainly because of the significant amounts of hail or graupel, especially in the tropical TOGA COARE simulation, in the transition zone. Without use of a "transition" category, it is open to debate as how this region should best be defined, as stratiform or as convective. So, the presence of significant hail or graupel contents in this zone significantly degrades its use an objective benchmark for convection. The separation algorithm comparison was done in the context of a cloud-resolving model. These models are widely used and serve a variety of purposes especially with regard to retrieving information that cannot be directly measured by providing synthetic data sets that are consistent and complete. Separation algorithms are regularly applied in these models. However, as with any modeling system, these types 'of models are constantly being improved to overcome any known deficiencies and make them more accurate representations of observed systems. The presence of hail and graupel in the anvil and the bias towards heavy rainfall rates are two such examples of areas that need improvement. Since, both of these can effect the perceived performance of the separation algorithms, the Lang et al. (2003) study did not want to overstate the relative performance of any specific algorithms.

  1. On the spread of changes in marine low cloud cover in climate model simulations of the 21st century

    Science.gov (United States)

    Qu, Xin; Hall, Alex; Klein, Stephen A.; Caldwell, Peter M.

    2014-05-01

    In 36 climate change simulations associated with phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5), changes in marine low cloud cover (LCC) exhibit a large spread, and may be either positive or negative. Here we develop a heuristic model to understand the source of the spread. The model's premise is that simulated LCC changes can be interpreted as a linear combination of contributions from factors shaping the clouds' large-scale environment. We focus primarily on two factors—the strength of the inversion capping the atmospheric boundary layer (measured by the estimated inversion strength, EIS) and sea surface temperature (SST). For a given global model, the respective contributions of EIS and SST are computed. This is done by multiplying (1) the current-climate's sensitivity of LCC to EIS or SST variations, by (2) the climate-change signal in EIS or SST. The remaining LCC changes are then attributed to changes in greenhouse gas and aerosol concentrations, and other environmental factors. The heuristic model is remarkably skillful. Its SST term dominates, accounting for nearly two-thirds of the intermodel variance of LCC changes in CMIP3 models, and about half in CMIP5 models. Of the two factors governing the SST term (the SST increase and the sensitivity of LCC to SST perturbations), the SST sensitivity drives the spread in the SST term and hence the spread in the overall LCC changes. This sensitivity varies a great deal from model to model and is strongly linked to the types of cloud and boundary layer parameterizations used in the models. EIS and SST sensitivities are also estimated using observational cloud and meteorological data. The observed sensitivities are generally consistent with the majority of models as well as expectations from prior research. Based on the observed sensitivities and the relative magnitudes of simulated EIS and SST changes (which we argue are also physically reasonable), the heuristic model predicts LCC

  2. Chemical Speciation of Sulfur in Marine Cloud Droplets and Particles: Analysis of Individual Particles from Marine Boundary Layer over the California Current

    Energy Technology Data Exchange (ETDEWEB)

    William R. Wiley Environmental Sciences Laboratory, Pacific Northwest National Laboratory; Gilles, Mary K; Hopkins, Rebecca J.; Desyaterik, Yury; Tivanski, Alexei V.; Zaveri, Rahul A.; Berkowitz, Carl M.; Tyliszczak, Tolek; Gilles, Mary K.; Laskin, Alexander

    2008-03-12

    Detailed chemical speciation of the dry residue particles from individual cloud droplets and interstitial aerosol collected during the Marine Stratus Experiment (MASE) was performed using a combination of complementary microanalysis techniques. Techniques include computer controlled scanning electron microscopy with energy dispersed analysis of X-rays (CCSEM/EDX), time-of-flight secondary ionization mass spectrometry (TOF-SIMS), and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Samples were collected at the ground site located in Point Reyes National Seashore, approximately 1 km from the coast. This manuscript focuses on the analysis of individual particles sampled from air masses that originated over the open ocean and then passed through the area of the California current located along the northern California coast. Based on composition, morphology, and chemical bonding information, two externally mixed, distinct classes of sulfur containing particles were identified: chemically modified (aged) sea salt particles and secondary formed sulfate particles. The results indicate substantial heterogeneous replacement of chloride by methanesulfonate (CH3SO3-) and non-sea salt sulfate (nss-SO42-) in sea-salt particles with characteristic ratios of nss-S/Na>0.10 and CH3SO3-/nss-SO42->0.6.

  3. An A-train and MERRA view of cloud, thermodynamic, and dynamic variability within the subtropical marine boundary layer

    Directory of Open Access Journals (Sweden)

    B. H. Kahn

    2017-08-01

    Full Text Available The global-scale patterns and covariances of subtropical marine boundary layer (MBL cloud fraction and spatial variability with atmospheric thermodynamic and dynamic fields remain poorly understood. We describe an approach that leverages coincident NASA A-train and the Modern Era Retrospective-Analysis for Research and Applications (MERRA data to quantify the relationships in the subtropical MBL derived at the native pixel and grid resolution. A new method for observing four subtropical oceanic regions that capture transitions from stratocumulus to trade cumulus is demonstrated, where stratocumulus and cumulus regimes are determined from infrared-based thermodynamic phase. Visible radiances are normally distributed within stratocumulus and are increasingly skewed away from the coast, where trade cumulus dominates. Increases in MBL depth, wind speed, and effective radius (re, and reductions in 700–1000 hPa moist static energy differences and 700 and 850 hPa vertical velocity correspond with increases in visible radiance skewness. We posit that a more robust representation of the cloudy MBL is obtained using visible radiance rather than retrievals of optical thickness that are limited to a smaller subset of cumulus. The method using the combined A-train and MERRA data set has demonstrated that an increase in re within shallow cumulus is strongly related to higher MBL wind speeds that further correspond to increased precipitation occurrence according to CloudSat, previously demonstrated with surface observations. Hence, the combined data sets have the potential of adding global context to process-level understanding of the MBL.

  4. A novel approach to Lagrangian sampling of marine boundary layer cloud and aerosol in the northeast Pacific: case studies from CSET

    Science.gov (United States)

    Mohrmann, J.; Albrecht, B. A.; Bretherton, C. S.; Ghate, V. P.; Zuidema, P.; Wood, R.

    2015-12-01

    The Cloud System Evolution in the Trades (CSET) field campaign took place during July/August 2015 with the purpose of characterizing the cloud, aerosol and thermodynamic properties of the northeast Pacific marine boundary layer. One major science goal of the campaign was to observe a Lagrangian transition from thin stratocumulus (Sc) upwind near California to trade cumulus (Cu) nearer to Hawaii. Cloud properties were observed from the NSF/NCAR Gulfstream V research plane (GV) using the HIAPER Cloud Radar (HCR) and the HIAPER Spectral Resolution Lidar (HSRL), among other instrumentation. Aircraft observations were complemented by a suite of satellite-derived products. To observe a the evolution of airmasses over the course of two days, upwind regions were sampled on an outbound flight to from Sacramento, CA, to Kona, HI. The sampled airmasses were then tracked using HYSPLIT trajectories based on GFS model forecasts, and the return flight to California was planned to intercept those airmasses, using satellite observation to track cloud evolution in the interim. This approach required that trajectories were reasonably stable up to 3 days prior to final sampling, and also that forecast trajectories were in agreement with post-flight analysis and visual cloud feature tracking. The extent to which this was realised, and hence the validity of this new approach to Lagrangian airmass observation, is assessed here. We also present results showing that a Sc-Cu airmass transition was consistently observed during the CSET study using measurements from research flights and satellite.

  5. SeaDataCloud - further developing the pan-European SeaDataNet infrastructure for marine and ocean data management

    Science.gov (United States)

    Schaap, Dick M. A.; Fichaut, Michele

    2017-04-01

    SeaDataCloud marks the third phase of developing the pan-European SeaDataNet infrastructure for marine and ocean data management. The SeaDataCloud project is funded by EU and runs for 4 years from 1st November 2016. It succeeds the successful SeaDataNet II (2011 - 2015) and SeaDataNet (2006 - 2011) projects. SeaDataNet has set up and operates a pan-European infrastructure for managing marine and ocean data and is undertaken by National Oceanographic Data Centres (NODC's) and oceanographic data focal points from 34 coastal states in Europe. The infrastructure comprises a network of interconnected data centres and central SeaDataNet portal. The portal provides users a harmonised set of metadata directories and controlled access to the large collections of datasets, managed by the interconnected data centres. The population of directories has increased considerably in cooperation with and involvement in many associated EU projects and initiatives such as EMODnet. SeaDataNet at present gives overview and access to more than 1.9 million data sets for physical oceanography, chemistry, geology, geophysics, bathymetry and biology from more than 100 connected data centres from 34 countries riparian to European seas. SeaDataNet is also active in setting and governing marine data standards, and exploring and establishing interoperability solutions to connect to other e-infrastructures on the basis of standards of ISO (19115, 19139), and OGC (WMS, WFS, CS-W and SWE). Standards and associated SeaDataNet tools are made available at the SeaDataNet portal for wide uptake by data handling and managing organisations. SeaDataCloud aims at further developing standards, innovating services & products, adopting new technologies, and giving more attention to users. Moreover, it is about implementing a cooperation between the SeaDataNet consortium of marine data centres and the EUDAT consortium of e-infrastructure service providers. SeaDataCloud aims at considerably advancing services and

  6. Metasomatic zoning at some stratiform rare metal deposits

    International Nuclear Information System (INIS)

    Altyntsev, Yu.V.; Bazhenov, M.I.; Bepeshov, G.V.; Komarnitskij, G.M.; Petrov, I.Ya.; Serykh, A.S.

    1985-01-01

    Metasomatic zoning of stratiform deposits of rare metals (Mo, Pb, As, V, Se, U, etc.) in intermontane depresions, deposited at the postorogenic stage of Paleozoic geosyncline region development, is considered. Geochemical and geophysical characteristics of metasomatic zoning in the case of sloping and steep rock deposition are given. It is established, that in rare metal deposits in variegated deposits of molassoid formation of Middle-Upper Paleozoic the external and internal zones of metasomatic alterations are distinctly separated. The external zone is presented by mineral association: quartz + -albile + -calcite + -epidote; the internal one - by hydromica + -chlorite + -analcite, laumontite + -hematite + -ankerite + -kaolinite. Geochemical zoning is manifested quite regularly at all the deposits and it is subjected to metasomatic zoning. Changes in physical properties of rocks reflect the metasomatic zoning. The character of metasomatic alterations of rocks, geochemical zoning of metasomatites at rare metal deposits in molassoid deposits and spatially contiguous deposits in volcanogenic complexes have common features. A supposition is made on polygenic ore formation in sedimentary rocks of the depressions

  7. Coupling between marine boundary layer clouds and summer-to-summer sea surface temperature variability over the North Atlantic and Pacific

    Science.gov (United States)

    Myers, Timothy A.; Mechoso, Carlos R.; DeFlorio, Michael J.

    2018-02-01

    Climate modes of variability over the Atlantic and Pacific may be amplified by a positive feedback between sea-surface temperature (SST) and marine boundary layer clouds. However, it is well known that climate models poorly simulate this feedback. Does this deficiency contribute to model-to-model differences in the representation of climate modes of variability? Over both the North Atlantic and Pacific, typical summertime interannual to interdecadal SST variability exhibits horseshoe-like patterns of co-located anomalies of shortwave cloud radiative effect (CRE), low-level cloud fraction, SST, and estimated inversion strength over the subtropics and midlatitudes that are consistent with a positive cloud feedback. During winter over the midlatitudes, this feedback appears to be diminished. Models participating in the Coupled Model Intercomparison Project phase 5 that simulate a weak feedback between subtropical SST and shortwave CRE produce smaller and less realistic amplitudes of summertime SST and CRE variability over the northern oceans compared to models with a stronger feedback. The change in SST amplitude per unit change in CRE amplitude among the models and observations may be understood as the temperature response of the ocean mixed layer to a unit change in radiative flux over the course of a season. These results highlight the importance of boundary layer clouds in interannual to interdecadal atmosphere-ocean variability over the northern oceans during summer. The results also suggest that deficiencies in the simulation of these clouds in coupled climate models contribute to underestimation in their simulation of summer-to-summer SST variability.

  8. Comparison of Marine Boundary Layer Cloud Properties From CERES-MODIS Edition 4 and DOE ARM AMF Measurements at the Azores

    Science.gov (United States)

    Dong, X.; Xi, B.; Minnis, P.; Sun-Mack, S.

    2014-12-01

    Marine Boundary Layer (MBL) cloud properties derived for the NASA CERES Project using Terra and Aqua MODIS data are compared with observations taken at DOE ARM Mobile Facility at the Azores site from Jun. 2009 to Dec. 2010. Cloud properties derived from ARM ground-based observations were averaged over a 1-hour interval centered at the satellite overpass time, while the CERES-MODIS (CM) results were averaged within a 30×30 km2 grid box centered over the Azores site. A total of 63 daytime and 92 nighttime single-layered overcast MBL cloud cases were selected from 19 months of ARM radar-lidar and satellite observations. The CM cloud-top/base heights (Htop/Hbase) were determined from cloud-top/base temperatures (Ttop/Tbase) using a regional boundary-layer lapse rate method. For daytime comparisons, the CM-derived Htop (Hbase), on average, is 0.063 km (0.068 km) higher (lower) than its ARM radar-lidar observed counterpart, and the CM-derived Ttop and Tbase are 0.9 K less and 2.5 K greater than the surface values with high correlations (R2=0.82 and 0.84, respectively). In general, the cloud-top comparisons agree better than cloud-base comparisons because the CM Tbase and Hbase are secondary product determined from Ttop and Htop. No significant day-night difference was found in the analyses. The comparisons of microphysical properties reveal that, when averaged over a 30x30 km2 area, the CM-retrieved cloud-droplet effective radius (re) is 1.3 µm larger than that from the ARM retrievals (12.8 µm). While the CM-retrieved cloud liquid water path (LWP) is 13.5 gm-2 less than its ARM counterpart (114.2 gm-2) due to its small optical depth (τ, 9.6 vs. 13.7). The differences are reduced by 50% when the CM averages are computed only using the MODIS pixel nearest the AMF site. Using effective radius retrieved at 2.1-µm channel to calculate LWP can reduce the difference between the CM and ARM from -13.7 to 2.1 gm-2. The 10% differences between the ARM and CM LWP and re

  9. Comparison of Marine Boundary Layer Cloud Properties from CERES-MODIS Edition 4 and DOE ARM AMF Measurements at the Azores

    Science.gov (United States)

    Xi, Baike; Dong, Xiquan; Minnis, Patrick; Sun-Mack, Sunny

    2014-01-01

    Marine boundary layer (MBL) cloud properties derived from the NASA Clouds and the Earth's Radiant Energy System (CERES) project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Department of Energy Atmospheric Radiation Measurement (ARM) Mobile Facility at the Azores (AMF-Azores) site from June 2009 through December 2010. Cloud properties derived from ARM ground-based observations were averaged over a 1 h interval centered at the satellite overpass time, while the CERES-MODIS (CM) results were averaged within a 30 km×30 km grid box centered over the Azores site. A total of 63 daytime and 92 nighttime single-layered overcast MBL cloud cases were selected from 19 months of ARM radar-lidar and satellite observations. The CM cloud top/base heights (Htop/Hbase) were determined from cloud top/base temperatures (Ttop/Tbase) using a regional boundary layer lapse rate method. For daytime comparisons, the CM-derived Htop (Hbase), on average, is 0.063 km (0.068 km) higher (lower) than its ARM radar-lidar-observed counterpart, and the CM-derived Ttop and Tbase are 0.9 K less and 2.5 K greater than the surface values with high correlations (R(sup 2) = 0.82 and 0.84, respectively). In general, the cloud top comparisons agree better than the cloud base comparisons, because the CM cloud base temperatures and heights are secondary products determined from cloud top temperatures and heights. No significant day-night difference was found in the analyses. The comparisons of MBL cloud microphysical properties reveal that when averaged over a 30 km× 30 km area, the CM-retrieved cloud droplet effective radius (re) at 3.7 micrometers is 1.3 micrometers larger than that from the ARM retrievals (12.8 micrometers), while the CM-retrieved cloud liquid water path (LWP) is 13.5 gm( exp -2) less than its ARM counterpart (114.2 gm( exp-2) due to its small optical depth (9.6 versus 13.7). The differences are reduced by 50

  10. Observations of the boundary layer, cloud, and aerosol variability in the southeast Pacific coastal marine stratocumulus during VOCALS-REx

    Science.gov (United States)

    Zheng, X.; Albrecht, B.; Jonsson, H. H.; Khelif, D.; Feingold, G.; Minnis, P.; Ayers, K.; Chuang, P.; Donaher, S.; Rossiter, D.; Ghate, V.; Ruiz-Plancarte, J.; Sun-Mack, S.

    2011-05-01

    Aircraft observations made off the coast of northern Chile in the Southeastern Pacific (20° S, 72° W; named Point Alpha) from 16 October to 13 November 2008 during the VAMOS Ocean-Cloud-Atmosphere-Land Study-Regional Experiment (VOCALS-REx), combined with meteorological reanalysis, satellite measurements, and radiosonde data, are used to investigate the boundary layer (BL) and aerosol-cloud-drizzle variations in this region. The BL at Point Alpha was typical of a non-drizzling stratocumulus-topped BL on days without predominately synoptic and meso-scale influences. The BL had a depth of 1140 ± 120 m, was well-mixed and capped by a sharp inversion. The wind direction generally switched from southerly within the BL to northerly above the inversion. The cloud liquid water path (LWP) varied between 15 g m-2 and 160 g m-2. From 29 October to 4 November, when a synoptic system affected conditions at Point Alpha, the cloud LWP was higher than on the other days by around 40 g m-2. On 1 and 2 November, a moist layer above the inversion moved over Point Alpha. The total-water specific humidity above the inversion was larger than that within the BL during these days. Entrainment rates (average of 1.5 ± 0.6 mm s-1) calculated from the near cloud-top fluxes and turbulence (vertical velocity variance) in the BL at Point Alpha appeared to be weaker than those in the BL over the open ocean west of Point Alpha and the BL near the coast of the northeast Pacific. The accumulation mode aerosol varied from 250 to 700 cm-3 within the BL, and CCN at 0.2 % supersaturation within the BL ranged between 150 and 550 cm-3. The main aerosol source at Point Alpha was horizontal advection within the BL from south. The average cloud droplet number concentration ranged between 80 and 400 cm-3, which was consistent with the satellite-derived values. The relationship of cloud droplet number concentration and CCN at 0.2 % supersaturation from 18 flights is Nd =4.6 × CCN0.71. While the mean LWP

  11. Os isotopes and cooper sources for stratiform (mantos) cooper deposits of Chile

    International Nuclear Information System (INIS)

    Munizaga, Francisco; Ruiz, Joaquin; Freydier, Claire

    1998-01-01

    The sources of copper have been determined by studying trace elements osmium and rhenium as well as osmium isotope ratio in copper-bearing porphyry of Chuquicamata, el Teniente and Andacollo and in the stratiform copper deposits of Mantos Blancos, El Soldado, Cerro Negro and Talcuna

  12. Radar rainfall estimation of stratiform winter precipitation in the Belgian Ardennes

    NARCIS (Netherlands)

    Hazenberg, P.; Leijnse, H.; Uijlenhoet, R.

    2011-01-01

    Radars are known for their ability to obtain a wealth of information about spatial storm field characteristics. Unfortunately, rainfall estimates obtained by this instrument are known to be affected by multiple sources of error. Especially for stratiform precipitation systems, the quality of radar

  13. Observations of the boundary layer, cloud, and aerosol variability in the southeast Pacific coastal marine stratocumulus during VOCALS-REx

    OpenAIRE

    X. Zheng; B. Albrecht; H. H. Jonsson; D. Khelif; G. Feingold; P. Minnis; K. Ayers; P. Chuang; S. Donaher; D. Rossiter; V. Ghate; J. Ruiz-Plancarte; S. Sun-Mack

    2011-01-01

    Aircraft observations made off the coast of northern Chile in the Southeastern Pacific (20° S, 72° W; named Point Alpha) from 16 October to 13 November 2008 during the VAMOS Ocean-Cloud-Atmosphere-Land Study-Regional Experiment (VOCALS-REx), combined with meteorological reanalysis, satellite measurements, and radiosonde data, are used to investigate the boundary layer (BL) and aerosol-cloud-drizzle variations in this region. The BL at Point Alpha was typical of a non-drizzling stratocumulus-t...

  14. Observational and Numerical Studies of the Boundary Layer, Cloud, and Aerosol Variability in the Southeast Pacific Coastal Marine Stratocumulus

    Science.gov (United States)

    2012-05-01

    Malinowski , J.-L., Brenguier and F. Burnet, 2005: Holes and entrainment in stratocumulus, J. Atmos. Sci., 62, 443-459. Ghate, V. P., B. A...Tennessee. Haman, K. E., S. P. Malinowski , M. J. Kurowski, H. Gerber, and J.-L. Brenguier, 2007: Small scale mixing processes at the top of a marine

  15. Influence of summer marine fog and low cloud stratus on water relations of evergreen woody shrubs (Arctostaphylos: Ericaceae) in the chaparral of central California.

    Science.gov (United States)

    Vasey, Michael C; Loik, Michael E; Parker, V Thomas

    2012-10-01

    Mediterranean-type climate (MTC) regions around the world are notable for cool, wet winters and hot, dry summers. A dominant vegetation type in all five MTC regions is evergreen, sclerophyllous shrubland, called chaparral in California. The extreme summer dry season in California is moderated by a persistent low-elevation layer of marine fog and cloud cover along the margin of the Pacific coast. We tested whether late dry season water potentials (Ψ(min)) of chaparral shrubs, such as Arctostaphylos species in central California, are influenced by this coast-to-interior climate gradient. Lowland coastal (maritime) shrubs were found to have significantly less negative Ψ(min) than upland interior shrubs (interior), and stable isotope (δ(13)C) values exhibited greater water use efficiency in the interior. Post-fire resprouter shrubs (resprouters) had significantly less negative Ψ(min) than co-occurring obligate seeder shrubs (seeders) in interior and transitional chaparral, possibly because resprouters have deeper root systems with better access to subsurface water than shallow-rooted seeders. Unexpectedly, maritime resprouters and seeders did not differ significantly in their Ψ(min), possibly reflecting more favorable water availability for shrubs influenced by the summer marine layer. Microclimate and soil data also suggest that maritime habitats have more favorable water availability than the interior. While maritime seeders constitute the majority of local Arctostaphylos endemics, they exhibited significantly greater vulnerability to xylem cavitation than interior seeders. Because rare seeders in maritime chaparral are more vulnerable to xylem cavitation than interior seeders, the potential breakdown of the summer marine layer along the coast is of potential conservation concern.

  16. Stratocumulus Cloud Top Radiative Cooling and Cloud Base Updraft Speeds

    Science.gov (United States)

    Kazil, J.; Feingold, G.; Balsells, J.; Klinger, C.

    2017-12-01

    Cloud top radiative cooling is a primary driver of turbulence in the stratocumulus-topped marine boundary. A functional relationship between cloud top cooling and cloud base updraft speeds may therefore exist. A correlation of cloud top radiative cooling and cloud base updraft speeds has been recently identified empirically, providing a basis for satellite retrieval of cloud base updraft speeds. Such retrievals may enable analysis of aerosol-cloud interactions using satellite observations: Updraft speeds at cloud base co-determine supersaturation and therefore the activation of cloud condensation nuclei, which in turn co-determine cloud properties and precipitation formation. We use large eddy simulation and an off-line radiative transfer model to explore the relationship between cloud-top radiative cooling and cloud base updraft speeds in a marine stratocumulus cloud over the course of the diurnal cycle. We find that during daytime, at low cloud water path (CWP correlated, in agreement with the reported empirical relationship. During the night, in the absence of short-wave heating, CWP builds up (CWP > 50 g m-2) and long-wave emissions from cloud top saturate, while cloud base heating increases. In combination, cloud top cooling and cloud base updrafts become weakly anti-correlated. A functional relationship between cloud top cooling and cloud base updraft speed can hence be expected for stratocumulus clouds with a sufficiently low CWP and sub-saturated long-wave emissions, in particular during daytime. At higher CWPs, in particular at night, the relationship breaks down due to saturation of long-wave emissions from cloud top.

  17. Marine Science

    African Journals Online (AJOL)

    J O U R N A L O F. Marine Science. Coral reefs of Mauritius in a changing global climate ..... in confined aquifers, and a lesser influence in uncon- fined systems. On the ... massive cloud cover during the critical months, some. 70% bleaching ...

  18. Geochemistry of the furnace magnetite bed, Franklin, New Jersey, and the relationship between stratiform iron oxide ores and stratiform zinc oxide-silicate ores in the New Jersey highlands

    Science.gov (United States)

    Johnson, C.A.; Skinner, B.J.

    2003-01-01

    The New Jersey Highlands terrace, which is an exposure of the Middle Proterozoic Grenville orogenic belt located in northeastern United States, contains stratiform zinc oxide-silicate deposits at Franklin and Sterling Hill and numerous massive magnetite deposits. The origins of the zinc and magnetite deposits have rarely been considered together, but a genetic link is suggested by the occurrence of the Furnace magnetite bed and small magnetite lenses immediately beneath the Franklin zinc deposit. The Furnace bed was metamorphosed and deformed along with its enclosing rocks during the Grenvillian orogeny, obscuring the original mineralogy and obliterating the original rock fabrics. The present mineralogy is manganiferous magnetite plus calcite. Trace hydrous silicates, some coexisting with fluorite, have fluorine contents that are among the highest ever observed in natural assemblages. Furnace bed calcite has ??13C values of -5 ?? 1 per mil relative to Peedee belemnite (PDB) and ??18O values of 11 to 20 per mil relative to Vienna-standard mean ocean water (VSMOW). The isotopic compositions do not vary as expected for an original siderite layer that decarbonated during metamorphism, but they are consistent with nearly isochemical metamorphism of an iron oxide + calcite protolith that is chemically and minerlogically similar to iron-rich sediments found near the Red Sea brine pools and isotopically similar to Superior-type banded iron formations. Other magniferous magnite + calcite bodies occur at approximately the same stratigraphic position as far 50 km from the zinc deposits. A model is presented in which the iron and zinc deposits formed along the western edge of a Middle Proterozoic marine basin. Zinc was transported by sulfate-stable brines and was precipitated under sulfate-stable conditions as zincian carbonates and Fe-Mn-Zn oxides and silicates. Whether the zincian assemblages settled from the water column or formed by replacement reactions in shallowly

  19. Diurnal phase of late-night against late-afternoon of stratiform and convective precipitation in summer southern contiguous China

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Rucong [Chinese Academy of Sciences, LASG, Institute of Atmospheric Physics, Beijing (China); China Meteorological Administration, LaSW, Chinese Academy of Meteorological Sciences, Beijing (China); Yuan, Weihua [Chinese Academy of Sciences, LASG, Institute of Atmospheric Physics, Beijing (China); Graduate School of the Chinese Academy of Sciences, Beijing (China); Li, Jian [China Meteorological Administration, LaSW, Chinese Academy of Meteorological Sciences, Beijing (China); Fu, Yunfei [Chinese Academy of Sciences, LASG, Institute of Atmospheric Physics, Beijing (China); University of Science and Technology of China, Laboratory of Satellite Remote Sensing and Climate Environment, Hefei, Anhui (China)

    2010-09-15

    Using the tropical rainfall measuring mission (TRMM) Precipitation Radar (PR) observations combined with the surface rain gauge data during 1998-2006, the robust diurnal features of summer stratiform and convective precipitation over the southern contiguous China are revealed by exploring the diurnal variations of rain rate and precipitation profile. The precipitation over the southern contiguous China exhibits two distinguishing diurnal phases: late-night (2200-0600 LST) and late-afternoon (1400-2200 LST), dependent on the location, precipitation type and duration time. Generally, the maximum rain rate and the highest profile of stratiform precipitation occur in the late-afternoon (late-night) over the southeastern (southwestern) China, while most of the stratiform short-duration rain rate tends to present late-afternoon peaks over the southern China. For convective precipitation, the maximum rain rate and the highest profile occur in the late-afternoon over most of the southern contiguous China, while the convective long-duration rain rate exhibits late-night peaks over the southwestern China. Without regional dependence, the convective precipitation exhibits much larger amplitude of diurnal variations in both near surface rain rate and vertical extension compared with stratiform precipitation and the convective rain top rises most rapidly between noon and afternoon. However, there are two distinctive sub-regions. The diurnal phases of precipitation there are very weakly dependent on precipitation type and duration time. Over the eastern periphery of the Tibetan Plateau, the maximum rain rate and the highest profile of either convective or stratiform precipitation occur in the late-night. Over the southeastern coastal regions, both the near surface rain rate and rain top of convective and stratiform precipitation peak in the late-afternoon. (orig.)

  20. Cloud Processed CCN Suppress Stratus Cloud Drizzle

    Science.gov (United States)

    Hudson, J. G.; Noble, S. R., Jr.

    2017-12-01

    Conversion of sulfur dioxide to sulfate within cloud droplets increases the sizes and decreases the critical supersaturation, Sc, of cloud residual particles that had nucleated the droplets. Since other particles remain at the same sizes and Sc a size and Sc gap is often observed. Hudson et al. (2015) showed higher cloud droplet concentrations (Nc) in stratus clouds associated with bimodal high-resolution CCN spectra from the DRI CCN spectrometer compared to clouds associated with unimodal CCN spectra (not cloud processed). Here we show that CCN spectral shape (bimodal or unimodal) affects all aspects of stratus cloud microphysics and drizzle. Panel A shows mean differential cloud droplet spectra that have been divided according to traditional slopes, k, of the 131 measured CCN spectra in the Marine Stratus/Stratocumulus Experiment (MASE) off the Central California coast. K is generally high within the supersaturation, S, range of stratus clouds (< 0.5%). Because cloud processing decreases Sc of some particles, it reduces k. Panel A shows higher concentrations of small cloud droplets apparently grown on lower k CCN than clouds grown on higher k CCN. At small droplet sizes the concentrations follow the k order of the legend, black, red, green, blue (lowest to highest k). Above 13 µm diameter the lines cross and the hierarchy reverses so that blue (highest k) has the highest concentrations followed by green, red and black (lowest k). This reversed hierarchy continues into the drizzle size range (panel B) where the most drizzle drops, Nd, are in clouds grown on the least cloud-processed CCN (blue), while clouds grown on the most processed CCN (black) have the lowest Nd. Suppression of stratus cloud drizzle by cloud processing is an additional 2nd indirect aerosol effect (IAE) that along with the enhancement of 1st IAE by higher Nc (panel A) are above and beyond original IAE. However, further similar analysis is needed in other cloud regimes to determine if MASE was

  1. Manifestation of Aerosol Indirect Effects in Arctic Clouds

    Science.gov (United States)

    Lubin, D.; Vogelmann, A. M.

    2009-12-01

    The first aerosol indirect effect has traditionally been conceived as an enhancement of shortwave cloud reflectance in response to decreased effective droplet size at fixed liquid water path, as cloud nucleating aerosol becomes entrained in the cloud. The high Arctic, with its pervasive low-level stratiform cloud cover and frequent episodes of anthropogenic aerosol (Artic "haze"), has in recent years served as a natural laboratory for research on actual manifestations of aerosol indirect effects. This paper will review the surprising set of developments: (1) the detection of the indirect effect as a source of surface warming, rather than cooling, throughout early spring, (2) a transition to a cooling effect in late spring, corresponding to the beginning of the sea ice melt season, and (3) detection of an indirect effect during summer, outside of the "Arctic haze" season. This paper will also discuss measurements of spectral shortwave irradiance (350-2200 nm) made at Barrow, Alaska, during the U.S. Department of Energy's Indirect and Semi-Direct Aerosol Campaign (ISDAC), which reveal complications in our conception of the indirect effect related to the ice phase in Arctic stratiform clouds.

  2. World production and possible recovery of cobalt from the Kupferschiefer stratiform copper ore

    Directory of Open Access Journals (Sweden)

    Pazik Paulina M.

    2016-01-01

    Full Text Available Cobalt is recognized as a strategic metal and also E-tech element, which is crucial for worlds development. An increasing demand for cobalt forces for searching of new resources that could be explored in European countries. There are many examples of cobalt recoveries, mostly from laterite and sulphide deposits. However, the accurate choice of the technology depends on many factors. The Kupferschiefer stratiform copper ore located in Poland is the biggest deposit of cobalt in Europe. Although KGHM Polska Miedz S.A. recovers many precious metals from this ore, cobalt is not recovered yet. This metal occurs as an accompanying element, mostly in the form of cobaltite (CaAsS, with the average content of 50–80 g/Mg. In this paper a possible recovery of cobalt from the Kupferschiefer ore, with the use of hydrometallurgical methods, was investigated.

  3. Simulation of Optical Properties and Direct and Indirect Radiative Effects of Smoke Aerosols Over Marine Stratocumulus Clouds During Summer 2008 in California With the Regional Climate Model RegCM

    Science.gov (United States)

    Mallet, M.; Solmon, F.; Roblou, L.; Peers, F.; Turquety, S.; Waquet, F.; Jethva, H.; Torres, O.

    2017-10-01

    The regional climate model RegCM has been modified to better account for the climatic effects of biomass-burning particles. Smoke aerosols are represented by new tracers with consistent radiative and hygroscopic properties to simulate the direct radiative forcing (DRF), and a new parameterization has been integrated for relating the droplet number concentration to the aerosol concentration for marine stratocumulus clouds (Sc). RegCM has been tested during the summer of 2008 over California, when extreme concentration of smoke, together with the presence of Sc, is observed. This work indicates that significant aerosol optical depth (AOD) ( 1-2 at 550 nm) is related to the intense 2008 fires. Compared to Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer, the regional pattern of RegCM AOD is well represented although the magnitude is lower than satellite observations. Comparisons with Polarization and Directionality of Earth Reflectances (POLDER) above-clouds aerosol optical depth (ACAOD) show the ability of RegCM to simulate realistic ACAOD during the transport of smoke above the Pacific Ocean. The simulated single scattering albedo is 0.90 (at 550 nm) near biomass-burning sources, consistent with OMI and POLDER, and smoke leads to shortwave heating rates 1.5-2°K d-1. RegCM is not able to correctly resolve the daily patterns in cloud properties notably due to its coarse horizontal resolutions. However, the changes in the sign of the DRF at top of atmosphere (TOA) (negative to positive) from clear-sky to all-sky conditions is well simulated. Finally, the "aerosol-cloud" parameterization allows simulating an increase of the cloud optical depth for significant concentrations, leading to large perturbations of radiative fluxes at TOA.

  4. Prominence of ichnologically influenced macroporosity in the karst Biscayne aquifer: Stratiform "super-K" zones

    Science.gov (United States)

    Cunningham, K.J.; Sukop, M.C.; Huang, H.; Alvarez, P.F.; Curran, H.A.; Renken, R.A.; Dixon, J.F.

    2009-01-01

    A combination of cyclostratigraphic, ichnologic, and borehole geophysical analyses of continuous core holes; tracer-test analyses; and lattice Boltzmann flow simulations was used to quantify biogenic macroporosity and permeability of the Biscayne aquifer, southeastern Florida. Biogenic macroporosity largely manifests as: (1) ichnogenic macroporosity primarily related to postdepositional burrowing activity by callianassid shrimp and fossilization of components of their complex burrow systems (Ophiomorpha); and (2) biomoldic macroporosity originating from dissolution of fossil hard parts, principally mollusk shells. Ophiomorpha-dominated ichno-fabric provides the greatest contribution to hydrologic characteristics in the Biscayne aquifer in a 345 km2 study area. Stratiform tabular-shaped units of thalassinidean-associated macroporosity are commonly confined to the lower part of upward-shallowing high-frequency cycles, throughout aggradational cycles, and, in one case, they stack vertically within the lower part of a high-frequency cycle set. Broad continuity of many of the macroporous units concentrates groundwater flow in extremely permeable passage-ways, thus making the aquifer vulnerable to long-distance transport of contaminants. Ichnogenic macroporosity represents an alternative pathway for concentrated groundwater flow that differs considerably from standard karst flow-system paradigms, which describe groundwater movement through fractures and cavernous dissolution features. Permeabilities were calculated using lattice Boltzmann methods (LBMs) applied to computer renderings assembled from X-ray computed tomography scans of various biogenic macroporous limestone samples. The highest simulated LBM permeabilities were about five orders of magnitude greater than standard laboratory measurements using air-permeability methods, which are limited in their application to extremely permeable macroporous rock samples. Based on their close conformance to analytical

  5. Microphysical characteristics of squall-line stratiform precipitation and transition zones inferred using an ice particle property-evolving model

    Science.gov (United States)

    Jensen, A. A.; Harrington, J. Y.; Morrison, H.

    2017-12-01

    A quasi-idealized 3D squall line (based on a June 2007 Oklahoma case) is simulated using a novel bulk microphysics scheme called the Ice-Spheroids Habit Model with Aspect-ratio Evolution (ISHMAEL). In ISHMAEL, the evolution of ice particle properties, such as mass, shape, maximum diameter, density, and fall speed, are tracked as these properties evolve from vapor growth, sublimation, riming, and melting. Thus, ice properties evolve from various microphysical processes without needing separate unrimed and rimed ice categories. Simulation results show that ISHMAEL produces both a squall-line transition zone and an enhanced stratiform precipitation region. The ice particle properties produced in this simulation are analyzed and compared to observations to determine the characteristics of ice that lead to the development of these squall-line features. It is shown that rimed particles advected rearward from the convective region produce the enhanced stratiform precipitation region. The development of the transition zone results from hydrometer sorting: the evolution of ice particle properties in the convective region produces specific fall speeds that favor significant ice advecting rearward of the transition zone before reaching the melting level, causing a local minimum in precipitation rate and reflectivity there. Microphysical sensitivity studies, for example turning rime splintering off, that lead to changes in ice particle properties reveal that the fall speed of ice particles largely determines both the location of the enhanced stratiform precipitation region and whether or not a transition zone forms.

  6. Enhancement of marine cloud albedo via controlled sea spray injections: a global model study of the influence of emission rates, microphysics and transport

    Directory of Open Access Journals (Sweden)

    H. Korhonen

    2010-05-01

    Full Text Available Modification of cloud albedo by controlled emission of sea spray particles into the atmosphere has been suggested as a possible geoengineering option to slow global warming. Previous global studies have imposed changes in cloud drop concentration in low level clouds to explore the radiative and climatic effects. Here, we use a global aerosol transport model to quantify how an imposed flux of sea spray particles affects the natural aerosol processes, the particle size distribution, and concentrations of cloud drops. We assume that the proposed fleet of vessels emits sea spray particles with a wind speed-dependent flux into four regions of persistent stratocumulus cloud off the western coasts of continents. The model results show that fractional changes in cloud drop number concentration (CDNC vary substantially between the four regions because of differences in wind speed (which affects the spray efficiency of the vessels, transport and particle deposition rates, and because of variations in aerosols from natural and anthropogenic sources. Using spray emission rates comparable to those implied by previous studies we find that the predicted CDNC changes are very small (maximum 20% and in one of the four regions even negative. The weak or negative effect is because the added particles suppress the in-cloud supersaturation and prevent existing aerosol particles from forming cloud drops. A scenario with five times higher emissions (considerably higher than previously assumed increases CDNC on average by 45–163%, but median concentrations are still below the 375 cm−3 assumed in previous studies. An inadvertent effect of the spray emissions is that sulphur dioxide concentrations are suppressed by 1–2% in the seeded regions and sulphuric acid vapour by 64–68% due to chemical reactions on the additional salt particles. The impact of this suppression on existing aerosol is negligible in the model, but should be investigated further in

  7. Radar rainfall estimation of stratiform winter precipitation in the Belgian Ardennes

    Science.gov (United States)

    Hazenberg, P.; Leijnse, H.; Uijlenhoet, R.

    2011-02-01

    Radars are known for their ability to obtain a wealth of information about spatial storm field characteristics. Unfortunately, rainfall estimates obtained by this instrument are known to be affected by multiple sources of error. Especially for stratiform precipitation systems, the quality of radar rainfall estimates starts to decrease at relatively close ranges. In the current study, the hydrological potential of weather radar is analyzed during a winter half-year for the hilly region of the Belgian Ardennes. A correction algorithm is proposed which corrects the radar data for errors related to attenuation, ground clutter, anomalous propagation, the vertical profile of reflectivity (VPR), and advection. No final bias correction with respect to rain gauge data was implemented because such an adjustment would not add to a better understanding of the quality of the radar data. The impact of the different corrections is assessed using rainfall information sampled by 42 hourly rain gauges. The largest improvement in the quality of the radar data is obtained by correcting for ground clutter. The impact of VPR correction and advection depends on the spatial variability and velocity of the precipitation system. Overall during the winter period, the radar underestimates the amount of precipitation as compared to the rain gauges. Remaining differences between both instruments can be attributed to spatial and temporal variability in the type of precipitation, which has not been taken into account.

  8. A CloudSat-CALIPSO View of Cloud and Precipitation Properties Across Cold Fronts over the Global Oceans

    Science.gov (United States)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2015-01-01

    The distribution of cloud and precipitation properties across oceanic extratropical cyclone cold fronts is examined using four years of combined CloudSat radar and CALIPSO lidar retrievals. The global annual mean cloud and precipitation distributions show that low-level clouds are ubiquitous in the post frontal zone while higher-level cloud frequency and precipitation peak in the warm sector along the surface front. Increases in temperature and moisture within the cold front region are associated with larger high-level but lower mid-/low level cloud frequencies and precipitation decreases in the cold sector. This behavior seems to be related to a shift from stratiform to convective clouds and precipitation. Stronger ascent in the warm conveyor belt tends to enhance cloudiness and precipitation across the cold front. A strong temperature contrast between the warm and cold sectors also encourages greater post-cold-frontal cloud occurrence. While the seasonal contrasts in environmental temperature, moisture, and ascent strength are enough to explain most of the variations in cloud and precipitation across cold fronts in both hemispheres, they do not fully explain the differences between Northern and Southern Hemisphere cold fronts. These differences are better explained when the impact of the contrast in temperature across the cold front is also considered. In addition, these large-scale parameters do not explain the relatively large frequency in springtime post frontal precipitation.

  9. Observations of the boundary layer, cloud, and aerosol variability in the southeast Pacific near-coastal marine stratocumulus during VOCALS-REx

    Science.gov (United States)

    Zheng, X.; Albrecht, B.; Jonsson, H. H.; Khelif, D.; Feingold, G.; Minnis, P.; Ayers, K.; Chuang, P.; Donaher, S.; Rossiter, D.; Ghate, V.; Ruiz-Plancarte, J.; Sun-Mack, S.

    2011-09-01

    Aircraft observations made off the coast of northern Chile in the Southeastern Pacific (20° S, 72° W; named Point Alpha) from 16 October to 13 November 2008 during the VAMOS Ocean-Cloud- Atmosphere-Land Study-Regional Experiment (VOCALS-REx), combined with meteorological reanalysis, satellite measurements, and radiosonde data, are used to investigate the boundary layer (BL) and aerosol-cloud-drizzle variations in this region. On days without predominately synoptic and meso-scale influences, the BL at Point Alpha was typical of a non-drizzling stratocumulus-topped BL. Entrainment rates calculated from the near cloud-top fluxes and turbulence in the BL at Point Alpha appeared to be weaker than those in the BL over the open ocean west of Point Alpha and the BL near the coast of the northeast Pacific. The cloud liquid water path (LWP) varied between 15 g m-2 and 160 g m-2. The BL had a depth of 1140 ± 120 m, was generally well-mixed and capped by a sharp inversion without predominately synoptic and meso-scale influences. The wind direction generally switched from southerly within the BL to northerly above the inversion. On days when a synoptic system and related mesoscale costal circulations affected conditions at Point Alpha (29 October-4 November), a moist layer above the inversion moved over Point Alpha, and the total-water mixing ratio above the inversion was larger than that within the BL. The accumulation mode aerosol varied from 250 to 700 cm-3 within the BL, and CCN at 0.2 % supersaturation within the BL ranged between 150 and 550 cm-3. The main aerosol source at Point Alpha was horizontal advection within the BL from south. The average cloud droplet number concentration ranged between 80 and 400 cm-3. While the mean LWP retrieved from GOES was in good agreement with the in situ measurements, the GOES-derived cloud droplet effective radius tended to be larger than that from the aircraft in situ observations near cloud top. The aerosol and cloud LWP

  10. Observations of the boundary layer, cloud, and aerosol variability in the southeast Pacific near-coastal marine stratocumulus during VOCALS-REx

    Directory of Open Access Journals (Sweden)

    X. Zheng

    2011-09-01

    Full Text Available Aircraft observations made off the coast of northern Chile in the Southeastern Pacific (20° S, 72° W; named Point Alpha from 16 October to 13 November 2008 during the VAMOS Ocean-Cloud- Atmosphere-Land Study-Regional Experiment (VOCALS-REx, combined with meteorological reanalysis, satellite measurements, and radiosonde data, are used to investigate the boundary layer (BL and aerosol-cloud-drizzle variations in this region. On days without predominately synoptic and meso-scale influences, the BL at Point Alpha was typical of a non-drizzling stratocumulus-topped BL. Entrainment rates calculated from the near cloud-top fluxes and turbulence in the BL at Point Alpha appeared to be weaker than those in the BL over the open ocean west of Point Alpha and the BL near the coast of the northeast Pacific. The cloud liquid water path (LWP varied between 15 g m−2 and 160 g m−2. The BL had a depth of 1140 ± 120 m, was generally well-mixed and capped by a sharp inversion without predominately synoptic and meso-scale influences. The wind direction generally switched from southerly within the BL to northerly above the inversion. On days when a synoptic system and related mesoscale costal circulations affected conditions at Point Alpha (29 October–4 November, a moist layer above the inversion moved over Point Alpha, and the total-water mixing ratio above the inversion was larger than that within the BL. The accumulation mode aerosol varied from 250 to 700 cm−3 within the BL, and CCN at 0.2 % supersaturation within the BL ranged between 150 and 550 cm−3. The main aerosol source at Point Alpha was horizontal advection within the BL from south. The average cloud droplet number concentration ranged between 80 and 400 cm−3. While the mean LWP retrieved from GOES was in good agreement with the in situ measurements, the GOES-derived cloud droplet effective radius tended to be larger than that from the

  11. The Explicit-Cloud Parameterized-Pollutant hybrid approach for aerosol-cloud interactions in multiscale modeling framework models: tracer transport results

    International Nuclear Information System (INIS)

    Jr, William I Gustafson; Berg, Larry K; Easter, Richard C; Ghan, Steven J

    2008-01-01

    All estimates of aerosol indirect effects on the global energy balance have either completely neglected the influence of aerosol on convective clouds or treated the influence in a highly parameterized manner. Embedding cloud-resolving models (CRMs) within each grid cell of a global model provides a multiscale modeling framework for treating both the influence of aerosols on convective as well as stratiform clouds and the influence of clouds on the aerosol, but treating the interactions explicitly by simulating all aerosol processes in the CRM is computationally prohibitive. An alternate approach is to use horizontal statistics (e.g., cloud mass flux, cloud fraction, and precipitation) from the CRM simulation to drive a single-column parameterization of cloud effects on the aerosol and then use the aerosol profile to simulate aerosol effects on clouds within the CRM. Here, we present results from the first component of the Explicit-Cloud Parameterized-Pollutant parameterization to be developed, which handles vertical transport of tracers by clouds. A CRM with explicit tracer transport serves as a benchmark. We show that this parameterization, driven by the CRM's cloud mass fluxes, reproduces the CRM tracer transport significantly better than a single-column model that uses a conventional convective cloud parameterization

  12. The Explicit-Cloud Parameterized-Pollutant hybrid approach for aerosol-cloud interactions in multiscale modeling framework models: tracer transport results

    Energy Technology Data Exchange (ETDEWEB)

    Jr, William I Gustafson; Berg, Larry K; Easter, Richard C; Ghan, Steven J [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, PO Box 999, MSIN K9-30, Richland, WA (United States)], E-mail: William.Gustafson@pnl.gov

    2008-04-15

    All estimates of aerosol indirect effects on the global energy balance have either completely neglected the influence of aerosol on convective clouds or treated the influence in a highly parameterized manner. Embedding cloud-resolving models (CRMs) within each grid cell of a global model provides a multiscale modeling framework for treating both the influence of aerosols on convective as well as stratiform clouds and the influence of clouds on the aerosol, but treating the interactions explicitly by simulating all aerosol processes in the CRM is computationally prohibitive. An alternate approach is to use horizontal statistics (e.g., cloud mass flux, cloud fraction, and precipitation) from the CRM simulation to drive a single-column parameterization of cloud effects on the aerosol and then use the aerosol profile to simulate aerosol effects on clouds within the CRM. Here, we present results from the first component of the Explicit-Cloud Parameterized-Pollutant parameterization to be developed, which handles vertical transport of tracers by clouds. A CRM with explicit tracer transport serves as a benchmark. We show that this parameterization, driven by the CRM's cloud mass fluxes, reproduces the CRM tracer transport significantly better than a single-column model that uses a conventional convective cloud parameterization.

  13. Evaluating the Accuracy of MODIS Products in the Southern Scean Using Tagged Marine Predators, and Measuring Significant Change in 12 Years of [Chl-a], Zeu and Cloud Fraction Data.

    Science.gov (United States)

    Biermann, L.; Boehme, L.; Guinet, C.

    2016-02-01

    The Southern Ocean is vital to the functioning of our global atmospheric and marine systems. However, this key ocean is also measurably responsive to the Southern Annular Mode (SAM), the dominant mode of atmospheric variability in the Southern Hemisphere. Decreased ozone and increases in greenhouse gases appear to be forcing the SAM towards its positive phase, significantly changing wind patterns and, thus, altering mixing and circulation regimes of Southern Ocean waters. Inevitably, these changes must impact on patterns of phytoplankton abundance and distribution. Using remotely sensed data that have been evaluated alongside in situ data collected by tagged southern elephant seals, this work investigates if changes to summer phytoplankton abundance and distribution in the Southern Ocean can already be measured in the 12-year MODIS record. Patterns and trends in surface chlorophyll-a concentration ([Chl-a]), the depth of the 1% light level (Zeu) and mean cloud fraction are examined over time, as well as relative to the SAM. Trends in [Chl-a] and Zeu over the months of October, November and December suggest overall declines in surface phytoplankton, and shifts in timing of blooms. Indeed, by January and February over the 12-year timeseries, trends reverse to suggest increases in phytoplankton abundance. Relative to the increasingly positive SAM, trends of overall decline in phytoplankton abundance are significant only over Decembers. Trends in cloud cover are more difficult to interpret but the Atlantic Ocean appears to be becoming less cloudy, the southern sector of the Pacific Ocean appears to be becoming cloudier, and that the southern sector of the Indian Ocean is most variable over time. Only the increase in cloud over the southern Pacific in Decembers appears to be significantly related to changes to the SAM. Interestingly, in no cases were the changes to [Chl-a], Zeu or cloud cover strictly zonal. The asymmetry of these results reinforces findings from

  14. Prognostic cloud water in the Los Alamos general circulation model

    International Nuclear Information System (INIS)

    Kristjansson, J.E.; Kao, C.Y.J.

    1993-01-01

    Most of today's general circulation models (GCMS) have a greatly simplified treatment of condensation and clouds. Recent observational studies of the earth's radiation budget have suggested cloud-related feedback mechanisms to be of tremendous importance for the issue of global change. Thus, there has arisen an urgent need for improvements in the treatment of clouds in GCMS, especially as the clouds relate to radiation. In the present paper, we investigate the effects of introducing pregnostic cloud water into the Los Alamos GCM. The cloud water field, produced by both stratiform and convective condensation, is subject to 3-dimensional advection and vertical diffusion. The cloud water enters the radiation calculations through the long wave emissivity calculations. Results from several sensitivity simulations show that realistic cloud water and precipitation fields can be obtained with the applied method. Comparisons with observations show that the most realistic results are obtained when more sophisticated schemes for moist convection are introduced at the same time. The model's cold bias is reduced and the zonal winds become stronger, due to more realistic tropical convection

  15. Iron and chlorine as guides to stratiform Cu-Co-Au deposits, Idaho Cobalt Belt, USA

    Science.gov (United States)

    Nash, J.T.; Connor, J.J.

    1993-01-01

    The Cu-Co-Au deposits of the Idaho Cobalt Belt are in lithostratigraphic zones of the Middle Proterozoic Yellowjacket Formation characterized by distinctive chemical and mineralogical compositions including high concentrations of Fe (15- > 30 wt. percent Fe2O3), Cl (0.1-1.10 wt. percent), and magnetite or biotite (> 50 vol. percent). The Cu-Co-Au deposits of the Blackbird mine are stratabound in Fe-silicate facies rocks that are rich in biotite, Fe, and Cl, but stratigraphically equivalent rocks farther than 10 km from ore deposits have similar compositions. A lower lithostratigraphic zone containing magnetite and small Cu-Co-Au deposits extends for more than 40 km. The Fe-rich strata are probably exhalative units related to mafic volcanism and submarine hot springs, but the origin of the high Cl concentrations is less clear. Former chlorine-rich pore fluids are suggested by the presence of supersaline fluid inclusions, by Cl-rich biotite and scapolite (as much as 1.87 percent Cl in Fe-rich biotite), and by high Cl concentrations in rock samples. Chlorine is enriched in specific strata and in zones characterized by soft-sediment deformation, thus probably was introduced during sedimentation or diagenesis. Unlike some metasedimentary rocks containing scapolite and high Cl, the Yellowjacket Formation lacks evidence for evaporitic strata that could have been a source of Cl. More likely, the Cl reflects a submarine brine that carried Fe, K, and base metals. Strata containing anomalous Fe-K-Cl are considered to be a guide to sub-basins favorable for the occurrence of stratiform base-metal deposits. ?? 1993 Springer-Verlag.

  16. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds.

    Science.gov (United States)

    Fan, Jiwen; Leung, L Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-26

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ~27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 W m(-2)) and a surface cooling (-5 to -8 W m(-2)). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.

  17. Analysis of the moments and parameters of a gamma DSD to infer precipitation properties: A convective stratiform discrimination algorithm

    Science.gov (United States)

    Caracciolo, C.; Prodi, F.; Battaglia, A.; Porcu', F.

    2006-05-01

    Drop size distribution is a fundamental property of rainfall for two main reasons: the shape of the distribution reflects the physics of rain formation processes, and it is of basic importance in determining most parameters used in radar-meteorology. Therefore, several authors have proposed in the past different parameterizations for the drop size distribution (DSD). The present work focuses attention on the gamma DSD properties, assumed to be the most suitable for describing the observed DSD and its variability. The data set comprises about 3 years of data (2001-2004) for about 1900 min of rain, collected in Ferrara in the Po Valley (Northern Italy) by a Joss and Waldvogel (JW) disdrometer. A new method of moments to determine the three gamma DSD parameters is developed and tested; this method involves the fourth, fifth and sixth moments of the DSD, which are less sensitive to the underestimation of small drops in the JW disdrometer. The method has been validated by comparing the observed rainfall rates with the computed ones from the fitted distribution, using two classical expressions for the hydrometeor terminal velocity. The 1-min observed spectra of some representative events that occurred in Ferrara are also presented, showing that with sufficient averaging, the distribution for the Ferrara rainfall can be approximately described by a gamma distribution. The discrimination of convective and stratiform precipitation is also an issue of intense interest. Over the past years, several works have aimed to discriminate between these two precipitation categories, on the basis of different instruments and techniques. The knowledge of the three gamma DSD parameters computed with the new method of moments is exploited to identify some characteristic parameters that give quantitative and useful information on the precipitation type and intensity. First, a key parameter derived from the knowledge of two gamma DSD parameters ( m and Λ), the peak (or modal) diameter Dp

  18. Prognostic cloud water in the Los Alamos general circulation model

    International Nuclear Information System (INIS)

    Kristjansson, J.E.; Kao, C.Y.J.

    1994-01-01

    Most of today's general circulation models (GCMs) have a greatly simplified treatment of condensation and clouds. Recent observational studies of the earth's radiation budget have suggested cloud-related feedback mechanisms to be of tremendous importance for the issue of global change. Thus, an urgent need for improvements in the treatment of clouds in GCMs has arisen, especially as the clouds relate to radiation. In this paper, we investigate the effects of introducing prognostic cloud water into the Los Alamos GCM. The cloud water field, produced by both stratiform and convective condensation, is subject to 3-dimensional advection and vertical diffusion. The cloud water enters the radiation calculations through the longwave emissivity calculations. Results from several sensitivity simulations show that realistic water and precipitation fields can be obtained with the applied method. Comparisons with observations show that the most realistic results are obtained when more sophisticated schemes for moist convection are introduced at the same time. The model's cold bias is reduced and the zonal winds becomes stronger because of more realistic tropical convection

  19. Isotopic constraints on contamination processes in the Tonian Goiás Stratiform Complex

    Science.gov (United States)

    Giovanardi, Tommaso; Mazzucchelli, Maurizio; Lugli, Federico; Girardi, Vicente A. V.; Correia, Ciro T.; Tassinari, Colombo C. G.; Cipriani, Anna

    2018-06-01

    The Tonian Goiás Stratiform Complex (TGSC, Goiás, central Brazil), is one of the largest mafic-ultramafic layered complexes in the world, emplaced during the geotectonic events that led to the Gondwana accretion. In this study, we present trace elements and in-situ U/Pb-Lu-Hf analyses of zircons and 87Sr/86Sr ratios of plagioclases from anorthosites and gabbros of the TGSC. Although formed by three isolated bodies (Cana Brava, Niquelândia and Barro Alto), and characterized by a Lower and Upper Sequence (LS and US), our new U/Pb zircon data confirm recent geochemical, geochronological, and structural evidences that the TGSC has originated from a single intrusive body in the Neoproterozoic. New Hf and Sr isotope ratios construe a complex contamination history for the TGSC, with different geochemical signatures in the two sequences. The low Hf and high Sr isotope ratios of the Lower Sequence (εHf(t) from -4.2 down to -27.5; 87Sr/86Sr = 0.706605-0.729226), suggest the presence of a crustal component and are consistent with contamination from meta-pelitic and calc-silicate rocks found as xenoliths within the Sequence. The more radiogenic Hf isotope ratios and low Sr isotope composition of the Upper Sequence (εHf(t) from 11.3 down to -8.4; 87Sr/86Sr = 0.702368-0.702452), suggest a contamination from mantle-derived metabasalts in agreement with the occurrences of amphibolite xenoliths in the US stratigraphy. The differential contamination of the two sequences is explained by the intrusion of the TGSC in a stratified crust dominated by metasedimentary rocks in its deeper part and metavolcanics at shallower levels. Moreover, the differential thermal gradient in the two crystallizing sequences might have contributed to the preservation and recrystallization of inherited zircon grains in the US and total dissolution or magmatic overgrowth of the LS zircons via melt/rock reaction processes.

  20. RACORO Continental Boundary Layer Cloud Investigations: 3. Separation of Parameterization Biases in Single-Column Model CAM5 Simulations of Shallow Cumulus

    Science.gov (United States)

    Lin, Wuyin; Liu, Yangang; Vogelmann, Andrew M.; Fridlind, Ann; Endo, Satoshi; Song, Hua; Feng, Sha; Toto, Tami; Li, Zhijin; Zhang, Minghua

    2015-01-01

    Climatically important low-level clouds are commonly misrepresented in climate models. The FAst-physics System TEstbed and Research (FASTER) Project has constructed case studies from the Atmospheric Radiation Measurement Climate Research Facility's Southern Great Plain site during the RACORO aircraft campaign to facilitate research on model representation of boundary-layer clouds. This paper focuses on using the single-column Community Atmosphere Model version 5 (SCAM5) simulations of a multi-day continental shallow cumulus case to identify specific parameterization causes of low-cloud biases. Consistent model biases among the simulations driven by a set of alternative forcings suggest that uncertainty in the forcing plays only a relatively minor role. In-depth analysis reveals that the model's shallow cumulus convection scheme tends to significantly under-produce clouds during the times when shallow cumuli exist in the observations, while the deep convective and stratiform cloud schemes significantly over-produce low-level clouds throughout the day. The links between model biases and the underlying assumptions of the shallow cumulus scheme are further diagnosed with the aid of large-eddy simulations and aircraft measurements, and by suppressing the triggering of the deep convection scheme. It is found that the weak boundary layer turbulence simulated is directly responsible for the weak cumulus activity and the simulated boundary layer stratiform clouds. Increased vertical and temporal resolutions are shown to lead to stronger boundary layer turbulence and reduction of low-cloud biases.

  1. Cloud Governance

    DEFF Research Database (Denmark)

    Berthing, Hans Henrik

    Denne præsentation beskriver fordele og værdier ved anvendelse af Cloud Computing. Endvidere inddrager resultater fra en række internationale analyser fra ISACA om Cloud Computing.......Denne præsentation beskriver fordele og værdier ved anvendelse af Cloud Computing. Endvidere inddrager resultater fra en række internationale analyser fra ISACA om Cloud Computing....

  2. Observations of the boundary layer, cloud, and aerosol variability in the southeast Pacific near-coastal marine stratocumulus during VOCALS-REx

    OpenAIRE

    Zheng, X.; Albrecht, B.; Jonsson, H. H; Khelif, D.; Feingold, G.; Minnis, P.; Ayers, K.; Chuang, P.; Donaher, S.; Rossiter, D.; Ghate, V.; Ruiz-Plancarte, J.; Sun-Mack, S.

    2011-01-01

    The article of record as published may be found at http://dx.doi.org/10.5194/acp-11-9943-2011 Aircraft observations made off the coast of northern Chile in the Southeastern Pacific (20° S, 72° W; named Point Alpha) from 16 October to 13 November 2008 during the VAMOS Ocean-Cloud- Atmosphere-Land Study- Regional Experiment (VOCALS-REx), combined with meteorological reanalysis, satellite measurements, and radiosonde data, are used to investigate the boundary layer (BL) ...

  3. Polar winter cloud depolarization measurements with the CANDAC Rayleigh-Mie-Raman Lidar

    Science.gov (United States)

    McCullough, E. M.; Nott, G. J.; Duck, T. J.; Sica, R. J.; Doyle, J. G.; Pike-thackray, C.; Drummond, J. R.

    2011-12-01

    Clouds introduce a significant positive forcing to the Arctic radiation budget and this is strongest during the polar winter when shortwave radiation is absent (Intrieri et al., 2002). The amount of forcing depends on the occurrence probability and optical depth of the clouds as well as the cloud particle phase (Ebert and Curry 1992). Mixed-phase clouds are particularly complex as they involve interactions between three phases of water (vapour, liquid and ice) coexisting in the same cloud. Although significant progress has been made in characterizing wintertime Arctic clouds (de Boer et al., 2009 and 2011), there is considerable variability in the relative abundance of particles of each phase, in the morphology of solid particles, and in precipitation rates depending on the meteorology at the time. The Canadian Network for the Detection of Atmospheric Change (CANDAC) Rayleigh-Mie-Raman Lidar (CRL) was installed in the Canadian High Arctic at Eureka, Nunavut (80°N, 86°W) in 2008-2009. The remotely-operated system began with measurement capabilities for multi-wavelength aerosol extinction, water vapour mixing ratio, and tropospheric temperature profiles, as well as backscatter cross section coefficient and colour ratio. In 2010, a new depolarization channel was added. The capability to measure the polarization state of the return signal allows the characterization of the cloud in terms of liquid and ice water content, enabling the lidar to probe all three phases of water in these clouds. Lidar depolarization results from 2010 and 2011 winter clouds at Eureka will be presented, with a focus on differences in downwelling radiation between mixed phase clouds and ice clouds. de Boer, G., E.W. Eloranta, and M.D. Shupe (2009), Arctic mixed-phase stratiform cloud properties from multiple years of surface-based measurements at two high-latitude locations, Journal of Atmospheric Sciences, 66 (9), 2874-2887. de Boer, G., H. Morrison, M. D. Shupe, and R. Hildner (2011

  4. Global anthropogenic aerosol effects on convective clouds in ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    U. Lohmann

    2008-04-01

    Full Text Available Aerosols affect the climate system by changing cloud characteristics in many ways. They act as cloud condensation and ice nuclei and may have an influence on the hydrological cycle. Here we investigate aerosol effects on convective clouds by extending the double-moment cloud microphysics scheme developed for stratiform clouds, which is coupled to the HAM double-moment aerosol scheme, to convective clouds in the ECHAM5 general circulation model. This enables us to investigate whether more, and smaller cloud droplets suppress the warm rain formation in the lower parts of convective clouds and thus release more latent heat upon freezing, which would then result in more vigorous convection and more precipitation. In ECHAM5, including aerosol effects in large-scale and convective clouds (simulation ECHAM5-conv reduces the sensitivity of the liquid water path increase with increasing aerosol optical depth in better agreement with observations and large-eddy simulation studies. In simulation ECHAM5-conv with increases in greenhouse gas and aerosol emissions since pre-industrial times, the geographical distribution of the changes in precipitation better matches the observed increase in precipitation than neglecting microphysics in convective clouds. In this simulation the convective precipitation increases the most suggesting that the convection has indeed become more vigorous.

  5. Impact of cloud-borne aerosol representation on aerosol direct and indirect effects

    Directory of Open Access Journals (Sweden)

    S. J. Ghan

    2006-01-01

    Full Text Available Aerosol particles attached to cloud droplets are much more likely to be removed from the atmosphere and are much less efficient at scattering sunlight than if unattached. Models used to estimate direct and indirect effects of aerosols employ a variety of representations of such cloud-borne particles. Here we use a global aerosol model with a relatively complete treatment of cloud-borne particles to estimate the sensitivity of simulated aerosol, cloud and radiation fields to various approximations to the representation of cloud-borne particles. We find that neglecting transport of cloud-borne particles introduces little error, but that diagnosing cloud-borne particles produces global mean biases of 20% and local errors of up to 40% for aerosol, droplet number, and direct and indirect radiative forcing. Aerosol number, aerosol optical depth and droplet number are significantly underestimated in regions and seasons where and when wet removal is primarily by stratiform rather than convective clouds (polar regions during winter, but direct and indirect effects are less biased because of the limited sunlight there and then. A treatment that predicts the total mass concentration of cloud-borne particles for each mode yields smaller errors and runs 20% faster than the complete treatment. The errors are much smaller than current estimates of uncertainty in direct and indirect effects of aerosols, which suggests that the treatment of cloud-borne aerosol is not a significant source of uncertainty in estimates of direct and indirect effects.

  6. Three-dimensional transfer of solar radiation in clouds

    International Nuclear Information System (INIS)

    Davies, R.

    1976-01-01

    The results of a theoretical study of the effects of cloud geometry on the transfer of incident solar radiation is presented. These results indicate that a three-dimensional description of cloud geometry is a necessary prerequisite to the accurate determination of the emerging radiation field. Models which make the plane parallel assumption are therefore frequently inadequate. Both a Monte Carlo method and an analytic method were used to model the three-dimensional transfer of radiation. At the expense of considerable computation time the Monte Carlo model provides accurate values of the fluxes and intensities (averages over π/30 steradians) emerging from clouds which can be described as a set of connected cuboidal cells, each cell being homogeneous with respect to extinction coefficient, single scatter albedo and phase function. The analytic model, based on an extension of Eddington's approximation to three dimensions and to anisotropic scattering, is efficient to use, but is restricted to clouds made up of a single cuboidal cell and is more accurate for large clouds than small ones. By an iterated approach, involving integration of the source function along line of sight, the analytic model provides both fluxes and intensities of the emerging radiation at any specified point on the cloud's surface. These models were both applied to a systematic study of the transfer of solar radiation in isolated cuboidal clouds of arbitraty dimensions, the results of which illustrate the importance of considering the total cloud geometry in any attempt at realistic modelling. A study of the transfer of radiation in stratiform clouds with turretted top surfaces also indicated that even for these clouds the plane parallel assumption was often not tenable

  7. Toward the Characterization of Mixed-Phase Clouds Using Remote Sensing

    Science.gov (United States)

    Andronache, C.

    2015-12-01

    Mixed-phase clouds consist of a mixture of ice particles and liquid droplets at temperatures below 0 deg C. They are present in all seasons in many regions of the world, account for about 30% of the global cloud coverage, and are linked to cloud electrification and aircraft icing. The mix of ice particles, liquid droplets, and water vapor is unstable, and such clouds are thought to have a short lifetime. A characteristic parameter is the phase composition of mixed-phase clouds. It affects the cloud life cycle and the rate of precipitation. This parameter is important for cloud parameters retrievals by radar, lidar, and satellite and is relevant for climate modeling. The phase transformation includes the remarkable Wegener-Bergeron-Findeisen (WBF) process. The direction and the rate of the phase transformations depend on the local thermodynamic and microphysical properties. Cloud condensation nuclei (CCN) and ice nuclei (IN) particles determine to a large extent cloud microstructure and the dynamic response of clouds to aerosols. The complexity of dynamics and microphysics involved in mixed-phase clouds requires a set of observational and modeling tools that continue to be refined. Among these techniques, the remote sensing methods provide an increasing number of parameters, covering large regions of the world. Thus, a series of studies were dedicated to stratiform mixed-phase clouds revealing longer lifetime than previously thought. Satellite data and aircraft in situ measurements in deep convective clouds suggest that highly supercooled water often occurs in vigorous continental convective storms. In this study, we use cases of convective clouds to discuss the feasibility of mixed-phase clouds characterization and potential advantages of remote sensing.

  8. Cloud Computing

    CERN Document Server

    Antonopoulos, Nick

    2010-01-01

    Cloud computing has recently emerged as a subject of substantial industrial and academic interest, though its meaning and scope is hotly debated. For some researchers, clouds are a natural evolution towards the full commercialisation of grid systems, while others dismiss the term as a mere re-branding of existing pay-per-use technologies. From either perspective, 'cloud' is now the label of choice for accountable pay-per-use access to third party applications and computational resources on a massive scale. Clouds support patterns of less predictable resource use for applications and services a

  9. Representation of Arctic mixed-phase clouds and the Wegener-Bergeron-Findeisen process in climate models: Perspectives from a cloud-resolving study

    Science.gov (United States)

    Fan, Jiwen; Ghan, Steven; Ovchinnikov, Mikhail; Liu, Xiaohong; Rasch, Philip J.; Korolev, Alexei

    2011-01-01

    Two types of Arctic mixed-phase clouds observed during the ISDAC and M-PACE field campaigns are simulated using a 3-dimensional cloud-resolving model (CRM) with size-resolved cloud microphysics. The modeled cloud properties agree reasonably well with aircraft measurements and surface-based retrievals. Cloud properties such as the probability density function (PDF) of vertical velocity (w), cloud liquid and ice, regimes of cloud particle growth, including the Wegener-Bergeron-Findeisen (WBF) process, and the relationships among properties/processes in mixed-phase clouds are examined to gain insights for improving their representation in General Circulation Models (GCMs). The PDF of the simulated w is well represented by a Gaussian function, validating, at least for arctic clouds, the subgrid treatment used in GCMs. The PDFs of liquid and ice water contents can be approximated by Gamma functions, and a Gaussian function can describe the total water distribution, but a fixed variance assumption should be avoided in both cases. The CRM results support the assumption frequently used in GCMs that mixed phase clouds maintain water vapor near liquid saturation. Thus, ice continues to grow throughout the stratiform cloud but the WBF process occurs in about 50% of cloud volume where liquid and ice co-exist, predominantly in downdrafts. In updrafts, liquid and ice particles grow simultaneously. The relationship between the ice depositional growth rate and cloud ice strongly depends on the capacitance of ice particles. The simplified size-independent capacitance of ice particles used in GCMs could lead to large deviations in ice depositional growth.

  10. Laboratory, Computational and Theoretical Investigations of Ice Nucleation and its Implications for Mixed Phase Clouds

    Science.gov (United States)

    Yang, Fan

    Ice particles in atmospheric clouds play an important role in determining cloud lifetime, precipitation and radiation. It is therefore important to understand the whole life cycle of ice particles in the atmosphere, e.g., where they come from (nucleation), how they evolve (growth), and where they go (precipitation). Ice nucleation is the crucial step for ice formation, and in this study, we will mainly focus on ice nucleation in the lab and its effect on mixed-phase stratiform clouds. In the first half of this study, we investigate the relevance of moving contact lines (i.e., the region where three or more phases meet) on the phenomenon of contact nucleation. High speed video is used to investigate heterogeneous ice nucleation in supercooled droplets resting on cold substrates under two different dynamic conditions: droplet electrowetting and droplet vibration. The results show that contact-line motion is not a sufficient condition to trigger ice nucleation, while locally curved contact lines that can result from contact-line motion are strongly related to ice nucleation. We propose that pressure perturbations due to locally curved contact lines can strongly enhance the ice nucleation rate, which gives another interpretation for the mechanism for contact nucleation. Corresponding theoretical results provide a quantitative connection between pressure perturbations and temperature, providing a useful tool for ice nucleation calculations in atmospheric models. In this second half of the study, we build a minimalist model for long lifetime mixed-phase stratiform clouds based on stochastic ice nucleation. Our result shows that there is a non-linear relationship between ice water contact and ice number concentration in the mixed-phase cloud, as long as the volume ice nucleation rate is constant. This statistical property may help identify the source of ice nuclei in mixed-phase clouds. In addition, results from Lagrangian ice particle tracking in time dependent fields

  11. Cloud Cover

    Science.gov (United States)

    Schaffhauser, Dian

    2012-01-01

    This article features a major statewide initiative in North Carolina that is showing how a consortium model can minimize risks for districts and help them exploit the advantages of cloud computing. Edgecombe County Public Schools in Tarboro, North Carolina, intends to exploit a major cloud initiative being refined in the state and involving every…

  12. Cloud Control

    Science.gov (United States)

    Ramaswami, Rama; Raths, David; Schaffhauser, Dian; Skelly, Jennifer

    2011-01-01

    For many IT shops, the cloud offers an opportunity not only to improve operations but also to align themselves more closely with their schools' strategic goals. The cloud is not a plug-and-play proposition, however--it is a complex, evolving landscape that demands one's full attention. Security, privacy, contracts, and contingency planning are all…

  13. Using the Atmospheric Radiation Measurement (ARM) Datasets to Evaluate Climate Models in Simulating Diurnal and Seasonal Variations of Tropical Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hailong [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington; Burleyson, Casey D. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington; Ma, Po-Lun [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington; Fast, Jerome D. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington; Rasch, Philip J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

    2018-04-01

    We use the long-term Atmospheric Radiation Measurement (ARM) datasets collected at the three Tropical Western Pacific (TWP) sites as a tropical testbed to evaluate the ability of the Community Atmosphere Model (CAM5) to simulate the various types of clouds, their seasonal and diurnal variations, and their impact on surface radiation. We conducted a series of CAM5 simulations at various horizontal grid spacing (around 2°, 1°, 0.5°, and 0.25°) with meteorological constraints from reanalysis. Model biases in the seasonal cycle of cloudiness are found to be weakly dependent on model resolution. Positive biases (up to 20%) in the annual mean total cloud fraction appear mostly in stratiform ice clouds. Higher-resolution simulations do reduce the positive bias in the frequency of ice clouds, but they inadvertently increase the negative biases in convective clouds and low-level liquid clouds, leading to a positive bias in annual mean shortwave fluxes at the sites, as high as 65 W m-2 in the 0.25° simulation. Such resolution-dependent biases in clouds can adversely lead to biases in ambient thermodynamic properties and, in turn, feedback on clouds. Both the CAM5 model and ARM observations show distinct diurnal cycles in total, stratiform and convective cloud fractions; however, they are out-of-phase by 12 hours and the biases vary by site. Our results suggest that biases in deep convection affect the vertical distribution and diurnal cycle of stratiform clouds through the transport of vapor and/or the detrainment of liquid and ice. We also found that the modelled gridmean surface longwave fluxes are systematically larger than site measurements when the grid that the ARM sites reside in is partially covered by ocean. The modeled longwave fluxes at such sites also lack a discernable diurnal cycle because the ocean part of the grid is warmer and less sensitive to radiative heating/cooling compared to land. Higher spatial resolution is more helpful is this regard. Our

  14. Cloud Computing Fundamentals

    Science.gov (United States)

    Furht, Borko

    In the introductory chapter we define the concept of cloud computing and cloud services, and we introduce layers and types of cloud computing. We discuss the differences between cloud computing and cloud services. New technologies that enabled cloud computing are presented next. We also discuss cloud computing features, standards, and security issues. We introduce the key cloud computing platforms, their vendors, and their offerings. We discuss cloud computing challenges and the future of cloud computing.

  15. Cluster analysis of midlatitude oceanic cloud regimes: mean properties and temperature sensitivity

    Directory of Open Access Journals (Sweden)

    N. D. Gordon

    2010-07-01

    Full Text Available Clouds play an important role in the climate system by reducing the amount of shortwave radiation reaching the surface and the amount of longwave radiation escaping to space. Accurate simulation of clouds in computer models remains elusive, however, pointing to a lack of understanding of the connection between large-scale dynamics and cloud properties. This study uses a k-means clustering algorithm to group 21 years of satellite cloud data over midlatitude oceans into seven clusters, and demonstrates that the cloud clusters are associated with distinct large-scale dynamical conditions. Three clusters correspond to low-level cloud regimes with different cloud fraction and cumuliform or stratiform characteristics, but all occur under large-scale descent and a relatively dry free troposphere. Three clusters correspond to vertically extensive cloud regimes with tops in the middle or upper troposphere, and they differ according to the strength of large-scale ascent and enhancement of tropospheric temperature and humidity. The final cluster is associated with a lower troposphere that is dry and an upper troposphere that is moist and experiencing weak ascent and horizontal moist advection.

    Since the present balance of reflection of shortwave and absorption of longwave radiation by clouds could change as the atmosphere warms from increasing anthropogenic greenhouse gases, we must also better understand how increasing temperature modifies cloud and radiative properties. We therefore undertake an observational analysis of how midlatitude oceanic clouds change with temperature when dynamical processes are held constant (i.e., partial derivative with respect to temperature. For each of the seven cloud regimes, we examine the difference in cloud and radiative properties between warm and cold subsets. To avoid misinterpreting a cloud response to large-scale dynamical forcing as a cloud response to temperature, we require horizontal and vertical

  16. Revisiting the iris effect of tropical cirrus clouds with TRMM and A-Train satellite data

    Science.gov (United States)

    Choi, Yong-Sang; Kim, WonMoo; Yeh, Sang-Wook; Masunaga, Hirohiko; Kwon, Min-Jae; Jo, Hyun-Su; Huang, Lei

    2017-06-01

    Just as the iris of human eye controls the light influx (iris effect), tropical anvil cirrus clouds may regulate the Earth's surface warming by controlling outgoing longwave radiation. This study examines this possible effect with monthly satellite observations such as Tropical Rainfall Measuring Mission (TRMM) precipitation, Moderate Resolution Imaging Spectroradiometer cirrus fraction, and Clouds and the Earth's Radiant Energy System top-of-the-atmosphere radiative fluxes averaged over different tropical domains from March 2000 to October 2014. To confirm that high-level cirrus is relevant to this study, Cloud-Aerosol Lidar with Orthogonal Polarization high cloud observations were also analyzed from June 2006 to December 2015. Our analysis revealed that the increase in sea surface temperature in the tropical western Pacific tends to concentrate convective cloud systems. This concentration effect very likely induces the significant reduction of both stratiform rain rate and cirrus fraction, without appreciable change in the convective rain rate. This reduction of stratiform rain rate and cirrus fraction cannot be found over its subregion or the tropical eastern Pacific, where the concentration effect of anvil cirrus is weak. Consistently, over the tropical western Pacific, the higher ratio of convective rain rate to total rain rate (i.e., precipitation efficiency) significantly correlates with warmer sea surface temperature and lower cirrus fraction. The reduced cirrus eventually increased outgoing longwave radiation to a greater degree than absorbed solar radiation. Finally, the negative relationship between precipitation efficiency and cirrus fraction tends to correspond to a low global equilibrium climate sensitivity in the models in the Coupled Model Intercomparison Project Phase 5. This suggests that tropical anvil cirrus clouds exert a negative climate feedback in strong association with precipitation efficiency.

  17. Influences of in-cloud aerosol scavenging parameterizations on aerosol concentrations and wet deposition in ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    B. Croft

    2010-02-01

    Full Text Available A diagnostic cloud nucleation scavenging scheme, which determines stratiform cloud scavenging ratios for both aerosol mass and number distributions, based on cloud droplet, and ice crystal number concentrations, is introduced into the ECHAM5-HAM global climate model. This scheme is coupled with a size-dependent in-cloud impaction scavenging parameterization for both cloud droplet-aerosol, and ice crystal-aerosol collisions. The aerosol mass scavenged in stratiform clouds is found to be primarily (>90% scavenged by cloud nucleation processes for all aerosol species, except for dust (50%. The aerosol number scavenged is primarily (>90% attributed to impaction. 99% of this impaction scavenging occurs in clouds with temperatures less than 273 K. Sensitivity studies are presented, which compare aerosol concentrations, burdens, and deposition for a variety of in-cloud scavenging approaches: prescribed fractions, a more computationally expensive prognostic aerosol cloud processing treatment, and the new diagnostic scheme, also with modified assumptions about in-cloud impaction and nucleation scavenging. Our results show that while uncertainties in the representation of in-cloud scavenging processes can lead to differences in the range of 20–30% for the predicted annual, global mean aerosol mass burdens, and near to 50% for accumulation mode aerosol number burden, the differences in predicted aerosol mass concentrations can be up to one order of magnitude, particularly for regions of the middle troposphere with temperatures below 273 K where mixed and ice phase clouds exist. Different parameterizations for impaction scavenging changed the predicted global, annual mean number removal attributed to ice clouds by seven-fold, and the global, annual dust mass removal attributed to impaction by two orders of magnitude. Closer agreement with observations of black carbon profiles from aircraft (increases near to one order of magnitude for mixed phase clouds

  18. Cloud Computing

    CERN Document Server

    Baun, Christian; Nimis, Jens; Tai, Stefan

    2011-01-01

    Cloud computing is a buzz-word in today's information technology (IT) that nobody can escape. But what is really behind it? There are many interpretations of this term, but no standardized or even uniform definition. Instead, as a result of the multi-faceted viewpoints and the diverse interests expressed by the various stakeholders, cloud computing is perceived as a rather fuzzy concept. With this book, the authors deliver an overview of cloud computing architecture, services, and applications. Their aim is to bring readers up to date on this technology and thus to provide a common basis for d

  19. Cloud Computing

    DEFF Research Database (Denmark)

    Krogh, Simon

    2013-01-01

    with technological changes, the paradigmatic pendulum has swung between increased centralization on one side and a focus on distributed computing that pushes IT power out to end users on the other. With the introduction of outsourcing and cloud computing, centralization in large data centers is again dominating...... the IT scene. In line with the views presented by Nicolas Carr in 2003 (Carr, 2003), it is a popular assumption that cloud computing will be the next utility (like water, electricity and gas) (Buyya, Yeo, Venugopal, Broberg, & Brandic, 2009). However, this assumption disregards the fact that most IT production......), for instance, in establishing and maintaining trust between the involved parties (Sabherwal, 1999). So far, research in cloud computing has neglected this perspective and focused entirely on aspects relating to technology, economy, security and legal questions. While the core technologies of cloud computing (e...

  20. Mobile Clouds

    DEFF Research Database (Denmark)

    Fitzek, Frank; Katz, Marcos

    A mobile cloud is a cooperative arrangement of dynamically connected communication nodes sharing opportunistic resources. In this book, authors provide a comprehensive and motivating overview of this rapidly emerging technology. The book explores how distributed resources can be shared by mobile...... users in very different ways and for various purposes. The book provides many stimulating examples of resource-sharing applications. Enabling technologies for mobile clouds are also discussed, highlighting the key role of network coding. Mobile clouds have the potential to enhance communications...... performance, improve utilization of resources and create flexible platforms to share resources in very novel ways. Energy efficient aspects of mobile clouds are discussed in detail, showing how being cooperative can bring mobile users significant energy saving. The book presents and discusses multiple...

  1. Prognostic parameterization of cloud ice with a single category in the aerosol-climate model ECHAM(v6.3.0)-HAM(v2.3)

    Science.gov (United States)

    Dietlicher, Remo; Neubauer, David; Lohmann, Ulrike

    2018-04-01

    A new scheme for stratiform cloud microphysics has been implemented in the ECHAM6-HAM2 general circulation model. It features a widely used description of cloud water with two categories for cloud droplets and raindrops. The unique aspect of the new scheme is the break with the traditional approach to describe cloud ice analogously. Here we parameterize cloud ice by a single category that predicts bulk particle properties (P3). This method has already been applied in a regional model and most recently also in the Community Atmosphere Model 5 (CAM5). A single cloud ice category does not rely on heuristic conversion rates from one category to another. Therefore, it is conceptually easier and closer to first principles. This work shows that a single category is a viable approach to describe cloud ice in climate models. Prognostic representation of sedimentation is achieved by a nested approach for sub-stepping the cloud microphysics scheme. This yields good results in terms of accuracy and performance as compared to simulations with high temporal resolution. Furthermore, the new scheme allows for a competition between various cloud processes and is thus able to unbiasedly represent the ice formation pathway from nucleation to growth by vapor deposition and collisions to sedimentation. Specific aspects of the P3 method are evaluated. We could not produce a purely stratiform cloud where rime growth dominates growth by vapor deposition and conclude that the lack of appropriate conditions renders the prognostic parameters associated with the rime properties unnecessary. Limitations inherent in a single category are examined.

  2. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds

    Science.gov (United States)

    Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-01

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ∼27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 Wṡm-2) and a surface cooling (-5 to -8 Wṡm-2). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.

  3. Simulating mixed-phase Arctic stratus clouds: sensitivity to ice initiation mechanisms

    Directory of Open Access Journals (Sweden)

    G. McFarquhar

    2009-07-01

    Full Text Available The importance of Arctic mixed-phase clouds on radiation and the Arctic climate is well known. However, the development of mixed-phase cloud parameterization for use in large scale models is limited by lack of both related observations and numerical studies using multidimensional models with advanced microphysics that provide the basis for understanding the relative importance of different microphysical processes that take place in mixed-phase clouds. To improve the representation of mixed-phase cloud processes in the GISS GCM we use the GISS single-column model coupled to a bin resolved microphysics (BRM scheme that was specially designed to simulate mixed-phase clouds and aerosol-cloud interactions. Using this model with the microphysical measurements obtained from the DOE ARM Mixed-Phase Arctic Cloud Experiment (MPACE campaign in October 2004 at the North Slope of Alaska, we investigate the effect of ice initiation processes and Bergeron-Findeisen process (BFP on glaciation time and longevity of single-layer stratiform mixed-phase clouds. We focus on observations taken during 9–10 October, which indicated the presence of a single-layer mixed-phase clouds. We performed several sets of 12-h simulations to examine model sensitivity to different ice initiation mechanisms and evaluate model output (hydrometeors' concentrations, contents, effective radii, precipitation fluxes, and radar reflectivity against measurements from the MPACE Intensive Observing Period. Overall, the model qualitatively simulates ice crystal concentration and hydrometeors content, but it fails to predict quantitatively the effective radii of ice particles and their vertical profiles. In particular, the ice effective radii are overestimated by at least 50%. However, using the same definition as used for observations, the effective radii simulated and that observed were more comparable. We find that for the single-layer stratiform mixed-phase clouds simulated, process

  4. Simulating mixed-phase Arctic stratus clouds: sensitivity to ice initiation mechanisms

    Science.gov (United States)

    Sednev, I.; Menon, S.; McFarquhar, G.

    2009-07-01

    The importance of Arctic mixed-phase clouds on radiation and the Arctic climate is well known. However, the development of mixed-phase cloud parameterization for use in large scale models is limited by lack of both related observations and numerical studies using multidimensional models with advanced microphysics that provide the basis for understanding the relative importance of different microphysical processes that take place in mixed-phase clouds. To improve the representation of mixed-phase cloud processes in the GISS GCM we use the GISS single-column model coupled to a bin resolved microphysics (BRM) scheme that was specially designed to simulate mixed-phase clouds and aerosol-cloud interactions. Using this model with the microphysical measurements obtained from the DOE ARM Mixed-Phase Arctic Cloud Experiment (MPACE) campaign in October 2004 at the North Slope of Alaska, we investigate the effect of ice initiation processes and Bergeron-Findeisen process (BFP) on glaciation time and longevity of single-layer stratiform mixed-phase clouds. We focus on observations taken during 9-10 October, which indicated the presence of a single-layer mixed-phase clouds. We performed several sets of 12-h simulations to examine model sensitivity to different ice initiation mechanisms and evaluate model output (hydrometeors' concentrations, contents, effective radii, precipitation fluxes, and radar reflectivity) against measurements from the MPACE Intensive Observing Period. Overall, the model qualitatively simulates ice crystal concentration and hydrometeors content, but it fails to predict quantitatively the effective radii of ice particles and their vertical profiles. In particular, the ice effective radii are overestimated by at least 50%. However, using the same definition as used for observations, the effective radii simulated and that observed were more comparable. We find that for the single-layer stratiform mixed-phase clouds simulated, process of ice phase initiation

  5. A study of cloud microphysics and precipitation over the Tibetan Plateau by radar observations and cloud-resolving model simulations: Cloud Microphysics over Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wenhua [State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing China; Pacific Northwest National Laboratory, Richland Washington USA; Sui, Chung-Hsiung [Department of Atmospheric Sciences, National Taiwan University, Taipei Taiwan; Fan, Jiwen [Pacific Northwest National Laboratory, Richland Washington USA; Hu, Zhiqun [State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing China; Zhong, Lingzhi [State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing China

    2016-11-27

    Cloud microphysical properties and precipitation over the Tibetan Plateau (TP) are unique because of the high terrains, clean atmosphere, and sufficient water vapor. With dual-polarization precipitation radar and cloud radar measurements during the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III), the simulated microphysics and precipitation by the Weather Research and Forecasting model (WRF) with the Chinese Academy of Meteorological Sciences (CAMS) microphysics and other microphysical schemes are investigated through a typical plateau rainfall event on 22 July 2014. Results show that the WRF-CAMS simulation reasonably reproduces the spatial distribution of 24-h accumulated precipitation, but has limitations in simulating time evolution of precipitation rates. The model-calculated polarimetric radar variables have biases as well, suggesting bias in modeled hydrometeor types. The raindrop sizes in convective region are larger than those in stratiform region indicated by the small intercept of raindrop size distribution in the former. The sensitivity experiments show that precipitation processes are sensitive to the changes of warm rain processes in condensation and nucleated droplet size (but less sensitive to evaporation process). Increasing droplet condensation produces the best area-averaged rain rate during weak convection period compared with the observation, suggesting a considerable bias in thermodynamics in the baseline simulation. Increasing the initial cloud droplet size causes the rain rate reduced by half, an opposite effect to that of increasing droplet condensation.

  6. Soft Clouding

    DEFF Research Database (Denmark)

    Søndergaard, Morten; Markussen, Thomas; Wetton, Barnabas

    2012-01-01

    Soft Clouding is a blended concept, which describes the aim of a collaborative and transdisciplinary project. The concept is a metaphor implying a blend of cognitive, embodied interaction and semantic web. Furthermore, it is a metaphor describing our attempt of curating a new semantics of sound...... archiving. The Soft Clouding Project is part of LARM - a major infrastructure combining research in and access to sound and radio archives in Denmark. In 2012 the LARM infrastructure will consist of more than 1 million hours of radio, combined with metadata who describes the content. The idea is to analyse...... the concept of ‘infrastructure’ and ‘interface’ on a creative play with the fundamentals of LARM (and any sound archive situation combining many kinds and layers of data and sources). This paper will present and discuss the Soft clouding project from the perspective of the three practices and competencies...

  7. Cloud Chamber

    DEFF Research Database (Denmark)

    Gfader, Verina

    Cloud Chamber takes its roots in a performance project, titled The Guests 做东, devised by Verina Gfader for the 11th Shanghai Biennale, ‘Why Not Ask Again: Arguments, Counter-arguments, and Stories’. Departing from the inclusion of the biennale audience to write a future folk tale, Cloud Chamber......: fiction and translation and translation through time; post literacy; world picturing-world typing; and cartographic entanglements and expressions of subjectivity; through the lens a social imaginary of worlding or cosmological quest. Art at its core? Contributions by Nikos Papastergiadis, Rebecca Carson...

  8. 76 FR 34157 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Operation and...

    Science.gov (United States)

    2011-06-13

    .../navfac/navfac--ww--pp/ navfac--hq--pp/navfac--environmental/mra) to estimate densities of the species in... temperature, precipitation, and percent cloud cover, etc.); Condition of the marine mammal observation....g., wind speed and direction, sea state, cloud cover, and visibility); (7) the species...

  9. Cloud occurrences and cloud radiative effects (CREs) from CERES-CALIPSO-CloudSat-MODIS (CCCM) and CloudSat radar-lidar (RL) products

    Science.gov (United States)

    Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Winker, David; L'Ecuyer, Tristan; Mace, Gerald G.; Painemal, David; Sun-Mack, Sunny; Chen, Yan; Miller, Walter F.

    2017-08-01

    Two kinds of cloud products obtained from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat, and Moderate Resolution Imaging Spectroradiometer (MODIS) are compared and analyzed in this study: Clouds and the Earth's Radiant Energy System (CERES)-CALIPSO-CloudSat-MODIS (CCCM) product and CloudSat radar-lidar products such as GEOPROF-LIDAR and FLXHR-LIDAR. Compared to GEOPROF-LIDAR, low-level (40°). The difference occurs when hydrometeors are detected by CALIPSO lidar but are undetected by CloudSat radar. In the comparison of cloud radiative effects (CREs), global mean differences between CCCM and FLXHR-LIDAR are mostly smaller than 5 W m-2, while noticeable regional differences are found. For example, CCCM shortwave (SW) and longwave (LW) CREs are larger than FXLHR-LIDAR along the west coasts of Africa and America because the GEOPROF-LIDAR algorithm misses shallow marine boundary layer clouds. In addition, FLXHR-LIDAR SW CREs are larger than the CCCM counterpart over tropical oceans away from the west coasts of America. Over midlatitude storm-track regions, CCCM SW and LW CREs are larger than the FLXHR-LIDAR counterpart.

  10. Twomey effect in subtropical stratocumulus clouds from UV depolarization lidar

    NARCIS (Netherlands)

    de Graaf, M.; Brown, Jessica; Donovan, D.P.; Nicolae, D.; Makoto, A.; Vassilis, A.; Balis, D.; Behrendt, A.; Comeron, A.; Gibert, F.; Landulfo, E.; McCormick, M.P.; Senff, C.; Veselovskii, I.; Wandinger, U.

    2018-01-01

    Marine stratocumulus clouds are important climate regulators, reflecting sunlight over a dark ocean background. A UV-depolarization lidar on Ascension, a small remote island in the south Atlantic, measured cloud droplet sizes and number concentration using an inversion method based on Monte Carlo

  11. Cloud computing.

    Science.gov (United States)

    Wink, Diane M

    2012-01-01

    In this bimonthly series, the author examines how nurse educators can use Internet and Web-based technologies such as search, communication, and collaborative writing tools; social networking and social bookmarking sites; virtual worlds; and Web-based teaching and learning programs. This article describes how cloud computing can be used in nursing education.

  12. Cloud Computing

    Indian Academy of Sciences (India)

    IAS Admin

    2014-03-01

    Mar 1, 2014 ... There are several types of services available on a cloud. We describe .... CPU speed has been doubling every 18 months at constant cost. Besides this ... Plain text (e.g., email) may be read by anyone who is able to access it.

  13. A comparison of ground and satellite observations of cloud cover to saturation pressure differences during a cold air outbreak

    Energy Technology Data Exchange (ETDEWEB)

    Alliss, R.J.; Raman, S. [North Carolina State Univ., Raleigh, NC (United States)

    1996-04-01

    The role of clouds in the atmospheric general circulation and the global climate is twofold. First, clouds owe their origin to large-scale dynamical forcing, radiative cooling in the atmosphere, and turbulent transfer at the surface. In addition, they provide one of the most important mechanisms for the vertical redistribution of momentum and sensible and latent heat for the large scale, and they influence the coupling between the atmosphere and the surface as well as the radiative and dynamical-hydrological balance. In existing diagnostic cloudiness parameterization schemes, relative humidity is the most frequently used variable for estimating total cloud amount or stratiform cloud amount. However, the prediction of relative humidity in general circulation models (GCMs) is usually poor. Even for the most comprehensive GCMs, the predicted relative humidity may deviate greatly from that observed, as far as the frequency distribution of relative humidity is concerned. Recently, there has been an increased effort to improve the representation of clouds and cloud-radiation feedback in GCMs, but the verification of cloudiness parameterization schemes remains a severe problem because of the lack of observational data sets. In this study, saturation pressure differences (as opposed to relative humidity) and satellite-derived cloud heights and amounts are compared with ground determinations of cloud cover over the Gulf Stream Locale (GSL) during a cold air outbreak.

  14. Chapter 3: Evaluating the impacts of carbonaceous aerosols on clouds and climate

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Surabi; Del Genio, Anthony D.

    2007-09-03

    Any attempt to reconcile observed surface temperature changes within the last 150 years to changes simulated by climate models that include various atmospheric forcings is sensitive to the changes attributed to aerosols and aerosol-cloud-climate interactions, which are the main contributors that may well balance the positive forcings associated with greenhouse gases, absorbing aerosols, ozone related changes, etc. These aerosol effects on climate, from various modeling studies discussed in Menon (2004), range from +0.8 to -2.4 W m{sup -2}, with an implied value of -1.0 W m{sup -2} (range from -0.5 to -4.5 W m{sup -2}) for the aerosol indirect effects. Quantifying the contribution of aerosols and aerosol-cloud interactions remain complicated for several reasons some of which are related to aerosol distributions and some to the processes used to represent their effects on clouds. Aerosol effects on low lying marine stratocumulus clouds that cover much of the Earth's surface (about 70%) have been the focus of most of prior aerosol-cloud interaction effect simulations. Since cumulus clouds (shallow and deep convective) are short lived and cover about 15 to 20% of the Earth's surface, they are not usually considered as radiatively important. However, the large amount of latent heat released from convective towers, and corresponding changes in precipitation, especially in biomass regions due to convective heating effects (Graf et al. 2004), suggest that these cloud systems and aerosol effects on them, must be examined more closely. The radiative heating effects for mature deep convective systems can account for 10-30% of maximum latent heating effects and thus cannot be ignored (Jensen and Del Genio 2003). The first study that isolated the sensitivity of cumulus clouds to aerosols was from Nober et al. (2003) who found a reduction in precipitation in biomass burning regions and shifts in circulation patterns. Aerosol effects on convection have been included in

  15. Double-moment cloud microphysics scheme for the deep convection parameterization in the GFDL AM3

    Science.gov (United States)

    Belochitski, A.; Donner, L.

    2014-12-01

    A double-moment cloud microphysical scheme originally developed by Morrision and Gettelman (2008) for the stratiform clouds and later adopted for the deep convection by Song and Zhang (2011) has been implemented in to the Geophysical Fluid Dynamics Laboratory's atmospheric general circulation model AM3. The scheme treats cloud drop, cloud ice, rain, and snow number concentrations and mixing ratios as diagnostic variables and incorporates processes of autoconversion, self-collection, collection between hydrometeor species, sedimentation, ice nucleation, drop activation, homogeneous and heterogeneous freezing, and the Bergeron-Findeisen process. Such detailed representation of microphysical processes makes the scheme suitable for studying the interactions between aerosols and convection, as well as aerosols' indirect effects on clouds and their roles in climate change. The scheme is first tested in the single column version of the GFDL AM3 using forcing data obtained at the U.S. Department of Energy Atmospheric Radiation Measurment project's Southern Great Planes site. Scheme's impact on SCM simulations is discussed. As the next step, runs of the full atmospheric GCM incorporating the new parameterization are compared to the unmodified version of GFDL AM3. Global climatological fields and their variability are contrasted with those of the original version of the GCM. Impact on cloud radiative forcing and climate sensitivity is investigated.

  16. Using MODIS Cloud Regimes to Sort Diagnostic Signals of Aerosol-Cloud-Precipitation Interactions.

    Science.gov (United States)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin

    2017-05-27

    Coincident multi-year measurements of aerosol, cloud, precipitation and radiation at near-global scales are analyzed to diagnose their apparent relationships as suggestive of interactions previously proposed based on theoretical, observational, and model constructs. Specifically, we examine whether differences in aerosol loading in separate observations go along with consistently different precipitation, cloud properties, and cloud radiative effects. Our analysis uses a cloud regime (CR) framework to dissect and sort the results. The CRs come from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and are defined as distinct groups of cloud systems with similar co-variations of cloud top pressure and cloud optical thickness. Aerosol optical depth used as proxy for aerosol loading comes from two sources, MODIS observations, and the MERRA-2 re-analysis, and its variability is defined with respect to local seasonal climatologies. The choice of aerosol dataset impacts our results substantially. We also find that the responses of the marine and continental component of a CR are frequently quite disparate. Overall, CRs dominated by warm clouds tend to exhibit less ambiguous signals, but also have more uncertainty with regard to precipitation changes. Finally, we find weak, but occasionally systematic co-variations of select meteorological indicators and aerosol, which serves as a sober reminder that ascribing changes in cloud and cloud-affected variables solely to aerosol variations is precarious.

  17. Formation of thick stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma: Evidence from the Panzhihua intrusion, SW China

    Science.gov (United States)

    Song, Xie-Yan; Qi, Hua-Wen; Hu, Rui-Zhong; Chen, Lie-Meng; Yu, Song-Yue; Zhang, Jia-Fei

    2013-03-01

    Panzhihua intrusion is one of the largest layered intrusions that hosts huge stratiform Fe-Ti oxide layers in the central part of the Emeishan large igneous province, SW China. Up to 60 m thick stratiform massive Fe-Ti oxide layers containing 85 modal% of magnetite and ilmenite and overlying magnetite gabbro compose cyclic units of the Lower Zone of the intrusion. The cyclic units of the Middle Zone consist of magnetite gabbro and overlying gabbro. In these cyclic units, contents of Fe2O3(t), TiO2 and Cr and Fe3+/Ti4+ ratio of the rocks decrease upward, Cr content of magnetite and forsterite percentage of olivine decrease as well. The Upper Zone consists of apatite gabbro characterized by enrichment of incompatible elements (e.g., 12-18 ppm La, 20-28 ppm Y) and increasing of Fe3+/Ti4+ ratio (from 1.3 to 2.3) upward. These features indicate that the Panzhihua intrusion was repeatedly recharged by more primitive magma and evolved magmas had been extracted. Calculations using MELTS indicate that extensive fractionation of olivine and clinopyroxene in deep level resulted in increasing Fe and Ti contents in the magma. When these Fe-Ti-enriched magmas were emplaced along the base of the Panzhihua intrusion, Fe-Ti oxides became an early crystallization phase, leading to a residual magma of lower density. We propose that the unusually thick stratiform Fe-Ti oxide layers resulted from coupling of gravity settling and sorting of the crystallized Fe-Ti oxides from Fe-Ti-enriched magmas and frequent magma replenishment along the floor of the magma chamber.

  18. Cloud management and security

    CERN Document Server

    Abbadi, Imad M

    2014-01-01

    Written by an expert with over 15 years' experience in the field, this book establishes the foundations of Cloud computing, building an in-depth and diverse understanding of the technologies behind Cloud computing. In this book, the author begins with an introduction to Cloud computing, presenting fundamental concepts such as analyzing Cloud definitions, Cloud evolution, Cloud services, Cloud deployment types and highlighting the main challenges. Following on from the introduction, the book is divided into three parts: Cloud management, Cloud security, and practical examples. Part one presents the main components constituting the Cloud and federated Cloud infrastructure(e.g., interactions and deployment), discusses management platforms (resources and services), identifies and analyzes the main properties of the Cloud infrastructure, and presents Cloud automated management services: virtual and application resource management services. Part two analyzes the problem of establishing trustworthy Cloud, discuss...

  19. Numerical simulation of mesoscale surface pressure features with trailing stratiform squall lines using WRF -ARW model over Gangetic West Bengal region

    Science.gov (United States)

    Dawn, Soma; Satyanarayana, A. N. V.

    2018-01-01

    In the present study, an attempt has been made to investigate the simulation of mesoscale surface pressure patterns like pre-squall mesolow, mesohigh and wake low associated with leading convective line-trailing stratiform (TS) squall lines over Gangetic West Bengal (GWB). For this purpose, a two way interactive triple nested domain with high resolution WRF model having2 km grid length in the innermost domain is used. The model simulated results are compared with the available in-situ observations obtained as a part of Severe Thunderstorm: Observations and Regional Modeling (STORM) programme, reflectivity products of Doppler Weather Radar (DWR) Kolkata and TRMM rainfall. Three TS squall lines (15 May 2009, 5 May 2010 and 7 May 2010) are chosen during pre-monsoon thunderstorm season for this study. The model simulated results of diurnal variation of temperature, relative humidity, wind speed and direction at the station Kharagpur in GWB region reveal a sudden fall in temperature, increase in the amount of relative humidity and sudden rise in wind speed during the arrival of the storms. Such results are well comparable with the observations though there are some leading or lagging of time in respect of actual occurrences of such events. The study indicates that the model is able to predict the occurrences of three typical surface pressure features namely: pre-squall mesolow, meso high and wake low. The predicted surface parameters like accumulated rainfall, maximum reflectivity and vertical profiles (temperature, relative humidity and winds) are well accorded with the observations. The convective and stratiform precipitation region of the TS squall lines are well represented by the model. A strong downdraft is observed to be a contributory factor for formation of mesohigh in the convective region of the squall line. Wake low is observed to reside in the stratiform rain region and the descending dry air at this place has triggered the wake low through adiabatic

  20. Cloud time

    CERN Document Server

    Lockwood, Dean

    2012-01-01

    The ‘Cloud’, hailed as a new digital commons, a utopia of collaborative expression and constant connection, actually constitutes a strategy of vitalist post-hegemonic power, which moves to dominate immanently and intensively, organizing our affective political involvements, instituting new modes of enclosure, and, crucially, colonizing the future through a new temporality of control. The virtual is often claimed as a realm of invention through which capitalism might be cracked, but it is precisely here that power now thrives. Cloud time, in service of security and profit, assumes all is knowable. We bear witness to the collapse of both past and future virtuals into a present dedicated to the exploitation of the spectres of both.

  1. Evaluation of Cloud-Resolving and Limited Area Model Intercomparison Simulations Using TWP-ICE Observations. Part 2 ; Precipitation Microphysics

    Science.gov (United States)

    Varble, Adam; Zipser, Edward J.; Fridland, Ann M.; Zhu, Ping; Ackerman, Andrew S.; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; Shipway, Ben; Williams, Christopher

    2014-01-01

    Ten 3-D cloud-resolving model (CRM) simulations and four 3-D limited area model (LAM) simulations of an intense mesoscale convective system observed on 23-24 January 2006 during the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) are compared with each other and with observations and retrievals from a scanning polarimetric radar, colocated UHF and VHF vertical profilers, and a Joss-Waldvogel disdrometer in an attempt to explain a low bias in simulated stratiform rainfall. Despite different forcing methodologies, similar precipitation microphysics errors appear in CRMs and LAMs with differences that depend on the details of the bulk microphysics scheme used. One-moment schemes produce too many small raindrops, which biases Doppler velocities low, but produces rainwater contents (RWCs) that are similar to observed. Two-moment rain schemes with a gamma shape parameter (mu) of 0 produce excessive size sorting, which leads to larger Doppler velocities than those produced in one-moment schemes but lower RWCs. Two-moment schemes also produce a convective median volume diameter distribution that is too broad relative to observations and, thus, may have issues balancing raindrop formation, collision-coalescence, and raindrop breakup. Assuming a mu of 2.5 rather than 0 for the raindrop size distribution improves one-moment scheme biases, and allowing mu to have values greater than 0 may improve excessive size sorting in two-moment schemes. Underpredicted stratiform rain rates are associated with underpredicted ice water contents at the melting level rather than excessive rain evaporation, in turn likely associated with convective detrainment that is too high in the troposphere and mesoscale circulations that are too weak. A limited domain size also prevents a large, well-developed stratiform region like the one observed from developing in CRMs, although LAMs also fail to produce such a region.

  2. Process-model simulations of cloud albedo enhancement by aerosols in the Arctic

    Science.gov (United States)

    Kravitz, Ben; Wang, Hailong; Rasch, Philip J.; Morrison, Hugh; Solomon, Amy B.

    2014-01-01

    A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN), either through geoengineering or other increased sources of Arctic aerosols. An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Albedo increases are stronger for pure liquid clouds than mixed-phase clouds. Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus, the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol–cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation owing to precipitation changes are small. According to these results, which are dependent upon the representation of ice nucleation processes in the employed microphysical scheme, Arctic geoengineering is unlikely to be effective as the sole means of altering the global radiation budget but could have substantial local radiative effects. PMID:25404677

  3. Constraining Aerosol-Cloud-Precipitation Interactions of Orographic Mixed-Phase Clouds with Trajectory Budgets

    Science.gov (United States)

    Glassmeier, F.; Lohmann, U.

    2016-12-01

    Orographic precipitation is prone to strong aerosol-cloud-precipitation interactions because the time for precipitation development is limited to the ascending section of mountain flow. At the same time, cloud microphysical development is constraint by the strong dynamical forcing of the orography. In this contribution, we discuss how changes in the amount and composition of droplet- and ice-forming aerosols influence precipitation in idealized simulations of stratiform orographic mixed-phase clouds. We find that aerosol perturbations trigger compensating responses of different precipitation formation pathways. The effect of aerosols is thus buffered. We explain this buffering by the requirement to fulfill aerosol-independent dynamical constraints. For our simulations, we use the regional atmospheric model COSMO-ART-M7 in a 2D setup with a bell-shaped mountain. The model is coupled to a 2-moment warm and cold cloud microphysics scheme. Activation and freezing rates are parameterized based on prescribed aerosol fields that are varied in number, size and composition. Our analysis is based on the budget of droplet water along trajectories of cloud parcels. The budget equates condensation as source term with precipitation formation from autoconversion, accretion, riming and the Wegener-Bergeron-Findeisen process as sink terms. Condensation, and consequently precipitation formation, is determined by dynamics and largely independent of the aerosol conditions. An aerosol-induced change in the number of droplets or crystals perturbs the droplet budget by affecting precipitation formation processes. We observe that this perturbation triggers adjustments in liquid and ice water content that re-equilibrate the budget. As an example, an increase in crystal number triggers a stronger glaciation of the cloud and redistributes precipitation formation from collision-coalescence to riming and from riming to vapor deposition. We theoretically confirm the dominant effect of water

  4. Assessment of the Performance of the Chilbolton 3-GHz Advanced Meteorological Radar for Cloud-Top-Height Retrieval.

    Science.gov (United States)

    Naud, C. M.; Muller, J.-P.; Slack, E. C.; Wrench, C. L.; Clothiaux, E. E.

    2005-06-01

    The Chilbolton 3-GHz Advanced Meteorological Radar (CAMRa), which is mounted on a fully steerable 25-m dish, can provide three-dimensional information on the presence of hydrometeors. The potential for this radar to make useful measurements of low-altitude liquid water cloud structure is investigated. To assess the cloud-height assignment capabilities of the 3-GHz radar, low-level cloud-top heights were retrieved from CAMRa measurements made between May and July 2003 and were compared with cloud-top heights retrieved from a vertically pointing 94-GHz radar that operates alongside CAMRa. The average difference between the 94- and 3-GHz radar-derived cloud-top heights is shown to be -0.1 ± 0.4 km. To assess the capability of 3-GHz radar scans to be used for satellite-derived cloud-top-height validation, multiangle imaging spectroradiometer (MISR) cloud-top heights were compared with both 94- and 3-GHz radar retrievals. The average difference between 94-GHz radar and MISR cloud-top heights is shown to be 0.1 ± 0.3 km, while the 3-GHz radar and MISR average cloud-top-height difference is shown to be -0.2 ± 0.6 km. In assessing the value of the CAMRa measurements, the problems associated with low-reflectivity values from stratiform liquid water clouds, ground clutter, and Bragg scattering resulting from turbulent mixing are all addressed. It is shown that, despite the difficulties, the potential exists for CAMRa measurements to contribute significantly to liquid water cloud-top-height retrievals, leading to the production of two-dimensional transects (i.e., maps) of cloud-top height.

  5. Essentials of cloud computing

    CERN Document Server

    Chandrasekaran, K

    2014-01-01

    ForewordPrefaceComputing ParadigmsLearning ObjectivesPreambleHigh-Performance ComputingParallel ComputingDistributed ComputingCluster ComputingGrid ComputingCloud ComputingBiocomputingMobile ComputingQuantum ComputingOptical ComputingNanocomputingNetwork ComputingSummaryReview PointsReview QuestionsFurther ReadingCloud Computing FundamentalsLearning ObjectivesPreambleMotivation for Cloud ComputingThe Need for Cloud ComputingDefining Cloud ComputingNIST Definition of Cloud ComputingCloud Computing Is a ServiceCloud Computing Is a Platform5-4-3 Principles of Cloud computingFive Essential Charact

  6. The role of cloud-scale resolution on radiative properties of oceanic cumulus clouds

    International Nuclear Information System (INIS)

    Kassianov, Evgueni; Ackerman, Thomas; Kollias, Pavlos

    2005-01-01

    Both individual and combined effects of the horizontal and vertical variability of cumulus clouds on solar radiative transfer are investigated using a two-dimensional (x- and z-directions) cloud radar dataset. This high-resolution dataset of typical fair-weather marine cumulus is derived from ground-based 94GHz cloud radar observations. The domain-averaged (along x-direction) radiative properties are computed by a Monte Carlo method. It is shown that (i) different cloud-scale resolutions can be used for accurate calculations of the mean absorption, upward and downward fluxes; (ii) the resolution effects can depend strongly on the solar zenith angle; and (iii) a few cloud statistics can be successfully applied for calculating the averaged radiative properties

  7. Diagnosing Warm Frontal Cloud Formation in a GCM: A Novel Approach Using Conditional Subsetting

    Science.gov (United States)

    Booth, James F.; Naud, Catherine M.; DelGenio, Anthony D.

    2013-01-01

    This study analyzes characteristics of clouds and vertical motion across extratropical cyclone warm fronts in the NASA Goddard Institute for Space Studies general circulation model. The validity of the modeled clouds is assessed using a combination of satellite observations from CloudSat, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), and the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. The analysis focuses on developing cyclones, to test the model's ability to generate their initial structure. To begin, the extratropical cyclones and their warm fronts are objectively identified and cyclone-local fields are mapped into a vertical transect centered on the surface warm front. To further isolate specific physics, the cyclones are separated using conditional subsetting based on additional cyclone-local variables, and the differences between the subset means are analyzed. Conditional subsets are created based on 1) the transect clouds and 2) vertical motion; 3) the strength of the temperature gradient along the warm front, as well as the storm-local 4) wind speed and 5) precipitable water (PW). The analysis shows that the model does not generate enough frontal cloud, especially at low altitude. The subsetting results reveal that, compared to the observations, the model exhibits a decoupling between cloud formation at high and low altitudes across warm fronts and a weak sensitivity to moisture. These issues are caused in part by the parameterized convection and assumptions in the stratiform cloud scheme that are valid in the subtropics. On the other hand, the model generates proper covariability of low-altitude vertical motion and cloud at the warm front and a joint dependence of cloudiness on wind and PW.

  8. Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    U. Lohmann

    2007-07-01

    Full Text Available The double-moment cloud microphysics scheme from ECHAM4 that predicts both the mass mixing ratios and number concentrations of cloud droplets and ice crystals has been coupled to the size-resolved aerosol scheme ECHAM5-HAM. ECHAM5-HAM predicts the aerosol mass, number concentrations and mixing state. The simulated liquid, ice and total water content and the cloud droplet and ice crystal number concentrations as a function of temperature in stratiform mixed-phase clouds between 0 and −35° C agree much better with aircraft observations in the ECHAM5 simulations. ECHAM5 performs better because more realistic aerosol concentrations are available for cloud droplet nucleation and because the Bergeron-Findeisen process is parameterized as being more efficient.

    The total anthropogenic aerosol effect includes the direct, semi-direct and indirect effects and is defined as the difference in the top-of-the-atmosphere net radiation between present-day and pre-industrial times. It amounts to −1.9 W m−2 in ECHAM5, when a relative humidity dependent cloud cover scheme and aerosol emissions representative for the years 1750 and 2000 from the AeroCom emission inventory are used. The contribution of the cloud albedo effect amounts to −0.7 W m−2. The total anthropogenic aerosol effect is larger when either a statistical cloud cover scheme or a different aerosol emission inventory are employed because the cloud lifetime effect increases.

  9. Marine ecology

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Studies on marine ecology included marine pollution; distribution patterns of Pu and Am in the marine waters, sediments, and organisms of Bikini Atoll and the influence of physical, chemical, and biological factors on their movements through marine biogeochemical systems; transfer and dispersion of organic pollutants from an oil refinery through coastal waters; transfer of particulate pollutants, including sediments dispersed during construction of offshore power plants; and raft culture of the mangrove oysters

  10. Cloud Computing, Tieto Cloud Server Model

    OpenAIRE

    Suikkanen, Saara

    2013-01-01

    The purpose of this study is to find out what is cloud computing. To be able to make wise decisions when moving to cloud or considering it, companies need to understand what cloud is consists of. Which model suits best to they company, what should be taken into account before moving to cloud, what is the cloud broker role and also SWOT analysis of cloud? To be able to answer customer requirements and business demands, IT companies should develop and produce new service models. IT house T...

  11. Marine pollution

    International Nuclear Information System (INIS)

    Albaiges, J.

    1989-01-01

    This book covers the following topics: Transport of marine pollutants; Transformation of pollutants in the marine environment; Biological effects of marine pollutants; Sources and transport of oil pollutants in the Persian Gulf; Trace metals and hydrocarbons in Syrian coastal waters; and Techniques for analysis of trace pollutants

  12. The retrieval of cloud microphysical properties using satellite measurements and an in situ database

    Directory of Open Access Journals (Sweden)

    C. Poix

    1996-01-01

    Full Text Available By combining AVHRR data from the NOAA satellites with information from a database of in situ measurements, large-scale maps can be generated of the microphysical parameters most immediately significant for the modelling of global circulation and climate. From the satellite data, the clouds can be classified into cumuliform, stratiform and cirrus classes and then into further sub-classes by cloud top temperature. At the same time a database of in situ measurements made by research aircraft is classified into the same sub-classes and a statistical analysis is used to derive relationships between the sub-classes and the cloud microphysical properties. These two analyses are then linked to give estimates of the microphysical properties of the satellite observed clouds. Examples are given of the application of this technique to derive maps of the probability of occurrence of precipitating clouds and of precipitating water content derived from a case study within the International Cirrus Experiment (ICE held in 1989 over the North Sea.

  13. The retrieval of cloud microphysical properties using satellite measurements and an in situ database

    Directory of Open Access Journals (Sweden)

    Christophe Poix

    Full Text Available By combining AVHRR data from the NOAA satellites with information from a database of in situ measurements, large-scale maps can be generated of the microphysical parameters most immediately significant for the modelling of global circulation and climate. From the satellite data, the clouds can be classified into cumuliform, stratiform and cirrus classes and then into further sub-classes by cloud top temperature. At the same time a database of in situ measurements made by research aircraft is classified into the same sub-classes and a statistical analysis is used to derive relationships between the sub-classes and the cloud microphysical properties. These two analyses are then linked to give estimates of the microphysical properties of the satellite observed clouds. Examples are given of the application of this technique to derive maps of the probability of occurrence of precipitating clouds and of precipitating water content derived from a case study within the International Cirrus Experiment (ICE held in 1989 over the North Sea.

  14. Blue skies for CLOUD

    CERN Multimedia

    2006-01-01

    Through the recently approved CLOUD experiment, CERN will soon be contributing to climate research. Tests are being performed on the first prototype of CLOUD, an experiment designed to assess cosmic radiation influence on cloud formation.

  15. Moving towards Cloud Security

    OpenAIRE

    Edit Szilvia Rubóczki; Zoltán Rajnai

    2015-01-01

    Cloud computing hosts and delivers many different services via Internet. There are a lot of reasons why people opt for using cloud resources. Cloud development is increasing fast while a lot of related services drop behind, for example the mass awareness of cloud security. However the new generation upload videos and pictures without reason to a cloud storage, but only few know about data privacy, data management and the proprietary of stored data in the cloud. In an enterprise environment th...

  16. Marine fog: a review

    Science.gov (United States)

    Koračin, Darko; Dorman, Clive E.; Lewis, John M.; Hudson, James G.; Wilcox, Eric M.; Torregrosa, Alicia

    2014-01-01

    The objective of this review is to discuss physical processes over a wide range of spatial scales that govern the formation, evolution, and dissipation of marine fog. We consider marine fog as the collective combination of fog over the open sea along with coastal sea fog and coastal land fog. The review includes a history of sea fog research, field programs, forecasting methods, and detection of sea fog via satellite observations where similarity in radiative properties of fog top and the underlying sea induce further complexity. The main thrust of the study is to provide insight into causality of fog including its initiation, maintenance, and destruction. The interplay between the various physical processes behind the several stages of marine fog is among the most challenging aspects of the problem. An effort is made to identify this interplay between processes that include the microphysics of fog formation and maintenance, the influence of large-scale circulation and precipitation/clouds, radiation, turbulence (air-sea interaction), and advection. The environmental impact of marine fog is also addressed. The study concludes with an assessment of our current knowledge of the phenomenon, our principal areas of ignorance, and future lines of research that hold promise for advances in our understanding.

  17. Marine genomics

    DEFF Research Database (Denmark)

    Oliveira Ribeiro, Ângela Maria; Foote, Andrew David; Kupczok, Anne

    2017-01-01

    Marine ecosystems occupy 71% of the surface of our planet, yet we know little about their diversity. Although the inventory of species is continually increasing, as registered by the Census of Marine Life program, only about 10% of the estimated two million marine species are known. This lag......-throughput sequencing approaches have been helping to improve our knowledge of marine biodiversity, from the rich microbial biota that forms the base of the tree of life to a wealth of plant and animal species. In this review, we present an overview of the applications of genomics to the study of marine life, from...

  18. Evaluating the impact of aerosol particles above cloud on cloud optical depth retrievals from MODIS

    Science.gov (United States)

    Alfaro-Contreras, Ricardo; Zhang, Jianglong; Campbell, James R.; Holz, Robert E.; Reid, Jeffrey S.

    2014-05-01

    Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (0.86 versus 1.6 µm), we evaluate the impact of above-cloud smoke aerosol particles on near-IR (0.86 µm) COD retrievals. Aerosol Index (AI) from the collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African subcontinent. Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation data constrain cloud phase and provide contextual above-cloud aerosol optical depth. The frequency of occurrence of above-cloud aerosol events is depicted on a global scale for the spring and summer seasons from OMI and Cloud Aerosol Lidar with Orthogonal Polarization. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20-50% in boreal summer. We find a corresponding low COD bias of 10-20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS 0.86 and 1.6 µm channels are vulnerable to radiance attenuation due to dust particles. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of collocated OMI AI and supplementary MODIS 1.6 µm COD products.

  19. Evaluating the impact of above-cloud aerosols on cloud optical depth retrievals from MODIS

    Science.gov (United States)

    Alfaro, Ricardo

    Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (visible and shortwave infrared), the impacts of above-cloud absorbing aerosols on the standard COD retrievals are evaluated. For fine-mode aerosol particles, aerosol optical depth (AOD) values diminish sharply from the visible to the shortwave infrared channels. Thus, a suppressed above-cloud particle radiance aliasing effect occurs for COD retrievals using shortwave infrared channels. Aerosol Index (AI) from the spatially and temporally collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African sub-continent. MODIS and OMI Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are used to constrain cloud phase and provide contextual above-cloud AOD values. The frequency of occurrence of above-cloud aerosols is depicted on a global scale for the spring and summer seasons from OMI and CALIOP, thus indicating the significance of the problem. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20--50% in boreal summer. We find a corresponding low COD bias of 10--20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1.0. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS visible and shortwave in channels are vulnerable to dust particle aliasing, and thus a COD impact cannot be isolated with this method. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of

  20. Cloud-Top Entrainment in Stratocumulus Clouds

    Science.gov (United States)

    Mellado, Juan Pedro

    2017-01-01

    Cloud entrainment, the mixing between cloudy and clear air at the boundary of clouds, constitutes one paradigm for the relevance of small scales in the Earth system: By regulating cloud lifetimes, meter- and submeter-scale processes at cloud boundaries can influence planetary-scale properties. Understanding cloud entrainment is difficult given the complexity and diversity of the associated phenomena, which include turbulence entrainment within a stratified medium, convective instabilities driven by radiative and evaporative cooling, shear instabilities, and cloud microphysics. Obtaining accurate data at the required small scales is also challenging, for both simulations and measurements. During the past few decades, however, high-resolution simulations and measurements have greatly advanced our understanding of the main mechanisms controlling cloud entrainment. This article reviews some of these advances, focusing on stratocumulus clouds, and indicates remaining challenges.

  1. Cloud Infrastructure & Applications - CloudIA

    Science.gov (United States)

    Sulistio, Anthony; Reich, Christoph; Doelitzscher, Frank

    The idea behind Cloud Computing is to deliver Infrastructure-as-a-Services and Software-as-a-Service over the Internet on an easy pay-per-use business model. To harness the potentials of Cloud Computing for e-Learning and research purposes, and to small- and medium-sized enterprises, the Hochschule Furtwangen University establishes a new project, called Cloud Infrastructure & Applications (CloudIA). The CloudIA project is a market-oriented cloud infrastructure that leverages different virtualization technologies, by supporting Service-Level Agreements for various service offerings. This paper describes the CloudIA project in details and mentions our early experiences in building a private cloud using an existing infrastructure.

  2. Ice nuclei in marine air: biogenic particles or dust?

    Directory of Open Access Journals (Sweden)

    S. M. Burrows

    2013-01-01

    Full Text Available Ice nuclei impact clouds, but their sources and distribution in the atmosphere are still not well known. Particularly little attention has been paid to IN sources in marine environments, although evidence from field studies suggests that IN populations in remote marine regions may be dominated by primary biogenic particles associated with sea spray. In this exploratory model study, we aim to bring attention to this long-neglected topic and identify promising target regions for future field campaigns. We assess the likely global distribution of marine biogenic ice nuclei using a combination of historical observations, satellite data and model output. By comparing simulated marine biogenic immersion IN distributions and dust immersion IN distributions, we predict strong regional differences in the importance of marine biogenic IN relative to dust IN. Our analysis suggests that marine biogenic IN are most likely to play a dominant role in determining IN concentrations in near-surface-air over the Southern Ocean, so future field campaigns aimed at investigating marine biogenic IN should target that region. Climate-related changes in the abundance and emission of biogenic marine IN could affect marine cloud properties, thereby introducing previously unconsidered feedbacks that influence the hydrological cycle and the Earth's energy balance. Furthermore, marine biogenic IN may be an important aspect to consider in proposals for marine cloud brightening by artificial sea spray production.

  3. In search of the best match: probing a multi-dimensional cloud microphysical parameter space to better understand what controls cloud thermodynamic phase

    Science.gov (United States)

    Tan, Ivy; Storelvmo, Trude

    2015-04-01

    Substantial improvements have been made to the cloud microphysical schemes used in the latest generation of global climate models (GCMs), however, an outstanding weakness of these schemes lies in the arbitrariness of their tuning parameters, which are also notoriously fraught with uncertainties. Despite the growing effort in improving the cloud microphysical schemes in GCMs, most of this effort has neglected to focus on improving the ability of GCMs to accurately simulate the present-day global distribution of thermodynamic phase partitioning in mixed-phase clouds. Liquid droplets and ice crystals not only influence the Earth's radiative budget and hence climate sensitivity via their contrasting optical properties, but also through the effects of their lifetimes in the atmosphere. The current study employs NCAR's CAM5.1, and uses observations of cloud phase obtained by NASA's CALIOP lidar over a 79-month period (November 2007 to June 2014) guide the accurate simulation of the global distribution of mixed-phase clouds in 20∘ latitudinal bands at the -10∘ C, -20∘C and -30∘C isotherms, by adjusting six relevant cloud microphysical tuning parameters in the CAM5.1 via Quasi-Monte Carlo sampling. Among the parameters include those that control the Wegener-Bergeron-Findeisen (WBF) timescale for the conversion of supercooled liquid droplets to ice and snow in mixed-phase clouds, the fraction of ice nuclei that nucleate ice in the atmosphere, ice crystal sedimentation speed, and wet scavenging in stratiform and convective clouds. Using a Generalized Linear Model as a variance-based sensitivity analysis, the relative contributions of each of the six parameters are quantified to gain a better understanding of the importance of their individual and two-way interaction effects on the liquid to ice proportion in mixed-phase clouds. Thus, the methodology implemented in the current study aims to search for the combination of cloud microphysical parameters in a GCM that

  4. Silicon Photonics Cloud (SiCloud)

    DEFF Research Database (Denmark)

    DeVore, P. T. S.; Jiang, Y.; Lynch, M.

    2015-01-01

    Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths.......Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths....

  5. Role of mixed precipitating cloud systems on the typhoon rainfall

    Directory of Open Access Journals (Sweden)

    C. J. Pan

    2010-01-01

    Full Text Available L-band wind profiler data are utilized to diagnose the vertical structure of the typhoon precipitating cloud systems in Taiwan. For several typhoons, a pronounced bright band (BB around 5 km is commonly observed from the observation. Since strong convection within typhoon circulation may disturb and/or disrupt the melting layer, the BB shall not appear persistently. Hence, an understanding of the vertical structure of the BB region is important because it holds extensive hydrometeors information on the type of precipitation and its variability. Wind profiler observational results suggest that the mixture of convective and stratiform (embedded type clouds are mostly associated with typhoons. In the case of one typhoon, BB is appeared around 5.5 km with embedded precipitation and also BB height of 1 km higher than ordinary showery precipitation. This is evident from the long-term observations of wind profiler and Tropical Rainfall Measuring Mission. The Doppler velocity profiles show hydrometers (ice/snow at 6 km but liquid below 5 km for typhoons and 4 km for showery precipitation. In the BB region the melting particles accelerations of 5.8 ms−1 km−1 and 3.2 ms−1 km−1 are observed for typhoon and showery precipitation, respectively.

  6. Role of mixed precipitating cloud systems on the typhoon rainfall

    Directory of Open Access Journals (Sweden)

    C. J. Pan

    2010-01-01

    Full Text Available L-band wind profiler data are utilized to diagnose the vertical structure of the typhoon precipitating cloud systems in Taiwan. For several typhoons, a pronounced bright band (BB around 5 km is commonly observed from the observation. Since strong convection within typhoon circulation may disturb and/or disrupt the melting layer, the BB shall not appear persistently. Hence, an understanding of the vertical structure of the BB region is important because it holds extensive hydrometeors information on the type of precipitation and its variability. Wind profiler observational results suggest that the mixture of convective and stratiform (embedded type clouds are mostly associated with typhoons. In the case of one typhoon, BB is appeared around 5.5 km with embedded precipitation and also BB height of 1 km higher than ordinary showery precipitation. This is evident from the long-term observations of wind profiler and Tropical Rainfall Measuring Mission. The Doppler velocity profiles show hydrometers (ice/snow at 6 km but liquid below 5 km for typhoons and 4 km for showery precipitation. In the BB region the melting particles accelerations of 5.8 ms−1 km−1 and 3.2 ms−1 km−1 are observed for typhoon and showery precipitation, respectively.

  7. Leading and Trailing Anvil Clouds of West African Squall Lines

    Science.gov (United States)

    Centrone, Jasmine; Houze, Robert A.

    2011-01-01

    The anvil clouds of tropical squall-line systems over West Africa have been examined using cloud radar data and divided into those that appear ahead of the leading convective line and those on the trailing side of the system. The leading anvils are generally higher in altitude than the trailing anvil, likely because the hydrometeors in the leading anvil are directly connected to the convective updraft, while the trailing anvil generally extends out of the lower-topped stratiform precipitation region. When the anvils are subdivided into thick, medium, and thin portions, the thick leading anvil is seen to have systematically higher reflectivity than the thick trailing anvil, suggesting that the leading anvil contains numerous larger ice particles owing to its direct connection to the convective region. As the leading anvil ages and thins, it retains its top. The leading anvil appears to add hydrometeors at the highest altitudes, while the trailing anvil is able to moisten a deep layer of the atmosphere.

  8. Development of Two-Moment Cloud Microphysics for Liquid and Ice Within the NASA Goddard Earth Observing System Model (GEOS-5)

    Science.gov (United States)

    Barahona, Donifan; Molod, Andrea M.; Bacmeister, Julio; Nenes, Athanasios; Gettelman, Andrew; Morrison, Hugh; Phillips, Vaughan,; Eichmann, Andrew F.

    2013-01-01

    This work presents the development of a two-moment cloud microphysics scheme within the version 5 of the NASA Goddard Earth Observing System (GEOS-5). The scheme includes the implementation of a comprehensive stratiform microphysics module, a new cloud coverage scheme that allows ice supersaturation and a new microphysics module embedded within the moist convection parameterization of GEOS-5. Comprehensive physically-based descriptions of ice nucleation, including homogeneous and heterogeneous freezing, and liquid droplet activation are implemented to describe the formation of cloud particles in stratiform clouds and convective cumulus. The effect of preexisting ice crystals on the formation of cirrus clouds is also accounted for. A new parameterization of the subgrid scale vertical velocity distribution accounting for turbulence and gravity wave motion is developed. The implementation of the new microphysics significantly improves the representation of liquid water and ice in GEOS-5. Evaluation of the model shows agreement of the simulated droplet and ice crystal effective and volumetric radius with satellite retrievals and in situ observations. The simulated global distribution of supersaturation is also in agreement with observations. It was found that when using the new microphysics the fraction of condensate that remains as liquid follows a sigmoidal increase with temperature which differs from the linear increase assumed in most models and is in better agreement with available observations. The performance of the new microphysics in reproducing the observed total cloud fraction, longwave and shortwave cloud forcing, and total precipitation is similar to the operational version of GEOS-5 and in agreement with satellite retrievals. However the new microphysics tends to underestimate the coverage of persistent low level stratocumulus. Sensitivity studies showed that the simulated cloud properties are robust to moderate variation in cloud microphysical parameters

  9. Marine biology

    International Nuclear Information System (INIS)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index

  10. The CLOUD experiment

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The Cosmics Leaving Outdoor Droplets (CLOUD) experiment as shown by Jasper Kirkby (spokesperson). Kirkby shows a sketch to illustrate the possible link between galactic cosmic rays and cloud formations. The CLOUD experiment uses beams from the PS accelerator at CERN to simulate the effect of cosmic rays on cloud formations in the Earth's atmosphere. It is thought that cosmic ray intensity is linked to the amount of low cloud cover due to the formation of aerosols, which induce condensation.

  11. BUSINESS INTELLIGENCE IN CLOUD

    OpenAIRE

    Celina M. Olszak

    2014-01-01

    . The paper reviews and critiques current research on Business Intelligence (BI) in cloud. This review highlights that organizations face various challenges using BI cloud. The research objectives for this study are a conceptualization of the BI cloud issue, as well as an investigation of some benefits and risks from BI cloud. The study was based mainly on a critical analysis of literature and some reports on BI cloud using. The results of this research can be used by IT and business leaders ...

  12. Cloud Robotics Platforms

    Directory of Open Access Journals (Sweden)

    Busra Koken

    2015-01-01

    Full Text Available Cloud robotics is a rapidly evolving field that allows robots to offload computation-intensive and storage-intensive jobs into the cloud. Robots are limited in terms of computational capacity, memory and storage. Cloud provides unlimited computation power, memory, storage and especially collaboration opportunity. Cloud-enabled robots are divided into two categories as standalone and networked robots. This article surveys cloud robotic platforms, standalone and networked robotic works such as grasping, simultaneous localization and mapping (SLAM and monitoring.

  13. Retrieving latent heating vertical structure from cloud and precipitation Profiles—Part I: Warm rain processes

    International Nuclear Information System (INIS)

    Min, Qilong; Li, Rui; Wu, Xiaoqing; Fu, Yunfei

    2013-01-01

    An exploratory study on physical based latent heat (LH) retrieval algorithm is conducted by parameterizing the physical linkages of hydrometeor profiles of cloud and precipitation to the major processes related to the phase change of atmospheric water. Specifically, rain events are segregated into three rain types: warm, convective, and stratiform, based on their dynamical and thermodynamical characteristics. As the first of the series, only the warm rain LH algorithm is presented and evaluated here. The major microphysical processes of condensation and evaporation for warm rain are parameterized through traditional rain growth theory, with the aid of Cloud Resolving Model (CRM) simulations. The evaluation or the self-consistency tests indicate that the physical based retrievals capture the fundamental LH processes associated with the warm rain life cycle. There is no significant systematic bias in terms of convection strength, illustrated by the month-long CRM simulation as the mesoscale convective systems (MCSs) experience from initial, mature, to decay stages. The overall monthly-mean LH comparison showed that the total LH, as well as condensation heating and evaporation cooling components, agree with the CRM simulation. -- Highlights: ► An exploratory study on physics-based warm rain latent heat retrieval algorithm. ► Utilize the full information of the vertical structures of cloud and rainfall. ► Directly link water mass measurements to latent heat at instantaneous pixel level. ► Applicable at various stages of cloud system life cycle

  14. Cloud albedo increase from carbonaceous aerosol

    Directory of Open Access Journals (Sweden)

    W. R. Leaitch

    2010-08-01

    Full Text Available Airborne measurements from two consecutive days, analysed with the aid of an aerosol-adiabatic cloud parcel model, are used to study the effect of carbonaceous aerosol particles on the reflectivity of sunlight by water clouds. The measurements, including aerosol chemistry, aerosol microphysics, cloud microphysics, cloud gust velocities and cloud light extinction, were made below, in and above stratocumulus over the northwest Atlantic Ocean. On the first day, the history of the below-cloud fine particle aerosol was marine and the fine particle sulphate and organic carbon mass concentrations measured at cloud base were 2.4 μg m−3 and 0.9 μg m−3 respectively. On the second day, the below-cloud aerosol was continentally influenced and the fine particle sulphate and organic carbon mass concentrations were 2.3 μg m−3 and 2.6 μg m−3 respectively. Over the range 0.06–0.8 μm diameter, the shapes of the below-cloud size distributions were similar on both days and the number concentrations were approximately a factor of two higher on the second day. The cloud droplet number concentrations (CDNC on the second day were approximately three times higher than the CDNC measured on the first day. Using the parcel model to separate the influence of the differences in gust velocities, we estimate from the vertically integrated cloud light scattering measurements a 6% increase in the cloud albedo principally due to the increase in the carbonaceous components on the second day. Assuming no additional absorption by this aerosol, a 6% albedo increase translates to a local daytime radiative cooling of ∼12 W m−2. This result provides observational evidence that the role of anthropogenic carbonaceous components in the cloud albedo effect can be much larger than that of anthropogenic sulphate, as some global simulations have indicated.

  15. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    OpenAIRE

    Y. Liu; W. Wu; M. P. Jensen; T. Toto

    2011-01-01

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surfaced-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fractio...

  16. RACORO continental boundary layer cloud investigations: 1. Case study development and ensemble large-scale forcings

    Science.gov (United States)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; Li, Zhijin; Xie, Shaocheng; Ackerman, Andrew S.; Zhang, Minghua; Khairoutdinov, Marat

    2015-06-01

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60 h case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in situ measurements from the Routine AAF (Atmospheric Radiation Measurement (ARM) Aerial Facility) CLOWD (Clouds with Low Optical Water Depth) Optical Radiative Observations (RACORO) field campaign and remote sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be 0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing data sets are derived from the ARM variational analysis, European Centre for Medium-Range Weather Forecasts, and a multiscale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in "trial" large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.

  17. RACORO Continental Boundary Layer Cloud Investigations: 1. Case Study Development and Ensemble Large-Scale Forcings

    Science.gov (United States)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; hide

    2015-01-01

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60 h case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in situ measurements from the Routine AAF (Atmospheric Radiation Measurement (ARM) Aerial Facility) CLOWD (Clouds with Low Optical Water Depth) Optical Radiative Observations (RACORO) field campaign and remote sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, kappa, are derived from observations to be approximately 0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing data sets are derived from the ARM variational analysis, European Centre for Medium-Range Weather Forecasts, and a multiscale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in "trial" large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary

  18. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high ... or by any means without permission in writing from the copyright holder. ..... Journal of Chemical Engineering Research and Design 82 ... Indian Ocean Marine Science Association Technical.

  19. Marine Biomedicine

    Science.gov (United States)

    Bang, Frederik B.

    1977-01-01

    Describes early scientific research involving marine invertebrate pathologic processes that may have led to new insights into human disease. Discussed are inquiries of Metchnikoff, Loeb, and Cantacuzene (immunolgic responses in sea stars, horseshoe crabs, and marine worms, respectively). Describes current research stemming from these early…

  20. Marine Biology

    Science.gov (United States)

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  1. Cloud CCN feedback

    International Nuclear Information System (INIS)

    Hudson, J.G.

    1992-01-01

    Cloud microphysics affects cloud albedo precipitation efficiency and the extent of cloud feedback in response to global warming. Compared to other cloud parameters, microphysics is unique in its large range of variability and the fact that much of the variability is anthropogenic. Probably the most important determinant of cloud microphysics is the spectra of cloud condensation nuclei (CCN) which display considerable variability and have a large anthropogenic component. When analyzed in combination three field observation projects display the interrelationship between CCN and cloud microphysics. CCN were measured with the Desert Research Institute (DRI) instantaneous CCN spectrometer. Cloud microphysical measurements were obtained with the National Center for Atmospheric Research Lockheed Electra. Since CCN and cloud microphysics each affect the other a positive feedback mechanism can result

  2. Precipitation Processes developed during ARM (1997), TOGA COARE(1992), GATE(1 974), SCSMEX(1998) and KWAJEX(1999): Consistent 2D and 3D Cloud Resolving Model Simulations

    Science.gov (United States)

    Tao, W.-K.; Shie, C.-H.; Simpson, J.; Starr, D.; Johnson, D.; Sud, Y.

    2003-01-01

    Real clouds and clouds systems are inherently three dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D). A few 3D CRMs have been used to study the response of clouds to large-scale forcing. In these 3D simulations, the model domain was small, and the integration time was 6 hours. Only recently have 3D experiments been performed for multi-day periods for tropical cloud system with large horizontal domains at the National Center for Atmospheric Research. The results indicate that surface precipitation and latent heating profiles are very similar between the 2D and 3D simulations of these same cases. The reason for the strong similarity between the 2D and 3D CRM simulations is that the observed large-scale advective tendencies of potential temperature, water vapor mixing ratio, and horizontal momentum were used as the main forcing in both the 2D and 3D models. Interestingly, the 2D and 3D versions of the CRM used in CSU and U.K. Met Office showed significant differences in the rainfall and cloud statistics for three ARM cases. The major objectives of this project are to calculate and axamine: (1)the surface energy and water budgets, (2) the precipitation processes in the convective and stratiform regions, (3) the cloud upward and downward mass fluxes in the convective and stratiform regions; (4) cloud characteristics such as size, updraft intensity and lifetime, and (5) the entrainment and detrainment rates associated with clouds and cloud systems that developed in TOGA COARE, GATE, SCSMEX, ARM and KWAJEX. Of special note is that the analyzed (model generated) data sets are all produced by the same current version of the GCE model, i.e. consistent model physics and configurations. Trajectory analyse and inert tracer calculation will be conducted to identify the differences and similarities in the organization of convection between simulated 2D and 3D cloud systems.

  3. Simulation and Interpretation of the Genesis of Tropical Storm Gert (2005) as Part of the NASA Tropical Cloud Systems and Processes Experiment

    Science.gov (United States)

    Braun, Scott A.; Montgomery, Michael T.; Mallen, Kevin

    2009-01-01

    Several hypotheses have been put forward for the how tropical cyclones (tropical storms and hurricanes in the Atlantic) first develop circulation at the surface, a key event that needs to occur before a storm can begin to draw energy from the warm ocean. One hypothesis suggests that the surface circulation forms from a "top-down" approach in which a storm s rotating circulation begins at middle levels of the atmosphere and builds down to the surface through processes related to light "stratiform" (horizontally extensive) precipitation. Another hypothesis suggests a bottom-up approach in which deep thunderstorm towers (convection) play the major role in spinning up the flow at the surface. These "hot towers" form in the area of the mid-level circulation and strongly concentrate this rotation at low levels within their updrafts. Merger of several of these hot towers then intensifies the surface circulation to the point in which a storm forms. This paper examines computer simulations of Tropical Storm Gert (2005), which formed in the Gulf of Mexico during the National Aeronautics and Space Administration s (NASA) Tropical Cloud Systems and Processes (TCSP) Experiment, to investigate the development of low-level circulation and, in particular, whether stratiform or hot tower processes were responsible for the storm s formation. Data from NASA satellites and from aircraft were used to show that the model did a good job of reproducing the formation and evolution of Gert. The simulation shows that a mix of both stratiform and convective rainfall occurred within Gert. While the stratiform rainfall clearly acted to increase rotation at middle levels, the diverging outflow beneath the stratiform rain worked against spinning up the low-level winds. The hot towers appeared to dominate the low-level flow, producing intense rotation within their cores and often being associated with significant pressure falls at the surface. Over time, many of these hot towers merged, with each

  4. Effects of Resolution on the Simulation of Boundary-layer Clouds and the Partition of Kinetic Energy to Subgrid Scales

    Directory of Open Access Journals (Sweden)

    Anning Cheng

    2010-02-01

    Full Text Available Seven boundary-layer cloud cases are simulated with UCLA-LES (The University of California, Los Angeles – large eddy simulation model with different horizontal and vertical gridspacing to investigate how the results depend on gridspacing. Some variables are more sensitive to horizontal gridspacing, while others are more sensitive to vertical gridspacing, and still others are sensitive to both horizontal and vertical gridspacings with similar or opposite trends. For cloud-related variables having the opposite dependence on horizontal and vertical gridspacings, changing the gridspacing proportionally in both directions gives the appearance of convergence. In this study, we mainly discuss the impact of subgrid-scale (SGS kinetic energy (KE on the simulations with coarsening of horizontal and vertical gridspacings. A running-mean operator is used to separate the KE of the high-resolution benchmark simulations into that of resolved scales of coarse-resolution simulations and that of SGSs. The diagnosed SGS KE is compared with that parameterized by the Smagorinsky-Lilly SGS scheme at various gridspacings. It is found that the parameterized SGS KE for the coarse-resolution simulations is usually underestimated but the resolved KE is unrealistically large, compared to benchmark simulations. However, the sum of resolved and SGS KEs is about the same for simulations with various gridspacings. The partitioning of SGS and resolved heat and moisture transports is consistent with that of SGS and resolved KE, which means that the parameterized transports are underestimated but resolved-scale transports are overestimated. On the whole, energy shifts to large-scales as the horizontal gridspacing becomes coarse, hence the size of clouds and the resolved circulation increase, the clouds become more stratiform-like with an increase in cloud fraction, cloud liquid-water path and surface precipitation; when coarse vertical gridspacing is used, cloud sizes do not

  5. Hybrid cloud for dummies

    CERN Document Server

    Hurwitz, Judith; Halper, Fern; Kirsch, Dan

    2012-01-01

    Understand the cloud and implement a cloud strategy for your business Cloud computing enables companies to save money by leasing storage space and accessing technology services through the Internet instead of buying and maintaining equipment and support services. Because it has its own unique set of challenges, cloud computing requires careful explanation. This easy-to-follow guide shows IT managers and support staff just what cloud computing is, how to deliver and manage cloud computing services, how to choose a service provider, and how to go about implementation. It also covers security and

  6. Secure cloud computing

    CERN Document Server

    Jajodia, Sushil; Samarati, Pierangela; Singhal, Anoop; Swarup, Vipin; Wang, Cliff

    2014-01-01

    This book presents a range of cloud computing security challenges and promising solution paths. The first two chapters focus on practical considerations of cloud computing. In Chapter 1, Chandramouli, Iorga, and Chokani describe the evolution of cloud computing and the current state of practice, followed by the challenges of cryptographic key management in the cloud. In Chapter 2, Chen and Sion present a dollar cost model of cloud computing and explore the economic viability of cloud computing with and without security mechanisms involving cryptographic mechanisms. The next two chapters addres

  7. Clouds of Venus

    Energy Technology Data Exchange (ETDEWEB)

    Knollenberg, R G [Particle Measuring Systems, Inc., 1855 South 57th Court, Boulder, Colorado 80301, U.S.A.; Hansen, J [National Aeronautics and Space Administration, New York (USA). Goddard Inst. for Space Studies; Ragent, B [National Aeronautics and Space Administration, Moffett Field, Calif. (USA). Ames Research Center; Martonchik, J [Jet Propulsion Lab., Pasadena, Calif. (USA); Tomasko, M [Arizona Univ., Tucson (USA)

    1977-05-01

    The current state of knowledge of the Venusian clouds is reviewed. The visible clouds of Venus are shown to be quite similar to low level terrestrial hazes of strong anthropogenic influence. Possible nucleation and particle growth mechanisms are presented. The Pioneer Venus experiments that emphasize cloud measurements are described and their expected findings are discussed in detail. The results of these experiments should define the cloud particle composition, microphysics, thermal and radiative heat budget, rough dynamical features and horizontal and vertical variations in these and other parameters. This information should be sufficient to initialize cloud models which can be used to explain the cloud formation, decay, and particle life cycle.

  8. Cloud-Resolving Model Simulations of Aerosol-Cloud Interactions Triggered by Strong Aerosol Emissions in the Arctic

    Science.gov (United States)

    Wang, H.; Kravitz, B.; Rasch, P. J.; Morrison, H.; Solomon, A.

    2014-12-01

    Previous process-oriented modeling studies have highlighted the dependence of effectiveness of cloud brightening by aerosols on cloud regimes in warm marine boundary layer. Cloud microphysical processes in clouds that contain ice, and hence the mechanisms that drive aerosol-cloud interactions, are more complicated than in warm clouds. Interactions between ice particles and liquid drops add additional levels of complexity to aerosol effects. A cloud-resolving model is used to study aerosol-cloud interactions in the Arctic triggered by strong aerosol emissions, through either geoengineering injection or concentrated sources such as shipping and fires. An updated cloud microphysical scheme with prognostic aerosol and cloud particle numbers is employed. Model simulations are performed in pure super-cooled liquid and mixed-phase clouds, separately, with or without an injection of aerosols into either a clean or a more polluted Arctic boundary layer. Vertical mixing and cloud scavenging of particles injected from the surface is still quite efficient in the less turbulent cold environment. Overall, the injection of aerosols into the Arctic boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. The pure liquid clouds are more susceptible to the increase in aerosol number concentration than the mixed-phase clouds. Rain production processes are more effectively suppressed by aerosol injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. Aerosol injection into a clean boundary layer results in a greater cloud albedo increase than injection into a polluted one, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, the impact of dynamical feedback due to precipitation changes is small. According to these results, which are dependent upon the representation of ice nucleation

  9. Radiative properties of clouds

    International Nuclear Information System (INIS)

    Twomey, S.

    1993-01-01

    The climatic effects of condensation nuclei in the formation of cloud droplets and the subsequent role of the cloud droplets as contributors to the planetary short-wave albedo is emphasized. Microphysical properties of clouds, which can be greatly modified by the degree of mixing with cloud-free air from outside, are discussed. The effect of clouds on visible radiation is assessed through multiple scattering of the radiation. Cloudwater or ice absorbs more with increasing wavelength in the near-infrared region, with water vapor providing the stronger absorption over narrower wavelength bands. Cloud thermal infrared absorption can be solely related to liquid water content at least for shallow clouds and clouds in the early development state. Three-dimensional general circulation models have been used to study the climatic effect of clouds. It was found for such studies (which did not consider variations in cloud albedo) that the cooling effects due to the increase in planetary short-wave albedo from clouds were offset by heating effects due to thermal infrared absorption by the cloud. Two permanent direct effects of increased pollution are discussed in this chapter: (a) an increase of absorption in the visible and near infrared because of increased amounts of elemental carbon, which gives rise to a warming effect climatically, and (b) an increased optical thickness of clouds due to increasing cloud droplet number concentration caused by increasing cloud condensation nuclei number concentration, which gives rise to a cooling effect climatically. An increase in cloud albedo from 0.7 to 0.87 produces an appreciable climatic perturbation of cooling up to 2.5 K at the ground, using a hemispheric general circulation model. Effects of pollution on cloud thermal infrared absorption are negligible

  10. Increased ionization supports growth of aerosols into cloud condensation nuclei

    DEFF Research Database (Denmark)

    Svensmark, H.; Enghoff, M. B.; Shaviv, N. J.

    2017-01-01

    Ions produced by cosmic rays have been thought to influence aerosols and clouds. In this study, the effect of ionization on the growth of aerosols into cloud condensation nuclei is investigated theoretically and experimentally. We show that the mass-flux of small ions can constitute an important...... and find good agreement with theory. Ion-induced condensation should be of importance not just in Earth’s present day atmosphere for the growth of aerosols into cloud condensation nuclei under pristine marine conditions, but also under elevated atmospheric ionization caused by increased supernova activity....

  11. Moving towards Cloud Security

    Directory of Open Access Journals (Sweden)

    Edit Szilvia Rubóczki

    2015-01-01

    Full Text Available Cloud computing hosts and delivers many different services via Internet. There are a lot of reasons why people opt for using cloud resources. Cloud development is increasing fast while a lot of related services drop behind, for example the mass awareness of cloud security. However the new generation upload videos and pictures without reason to a cloud storage, but only few know about data privacy, data management and the proprietary of stored data in the cloud. In an enterprise environment the users have to know the rule of cloud usage, however they have little knowledge about traditional IT security. It is important to measure the level of their knowledge, and evolve the training system to develop the security awareness. The article proves the importance of suggesting new metrics and algorithms for measuring security awareness of corporate users and employees to include the requirements of emerging cloud security.

  12. Cloud Computing for radiologists.

    Science.gov (United States)

    Kharat, Amit T; Safvi, Amjad; Thind, Ss; Singh, Amarjit

    2012-07-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.

  13. Cloud Computing for radiologists

    International Nuclear Information System (INIS)

    Kharat, Amit T; Safvi, Amjad; Thind, SS; Singh, Amarjit

    2012-01-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future

  14. Cloud computing for radiologists

    Directory of Open Access Journals (Sweden)

    Amit T Kharat

    2012-01-01

    Full Text Available Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.

  15. Cloud computing strategies

    CERN Document Server

    Chorafas, Dimitris N

    2011-01-01

    A guide to managing cloud projects, Cloud Computing Strategies provides the understanding required to evaluate the technology and determine how it can be best applied to improve business and enhance your overall corporate strategy. Based on extensive research, it examines the opportunities and challenges that loom in the cloud. It explains exactly what cloud computing is, what it has to offer, and calls attention to the important issues management needs to consider before passing the point of no return regarding financial commitments.

  16. Towards Indonesian Cloud Campus

    OpenAIRE

    Thamrin, Taqwan; Lukman, Iing; Wahyuningsih, Dina Ika

    2013-01-01

    Nowadays, Cloud Computing is most discussed term in business and academic environment.Cloud campus has many benefits such as accessing the file storages, e-mails, databases,educational resources, research applications and tools anywhere for faculty, administrators,staff, students and other users in university, on demand. Furthermore, cloud campus reduces universities’ IT complexity and cost.This paper discuss the implementation of Indonesian cloud campus and various opportunies and benefits...

  17. Cloud Infrastructure Security

    OpenAIRE

    Velev , Dimiter; Zlateva , Plamena

    2010-01-01

    Part 4: Security for Clouds; International audience; Cloud computing can help companies accomplish more by eliminating the physical bonds between an IT infrastructure and its users. Users can purchase services from a cloud environment that could allow them to save money and focus on their core business. At the same time certain concerns have emerged as potential barriers to rapid adoption of cloud services such as security, privacy and reliability. Usually the information security professiona...

  18. Cloud services in organization

    OpenAIRE

    FUXA, Jan

    2013-01-01

    The work deals with the definition of the word cloud computing, cloud computing models, types, advantages, disadvantages, and comparing SaaS solutions such as: Google Apps and Office 365 in the area of electronic communications. The work deals with the use of cloud computing in the corporate practice, both good and bad practice. The following section describes the methodology for choosing the appropriate cloud service organization. Another part deals with analyzing the possibilities of SaaS i...

  19. Orchestrating Your Cloud Orchestra

    OpenAIRE

    Hindle, Abram

    2015-01-01

    Cloud computing potentially ushers in a new era of computer music performance with exceptionally large computer music instruments consisting of 10s to 100s of virtual machines which we propose to call a `cloud-orchestra'. Cloud computing allows for the rapid provisioning of resources, but to deploy such a complicated and interconnected network of software synthesizers in the cloud requires a lot of manual work, system administration knowledge, and developer/operator skills. This is a barrier ...

  20. Cloud security mechanisms

    OpenAIRE

    2014-01-01

    Cloud computing has brought great benefits in cost and flexibility for provisioning services. The greatest challenge of cloud computing remains however the question of security. The current standard tools in access control mechanisms and cryptography can only partly solve the security challenges of cloud infrastructures. In the recent years of research in security and cryptography, novel mechanisms, protocols and algorithms have emerged that offer new ways to create secure services atop cloud...

  1. Cloud computing for radiologists

    OpenAIRE

    Amit T Kharat; Amjad Safvi; S S Thind; Amarjit Singh

    2012-01-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as...

  2. Cloud Robotics Model

    OpenAIRE

    Mester, Gyula

    2015-01-01

    Cloud Robotics was born from the merger of service robotics and cloud technologies. It allows robots to benefit from the powerful computational, storage, and communications resources of modern data centres. Cloud robotics allows robots to take advantage of the rapid increase in data transfer rates to offload tasks without hard real time requirements. Cloud Robotics has rapidly gained momentum with initiatives by companies such as Google, Willow Garage and Gostai as well as more than a dozen a...

  3. Genomics With Cloud Computing

    OpenAIRE

    Sukhamrit Kaur; Sandeep Kaur

    2015-01-01

    Abstract Genomics is study of genome which provides large amount of data for which large storage and computation power is needed. These issues are solved by cloud computing that provides various cloud platforms for genomics. These platforms provides many services to user like easy access to data easy sharing and transfer providing storage in hundreds of terabytes more computational power. Some cloud platforms are Google genomics DNAnexus and Globus genomics. Various features of cloud computin...

  4. Marine Science

    African Journals Online (AJOL)

    between humans and the coastal and marine environment. ... The journal has a new and more modern layout, published online only, and the editorial .... the population structure of Platorchestia fayetta sp. nov. and their interaction with the.

  5. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the ... tidal height and amplitude can influence light penetra- ...... to environmental parameters in cage culture area of Sepanggar Bay, Malaysia.

  6. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ... consist of special issues on major events or important thematic issues. ... of sources, including plant and animal by- products.

  7. Marine biotoxins

    National Research Council Canada - National Science Library

    2004-01-01

    ... (ciguatera fish poisoning). It discusses in detail the causative toxins produced by marine organisms, chemical structures and analytical methods, habitat and occurrence of the toxin-producing organisms, case studies and existing regulations...

  8. Marine Science

    African Journals Online (AJOL)

    pod diversity and distribution are important especially since studies on marine biodiversity are scarce .... Method II –. Zamoum &. Furla (2012) protocol. Method III. – Geist et al (2008) protocol ..... Public Library Of Science One 8: 51273.

  9. Marine pollution

    International Nuclear Information System (INIS)

    Clark, R.B.

    1992-01-01

    The effects of petroleum, waste materials, halogenated hydrocarbons, radioactivity and heat on the marine ecosystem, the fishing industry and human health are discussed using the example of the North Sea. (orig.) [de

  10. Marine Science

    African Journals Online (AJOL)

    No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form ... to optimize nucleic acid extraction protocols from marine gastropods, present an ...... Greenfield., Gomez E, Harvell CD, Sale PF, Edwards.

  11. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high ..... circulation patterns include the nutrient-rich Somali ...... matical Structures in Computer Science 24: e240311.

  12. Marine insects

    National Research Council Canada - National Science Library

    Cheng, Lanna

    1976-01-01

    .... Not only are true insects, such as the Collembola and insect parasites of marine birds and mammals, considered, but also other kinds of intertidal air-breathing arthropods, notably spiders, scorpions...

  13. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue .... shell growth is adversely affected. ... local stressors in action, such as ocean acidification ..... that the distribution of many intertidal sessile animals.

  14. A Diagnostic PDF Cloud Scheme to Improve Subtropical Low Clouds in NCAR Community Atmosphere Model (CAM5)

    Science.gov (United States)

    Qin, Yi; Lin, Yanluan; Xu, Shiming; Ma, Hsi-Yen; Xie, Shaocheng

    2018-02-01

    Low clouds strongly impact the radiation budget of the climate system, but their simulation in most GCMs has remained a challenge, especially over the subtropical stratocumulus region. Assuming a Gaussian distribution for the subgrid-scale total water and liquid water potential temperature, a new statistical cloud scheme is proposed and tested in NCAR Community Atmospheric Model version 5 (CAM5). The subgrid-scale variance is diagnosed from the turbulent and shallow convective processes in CAM5. The approach is able to maintain the consistency between cloud fraction and cloud condensate and thus alleviates the adjustment needed in the default relative humidity-based cloud fraction scheme. Short-term forecast simulations indicate that low cloud fraction and liquid water content, including their diurnal cycle, are improved due to a proper consideration of subgrid-scale variance over the southeastern Pacific Ocean region. Compared with the default cloud scheme, the new approach produced the mean climate reasonably well with improved shortwave cloud forcing (SWCF) due to more reasonable low cloud fraction and liquid water path over regions with predominant low clouds. Meanwhile, the SWCF bias over the tropical land regions is also alleviated. Furthermore, the simulated marine boundary layer clouds with the new approach extend further offshore and agree better with observations. The new approach is able to obtain the top of atmosphere (TOA) radiation balance with a slightly alleviated double ITCZ problem in preliminary coupled simulations. This study implies that a close coupling of cloud processes with other subgrid-scale physical processes is a promising approach to improve cloud simulations.

  15. Chargeback for cloud services.

    NARCIS (Netherlands)

    Baars, T.; Khadka, R.; Stefanov, H.; Jansen, S.; Batenburg, R.; Heusden, E. van

    2014-01-01

    With pay-per-use pricing models, elastic scaling of resources, and the use of shared virtualized infrastructures, cloud computing offers more efficient use of capital and agility. To leverage the advantages of cloud computing, organizations have to introduce cloud-specific chargeback practices.

  16. On CLOUD nine

    CERN Multimedia

    2009-01-01

    The team from the CLOUD experiment - the world’s first experiment using a high-energy particle accelerator to study the climate - were on cloud nine after the arrival of their new three-metre diameter cloud chamber. This marks the end of three years’ R&D and design, and the start of preparations for data taking later this year.

  17. Cloud Computing Explained

    Science.gov (United States)

    Metz, Rosalyn

    2010-01-01

    While many talk about the cloud, few actually understand it. Three organizations' definitions come to the forefront when defining the cloud: Gartner, Forrester, and the National Institutes of Standards and Technology (NIST). Although both Gartner and Forrester provide definitions of cloud computing, the NIST definition is concise and uses…

  18. Greening the Cloud

    NARCIS (Netherlands)

    van den Hoed, Robert; Hoekstra, Eric; Procaccianti, G.; Lago, P.; Grosso, Paola; Taal, Arie; Grosskop, Kay; van Bergen, Esther

    The cloud has become an essential part of our daily lives. We use it to store our documents (Dropbox), to stream our music and lms (Spotify and Net ix) and without giving it any thought, we use it to work on documents in the cloud (Google Docs). The cloud forms a massive storage and processing

  19. Security in the cloud.

    Science.gov (United States)

    Degaspari, John

    2011-08-01

    As more provider organizations look to the cloud computing model, they face a host of security-related questions. What are the appropriate applications for the cloud, what is the best cloud model, and what do they need to know to choose the best vendor? Hospital CIOs and security experts weigh in.

  20. Cloud Properties Simulated by a Single-Column Model. Part II: Evaluation of Cumulus Detrainment and Ice-phase Microphysics Using a Cloud Resolving Model

    Science.gov (United States)

    Luo, Yali; Krueger, Steven K.; Xu, Kuan-Man

    2005-01-01

    This paper is the second in a series in which kilometer-scale-resolving observations from the Atmospheric Radiation Measurement program and a cloud-resolving model (CRM) are used to evaluate the single-column model (SCM) version of the National Centers for Environmental Prediction Global Forecast System model. Part I demonstrated that kilometer-scale cirrus properties simulated by the SCM significantly differ from the cloud radar observations while the CRM simulation reproduced most of the cirrus properties as revealed by the observations. The present study describes an evaluation, through a comparison with the CRM, of the SCM's representation of detrainment from deep cumulus and ice-phase microphysics in an effort to better understand the findings of Part I. It is found that detrainment occurs too infrequently at a single level at a time in the SCM, although the detrainment rate averaged over the entire simulation period is somewhat comparable to that of the CRM simulation. Relatively too much detrained ice is sublimated when first detrained. Snow falls over too deep of a layer due to the assumption that snow source and sink terms exactly balance within one time step in the SCM. These characteristics in the SCM parameterizations may explain many of the differences in the cirrus properties between the SCM and the observations (or between the SCM and the CRM). A possible improvement for the SCM consists of the inclusion of multiple cumulus cloud types as in the original Arakawa-Schubert scheme, prognostically determining the stratiform cloud fraction and snow mixing ratio. This would allow better representation of the detrainment from deep convection, better coupling of the volume of detrained air with cloud fraction, and better representation of snow field.

  1. The tropical Atlantic surface wind divergence belt and its effect on clouds

    OpenAIRE

    Y. Tubul; I. Koren; O. Altaratz

    2015-01-01

    A well-defined surface wind divergence (SWD) belt with distinct cloud properties forms over the equatorial Atlantic during the boreal summer months. This belt separates the deep convective clouds of the intertropical convergence zone (ITCZ) from the shallow marine stratocumulus cloud decks forming over the cold-water subtropical region of the southern Hadley cell. Using the QuikSCAT-SeaWinds and Aqua-MODIS instruments, we examined the large-scale spatiotemporal ...

  2. The tropical Atlantic surface wind divergence belt and its effect on clouds

    OpenAIRE

    Y. Tubul; I. Koren; O. Altaratz

    2015-01-01

    A well-defined surface wind divergence (SWD) belt with distinct cloud properties forms over the equatorial Atlantic during the boreal summer months. This belt separates the deep convective clouds of the Intertropical Convergence Zone (ITCZ) from the shallow marine stratocumulus cloud decks forming over the cold-water subtropical region of the southern branch of the Hadley cell in the Atlantic. Using the QuikSCAT-SeaWinds and Aqua-MODIS instruments, we examined the large-scal...

  3. Exploring the nonlinear cloud and rain equation

    Science.gov (United States)

    Koren, Ilan; Tziperman, Eli; Feingold, Graham

    2017-01-01

    Marine stratocumulus cloud decks are regarded as the reflectors of the climate system, returning back to space a significant part of the income solar radiation, thus cooling the atmosphere. Such clouds can exist in two stable modes, open and closed cells, for a wide range of environmental conditions. This emergent behavior of the system, and its sensitivity to aerosol and environmental properties, is captured by a set of nonlinear equations. Here, using linear stability analysis, we express the transition from steady to a limit-cycle state analytically, showing how it depends on the model parameters. We show that the control of the droplet concentration (N), the environmental carrying-capacity (H0), and the cloud recovery parameter (τ) can be linked by a single nondimensional parameter (μ=√{N }/(ατH0) ) , suggesting that for deeper clouds the transition from open (oscillating) to closed (stable fixed point) cells will occur for higher droplet concentration (i.e., higher aerosol loading). The analytical calculations of the possible states, and how they are affected by changes in aerosol and the environmental variables, provide an enhanced understanding of the complex interactions of clouds and rain.

  4. CLOUD STORAGE SERVICES

    OpenAIRE

    Yan, Cheng

    2017-01-01

    Cloud computing is a hot topic in recent research and applications. Because it is widely used in various fields. Up to now, Google, Microsoft, IBM, Amazon and other famous co partnership have proposed their cloud computing application. Look upon cloud computing as one of the most important strategy in the future. Cloud storage is the lower layer of cloud computing system which supports the service of the other layers above it. At the same time, it is an effective way to store and manage heavy...

  5. Cloud Computing Quality

    Directory of Open Access Journals (Sweden)

    Anamaria Şiclovan

    2013-02-01

    Full Text Available Cloud computing was and it will be a new way of providing Internet services and computers. This calculation approach is based on many existing services, such as the Internet, grid computing, Web services. Cloud computing as a system aims to provide on demand services more acceptable as price and infrastructure. It is exactly the transition from computer to a service offered to the consumers as a product delivered online. This paper is meant to describe the quality of cloud computing services, analyzing the advantages and characteristics offered by it. It is a theoretical paper.Keywords: Cloud computing, QoS, quality of cloud computing

  6. Benchmarking Cloud Storage Systems

    OpenAIRE

    Wang, Xing

    2014-01-01

    With the rise of cloud computing, many cloud storage systems like Dropbox, Google Drive and Mega have been built to provide decentralized and reliable file storage. It is thus of prime importance to know their features, performance, and the best way to make use of them. In this context, we introduce BenchCloud, a tool designed as part of this thesis to conveniently and efficiently benchmark any cloud storage system. First, we provide a study of six commonly-used cloud storage systems to ident...

  7. The Magellanic clouds

    International Nuclear Information System (INIS)

    1989-01-01

    As the two galaxies nearest to our own, the Magellanic Clouds hold a special place in studies of the extragalactic distance scale, of stellar evolution and the structure of galaxies. In recent years, results from the South African Astronomical Observatory (SAAO) and elsewhere have shown that it is possible to begin understanding the three dimensional structure of the Clouds. Studies of Magellanic Cloud Cepheids have continued, both to investigate the three-dimensional structure of the Clouds and to learn more about Cepheids and their use as extragalactic distance indicators. Other research undertaken at SAAO includes studies on Nova LMC 1988 no 2 and red variables in the Magellanic Clouds

  8. Cloud Computing Bible

    CERN Document Server

    Sosinsky, Barrie

    2010-01-01

    The complete reference guide to the hot technology of cloud computingIts potential for lowering IT costs makes cloud computing a major force for both IT vendors and users; it is expected to gain momentum rapidly with the launch of Office Web Apps later this year. Because cloud computing involves various technologies, protocols, platforms, and infrastructure elements, this comprehensive reference is just what you need if you'll be using or implementing cloud computing.Cloud computing offers significant cost savings by eliminating upfront expenses for hardware and software; its growing popularit

  9. CLOUD COMPUTING SECURITY

    Directory of Open Access Journals (Sweden)

    Ştefan IOVAN

    2016-05-01

    Full Text Available Cloud computing reprentes the software applications offered as a service online, but also the software and hardware components from the data center.In the case of wide offerd services for any type of client, we are dealing with a public cloud. In the other case, in wich a cloud is exclusively available for an organization and is not available to the open public, this is consider a private cloud [1]. There is also a third type, called hibrid in which case an user or an organization might use both services available in the public and private cloud. One of the main challenges of cloud computing are to build the trust and ofer information privacy in every aspect of service offerd by cloud computingle. The variety of existing standards, just like the lack of clarity in sustenability certificationis not a real help in building trust. Also appear some questions marks regarding the efficiency of traditionsecurity means that are applied in the cloud domain. Beside the economic and technology advantages offered by cloud, also are some advantages in security area if the information is migrated to cloud. Shared resources available in cloud includes the survey, use of the "best practices" and technology for advance security level, above all the solutions offered by the majority of medium and small businesses, big companies and even some guvermental organizations [2].

  10. Aerosols, clouds, and precipitation in the North Atlantic trades observed during the Barbados aerosol cloud experiment – Part 1: Distributions and variability

    Directory of Open Access Journals (Sweden)

    E. Jung

    2016-07-01

    Full Text Available Shallow marine cumulus clouds are by far the most frequently observed cloud type over the Earth's oceans; but they are poorly understood and have not been investigated as extensively as stratocumulus clouds. This study describes and discusses the properties and variations of aerosol, cloud, and precipitation associated with shallow marine cumulus clouds observed in the North Atlantic trades during a field campaign (Barbados Aerosol Cloud Experiment- BACEX, March–April 2010, which took place off Barbados where African dust periodically affects the region. The principal observing platform was the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS Twin Otter (TO research aircraft, which was equipped with standard meteorological instruments, a zenith pointing cloud radar and probes that measured aerosol, cloud, and precipitation characteristics.The temporal variation and vertical distribution of aerosols observed from the 15 flights, which included the most intense African dust event during all of 2010 in Barbados, showed a wide range of aerosol conditions. During dusty periods, aerosol concentrations increased substantially in the size range between 0.5 and 10 µm (diameter, particles that are large enough to be effective giant cloud condensation nuclei (CCN. The 10-day back trajectories showed three distinct air masses with distinct vertical structures associated with air masses originating in the Atlantic (typical maritime air mass with relatively low aerosol concentrations in the marine boundary layer, Africa (Saharan air layer, and mid-latitudes (continental pollution plumes. Despite the large differences in the total mass loading and the origin of the aerosols, the overall shapes of the aerosol particle size distributions were consistent, with the exception of the transition period.The TO was able to sample many clouds at various phases of growth. Maximum cloud depth observed was less than ∼ 3 km, while most

  11. Cloud and Radiation Studies during SAFARI 2000

    Science.gov (United States)

    Platnick, Steven; King, M. D.; Hobbs, P. V.; Osborne, S.; Piketh, S.; Bruintjes, R.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Though the emphasis of the Southern Africa Regional Science Initiative 2000 (SAFARI-2000) dry season campaign was largely on emission sources and transport, the assemblage of aircraft (including the high altitude NASA ER-2 remote sensing platform and the University of Washington CV-580, UK MRF C130, and South African Weather Bureau JRA in situ aircrafts) provided a unique opportunity for cloud studies. Therefore, as part of the SAFARI initiative, investigations were undertaken to assess regional aerosol-cloud interactions and cloud remote sensing algorithms. In particular, the latter part of the experiment concentrated on marine boundary layer stratocumulus clouds off the southwest coast of Africa. Associated with cold water upwelling along the Benguela current, the Namibian stratocumulus regime has received limited attention but appears to be unique for several reasons. During the dry season, outflow of continental fires and industrial pollution over this area can be extreme. From below, upwelling provides a rich nutrient source for phytoplankton (a source of atmospheric sulphur through DMS production as well as from decay processes). The impact of these natural and anthropogenic sources on the microphysical and optical properties of the stratocumulus is unknown. Continental and Indian Ocean cloud systems of opportunity were also studied during the campaign. Aircraft flights were coordinated with NASA Terra Satellite overpasses for synergy with the Moderate Resolution Imaging Spectroradiometer (MODIS) and other Terra instruments. An operational MODIS algorithm for the retrieval of cloud optical and physical properties (including optical thickness, effective particle radius, and water path) has been developed. Pixel-level MODIS retrievals (11 km spatial resolution at nadir) and gridded statistics of clouds in th SAFARI region will be presented. In addition, the MODIS Airborne Simulator flown on the ER-2 provided high spatial resolution retrievals (50 m at nadir

  12. Satellite-Surface Perspectives of Air Quality and Aerosol-Cloud Effects on the Environment: An Overview of 7-SEAS BASELInE

    Science.gov (United States)

    Tsay, Si-Chee; Maring, Hal B.; Lin, Neng-Huei; Buntoung, Sumaman; Chantara, Somporn; Chuang, Hsiao-Chi; Gabriel, Philip M.; Goodloe, Colby S.; Holben, Brent N.; Hsiao, Ta-Chih; hide

    2016-01-01

    The objectives of 7-SEASBASELInE (Seven SouthEast Asian Studies Biomass-burning Aerosols and Stratocumulus Environment: Lifecycles and Interactions Experiment) campaigns in spring 2013-2015 were to synergize measurements from uniquely distributed ground-based networks (e.g., AERONET (AErosol RObotic NETwork)), MPLNET ( NASA Micro-Pulse Lidar Network)) and sophisticated platforms (e.g.,SMARTLabs (Surface-based Mobile Atmospheric Research and Testbed Laboratories), regional contributing instruments), along with satellite observations retrievals and regional atmospheric transport chemical models to establish a critically needed database, and to advance our understanding of biomass-burning aerosols and trace gases in Southeast Asia (SEA). We present a satellite-surface perspective of 7-SEASBASELInE and highlight scientific findings concerning: (1) regional meteorology of moisture fields conducive to the production and maintenance of low-level stratiform clouds over land; (2) atmospheric composition in a biomass-burning environment, particularly tracers-markers to serve as important indicators for assessing the state and evolution of atmospheric constituents; (3) applications of remote sensing to air quality and impact on radiative energetics, examining the effect of diurnal variability of boundary-layer height on aerosol loading; (4) aerosol hygroscopicity and ground-based cloud radar measurements in aerosol-cloud processes by advanced cloud ensemble models; and (5) implications of air quality, in terms of toxicity of nanoparticles and trace gases, to human health. This volume is the third 7-SEAS special issue (after Atmospheric Research, vol. 122, 2013; and Atmospheric Environment, vol. 78, 2013) and includes 27 papers published, with emphasis on air quality and aerosol-cloud effects on the environment. BASELInE observations of stratiform clouds over SEA are unique, such clouds are embedded in a heavy aerosol-laden environment and feature characteristically greater

  13. Variability of Oceanic Mesoscale Convective System Vertical Structures Observed by CloudSat in Indo-Pacific Regions Associated with the Madden-Julian Oscillation

    Science.gov (United States)

    Yuan, J.

    2016-12-01

    Vertical structures of mesoscale convective systems (MCSs) during the Madden-Julian-Oscillation (MJO) are investigated using 2006-2011 CloudSat radar measurements for Indo-Pacific oceanic areas. In active phases of the MJO relatively more large MCSs and connected MCSs occur. The frequency of occurrence of connected MCSs peaks in the onset phase, a phase earlier than separated MCSs. Compared to separated MCSs, connected MCSs in all sizes have weaker reflectivity above 8 km in their deep precipitating portions and thick anvil clouds closely linked to them, suggesting more "stratiform" physics associated with them. Separated MCSs and connected MCSs together produce relatively the least anvil clouds in the onset phase while their deep precipitating portions show stronger/weaker reflectivity above 8 km before/after the onset phase. Thus after the onset phase of the MJO, MCSs shift toward more "convective" organization because separated MCSs maximize after the onset, while their internal structures appear more "stratiform" because internally they have weaker reflectivity above 8km. Connected MCSs coincide with a more humid middle troposphere spatially, even at the same places a few days before they occur. Middle-tropospheric moistening peaks in the onset phase. Moistening of the free troposphere around deep convective systems shows relatively stronger moistening/drying below the 700 hPa before/after the onset phase compared to domain-mean averages. Lower-topped clouds occur most frequently around CMCSs and in active phases, consistent with the presence of a moister free troposphere. Coexistence of these phenomena suggests that the role of middle troposphere moisture in the formation of CMCSs needs to be better understood.

  14. Variability of oceanic deep convective system vertical structures observed by CloudSat in Indo-Pacific regions associated with the Madden-Julian oscillation

    Science.gov (United States)

    Yuan, Jian

    2016-09-01

    Vertical structures of deep convective systems during the Madden-Julian oscillation (MJO) are investigated using CloudSat radar measurements in Indo-Pacific oceanic areas. In active phases of the MJO, relatively more large systems and connected mesoscale convective systems (CMCSs) occur. The occurrence frequency of CMCSs peaks in the onset phase, a phase earlier than separated mesoscale convective systems (SMCSs). Compared with SMCSs, CMCSs of all sizes have weaker reflectivity above 8 km in their deep precipitating portions and thick anvil clouds closely linked to them, suggesting more "stratiform" physics associated with them. SMCSs and CMCSs together produce relatively the least anvil clouds in the onset phase, while their deep precipitating portions show stronger/weaker reflectivity above 8 km before/after the onset phase. Thus, after the onset phase of the MJO, mesoscale convective systems shift toward a more "convective" organization because SMCSs maximize after the onset, while their internal structures appear more stratiform because internally they have weaker reflectivity above 8 km. CMCSs coincide with a more humid middle troposphere spatially, even at the same locations a few days before they occur. Middle-tropospheric moistening peaks in the onset phase. Moistening of the free troposphere around deep convective systems shows relatively stronger moistening/drying below 700 hPa before/after the onset phase than domain-mean averages. Low-topped clouds occur most frequently around CMCSs and in active phases, consistent with the presence of a moister free troposphere. Coexistence of these phenomena suggests that the role of middle troposphere moisture in the formation of CMCSs should be better understood.

  15. Combination of support vector machine, artificial neural network and random forest for improving the classification of convective and stratiform rain using spectral features of SEVIRI data

    Science.gov (United States)

    Lazri, Mourad; Ameur, Soltane

    2018-05-01

    A model combining three classifiers, namely Support vector machine, Artificial neural network and Random forest (SAR) is designed for improving the classification of convective and stratiform rain. This model (SAR model) has been trained and then tested on a datasets derived from MSG-SEVIRI (Meteosat Second Generation-Spinning Enhanced Visible and Infrared Imager). Well-classified, mid-classified and misclassified pixels are determined from the combination of three classifiers. Mid-classified and misclassified pixels that are considered unreliable pixels are reclassified by using a novel training of the developed scheme. In this novel training, only the input data corresponding to the pixels in question to are used. This whole process is repeated a second time and applied to mid-classified and misclassified pixels separately. Learning and validation of the developed scheme are realized against co-located data observed by ground radar. The developed scheme outperformed different classifiers used separately and reached 97.40% of overall accuracy of classification.

  16. Midlatitude Continental Convective Clouds Experiment (MC3E)

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, MP; Petersen, WA; Del Genio, AD; Giangrande, SE; Heymsfield, A; Heymsfield, G; Hou, AY; Kollias, P; Orr, B; Rutledge, SA; Schwaller, MR; Zipser, E

    2010-04-01

    Convective processes play a critical role in the Earth’s energy balance through the redistribution of heat and moisture in the atmosphere and subsequent impacts on the hydrologic cycle. Global observation and accurate representation of these processes in numerical models is vital to improving our current understanding and future simulations of Earth’s climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales that are associated with convective and stratiform precipitation processes; therefore, they must turn to parameterization schemes to represent these processes. In turn, the physical basis for these parameterization schemes needs to be evaluated for general application under a variety of atmospheric conditions. Analogously, space-based remote sensing algorithms designed to retrieve related cloud and precipitation information for use in hydrological, climate, and numerical weather prediction applications often rely on physical “parameterizations” that reliably translate indirectly related instrument measurements to the physical quantity of interest (e.g., precipitation rate). Importantly, both spaceborne retrieval algorithms and model convective parameterization schemes traditionally rely on field campaign data sets as a basis for evaluating and improving the physics of their respective approaches. The Midlatitude Continental Convective Clouds Experiment (MC3E) will take place in central Oklahoma during the April–May 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the National Aeronautics and Space Administration’s (NASA) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The field campaign leverages the unprecedented observing infrastructure currently available in the central United States

  17. Comparison of Cloud and Aerosol Detection between CERES Edition 3 Cloud Mask and CALIPSO Version 2 Data Products

    Science.gov (United States)

    Trepte, Qing; Minnis, Patrick; Sun-Mack, Sunny; Trepte, Charles

    Clouds and aerosol play important roles in the global climate system. Accurately detecting their presence, altitude, and properties using satellite radiance measurements is a crucial first step in determining their influence on surface and top-of-atmosphere radiative fluxes. This paper presents a comparison analysis of a new version of the Clouds and Earth's Radiant Energy System (CERES) Edition 3 cloud detection algorithms using Aqua MODIS data with the recently released Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Version 2 Vertical Feature Mask (VFM). Improvements in CERES Edition 3 cloud mask include dust detection, thin cirrus tests, enhanced low cloud detection at night, and a smoother transition from mid-latitude to polar regions. For the CALIPSO Version 2 data set, changes to the lidar calibration can result in significant improvements to its identification of optically thick aerosol layers. The Aqua and CALIPSO satellites, part of the A-train satellite constellation, provide a unique opportunity for validating passive sensor cloud and aerosol detection using an active sensor. In this paper, individual comparison cases will be discussed for different types of clouds and aerosols over various surfaces, for daytime and nighttime conditions, and for regions ranging from the tropics to the poles. Examples will include an assessment of the CERES detection algorithm for optically thin cirrus, marine stratus, and polar night clouds as well as its ability to characterize Saharan dust plumes off the African coast. With the CALIPSO lidar's unique ability to probe the vertical structure of clouds and aerosol layers, it provides an excellent validation data set for cloud detection algorithms, especially for polar nighttime clouds.

  18. The Role of Aerosols on Precipitation Processes: Cloud Resolving Model Simulations

    Science.gov (United States)

    Tao, Wei-Kuo; Li, X.; Matsui, T.

    2012-01-01

    identify the impact of ice processes, radiation and large-scale influence on cloud-aerosol interactive processes, especially regarding surface rainfall amounts and characteristics (i.e., heavy or convective versus light or stratiform types). In addition, an inert tracer was included to follow the vertical redistribution of aerosols by cloud processes. We will also give a brief review from observational evidence on the role of aerosol on precipitation processes.

  19. Searchable Encryption in Cloud Storage

    OpenAIRE

    Ren-Junn Hwang; Chung-Chien Lu; Jain-Shing Wu

    2014-01-01

    Cloud outsource storage is one of important services in cloud computing. Cloud users upload data to cloud servers to reduce the cost of managing data and maintaining hardware and software. To ensure data confidentiality, users can encrypt their files before uploading them to a cloud system. However, retrieving the target file from the encrypted files exactly is difficult for cloud server. This study proposes a protocol for performing multikeyword searches for encrypted cloud data by applying ...

  20. Enterprise Cloud Adoption - Cloud Maturity Assessment Model

    OpenAIRE

    Conway, Gerry; Doherty, Eileen; Carcary, Marian; Crowley, Catherine

    2017-01-01

    The introduction and use of cloud computing by an organization has the promise of significant benefits that include reduced costs, improved services, and a pay-per-use model. Organizations that successfully harness these benefits will potentially have a distinct competitive edge, due to their increased agility and flexibility to rapidly respond to an ever changing and complex business environment. However, as cloud technology is a relatively new ph...

  1. Otters, Marine

    Science.gov (United States)

    Estes, James A.; Bodkin, James L.; Ben-David, M.; Perrin, William F.; Würsing, Bernd; Thewissen, J.G.M.

    2009-01-01

    The otters (Mustelidae; Lutrinae) provide an exceptional perspective into the evolution of marine living by mammals. Most extant marine mammals (e.g. the cetaceans, pinnipeds, and sirenians) have been so highly modified by long periods of selection for life in the sea that they bear little resemblance to their terrestrial ancestors. Marine otters, in contrast, are more recent expatriates from freshwater habitats and some species still live in both environments. Contrasts among species within the otters, and among the otters, terrestrial mammals, and the more highly adapted pinnipeds and cetaceans provide powerful insights into mammalian adaptations to life in the sea (Estes, 1989). Among the marine mammals, sea otters (Enhydra lutris, Fig. 1) provide the clearest understanding of consumer-induced effects on ecosystem function. This is due in part to opportunities provided by history and in part to the relative ease with which shallow coastal systems where sea otters live can be observed and studied. Although more difficult to study than sea otters, other otter species reveal the connectivity among the marine, freshwater, and terrestrial systems. These three qualities of the otters – their comparative biology, their role as predators, and their role as agents of ecosystem connectivity – are what make them interesting to marine mammalogy.The following account provides a broad overview of the comparative biology and ecology of the otters, with particular emphasis on those species or populations that live in the sea. Sea otters are features prominently, in part because they live exclusively in the sea whereas other otters have obligate associations with freshwater and terrestrial environments (Kenyon, 1969; Riedman and Estes, 1990).

  2. Star clouds of Magellan

    International Nuclear Information System (INIS)

    Tucker, W.

    1981-01-01

    The Magellanic Clouds are two irregular galaxies belonging to the local group which the Milky Way belongs to. By studying the Clouds, astronomers hope to gain insight into the origin and composition of the Milky Way. The overall structure and dynamics of the Clouds are clearest when studied in radio region of the spectrum. One benefit of directly observing stellar luminosities in the Clouds has been the discovery of the period-luminosity relation. Also, the Clouds are a splendid laboratory for studying stellar evolution. It is believed that both Clouds may be in the very early stage in the development of a regular, symmetric galaxy. This raises a paradox because some of the stars in the star clusters of the Clouds are as old as the oldest stars in our galaxy. An explanation for this is given. The low velocity of the Clouds with respect to the center of the Milky Way shows they must be bound to it by gravity. Theories are given on how the Magellanic Clouds became associated with the galaxy. According to current ideas the Clouds orbits will decay and they will spiral into the Galaxy

  3. Cloud Computing Governance Lifecycle

    Directory of Open Access Journals (Sweden)

    Soňa Karkošková

    2016-06-01

    Full Text Available Externally provisioned cloud services enable flexible and on-demand sourcing of IT resources. Cloud computing introduces new challenges such as need of business process redefinition, establishment of specialized governance and management, organizational structures and relationships with external providers and managing new types of risk arising from dependency on external providers. There is a general consensus that cloud computing in addition to challenges brings many benefits but it is unclear how to achieve them. Cloud computing governance helps to create business value through obtain benefits from use of cloud computing services while optimizing investment and risk. Challenge, which organizations are facing in relation to governing of cloud services, is how to design and implement cloud computing governance to gain expected benefits. This paper aims to provide guidance on implementation activities of proposed Cloud computing governance lifecycle from cloud consumer perspective. Proposed model is based on SOA Governance Framework and consists of lifecycle for implementation and continuous improvement of cloud computing governance model.

  4. THE CALIFORNIA MOLECULAR CLOUD

    International Nuclear Information System (INIS)

    Lada, Charles J.; Lombardi, Marco; Alves, Joao F.

    2009-01-01

    We present an analysis of wide-field infrared extinction maps of a region in Perseus just north of the Taurus-Auriga dark cloud complex. From this analysis we have identified a massive, nearby, but previously unrecognized, giant molecular cloud (GMC). Both a uniform foreground star density and measurements of the cloud's velocity field from CO observations indicate that this cloud is likely a coherent structure at a single distance. From comparison of foreground star counts with Galactic models, we derive a distance of 450 ± 23 pc to the cloud. At this distance the cloud extends over roughly 80 pc and has a mass of ∼ 10 5 M sun , rivaling the Orion (A) molecular cloud as the largest and most massive GMC in the solar neighborhood. Although surprisingly similar in mass and size to the more famous Orion molecular cloud (OMC) the newly recognized cloud displays significantly less star formation activity with more than an order of magnitude fewer young stellar objects than found in the OMC, suggesting that both the level of star formation and perhaps the star formation rate in this cloud are an order of magnitude or more lower than in the OMC. Analysis of extinction maps of both clouds shows that the new cloud contains only 10% the amount of high extinction (A K > 1.0 mag) material as is found in the OMC. This, in turn, suggests that the level of star formation activity and perhaps the star formation rate in these two clouds may be directly proportional to the total amount of high extinction material and presumably high density gas within them and that there might be a density threshold for star formation on the order of n(H 2 ) ∼ a few x 10 4 cm -3 .

  5. Cloud, Aerosol, and Complex Terrain Interactions (CACTI) Preliminary Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Varble, Adam [Univ. of Utah, Salt Lake City, UT (United States); Nesbitt, Steve [Univ. of Illinois, Urbana-Champaign, IL (United States); Salio, Paola [Univ. of Buenos Aires (Argentina); Zipser, Edward [Univ. of Utah, Salt Lake City, UT (United States); van den Heever, Susan [Colorado State Univ., Fort Collins, CO (United States); McFarquhar, Greg [Univ. of Illinois, Urbana-Champaign, IL (United States); Kollias, Pavlos [Stony Brook Univ., NY (United States); Kreidenweis, Sonia [Colorado State Univ., Fort Collins, CO (United States); DeMott, Paul [Colorado State Univ., Fort Collins, CO (United States); Jensen, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States); Houze, Jr., Robert [Univ. of Washington, Seattle, WA (United States); Rasmussen, Kristen [Colorado State Univ., Fort Collins, CO (United States); Leung, Ruby [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Romps, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gochis, David [National Center for Atmospheric Research, Boulder, CO (United States); Avila, Eldo [National Univ. of Cordoba (Argentina); Williams, Christopher [Univ. of Colorado, Boulder, CO (United States); National Center for Atmospheric Research, Boulder, CO (United States)

    2017-02-01

    General circulation models and downscaled regional models exhibit persistent biases in deep convective initiation location and timing, cloud top height, stratiform area and precipitation fraction, and anvil coverage. Despite important impacts on the distribution of atmospheric heating, moistening, and momentum, nearly all climate models fail to represent convective organization, while system evolution is not represented at all. Improving representation of convective systems in models requires characterization of their predictability as a function of environmental conditions, and this characterization depends on observing many cases of convective initiation, non-initiation, organization, and non-organization. The Cloud, Aerosol, and Complex Terrain Interactions (CACTI) experiment in the Sierras de Córdoba mountain range of north-central Argentina is designed to improve understanding of cloud life cycle and organization in relation to environmental conditions so that cumulus, microphysics, and aerosol parameterizations in multi-scale models can be improved. The Sierras de Córdoba range has a high frequency of orographic boundary-layer clouds, many reaching congestus depths, many initiating into deep convection, and some organizing into mesoscale systems uniquely observable from a single fixed site. Some systems even grow upscale to become among the deepest, largest, and longest-lived in the world. These systems likely contribute to an observed regional trend of increasing extreme rainfall, and poor prediction of them likely contributes to a warm, dry bias in climate models downstream of the Sierras de Córdoba range in a key agricultural region. Many environmental factors influence the convective lifecycle in this region including orographic, low-level jet, and frontal circulations, surface fluxes, synoptic vertical motions influenced by the Andes, cloud detrainment, and aerosol properties. Local and long-range transport of smoke resulting from biomass burning as

  6. Marine Battlefields

    DEFF Research Database (Denmark)

    Harðardóttir, Sara

    as they are an important food source for various marine animals. For both phytoand zooplankton predation is a major cause of mortality, and strategies for protection or avoidance are important for survival. Diatoms of the genera Nitzschia and Pseudo-nitzschia are known to produce a neuro-toxin, domoic acid (DA). Despite......Phytoplankton species are photosynthetic organisms found in most aquatic habitats. In the ocean, phytoplankton are tremendously important because they produce the energy that forms the base of the marine food web. Zooplankton feed on phytoplankton and mediate the energy to higher trophic levels...

  7. Reconstruction of 3D Shapes of Opaque Cumulus Clouds from Airborne Multiangle Imaging: A Proof-of-Concept

    Science.gov (United States)

    Davis, A. B.; Bal, G.; Chen, J.

    2015-12-01

    Operational remote sensing of microphysical and optical cloud properties is invariably predicated on the assumption of plane-parallel slab geometry for the targeted cloud. The sole benefit of this often-questionable assumption about the cloud is that it leads to one-dimensional (1D) radiative transfer (RT)---a textbook, computationally tractable model. We present new results as evidence that, thanks to converging advances in 3D RT, inverse problem theory, algorithm implementation, and computer hardware, we are at the dawn of a new era in cloud remote sensing where we can finally go beyond the plane-parallel paradigm. Granted, the plane-parallel/1D RT assumption is reasonable for spatially extended stratiform cloud layers, as well as the smoothly distributed background aerosol layers. However, these 1D RT-friendly scenarios exclude cases that are critically important for climate physics. 1D RT---whence operational cloud remote sensing---fails catastrophically for cumuliform clouds that have fully 3D outer shapes and internal structures driven by shallow or deep convection. For these situations, the first order of business in a robust characterization by remote sensing is to abandon the slab geometry framework and determine the 3D geometry of the cloud, as a first step toward bone fide 3D cloud tomography. With this specific goal in mind, we deliver a proof-of-concept for an entirely new kind of remote sensing applicable to 3D clouds. It is based on highly simplified 3D RT and exploits multi-angular suites of cloud images at high spatial resolution. Airborne sensors like AirMSPI readily acquire such data. The key element of the reconstruction algorithm is a sophisticated solution of the nonlinear inverse problem via linearization of the forward model and an iteration scheme supported, where necessary, by adaptive regularization. Currently, the demo uses a 2D setting to show how either vertical profiles or horizontal slices of the cloud can be accurately reconstructed

  8. Observed microphysical changes in Arctic mixed-phase clouds when transitioning from sea ice to open ocean

    Directory of Open Access Journals (Sweden)

    G. Young

    2016-11-01

    airborne observations, of cloud microphysical changes with changing sea ice cover and addresses the question of how the microphysics of Arctic stratiform clouds may change as the region warms and sea ice extent reduces.

  9. COMET SHOWERS ARE NOT INDUCED BY INTERSTELLAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Morris, D.E.

    1985-11-01

    Encounters with interstellar clouds (IC) have been proposed by Rampino and Stothers as a cause of quasi-periodic intense comet showers leading to earth impacts, in order to explain the periodicity in marine mass extinctions found by Raup and Sepkoski. The model was described further, criticized and defended. The debate has centered on the question of whether the scale height of the clouds is small enough (in comparison to the amplitude of the oscillation of the solar system about the plane of the Galaxy) to produce a modulation in the rate of encounters. We wish to point out another serious, we believe fatal, defect in this model - the tidal fields of ICs are not strong enough to produce intense comet showers leading to earth impacts by bringing comets of the postulated inner Oort cloud into earth crossing orbits, except possibly during very rare encounters with very dense clouds. We will show that encounters with abundant clouds of low density cannot produce comet showers; cloud density N > 10{sup 3} atoms cm{sup -3} is needed to produce an intense comet shower leading to earth impacts. Furthermore, the tidal field of a dense cloud during a distant encounter is too weak to produce such showers. As a consequence, comet showers induced by ICs will be far less frequent than showers caused by passing stars. This conclusion is independent of assumptions about the radial distribution of comets in the inner Oort cloud.

  10. Origin of stratiform sediment-hosted manganese carbonate ore deposits: Examples from Molango, Mexico, and TaoJiang, China

    Science.gov (United States)

    Okita, P.M.; Shanks, Wayne C.

    1992-01-01

    space, suggest they were formed similarly by MnO2 precipitation at the margins of dysaerobic to anoxic marine basins. Mn-carbonate formed predominantly by early-diagenetic reduction of Mn-oxides via oxidation of organic matter in near-surface sediments. In addition to MnCO3 precipitation, organic matter oxidation reactions resulted in oxidation of FeS to Fe-oxides such as magnetite, maghemite and hematite. The latter process explains anomalously low pyrite content and abundant Fe-oxide minerals in ore zones dominated by rhodochrosite. ?? 1992.

  11. Expansion of magnetic clouds

    International Nuclear Information System (INIS)

    Suess, S.T.

    1987-01-01

    Magnetic clouds are a carefully defined subclass of all interplanetary signatures of coronal mass ejections whose geometry is thought to be that of a cylinder embedded in a plane. It has been found that the total magnetic pressure inside the clouds is higher than the ion pressure outside, and that the clouds are expanding at 1 AU at about half the local Alfven speed. The geometry of the clouds is such that even though the magnetic pressure inside is larger than the total pressure outside, expansion will not occur because the pressure is balanced by magnetic tension - the pinch effect. The evidence for expansion of clouds at 1 AU is nevertheless quite strong so another reason for its existence must be found. It is demonstrated that the observations can be reproduced by taking into account the effects of geometrical distortion of the low plasma beta clouds as they move away from the Sun

  12. Encyclopedia of cloud computing

    CERN Document Server

    Bojanova, Irena

    2016-01-01

    The Encyclopedia of Cloud Computing provides IT professionals, educators, researchers and students with a compendium of cloud computing knowledge. Authored by a spectrum of subject matter experts in industry and academia, this unique publication, in a single volume, covers a wide range of cloud computing topics, including technological trends and developments, research opportunities, best practices, standards, and cloud adoption. Providing multiple perspectives, it also addresses questions that stakeholders might have in the context of development, operation, management, and use of clouds. Furthermore, it examines cloud computing's impact now and in the future. The encyclopedia presents 56 chapters logically organized into 10 sections. Each chapter covers a major topic/area with cross-references to other chapters and contains tables, illustrations, side-bars as appropriate. Furthermore, each chapter presents its summary at the beginning and backend material, references and additional resources for further i...

  13. Marine Science

    African Journals Online (AJOL)

    Science. The journal has a new and more modern layout, published online only, and the editorial. Board was increased to include more disciplines pertaining to marine sciences. While important chal- lenges still lie ahead, we are steadily advancing our standard to increase visibility and dissemination throughout the global ...

  14. Marine Mammals.

    Science.gov (United States)

    Meith, Nikki

    Marine mammals have not only fascinated and inspired human beings for thousands of years, but they also support a big business by providing flesh for sea-borne factories, sustaining Arctic lifestyles and traditions, and attracting tourists to ocean aquaria. While they are being harpooned, bludgeoned, shot, netted, and trained to jump through…

  15. Marine Science

    African Journals Online (AJOL)

    Mauritius Marine Conservation Society through their. Abstract. While no populations of seals are resident in the tropical Indian Ocean, vagrant animals are occasionally sighted in the region. Here we detail two new sightings of pinnipeds in the Mascarene Islands (Mauritius, Reunion and Rodri- gues) since 1996 and review ...

  16. Marine Science

    African Journals Online (AJOL)

    Copy Editor Timothy Andrew. Published ... 2007; Zhou et al., 2009) and they play an important role in the ... At both sites, zonal variation in TMPB was evident with significantly higher C-biomass closer to ... ton is considered to be an essential parameter in eco- systems ...... logical significance of toxic marine dinoflagellates.

  17. Marine Science

    African Journals Online (AJOL)

    sustainable coastal development in the region, as well as contributing to the ... between humans and the coastal and marine environment. ... exploitation for timber, fuel wood, aquaculture, urban. Abstract. Given the high dependence of coastal communities on natural resources, mangrove conservation is a challenge in.

  18. Marine Science

    African Journals Online (AJOL)

    No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means ... USA/Norway ... The last couple of years have been a time of change for the Western Indian Ocean Journal of Marine.

  19. Marine Science

    African Journals Online (AJOL)

    Chief Editor José Paula | Faculty of Sciences of University of Lisbon, Portugal. Copy Editor Timothy Andrew. Published biannually. Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high quality research generated in the Western Indian Ocean (WIO) ...

  20. Considerations for Cloud Security Operations

    OpenAIRE

    Cusick, James

    2016-01-01

    Information Security in Cloud Computing environments is explored. Cloud Computing is presented, security needs are discussed, and mitigation approaches are listed. Topics covered include Information Security, Cloud Computing, Private Cloud, Public Cloud, SaaS, PaaS, IaaS, ISO 27001, OWASP, Secure SDLC.

  1. Evaluating statistical cloud schemes

    OpenAIRE

    Grützun, Verena; Quaas, Johannes; Morcrette , Cyril J.; Ament, Felix

    2015-01-01

    Statistical cloud schemes with prognostic probability distribution functions have become more important in atmospheric modeling, especially since they are in principle scale adaptive and capture cloud physics in more detail. While in theory the schemes have a great potential, their accuracy is still questionable. High-resolution three-dimensional observational data of water vapor and cloud water, which could be used for testing them, are missing. We explore the potential of ground-based re...

  2. Cloud Computing Governance Lifecycle

    OpenAIRE

    Soňa Karkošková; George Feuerlicht

    2016-01-01

    Externally provisioned cloud services enable flexible and on-demand sourcing of IT resources. Cloud computing introduces new challenges such as need of business process redefinition, establishment of specialized governance and management, organizational structures and relationships with external providers and managing new types of risk arising from dependency on external providers. There is a general consensus that cloud computing in addition to challenges brings many benefits but it is uncle...

  3. Security in cloud computing

    OpenAIRE

    Moreno Martín, Oriol

    2016-01-01

    Security in Cloud Computing is becoming a challenge for next generation Data Centers. This project will focus on investigating new security strategies for Cloud Computing systems. Cloud Computingisarecent paradigmto deliver services over Internet. Businesses grow drastically because of it. Researchers focus their work on it. The rapid access to exible and low cost IT resources on an on-demand fashion, allows the users to avoid planning ahead for provisioning, and enterprises to save money ...

  4. Marine Stratocumulus Properties from the FPDR - PDI as a Function of Aerosol during ORACLES

    Science.gov (United States)

    Small Griswold, J. D.; Heikkila, A.

    2016-12-01

    Aerosol-cloud interactions in the southeastern Atlantic (SEA) region were investigated during year 1 of the ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) field project in Aug-Sept 2016. This region is of interest due to seasonally persistent marine stratocumulus cloud decks that are an important component of the climate system due to their radiative and hydrologic impacts. The SEA deck is unique due to the interactions between these clouds and transported biomass burning aerosol during the July-October fire season. These biomass burning aerosol play multiple roles in modifying the cloud deck through interactions with radiation as absorbing aerosol and through modifications to cloud microphysical properties as cloud condensation nuclei. This work uses in situcloud data obtained with a Flight Probe Dual Range - Phase Doppler Interferometer (FPDR - PDI), standard aerosol instrumentation on board the NASA P-3, and reanalysis data to investigate Aerosol-Cloud Interactions (ACI). The FPDR - PDI provides unique cloud microphysical observations of individual cloud drop arrivals allowing for the computation of a variety of microphysical cloud properties including individual drop size, cloud drop number concentration, cloud drop size distributions, liquid water content, and cloud thickness. The FPDR - PDI measurement technique also provides droplet spacing and drop velocity information which is used to investigate turbulence and entrainment mixing processes. We use aerosol information such as average background aerosol amount (low, mid, high) and location relative to cloud (above or mixing) to sort FPDR - PDI cloud properties. To control for meteorological co-variances we further sort the data within aerosol categories by lower tropospheric stability, vertical velocity, and surface wind direction. We then determine general marine stratocumulus cloud characteristics under each of the various aerosol categories to investigate ACI in the SEA.

  5. CLOUD TECHNOLOGY IN EDUCATION

    Directory of Open Access Journals (Sweden)

    Alexander N. Dukkardt

    2014-01-01

    Full Text Available This article is devoted to the review of main features of cloud computing that can be used in education. Particular attention is paid to those learning and supportive tasks, that can be greatly improved in the case of the using of cloud services. Several ways to implement this approach are proposed, based on widely accepted models of providing cloud services. Nevertheless, the authors have not ignored currently existing problems of cloud technologies , identifying the most dangerous risks and their impact on the core business processes of the university. 

  6. Cloud Computing: An Overview

    Science.gov (United States)

    Qian, Ling; Luo, Zhiguo; Du, Yujian; Guo, Leitao

    In order to support the maximum number of user and elastic service with the minimum resource, the Internet service provider invented the cloud computing. within a few years, emerging cloud computing has became the hottest technology. From the publication of core papers by Google since 2003 to the commercialization of Amazon EC2 in 2006, and to the service offering of AT&T Synaptic Hosting, the cloud computing has been evolved from internal IT system to public service, from cost-saving tools to revenue generator, and from ISP to telecom. This paper introduces the concept, history, pros and cons of cloud computing as well as the value chain and standardization effort.

  7. Genomics With Cloud Computing

    Directory of Open Access Journals (Sweden)

    Sukhamrit Kaur

    2015-04-01

    Full Text Available Abstract Genomics is study of genome which provides large amount of data for which large storage and computation power is needed. These issues are solved by cloud computing that provides various cloud platforms for genomics. These platforms provides many services to user like easy access to data easy sharing and transfer providing storage in hundreds of terabytes more computational power. Some cloud platforms are Google genomics DNAnexus and Globus genomics. Various features of cloud computing to genomics are like easy access and sharing of data security of data less cost to pay for resources but still there are some demerits like large time needed to transfer data less network bandwidth.

  8. Urbanization Causes Increased Cloud Base Height and Decreased Fog in Coastal Southern California

    Science.gov (United States)

    Williams, A. Park; Schwartz, Rachel E.; Iacobellis, Sam; Seager, Richard; Cook, Benjamin I.; Still, Christopher J.; Husak, Gregory; Michaelsen, Joel

    2015-01-01

    Subtropical marine stratus clouds regulate coastal and global climate, but future trends in these clouds are uncertain. In coastal Southern California (CSCA), interannual variations in summer stratus cloud occurrence are spatially coherent across 24 airfields and dictated by positive relationships with stability above the marine boundary layer (MBL) and MBL height. Trends, however, have been spatially variable since records began in the mid-1900s due to differences in nighttime warming. Among CSCA airfields, differences in nighttime warming, but not daytime warming, are strongly and positively related to fraction of nearby urban cover, consistent with an urban heat island effect. Nighttime warming raises the near-surface dew point depression, which lifts the altitude of condensation and cloud base height, thereby reducing fog frequency. Continued urban warming, rising cloud base heights, and associated effects on energy and water balance would profoundly impact ecological and human systems in highly populated and ecologically diverse CSCA.

  9. Review of Cloud Computing and existing Frameworks for Cloud adoption

    OpenAIRE

    Chang, Victor; Walters, Robert John; Wills, Gary

    2014-01-01

    This paper presents a selected review for Cloud Computing and explains the benefits and risks of adopting Cloud Computing in a business environment. Although all the risks identified may be associated with two major Cloud adoption challenges, a framework is required to support organisations as they begin to use Cloud and minimise risks of Cloud adoption. Eleven Cloud Computing frameworks are investigated and a comparison of their strengths and limitations is made; the result of the comparison...

  10. +Cloud: An Agent-Based Cloud Computing Platform

    OpenAIRE

    González, Roberto; Hernández de la Iglesia, Daniel; de la Prieta Pintado, Fernando; Gil González, Ana Belén

    2017-01-01

    Cloud computing is revolutionizing the services provided through the Internet, and is continually adapting itself in order to maintain the quality of its services. This study presents the platform +Cloud, which proposes a cloud environment for storing information and files by following the cloud paradigm. This study also presents Warehouse 3.0, a cloud-based application that has been developed to validate the services provided by +Cloud.

  11. High Ice Water Content at Low Radar Reflectivity near Deep Convection. Part I ; Consistency of In Situ and Remote-Sensing Observations with Stratiform Rain Column Simulations

    Science.gov (United States)

    Fridlind, A. M.; Ackerman, A. S.; Grandin, A.; Dezitter, F.; Weber, M.; Strapp, J. W.; Korolev, A. V.; Williams, C. R.

    2015-01-01

    Occurrences of jet engine power loss and damage have been associated with flight through fully glaciated deep convection at -10 to -50 degrees Centigrade. Power loss events commonly occur during flight through radar reflectivity (Zeta (sub e)) less than 20-30 decibels relative to Zeta (dBZ - radar returns) and no more than moderate turbulence, often overlying moderate to heavy rain near the surface. During 2010-2012, Airbus carried out flight tests seeking to characterize the highest ice water content (IWC) in such low-radar-reflectivity regions of large, cold-topped storm systems in the vicinity of Cayenne, Darwin, and Santiago. Within the highest IWC regions encountered, at typical sampling elevations (circa 11 kilometers), the measured ice size distributions exhibit a notably narrow concentration of mass over area-equivalent diameters of 100-500 micrometers. Given substantial and poorly quantified measurement uncertainties, here we evaluate the consistency of the Airbus in situ measurements with ground-based profiling radar observations obtained under quasi-steady, heavy stratiform rain conditions in one of the Airbus-sampled locations. We find that profiler-observed radar reflectivities and mean Doppler velocities at Airbus sampling temperatures are generally consistent with those calculated from in situ size-distribution measurements. We also find that column simulations using the in situ size distributions as an upper boundary condition are generally consistent with observed profiles of radar reflectivity (Ze), mean Doppler velocity (MDV), and retrieved rain rate. The results of these consistency checks motivate an examination of the microphysical pathways that could be responsible for the observed size-distribution features in Ackerman et al. (2015).

  12. Lost in Cloud

    Science.gov (United States)

    Maluf, David A.; Shetye, Sandeep D.; Chilukuri, Sri; Sturken, Ian

    2012-01-01

    Cloud computing can reduce cost significantly because businesses can share computing resources. In recent years Small and Medium Businesses (SMB) have used Cloud effectively for cost saving and for sharing IT expenses. With the success of SMBs, many perceive that the larger enterprises ought to move into Cloud environment as well. Government agency s stove-piped environments are being considered as candidates for potential use of Cloud either as an enterprise entity or pockets of small communities. Cloud Computing is the delivery of computing as a service rather than as a product, whereby shared resources, software, and information are provided to computers and other devices as a utility over a network. Underneath the offered services, there exists a modern infrastructure cost of which is often spread across its services or its investors. As NASA is considered as an Enterprise class organization, like other enterprises, a shift has been occurring in perceiving its IT services as candidates for Cloud services. This paper discusses market trends in cloud computing from an enterprise angle and then addresses the topic of Cloud Computing for NASA in two possible forms. First, in the form of a public Cloud to support it as an enterprise, as well as to share it with the commercial and public at large. Second, as a private Cloud wherein the infrastructure is operated solely for NASA, whether managed internally or by a third-party and hosted internally or externally. The paper addresses the strengths and weaknesses of both paradigms of public and private Clouds, in both internally and externally operated settings. The content of the paper is from a NASA perspective but is applicable to any large enterprise with thousands of employees and contractors.

  13. Research on cloud computing solutions

    OpenAIRE

    Liudvikas Kaklauskas; Vaida Zdanytė

    2015-01-01

    Cloud computing can be defined as a new style of computing in which dynamically scala-ble and often virtualized resources are provided as a services over the Internet. Advantages of the cloud computing technology include cost savings, high availability, and easy scalability. Voas and Zhang adapted six phases of computing paradigms, from dummy termi-nals/mainframes, to PCs, networking computing, to grid and cloud computing. There are four types of cloud computing: public cloud, private cloud, ...

  14. VMware vCloud security

    CERN Document Server

    Sarkar, Prasenjit

    2013-01-01

    VMware vCloud Security provides the reader with in depth knowledge and practical exercises sufficient to implement a secured private cloud using VMware vCloud Director and vCloud Networking and Security.This book is primarily for technical professionals with system administration and security administration skills with significant VMware vCloud experience who want to learn about advanced concepts of vCloud security and compliance.

  15. Security Architecture of Cloud Computing

    OpenAIRE

    V.KRISHNA REDDY; Dr. L.S.S.REDDY

    2011-01-01

    The Cloud Computing offers service over internet with dynamically scalable resources. Cloud Computing services provides benefits to the users in terms of cost and ease of use. Cloud Computing services need to address the security during the transmission of sensitive data and critical applications to shared and public cloud environments. The cloud environments are scaling large for data processing and storage needs. Cloud computing environment have various advantages as well as disadvantages o...

  16. Security in hybrid cloud computing

    OpenAIRE

    Koudelka, Ondřej

    2016-01-01

    This bachelor thesis deals with the area of hybrid cloud computing, specifically with its security. The major aim of the thesis is to analyze and compare the chosen hybrid cloud providers. For the minor aim this thesis compares the security challenges of hybrid cloud as opponent to other deployment models. In order to accomplish said aims, this thesis defines the terms cloud computing and hybrid cloud computing in its theoretical part. Furthermore the security challenges for cloud computing a...

  17. Cloud security in vogelvlucht

    NARCIS (Netherlands)

    Pieters, Wolter

    2011-01-01

    Cloud computing is dé hype in IT op het moment, en hoewel veel aspecten niet nieuw zijn, leidt het concept wel tot de noodzaak voor nieuwe vormen van beveiliging. Het idee van cloud computing biedt echter ook juist kansen om hierover na te denken: wat is de rol van informatiebeveiliging in een

  18. CLOUD SERVICES IN EDUCATION

    Directory of Open Access Journals (Sweden)

    Z.S. Seydametova

    2011-05-01

    Full Text Available We present the on-line services based on cloud computing, provided by Google to educational institutions. We describe the own experience of the implementing the Google Apps Education Edition in the educational process. We analyzed and compared the other universities experience of using cloud technologies.

  19. Cloud MicroAtlas

    Indian Academy of Sciences (India)

    We begin by outlining the life cycle of a tall cloud, and thenbriefly discuss cloud systems. We choose one aspect of thislife cycle, namely, the rapid growth of water droplets in ice freeclouds, to then discuss in greater detail. Taking a singlevortex to be a building block of turbulence, we demonstrateone mechanism by which ...

  20. Greening the cloud

    NARCIS (Netherlands)

    van den Hoed, Robert; Hoekstra, Eric; Procaccianti, Giuseppe; Lago, Patricia; Grosso, Paolo; Taal, Arie; Grosskop, Kay; van Bergen, Esther

    The cloud has become an essential part of our daily lives. We use it to store our documents (Dropbox), to stream our music and films (Spotify and Netflix) and without giving it any thought, we use it to work on documents in the cloud (Google Docs).

  1. Learning in the Clouds?

    Science.gov (United States)

    Butin, Dan W.

    2013-01-01

    Engaged learning--the type that happens outside textbooks and beyond the four walls of the classroom--moves beyond right and wrong answers to grappling with the uncertainties and contradictions of a complex world. iPhones back up to the "cloud." GoogleDocs is all about "cloud computing." Facebook is as ubiquitous as the sky.…

  2. Kernel structures for Clouds

    Science.gov (United States)

    Spafford, Eugene H.; Mckendry, Martin S.

    1986-01-01

    An overview of the internal structure of the Clouds kernel was presented. An indication of how these structures will interact in the prototype Clouds implementation is given. Many specific details have yet to be determined and await experimentation with an actual working system.

  3. The 3-D Tropical Convective Cloud Spectrum in AMIE Radar Observations and Global Climate Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Courtney [Texas A & M Univ., College Station, TX (United States). Dept. of Atmospheric Sciences

    2015-08-31

    During the three years of this grant performance, the PI and her research group have made a number of significant contributions towards determining properties of tropical deep convective clouds and how models depict and respond to the heating associated with tropical convective systems. The PI has also been an active ARM/ASR science team member, including playing a significant role in AMIE and GoAmazon2014/5. She served on the DOE ASR radar science steering committee and was a joint chair of the Mesoscale Convective Organization group under the Cloud Life Cycle working group. This grant has funded a number of graduate students, many of them women, and the PI and her group have presented their DOE-supported work at various universities and national meetings. The PI and her group participated in the AMIE (2011-12) and GoAmazon2014/5 (2014-15) DOE field deployments that occurred in the tropical Indian Ocean and Brazilian Amazon, respectively. AMIE observational results (DePasquale et al. 2014, Feng et al. 2014, Ahmed and Schumacher 2015) focus on the variation and possible importance of Kelvin waves in various phases of the Madden-Julian Oscillation (MJO), on the synergy of the different wavelength radars deployed on Addu Atoll, and on the importance of humidity thresholds in the tropics on stratiform rain production. Much of the PIs GoAmazon2014/5 results to date relate to overviews of the observations made during the field campaign (Martin et al. 2015, 2016; Fuentes et al. 2016), but also include the introduction of the descending arm and its link to ozone transport from the mid-troposphere to the surface (Gerken et al. 2016). Vertical motion and mass flux profiles from GoAmazon (Giangrande et al. 2016) also show interesting patterns between seasons and provide targets for model simulations. Results from TWP-ICE (Schumacher et al. 2015), which took place in Darwin, Australia in 2006 show that vertical velocity retrievals from the profilers provide structure to

  4. Cloud computing basics

    CERN Document Server

    Srinivasan, S

    2014-01-01

    Cloud Computing Basics covers the main aspects of this fast moving technology so that both practitioners and students will be able to understand cloud computing. The author highlights the key aspects of this technology that a potential user might want to investigate before deciding to adopt this service. This book explains how cloud services can be used to augment existing services such as storage, backup and recovery. Addressing the details on how cloud security works and what the users must be prepared for when they move their data to the cloud. Also this book discusses how businesses could prepare for compliance with the laws as well as industry standards such as the Payment Card Industry.

  5. Solar variability and clouds

    CERN Document Server

    Kirkby, Jasper

    2000-01-01

    Satellite observations have revealed a surprising imprint of the 11- year solar cycle on global low cloud cover. The cloud data suggest a correlation with the intensity of Galactic cosmic rays. If this apparent connection between cosmic rays and clouds is real, variations of the cosmic ray flux caused by long-term changes in the solar wind could have a significant influence on the global energy radiation budget and the climate. However a direct link between cosmic rays and clouds has not been unambiguously established and, moreover, the microphysical mechanism is poorly understood. New experiments are being planned to find out whether cosmic rays can affect cloud formation, and if so how. (37 refs).

  6. Formation of Massive Molecular Cloud Cores by Cloud-cloud Collision

    OpenAIRE

    Inoue, Tsuyoshi; Fukui, Yasuo

    2013-01-01

    Recent observations of molecular clouds around rich massive star clusters including NGC3603, Westerlund 2, and M20 revealed that the formation of massive stars could be triggered by a cloud-cloud collision. By using three-dimensional, isothermal, magnetohydrodynamics simulations with the effect of self-gravity, we demonstrate that massive, gravitationally unstable, molecular cloud cores are formed behind the strong shock waves induced by the cloud-cloud collision. We find that the massive mol...

  7. Making and Breaking Clouds

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Molecular clouds which youre likely familiar with from stunning popular astronomy imagery lead complicated, tumultuous lives. A recent study has now found that these features must be rapidly built and destroyed.Star-Forming CollapseA Hubble view of a molecular cloud, roughly two light-years long, that has broken off of the Carina Nebula. [NASA/ESA, N. Smith (University of California, Berkeley)/The Hubble Heritage Team (STScI/AURA)]Molecular gas can be found throughout our galaxy in the form of eminently photogenic clouds (as featured throughout this post). Dense, cold molecular gas makes up more than 20% of the Milky Ways total gas mass, and gravitational instabilities within these clouds lead them to collapse under their own weight, resulting in the formation of our galaxys stars.How does this collapse occur? The simplest explanation is that the clouds simply collapse in free fall, with no source of support to counter their contraction. But if all the molecular gas we observe collapsed on free-fall timescales, star formation in our galaxy would churn a rate thats at least an order of magnitude higher than the observed 12 solar masses per year in the Milky Way.Destruction by FeedbackAstronomers have theorized that there may be some mechanism that supports these clouds against gravity, slowing their collapse. But both theoretical studies and observations of the clouds have ruled out most of these potential mechanisms, and mounting evidence supports the original interpretation that molecular clouds are simply gravitationally collapsing.A sub-mm image from ESOs APEX telescope of part of the Taurus molecular cloud, roughly ten light-years long, superimposed on a visible-light image of the region. [ESO/APEX (MPIfR/ESO/OSO)/A. Hacar et al./Digitized Sky Survey 2. Acknowledgment: Davide De Martin]If this is indeed the case, then one explanation for our low observed star formation rate could be that molecular clouds are rapidly destroyed by feedback from the very stars

  8. Investigating a solar influence on cloud cover using the North American Regional Reanalysis data

    Directory of Open Access Journals (Sweden)

    Krahenbuhl Daniel Scott

    2015-01-01

    Full Text Available The controversial connection between cosmic rays, solar activity, and cloud cover is investigated using a climatological reconstructed reanalysis product: the North American Regional Reanalysis which provides high-resolution, low, mid-level, high, and total cloud cover data over a Lambert conformal conic projection permitting land/ocean discrimination. Pearson’s product-moment regional correlations were obtained between monthly cloud cover data and solar variability indicators, cosmic ray neutron monitors, several climatological indices, including the Atlantic Multidecadal Oscillation (AMO, and between cloud layers. Regions of the mid-latitude oceans exhibited a positive correlation with cosmic ray flux. Additionally, this maritime low cloud cover exhibits the only failed correlation significance with other altitudes. The cross correlation reveals that cloud cover is positively correlated everywhere but for ocean low cloud cover, supporting the unique response of the marine layer. The results of this investigation suggest that with the assumption that solar forcing does impact cloud cover, measurements of solar activity exhibits a slightly higher correlation than GCRs. The only instance where GCRs exhibit a positive regional correlation with cloud cover is for maritime low clouds. The AMO exerts the greatest control of cloud cover in the NARR domain.

  9. On the relationship between low cloud variability and lower tropospheric stability in the Southeast Pacific

    Directory of Open Access Journals (Sweden)

    F. Sun

    2011-09-01

    Full Text Available In this study, we examine marine low cloud cover variability in the Southeast Pacific and its association with lower-tropospheric stability (LTS across a spectrum of timescales. On both daily and interannual timescales, LTS and low cloud amount are very well correlated in austral summer (DJF. Meanwhile in winter (JJA, when ambient LTS increases, the LTS–low cloud relationship substantially weakens. The DJF LTS–low cloud relationship also weakens in years with unusually large ambient LTS values. These are generally strong El Niño years, in which DJF LTS values are comparable to those typically found in JJA. Thus the LTS–low cloud relationship is strongly modulated by the seasonal cycle and the ENSO phenomenon. We also investigate the origin of LTS anomalies closely associated with low cloud variability during austral summer. We find that the ocean and atmosphere are independently involved in generating anomalies in LTS and hence variability in the Southeast Pacific low cloud deck. This highlights the importance of the physical (as opposed to chemical component of the climate system in generating internal variability in low cloud cover. It also illustrates the coupled nature of the climate system in this region, and raises the possibility of cloud feedbacks related to LTS. We conclude by addressing the implications of the LTS–low cloud relationship in the Southeast Pacific for low cloud feedbacks in anthropogenic climate change.

  10. Cloud Computing: An Overview

    Directory of Open Access Journals (Sweden)

    Libor Sarga

    2012-10-01

    Full Text Available As cloud computing is gaining acclaim as a cost-effective alternative to acquiring processing resources for corporations, scientific applications and individuals, various challenges are rapidly coming to the fore. While academia struggles to procure a concise definition, corporations are more interested in competitive advantages it may generate and individuals view it as a way of speeding up data access times or a convenient backup solution. Properties of the cloud architecture largely preclude usage of existing practices while achieving end-users’ and companies’ compliance requires considering multiple infrastructural as well as commercial factors, such as sustainability in case of cloud-side interruptions, identity management and off-site corporate data handling policies. The article overviews recent attempts at formal definitions of cloud computing, summarizes and critically evaluates proposed delimitations, and specifies challenges associated with its further proliferation. Based on the conclusions, future directions in the field of cloud computing are also briefly hypothesized to include deeper focus on community clouds and bolstering innovative cloud-enabled platforms and devices such as tablets, smart phones, as well as entertainment applications.

  11. Cloud Computing Law

    CERN Document Server

    Millard, Christopher

    2013-01-01

    This book is about the legal implications of cloud computing. In essence, ‘the cloud’ is a way of delivering computing resources as a utility service via the internet. It is evolving very rapidly with substantial investments being made in infrastructure, platforms and applications, all delivered ‘as a service’. The demand for cloud resources is enormous, driven by such developments as the deployment on a vast scale of mobile apps and the rapid emergence of ‘Big Data’. Part I of this book explains what cloud computing is and how it works. Part II analyses contractual relationships between cloud service providers and their customers, as well as the complex roles of intermediaries. Drawing on primary research conducted by the Cloud Legal Project at Queen Mary University of London, cloud contracts are analysed in detail, including the appropriateness and enforceability of ‘take it or leave it’ terms of service, as well as the scope for negotiating cloud deals. Specific arrangements for public sect...

  12. Community Cloud Computing

    Science.gov (United States)

    Marinos, Alexandros; Briscoe, Gerard

    Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns over privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon and Microsoft. Our response is an alternative model for the Cloud conceptualisation, providing a paradigm for Clouds in the community, utilising networked personal computers for liberation from the centralised vendor model. Community Cloud Computing (C3) offers an alternative architecture, created by combing the Cloud with paradigms from Grid Computing, principles from Digital Ecosystems, and sustainability from Green Computing, while remaining true to the original vision of the Internet. It is more technically challenging than Cloud Computing, having to deal with distributed computing issues, including heterogeneous nodes, varying quality of service, and additional security constraints. However, these are not insurmountable challenges, and with the need to retain control over our digital lives and the potential environmental consequences, it is a challenge we must pursue.

  13. Diffuse interstellar clouds

    International Nuclear Information System (INIS)

    Black, J.H.

    1987-01-01

    The author defines and discusses the nature of diffuse interstellar clouds. He discusses how they contribute to the general extinction of starlight. The atomic and molecular species that have been identified in the ultraviolet, visible, and near infrared regions of the spectrum of a diffuse cloud are presented. The author illustrates some of the practical considerations that affect absorption line observations of interstellar atoms and molecules. Various aspects of the theoretical description of diffuse clouds required for a full interpretation of the observations are discussed

  14. Cloud Computing Security

    OpenAIRE

    Ngongang, Guy

    2011-01-01

    This project aimed to show how possible it is to use a network intrusion detection system in the cloud. The security in the cloud is a concern nowadays and security professionals are still finding means to make cloud computing more secure. First of all the installation of the ESX4.0, vCenter Server and vCenter lab manager in server hardware was successful in building the platform. This allowed the creation and deployment of many virtual servers. Those servers have operating systems and a...

  15. Aerosols, clouds and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Twomey, S [University of Arizona, Tucson, AZ (USA). Inst. of Atmospheric Physics

    1991-01-01

    Most of the so-called 'CO{sub 2} effect' is, in fact, an 'H{sub 2}O effect' brought into play by the climate modeler's assumption that planetary average temperature dictates water-vapor concentration (following Clapeyron-Clausius). That assumption ignores the removal process, which cloud physicists know to be influenced by the aerosol, since the latter primarily controls cloud droplet number and size. Droplet number and size are also influential for shortwave (solar) energy. The reflectance of many thin to moderately thick clouds changes when nuclei concentrations change and make shortwave albedo susceptible to aerosol influence.

  16. Trusted cloud computing

    CERN Document Server

    Krcmar, Helmut; Rumpe, Bernhard

    2014-01-01

    This book documents the scientific results of the projects related to the Trusted Cloud Program, covering fundamental aspects of trust, security, and quality of service for cloud-based services and applications. These results aim to allow trustworthy IT applications in the cloud by providing a reliable and secure technical and legal framework. In this domain, business models, legislative circumstances, technical possibilities, and realizable security are closely interwoven and thus are addressed jointly. The book is organized in four parts on "Security and Privacy", "Software Engineering and

  17. A characteristic scale in radiation fields of fractal clouds

    Energy Technology Data Exchange (ETDEWEB)

    Wiscombe, W.; Cahalan, R.; Davis, A.; Marshak, A. [Goddard Space Flight Center, Greenbelt, MD (United States)

    1996-04-01

    The wavenumber spectrum of Landsat imagery for marine stratocumulus cloud shows a scale break when plotted on a double log plot. We offer an explanation of this scale break in terms of smoothing by horizontal radiative fluxes, which is parameterized and incorporated into an improved pixel approximation. We compute the radiation fields emerging from cloud models with horizontally variable optical depth fractal models. We use comparative spectral and multifractal analysis to qualify the validity of the independent pixel approximation at the largest scales and demonstrate it`s shortcomings on the smallest scales.

  18. COMPARATIVE STUDY OF CLOUD COMPUTING AND MOBILE CLOUD COMPUTING

    OpenAIRE

    Nidhi Rajak*, Diwakar Shukla

    2018-01-01

    Present era is of Information and Communication Technology (ICT) and there are number of researches are going on Cloud Computing and Mobile Cloud Computing such security issues, data management, load balancing and so on. Cloud computing provides the services to the end user over Internet and the primary objectives of this computing are resource sharing and pooling among the end users. Mobile Cloud Computing is a combination of Cloud Computing and Mobile Computing. Here, data is stored in...

  19. Molecular clouds near supernova remnants

    International Nuclear Information System (INIS)

    Wootten, H.A.

    1978-01-01

    The physical properties of molecular clouds near supernova remnants were investigated. Various properties of the structure and kinematics of these clouds are used to establish their physical association with well-known remmnants. An infrared survey of the most massive clouds revealed embedded objects, probably stars whose formation was induced by the supernova blast wave. In order to understand the relationship between these and other molecular clouds, a control group of clouds was also observed. Excitation models for dense regions of all the clouds are constructed to evaluate molecular abundances in these regions. Those clouds that have embedded stars have lower molecular abundances than the clouds that do not. A cloud near the W28 supernova remnant also has low abundances. Molecular abundances are used to measure an important parameter, the electron density, which is not directly observable. In some clouds extensive deuterium fractionation is observed which confirms electron density measurements in those clouds. Where large deuterium fractionation is observed, the ionization rate in the cloud interior can also be measured. The electron density and ionization rate in the cloud near W28 are higher than in most clouds. The molecular abundances and electron densities are functions of the chemical and dynamical state of evolution of the cloud. Those clouds with lowest abundances are probably the youngest clouds. As low-abundance clouds, some clouds near supernova remnants may have been recently swept from the local interstellar material. Supernova remnants provide sites for star formation in ambient clouds by compressing them, and they sweep new clouds from more diffuse local matter

  20. Taxonomy of cloud computing services

    NARCIS (Netherlands)

    Hoefer, C.N.; Karagiannis, Georgios

    2010-01-01

    Cloud computing is a highly discussed topic, and many big players of the software industry are entering the development of cloud services. Several companies want to explore the possibilities and benefits of cloud computing, but with the amount of cloud computing services increasing quickly, the need

  1. Active Marine Station Metadata

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Active Marine Station Metadata is a daily metadata report for active marine bouy and C-MAN (Coastal Marine Automated Network) platforms from the National Data...

  2. FAME-C: cloud property retrieval using synergistic AATSR and MERIS observations

    Directory of Open Access Journals (Sweden)

    C. K. Carbajal Henken

    2014-11-01

    Full Text Available A newly developed daytime cloud property retrieval algorithm, FAME-C (Freie Universität Berlin AATSR MERIS Cloud, is presented. Synergistic observations from the Advanced Along-Track Scanning Radiometer (AATSR and the Medium Resolution Imaging Spectrometer (MERIS, both mounted on the polar-orbiting Environmental Satellite (Envisat, are used for cloud screening. For cloudy pixels two main steps are carried out in a sequential form. First, a cloud optical and microphysical property retrieval is performed using an AATSR near-infrared and visible channel. Cloud phase, cloud optical thickness, and effective radius are retrieved, and subsequently cloud water path is computed. Second, two cloud top height products are retrieved based on independent techniques. For cloud top temperature, measurements in the AATSR infrared channels are used, while for cloud top pressure, measurements in the MERIS oxygen-A absorption channel are used. Results from the cloud optical and microphysical property retrieval serve as input for the two cloud top height retrievals. Introduced here are the AATSR and MERIS forward models and auxiliary data needed in FAME-C. Also, the optimal estimation method, which provides uncertainty estimates of the retrieved property on a pixel basis, is presented. Within the frame of the European Space Agency (ESA Climate Change Initiative (CCI project, the first global cloud property retrievals have been conducted for the years 2007–2009. For this time period, verification efforts are presented, comparing, for four selected regions around the globe, FAME-C cloud optical and microphysical properties to cloud optical and microphysical properties derived from measurements of the Moderate Resolution Imaging Spectroradiometer (MODIS on the Terra satellite. The results show a reasonable agreement between the cloud optical and microphysical property retrievals. Biases are generally smallest for marine stratocumulus clouds: −0.28, 0.41 μm and

  3. Cloud Computing (1/2)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Cloud computing, the recent years buzzword for distributed computing, continues to attract and keep the interest of both the computing and business world. These lectures aim at explaining "What is Cloud Computing?" identifying and analyzing it's characteristics, models, and applications. The lectures will explore different "Cloud definitions" given by different authors and use them to introduce the particular concepts. The main cloud models (SaaS, PaaS, IaaS), cloud types (public, private, hybrid), cloud standards and security concerns will be presented. The borders between Cloud Computing and Grid Computing, Server Virtualization, Utility Computing will be discussed and analyzed.

  4. Cloud Computing (2/2)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Cloud computing, the recent years buzzword for distributed computing, continues to attract and keep the interest of both the computing and business world. These lectures aim at explaining "What is Cloud Computing?" identifying and analyzing it's characteristics, models, and applications. The lectures will explore different "Cloud definitions" given by different authors and use them to introduce the particular concepts. The main cloud models (SaaS, PaaS, IaaS), cloud types (public, private, hybrid), cloud standards and security concerns will be presented. The borders between Cloud Computing and Grid Computing, Server Virtualization, Utility Computing will be discussed and analyzed.

  5. IBM SmartCloud essentials

    CERN Document Server

    Schouten, Edwin

    2013-01-01

    A practical, user-friendly guide that provides an introduction to cloud computing using IBM SmartCloud, along with a thorough understanding of resource management in a cloud environment.This book is great for anyone who wants to get a grasp of what cloud computing is and what IBM SmartCloud has to offer. If you are an IT specialist, IT architect, system administrator, or a developer who wants to thoroughly understand the cloud computing resource model, this book is ideal for you. No prior knowledge of cloud computing is expected.

  6. Marine Sciences

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    PNL research in the marine sciences is focused on establishing a basic understanding of the mechanisms of stress and tolerance in marine organisms exposed to contaminants. Several environmental stressors had been investigated in earlier energy-related research. In a landmark study, for example, PNL had established that the severity of fish disease caused by the common infectious agent, Flexobacter columnaris, was seriously aggravated by thermal enhancement and certain ecological factors. Subsequent studies demonstrated that the primary immune response in fish, challenged by columnaris, could be permanently suppressed by comparatively low tritium exposures. The research has suggested that a potential exists for a significant biological impact when an aquatic stressor is added to an ambient background of other stressors, which may include heat, heavy metal ions, radiation or infectious microorganisms. More recently, PNL investigators have shown that in response to heavy metal contaminants, animals synthesize specific proteins (metallothioneins), which bind and sequester metals in the animals, thus decreasing metal mobility and effects. Companion studies with host-specific intracellular pathogens are being used to investigate the effects of heavy metals on the synthesis of immune proteins, which mitigate disease processes. The results of these studies aid in predicting the ecological effects of energy-related contaminants on valued fin and shellfish species

  7. Measurements of the relation between aerosol properties and microphysics and chemistry of low level liquid water clouds in Northern Finland

    Directory of Open Access Journals (Sweden)

    H. Lihavainen

    2008-12-01

    Full Text Available Physical and chemical properties of boundary layer clouds, together with relevant aerosol properties, were investigated during the first Pallas Cloud Experiment (First Pace conducted in northern Finland between 20 October and 9 November 2004. Two stations located 6 km apart from each other at different altitudes were employed in measurements. The low-altitude station was always below the cloud layer, whereas the high-altitude station was inside clouds about 75% of the time during the campaign. Direct measurements of cloud droplet populations showed that our earlier approach of determining cloud droplet residual particle size distributions and corresponding activated fractions using continuous aerosol number size distribution measurements at the two stations is valid, as long as the cloud events are carefully screened to exclude precipitating clouds and to make sure the same air mass has been measured at both stations. We observed that a non-negligible fraction of cloud droplets originated from Aitken mode particles even at moderately-polluted air masses. We found clear evidence on first indirect aerosol effect on clouds but demonstrated also that no simple relation between the cloud droplet number concentration and aerosol particle number concentration exists for this type of clouds. The chemical composition of aerosol particles was dominated by particulate organic matter (POM and sulphate in continental air masses and POM, sodium and chlorine in marine air masses. The inorganic composition of cloud water behaved similarly to that of the aerosol phase and was not influenced by inorganic trace gases.

  8. Cloud MicroAtlas∗

    Indian Academy of Sciences (India)

    ∗Any resemblance to the title of David Mitchell's book is purely intentional! RESONANCE | March 2017. 269 .... The most comprehensive reference we know of on the subject of cloud microphysics is the book .... Economic and. Political Weekly ...

  9. Experimental project - Cloud chamber

    International Nuclear Information System (INIS)

    Nour, Elena; Quinchard, Gregory; Soudon, Paul

    2015-01-01

    This document reports an academic experimental project dealing with the general concepts of radioactivity and their application to the cloud room experiment. The author first recalls the history of the design and development of a cloud room, and some definitions and characteristics of cosmic radiation, and proposes a description of the principle and physics of a cloud room. The second part is a theoretical one, and addresses the involved particles, the origins of electrons, and issues related to the transfer of energy (Bremsstrahlung effect, Bragg peak). The third part reports the experimental work with the assessment of a cloud droplet radius, the identification of a trace for each particle (alphas and electrons), and the study of the magnetic field deviation

  10. Green symbiotic cloud communications

    CERN Document Server

    Mustafa, H D; Desai, Uday B; Baveja, Brij Mohan

    2017-01-01

    This book intends to change the perception of modern day telecommunications. Communication systems, usually perceived as “dumb pipes”, carrying information / data from one point to another, are evolved into intelligently communicating smart systems. The book introduces a new field of cloud communications. The concept, theory, and architecture of this new field of cloud communications are discussed. The book lays down nine design postulates that form the basis of the development of a first of its kind cloud communication paradigm entitled Green Symbiotic Cloud Communications or GSCC. The proposed design postulates are formulated in a generic way to form the backbone for development of systems and technologies of the future. The book can be used to develop courses that serve as an essential part of graduate curriculum in computer science and electrical engineering. Such courses can be independent or part of high-level research courses. The book will also be of interest to a wide range of readers including b...

  11. Entangled Cloud Storage

    DEFF Research Database (Denmark)

    Ateniese, Giuseppe; Dagdelen, Özgür; Damgård, Ivan Bjerre

    2012-01-01

    keeps the files in it private but still lets each client P_i recover his own data by interacting with S; no cooperation from other clients is needed. At the same time, the cloud provider is discouraged from altering or overwriting any significant part of c as this will imply that none of the clients can......Entangled cloud storage enables a set of clients {P_i} to “entangle” their files {f_i} into a single clew c to be stored by a (potentially malicious) cloud provider S. The entanglement makes it impossible to modify or delete significant part of the clew without affecting all files in c. A clew...... recover their files. We provide theoretical foundations for entangled cloud storage, introducing the notion of an entangled encoding scheme that guarantees strong security requirements capturing the properties above. We also give a concrete construction based on privacy-preserving polynomial interpolation...

  12. Biogenic Aerosol - Effect on Clouds and Climate (BAECC-ERI). Extended Radiosonde Intensive Operational Period Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Nicoll, Ken A. [Univ. of Reading (United Kingdom); O' Connor, E. [Univ. of Helsinki (Finland)

    2016-02-01

    Large-scale properties of clouds such as lifetime, optical thickness, and precipitation are all dependent on small-scale cloud microphysical processes. Such processes determine when droplets will grow or shrink, their size, and the number of cloud droplets. Although our understanding of cloud microphysics has vastly improved over the past several decades with the development of remote sensing methods such as lidar and radar, there remain a number of processes that are not well understood, such as the effect of electrical charge on cloud microphysics. To understand the various processes and feedback mechanisms, high-vertical–resolution observations are required. Radiosondes provide an ideal platform for providing routine vertical profiles of in situ measurements at any location (with a vertical resolution of a few meters). Modified meteorological radiosondes have been extensively developed at the University of Reading for measuring cloud properties, to allow measurements beyond the traditional thermodynamic quantities (pressure, temperature and relative humidity) to be obtained cost-effectively. This project aims to investigate a number of cloud processes in which in situ cloud observations from these modified radiosondes can provide information either complementary to or not obtainable by lidar/radar systems. During two intensive operational periods (IOPs) in May and August 2014 during deployment to Hyytiälä, Finland, the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Second ARM Mobile Facility (AMF2) launched a total of 24 instrumented radiosondes through a number of different cloud types ranging from low-level stratiform cloud to cumulonimbus. Twelve balloon flights of an accelerometer turbulence sensor were made, which detected significant turbulence on eleven of these flights. Most of the turbulent episodes encountered were due to convective processes, but several were associated with the transition from troposphere to stratosphere at

  13. CLOUD COMPUTING SECURITY ISSUES

    OpenAIRE

    Florin OGIGAU-NEAMTIU

    2012-01-01

    The term “cloud computing” has been in the spotlights of IT specialists the last years because of its potential to transform this industry. The promised benefits have determined companies to invest great sums of money in researching and developing this domain and great steps have been made towards implementing this technology. Managers have traditionally viewed IT as difficult and expensive and the promise of cloud computing leads many to think that IT will now be easy and cheap. The reality ...

  14. Cloud benchmarking for performance

    OpenAIRE

    Varghese, Blesson; Akgun, Ozgur; Miguel, Ian; Thai, Long; Barker, Adam

    2014-01-01

    Date of Acceptance: 20/09/2014 How can applications be deployed on the cloud to achieve maximum performance? This question has become significant and challenging with the availability of a wide variety of Virtual Machines (VMs) with different performance capabilities in the cloud. The above question is addressed by proposing a six step benchmarking methodology in which a user provides a set of four weights that indicate how important each of the following groups: memory, processor, computa...

  15. Toward Cloud Computing Evolution

    OpenAIRE

    Susanto, Heru; Almunawar, Mohammad Nabil; Kang, Chen Chin

    2012-01-01

    -Information Technology (IT) shaped the success of organizations, giving them a solid foundation that increases both their level of efficiency as well as productivity. The computing industry is witnessing a paradigm shift in the way computing is performed worldwide. There is a growing awareness among consumers and enterprises to access their IT resources extensively through a "utility" model known as "cloud computing." Cloud computing was initially rooted in distributed grid-based computing. ...

  16. A TRUSTWORTHY CLOUD FORENSICS ENVIRONMENT

    OpenAIRE

    Zawoad , Shams; Hasan , Ragib

    2015-01-01

    Part 5: CLOUD FORENSICS; International audience; The rapid migration from traditional computing and storage models to cloud computing environments has made it necessary to support reliable forensic investigations in the cloud. However, current cloud computing environments often lack support for forensic investigations and the trustworthiness of evidence is often questionable because of the possibility of collusion between dishonest cloud providers, users and forensic investigators. This chapt...

  17. On Cloud-based Oversubscription

    OpenAIRE

    Householder, Rachel; Arnold, Scott; Green, Robert

    2014-01-01

    Rising trends in the number of customers turning to the cloud for their computing needs has made effective resource allocation imperative for cloud service providers. In order to maximize profits and reduce waste, providers have started to explore the role of oversubscribing cloud resources. However, the benefits of cloud-based oversubscription are not without inherent risks. This paper attempts to unveil the incentives, risks, and techniques behind oversubscription in a cloud infrastructure....

  18. SOME CONSIDERATIONS ON CLOUD ACCOUNTING

    OpenAIRE

    Doina Pacurari; Elena Nechita

    2013-01-01

    Cloud technologies have developed intensively during the last years. Cloud computing allows the customers to interact with their data and applications at any time, from any location, while the providers host these resources. A client company may choose to run in the cloud a part of its business (sales by agents, payroll, etc.), or even the entire business. The company can get access to a large category of cloud-based software, including accounting software. Cloud solutions are especially reco...

  19. Scanning Cloud Radar Observations at Azores: Preliminary 3D Cloud Products

    Energy Technology Data Exchange (ETDEWEB)

    Kollias, P.; Johnson, K.; Jo, I.; Tatarevic, A.; Giangrande, S.; Widener, K.; Bharadwaj, N.; Mead, J.

    2010-03-15

    The deployment of the Scanning W-Band ARM Cloud Radar (SWACR) during the AMF campaign at Azores signals the first deployment of an ARM Facility-owned scanning cloud radar and offers a prelude for the type of 3D cloud observations that ARM will have the capability to provide at all the ARM Climate Research Facility sites by the end of 2010. The primary objective of the deployment of Scanning ARM Cloud Radars (SACRs) at the ARM Facility sites is to map continuously (operationally) the 3D structure of clouds and shallow precipitation and to provide 3D microphysical and dynamical retrievals for cloud life cycle and cloud-scale process studies. This is a challenging task, never attempted before, and requires significant research and development efforts in order to understand the radar's capabilities and limitations. At the same time, we need to look beyond the radar meteorology aspects of the challenge and ensure that the hardware and software capabilities of the new systems are utilized for the development of 3D data products that address the scientific needs of the new Atmospheric System Research (ASR) program. The SWACR observations at Azores provide a first look at such observations and the challenges associated with their analysis and interpretation. The set of scan strategies applied during the SWACR deployment and their merit is discussed. The scan strategies were adjusted for the detection of marine stratocumulus and shallow cumulus that were frequently observed at the Azores deployment. Quality control procedures for the radar reflectivity and Doppler products are presented. Finally, preliminary 3D-Active Remote Sensing of Cloud Locations (3D-ARSCL) products on a regular grid will be presented, and the challenges associated with their development discussed. In addition to data from the Azores deployment, limited data from the follow-up deployment of the SWACR at the ARM SGP site will be presented. This effort provides a blueprint for the effort required

  20. CLOUD COMPUTING TECHNOLOGY TRENDS

    Directory of Open Access Journals (Sweden)

    Cristian IVANUS

    2014-05-01

    Full Text Available Cloud computing has been a tremendous innovation, through which applications became available online, accessible through an Internet connection and using any computing device (computer, smartphone or tablet. According to one of the most recent studies conducted in 2012 by Everest Group and Cloud Connect, 57% of companies said they already use SaaS application (Software as a Service, and 38% reported using standard tools PaaS (Platform as a Service. However, in the most cases, the users of these solutions highlighted the fact that one of the main obstacles in the development of this technology is the fact that, in cloud, the application is not available without an Internet connection. The new challenge of the cloud system has become now the offline, specifically accessing SaaS applications without being connected to the Internet. This topic is directly related to user productivity within companies as productivity growth is one of the key promises of cloud computing system applications transformation. The aim of this paper is the presentation of some important aspects related to the offline cloud system and regulatory trends in the European Union (EU.

  1. Model of optical response of marine aerosols to Forbush decreases

    DEFF Research Database (Denmark)

    Bondo, Torsten; Enghoff, Martin Andreas Bødker; Svensmark, Henrik

    2010-01-01

    In order to elucidate the effect of galactic cosmic rays on cloud formation, we investigate the optical response of marine aerosols to Forbush decreases - abrupt decreases in galactic cosmic rays - by means of modeling. We vary the nucleation rate of new aerosols, in a sectional coagulation...

  2. Sensitivity of cloud albedo to aerosol concentration and spectral dispersion of cloud droplet size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Iorga, G. [Faculty of Chemistry, University of Bucharest, Bucharest (Romania)]. E-mail: giorga@gw-chimie.math.unibuc.ro; Stefan, S. [Faculty of Physics, University of Bucharest, Bucharest (Romania)

    2007-07-15

    Both the enhancement of the aerosol number concentration and the relative dispersion of the cloud droplet size distribution (spectral dispersion) on a regional scale can modify the cloud reflectivity. This work is focused on the role that pre-cloud aerosol plays in cloud reflectivity. Log-normal aerosol size distributions were used to describe two aerosol types: marine and rural. The number of aerosols that activate to droplets was obtained based on Abdul-Razzak and Ghan's (2000) activation parameterization. The cloud albedo taking into account the spectral dispersion effect in the parameterization of cloud effective radius and in the scattering asymmetry factor has been estimated. Two different scaling factors to account for dispersion were used. The sensitivity of cloud albedo to spectral dispersion-cloud droplet number concentration relationship in connection to the changes in liquid water content (LWC), and the cloud droplet effective radius has been also investigated. We obtained higher values of effective radius when dispersion is taken into account, with respect to the base case (without considering dispersion). The inferred absolute differences in effective radius values between calculations with each of the scaling factors are below 0.8 {mu}m as LWC ranges between 0.1 and 1.0 g m-3. The optical depth decreased by up to 14% (marine), and up to 29% (continental) when dispersion is considered in both effective radius and asymmetry factor ({beta}LDR scaling factor). Correspondingly, the relative change in cloud albedo is up to 6% (marine) and up to 11% (continental) clouds. For continental clouds, the calculated effective radius when dispersion is considered fits well within the measured range of effective radius in SCAR-B project. The calculated cloud albedo when dispersion is considered shows better agreement with the estimated cloud albedo from measured effective radius in SCAR-B project than the cloud albedo calculated without dispersion. In cleaner

  3. Importance of including ammonium sulfate ((NH42SO4 aerosols for ice cloud parameterization in GCMs

    Directory of Open Access Journals (Sweden)

    P. S. Bhattacharjee

    2010-02-01

    Full Text Available A common deficiency of many cloud-physics parameterizations including the NASA's microphysics of clouds with aerosol-cloud interactions (hereafter called McRAS-AC is that they simulate lesser (larger than the observed ice cloud particle number (size. A single column model (SCM of McRAS-AC physics of the GEOS4 Global Circulation Model (GCM together with an adiabatic parcel model (APM for ice-cloud nucleation (IN of aerosols were used to systematically examine the influence of introducing ammonium sulfate (NH42SO4 aerosols in McRAS-AC and its influence on the optical properties of both liquid and ice clouds. First an (NH42SO4 parameterization was included in the APM to assess its effect on clouds vis-à-vis that of the other aerosols. Subsequently, several evaluation tests were conducted over the ARM Southern Great Plain (SGP and thirteen other locations (sorted into pristine and polluted conditions distributed over marine and continental sites with the SCM. The statistics of the simulated cloud climatology were evaluated against the available ground and satellite data. The results showed that inclusion of (NH42SO4 into McRAS-AC of the SCM made a remarkable improvement in the simulated effective radius of ice cloud particulates. However, the corresponding ice-cloud optical thickness increased even more than the observed. This can be caused by lack of horizontal cloud advection not performed in the SCM. Adjusting the other tunable parameters such as precipitation efficiency can mitigate this deficiency. Inclusion of ice cloud particle splintering invoked empirically further reduced simulation biases. Overall, these changes make a substantial improvement in simulated cloud optical properties and cloud distribution particularly over the Intertropical Convergence Zone (ITCZ in the GCM.

  4. Case studies of radiation in the cloud-capped atmospheric boundary layer

    International Nuclear Information System (INIS)

    Schmetz, J.; Raschke, E.

    1983-01-01

    This review presents observations of marine stratocumulus obtained by the three research aircraft that participated in the Joint Air-Sea Interaction Project (JASIN). Detailed measurements were made of the thermodynamic, cloud physics and radiation fields for a uniform cloud sheet on 8 August 1978. These show a well mixed boundary layer with cloud liquid water contents close to their adiabatic values. The longwave and shortwave radiative components of the cloud layer energy budget were measured and good agreement was obtained between the observations and several radiation schemes. In particular, the measured cloud shortwave absorption was close to the theoretical values. Observations of shortwave fluxes made from the Falcon aircraft beneath broken stratocumulus are also shown and compared with calculations made by using a Monte Carlo model. It is concluded that the radiative cloud-cloud interactions do not play a dominant role in the bulk radiative properties of cloud fields. These are mainly determined by cloud amount and the vertical and horizontal optical depths of the clouds within the field. (author)

  5. Aerosol activation and cloud processing in the global aerosol-climate model ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    G. J. Roelofs

    2006-01-01

    Full Text Available A parameterization for cloud processing is presented that calculates activation of aerosol particles to cloud drops, cloud drop size, and pH-dependent aqueous phase sulfur chemistry. The parameterization is implemented in the global aerosol-climate model ECHAM5-HAM. The cloud processing parameterization uses updraft speed, temperature, and aerosol size and chemical parameters simulated by ECHAM5-HAM to estimate the maximum supersaturation at the cloud base, and subsequently the cloud drop number concentration (CDNC due to activation. In-cloud sulfate production occurs through oxidation of dissolved SO2 by ozone and hydrogen peroxide. The model simulates realistic distributions for annually averaged CDNC although it is underestimated especially in remote marine regions. On average, CDNC is dominated by cloud droplets growing on particles from the accumulation mode, with smaller contributions from the Aitken and coarse modes. The simulations indicate that in-cloud sulfate production is a potentially important source of accumulation mode sized cloud condensation nuclei, due to chemical growth of activated Aitken particles and to enhanced coalescence of processed particles. The strength of this source depends on the distribution of produced sulfate over the activated modes. This distribution is affected by uncertainties in many parameters that play a direct role in particle activation, such as the updraft velocity, the aerosol chemical composition and the organic solubility, and the simulated CDNC is found to be relatively sensitive to these uncertainties.

  6. Investigation of the relationships between DCS cloud properties, lifecycle, and precipitation with meteorological regimes and aerosol sources at the ARM SGP Site

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xiquan [Univ. of North Dakota, Grand Forks, ND (United States). Dept. of Atmospheric Sciences; Univ. of Arizona, Tucson, AZ (United States). Dept. of Hydrology and Atmospheric Sciences

    2016-10-26

    In this proposed research, we will investigate how different meteorological regimes and aerosol sources affect DCS properties, diurnal and life cycles, and precipitation using multiple observational platforms (surface, satellite, and aircraft) and NARR reanalysis at the ARM SGP site. The Feng et al. (2011, 2012) DCS results will serve as a starting point for this proposed research, and help us to address some fundamental issues of DCSs, such as convective initiation, rain rate, areal extent (including stratiform and convective regions), and longevity. Convective properties will be stratified by meteorological regime (synoptic/mesoscale patterns) identified by reanalysis. Aerosol information obtained from the ARM SGP site will also be stratified by meteorological regimes to understand their effects on convection. Finally, the aircraft in-situ measurements and various radar observations and retrievals during the MC3E campaign will provide a “cloud-truth” dataset and are an invaluable data source for verifying the findings and investigating the proposed hypotheses in Objective 1.

  7. Cloud networking understanding cloud-based data center networks

    CERN Document Server

    Lee, Gary

    2014-01-01

    Cloud Networking: Understanding Cloud-Based Data Center Networks explains the evolution of established networking technologies into distributed, cloud-based networks. Starting with an overview of cloud technologies, the book explains how cloud data center networks leverage distributed systems for network virtualization, storage networking, and software-defined networking. The author offers insider perspective to key components that make a cloud network possible such as switch fabric technology and data center networking standards. The final chapters look ahead to developments in architectures

  8. USGEO DMWG Cloud Computing Recommendations

    Science.gov (United States)

    de la Beaujardiere, J.; McInerney, M.; Frame, M. T.; Summers, C.

    2017-12-01

    The US Group on Earth Observations (USGEO) Data Management Working Group (DMWG) has been developing Cloud Computing Recommendations for Earth Observations. This inter-agency report is currently in draft form; DMWG hopes to have released the report as a public Request for Information (RFI) by the time of AGU. The recommendations are geared toward organizations that have already decided to use the Cloud for some of their activities (i.e., the focus is not on "why you should use the Cloud," but rather "If you plan to use the Cloud, consider these suggestions.") The report comprises Introductory Material, including Definitions, Potential Cloud Benefits, and Potential Cloud Disadvantages, followed by Recommendations in several areas: Assessing When to Use the Cloud, Transferring Data to the Cloud, Data and Metadata Contents, Developing Applications in the Cloud, Cost Minimization, Security Considerations, Monitoring and Metrics, Agency Support, and Earth Observations-specific recommendations. This talk will summarize the recommendations and invite comment on the RFI.

  9. Cloud GIS Based Watershed Management

    Science.gov (United States)

    Bediroğlu, G.; Colak, H. E.

    2017-11-01

    In this study, we generated a Cloud GIS based watershed management system with using Cloud Computing architecture. Cloud GIS is used as SAAS (Software as a Service) and DAAS (Data as a Service). We applied GIS analysis on cloud in terms of testing SAAS and deployed GIS datasets on cloud in terms of DAAS. We used Hybrid cloud computing model in manner of using ready web based mapping services hosted on cloud (World Topology, Satellite Imageries). We uploaded to system after creating geodatabases including Hydrology (Rivers, Lakes), Soil Maps, Climate Maps, Rain Maps, Geology and Land Use. Watershed of study area has been determined on cloud using ready-hosted topology maps. After uploading all the datasets to systems, we have applied various GIS analysis and queries. Results shown that Cloud GIS technology brings velocity and efficiency for watershed management studies. Besides this, system can be easily implemented for similar land analysis and management studies.

  10. Security Problems in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Rola Motawie

    2016-12-01

    Full Text Available Cloud is a pool of computing resources which are distributed among cloud users. Cloud computing has many benefits like scalability, flexibility, cost savings, reliability, maintenance and mobile accessibility. Since cloud-computing technology is growing day by day, it comes with many security problems. Securing the data in the cloud environment is most critical challenges which act as a barrier when implementing the cloud. There are many new concepts that cloud introduces, such as resource sharing, multi-tenancy, and outsourcing, create new challenges for the security community. In this work, we provide a comparable study of cloud computing privacy and security concerns. We identify and classify known security threats, cloud vulnerabilities, and attacks.

  11. Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount

    Directory of Open Access Journals (Sweden)

    B. H. Kahn

    2008-03-01

    Full Text Available The precision of the two-layer cloud height fields derived from the Atmospheric Infrared Sounder (AIRS is explored and quantified for a five-day set of observations. Coincident profiles of vertical cloud structure by CloudSat, a 94 GHz profiling radar, and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO, are compared to AIRS for a wide range of cloud types. Bias and variability in cloud height differences are shown to have dependence on cloud type, height, and amount, as well as whether CloudSat or CALIPSO is used as the comparison standard. The CloudSat-AIRS biases and variability range from −4.3 to 0.5±1.2–3.6 km for all cloud types. Likewise, the CALIPSO-AIRS biases range from 0.6–3.0±1.2–3.6 km (−5.8 to −0.2±0.5–2.7 km for clouds ≥7 km (<7 km. The upper layer of AIRS has the greatest sensitivity to Altocumulus, Altostratus, Cirrus, Cumulonimbus, and Nimbostratus, whereas the lower layer has the greatest sensitivity to Cumulus and Stratocumulus. Although the bias and variability generally decrease with increasing cloud amount, the ability of AIRS to constrain cloud occurrence, height, and amount is demonstrated across all cloud types for many geophysical conditions. In particular, skill is demonstrated for thin Cirrus, as well as some Cumulus and Stratocumulus, cloud types infrared sounders typically struggle to quantify. Furthermore, some improvements in the AIRS Version 5 operational retrieval algorithm are demonstrated. However, limitations in AIRS cloud retrievals are also revealed, including the existence of spurious Cirrus near the tropopause and low cloud layers within Cumulonimbus and Nimbostratus clouds. Likely causes of spurious clouds are identified and the potential for further improvement is discussed.

  12. A multi-sensor study of the impact of ground-based glaciogenic seeding on orogrpahic clouds and precipitation

    Science.gov (United States)

    Pokharel, Binod

    This dissertation examines reflectivity data from three different radar systems, as well as airborne and ground-based in situ particle imaging data, to study the impact of ground-based glaciogenic seeding on orographic clouds and precipitation formed over the mountains in southern Wyoming. The data for this study come from the AgI Seeding Cloud Impact Investigation (ASCII) field campaign conducted over the Sierra Madre mountains in 2012 (ASCII-12) and over the Medicine Bow mountains in 2013 (ASCII-13) in the context of the Wyoming Weather Modification Pilot Project (WWMPP). The campaigns were supported by a network of ground-based instruments, including a microwave radiometer, two profiling Ka-band Micro Rain Radars (MRRs), a Doppler on Wheels (DOW), rawinsondes, a Cloud Particle Imager, and a Parsivel disdrometer. The University of Wyoming King Air with profiling Wyoming Cloud Radar (WCR) conducted nine successful flights in ASCII-12, and eight flights in ASCII-13. WCR profiles from these flights are combined with those from seven other flights, which followed the same geographically-fixed pattern in 2008-09 (pre-ASCII) over the Medicine Bow range. All sampled storms were relatively shallow, with low-level air forced over the target mountain, and cold enough to support ice initiation by silver iodide (AgI) nuclei in cloud. Three detailed case studies are conducted, each with different atmospheric conditions and different cloud and snow growth properties: one case (21 Feb 2012) is stratiform, with strong winds and cloud droplets too small to enable snow growth by accretion (riming). A second case (13 Feb 2012) contains shallow convective cells. Clouds in the third case study (22 Feb 2012) are stratiform but contain numerous large droplets (mode ~35 microm in diameter), large enough for ice particle growth by riming. These cases and all others, each with a treated period following an untreated period, show that a clear seeding signature is not immediately apparent

  13. Time dependent charging of layer clouds in the global electric circuit

    Science.gov (United States)

    Zhou, Limin; Tinsley, Brian A.

    2012-09-01

    There is much observational data consistent with the hypothesis that the ionosphere-earth current density (Jz) in the global electric circuit, which is modulated by both solar activity and thunderstorm activity, affects atmospheric dynamics and cloud cover. One candidate mechanism involves Jz causing the accumulation of space charge on droplets and aerosol particles, that affects the rate of scavenging of the latter, notably those of Cloud Condensation Nuclei (CCN) and Ice Forming Nuclei (IFN) (Tinsley, 2008, 2010). Space charge is the difference, per unit volume, between total positive and total negative electrical charge that is on droplets, aerosol particles (including the CCN and IFN) and air ions. The cumulative effects of the scavenging in stratiform clouds and aerosol layers in an air mass over the lifetime of the aerosol particles of 1-10 days affects the concentration and size distribution of the CCN, so that in subsequent episodes of cloud formation (including deep convective clouds) there can be effects on droplet size distribution, coagulation, precipitation processes, and even storm dynamics.Because the time scales for charging for some clouds can be long compared to cloud lifetimes, the amount of charge at a given time, and its effect on scavenging, depend more on the charging rate than on the equilibrium charge that would eventually be attained. To evaluate this, a new time-dependent charging model has been developed. The results show that for typical altostratus clouds with typical droplet radii 10 μm and aerosol particles of radius of 0.04 μm, the time constant for charging in response to a change in Jz is about 800 s, which is comparable to cloud formation and dissipation timescales for some cloud situations. The charging timescale is found to be strong functions of altitude and aerosol concentration, with the time constant for droplet charging at 2 km in air with a high concentration of aerosols being about an hour, and for clouds at 10 km in

  14. Counting the clouds

    International Nuclear Information System (INIS)

    Randall, David A

    2005-01-01

    Cloud processes are very important for the global circulation of the atmosphere. It is now possible, though very expensive, to simulate the global circulation of the atmosphere using a model with resolution fine enough to explicitly represent the larger individual clouds. An impressive preliminary calculation of this type has already been performed by Japanese scientists, using the Earth Simulator. Within the next few years, such global cloud-resolving models (GCRMs) will be applied to weather prediction, and later they will be used in climatechange simulations. The tremendous advantage of GCRMs, relative to conventional lowerresolution global models, is that GCRMs can avoid many of the questionable 'parameterizations' used to represent cloud effects in lower-resolution global models. Although cloud microphysics, turbulence, and radiation must still be parameterized in GCRMs, the high resolution of a GCRM simplifies these problems considerably, relative to conventional models. The United States currently has no project to develop a GCRM, although we have both the computer power and the expertise to do it. A research program aimed at development and applications of GCRMs is outlined

  15. Trust management in cloud services

    CERN Document Server

    Noor, Talal H; Bouguettaya, Athman

    2014-01-01

    This book describes the design and implementation of Cloud Armor, a novel approach for credibility-based trust management and automatic discovery of cloud services in distributed and highly dynamic environments. This book also helps cloud users to understand the difficulties of establishing trust in cloud computing and the best criteria for selecting a service cloud. The techniques have been validated by a prototype system implementation and experimental studies using a collection of real world trust feedbacks on cloud services.The authors present the design and implementation of a novel pro

  16. Scale analysis of convective clouds

    Directory of Open Access Journals (Sweden)

    Micha Gryschka

    2008-12-01

    Full Text Available The size distribution of cumulus clouds due to shallow and deep convection is analyzed using satellite pictures, LES model results and data from the German rain radar network. The size distributions found can be described by simple power laws as has also been proposed for other cloud data in the literature. As the observed precipitation at ground stations is finally determined by cloud numbers in an area and individual sizes and rain rates of single clouds, the cloud size distributions might be used for developing empirical precipitation forecasts or for validating results from cloud resolving models being introduced to routine weather forecasts.

  17. Moving HammerCloud to CERN's private cloud

    CERN Document Server

    Barrand, Quentin

    2013-01-01

    HammerCloud is a testing framework for the Worldwide LHC Computing Grid. Currently deployed on about 20 hand-managed machines, it was desirable to move it to the Agile Infrastructure, CERN's OpenStack-based private cloud.

  18. Modeling of Cloud/Radiation Processes for Cirrus Cloud Formation

    National Research Council Canada - National Science Library

    Liou, K

    1997-01-01

    This technical report includes five reprints and pre-prints of papers associated with the modeling of cirrus cloud and radiation processes as well as remote sensing of cloud optical and microphysical...

  19. Dependence of stratocumulus-topped boundary-layer entrainment on cloud-water sedimentation: Impact on global aerosol indirect effect in GISS ModelE3 single column model and global simulations

    Science.gov (United States)

    Ackerman, A. S.; Kelley, M.; Cheng, Y.; Fridlind, A. M.; Del Genio, A. D.; Bauer, S.

    2017-12-01

    Reduction in cloud-water sedimentation induced by increasing droplet concentrations has been shown in large-eddy simulations (LES) and direct numerical simulation (DNS) to enhance boundary-layer entrainment, thereby reducing cloud liquid water path and offsetting the Twomey effect when the overlying air is sufficiently dry, which is typical. Among recent upgrades to ModelE3, the latest version of the NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), are a two-moment stratiform cloud microphysics treatment with prognostic precipitation and a moist turbulence scheme that includes an option in its entrainment closure of a simple parameterization for the effect of cloud-water sedimentation. Single column model (SCM) simulations are compared to LES results for a stratocumulus case study and show that invoking the sedimentation-entrainment parameterization option indeed reduces the dependence of cloud liquid water path on increasing aerosol concentrations. Impacts of variations of the SCM configuration and the sedimentation-entrainment parameterization will be explored. Its impact on global aerosol indirect forcing in the framework of idealized atmospheric GCM simulations will also be assessed.

  20. Tharsis Limb Cloud

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Annotated image of Tharsis Limb Cloud 7 September 2005 This composite of red and blue Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired on 6 July 2005 shows an isolated water ice cloud extending more than 30 kilometers (more than 18 miles) above the martian surface. Clouds such as this are common in late spring over the terrain located southwest of the Arsia Mons volcano. Arsia Mons is the dark, oval feature near the limb, just to the left of the 'T' in the 'Tharsis Montes' label. The dark, nearly circular feature above the 'S' in 'Tharsis' is the volcano, Pavonis Mons, and the other dark circular feature, above and to the right of 's' in 'Montes,' is Ascraeus Mons. Illumination is from the left/lower left. Season: Northern Autumn/Southern Spring

  1. Transition to the Cloud

    DEFF Research Database (Denmark)

    Hedman, Jonas; Xiao, Xiao

    2016-01-01

    The rising of cloud computing has dramatically changed the way software companies provide and distribute their IT product and related services over the last decades. Today, most software is bought offthe-shelf and distributed over the Internet. This transition is greatly influencing how software...... companies operate. In this paper, we present a case study of an ERP vendor for SMB (small and mediumsize business) in making a transition towards a cloud-based business model. Through the theoretical lens of ecosystem, we are able to analyze the evolution of the vendor and its business network as a whole......, and find that the relationship between vendor and Value-added-Reseller (VAR) is greatly affected. We conclude by presenting critical issues and challenges for managing such cloud transition....

  2. The photoevaporation of interstellar clouds

    International Nuclear Information System (INIS)

    Bertoldi, F.

    1989-01-01

    The dynamics of the photoevaporation of interstellar clouds and its consequences for the structure and evolution of H II regions are studied. An approximate analytical solution for the evolution of photoevaporating clouds is derived under the realistic assumption of axisymmetry. The effects of magnetic fields are taken into account in an approximate way. The evolution of a neutral cloud subjected to the ionizing radiation of an OB star has two distinct stages. When a cloud is first exposed to the radiation, the increase in pressure due to the ionization at the surface of the cloud leads to a radiation-driven implosion: an ionization front drives a shock into the cloud, ionizes part of it and compresses the remaining into a dense globule. The initial implosion is followed by an equilibrium cometary stage, in which the cloud maintains a semistationary comet-shaped configuration; it slowly evaporates while accelerating away from the ionizing star until the cloud has been completely ionized, reaches the edge of the H II region, or dies. Expressions are derived for the cloud mass-loss rate and acceleration. To investigate the effect of the cloud photoevaporation on the structure of H II regions, the evolution of an ensemble of clouds of a given mass distribution is studied. It is shown that the compressive effect of the ionizing radiation can induce star formation in clouds that were initially gravitationally stable, both for thermally and magnetically supported clouds

  3. Cloud Computing: A study of cloud architecture and its patterns

    OpenAIRE

    Mandeep Handa,; Shriya Sharma

    2015-01-01

    Cloud computing is a general term for anything that involves delivering hosted services over the Internet. Cloud computing is a paradigm shift following the shift from mainframe to client–server in the early 1980s. Cloud computing can be defined as accessing third party software and services on web and paying as per usage. It facilitates scalability and virtualized resources over Internet as a service providing cost effective and scalable solution to customers. Cloud computing has...

  4. Ash cloud aviation advisories

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.; Ellis, J.S. [Lawrence Livermore National Lab., CA (United States); Schalk, W.W.; Nasstrom, J.S. [EG and G, Inc., Pleasanton, CA (United States)

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

  5. Cloud Collaboration: Cloud-Based Instruction for Business Writing Class

    Science.gov (United States)

    Lin, Charlie; Yu, Wei-Chieh Wayne; Wang, Jenny

    2014-01-01

    Cloud computing technologies, such as Google Docs, Adobe Creative Cloud, Dropbox, and Microsoft Windows Live, have become increasingly appreciated to the next generation digital learning tools. Cloud computing technologies encourage students' active engagement, collaboration, and participation in their learning, facilitate group work, and support…

  6. Cloud blueprints for integrating and managing cloud federations

    NARCIS (Netherlands)

    Papazoglou, M.; Heisel, M.

    2012-01-01

    Contemporary cloud technologies face insurmountable obstacles. They follow a pull-based, producer-centric trajectory to development where cloud consumers have to ‘squeeze and bolt’ applications onto cloud APIs. They also introduce a monolithic SaaS/PaaS/IaaS stack where a one-size-fits-all mentality

  7. Opaque cloud detection

    Science.gov (United States)

    Roskovensky, John K [Albuquerque, NM

    2009-01-20

    A method of detecting clouds in a digital image comprising, for an area of the digital image, determining a reflectance value in at least three discrete electromagnetic spectrum bands, computing a first ratio of one reflectance value minus another reflectance value and the same two values added together, computing a second ratio of one reflectance value and another reflectance value, choosing one of the reflectance values, and concluding that an opaque cloud exists in the area if the results of each of the two computing steps and the choosing step fall within three corresponding predetermined ranges.

  8. Storm and cloud dynamics

    CERN Document Server

    Cotton, William R

    1992-01-01

    This book focuses on the dynamics of clouds and of precipitating mesoscale meteorological systems. Clouds and precipitating mesoscale systems represent some of the most important and scientifically exciting weather systems in the world. These are the systems that produce torrential rains, severe winds including downburst and tornadoes, hail, thunder and lightning, and major snow storms. Forecasting such storms represents a major challenge since they are too small to be adequately resolved by conventional observing networks and numerical prediction models.Key Features* Key Highlight

  9. Detailed Information Security in Cloud Computing

    OpenAIRE

    Pavel Valerievich Ivonin

    2013-01-01

    The object of research in this article is technology of public clouds, structure and security system of clouds. Problems of information security in clouds are considered, elements of security system in public clouds are described.

  10. Cloud Based Applications and Platforms (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Brodt-Giles, D.

    2014-05-15

    Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.

  11. Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles

    Science.gov (United States)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2010-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profiles derived from the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and cloud profiling radar. The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical profiles can be related by a cloud overlap matrix when the correlation length of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches random overlap with increasing distance separating cloud layers and that the probability of deviating from random overlap decreases exponentially with distance. One month of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data (July 2006) support these assumptions, although the correlation length sometimes increases with separation distance when the cloud top height is large. The data also show that the correlation length depends on cloud top hight and the maximum occurs when the cloud top height is 8 to 10 km. The cloud correlation length is equivalent to the decorrelation distance introduced by Hogan and Illingworth (2000) when cloud fractions of both layers in a two-cloud layer system are the same. The simple relationships derived in this study can be used to estimate the top-of-atmosphere irradiance difference caused by cloud fraction, uppermost cloud top, and cloud thickness vertical profile differences.

  12. How Often and Why MODIS Cloud Property Retrievals Fail for Liquid-Phase Clouds over Ocean? a Comprehensive Analysis Based on a-Train Observations

    Science.gov (United States)

    Zhang, Z.; Cho, H. M.; Platnick, S. E.; Meyer, K.; Lebsock, M. D.

    2014-12-01

    The cloud optical thickness (τ) and droplet effective radius (re) are two key cloud parameters retrieved by MODIS (Moderate Resolution Imaging Spectroradiometer). These MODIS cloud products are widely used in a broad range of earth system science applications. In this paper, we present a comprehensive analysis of the failed cloud τ and/or re retrievals for liquid-phase clouds over ocean in the Collection 6 MODIS cloud product. The main findings from this study are summarized as follows: MODIS retrieval failure rates for marine boundary layer (MBL) clouds have a strong dependence on the spectral combination used for retrieval (e.g., 0.86 + 2.1 µm vs. 0.8 + 3.7 µm) and the cloud morphology (i.e., "good" pixels vs. partly cloudy (PCL) pixels). Combining all clear-sky-restoral (CSR) categories (CSR=0,1 and 3), the 0.86 + 2.1 µm and 0.86 + 3.7 µm spectral combinations have an overall failure rate of about 20% and 12%, respectively (See figure below). The PCL pixels (CSR=1 & 3) have significantly higher failure rates and contribute more to the total failure population than the "good" (CSR=0) pixels. The majority of the failed retrievals are caused by the re too large failure, which explains about 85% and 70% of the failed 0.86 + 2.1 µm and 0.86 + 3.7 µm retrievals, respectively. The remaining failures are either due to the re too small failure or τ retrieval failure. The geographical distribution of failure rates has a significant dependence on cloud regime, lower over the coastal stratocumulus cloud regime and higher over the broken trade-wind cumulus cloud regime over open oceans. Enhanced retrieval failure rates are found when MBL clouds have high sub-pixel inhomogeneity , or are located at special Sun-satellite viewing geometries, such as sunglint, large viewing or solar zenith angle, or cloudbow and glory angles, or subject to cloud masking, cloud overlapping and/or cloud phase retrieval issues. About 80% of the failure retrievals can be attributed to at

  13. Observations of regional and local variability in the optical properties of maritime clouds

    Energy Technology Data Exchange (ETDEWEB)

    White, A.B. [Univ. of Colorado at Boulder/National Oceanic and Atmospheric Administration, Boulder, CO (United States); Fairall, C.W. [Environmental Technology Lab., Boulder, CO (United States)

    1996-04-01

    White and Fairall (1995) calculated the optical properties of the marine boundary layer (MBL) clouds observed during the Atlantic Stratocumulus Transition Experiment (ASTEX) and compared their results with the results obtained by Fairall et al. for the MBL clouds observed during the First International Satellite Climatology Program (ISSCP) Regional Experiment (FIRE). They found a factor of two difference in the optical depth versus liquid water relationship that applies to the clouds observed in each case. In the present study, we present evidence to support this difference. We also investigate the local variability exhibited in the ASTEX optical properties using measurements of the boundary layer aerosol concentration.

  14. Securing virtual and cloud environments

    CSIR Research Space (South Africa)

    Carroll, M

    2012-01-01

    Full Text Available targets such as reduced costs, scalability, flexibility, capacity utilisation, higher efficiencies and mobility. Many of these benefits are achieved through the utilisation of technologies such as cloud computing and virtualisation. In many instances cloud...

  15. Australia's marine virtual laboratory

    Science.gov (United States)

    Proctor, Roger; Gillibrand, Philip; Oke, Peter; Rosebrock, Uwe

    2014-05-01

    In all modelling studies of realistic scenarios, a researcher has to go through a number of steps to set up a model in order to produce a model simulation of value. The steps are generally the same, independent of the modelling system chosen. These steps include determining the time and space scales and processes of the required simulation; obtaining data for the initial set up and for input during the simulation time; obtaining observation data for validation or data assimilation; implementing scripts to run the simulation(s); and running utilities or custom-built software to extract results. These steps are time consuming and resource hungry, and have to be done every time irrespective of the simulation - the more complex the processes, the more effort is required to set up the simulation. The Australian Marine Virtual Laboratory (MARVL) is a new development in modelling frameworks for researchers in Australia. MARVL uses the TRIKE framework, a java-based control system developed by CSIRO that allows a non-specialist user configure and run a model, to automate many of the modelling preparation steps needed to bring the researcher faster to the stage of simulation and analysis. The tool is seen as enhancing the efficiency of researchers and marine managers, and is being considered as an educational aid in teaching. In MARVL we are developing a web-based open source application which provides a number of model choices and provides search and recovery of relevant observations, allowing researchers to: a) efficiently configure a range of different community ocean and wave models for any region, for any historical time period, with model specifications of their choice, through a user-friendly web application, b) access data sets to force a model and nest a model into, c) discover and assemble ocean observations from the Australian Ocean Data Network (AODN, http://portal.aodn.org.au/webportal/) in a format that is suitable for model evaluation or data assimilation, and

  16. Cloud Computing in the Marine Corps: Needed Innovation

    Science.gov (United States)

    2012-03-19

    ability to transfer costs normally assumed by an organization to a third party has applications within the Federal Government as it faces a depressed ... centennial of the Massachusetts Institute of Technology (MIT) during a conference in 1961. During this conference McCarthy introduced the notion

  17. Efficient Resource Management in Cloud Computing

    OpenAIRE

    Rushikesh Shingade; Amit Patil; Shivam Suryawanshi; M. Venkatesan

    2015-01-01

    Cloud computing, one of the widely used technology to provide cloud services for users who are charged for receiving services. In the aspect of a maximum number of resources, evaluating the performance of Cloud resource management policies are difficult to optimize efficiently. There are different simulation toolkits available for simulation and modelling the Cloud computing environment like GridSim CloudAnalyst, CloudSim, GreenCloud, CloudAuction etc. In proposed Efficient Resource Manage...

  18. Cloud computing basics for librarians.

    Science.gov (United States)

    Hoy, Matthew B

    2012-01-01

    "Cloud computing" is the name for the recent trend of moving software and computing resources to an online, shared-service model. This article briefly defines cloud computing, discusses different models, explores the advantages and disadvantages, and describes some of the ways cloud computing can be used in libraries. Examples of cloud services are included at the end of the article. Copyright © Taylor & Francis Group, LLC

  19. Cloud Computing Security: A Survey

    OpenAIRE

    Khalil, Issa; Khreishah, Abdallah; Azeem, Muhammad

    2014-01-01

    Cloud computing is an emerging technology paradigm that migrates current technological and computing concepts into utility-like solutions similar to electricity and water systems. Clouds bring out a wide range of benefits including configurable computing resources, economic savings, and service flexibility. However, security and privacy concerns are shown to be the primary obstacles to a wide adoption of clouds. The new concepts that clouds introduce, such as multi-tenancy, resource sharing a...

  20. Database security in the cloud

    OpenAIRE

    Sakhi, Imal

    2012-01-01

    The aim of the thesis is to get an overview of the database services available in cloud computing environment, investigate the security risks associated with it and propose the possible countermeasures to minimize the risks. The thesis also analyzes two cloud database service providers namely; Amazon RDS and Xeround. The reason behind choosing these two providers is because they are currently amongst the leading cloud database providers and both provide relational cloud databases which makes ...

  1. QUALITY ASSURANCE FOR CLOUD COMPUTING

    OpenAIRE

    Sumaira Aslam; Hina Shahid

    2016-01-01

    Cloud computing is a greatest and latest thing. Marketers for lots of big companies are all using cloud computing terms in their marketing campaign to make them seem them impressive so, that they can get clients and customers. Cloud computing is overall the philosophy and design concept and it is much more complicated and yet much simpler. The basic underlined thing that cloud computing do is to separate the applications from operating systems from the software from the hardware that runs eve...

  2. Cloud services, networking, and management

    CERN Document Server

    da Fonseca, Nelson L S

    2015-01-01

    Cloud Services, Networking and Management provides a comprehensive overview of the cloud infrastructure and services, as well as their underlying management mechanisms, including data center virtualization and networking, cloud security and reliability, big data analytics, scientific and commercial applications. Special features of the book include: State-of-the-art content. Self-contained chapters for readers with specific interests. Includes commercial applications on Cloud (video services and games).

  3. Security Dynamics of Cloud Computing

    OpenAIRE

    Khan, Khaled M.

    2009-01-01

    This paper explores various dimensions of cloud computing security. It argues that security concerns of cloud computing need to be addressed from the perspective of individual stakeholder. Security focuses of cloud computing are essentially different in terms of its characteristics and business model. Conventional way of viewing as well as addressing security such as ‘bolting-in’ on the top of cloud computing may not work well. The paper attempts to portray the security spectrum necessary for...

  4. Green Cloud on the Horizon

    Science.gov (United States)

    Ali, Mufajjul

    This paper proposes a Green Cloud model for mobile Cloud computing. The proposed model leverage on the current trend of IaaS (Infrastructure as a Service), PaaS (Platform as a Service) and SaaS (Software as a Service), and look at new paradigm called "Network as a Service" (NaaS). The Green Cloud model proposes various Telco's revenue generating streams and services with the CaaS (Cloud as a Service) for the near future.

  5. Reusability Framework for Cloud Computing

    OpenAIRE

    Singh, Sukhpal; Singh, Rishideep

    2012-01-01

    Cloud based development is a challenging task for several software engineering projects, especially for those which needs development with reusability. Present time of cloud computing is allowing new professional models for using the software development. The expected upcoming trend of computing is assumed to be this cloud computing because of speed of application deployment, shorter time to market, and lower cost of operation. Until Cloud Co mputing Reusability Model is considered a fundamen...

  6. VIIRS Marine Isoprene Product and Initial Applications

    Science.gov (United States)

    Tong, D.; Wang, M.; Wang, B.; Pan, L.; Lee, P.; Goldberg, M.

    2017-12-01

    Isoprene is a reactive biogenic hydrocarbon that affects atmospheric chemistry, aerosol loading, and cloud formation. We have developed a marine isoprene emission algorithm based on ocean color data from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). and global meteorology simulated by NOAA Global Forecasting System (GFS). This algorithm is implemented to generate a multi-year data record (2012-2015) of marine isoprene. The product was validated using historic ocean observations of marine isoprene, as well as in-situ data collected during two recent cruises (SPACES/OASIS in 2014 and ASTRA-OMZ in 2015). Result shows that the VIIRS product has captured the seasonal and spatial variability of global oceanic isoprene emission, which is controlled by a myriad of biological and environmental variables including chlorophyll-a concentration, phytoplankton functional types, seawater light attenuation rate, wind speed, and sea surface temperature. The VIIRS isoprene emission displays considerable seasonal and spatial variations, with peaks in spring over seawater abundant with nutrient inputs. Year to year variations are small, with the annual global emissions ranging from 0.20 to 0.25 Tg C/yr. This new dataset provides the first multi-year observations of global isoprene emissions that can be used to study a variety of environmental issues such as coastal air quality, global aerosol, and cloud formation. Some "early-adopter" applications of this product are briefly discussed.

  7. iCloud standard guide

    CERN Document Server

    Alfi, Fauzan

    2013-01-01

    An easy-to-use guide, filled with tutorials that will teach you how to set up and use iCloud, and profit from all of its marvellous features.This book is for anyone with basic knowledge of computers and mobile operations. Prior knowledge of cloud computing or iCloud is not expected.

  8. Coherent Radiation of Electron Cloud

    International Nuclear Information System (INIS)

    Heifets, S.

    2004-01-01

    The electron cloud in positron storage rings is pinched when a bunch passes by. For short bunches, the radiation due to acceleration of electrons of the cloud is coherent. Detection of such radiation can be used to measure the density of the cloud. The estimate of the power and the time structure of the radiated signal is given in this paper

  9. Understanding and Monitoring Cloud Services

    NARCIS (Netherlands)

    Drago, Idilio

    2013-01-01

    Cloud services have changed the way computing power is delivered to customers. The advantages of the cloud model have fast resulted in powerful providers. However, this success has not come without problems. Cloud providers have been related to major failures, including outages and performance

  10. Research on cloud computing solutions

    Directory of Open Access Journals (Sweden)

    Liudvikas Kaklauskas

    2015-07-01

    Full Text Available Cloud computing can be defined as a new style of computing in which dynamically scala-ble and often virtualized resources are provided as a services over the Internet. Advantages of the cloud computing technology include cost savings, high availability, and easy scalability. Voas and Zhang adapted six phases of computing paradigms, from dummy termi-nals/mainframes, to PCs, networking computing, to grid and cloud computing. There are four types of cloud computing: public cloud, private cloud, hybrid cloud and community. The most common and well-known deployment model is Public Cloud. A Private Cloud is suited for sensitive data, where the customer is dependent on a certain degree of security.According to the different types of services offered, cloud computing can be considered to consist of three layers (services models: IaaS (infrastructure as a service, PaaS (platform as a service, SaaS (software as a service. Main cloud computing solutions: web applications, data hosting, virtualization, database clusters and terminal services. The advantage of cloud com-puting is the ability to virtualize and share resources among different applications with the objective for better server utilization and without a clustering solution, a service may fail at the moment the server crashes.DOI: 10.15181/csat.v2i2.914

  11. GEWEX cloud assessment: A review

    Science.gov (United States)

    Stubenrauch, Claudia; Rossow, William B.; Kinne, Stefan; Ackerman, Steve; Cesana, Gregory; Chepfer, Hélène; Di Girolamo, Larry; Getzewich, Brian; Guignard, Anthony; Heidinger, Andy; Maddux, Brent; Menzel, Paul; Minnis, Patrick; Pearl, Cindy; Platnick, Steven; Poulsen, Caroline; Riedi, Jérôme; Sayer, Andrew; Sun-Mack, Sunny; Walther, Andi; Winker, Dave; Zeng, Shen; Zhao, Guangyu

    2013-05-01

    Clouds cover about 70% of the Earth's surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the entire globe and across the wide range of spatial and temporal scales that comprise weather and climate variability. Satellite cloud data records now exceed more than 25 years; however, climatologies compiled from different satellite datasets can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors. The Global Energy and Water cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel, provides the first coordinated intercomparison of publicly available, global cloud products (gridded, monthly statistics) retrieved from measurements of multi-spectral imagers (some with multi-angle view and polarization capabilities), IR sounders and lidar. Cloud properties under study include cloud amount, cloud height (in terms of pressure, temperature or altitude), cloud radiative properties (optical depth or emissivity), cloud thermodynamic phase and bulk microphysical properties (effective particle size and water path). Differences in average cloud properties, especially in the amount of high-level clouds, are mostly explained by the inherent instrument measurement capability for detecting and/or identifying optically thin cirrus, especially when overlying low-level clouds. The study of long-term variations with these datasets requires consideration of many factors. The monthly, gridded database presented here facilitates further assessments, climate studies, and the evaluation of climate models.

  12. The Basics of Cloud Computing

    Science.gov (United States)

    Kaestner, Rich

    2012-01-01

    Most school business officials have heard the term "cloud computing" bandied about and may have some idea of what the term means. In fact, they likely already leverage a cloud-computing solution somewhere within their district. But what does cloud computing really mean? This brief article puts a bit of definition behind the term and helps one…

  13. Towards trustworthy health platform cloud

    NARCIS (Netherlands)

    Deng, M.; Nalin, M.; Petkovic, M.; Baroni, I.; Marco, A.; Jonker, W.; Petkovic, M.

    2012-01-01

    To address today’s major concerns of health service providers regarding security, resilience and data protection when moving on the cloud, we propose an approach to build a trustworthy healthcare platform cloud, based on a trustworthy cloud infrastructure. This paper first highlights the main

  14. A View from the Clouds

    Science.gov (United States)

    Chudnov, Daniel

    2010-01-01

    Cloud computing is definitely a thing now, but it's not new and it's not even novel. Back when people were first learning about the Internet in the 1990s, every diagram that one saw showing how the Internet worked had a big cloud in the middle. That cloud represented the diverse links, routers, gateways, and protocols that passed traffic around in…

  15. Trusting Privacy in the Cloud

    NARCIS (Netherlands)

    Prüfer, J.O.

    2014-01-01

    Cloud computing technologies have the potential to increase innovation and economic growth considerably. But many users worry that data in the cloud can be accessed by others, thereby damaging the data owner. Consequently, they do not use cloud technologies up to the efficient level. I design an

  16. A Ground-Based Doppler Radar and Micropulse Lidar Forward Simulator for GCM Evaluation of Arctic Mixed-Phase Clouds: Moving Forward Towards an Apples-to-apples Comparison of Hydrometeor Phase

    Science.gov (United States)

    Lamer, K.; Fridlind, A. M.; Ackerman, A. S.; Kollias, P.; Clothiaux, E. E.

    2017-12-01

    An important aspect of evaluating Artic cloud representation in a general circulation model (GCM) consists of using observational benchmarks which are as equivalent as possible to model output in order to avoid methodological bias and focus on correctly diagnosing model dynamical and microphysical misrepresentations. However, current cloud observing systems are known to suffer from biases such as limited sensitivity, and stronger response to large or small hydrometeors. Fortunately, while these observational biases cannot be corrected, they are often well understood and can be reproduced in forward simulations. Here a ground-based millimeter wavelength Doppler radar and micropulse lidar forward simulator able to interface with output from the Goddard Institute for Space Studies (GISS) ModelE GCM is presented. ModelE stratiform hydrometeor fraction, mixing ratio, mass-weighted fall speed and effective radius are forward simulated to vertically-resolved profiles of radar reflectivity, Doppler velocity and spectrum width as well as lidar backscatter and depolarization ratio. These forward simulated fields are then compared to Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) ground-based observations to assess cloud vertical structure (CVS). Model evalution of Arctic mixed-phase cloud would also benefit from hydrometeor phase evaluation. While phase retrieval from synergetic observations often generates large uncertainties, the same retrieval algorithm can be applied to observed and forward-simulated radar-lidar fields, thereby producing retrieved hydrometeor properties with potentially the same uncertainties. Comparing hydrometeor properties retrieved in exactly the same way aims to produce the best apples-to-apples comparisons between GCM ouputs and observations. The use of a comprenhensive ground-based forward simulator coupled with a hydrometeor classification retrieval algorithm provides a new perspective for GCM evaluation of Arctic mixed

  17. Securing the Cloud Cloud Computer Security Techniques and Tactics

    CERN Document Server

    Winkler, Vic (JR)

    2011-01-01

    As companies turn to cloud computing technology to streamline and save money, security is a fundamental concern. Loss of certain control and lack of trust make this transition difficult unless you know how to handle it. Securing the Cloud discusses making the move to the cloud while securing your peice of it! The cloud offers felxibility, adaptability, scalability, and in the case of security-resilience. This book details the strengths and weaknesses of securing your company's information with different cloud approaches. Attacks can focus on your infrastructure, communications network, data, o

  18. AceCloud: Molecular Dynamics Simulations in the Cloud.

    Science.gov (United States)

    Harvey, M J; De Fabritiis, G

    2015-05-26

    We present AceCloud, an on-demand service for molecular dynamics simulations. AceCloud is designed to facilitate the secure execution of large ensembles of simulations on an external cloud computing service (currently Amazon Web Services). The AceCloud client, integrated into the ACEMD molecular dynamics package, provides an easy-to-use interface that abstracts all aspects of interaction with the cloud services. This gives the user the experience that all simulations are running on their local machine, minimizing the learning curve typically associated with the transition to using high performance computing services.

  19. VMware private cloud computing with vCloud director

    CERN Document Server

    Gallagher, Simon

    2013-01-01

    It's All About Delivering Service with vCloud Director Empowered by virtualization, companies are not just moving into the cloud, they're moving into private clouds for greater security, flexibility, and cost savings. However, this move involves more than just infrastructure. It also represents a different business model and a new way to provide services. In this detailed book, VMware vExpert Simon Gallagher makes sense of private cloud computing for IT administrators. From basic cloud theory and strategies for adoption to practical implementation, he covers all the issues. You'll lea

  20. Overview of Boundary Layer Clouds Using Satellite and Ground-Based Measurements

    Science.gov (United States)

    Xi, B.; Dong, X.; Wu, P.; Qiu, S.

    2017-12-01

    A comprehensive summary of boundary layer clouds properties based on our few recently studies will be presented. The analyses include the global cloud fractions and cloud macro/micro- physical properties based on satellite measurements using both CERES-MODIS and CloudSat/Caliposo data products,; the annual/seasonal/diurnal variations of stratocumulus clouds over different climate regions (mid-latitude land, mid-latitude ocean, and Arctic region) using DOE ARM ground-based measurements over Southern great plain (SGP), Azores (GRW), and North slope of Alaska (NSA) sites; the impact of environmental conditions to the formation and dissipation process of marine boundary layer clouds over Azores site; characterizing Arctice mixed-phase cloud structure and favorable environmental conditions for the formation/maintainess of mixed-phase clouds over NSA site. Though the presentation has widely spread topics, we will focus on the representation of the ground-based measurements over different climate regions; evaluation of satellite retrieved cloud properties using these ground-based measurements, and understanding the uncertainties of both satellite and ground-based retrievals and measurements.

  1. Benchmarking personal cloud storage

    NARCIS (Netherlands)

    Drago, Idilio; Bocchi, Enrico; Mellia, Marco; Slatman, Herman; Pras, Aiko

    2013-01-01

    Personal cloud storage services are data-intensive applications already producing a significant share of Internet traffic. Several solutions offered by different companies attract more and more people. However, little is known about each service capabilities, architecture and - most of all -

  2. CLOUD COMPUTING SECURITY ISSUES

    Directory of Open Access Journals (Sweden)

    Florin OGIGAU-NEAMTIU

    2012-01-01

    Full Text Available The term “cloud computing” has been in the spotlights of IT specialists the last years because of its potential to transform this industry. The promised benefits have determined companies to invest great sums of money in researching and developing this domain and great steps have been made towards implementing this technology. Managers have traditionally viewed IT as difficult and expensive and the promise of cloud computing leads many to think that IT will now be easy and cheap. The reality is that cloud computing has simplified some technical aspects of building computer systems, but the myriad challenges facing IT environment still remain. Organizations which consider adopting cloud based services must also understand the many major problems of information policy, including issues of privacy, security, reliability, access, and regulation. The goal of this article is to identify the main security issues and to draw the attention of both decision makers and users to the potential risks of moving data into “the cloud”.

  3. Computing in the Clouds

    Science.gov (United States)

    Johnson, Doug

    2010-01-01

    Web-based applications offer teachers, students, and school districts a convenient way to accomplish a wide range of tasks, from accounting to word processing, for free. Cloud computing has the potential to offer staff and students better services at a lower cost than the technology deployment models they're using now. Saving money and improving…

  4. CloudETL

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Thomsen, Christian; Pedersen, Torben Bach

    2014-01-01

    Extract-Transform-Load (ETL) programs process data into data warehouses (DWs). Rapidly growing data volumes demand systems that scale out. Recently, much attention has been given to MapReduce for parallel handling of massive data sets in cloud environments. Hive is the most widely used RDBMS...

  5. Predictable cloud computing

    NARCIS (Netherlands)

    Mullender, Sape J.

    The standard tools for cloud computing—processor and network virtualization—make it difficult to achieve dependability, both in terms of real time operations and fault tolerance. Virtualization multiplexes virtual resources onto physical ones, typically by time division or statistical multiplexing.

  6. SiCloud

    DEFF Research Database (Denmark)

    Jiang, Cathy Y.; Devore, Peter T.S.; Lonappan, Cejo Konuparamban

    2017-01-01

    The silicon photonics industry is projected to be a multibillion dollar industry driven by the growth of data centers. In this work, we present an interactive online tool for silicon photonics. Silicon Photonics Cloud (SiCCloud.org) is an easy to use instructional tool for optical properties...

  7. Towards autonomous vehicular clouds

    Directory of Open Access Journals (Sweden)

    Stephan Olariu

    2011-09-01

    Full Text Available The dawn of the 21st century has seen a growing interest in vehicular networking and its myriad potential applications. The initial view of practitioners and researchers was that radio-equipped vehicles could keep the drivers informed about potential safety risks and increase their awareness of road conditions. The view then expanded to include access to the Internet and associated services. This position paper proposes and promotes a novel and more comprehensive vision namely, that advances in vehicular networks, embedded devices and cloud computing will enable the formation of autonomous clouds of vehicular computing, communication, sensing, power and physical resources. Hence, we coin the term, autonomous vehicular clouds (AVCs. A key feature distinguishing AVCs from conventional cloud computing is that mobile AVC resources can be pooled dynamically to serve authorized users and to enable autonomy in real-time service sharing and management on terrestrial, aerial, or aquatic pathways or theaters of operations. In addition to general-purpose AVCs, we also envision the emergence of specialized AVCs such as mobile analytics laboratories. Furthermore, we envision that the integration of AVCs with ubiquitous smart infrastructures including intelligent transportation systems, smart cities and smart electric power grids will have an enormous societal impact enabling ubiquitous utility cyber-physical services at the right place, right time and with right-sized resources.

  8. Seeding the Cloud

    Science.gov (United States)

    Schaffhauser, Dian

    2013-01-01

    For any institution looking to shift enterprise resource planning (ERP) systems to the cloud, big savings can be achieved--but only if the school has properly prepped "before" negotiations begin. These three steps can help: (1) Mop up the mess first; (2) Understand the true costs for services; and (3) Calculate the cost of transition.

  9. Data in the Cloud

    Science.gov (United States)

    Bull, Glen; Garofalo, Joe

    2010-01-01

    The ability to move from one representation of data to another is one of the key characteristics of expert mathematicians and scientists. Cloud computing will offer more opportunities to create and display multiple representations of data, making this skill even more important in the future. The advent of the Internet led to widespread…

  10. AIRS-CloudSat cloud mask, radar reflectivities, and cloud classification matchups V3.2

    Data.gov (United States)

    National Aeronautics and Space Administration — This is AIRS-CloudSat collocated subset, in NetCDF 4 format. These data contain collocated: AIRS Level 1b radiances spectra, CloudSat radar reflectivities, and MODIS...

  11. Cloud-Resolving Modeling Intercomparison Study of a Squall Line Case from MC3E - Properties of Convective Core

    Science.gov (United States)

    Fan, J.; Han, B.; Varble, A.; Morrison, H.; North, K.; Kollias, P.; Chen, B.; Dong, X.; Giangrande, S. E.; Khain, A.; Lin, Y.; Mansell, E.; Milbrandt, J.; Stenz, R.; Thompson, G.; Wang, Y.

    2016-12-01

    The large spread in CRM model simulations of deep convection and aerosol effects on deep convective clouds (DCCs) makes it difficult to (1) further our understanding of deep convection and (2) define "benchmarks" and then limit their use in parameterization developments. A constrained model intercomparsion study on a mid-latitude mesoscale squall line is performed using the Weather Research & Forecasting (WRF) model at 1-km horizontal grid spacing with eight cloud microphysics schemes to understand specific processes that lead to the large spreads of simulated convection and precipitation. Various observational data are employed to evaluate the baseline simulations. All simulations tend to produce a wider convective area but a much narrower stratiform area. The magnitudes of virtual potential temperature drop, pressure rise, and wind speed peak associated with the passage of the gust front are significantly smaller compared with the observations, suggesting simulated cool pools are weaker. Simulations generally overestimate the vertical velocity and radar reflectivity in convective cores compared with the retrievals. The modeled updraft velocity and precipitation have a significant spread across eight schemes. The spread of updraft velocity is the combination of both low-level pressure perturbation gradient (PPG) and buoyancy. Both PPG and thermal buoyancy are small for simulations of weak convection but both are large for those of strong convection. Ice-related parameterizations contribute majorly to the spread of updraft velocity, while they are not the reason for the large spread of precipitation. The understandings gained in this study can help to focus future observations and parameterization development.

  12. Arsia Mons Spiral Cloud

    Science.gov (United States)

    2002-01-01

    One of the benefits of the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) Extended Mission is the opportunity to observe how the planet's weather changes during a second full martian year. This picture of Arsia Mons was taken June 19, 2001; southern spring equinox occurred the same day. Arsia Mons is a volcano nearly large enough to cover the state of New Mexico. On this particular day (the first day of Spring), the MOC wide angle cameras documented an unusual spiral-shaped cloud within the 110 km (68 mi) diameter caldera--the summit crater--of the giant volcano. Because the cloud is bright both in the red and blue images acquired by the wide angle cameras, it probably consisted mostly of fine dust grains. The cloud's spin may have been induced by winds off the inner slopes of the volcano's caldera walls resulting from the temperature differences between the walls and the caldera floor, or by a vortex as winds blew up and over the caldera. Similar spiral clouds were seen inside the caldera for several days; we don't know if this was a single cloud that persisted throughout that time or one that regenerated each afternoon. Sunlight illuminates this scene from the left/upper left.Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  13. A comparison of shock-cloud and wind-cloud interactions: effect of increased cloud density contrast on cloud evolution

    Science.gov (United States)

    Goldsmith, K. J. A.; Pittard, J. M.

    2018-05-01

    The similarities, or otherwise, of a shock or wind interacting with a cloud of density contrast χ = 10 were explored in a previous paper. Here, we investigate such interactions with clouds of higher density contrast. We compare the adiabatic hydrodynamic interaction of a Mach 10 shock with a spherical cloud of χ = 103 with that of a cloud embedded in a wind with identical parameters to the post-shock flow. We find that initially there are only minor morphological differences between the shock-cloud and wind-cloud interactions, compared to when χ = 10. However, once the transmitted shock exits the cloud, the development of a turbulent wake and fragmentation of the cloud differs between the two simulations. On increasing the wind Mach number, we note the development of a thin, smooth tail of cloud material, which is then disrupted by the fragmentation of the cloud core and subsequent `mass-loading' of the flow. We find that the normalized cloud mixing time (tmix) is shorter at higher χ. However, a strong Mach number dependence on tmix and the normalized cloud drag time, t_{drag}^' }, is not observed. Mach-number-dependent values of tmix and t_{drag}^' } from comparable shock-cloud interactions converge towards the Mach-number-independent time-scales of the wind-cloud simulations. We find that high χ clouds can be accelerated up to 80-90 per cent of the wind velocity and travel large distances before being significantly mixed. However, complete mixing is not achieved in our simulations and at late times the flow remains perturbed.

  14. Can nudging be used to quantify model sensitivities in precipitation and cloud forcing?: NUDGING AND MODEL SENSITIVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Guangxing [Pacific Northwest National Laboratory, Atmospheric Science and Global Change Division, Richland Washington USA; Wan, Hui [Pacific Northwest National Laboratory, Atmospheric Science and Global Change Division, Richland Washington USA; Zhang, Kai [Pacific Northwest National Laboratory, Atmospheric Science and Global Change Division, Richland Washington USA; Qian, Yun [Pacific Northwest National Laboratory, Atmospheric Science and Global Change Division, Richland Washington USA; Ghan, Steven J. [Pacific Northwest National Laboratory, Atmospheric Science and Global Change Division, Richland Washington USA

    2016-07-10

    Efficient simulation strategies are crucial for the development and evaluation of high resolution climate models. This paper evaluates simulations with constrained meteorology for the quantification of parametric sensitivities in the Community Atmosphere Model version 5 (CAM5). Two parameters are perturbed as illustrating examples: the convection relaxation time scale (TAU), and the threshold relative humidity for the formation of low-level stratiform clouds (rhminl). Results suggest that the fidelity and computational efficiency of the constrained simulations depend strongly on 3 factors: the detailed implementation of nudging, the mechanism through which the perturbed parameter affects precipitation and cloud, and the magnitude of the parameter perturbation. In the case of a strong perturbation in convection, temperature and/or wind nudging with a 6-hour relaxation time scale leads to non-negligible side effects due to the distorted interactions between resolved dynamics and parameterized convection, while a 1-year free running simulation can satisfactorily capture the annual mean precipitation sensitivity in terms of both global average and geographical distribution. In the case of a relatively weak perturbation the large-scale condensation scheme, results from 1-year free-running simulations are strongly affected by noise associated with internal variability, while nudging winds effectively reduces the noise, and reasonably reproduces the response of precipitation and cloud forcing to parameter perturbation. These results indicate that caution is needed when using nudged simulations to assess precipitation and cloud forcing sensitivities to parameter changes in general circulation models. We also demonstrate that ensembles of short simulations are useful for understanding the evolution of model sensitivities.

  15. Low Cloud Feedback to Surface Warming in the World's First Global Climate Model with Explicit Embedded Boundary Layer Turbulence

    Science.gov (United States)

    Parishani, H.; Pritchard, M. S.; Bretherton, C. S.; Wyant, M. C.; Khairoutdinov, M.; Singh, B.

    2017-12-01

    Biases and parameterization formulation uncertainties in the representation of boundary layer clouds remain a leading source of possible systematic error in climate projections. Here we show the first results of cloud feedback to +4K SST warming in a new experimental climate model, the ``Ultra-Parameterized (UP)'' Community Atmosphere Model, UPCAM. We have developed UPCAM as an unusually high-resolution implementation of cloud superparameterization (SP) in which a global set of cloud resolving arrays is embedded in a host global climate model. In UP, the cloud-resolving scale includes sufficient internal resolution to explicitly generate the turbulent eddies that form marine stratocumulus and trade cumulus clouds. This is computationally costly but complements other available approaches for studying low clouds and their climate interaction, by avoiding parameterization of the relevant scales. In a recent publication we have shown that UP, while not without its own complexity trade-offs, can produce encouraging improvements in low cloud climatology in multi-month simulations of the present climate and is a promising target for exascale computing (Parishani et al. 2017). Here we show results of its low cloud feedback to warming in multi-year simulations for the first time. References: Parishani, H., M. S. Pritchard, C. S. Bretherton, M. C. Wyant, and M. Khairoutdinov (2017), Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence, J. Adv. Model. Earth Syst., 9, doi:10.1002/2017MS000968.

  16. Cloud Computing Security Issue: Survey

    Science.gov (United States)

    Kamal, Shailza; Kaur, Rajpreet

    2011-12-01

    Cloud computing is the growing field in IT industry since 2007 proposed by IBM. Another company like Google, Amazon, and Microsoft provides further products to cloud computing. The cloud computing is the internet based computing that shared recourses, information on demand. It provides the services like SaaS, IaaS and PaaS. The services and recourses are shared by virtualization that run multiple operation applications on cloud computing. This discussion gives the survey on the challenges on security issues during cloud computing and describes some standards and protocols that presents how security can be managed.

  17. Security for cloud storage systems

    CERN Document Server

    Yang, Kan

    2014-01-01

    Cloud storage is an important service of cloud computing, which offers service for data owners to host their data in the cloud. This new paradigm of data hosting and data access services introduces two major security concerns. The first is the protection of data integrity. Data owners may not fully trust the cloud server and worry that data stored in the cloud could be corrupted or even removed. The second is data access control. Data owners may worry that some dishonest servers provide data access to users that are not permitted for profit gain and thus they can no longer rely on the servers

  18. Cloud database development and management

    CERN Document Server

    Chao, Lee

    2013-01-01

    Nowadays, cloud computing is almost everywhere. However, one can hardly find a textbook that utilizes cloud computing for teaching database and application development. This cloud-based database development book teaches both the theory and practice with step-by-step instructions and examples. This book helps readers to set up a cloud computing environment for teaching and learning database systems. The book will cover adequate conceptual content for students and IT professionals to gain necessary knowledge and hands-on skills to set up cloud based database systems.

  19. Cloud-resolving model intercomparison of an MC3E squall line case: Part I-Convective updrafts: CRM Intercomparison of a Squall Line

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Jiwen [Pacific Northwest National Laboratory, Richland Washington USA; Han, Bin [Pacific Northwest National Laboratory, Richland Washington USA; School of Atmospheric Sciences, Nanjing University, Nanjing China; Varble, Adam [Department of Atmospheric Sciences, University of Utah, Salt Lake City Utah USA; Morrison, Hugh [National Center for Atmospheric Research, Boulder Colorado USA; North, Kirk [Department of Atmospheric and Oceanic Sciences, McGill University, Montreal Quebec USA; Kollias, Pavlos [Department of Atmospheric and Oceanic Sciences, McGill University, Montreal Quebec USA; School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook New York USA; Chen, Baojun [School of Atmospheric Sciences, Nanjing University, Nanjing China; Dong, Xiquan [Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson Arizona USA; Giangrande, Scott E. [Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton New York USA; Khain, Alexander [The Institute of the Earth Science, The Hebrew University of Jerusalem, Jerusalem Israel; Lin, Yun [Department of Atmospheric Sciences, Texas A& M University, College Station Texas USA; Mansell, Edward [NOAA/OAR/National Severe Storms Laboratory, Norman Oklahoma USA; Milbrandt, Jason A. [Meteorological Research Division, Environment and Climate Change Canada, Dorval Canada; Stenz, Ronald [Department of Atmospheric Sciences, University of North Dakota, Grand Forks North Dakota USA; Thompson, Gregory [National Center for Atmospheric Research, Boulder Colorado USA; Wang, Yuan [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena California USA

    2017-09-06

    A constrained model intercomparison study of a mid-latitude mesoscale squall line is performed using the Weather Research & Forecasting (WRF) model at 1-km horizontal grid spacing with eight cloud microphysics schemes, to understand specific processes that lead to the large spread of simulated cloud and precipitation at cloud-resolving scales, with a focus of this paper on convective cores. Various observational data are employed to evaluate the baseline simulations. All simulations tend to produce a wider convective area than observed, but a much narrower stratiform area, with most bulk schemes overpredicting radar reflectivity. The magnitudes of the virtual potential temperature drop, pressure rise, and the peak wind speed associated with the passage of the gust front are significantly smaller compared with the observations, suggesting simulated cool pools are weaker. Simulations also overestimate the vertical velocity and Ze in convective cores as compared with observational retrievals. The modeled updraft velocity and precipitation have a significant spread across the eight schemes even in this strongly dynamically-driven system. The spread of updraft velocity is attributed to the combined effects of the low-level perturbation pressure gradient determined by cold pool intensity and buoyancy that is not necessarily well correlated to differences in latent heating among the simulations. Variability of updraft velocity between schemes is also related to differences in ice-related parameterizations, whereas precipitation variability increases in no-ice simulations because of scheme differences in collision-coalescence parameterizations.

  20. A marine biogenic source of atmospheric ice-nucleating particles

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, T. W.; Ladino, L. A.; Alpert, Peter A.; Breckels, M. N.; Brooks, I. M.; Browse, J.; Burrows, Susannah M.; Carslaw, K. S.; Huffman, J. A.; Judd, C.; Kilthau, W. P.; Mason, R. H.; McFiggans, Gordon; Miller, L. A.; Najera, J.; Polishchuk, E. A.; Rae, S.; Schiller, C. L.; Si, M.; Vergara Temprado, J.; Whale, Thomas; Wong, J P S; Wurl, O.; Yakobi-Hancock, J. D.; Abbatt, JPD; Aller, Josephine Y.; Bertram, Allan K.; Knopf, Daniel A.; Murray, Benjamin J.

    2015-09-09

    The formation of ice in clouds is facilitated by the presence of airborne ice nucleating particles1,2. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice3–11. Here we show that material in the sea surface microlayer, which is enriched in surface active organic material representative of that found in sub-micron sea- spray aerosol12–21, nucleates ice under conditions that occur in mixed-phase clouds and high-altitude ice clouds. The ice active material is likely biogenic and is less than ~0.2 ?m in size. We also show that organic material (exudate) released by a common marine diatom nucleates ice when separated from cells and propose that organic material associated with phytoplankton cell exudates are a candidate for the observed ice nucleating ability of the microlayer samples. By combining our measurements with global model simulations of marine organic aerosol, we show that ice nucleating particles of marine origin are dominant in remote marine environments, such as the Southern Ocean, the North Pacific and the North Atlantic.

  1. Formation of giant molecular clouds in global spiral structures: the role of orbital dynamics and cloud-cloud collisions

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Stewart, G.R.

    1987-01-01

    The different roles played by orbital dynamics and dissipative cloud-cloud collisions in the formation of giant molecular clouds (GMCs) in a global spiral structure are investigated. The interstellar medium (ISM) is simulated by a system of particles, representing clouds, which orbit in a spiral-perturbed, galactic gravitational field. The overall magnitude and width of the global cloud density distribution in spiral arms is very similar in the collisional and collisionless simulations. The results suggest that the assumed number density and size distribution of clouds and the details of individual cloud-cloud collisions have relatively little effect on these features. Dissipative cloud-cloud collisions play an important steadying role for the cloud system's global spiral structure. Dissipative cloud-cloud collisions also damp the relative velocity dispersion of clouds in massive associations and thereby aid in the effective assembling of GMC-like complexes

  2. Atmospheric diffusion of large clouds

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, T. V. [Univ. of California, Lawrence Radiation Lab., Livermore, California (United States)

    1967-07-01

    Clouds of pollutants travel within a coordinate system that is fixed to the earth's surface, and they diffuse and grow within a coordinate system fixed to the cloud's center. This paper discusses an approach to predicting the cloud's properties, within the latter coordinate system, on space scales of a few hundred meters to a few hundred kilometers and for time periods of a few days. A numerical cloud diffusion model is presented which starts with a cloud placed arbitrarily within the troposphere. Similarity theories of atmospheric turbulence are used to predict the horizontal diffusivity as a function of initial cloud size, turbulent atmospheric dissipation, and time. Vertical diffusivity is input as a function of time and height. Therefore, diurnal variations of turbulent diffusion in the boundary layer and effects of temperature inversions, etc. can be modeled. Nondiffusive cloud depletion mechanisms, such as dry deposition, washout, and radioactive decay, are also a part of this numerical model. An effluent cloud, produced by a reactor run at the Nuclear Rocket Development Station, Nevada, is discussed in this paper. Measurements on this cloud, for a period of two days, are compared to calculations with the above numerical cloud diffusion model. In general, there is agreement. within a factor of two, for airborne concentrations, cloud horizontal area, surface air concentrations, and dry deposition as airborne concentration decreased by seven orders of magnitude during the two-day period. (author)

  3. Sahara Dust Cloud

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Dust Particles Click on the image for Quicktime movie from 7/15-7/24 A continent-sized cloud of hot air and dust originating from the Sahara Desert crossed the Atlantic Ocean and headed towards Florida and the Caribbean. A Saharan Air Layer, or SAL, forms when dry air and dust rise from Africa's west coast and ride the trade winds above the Atlantic Ocean. These dust clouds are not uncommon, especially during the months of July and August. They start when weather patterns called tropical waves pick up dust from the desert in North Africa, carry it a couple of miles into the atmosphere and drift westward. In a sequence of images created by data acquired by the Earth-orbiting Atmospheric Infrared Sounder ranging from July 15 through July 24, we see the distribution of the cloud in the atmosphere as it swirls off of Africa and heads across the ocean to the west. Using the unique silicate spectral signatures of dust in the thermal infrared, AIRS can detect the presence of dust in the atmosphere day or night. This detection works best if there are no clouds present on top of the dust; when clouds are present, they can interfere with the signal, making it much harder to detect dust as in the case of July 24, 2005. In the Quicktime movie, the scale at the bottom of the images shows +1 for dust definitely detected, and ranges down to -1 for no dust detected. The plots are averaged over a number of AIRS observations falling within grid boxes, and so it is possible to obtain fractional numbers. [figure removed for brevity, see original site] Total Water Vapor in the Atmosphere Around the Dust Cloud Click on the image for Quicktime movie The dust cloud is contained within a dry adiabatic layer which originates over the Sahara Desert. This Saharan Air Layer (SAL) advances Westward over the Atlantic Ocean, overriding the cool, moist air nearer the surface. This burst of very dry air is visible in the AIRS retrieved total water

  4. A Framework to Improve Communication and Reliability Between Cloud Consumer and Provider in the Cloud

    OpenAIRE

    Vivek Sridhar

    2014-01-01

    Cloud services consumers demand reliable methods for choosing appropriate cloud service provider for their requirements. Number of cloud consumer is increasing day by day and so cloud providers, hence requirement for a common platform for interacting between cloud provider and cloud consumer is also on the raise. This paper introduces Cloud Providers Market Platform Dashboard. This will act as not only just cloud provider discoverability but also provide timely report to consumer on cloud ser...

  5. Marine animal stings or bites

    Science.gov (United States)

    Stings - marine animals; Bites - marine animals ... Things you can do to prevent a marine animal sting or bite include: Swim near a lifeguard. Observe posted signs that may warn of danger from jellyfish or other hazardous marine life. ...

  6. Lean computing for the cloud

    CERN Document Server

    Bauer, Eric

    2016-01-01

    Applies lean manufacturing principles across the cloud service delivery chain to enable application and infrastructure service providers to sustainably achieve the shortest lead time, best quality, and value This book focuses on lean in the context of cloud computing capacity management of applications and the physical and virtual cloud resources that support them. Lean Computing for the Cloud considers business, architectural and operational aspects of efficiently delivering valuable services to end users via cloud-based applications hosted on shared cloud infrastructure. The work also focuses on overall optimization of the service delivery chain to enable both application service and infrastructure service providers to adopt leaner, demand driven operations to serve end users more efficiently. The book’s early chapters analyze how capacity management morphs with cloud computing into interlocked physical infrastructure capacity management, virtual resou ce capacity management, and application capacity ma...

  7. Examining the Impact of Overlying Aerosols on the Retrieval of Cloud Optical Properties from Passive Remote Sensing

    Science.gov (United States)

    Coddington, O. M.; Pilewskie, P.; Redemann, J.; Platnick, S.; Russell, P. B.; Schmidt, K. S.; Gore, W. J.; Livingston, J.; Wind, G.; Vukicevic, T.

    2010-01-01

    Haywood et al. (2004) show that an aerosol layer above a cloud can cause a bias in the retrieved cloud optical thickness and effective radius. Monitoring for this potential bias is difficult because space ]based passive remote sensing cannot unambiguously detect or characterize aerosol above cloud. We show that cloud retrievals from aircraft measurements above cloud and below an overlying aerosol layer are a means to test this bias. The data were collected during the Intercontinental Chemical Transport Experiment (INTEX-A) study based out of Portsmouth, New Hampshire, United States, above extensive, marine stratus cloud banks affected by industrial outflow. Solar Spectral Flux Radiometer (SSFR) irradiance measurements taken along a lower level flight leg above cloud and below aerosol were unaffected by the overlying aerosol. Along upper level flight legs, the irradiance reflected from cloud top was transmitted through an aerosol layer. We compare SSFR cloud retrievals from below ]aerosol legs to satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) in order to detect an aerosol ]induced bias. In regions of small variation in cloud properties, we find that SSFR and MODIS-retrieved cloud optical thickness compares within the uncertainty range for each instrument while SSFR effective radius tend to be smaller than MODIS values (by 1-2 microns) and at the low end of MODIS uncertainty estimates. In regions of large variation in cloud properties, differences in SSFR and MODIS ]retrieved cloud optical thickness and effective radius can reach values of 10 and 10 microns, respectively. We include aerosols in forward modeling to test the sensitivity of SSFR cloud retrievals to overlying aerosol layers. We find an overlying absorbing aerosol layer biases SSFR cloud retrievals to smaller effective radii and optical thickness while nonabsorbing aerosols had no impact.

  8. Examining the impact of overlying aerosols on the retrieval of cloud optical properties from passive remote sensing

    Science.gov (United States)

    Coddington, O. M.; Pilewskie, P.; Redemann, J.; Platnick, S.; Russell, P. B.; Schmidt, K. S.; Gore, W. J.; Livingston, J.; Wind, G.; Vukicevic, T.

    2010-05-01

    Haywood et al. (2004) show that an aerosol layer above a cloud can cause a bias in the retrieved cloud optical thickness and effective radius. Monitoring for this potential bias is difficult because space-based passive remote sensing cannot unambiguously detect or characterize aerosol above cloud. We show that cloud retrievals from aircraft measurements above cloud and below an overlying aerosol layer are a means to test this bias. The data were collected during the Intercontinental Chemical Transport Experiment (INTEX-A) study based out of Portsmouth, New Hampshire, United States, above extensive, marine stratus cloud banks affected by industrial outflow. Solar Spectral Flux Radiometer (SSFR) irradiance measurements taken along a lower level flight leg above cloud and below aerosol were unaffected by the overlying aerosol. Along upper level flight legs, the irradiance reflected from cloud top was transmitted through an aerosol layer. We compare SSFR cloud retrievals from below-aerosol legs to satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) in order to detect an aerosol-induced bias. In regions of small variation in cloud properties, we find that SSFR and MODIS-retrieved cloud optical thickness compares within the uncertainty range for each instrument while SSFR effective radius tend to be smaller than MODIS values (by 1-2 μm) and at the low end of MODIS uncertainty estimates. In regions of large variation in cloud properties, differences in SSFR and MODIS-retrieved cloud optical thickness and effective radius can reach values of 10 and 10 μm, respectively. We include aerosols in forward modeling to test the sensitivity of SSFR cloud retrievals to overlying aerosol layers. We find an overlying absorbing aerosol layer biases SSFR cloud retrievals to smaller effective radii and optical thickness while nonabsorbing aerosols had no impact.

  9. Mariners Weather Log

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Mariners Weather Log (MWL) is a publication containing articles, news and information about marine weather events and phenomena, worldwide environmental impact...

  10. MarineCadastre.gov

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MarineCadastre.gov is a marine information system that provides authoritative ocean data, offshore planning tools, and technical support to the offshore renewable...

  11. Marine Jurisdiction Boundaries

    Data.gov (United States)

    Department of Homeland Security — The NOAA Coastal Services Center's Marine Jurisdiction dataset was created to assist in marine spatial planning and offshore alternative energy sitting. This is a...

  12. Tsunamis and marine life

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, D.V.S.; Ingole, B.S.; Tang, D.; Satyanarayan, B.; Zhao, H.

    The 26 December 2004 tsunami in the Indian Ocean exerted far reaching temporal and spatial impacts on marine biota. Our synthesis was based on satellite data acquired by the Laboratory for Tropical Marine Environmental Dynamics (LED) of the South...

  13. Supermarket Marine Biology.

    Science.gov (United States)

    Colby, Jennifer A.; And Others

    1995-01-01

    Describes a survey used to determine the availability of intact marine vertebrates and live invertebrates in supermarkets. Results shows that local supermarkets frequently provide a variety of intact marine organisms suitable for demonstrations, experiments, or dissections. (ZWH)

  14. Seashore marine table quiz

    OpenAIRE

    Institute, Marine

    2013-01-01

    Develop an increasing awareness of plants and animals that live in local marine environments including the seashore, seas and oceans of Ireland. After learning all about the seashore and other marine related lessons, this quiz can be used to evaluate the student’s knowledge of the marine related living things and natural environments. The table quiz can be used as a guide, highlighting facts about the marine environment and some of the animals that live there.

  15. Carotenoids in Marine Animals

    OpenAIRE

    Maoka, Takashi

    2011-01-01

    Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine a...

  16. Clouds and aerosols in Puerto Rico - a new evaluation

    Science.gov (United States)

    Allan, J. D.; Baumgardner, D.; Raga, G. B.; Mayol-Bracero, O. L.; Morales-García, F.; García-García, F.; Montero-Martínez, G.; Borrmann, S.; Schneider, J.; Mertes, S.; Walter, S.; Gysel, M.; Dusek, U.; Frank, G. P.; Krämer, M.

    2008-03-01

    The influence of aerosols, both natural and anthropogenic, remains a major area of uncertainty when predicting the properties and behaviour of clouds and their influence on climate. In an attempt to better understand warm cloud formation in a tropical marine environment, a period of intensive measurements took place in December 2004 in Puerto Rico, using some of the latest developments in online instrumentation such as aerosol mass spectrometers, cloud condensation nuclei counters and a hygroscopicity tandem differential mobility analyser. Simultaneous online measurements of aerosol size distributions, composition, hygroscopicity and optical properties were made near the lighthouse of Cape San Juan in the north-eastern corner of the island and at the top of East Peak mountain (1040 m a.s.l.), the two sites separated by 17 km. Additional measurements of the cloud droplet residual and interstitial aerosol properties were made at the mountain site, accompanied by measurements of cloud droplet size distributions, liquid water content and the chemical composition of cloud and rain water samples. Both aerosol composition and cloud properties were found to be sensitive to wind sector. Air from the east-northeast (ENE) was mostly free of anthropogenic influences, the submicron fraction being mainly composed of non-sea salt sulphate, while that from the east-southeast (ESE) was found to be moderately influenced by populated islands upwind, adding smaller (residual particles and concentrations of cloudwater nitrate, sulphate and insoluble material increased during polluted conditions. Previous studies in Puerto Rico had reported the presence of a significant non-anthropogenic organic fraction in the aerosols measured and concluded that this was a factor controlling the in situ cloud properties. However, this was not observed in our case. In contrast to the 1.00±0.14 μg m-3 of organic carbon measured in 1992 and 1995, the organic matter measured in the current study of 0

  17. CFD analysis of cloud cavitation on three tip-modified propellers with systematically varied tip geometry

    DEFF Research Database (Denmark)

    Shin, K. W.; Andersen, Poul

    2015-01-01

    The blade tip loading is often reduced as an effort to restrain sheet and tip vortex cavitation in the design of marine propellers. This CFD analysis demonstrates that an excessive reduction of the tip loading can cause cloud cavitation responsible for much of noise and surface erosion. Detached...

  18. Cloud vertical profiles derived from CALIPSO and CloudSat and a comparison with MODIS derived clouds

    Science.gov (United States)

    Kato, S.; Sun-Mack, S.; Miller, W. F.; Rose, F. G.; Minnis, P.; Wielicki, B. A.; Winker, D. M.; Stephens, G. L.; Charlock, T. P.; Collins, W. D.; Loeb, N. G.; Stackhouse, P. W.; Xu, K.

    2008-05-01

    CALIPSO and CloudSat from the a-train provide detailed information of vertical distribution of clouds and aerosols. The vertical distribution of cloud occurrence is derived from one month of CALIPSO and CloudSat data as a part of the effort of merging CALIPSO, CloudSat and MODIS with CERES data. This newly derived cloud profile is compared with the distribution of cloud top height derived from MODIS on Aqua from cloud algorithms used in the CERES project. The cloud base from MODIS is also estimated using an empirical formula based on the cloud top height and optical thickness, which is used in CERES processes. While MODIS detects mid and low level clouds over the Arctic in April fairly well when they are the topmost cloud layer, it underestimates high- level clouds. In addition, because the CERES-MODIS cloud algorithm is not able to detect multi-layer clouds and the empirical formula significantly underestimates the depth of high clouds, the occurrence of mid and low-level clouds is underestimated. This comparison does not consider sensitivity difference to thin clouds but we will impose an optical thickness threshold to CALIPSO derived clouds for a further comparison. The effect of such differences in the cloud profile to flux computations will also be discussed. In addition, the effect of cloud cover to the top-of-atmosphere flux over the Arctic using CERES SSF and FLASHFLUX products will be discussed.

  19. Marine Education Knowledge Inventory.

    Science.gov (United States)

    Hounshell, Paul B.; Hampton, Carolyn

    This 35-item, multiple-choice Marine Education Knowledge Inventory was developed for use in upper elementary/middle schools to measure a student's knowledge of marine science. Content of test items is drawn from oceanography, ecology, earth science, navigation, and the biological sciences (focusing on marine animals). Steps in the construction of…

  20. Marine polar steroids

    International Nuclear Information System (INIS)

    Stonik, Valentin A

    2001-01-01

    Structures, taxonomic distribution and biological activities of polar steroids isolated from various marine organisms over the last 8-10 years are considered. The peculiarities of steroid biogenesis in the marine biota and their possible biological functions are discussed. Syntheses of some highly active marine polar steroids are described. The bibliography includes 254 references.

  1. CN in dark clouds

    International Nuclear Information System (INIS)

    Churchwell, E.; Bieging, J.H.

    1983-01-01

    We have detected CN (N = 1--0) emission toward six locations in the Taurus dark cloud complex, but not toward L183 or B227. The two hyperfine components, F = 3/2--1/2 and F = 5/2--3/2 (of J = 3/2--1/2), have intensity ratios near unity toward four locations in Taurus, consistent with large line optical depths. CN column densities are found to be > or approx. =6 x 10 13 cm -2 in those directions where the hyperfine ratios are near unity. By comparing CN with NH 3 and C 18 O column densities, we find that the relative abundance of CN in the Taurus cloudlets is at least a factor of 10 greater than in L183. In this respect, CN fits the pattern of enhanced abundances of carbon-bearing molecules (in partricular the cyanopolyynes) in the Taurus cloudlets relative to similar dark clouds outside Taurus

  2. Carbon pellet cloud striations

    International Nuclear Information System (INIS)

    Parks, P.B.

    1989-01-01

    Fine scale striations, with alternating rows of bright and dark zones, have been observed in the ablation clouds of carbon pellets injected into the TEXT tokamak. The striations extend along the magnetic field for about 1 cm with quite regular cross-field variations characterized by a wavelength of a few mm. Their potential as a diagnostic tool for measuring q-profiles in tokamaks provides motivation for investigating the origin of the striations. The authors propose that the striations are not due to a sequence of high and low ablation rates because of the finite thermal magnetic islands localized at rational surfaces, q = m/n, would be responsible for reducing the electron flux to the pellet region; the length of the closed field line which forms the local magnetic axis of the island is too long to prevent a depletion of plasma electrons in a flux tube intercepting the pellet for the duration 2 rp / vp . Instead, they propose that striations are the manifestation of the saturated state of growing fluctuations inside the cloud. The instability is generated by E x B rotation of the ablation cloud. The outward centrifugal force points down the ablation density gradient inducing the Rayleigh-Taylor instability. The instability is not present for wave numbers along the field lines, which may explain why the striations are long and uniform in that direction. The E field develops inside the ablation cloud as a result of cold electron return currents which are induced to cancel the incoming hot plasma electron current streaming along the field lines

  3. Security in cloud computing and virtual environments

    OpenAIRE

    Aarseth, Raymond

    2015-01-01

    Cloud computing is a big buzzwords today. Just watch the commercials on TV and I can promise that you will hear the word cloud service at least once. With the growth of cloud technology steadily rising, and everything from cellphones to cars connected to the cloud, how secure is cloud technology? What are the caveats of using cloud technology? And how does it all work? This thesis will discuss cloud security and the underlying technology called Virtualization to ...

  4. IBM Cloud Computing Powering a Smarter Planet

    Science.gov (United States)

    Zhu, Jinzy; Fang, Xing; Guo, Zhe; Niu, Meng Hua; Cao, Fan; Yue, Shuang; Liu, Qin Yu

    With increasing need for intelligent systems supporting the world's businesses, Cloud Computing has emerged as a dominant trend to provide a dynamic infrastructure to make such intelligence possible. The article introduced how to build a smarter planet with cloud computing technology. First, it introduced why we need cloud, and the evolution of cloud technology. Secondly, it analyzed the value of cloud computing and how to apply cloud technology. Finally, it predicted the future of cloud in the smarter planet.

  5. Grids, Clouds, and Virtualization

    Science.gov (United States)

    Cafaro, Massimo; Aloisio, Giovanni

    This chapter introduces and puts in context Grids, Clouds, and Virtualization. Grids promised to deliver computing power on demand. However, despite a decade of active research, no viable commercial grid computing provider has emerged. On the other hand, it is widely believed - especially in the Business World - that HPC will eventually become a commodity. Just as some commercial consumers of electricity have mission requirements that necessitate they generate their own power, some consumers of computational resources will continue to need to provision their own supercomputers. Clouds are a recent business-oriented development with the potential to render this eventually as rare as organizations that generate their own electricity today, even among institutions who currently consider themselves the unassailable elite of the HPC business. Finally, Virtualization is one of the key technologies enabling many different Clouds. We begin with a brief history in order to put them in context, and recall the basic principles and concepts underlying and clearly differentiating them. A thorough overview and survey of existing technologies provides the basis to delve into details as the reader progresses through the book.

  6. From clouds to stars

    International Nuclear Information System (INIS)

    Elmegreen, B.G.

    1982-01-01

    At the present time, the theory of star formation must be limited to what we know about the lowest density gas, or about the pre-main sequence stars themselves. We would like to understand two basic processes: 1) how star-forming clouds are created from the ambient interstellar gas in the first place, and 2) how small parts of these clouds condense to form individual stars. We are interested also in knowing what pre-main sequence stars are like, and how they can interact with their environment. These topics are reviewed in what follows. In this series of lectures, what we know about the formation of stars is tentatively described. The lectures begin with a description of the interstellar medium, and then they proceed along the same direction that a young star would follow during its creation, namely from clouds through the collapse phase and onto the proto-stellar phase. The evolution of viscous disks and two models for the formation of the solar system are described in the last lectures. The longest lectures, and the topics that are covered in most detail, are not necessarily the ones for which we have the most information. Physically intuitive explanations for the various processes are emphasized, rather then mathematical explanations. In some cases, the mathematical aspects are developed as well, but only when the equations can be used to give important numerical values for comparison with the observations

  7. ATLAS cloud R and D

    International Nuclear Information System (INIS)

    Panitkin, Sergey; Bejar, Jose Caballero; Hover, John; Zaytsev, Alexander; Megino, Fernando Barreiro; Girolamo, Alessandro Di; Kucharczyk, Katarzyna; Llamas, Ramon Medrano; Benjamin, Doug; Gable, Ian; Paterson, Michael; Sobie, Randall; Taylor, Ryan; Hendrix, Val; Love, Peter; Ohman, Henrik; Walker, Rodney

    2014-01-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R and D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R and D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R and D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R and D group has gained a significant insight into the cloud computing landscape and has identified points that still need to be addressed in order to fully utilize this technology. This contribution will explain the cloud integration models that are being evaluated and will discuss ATLAS' learning during the collaboration with leading commercial and academic cloud providers.

  8. Cloud Computing Security: A Survey

    Directory of Open Access Journals (Sweden)

    Issa M. Khalil

    2014-02-01

    Full Text Available Cloud computing is an emerging technology paradigm that migrates current technological and computing concepts into utility-like solutions similar to electricity and water systems. Clouds bring out a wide range of benefits including configurable computing resources, economic savings, and service flexibility. However, security and privacy concerns are shown to be the primary obstacles to a wide adoption of clouds. The new concepts that clouds introduce, such as multi-tenancy, resource sharing and outsourcing, create new challenges to the security community. Addressing these challenges requires, in addition to the ability to cultivate and tune the security measures developed for traditional computing systems, proposing new security policies, models, and protocols to address the unique cloud security challenges. In this work, we provide a comprehensive study of cloud computing security and privacy concerns. We identify cloud vulnerabilities, classify known security threats and attacks, and present the state-of-the-art practices to control the vulnerabilities, neutralize the threats, and calibrate the attacks. Additionally, we investigate and identify the limitations of the current solutions and provide insights of the future security perspectives. Finally, we provide a cloud security framework in which we present the various lines of defense and identify the dependency levels among them. We identify 28 cloud security threats which we classify into five categories. We also present nine general cloud attacks along with various attack incidents, and provide effectiveness analysis of the proposed countermeasures.

  9. ATLAS Cloud R&D

    Science.gov (United States)

    Panitkin, Sergey; Barreiro Megino, Fernando; Caballero Bejar, Jose; Benjamin, Doug; Di Girolamo, Alessandro; Gable, Ian; Hendrix, Val; Hover, John; Kucharczyk, Katarzyna; Medrano Llamas, Ramon; Love, Peter; Ohman, Henrik; Paterson, Michael; Sobie, Randall; Taylor, Ryan; Walker, Rodney; Zaytsev, Alexander; Atlas Collaboration

    2014-06-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained a significant insight into the cloud computing landscape and has identified points that still need to be addressed in order to fully utilize this technology. This contribution will explain the cloud integration models that are being evaluated and will discuss ATLAS' learning during the collaboration with leading commercial and academic cloud providers.

  10. CloudSafetyNet: Detecting Data Leakage between Cloud Tenants

    OpenAIRE

    Pietzuch, PR; Priebe, C; Muthukumaran, D; O'Keeffe, D; Eyers, D; Shand, B; Kapitza, R

    2014-01-01

    01.12.14 KB. Ok to add accepted version to spiral. Copyright ? 2014 by the Association for Computing Machinery, Inc. (ACM).When tenants deploy applications under the control of third-party cloud providers, they must trust the providers security mechanisms for inter-tenant isolation, resource sharing and access control. Despite a providers best efforts, accidental data leakage may occur due to misconfigurations or bugs in the cloud platform. Especially in Platform-as-a-Service (PaaS) clouds...

  11. Military clouds: utilization of cloud computing systems at the battlefield

    Science.gov (United States)

    Süleyman, Sarıkürk; Volkan, Karaca; İbrahim, Kocaman; Ahmet, Şirzai

    2012-05-01

    Cloud computing is known as a novel information technology (IT) concept, which involves facilitated and rapid access to networks, servers, data saving media, applications and services via Internet with minimum hardware requirements. Use of information systems and technologies at the battlefield is not new. Information superiority is a force multiplier and is crucial to mission success. Recent advances in information systems and technologies provide new means to decision makers and users in order to gain information superiority. These developments in information technologies lead to a new term, which is known as network centric capability. Similar to network centric capable systems, cloud computing systems are operational today. In the near future extensive use of military clouds at the battlefield is predicted. Integrating cloud computing logic to network centric applications will increase the flexibility, cost-effectiveness, efficiency and accessibility of network-centric capabilities. In this paper, cloud computing and network centric capability concepts are defined. Some commercial cloud computing products and applications are mentioned. Network centric capable applications are covered. Cloud computing supported battlefield applications are analyzed. The effects of cloud computing systems on network centric capability and on the information domain in future warfare are discussed. Battlefield opportunities and novelties which might be introduced to network centric capability by cloud computing systems are researched. The role of military clouds in future warfare is proposed in this paper. It was concluded that military clouds will be indispensible components of the future battlefield. Military clouds have the potential of improving network centric capabilities, increasing situational awareness at the battlefield and facilitating the settlement of information superiority.

  12. Marine nitrogen cycle

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.

    ) such as the Marine nitrogen cycle The marine nitrogen cycle. ‘X’ and ‘Y’ are intra-cellular intermediates that do not accumulate in water column. (Source: Codispoti et al., 2001) Page 1 of 3Marine nitrogen cycle - Encyclopedia of Earth 11/20/2006http://www... and nitrous oxide budgets: Moving targets as we enter the anthropocene?, Sci. Mar., 65, 85-105, 2001. Page 2 of 3Marine nitrogen cycle - Encyclopedia of Earth 11/20/2006http://www.eoearth.org/article/Marine_nitrogen_cycle square6 Gruber, N.: The dynamics...

  13. Carotenoids in Marine Animals

    Science.gov (United States)

    Maoka, Takashi

    2011-01-01

    Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine animal carotenoids from natural product chemistry, metabolism, food chain, and chemosystematic viewpoints, and also describe new structural carotenoids isolated from marine animals over the last decade. PMID:21566799

  14. Security prospects through cloud computing by adopting multiple clouds

    DEFF Research Database (Denmark)

    Jensen, Meiko; Schwenk, Jörg; Bohli, Jens Matthias

    2011-01-01

    Clouds impose new security challenges, which are amongst the biggest obstacles when considering the usage of cloud services. This triggered a lot of research activities in this direction, resulting in a quantity of proposals targeting the various security threats. Besides the security issues coming...... with the cloud paradigm, it can also provide a new set of unique features which open the path towards novel security approaches, techniques and architectures. This paper initiates this discussion by contributing a concept which achieves security merits by making use of multiple distinct clouds at the same time....

  15. TURBULENCE DECAY AND CLOUD CORE RELAXATION IN MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Gao, Yang; Law, Chung K.; Xu, Haitao

    2015-01-01

    The turbulent motion within molecular clouds is a key factor controlling star formation. Turbulence supports molecular cloud cores from evolving to gravitational collapse and hence sets a lower bound on the size of molecular cloud cores in which star formation can occur. On the other hand, without a continuous external energy source maintaining the turbulence, such as in molecular clouds, the turbulence decays with an energy dissipation time comparable to the dynamic timescale of clouds, which could change the size limits obtained from Jean's criterion by assuming constant turbulence intensities. Here we adopt scaling relations of physical variables in decaying turbulence to analyze its specific effects on the formation of stars. We find that the decay of turbulence provides an additional approach for Jeans' criterion to be achieved, after which gravitational infall governs the motion of the cloud core. This epoch of turbulence decay is defined as cloud core relaxation. The existence of cloud core relaxation provides a more complete understanding of the effect of the competition between turbulence and gravity on the dynamics of molecular cloud cores and star formation

  16. CLOUD PARAMETERIZATIONS, CLOUD PHYSICS, AND THEIR CONNECTIONS: AN OVERVIEW

    International Nuclear Information System (INIS)

    LIU, Y.; DAUM, P.H.; CHAI, S.K.; LIU, F.

    2002-01-01

    This paper consists of three parts. The first part is concerned with the parameterization of cloud microphysics in climate models. We demonstrate the crucial importance of spectral dispersion of the cloud droplet size distribution in determining radiative properties of clouds (e.g., effective radius), and underline the necessity of specifying spectral dispersion in the parameterization of cloud microphysics. It is argued that the inclusion of spectral dispersion makes the issue of cloud parameterization essentially equivalent to that of the droplet size distribution function, bringing cloud parameterization to the forefront of cloud physics. The second part is concerned with theoretical investigations into the spectral shape of droplet size distributions in cloud physics. After briefly reviewing the mainstream theories (including entrainment and mixing theories, and stochastic theories), we discuss their deficiencies and the need for a paradigm shift from reductionist approaches to systems approaches. A systems theory that has recently been formulated by utilizing ideas from statistical physics and information theory is discussed, along with the major results derived from it. It is shown that the systems formalism not only easily explains many puzzles that have been frustrating the mainstream theories, but also reveals such new phenomena as scale-dependence of cloud droplet size distributions. The third part is concerned with the potential applications of the systems theory to the specification of spectral dispersion in terms of predictable variables and scale-dependence under different fluctuating environments

  17. The highs and lows of cloud radiative feedback: Comparing observational data and CMIP5 models

    Science.gov (United States)

    Jenney, A.; Randall, D. A.

    2014-12-01

    Clouds play a complex role in the climate system, and remain one of the more difficult aspects of the future climate to predict. Over subtropical eastern ocean basins, particularly next to California, Peru, and Southwest Africa, low marine stratocumulus clouds (MSC) help to reduce the amount of solar radiation that reaches the surface by reflecting incident sunlight. The climate feedback associated with these clouds is thought to be positive. This project looks at CMIP5 models and compares them to observational data from CERES and ERA-Interim to try and find observational evidence and model agreement for low, marine stratocumulus cloud feedback. Although current evidence suggests that the low cloud feedback is positive (IPCC, 2014), an analysis of the simulated relationship between July lower tropospheric stability (LTS) and shortwave cloud forcing in MSC regions suggests that this feedback is not due to changes in LTS. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.

  18. Marine Robot Autonomy

    CERN Document Server

    2013-01-01

    Autonomy for Marine Robots provides a timely and insightful overview of intelligent autonomy in marine robots. A brief history of this emerging field is provided, along with a discussion of the challenges unique to the underwater environment and their impact on the level of intelligent autonomy required.  Topics covered at length examine advanced frameworks, path-planning, fault tolerance, machine learning, and cooperation as relevant to marine robots that need intelligent autonomy.  This book also: Discusses and offers solutions for the unique challenges presented by more complex missions and the dynamic underwater environment when operating autonomous marine robots Includes case studies that demonstrate intelligent autonomy in marine robots to perform underwater simultaneous localization and mapping  Autonomy for Marine Robots is an ideal book for researchers and engineers interested in the field of marine robots.      

  19. Studi Perbandingan Layanan Cloud Computing

    Directory of Open Access Journals (Sweden)

    Afdhal Afdhal

    2014-03-01

    Full Text Available In the past few years, cloud computing has became a dominant topic in the IT area. Cloud computing offers hardware, infrastructure, platform and applications without requiring end-users knowledge of the physical location and the configuration of providers who deliver the services. It has been a good solution to increase reliability, reduce computing cost, and make opportunities to IT industries to get more advantages. The purpose of this article is to present a better understanding of cloud delivery service, correlation and inter-dependency. This article compares and contrasts the different levels of delivery services and the development models, identify issues, and future directions on cloud computing. The end-users comprehension of cloud computing delivery service classification will equip them with knowledge to determine and decide which business model that will be chosen and adopted securely and comfortably. The last part of this article provides several recommendations for cloud computing service providers and end-users.

  20. Cloud albedo changes in response to anthropogenic sulfate and non-sulfate aerosol forcings in CMIP5 models

    Directory of Open Access Journals (Sweden)

    L. Frey

    2017-07-01

    Full Text Available The effects of different aerosol types on cloud albedo are analysed using the linear relation between total albedo and cloud fraction found on a monthly mean scale in regions of subtropical marine stratocumulus clouds and the influence of simulated aerosol variations on this relation. Model experiments from the Coupled Model Intercomparison Project phase 5 (CMIP5 are used to separately study the responses to increases in sulfate, non-sulfate and all anthropogenic aerosols. A cloud brightening on the month-to-month scale due to variability in the background aerosol is found to dominate even in the cases where anthropogenic aerosols are added. The aerosol composition is of importance for this cloud brightening, that is thereby region dependent. There is indication that absorbing aerosols to some extent counteract the cloud brightening but scene darkening with increasing aerosol burden is generally not supported, even in regions where absorbing aerosols dominate. Month-to-month cloud albedo variability also confirms the importance of liquid water content for cloud albedo. Regional, monthly mean cloud albedo is found to increase with the addition of anthropogenic aerosols and more so with sulfate than non-sulfate. Changes in cloud albedo between experiments are related to changes in cloud water content as well as droplet size distribution changes, so that models with large increases in liquid water path and/or cloud droplet number show large cloud albedo increases with increasing aerosol. However, no clear relation between model sensitivities to aerosol variations on the month-to-month scale and changes in cloud albedo due to changed aerosol burden is found.

  1. Remote Sensing of Radiative and Microphysical Properties of Clouds During TC (sup 4): Results from MAS, MASTER, MODIS, and MISR

    Science.gov (United States)

    King, Michael D.; Platnick, Steven; Wind, Galina; Arnold, G. Thomas; Dominguez, Roseanne T.

    2010-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) Airborne Simulator (MAS) and MODIS/Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Airborne Simulator (MASTER) were used to obtain measurements of the bidirectional reflectance and brightness temperature of clouds at 50 discrete wavelengths between 0.47 and 14.2 microns (12.9 microns for MASTER). These observations were obtained from the NASA ER-2 aircraft as part of the Tropical Composition, Cloud and Climate Coupling (TC4) experiment conducted over Central America and surrounding Pacific and Atlantic Oceans between 17 July and 8 August 2007. Multispectral images in eleven distinct bands were used to derive a confidence in clear sky (or alternatively the probability Of cloud) over land and ocean ecosystems. Based on the results of individual tests run as part of the cloud mask, an algorithm was developed to estimate the phase of the clouds (liquid water, ice, or undetermined phase). The cloud optical thickness and effective radius were derived for both liquid water and ice clouds that were detected during each flight, using a nearly identical algorithm to that implemented operationally to process MODIS Cloud data from the Aqua and Terra satellites (Collection 5). This analysis shows that the cloud mask developed for operational use on MODIS, and tested using MAS and MASTER data in TC(sup 4), is quite capable of distinguishing both liquid water and ice clouds during daytime conditions over both land and ocean. The cloud optical thickness and effective radius retrievals use five distinct bands of the MAS (or MASTER), and these results were compared with nearly simultaneous retrievals of marine liquid water clouds from MODIS on the Terra spacecraft. Finally, this MODIS-based algorithm was adapted to Multiangle Imaging SpectroRadiometer (MISR) data to infer the cloud optical thickness Of liquid water clouds from MISR. Results of this analysis are compared and contrasted.

  2. Evaluation of Passive Multilayer Cloud Detection Using Preliminary CloudSat and CALIPSO Cloud Profiles

    Science.gov (United States)

    Minnis, P.; Sun-Mack, S.; Chang, F.; Huang, J.; Nguyen, L.; Ayers, J. K.; Spangenberg, D. A.; Yi, Y.; Trepte, C. R.

    2006-12-01

    During the last few years, several algorithms have been developed to detect and retrieve multilayered clouds using passive satellite data. Assessing these techniques has been difficult due to the need for active sensors such as cloud radars and lidars that can "see" through different layers of clouds. Such sensors have been available only at a few surface sites and on aircraft during field programs. With the launch of the CALIPSO and CloudSat satellites on April 28, 2006, it is now possible to observe multilayered systems all over the globe using collocated cloud radar and lidar data. As part of the A- Train, these new active sensors are also matched in time ad space with passive measurements from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer - EOS (AMSR-E). The Clouds and the Earth's Radiant Energy System (CERES) has been developing and testing algorithms to detect ice-over-water overlapping cloud systems and to retrieve the cloud liquid path (LWP) and ice water path (IWP) for those systems. One technique uses a combination of the CERES cloud retrieval algorithm applied to MODIS data and a microwave retrieval method applied to AMSR-E data. The combination of a CO2-slicing cloud retireval technique with the CERES algorithms applied to MODIS data (Chang et al., 2005) is used to detect and analyze such overlapped systems that contain thin ice clouds. A third technique uses brightness temperature differences and the CERES algorithms to detect similar overlapped methods. This paper uses preliminary CloudSat and CALIPSO data to begin a global scale assessment of these different methods. The long-term goals are to assess and refine the algorithms to aid the development of an optimal combination of the techniques to better monitor ice 9and liquid water clouds in overlapped conditions.

  3. Global variability of cloud condensation nuclei concentrations

    Science.gov (United States)

    Makkonen, Risto; Krüger, Olaf

    2017-04-01

    Atmospheric aerosols can influence cloud optical and dynamical processes by acting as cloud condensation nuclei (CCN). Globally, these indirect aerosol effects are significant to the radiative budget as well as a source of high uncertainty in anthropogenic radiative forcing. While historically many global climate models have fixed CCN concentrations to a certain level, most state-of-the-art models calculate aerosol-cloud interactions with sophisticated methodologies based on interactively simulated aerosol size distributions. However, due to scarcity of atmospheric observations simulated global CCN concentrations remain poorly constrained. Here we assess global CCN variability with a climate model, and attribute potential trends during 2000-2010 to changes in emissions and meteorological fields. Here we have used ECHAM5.5-HAM2 with model M7 microphysical aerosol model. The model has been upgraded with a secondary organic aerosol (SOA) scheme including ELVOCs. Dust and sea salt emissions are calculated online, based on wind speed and hydrology. Each experiment is 11 years, analysed after a 6-month spin-up period. The MODIS CCN product (Terra platform) is used to evaluate model performance throughout 2000-2010. While optical remote observation of CCN column includes several deficiencies, the products serves as a proxy for changes during the simulation period. In our analysis we utilize the observed and simulated vertical column integrated CCN concentration, and limit our analysis only over marine regions. Simulated annual CCN column densities reach 2ṡ108 cm-2 near strong source regions in central Africa, Arabian Sea, Bay of Bengal and China sea. The spatial concentration gradient in CCN(0.2%) is steep, and column densities drop to coasts. While the spatial distribution of CCN at 0.2% supersaturation is closer to that of MODIS proxy, as opposed to 1.0% supersaturation, the overall column integrated CCN are too low. Still, we can compare the relative response of CCN

  4. Influence of Meteorological Regimes on Cloud Microphysics Over Ross Island, Antarctica

    Science.gov (United States)

    Glennon, C.; Wang, S. H.; Scott, R. C.; Bromwich, D. H.; Lubin, D.

    2017-12-01

    The Antarctic provides a sharp contrast in cloud microphysics from the high Arctic, due to orographic lifting and resulting strong vertical motions induced by mountain ranges and other varying terrain on several spatial scales. The Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE) deployed advanced cloud remote sensing equipment to Ross Island, Antarctica, from December 2015 until January 2016. This equipment included scanning and zenith radars operating in the Ka and X bands, a high spectral resolution lidar (HSRL), and a polarized micropulse lidar (MPL). A major AWARE objective is to provide state-of-the-art data for improving cloud microphysical parameterizations in climate models. To further this objective we have organized and classified the local Ross Island meteorology into distinct regimes using k-means clustering on ERA-Interim reanalysis data. We identify synoptic categories producing unique regimes of cloud cover and cloud microphysical properties over Ross Island. Each day of observations can then be associated with a specific meteorological regime, thus assisting modelers with identifying case studies. High-resolution (1 km) weather forecasts from the Antarctic Mesoscale Prediction System (AMPS) are sorted into these categories. AMPS-simulated anomalies of cloud fraction, near-surface air temperature, and vertical velocity at 500-mb are composited and compared with ground-based radar and lidar-derived cloud properties to identify mesoscale meteorological processes driving Antarctic cloud formation. Synoptic lows over the Ross and Amundsen Seas drive anomalously warm conditions at Ross Island by injecting marine air masses inland over the West Antarctic Ice Sheet (WAIS). This results in ice and mixed-phase orographic cloud systems arriving at Ross Island from the south to southeast along the Transantarctic Mountains. In contrast, blocking over the Amundsen Sea region brings classical liquid-dominated mixed-phase and

  5. Estimating cloud field coverage using morphological analysis

    International Nuclear Information System (INIS)

    Bar-Or, Rotem Z; Koren, Ilan; Altaratz, Orit

    2010-01-01

    The apparent cloud-free atmosphere in the vicinity of clouds ('the twilight zone') is often affected by undetectable weak signature clouds and humidified aerosols. It is suggested here to classify the atmosphere into two classes: cloud fields, and cloud-free (away from a cloud field), while detectable clouds are included in the cloud field class as a subset. Since the definition of cloud fields is ambiguous, a robust cloud field masking algorithm is presented here, based on the cloud spatial distribution. The cloud field boundaries are calculated then on the basis of the Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask products and the total cloud field area is estimated for the Atlantic Ocean (50 deg. S-50 deg. N). The findings show that while the monthly averaged cloud fraction over the Atlantic Ocean during July is 53%, the cloud field fraction may reach 97%, suggesting that cloud field properties should be considered in climate studies. A comparison between aerosol optical depth values inside and outside cloud fields reveals differences in the retrieved radiative properties of aerosols depending on their location. The observed mean aerosol optical depth inside the cloud fields is more than 10% higher than outside it, indicating that such convenient cloud field masking may contribute to better estimations of aerosol direct and indirect forcing.

  6. Cloud Services from Consumer Standpoint

    OpenAIRE

    Koski, Jori

    2016-01-01

    The objective of this thesis is to clarify the use of cloud services and how they are used in practice. This thesis will first cover the history of cloud computing. At the early days of computing, services have been stored on servers locally and could be accessed through direct connections. After this, services have been on the users’ personal computers. Nowadays, services are stored in the cloud. This research paper focuses on four sub topics: communication services, healthcare se...

  7. Cloud Computing: Exploring the scope

    OpenAIRE

    Maurya, Brajesh Kumar

    2010-01-01

    Cloud computing refers to a paradigm shift to overall IT solutions while raising the accessibility, scalability and effectiveness through its enabling technologies. However, migrated cloud platforms and services cost benefits as well as performances are neither clear nor summarized. Globalization and the recessionary economic times have not only raised the bar of a better IT delivery models but also have given access to technology enabled services via internet. Cloud computing has va...

  8. Cloud Computing and Security Issues

    OpenAIRE

    Rohan Jathanna; Dhanamma Jagli

    2017-01-01

    Cloud computing has become one of the most interesting topics in the IT world today. Cloud model of computing as a resource has changed the landscape of computing as it promises of increased greater reliability, massive scalability, and decreased costs have attracted businesses and individuals alike. It adds capabilities to Information Technology’s. Over the last few years, cloud computing has grown considerably in Information Technology. As more and more information of individuals and compan...

  9. Studi Perbandingan Layanan Cloud Computing

    OpenAIRE

    Afdhal, Afdhal

    2013-01-01

    In the past few years, cloud computing has became a dominant topic in the IT area. Cloud computing offers hardware, infrastructure, platform and applications without requiring end-users knowledge of the physical location and the configuration of providers who deliver the services. It has been a good solution to increase reliability, reduce computing cost, and make opportunities to IT industries to get more advantages. The purpose of this article is to present a better understanding of cloud d...

  10. Internet ware cloud computing :Challenges

    OpenAIRE

    Qamar, S; Lal, Niranjan; Singh, Mrityunjay

    2010-01-01

    After decades of engineering development and infrastructural investment, Internet connections have become commodity product in many countries, and Internet scale “cloud computing” has started to compete with traditional software business through its technological advantages and economy of scale. Cloud computing is a promising enabling technology of Internet ware Cloud Computing is termed as the next big thing in the modern corporate world. Apart from the present day software and technologies,...

  11. CHPS IN CLOUD COMPUTING ENVIRONMENT

    OpenAIRE

    K.L.Giridas; A.Shajin Nargunam

    2012-01-01

    Workflow have been utilized to characterize a various form of applications concerning high processing and storage space demands. So, to make the cloud computing environment more eco-friendly,our research project was aiming in reducing E-waste accumulated by computers. In a hybrid cloud, the user has flexibility offered by public cloud resources that can be combined to the private resources pool as required. Our previous work described the process of combining the low range and mid range proce...

  12. Context-aware distributed cloud computing using CloudScheduler

    Science.gov (United States)

    Seuster, R.; Leavett-Brown, CR; Casteels, K.; Driemel, C.; Paterson, M.; Ring, D.; Sobie, RJ; Taylor, RP; Weldon, J.

    2017-10-01

    The distributed cloud using the CloudScheduler VM provisioning service is one of the longest running systems for HEP workloads. It has run millions of jobs for ATLAS and Belle II over the past few years using private and commercial clouds around the world. Our goal is to scale the distributed cloud to the 10,000-core level, with the ability to run any type of application (low I/O, high I/O and high memory) on any cloud. To achieve this goal, we have been implementing changes that utilize context-aware computing designs that are currently employed in the mobile communication industry. Context-awareness makes use of real-time and archived data to respond to user or system requirements. In our distributed cloud, we have many opportunistic clouds with no local HEP services, software or storage repositories. A context-aware design significantly improves the reliability and performance of our system by locating the nearest location of the required services. We describe how we are collecting and managing contextual information from our workload management systems, the clouds, the virtual machines and our services. This information is used not only to monitor the system but also to carry out automated corrective actions. We are incrementally adding new alerting and response services to our distributed cloud. This will enable us to scale the number of clouds and virtual machines. Further, a context-aware design will enable us to run analysis or high I/O application on opportunistic clouds. We envisage an open-source HTTP data federation (for example, the DynaFed system at CERN) as a service that would provide us access to existing storage elements used by the HEP experiments.

  13. Clouds in the Martian Atmosphere

    Science.gov (United States)

    Määttänen, Anni; Montmessin, Franck

    2018-01-01

    Although resembling an extremely dry desert, planet Mars hosts clouds in its atmosphere. Every day somewhere on the planet a part of the tiny amount of water vapor held by the atmosphere can condense as ice crystals to form cirrus-type clouds. The existence of water ice clouds has been known for a long time, and they have been studied for decades, leading to the establishment of a well-known climatology and understanding of their formation and properties. Despite their thinness, they have a clear impact on the atmospheric temperatures, thus affecting the Martian climate. Another, more exotic type of clouds forms as well on Mars. The atmospheric temperatures can plunge to such frigid values that the major gaseous component of the atmosphere, CO2, condenses as ice crystals. These clouds form in the cold polar night where they also contribute to the formation of the CO2 ice polar cap, and also in the mesosphere at very high altitudes, near the edge of space, analogously to the noctilucent clouds on Earth. The mesospheric clouds are a fairly recent discovery and have put our understanding of the Martian atmosphere to a test. On Mars, cloud crystals form on ice nuclei, mostly provided by the omnipresent dust. Thus, the clouds link the three major climatic cycles: those of the two major volatiles, H2O and CO2; and that of dust, which is a major climatic agent itself.

  14. The Ethics of Cloud Computing.

    Science.gov (United States)

    de Bruin, Boudewijn; Floridi, Luciano

    2017-02-01

    Cloud computing is rapidly gaining traction in business. It offers businesses online services on demand (such as Gmail, iCloud and Salesforce) and allows them to cut costs on hardware and IT support. This is the first paper in business ethics dealing with this new technology. It analyzes the informational duties of hosting companies that own and operate cloud computing datacentres (e.g., Amazon). It considers the cloud services providers leasing 'space in the cloud' from hosting companies (e.g., Dropbox, Salesforce). And it examines the business and private 'clouders' using these services. The first part of the paper argues that hosting companies, services providers and clouders have mutual informational (epistemic) obligations to provide and seek information about relevant issues such as consumer privacy, reliability of services, data mining and data ownership. The concept of interlucency is developed as an epistemic virtue governing ethically effective communication. The second part considers potential forms of government restrictions on or proscriptions against the development and use of cloud computing technology. Referring to the concept of technology neutrality, it argues that interference with hosting companies and cloud services providers is hardly ever necessary or justified. It is argued, too, however, that businesses using cloud services (e.g., banks, law firms, hospitals etc. storing client data in the cloud) will have to follow rather more stringent regulations.

  15. Advanced cloud fault tolerance system

    Science.gov (United States)

    Sumangali, K.; Benny, Niketa

    2017-11-01

    Cloud computing has become a prevalent on-demand service on the internet to store, manage and process data. A pitfall that accompanies cloud computing is the failures that can be encountered in the cloud. To overcome these failures, we require a fault tolerance mechanism to abstract faults from users. We have proposed a fault tolerant architecture, which is a combination of proactive and reactive fault tolerance. This architecture essentially increases the reliability and the availability of the cloud. In the future, we would like to compare evaluations of our proposed architecture with existing architectures and further improve it.

  16. Cloud computing theory and practice

    CERN Document Server

    Marinescu, Dan C

    2013-01-01

    Cloud Computing: Theory and Practice provides students and IT professionals with an in-depth analysis of the cloud from the ground up. Beginning with a discussion of parallel computing and architectures and distributed systems, the book turns to contemporary cloud infrastructures, how they are being deployed at leading companies such as Amazon, Google and Apple, and how they can be applied in fields such as healthcare, banking and science. The volume also examines how to successfully deploy a cloud application across the enterprise using virtualization, resource management and the ri

  17. Aerosols, cloud physics and radiation

    International Nuclear Information System (INIS)

    Twomey, S.

    1990-01-01

    Some aspects of climate physics are discussed with special attention given to cases where cloud physics is relevant for the phase and microstructure of clouds and, therefore, in the optical properties of the planet. It is argued that aerosol particles, through their strong effect on cloud microphysics, influence the shortwave energy input to earth, and that cloud microphysics strongly influence rain formation. Therefore, through their influence on microphysics, the aerosols play a central role in the atmospheric water cycle and, thus, on the planet's outgoing radiation. 20 refs

  18. Towards Building Cloud Education Networks

    Directory of Open Access Journals (Sweden)

    Stanka Hadzhikoleva

    2018-02-01

    Full Text Available The article outlines the trends and prospects in higher education happening as a result of internationalization, as well as the possible risks and challenges. The training capabilities of cloud computing are examined. A review has been done of specific cloud services suitable for organizing and conducting educational and administrative activities. Some trends have been outlined, such as the probable consequences of building institutional education clouds and the opportunities for interoperability between them. The opportunities for building cloud education networks and their main characteristics are explored.

  19. Using Long-Term Satellite Observations to Identify Sensitive Regimes and Active Regions of Aerosol Indirect Effects for Liquid Clouds Over Global Oceans

    Science.gov (United States)

    Zhao, Xuepeng; Liu, Yangang; Yu, Fangquan; Heidinger, Andrew K.

    2018-01-01

    Long-term (1981-2011) satellite climate data records of clouds and aerosols are used to investigate the aerosol-cloud interaction of marine water cloud from a climatology perspective. Our focus is on identifying the regimes and regions where the aerosol indirect effects (AIEs) are evident in long-term averages over the global oceans through analyzing the correlation features between aerosol loading and the key cloud variables including cloud droplet effective radius (CDER), cloud optical depth (COD), cloud water path (CWP), cloud top height (CTH), and cloud top temperature (CTT). An aerosol optical thickness (AOT) range of 0.13 change of long-term averaged CDER appears only in limited oceanic regions. The signature of aerosol invigoration of water clouds as revealed by the increase of cloud cover fraction (CCF) and CTH with increasing AOT at the middle/high latitudes of both hemispheres is identified for a pristine atmosphere (AOT polluted marine atmosphere (AOT > 0.3) in the tropical convergence zones. The regions where the second AIE is likely to manifest in the CCF change are limited to several oceanic areas with high CCF of the warm water clouds near the western coasts of continents. The second AIE signature as represented by the reduction of the precipitation efficiency with increasing AOT is more likely to be observed in the AOT regime of 0.08 < AOT < 0.4. The corresponding AIE active regions manifested themselves as the decline of the precipitation efficiency are mainly limited to the oceanic areas downwind of continental aerosols. The sensitive regime of the conventional AIE identified in this observational study is likely associated with the transitional regime from the aerosol-limited regime to the updraft-limited regime identified for aerosol-cloud interaction in cloud model simulations.

  20. Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-ENA) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Brookhaven National Lab. (BNL), Upton, NY (United States); Dong, Xiquan [Univ. of North Dakota, Grand Forks, ND (United States); Wood, Robert [Univ. of Washington, Seattle, WA (United States)

    2016-04-01

    With their extensive coverage, low clouds greatly impact global climate. Presently, low clouds are poorly represented in global climate models (GCMs), and the response of low clouds to changes in atmospheric greenhouse gases and aerosols remains the major source of uncertainty in climate simulations. The poor representations of low clouds in GCMs are in part due to inadequate observations of their microphysical and macrophysical structures, radiative effects, and the associated aerosol distribution and budget in regions where the aerosol impact is the greatest. The Eastern North Atlantic (ENA) is a region of persistent but diverse subtropical marine boundary-layer (MBL) clouds, whose albedo and precipitation are highly susceptible to perturbations in aerosol properties. Boundary-layer aerosol in the ENA region is influenced by a variety of sources, leading to strong variations in cloud condensation nuclei (CCN) concentration and aerosol optical properties. Recently a permanent ENA site was established by the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility on Graciosa Island in the Azores, providing invaluable information on MBL aerosol and low clouds. At the same time, the vertical structures and horizontal variabilities of aerosol, trace gases, cloud, drizzle, and atmospheric thermodynamics are critically needed for understanding and quantifying the budget of MBL aerosol, the radiative properties, precipitation efficiency, and lifecycle of MBL clouds, and the cloud response to aerosol perturbations. Much of this data can be obtained only through aircraft-based measurements. In addition, the interconnected aerosol and cloud processes are best investigated by a study involving simultaneous in situ aerosol, cloud, and thermodynamics measurements. Furthermore, in situ measurements are also necessary for validating and improving ground-based retrieval algorithms at the ENA site. This project is motivated by the need