WorldWideScience

Sample records for marine science programs

  1. Anthropogenic Climate Change in Undergraduate Marine and Environmental Science Programs in the United States

    Science.gov (United States)

    Vlietstra, Lucy S.; Mrakovcich, Karina L.; Futch, Victoria C.; Stutzman, Brooke S.

    2016-01-01

    To develop a context for program-level design decisions pertaining to anthropogenic climate change, the authors studied the prevalence of courses focused on human-induced climate change in undergraduate marine science and environmental science degree programs in the United States. Of the 86 institutions and 125 programs the authors examined, 37%…

  2. Computer Programs in Marine Science: Key to Oceanographic Records Documentation No. 5.

    Science.gov (United States)

    Firestone, Mary A.

    Presented are abstracts of 700 computer programs in marine science. The programs listed are categorized under a wide range of headings which include physical oceanography, chemistry, coastal and estuarine processes, biology, pollution, air-sea interaction and heat budget, navigation and charting, curve fitting, and applied mathematics. The…

  3. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high ... or by any means without permission in writing from the copyright holder. ..... Journal of Chemical Engineering Research and Design 82 ... Indian Ocean Marine Science Association Technical.

  4. Archive of Geosample Data and Information from the U.S. Geological Survey (USGS) Coastal and Marine Geology Program (CMGP) Pacific Coastal and Marine Science Center (PCMSC) Samples Repository

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey Coastal and Marine Geology Program (CMGP) Pacific Coastal and Marine Science Center (PCMSC) Samples Repository is a partner in the Index...

  5. Marine Language Exchange Program: A 21st Century International and Interdisciplinary Partnership

    Science.gov (United States)

    Robigou, V.; Nichols-Pecceu, M.

    2001-12-01

    The ability of scientists to communicate across cultural and linguistic barriers is crucial for the global economic sustainability and protection of the world\\'{}s oceans. Yet students with majors in the sciences and engineering constitute less than 2% of those who study abroad each year. And even rarer are students who study in countries where English is not the first language. The Marine Language Exchange program is a case study of an international and interdisciplinary collaboration between faculties in the languages and the sciences who address this gap. A consortium of U.S. and European institutions including Eckerd College (Florida), University of Washington (Washington), University of Hilo (Hawaii), Université de la Rochelle (France), Université de Liège (Belgium), and Universidad de Las Palmas (Spain) is developing a multilingual, marine sciences exchange program in an effort to internationalize their Marine Sciences departments. The program includes a three-week, intensive "bridge" course designed to reinforce second language skills in the context of marine sciences, and prepare undergraduate students for the cultural and educational differences of their host country. Following this immersion experience students from each institution enroll in courses abroad including marine sciences specialization for full academic credit. This session will review the Marine Language Exchange program activities since 2000 and will discuss the ideological and practical aspects of the program. The program successes, difficulties and future directions will also be presented. Different disciplinary approaches -Second Language Acquisition, English as a Second Language and Marine Science- prepare science students to contribute to the study and the management of the world\\'{}s oceans with an awareness of the cultural issues reflected by national marine policies. Based on this case study, other universities could initiate their own international and interdisciplinary

  6. Incorporating Hot Topics in Ocean Sciences to Outreach Activities in Marine and Environmental Science Education

    Science.gov (United States)

    Bergondo, D. L.; Mrakovcich, K. L.; Vlietstra, L.; Tebeau, P.; Verlinden, C.; Allen, L. A.; James, R.

    2016-02-01

    The US Coast Guard Academy, an undergraduate military Academy, in New London CT, provides STEM education programs to the local community that engage the public on hot topics in ocean sciences. Outreach efforts include classroom, lab, and field-based activities at the Academy as well as at local schools. In one course, we partner with a STEM high school collecting fish and environmental data on board a research vessel and subsequently students present the results of their project. In another course, cadets develop and present interactive demonstrations of marine science to local school groups. In addition, the Academy develops In another course, cadets develop and present interactive demonstrations of marine science to local school groups. In addition, the Academy develops and/or participates in outreach programs including Science Partnership for Innovation in Learning (SPIL), Women in Science, Physics of the Sea, and the Ocean Exploration Trust Honors Research Program. As part of the programs, instructors and cadets create interactive and collaborative activities that focus on hot topics in ocean sciences such as oil spill clean-up, ocean exploration, tsunamis, marine biodiversity, and conservation of aquatic habitats. Innovative science demonstrations such as real-time interactions with the Exploration Vessel (E/V) Nautilus, rotating tank simulations of ocean circulation, wave tank demonstrations, and determining what materials work best to contain and clean-up oil, are used to enhance ocean literacy. Children's books, posters and videos are some creative ways students summarize their understanding of ocean sciences and marine conservation. Despite time limitations of students and faculty, and challenges associated with securing funding to keep these programs sustainable, the impact of the programs is overwhelmingly positive. We have built stronger relationships with local community, enhanced ocean literacy, facilitated communication and mentorship between young

  7. Archive of Geosample Data and Information from the U.S. Geological Survey (USGS) Coastal and Marine Geology Program (CMGP) Woods Hole Coastal and Marine Science Center (WHCMSC) Samples Repository

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey Coastal and Marine Geology Program (CMGP) Woods Hole Coastal and Marine Science Center (WHCMSC) Samples Repository is a partner in the...

  8. Archive of Geosample Data and Information from the U.S. Geological Survey (USGS) Coastal and Marine Geology Program (CMGP) St. Petersburg Coastal and Marine Science Center (SPCMSC) Samples Repository

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey Coastal and Marine Geology Program (CMGP) St. Petersburg Coastal and Marine Science Center (SPCMSC) Samples Repository is a partner in the...

  9. European Community's program in marine resources development

    International Nuclear Information System (INIS)

    Lenoble, J.P.; Jarmache, E.

    1995-01-01

    The European Community launched already several research program in the different fields of social and industrial activities. The Fourth Framework Programme is divided into 4 main activities comporting a total of 18 programs. These programs are dealing with general topics as information and communication, industrial technologies, environment, life sciences and technologies, energy, transport and socioeconomic research. One line is devoted to marine sciences and technology, but offshore activities could also be included in the other topics as offshore oil and gas in energy, ship building and harbor in transport, aquaculture and fisheries in life sciences and technology, etc. In order to maintain a coherent approach toward offshore activities, the European maritime industries met intensively front 1991 to 1994 and recommended a series of proposal for Research and Development of marine resources. The methodology and content of these proposals is exposed

  10. Transporting ideas between marine and social sciences: experiences from interdisciplinary research programs

    Directory of Open Access Journals (Sweden)

    Lucy M. Turner

    2017-03-01

    Full Text Available The oceans comprise 70% of the surface area of our planet, contain some of the world’s richest natural resources and are one of the most significant drivers of global climate patterns. As the marine environment continues to increase in importance as both an essential resource reservoir and facilitator of global change, it is apparent that to find long-term sustainable solutions for our use of the sea and its resources and thus to engage in a sustainable blue economy, an integrated interdisciplinary approach is needed. As a result, interdisciplinary working is proliferating. We report here our experiences of forming interdisciplinary teams (marine ecologists, ecophysiologists, social scientists, environmental economists and environmental law specialists to answer questions pertaining to the effects of anthropogenic-driven global change on the sustainability of resource use from the marine environment, and thus to transport ideas outwards from disciplinary confines. We use a framework derived from the literature on interdisciplinarity to enable us to explore processes of knowledge integration in two ongoing research projects, based on analyses of the purpose, form and degree of knowledge integration within each project. These teams were initially focused around a graduate program, explicitly designed for interdisciplinary training across the natural and social sciences, at the Gothenburg Centre for Marine Research at the University of Gothenburg, thus allowing us to reflect on our own experiences within the context of other multi-national, interdisciplinary graduate training and associated research programs.

  11. MOBI: a marine and earth science interpretation and qualification program for out-of-school environment and natural heritage interpreters and other science communicators in Germany

    Science.gov (United States)

    Schneider, S.; Ellger, C.

    2017-12-01

    As a contribution to Germany's "Science Year 2016*17 - Seas and Oceans", a large science outreach program organized and financed by the National Ministry for Education and Research, GeoUnion, the umbrella organization of Earth science associations and institutions in Germany, has conducted a series of advance level workshops for out-of-school educators and interpreters in Germany. The workshops were organized in co-operation with geoparks, biosphere reserve areas and other environmental management institutions all over Germany. The goal was to convey various perspectives of modern marine sciences to inland venues, linking important present-day marine themes with the presentation of marine phases in the geological history of the host region. The workshops were designed for park rangers, museum educationalists and other science communicators, initiating a broader impact on target groups such as school classes, (geo-)tourists and stakeholder groups. Our approach has been to combine lectures by top-level scientists (on both ocean literacy aspects and regional geology) with discussions and an on-the-spot learning-and-presenting module based on prepared text and visual material. Beyond earth science issues we have integrated economy, ecology, social sciences as well as arts and humanities aspects. One central topic was the role of the world ocean in climate change; other themes highlighted sea level rise, the thermohaline circulation, sea-floor spreading, coral reefs, over-fishing, various marine species and the problem of plastic waste in the ocean. We had anticipated that marine issues are actually very rarely discussed in inland Germany. A structured presentation of ocean literacy elements has proved to be a new range of topical issues from earth and environmental sciences highly appreciated by the participants.

  12. A culturally appropriate program that works: Native Americans in Marine and Space Sciences

    Science.gov (United States)

    Vergun, J. R.

    2001-05-01

    For more than ten years, the College of Oceanic and Atmospheric Sciences at Oregon State University has carried out the Native Americans in Marine and Space Sciences (NAMSS) Program. Its long-term goal is to increase the number of American Indian and Native Alaskan undergraduates in science who complete degrees, continue to graduate school and enter the professional scientific work force. Ninety-eight percent of NAMSS students have earned BS degrees and almost forty percent have continued in graduate school. These are impressive results considering the high national drop-out rate for Native American studentsaround 70% according to the Chronicle of Higher Education (26 May 1993, page A29). Most often, Native students wishing to earn degrees in science find few programs that fit with their traditional sense of place and community. Most programs are narrowly focused and do not support or nurture Native views of interrelationship of all things. While Western science's recent ecological systems thinking approach more closely resembles the traditional Native view, Traditional Ecological Knowledge is often perceived as anecdotal or storytelling and not real science. This is a problem for Native students who are strongly underrepresented in the U.S. scientific community as a whole and nearly absent from the marine sciences. Undergraduates from this group are without scientific career models or mentors from their ethnic group and experience difficulty establishing contacts with majority scientists. They have limited access to opportunities to explore career possibilities in the sciences through research participation. Once on campus they have difficulty establishing a sense of belonging in the University community and do not have an organized way to enter into the scientific activities that initially attracted them. Representation of Native Americans in the ranks of U.S. scientists will not be increased without special efforts to retain them as undergraduates and to recruit

  13. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high ..... circulation patterns include the nutrient-rich Somali ...... matical Structures in Computer Science 24: e240311.

  14. Senior High School Earth Sciences and Marine Sciences.

    Science.gov (United States)

    Hackenberg, Mary; And Others

    This guide was developed for earth sciences and marine sciences instruction in the senior high schools of Duval County, Jacksonville, Florida. The subjects covered are: (1) Earth Science for 10th, 11th, and 12th graders; (2) Marine Biology I for 10th, 11th, and 12th graders; (3) Marine Biology II, Advanced, for 11th and 12th graders; (4) Marine…

  15. Marine Science

    African Journals Online (AJOL)

    Science. The journal has a new and more modern layout, published online only, and the editorial. Board was increased to include more disciplines pertaining to marine sciences. While important chal- lenges still lie ahead, we are steadily advancing our standard to increase visibility and dissemination throughout the global ...

  16. Marine Science

    African Journals Online (AJOL)

    Chief Editor José Paula | Faculty of Sciences of University of Lisbon, Portugal. Copy Editor Timothy Andrew. Published biannually. Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high quality research generated in the Western Indian Ocean (WIO) ...

  17. SCICEX: Submarine Arctic Science Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Submarine Arctic Science Program, SCICEX, is a federal interagency collaboration among the operational Navy, research agencies, and the marine research community...

  18. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the ... tidal height and amplitude can influence light penetra- ...... to environmental parameters in cage culture area of Sepanggar Bay, Malaysia.

  19. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue .... shell growth is adversely affected. ... local stressors in action, such as ocean acidification ..... that the distribution of many intertidal sessile animals.

  20. Marine Science

    African Journals Online (AJOL)

    pod diversity and distribution are important especially since studies on marine biodiversity are scarce .... Method II –. Zamoum &. Furla (2012) protocol. Method III. – Geist et al (2008) protocol ..... Public Library Of Science One 8: 51273.

  1. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ... consist of special issues on major events or important thematic issues. ... of sources, including plant and animal by- products.

  2. New Waves in Marine Science Symposium: Marine Animal Communication.

    Science.gov (United States)

    Allen, Betty, Comp.

    1989-01-01

    Presented are the abstracts from three research projects on marine social systems which were a part of a marine science symposium. Five sets of activities on marine animal communication are included, one each for grades K-2, 3-5, 6-8 and 9-12, and informal education. (CW)

  3. Authorized Course of Instruction for the Quinmester Program. Science: Introduction to Marine Science; Recreation and the Sea; Oceanography; Marine Ecology of South Florida, and Invertebrate Marine Biology.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    All five units, developed for the Dade County Florida Quinmester Program, included in this collection concern some aspect of marine studies. Except for "Recreation and the Sea," intended to give students basic seamanship skills and experience of other marine recreation, all units are designed for students with a background in biology or…

  4. How do marine and coastal citizen science experiences foster environmental engagement?

    Science.gov (United States)

    Dean, Angela J; Church, Emma K; Loder, Jenn; Fielding, Kelly S; Wilson, Kerrie A

    2018-05-01

    Citizen science programs enable community involvement in scientific research. In addition to fostering greater science literacy, some citizen science programs aim to foster engagement in environmental issues. However, few data are available to indicate whether and how citizen science programs can achieve greater environmental engagement. We survey individuals choosing to attend one of seventeen reef citizen science events and examine the extent to which attendees reported three indicators of greater environmental engagement: (i) willingness to share information, (ii) increased support for marine conservation and citizen science, and (iii) intentions to adopt a new behavior. Most participants reported being willing to share information about reef conservation (91%) and described increased support for marine science and conservation (87%). Half of participants (51%) reported intentions to adopt a new conservation behavior. We found that key elements of the citizen science experience associated with these outcomes were learning about actions to protect reefs and coasts (procedural learning), experiencing surprise, and experiencing negative emotions about environmental problems. Excitement was also associated with positive outcomes, but only in participants who were less likely to see themselves as environmental, or were less frequent visitors to reefs and coasts. Importantly, the association between factual learning and environmental engagement outcomes was limited or negative. These findings suggest that the way citizen science experiences make people feel, may be more important for fostering future environmental engagement than factual-based learning. When designing citizen science programs for community members, these findings provide a reminder to not focus on provision of factual information alone, but to highlight environmental impacts while providing meaningful experiences and building environmental skills. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Marine Science

    African Journals Online (AJOL)

    J O U R N A L O F. Marine Science. Coral reefs of Mauritius in a changing global climate ..... in confined aquifers, and a lesser influence in uncon- fined systems. On the ... massive cloud cover during the critical months, some. 70% bleaching ...

  6. Marine Science Summer Enrichment Camp's Impact Ocean Literacy for Middle School Students

    Science.gov (United States)

    Young, Victoria Jewel

    2017-01-01

    Although careers in science, technology, engineering, and mathematics have expanded in the United States, science literacy skills for K-12 students have declined from 2001 to 2011. Limited research has been conducted on the impact of science enrichment programs on the science literacy skills of K-12 students, particularly in marine science. The…

  7. Ecosystem Pen Pals: Using Place-Based Marine Science and Culture to Connect Students

    Science.gov (United States)

    Wiener, Carlie S.; Matsumoto, Karen

    2014-01-01

    The marine environment provides a unique context for students to explore both natural and cultural connections. This paper reports preliminary findings on Ecosystem Pen Pals, an ocean literacy program for 4th and 5th graders focused on using a pen pal model for integrating traditional ecological knowledge into marine science. Surveys with…

  8. Building diversity in REU programs through MIMSUP at the Shannon Point Marine Center

    Science.gov (United States)

    Bingham, B. L.; Sulkin, S.

    2011-12-01

    The road to a career in the ocean sciences can be long and challenging, particularly for students from racial/ethnic groups underrepresented in the field. For the past 21 years, faculty and staff at the Shannon Point Marine Center, Western Washington University have annually administered the NSF-funded Multicultural Initiative in the Marine Sciences: Undergraduate Participation (MIMSUP) program. The goal of MIMSUP is to increase diversity in the ocean sciences by moving students though their undergraduate programs into advanced education and leadership positions in the field. Helping students find positions in REU and other focused research programs is an important step along this path. Primary obstacles for the students include 1) a lack of knowledge about opportunities available to them, 2) a lack of experience preparing quality applications and 3) a lack of confidence in their ability to compete for positions. Focused mentoring, with an emphasis on skills development is important in helping outstanding, though inexperienced, students find and excel in REU programs.

  9. The Source Book of Marine Sciences.

    Science.gov (United States)

    Beakley, John C.; And Others

    Included is a teachers resource collection of 42 marine science activities for high school students. Both the biological and the physical factors of the marine environment are investigated, including the study of tides, local currents, microscope measuring, beaches, turbidity, sea water solids, pH, and salinity, marine bacteriology, microbiology,…

  10. Enhancing Teacher and Student Engagement and Understanding of Marine Science Through Classroom Citizen Science Projects

    Science.gov (United States)

    Goodale, T. A.

    2016-02-01

    Overview This paper presentation shares findings from a granted funded project that sought to expand teacher content knowledge and pedagogy within the fields of marine science and coastal resource management through the implementation of classroom citizen science projects. A secondary goal was to increase middle and high school student interest and participation in marine science and natural resources research. Background A local science & engineering fair has seen a rapid decline in secondary student participants in the past four years. Research has demonstrated that when students are a part of a system of knowledge production (citizen science) they become much more aware, involved and conscious of scientific concepts compared to traditional school laboratory and nature of science activities. This project's primary objectives were to: (a) enhance teacher content expertise in marine science, (b) enrich teacher professional learning, (c) support citizen science classroom projects and inspire student activism and marine science engagement. Methods Project goals were addressed through classroom and meaningful outdoor educational experiences that put content knowledge into field based practices. Teachers learned to apply thier expanded content knowlege through classroom citizen science projects that focus on marine resource conservation issues such as fisheries management, water quality, turtle nesting and biodiversity of coastal ecosystems. These projects would eventually become potential topics of citizen science research topics for their students to pursue. Upon completion of their professional development, participants were urged to establish student Marine Science clubs with the goal of mentoring student submissions into the local science fair. Supplemental awards were possible for the students of project participants. Findings Based on project measures participants significantly increased their knowledge and awareness of presented material marine science and

  11. Archives: Western Indian Ocean Journal of Marine Science

    African Journals Online (AJOL)

    Items 1 - 29 of 29 ... Archives: Western Indian Ocean Journal of Marine Science. Journal Home > Archives: Western Indian Ocean Journal of Marine Science. Log in or Register to get access to full text downloads.

  12. Western Indian Ocean Journal of Marine Science: Journal ...

    African Journals Online (AJOL)

    Western Indian Ocean Journal of Marine Science: Journal Sponsorship. Journal Home > About the Journal > Western Indian Ocean Journal of Marine Science: Journal Sponsorship. Log in or Register to get access to full text downloads.

  13. Marine biosurfaces research program

    Science.gov (United States)

    The Office of Naval Research (ONR) of the U.S. Navy is starting a basic research program to address the initial events that control colonization of surfaces by organisms in marine environments. The program “arises from the Navy's need to understand and ultimately control biofouling and biocorrosion in marine environments,” according to a Navy announcement.The program, “Biological Processes Controlling Surface Modification in the Marine Environment,” will emphasize the application of in situ techniques and modern molecular biological, biochemical, and biophysical approaches; it will also encourage the development of interdisciplinary projects. Specific areas of interest include sensing and response to environmental surface (physiology/physical chemistry), factors controlling movement to and retention at surfaces (behavior/hydrodynamics), genetic regulation of attachment (molecular genetics), and mechanisms of attachment (biochemistry/surface chemistry).

  14. Communicating marine reserve science to diverse audiences

    Science.gov (United States)

    Grorud-Colvert, Kirsten; Lester, Sarah E.; Airamé, Satie; Neeley, Elizabeth; Gaines, Steven D.

    2010-01-01

    As human impacts cause ecosystem-wide changes in the oceans, the need to protect and restore marine resources has led to increasing calls for and establishment of marine reserves. Scientific information about marine reserves has multiplied over the last decade, providing useful knowledge about this tool for resource users, managers, policy makers, and the general public. This information must be conveyed to nonscientists in a nontechnical, credible, and neutral format, but most scientists are not trained to communicate in this style or to develop effective strategies for sharing their scientific knowledge. Here, we present a case study from California, in which communicating scientific information during the process to establish marine reserves in the Channel Islands and along the California mainland coast expanded into an international communication effort. We discuss how to develop a strategy for communicating marine reserve science to diverse audiences and highlight the influence that effective science communication can have in discussions about marine management. PMID:20427745

  15. From darwin to the census of marine life: marine biology as big science.

    Science.gov (United States)

    Vermeulen, Niki

    2013-01-01

    With the development of the Human Genome Project, a heated debate emerged on biology becoming 'big science'. However, biology already has a long tradition of collaboration, as natural historians were part of the first collective scientific efforts: exploring the variety of life on earth. Such mappings of life still continue today, and if field biology is gradually becoming an important subject of studies into big science, research into life in the world's oceans is not taken into account yet. This paper therefore explores marine biology as big science, presenting the historical development of marine research towards the international 'Census of Marine Life' (CoML) making an inventory of life in the world's oceans. Discussing various aspects of collaboration--including size, internationalisation, research practice, technological developments, application, and public communication--I will ask if CoML still resembles traditional collaborations to collect life. While showing both continuity and change, I will argue that marine biology is a form of natural history: a specific way of working together in biology that has transformed substantially in interaction with recent developments in the life sciences and society. As a result, the paper does not only give an overview of transformations towards large scale research in marine biology, but also shines a new light on big biology, suggesting new ways to deepen the understanding of collaboration in the life sciences by distinguishing between different 'collective ways of knowing'.

  16. From darwin to the census of marine life: marine biology as big science.

    Directory of Open Access Journals (Sweden)

    Niki Vermeulen

    Full Text Available With the development of the Human Genome Project, a heated debate emerged on biology becoming 'big science'. However, biology already has a long tradition of collaboration, as natural historians were part of the first collective scientific efforts: exploring the variety of life on earth. Such mappings of life still continue today, and if field biology is gradually becoming an important subject of studies into big science, research into life in the world's oceans is not taken into account yet. This paper therefore explores marine biology as big science, presenting the historical development of marine research towards the international 'Census of Marine Life' (CoML making an inventory of life in the world's oceans. Discussing various aspects of collaboration--including size, internationalisation, research practice, technological developments, application, and public communication--I will ask if CoML still resembles traditional collaborations to collect life. While showing both continuity and change, I will argue that marine biology is a form of natural history: a specific way of working together in biology that has transformed substantially in interaction with recent developments in the life sciences and society. As a result, the paper does not only give an overview of transformations towards large scale research in marine biology, but also shines a new light on big biology, suggesting new ways to deepen the understanding of collaboration in the life sciences by distinguishing between different 'collective ways of knowing'.

  17. Marine molecular biology: an emerging field of biological sciences.

    Science.gov (United States)

    Thakur, Narsinh L; Jain, Roopesh; Natalio, Filipe; Hamer, Bojan; Thakur, Archana N; Müller, Werner E G

    2008-01-01

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. However, the value of molecular techniques for addressing problems in marine biology has only recently begun to be cherished. It has been proven that the exploitation of molecular biological techniques will allow difficult research questions about marine organisms and ocean processes to be addressed. Marine molecular biology is a discipline, which strives to define and solve the problems regarding the sustainable exploration of marine life for human health and welfare, through the cooperation between scientists working in marine biology, molecular biology, microbiology and chemistry disciplines. Several success stories of the applications of molecular techniques in the field of marine biology are guiding further research in this area. In this review different molecular techniques are discussed, which have application in marine microbiology, marine invertebrate biology, marine ecology, marine natural products, material sciences, fisheries, conservation and bio-invasion etc. In summary, if marine biologists and molecular biologists continue to work towards strong partnership during the next decade and recognize intellectual and technological advantages and benefits of such partnership, an exciting new frontier of marine molecular biology will emerge in the future.

  18. The ANTOSTRAT legacy: Science collaboration and international transparency in potential marine mineral resource exploitation of Antarctica

    Science.gov (United States)

    Cooper, Alan; Barker, Peter; Barrett, Peter; Behrendt, John; Brancolini, Giuliano; Childs, Jonathan R.; Escutia, Carlota; Jokat, Wilfried; Kristoffersen, Yngve; Leitchenkov, German; Stagg, Howard; Tanahashi, Manabu; Wardell, Nigel; Webb, Peter

    2009-01-01

    The Antarctic Offshore Stratigraphy project (ANTOSTRAT; 1989–2002) was an extremely successful collaboration in international marine geological science that also lifted the perceived “veil of secrecy” from studies of potential exploitation of Antarctic marine mineral resources. The project laid the groundwork for circum-Antarctic seismic, drilling, and rock coring programs designed to decipher Antarctica’s tectonic, stratigraphic, and climate histories. In 2002, ANTOSTRAT evolved into the equally successful and currently active Antarctic Climate Evolution research program. The need for, and evolution of, ANTOSTRAT was based on two simple tenets within SCAR and the Antarctic Treaty: international science collaboration and open access to data. The ANTOSTRAT project may be a helpful analog for other regions of strong international science and geopolitical interests, such as the Arctic. This is the ANTOSTRAT story.

  19. 75 FR 18095 - America's Marine Highway Program

    Science.gov (United States)

    2010-04-09

    ... Marine Highway Transportation. Authority: Energy Independence and Security Act of 2007, Sections 1121...] RIN 2133-AB70 America's Marine Highway Program AGENCY: Maritime Administration, Department of... interim final rule that established America's Marine Highway Program, under which the Secretary will...

  20. Ecological Research Division, Marine Research Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    This report presents program summaries of the various projects sponsored during 1979 by the Marine Research Program of the Ecological Research Division. Program areas include the effects of petroleum hydrocarbons on the marine environment; a study of the baseline ecology of a proposed OTEC site near Puerto Rico; the environmental impact of offshore geothermal energy development; the movement of radionuclides through the marine environment; the environmental aspects of power plant cooling systems; and studies of the physical and biological oceangraphy of the continental shelves bordering the United States.

  1. Ecological Research Division, Marine Research Program

    International Nuclear Information System (INIS)

    1980-05-01

    This report presents program summaries of the various projects sponsored during 1979 by the Marine Research Program of the Ecological Research Division. Program areas include the effects of petroleum hydrocarbons on the marine environment; a study of the baseline ecology of a proposed OTEC site near Puerto Rico; the environmental impact of offshore geothermal energy development; the movement of radionuclides through the marine environment; the environmental aspects of power plant cooling systems; and studies of the physical and biological oceangraphy of the continental shelves bordering the United States

  2. African Journal of Marine Science

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... The African (formerly South African) Journal of Marine Science provides an international forum for the publication of original scientific contributions or critical reviews, ...

  3. The Marine Sciences Laboratory (MSL)

    Data.gov (United States)

    Federal Laboratory Consortium — The�Marine Sciences Laboratory sits on 140 acres of tidelands and uplands located on Sequim Bay, Washington. Key capabilities include 6,000 sq ft of analytical and...

  4. Marine Science Teaching at the University Level. Report of the Unesco Workshop on University Curricula. Unesco Technical Papers in Marine Science No. 19.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). Div. of Marine Sciences.

    A group of marine science education educators from several countries were requested to provide guidelines for the education and training of marine scientists and formulate recommended curricula in the following disciplines: marine biology (including fisheries biology), physical oceanography, and marine geology. Included in the report are: (1)…

  5. Ocean Filmmaking Camp @ Duke Marine Lab: Building Community with Ocean Science for a Better World

    Science.gov (United States)

    De Oca, M.; Noll, S.

    2016-02-01

    A democratic society requires that its citizens are informed of everyday's global issues. Out of all issues those related to ocean conservation can be hard to grasp for the general public and especially so for disadvantaged racial and ethnic groups. Opportunity-scarce communities generally have more limited access to the ocean and to science literacy programs. The Ocean Filmmaking Camp @ Duke Marine Lab (OFC@DUML) is an effort to address this gap at the level of high school students in a small coastal town. We designed a six-week summer program to nurture the talents of high school students from under-represented communities in North Carolina with training in filmmaking, marine science and conservation. Our science curriculum is especially designed to present the science in a locally and globally-relevant context. Class discussions, field trips and site visits develop the students' cognitive abilities while they learn the value of the natural environment they live in. Through filmmaking students develop their voice and their media literacy, while connecting with their local community, crossing class and racial barriers. By the end of the summer this program succeeds in encouraging students to engage in the democratic process on ocean conservation, climate change and other everyday affairs affecting their local communities. This presentation will cover the guiding principles followed in the design of the program, and how this high impact-low cost program is implemented. In its first year the program was co-directed by a graduate student and a local high school teacher, who managed more than 20 volunteers with a total budget of $1,500. The program's success was featured in the local newspaper and Duke University's Environment Magazine. This program is an example of how ocean science can play a part in building a better world, knitting diverse communities into the fabric of the larger society with engaged and science-literate citizens living rewarding lives.

  6. Science Partnerships for a Sustainable Arctic: the Marine Mammal Nexus (Invited)

    Science.gov (United States)

    Moore, S. E.

    2010-12-01

    Marine mammals are both icons of Arctic marine ecosystems and fundamental to Native subsistence nutrition and culture. Eight species are endemic to the Pacific Arctic, including the polar bear, walrus, ice seals (4 species), beluga and bowhead whales. Studies of walrus and bowheads have been conducted over the past 30 years, to estimate population size and elucidate patterns of movement and abundance. With regard to the three pillars of the SEARCH program, these long-term OBSERVATIONS provide a foundation for research seeking to UNDERSTAND and RESPOND to the effects of rapid climate change on the marine ecosystem. Specifically, research on the coastal ecosystem near Barrow, Alaska focuses on late-summer feeding habitat for bowheads in an area where whales are hunted in autumn. This work is a partnership among agency, academic and local scientists and the residents of Barrow, all of whom seek to better UNDERSTAND how recent dramatic changes in sea ice, winds and offshore industrial activities influence whale movements and behavior. In regard to RESPONDING to climate change, the nascent Sea Ice for Walrus Outlook (SIWO) is a science partnership that projects sea ice and wind conditions for five villages in the Bering Strait region. The objective of the SIWO is to provide information on physical conditions in the marine environment at spatial and temporal scales relevant to walrus hunters. Marine mammals are a strong and dynamic nexus for partnerships among scientists, Arctic residents, resource managers and the general public - as such, they are essential elements to any science plan for a sustainable Arctic.

  7. The marine corrosion program developed by Nuclebras

    International Nuclear Information System (INIS)

    Moreira, P.A.P.; Quinan, M.A.

    1986-01-01

    A marine corrosion program is being developed by NUCLEBRAS and NUCLEN. This program consists in carrying out non-accelerated experiments in marine atmosphere, with immersion in sewater and laboratory accelerated tests. The purpose is to obtain a correlation between the corrosion rates observed in non-accelerated conditions and laboratory tests. Through these results it is inteded, only with laboratory tests, to estimate the bahavior of similar materials when tsted in similar marine atmosphereic conditions. Some aspects observed in the implementation of the program and some results so far obtained are discussed. (Author) [pt

  8. Shallow waters: social science research in South Africa's marine ...

    African Journals Online (AJOL)

    Shallow waters: social science research in South Africa's marine ... certain issues and social interactions in the marine environment but this work is limited ... Keywords: coastal development, economics, governance, human dimensions, society

  9. Marine Sciences

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    PNL research in the marine sciences is focused on establishing a basic understanding of the mechanisms of stress and tolerance in marine organisms exposed to contaminants. Several environmental stressors had been investigated in earlier energy-related research. In a landmark study, for example, PNL had established that the severity of fish disease caused by the common infectious agent, Flexobacter columnaris, was seriously aggravated by thermal enhancement and certain ecological factors. Subsequent studies demonstrated that the primary immune response in fish, challenged by columnaris, could be permanently suppressed by comparatively low tritium exposures. The research has suggested that a potential exists for a significant biological impact when an aquatic stressor is added to an ambient background of other stressors, which may include heat, heavy metal ions, radiation or infectious microorganisms. More recently, PNL investigators have shown that in response to heavy metal contaminants, animals synthesize specific proteins (metallothioneins), which bind and sequester metals in the animals, thus decreasing metal mobility and effects. Companion studies with host-specific intracellular pathogens are being used to investigate the effects of heavy metals on the synthesis of immune proteins, which mitigate disease processes. The results of these studies aid in predicting the ecological effects of energy-related contaminants on valued fin and shellfish species

  10. Collaborative, Early-undergraduate-focused REU Programs at Savannah State University have been Vital to Growing a Demographically Diverse Ocean Science Community

    Science.gov (United States)

    Gilligan, M. R.; Cox, T. M.; Hintz, C. J.

    2011-12-01

    Formal support for undergraduates to participate in marine/ocean science research at Savannah State University (SSU), a historically-Black unit of the University System of Georgia, began in 1989 with funding from the National Science Foundation for an unsolicited proposal (OCE-8919102, 34,935). Today SSU, which has offered B.S degrees since 1979 and M.S. degrees since 2001 in Marine Sciences, is making major contributions nationally to demographic diversity in ocean sciences. 33% of Master's degrees in marine/ocean sciences earned by African Americans in the U.S. from 2004-2007 were earned at SSU. 10% of African American Master's and Doctoral students in marine/ ocean sciences in 2007 were either enrolled in the Master's program at SSU or were former SSU students enrolled in Doctoral programs elsewhere. Collaborative REU programs that focus on early (freshman and sophomore) undergraduate students have been a consistent and vital part of that success. In the most recent iteration of our summer REU program we used six of the best practices outlined in the literature to increase success and retention of underrepresented minority students in STEM fields: early intervention, strong mentoring, research experience, career counseling, financial support, workshops and seminars. The early intervention with strong mentoring has proven successful in several metrics: retention in STEM majors (96%), progression to graduate school (50%), and continuation to later research experiences (75%). Research mentors include faculty at staff at SSU, the Skidaway Institute of Oceanography, Gray's Reef National Marine Sanctuary and Georgia Tech-Savannah. Formal collaborative and cooperative agreements, externally-funded grants, and contracts in support of student research training have proven to be critical in providing resources for growth and improvement marine science curricular options at the University. Since 1981 the program has had four formal partnerships and 36 funded grant awards

  11. A Series of MATLAB Learning Modules to Enhance Numerical Competency in Applied Marine Sciences

    Science.gov (United States)

    Fischer, A. M.; Lucieer, V.; Burke, C.

    2016-12-01

    Enhanced numerical competency to navigate the massive data landscapes are critical skills students need to effectively explore, analyse and visualize complex patterns in high-dimensional data for addressing the complexity of many of the world's problems. This is especially the case for interdisciplinary, undergraduate applied marine science programs, where students are required to demonstrate competency in methods and ideas across multiple disciplines. In response to this challenge, we have developed a series of repository-based data exploration, analysis and visualization modules in MATLAB for integration across various attending and online classes within the University of Tasmania. The primary focus of these modules is to teach students to collect, aggregate and interpret data from large on-line marine scientific data repositories to, 1) gain technical skills in discovering, accessing, managing and visualising large, numerous data sources, 2) interpret, analyse and design approaches to visualise these data, and 3) to address, through numerical approaches, complex, real-world problems, that the traditional scientific methods cannot address. All modules, implemented through a MATLAB live script, include a short recorded lecture to introduce the topic, a handout that gives an overview of the activities, an instructor's manual with a detailed methodology and discussion points, a student assessment (quiz and level-specific challenge task), and a survey. The marine science themes addressed through these modules include biodiversity, habitat mapping, algal blooms and sea surface temperature change and utilize a series of marine science and oceanographic data portals. Through these modules students, with minimal experience in MATLAB or numerical methods are introduced to array indexing, concatenation, sorting, and reshaping, principal component analysis, spectral analysis and unsupervised classification within the context of oceanographic processes, marine geology and

  12. Integrated School of Ocean Sciences: Doctoral Education in Marine Sciences in Kiel

    Science.gov (United States)

    Bergmann, Nina; Basse, Wiebke; Prigge, Enno; Schelten, Christiane; Antia, Avan

    2016-04-01

    Marine research is a dynamic thematic focus in Kiel, Germany, uniting natural scientists, economists, lawyers, philosophers, artists and computing and medical scientists in frontier research on the scientific, economic and legal aspects of the seas. The contributing institutions are Kiel University, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel Institute for the World Economy and Muthesius University in Kiel. Marine science education in Kiel trains young scientists to investigate the role of the oceans in global change, risks arising from ocean usage and sustainable management of living and non-living marine resources. Basic fundamental research is supplemented with applied science in an international framework including partners from industry and public life. The Integrated School of Ocean Sciences (ISOS) established through the Cluster of Excellence "The Future Ocean", funded within the German Excellence Initiative, provides PhD candidates in marine sciences with interdisciplinary education outside of curricular courses. It supports the doctoral candidates through supplementary training, a framework of supervision, mentoring and mobility, the advisors through transparency and support of doctoral training in their research proposals and the contributing institutions by ensuring quality, innovation and excellence in marine doctoral education. All PhD candidates financed by the Helmholtz Research School for Ocean System Science and Technology (HOSST) and the Collaborative Research Centre 754 "Climate-biogeochemical interactions in the tropical ocean" (SFB 754) are enrolled at the ISOS and are integrated into the larger peer community. Over 150 PhD candidate members from 6 faculties form a large interdisciplinary network. At the ISOS, they sharpen their scientific profile, are challenged to think beyond their discipline and equip themselves for life after a PhD through early exposure to topics beyond research (e.g. social responsibility, public communication

  13. The development of fast simulation program for marine reactor parameters

    International Nuclear Information System (INIS)

    Chen Zhiyun; Hao Jianli; Chen Wenzhen

    2012-01-01

    Highlights: ► The simplified physical and mathematical models are proposed for a marine reactor system. ► A program is developed with Simulink module and Matlab file. ► The program developed has the merit of easy input preparation, output processing and fast running. ► The program can be used for the fast simulation of marine reactor parameters on the operating field. - Abstract: The fast simulation program for marine reactor parameters is developed based on the Simulink simulating software according to the characteristics of marine reactor with requirement of maneuverability and acute and fast response. The simplified core physical and thermal model, pressurizer model, steam generator model, control rod model, reactivity model and the corresponding Simulink modules are established. The whole program is developed by coupling all the Simulink modules. Two typical transient processes of marine reactor with fast load increase at low power level and load rejection at high power level are adopted to verify the program. The results are compared with those of Relap5/Mod3.2 with good consistency, and the program runs very fast. It is shown that the program is correct and suitable for the fast and accurate simulation of marine reactor parameters on the operating field, which is significant to the marine reactor safe operation.

  14. Green Marine: An environmental program to establish sustainability in marine transportation.

    Science.gov (United States)

    Walker, Tony R

    2016-04-15

    European maritime companies have adopted programs to limit operational impacts on the environment. For maritime companies in North America, the Green Marine Environmental Program (GMEP) offers a framework to establish and reduce environmental footprints. Green Marine (GM) participants demonstrate annual improvements of specific environmental performance indicators (e.g., reductions in air pollution emissions) to maintain certification. Participants complete annual self-evaluations with results determining rankings for performance indicators on a 1-to-5 scale. Self-evaluations are independently verified every two years to ensure rigor and individual results are made publicly available annually to achieve transparency. GM benefits the marine industry across North America by encouraging sustainable development initiatives. GM's credibility is reflected through a diverse network of environmental groups and government agencies that endorse and help shape the program. Merits of this relatively new maritime certification (not previously described in the academic literature), are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Design of Mariner 9 Science Sequences using Interactive Graphics Software

    Science.gov (United States)

    Freeman, J. E.; Sturms, F. M, Jr.; Webb, W. A.

    1973-01-01

    This paper discusses the analyst/computer system used to design the daily science sequences required to carry out the desired Mariner 9 science plan. The Mariner 9 computer environment, the development and capabilities of the science sequence design software, and the techniques followed in the daily mission operations are discussed. Included is a discussion of the overall mission operations organization and the individual components which played an essential role in the sequence design process. A summary of actual sequences processed, a discussion of problems encountered, and recommendations for future applications are given.

  16. [Marine science in Revista de Biologia Tropical in its 50th anniversary].

    Science.gov (United States)

    Cortés, Jorge; Nielsen, Vanessa

    2002-01-01

    The first paper published in the Revista de Biología Tropical (RBT) on anything related to marine science was in 1963. Since then the number of marine-related papers has increased to 637, which represents 27% of the total production of RBT (excluding the Supplements), and 33% since 1979. Most publications are Full Articles on Ecology (135 papers). The marine ecosystem of which there is more publications is the coral reefs (28); and fish is the most studied taxonomic group (165). Almost half of the Supplements are marine related (12). The RBT must continue its efforts to maintain itself as a leading marine science publication in Latin America.

  17. The Woods Hole Partnership Education Program: Increasing Diversity in the Ocean and Environmental Sciences in One Influential Science Community

    Science.gov (United States)

    Jearld, A.

    2011-12-01

    To increase diversity in one influential science community, a consortium of public and private institutions created the Woods Hole Partnership Education Program, or PEP, in 2008. Participating institutions are the Marine Biological Laboratory, Northeast Fisheries Science Center of NOAA's Fisheries Service, Sea Education Association, U.S. Geological Survey, Woods Hole Oceanographic Institution, the Woods Hole Research Center, and University of Maryland Eastern Shore. Aimed at college juniors and seniors with some course work in marine and/or environmental sciences, PEP is a four-week course and a six-to-eight-week individual research project under the guidance of a research mentor. Forty-six students have participated to date. Investigators from the science institutions serve as course faculty and research mentors. We listened to experts regarding critical mass, mentoring, adequate support, network recruitment, and then built a program based on those features. Three years in we have a program that works and that has its own model for choosing applicants and for matching with mentors. We continue fine-tuning our match process, enhancing mentoring skills, preparing our students for a variety of lab cultures, and setting expectations high while remaining supportive. Our challenges now are to keep at it, using leverage instead of capacity to make a difference. Collaboration, not competition, is key since a rising tide floats all boats.

  18. Bio-PIXE marine science. Otoliths and plankton

    International Nuclear Information System (INIS)

    Malmqvist, K.G.; Buelow, K.; Elfman, M.; Kristiansson, P; Pallon, J.; Shariff, S.; Limburg, K.E.; Karlsson, C.

    1999-01-01

    Otoliths and phytoplanktons have been investigated using a nuclear microprobe. A brief description of sample preparation and irradiation conditions is given. The results indicate a great potential of the technique in marine sciences. (author)

  19. Inventory of Innovative Learning Materials in Marine Science and Technology. UNESCO Reports in Marine Science 60.

    Science.gov (United States)

    Richards, Adrian F.; Richards, Efrosine A.

    The Inventory of Innovative Learning Materials in Marine Science and Technology includes 32 computer-, 148 video-, 16 film-, and 11 CD-ROM-based entries. They concern materials in biosciences (67), chemistry (5), geosciences (16), physics (23), technology (76) and other (20). This first, initial compilations is conceived as the basis for more…

  20. Behind Waterlust - Bringing marine science, sport and art together

    Science.gov (United States)

    Rynne, P.; Graham, F.

    2013-12-01

    In today's economic climate, it has become increasingly important for scientists to demonstrate the relevance, societal impact, and value of their work. Combined with this financial driver is the inherent human desire to be creative, a characteristic that is often times suppressed when following the scientific method. Created by three marine science graduate students from the Rosenstiel School of Marine and Atmospheric Science at the University of Miami, Waterlust is an experiment to demonstrate that the pursuit of creative outlets that engage the general public is both valuable and rewarding for the scientific community.

  1. The Census of Marine Life on Seamounts: results from a global science program

    Science.gov (United States)

    Stocks, K.; Clark, M.; Rowden, A.; Consalvey, M.

    2010-12-01

    CenSeam (a Global Census of Marine Life on Seamounts) is a network of more than 500 scientists, policy makers and conservationists around the world. These participants are collaborating to increase our understanding of the factors driving seamount community composition and diversity, such that we can better understand and manage the effects of human activities. The major scientific outcomes of the CenSeam community include the findings that 1) Seamount community composition is often similar to surrounding habitats; however, community structure can be different. 2) Contrary to conventional wisdom, few seamounts follow island biogeography predictions. 3) Seamounts can support a higher benthic biomass than surrounding habitats. 4) Seamounts can support species and communities new to science, and represent range extensions for known species, which are being described from CenSeam voyages. 5) For the first time, the extent of the vulnerability and risk to seamount benthic communities from fishing has been quantified. 6) Whilst long assumed, CenSeam researchers have demonstrated that seamount communities are disturbed by fishing and are slow to recover. And 7) Seamounts might act as repositories of biodiversity during future periods of extreme environmental change, as they have likely done in the past. The major products of Censeam include 1) a book synthesizing seamount knowledge: Seamounts: Ecology, Fisheries and Conservation (from Blackwell Publishing); 2) a recent review of the structure and function of seamount benthic communities, human impacts, and seamount management and conservation (Ann Rev Mar Sci); 3) hundreds of scientific publications, including Special Issues in Marine Ecology and Oceanography (in collaboration with the Seamount Biogeogsciences Network), and a Special Collection in PLoSONE; 4) guidance documents and formal advising for seamount management communities, including the United Nations Environment Program, International Seabed Authority

  2. Youth Science Ambassadors: Connecting Indigenous communities with Ocean Networks Canada tools to inspire future ocean scientists and marine resource managers

    Science.gov (United States)

    Pelz, M.; Hoeberechts, M.; Hale, C.; McLean, M. A.

    2017-12-01

    This presentation describes Ocean Networks Canada's (ONC) Youth Science Ambassador Program. The Youth Science Ambassadors are a growing network of youth in Canadian coastal communities whose role is to connect ocean science, ONC data, and Indigenous knowledge. By directly employing Indigenous youth in communities in which ONC operates monitoring equipment, ONC aims to encourage wider participation and interest in ocean science and exploration. Further, the Youth Science Ambassadors act as role models and mentors to other local youth by highlighting connections between Indigenous and local knowledge and current marine science efforts. Ocean Networks Canada, an initiative of the University of Victoria, develops, operates, and maintains cabled ocean observatory systems. These include technologies developed on the world-leading NEPTUNE and VENUS observatories as well as community observatories in the Arctic and coastal British Columbia. These observatories, large and small, enable communities, users, scientists, teachers, and students to monitor real-time and historical data from the local marine environment from anywhere on the globe. Youth Science Ambassadors are part of the Learning and Engagement team whose role includes engaging Indigenous communities and schools in ocean science through ONC's K-12 Ocean Sense education program. All of the data collected by ONC are freely available over the Internet for non-profit use, including disaster planning, community-based decision making, and education. The Youth Science Ambassadors support collaboration with Indigenous communities and schools by facilitating educational programming, encouraging participation in ocean data collection and analysis, and fostering interest in ocean science. In addition, the Youth Science Ambassadors support community collaboration in decision-making for instrument deployment locations and identify ways in which ONC can help to address any areas of concern raised by the community. This

  3. Veteran Unemployment of Transitioning Marines

    Science.gov (United States)

    2013-11-01

    military experience. C2 Marines have high AFQT scores and work with information systems; they may pursue, for example, computer science degrees in college...i.e., they made a rational decision based on lack of information). DOD actuarial officials use the low MGIB benefit use rate to maintain program...such as computer science , to make their military skills transferable, while others may not. Marines in services, repair/maintenance, operator, and

  4. Western Indian Ocean Journal of Marine Science

    African Journals Online (AJOL)

    Western Indian Ocean Journal of Marine Science. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 3, No 2 (2004) >. Log in or Register to get access to full text downloads.

  5. Western Indian Ocean Journal of Marine Science

    African Journals Online (AJOL)

    Western Indian Ocean Journal of Marine Science. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 6, No 2 (2008) >. Log in or Register to get access to full text downloads.

  6. Marine Activity Dynamics (M.A.D.). Unit S.

    Science.gov (United States)

    Rhode Island State Dept. of Education, Providence. Education Information Center.

    This curriculum guide describes an activity-oriented marine study program, designed for use with middle school children (grade 5). The content focuses primarily upon the life sciences, with some emphasis on chemistry and geology. Following the development of a rationale for the inclusion of marine sciences in the school curriculum, a middle…

  7. Environmental Guidance Program Reference Book: Marine Protection, Research, and Sanctuaries Act and Marine Mammal Protection Act. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-31

    Two laws governing activities in the marine environment are considered in this Reference Book. The Marine Protection, Research, and Sanctuaries Act (MPRSA, P.L. 92-532) regulates ocean dumping of waste, provides for a research program on ocean dumping, and provides for the designation and regulation of marine sanctuaries. The Marine Mammal Protection Act (MMPA, P.L. 92-522) establishes a federal program to protect and manage marine mammals. The Fishery Conservation and Management Act (FCMA, P.L. 94-265) establishes a program to regulate marine fisheries resources and commercial marine fishermen. Because the Department of Energy (DOE) is not engaged in any activities that could be classified as fishing under FCMA, this Act and its regulations have no implications for the DOE; therefore, no further consideration of this Act is given within this Reference Book. The requirements of the MPRSA and the MMPA are discussed in terms of their implications for the DOE.

  8. Western Indian Ocean Journal of Marine Science: Submissions

    African Journals Online (AJOL)

    Already have a Username/Password for Western Indian Ocean Journal of Marine Science? ... Editorial Policy ... The manuscript is your own original work, and does not duplicate any other previously published work, including your own ...

  9. New marine science organization formed

    Science.gov (United States)

    Wooster, Warren S.

    A new international organization, the North Pacific Marine Science Organization (PICES) will be established to promote and coordinate marine scientific research in the northern North Pacific Ocean and the Berlin Sea. This was decided in Ottawa on December 12, 1990, when a draft convention was approved by representatives of Canada, China, Japan, the United States, and the Soviet Union. PICES will focus on research on the ocean environment and its interactions with land and atmosphere, its role and response to global weather and climate change, its flora, fauna and ecosystems, its uses and resources, and impacts upon it from human activities. Such studies relate not only to the effects of fishing and environmental change on fish stocks but also to such issues as the impacts of oil spills and other forms of pollution and the eventual consequences of climate change for uses of the ocean and its resources.

  10. Science Programs

    Science.gov (United States)

    Laboratory Delivering science and technology to protect our nation and promote world stability Science & ; Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied

  11. Marine Science and Education in one Word: "planeetzee.org"

    Science.gov (United States)

    Seys, J.; Copejans, E.; Ameije, K.

    2009-04-01

    It is a major challenge to bring science and technology to the public at large and more particular to young people. This is even more true for marine sciences, due to the very nature of the study field and the fact that the underwater world is difficult to experience and communicate. Therefore it is not surprising that in Europe there are only few examples of marine educational projects that try to go beyond the ‘observe and describe' approach. In 2004 SHE Consultancy, the Flanders Marine Institute VLIZ and DAB Vloot developed a first Belgian e-learning programme dedicated to oceans and seas, with the support of the Flemish government ("Action plan Science Communication"). This programme ‘Expedition Zeeleeuw' (www.expeditiezeeleeuw.be), ran from 2005 till 2007 and challenged some 3000 Flemish students of 16-18 years old all over Flanders to find creative solutions for 10 major marine issues at the Belgian coast. The class that could convince the jury to have discovered the most creative and intelligent solutions, wan a one-week scientific expedition at sea on board the vessel Zeeleeuw. As a successor to ‘Expedition Zeeleeuw', a new e-learning project on marine science was developed in 2007: ‘Planeet Zee' i.e. ‘Planet Ocean' (www.planeetzee.org; info via info@planeetzee.org + demo-site in English available at www.planetocean.eu). The new marine and coastal e-learning project is presented as a virtual sailing trip on the Atlantic Ocean. It follows the adventures of two youngsters "borrowing" the yacht of their father and getting into trouble on the open ocean. On this journey they face 21 problems (eg. out of food, drinking water or fuel, fear for whales, Bermuda triangle, tsunami's etc… ), each of them introduced by a short movie clip. When they realize they can not solve the problem, they ask for radio help and - what a surprise! - get interesting answers from the Zeeleeuw research vessel and its 21 marine scientists on board, that appears to be in the

  12. Archive of Geosample Data and Information from the Rosenstiel School of Marine and Atmospheric Science (RSMAS) Department of Marine Geosciences.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Rosenstiel School of Marine and Atmospheric Science (RSMAS) Department of Marine Geosciences made a one-time contribution of data describing geological samples...

  13. Equity and career-life balance in marine mammal science?

    OpenAIRE

    Hooker, Sascha K.; Simmons, Samantha E.; Stimpert, Alison K.; McDonald, Birgitte I.

    2017-01-01

    It is widely acknowledged that family and care-giving responsibilities are driving women away from Science, Technology, Engineering, and Mathematics (STEM) fields. Marine mammal science often incurs heavy fieldwork and travel obligations, which make it a challenging career in which to find work-life balance. This opinion piece explores gender equality, equity (the principles of fairness that lead to equality), and work-life balance in science generally and in this field in particular. We aim ...

  14. Adult-Rated Oceanography Part 1: A Project Integrating Ocean Sciences into Adult Basic Education Programs.

    Science.gov (United States)

    Cowles, S.; Collier, R.; Torres, M. K.

    2004-12-01

    Busy scientists seek opportunities to implement education and outreach efforts, but often don't know where to start. One easy and tested method is to form collaborations with federally-funded adult education and adult literacy programs. These programs exist in every U.S. state and territory and serve underrepresented populations through such major initiatives as adult basic education, adult secondary education (and GED preparation), and English language acquisition. These students are workers, consumers, voters, parents, grandparents, and members of every community. They have specific needs that are often overlooked in outreach activities. This presentation will describe the steps by which the Oregon Ocean Science and Math Collaborative program was developed. It is based on a partnership between the Oregon Department of Community Colleges and Workforce Development, Oregon State University College of Oceanic and Atmospheric Sciences, Oregon Sea Grant, and the OSU Hatfield Marine Science Center. It includes professional development through instructor institutes; teachers at sea and informal education opportunities; curriculum and web site development. Through the partnership described here, instructors in adult basic education programs participate in a yearlong experience in which they develop, test, and adapt innovative instructional strategies to meet the specific needs of adult learners. This, in turn, leads to new prospects for study in the areas of ocean science and math and introduces non-academic careers in marine science to a new community. Working directly with instructors, we have identified expertise level, instructional environment, instructor background and current teaching strategies used to address science literacy and numeracy goals of the adult learners in the State of Oregon. Preliminary evaluation of our ongoing project in meeting these goals will be discussed. These efforts contribute to national goals of science literacy for all, by providing

  15. Western Indian Ocean Journal of Marine Science

    African Journals Online (AJOL)

    The Western Indian Ocean Journal of Marine Science (WIOJMS) provides an avenue for ... Effects of blood meal as a substitute for fish meal in the culture of juvenile Silver ... area of eastern Africa: the case of Quirimbas National Park, Mozambique ... This work is licensed under a Creative Commons Attribution 3.0 License.

  16. Methane Hydrate Field Program. Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    Energy Technology Data Exchange (ETDEWEB)

    Collett, Tim [U.S. Geological Survey, Boulder, CO (United States); Bahk, Jang-Jun [Korea Inst. of Geoscience and Mineral Resources, Daejeon (Korea); Frye, Matt [U.S. Bureau of Ocean Energy Management, Sterling, VA (United States); Goldberg, Dave [Lamont-Doherty Earth Observatory, Palisades, NY (United States); Husebo, Jarle [Statoil ASA, Stavenger (Norway); Koh, Carolyn [Colorado School of Mines, Golden, CO (United States); Malone, Mitch [Texas A & M Univ., College Station, TX (United States); Shipp, Craig [Shell International Exploration and Production Inc., Anchorage, AK (United States); Torres, Marta [Oregon State Univ., Corvallis, OR (United States); Myers, Greg [Consortium For Ocean Leadership Inc., Washington, DC (United States); Divins, David [Consortium For Ocean Leadership Inc., Washington, DC (United States); Morell, Margo [Consortium For Ocean Leadership Inc., Washington, DC (United States)

    2013-12-31

    This topical report represents a pathway toward better understanding of the impact of marine methane hydrates on safety and seafloor stability and future collection of data that can be used by scientists, engineers, managers and planners to study climate change and to assess the feasibility of marine methane hydrate as a potential future energy resource. Our understanding of the occurrence, distribution and characteristics of marine methane hydrates is incomplete; therefore, research must continue to expand if methane hydrates are to be used as a future energy source. Exploring basins with methane hydrates has been occurring for over 30 years, but these efforts have been episodic in nature. To further our understanding, these efforts must be more regular and employ new techniques to capture more data. This plan identifies incomplete areas of methane hydrate research and offers solutions by systematically reviewing known methane hydrate “Science Challenges” and linking them with “Technical Challenges” and potential field program locations.

  17. Marine molecular biology: An emerging field of biological sciences

    Digital Repository Service at National Institute of Oceanography (India)

    Thakur, N.L.; Jain, R.; Natalio, F.; Hamer, B.; Thakur, A.N.; Muller, W.E.G.

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies...

  18. Collections management plan for the U.S. Geological Survey Woods Hole Coastal and Marine Science Center Data Library

    Science.gov (United States)

    List, Kelleen M.; Buczkowski, Brian J.; McCarthy, Linda P.; Orton, Alice M.

    2015-08-17

    The U.S. Geological Survey Woods Hole Coastal and Marine Science Center has created a Data Library to organize, preserve, and make available the field, laboratory, and modeling data collected and processed by Woods Hole Coastal and Marine Science Center staff. This Data Library supports current research efforts by providing unique, historic datasets with accompanying metadata. The Woods Hole Coastal and Marine Science Center’s Data Library has custody of historic data and records that are still useful for research, and assists with preservation and distribution of marine science records and data in the course of scientific investigation and experimentation by researchers and staff at the science center.

  19. Marine debris removal: one year of effort by the Georgia Sea Turtle-Center-Marine Debris Initiative.

    Science.gov (United States)

    Martin, Jeannie Miller

    2013-09-15

    Once in the marine environment, debris poses a significant threat to marine life that can be prevented through the help of citizen science. Marine debris is any manufactured item that enters the ocean regardless of source, commonly plastics, metal, wood, glass, foam, cloth, or rubber. Citizen science is an effective way to engage volunteers in conservation initiatives and provide education and skill development. The Georgia Sea Turtle Center Marine Debris Initiative (GSTC-MDI) is a grant funded program developed to engage citizens in the removal of marine debris from the beaches of Jekyll Island, GA, USA and the surrounding areas. During the first year of effort, more than 200 volunteers donated over 460 h of service to the removal of marine debris. Of the debris removed, approximately 89% were plastics, with a significant portion being cigarette materials. Given the successful first year, the GSTC-MDI was funded again for a second year. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Spain: Marine sciences information activity report for 1999/2000

    OpenAIRE

    Wulff, Enrique

    2002-01-01

    This 99/00 marine sciences-relevant activities report is a portrait of research information available within Spain. From the least available electronic information on such subjects as vaccines to a flood of information on thematics like Spanish Antartic research.

  1. Descriptions of marine mammal specimens in Marine Mammal Osteology Reference Collection, Alaska Fisheries Science Center, National Marine Mammal Laboratory from 1938-01-01 to 2015-12-05 (NCEI Accession 0140937)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NMFS Alaska Fisheries Science Center National Marine Mammal Laboratory (NMML) Marine Mammal Osteology Collection consists of approximately 2500 specimens (skulls...

  2. University courses and opportunity for a European Master Program in Marine Renewable Energy

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Tetu, Amélie; Frigaard, Peter Bak

    This document presents an overview of the existing European educational programmes in the field of marine renewable energy. It also includes suggestion for a transnational European master program in marine renewable energy.......This document presents an overview of the existing European educational programmes in the field of marine renewable energy. It also includes suggestion for a transnational European master program in marine renewable energy....

  3. Unexpectedly high catch-and-release rates in European marine recreational fisheries: implications for science and management

    DEFF Research Database (Denmark)

    Ferter, Keno; Weltersbach, Marc Simon; Strehlow, Harry Vincent

    2013-01-01

    Unexpectedly high catch-and-release rates in European marine recreational fisheries: implications for science and management. – ICES Journal of Marine Science, 70: .While catch-and-release (C&R) is a well-known practice in several European freshwater recreational fisheries, studies on the magnitu...

  4. Oceanography in Second Life: Use of a Virtual Reality to Enhance Undergraduate Education in Marine Science

    Science.gov (United States)

    Villareal, T. A.; Jarmon, L.; Triggs, R.

    2009-12-01

    Shipboard research is a fundamental part of oceanography, but has numerous legal and practical constraints virtually eliminate it as a regular part of large-enrollment programs in marine science. The cost of a properly equipped research vessel alone can prevent student access. While much can be learned by active exploration of archived data by students, the limitations placed on real oceanographic programs by distance, vessel speed, and time are difficult to reproduce in exercises. Pre-cruise planning and collaboration between investigators are likewise a challenge to incorporate. We have used design students in the College of Liberal Arts to construct a oceanographic expedition in Second Life for use in a marine science course (Fall 2009). Second Life is a highly collaborative environment with a variety of tools that allow users to create their own environment and interact with it. Second LIfe is free, highly portable, and inherently amenable to distance or remote teaching. In our application, the research vessel exists as an moving platform with sampling abilities. Software code queries an external MySQL database that contains information from the World Ocean Atlas for the entire ocean, and returns strings of data from standard depths. Students must plan the cruise track to test hypothesis about the ocean, collaborate with other teams to develop the big picture and use standard oceanographic software (Ocean Data Viewer; ODV) to analyze the data. Access to the entire database in ODV then allows comparison to the actual properties and distributions. The effectiveness of this approach is being evaluated by a pre- and post-class surveys and post semester focus group interviews. Similar surveys of the design students that created the environment noted that use of Second Life created a learning experience that was both more immersive and process oriented than traditional college courses. Initial impressions in the marine science class indicate that the strong social

  5. MS PHD'S PDP: Vision, Design, Implementation, and Outcomes of a Minority-Focused Earth System Sciences Program

    Science.gov (United States)

    Habtes, S. Y.; Mayo, M.; Ithier-Guzman, W.; Pyrtle, A. J.; Williamson Whitney, V.

    2007-05-01

    As minorities are predicted to comprise at least 33% of the US population by the year 2010, their representation in the STEM fields, including the ocean sciences, is still poorly established. In order to advance the goal of better decision making, the Ocean Sciences community must achieve greater levels of diversity in membership. To achieve this objective of greater diversity in the sciences, the Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science® Professional Development Program (MS PHD'S PDP), which was launched in 2003, is supported via grants from NASA's Office of Earth Science, and NSF's Directorate for Geosciences. The MS PHD'S PDP is designed to provide professional and mentoring experiences that facilitate the advancement of minorities committed to achieving outstanding Earth System Science careers. The MS PHD'S PDP is structured in three phases, connected by engagement in a virtual community, continuous peer and mentor to mentee interactions, and the professional support necessary for ensuring the educational success of the student participants. Since the pilot program in 2003, the MSPHD'S PDP, housed at the University of South Florida's College of Marine Science, has produced 4 cohorts of students. Seventy-five have completed the program; of those 6 have earned their doctoral degrees. Of the 45 current participants 10 are graduate students in Marine Science and 15 are still undergraduates, the remaining 10 participants are graduate students in other STEM fields. Since the implementation of the MSPHD'S PDP a total of 87 students and 33 scientist mentors have become part of the MSPHD'S virtual community, helping to improve the learning environment for current and future participants as well as build a community of minority students that encourages each other to pursue their academic degrees.

  6. S.E.A. Lab. Science Experiments and Activities. Marine Science for High School Students in Chemistry, Biology and Physics.

    Science.gov (United States)

    Hart, Kathy, Ed.

    A series of science experiments and activities designed for secondary school students taking biology, chemistry, physics, physical science or marine science courses are outlined. Each of the three major sections--chemistry, biology, and physics--addresses concepts that are generally covered in those courses but incorporates aspects of marine…

  7. STREAMS - Supporting Underrepresented Groups in Earth Sciences

    Science.gov (United States)

    Carvalho-Knighton, K.; Johnson, A.

    2009-12-01

    In Fall 2008, STREAMS (Supporting Talented and Remarkable Environmental And Marine Science students) Scholarship initiative began at the University of South Florida St. Petersburg, the only public university in Pinellas County. STREAMS is a partnership between the University of South Florida St. Petersburg’s (USFSP) Environmental Science and Policy Program and University of South Florida’s (USF) College of Marine Science. The STREAMS Student Scholarship Program has facilitated increased recruitment, retention, and graduation of USFSP environmental science and USF marine science majors. The STREAMS program has increased opportunities for minorities and women to obtain undergraduate and graduate degrees, gain valuable research experience and engage in professional development activities. STREAMS scholars have benefited from being mentored by USFSP and USF faculty and as well as MSPhDs students and NSF Florida-Georgia LSAMP Bridge to Doctorate graduate fellows. In addition, STREAMS has facilitated activities designed to prepare student participants for successful Earth system science-related careers. We will elucidate the need for this initiative and vision for the collaboration.

  8. Workshop on the ERDA Marine Sciences Research program for the west coast of the U.S

    International Nuclear Information System (INIS)

    Templeton, W.L.

    1976-01-01

    Thirty marine scientists involved in Energy Research and Development Administration (ERDA)-supported marine research on the west coast of the United States met March 17-19, 1976, at the Asilomar Conference Center, Monterey, California. The objective of this workshop was to define the elements of an integrated research program that would contribute to a better knowledge of the potential impact of pollutants on coastal ecosystems from energy-related fuel cycles. One of the long-range objectives of the Division of Biomedical and Environmental Research in ERDA is to support research on processes and mechanisms that occur in the coastal waters that would allow assessment of the impact of energy technology fuel cycles, i.e., nuclear, oil and gas, coal, and solar. Additionally, the research has an objective of providing a basic environmental data base which will aid in the technological development and deployment of energy supply systems. While the research is not designed for the purposes of standard setting or for regulatory processes; nevertheless, it may, in the long term, contribute to a better basis for setting standards that are in the balanced best interest of both energy production and the preservation of our valuable coastal ecosystems. It was recognized that other Federal agencies also have charter responsibilities in this area and support research and monitoring programs that potentially overlap into ERDA programs. One of the working considerations was to identify where any significant overlap was perceived. Three panels were formed: Transport and Diffusion, Sediment Interaction, and Bioavailability and Effects. Each panel was asked to identify the major problem areas and gaps in our knowledge and define the needs of research programs that would increase and enhance our understanding of the mechanisms and processes that occur in each area of concern

  9. La Spezia and the research network for outreach and education in marine sciences.

    Science.gov (United States)

    Locritani, Marina; Furia, Stefania; Giacomazzi, Fabio; Merlino, Silvia; Mori, Anna; Nacini, Francesca; Nardi, Elisabetta; Stroobant, Mascha; Talamoni, Roberta; Zocco, Olivia

    2013-04-01

    La Spezia is a small town located in the southeastern corner of the Liguria Region (Italy). The close relationship with the sea conditioned the ancient and recent activities of the town that embraces the namesake gulf. The Gulf of La Spezia overlooks on the Liguria Sea which is characterized by a high biodiversity, due to the heritage of coastal habitats, where numerous interesting species to preserve live, often a priority for the EC Directives. Therefore, along the Liguria arc, five coastal Marine Protected Areas have been instituted, two of them insist in La Spezia Province: the Marine Protected Areas of Cinque Terre National Park and Porto Venere Regional Park, both included in the UNESCO World Heritage Site. Moreover, the importance of the cetacean communities in the Ligurian Sea led to the establishment of the Cetacean Sanctuary. Resulting from a positive geographic coincidence, six Research Institutions are located in La Spezia: CMRE-NATO (Centre for Maritime Research and Experimentation, formerly NURC-NATO Undersea Research Centre), CNR (National Research Council), CSSN (Naval Experimentation and Support Centre - Navy), ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), INGV (National Institute of Geophysics and Volcanology), Polo Universitario Marconi (University of Genoa - seat of La Spezia). These Institutions share a long time experience of work at sea and in coastal environments according to their different scientific interests (biology, engineering, geology, physic, and oceanography). Moreover, in 2009 the Liguria Region promoted the institution of the Liguria Cluster of Marine Technologies (Distretto Ligure delle Tecnologie Marine), whose core target is the regional development of marine technologies and science. This unique concentration of Research Institutes, Marine Protected Areas and sea activities (civil and military) brought to implement a collaborative network among the scientific and territorial

  10. Materials Science Programs

    International Nuclear Information System (INIS)

    1990-03-01

    The Division of Materials Sciences is located within the Department of Energy in the Office of Basic Energy Sciences. The Office of Basic Energy Sciences reports to the Director of the Office of Energy Research. The Director of this office is appointed by the President with Senate consent. The Director advises the Secretary on the physical research program; monitors the Department's R ampersand D programs; advises the Secretary on management of the laboratories under the jurisdiction of the Department, excluding those that constitute part of the nuclear weapon complex; and advises the Secretary on basic and applied research activities of the Department. The research covers a spectrum of scientific and engineering areas of interest to the Department of Energy and is conducted generally by personnel trained in the disciplines of Solid State Physics, Metallurgy, Ceramics, Chemistry, Polymers and Materials Science. The Materials Sciences Division supports basic research on materials properties and phenomena important to all energy systems. The aim is to provide the necessary base of materials knowledge required to advance the nation's energy programs. This report contains a listing of research underway in FY 1989 together with a convenient index to the Division's programs

  11. Development and testing of the data automation subsystem for the Mariner Mars 1971 spacecraft

    Science.gov (United States)

    1971-01-01

    The data automation subsystem designed and built as part of the Mariner Mars 1971 program, sequences and controls the science instruments and formats all science data. A description of the subsystem with emphasis on major changes relative to Mariner Mars 1969 is presented. In addition, the complete test phase is described.

  12. Massive Mortality of a Planktivorous Seabird in Response to a Marine Heatwave: A Citizen Science Case-study

    Science.gov (United States)

    Jones, T.; Parrish, J.; MacCready, P.; Peterson, W. T.; Bjorkstedt, E.; Bond, N. A.; Ballance, L. T.; Bowes, V.; Hipfner, J. M.; Lindquist, K.; Lindsey, J.; Nevins, H. M.; Burgess, H. K.; Robertson, R.; Roletto, J.; Wilson, L.; Joyce, T. W.; Harvey, J.

    2017-12-01

    Citizen science data collection is a powerful tool for documenting mass mortality events, as they often occur without warning and can be extensive in space, precluding standard methods of data collection. The Coastal Observation and Seabird Survey Team (COASST) is one such citizen science program that specializes in the collection of information on beachcast seabird abundance and identity. Using the COASST dataset, in combination with federal monitoring data and novel modeling techniques, we investigated the 2014/15 mass mortality event of Cassin's Auklets (Ptychoramphus aleuticus), a small zooplanktivorous seabird, that occurred during the largest marine heatwave (MHW) ever recorded - the NE Pacific MHW of 2014-2016. Estimated at 275,000-530,000 birds, or 11% of the global adult population, and spanning 2,000 km of the North American Pacific coastline, this marine bird die-off is among the largest ever recorded. Carcass deposition followed an effective reduction in the energy content of zooplankton, coincident with the loss of cold-water foraging habitat caused by the intrusion of the NE Pacific MHW. Models examining interannual variability in effort-controlled carcass abundance (2001-2014) identified the biomass of lipid-poor zooplankton as the primary predictor of increased carcass abundance, suggesting that the relative abundance of smaller, lipid-poor zooplankton is a strong predictor of Cassin's Auklets overwinter survival. Furthermore, dispersing Cassin's Auklets were likely compressed into a nearshore band of upwelled water, and ultimately died from starvation following the shift in zooplankton composition associated with the onshore transport of the NE Pacific MHW. The information regarding the magnitude of this event, as well as its causal mechanism, comes as a direct result of rigorous data collection by citizen science volunteers, demonstrating that citizen science can, and does, contribute to our understanding of how climate change is altering marine

  13. Innovative technologies (DIY instruments and data sonification) for engaging volunteers to participate in marine environmental monitoring programs.

    Science.gov (United States)

    Piera, J.

    2016-02-01

    In recent years the promotion of marine observations based on volunteer participation, known as Citizen Science, has provided environmental data with unprecedented resolution and coverage. The Citizen Science based approach has the additional advantage to engage people by raising awareness and knowledge of marine environmental problems. The technological advances in embedded systems and sensors, enables citizens to create their own devices (known as DIY, Do-It-Yourself, technologies) for monitoring the marine environment. Within the context of the CITCLOPS project (www.citclops.eu), a DIY instrument was developed to monitor changes on water transparency as a water quality indicator. The instrument, named KdUINO, is based on quasi-digital sensors controlled by an open-hardware (Arduino) board. The sensors measure light irradiance at different depth and the instrument automatically calculates the light diffuse attenuation Kd coefficient to quantify the water transparency. The buoy construction is an ideal activity for creative STEM programming. Several workshops in high schools were done to show to the students how to construct their own buoy. Some of them used the buoy to develop their own scientific experiments. In order to engage students more motivated in artistic disciplines, the research group developed also a sonification system that allows creating music and graphics using KdUINO measurements as input data.

  14. Training Course on the Marine Ecology of the Red Sea. Red Sea & Gulf of Aden Programme (PERSGA).

    Science.gov (United States)

    Arab Organization for Education and Science, Cairo (Egypt).

    This document presents a training course on the marine ecology of the Red Sea designed by the Arab League Educational, Cultural and Scientific Organization (ALECSO) in collaboration with the Marine Science Department of UNESCO for the Program for Environmental Studies, Red Sea and Gulf of Aden (PERSGA). It was hosted by the Marine Science Station,…

  15. A Research Experiences for Undergraduates program (REU) Program Designed to Recruit, Engage and Prepare a Diverse Student Population for Careers in Ocean Sciences.

    Science.gov (United States)

    Clarkston, B. E.; Garza, C.

    2016-02-01

    The problem of improving diversity within the Ocean Sciences workforce—still underperforming relative to other scientific disciplines—can only be addressed by first recruiting and engaging a more diverse student population into the discipline, then retaining them in the workforce. California State University, Monterey Bay (CSUMB) is home to the Monterey Bay Regional Ocean Science Research Experiences for Undergraduates (REU) program. As an HSI with strong ties to multiple regional community colleges and other Predominantly Undergraduate Institutions (PUIs) in the CSU system, the Monterey Bay REU is uniquely positioned to address the crucial recruitment and engagement of a diverse student body. Eleven sophomore and junior-level undergraduate students are recruited per year from academic institutions where research opportunities in STEM are limited and from groups historically underrepresented in the Ocean Sciences, including women, underrepresented minorities, persons with disabilities, and veterans. During the program, students engage in a 10-week original research project guided by a faculty research mentor in one of four themes: Oceanography, Marine Biology and Ecology, Ocean Engineering, and Marine Geology. In addition to research, students develop scientific self-efficacy and literacy skills through rigorous weekly professional development workshops in which they practice critical thinking, ethical decision-making, peer review, writing and oral communication skills. These workshops include tangible products such as an NSF-style proposal paper, Statement of Purpose and CV modelled for the SACNAS Travel Award Application, research abstract, scientific report and oral presentation. To help retain students in Ocean Sciences, students build community during the REU by living together in the CSUMB dormitories; post-REU, students stay connected through an online facebook group, LinkedIn page and group webinars. To date, the REU has supported 22 students in two

  16. Boat-Based Education for Boston Area Public Schools: Encouraging Marine Science and Technology Literacy and Awareness of the Coastal "Backyard"

    Science.gov (United States)

    Howard, E. M.; Reynolds, R. M.; Wright, A. K.; Deschenes, H. A.

    2016-02-01

    Half the global population lives within 60 km of the ocean, profoundly influencing environmental quality and services to local communities. Adoption of marine science curricula creates opportunities for educators and scientists to engage and entrain K-12 students as ocean stewards. In particular, boat-based science activities facilitate hands-on inquiry. These activities reinforce key science concepts while creating a tangible connection to our shared coastal "backyard." A collaboration between Zephyr Education Foundation, the New England Aquarium, the University of Massachusetts Boston and Woods Hole Oceanographic Institution has taken >500 Boston, MA area students from 26 public schools on boat-based education trips in Boston Harbor. Marine science and technology professionals and educators facilitate participatory activities using modern marine technology aboard a research vessel. Trips are funded at no cost to participants by a grant from the Richard Lounsbery Foundation; cost-free outings are essential for participation from underserved public school districts. Participants perceived three important outcomes of their outings: the trips 1) enhanced in-class curricular learning and improved marine science literacy 2) increased personal connections to local marine environments, and 3) increased interest in careers in marine science, including engineering and technical positions. Despite living in close proximity to water, this was the first boat outing for many students; boat-based education trips enhanced student awareness of local environments in a way that curricular study had not. Boston trip results are being evaluated, but 3000 evaluations from similar trips in Woods Hole, MA indicate that 98% of participants gained a better understanding and appreciation of the work conducted by marine scientists, engineers, and other professionals, and 82% said their experience made them more interested in becoming involved in science at school and/or as a job. In summary

  17. Equal Opportunities for Women in Marine Sciences in Kiel: Activities and Measures

    Science.gov (United States)

    Kamm, Ruth

    2016-04-01

    Women are still largely underrepresented in geosciences in general. Particularly at the level of professorships and permanent research staff positions this also applies to marine science institutions in Kiel, i.e. the research focus Kiel Marine Sciences at Kiel University and the GEOMAR Helmholtz Centre for Ocean Research Kiel. Both institutions are closely collaborating, for instance in the frame of two major third-party funded collaborative projects: The Cluster of Excellence 'The Future Ocean', funded within the German Excellence Initiative, and the Collaborative Research Centre 'Climate - Biogeochemistry Interactions in the Tropical Ocean' (SFB 754) financed through the German Research Foundation (DFG). Both funding schemes request for measures to increase the participation of female scientists in leading positions. As an innovative approach, The Future Ocean and SFB 754 jointly finance the position of a coordinator for gender measures who is based at the university's Central Office for Gender Equality, Diversity & Family since 2012. This allows for the coordinated development and implementation of programmes to support female marine scientists, with a focus on the postdoctoral phase, and to offer a broader spectrum of activities to raise awareness of gender imbalance in the research community. The aim of this presentation is to give insight into activities and achievements, among them the mentoring programme via:mento_ocean for female postdocs in marine sciences. The programme via:mento_ocean has been acknowledged as a best practice instrument to support women scientists in a close disciplinary but international setting and was incorporated into the DFG's online toolbox of gender equality measures.

  18. ICASE Computer Science Program

    Science.gov (United States)

    1985-01-01

    The Institute for Computer Applications in Science and Engineering computer science program is discussed in outline form. Information is given on such topics as problem decomposition, algorithm development, programming languages, and parallel architectures.

  19. Climate Change and Arctic Issues in the Marine and Environmental Science Curriculum at the U.S. Coast Guard Academy

    Science.gov (United States)

    Vlietstra, L.; McConnell, M. C.; Bergondo, D. L.; Mrakovcich, K. L.; Futch, V.; Stutzman, B. S.; Fleischmann, C. M.

    2016-02-01

    As global climate change becomes more evident, demand will likely increase for experts with a detailed understanding of the scientific basis of climate change, the ocean's role in the earth-atmosphere system, and forecasted impacts, especially in Arctic regions where effects may be most pronounced. As a result, programs in marine and environmental sciences are uniquely poised to prepare graduates for the formidable challenges posed by changing climates. Here we present research evaluating the prevalence and themes of courses focusing on anthropogenic climate change in 125 Marine Science and Environmental Science undergraduate programs at 86 institutions in the United States. These results, in addition to the increasing role of the Coast Guard in the Arctic, led to the development of two new courses in the curriculum. Climate Change Science, a one-credit seminar, includes several student-centered activities supporting key learning objectives. Polar Oceanography, a three-credit course, incorporates a major outreach component to Coast Guard units and members of the scientific community. Given the importance of climate change in Arctic regions in particular, we also propose six essential "Arctic Literacy Principles" around which courses or individual lesson plans may be organized. We show how these principles are incorporated into an additional new three-credit course, Model Arctic Council, which prepares students to participate in a week-long simulation exercise of Arctic Council meetings, held in Fairbanks, Alaska. Students examine the history and mission of the Arctic Council and explore some of the issues on which the council has deliberated. Special attention is paid to priorities of the current U.S. chairmanship of the Arctic Council which include climate change impacts on, and stewardship of, the Arctic Ocean.

  20. Four years of REU in South Texas: Fostering the Participation of Hispanic Students in Marine Science Research

    Science.gov (United States)

    Buskey, E. J.; Erdner, D.

    2011-12-01

    Our REU site is a ten-week summer program that is currently in its fourth year and has served 37 undergraduate students in that time. The range of environments present in south Texas, including barrier islands, estuaries and hypersaline lagoons, and the inherent climatic variability of the region make it an excellent natural laboratory for studying the effects of both natural and human-driven change. REU projects to date have focused on many of the pressing environmental concerns in the region, including the impacts of land use and freshwater demand on the transport of water and waterborne constituents to coastal waters, harmful algal blooms, effects of nutrient loads on coastal ecosystems, and hypoxia. The program begins with a 2 day research cruise that serves as an immediate introduction to local biota and methods in marine science, and it brings the students and mentors together as a group in a more informal setting. The students then carry out independent research projects under the mentorship of a faculty member, and attend workshops on responsible research, graduate school, and science careers. Our program also benefits from a close interaction with the Mission-Aransas National Estuarine Research Reserve, exposing the students to applied research of relevance to coastal management issues. One of the primary goals of our program is to foster the retention of underrepresented groups, particularly Hispanics, in Science, Technology, Engineering, and Mathematics (STEM) fields by increasing their participation in undergraduate research experiences. We have targeted Hispanic students because our institute is located in a state where 37% of the population is Hispanic, and in a region where the proportion of Hispanic students is even higher. Our recruiting efforts have included advertising the program via in-person presentations at minority serving institutions (UT El Paso, UT San Antonio), and on list-serves for professional societies and sites at minority serving

  1. Molecular biology in marine science: Scientific questions, technological approaches, and practical implications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report describes molecular techniques that could be invaluable in addressing process-oriented problems in the ocean sciences that have perplexed oceanographers for decades, such as understanding the basis for biogeochemical processes, recruitment processes, upper-ocean dynamics, biological impacts of global warming, and ecological impacts of human activities. The coupling of highly sophisticated methods, such as satellite remote sensing, which permits synoptic monitoring of chemical, physical, and biological parameters over large areas, with the power of modern molecular tools for ``ground truthing`` at small scales could allow scientists to address questions about marine organisms and the ocean in which they live that could not be answered previously. Clearly, the marine sciences are on the threshold of an exciting new frontier of scientific discovery and economic opportunity.

  2. Marine habitat mapping at Labuan Marine Park, Federal Territory of Labuan, Malaysia

    Science.gov (United States)

    Mustajap, Fazliana; Saleh, Ejria; Madin, John; Hamid, Shahimah Abdul

    2015-06-01

    Marine habitat mapping has recently become essential in coastal marine science research. It is one of the efforts to understand marine ecosystems, and thus to protect them. Habitat mapping is integral to marine-related industries such as fisheries, aquaculture, forestry and tourism. An assessment of marine habitat mapping was conducted at Labuan Marine Park (LMP), a marine protected area in the Federal Territory of Labuan. It is surrounded by shallow water within its islands (Kuraman, Rusukan Kecil and Rusukan Besar) with an area of 39.7 km2. The objectives of the study are to identify the substrate and types of marine habitat present within the park. Side scan sonar (SSS) (Aquascan TM) was used to determine the substrates and habitat while ground truthings were done through field observation and SCUBA diving survey. Seabed classification and marine habitat was based on NOAA's biogeography program. Three substrate types (sand, rock, silt) were identified in this area. The major marine habitats identified are corals, macro algae and small patches of sea grass. The study area is an important refuge for spawning and juvenile fish and supports the livelihood of the coastal communities on Labuan Island. Therefore, proper management is crucial in order to better maintain the marine protected area. The findings are significant and provide detailed baseline information on marine habitat for conservation, protection and future management in LMP.

  3. Experiments related to marine environmental science using a tandem Pelletron

    International Nuclear Information System (INIS)

    Kitamura, A.; Hamamoto, S.; Ohtani, Y.; Furuyama, Y.; Taniike, A.; Kubota, N.; Yamauchi, T.; Mimura, H.

    2003-01-01

    Activities related to marine environmental science, which have been made in our laboratory using a 1.7MV Pelletron 5SDH2 accelerator, are reviewed. One is successful application of proton beams to radiation-induced graft polymerization for making amidoxime-type adsorbents that are very effective for collecting doubly charged ions of metal elements, such as uranium and vanadium, abundantly dissolved in seawater. The other is effective application of accelerator analyses to investigation of interaction of tributyltin (TBT) chloride, which had been used in self-polishing antifouling paints and are endocrine disrupter having mutagenicity, with a TBT resistant marine microorganism newly isolated from sediment of a ship's ballast water tank. (author)

  4. Marine Education Knowledge Inventory.

    Science.gov (United States)

    Hounshell, Paul B.; Hampton, Carolyn

    This 35-item, multiple-choice Marine Education Knowledge Inventory was developed for use in upper elementary/middle schools to measure a student's knowledge of marine science. Content of test items is drawn from oceanography, ecology, earth science, navigation, and the biological sciences (focusing on marine animals). Steps in the construction of…

  5. [The marine coastal water monitoring program of the Italian Ministry of the Environment].

    Science.gov (United States)

    Di Girolamo, Irene

    2003-01-01

    The Ministry of the Environment carries out marine and coastal monitoring programs with the collaboration of the coastal Regions. The program in progress (2001-2003), on the basis of results of the previous one, has identified 73 particulary significant areas (57 critical areas and 16 control areas). The program investigates several parameters on water, plancton, sediments, mollusks and benthos with analyses fortnightly, six-monthly and annual. The main aim of these three year monitoring programs is to assess the quality of national marine ecosystem.

  6. A study of science leadership and science standards in exemplary standards-based science programs

    Science.gov (United States)

    Carpenter, Wendy Renae

    The purpose for conducting this qualitative study was to explore best practices of exemplary standards-based science programs and instructional leadership practices in a charter high school and in a traditional high school. The focus of this study included how twelve participants aligned practices to National Science Education Standards to describe their science programs and science instructional practices. This study used a multi-site case study qualitative design. Data were obtained through a review of literature, interviews, observations, review of educational documents, and researcher's notes collected in a field log. The methodology used was a multi-site case study because of the potential, through cross analysis, for providing greater explanation of the findings in the study (Merriam, 1988). This study discovered six characteristics about the two high school's science programs that enhance the literature found in the National Science Education Standards; (a) Culture of expectations for learning-In exemplary science programs teachers are familiar with a wide range of curricula. They have the ability to examine critically and select activities to use with their students to promote the understanding of science; (b) Culture of varied experiences-In exemplary science programs students are provided different paths to learning, which help students, take in information and make sense of concepts and skills that are set forth by the standards; (c) Culture of continuous feedback-In exemplary science programs teachers and students work together to engage students in ongoing assessments of their work and that of others as prescribed in the standards; (d) Culture of Observations-In exemplary science programs students, teachers, and principals reflect on classroom instructional practices; teachers receive ongoing evaluations about their teaching and apply feedback towards improving practices as outlined in the standards; (e) Culture of continuous learning-In exemplary

  7. Managing ocean information in the digital era--events in Canada open questions about the role of marine science libraries.

    Science.gov (United States)

    Wells, Peter G

    2014-06-15

    Information is the foundation of evidence-based policies for effective marine environmental protection and conservation. In Canada, the cutback of marine science libraries introduces key questions about the role of such institutions and the management of ocean information in the digital age. How vital are such libraries in the mission of studying and protecting the oceans? What is the fate and value of the massive grey literature holdings, including archival materials, much of which is not in digital form but which often contains vital data? How important is this literature generally in the marine environmental sciences? Are we likely to forget the history of the marine pollution field if our digital focus eclipses the need for and access to comprehensive collections and skilled information specialists? This paper explores these and other questions against the backdrop of unprecedented changes in the federal libraries, marine environmental science and legislation in Canada. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  8. Marine Science

    African Journals Online (AJOL)

    between humans and the coastal and marine environment. ... The journal has a new and more modern layout, published online only, and the editorial .... the population structure of Platorchestia fayetta sp. nov. and their interaction with the.

  9. 77 FR 14348 - Proposed Information Collection; Comment Request; Marine Recreational Information Program

    Science.gov (United States)

    2012-03-09

    ... Collection; Comment Request; Marine Recreational Information Program AGENCY: National Oceanic and Atmospheric... for revision of a current information collection. Marine recreational anglers are surveyed to collect catch and effort data, fish biology data, and angler socioeconomic characteristics. These data are...

  10. Marine Science

    African Journals Online (AJOL)

    No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form ... to optimize nucleic acid extraction protocols from marine gastropods, present an ...... Greenfield., Gomez E, Harvell CD, Sale PF, Edwards.

  11. Student science enrichment training program

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, S.S.

    1994-08-01

    This is a report on the Student Science Enrichment Training Program, with special emphasis on chemical and computer science fields. The residential summer session was held at the campus of Claflin College, Orangeburg, SC, for six weeks during 1993 summer, to run concomitantly with the college`s summer school. Fifty participants selected for this program, included high school sophomores, juniors and seniors. The students came from rural South Carolina and adjoining states which, presently, have limited science and computer science facilities. The program focused on high ability minority students, with high potential for science engineering and mathematical careers. The major objective was to increase the pool of well qualified college entering minority students who would elect to go into science, engineering and mathematical careers. The Division of Natural Sciences and Mathematics and engineering at Claflin College received major benefits from this program as it helped them to expand the Departments of Chemistry, Engineering, Mathematics and Computer Science as a result of additional enrollment. It also established an expanded pool of well qualified minority science and mathematics graduates, which were recruited by the federal agencies and private corporations, visiting Claflin College Campus. Department of Energy`s relationship with Claflin College increased the public awareness of energy related job opportunities in the public and private sectors.

  12. Contaminants, lipids, fatty acids, and stable isotopes in tissues of various marine mammals - Biomonitoring of marine mammals as part of the Marine Mammal Health and Stranding Response Program (MMHSRP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Mammal Health and Stranding Response Program (MMHSRP) was established in 1992 under Title IV of the Marine Mammal Protection Act (MMPA). The MMHSRP...

  13. 2014 Water Power Program Peer Review: Marine and Hydrokinetic Technologies, Compiled Presentations (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    2014-02-01

    This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Marine and Hydrokinetic Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

  14. Marine Science

    African Journals Online (AJOL)

    No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means ... USA/Norway ... The last couple of years have been a time of change for the Western Indian Ocean Journal of Marine.

  15. Materials Sciences Programs

    International Nuclear Information System (INIS)

    1977-01-01

    A compilation and index of the ERDA materials sciences program is presented. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs

  16. Marine Science

    African Journals Online (AJOL)

    sustainable coastal development in the region, as well as contributing to the ... between humans and the coastal and marine environment. ... exploitation for timber, fuel wood, aquaculture, urban. Abstract. Given the high dependence of coastal communities on natural resources, mangrove conservation is a challenge in.

  17. Enabling science and technology for marine renewable energy

    International Nuclear Information System (INIS)

    Mueller, Markus; Wallace, Robin

    2008-01-01

    This paper describes some of the key challenges to be met in the development of marine renewable energy technology, from its present prototype form to being a widely deployed contributor to future energy supply. Since 2000, a number of large-scale wave and tidal current prototypes have been demonstrated around the world, but marine renewable energy technology is still 10-15 years behind that of wind energy. UK-based developers are leading the way, with Pelamis from Pelamis Wave Power demonstrated in the open sea, generating electricity into the UK network and securing orders from Portugal. However, having started later, the developing technology can make use of more advanced science and engineering, and it is therefore reasonable to expect rapid progress. Although progress is underway through deployment and testing, there are still key scientific challenges to be addressed in areas including resource assessment and predictability, engineering design and manufacturability, installation, operation and maintenance, survivability, reliability and cost reduction. The research priorities required to meet these challenges are suggested in this paper and have been drawn from current roadmaps and vision documents, including more recent consultations within the community by the UK Energy Research Centre Marine Research Network. Many scientific advances are required to meet these challenges, and their likelihood is explored based on current and future capabilities

  18. Exploring Marine Science through the University of Delaware's TIDE camp

    Science.gov (United States)

    Veron, D. E.; Newton, F. A.; Veron, F.; Trembanis, A. C.; Miller, D. C.

    2012-12-01

    For the past five years, the University of Delaware has offered a two-week, residential, summer camp to rising sophomores, juniors, and seniors who are interested in marine science. The camp, named TIDE (Taking an Interest in Delaware's Estuary) camp, is designed to introduce students to the breadth of marine science while providing them with a college experience. Campers participate in a variety of academic activities which include classroom, laboratory, and field experiences, as well as numerous social activities. Two unique features of this small, focused camp is the large number of university faculty that are involved, and the ability of students to participate in ongoing research projects. At various times students have participated in fish and dolphin counts, AUV deployment, wind-wave tank experiments, coastal water and beach studies, and ROV activities. In addition, each year campers have participated in a local service project. Through communication with former TIDE participants, it is clear that this two-week, formative experience plays a large role in students choice of major when entering college.2012 Tide Camp - Salt marsh in southern Delaware 2012 Tide Camp - Field trip on a small boat

  19. Marine Science

    African Journals Online (AJOL)

    Mauritius Marine Conservation Society through their. Abstract. While no populations of seals are resident in the tropical Indian Ocean, vagrant animals are occasionally sighted in the region. Here we detail two new sightings of pinnipeds in the Mascarene Islands (Mauritius, Reunion and Rodri- gues) since 1996 and review ...

  20. The Ocean in Depth - Ideas for Using Marine Technology in Science Communication

    Science.gov (United States)

    Gerdes, A.

    2009-04-01

    By deploying camera and video systems on remotely operated diving vehicles (ROVs), new and fascinating insights concerning the functioning of deep ocean ecosystems like cold-water coral reef communities can be gained. Moreover, mapping hot vents at mid-ocean ridge locations, and exploring asphalt and mud volcanoes in the Gulf of Mexico and the Mediterranean Sea with the aid of video camera systems have illustrated the scientific value of state-of-the-art diving tools. In principle, the deployment of sophisticated marine technology on seagoing expeditions and their results - video tapes and photographs of fascinating submarine environments, publication of new scientific findings - offer unique opportunities for communicating marine sciences. Experience shows that an interest in marine technology can easily be stirred in laypersons if the deployment of underwater vehicles such as ROVs during seagoing expeditions can be presented using catchwords like "discovery", "new frontier", groundbreaking mission", etc. On the other hand, however, a number of restrictions and challenges have to be kept in mind. Communicating marine science in general, and the achievements of marine technology in particular, can only be successful with the application of a well-defined target-audience concept. While national and international TV stations and production companies are very much interested in using high quality underwater video footage, the involvement of journalists and camera teams in seagoing expeditions entails a number a challenges: berths onboard research vessels are limited; safety aspects have to be considered; copyright and utilisation questions of digitalized video and photo material has to be handled with special care. To cite one example: on-board video material produced by professional TV teams cannot be used by the research institute that operated the expedition. This presentation aims at (1)informing members of the scientific community about new opportunities related

  1. Marine Science

    African Journals Online (AJOL)

    Copy Editor Timothy Andrew. Published ... 2007; Zhou et al., 2009) and they play an important role in the ... At both sites, zonal variation in TMPB was evident with significantly higher C-biomass closer to ... ton is considered to be an essential parameter in eco- systems ...... logical significance of toxic marine dinoflagellates.

  2. RIS4E Science Journalism Program

    Science.gov (United States)

    Whelley, N.; Bleacher, L.; Jones, A. P.; Bass, E.; Bleacher, J. E.; Firstman, R.; Glotch, T. D.; Young, K.

    2017-12-01

    NASA's Remote, In-Situ, and Synchrotron Studies for Science and Exploration (RIS4E) team addresses the goals of the Solar System Exploration Research Virtual Institute via four themes, one of which focuses on evaluating the role of handheld and portable field instruments for human exploration. The RIS4E Science Journalism Program highlights science in an innovative way: by instructing journalism students in the basics of science reporting and then embedding them with scientists in the field. This education program is powerful because it is deeply integrated within a science program, strongly supported by the science team and institutional partners, and offers an immersive growth experience for learners, exposing them to cutting edge NASA research and field technology. This program is preparing the next generation of science journalists to report on complex science accurately and effectively. The RIS4E Science Journalism Program consists of two components: a semester-long science journalism course and a reporting trip in the field. First, students participate in the RIS4E Science Journalism Practicum offered by the Stony Brook University School of Journalism. Throughout the semester, students learn about RIS4E science from interactions with the RIS4E science team, through classroom visits, one-on-one interviews, and tours of laboratories. At the conclusion of the course, several students, along with a professor and a teaching assistant, join the RIS4E team during the field season. The journalism students observe the entire multi-day field campaign, from set-up, to data collection and analysis, and investigation of questions that arise as a result of field discoveries. They watch the scientists formulate and test hypotheses in real time. The field component for the 2017 RIS4E Science Journalism Program took journalism students to the Potrillo Volcanic Field in New Mexico for a 10-day field campaign. Student feedback was overwhelmingly positive. They gained experience

  3. Western Indian Ocean Journal of Marine Science - Vol 6, No 2 (2008)

    African Journals Online (AJOL)

    Western Indian Ocean Journal of Marine Science. ... Assessment of Heavy Metal Pollution in Sediment and Polychaete Worms from the Mzinga Creek and Ras Dege Mangrove Ecosystems, Dar es Salaam, Tanzania · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  4. Partner-built ecosystem science - The National Ocean Partnership Program as a builder of EBM Tools and Data

    Science.gov (United States)

    Hoffman, P. L.; Green, R. E.; Kohanowich, K. M.

    2016-12-01

    The National Ocean Partnership Program (NOPP) was created in 1997 by federal public law to identify "and carry out partnerships among federal agencies, academia, industry, and other members of the oceanographic scientific community in the areas of data, resources, education, and communications." Since that time, numerous federal agencies have pooled talent, funding, and scientific resources (e.g. ships, aircraft, remote sensors and computing capability) to address pressing ocean science needs which no one entity can manage alone. In this presentation, we will address the ways the National Ocean Policy identifies ecosystem-based management (EBM) as a foundation for providing sound science-based and adaptable management to maintain the health, productivity, and resilience of U.S. ocean, coastal, and Great Lakes ecosystems. Because EBM is an important approach for efficient and effective interagency, multi-jurisdictional, and cross-sectoral marine planning and management, ocean science partnerships such as those provided by NOPP create a pool of regionally-pertinent, nationally-available data from which EBM decision makers can draw to address critical management issues. Specifically, we will provide examples drawn from the last five years of funding to illustrate how the NOPP process works, how it is managed by a federal Interagency Working Group (IWG-OP), and how EBM practitioners can both partner with others through the NOPP and offer guidance on the implementation of projects beneficial to the regional needs of the EBM community. Projects to be discussed have been carried out under the following themes: Arctic Cumulative Impacts: Marine Arctic Ecosystem Study (MARES) - Ecosystem Dynamics and Monitoring of the Beaufort Sea: An Integrated Science Approach. Biodiversity Indicators: Demonstration of a U.S. Marine Biodiversity Observation Network (Marine BON) Long-Term Observations: Coordinated Regional Efforts That Further the U.S. Integrated Ocean Observing System

  5. How does non-formal marine education affect student attitude and knowledge? A case study using SCDNR's Discovery program

    Science.gov (United States)

    McGovern, Mary Francis

    Non-formal environmental education provides students the opportunity to learn in ways that would not be possible in a traditional classroom setting. Outdoor learning allows students to make connections to their environment and helps to foster an appreciation for nature. This type of education can be interdisciplinary---students not only develop skills in science, but also in mathematics, social studies, technology, and critical thinking. This case study focuses on a non-formal marine education program, the South Carolina Department of Natural Resources' (SCDNR) Discovery vessel based program. The Discovery curriculum was evaluated to determine impact on student knowledge about and attitude toward the estuary. Students from two South Carolina coastal counties who attended the boat program during fall 2014 were asked to complete a brief survey before, immediately after, and two weeks following the program. The results of this study indicate that both student knowledge about and attitude significantly improved after completion of the Discovery vessel based program. Knowledge and attitude scores demonstrated a positive correlation.

  6. Patterns in Parent-Child Conversations about Animals at a Marine Science Center

    Science.gov (United States)

    Rigney, Jennifer C.; Callanan, Maureen A.

    2011-01-01

    Parent-child conversations are a potential source of children's developing understanding of the biological domain. We investigated patterns in parent-child conversations that may inform children about biological domain boundaries. At a marine science center exhibit, we compared parent-child talk about typical sea animals with faces (fish) with…

  7. Commerce, Research and Education: Contributions and Challenges of Marine Extension Work in NOAA Sea Grant Program-Puerto Rico, Michigan and National office

    Science.gov (United States)

    Aleman Diaz, A.

    2006-12-01

    with the National office? Although differences based on organizational structure were evident, there were similarities regarding the marine extension work history, practices, and challenges among these local programs. Preliminary findings suggests that current challenges for Sea Grant marine extension include maintenance of non- advocacy and mediation roles among coastal stakeholders, their positioning relative to research especially conducting and delivering of science to public, and development of their multi-faceted skills sets essential to extension. Simultaneously, the Sea Grant program and marine extension agents provide comprehensive ways for integrated resource management like avenues for dialogue and information-technology transfer with bottom up approaches.

  8. NASA's computer science research program

    Science.gov (United States)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  9. Materials sciences programs, Fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  10. AMOP (Arctic Marine Oil Spill Program) studies reviewed

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-05

    A discussion of the Arctic Marine Oil Spill Program organized in 1976 by the Canadian Federal Government includes: an Arctic Atlas compiled by Fenco Consultants Ltd. to give background information necessary for developing marine oil spill countermeasures for the Arctic north of 60/sup 0/ including the west Greenland coast and the Labrador shelf (geology, meteorology and oceanography, ice conditions, biology, and social factors); program in emergency transport of spill-combatting equipment; and the factors which influence the choice of conveyance, i.e., accessibility of the site, urgency for response, and quantity of material required; laboratory studies involving the release of oil under artificial sea ice in simulated ice formation and decay purposes to determine the interaction of crude oil and first-year sea ice; inability of companies and government to control a major spill in the Labrador Sea because of poor and inadequate transport facilities, communications, and navigational aids, severe environmental conditions, and logistics problems; and studies on the effects of oil-well blowouts in deep water, including formation of oil and gas hydrates, design of oil skimmers, the use of hovercraft, and specifications for an airborne multisensor system for oil detection in ice-infested waters.

  11. Program overview: Subsurface science program

    International Nuclear Information System (INIS)

    1994-03-01

    The OHER Subsurface Science Program is DOE's core basic research program concerned with subsoils and groundwater. These practices have resulted in contamination by mixtures of organic chemicals, inorganic chemicals, and radionuclides. A primary long-term goal is to provide a foundation of knowledge that will lead to the reduction of environmental risks and to cost-effective cleanup strategies. Since the Program was initiated in 1985, a substantial amount of research in hydrogeology, subsurface microbiology, and the geochemistry of organically complexed radionuclides has been completed, leading to a better understanding of contaminant transport in groundwater and to new insights into microbial distribution and function in the subsurface environments. The Subsurface Science Program focuses on achieving long-term scientific advances that will assist DOE in the following key areas: providing the scientific basis for innovative in situ remediation technologies that are based on a concept of decontamination through benign manipulation of natural systems; understanding the complex mechanisms and process interactions that occur in the subsurface; determining the influence of chemical and geochemical-microbial processes on co-contaminant mobility to reduce environmental risks; improving predictions of contaminant transport that draw on fundamental knowledge of contaminant behavior in the presence of physical and chemical heterogeneities to improve cleanup effectiveness and to predict environmental risks

  12. FWP executive summaries: Basic energy sciences materials sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1996-02-01

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  13. Program summaries for 1979: energy sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    This report describes the objectives of the various research programs being conducted by the Chemical Sciences, Metallurgy and Materials Science, and Process Science divisions of the BNL Dept. of Energy and Environment. Some of the more significant accomplishments during 1979 are also reported along with plans for 1980. Some of the topics under study include porphyrins, combustion, coal utilization, superconductors, semiconductors, coal, conversion, fluidized-bed combustion, polymers, etc. (DLC)

  14. Marine Science in Southern Wales.

    Science.gov (United States)

    1980-11-05

    George Deacon, founder and formerly head of the UK Institute of Oceanographic Sciences, and Sir Alister Hardy, professor emeritus from Oxford University... head up the new oceandraphy program at its inception. Undergraduate teaching began in 1968 with 30 students, and the first gradu- ates in oceanography...Wales. Zoology Prof. E.W. Knight-Jones collaborates with his wife, Phyllis, in the study of the nervous systems, behavior, and embryology of enteropneusta

  15. Exploring Girls' Science Affinities Through an Informal Science Education Program

    Science.gov (United States)

    Todd, Brandy; Zvoch, Keith

    2017-10-01

    This study examines science interests, efficacy, attitudes, and identity—referred to as affinities, in the context of an informal science outreach program for girls. A mixed methods design was used to explore girls' science affinities before, during, and after participation in a cohort-based summer science camp. Multivariate analysis of survey data revealed that girls' science affinities varied as a function of the joint relationship between family background and number of years in the program, with girls from more affluent families predicted to increase affinities over time and girls from lower income families to experience initial gains in affinities that diminish over time. Qualitative examination of girls' perspectives on gender and science efficacy, attitudes toward science, and elements of science identities revealed a complex interplay of gendered stereotypes of science and girls' personal desires to prove themselves knowledgeable and competent scientists. Implications for the best practice in fostering science engagement and identities in middle school-aged girls are discussed.

  16. Evaluation model applied to TRANSPETRO's Marine Terminals Standardization Program

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Maria Fatima Ludovico de; Mueller, Gabriela [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ (Brazil). Instituto Tecnologico; Garcia, Luciano Maldonado [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This paper describes an innovative evaluation model applied to TRANSPETRO's 'Marine Terminals Standardization Program' based on updating approaches of programs evaluation and organizational learning. Since the program was launched in 2004, the need for having an evaluation model able to evaluate its implementation progress, to measure the degree of standards compliance and its potential economic, social and environmental impacts has become evident. Within a vision of safe and environmentally responsible operations of marine terminals, this evaluation model was jointly designed by TRANSPETRO and PUC-Rio to promote continuous improvement and learning in operational practices and in the standardization process itself. TRANSPETRO believes that standardization supports its services and management innovation capability by creating objective and internationally recognized parameters, targets and metrology for its business activities. The conceptual model and application guidelines for this important tool are presented in this paper, as well as the next steps towards its implementation. (author)

  17. Making Waves: Marine Citizen Science for Impact

    Directory of Open Access Journals (Sweden)

    Marie-Lise Schläppy

    2017-05-01

    Demonstrating citizen science data quality through a precision study on data and analysis of 15 years of standardized Reef Check (RC reef health data in Queensland, Australia.Identifying and responding to data gaps through volunteer monitoring of sub-tropical rocky reefs in South East Queensland, Australia.Adapting citizen science protocols to enhance capacity building, partnerships and strategic natural resource management applications through reef habitat mapping.Tailoring new pathways for sharing citizen science findings and engaging volunteers with the community via a Reef Check Australia Ambassadors community outreach program.These case studies offer insights into considerations for developing targeted and flexible citizen science projects, showcasing the work of volunteers and project stakeholders, and collaborating with partners for applications beneficial to research, management and education.

  18. Marine Sciences: from natural history to ecology and back, on Darwin's shoulders

    Directory of Open Access Journals (Sweden)

    Ferdinando Boero

    2010-12-01

    Full Text Available The naturalist Charles Darwin founded modern ecology, considering in a single conceptual framework the manifold aspects regarding the organization of life at various levels of complexity and its relationship with the physical world. The development of powerful analytical tools led to abandon Darwin's natural history and to transform naturalists, as Darwin labelled himself, into the practitioners of more focused disciplines, aimed at tackling specific problems that considered the various aspects of the organization of life in great detail but, also, in isolation from each other. Among the various disciplines that stemmed from the Darwinian method, ecology was further split into many branches, and marine ecology was no exception. The compartmentalization of the marine realm into several sub-domains (e.g., plankton, benthos, nekton led to neglect of the connections linking the various parts that were separated for the ease of analyses that, in this way, prevented synthetic visions. The way marine sciences were studied also led to separate visions depending on the employed tools, so that ship-based biological oceanography developed almost separately from marine station-based marine biology. The necessity of putting together such concepts as biodiversity and ecosystem functioning is rapidly leading to synthetic approaches that re-discover the historical nature of ecology, leading to the dawn of a new natural history.

  19. The Smithsonian-led Marine Global Earth Observatory (MarineGEO): Proposed Model for a Collaborative Network Linking Marine Biodiversity to Ecosystem Processes

    Science.gov (United States)

    Duffy, J. E.

    2016-02-01

    Biodiversity - the variety of functional types of organisms - is the engine of marine ecosystem processes, including productivity, nutrient cycling, and carbon sequestration. Biodiversity remains a black box in much of ocean science, despite wide recognition that effectively managing human interactions with marine ecosystems requires understanding both structure and functional consequences of biodiversity. Moreover, the inherent complexity of biological systems puts a premium on data-rich, comparative approaches, which are best met via collaborative networks. The Smithsonian Institution's MarineGEO program links a growing network of partners conducting parallel, comparative research to understand change in marine biodiversity and ecosystems, natural and anthropogenic drivers of that change, and the ecological processes mediating it. The focus is on nearshore, seabed-associated systems where biodiversity and human population are concentrated and interact most, yet which fall through the cracks of existing ocean observing programs. MarineGEO offers a standardized toolbox of research modules that efficiently capture key elements of biological diversity and its importance in ecological processes across a range of habitats. The toolbox integrates high-tech (DNA-based, imaging) and low-tech protocols (diver surveys, rapid assays of consumer activity) adaptable to differing institutional capacity and resources. The model for long-term sustainability involves leveraging in-kind support among partners, adoption of best practices wherever possible, engagement of students and citizen scientists, and benefits of training, networking, and global relevance as incentives for participation. Here I highlight several MarineGEO comparative research projects demonstrating the value of standardized, scalable assays and parallel experiments for measuring fish and invertebrate diversity, recruitment, benthic herbivory and generalist predation, decomposition, and carbon sequestration. Key

  20. Proceedings of the 26. Arctic and Marine Oilspill Program (AMOP) Technical Seminar

    International Nuclear Information System (INIS)

    2003-01-01

    The papers presented at this Arctic and Marine Oilspill Program (AMOP) technical seminar reviewed the latest technologies that can be applied to the recovery and mitigation of marine oil spills. The very first seminar was held back in 1976 in response to public concerns regarding the potential for oil spills associated with offshore drilling in the Beaufort Sea in the Canadian Arctic. This twenty-sixth issue includes an appendix listing more than 1,200 AMOP papers from the first 25 years of the conference. Today, the AMOP conference has become international in nature and is the only surviving technical conference on oil spill science and technology in the world. While technical presentations about oil spills are the primary focus of the conference, many presentations also deal with other topics of interest, including contingency planning and legislation. In recent years, the conference has attracted about 200 people each year from 20 countries. The different sessions at this conference were entitled: (1) physical and chemical properties and behaviour of spilled oil, (2) activity updates and contingency planning, (3) detection, tracking and remote sensing, (4) biological effects of oil and hydrocarbons and oil biodegradation, (5) technical seminar on chemical spills with a special session on counter-terrorism, (6) technical seminar on chemical spills, (7) containment and recovery, (8) BIOSS, (9) in-situ burning and shoreline protection and cleanup, (10) oil spill treating agents, (11) spill modelling, and, (12) recent spill experiences. Several presentations described the process of oil in water interactions and were aimed at optimizing response functions, strategy development for marine oil spill response, equipment deployment, containment, recovery, and shoreline assessment. Several studies also presented new treatments for oil spills. Relevant papers and/or presentations were indexed separately for inclusion in the database

  1. Earth Sciences Division annual report 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    Summaries of the highlights of programs in the Earth Sciences Division are presented under four headings; Geosciences, Geothermal Energy Development, Nuclear Waste Isolation, and Marine Sciences. Utilizing both basic and applied research in a wide spectrum of topics, these programs are providing results that will be of value in helping to secure the nation's energy future. Separate abstracts have been prepared for each project for inclusion in the Energy Data Base. (DMC)

  2. The DOE/NREL Environmental Science Program

    International Nuclear Information System (INIS)

    Douglas R. Lawson; Michael Gurevich

    2001-01-01

    This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects

  3. The DOE/NREL Environmental Science Program

    Energy Technology Data Exchange (ETDEWEB)

    Douglas R. Lawson; Michael Gurevich

    2001-05-14

    This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects.

  4. Environmental Management Science Program Workshop. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    The Department of Energy Office of Environmental Management (EM), in partnership with the Office of Energy Research (ER), designed, developed, and implemented the Environmental Management Science Program as a basic research effort to fund the scientific and engineering understanding required to solve the most challenging technical problems facing the government's largest, most complex environmental cleanup program. The intent of the Environmental Management Science Program is to: (1) Provide scientific knowledge that will revolutionize technologies and cleanup approaches to significantly reduce future costs, schedules, and risks. (2) Bridge the gap between broad fundamental research that has wide-ranging applications such as that performed in the Department's Office of Energy Research and needs-driven applied technology development that is conducted in Environmental Management's Office of Science and Technology. (3) Focus the nation's science infrastructure on critical Department of Energy environmental problems. In an effort to share information regarding basic research efforts being funded by the Environmental Management Science Program and the Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program), this CD includes summaries for each project. These project summaries, available in portable document format (PDF), were prepared in the spring of 1998 by the principal investigators and provide information about their most recent project activities and accomplishments.

  5. Marine Ecosystems Analysis (MESA) Program, New York Bight Surficial Sediment Analyses

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Ecosystems Analysis (MESA) Program, New York Bight Study was funded by NOAA and the Bureau of Land Management (BLM). The Atlas was a historical...

  6. Methane Hydrate Field Program: Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Greg [Consortium for Ocean Leadership, Washington, DC (United States)

    2014-02-01

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report: Historical Methane Hydrate Project Review Report; Methane Hydrate Workshop Report; Topical Report: Marine Methane Hydrate Field Research Plan; and Final Scientific/Technical Report.

  7. Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the Marine Sciences Laboratory, Sequim Site

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, J. Matthew; Meier, Kirsten M.; Snyder, Sandra F.; Antonio, Ernest J.; Fritz, Brad G.; Poston, Theodore M.

    2012-12-27

    This document of Data Quality Objectives (DQOs) was prepared based on the U.S. Environmental Protection Agency (EPA) Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA, QA/G4, 2/2006 (EPA 2006), as well as several other published DQOs. The intent of this report is to determine the necessary steps required to ensure that radioactive emissions to the air from the Marine Sciences Laboratory (MSL) headquartered at the Pacific Northwest National Laboratory’s Sequim Marine Research Operations (Sequim Site) on Washington State’s Olympic Peninsula are managed in accordance with regulatory requirements and best practices. The Sequim Site was transitioned in October 2012 from private operation under Battelle Memorial Institute to an exclusive use contract with the U.S. Department of Energy, Office of Science, Pacific Northwest Site Office.

  8. Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Sandra F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Barnett, J. Matthew [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-05

    The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office has oversight and stewardship duties associated with the Pacific Northwest National Laboratory Marine Sciences Laboratory located on Battelle Land – Sequim. This report is prepared to document compliance with the 40 CFR Part 61, Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code . The EDE to the MSL MEI due to routine operations in 2015 was 1.1E-04 mrem (1.1E-06 mSv). No non-routine emissions occurred in 2015. The MSL is in compliance with the federal and state 10 mrem/yr standard.

  9. Materials sciences programs, fiscal year 1994

    International Nuclear Information System (INIS)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects

  10. Materials sciences programs: Fiscal year 1994

    Science.gov (United States)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  11. Materials sciences programs, fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  12. Adaptation of Australia’s Marine Ecosystems to Climate Change: Using Science to Inform Conservation Management

    Directory of Open Access Journals (Sweden)

    Johanna E. Johnson

    2014-01-01

    Full Text Available The challenges that climate change poses for marine ecosystems are already manifesting in impacts at the species, population, and community levels in Australia, particularly in Tasmania and tropical northern Australia. Many species and habitats are already under threat as a result of human activities, and the additional pressure from climate change significantly increases the challenge for marine conservation and management. Climate change impacts are expected to magnify as sea surface temperatures, ocean chemistry, ocean circulation, sea level, rainfall, and storm patterns continue to change this century. In particular, keystone species that form the foundation of marine habitats, such as coral reefs, kelp beds, and temperate rocky reefs, are projected to pass thresholds with subsequent implications for communities and ecosystems. This review synthesises recent science in this field: the observed impacts and responses of marine ecosystems to climate change, ecological thresholds of change, and strategies for marine conservation to promote adaptation. Increasing observations of climate-related impacts on Australia’s marine ecosystems—both temperate and tropical—are making adaptive management more important than ever before. Our increased understanding of the impacts and responses of marine ecosystems to climate change provides a focus for “no-regrets” adaptations that can be implemented now and refined as knowledge improves.

  13. Integrating natural and social sciences to manage sustainably vectors of change in the marine environment: Dogger Bank transnational case study

    Science.gov (United States)

    Burdon, Daryl; Boyes, Suzanne J.; Elliott, Michael; Smyth, Katie; Atkins, Jonathan P.; Barnes, Richard A.; Wurzel, Rüdiger K.

    2018-02-01

    The management of marine resources is a complex process driven by the dynamics of the natural system and the influence of stakeholders including policy-makers. An integration of natural and social sciences research is required by policy-makers to better understand, and manage sustainably, natural changes and anthropogenic activities within particular marine systems. Given the uncertain development of activities in the marine environment, future scenarios assessments can be used to investigate whether marine policy measures are robust and sustainable. This paper develops an interdisciplinary framework, which incorporates future scenarios assessments, and identifies four main types of evaluation needed to integrate natural and social sciences research to support the integrated management of the marine environment: environmental policy and governance assessments; ecosystem services, indicators and valuation; modelling tools for management evaluations, and risk assessment and risk management. The importance of stakeholder engagement within each evaluation method is highlighted. The paper focuses on the transnational spatial marine management of the Dogger Bank, in the central North Sea, a site which is very important ecologically, economically and politically. Current management practices are reviewed, and research tools to support future management decisions are applied and discussed in relation to two main vectors of change affecting the Dogger Bank, namely commercial fisheries and offshore wind farm developments, and in relation to the need for nature conservation. The input of local knowledge through stakeholder engagement is highlighted as a necessary requirement to produce site-specific policy recommendations for the future management of the Dogger Bank. We present wider policy recommendations to integrate natural and social sciences in a global marine context.

  14. Future Marine Polar Research Capacities - Science Planning and Research Services for a Multi-National Research Icebreaker

    Science.gov (United States)

    Biebow, N.; Lembke-Jene, L.; Wolff-Boenisch, B.; Bergamasco, A.; De Santis, L.; Eldholm, O.; Mevel, C.; Willmott, V.; Thiede, J.

    2011-12-01

    Despite significant advances in Arctic and Antarctic marine science over the past years, the polar Southern Ocean remains a formidable frontier due to challenging technical and operational requirements. Thus, key data and observations from this important region are still missing or lack adequate lateral and temporal coverage, especially from time slots outside optimal weather seasons and ice conditions. These barriers combined with the obligation to efficiently use financial resources and funding for expeditions call for new approaches to create optimally equipped, but cost-effective infrastructures. These must serve the international science community in a dedicated long-term mode and enable participation in multi-disciplinary expeditions, with secured access to optimally equipped marine platforms for world-class research in a wide range of Antarctic science topics. The high operational and technical performance capacity of a future joint European Research Icebreaker and Deep-sea Drilling Vessel (the AURORA BOREALIS concept) aims at integrating still separately operating national science programmes with different strategic priorities into joint development of long-term research missions with international cooperation both in Arctic and Antarctica. The icebreaker is planned to enable, as a worldwide first, autonomous year-round operations in the central Arctic and polar Southern Ocean, including severest ice conditions in winter, and serving all polar marine disciplines. It will facilitate the implementation of atmospheric, oceanographic, cryospheric or geophysical observatories for long-term monitoring of the polar environment. Access to the biosphere and hydrosphere e.g. beneath ice shelves or in remote regions is made possible by acting as advanced deployment platform for instruments, robotic and autonomous vehicles and ship-based air operations. In addition to a report on the long-term strategic science and operational planning objectives, we describe foreseen

  15. The science experience: The relationship between an inquiry-based science program and student outcomes

    Science.gov (United States)

    Poderoso, Charie

    Science education reforms in U.S. schools emphasize the importance of students' construction of knowledge through inquiry. Organizations such as the National Science Foundation (NSF), the National Research Council (NRC), and the American Association for the Advancement of Science (AAAS) have demonstrated a commitment to searching for solutions and renewed efforts to improve science education. One suggestion for science education reform in U.S. schools was a transition from traditional didactic, textbook-based to inquiry-based instructional programs. While inquiry has shown evidence for improved student learning in science, what is needed is empirical evidence of those inquiry-based practices that affect student outcomes in a local context. This study explores the relationship between instructional programs and curricular changes affecting student outcomes in the Santa Ana Unified District (SAUSD): It provides evidence related to achievement and attitudes. SAUSD employs two approaches to teaching in the middle school science classrooms: traditional and inquiry-based approaches. The Leadership and Assistance for Science Education Reform (LASER) program is an inquiry-based science program that utilizes resources for implementation of the University of California Berkeley's Lawrence Hall of Science Education for Public Understanding Program (SEPUP) to support inquiry-based teaching and learning. Findings in this study provide empirical support related to outcomes of seventh-grade students, N = 328, in the LASER and traditional science programs in SAUSD.

  16. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1997-05-01

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfaces for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.

  17. Participating in a Citizen Science Monitoring Program: Implications for Environmental Education.

    Directory of Open Access Journals (Sweden)

    Simone Branchini

    Full Text Available Tourism is of growing economical importance to many nations, in particular for developing countries. Although tourism is an important economic vehicle for the host country, its continued growth has led to on-going concerns about its environmental sustainability. Coastal and marine tourism can directly affect the environment through direct and indirect tourist activities. For these reasons tourism sector needs practical actions of sustainability. Several studies have shown how education minimizes the impact on and is proactive for, preserving the natural resources. This paper evaluates the effectiveness of a citizen science program to improve the environmental education of the volunteers, by means of questionnaires provided to participants to a volunteer-based Red Sea coral reef monitoring program (STEproject. Fifteen multiple-choice questions evaluated the level of knowledge on the basic coral reef biology and ecology and the awareness on the impact of human behaviour on the environment. Volunteers filled in questionnaires twice, once at the beginning, before being involved in the project and again at the end of their stay, after several days participation in the program. We found that the participation in STEproject significantly increased both the knowledge of coral reef biology and ecology and the awareness of human behavioural impacts on the environment, but was more effective on the former. We also detected that tourists with a higher education level have a higher initial level of environmental education than less educated people and that the project was more effective on divers than snorkelers. This study has emphasized that citizen science projects have an important and effective educational value and has suggested that tourism and diving stakeholders should increase their commitment and efforts to these programs.

  18. Participating in a Citizen Science Monitoring Program: Implications for Environmental Education

    Science.gov (United States)

    Branchini, Simone; Meschini, Marta; Covi, Claudia; Piccinetti, Corrado; Zaccanti, Francesco; Goffredo, Stefano

    2015-01-01

    Tourism is of growing economical importance to many nations, in particular for developing countries. Although tourism is an important economic vehicle for the host country, its continued growth has led to on-going concerns about its environmental sustainability. Coastal and marine tourism can directly affect the environment through direct and indirect tourist activities. For these reasons tourism sector needs practical actions of sustainability. Several studies have shown how education minimizes the impact on and is proactive for, preserving the natural resources. This paper evaluates the effectiveness of a citizen science program to improve the environmental education of the volunteers, by means of questionnaires provided to participants to a volunteer-based Red Sea coral reef monitoring program (STEproject). Fifteen multiple-choice questions evaluated the level of knowledge on the basic coral reef biology and ecology and the awareness on the impact of human behaviour on the environment. Volunteers filled in questionnaires twice, once at the beginning, before being involved in the project and again at the end of their stay, after several days participation in the program. We found that the participation in STEproject significantly increased both the knowledge of coral reef biology and ecology and the awareness of human behavioural impacts on the environment, but was more effective on the former. We also detected that tourists with a higher education level have a higher initial level of environmental education than less educated people and that the project was more effective on divers than snorkelers. This study has emphasized that citizen science projects have an important and effective educational value and has suggested that tourism and diving stakeholders should increase their commitment and efforts to these programs PMID:26200660

  19. Participating in a Citizen Science Monitoring Program: Implications for Environmental Education.

    Science.gov (United States)

    Branchini, Simone; Meschini, Marta; Covi, Claudia; Piccinetti, Corrado; Zaccanti, Francesco; Goffredo, Stefano

    2015-01-01

    Tourism is of growing economical importance to many nations, in particular for developing countries. Although tourism is an important economic vehicle for the host country, its continued growth has led to on-going concerns about its environmental sustainability. Coastal and marine tourism can directly affect the environment through direct and indirect tourist activities. For these reasons tourism sector needs practical actions of sustainability. Several studies have shown how education minimizes the impact on and is proactive for, preserving the natural resources. This paper evaluates the effectiveness of a citizen science program to improve the environmental education of the volunteers, by means of questionnaires provided to participants to a volunteer-based Red Sea coral reef monitoring program (STEproject). Fifteen multiple-choice questions evaluated the level of knowledge on the basic coral reef biology and ecology and the awareness on the impact of human behaviour on the environment. Volunteers filled in questionnaires twice, once at the beginning, before being involved in the project and again at the end of their stay, after several days participation in the program. We found that the participation in STEproject significantly increased both the knowledge of coral reef biology and ecology and the awareness of human behavioural impacts on the environment, but was more effective on the former. We also detected that tourists with a higher education level have a higher initial level of environmental education than less educated people and that the project was more effective on divers than snorkelers. This study has emphasized that citizen science projects have an important and effective educational value and has suggested that tourism and diving stakeholders should increase their commitment and efforts to these programs.

  20. OceanGLOBE: an Outdoor Research and Environmental Education Program for K-12 Students

    Science.gov (United States)

    Perry, R. B.; Hamner, W. M.

    2006-12-01

    OceanGLOBE is an outdoor environmental research and education program for upper elementary, middle and high school students, supplemented by online instructional materials that are available without charge to any educator. OceanGLOBE was piloted in 1995 with support from a National Science Foundation Teacher Enhancement project, "Leadership in Marine Science" (award no.ESI-9454413 to UCLA). Continuing support by a second NSF Teacher Enhancement project (award no. ESI-9819424 to UCLA) and by COSEE-West (NSF awards OCE-215506 to UCLA and OCE-0215497 to USC) has enabled OceanGLOBE to expand to a growing number of schools and to provide an increasingly robust collection of marine science instructional materials on its website, http://www.msc.ucla.edu/oceanglobe/ OceanGLOBE provides a mechanism for students to conduct inquiry-based, hands-on marine science research, providing experiences that anchor the national and state science content standards learned in the classroom. Students regularly collect environmental and biological data from a beach site over an extended period of time. In the classroom they organize, graph and analyze their data, which can lead to a variety of student-created science products. Beach research is supported by instructional marine science materials on the OceanGLOBE website. These online materials also can be used in the classroom independent of the field component. Annotated PowerPoint slide shows explain research protocols and provide marine science content. Field guides and photographs of marine organisms (with emphasis on the Southern California Bight) and a growing collection of classroom investigations (applicable to any ocean location) support the science content presented in the beach research program and slide shows. In summary, OceanGLOBE is a comprehensive learning package grounded in hands-on, outdoor marine science research project in which students are the principal investigators. By doing scientific work repetitively over an

  1. Thinking about television science: How students understand the nature of science from different program genres

    Science.gov (United States)

    Dhingra, Koshi

    2003-02-01

    Student views on the nature of science are shaped by a variety of out-of-school forces and television-mediated science is a significant force. To attempt to achieve a science for all, we need to recognize and understand the diverse messages about science that students access and think about on a regular basis. In this work I examine how high school students think about science that is mediated by four different program genres on television: documentary, magazine-format programming, network news, and dramatic or fictional programming. The following categories of findings are discussed: the ethics and validity of science, final form science, science as portrayed by its practitioners, and school science and television science. Student perceptions of the nature of science depicted on the program sample used in this study ranged from seeing science as comprising tentative knowledge claims to seeing science as a fixed body of facts.

  2. The Marine Realms Information Bank family of digital libraries: access to free online information for coastal and marine science

    Science.gov (United States)

    Lightsom, Frances L.; Allwardt, Alan O.

    2007-01-01

    Searching the World Wide Web for reliable information about specific topics or locations can be frustrating: too many hits, too little relevance. A well-designed digital library, offering a carefully selected collection of online resources, is an attractive alternative to web search engines. The U.S. Geological Survey (USGS) provides three digital libraries for coastal and marine science to serve the needs of a diverse audience--scientists, public servants, educators, and the public.

  3. The Los Alamos Space Science Outreach (LASSO) Program

    Science.gov (United States)

    Barker, P. L.; Skoug, R. M.; Alexander, R. J.; Thomsen, M. F.; Gary, S. P.

    2002-12-01

    The Los Alamos Space Science Outreach (LASSO) program features summer workshops in which K-14 teachers spend several weeks at LANL learning space science from Los Alamos scientists and developing methods and materials for teaching this science to their students. The program is designed to provide hands-on space science training to teachers as well as assistance in developing lesson plans for use in their classrooms. The program supports an instructional model based on education research and cognitive theory. Students and teachers engage in activities that encourage critical thinking and a constructivist approach to learning. LASSO is run through the Los Alamos Science Education Team (SET). SET personnel have many years of experience in teaching, education research, and science education programs. Their involvement ensures that the teacher workshop program is grounded in sound pedagogical methods and meets current educational standards. Lesson plans focus on current LANL satellite projects to study the solar wind and the Earth's magnetosphere. LASSO is an umbrella program for space science education activities at Los Alamos National Laboratory (LANL) that was created to enhance the science and math interests and skills of students from New Mexico and the nation. The LASSO umbrella allows maximum leveraging of EPO funding from a number of projects (and thus maximum educational benefits to both students and teachers), while providing a format for the expression of the unique science perspective of each project.

  4. A Unique Marine and Environmental Science Program for High School Teachers in Hawai'i: Professional Development, Teacher Confidence, and Lessons Learned

    Science.gov (United States)

    Rivera, Malia Ana J.; Manning, Mackenzie M.; Krupp, David A.

    2013-01-01

    Hawai'i is a unique and special place to conduct environmental science inquiry through place based learning and scientific investigation. Here, we describe and evaluate a unique professional development program for science teachers in Hawai'i that integrates the traditional approach of providing training to improve content knowledge, with the…

  5. Measuring Science Inquiry Skills in Youth Development Programs: The Science Process Skills Inventory

    Directory of Open Access Journals (Sweden)

    Mary E. Arnold

    2013-03-01

    Full Text Available In recent years there has been an increased emphasis on science learning in 4-H and other youth development programs. In an effort to increase science capacity in youth, it is easy to focus only on developing the concrete skills and knowledge that a trained scientist must possess. However, when science learning is presented in a youth-development setting, the context of the program also matters. This paper reports the development and testing of the Science Process Skills Inventory (SPSI and its usefulness for measuring science inquiry skill development in youth development science programs. The results of the psychometric testing of the SPSI indicated the instrument is reliable and measures a cohesive construct called science process skills, as reflected in the 11 items that make up this group of skills. The 11 items themselves are based on the cycle of science inquiry, and represent the important steps of the complete inquiry process.

  6. Integrating Mercury Science and Policy in the Marine Context: Challenges and Opportunities

    Science.gov (United States)

    Lambert, Kathleen F.; Evers, David C.; Warner, Kimberly A.; King, Susannah L.; Selin, Noelle E.

    2014-01-01

    Mercury is a global pollutant and presents policy challenges at local, regional, and global scales. Mercury poses risks to the health of people, fish, and wildlife exposed to elevated levels of mercury, most commonly from the consumption of methylmercury in marine and estuarine fish. The patchwork of current mercury abatement efforts limits the effectiveness of national and multi-national policies. This paper provides an overview of the major policy challenges and opportunities related to mercury in coastal and marine environments, and highlights science and policy linkages of the past several decades. The U.S. policy examples explored here point to the need for a full life cycle approach to mercury policy with a focus on source reduction and increased attention to: (1) the transboundary movement of mercury in air, water, and biota; (2) the coordination of policy efforts across multiple environmental media; (3) the cross-cutting issues related to pollutant interactions, mitigation of legacy sources, and adaptation to elevated mercury via improved communication efforts; and (4) the integration of recent research on human and ecological health effects into benefits analyses for regulatory purposes. Stronger science and policy integration will benefit national and international efforts to prevent, control, and minimize exposure to methylmercury. PMID:22901766

  7. The Howard University Program in Atmospheric Sciences (HUPAS): A Program Exemplifying Diversity and Opportunity

    Science.gov (United States)

    Morris, Vernon R.; Joseph, Everette; Smith, Sonya; Yu, Tsann-wang

    2012-01-01

    This paper discusses experiences and lessons learned from developing an interdisciplinary graduate program (IDP) during the last 10 y: The Howard University Graduate Program in Atmospheric Sciences (HUPAS). HUPAS is the first advanced degree program in the atmospheric sciences, or related fields such as meteorology and earth system sciences,…

  8. 75 FR 54095 - Takes of Marine Mammals Incidental to Specified Activities; Low-Energy Marine Seismic Survey in...

    Science.gov (United States)

    2010-09-03

    ... Marine Mammals Incidental to Specified Activities; Low- Energy Marine Seismic Survey in the Eastern... low-energy marine seismic survey. Pursuant to the Marine Mammal Protection Act (MMPA), NMFS is... funding provided by the National Science Foundation, a low-energy marine seismic survey. NMFS reviewed SIO...

  9. Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program

    International Nuclear Information System (INIS)

    None

    2000-01-01

    This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects

  10. Teaching Citizenship in Science Classes at the University of Arizona

    Science.gov (United States)

    Thompson, R. M.; Mangin, K.

    2008-12-01

    Science classes for non-science majors present unique opportunities to create lifelong science aficionados and teach citizenship skills. Because no specific content is needed for future courses, subject matter can be selected to maximize interest and assignments can be focused on life skills such as science literacy instead of discipline-specific content mastery. Dinosaurs! is a very successful non-major science class with a minimum enrollment of 150 that is intended for sophomores. One of the goals of this class is to increase students' awareness of social issues, the political process, and opportunities for keeping up with science later in life. The main theme of this class is evolution. The bird-dinosaur link is the perfect vehicle for illustrating the process of science because the lines of evidence are many, convincing, and based on discoveries made throughout the last half-century and continuing to the present day. The course is also about evolution the social issue. The second writing assignment is an in-class affective writing based on a newspaper article about the Dover, PA court case. The primary purpose of this assignment is to create a comfort zone for those students with strong ideological biases against evolution by allowing them to express their views without being judged, and to instill tolerance and understanding in students at the other end of the spectrum. Another homework uses thomas.loc.gov, the government's public website providing information about all legislation introduced since the 93rd Congress and much more. The assignment highlights the difficulty of passing legislation and the factors that contribute to a given bill's legislative success or failure using the Paleontological Resources Preservation Act, S320. Details of these assignments and others designed to achieve the goals stated above will be presented. A very different undergraduate program, Marine Discovery, offers science majors the opportunity to earn upper division science

  11. Atmospheric Radiation Measurement Program Science Plan. Current Status and Future Directions of the ARM Science Program

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, Thomas P.; Del Genio, Anthony D.; Ellingson, Robert G.; Ferrare, Richard A.; Klein, Steve A.; McFarquhar, Gregory M.; Lamb, Peter J.; Long, Charles M.; Verlinde, Johannes

    2004-10-30

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years; Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square; Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds; Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations; Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites; Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale; and, Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote

  12. Earth Sciences Division. Annual report 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    This annual report contains articles describing the research programs conducted during the year. Major areas of interest include geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, geothermal environmental research, basic geosciences studies, applied geosciences studies, nuclear waste isolation, and marine sciences. (ACR)

  13. Earth Sciences Division. Annual report 1979

    International Nuclear Information System (INIS)

    1980-07-01

    This annual report contains articles describing the research programs conducted during the year. Major areas of interest include geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, geothermal environmental research, basic geosciences studies, applied geosciences studies, nuclear waste isolation, and marine sciences

  14. 76 FR 68720 - Takes of Marine Mammals Incidental to Specified Activities; Low-Energy Marine Geophysical Survey...

    Science.gov (United States)

    2011-11-07

    ... Marine Mammals Incidental to Specified Activities; Low- Energy Marine Geophysical Survey in the Western... conducting a low-energy marine geophysical (i.e., seismic) survey in the western tropical Pacific Ocean... Science Foundation (NSF), and ``Environmental Assessment of a Low-Energy Marine Geophysical Survey by the...

  15. University of New Hampshire's Project SMART 2017: Marine and Environmental Science for High School Students

    Science.gov (United States)

    Goelzer, J.; Varner, R. K.; Levergood, R.; Sullivan, F.; Palace, M. W.; Haney, J. F.; Rock, B. N.; Smith, C. W.

    2017-12-01

    The month long residential Marine and Environmental Science research program for high school students at the University of New Hampshire connects students with university researchers. This educational program provides upper level high school students who are considering majors in the earth and environmental sciences with the opportunity to perform field work and conduct authentic research. This year's program introduced students to four modules exploring topics ranging from forest ecology to island ecosystems. The unifying theme between modules was the use of spectroscopy and remote sensing as a method of assessing the characteristics of ecosystems. Students constructed their own photometers utilizing eight specific Light Emitting Diodes (LEDs) spanning a wavelength range from 400 to 1200 nm. An Ultra Violet (UV) LED, four visible LEDs, and three different infrared LEDs were selected to detect light reflected by plant pigments and tissues. Students collected data using their photometers and compared results to an actual Analytical Spectral Device (ASD) reflectance data, mounted eight photometers on an unmanned aerial system (UAS) to collect forest canopy data and collected data from island rock pools. The students compared their photometer readings to data collected using a fluorometer to identify the presence of phycocyanin produced by cyanobacteria and chlorophyll produced by algae in the rock pools. Students found that the photometer data were comparable to the ASD data for several wavelengths, but recommended several changes. It was determined that to be useful for forest health assessment, two of the three infrared LEDs had the incorrect gain settings, and that for rock pool studies, the infrared LEDs were not necessary. Based on the student findings, we will refine the photometers for next year's program. The photometers constructed this summer will be utilized in high schools classes during the 2017-2018 school year. This low cost project will bring what is

  16. Evaluation model for enterprise standardization programs: the case of Petrobras Transporte's marine terminals unit

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, Luciano; De Ludovico Almeida, Maria Fatima; Penchino Pereira, Paulo Penchina; Santos, Ubirajara; Henrique Ferreira, Manoel; Muller, Gabriela [Petrobras Transporte - Transpetro (Brazil)

    2010-07-01

    With the economic opening and the globalization process, standardization, metrology and quality activities have become known among companies as knowledge areas with direct impact on their search for operational excellence and competitiveness. Petrobras Transporte's Marine Terminal Units has been working over the last years to be recognized as a reference in the activities it pursues. This is based on the Petrobras Transporte's strategic plan 2020, which foresees amongst others, the specialization of technical workforce, operational safety excellence, capital discipline, customer satisfaction, the search for new technologies and markets and the rendering of new services. To achieve these goals, the Marine Terminals Standardization Program must be adhered to. Since that program was launched in 2004, the need for an evaluation model to evaluate its implementation progress, measure the degree of standards compliance and its potential economic, social and environmental impacts have become evident. This paper describes the innovative evaluation model applied to Petrobras Transporte's marine terminals standardization program.

  17. Programming Paradigms in Computer Science Education

    OpenAIRE

    Bolshakova, Elena

    2005-01-01

    Main styles, or paradigms of programming – imperative, functional, logic, and object-oriented – are shortly described and compared, and corresponding programming techniques are outlined. Programming languages are classified in accordance with the main style and techniques supported. It is argued that profound education in computer science should include learning base programming techniques of all main programming paradigms.

  18. Improving the quality of science reporting: a case study of Metcalf's Annual Science Immersion Workshop for Journalists

    Science.gov (United States)

    Murray, Cara

    Environmental journalists and science writers express a strong desire for professional development opportunities. These groups often identify inadequate training in science and science writing as their biggest obstacles to accurate reporting. To fill these training gaps, science immersion workshops for journalists, focused on a particular specialization such as marine reporting, offer both practical and pedagogical advantages. However, few efforts have been made to evaluate the efficacy of these workshops in a quantitative way. This case study of the Annual Science Immersion Workshop for Journalists, offered by the Metcalf Institute for Marine and Environmental Reporting, aimed to determine whether journalists' reporting is more accurate as a result of program participation. Survey data, collected from 11 years of workshop alumni, indicate neutral to positive responses on all measures of change. Using an exploratory approach, this study analyzed survey results by five categories---year of attendance, education level and type, media format, and years of journalism experience---to investigate the role of demographic variables in participants' learning experience. Some results of these comparative analyses correlate with programmatic changes made during the 11 years surveyed. The presence or absence of specific workshop activities coincides with higher and lower levels of reported change for specific learning objectives targeted by those activities. Other results have possible implications for program design or participant eligibility to maximize program impact. Journalists with more formal education report more change on multiple learning objectives, such as data use, understanding of scientific uncertainty, desire to report on environmental topics, and communication with scientists. At the same time, journalists with less formal education and less professional experience are more likely to have recommended the program to others. Some confounding results suggest a

  19. Development and Implementation of Science and Technology Ethics Education Program for Prospective Science Teachers

    Science.gov (United States)

    Rhee, Hyang-yon; Choi, Kyunghee

    2014-01-01

    The purposes of this study were (1) to develop a science and technology (ST) ethics education program for prospective science teachers, (2) to examine the effect of the program on the perceptions of the participants, in terms of their ethics and education concerns, and (3) to evaluate the impact of the program design. The program utilized…

  20. Fusion Energy Sciences Program at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Leeper, Ramon J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-15

    This presentation provides a strategic plan and description of investment areas; LANL vision for existing programs; FES portfolio and other specifics related to the Fusion Energy Sciences program at LANL.

  1. Scope of the Spanish Marine Sciences National Programme from 1995 to 2003

    Directory of Open Access Journals (Sweden)

    Beatriz Morales-Nin

    2004-06-01

    Full Text Available Marine Research in Spain was funded mainly by the National Plans of the Ministry of Science and Technology. These have four-year duration and comprise priority research areas addressed by Research and Development Programmes. Marine Sciences has been identified as a Programme since 1995, and forms part of two National Plans. The Programme made annual invitations to tender with the following objectives: global change, ecosystems, sustainable fisheries, coastal zone, pollution and new technologies. Each objective had several sub-objectives. In the first period (1995-1999 Aquaculture was one of the objectives, and it had its own Programme in the second. The 1995-1999 Programme approved 189 projects (47% of the proposals submitted with a budget of 9.14 M€ and a participation of 550 persons/year. In the 2000-2003 Programme 175 projects were approved (51% of the proposals submitted corresponding to €12.42 M and 780 persons/year. The universities were the principal actors (58% of the projects, followed by the Science Council (25% of the projects. Catalonia is the region with the greatest participation both in projects and in funding, followed by Galicia and Andalusia. Considering that in the first period there were five invitations to tender and Aquaculture was the main objective (63 projects and €2.26 M, the increase in participation and funding is considerable. This trend is also confirmed by the increase in success rate (approval of proposals rose from 47% in the first invitation to tender to 51% in the second and the increase in the mean budget per project (from €48.300 to €70.900 respectively.

  2. Preparing Science Teachers: Strong Emphasis on Science Content Course Work in a Master's Program in Education

    Science.gov (United States)

    Ajhar, Edward A.; Blackwell, E.; Quesada, D.

    2010-05-01

    In South Florida, science teacher preparation is often weak as a shortage of science teachers often prompts administrators to assign teachers to science classes just to cover the classroom needs. This results is poor preparation of students for college science course work, which, in turn, causes the next generation of science teachers to be even weaker than the first. This cycle must be broken in order to prepare better students in the sciences. At St. Thomas University in Miami Gardens, Florida, our School of Science has teamed with our Institute for Education to create a program to alleviate this problem: A Master of Science in Education with a Concentration in Earth/Space Science. The Master's program consists of 36 total credits. Half the curriculum consists of traditional educational foundation and instructional leadership courses while the other half is focused on Earth and Space Science content courses. The content area of 18 credits also provides a separate certificate program. Although traditional high school science education places a heavy emphasis on Earth Science, this program expands that emphasis to include the broader context of astronomy, astrophysics, astrobiology, planetary science, and the practice and philosophy of science. From this contextual basis the teacher is better prepared to educate and motivate middle and high school students in all areas of the physical sciences. Because hands-on experience is especially valuable to educators, our program uses materials and equipment including small optical telescopes (Galileoscopes), several 8-in and 14-in Celestron and Meade reflectors, and a Small Radio Telescope installed on site. (Partial funding provided by the US Department of Education through Minority Science and Engineering Improvement Program grant P120A050062.)

  3. Assessment of the Fusion Energy Sciences Program. Final Report

    International Nuclear Information System (INIS)

    2001-01-01

    An assessment of the Office of Fusion Energy Sciences (OFES) program with guidance for future program strategy. The overall objective of this study is to prepare an independent assessment of the scientific quality of the Office of Fusion Energy Sciences program at the Department of Energy. The Fusion Science Assessment Committee (FuSAC) has been appointed to conduct this study

  4. Lessons from NASA Applied Sciences Program: Success Factors in Applying Earth Science in Decision Making

    Science.gov (United States)

    Friedl, L. A.; Cox, L.

    2008-12-01

    The NASA Applied Sciences Program collaborates with organizations to discover and demonstrate applications of NASA Earth science research and technology to decision making. The desired outcome is for public and private organizations to use NASA Earth science products in innovative applications for sustained, operational uses to enhance their decisions. In addition, the program facilitates the end-user feedback to Earth science to improve products and demands for research. The Program thus serves as a bridge between Earth science research and technology and the applied organizations and end-users with management, policy, and business responsibilities. Since 2002, the Applied Sciences Program has sponsored over 115 applications-oriented projects to apply Earth observations and model products to decision making activities. Projects have spanned numerous topics - agriculture, air quality, water resources, disasters, public health, aviation, etc. The projects have involved government agencies, private companies, universities, non-governmental organizations, and foreign entities in multiple types of teaming arrangements. The paper will examine this set of applications projects and present specific examples of successful use of Earth science in decision making. The paper will discuss scientific, organizational, and management factors that contribute to or impede the integration of the Earth science research in policy and management. The paper will also present new methods the Applied Sciences Program plans to implement to improve linkages between science and end users.

  5. The marine biological week as an approach to science

    Science.gov (United States)

    Ransdorf, Angela; Satzinger, Viktoria

    2017-04-01

    The "Wiedner Gymnasium" is an academic high school with two branches: one focusses on languages and the other one on science. In the language branch the students learn at least three languages; one of which is Latin, whereas the students of the scientific branch can learn geometrical drawing and have to attend a scientific laboratory throughout the last four upper classes. As incentive highlights the language classes have a one week's school trip to France, Italy or Spain at the beginning of their 7th form in order to attend a language school and to practice their language skills. As a counterbalance, there was introduced the "marine biological week" several years ago, in which the students of the scientific branch take part whilst their colleagues have their language trips. The marine biological week takes place in Rovinj, Croatia. A team of biologists and divers leads through a programme, by which the students get an overview of different habitats, their conditions and the different ways of adaptation organisms find. Thus, they also become acquainted with several species of animals and plants which are characteristic for this area. They become familiar with some methods of scientific work and also get to know some of the problems marine ecosystems are confronted with. They also learn a little bit if the Mediterranean history and culture. Back in school all the findings are reviewed and brought into an ecological context. The insights can be used for many other topics, too, such as e.g. evolution. This week has proved to be a good start as well for the topic of ecology as for learning to think scientifically in general. So, you can call it a pivot for the scientific branch of our school.

  6. Space Life Sciences Research and Education Program

    Science.gov (United States)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  7. Strategies for broadening participation in the Maryland Sea Grant REU program

    Science.gov (United States)

    Moser, F. C.; Kramer, J.; Allen, J. R.

    2011-12-01

    A core goal of the ocean science community is to increase gender and ethnic diversity in its scientific workforce. Maryland Sea Grant strives to provide women and students from underrepresented groups in marine science opportunities to participate in its NSF-supported Research Experiences for Undergraduates (REU) program in estuarine processes. While women currently dominate the applicant student pool, and often the accepted student pool, we are trying a variety of strategies to increase the number of applicants and accepted students from underrepresented groups who might not otherwise be lured into marine science research and, ultimately, careers. For example, we have built partnerships with multicultural-focused undergraduate research programs and institutions, which can raise awareness about our REU program and its commitment to broadening diversity. Further, we work to attract first generation college students, students from small colleges with limited marine science opportunities and students from varied racial and ethnic backgrounds using such strategies as: 1) developing trust and partnerships with faculty at minority serving institutions; 2) expanding our outreach in advertising our program; 3) recruiting potential applicants at professional meetings; 4) targeting minority serving institutions within and beyond our region; 5) encouraging our REU alumni to promote our REU program among their peers; and 6) improving our application process. We believe these efforts contribute to the increase in the diversity of our summer-supported students and the change in the composition of our applicant pool over the last decade. Although we cannot definitively identify which strategies are the most effective at broadening participation in our program, we attribute most of our improvements to some combination of these strategies. In addition, pre- and post-surveying of our REU students improves our understanding of effective tools for recruiting and adapting our program

  8. State-Space Modelling in Marine Science

    DEFF Research Database (Denmark)

    Albertsen, Christoffer Moesgaard

    State-space models provide a natural framework for analysing time series that cannot be observed without error. This is the case for fisheries stock assessments and movement data from marine animals. In fisheries stock assessments, the aim is to estimate the stock size; however, the only data...... available is the number of fish removed from the population and samples on a small fraction of the population. In marine animal movement, accurate position systems such as GPS cannot be used. Instead, inaccurate alternative must be used yielding observations with large errors. Both assessment and individual...... animal movement models are important for management and conservation of marine animals. Consequently, models should be developed to be operational in a management context while adequately evaluating uncertainties in the models. This thesis develops state-space models using the Laplace approximation...

  9. Exploring Art and Science Integration in an Afterschool Program

    Science.gov (United States)

    Bolotta, Alanna

    Science, technology, engineering, arts and math (STEAM) education integrates science with art, presenting a unique and interesting opportunity to increase accessibility in science for learners. This case study examines an afterschool program grounded in art and science integration. Specifically, I studied the goals of the program, it's implementation and the student experience (thinking, feeling and doing) as they participated in the program. My findings suggest that these programs can be powerful methods to nurture scientific literacy, creativity and emotional development in learners. To do so, this program made connections between disciplines and beyond, integrated holistic teaching and learning practices, and continually adapted programming while also responding to challenges. The program is therefore specially suited to engage the heads, hands and hearts of learners, and can make an important contribution to their learning and development. To conclude, I provide some recommendations for STEAM implementation in both formal and informal learning settings.

  10. The Howard University Program in Atmospheric Sciences: A Program Exemplifying Diversity and Excellence

    Science.gov (United States)

    Morria, V. R.; Demoz, B.; Joseph, E.

    2017-12-01

    The Howard University Graduate Program in Atmospheric Sciences (HUPAS) is the first advanced degree program in the atmospheric sciences instituted at a Historically Black College/University (HBCU) or at a Minority-Serving Institution (MSI). MSI in this context refers to academic institutions whose histories are grounded in serving minority students from their inception, rather than institutions whose student body demographics have evolved along with the "browning of America" and now meet recent Federal criteria for "minority-serving". HUPAS began in 1996 when initiatives within the Howard University Graduate School overlapped with the motivations of investigators within a NASA-funded University research center for starting a sustainable interdisciplinary program. After twenty years, the results have been the production of greater institutional depth and breadth of research in the geosciences and significant production of minority scientists contributing to the atmospheric sciences enterprise in various sectors. This presentation will highlight the development of the Howard University graduate program in atmospheric sciences, its impact on the national statistics for the production of underrepresented minority (URM) advanced degree holders in the atmospheric sciences, and some of the program's contributions to the diversity in geosciences and the National pipeline of talent from underrepresented groups. Over the past decade, Howard University is leading producer of African American and Hispanic female doctorates in atmospheric sciences - producing nearly half of all degree holders in the Nation. Specific examples of successful partnerships between this program and federal funding agencies such as NASA and NOAA which have been critical in the development process will also be highlighted. Finally, some of the student recruitment and retention strategies that have enabled the success of this program and statistics of student graduation will also be shared and

  11. The University of Texas Science and Engineering Apprentice Program as a Model for an REU Site

    Science.gov (United States)

    Davis, M. B.; Blankenship, D. D.; Ellins, K. E.

    2004-12-01

    The University of Texas Institute for Geophysics at (UTIG) is one of five research labs in the Austin area that hosts recent high school graduates for summer research projects through the Applied Research Lab Science and Engineering Apprenticeship Program (SEAP). The SEAP is a program designed to provide summer research opportunities to recent high school undergraduates who excel in science and math. UTIG has been a large proponent of the SEAP and has typically mentored two to four students each year and a total alumni of about twenty. The program has successfully targeted groups that are typically underrepresented in sciences and engineering. Current statistics show that 25% of past SEAP students are members of an ethnic minority and 80% of SEAP students are female. Many of these students have stayed on after the summer program and continued to work part-time or return during summers to UTIG while completing their undergraduate careers. A significant portion of these students present results at professional meetings and ultimately commit to careers in science and engineering, both in industry and academia. SEAP students at UTIG work alongside scientists and graduate students as part of a team, and, through this interaction, improve their scientific knowledge and problem solving skills. Both graduate and undergraduate students involved in NSF-funded research grants mentor the SEAP students, giving them the opportunity to work on their own research problem while contributing data and interpretation to a more fundamental research problem. By uniting student research under the umbrella of Antarctic ice sheet research, students learn how their individual research projects relate to the more unifying science problem centered on ice sheet variability, and Antarctic continental evolution. They also gain an understanding of how research is carried out. At the same time, scientists and graduate students learn how to communicate their knowledge so that it is interesting and

  12. Teachers' participation in research programs improves their students' achievement in science.

    Science.gov (United States)

    Silverstein, Samuel C; Dubner, Jay; Miller, Jon; Glied, Sherry; Loike, John D

    2009-10-16

    Research experience programs engage teachers in the hands-on practice of science. Program advocates assert that program participation enhances teachers' skills in communicating science to students. We measured the impact of New York City public high-school science teachers' participation in Columbia University's Summer Research Program on their students' academic performance in science. In the year before program entry, students of participating and nonparticipating teachers passed a New York State Regents science examination at the same rate. In years three and four after program entry, participating teachers' students passed Regents science exams at a rate that was 10.1% higher (P = 0.049) than that of nonparticipating teachers' students. Other program benefits include decreased teacher attrition from classroom teaching and school cost savings of U.S. $1.14 per $1 invested in the program.

  13. Tohoku Earthquake-associated Marine Sciences: the research project for the Great East Japan Earthquake on March 11, 2011

    Science.gov (United States)

    Kitazato, Hiroshi; Kijima, Akihiro; Kogure, Kazuhiro; Hara, Motoyuki; Nagata, Toshi; Fujikura, Kasunori; Sonoda, Akira

    2015-04-01

    At 2:46 pm on March 11, 2011, a huge earthquake (M 9.0) occurred off the Pacific coast of Tohoku Region, Japan. The subsequent Tsunamis hit the coasts and seriously damaged fishing villages and towns in the area. Tohoku Region faces Northwestern Pacific where is one of the most productive oceans on the Earth. Then, what happened to the marine ecosystems in the Tohoku Region? What happened to the fishery bioresources? What is the mechanism to sustain high productivity in the Region? Is the ecosystem restoring after 4 years? What is required for the recovery of fisheries in the area? In order to answer these questions, the 10 years research project, TEAMS (Tohoku Ecosystem-Associated Marine Sciences) was launched in January 2012 funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan) to conduct comprehensive research on the area. Tohoku University (TU), Atmosphere and Ocean Research Institute, the University of Tokyo (AORIUT), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), and 25 other institutions are conducting research for this project in close association with local government and fishery people. Currently, approximately 400 people (200 scientists, 160 students and others) covering physical, chemical, biological, and geological sciences including modeling take part in the project from all over Japan. MEXT also supports TEAMS by constructing R/V Shinsei Maru in 2013 for the oceanic investigations in the region. In this report, the overview of the ecosystem before and after the disaster, major findings and challenges of TEAMS will be described.

  14. Materials Sciences programs, Fiscal Year 1983

    International Nuclear Information System (INIS)

    1983-09-01

    The Materials Sciences Division constitutes one portion of a wide range of research supported by the DOE Office of Basic Energy Sciences. This report contains a listing of research underway in FY 1983 together with a convenient index to the program

  15. Development and Implementation of Science and Technology Ethics Education Program for Prospective Science Teachers

    Science.gov (United States)

    Rhee, Hyang-yon; Choi, Kyunghee

    2014-05-01

    The purposes of this study were (1) to develop a science and technology (ST) ethics education program for prospective science teachers, (2) to examine the effect of the program on the perceptions of the participants, in terms of their ethics and education concerns, and (3) to evaluate the impact of the program design. The program utilized problem-based learning (PBL) which was performed as an iterative process during two cycles. A total of 23 and 29 prospective teachers in each cycle performed team activities. A PBL-based ST ethics education program for the science classroom setting was effective in enhancing participants' perceptions of ethics and education in ST. These perceptions motivated prospective science teachers to develop and implement ST ethics education in their future classrooms. The change in the prospective teachers' perceptions of ethical issues and the need for ethics education was greater when the topic was controversial.

  16. Ciencia Marina/Negocio y Oficina. Libro del Profesor (Marine Science/Business & Office. Teacher's Guide). B7. CHOICE (Challenging Options in Career Education).

    Science.gov (United States)

    Mid-Hudson Migrant Education Center, New Paltz, NY.

    Written in Spanish, the guide comprises the sixth grade unit of a career education curriculum for migrant students. The unit covers 10 marine science, business, and office occupations: hydrographer, marine biologist, fish hatchery technician, boat builder, commercial diver, clerical worker, actuary, cashier, assistant bank manager, and computer…

  17. Over a Decade of Lessons Learned from an REU Program in the Science of Global Change and Sustainability

    Science.gov (United States)

    Hersh, E. S.; James, E. W.; Banner, J. L.

    2014-12-01

    The Research Experience for Undergraduates (REU) in "The Science of Global Change and Sustainability" at the University of Texas at Austin Environmental Science Institute (ESI) has just completed its twelfth summer. The program has 113 REU alumni plus 5 Research Experience for Teachers (RET) alumni, selected from a competitive pool of 976 applicants (~14% acceptance rate), 68% from 61 smaller colleges and universities (of 79 schools represented), 40% of those who self-reported coming from demographics underrepresented in STEM, and with nearly 70% women. Students conduct independent research under the supervision of a faculty mentor in four major interdisciplinary themes: Impacts on Ecosystems, Impacts on Watersheds and the Land Surface, Campus Sustainability, and Reconstructing Past Global Change. These themes bridge chemistry, biology, ecology, environmental policy, civil and environmental engineering, marine science, and geological science. The summer cohort participates in weekly research and professional development seminars along with group field exercises. Topics include graduate school, career preparation, research ethics, sustainability, global change, environmental justice, and research communication. These activities plus the student's individual research comprise a portfolio that culminates in a reflection essay integrating the concepts, methods, and perspectives gained over the 10-week program. Program alumni were surveyed in 2014 to gauge long-term impact and outcomes. Of the 76 surveyed from 2006-2013, 39% responded. 67% have earned or are working on a graduate degree, and 94% of the graduate programs are in STEM. 93% of the responding alumni felt that the program "influenced my job and educational choices" and 97% felt that the program "helped me better understand scientific research." 40% presented their findings at a conference and 17% authored or co-authored a peer-reviewed publication. This presentation will include a discussion of best practices

  18. Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Sandra F.; Barnett, J. Matthew

    2015-05-04

    The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office (PNSO) has oversight and stewardship duties associated with the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) located on Battelle Land – Sequim.This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.'' The EDE to the MSL MEI due to routine operations in 2014 was 9E-05 mrem (9E-07 mSv). No non-routine emissions occurred in 2014. The MSL is in compliance with the federal and state 10 mrem/yr standard.

  19. Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Sandra F.; Barnett, J. Matthew; Ballinger, Marcel Y.

    2014-05-01

    The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office (PNSO) has oversight and stewardship duties associated with the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) located on Battelle Land – Sequim (Sequim). This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.” The EDE to the Sequim MEI due to routine operations in 2013 was 5E-05 mrem (5E-07 mSv). No non-routine emissions occurred in 2013. The MSL is in compliance with the federal and state 10 mrem/yr standard.

  20. Teachers' voices: A comparison of two secondary science teacher preparation programs

    Science.gov (United States)

    Kohlhaas Labuda, Kathryn

    This dissertation, using cross-case qualitative methodology, investigates the salient and latent features of two philosophically different university-based secondary science teacher preparation programs. Written documents from the two programs and from the Salish I Research project provided the salient data. New teachers' interview transcripts provided the latent data. This study provides the opportunity to hear teachers voice their perceptions of preparation programs. Three questions were investigated in this research study. First, What are the salient features of two different secondary science teacher preparation programs? Second, What are the latent features of two different secondary science teacher programs as perceived by new teachers? Third, How do new secondary science teachers from different programs perceive their preservice programs? The last question incorporates teachers' perceptions of gaps and coherence in the programs and teachers' recommendations to improve their preservice programs. Salient features of the programs revealed differences in the types of certification, and the amounts and types of required course work. Both programs certified teachers at the secondary science level, but only M program certified their teachers as elementary science specialists. Program M required more semester hours of education and science course work than Program S. Although teachers from both programs perceived little coherence between their science and education courses, S-teachers presented a more fragmented picture of their education program and perceived fewer benefits from the program. Lack of relevance and courses that focused on elementary teaching were perceived as part of the problem. M-teachers perceived some cohesion through the use of cohorts in three consecutive semesters of science methods courses that provided multiple field experiences prior to student teaching. S-teachers did not perceive an organized philosophy of their program. M

  1. Magnetic Fusion Science Fellowship program: Summary of program activities for calendar year 1986

    International Nuclear Information System (INIS)

    1986-01-01

    This report describes the 1985-1986 progress of the Magnetic Fusion Science Fellowship program (MFSF). The program was established in January of 1985 by the Office of Fusion Energy (OFE) of the US Department of Energy (DOE) to encourage talented undergraduate and first-year graduate students to enter qualified graduate programs in the sciences related to fusion energy development. The program currently has twelve fellows in participating programs. Six new fellows are being appointed during each of the program's next two award cycles. Appointments are for one year and are renewable for two additional years with a three year maximum. The stipend level also continues at a $1000 a month or $12,000 a year. The program pays all tuition and fee expenses for the fellows. Another important aspect of the fellowship program is the practicum. During the practicum fellows receive three month appointments to work at DOE designated fusion science research and development centers. The practicum allows the MFSF fellows to directly participate in on-going DOE research and development programs

  2. 75 FR 22576 - Minority Science and Engineering Improvement Program

    Science.gov (United States)

    2010-04-29

    ... DEPARTMENT OF EDUCATION [CFDA No. 84.120A] Minority Science and Engineering Improvement Program... the fiscal year (FY) 2009 grant slate for the Minority Science and Engineering Improvement Program. SUMMARY: The Secretary intends to use the grant slate developed in FY 2009 for the Minority Science and...

  3. Incorporating Geographic Information Science in the BSc Environ-mental Science Program in Botswana

    Science.gov (United States)

    Akinyemi, Felicia O.

    2018-05-01

    Critical human capacity in Geographic Information Science (GISc) is developed at the Botswana International University of Science and Technology, a specialized, research university. Strategies employed include GISc courses offered each semester to students from various programs, the conduct of field-based projects, enrolment in online courses, geo-spatial initiatives with external partners, and final year research projects utilizing geospatial technologies. A review is made of available GISc courses embedded in the Bachelor of Science Environmental Science program. GISc courses are incorporated in three Bachelor degree programs as distinct courses. Geospatial technologies are employed in several other courses. Student researches apply GIS and Remote Sensing methods to environmental and geological themes. The overarching goals are to equip students in various disciplines to utilize geospatial technologies, and enhance their spatial thinking and reasoning skills.

  4. Climate Science Program at California State University, Northridge

    Science.gov (United States)

    Steele Cox, H.; Klein, D.; Cadavid, A. C.; Foley, B.

    2012-12-01

    Due to its interdisciplinary nature, climate science poses wide-ranging challenges for science and mathematics students seeking careers in this field. There is a compelling need for universities to provide coherent programs in climate science in order to train future climate scientists. With funding from NASA Innovations in Climate Education (NICE), California State University, Northridge (CSUN), is creating the CSUN Climate Science Program. An interdisciplinary team of faculty members is working in collaboration with UCLA, Santa Monica College and NASA/JPL partners to create a new curriculum in climate science. The resulting sequence of climate science courses, or Pathway for studying the Mathematics of Climate Change (PMCC), is integrated into a Bachelor of Science degree program in the Applied Mathematical Sciences offered by the Mathematics Department at CSUN. The PMCC consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for Ph.D. programs in technical fields relevant to global climate change and related careers. The students who choose to follow this program will be guided to enroll in the following sequence of courses for their 12 units of upper division electives: 1) A newly created course junior level course, Math 396CL, in applied mathematics which will introduce students to applications of vector calculus and differential equations to the study of thermodynamics and atmospheric dynamics. 2) An already existing course, Math 483, with new content on mathematical modeling specialized for this program; 3) An improved version of Phys 595CL on the mathematics and physics of climate change with emphasis on Radiative Transfer; 4) A choice of Geog 407 on Remote Sensing or Geog 416 on Climate Change with updated content to train the students in the analysis of satellite data obtained with the NASA Earth Observing System and instruction in the analysis of data obtained within a Geographical

  5. Standard and reference materials for marine science. Third edition. Technical memo

    International Nuclear Information System (INIS)

    Cantillo, A.Y.

    1992-08-01

    The third edition of the catalog of reference materials suited for use in marine science, originally compiled in 1986 for NOAA, IOC, and UNEP. The catalog lists close to 2,000 reference materials from sixteen producers and contains information about their proper use, sources, availability, and analyte concentrations. Indices are included for elements, isotopes, and organic compounds, as are cross references to CAS registry numbers, alternate names, and chemical structures of selected organic compounds. The catalog is being published independently by both NOAA and IOC/UNEP and is available from NOAA/NOS/ORCA in electronic form

  6. The Specification of Science Education Programs in the Local Public Library: Focusing on the Programs In G-city

    Directory of Open Access Journals (Sweden)

    In-Ja Ahn*

    2012-06-01

    Full Text Available The city of 'G' has been made a number of achievements with its science program as a part of public library's cultural program during the last 5 years. Recently, the national science centre has been established in the same city, the debate is now needed whether the science program in the public library have reasons to be maintained or to be reduced. The aim of this research is on the operating strategies of the science program in the public library. The research methods include case studies of operational strategies in domestic and foreign science centre, the level of satisfaction of local citizen on the science program, the vision of science program in the advancement of public library in the century. In results, the research proposes that the science program in public library should be maintained, but with locally characterised programs. In addition, the study also advised on the provision of scientific information, the strengthened search functions, and the development of user-centred services for those in science fields.

  7. Laboratory Animal Sciences Program (LASP)

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory Animal Sciences Program (LASP) is a comprehensive resource for scientists performing animal-based research to gain a better understanding of cancer,...

  8. Advanced Science for Kids: Multicultural Assessment and Programming.

    Science.gov (United States)

    Bettac, Teresa; Huckabee, Colleen; Musser, Louise; Patton, Paulette; Yates, Joyce

    1997-01-01

    Describes Advanced Science for Kids (ASK), a multicultural approach to assessment and programming for a middle school advanced science program. ASK is designed to provide alternative approaches to identification and assessment, facilitate authentic instruction and assessment, and provide minority students with academic and social support as they…

  9. Fermilab Friends for Science Education | Programs

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Programs Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search photo Fermilab Friends for Science Education, in partnership with Fermilab and area educators, designs

  10. The LSSTC Data Science Fellowship Program

    Science.gov (United States)

    Miller, Adam; Walkowicz, Lucianne; LSSTC DSFP Leadership Council

    2017-01-01

    The Large Synoptic Survey Telescope Corporation (LSSTC) Data Science Fellowship Program (DSFP) is a unique professional development program for astronomy graduate students. DSFP students complete a series of six, one-week long training sessions over the course of two years. The sessions are cumulative, each building on the last, to allow an in-depth exploration of the topics covered: data science basics, statistics, image processing, machine learning, scalable software, data visualization, time-series analysis, and science communication. The first session was held in Aug 2016 at Northwestern University, with all materials and lectures publicly available via github and YouTube. Each session focuses on a series of technical problems which are written in iPython notebooks. The initial class of fellows includes 16 students selected from across the globe, while an additional 14 fellows will be added to the program in year 2. Future sessions of the DSFP will be hosted by a rotating cast of LSSTC member institutions. The DSFP is designed to supplement graduate education in astronomy by teaching the essential skills necessary for dealing with big data, serving as a resource for all in the LSST era. The LSSTC DSFP is made possible by the generous support of the LSST Corporation, the Data Science Initiative (DSI) at Northwestern, and CIERA.

  11. Gail Harlamoff: Executive Director, Life Lab Science Program

    OpenAIRE

    Rabkin, Sarah

    2010-01-01

    Gail Harlamoff is Executive Director of the Life Lab Science Program, a nationally recognized, award-winning nonprofit science and environmental organization located on the UC Santa Cruz campus. Founded in 1979, Life Lab helps schools develop gardens and implement curricula to enhance students’ learning about science, math, and the natural world. The program has trained tens of thousands of educators in more than 1400 schools across the country. Life Lab’s specialized initiatives inc...

  12. Life Sciences Program Tasks and Bibliography

    Science.gov (United States)

    1996-01-01

    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1995. Additionally, this inaugural edition of the Task Book includes information for FY 1994 programs. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page

  13. General Atomics Sciences Education Foundation Outreach Programs

    Science.gov (United States)

    Winter, Patricia S.

    1997-11-01

    Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].

  14. Marine genomics

    DEFF Research Database (Denmark)

    Oliveira Ribeiro, Ângela Maria; Foote, Andrew David; Kupczok, Anne

    2017-01-01

    Marine ecosystems occupy 71% of the surface of our planet, yet we know little about their diversity. Although the inventory of species is continually increasing, as registered by the Census of Marine Life program, only about 10% of the estimated two million marine species are known. This lag......-throughput sequencing approaches have been helping to improve our knowledge of marine biodiversity, from the rich microbial biota that forms the base of the tree of life to a wealth of plant and animal species. In this review, we present an overview of the applications of genomics to the study of marine life, from...

  15. On learning science and pseudoscience from prime-time television programming

    Science.gov (United States)

    Whittle, Christopher Henry

    The purpose of the present dissertation is to determine whether the viewing of two particular prime-time television programs, ER and The X-Files, increases viewer knowledge of science and to identify factors that may influence learning from entertainment television programming. Viewer knowledge of scientific dialogue from two science-based prime-time television programs, ER, a serial drama in a hospital emergency room and The X-Files, a drama about two Federal Bureau of Investigation agents who pursue alleged extraterrestrial life and paranormal activity, is studied. Level of viewing, education level, science education level, experiential factors, level of parasocial interaction, and demographic characteristics are assessed as independent variables affecting learning from entertainment television viewing. The present research involved a nine-month long content analysis of target television program dialogue and data collection from an Internet-based survey questionnaire posted to target program-specific on-line "chat" groups. The present study demonstrated that entertainment television program viewers incidentally learn science from entertainment television program dialogue. The more they watch, the more they learn. Viewing a pseudoscientific fictional television program does necessarily influence viewer beliefs in pseudoscience. Higher levels of formal science study are reflected in more science learning and less learning of pseudoscience from entertainment television program viewing. Pseudoscience learning from entertainment television programming is significantly related to experience with paranormal phenomena, higher levels of viewer parasocial interaction, and specifically, higher levels of cognitive parasocial interaction. In summary, the greater a viewer's understanding of science the more they learn when they watch their favorite science-based prime-time television programs. Viewers of pseudoscience-based prime-time television programming with higher levels

  16. Seventy-one important questions for the conservation of marine biodiversity.

    Science.gov (United States)

    Parsons, E C M; Favaro, Brett; Aguirre, A Alonso; Bauer, Amy L; Blight, Louise K; Cigliano, John A; Coleman, Melinda A; Côté, Isabelle M; Draheim, Megan; Fletcher, Stephen; Foley, Melissa M; Jefferson, Rebecca; Jones, Miranda C; Kelaher, Brendan P; Lundquist, Carolyn J; McCarthy, Julie-Beth; Nelson, Anne; Patterson, Katheryn; Walsh, Leslie; Wright, Andrew J; Sutherland, William J

    2014-10-01

    The ocean provides food, economic activity, and cultural value for a large proportion of humanity. Our knowledge of marine ecosystems lags behind that of terrestrial ecosystems, limiting effective protection of marine resources. We describe the outcome of 2 workshops in 2011 and 2012 to establish a list of important questions, which, if answered, would substantially improve our ability to conserve and manage the world's marine resources. Participants included individuals from academia, government, and nongovernment organizations with broad experience across disciplines, marine ecosystems, and countries that vary in levels of development. Contributors from the fields of science, conservation, industry, and government submitted questions to our workshops, which we distilled into a list of priority research questions. Through this process, we identified 71 key questions. We grouped these into 8 subject categories, each pertaining to a broad component of marine conservation: fisheries, climate change, other anthropogenic threats, ecosystems, marine citizenship, policy, societal and cultural considerations, and scientific enterprise. Our questions address many issues that are specific to marine conservation, and will serve as a road map to funders and researchers to develop programs that can greatly benefit marine conservation. © 2014 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  17. Marine Technology for Teachers and Students: A Multi-modal Approach to Integrate Technology and Ocean Sciences Instruction

    Science.gov (United States)

    Gingras, A.; Knowlton, C. W.; Scowcroft, G. A.; Babb, I.; Coleman, D.; Morin, H.

    2016-02-01

    The Marine Technology for Teachers and Students (MaTTS) Project implements a year-long continuum of activities beginning with educators reading and reporting on peer-reviewed publications, followed by face-to-face, hands-on weekend workshops and virtual professional development activities. Teams of teacher and student leaders then participate in an intensive, residential Summer Institute (SI) that emphasizes hands-on building of marine related technologies and exposure to career pathways through direct interactions with ocean scientists and engineers. During the school year, teachers integrate ocean science technology and data into their classrooms and participate, along with colleagues and students from their schools, in science cafes and webinars. Student leaders transfer knowledge gained by engaging their district's middle school students in ocean science activities and technologies by serving as hosts for live broadcasts that connect classrooms with ocean scientists and engineers though the Inner Space Center, a national ocean science telecommunications hub. Communication technologies bridge formal and informal learning environments, allowing MaTTS participants to interact with their fellow cohort members, scientists, and engineers both during and outside of school. Evaluation results indicate that for teachers both the weekend workshops and SI were most effective in preparing them to integrate ocean science and technology in STEM curricula and increase their ocean science content knowledge and leadership characteristics. For students the SI and the middle school interactions supported gains in knowledge, awareness, leadership skills and interest in ocean sciences and technologies, and related STEM careers. In particular, the connections made by working directly with scientists have positively impacted both student and teacher leaders. This presentation will provide an overview of the MaTTS model and early evaluation results.

  18. Girls in Engineering, Mathematics and Science, GEMS: A Science Outreach Program for Middle-School Female Students

    Science.gov (United States)

    Dubetz, Terry A.; Wilson, Jo Ann

    2013-01-01

    Girls in Engineering, Mathematics and Science (GEMS) is a science and math outreach program for middle-school female students. The program was developed to encourage interest in math and science in female students at an early age. Increased scientific familiarity may encourage girls to consider careers in science and mathematics and will also help…

  19. Case Studies of Liberal Arts Computer Science Programs

    Science.gov (United States)

    Baldwin, D.; Brady, A.; Danyluk, A.; Adams, J.; Lawrence, A.

    2010-01-01

    Many undergraduate liberal arts institutions offer computer science majors. This article illustrates how quality computer science programs can be realized in a wide variety of liberal arts settings by describing and contrasting the actual programs at five liberal arts colleges: Williams College, Kalamazoo College, the State University of New York…

  20. Evaluating Student Success and Progress in the Maryland Sea Grant REU Program

    Science.gov (United States)

    Moser, F. C.; Allen, M. R.; Clark, J.

    2012-12-01

    The Maryland Sea Grant's Research Experiences for Undergraduate (REU) 12-week summer program is in its 24th year. This estuarine science-focused program has evolved, based in part on our use of assessment tools to measure the program's effectiveness. Our goal is to understand the REU program's effectiveness in such areas as improving student understanding of scientific research, scientific ethics and marine science careers. Initially, our assessment approach was limited to short surveys that used qualitative answers from students about their experience. However, in the last decade we have developed a more comprehensive approach to measure program effectiveness. Currently, we use paired pre- and post-survey questions to estimate student growth during the program. These matching questions evaluate the student's change in knowledge and perception of science research over the course of the summer program. Additionally, we administer several surveys during the 12 weeks of the program to measure immediate responses of students to program activities and to gauge the students' evolving attitudes to customize each year's program. Our 2011 cohort showed consistent improvement in numerous areas, including understanding the nature of science (pre: 4.35, post: 4.64 on a 5 point scale), what graduate school is like (3.71, 4.42), the job of a researcher (4.07, 4.50), and career options in science (3.86, 4.42). Student confidence also increased in numerous skills required for good scientists. To analyze the long-term impact of our program, we survey our alumni to assess graduate degrees earned and career choices. A large percentage (72%) of our tracked alumni have continued on to graduate school, with subsequent careers spanning the academic (51%), public (24%) and private (25%) sectors. These assessments demonstrate that our program is successful in meeting our key objectives of strengthening the training of undergraduates in the sciences and retaining them in marine science

  1. Annual report 2002 - North Pacific Marine Science Organization (PICES). Eleventh meeting, Qingdao, People's Republic of China, October 18-16, 2002

    OpenAIRE

    2003-01-01

    Report of Opening Session (pdf 51 KB) Report of Governing Council Meeting(pdf 136 KB) Report of the Finance and Administration Committee (pdf 48 KB) Reports of Science Board and Committees: Science Board (pdf 71 KB) Biological Oceanography Committee (pdf 66 KB) Working Group 14: Effective sampling of micronekton Marine Birds and Mammals Advisory Panel Fishery Science Committee (pdf 36 KB) Working Group 16: Climate change, shifts to fish production, an...

  2. The Bremen International Graduate School for Marine Sciences (GLOMAR) - Postgraduate education with an interdisciplinary focus

    Science.gov (United States)

    Klose, Christina

    2013-04-01

    The Bremen International Graduate School for Marine Sciences (GLOMAR) provides a dedicated research training programme for PhD students in all fields related the marine realm combined with an exceptional supervision and support programme in a stimulating research environment. The graduate school is part of MARUM - Center for Marine Environmental Sciences which is funded by the Deutsche Forschungsgemeinschaft (DFG) within the frame of the Excellence Initiative by the German federal and state governments to promote top-level research at German universities. GLOMAR hosts approx. 75 PhD students from different research institutions in Bremen and Bremerhaven. 50% of them are German, 50% have an international background. All students are a member of one of the four GLOMAR research areas: (A) Ocean & Climate, (B) Ocean & Seafloor, (C) Ocean & Life and (D) Ocean & Society. Their academic background ranges from the classical natural sciences to law, social and political sciences. The research areas are supervised by research associates who share their experience and offer advice for their younger colleagues. GLOMAR students work in an interdisciplinary and international context. They spend several months at a foreign research institution and are encouraged to actively participate in international conferences and publish their research results in international scientific journals. The services GLOMAR offers for its PhD students include team supervision by a thesis committee, a comprehensive course programme, research seminars and retreats, a family support programme, a mentoring programme for women in science, an ombudsperson and a funding system for conference trips, research residencies and publication costs. The graduate school offers different formats for interdisciplinary exchange within the PhD student community. Monthly research seminars, which are conducted by the GLOMAR research associates, provide an opportunity to discuss research results, practice oral and poster

  3. An Assessment of the Leadership Education and Development Program at the United States Naval Academy

    National Research Council Canada - National Science Library

    Zaleski, Patrick

    2003-01-01

    ...) Program was established in 1997. This program allows Navy and Marine Corps officers to receive a Master of Science in Leadership and Human Resource Development from the Naval Postgraduate School...

  4. Western Indian Ocean Journal of Marine Science: Editorial Policies

    African Journals Online (AJOL)

    Economics - TANZANIA. Thierry LEVITRA. Marine Biology and Mariculture - MADAGASCAR. Blandina LUGENDO. Marine Ecology - TANZANIA. Aviti MMOCHI. Mariculture - TANZANIA. Nyawira MUTHIGA. Marine Ecology and Management - KENYA. Brent NEWMAN. Contamination and Risk Assessment – SOUTH AFRICA.

  5. Environmental Management Science Program Workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    This program summary book is a compendium of project summaries submitted by principal investigators in the Environmental Management Science Program and Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program). These summaries provide information about the most recent project activities and accomplishments. All projects will be represented at the workshop poster sessions, so you will have an opportunity to meet with the researchers. The projects will be presented in the same order at the poster session as they are presented in this summary book. Detailed questions about an individual project may be directed to the investigators involved.

  6. Dynamic Positioning Capability Analysis for Marine Vessels Based on A DPCap Polar Plot Program

    Science.gov (United States)

    Wang, Lei; Yang, Jian-min; Xu, Sheng-wen

    2018-03-01

    Dynamic positioning capability (DPCap) analysis is essential in the selection of thrusters, in their configuration, and during preliminary investigation of the positioning ability of a newly designed vessel dynamic positioning system. DPCap analysis can help determine the maximum environmental forces, in which the DP system can counteract in given headings. The accuracy of the DPCap analysis is determined by the precise estimation of the environmental forces as well as the effectiveness of the thrust allocation logic. This paper is dedicated to developing an effective and efficient software program for the DPCap analysis for marine vessels. Estimation of the environmental forces can be obtained by model tests, hydrodynamic computation and empirical formulas. A quadratic programming method is adopted to allocate the total thrust on every thruster of the vessel. A detailed description of the thrust allocation logic of the software program is given. The effectiveness of the new program DPCap Polar Plot (DPCPP) was validated by a DPCap analysis for a supply vessel. The present study indicates that the developed program can be used in the DPCap analysis for marine vessels. Moreover, DPCap analysis considering the thruster failure mode might give guidance to the designers of vessels whose thrusters need to be safer.

  7. Increasing the Presence of Underrepresented Minorities in the Geosciences: The Woods Hole Partnership Education Program Model and Outcomes

    Science.gov (United States)

    George, A.; Gutierrez, B.; Jearld, A.; Liles, G.; Scott, O.; Harden, B.

    2017-12-01

    Launched in 2009, the Partnership Education Program (PEP) is supported by six scientific institutions in Woods Hole, Massachusetts through the Woods Hole Diversity Initiative. PEP, which was shaped by experience with other diversity programs as well as input from scientists in Woods Hole, is designed to promote a diverse scientific community by recruiting talent from minority groups that are under-represented in marine and environmental sciences. Focused on college juniors and seniors with course work in marine and/or environmental sciences, PEP is comprised of a four-week course, "Ocean and Environmental Sciences: Global Climate Change," and a six to eight week individual research project under the guidance of a research mentor. Investigators from the six science institutions serve as course faculty and research mentors. Course credit is through PEP's academic partner, the University of Maryland Eastern Shore. PEP students also participate in seminars, workshops, field trips, at-sea experiences, career development activities, and attend lectures at participating science institutions throughout the summer. Students present their research results at the end of the summer with a 15-minute public presentation. A number of PEP participants then presented their work at professional and scientific meetings, such as AGU, using the program as a gateway to graduate education and career opportunities in the marine and environmental sciences. From 2009 through 2017, 138 students from 86 colleges and universities, including many that previously had sent few or no students or faculty to Woods Hole, have participated in the program. Participating organizations are: Northeast Fisheries Science Center (NOAA Fisheries), Marine Biological Laboratory (MBL), Sea Education Association (SEA), U.S. Geological Survey (USGS), Woods Hole Oceanographic Institution (WHOI), Woods Hole Research Center (WHRC), and University of Maryland Eastern Shore (UMES) - academic partner.

  8. Strategic plan for the restructured US fusion energy sciences program

    International Nuclear Information System (INIS)

    1996-08-01

    This plan reflects a transition to a restructured fusion program, with a change in focus from an energy technology development program to a fusion energy sciences program. Since the energy crisis of the early 1970's, the U.S. fusion program has presented itself as a goal- oriented fusion energy development program, with milestones that required rapidly increasing budgets. The Energy Policy Act of 1992 also called for a goal-oriented development program consistent with the Department's planning. Actual funding levels, however, have forced a premature narrowing of the program to the tokamak approach. By 1995, with no clear, immediate need driving the schedule for developing fusion energy and with enormous pressure to reduce discretionary spending, Congress cut fusion program funding for FY 1996 by one-third and called for a major restructuring of the program. Based on the recommendations of the Fusion Energy Advisory Committee (FEAC), the Department has decided to pursue a program that concentrates on world-class plasma, science, and on maintaining an involvement in fusion energy science through international collaboration. At the same time, the Japanese and Europeans, with energy situations different from ours, are continuing with their goal- oriented fusion programs. Collaboration with them provides a highly leveraged means of continued involvement in fusion energy science and technology, especially through participation in the engineering and design activities of the International Thermonuclear Experimental Reactor program, ITER. This restructured fusion energy sciences program, with its focus on fundamental fusion science and technology, may well provide insights that lead to more attractive fusion power plants, and will make use of the scientific infrastructure that will allow the United States to launch a fusion energy development program at some future date

  9. A study on the development program of the advanced marine reactors

    International Nuclear Information System (INIS)

    Kobayashi, H.; Sako, K.; Iida, H.; Yamaji, A.

    1992-01-01

    JAERI has formulated two attractive concepts of advanced marine reactors. One is 100 MWt MRX (Marine Reactor X) for an icebreaker and the other is 150 kWe DRX (Deep-sea Reactor X) for a deep sea research submersible. They adopt new technologies such as an integral type PWR, in-vessel type control rod drive mechanisms, a water-filled containment vessel and a passive decay heat removal system, which would enable to satisfy the essential requirements for marine reactors for next generation, i.e.; compact, light, highly passive safe and easy to operate. From now on, following conceptual design, the engineering design phase is going to start in order to advance the research and development of MRX and DRX further and to obtain the data necessary for the detail design and construction of the actual reactors. JAERI is studying on the program to develop the engineering design research on MRX and DRX, which consists mainly of the particularization of design, the data acquisition by experiments (synthetic hydrothermal dynamics experiments, fundamental tests related to passive core cooling and demonstration tests on reliability and operability), the development of particular components and the development of advanced design tools. (author)

  10. Programs of the Office of the Science Advisor (OSA)

    Science.gov (United States)

    Office of the Science Advisor provides leadership in cross-Agency science and science policy. Program areas: Risk Assessment, Science and Technology Policy, Human Subjects Research, Environmental Measurement and Modeling, Scientific Integrity.

  11. Climate Change Science Program Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Change Science Program (CCSP) Collection consists of publications and other resources produced between 2007 and 2009 by the CCSP with the intention of...

  12. A Hurricane Hits Home: An Interactive Science Museum Exhibit on Ocean Mapping and Marine Debris

    Science.gov (United States)

    Butkiewicz, T.; Vasta, D. J.; Gager, N. C.; Fruth, B. W.; LeClair, J.

    2016-12-01

    As part of the outreach component for a project involving the detection and analysis of marine debris generated by Super Storm Sandy, The Center for Coastal and Ocean Mapping / Joint Hydrographic Center partnered with The Seacoast Science Center to develop an interactive museum exhibit that engages the public with a touchscreen based game revolving around the detection and identification of marine debris. "A Hurricane Hits Home" is a multi-station touchscreen exhibit geared towards children, and integrates a portion of a historical wooden shipwreck into its physical design. The game invites museum guests to examine a number of coastal regions and harbors in Sandy affected areas. It teaches visitors about modern mapping technology by having them control boats with multibeam sonars and airplanes with lidar sensors. They drag these vehicles around maps to reveal the underlying bathymetry below the satellite photos. They learn the applications and limitations of sonar and lidar by where the vehicles can and cannot collect survey data (e.g. lidar doesn't work in deep water, and the boat can't go in shallow areas). As users collect bathymetry data, they occasionally reveal marine debris objects on the seafloor. Once all the debris objects in a level have been located, the game challenges them to identify them based on their appearance in the bathymetry data. They must compare the simulated bathymetry images of the debris targets to photos of possible objects, and choose the correct matches to achieve a high score. The exhibit opened January 2016 at the Seacoast Science Center in Rye, NH.

  13. 76 FR 25308 - Marine Mammals

    Science.gov (United States)

    2011-05-04

    ...-XA165 Marine Mammals AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric... Jennifer Burns, Ph.D., University of Alaska Anchorage, Biology Department, 3101 Science Circle, Anchorage, AK, has been issued a permit to conduct [[Page 25309

  14. Math and science education programs from the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-01-01

    This booklet reviews math and science education programs at the Idaho National Engineering Laboratory (INEL). The programs can be categorized into six groups: teacher programs; science laboratories for students; student programs; education outreach programs; INEL Public Affairs Office; and programs for college faculty and students

  15. A Program to Prepare Graduate Students for Careers in Climate Adaptation Science

    Science.gov (United States)

    Huntly, N.; Belmont, P.; Flint, C.; Gordillo, L.; Howe, P. D.; Lutz, J. A.; Null, S. E.; Reed, S.; Rosenberg, D. E.; Wang, S. Y.

    2017-12-01

    We describe our experiences creating a graduate program that addresses the need for a next generation of scientists who can produce, communicate, and help implement actionable science. The Climate Adaptation Science (CAS) graduate program, funded by the National Science Foundation Research Traineeship (NRT) program, prepares graduate students for careers at the interfaces of science with policy and management in the field of climate adaptation, which is a major 21st-century challenge for science and society. The program is interdisciplinary, with students and faculty from natural, social, and physical sciences, engineering, and mathematics, and is based around interdisciplinary team research in collaboration with partners from outside of academia who have climate adaptation science needs. The program embeds students in a cycle of creating and implementing actionable science through a two-part internship, with partners from government, non-governmental organizations, and industry, that brackets and informs a year of interdisciplinary team research. The program is communication-rich, with events that foster information exchange and understanding across disciplines and workplaces. We describe the CAS program, our experiences in developing it, the research and internship experiences of students in the program, and initial metrics and feedback on the effectiveness of the program.

  16. The second workshop of neutron science research program

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Hideshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tone, Tatsuzo [eds.

    1997-11-01

    The Japan Atomic Energy Research Institute(JAERI) has been proposing the Neutron Science Research Program to explore a broad range of basic research and the nuclear technology including actinide transmutation with use of powerful spallation neutron sources. For this purpose, the JAERI is conducting the research and development of an intense proton linac, the development of targets, as well as the conceptual design study of experimental facilities required for applications of spallation neutrons and secondary particle beams. The Special Task Force for Neutron Science Initiative was established in May 1996 to promote aggressively and systematically the Neutron Science Research Program. The second workshop on neutron science research program was held at the JAERI Tokai Research Establishment on 13 and 14 March 1997 for the purpose of discussing the results obtained since the first workshop in March 1996. The 27 of the presented papers are indexed individually. (J.P.N.)

  17. Annotated Bibliography of Textbooks and Reference Materials in Marine Sciences. Provisional Edition. Intergovernmental Oceanographic Commission, Technical Series.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). Intergovernmental Oceanographic Commission.

    Presented is an annotated bibliography based on selected materials from a preliminary survey of existing bibliographies, publishers' listings, and other sources. It is intended to serve educators and researchers, especially those in countries where marine sciences are just developing. One hundred annotated and 450 non-annotated entries are…

  18. Environmental science. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes.

    Science.gov (United States)

    Worden, Alexandra Z; Follows, Michael J; Giovannoni, Stephen J; Wilken, Susanne; Zimmerman, Amy E; Keeling, Patrick J

    2015-02-13

    The profound influence of marine plankton on the global carbon cycle has been recognized for decades, particularly for photosynthetic microbes that form the base of ocean food chains. However, a comprehensive model of the carbon cycle is challenged by unicellular eukaryotes (protists) having evolved complex behavioral strategies and organismal interactions that extend far beyond photosynthetic lifestyles. As is also true for multicellular eukaryotes, these strategies and their associated physiological changes are difficult to deduce from genome sequences or gene repertoires—a problem compounded by numerous unknown function proteins. Here, we explore protistan trophic modes in marine food webs and broader biogeochemical influences. We also evaluate approaches that could resolve their activities, link them to biotic and abiotic factors, and integrate them into an ecosystems biology framework. Copyright © 2015, American Association for the Advancement of Science.

  19. Department of Energy - Office of Science Early Career Research Program

    Science.gov (United States)

    Horwitz, James

    The Department of Energy (DOE) Office of Science Early Career Program began in FY 2010. The program objectives are to support the development of individual research programs of outstanding scientists early in their careers and to stimulate research careers in the disciplines supported by the DOE Office of Science. Both university and DOE national laboratory early career scientists are eligible. Applicants must be within 10 years of receiving their PhD. For universities, the PI must be an untenured Assistant Professor or Associate Professor on the tenure track. DOE laboratory applicants must be full time, non-postdoctoral employee. University awards are at least 150,000 per year for 5 years for summer salary and expenses. DOE laboratory awards are at least 500,000 per year for 5 years for full annual salary and expenses. The Program is managed by the Office of the Deputy Director for Science Programs and supports research in the following Offices: Advanced Scientific and Computing Research, Biological and Environmental Research, Basic Energy Sciences, Fusion Energy Sciences, High Energy Physics, and Nuclear Physics. A new Funding Opportunity Announcement is issued each year with detailed description on the topical areas encouraged for early career proposals. Preproposals are required. This talk will introduce the DOE Office of Science Early Career Research program and describe opportunities for research relevant to the condensed matter physics community. http://science.energy.gov/early-career/

  20. A concept for performance management for Federal science programs

    Science.gov (United States)

    Whalen, Kevin G.

    2017-11-06

    The demonstration of clear linkages between planning, funding, outcomes, and performance management has created unique challenges for U.S. Federal science programs. An approach is presented here that characterizes science program strategic objectives by one of five “activity types”: (1) knowledge discovery, (2) knowledge development and delivery, (3) science support, (4) inventory and monitoring, and (5) knowledge synthesis and assessment. The activity types relate to performance measurement tools for tracking outcomes of research funded under the objective. The result is a multi-time scale, integrated performance measure that tracks individual performance metrics synthetically while also measuring progress toward long-term outcomes. Tracking performance on individual metrics provides explicit linkages to root causes of potentially suboptimal performance and captures both internal and external program drivers, such as customer relations and science support for managers. Functionally connecting strategic planning objectives with performance measurement tools is a practical approach for publicly funded science agencies that links planning, outcomes, and performance management—an enterprise that has created unique challenges for public-sector research and development programs.

  1. Evaluating the Effectiveness of the 2002-2003 NASA SCIence Files(TM) Program

    Science.gov (United States)

    Pinelli, Thomas E.; Lambert, Matthew A.; Williams, Amy C.

    2004-01-01

    NASA SCIence Files (tm) is a research-, inquiry-, and standards-based, integrated mathematics, science, and technology series of 60-minute instructional distance learning (television and web-based) programs for students in grades 3-5. Respondents who evaluated the programs in the 2002-2003 NASA SCIence Files (tm) series reported that (1) they used the programs in the series; (2) the goals and objectives for the series were met; (3) the programs were aligned with the national mathematics, science, and technology standards; (4) the program content was developmentally appropriate for grade level; and (5) the programs in the series enhanced and enriched the teaching of mathematics, science, and technology.

  2. The NASA computer science research program plan

    Science.gov (United States)

    1983-01-01

    A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified.

  3. Promoting Ocean Literacy through American Meteorological Society Programs

    Science.gov (United States)

    Passow, Michael; Abshire, Wendy; Weinbeck, Robert; Geer, Ira; Mills, Elizabeth

    2017-04-01

    American Meteorological Society Education Programs provide course materials, online and physical resources, educator instruction, and specialized training in ocean, weather, and climate sciences (https://www.ametsoc.org/ams/index.cfm/education-careers/education-program/k-12-teachers/). Ocean Science literacy efforts are supported through the Maury Project, DataStreme Ocean, and AMS Ocean Studies. The Maury Project is a summer professional development program held at the US Naval Academy designed to enhance effective teaching of the science, technology, engineering, and mathematics of oceanography. DataStreme Ocean is a semester-long course offered twice a year to participants nationwide. Created and sustained with major support from NOAA, DS Ocean explores key concepts in marine geology, physical and chemical oceanography, marine biology, and climate change. It utilizes electronically-transmitted text readings, investigations and current environmental data. AMS Ocean Studies provides complete packages for undergraduate courses. These include online textbooks, investigations manuals, RealTime Ocean Portal (course website), and course management system-compatible files. It can be offered in traditional lecture/laboratory, completely online, and hybrid learning environments. Assistance from AMS staff and other course users is available.

  4. BURECS: An Interdisciplinary Undergraduate Climate Science Program

    Science.gov (United States)

    Dennis, D. P.; Marchant, D. R.; Christ, A. J.; Ehrenfeucht, S.

    2017-12-01

    The current structure of many undergraduate programs, particularly those at large research universities, requires students to engage with a major or academic emphasis early in their university careers. This oftentimes curbs exploration outside the major and can inhibit interdisciplinary collaboration. The Boston University Research Education and Communication of Science (BURECS) program seeks to bridge this institutional divide by fostering interdisciplinary and multidisciplinary collaboration on climate change-related issues by students from across Boston University (B.U.). Every year, approximately fifteen first-year students from B.U.'s College of Arts and Sciences, College of Communication, and School of Education are selected to join BURECS, which includes a climate science seminar, a hands-on lab course, a supported summer internship with Boston-area researchers, and the opportunity to participate in Antarctic field work during subsequent B.U. Antarctic Research Group expeditions. Currently in its third year, BURECS is funded through the Howard Hughes Medical Institute (HHMI) Professors Program.

  5. What are the major global threats and impacts in marine environments? Investigating the contours of a shared perception among marine scientists from the bottom-up

    DEFF Research Database (Denmark)

    Boonstra, W.J.; Maj Ottosen, Katharina; Ferreira, Ana Sofia

    2015-01-01

    academics in marine science this article explores if a shared research agenda in relation to global change in marine environments exists. The analysis demonstrates that marine scientists across disciplines are largely in agreement on some common features of global marine change. Nevertheless, the analysis...... also highlights where natural and social scientists diverge in their assessment. The article ends discussing what these findings imply for further improvement of interdisciplinary marine science......Marine scientists broadly agree on which major processes influence the sustainability of marine environments worldwide. Recent studies argue that such shared perceptions crucially shape scientific agendas and are subject to a confirmation bias. Based on these findings a more explicit engagement...

  6. Marine Mammals :: NOAA Fisheries

    Science.gov (United States)

    Resources Habitat Conservation Science and Technology International Affairs Law Enforcement Aquaculture Application Types Apply Online (APPS) Endangered Species Permits Marine Mammal Permits Public Display of : NMFS Pacific Islands Fisheries Science Center North Atlantic right whales North Atlantic Right whales

  7. Pharmaceutically active secondary metabolites of marine actinobacteria.

    Science.gov (United States)

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2014-04-01

    Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future. Copyright © 2013 Elsevier GmbH. All rights reserved.

  8. Subsurface Science Program Bibliography, 1985--1992

    International Nuclear Information System (INIS)

    1992-08-01

    The Subsurface Science Program sponsors long-term basic research on (1) the fundamental physical, chemical, and biological mechanisms that control the reactivity, mobilization, stability, and transport of chemical mixtures in subsoils and ground water; (2) hydrogeology, including the hydraulic, microbiological, and geochemical properties of the vadose and saturated zones that control contaminant mobility and stability, including predictive modeling of coupled hydraulic-geochemical-microbial processes; and (3) the microbiology of deep sediments and ground water. TWs research, focused as it is on the natural subsurface environments that are most significantly affected by the more than 40 years of waste generation and disposal at DOE sites, is making important contributions to cleanup of DOE sites. Past DOE waste-disposal practices have resulted in subsurface contamination at DOE sites by unique combinations of radioactive materials and organic and inorganic chemicals (including heavy metals), which make site cleanup particularly difficult. The long- term (10- to 30-year) goal of the Subsurface Science Program is to provide a foundation of fundamental knowledge that can be used to reduce environmental risks and to provide a sound scientific basis for cost-effective cleanup strategies. The Subsurface Science Program is organized into nine interdisciplinary subprograms, or areas of basic research emphasis. The subprograms currently cover the areas of Co-Contaminant Chemistry, Colloids/Biocolloids, Multiphase Fluid Flow, Biodegradation/ Microbial Physiology, Deep Microbiology, Coupled Processes, Field-Scale (Natural Heterogeneity and Scale), and Environmental Science Research Center

  9. Marine and Estuarine Ecology. Man and the Gulf of Mexico.

    Science.gov (United States)

    Irby, Bobby N.; And Others

    "Man and the Gulf of Mexico (MGM)" is a marine science curriculum developed to meet the marine science needs of tenth through twelfth grade students in Mississippi and Alabama schools. This MGM unit, which focuses on marine and estuarine ecology, is divided into six sections. The first section contains unit objectives, discussions of the…

  10. A Mentoring Program in Environmental Science for Underrepresented Groups

    Science.gov (United States)

    Stevens, L.; Rizzo, D. M.

    2009-12-01

    We developed a four-year program, combining educational and career support and research activities, to recruit and retain students from underrepresented groups in environmental sciences. Specifically, the program: ○ Assigns each student a faculty or graduate student mentor with whom the student conducts research activities. ○ Includes a weekly group meeting for team building and to review professional development and academic topics, such as time management and research ethics. ○ Requires students to make multiple formal presentations of their research proposals and results. ○ Provides scholarships and stipends for both the academic year and to engage students in summer research. The program seeks to achieve several goals including: ● Enhance academic performance. ● Encourage continued study in environmental science. ● Facilitate students completing their studies at UVM. ● Increase students’ interest in pursuing science careers. ● Create a more welcoming academic environment. To assess progress toward achievement of these goals, we conducted individual structured interviews with participating undergraduate students, graduate students, and faculty members at two points in time. First, interviews were conducted in the fall of 2007 after two years, and again in spring 2009, after four years. An independent research consultant, Dr. Livingston, conducted the interviews. In 2009, over the course of three days, the interviews included three graduate student and two faculty mentors, and six of the seven undergraduate students. Of the six students, three were juniors and three were graduating seniors. Results of the 2009 interviews echoed those of 2007. Both students and their mentors are quite satisfied with the program. The student presentations, weekly meetings, mentoring relationships, and summer research experiences all get high ratings from program participants. Students give high praise to their mentors and the program directors for providing

  11. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    Energy Technology Data Exchange (ETDEWEB)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  12. Science Educational Outreach Programs That Benefit Students and Scientists.

    Directory of Open Access Journals (Sweden)

    Greg Clark

    2016-02-01

    Full Text Available Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs--"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist"--that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities.

  13. Response to science education reforms: The case of three science education doctoral programs in the United States

    Science.gov (United States)

    Gwekwerere, Yovita Netsai

    Doctoral programs play a significant role in preparing future leaders. Science Education doctoral programs play an even more significant role preparing leaders in a field that is critical to maintaining national viability in the face of global competition. The current science education reforms have the goal of achieving science literacy for all students and for this national goal to be achieved; we need strong leadership in the field of science education. This qualitative study investigated how doctoral programs are preparing their graduates for leadership in supporting teachers to achieve the national goal of science literacy for all. A case study design was used to investigate how science education faculty interpreted the national reform goal of science literacy for all and how they reformed their doctoral courses and research programs to address this goal. Faculty, graduate students and recent graduates of three science education doctoral programs participated in the study. Data collection took place through surveys, interviews and analysis of course documents. Two faculty members, three doctoral candidates and three recent graduates were interviewed from each of the programs. Data analysis involved an interpretive approach. The National Research Council Framework for Investigating Influence of the National Standards on student learning (2002) was used to analyze interview data. Findings show that the current reforms occupy a significant part of the doctoral coursework and research in these three science education doctoral programs. The extent to which the reforms are incorporated in the courses and the way they are addressed depends on how the faculty members interpret the reforms and what they consider to be important in achieving the goal of science literacy for all. Whereas some faculty members take a simplistic critical view of the reform goals as a call to achieve excellence in science teaching; others take a more complex critical view where they question

  14. 78 FR 30870 - Nomination of Existing Marine Protected Areas to the National System of Marine Protected Areas

    Science.gov (United States)

    2013-05-23

    ... Marine Protected Areas to the National System of Marine Protected Areas AGENCY: National Marine Protected...) invited federal, state, commonwealth, and territorial marine protected area (MPA) programs with... of Marine Protected Areas of the United States (Framework), developed in response to Executive Order...

  15. Open Science: a first step towards Science Communication

    Science.gov (United States)

    Grigorov, Ivo; Tuddenham, Peter

    2015-04-01

    As Earth Science communicators gear up to adopt the new tools and captivating approaches to engage citizen scientists, budding entrepreneurs, policy makers and the public in general, researchers have the responsibility, and opportunity, to fully adopt Open Science principles and capitalize on its full societal impact and engagement. Open Science is about removing all barriers to basic research, whatever its formats, so that it can be freely used, re-used and re-hashed, thus fueling discourse and accelerating generation of innovative ideas. The concept is central to EU's Responsible Research and Innovation philosophy, and removing barriers to basic research measurably contributes to engaging citizen scientists into the research process, it sets the scene for co-creation of solutions to societal challenges, and raises the general science literacy level of the public. Despite this potential, only 50% of today's basic research is freely available. Open Science can be the first passive step of communicating marine research outside academia. Full and unrestricted access to our knowledge including data, software code and scientific publications is not just an ethical obligation, but also gives solid credibility to a more sophisticated communication strategy on engaging society. The presentation will demonstrate how Open Science perfectly compliments a coherent communication strategy for placing Marine Research in societal context, and how it underpin an effective integration of Ocean & Earth Literacy principles in standard educational, as well mobilizing citizen marine scientists, thus making marine science Open Science.

  16. Marine Science

    African Journals Online (AJOL)

    ination of high quality research generated in the Western Indian Ocean (WIO) region, ... fisheries, recovery and restoration processes, legal and institutional frameworks, and interactions/relationships ... Science features state-of-the-art review articles and short communications. ... Non-metric multidimensional scaling (nMDS).

  17. The ASI science program

    Science.gov (United States)

    Musso, Carlo

    2002-03-01

    Italy came in the space business in 1963, being the third nation in the world, after the Soviet Union and the United States, to put an artificial satellite into orbit. In 1988 the Italian Space Agency (ASI) was constituted, with the mandate of planning, coordinating and executing civil space activities in Italy. The core of national space activities is science, for which Italy spends about 25% of the ASI budget, both in national and international programs. The community served by the scientific directorate of ASI is a very wide one, ranging from the science of the Universe and the exploration of the Solar System to life sciences, from Earth observation to the development of new technologies. The success of Italian space research appears under many different points of view. The national satellite BeppoSAX, named after Giuseppe Beppo Occhialini, widely contributed to solve the γ-ray burst puzzle, obtaining the relevant acknowledgment of the ``Bruno Rossi Prize''. Italian researchers kept the PI-ship of various payloads on board ESA missions, such as Epic for XMM-Newton, Ibis for Integral, Virtis and Giada for Rosetta, PFS and Marsis for Mars Express. Also in the field of the cosmic microwave background (CMB) two important experiments are foreseen in the next future, with Italian PIs: SPOrt on board the International Space Station, dedicated to the polarization of CMB, and LFI (Low Frequency Instrument) on board the ESA Planck satellite, to study CMB anisotropy. Meanwhile, a great success has been obtained with the balloon experiment Boomerang. Moreover, ASI started a national scientific and technological small mission program. The first three missions are on their way: Agile (a γ-ray observatory), David (an experiment to test very high frequency data transmission), and a third one, devoted to Earth science. .

  18. The durability of private sector-led marine conservation: A case study of two entrepreneurial marine protected areas in Indonesia

    NARCIS (Netherlands)

    Bottema, M.J.M.; Bush, S.R.

    2012-01-01

    This paper investigates the durability of entrepreneurial marine protected areas (EMPAs) by exploring the role of the private sector in marine conservation. Set within a wider set of social science questions around the marine protected areas as negotiated interventions, we focus on whether and how

  19. 1998 Environmental Management Science Program Annual Report

    International Nuclear Information System (INIS)

    1999-01-01

    The Environmental Management Science Program (EMSP) is a collaborative partnership between the DOE Office of Environmental Management (EM), Office of Science (DOE-SC), and the Idaho Operations Office (DOE-ID) to sponsor basic environmental and waste management related research. Results are expected to lead to reduction of the costs, schedule, and risks associated with cleaning up the nation's nuclear complex. The EMSP research portfolio addresses the most challenging technical problems of the EM program related to high level waste, spent nuclear fuel, mixed waste, nuclear materials, remedial action, decontamination and decommissioning, and health, ecology, or risk. The EMSP was established in response to a mandate from Congress in the fiscal year 1996 Energy and Water Development Appropriations Act. Congress directed the Department to ''provide sufficient attention and resources to longer-term basic science research which needs to be done to ultimately reduce cleanup costs, develop a program that takes advantage of laboratory and university expertise, and seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective''. This mandate followed similar recommendations from the Galvin Commission to the Secretary of Energy Advisory Board. The EMSP also responds to needs identified by National Academy of Sciences experts, regulators, citizen advisory groups, and other stakeholders

  20. Undergraduates' Perceived Gains and Ideas about Teaching and Learning Science from Participating in Science Education Outreach Programs

    Science.gov (United States)

    Carpenter, Stacey L.

    2015-01-01

    This study examined what undergraduate students gain and the ideas about science teaching and learning they develop from participating in K-12 science education outreach programs. Eleven undergraduates from seven outreach programs were interviewed individually about their experiences with outreach and what they learned about science teaching and…

  1. 75 FR 19670 - Marine Highway Projects

    Science.gov (United States)

    2010-04-15

    ... DEPARTMENT OF TRANSPORTATION Maritime Administration Marine Highway Projects ACTION: Solicitation of applications for Marine highway projects. SUMMARY: The Department of Transportation is soliciting applications for Marine Highway Projects as specified in the America's Marine Highway Program Final Rule, MARAD...

  2. The Intersections of Science and Practice: Examples From FitnessGram® Programming.

    Science.gov (United States)

    Welk, Gregory J

    2017-12-01

    The FitnessGram® program has provided teachers with practical tools to enhance physical education programming. A key to the success of the program has been the systematic application of science to practice. Strong research methods have been used to develop assessments and standards for use in physical education, but consideration has also been given to ensure that programming meets the needs of teachers, students, parents, and other stakeholders. This essay summarizes some of these complex and nuanced intersections between science and practice with the FitnessGram® program. The commentaries are organized into 5 brief themes: science informing practice; practice informing science; balancing science and practice; promoting evidence-based practice; and the integration of science and practice. The article draws on personal experiences with the FitnessGram® program and is prepared based on comments shared during the 37th Annual C. H. McCloy Research Lecture at the 2017 SHAPE America - Society of Health and Physical Educators Convention.

  3. Communicating Ocean Science at the Lower-Division Level

    Science.gov (United States)

    Coopersmith, A.

    2011-12-01

    Pacific Ocean Literacy for Youth, Publics, Professionals, and Scientists (POLYPPS) is an NSF-funded collaboration between the University of Hawai`i and the Center for Ocean Science Education Excellence (COSEE) - California, which is based at the Lawrence Hall of Science, University of California - Berkeley. One of the objectives of this project is to instutionalize ocean science communications courses at colleges and universities in Hawai`i. Although the focus of most of these communications courses has been on training graduate students and scientists, lower-division students interested in the ocean sciences are finding this background helpful. At the University of Hawai`i Maui College there are several marine science courses and certificate programs that require students to interact with the public through internships, research assistantships, and course-related service-learning projects. Oceanography 270, Communicating Ocean Science, is now offered to meet the needs of these students who engage with the public in informal educational settings. Other students who enroll in this course have a general interest in the marine environment and are considering careers in K-12 formal education. This course gives this group of students an opportunity to explore formal education by assisting classroom teachers and preparing and presenting problem-based, hands-on, inquiry activities. Employers at marine-related businesses and in the tourist industry have welcomed this course with a focus on communication skills and indicate that they prefer to hire local people with strong backgrounds in marine and natural sciences. A basic premise of POLYPPS is that science education must draw not only from the latest advances in science and technology but also from the cultural contexts in which the learners are embedded and that this will achieve increased understanding and stewardship of ocean environments. Students in Oceanography 270 integrate traditional Hawaiian knowledge into their

  4. Inspiring science achievement: a mixed methods examination of the practices and characteristics of successful science programs in diverse high schools

    Science.gov (United States)

    Scogin, Stephen C.; Cavlazoglu, Baki; LeBlanc, Jennifer; Stuessy, Carol L.

    2017-08-01

    While the achievement gap in science exists in the US, research associated with our investigation reveals some high school science programs serving diverse student bodies are successfully closing the gap. Using a mixed methods approach, we identified and investigated ten high schools in a large Southwestern state that fit the definition of "highly successful, highly diverse". By conducting interviews with science liaisons associated with each school and reviewing the literature, we developed a rubric identifying specific characteristics associated with successful science programs. These characteristics and practices included setting high expectations for students, providing extensive teacher support for student learning, and utilizing student-centered pedagogy. We used the rubric to assess the successful high school science programs and compare them to other high school science programs in the state (i.e., less successful and less diverse high school science programs). Highly successful, highly diverse schools were very different in their approach to science education when compared to the other programs. The findings from this study will help schools with diverse students to strengthen hiring practices, enhance teacher support mechanisms, and develop student-focused strategies in the classroom that increase science achievement.

  5. Mapping Out-of-School-Time Youth Science Programs: Organizational Patterns and Possibilities

    Science.gov (United States)

    Laursen, S. L.; Archie, T.; Thiry, H.

    2012-12-01

    Out-of-school-time (OST) experiences promise to enrich young (K-12) people's experience of science, technology and engineering. Belief is widespread that OST programs are ideal locations to learn science, and that youth participation may enhance the science workforce and increase access to science for girls and minorities. Yet we know little about the scope or nature of science-focused OST youth programming. Variety poses a challenge for researchers, with OST sites in schools, museums, zoos, science and nature centers, aquariums, planetariums, and community centers; and formats including after-school clubs, camps, workshops, festivals, research apprenticeships, and more. Moreover, there is no single national network through which researchers might reach and recruit nationally representative samples of programs. Thus, to date there has been no systematic study of the broader national landscape of OST STEM programming. Our national study, Mapping Out-of-School-Time Science (MOST-Science), examines a national sample of OST programs focused on science, engineering, and/or technology. Here we describe first findings about the characteristics of these programs and their home organizations, including aspects of program design, structure, funding, staffing, and youth audience. Using an electronic survey, we collected data from 417 programs and classified their host institutions into eight organizational types: aquariums and zoos, museums, non-profits, national youth organizations, K-12 school districts, colleges and universities, government labs, and private sector organizations. We then examine key attributes of the youth programs hosted by these institution and discuss differences based on organizational types, including scientific organizations that are especially well equipped to offer research and field experiences. Programs engaging youth in research and field experiences are offered across all organizational types. Yet they vary notably in the size and demographics

  6. 78 FR 15933 - Marine Mammals; File No. 17952

    Science.gov (United States)

    2013-03-13

    ... Daniel P. Costa, Ph.D., Department of Biology and Institute of Marine Sciences, University of California... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XC554 Marine Mammals; File No. 17952 AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric...

  7. The Australian Integrated Marine Observing System

    Science.gov (United States)

    Proctor, R.; Meyers, G.; Roughan, M.; Operators, I.

    2008-12-01

    The Integrated Marine Observing System (IMOS) is a 92M project established with 50M from the National Collaborative Research Infrastructure Strategy (NCRIS) and co-investments from 10 operators including Universities and government agencies (see below). It is a nationally distributed set of equipment established and maintained at sea, oceanographic data and information services that collectively will contribute to meeting the needs of marine research in both open oceans and over the continental shelf around Australia. In particular, if sustained in the long term, it will permit identification and management of climate change in the marine environment, an area of research that is as yet almost a blank page, studies relevant to conservation of marine biodiversity and research on the role of the oceans in the climate system. While as an NCRIS project IMOS is intended to support research, the data streams are also useful for many societal, environmental and economic applications, such as management of offshore industries, safety at sea, management of marine ecosystems and fisheries and tourism. The infrastructure also contributes to Australia's commitments to international programs of ocean observing and international conventions, such as the 1982 Law of the Sea Convention that established the Australian Exclusive Economic Zone, the United Nations Framework Convention on Climate Change, the Global Ocean Observing System and the intergovernmental coordinating activity Global Earth Observation System of Systems. IMOS is made up of nine national facilities that collect data, using different components of infrastructure and instruments, and two facilities that manage and provide access to data and enhanced data products, one for in situ data and a second for remotely sensed satellite data. The observing facilities include three for the open (bluewater) ocean (Argo Australia, Enhanced Ships of Opportunity and Southern Ocean Time Series), three facilities for coastal

  8. A new program in earth system science education

    Science.gov (United States)

    Huntress, Wesley; Kalb, Michael W.; Johnson, Donald R.

    1990-01-01

    A program aimed at accelerating the development of earth system science curricula at the undergraduate level and at seeding the establishment of university-based mechanisms for cooperative research and education among universities and NASA has been initiated by the Universities Space Research Association (USRA) in conjunction with NASA. Proposals were submitted by 100 U.S. research universities which were selected as candidates to participate in a three-year pilot program to develop undergraduate curricula in earth system science. Universities were then selected based upon peer review and considerations of overall scientific balance among proposed programs. The program will also aim to integrate a number of universities with evolving earth system programs, linking them with a cooperative curriculum, shared faculty, and NASA scientists in order to establish a stronger base for earth systems related education and interdisciplinary research collaboration.

  9. Present status of marine environmental radioactivity survey in the sea of Japan

    International Nuclear Information System (INIS)

    Matsuoka, H.

    1994-01-01

    Science and Technology Agency has been conducting some Marine Environmental Radioactivity Surveys around Japan in cooperation with the relevant organizations (Maritime Safety Agency, Japan Meteorological Agency, Fishery Agency, National Institute of Radiological Sciences, Japan Marine Science and Technology Center, Japan Chemical Analysis Center and Marine Ecology Research Institute). Several artificial radionuclides have been detected but the main origin is supposed to be fall-out. The level trend of marine environmental radioactivity has no anomalies excepting the effect of Chernobyl Accident. The data summarized here are as follows. 1. Marine Environmental Survey of Fisheries near the Nuclear Power Stations, 2. Past Data of Marine Environmental Radioactivity around Japan (Apr. 1982 - Mar. 1991), 3. Marine Environmental Survey of the Sea of Japan (spring, 1993), 4. Marine Environmental Survey of the Sea of Japan (autumn, 1993). In addition, JAPAN-KOREA-RUSSIA JOINT EXPEDITION in the Sea of Japan will start in the middle of March. We are expecting to get valuable data through the EXPEDITION. (J.P.N.)

  10. Mexico's Program for Science and Technology, 1978 to 1982.

    Science.gov (United States)

    Flores, Edmundo

    1979-01-01

    Describes briefly the National Council for Science and Technology (CONACYT) of Mexico, and outlines Mexico's Program for Science and Technology which includes 2,489 projects in basic and applied sciences at a cost of $260 million from 1978 to 1982. (HM)

  11. 78 FR 37796 - Marine Mammals; File No. 17952

    Science.gov (United States)

    2013-06-24

    ... permit has been issued to Daniel P. Costa, Ph.D., Department of Biology and Institute of Marine Sciences... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XC554 Marine Mammals; File No. 17952 AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric...

  12. 75 FR 972 - Nomination of Existing Marine Protected Areas to the National System of Marine Protected Areas

    Science.gov (United States)

    2010-01-07

    ... Marine Protected Areas to the National System of Marine Protected Areas AGENCY: NOAA, Department of... Federal, State and territorial marine protected area programs to join the National System of Marine Protected Areas. SUMMARY: NOAA and the Department of the Interior (DOI) invited Federal, State, commonwealth...

  13. 77 FR 24734 - Outer Continental Shelf (OCS) Renewable Energy Program Leasing for Marine Hydrokinetic Technology...

    Science.gov (United States)

    2012-04-25

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management [Docket No. BOEM-2012-0011] Outer Continental Shelf (OCS) Renewable Energy Program Leasing for Marine Hydrokinetic Technology Testing Offshore Florida AGENCY: Bureau of Ocean Energy Management, Interior. ACTION: Notice of the Availability of an...

  14. Science Educational Outreach Programs That Benefit Students and Scientists

    Science.gov (United States)

    Enyeart, Peter; Gracia, Brant; Wessel, Aimee; Jarmoskaite, Inga; Polioudakis, Damon; Stuart, Yoel; Gonzalez, Tony; MacKrell, Al; Rodenbusch, Stacia; Stovall, Gwendolyn M.; Beckham, Josh T.; Montgomery, Michael; Tasneem, Tania; Jones, Jack; Simmons, Sarah; Roux, Stanley

    2016-01-01

    Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs—"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist”—that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities. PMID:26844991

  15. U.S. Marine Corps Concepts & Programs 2009

    Science.gov (United States)

    2009-01-01

    applied to the physical integration of the infantry squad’s equipment. The physiological and performance impacts of fielding new equipment creates...equipment and weight degrades a Marines performance when conducting physically demanding tasks in a fatigued and non-fatigued state. • Thermal...System ( ATARS ) provides manned airborne tactical recon- naissance capability to the Marine Air Ground Task Force (MAGTF). ATARS incorporates

  16. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    Science.gov (United States)

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  17. OBIS-USA: Enhancing Ocean Science Outcomes through Data Interoperability and Usability

    Science.gov (United States)

    Goldstein, P.; Fornwall, M.

    2014-12-01

    Commercial and industrial information systems have long built and relied upon standard data formats and transactions. Business processes, analytics, applications, and social networks emerge on top of these standards to create value. Examples of value delivered include operational productivity, analytics that enable growth and profit, and enhanced human communication and creativity for innovation. In science informatics, some research and operational activities operate with only scattered adoption of standards and few of the emergent benefits of interoperability. In-situ biological data management in the marine domain is an exemplar. From the origination of biological occurrence records in surveys, observer programs, monitoring and experimentation, through distribution techniques, to applications, decisions, and management response, marine biological data can be difficult, limited, and costly to integrate because of non-standard and undocumented conditions in the data. While this presentation identifies deficits in marine biological data practices, the presentation also identifies this as a field of opportunity. Standards for biological data and metadata do exist, with growing global adoption and extensibility features. Scientific, economic, and social-value motivations provide incentives to maximize marine science investments. Diverse science communities of national and international scale begin to see benefits of collaborative technologies. OBIS-USA (http://USGS.gov/obis-usa) is a program of the United States Geological Survey. This presentation shows how OBIS-USA directly addresses the opportunity to enhance ocean science outcomes through data infrastructure, including: (1) achieving rapid, economical, and high-quality data capture and data flow, (2) offering technology for data storage and methods for data discovery and quality/suitability evaluation, (3) making data understandable and consistent for application purposes, (4) distributing and integrating data in

  18. 75 FR 20481 - Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to...

    Science.gov (United States)

    2010-04-19

    ... exploration drilling program on U.S. Department of the Interior, Minerals Management Service (MMS) Alaska OCS... proposed drilling program in Camden Bay on marine mammals would most likely be acoustic in nature... acoustic effects on marine mammals relate to sound produced by drilling activity, vessels, and aircraft...

  19. Materials Sciences Programs. Fiscal Year 1980, Office of Basic Energy Sciences

    International Nuclear Information System (INIS)

    1980-09-01

    This report provides a convenient compilation index of the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs and is divided into Sections A and B, listing all the projects, Section C, a summary of funding levels, and Section D, an index

  20. Optical Science Discovery Program: Pre-College Outreach and So Much More

    Science.gov (United States)

    Deutsch, Miriam

    2010-03-01

    Recruiting and retaining women into the physical sciences is an ongoing struggle for universities, with the gap between men and women in physics remaining strong. Research shows a precipitous drop in female participation in the physical sciences around the 7th grade year of primary education, where girls begin losing interest during middle school, the drain continuing throughout high school with another significant drop at the bachelors level. To combat the loss of women in the physical sciences, the Oregon Center for Optics at the University of Oregon has created the Optical Science Discovery Program (OSDP), a precollege outreach program that targets girls in middle and high school. This program uses optical sciences as the medium through which girls explore experimental science. The program consists of a one-week intensive summer camp, a mentored monthly science club, summer internships and mentoring opportunities for camp alumni. By utilizing media often at the core of teenage life (e.g. Facebook, MySpace) we also aim to interact with program participants in a familiar and informal environment. Mentoring of OSDP activities is carried out by faculty and students of all levels. This in turn allows other education and outreach efforts at the University of Oregon to incorporate OSDP activities into their own, contributing to our broader university goals of surmounting barriers to higher education and creating a more scientifically literate populace. This talk will describe the OSDP program and its incorporation into the broader spectrum of outreach and education efforts.

  1. Hybrid-Mentoring Programs for Beginning Elementary Science Teachers

    Science.gov (United States)

    Bang, EunJin

    2013-01-01

    This study examines four induction models and teacher changes in science teaching practices, as a result of several mentoring programs. It explores three different computer-mediated mentoring programs, and a traditional offline induction program--in terms of interactivity, inquiry-based teaching, and topics of knowledge. Fifteen elementary science…

  2. Study on safety of a nuclear ship having an integral marine water reactor. Intelligent information database program concerned with thermal-hydraulic characteristics

    International Nuclear Information System (INIS)

    Inasaka, Fujio; Nariai, Hideki; Kobayashi, Michiyuki; Murata, Hiroyuki; Aya, Izuo

    2001-01-01

    As a high economical marine reactor with sufficient safety functions, an integrated type marine water reactor has been considered most promising. At the National Maritime Research Institute, a series of the experimental studies on the thermal-hydraulic characteristics of an integrated/passive-safety type marine water reactor such as the flow boiling of a helical-coil type steam generator, natural circulation of primary water under a ship rolling motion and flashing-condensation oscillation phenomena in pool water has been conducted. This current study aims at making use of the safety analysis or evaluation of a future marine water reactor by developing an intelligent information database program concerned with the thermal-hydraulic characteristics of an integral/passive-safety reactor on the basis of the above-mentioned valuable experimental knowledge. Since the program was created as a Windows application using the Visual Basic, it is available to the public and can be easily installed in the operating system. Main functions of the program are as follows: (1) steady state flow boiling analysis and determination of stability limit for any helical-coil type once-through steam generator design. (2) analysis and comparison with the flow boiling data, (3) reference and graphic display of the experimental data, (4) indication of the knowledge information such as analysis method and results of the study. The program will be useful for the design of not only the future integrated type marine water reactor but also the small sized water reactor. (author)

  3. Materials Sciences programs, Fiscal Year 1984

    International Nuclear Information System (INIS)

    1984-09-01

    This report provides a convenient compilation and index of the DOE Materials Sciences Division programs. The report is divided into six sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research program, Section D has information on DOE collaborative research centers, Section E gives distributions of funding, and Section F has various indexes

  4. Food, Environment, Engineering and Life Sciences Program (Invited)

    Science.gov (United States)

    Mohtar, R. H.; Whittaker, A.; Amar, N.; Burgess, W.

    2009-12-01

    Food, Environment, Engineering and Life Sciences Program Nadia Amar, Wiella Burgess, Rabi H. Mohtar, and Dale Whitaker Purdue University Correspondence: mohtar@purdue.edu FEELS, the Food, Environment, Engineering and Life Sciences Program is a grant of the National Science Foundation for the College of Agriculture at Purdue University. FEELS’ mission is to recruit, retain, and prepare high-achieving students with financial difficulties to pursue STEM (Science, Technology, Engineering, and Mathematics) careers. FEELS achieves its goals offering a scholarship of up to 10,000 per student each year, academic, research and industrial mentors, seminars, study tables, social and cultural activities, study abroad and community service projects. In year one, nine low-income, first generation and/or ethnic minority students joined the FEELS program. All 9 FEELS fellows were retained in Purdue’s College of Agriculture (100%) with 7 of 9 (77.7%) continuing to pursue STEM majors. FEELS fellows achieved an average GPA in their first year of 3.05, compared to the average GPA of 2.54 for low-income non- FEELS students in the College of Agriculture. A new cohort of 10 students joined the program in August 2009. FEELS fellows received total scholarships of nearly 50,000 for the 2008-2009 academic year. These scholarships were combined with a holistic program that included the following key elements: FEELS Freshman Seminars I and II, 2 study tables per week, integration activities and frequent meetings with FEELS academic mentors and directors. Formative assessments of all FEELS activities were used to enhance the first year curriculum for the second cohort. Cohort 1 will continue into their second year where the focus will be on undergraduate research. More on FEELS programs and activities: www.purdue.edu/feels.

  5. AAAS Communicating Science Program: Reflections on Evaluation

    Science.gov (United States)

    Braha, J.

    2015-12-01

    The AAAS Center for Public Engagement (Center) with science builds capacity for scientists to engage public audiences by fostering collaboration among natural or physical scientists, communication researchers, and public engagement practitioners. The recently launched Leshner Leadership Institute empowers cohorts of mid-career scientists to lead public engagement by supporting their networks of scientists, researchers, and practitioners. The Center works closely with social scientists whose research addresses science communication and public engagement with science to ensure that the Communicating Science training program builds on empirical evidence to inform best practices. Researchers ( Besley, Dudo, & Storkdieck 2015) have helped Center staff and an external evaluator develop pan instrument that measures progress towards goals that are suggested by the researcher, including internal efficacy (increasing scientists' communication skills and confidence in their ability to engage with the public) and external efficacy (scientists' confidence in engagement methods). Evaluation results from one year of the Communicating Science program suggest that the model of training yields positive results that support scientists in the area that should lead to greater engagement. This talk will explore the model for training, which provides a context for strategic communication, as well as the practical factors, such as time, access to public engagement practitioners, and technical skill, that seems to contribute to increased willingness to engage with public audiences. The evaluation program results suggest willingness by training participants to engage directly or to take preliminary steps towards engagement. In the evaluation results, 38% of trained scientists reported time as a barrier to engagement; 35% reported concern that engagement would distract from their work as a barrier. AAAS works to improve practitioner-researcher-scientist networks to overcome such barriers.

  6. AKRO/PR: Alaska Marine Mammal Observer Program (AMMOP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NMFS is mandated by the Marine Mammal Protection Act (MMPA) to measure and report on the effects of commercial fisheries on marine mammal stocks. One of the ways...

  7. The Changing Roles of Science Specialists during a Capacity Building Program for Primary School Science

    Science.gov (United States)

    Herbert, Sandra; Xu, Lihua; Kelly, Leissa

    2017-01-01

    Science education starts at primary school. Yet, recent research shows primary school teachers lack confidence and competence in teaching science (Prinsley & Johnston, 2015). A Victorian state government science specialist initiative responded to this concern by providing professional learning programs to schools across Victoria. Drawing on…

  8. Pacific Islands Regional Office — National Marine Fisheries Service -

    Science.gov (United States)

    ? Report Marine Animals State-Wide Hotline 888-256-9840 Report sea turtle, monk seal, dolphin and whales (ESA) Marine Mammal Response and Rescue Protected Resources Outreach and Education Volunteer PRGC Contacts Marine National Monument Program About the Marine National Monument Program Frequently

  9. Improving epistemological beliefs and moral judgment through an STS-based science ethics education program.

    Science.gov (United States)

    Han, Hyemin; Jeong, Changwoo

    2014-03-01

    This study develops a Science-Technology-Society (STS)-based science ethics education program for high school students majoring in or planning to major in science and engineering. Our education program includes the fields of philosophy, history, sociology and ethics of science and technology, and other STS-related theories. We expected our STS-based science ethics education program to promote students' epistemological beliefs and moral judgment development. These psychological constructs are needed to properly solve complicated moral and social dilemmas in the fields of science and engineering. We applied this program to a group of Korean high school science students gifted in science and engineering. To measure the effects of this program, we used an essay-based qualitative measurement. The results indicate that there was significant development in both epistemological beliefs and moral judgment. In closing, we briefly discuss the need to develop epistemological beliefs and moral judgment using an STS-based science ethics education program.

  10. The Development of Coastal and Marine

    Directory of Open Access Journals (Sweden)

    Suharto Widjojo

    2004-01-01

    Full Text Available Planning and development process of oastaland marine resources tends centralized and adopted top down policy, without any active participations from coastal and marine communities. In order to reach integrated and sustainable development in coastaland marine areas, people should have both complete and up to date information, so that planning and decision making for all aspect of the environment can be done easily. People should give a high attention of surveis, mappings, as well as science and technology of coastal and marine sectors, in order to change the paradigm of development from inland to coastal and marine. Moreover, people should give high attention of potential resources of coastal and marine areas.

  11. Functional Programming in Computer Science

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Loren James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Davis, Marion Kei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-19

    We explore functional programming through a 16-week internship at Los Alamos National Laboratory. Functional programming is a branch of computer science that has exploded in popularity over the past decade due to its high-level syntax, ease of parallelization, and abundant applications. First, we summarize functional programming by listing the advantages of functional programming languages over the usual imperative languages, and we introduce the concept of parsing. Second, we discuss the importance of lambda calculus in the theory of functional programming. Lambda calculus was invented by Alonzo Church in the 1930s to formalize the concept of effective computability, and every functional language is essentially some implementation of lambda calculus. Finally, we display the lasting products of the internship: additions to a compiler and runtime system for the pure functional language STG, including both a set of tests that indicate the validity of updates to the compiler and a compiler pass that checks for illegal instances of duplicate names.

  12. Opportunities in Marine and Maritime Careers.

    Science.gov (United States)

    Heitzmann, Wm. Ray

    This book describes careers related to the sea. The following chapters are included: (1) "The World of Water"; (2) "Cruise Ship Careers"; (3) "Oceanography and the Marine Sciences"; (4) "Fishing"; (5) "Commerical Diving"; (6) "Maritime Transportation"; (7) "Shipbuilding"; (8) "Military Careers Afloat"; (9) "Miscellaneous Marine and Maritime…

  13. Time-series water temperature and salinity at the Hatfield Marine Science Center's in-building seawater system, January - August 2000 (NODC Accession 0001135)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water characteristics of Yaquina Bay and Hatfield Marine Science Center's in-building seawater system, measured every six minutes since 1988. Tide height data is...

  14. 高中生海洋科學素養及迷思概念評量分析 Marine Science Literacy and Misconceptions among Senior High School Students

    Directory of Open Access Journals (Sweden)

    羅綸新 Lwun-Syin Lwo

    2013-09-01

    Full Text Available 本研究旨在:一、應用概念圖命題模式及開放性問答評量高中生海洋科學概念與素養之現況。二、以問卷試題診斷高中生海洋科學迷思概念之情形。研究以基隆市5 所公立高級中學學生為對象,共計發出361 份問卷,有效樣本346 份,回收率為96%。研究結果顯示:一、高中生在海洋科學概念詞彙運用前三名為暖化、地震及地球。二、高中生在海洋科學概念詞彙運用產生迷思的三大詞彙為生質能源、黑潮及親潮。三、高中生海洋概念以知識面向的概念最高。四、高中生在海洋科學迷思概念試題評量中,平均答對率只有53%。五、黑潮得名緣由為高中生在海洋科學迷思概念評量中答對率最低的題目,僅有16%。六、「瞭解冰期與間冰期海平面的升降,對全球生物與自然環境可能造成影響」為高中生最常帶有迷思概念的能力指標。研究的結果可供我國海洋教育相關人員及高中教師參考,以提升海洋教育實施之成效與國民海洋科學素養。 The purposes of this study were to examine the literacy of senior high school students regarding marine-science concepts by using the concept-map method (open-ended tasks and an open-ended question, and to assess their misconceptions about marine science. A survey was conducted among students from five senior high schools in northern Taiwan. A total of 361 questionnaires were distributed and a validity count of 346 was returned. The results of this study were as follows: (1 The terms “warming,” “earthquake,” and “earth” were most commonly used by students to express marine-science concepts. (2 The terms “bioenergy,” “Kuroshio Currents,” and “Oyashio Currents” caused the most confusion among students. (3 The marine concepts described by the students were more in cognitive domain, than in attitude and affective domains. (4 The students

  15. The Glory Program: Global Science from a Unique Spacecraft Integration

    Science.gov (United States)

    Bajpayee Jaya; Durham, Darcie; Ichkawich, Thomas

    2006-01-01

    The Glory program is an Earth and Solar science mission designed to broaden science community knowledge of the environment. The causes and effects of global warming have become a concern in recent years and Glory aims to contribute to the knowledge base of the science community. Glory is designed for two functions: one is solar viewing to monitor the total solar irradiance and the other is observing the Earth s atmosphere for aerosol composition. The former is done with an active cavity radiometer, while the latter is accomplished with an aerosol polarimeter sensor to discern atmospheric particles. The Glory program is managed by NASA Goddard Space Flight Center (GSFC) with Orbital Sciences in Dulles, VA as the prime contractor for the spacecraft bus, mission operations, and ground system. This paper will describe some of the more unique features of the Glory program including the integration and testing of the satellite and instruments as well as the science data processing. The spacecraft integration and test approach requires extensive analysis and additional planning to ensure existing components are successfully functioning with the new Glory components. The science mission data analysis requires development of mission unique processing systems and algorithms. Science data analysis and distribution will utilize our national assets at the Goddard Institute for Space Studies (GISS) and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The Satellite was originally designed and built for the Vegetation Canopy Lidar (VCL) mission, which was terminated in the middle of integration and testing due to payload development issues. The bus was then placed in secure storage in 2001 and removed from an environmentally controlled container in late 2003 to be refurbished to meet the Glory program requirements. Functional testing of all the components was done as a system at the start of the program, very different from a traditional program

  16. Materials Sciences programs, fiscal year 1986

    International Nuclear Information System (INIS)

    1986-09-01

    Purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. The report is divided into six sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Sections D and E have information on DOE collaborative research centers, Section F gives distribution of funding, and Section G has various indexes

  17. University Curricula in the Marine Sciences and Related Fields. Academic Years 1969-70 and 1970-71.

    Science.gov (United States)

    1971-01-01

    equipment to be temporarily installed and removed each cruise. The ACONA has a speed of nine knots and an en - durance of three weeks or 4500 miles...Professor of Biology Harville, John, Ph.D., Professor of Biology and Marine Science Kenk, Vida , M.S., Assistant Professor McMaster, Pauline, M.A...Associate Professor of Resource Policies and Utilization Marts , Marion E., Ph.D., Vice Provost; Director, Summer Quarter; Professor of Geography and

  18. Arctic research vessel design would expand science prospects

    Science.gov (United States)

    Elsner, Robert; Kristensen, Dirk

    The U.S. polar marine science community has long declared the need for an arctic research vessel dedicated to advancing the study of northern ice-dominated seas. Planning for such a vessel began 2 decades ago, but competition for funding has prevented construction. A new design program is underway, and it shows promise of opening up exciting possibilities for new research initiatives in arctic marine science.With its latest design, the Arctic Research Vessel (ARV) has grown to a size and capability that will make it the first U.S. academic research vessel able to provide access to the Arctic Ocean. This ship would open a vast arena for new studies in the least known of the world's seas. These studies promise to rank high in national priority because of the importance of the Arctic Ocean as a source of data relating to global climate change. Other issues that demand attention in the Arctic include its contributions to the world's heat budget, the climate history buried in its sediments, pollution monitoring, and the influence of arctic conditions on marine renewable resources.

  19. Suborbital Science Program: Dryden Flight Research Center

    Science.gov (United States)

    DelFrate, John

    2008-01-01

    This viewgraph presentation reviews the suborbital science program at NASA Dryden Flight Research Center. The Program Objectives are given in various areas: (1) Satellite Calibration and Validation (Cal/val)--Provide methods to perform the cal/val requirements for Earth Observing System satellites; (2) New Sensor Development -- Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations; (3) Process Studies -- Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects; and (4) Airborne Networking -- Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden supports the NASA Airborne Science Program and the nation in several elements: ER-2, G-3, DC-8, Ikhana (Predator B) & Global Hawk and Reveal. These are reviewed in detail in the presentation.

  20. Science in the General Educational Development (GED) curriculum: Analyzing the science portion of GED programs and exploring adult students' attitudes toward science

    Science.gov (United States)

    Hariharan, Joya Reena

    The General Educational Development (GED) tests enable people to earn a high school equivalency diploma and help them to qualify for more jobs and opportunities. Apart from this main goal, GED courses aim at enabling adults to improve the condition of their lives and to cope with a changing society. In today's world, science and technology play an exceedingly important role in helping people better their lives and in promoting the national goals of informed citizenship. Despite the current efforts in the field of secondary science education directed towards scientific literacy and the concept of "Science for all Americans", the literature does not reflect any corresponding efforts in the field of adult education. Science education research appears to have neglected a population that could possibly benefit from it. The purpose of this study is to explore: the science component of GED programs, significant features of the science portion of GED curricula and GED science materials, and adult learners' attitudes toward various aspects of science. Data collection methods included interviews with GED students and instructors, content analysis of relevant materials, and classroom observations. Data indicate that the students in general feel that the science they learn should be relevant to their lives and have direct applications in everyday life. Student understanding of science and interest in it appears to be contingent to their perceiving it as relevant to their lives and to society. Findings indicate that the instructional approaches used in GED programs influence students' perceptions about the relevance of science. Students in sites that use strategies such as group discussions and field trips appear to be more aware of science in the world around them and more enthusiastic about increasing this awareness. However, the dominant strategy in most GED programs is individual reading. The educational strategies used in GED programs generally focus on developing reading

  1. The effects of a science intervention program on the attitudes and achievement of high school girls in science

    Science.gov (United States)

    Steakley, Carrie Capers

    This study investigated the effects of a high school science intervention program that included hands-on activities, science-related career information and exposure, and real-world experiences on girls' attitudes and achievement in science. Eighty-four girls, 44 ninth-graders and 40 tenth-graders, and 105 parents participated in the study. Survey data was collected to assess the girls' attitudes toward science in seven distinct areas: social implications of science, normality of scientists, attitude toward scientific inquiry, adoption of scientific attitudes, enjoyment of science lessons, leisure interest in science, and career interest in science. Additional questionnaires were used to determine the extent of the girls' participation in sports and the attitudes of their parents toward science. The girls' cumulative science semester grade point averages since the seventh grade were used to assess academic science achievement. This study found no evidence that participation in the program improved the girls' attitudes or achievement in science. Parent attitudes and years of participation in sports were not accurate predictors of science achievement. Additionally, no significant relationship was detected between the girls' and their parents' perceptions of science. However, the study did suggest that extended participation in sports may positively affect science achievement for girls. This study holds implications for educational stakeholders who seek to implement intervention methods and programs that may improve student attitudes and achievement in science and attract more youth to future science-related careers.

  2. NASA Life Sciences Program

    Science.gov (United States)

    1995-01-01

    This Life Science Program video examines the variety of projects that study both the physiological and psychological impacts on astronauts due to extended space missions. The hazards of space radiation and microgravity effects on the human body are described, along with these effects on plant growth, and the performance of medical procedures in space. One research technique, which is hoped to provide help for future space travel, is the study of aquanauts and their life habits underwater.

  3. Science and students: Yucca Mountain project's education outreach program

    International Nuclear Information System (INIS)

    Gil, A.V.; Larkin, E.L.; Reilly, B.; Austin, P.

    1992-01-01

    The U.S. Department of Energy (DOE) is very concerned about the lack of understanding of basic science. Increasingly, critical decisions regarding the use of energy, technology, and the environment are being made. A well-educated and science-literate public is vital to the success of these decisions. Science education and school instruction are integral parts of the DOE's public outreach program on the Yucca Mountain Site Characterization Project (YMP). Project staff and scientists speak to elementary, junior high, high school, and university students, accepting all speaking invitations. The objectives of this outreach program include the following: (1) educating Nevada students about the concept of a high-level nuclear waste repository; (2) increasing awareness of energy and environmental issues; (3) helping students understand basic concepts of earth science and geology in relation to siting a potential repository; and (4) giving students information about careers in science and engineering

  4. Science Writer-At-Sea: A New InterRidge Education Outreach Project Joining Scientists and Future Journalists

    Science.gov (United States)

    Kusek, K. M.; Freitag, K.; Devey, C.

    2005-12-01

    The Science Writer-at-Sea program is one small step in a marathon need for improved coverage of science and environmental issues. It targets two significant links in the Earth science communication pipeline: marine scientists and journalists; and attempts to reconnect people with the Earth by boosting their understanding of Earth science and its relevance to society. How it works: Journalism graduate students are invited to participate in oceanographic expeditions affiliated with InterRidge, an international organization dedicated to promoting ocean ridge research. InterRidge's outreach coordinator and science writer prepares each student for the expedition experience using materials she developed based on years of at-sea reporting. The students work side-by-side with the science writer and the scientists to research and write innovative journalistic stories for a general audience that are featured on a uniquely designed multimedia website that includes videos and images. The science, journalism and public communities benefit from this cost-effective program: science research is effectively showcased, scientists benefit from interactions with journalists, science outreach objectives are accomplished; student journalists enjoy a unique hands-on, `boot camp' experience; and the website enhances public understanding of `real' Earth science reported `on scene at sea.' InterRidge completed its first pilot test of the program in August 2005 aboard a Norwegian research cruise. A student writer entering the science journalism program at Columbia University participated. The results exceeded expectations. The team discovered the world's northernmost vent fields on the cruise, which expanded the original scope of the website to include a section specifically designed for the international press. The student was inspired by the cruise, amazed at how much she learned, and said she entered graduate school with much more confidence than she had prior to the program. The site

  5. 77 FR 32571 - Marine Mammals; File No. 14856

    Science.gov (United States)

    2012-06-01

    ... Bruce R. Mate, Ph.D., Hatfield Marine Science Center, Oregon State University, Newport, OR 97365, has applied in due form for a permit to take marine mammals world-wide for the purposes of scientific research... identified species of marine mammals species world-wide. The purposes of the proposed research are to: (1...

  6. Evaluating a Graduate Professional Development Program for Informal Science Educators

    Science.gov (United States)

    Lake, Jeremy Paul

    This study is an examination and evaluation of the outcomes of a series of courses that I helped build to create a graduate certificate. Specifically, I wanted to evaluate whether or not the online iteration of the Informal Science Institutions Environmental Education Graduate Certificate Program truly provided the long term professional development needed to enhance the skills of the formal and informal educators participating so that they could contribute meaningfully to the improvement of science literacy in their respective communities. My role as an internal evaluator provided an extraordinary opportunity to know the intent of the learning opportunities and why they were constructed in a particular fashion. Through the combination of my skills, personal experiences both within the certificate's predecessor and as an educator, I was uniquely qualified to explore the outcomes of this program and evaluate its effectiveness in providing a long-term professional development for participants. After conducting a literature review that emphasized a need for greater scientific literacy in communities across America, it was evident that the formal education enterprise needs the support of informal educators working on the ground in myriad different settings in ways that provide science as both content and process, learning science facts and doing real science. Through a bridging of informal science educators with formal teachers, it was thought each could learn the culture of the other, making each more fluent in accessing community resources to help make these educators more collaborative and able to bridge the classroom with the outside world. This bridge promotes ongoing, lifelong learning, which in turn can help the national goal of greater scientific literacy. This study provided insight into the thinking involved in the learners' growth as they converted theory presented in course materials into practice. Through an iterative process of reviewing the course

  7. The perspectives and experiences of African American students in an informal science program

    Science.gov (United States)

    Bulls, Domonique L.

    Science, technology, engineering, and mathematics (STEM) fields are the fastest growing sectors of the economy, nationally and globally. In order for the United States (U.S.) to maintain its competitiveness, it is important to address STEM experiences at the precollege level. In early years, science education serves as a foundation and pipeline for students to pursue STEM in college and beyond. Alternative approaches to instruction in formal classrooms have been introduced to engage more students in science. One alternative is informal science education. Informal science education is an avenue used to promote science education literacy. Because it is less regulated than science teaching in formal classroom settings, it allows for the incorporation of culture into science instruction. Culturally relevant science teaching is one way to relate science to African American students, a population that continually underperforms in K-12 science education. This study explores the science perspectives and experiences of African American middle school students participating in an informal science program. The research is framed by the tenets of culturally relevant pedagogy and shaped by the following questions: (1) What specific aspects of the Carver Program make it unique to African American students? (2) How is culturally relevant pedagogy incorporated into the informal science program? (3) How does the incorporation of culturally relevant pedagogy into the informal science program influence African American students' perceptions about science? The findings to the previously stated questions add to the limited research on African American students in informal science learning environments and contribute to the growing research on culturally relevant science. This study is unique in that it explores the cultural components of an informal science program.

  8. Customizing Process to Align with Purpose and Program: The 2003 MS PHD'S in Ocean Sciences Program Evaluative Case Study

    Science.gov (United States)

    Williamson, V. A.; Pyrtle, A. J.

    2004-12-01

    How did the 2003 Minorities Striving and Pursuing Higher Degrees of Success (MS PHD'S) in Ocean Sciences Program customize evaluative methodology and instruments to align with program goals and processes? How is data captured to document cognitive and affective impact? How are words and numbers utilized to accurately illustrate programmatic outcomes? How is compliance with implicit and explicit funding regulations demonstrated? The 2003 MS PHD'S in Ocean Sciences Program case study provides insightful responses to each of these questions. MS PHD'S was developed by and for underrepresented minorities to facilitate increased and sustained participation in Earth system science. Key components of this initiative include development of a community of scholars sustained by face-to-face and virtual mentoring partnerships; establishment of networking activities between and among undergraduate, graduate, postgraduate students, scientists, faculty, professional organization representatives, and federal program officers; and provision of forums to address real world issues as identified by each constituent group. The evaluative case study of the 2003 MS PHD'S in Ocean Sciences Program consists of an analysis of four data sets. Each data set was aligned to document progress in the achievement of the following program goals: Goal 1: The MS PHD'S Ocean Sciences Program will successfully market, recruit, select, and engage underrepresented student and non-student participants with interest/ involvement in Ocean Sciences; Goal 2: The MS PHD'S Ocean Sciences Program will provide meaningful engagement for participants as determined by quantitative analysis of user-feedback; Goal 3: The MS PHD'S Ocean Sciences Program will provide meaningful engagement for participants as determined by qualitative analysis of user-feedback, and; Goal 4: The MS PHD'S Ocean Sciences Program will develop a constituent base adequate to demonstrate evidence of interest, value, need and sustainability in

  9. The Maryland nuclear science baccalaureate degree program: The university perspective

    International Nuclear Information System (INIS)

    Janke, T.A.

    1989-01-01

    Nuclear utilities' efforts in response to industry-wide pressures to provide operations staff with degree opportunities have encountered formidable barriers. This paper describes, from the university's perspective, the development and operation of the University of Maryland University College (UMUC) special baccalaureate program in nuclear science. This program has successfully overcome these problems to provide degree education on-site, on-line, and on time. Program delivery began in 1984 with one utility and a single site. It is currently delivered at eight sites under contract to six utilities with a total active student count of over 500. The first graduates are expected in 1989. The program is an accredited university program and enjoys licensure approval from the six states within which it operates. In addition to meeting US Nuclear Regulatory Commission proposed guidelines for degreed operators, the program increasingly appears as part of utility management development programs for all plant personnel and a factor in employee retention. The owner utilities, the University of Maryland, and the growing user's group are committed to the academic integrity, technical capability, and responsiveness of the program. The full support of this partnership speaks well for the long-term service of the Bachelor of Science in Nuclear Science program to the nuclear power industry

  10. Marine Corps Pay Incentives

    Science.gov (United States)

    Marines from 2000 to 2017. The thesis includes a literature review on economic theory related to pay incentives in the Department of Defense, a...The purpose of this thesis to provide the Marine Corps with a comprehensive report on pay incentive programs and special pay that were available to...summarization of pay incentive categories, a data analysis on take-up rates and average annual amounts at the end of each fiscal year, and a program review

  11. Enrichment of Science Education Using Real-time Data Streams

    Science.gov (United States)

    McDonnell, J. M.; de Luca, M. P.

    2002-12-01

    For the past six years, Rutgers Marine and Coastal Sciences (RMCS) has capitalized on human interest and fascination with the ocean by using the marine environment as an entry point to develop interest and capability in understanding science. This natural interest has been used as a springboard to encourage educators and their students to use the marine environment as a focal point to develop basic skills in reading, writing, math, problem-solving, and critical thinking. With the selection of model science programs and the development of collaborative school projects and Internet connections, RMCS has provided a common ground for scientists and educators to create interesting and meaningful science learning experiences for classroom application. Student exposure to the nature of scientific inquiry also prepares them to be informed decision-makers and citizens. Technology serves as an educational tool, and its usefulness is determined by the quality of the curriculum content and instructional strategy it helps to employ. In light of this, educational issues such as curriculum reform, professional development, assessment, and equity must be addressed as they relate to technology. Efforts have been made by a number of organizations to use technology to bring ocean science education into the K-12 classroom. RMCS has used he Internet to increase (1) communication and collaboration among students and teacher, (2) the range of resources available to students, and (3) opportunities for students and educators to present their ideas and opinions. Technology-based educational activities will be described.

  12. An Interdisciplinary Program in Materials Science at James Madison University.

    Science.gov (United States)

    Hughes, Chris

    2008-03-01

    Over the past decade a core group of faculty at James Madison University has created an interdisciplinary program in materials science that provides our students with unique courses and research experiences that augment the existing, high-quality majors in physics and astronomy, chemistry and biochemistry, geology and environmental science, mathematics and statistics, and integrated science and technology. The university started this program by creating a Center for Materials Science whose budget is directly allocated by the provost. This source of funds acts as seed money for research, support for students, and a motivating factor for each of the academic units to support the participation of their faculty in the program. Courses were created at the introductory and intermediate level that are cross-listed by the departments to encourage students to enroll in them as electives toward their majors. Furthermore, the students are encouraged to participate in undergraduate research in materials since this is the most fundamental unifying theme across the disciplines. This talk will cover some of the curricular innovations that went into the design of the program to make it successful, examples of faculty and student research and how that feeds back into the classroom, and success stories of the interactions that have developed between departments because of this program. Student outcomes and future plans to improve the program will also be discussed.

  13. Knowledge transfer within EU-funded marine science research - a viewpoint

    Science.gov (United States)

    Bayliss-Brown, Georgia; Cheallachaín, Cliona Ní

    2016-04-01

    transfer and dissemination. This Dublin-based SME has an ever-growing portfolio of FP7 and Horizon 2020 projects where they hold knowledge management responsibilities. In this session, we will present AquaTT's experiences in knowledge management for several European Union-funded marine research projects; including MarineTT (http://marinett.eu/) that was recognised as an exemplar project in the ex post evaluation of FP7 to the European Commission. These insights will be supplemented with an overview of the AquaTT-developed step-by-step knowledge transfer methodology, as used by the COLUMBUS project - the EU's flagship Blue Growth and Knowledge Transfer initiative (http://www.columbusproject.eu/). This session will provide a platform to launch AquaTT's European knowledge transfer network, established to support the research community in fostering a culture that recognises and rewards knowledge transfer between scientists and end-users (industry, policy, and wider society), thereby ensuring that research achieves its maximum potential impact. References Bellwood, P. (2004) The First Farmers: Origins of Agricultural Societies. Malden, MA. European Commission (2008) recommendation on the management of intellectual property in knowledge transfer activities and code of practice for universities and other public research organisations http://ec.europa.eu/invest-in-research/pdf/ip_recommendation_en.pdf Lipphardt, V. and D. Ludwig (2011) Knowledge transfer and science transfer. http://ieg-ego.eu/en/threads/theories-and-methods/knowledge-transfer/veronika-lipphardt-david-ludwig-knowledge-transfer-and-science-transfer

  14. A New Open Access Journal of Marine Science and Engineering

    Directory of Open Access Journals (Sweden)

    Anthony S. Clare

    2013-03-01

    Full Text Available The oceans cover approximately 71% of the Earth’s surface and contain more than 97% of the planet’s water, representing over 100 times more liveable volume than the terrestrial habitat. Approximately fifty percent of the species on the planet occupy this ocean biome, much of which remains unexplored. The health and sustainability of the oceans are threatened by a combination of pressures associated with climate change and the ever-increasing demands we place on them for food, recreation, trade, energy and minerals. The biggest threat, however, is the pace of change to the oceans, e.g., ocean acidification, which is unprecedented in human history. Consequently, there has never been a greater need for the rapid and widespread dissemination of the outcomes of research aimed at improving our understanding of how the oceans work and solutions to their sustainable use. It is our hope that this new online, open-access Journal of Marine Science and Engineering will go some way to fulfilling this need. [...

  15. Participatory Sensing Marine Debris: Current Trends and Future Opportunities

    Science.gov (United States)

    Jambeck, J.; Johnsen, K.

    2016-02-01

    The monitoring of litter and debris is challenging at the global scale because of spatial and temporal variability, disconnected local organizations and the use of paper and pen for documentation. The Marine Debris Tracker mobile app and citizen science program allows for the collection of global standardized data at a scale, speed and efficiency that was not previously possible. The app itself also serves as an outreach and education tool, creating an engaged participatory sensing instrument. This instrument is characterized by several aspects including range and frequency, accuracy and precision, accessibility, measurement dimensions, participant performance, and statistical analysis. Also, important to Marine Debris Tracker is open data and transparency. A web portal provides data that users have logged allowing immediate feedback to users and additional education opportunities. The engagement of users through a top tracker competition and social media keeps participants interested in the Marine Debris Tracker community. Over half a million items have been tracked globally, and maps provide both global and local distribution of data. The Marine Debris Tracker community and dataset continues to grow daily. We will present current usage and engagement, participatory sensing data distributions, choropleth maps of areas of active tracking, and discuss future technologies and platforms to expand data collection and conduct statistical analysis.

  16. A Mathematical Sciences Program at an Upper-Division Campus.

    Science.gov (United States)

    Swetz, Frank J.

    1978-01-01

    The conception, objectives, contents, and limitations of a degree program in the mathematical sciences at Pennsylvania State University, Capitol Campus, are discussed. Career goals that may be pursued include: managerial, science, education, actuarial, and computer. (MP)

  17. Student Science Training Program in Mathematics, Physics and Computer Science. Final Report to the National Science Foundation. Artificial Intelligence Memo No. 393.

    Science.gov (United States)

    Abelson, Harold; diSessa, Andy

    During the summer of 1976, the MIT Artificial Intelligence Laboratory sponsored a Student Science Training Program in Mathematics, Physics, and Computer Science for high ability secondary school students. This report describes, in some detail, the style of the program, the curriculum and the projects the students under-took. It is hoped that this…

  18. Time-series water temperature and salinity at the Hatfield Marine Science Center's in-building seawater system, July 2002 - February 2003 (NODC Accession 0001119)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water characteristics of Yaquina Bay and Hatfield Marine Science Center's in-building seawater system, measured every six minutes since 1988. Tide height data is...

  19. Marine Mammal and Sea Turtle Research Collection (MMASTR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Southwest Fisheries Science Center in La Jolla houses one of the largest marine mammal and marine turtle sample collections in the world, with over 140,000...

  20. A bibliographic overview of marine research at Universitas Hasanuddin (1973-1992)

    NARCIS (Netherlands)

    Hoeksema, B.W.; Moka, W.

    1994-01-01

    A list of research papers, essays and abstracts on marine sciences is given, which were published by Hasanuddin University in the years 1973-1992. The purpose of this bibliography is to increase the accessibility of this information to students and scientists interested in marine sciences at UNHAS.

  1. The women in science and engineering scholars program

    Science.gov (United States)

    Falconer, Etta Z.; Guy, Lori Ann

    1989-01-01

    The Women in Science and Engineering Scholars Program provides scientifically talented women students, including those from groups underrepresented in the scientific and technical work force, with the opportunity to pursue undergraduate studies in science and engineering in the highly motivating and supportive environment of Spelman College. It also exposes students to research training at NASA Centers during the summer. The program provides an opportunity for students to increase their knowledge of career opportunities at NASA and to strengthen their motivation through exposure to NASA women scientists and engineers as role models. An extensive counseling and academic support component to maximize academic performance supplements the instructional and research components. The program is designed to increase the number of women scientists and engineers with graduate degrees, particularly those with an interest in a career with NASA.

  2. SCUBAnauts International: Exploration and Discovery in the Ocean Sciences

    Science.gov (United States)

    Moses, C. S.; Palandro, D.; Coble, P.; Hu, C.

    2007-12-01

    The SCUBAnauts International program originated in 2001, as a 501(c)(3) non-profit organization designed to increase the attraction to science and technology careers in today's youth. SCUBAnauts International (SNI) consists of a diverse group of 12 to 18 year-old young men and women mentored by academic, federal, and state research scientists in an informal education environment. The program's mission is to promote interest in science and technology topics and careers by involving secondary education students as young explorers in the marine sciences and research activities, such as special environmental and undersea conservation projects that educate, promote active citizenship, and develop effective leadership skills. With help from mentors, SNI students collect and interpret research-quality data to meet the needs of ocean scientists, maintaining direct interaction between the scientists and the young men and women in the program. The science component of the program includes collection of benthic habitat, water quality, optics, and coral reef health data. During the school year, the SCUBAnauts are tasked with sharing their experiences to raise the environmental awareness of a larger audience by providing education outreach in formal and informal venues. Here we highlight results from recent SNI activities including data collection and program methodologies, and discuss future plans for the program.

  3. Consumer Preferences Toward Marine Tourism Area

    Directory of Open Access Journals (Sweden)

    Silvy Fauziah

    2012-09-01

    Full Text Available The marine zone tourism is growing attracting more tourists. Pramuka Island is marine conservation area enriched with marine biodiversity in coral reefs and other natural resources. To develop this potential tourist destination, a customer-based marketing program is required to attract domestic and foreign tourists. The main vision is to understand tourist preferences for marine tourism activities and facilities. A research was conducted on Pramuka Island as a well-known marine tourism zone. The objective was to determine the key tourist preferences for marine tourism destination. Research methods utilized Cochran Q test and Conjoint analysis where the primary data were obtained from tourist respondents. The result showed that there was a tourist preference based on the five attributes considered most important, namely tourism activities, tourist attractions, types of accommodation, food and souvenirs types. This study provided marine tourism destination management with useful guidance for broader implications of the implementation of marketing programs and tourism attraction. Moreover, the results of this study consolidated the learning of a variety of academic and industrial research papers in particular for the measurement of customer preferences towards marine tourism destination.

  4. Overview of NASA's Microgravity Materials Science Program

    Science.gov (United States)

    Downey, James Patton

    2012-01-01

    The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.

  5. Marine Biology and Oceanography, Grades Nine to Twelve. Part II.

    Science.gov (United States)

    Kolb, James A.

    This unit, one of a series designed to develop and foster an understanding of the marine environment, presents marine science activities for students in grades 9-12. The unit, focusing on sea plants/animals and their interactions with each other and the non-living environment, has sections dealing with: marine ecology; marine bacteriology;…

  6. NASA's Earth Science Flight Program Meets the Challenges of Today and Tomorrow

    Science.gov (United States)

    Ianson, Eric E.

    2016-01-01

    NASA's Earth science flight program is a dynamic undertaking that consists of a large fleet of operating satellites, an array of satellite and instrument projects in various stages of development, a robust airborne science program, and a massive data archiving and distribution system. Each element of the flight program is complex and present unique challenges. NASA builds upon its successes and learns from its setbacks to manage this evolving portfolio to meet NASA's Earth science objectives. NASA fleet of 16 operating missions provide a wide range of scientific measurements made from dedicated Earth science satellites and from instruments mounted to the International Space Station. For operational missions, the program must address issues such as an aging satellites operating well beyond their prime mission, constellation flying, and collision avoidance with other spacecraft and orbital debris. Projects in development are divided into two broad categories: systematic missions and pathfinders. The Earth Systematic Missions (ESM) include a broad range of multi-disciplinary Earth-observing research satellite missions aimed at understanding the Earth system and its response to natural and human-induced forces and changes. Understanding these forces will help determine how to predict future changes, and how to mitigate or adapt to these changes. The Earth System Science Pathfinder (ESSP) program provides frequent, regular, competitively selected Earth science research opportunities that accommodate new and emerging scientific priorities and measurement capabilities. This results in a series of relatively low-cost, small-sized investigations and missions. Principal investigators whose scientific objectives support a variety of studies lead these missions, including studies of the atmosphere, oceans, land surface, polar ice regions, or solid Earth. This portfolio of missions and investigations provides opportunity for investment in innovative Earth science that enhances

  7. Science Teaching Experiences in Informal Settings: One Way to Enrich the Preparation Program for Preservice Science Teachers

    Science.gov (United States)

    Hsu, Pei-Ling

    2016-01-01

    The high attrition rate of new science teachers demonstrates the urgent need to incorporate effective practices in teacher preparation programs to better equip preservice science teachers. The purpose of the study is to demonstrate a way to enrich preservice science teachers' preparation by incorporating informal science teaching practice into…

  8. SEQ-POINTER: Next generation, planetary spacecraft remote sensing science observation design tool

    Science.gov (United States)

    Boyer, Jeffrey S.

    1994-11-01

    Since Mariner, NASA-JPL planetary missions have been supported by ground software to plan and design remote sensing science observations. The software used by the science and sequence designers to plan and design observations has evolved with mission and technological advances. The original program, PEGASIS (Mariners 4, 6, and 7), was re-engineered as POGASIS (Mariner 9, Viking, and Mariner 10), and again later as POINTER (Voyager and Galileo). Each of these programs were developed under technological, political, and fiscal constraints which limited their adaptability to other missions and spacecraft designs. Implementation of a multi-mission tool, SEQ POINTER, under the auspices of the JPL Multimission Operations Systems Office (MOSO) is in progress. This version has been designed to address the limitations experienced on previous versions as they were being adapted to a new mission and spacecraft. The tool has been modularly designed with subroutine interface structures to support interchangeable celestial body and spacecraft definition models. The computational and graphics modules have also been designed to interface with data collected from previous spacecraft, or on-going observations, which describe the surface of each target body. These enhancements make SEQ POINTER a candidate for low-cost mission usage, when a remote sensing science observation design capability is required. The current and planned capabilities of the tool will be discussed. The presentation will also include a 5-10 minute video presentation demonstrating the capabilities of a proto-Cassini Project version that was adapted to test the tool. The work described in this abstract was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

  9. NASA's Earth science flight program status

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  10. Materials Sciences programs. Fiscal year 1982

    International Nuclear Information System (INIS)

    1982-09-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs. The report is divided into five sections. Section A contains all laboratory projects, Section B has all contract research projects, Section C has information on DOE collaborative research centers, Section D shows distribution of funding, and Section E has various indices

  11. Modeling and Analysis in Marine Big Data: Advances and Challenges

    Directory of Open Access Journals (Sweden)

    Dongmei Huang

    2015-01-01

    Full Text Available It is aware that big data has gathered tremendous attentions from academic research institutes, governments, and enterprises in all aspects of information sciences. With the development of diversity of marine data acquisition techniques, marine data grow exponentially in last decade, which forms marine big data. As an innovation, marine big data is a double-edged sword. On the one hand, there are many potential and highly useful values hidden in the huge volume of marine data, which is widely used in marine-related fields, such as tsunami and red-tide warning, prevention, and forecasting, disaster inversion, and visualization modeling after disasters. There is no doubt that the future competitions in marine sciences and technologies will surely converge into the marine data explorations. On the other hand, marine big data also brings about many new challenges in data management, such as the difficulties in data capture, storage, analysis, and applications, as well as data quality control and data security. To highlight theoretical methodologies and practical applications of marine big data, this paper illustrates a broad view about marine big data and its management, makes a survey on key methods and models, introduces an engineering instance that demonstrates the management architecture, and discusses the existing challenges.

  12. The design and evaluation of a master of science program in anatomical sciences at Queen's University Canada.

    Science.gov (United States)

    Kolomitro, Klodiana; MacKenzie, Leslie W; Wiercigroch, David; Godden, Lorraine

    2018-05-15

    The purpose of this study was to describe the design and evolution of a unique and successful Master of Science program in anatomical sciences at one Canadian post-secondary institution and to evaluate its long-term impact on student learning. This program prepares students to teach anatomy and design curricula in the anatomical sciences and is structured around three pillars of competency-content (disciplinary knowledge and transferable skills), pedagogy, and inquiry. Graduates of the program from the last ten years were surveyed, to better understand the knowledge, skills, and habits of mind they have adopted and implemented since completion. Interest was taken in identifying aspects of the program that students found particularly beneficial and areas that needed to be further developed. Based on the findings, this program has been a highly valuable experience for the graduates especially in helping them develop transferable skills, and grow as individuals. The hope is that other institutions that have similar programs in place or are considering developing them would benefit from this description of the program design and the sharing of the lessons learned. Anat Sci Educ. © 2018 American Association of Anatomists. © 2018 American Association of Anatomists.

  13. Psychology or Psychological Science?: A Survey of Graduate Psychology Faculty Regarding Program Names

    Science.gov (United States)

    Collisson, Brian; Rusbasan, David

    2018-01-01

    The question of renaming graduate psychology programs to psychological science is a timely and contentious issue. To better understand why some programs, but not others, are changing names, we surveyed chairpersons (Study 1) and faculty (Study 2) within graduate psychology and psychological science programs. Within psychology programs, a name…

  14. [Environmental Hazards Assessment Program annual report, June 1992--June 1993]. Summer undergraduate research program: Environmental studies

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, J. [ed.

    1993-12-01

    The purpose of the summer undergraduate internship program for research in environmental studies is to provide an opportunity for well-qualified students to undertake an original research project as an apprentice to an active research scientist in basic environmental research. Ten students from throughout the midwestern and eastern areas of the country were accepted into the program. These students selected projects in the areas of marine sciences, biostatistics and epidemiology, and toxicology. The research experience for all these students and their mentors was very positive. The seminars were well attended and the students showed their interest in the presentations and environmental sciences as a whole by presenting the speakers with thoughtful and intuitive questions. This report contains the research project written presentations prepared by the student interns.

  15. Bringing Up Girls in Science (BUGS): The Effectiveness of an Afterschool Environmental Science Program for Increasing Female Students' Interest in Science Careers

    Science.gov (United States)

    Tyler-Wood, Tandra; Ellison, Amber; Lim, Okyoung; Periathiruvadi, Sita

    2012-02-01

    Bringing Up Girls in Science (BUGS) was an afterschool program for 4th and 5th grade girls that provided authentic learning experiences in environmental science as well as valuable female mentoring opportunities in an effort to increase participants' academic achievement in science. BUGS participants demonstrated significantly greater amounts of gain in science knowledge as measured by the Iowa Test of Basic Skills in Science (ITBS-S). The original BUGS participants and contrasts have now completed high school and entered college, allowing researchers to assess the long-term impact of the BUGS program. Fourteen former BUGS participants completed two instruments to assess their perceptions of science and science, technology, engineering, and mathematics (STEM) careers. Their results were compared to four contrast groups composed entirely of females: 12 former BUGS contrasts, 10 college science majors, 10 non-science majors, and 9 current STEM professionals. Results indicate that BUGS participants have higher perceptions of science careers than BUGS contrasts. There were no significant differences between BUGS participants, Science Majors, and STEM professionals in their perceptions of science and STEM careers, whereas the BUGS contrast group was significantly lower than BUGS participants, Science Majors, and STEM Professionals. Additional results and implications are discussed within.

  16. Developing science policy capacity at the state government level: Planning a science and technology policy fellowship program for Colorado and beyond

    Science.gov (United States)

    Druckenmiller, M. L.

    2017-12-01

    There is growing recognition of the potential to advance science policy capacity within state legislatures, where there is most often a shortage of professional backgrounds in the natural sciences, technology, engineering, and medicine. Developing such capacity at the state level should be considered a vital component of any comprehensive national scale strategy to strengthen science informed governance. Toward this goal, the Center for Science and Technology Policy Research at the University of Colorado Boulder is leading a strategic planning process for a Science and Technology Policy Fellowship Program within the Colorado state legislature and executive branch agencies. The intended program will place PhD-level scientists and engineers in one-year placements with decision-makers to provide an in-house resource for targeted policy-relevant research. Fellows will learn the intricacies of the state policymaking process, be exposed to opportunities for science to inform decisions, and develop a deeper understanding of key science and technology topics in Colorado, including water resources, wildfire management, and energy. The program's ultimate goals are to help foster a decision-making arena informed by evidence-based information, to develop new leaders adept at bridging science and policymaking realms, and to foster governance that champions the role of science in society. Parallel to efforts in Colorado, groups from nine other states are preparing similar plans, providing opportunities to share approaches across states and to set the stage for increased science and technology input to state legislative agendas nationwide. Importantly, highly successful and sustainable models exist; the American Association for the Advancement of Science (AAAS) has implemented a federally based fellowship program for over 43 years and the California Council for Science and Technology (CCST) has directed a fellowship program for their state's legislature since 2009. AAAS and CCST

  17. A Graduate Academic Program in Medical Information Science.

    Science.gov (United States)

    Blois, Marsden S., Jr.; Wasserman, Anthony I.

    A graduate academic program in medical information science has been established at the University of California, San Francisco, for the education of scientists capable of performing research and development in information technology in the health care setting. This interdisciplinary program, leading to a Doctor of Philosophy degree, consists of an…

  18. Girls on Ice: An Inquiry-Based Wilderness Science Education Program

    Science.gov (United States)

    Pettit, E. C.; Koppes, M. N.

    2001-12-01

    We developed a wilderness science education program for high school girls. The program offers opportunities for students to explore and learn about mountain glaciers and the alpine landscape through scientific field studies with geologists and glaciologists. Our purpose is to give students a feeling for the natural processes that create the alpine world and provide an environment that fosters the critical thinking necessary to all scientific inquiry. The program is currently being offered through the North Cascades Institute, a non-profit organization offering outdoor education programs for the general public. We lead eight girls for a weeklong expedition to the remote USGS South Cascade Glacier Research Station in Washington's North Cascades. For four days, we explore the glacier and the nearby alpine valleys. We encourage the girls to observe and think like scientists through making observations and inferences. They develop their own experiments to test ideas about glacier dynamics and geomorphology. In addition to scientific exploration, we engage the students in discussions about the philosophy of science and its role in our everyday lives. Our program exemplifies the success of hands-on, inquiry-based teaching in small groups for science education in the outdoors. The wilderness setting and single gender field team inspires young women's interest in science and provides a challenging environment that increases their physical and intellectual self-confidence.

  19. Teaching implementation science in a new Master of Science Program in Germany: a survey of stakeholder expectations

    NARCIS (Netherlands)

    Ullrich, C.; Mahler, C.; Forstner, J.; Szecsenyi, J.; Wensing, M.

    2017-01-01

    BACKGROUND: Implementation science in healthcare is an evolving discipline in German-speaking countries. In 2015, the Medical Faculty of the University of Heidelberg, Germany, implemented a two-year full-time Master of Science program Health Services Research and Implementation Science. The

  20. Science team participation in the ARM program

    International Nuclear Information System (INIS)

    Cess, R.D.

    1993-01-01

    This progress report discusses the Science Team participation in the Atmospheric Radiation Measurement (ARM) Program for the period of October 31, 1992 to November 1, 1993. This report summarized the research accomplishments of six papers

  1. The aurora, Mars, and more! Increasing science content in elementary grades through art and literacy programs in earth and space science

    Science.gov (United States)

    Renfrow, S.; Wood, E. L.

    2011-12-01

    Although reading, writing, and math examinations are often conducted early in elementary school, science is not typically tested until 4th or 5th grade. The result is a refocus on the tested topics at the expense of the untested ones, despite that standards exist for each topic at all grades. On a national level, science instruction is relegated to a matter of a few hours per week. A 2007 Education Policy study states that elementary school students spend an average of 178 minutes a week on science while spending 500 minutes on literacy. A recent NSTA report in July of elementary and middle school teachers confirms that teachers feel pressured to teach math and literacy at the expense of other programs. One unintended result is that teachers in grades where science is tested must play catch-up with students for them to be successful on the assessment. A unique way to combat the lack of science instruction at elementary grades is to combine literacy, social studies, and math into an integrated science program, thereby increasing the number of science contact hours. The Dancing Lights program, developed at the Laboratory for Atmospheric and Space Physics, is a science, art, and literacy program about the aurora designed to easily fit into a typical 3rd-5th grade instructional day. It mirrors other successful literacy programs and will provide a basis for the literacy program being developed for the upcoming MAVEN mission to Mars. We will present early findings, as well as "lessons learned" during our development and implementation of the Dancing Lights program and will highlight our goals for the MAVEN mission literacy program.

  2. Marine drugs: A hidden wealth and a new epoch for cancer management.

    Science.gov (United States)

    Shakeel, Eram; Arora, Deepika; Jamal, Qazi Mohammad Sajid; Akhtar, Salman; Khan, Mohd Kalim Ahmad; Kamal, Mohammad A; Siddiqui, Mohd Haris; Lohani, Mohtashim; Arif, Jamal M

    2017-02-20

    Malignant tumors are the leading cause of death in humans. Due to tedious efforts and investigation made in the field of marine drug discovery, there is now a scientific bridge between marine and pharmaceutical sciences. However, at present only few marine drugs have been paved towards anticancer management, yet many more to be established. Marine organisms are profuse manufacturer of structurally inimitable bioactive metabolites that have unusual mechanisms of action and diverse biosynthetic pathways. Some of the compounds derived from marine organisms have antioxidant property and anticancer activities, but they are largely unexplored. The present review is summarising various source of marine chemicals and their exploration of anticancerous potential. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Managing the Ocean Resources of the United States: The Role of the Federal Marine Sanctuaries Program

    Science.gov (United States)

    Pontecorvo, Guilio

    In 1969, the Straton Commission report provided a plan for the systematic development of a national policy on marine affairs. In subsequent years no such systematic approach to a coherent marine policy was undertaken. The de facto policy approach of the 1970s was a plethora of individual legislative acts which provided specific de jure rules, but which left administrators the complex problems of working out the administration of areas of overlapping authority, with conflicting or inconsistent goals and jurisdiction. The major acts of the 1970s, the Fishery Conservation a n d Management Act of 1976; Mammals and Non-Migratory Birds—The Marine Mammal Protection Act of 1972; Coastal Zone Management Act of 1972; Endangered Species Act of 1973; Marine Protection, Research, and Sanctuaries Act of 1972; and others, are clear indications of a national commitment to regulation of the markets for the output from the ocean sector. But while the need for intervention in markets was clear to legislators, the failure to employ a systematic approach and provide guidelines adequate to permit the rationalization of complex problems doomed the piecemeal approach to ocean policy to ever increasing administrative problems and ultimately to ineffective government programs.

  4. Materials Sciences Programs. Fiscal Year 1985

    International Nuclear Information System (INIS)

    1985-09-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into six sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Sections D and E have information on DOE collaborative research centers, Section F gives distribution of funding, and Section G has various indexes

  5. 76 FR 28422 - Marine Mammals; File No. 16053

    Science.gov (United States)

    2011-05-17

    ... Paul E. Nachtigall, PhD, Marine Mammal Research Program Hawaii Institute of Marine Biology, P.O. Box... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XA384 Marine Mammals; File No. 16053 AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric...

  6. National Science Resources Center Project for Improving Science Teaching in Elementary Schools. Appendix A. School Systems With Exemplary Elementary Science Programs. Appendix B. Elementary Science Network

    Science.gov (United States)

    1988-12-01

    Glass, Lawrence, Deer Park High School Glass, Millard, K-12 Science Supervisor Bloomfield Municipal School District Glassman, Neil, Gleason, Steve...Superientendent Vaughn Municipal Schools Knop, Ronald N., Teacher Grissom Junior High School Knox, Amie, Director of Master Teacher Program W. Wilson...Science Supervisor Pequannock Township Public Schools Mercado , Roberto, Science Coordinator Colegio Radians, Inc. Merchant, Edwin, K-12 Science

  7. Pacific Northwest Laboratory: Annual report for 1986 to the DOE Office of Energy Research: Part 2, Environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    This report summarizes progress in environmental sciences research conducted by Pacific Northwest Laboratory (PNL) for the Office of Health and Environmental Research in FY 1986. The program is focused on terrestrial, subsurface, and coastal marine systems, and this research forms the basis, in conjunction with remote sensing, for definition and quantification of processes leading to impacts at the global level. This report is organized into sections devoted to Detection and Management of Change in Terrestrial Systems, Biogeochemical Phenomena, Subsurface Microbiology and Transport, Marine Sciences, and Theoretical (Quantitative) Ecology. Separate abstracts have been prepared for individual projects.

  8. Education and the World Ocean: A Partial Bibliography for Marine Educators.

    Science.gov (United States)

    Schlenker, Richard M.

    This document is a partial bibliography for marine educators in a truly cross disciplinary sense. It is intended for those who teach art, music, social studies, mathematics, business subjects, home economics and wood shop as well as science. Many marine science curricula guides are included in this bibliography. An introduction which indicates the…

  9. Pair Programming as a Modern Method of Teaching Computer Science

    OpenAIRE

    Irena Nančovska Šerbec; Branko Kaučič; Jože Rugelj

    2008-01-01

    At the Faculty of Education, University of Ljubljana we educate future computer science teachers. Beside didactical, pedagogical, mathematical and other interdisciplinary knowledge, students gain knowledge and skills of programming that are crucial for computer science teachers. For all courses, the main emphasis is the absorption of professional competences, related to the teaching profession and the programming profile. The latter are selected according to the well-known document, the ACM C...

  10. Computer program design specifications for the Balloon-borne Ultraviolet Stellar Spectrometer (BUSS) science data decommutation program (BAPS48)

    Science.gov (United States)

    Rodriguez, R. M.

    1975-01-01

    The Balloon-Borne Ultraviolet Stellar Spectrometer (BUSS) Science Data Docummutation Program (BAPS48) is a pulse code modulation docummutation program that will format the BUSS science data contained on a one inch PCM tracking tape into a seven track serial bit stream formatted digital tape.

  11. AECL's research and development program in environmental science and technology

    International Nuclear Information System (INIS)

    Cornett, R.J.

    1998-07-01

    AECL's radiological research and development (R and D) program encompasses work on sources of radiation exposure, radionuclide transport through the environment and potential impacts on biota and on human health. The application of the radiation protection knowledge and technology developed in this program provides cradle-to-grave management for CANDU and related nuclear technologies. This document provides an overview of the Environmental Science and Technology (ES and T) program which is one of the technical areas of R and D within the radiological R and D program. The ES and T program uses science from three main areas: radiochemistry, mathematical modelling and environmental assessment. In addition to providing an overview of the program, this summary also gives specific examples of recent technical work in each of the three areas. These technical examples illustrate the applied nature of the ES and T program and the close coupling of the program to CANDU customer requirements. (author)

  12. A framework for evaluating and designing citizen science programs for natural resources monitoring.

    Science.gov (United States)

    Chase, Sarah K; Levine, Arielle

    2016-06-01

    We present a framework of resource characteristics critical to the design and assessment of citizen science programs that monitor natural resources. To develop the framework we reviewed 52 citizen science programs that monitored a wide range of resources and provided insights into what resource characteristics are most conducive to developing citizen science programs and how resource characteristics may constrain the use or growth of these programs. We focused on 4 types of resource characteristics: biophysical and geographical, management and monitoring, public awareness and knowledge, and social and cultural characteristics. We applied the framework to 2 programs, the Tucson (U.S.A.) Bird Count and the Maui (U.S.A.) Great Whale Count. We found that resource characteristics such as accessibility, diverse institutional involvement in resource management, and social or cultural importance of the resource affected program endurance and success. However, the relative influence of each characteristic was in turn affected by goals of the citizen science programs. Although the goals of public engagement and education sometimes complimented the goal of collecting reliable data, in many cases trade-offs must be made between these 2 goals. Program goals and priorities ultimately dictate the design of citizen science programs, but for a program to endure and successfully meet its goals, program managers must consider the diverse ways that the nature of the resource being monitored influences public participation in monitoring. © 2016 Society for Conservation Biology.

  13. Strategies Employed by Citizen Science Programs to Increase the Credibility of Their Data

    Directory of Open Access Journals (Sweden)

    Amy Freitag

    2016-05-01

    Full Text Available The success of citizen science in producing important and unique data is attracting interest from scientists and resource managers. Nonetheless, questions remain about the credibility of citizen science data. Citizen science programs desire to meet the same standards of credibility as academic science, but they usually work within a different context, for example, training and managing significant numbers of volunteers with limited resources. We surveyed the credibility-building strategies of 30 citizen science programs that monitor environmental aspects of the California coast. We identified a total of twelve strategies: Three that are applied during training and planning; four that are applied during data collection; and five that are applied during data analysis and program evaluation. Variation in the application of these strategies by program is related to factors such as the number of participants, the focus on group or individual work, and the time commitment required of volunteers. The structure of each program and available resources require program designers to navigate tradeoffs in the choices of their credibility strategies. Our results illustrate those tradeoffs and provide a framework for the necessary discussions between citizen science programs and potential users of their data—including scientists and decision makers—about shared expectations for credibility and practical approaches for meeting those expectations. This article has been corrected here: http://dx.doi.org/10.5334/cstp.91

  14. Advancing Ocean Science Through Coordination, Community Building, and Outreach

    Science.gov (United States)

    Benway, H. M.

    2016-02-01

    The US Ocean Carbon and Biogeochemistry (OCB) Program (www.us-ocb.org) is a dynamic network of scientists working across disciplines to understand the ocean's role in the global carbon cycle and how marine ecosystems and biogeochemical cycles are responding to environmental change. The OCB Project Office, which is based at the Woods Hole Oceanographic Institution (WHOI), serves as a central information hub for this network, bringing different scientific disciplines together and cultivating partnerships with complementary US and international programs to address high-priority research questions. The OCB Project Office plays multiple important support roles, such as hosting and co-sponsoring workshops, short courses, working groups, and synthesis activities on emerging research issues; engaging with relevant national and international science planning initiatives; and developing education and outreach activities and products with the goal of promoting ocean carbon science to broader audiences. Current scientific focus areas of OCB include ocean observations (shipboard, autonomous, satellite, etc.); changing ocean chemistry (acidification, expanding low-oxygen conditions, etc.); ocean carbon uptake and storage; estuarine and coastal carbon cycling; biological pump and associated biological and biogeochemical processes and carbon fluxes; and marine ecosystem response to environmental and evolutionary changes, including physiological and molecular-level responses of individual organisms, as well as shifts in community structure and function. OCB is a bottom-up organization that responds to the continually evolving priorities and needs of its network and engages marine scientists at all career stages. The scientific leadership of OCB includes a scientific steering committee and subcommittees on ocean time-series, ocean acidification, and ocean fertilization. This presentation will highlight recent OCB activities and products of interest to the ocean science community.

  15. The Deep River Science Academy: a unique and innovative program for engaging students in science

    International Nuclear Information System (INIS)

    Turner, C.W.; Didsbury, R.; Ingram, M.

    2014-01-01

    For 28 years, the Deep River Science Academy (DRSA) has been offering high school students the opportunity to engage in the excitement and challenge of professional scientific research to help nurture their passion for science and to provide them with the experience and the knowledge to make informed decisions regarding possible future careers in the fields of science, technology, engineering, and mathematics (STEM). The venue for the DRSA program has been a six-week summer science camp where students, working in pairs under the guidance of a university undergraduate tutor, contribute directly to an on-going research program under the supervision of a professional scientist or engineer. This concept has been expanded in recent years to reach students in classrooms year round by engaging students via the internet over a 12-week term in a series of interactive teaching sessions based on an on-going research project. Although the research projects for the summer program are offered primarily from the laboratories of Atomic Energy of Canada Limited at its Chalk River Laboratories site, projects for the year-round program can be based, in principle, in laboratories at universities and other research institutes located anywhere in Canada. This paper will describe the program in more detail using examples illustrating how the students become engaged in the research and the sorts of contributions they have been able to make over the years. The impact of the program on the students and the degree to which the DRSA has been able to meet its objective of encouraging students to choose careers in the fields of STEM and equipping them with the skills and experience to be successful will be assessed based on feedback from the students themselves. Finally, we will examine the program in the context of how well it helps to address the challenges faced by educators today in meeting the demands of students in a world where the internet provides instant access to information. (author)

  16. The Deep River Science Academy: a unique and innovative program for engaging students in science

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W., E-mail: carlrhonda.turner@sympatico.ca [Deep River Science Academy, Deep River, Ontario (Canada); Didsbury, R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Ingram, M. [Deep River Science Academy, Deep River, Ontario (Canada)

    2014-06-15

    For 28 years, the Deep River Science Academy (DRSA) has been offering high school students the opportunity to engage in the excitement and challenge of professional scientific research to help nurture their passion for science and to provide them with the experience and the knowledge to make informed decisions regarding possible future careers in the fields of science, technology, engineering, and mathematics (STEM). The venue for the DRSA program has been a six-week summer science camp where students, working in pairs under the guidance of a university undergraduate tutor, contribute directly to an on-going research program under the supervision of a professional scientist or engineer. This concept has been expanded in recent years to reach students in classrooms year round by engaging students via the internet over a 12-week term in a series of interactive teaching sessions based on an on-going research project. Although the research projects for the summer program are offered primarily from the laboratories of Atomic Energy of Canada Limited at its Chalk River Laboratories site, projects for the year-round program can be based, in principle, in laboratories at universities and other research institutes located anywhere in Canada. This paper will describe the program in more detail using examples illustrating how the students become engaged in the research and the sorts of contributions they have been able to make over the years. The impact of the program on the students and the degree to which the DRSA has been able to meet its objective of encouraging students to choose careers in the fields of STEM and equipping them with the skills and experience to be successful will be assessed based on feedback from the students themselves. Finally, we will examine the program in the context of how well it helps to address the challenges faced by educators today in meeting the demands of students in a world where the internet provides instant access to information. (author)

  17. TRADITIONS OF SCIENCE POPULARIZATION IN RUSSIA AS A METHODOLOGICAL BASIS TO DEVELOP THE NEW MASTER’S PROGRAM “POPULAR SCIENCE JOURNALISM”

    Directory of Open Access Journals (Sweden)

    Balashova, Y.B.

    2017-12-01

    Full Text Available The article discusses the new master’s program “Popular science journalism”, which started three years ago at Saint Petersburg State University, Russia. The author of this article is the creator, developer and head of this program. The goal of this article is to characterize historical and cultural grounds of the master’s program, and their reflection in the curriculum. Installation for the commonwealth of sciences, targeting a broad audience comprised a profiling installation of the classical system of Russian popular science journalism. In accordance with this, the master’s program was designed as an interdisciplinary, with the incorporated idea of the sciences convergence, which based on the Russian history of scientific enlightenment. The article aims to show productivity of the interdisciplinary educational programs, combined into modules.

  18. MOLECULAR APPROACHES FOR IN SITU IDENTIFCIATION OF NITRATE UTILIZATION BY MARINE BACTERIA AND PHYTOPLANKTON

    Energy Technology Data Exchange (ETDEWEB)

    Frischer, Marc E. [Skidaway Institute of Oceanography; Verity, Peter G.; Gilligan, Mathew R.; Bronk, Deborah A.; Zehr, Jonathan P.; Booth, Melissa G.

    2013-09-12

    differentially regulated in genetically distinct NO3- assimilating bacteria, and that the best predictors of nasA gene expression are either NO3- concentration or NO3- uptake rates. These studies provide convincing evidence of the importance of bacterial utilization of NO3-, insight into controlling processes, and provide a rich dataset that are being used to develop linked C and N modeling components necessary to evaluate the significance of bacterial DIN utilization to global C cycling. Furthermore, as a result of BI-OMP funding we made exciting strides towards institutionalizing a research and education based collaboration between the Skidaway Institute of Oceanography (SkIO) and Savannah State University (SSU), an historically black university within the University System of Georgia with undergraduate and now graduate programs in marine science. The BI-OMP program, in addition to supporting undergraduate (24) graduate (10) and postdoctoral (2) students, contributed to the development of a new graduate program in Marine Sciences at SSU that remains an important legacy of this project. The long-term goals of these collaborations are to increase the capacity for marine biotechnology research and to increase representation of minorities in marine, environmental and biotechnological sciences.

  19. 2015 Stewardship Science Academic Programs Annual

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Terri [NNSA Office of Research, Development, Test, and Evaluation, Washington, DC (United States); Mischo, Millicent [NNSA Office of Research, Development, Test, and Evaluation, Washington, DC (United States)

    2015-02-01

    The Stockpile Stewardship Academic Programs (SSAP) are essential to maintaining a pipeline of professionals to support the technical capabilities that reside at the National Nuclear Security Administration (NNSA) national laboratories, sites, and plants. Since 1992, the United States has observed the moratorium on nuclear testing while significantly decreasing the nuclear arsenal. To accomplish this without nuclear testing, NNSA and its laboratories developed a science-based Stockpile Stewardship Program to maintain and enhance the experimental and computational tools required to ensure the continued safety, security, and reliability of the stockpile. NNSA launched its academic program portfolio more than a decade ago to engage students skilled in specific technical areas of relevance to stockpile stewardship. The success of this program is reflected by the large number of SSAP students choosing to begin their careers at NNSA national laboratories.

  20. The Technology in the Programs of Life Sciences in Turkey and Sachunterricht in Germany

    Science.gov (United States)

    Keskin, Tuba

    2017-01-01

    The purpose of this study is to compare the gains of the Life Sciences program in Turkey and the Life sciences program (Sachunterricht) used in the state of Niedersachsen in Germany. The study aiming to compare the technology-related acquisitions in Life sciences program in Turkey and Germany is a comparative education research that used…

  1. An Update on the NASA Planetary Science Division Research and Analysis Program

    Science.gov (United States)

    Richey, Christina; Bernstein, Max; Rall, Jonathan

    2015-01-01

    Introduction: NASA's Planetary Science Division (PSD) solicits its Research and Analysis (R&A) programs each year in Research Opportunities in Space and Earth Sciences (ROSES). Beginning with the 2014 ROSES solicitation, PSD will be changing the structure of the program elements under which the majority of planetary science R&A is done. Major changes include the creation of five core research program elements aligned with PSD's strategic science questions, the introduction of several new R&A opportunities, new submission requirements, and a new timeline for proposal submissionROSES and NSPIRES: ROSES contains the research announcements for all of SMD. Submission of ROSES proposals is done electronically via NSPIRES: http://nspires.nasaprs.com. We will present further details on the proposal submission process to help guide younger scientists. Statistical trends, including the average award size within the PSD programs, selections rates, and lessons learned, will be presented. Information on new programs will also be presented, if available.Review Process and Volunteering: The SARA website (http://sara.nasa.gov) contains information on all ROSES solicitations. There is an email address (SARA@nasa.gov) for inquiries and an area for volunteer reviewers to sign up. The peer review process is based on Scientific/Technical Merit, Relevance, and Level of Effort, and will be detailed within this presentation.ROSES 2014 submission changes: All PSD programs will use a two-step proposal submission process. A Step-1 proposal is required and must be submitted electronically by the Step-1 due date. The Step-1 proposal should include a description of the science goals and objectives to be addressed by the proposal, a brief description of the methodology to be used to address the science goals and objectives, and the relevance of the proposed research to the call submitted to.Additional Information: Additional details will be provided on the Cassini Data Analysis Program, the

  2. Marine proteomics: a critical assessment of an emerging technology.

    Science.gov (United States)

    Slattery, Marc; Ankisetty, Sridevi; Corrales, Jone; Marsh-Hunkin, K Erica; Gochfeld, Deborah J; Willett, Kristine L; Rimoldi, John M

    2012-10-26

    The application of proteomics to marine sciences has increased in recent years because the proteome represents the interface between genotypic and phenotypic variability and, thus, corresponds to the broadest possible biomarker for eco-physiological responses and adaptations. Likewise, proteomics can provide important functional information regarding biosynthetic pathways, as well as insights into mechanism of action, of novel marine natural products. The goal of this review is to (1) explore the application of proteomics methodologies to marine systems, (2) assess the technical approaches that have been used, and (3) evaluate the pros and cons of this proteomic research, with the intent of providing a critical analysis of its future roles in marine sciences. To date, proteomics techniques have been utilized to investigate marine microbe, plant, invertebrate, and vertebrate physiology, developmental biology, seafood safety, susceptibility to disease, and responses to environmental change. However, marine proteomics studies often suffer from poor experimental design, sample processing/optimization difficulties, and data analysis/interpretation issues. Moreover, a major limitation is the lack of available annotated genomes and proteomes for most marine organisms, including several "model species". Even with these challenges in mind, there is no doubt that marine proteomics is a rapidly expanding and powerful integrative molecular research tool from which our knowledge of the marine environment, and the natural products from this resource, will be significantly expanded.

  3. Dartmouth College Earth Sciences Mobile Field Program

    Science.gov (United States)

    Meyer, E. E.; Osterberg, E. C.; Dade, W. B.; Sonder, L. J.; Renshaw, C. E.; Kelly, M. A.; Hawley, R. L.; Chipman, J. W.; Mikucki, J.; Posmentier, E. S.; Moore, J. R.

    2011-12-01

    For the last 50 years the Department of Earth Sciences at Dartmouth College has offered a term-long, undergraduate field program, informally called "the Stretch". A student typically enrolls during fall quarter of his or her junior year soon after choosing a major or minor. The program thus provides valuable field context for courses that a student will take during the remainder of his or her undergraduate career. Unlike many traditional field camps that focus on one particular region, the Stretch is a mobile program that currently travels through Western North America, from the Canadian Rockies to the Grand Canyon. The program spans two and a half months, during which time undergraduates, graduate TAs, and faculty live, work, and learn collaboratively. Dartmouth College faculty members sequentially teach individual 1- to 2-week segments that focus on their interests and expertise; currently, there are a total of eight segments led by eleven faculty members. Consequently, topics are diverse and include economic geology, geobiology, geomorphology, glaciology, glacial geology, geophysics, hydrogeology, paleontology, stratigraphy, structure and tectonics, and volcanology. The field localities are equally varied, including the alpine glaciers of western Alberta, the national parks of Montana, Wyoming and Utah, the eastern Sierra Nevada, the southern Great Basin, and highlight such classic geological field locales as Sheep Mountain in Wyoming's Bighorn Basin, Death Valley, and the Grand Canyon. Overall, the program aims to: 1) give students a broad perspective on the timing and nature of the processes that resulted in the landscape and underlying geology of western North America; and 2) introduce students to a wide variety of geological environments, field techniques, and research equipment. Students emerge from the program with wide-ranging exposure to active research questions as well as a working knowledge of core field skills in the earth sciences. Stretch students

  4. Materials Sciences programs, Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-01

    This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

  5. Museum nuclear science programs during the past 30 years

    International Nuclear Information System (INIS)

    Marsee, M.D.

    1990-01-01

    The American Museum of Atomic Energy was opened as a program of the Atomic Energy Commission. The name was changed in 1977 to the American Museum of Science and Energy to reflect an expanded roll of the Department of Energy. From 1954 until 1980 the museum was the base for a Traveling Exhibit Program that visited schools, state fairs, shopping centers and malls, libraries, summer camps, and science museums throughout the United States. Today the museum transfers information on the research and development of all the energy sources, the environmental impact of these sources and possible solutions to these impacts. The museum also manages an Outreach Program to area schools and coordinates several special events for student visits to the museum

  6. Description of Specimens in the Marine Mammal Osteology Reference Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NMFS Alaska Fisheries Science Center National Marine Mammal Laboratory (NMML) Marine Mammal Osteology Collection consists of approximately 2500 specimens (skulls...

  7. Fostering Eroticism in Science Education to Promote Erotic Generosities for the Ocean-Other

    Science.gov (United States)

    Luther, Rachel

    2013-01-01

    Despite the increase in marine science curriculum in secondary schools, marine science is not generally required curricula and has been largely deemphasized or ignored in relation to earth science, biology, chemistry, and physics. I call for the integration and implementation of marine science more fully in secondary science education through…

  8. Library exhibits and programs boost science education

    Science.gov (United States)

    Dusenbery, Paul B.; Curtis, Lisa

    2012-05-01

    Science museums let visitors explore and discover, but for many families there are barriers—such as cost or distance—that prevent them from visiting museums and experiencing hands-on science, technology, engineering, and mathematics (STEM) learning. Now educators are reaching underserved audiences by developing STEM exhibits and programs for public libraries. With more than 16,000 outlets in the United States, public libraries serve almost every community in the country. Nationwide, they receive about 1.5 billion visits per year, and they offer their services for free.

  9. 77 FR 37016 - Applications for New Awards: Upward Bound Math and Science Program

    Science.gov (United States)

    2012-06-20

    ... DEPARTMENT OF EDUCATION Applications for New Awards: Upward Bound Math and Science Program AGENCY... Bound Math and Science Program. Notice inviting applications for new awards for fiscal year (FY) 2012.... There are three types of grants under the UB Program: regular UB grants, Veterans UB grants, and UB Math...

  10. An Analysis of the Effect of the U. S. Marine Corps' Lump Sum Selective Reenlistment Bonus Program on Reenlistment Decisions

    National Research Council Canada - National Science Library

    Barry, Robert

    2001-01-01

    ... the impact of personal characteristics, civilian pay, unemployment, and the lump sum bonus on reenlistment decisions, Marine retention probabilities under the lump sum payment program are compared...

  11. Science Objectives and Design of the European Seas Observatory NETwork (ESONET)

    Science.gov (United States)

    Ruhl, H.; Géli, L.; Karstensen, J.; Colaço, A.; Lampitt, R.; Greinert, J.; Phannkuche, O.; Auffret, Y.

    2009-04-01

    important feedbacks of potential ecological change be on biogeochemical cycles? What are the factors that control the distribution and abundance of marine life and what will the influence of anthropogenic change be? We will outline a set of science objectives and observation parameters to be collected at all ESONET sites, as well as a set of rather specific objectives and thus parameters that might only be measured at some sites. We will also present the preliminary module specifications now being considered by ESONET. In a practical sense the observatory design has been divided into those that will be included in a so called ‘generic' module and those that will be part of science-specific modules. Outlining preliminary module specifications is required to move forward with studies of observatory design and operation. These specifications are importantly provisional and can be updated as science needs and feasibility change. A functional cleavage not only comes between aspects that are considered generic or specific, but also the settings in which those systems will be used. For example, some modules will be on the seabed and some will be moored in the water column. In order to address many of the questions posed above ESONET users will require other supporting data from other programs from local to international levels. Examples of these other data sources include satellite oceanographic data, climatic data, air-sea interface data, and the known distribution and abundances of marine fauna. Thus the connection of ESONET to other programs is integral to its success. The development of ESONET provides a substantial opportunity for ocean science to evolve in Europe. Furthermore, ESONET and several other developing ocean observatory programs are integrating into larger science frameworks including the Global Earth Observation System of Systems (GEOSS) and Global Monitoring of Environment and Security (GMES) programs. It is only in a greater integrated framework that the full

  12. Science and technology disclosure in the state of Queretaro: Science and Technology for Children program

    Science.gov (United States)

    Contreras Flores, Rubén; Villeda Muñoz, Gabriel

    2007-03-01

    Science and technology disclosure is an integral part of our scientific work as researches; it is an induction process for children, young people and teachers of primary and secondary schools in the state of Queretaro. Education must be offered in a clear and objective way, it allows to the students apply the acquired knowledge to understand the world and improve his quality of life. Nowadays, the Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada of the Instituto Politecnico Nacional Unidad Queretaro (CICATA-IPN Queretaro) together with the Consejo de Ciencia y Tecnologia del Estado de Queretaro (CONCYTEQ) have implemented the "Science and Technology for Children" program (Ciencia y Tecnologia para Ninos - CTN), it allows to the educative sector obtain information through the CONCYTEQ web page. The fist stage of the program was the development of two subjects: the brochure titled "Petroleum, Nonrenewable Natural Resource that Moves the World" and the manual "Experiments of Physics". At the moment we are working with the second stage of the program, it is about the energy generation using renewable sources such as: geothermal, aeolian, solar and biomass. The CTN program allows to students and teachers to create conscience about the importance of the development of the science of technology in our country.

  13. Marine anthropogenic litter on British beaches: A 10-year nationwide assessment using citizen science data.

    Science.gov (United States)

    Nelms, S E; Coombes, C; Foster, L C; Galloway, T S; Godley, B J; Lindeque, P K; Witt, M J

    2017-02-01

    Growing evidence suggests that anthropogenic litter, particularly plastic, represents a highly pervasive and persistent threat to global marine ecosystems. Multinational research is progressing to characterise its sources, distribution and abundance so that interventions aimed at reducing future inputs and clearing extant litter can be developed. Citizen science projects, whereby members of the public gather information, offer a low-cost method of collecting large volumes of data with considerable temporal and spatial coverage. Furthermore, such projects raise awareness of environmental issues and can lead to positive changes in behaviours and attitudes. We present data collected over a decade (2005-2014 inclusive) by Marine Conservation Society (MCS) volunteers during beach litter surveys carried along the British coastline, with the aim of increasing knowledge on the composition, spatial distribution and temporal trends of coastal debris. Unlike many citizen science projects, the MCS beach litter survey programme gathers information on the number of volunteers, duration of surveys and distances covered. This comprehensive information provides an opportunity to standardise data for variation in sampling effort among surveys, enhancing the value of outputs and robustness of findings. We found that plastic is the main constituent of anthropogenic litter on British beaches and the majority of traceable items originate from land-based sources, such as public littering. We identify the coast of the Western English Channel and Celtic Sea as experiencing the highest relative litter levels. Increasing trends over the 10-year time period were detected for a number of individual item categories, yet no statistically significant change in total (effort-corrected) litter was detected. We discuss the limitations of the dataset and make recommendations for future work. The study demonstrates the value of citizen science data in providing insights that would otherwise not be

  14. New records of marine algae in Vietnam

    Science.gov (United States)

    Le Hau, Nhu; Ly, Bui Minh; Van Huynh, Tran; Trung, Vo Thanh

    2015-06-01

    In May, 2013, a scientific expedition was organized by the Vietnam Academy of Science and Technology (VAST) and the Far Eastern Branch of the Russian Academy of Sciences (FEBRAS) through the frame of the VAST-FEBRAS International Collaboration Program. The expedition went along the coast of Vietnam from Quang Ninh to Kien Giang. The objective was to collect natural resources to investigate the biological and biochemical diversity of the territorial waters of Vietnam. Among the collected algae, six taxa are new records for the Vietnam algal flora. They are the red algae Titanophora pikeana (Dickie) Feldmann from Cu Lao Xanh Island, Laurencia natalensis Kylin from Tho Chu Island, Coelothrix irregularis (Harvey) Børgesen from Con Dao Island, the green algae Caulerpa oligophylla Montagne, Caulerpa andamanensis (W.R. Taylor) Draisma, Prudhomme et Sauvage from Phu Quy Island, and Caulerpa falcifolia Harvey & Bailey from Ly Son Island. The seaweed flora of Vietnam now counts 833 marine algal taxa, including 415 Rhodophyta, 147 Phaeophyceae, 183 Chlorophyta, and 88 Cyanobacteria.

  15. Student science enrichment training program. Progress report, June 1, 1991--May 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, S.S.

    1992-04-21

    Historically Black Colleges and Universities wing of the United States Department of Energy (DOE) provided funds to Claflin College, Orangeburg, S.C. To conduct a student Science Enrichment Training Program for a period of six weeks during 1991 summer. Thirty participants were selected from a pool of applicants, generated by the High School Seniors and Juniors and the Freshmen class of 1990-1991 at Claflin College. The program primarily focused on high ability students, with potential for Science, Mathematics and Engineering Careers. The major objectives of the program were W to increase the pool of well qualified college entering minority students who will elect to go in Physical Sciences and Engineering and (II) to increase the enrollment in Chemistry and Preprofessional-Pre-Med, Pre-Dent, etc.-majors at Claflin College by including the Claflin students to participate in summer academic program. The summer academic program consisted of Chemistry and Computer Science training. The program placed emphasis upon laboratory experience and research. Visits to Scientific and Industrial laboratories were arranged. Guest speakers which were drawn from academia, industry and several federal agencies, addressed the participants on the future role of Science in the industrial growth of United States of America. The guest speakers also acted as role models for the participants. Several videos and films, emphasizing the role of Science in human life, were also screened.

  16. The implementation of a discovery-oriented science education program in a rural elementary school

    Science.gov (United States)

    Liddell, Martha Sue

    2000-10-01

    This study focused on the implementation of a discovery-oriented science education program at a rural elementary school in Mississippi. The instructional leadership role of the principal was examined in the study through identification and documentation of processes undertaken by the principal to implement a discovery-oriented science education program school. The goal of the study was to develop a suggested approach for implementing a discovery-oriented science education program for principals who wish to become instructional leaders in the area of science education at their schools. Mixed methods were used to collect, analyze, and interpret data. Subjects for the study consisted of teachers, students, and parents. Data were collected through field observation; observations of science education being taught by classroom teachers; examination of the principal's log describing actions taken to implement a discovery-oriented science education program; conducting semi-structured interviews with teachers as the key informants; and examining attitudinal data collected by the Carolina Biological Supply Company for the purpose of measuring attitudes of teachers, students, and parents toward the proposed science education program and the Science and Technology for Children (STC) program piloted at the school. To develop a suggested approach for implementing a discovery-oriented science education program, data collected from field notes, classroom observations, the principal's log of activities, and key informant interviews were analyzed and group into themes pertinent to the study. In addition to descriptive measures, chi-square goodness-of-fit tests were used to determine whether the frequency distribution showed a specific pattern within the attitudinal data collected by the Carolina Biological Supply Company. The pertinent question asked in analyzing data was: Are the differences significant or are they due to chance? An alpha level of .01 was selected to determine

  17. Computer Programs in Marine Science

    Science.gov (United States)

    1976-04-01

    Technology Room 5-207 Cambridge, HA 02139 Telephone (617) 253-5941 Currcnt Profiles from Tilt Data Language - Hardware - ,.alculate3 current profiles gene ...HORIZCNTAL FANC -E 120 FORTRAN CCC 3800 LINE FRINTER PLOTS 16 FORTRAN CDC 1800 INTERNAL GkAVITY UAVLS CISPER 186 107 FIRTRAN CDC 3800 ANNOTATED TRACK ON

  18. STEM Enrichment Programs and Graduate School Matriculation: The Role of Science Identity Salience

    Science.gov (United States)

    Merolla, David M.; Serpe, Richard T.

    2013-01-01

    Improving the state of science education in the United States has become a national priority. One response to this problem has been the implementation of STEM enrichment programs designed to increase the number of students that enter graduate programs in science. Current research indicates enrichment programs have positive effects for student…

  19. Marine Corps Amphibious Combat Vehicle (ACV) and Marine Personnel Carrier (MPC): Background and Issues for Congress

    Science.gov (United States)

    2016-09-09

    providing critical capabilities to execute the nation’s military strategy . On January 6, 2011, after spending approximately $3 billion in...the Landing Craft , Air Cushioned (LCAC). The LAV-25 has been in service since 1983. According to the Marine Program Executive Office (PEO) Land...the Marines’ new MPC/ACV acquisition strategy and its associated challenges and risks. Marine Corps Amphibious Combat Vehicle (ACV) and Marine

  20. Implementing an Applied Science Program

    Science.gov (United States)

    Rickman, Doug; Presson, Joan

    2007-01-01

    The work implied in the NASA Applied Science Program requires a delicate balancing act for the those doing it. At the implementation level there are multiple tensions intrinsic to the program. For example each application of an existing product to a decision support process requires deep knowledge about the data and deep knowledge about the decision making process. It is highly probable no one person has this range of knowledge. Otherwise the decision making process would already be using the data. Therefore, a team is required. But building a team usually requires time, especially across agencies. Yet the program mandates efforts of relatively short duration. Further, those who know the data are scientists, which makes them essential to the program. But scientists are evaluated on their publication record. Anything which diverts a scientist from the research for his next publication is an anathema to him and potential death to their career. Trying to get another agency to use NASA data does not strike most scientists as material inherently suitable for publication. Also, NASA wishes to rapidly implement often substantial changes to another agency's process. For many reasons, such as budget and program constraints, speed is important. But the owner of a decision making process is tightly constrained, usually by law, regulation, organization and custom. Changes when made are slow, cautious, even hesitant, and always done according a process specific to the situation. To manage this work MSFC must balance these and other tensions. Some things we have relatively little control over, such as budget. These we try to handle by structural techniques. For example by insisting all of our people work on multiple projects simultaneously we inherently have diversification of funding for all of our people. In many cases we explicitly use some elements of tension to be productive. For example the need for the scientists to constantly publish is motivation to keep tasks short and

  1. Ghana Science Association. 21st biennial conference. Program and abstracts book

    International Nuclear Information System (INIS)

    1999-08-01

    The publication covers the program and abstracts of papers presented during the 21st biennial conference of the Ghana Science Association. The conference was held at the University of Ghana, Legon from 8th to 13th August 1999. The theme of the conference was S ustainable food Industry in Ghana in the 21st Century . The first part of the publication covers membership of various committees, list of sponsors and conference program among others. The second part is devoted to abstracts of papers presented during various scientific sessions. Papers have been grouped under the following subject areas: Biological and Medical Science, Physical Sciences, Food and Agriculture, Social Science Education and Policy Research and Poster Presentations. (E.A.)

  2. How to implement the Science Fair Self-Help Development Program in schools

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, D.

    1994-01-01

    This manual is intended to act as a working guide for setting up a Science Fair Volunteer Support Committee at your school. The Science Fair Volunteer Support Committee, or SFVSC, is the key component of the Science Fair Self-Help program, which was developed by Sandia National Laboratories and is designed to support a school`s science activities. The SFVSC is a team of parents and community volunteers who work in concert with a school`s teaching staff to assist and manage all areas of a school Science and Engineering Fair. The main advantage of creating such a committee is that it frees the science teachers from the organizational aspects of the fair and lets them concentrate on their job of teaching science. This manual is based on information gained through a Self-Help Development pilot program that was developed by Sandia National Laboratories during the 1991--92 school year at three Albuquerque, NM, middle schools. The manual describes the techniques that were successful in the pilot program and discusses how these techniques might be implemented in other schools. This manual also discusses problems that may be encountered, including suggestions for how they might be resolved.

  3. The Environmental Science and Health Effects Program

    International Nuclear Information System (INIS)

    Michael Gurevich; Doug Lawson; Joe Mauderly

    2000-01-01

    The goal of the Environmental Science and Health Effect Program is to conduct policy-relevant research that will help us understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources

  4. The Environmental Science and Health Effects Program

    Energy Technology Data Exchange (ETDEWEB)

    Michael Gurevich; Doug Lawson; Joe Mauderly

    2000-04-10

    The goal of the Environmental Science and Health Effect Program is to conduct policy-relevant research that will help us understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources.

  5. Fire, Fuel, and Smoke Science Program 2015 Research Accomplishments

    Science.gov (United States)

    Faith Ann Heinsch; Charles W. McHugh; Colin C. Hardy

    2016-01-01

    The Fire, Fuel, and Smoke Science Program (FFS) of the U.S. Forest Service, Rocky Mountain Research Station focuses on fundamental and applied research in wildland fire, from fire physics and fire ecology to fuels management and smoke emissions. Located at the Missoula Fire Sciences Laboratory in Montana, the scientists, engineers, technicians, and support...

  6. 77 FR 2935 - Revision to Chemical Testing Regulations for Mariners and Marine Employers

    Science.gov (United States)

    2012-01-20

    ... Supervisors Currently, 46 CFR 16.401 requires Employee Assistance Program (EAP) training for employees subject... of your drug-testing programs? (6) Do marine employees appear for random drug tests required by Coast...), employers who must have a random drug testing program but who have 10 or fewer employees are exempt from...

  7. The Resolved Stellar Populations Early Release Science Program

    Science.gov (United States)

    Gilbert, Karoline; Weisz, Daniel; Resolved Stellar Populations ERS Program Team

    2018-06-01

    The Resolved Stellar Populations Early Release Science Program (PI D. Weisz) will observe Local Group targets covering a range of stellar density and star formation histories, including a globular cluster, and ultra-faint dwarf galaxy, and a star-forming dwarf galaxy. Using observations of these diverse targets we will explore a broad science program: we will measure star formation histories, the sub-solar stellar initial mass function, and proper motions, perform studies of evolved stars, and map extinction in the target fields. Our observations will be of high archival value for other science such as calibrating stellar evolution models, studying variable stars, and searching for metal-poor stars. We will determine optimal observational setups and develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will also design, test, and release point spread function (PSF) fitting software specific to NIRCam and NIRISS, required for the crowded stellar regime. Prior to the Cycle 2 Call for Proposals, we will release PSF fitting software, matched HST and JWST catalogs, and clear documentation and step-by-step tutorials (such as Jupyter notebooks) for reducing crowded stellar field data and producing resolved stellar photometry catalogs, as well as for specific resolved stellar photometry science applications.

  8. Preparing new Earth Science teachers via a collaborative program between Research Scientists and Educators

    Science.gov (United States)

    Grcevich, Jana; Pagnotta, Ashley; Mac Low, Mordecai-Mark; Shara, Michael; Flores, Kennet; Nadeau, Patricia A.; Sessa, Jocelyn; Ustunisik, Gokce; Zirakparvar, Nasser; Ebel, Denton; Harlow, George; Webster, James D.; Kinzler, Rosamond; MacDonald, Maritza B.; Contino, Julie; Cooke-Nieves, Natasha; Howes, Elaine; Zachowski, Marion

    2015-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a innovative program designed to prepare participants to be world-class Earth Science teachers. New York State is experiencing a lack of qualified Earth Science teachers, leading in the short term to a reduction in students who successfully complete the Earth Science Regents examination, and in the long term potential reductions in the number of students who go on to pursue college degrees in Earth Science related disciplines. The MAT program addresses this problem via a collaboration between practicing research scientists and education faculty. The faculty consists of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level education experts. During the 15-month, full-time program, students participate in a residency program at local urban classrooms as well as taking courses and completing field work in astrophysics, geology, earth science, and paleontology. The program targets high-needs schools with diverse populations. We seek to encourage, stimulate interest, and inform the students impacted by our program, most of whom are from traditionally underrepresented backgrounds, about the rich possibilities for careers in Earth Science related disciplines and the intrinsic value of the subject. We report on the experience of the first and second cohorts, all of whom are now employed in full time teaching positions, and the majority in high needs schools in New York State.

  9. An analysis of program planning in schools with emerging excellence in science instructional design

    Science.gov (United States)

    Carroll, Karen Marie

    Science educators agree on many of the program elements that characterize exemplary science instructional programs, but it has not been clear how the processes of planning and implementation lead to excellence in program design. This study focuses on two K--12 school clusters located in unified school districts and one K--12 school cluster spanning two non-unified districts that are in the midst of building new science programs. The clusters were selected for support by an organization of educators, scientists, and businesspersons because they were recognized as likely to produce good programs. The investigation centers on three research questions: (1) To what extent have schools engaged in science education reform achieved excellence? (2) How did schools engaged in science program improvement go about achieving their goals, and (3) What contextual factors are most closely related to the realization of quality program elements? The degree to which each program studied met indicators of quality suggested by the National Science Education Standards (NSES) are described according to an Innovation Configuration (IC) Chart. Using a Stream Diagnostic method of analysis, levels of practice were associated with contextual factors categorized as Social, Organizing, and Resource. Findings reveal the importance of a balanced and synchronized function of all components, including administrative commitment, teacher participation, and favorable logistical aspects. Individual reform projects were more likely to be successful if they included exemplary program elements and mechanisms for program managers to access district personnel and procedures needed to implement programs. A review of the cluster case histories also revealed the positive impact of cooperation between the funding organization and the project, the degree to which professional development is directly related to the new program, and the availability of resources and support for each exemplary program element.

  10. A review of forensic science higher education programs in the United States: bachelor's and master's degrees.

    Science.gov (United States)

    Tregar, Kristen L; Proni, Gloria

    2010-11-01

    As the number of forensic science programs offered at higher education institutions rises, and more students express an interest in them, it is important to gain information regarding the offerings in terms of courses, equipment available to students, degree requirements, and other important aspects of the programs. A survey was conducted examining the existing bachelor's and master's forensic science programs in the U.S. Of the responding institutions, relatively few were, at the time of the survey, accredited by the forensic science Education Programs Accreditation Commission (FEPAC). In general, the standards of the responding programs vary considerably primarily in terms of their size and subjects coverage. While it is clear that the standards for the forensic science programs investigated are not homogeneous, the majority of the programs provide a strong science curriculum, faculties with advanced degrees, and interesting forensic-oriented courses. © 2010 American Academy of Forensic Sciences.

  11. Marine Debris Research, Prevention, and Reduction Act

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Debris Research, Prevention, and Reduction Act legally establishes the National Oceanic and Atmospheric Administration's (NOAA) Marine Debris Program. The...

  12. Improving Science Teacher Preparation through the APS PhysTEC and NSF Noyce Programs

    Science.gov (United States)

    Williams, Tasha; Tyler, Micheal; van Duzor, Andrea; Sabella, Mel

    2013-03-01

    Central to the recruitment of students into science teaching at a school like CSU, is a focus on the professional nature of teaching. The purpose of this focus is twofold: it serves to change student perceptions about teaching and it prepares students to become teachers who value continued professional development and value the science education research literature. The Noyce and PhysTEC programs at CSU place the professional nature of teaching front and center by involving students in education research projects, paid internships, attendance at conferences, and participation in a new Teacher Immersion Institute and a Science Education Journal Reading Class. This poster will focus on specific components of our teacher preparation program that were developed through these two programs. In addition we will describe how these new components provide students with diverse experiences in the teaching of science to students in the urban school district. Supported by the NSF Noyce Program (0833251) and the APS PhysTEC Program.

  13. The Museum of Science and Industry Basic List of Children's Science Books 1973-1984.

    Science.gov (United States)

    Richter, Bernice; Wenzel, Duane

    Children's science books are listed under these headings: animals; astronomy; aviation and space; biography; careers; earth sciences; encyclopedias and reference books; environment and conservation; fiction; general science; life sciences; marine life; mathematics and computer science; medical and health sciences; physics and chemistry; plant…

  14. The COMET° Program: Empowering Faculty via Environmental Science Education Resources and Training Opportunities

    Science.gov (United States)

    Abshire, W. E.; Spangler, T. C.; Page, E. M.

    2011-12-01

    For 20+ years, the COMET Program has provided education to a wide spectrum of users in the atmospheric and related sciences, including faculty and students. COMET's training covers many areas including: climate science; tropical meteorology; marine, coastal, aviation and fire weather; satellite and mesoscale meteorology; numerical weather prediction; hydrometeorology; observational systems; and emergency management and societal impacts. The majority of the training is delivered as self-paced web modules. The entry point to 600+ hours of material is COMET's http://meted.ucar.edu website. This site hosts >400 training modules. Included in these courses are ~100 lessons which have been translated into primarily Spanish and French. Simple, free registration is required. As of summer 2011, there were 200,000 registered users of the site from 200 countries who are taking advantage of this free education and training. Over 9000 of the users are faculty and another 38,000+ are college students. Besides using and re-purposing the high quality multimedia training, faculty often choose to use the registration and assessment system that allows users to take quizzes with each lesson to receive a certificate of completion. With the student's permission, then results can also be e-mailed to an instructor. Another relevant initiative is the creation of a free online, peer reviewed Textbook, "Introduction to Tropical Meteorology" (http://www.meted.ucar.edu/tropical/textbook/). This multimedia textbook is intended for undergraduate and early graduate students, forecasters, and others interested in the impacts of tropical weather and climate. Lastly, with funding from the NOAA/NESDIS/GOES-R Program, COMET recently offered a course for faculty entitled, "Integrating Satellite Data and Products into Geoscience Courses with Emphasis on Advances in Geostationary Satellite Systems." Twenty-four faculty from across the US and the Caribbean participated. Via lectures, lab exercises, and

  15. Incentivizing More Effective Marine Protected Areas with the Global Ocean Refuge System (GLORES

    Directory of Open Access Journals (Sweden)

    Sarah O. Hameed

    2017-06-01

    Full Text Available Healthy oceans are essential to human survival and prosperity, yet oceans are severely impacted worldwide by anthropogenic threats including overfishing, climate change, industrialization, pollution, and habitat destruction. Marine protected areas (MPAs have been implemented around the world and are effective conservation tools that can mitigate some of these threats and build resilience when designed and managed well. However, despite a rich scientific literature on MPA effectiveness, science is not the main driver behind the design and implementation of many MPAs, leading to variable MPA effectiveness and bias in global MPA representativity. As a result, the marine conservation community focuses on promoting the creation of more MPAs as well as more effective ones, however no structure to improve or accelerate effective MPA implementation currently exists. To safeguard marine ecosystems on a global scale and better monitor progress toward ecosystem protection, robust science-based criteria are needed for evaluating MPAs and synthesizing the extensive and interdisciplinary science on MPA effectiveness. This paper presents a strategic initiative led by Marine Conservation Institute called the Global Ocean Refuge System (GLORES. GLORES aims to set standards to improve the quality of MPAs and catalyze strong protection for at least 30% of the ocean by 2030. Such substantial increase in marine protection is needed to maintain the resilience of marine ecosystems and restore their benefits to people. GLORES provides a comprehensive strategy that employs the rich body of MPA science to scale up existing marine conservation efforts.

  16. Fire, Fuel, and Smoke Science Program: 2013 Research accomplishments

    Science.gov (United States)

    Faith Ann Heinsch; Robin J. Innes; Colin C. Hardy; Kristine M. Lee

    2014-01-01

    The Fire, Fuel, and Smoke Science Program (FFS) of the U.S. Forest Service, Rocky Mountain Research Station, focuses on fundamental and applied research in wildland fire, from fire physics and fire ecology to fuels management and smoke emissions. Located at the Missoula Fire Sciences Laboratory in Montana, the scientists, engineers, technicians, and support staff in...

  17. Wabanaki Youth in Science (WaYS): A Tribal Mentoring and Educational Program Integrating Traditional Ecological Knowledge and Western Science

    Science.gov (United States)

    tish carr; Laura S. Kenefic; Darren J. Ranco

    2017-01-01

    The Wabanaki Youth in Science (WaYS) program provides mentoring and training opportunities in the life sciences for Native American youth in Maine. This program, which was motivated by a shortage of young natural resource professionals to manage tribal lands, uses a multifaceted approach (i.e., camps, community outreach, and internships with cultural resource and...

  18. Persepsi Mahasiswa Program Pascasarjana Terhadap Database Science Direct Pada Perpustakaan Universitas Sumatera Utara

    OpenAIRE

    Purba, Artita Wati Dorma

    2017-01-01

    120709051 Purba, Artita Wati Dorma. 2017. Persepsi Mahasiswa Program Pascasarjana terhadap Database Science Direct pada Perpustakaan Universitas Sumatera Utara. MEDAN: Program Studi Ilmu Perpustanaan, Fakultas Ilmu Budaya, Universitas Sumatera Utara Penelitian ini bertujuan untuk mengetahui bagaimanakah persepsi mahasiswa program Pascasarjana terhadap Database Science Direct pada Perpustakaan Universitas Sumatera Utara. Penelitian ini menggunakan metode deskriptif dengan pendekatan kuan...

  19. Why every national deep-geological-isolation program needs a long-term science & technology component

    International Nuclear Information System (INIS)

    Budnitz, R J

    2006-01-01

    The objective of this paper is to set down the rationale for a separate Science & Technology (S&T) Program within every national deep-geological-isolation program. The fundamental rationale for such a Program is to provide a dedicated focus for longer-term science and technology activities that ultimately will benefit the whole repository mission. Such a Program, separately funded and with a dedicated staff (separate from the ''mainline'' activities to develop the repository, the surface facilities, and the transportation system), can devote itself exclusively to the development and management of a long-term science and technology program. Broad experience in governments worldwide has demonstrated that line offices are unlikely to be able to develop and sustain both the appropriate longer-term philosophy and the specialized skills associated with managing longer-term science and technology projects. Accomplishing both of these requires a separate dedicated program office with its own staff

  20. Materials sciences programs: Fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Science Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  1. Materials sciences programs fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  2. Creating Communication Training Programs for Graduate Students in Science and Engineering

    Science.gov (United States)

    Rice, M.; Lewenstein, B.; Weiss, M.

    2012-12-01

    Scientists and engineers in all disciplines are required to communicate with colleagues, the media, policy-makers, and/or the general public. However, most STEM graduate programs do not equip students with the skills needed to communicate effectively to these diverse audiences. In this presentation, we describe a science communication course developed by and for graduate students at Cornell University. This training, which has been implemented as a semester-long seminar and a weekend-long workshop, covers popular science writing, science policy, print and web media, radio and television. Here we present a comparison of learning outcomes for the semester and weekend formats, a summary of lessons learned, and tools for developing similar science communication programs for graduate students at other institutions.

  3. MESA: Supporting Teaching and Learning about the Marine Environment--Primary Science Focus

    Science.gov (United States)

    Preston, Christine

    2010-01-01

    The Marine Education Society of Australasia (MESA) Inc. is a national organisation of marine educators that aims to bring together people interested in the study and enjoyment of coastal and marine environments. MESA representatives and members organise education and interpretation activities in support of schools and communities during a number…

  4. NASA'S Water Resources Element Within the Applied Sciences Program

    Science.gov (United States)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2010-01-01

    The NASA Applied Sciences Program works within NASA Earth sciences to leverage investment of satellite and information systems to increase the benefits to society through the widest practical use of NASA research results. Such observations provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as land cover type, vegetation type and health, precipitation, snow, soil moisture, and water levels and radiation. Observations of this type combined with models and analysis enable satellite-based assessment of numerous water resources management activities. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, model results, and development and deployment of enabling technologies, systems, and capabilities. Water resources is one of eight elements in the Applied Sciences Program and it addresses concerns and decision making related to water quantity and water quality. With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. Mitigating these conflicts and meeting water demands requires using existing resources more efficiently. The potential crises and conflicts arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. but also in many parts of the world. In addition to water availability issues, water quality related

  5. DNA barcodes for marine fungal identification and discovery

    Digital Repository Service at National Institute of Oceanography (India)

    Velmurugan, S.; Prasannakumar, C.; Manokaran, S.; AjithKumar, T.; Samkamaleson, A.; Palavesam, A.

    , Parangipettai 608502, India bDivision of Biological Oceanography, National Institute of Oceanography, Panaji 403001, India cCentre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakamangalam 629502, India a r t i c l e i n f o Article... Mycological Society. All rights reserved. Introduction Fungi are an indispensable part of life in the biosphere as they have many functional roles in different ecosystems. Obligate marine fungi are those that grow and sporulate exclusively in a marine...

  6. Questions as indicators of ocean literacy: students' online asynchronous discussion with a marine scientist

    Science.gov (United States)

    Fauville, Géraldine

    2017-11-01

    In this article, 61 high-school students learned about ocean acidification through a virtual laboratory followed by a virtual lecture and an asynchronous discussion with a marine scientist on an online platform: VoiceThread. This study focuses on the students' development of ocean literacy when prompted to ask questions to the scientist. The students' questions were thematically analysed to assess (1) the kind of reasoning that can be discerned as premises of the students' questions and (2) what possibilities for enhancing ocean literacy emerge in this instructional activity. The results show how interacting with a scientist gives the students an entry point to the world of natural sciences with its complexity, uncertainty and choices that go beyond the idealised form in which natural sciences often are presented in school. This activity offers an affordable way of bringing marine science to school by providing extensive expertise from a marine scientist. Students get a chance to mobilise their pre-existing knowledge in the field of marine science. The holistic expertise of the marine scientist allows students to explore and reason around a very wide range of ideas and aspect of natural sciences that goes beyond the range offered by the school settings.

  7. Student science enrichment training program: Progress report, June 1, 1988--May 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, S.S.

    1989-04-21

    This is a status report on a Student Science Enrichment Training Program held at the campus of Claflin College, Orangeburg, SC. The topics of the report include the objectives of the project, participation experienced, financial incentives and support for the program, curriculum description, and estimated success of the program in stimulating an occupational interest in science and research fields by the students.

  8. NASA Applied Sciences Program. Overview Presentation; Discovering and Demonstrating Innovative and Practical Applications of Earth Science

    Science.gov (United States)

    Irwin, Daniel

    2010-01-01

    Goal 1: Enhance Applications Research Advance the use of NASA Earth science in policy making, resource management and planning, and disaster response. Key Actions: Identify priority needs, conduct applied research to generate innovative applications, and support projects that demonstrate uses of NASA Earth science. Goal 2: Increase Collaboration Establish a flexible program structure to meet diverse partner needs and applications objectives. Key Actions: Pursue partnerships to leverage resources and risks and extend the program s reach and impact. Goal 3:Accelerate Applications Ensure that NASA s flight missions plan for and support applications goals in conjunction with their science goals, starting with mission planning and extending through the mission life cycle. Key Actions: Enable identification of applications early in satellite mission lifecycle and facilitate effective ways to integrate end-user needs into satellite mission planning

  9. Hypoxia in the changing marine environment

    Science.gov (United States)

    Zhang, J.; Cowie, G.; Naqvi, S. W. A.

    2013-03-01

    The predicted future of the global marine environment, as a combined result of forcing due to climate change (e.g. warming and acidification) and other anthropogenic perturbation (e.g. eutrophication), presents a challenge to the sustainability of ecosystems from tropics to high latitudes. Among the various associated phenomena of ecosystem deterioration, hypoxia can cause serious problems in coastal areas as well as oxygen minimum zones in the open ocean (Diaz and Rosenberg 2008 Science 321 926-9, Stramma et al 2008 Science 320 655-8). The negative impacts of hypoxia include changes in populations of marine organisms, such as large-scale mortality and behavioral responses, as well as variations of species distributions, biodiversity, physiological stress, and other sub-lethal effects (e.g. growth and reproduction). Social and economic activities that are related to services provided by the marine ecosystems, such as tourism and fisheries, can be negatively affected by the aesthetic outcomes as well as perceived or real impacts on seafood quality (STAP 2011 (Washington, DC: Global Environment Facility) p 88). Moreover, low oxygen concentration in marine waters can have considerable feedbacks to other compartments of the Earth system, like the emission of greenhouse gases to the atmosphere, and can affect the global biogeochemical cycles of nutrients and trace elements. It is of critical importance to prediction and adaptation strategies that the key processes of hypoxia in marine environments be precisely determined and understood (cf Zhang et al 2010 Biogeosciences 7 1-24).

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Sediment dynamics like deposition, erosion and dispersion are explained with the simulated tidal currents and OCM derived sediment concentrations. ... Geosciences Division, Marine, Geo and Planetary Sciences Group, Earth, Ocean, Atmosphere, Planetary Sciences and Applications Area, Space Applications Centre ...

  11. NASA Applied Sciences' DEVELOP National Program: Training the Next Generation of Remote Sensing Scientists

    Science.gov (United States)

    Childs, Lauren; Brozen, Madeline; Hillyer, Nelson

    2010-01-01

    Since its inception over a decade ago, the DEVELOP National Program has provided students with experience in utilizing and integrating satellite remote sensing data into real world-applications. In 1998, DEVELOP began with three students and has evolved into a nationwide internship program with over 200 students participating each year. DEVELOP is a NASA Applied Sciences training and development program extending NASA Earth science research and technology to society. Part of the NASA Science Mission Directorate s Earth Science Division, the Applied Sciences Program focuses on bridging the gap between NASA technology and the public by conducting projects that innovatively use NASA Earth science resources to research environmental issues. Project outcomes focus on assisting communities to better understand environmental change over time. This is accomplished through research with global, national, and regional partners to identify the widest array of practical uses of NASA data. DEVELOP students conduct research in areas that examine how NASA science can better serve society. Projects focus on practical applications of NASA s Earth science research results. Each project is designed to address at least one of the Applied Sciences focus areas, use NASA s Earth observation sources and meet partners needs. DEVELOP research teams partner with end-users and organizations who use project results for policy analysis and decision support, thereby extending the benefits of NASA science and technology to the public.

  12. The Resolved Stellar Populations Early Release Science Program

    Science.gov (United States)

    Weisz, Daniel; Anderson, J.; Boyer, M.; Cole, A.; Dolphin, A.; Geha, M.; Kalirai, J.; Kallivayalil, N.; McQuinn, K.; Sandstrom, K.; Williams, B.

    2017-11-01

    We propose to obtain deep multi-band NIRCam and NIRISS imaging of three resolved stellar systems within 1 Mpc (NOI 104). We will use this broad science program to optimize observational setups and to develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will combine our expertise in HST resolved star studies with these observations to design, test, and release point spread function (PSF) fitting software specific to JWST. PSF photometry is at the heart of resolved stellar populations studies, but is not part of the standard JWST reduction pipeline. Our program will establish JWST-optimized methodologies in six scientific areas: star formation histories, measurement of the sub-Solar mass stellar IMF, extinction maps, evolved stars, proper motions, and globular clusters, all of which will be common pursuits for JWST in the local Universe. Our observations of globular cluster M92, ultra-faint dwarf Draco II, and star-forming dwarf WLM, will be of high archival value for other science such as calibrating stellar evolution models, measuring properties of variable stars, and searching for metal-poor stars. We will release the results of our program, including PSF fitting software, matched HST and JWST catalogs, clear documentation, and step-by-step tutorials (e.g., Jupyter notebooks) for data reduction and science application, to the community prior to the Cycle 2 Call for Proposals. We will host a workshop to help community members plan their Cycle 2 observations of resolved stars. Our program will provide blueprints for the community to efficiently reduce and analyze JWST observations of resolved stellar populations.

  13. Social science in the national park service: an evolving mission and program

    Science.gov (United States)

    Richard H. Briceland

    1992-01-01

    In 1988 the director of the National Park Service requested that a social science program be established. Since that time a number of new research initiatives have been developed to address this need. This paper describes seven major steps taken thus far to meet social science needs of park superintendents, program managers, and park planners. Specific examples are...

  14. The Science on Saturday Program at Princeton Plasma Physics Laboratory

    Science.gov (United States)

    Bretz, N.; Lamarche, P.; Lagin, L.; Ritter, C.; Carroll, D. L.

    1996-11-01

    The Science on Saturday Program at Princeton Plasma Physics Laboratory consists of a series of Saturday morning lectures on various topics in science by scientists, engineers, educators, and others with an interesting story. This program has been in existence for over twelve years and has been advertised to and primarily aimed at the high school level. Topics ranging from superconductivity to computer animation and gorilla conservation to pharmaceutical design have been covered. Lecturers from the staff of Princeton, Rutgers, AT and T, Bristol Meyers Squibb, and many others have participated. Speakers have ranged from Nobel prize winners, astronauts, industrialists, educators, engineers, and science writers. Typically, there are eight to ten lectures starting in January. A mailing list has been compiled for schools, science teachers, libraries, and museums in the Princeton area. For the past two years AT and T has sponsored buses for Trenton area students to come to these lectures and an effort has been made to publicize the program to these students. The series has been very popular, frequently overfilling the 300 seat PPPL auditorium. As a result, the lectures are videotaped and broadcast to a large screen TV for remote viewing. Lecturers are encouraged to interact with the audience and ample time is provided for questions.

  15. A Study of the FEPAC Accredited Graduate Forensic Science Programs' Curricula

    Science.gov (United States)

    Rushton, Catherine Genice

    2016-01-01

    The National Institute of Justice (1999) and the National Academy of Sciences (2009) recommended that forensic science training shift from on-the-job training to formal education; however, the reports cited inconsistencies in the curricula of the forensic science degree programs as an impediment to this. The Forensic Science Education Programs…

  16. Faculty Development Program Models to Advance Teaching and Learning Within Health Science Programs

    Science.gov (United States)

    Lancaster, Jason W.; Stein, Susan M.; MacLean, Linda Garrelts; Van Amburgh, Jenny

    2014-01-01

    Within health science programs there has been a call for more faculty development, particularly for teaching and learning. The primary objectives of this review were to describe the current landscape for faculty development programs for teaching and learning and make recommendations for the implementation of new faculty development programs. A thorough search of the pertinent health science databases was conducted, including the Education Resource Information Center (ERIC), MEDLINE, and EMBASE, and faculty development books and relevant information found were reviewed in order to provide recommendations for best practices. Faculty development for teaching and learning comes in a variety of forms, from individuals charged to initiate activities to committees and centers. Faculty development has been effective in improving faculty perceptions on the value of teaching, increasing motivation and enthusiasm for teaching, increasing knowledge and behaviors, and disseminating skills. Several models exist that can be implemented to support faculty teaching development. Institutions need to make informed decisions about which plan could be most successfully implemented in their college or school. PMID:24954939

  17. Faculty development program models to advance teaching and learning within health science programs.

    Science.gov (United States)

    Lancaster, Jason W; Stein, Susan M; MacLean, Linda Garrelts; Van Amburgh, Jenny; Persky, Adam M

    2014-06-17

    Within health science programs there has been a call for more faculty development, particularly for teaching and learning. The primary objectives of this review were to describe the current landscape for faculty development programs for teaching and learning and make recommendations for the implementation of new faculty development programs. A thorough search of the pertinent health science databases was conducted, including the Education Resource Information Center (ERIC), MEDLINE, and EMBASE, and faculty development books and relevant information found were reviewed in order to provide recommendations for best practices. Faculty development for teaching and learning comes in a variety of forms, from individuals charged to initiate activities to committees and centers. Faculty development has been effective in improving faculty perceptions on the value of teaching, increasing motivation and enthusiasm for teaching, increasing knowledge and behaviors, and disseminating skills. Several models exist that can be implemented to support faculty teaching development. Institutions need to make informed decisions about which plan could be most successfully implemented in their college or school.

  18. A multidisciplinary Earth science research program in China

    Science.gov (United States)

    Dong, Shuwen; Li, Tingdong; Gao, Rui; Hou, Hesheng; Li, Yingkang; Zhang, Shihong; Keller, G. Randy; Liu, Mian

    2011-09-01

    Because China occupies a large and geologically complex region of central and eastern Asia, the country may hold the keys to resolving many basic problems in the Earth sciences, such as how continental collision with India produced China's interconnected array of large intraplate structures, and what links exist between these structures and natural resources. To learn more, the Chinese government has launched SinoProbe, a major research initiative focusing on multidisciplinary imaging of the three-dimensional (3-D) structure and composition of the Chinese continental lithosphere and its evolution through geologic history. This effort is also motivated by China's need for a comprehensive and systematic evaluation of its natural resources and a better understanding of potential geohazards. SinoProbe is funded by the Chinese Ministry of Finance, managed by the Chinese Ministry of Land and Resources, and organized by the Chinese Academy of Geological Sciences. More than 960 investigators and engineers are currently involved with the program, not counting international collaborators. Most of them are affiliated with the Chinese Academy of Geological Sciences, the Chinese Academy of Sciences, the Ministry of Education (i.e., universities), and the China Earthquake Administration. The initial phase of the program (2008-2012), with funding equivalent to about US$164 million, is testing the feasibility of new technologies in geophysical and geochemical exploration and deep continental drilling by focusing on a series of profiles (Figure 1).

  19. Valuing Professional Development Components for Emerging Undergraduate Researchers

    Science.gov (United States)

    Cheung, I.

    2015-12-01

    In 2004 the Hatfield Marine Science Center (HMSC) at Oregon State University (OSU) established a Research Experience for Undergraduates (REU) program to engage undergraduate students in hands-on research training in the marine sciences. The program offers students the opportunity to conduct research focused on biological and ecological topics, chemical and physical oceanography, marine geology, and atmospheric science. In partnership with state and federal government agencies, this ten-week summer program has grown to include 20+ students annually. Participants obtain a background in the academic discipline, professional development training, and research experience to make informed decisions about careers and advanced degrees in marine and earth system sciences. Professional development components of the program are designed to support students in their research experience, explore career goals and develop skills necessary to becoming a successful young marine scientist. These components generally include seminars, discussions, workshops, lab tours, and standards of conduct. These componentscontribute to achieving the following professional development objectives for the overall success of new emerging undergraduate researchers: Forming a fellowship of undergraduate students pursuing marine research Stimulating student interest and understanding of marine research science Learning about research opportunities at Oregon State University "Cross-Training" - broadening the hands-on research experience Exploring and learning about marine science careers and pathways Developing science communication and presentation skills Cultivating a sense of belonging in the sciences Exposure to federal and state agencies in marine and estuarine science Academic and career planning Retention of talented students in the marine science Standards of conduct in science Details of this program's components, objectives and best practices will be discussed.

  20. African American perspectives: A qualitative study of an informal science enrichment program

    Science.gov (United States)

    Simpson, Jamila Rashida

    The purposes of this study were to determine what program characteristics African American parents consider when they enroll their children into an informal science education enrichment program, the parents' evaluation of a program called Jordan Academy in which they enrolled their children, and the alignment of the parents' perspectives with Black Cultural Ethos (BCE). BCE refers to nine dimensions posited by Wade Boykin, a psychologist, as comprising African American culture. Participants were parents of students that attended Jordan Academy, an informal science enrichment program designed for third through sixth grade students from underserved populations. Qualitative methodologies were utilized to perform a thorough assessment of parents' perspectives. Data sources included classroom observations, student surveys, academy curriculum, photos and video-taped class sessions. Data included teachers and parents' responses to semi-structured, audio recorded interviews and students' written responses to open-ended items on the program's evaluation instrument. The data were analyzed for themes and the findings compared to Black Cultural Ethos. Findings revealed that the participants believed that informal science education offered their children opportunities not realized in the formal school setting - a means of impacting their children holistically. The parents expressed the academic, cultural, and personal development of their children in their characterizations of the ideal informal science education experience and in their evaluations of Jordan Academy. Overall, the parents' views emphasized the BCE values of harmony, affect, verve, movement, orality and communalism. The study has important implications for practices within and research on informal science education.

  1. Organochlorine residues in tissues of marine fauna along the coast ...

    African Journals Online (AJOL)

    These findings highlight evidence of pollution of marine fauna at the Kenyan coastal sites. It is necessary to have thorough waste management programs as a strategy to minimize marine pollution. KEY WORDS: Environmental samples; Marine samples; Kenya-Mombasa coastline; Marine fauna, Organochlorine, Pesticides.

  2. A thirty year look at the nuclear science programs at the American Museum of Science and Energy

    International Nuclear Information System (INIS)

    Marsee, M.D.; Williams, A.J.

    1993-01-01

    The American Museum of Science and Energy has been involved in nuclear science education since it opened in 1949. For a period between the mid-1950's and the early 1980's, a series of travelling exhibits and demonstrations provided the nation with programs about basic nuclear science and peaceful applications of atomic energy. The Museum itself continues educating its visitors about nuclear science via audio-visuals, interactive exhibitry and live demonstrations and classes. (author) 1 fig

  3. Pair Programming as a Modern Method of Teaching Computer Science

    Directory of Open Access Journals (Sweden)

    Irena Nančovska Šerbec

    2008-10-01

    Full Text Available At the Faculty of Education, University of Ljubljana we educate future computer science teachers. Beside didactical, pedagogical, mathematical and other interdisciplinary knowledge, students gain knowledge and skills of programming that are crucial for computer science teachers. For all courses, the main emphasis is the absorption of professional competences, related to the teaching profession and the programming profile. The latter are selected according to the well-known document, the ACM Computing Curricula. The professional knowledge is therefore associated and combined with the teaching knowledge and skills. In the paper we present how to achieve competences related to programming by using different didactical models (semiotic ladder, cognitive objectives taxonomy, problem solving and modern teaching method “pair programming”. Pair programming differs from standard methods (individual work, seminars, projects etc.. It belongs to the extreme programming as a discipline of software development and is known to have positive effects on teaching first programming language. We have experimentally observed pair programming in the introductory programming course. The paper presents and analyzes the results of using this method: the aspects of satisfaction during programming and the level of gained knowledge. The results are in general positive and demonstrate the promising usage of this teaching method.

  4. Research Experience for Undergraduates Program in Multidisciplinary Environmental Science

    Science.gov (United States)

    Wu, M. S.

    2012-12-01

    During summers 2011 and 12 Montclair State University hosted a Research Experience for Undergraduates Program (REU) in transdisciplinary, hands-on, field-oriented research in environmental sciences. Participants were housed at the Montclair State University's field station situated in the middle of 30,000 acres of mature forest, mountain ridges and freshwater streams and lakes within the Kittatinny Mountains of Northwest New Jersey, Program emphases were placed on development of project planning skills, analytical skills, creativity, critical thinking and scientific report preparation. Ten students were recruited in spring with special focus on recruiting students from underrepresented groups and community colleges. Students were matched with their individual research interests including hydrology, erosion and sedimentation, environmental chemistry, and ecology. In addition to research activities, lectures, educational and recreational field trips, and discussion on environmental ethics and social justice played an important part of the program. The ultimate goal of the program is to facilitate participants' professional growth and to stimulate the participants' interests in pursuing Earth Science as the future career of the participants.

  5. Gender Digital Divide and Challenges in Undergraduate Computer Science Programs

    Science.gov (United States)

    Stoilescu, Dorian; McDougall, Douglas

    2011-01-01

    Previous research revealed a reduced number of female students registered in computer science studies. In addition, the female students feel isolated, have reduced confidence, and underperform. This article explores differences between female and male students in undergraduate computer science programs in a mid-size university in Ontario. Based on…

  6. Social Science in Forestry Curricula: A Case Study of Colombia Forestry Programs

    Directory of Open Access Journals (Sweden)

    Liz Farleidy Villarraga-Flórez

    2015-12-01

    Full Text Available Tropical forest management depends greatly on complex social interactions. To understand the underlying human causes of deforestation and to plan forest management, it is of great importance to incorporate social science in the study of forestry. There is insufficient information about the incorporation of social sciences in undergraduate forestry programs. Foresters are well prepared in ecology, silviculture, forest measurements, and operational topics such as logging, but their knowledge of basic elements of social sciences is limited. This study explored the extent to which tertiary forestry education programs in Colombia include social science. It also examined students’ perceptions of social sciences courses in the curriculum. About 10% of course credits are in economics, administration, and foreign language, courses on social science are listed as optional. A high percentage of current sophomore (fifth semester, junior, and senior students do not have clear knowledge of basic social research methods, although a majority have used social science techniques at some point in their academic careers.

  7. DUSEL-related Science at LBNL Program and Opportunities

    International Nuclear Information System (INIS)

    Bauer, Christian; Detweiler, Jason; Freedman, Stuart; Gilchriese, Murdock; Kadel, Richard; Koch, Volker; Kolomensky, Yury; Lesko, Kevin; von der Lippe, Henrik; Marks, Steve; Nomura, Yasunori; Plate, David; Roe, Natalie; Sichtermann, Ernst; Ligeti, Zoltan

    2009-01-01

    The National Science Foundation is advancing the design of a Deep Underground Science and Engineering Laboratory (DUSEL) at the former Homestake mine in South Dakota. UC Berkeley and LBNL are leading the design effort for the facility and coordinating the definition and integration of the suite of experiments to be coupled to the facility design in the creation of an MREFC (Major Research Equipment and Facility Construction) proposal. The State of South Dakota has marshaled $120M to prepare the site and begin a modest science program at the 4850 ft level. The first physics experiment is anticipated to begin installation in 2009. The current timetable calls for the MREFC Preliminary Design to be assembled by 2010 to be presented to the National Science Board in 2011. This, in turn, indicates that the earliest DUSEL construction start would be FY2013. The MREFC is estimated (before the inclusion of the long baseline neutrino components) at $500--600M, roughly divided evenly between the experimental program and support for the facility. Construction was estimated at 6--8 years. The DOE and NSF are establishing a Joint Oversight Group (JOG) to coordinate the experimental programs and participation in DUSEL. It is anticipated that the JOG would mirror the similar function for the NSF and DOE participation in the LHC, and that DOE-HEP, DOE-NP, and NSF will all participate in the JOG. In parallel with the NSF efforts, DOE-HEP plans to develop a long baseline neutrino program with neutrino beams created at FNAL and aimed at DUSEL. In the P5 report the focus of the program is to pursue CP violation in the lepton sector. The same detectors can also be used for nucleon decay experiments. DOE has indicated that FNAL would be the ''lead lab'' for the long baseline neutrino program and be charged with designing and implementing the neutrino beamline. BNL is to be charged with designing and implementing the detector. The P5 report also emphasizes the importance of dark matter and

  8. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Preston, E.L.; Getsi, J.A.

    1982-07-01

    A major objective of the biomedical and environmental sciences (BES) research at the Oak Ridge National Laboratory (ORNL) is to provide information on environmental, health, and safety considerations that can be used in the formulation and implementation of energy technology decisions. Research is directed at securing information required for an understanding of both the short- and long-term consequences of the processes involved in new energy technologies. Investigation of the mechanisms responsible for biological and ecological damage caused by substances associated with energy production and of repair mechanisms is a necessary component of this research. The research is carried out by the staff of four divisions and one program: Biology Division, Environmental Sciences Division, Health and Safety Research Division, Information Division, and the Life Sciences Synthetic Fuels Program. Research programs underway in each of these divisions are discussed. Information on the following subjects is also included: interactions with universities; interactions with industry; technology transfer; recent accomplishments in the areas of program, publications, awards, and patents; and new initiatives

  9. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Preston, E.L.; Getsi, J.A. (comps.)

    1982-07-01

    A major objective of the biomedical and environmental sciences (BES) research at the Oak Ridge National Laboratory (ORNL) is to provide information on environmental, health, and safety considerations that can be used in the formulation and implementation of energy technology decisions. Research is directed at securing information required for an understanding of both the short- and long-term consequences of the processes involved in new energy technologies. Investigation of the mechanisms responsible for biological and ecological damage caused by substances associated with energy production and of repair mechanisms is a necessary component of this research. The research is carried out by the staff of four divisions and one program: Biology Division, Environmental Sciences Division, Health and Safety Research Division, Information Division, and the Life Sciences Synthetic Fuels Program. Research programs underway in each of these divisions are discussed. Information on the following subjects is also included: interactions with universities; interactions with industry; technology transfer; recent accomplishments in the areas of program, publications, awards, and patents; and new initiatives. (JGB)

  10. Diversity of Marine Animals. Man and the Gulf of Mexico Series.

    Science.gov (United States)

    Irby, Bobby N., Comp.; And Others

    "Man and the Gulf of Mexico" (MGM) is a marine science curriculum series developed to meet the needs of 10th through 12th grade students in Mississippi and Alabama schools. This MGM unit on the diversity of marine animals is divided into 16 sections. These sections focus on: marine protozoans; sponges; coelenterates; ctenophores;…

  11. Rocket Science 101 Interactive Educational Program

    Science.gov (United States)

    Armstrong, Dennis; Funkhouse, Deborah; DiMarzio, Donald

    2007-01-01

    To better educate the public on the basic design of NASA s current mission rockets, Rocket Science 101 software has been developed as an interactive program designed to retain a user s attention and to teach about basic rocket parts. This program also has helped to expand NASA's presence on the Web regarding educating the public about the Agency s goals and accomplishments. The software was designed using Macromedia s Flash 8. It allows the user to select which type of rocket they want to learn about, interact with the basic parts, assemble the parts to create the whole rocket, and then review the basic flight profile of the rocket they have built.

  12. Gender differences in the use of computers, programming, and peer interactions in computer science classrooms

    Science.gov (United States)

    Stoilescu, Dorian; Egodawatte, Gunawardena

    2010-12-01

    Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new definitions for computer science culture but to see how male and female students see themselves involved in computer science practices, how they see computer science as a successful career, and what they like and dislike about current computer science practices. The study took place in a mid-sized university in Ontario. Sixteen students and two instructors were interviewed to get their views. We found that male and female views are different on computer use, programming, and the pattern of student interactions. Female and male students did not have any major issues in using computers. In computing programming, female students were not so involved in computing activities whereas male students were heavily involved. As for the opinions about successful computer science professionals, both female and male students emphasized hard working, detailed oriented approaches, and enjoying playing with computers. The myth of the geek as a typical profile of successful computer science students was not found to be true.

  13. Updated science systems on USCGC Healy

    Science.gov (United States)

    Chayes, D. N.; Roberts, S. D.; Arko, R. A.; Hiller, S. M.

    2008-12-01

    The USCG cutter Healy is the U.S. Arctic research icebreaker. Prior to the 2008 season, a number of upgrades and improvements were made to the science systems. These included the addition of two Bell BGM-3 marine gravity meters. The vessel's existing meterological sensors were enhanced with two RM Young model 85004 heated ultrasonic anemometers; a Paroscientific, Inc. model "MET-3A" air temperature, humidity and barometric pressure subsystem; and an RM Young model 50202 heated rain gauge. The flow through sea water system was updated with new flow meters, a SeaBird SBE45 thermosalinograph, long and a short wave radiation sensors, a Seapoint fluorometer. A Milltech Marine Smart Radio model SR161 Automatic Identification System (AIS) receiver and an updated interface to real-time winch and wire performance have been added. Our onboard real-time GIS has been updated to include real-time plotting of other ship tracks from our AIS receiver and the ability for users to save and share planned tracks. For the HLY0806 leg, we implemented a SWAP ship-to ship wireless connection for our two-ship operations with the Canadian icebreaker Louis S. St. Laurent similar to the one we implemented for our two-ship program with the Swedish icebreaker Oden in 2005. We updated our routine delivery of underway data to investigators, as well as a copy for archiving to the NSF-supported Marine Geoscience Data System (MGDS), using portable "boomerang" drives. An end-user workstation was added to accommodate increasing demand for onboard processing. Technical support for science on the Healy is supported by the U.S. National Science Foundation.

  14. Accuracy and Intuition: The Mission of a Science Journalist

    Science.gov (United States)

    Gramling, Carolyn

    2004-07-01

    After years of experimenting with how to explain my thesis research to family and friends, I realized two things: (1) just because I was the presumed expert on a topic didn't mean I could easily break it down into absorbable nuggets of information; but (2) trying to do that was an absorbing challenge. It was more than a game; it was a sort of mission. How do I convince my audience that the underlying science isn't too esoteric-that science can be more fun than intimidating? The AAAS Mass Media Science and Engineering Fellowship program seemed like a perfect opportunity to undertake this mission. As a recent Ph.D. in marine geochemistry in the MIT/WHOI Joint Program for Oceanography, I had written and presented specialized papers geared toward scientists. However, as a science journalist, I imagined I would be a sort of interpreter, an intermediary between scientists and the general public, translating complicated scientific concepts into readable prose, while maintaining constant vigilance against jargon and assumptions. Something like that.

  15. Tailoring science education graduate programs to the needs of science educators in low-income countries

    Science.gov (United States)

    Lunetta, Vincent N.; van den Berg, Euwe

    Science education graduate programs in high-income countries frequently enroll students from low-income countries. Upon admission these students have profiles of knowledge, skills, and experiences which can be quite different from those of students from the host high-income countries. Upon graduation, they will normally return to work in education systems with conditions which differ greatly from those in high-income countries. This article attempts to clarify some of the differences and similarities between such students. It offers suggestions for making graduate programs more responsive to the special needs of students from low-income countries and to the opportunities they offer for enhancing cross-cultural sensitivity. Many of the suggestions can be incorporated within existing programs through choices of elective courses and topics for papers, projects, and research. Many references are provided to relevant literature on cultural issues and on science education in low-income countries.

  16. Development of an Actuarial Science Program at Salisbury University

    Science.gov (United States)

    Wainwright, Barbara A.

    2014-01-01

    This paper focuses on the development of an actuarial science track for the mathematics major at Salisbury University (SU). A timeline from the initial investigation into such a program through the proposal and approval processes is shared for those who might be interested in developing a new actuarial program. It is wise to start small and take…

  17. 2013 POLAR MARINE SCIENCE GORDON RESEARCH CONFERENCE AND GORDON RESEARCH SEMINAR (MARCH 10-15, 2013 - FOUR POINTS SHERATON, VENTURA CA)

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, Jeff S.

    2012-12-15

    As dynamic and thermodynamic processes associated with warming trends are impacting sea ice cover, oceanographic processes and atmosphere-ocean interactions across polar regions at unprecedented rate, observations and models show fundamentally different regional ecosystem responses. The non-linear and multi-directional biogeochemical responses of polar systems to atmospheric and oceanographic forcings emphasize the need to consider and reconcile observations and models at global and regional scales. The 9th GRC on Polar Marine Science will discuss recent developments and challenges emerging from contemporary and paleo-climate observations and models, encompassing regional and global scales. The GRC addresses the structure, functionalities and controls of polar marine systems through topics such as sea ice biogeochemistry, atmosphere-ocean forcings and interactions, food web trophodynamics, carbon and elemental cycling and fluxes, and a spectrum of ecological processes and interactions.

  18. Developing pre-service science teachers' pedagogical content knowledge by using training program

    Science.gov (United States)

    Udomkan, Watinee; Suwannoi, Paisan

    2018-01-01

    A training program was developed for enhancing pre-service science teachers' pedagogical content knowledge (PCK). The pre-service science teachers are able to: understand science curriculum, knowledge of assessment in science, knowledge of students' understanding of science, instructional strategies and orientations towards science teaching, which is conceptualized as PCK [5]. This study examined the preservice science teachers' understandings and their practices which include five pre-service science teachers' PCK. In this study, the participants demonstrated their PCK through the process of the training program by writing content representations (CoRes), preparing the lesson plans, micro-teaching, and actual teaching respectively. All pre-service science teachers' performs were collected by classroom observations. Then, they were interviewed. The results showed that the pre-service science teachers progressively developed knowledge components of PCK. Micro-teaching is the key activities for developing PCK. However, they had some difficulties in their classroom teaching. They required of sufficient ability to design appropriate instructional strategies and assessment activities for teaching. Blending content and pedagogy is also a matter of great concern. The implication of this study was that science educators can enhance pre-service science teachers' PCK by fostering their better understandings of the instructional strategies, assessment activities and blending between content and pedagogy in their classroom.

  19. Exploring Connections Between Earth Science and Biology - Interdisciplinary Science Activities for Schools

    Science.gov (United States)

    Vd Flier-Keller, E.; Carolsfeld, C.; Bullard, T.

    2009-05-01

    To increase teaching of Earth science in schools, and to reflect the interdisciplinary nature and interrelatedness of science disciplines in today's world, we are exploring opportunities for linking Earth science and Biology through engaging and innovative hands-on science activities for the classroom. Through the NSERC-funded Pacific CRYSTAL project based at the University of Victoria, scientists, science educators, and teachers at all levels in the school system are collaborating to research ways of enriching the preparation of students in math and science, and improving the quality of science education from Kindergarten to Grade 12. Our primary foci are building authentic, engaging science experiences for students, and fostering teacher leadership through teacher professional development and training. Interdisciplinary science activities represent an important way of making student science experiences real, engaging and relevant, and provide opportunities to highlight Earth science related topics within other disciplines, and to expand the Earth science taught in schools. The Earth science and Biology interdisciplinary project builds on results and experiences of existing Earth science education activities, and the Seaquaria project. We are developing curriculum-linked activities and resource materials, and hosting teacher workshops, around two initial areas; soils, and marine life and the fossil record. An example activity for the latter is the hands-on examination of organisms occupying the nearshore marine environment using a saltwater aquarium and touch tank or beach fieldtrip, and relating this to a suite of marine fossils to facilitate student thinking about representation of life in the fossil record e.g. which life forms are typically preserved, and how are they preserved? Literacy activities such as fossil obituaries encourage exploration of paleoenvironments and life habits of fossil organisms. Activities and resources are being tested with teachers

  20. The science of European marine reserves: Status, efficacy, and future needs

    DEFF Research Database (Denmark)

    Fenberg, Phillip B.; Caselle, Jennifer E.; Claudet, Joachim

    2012-01-01

    The ecologically and socio-economically important marine ecosystems of Europe are facing severe threats from a variety of human impacts. To mitigate and potentially reverse some of these impacts, the European Union (EU) has mandated the implementation of the Marine Strategy Framework Directive (M...

  1. Marine and coastal ecosystem services on the science-policy-practice nexus

    NARCIS (Netherlands)

    Drakou, Evangelia G.; Kermagoret, Charlène; Liquete, Camino; Ruiz-Frau, Ana; Burkhard, Kremena; Lillebø, Ana I.; Oudenhoven, van Alexander P.E.; Ballé-Béganton, Johanna; Rodrigues, João Garcia; Nieminen, Emmi; Oinonen, Soile; Ziemba, Alex; Gissi, Elena; Depellegrin, Daniel; Veidemane, Kristina; Ruskule, Anda; Delangue, Justine; Böhnke-Henrichs, Anne; Boon, Arjen; Wenning, Richard; Martino, Simone; Hasler, Berit; Termansen, Mette; Rockel, Mark; Hummel, Herman; Serafy, El Ghada; Peev, Plamen

    2017-01-01

    We compared and contrasted 11 European case studies to identify challenges and opportunities toward the operationalization of marine and coastal ecosystem service (MCES) assessments in Europe. This work is the output of a panel convened by the Marine Working Group of the Ecosystem Services

  2. Improved Marine Waters Monitoring

    Science.gov (United States)

    Palazov, Atanas; Yakushev, Evgeniy; Milkova, Tanya; Slabakova, Violeta; Hristova, Ognyana

    2017-04-01

    IMAMO - Improved Marine Waters Monitoring is a project under the Programme BG02: Improved monitoring of marine waters, managed by Bulgarian Ministry of environment and waters and co-financed by the Financial Mechanism of the European Economic Area (EEA FM) 2009 - 2014. Project Beneficiary is the Institute of oceanology - Bulgarian Academy of Sciences with two partners: Norwegian Institute for Water Research and Bulgarian Black Sea Basin Directorate. The Project aims to improve the monitoring capacity and expertise of the organizations responsible for marine waters monitoring in Bulgaria to meet the requirements of EU and national legislation. The main outcomes are to fill the gaps in information from the Initial assessment of the marine environment and to collect data to assess the current ecological status of marine waters including information as a base for revision of ecological targets established by the monitoring programme prepared in 2014 under Art. 11 of MSFD. Project activities are targeted to ensure data for Descriptors 5, 8 and 9. IMAMO aims to increase the institutional capacity of the Bulgarian partners related to the monitoring and assessment of the Black Sea environment. The main outputs are: establishment of real time monitoring and set up of accredited laboratory facilities for marine waters and sediments chemical analysis to ensure the ability of Bulgarian partners to monitor progress of subsequent measures undertaken.

  3. Evaluating the Effectiveness of the 2003-2004 NASA SCIence Files(trademark) Program

    Science.gov (United States)

    Caton, Randall H.; Ricles, Shannon S.; Pinelli, Thomas E.; Legg, Amy C.; Lambert, Matthew A.

    2005-01-01

    The NASA SCI Files is an Emmy award-winning series of instructional programs for grades 3-5. Produced by the NASA Center for Distance Learning, programs in the series are research-, inquiry-, standards-, teacher- and technology-based. Each NASA SCI Files program (1) integrates mathematics, science, and technology; (2) uses Problem-Based Learning (PBL) to enhance and enrich the teaching and learning of science; (3) emphasizes science as inquiry and the scientific method; (4) motivates students to become critical thinkers and active problem solvers; and (5) uses NASA research, facilities, and personnel to raise student awareness of careers and to exhibit the "real-world" application of mathematics, science, and technology. In April 2004, 1,500 randomly selected registered users of the NASA SCI Files were invited to complete a survey containing a series of questions. A total of 263 surveys were received. This report contains the quantitative and qualitative results of that survey.

  4. 15 CFR 922.4 - Effect of National Marine Sanctuary designation.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Effect of National Marine Sanctuary... RESOURCE MANAGEMENT NATIONAL MARINE SANCTUARY PROGRAM REGULATIONS General § 922.4 Effect of National Marine Sanctuary designation. The designation of a National Marine Sanctuary, and the regulations implementing it...

  5. Teaching science content in nursing programs in Australia: a cross-sectional survey of academics.

    Science.gov (United States)

    Birks, Melanie; Ralph, Nicholas; Cant, Robyn; Hillman, Elspeth; Chun Tie, Ylona

    2015-01-01

    Professional nursing practice is informed by biological, social and behavioural sciences. In undergraduate pre-registration nursing programs, biological sciences typically include anatomy, physiology, microbiology, chemistry, physics and pharmacology. The current gap in the literature results in a lack of information about the content and depth of biological sciences being taught in nursing curricula. The aim of this study was to establish what priority is given to the teaching of science topics in these programs in order to inform an understanding of the relative importance placed on this subject area in contemporary nursing education. This study employed a cross-sectional survey method. This paper reports on the first phase of a larger project examining science content in nursing programs. An existing questionnaire was modified and delivered online for completion by academics who teach science to nurses in these programs. This paper reports on the relative priority given by respondents to the teaching of 177 topics contained in the questionnaire. Of the relatively small population of academics who teach science to nursing students, thirty (n = 30) completed the survey. Findings indicate strong support for the teaching of science in these programs, with particular priority given to the basic concepts of bioscience and gross system anatomy. Of concern, most science subject areas outside of these domains were ranked as being of moderate or low priority. While the small sample size limited the conclusions able to be drawn from this study, the findings supported previous studies that indicated inadequacies in the teaching of science content in nursing curricula. Nevertheless, these findings have raised questions about the current philosophy that underpins nursing education in Australia and whether existing practices are clearly focused on preparing students for the demands of contemporary nursing practice. Academics responsible for the design and implementation of

  6. Enhancing the Math and Science Experiences of Latinas and Latinos: A Study of the Joaquin Bustoz Math-Science Honors Program

    Science.gov (United States)

    Escontrias, Gabriel, Jr.

    Latinas and Latinos are currently underrepresented in terms of our 21 st century student academic attainment and workforce, compared to the total U.S. Hispanic population. In a field such as mathematical sciences, Hispanic or Latino U.S. citizenship doctoral recipients only accounted for 3.04% in 2009--2010. While there are various initiatives to engage underrepresented STEM populations through education, there is a need to give a voice to the experiences of Latinas and Latinos engaged in such programs. This study explored the experiences of seven Arizona State University undergraduate Latina and Latino Joaquin Bustoz Math-Science Honors Program (JBMSHP) participants as well as examined how the program enhanced their math and science learning experiences. Participants attended either a five-week or eight-week program and ranged in attendance from 2006 to 2011. Students were provided an opportunity to begin university mathematics and science studies before graduating high school. Through a demographic survey and one-on-one guided interview, participants shared their personal journey, their experience in the JBMSHP, and their goals. Using grounded theory, a qualitative research approach, this study focuses on the unique experiences of Latina and Latino participants. Four major themes emerged from the analysis of the data. Each participant applied to the program with a foundation in which they sought to challenge themselves academically through mathematics and/or science. Through their involvement it the JBMSHP, participants recognized benefits during and after the program. All participants recognized the value of these benefits and their participation and praised the program. Overall, the JBMSHP provided the students the resources to grow their academic capital and if they chose seek a STEM related bachelor degree. The results of this study emphasize the need to expand the JBMSHP both within Arizona and nationally. In addition, there is a need to explore the other

  7. Uncertainties in projecting climate-change impacts in marine ecosystems

    DEFF Research Database (Denmark)

    Payne, Mark; Barange, Manuel; Cheung, William W. L.

    2016-01-01

    with a projection and building confidence in its robustness. We review how uncertainties in such projections are handled in marine science. We employ an approach developed in climate modelling by breaking uncertainty down into (i) structural (model) uncertainty, (ii) initialization and internal variability......Projections of the impacts of climate change on marine ecosystems are a key prerequisite for the planning of adaptation strategies, yet they are inevitably associated with uncertainty. Identifying, quantifying, and communicating this uncertainty is key to both evaluating the risk associated...... and highlight the opportunities and challenges associated with doing a better job. We find that even within a relatively small field such as marine science, there are substantial differences between subdisciplines in the degree of attention given to each type of uncertainty. We find that initialization...

  8. Conservation science for marine megafauna in Europe: Historical perspectives and future directions

    Science.gov (United States)

    Authier, M.; Spitz, J.; Blanck, A.; Ridoux, V.

    2017-07-01

    A broad range of marine species have been named as marine megafauna, however providing a precise definition of this term is difficult. It is not a taxonomically defined group, as it includes sea mammals, birds, reptiles, large fish and elasmobranchs (Fig. 1). Overall, marine megafauna species are large vertebrates that depend on marine resources for their food. These mobile species are generally at the top of their trophic food webs and have none or few predators. From the tiny storm-petrel to the gigantic blue whale, this group is biologically diverse and brings together species which cannot be strictly defined by morphological or physiological similarities. Rather, our perception of marine megafauna as a coherent group is based on ecological similarities and shared conservation issues. These species are exposed to similar threats and generally show limited resilience due to their intrinsic life history traits such as low fecundity rates and high longevity. Consequently, they share common conservation challenges (e.g. Hooker and Gerber, 2004; Lascelles et al., 2014).

  9. Center of Microbial Oceanography Research and Education (C-MORE) Initiatives Toward Promoting Diversity in the Ocean Sciences

    Science.gov (United States)

    Bruno, B. C.

    2007-05-01

    The ocean sciences suffer from a lack of diversity, particularly among indigenous peoples, despite the fact that indigenous peoples often have deep, cultural knowledge about the marine environment. Nowhere is this inequity more glaring than in Hawaii. Traditional knowledge in marine science enabled Native Hawaiians and Pacific Islanders (NHPI) to become world leaders in transpacific canoe voyaging, aquaculture, and fisheries. Yet today, NHPI are severely underrepresented in the ocean sciences (and in STEM fields in general) at all levels of education and employment. When compared to other ethnic and racial groups in Hawaii, NHPI students as a group have among the poorest educational performance, indicated in part by underrepresentation in college enrolment and pre-college gifted and talented programs, as well as overrepresentation in eligibility for special education and free and reduced lunch programs. The Center of Microbial Oceanography Research and Education (C-MORE), a NSF-funded, multi-institutional Science and Technology Center based at the University of Hawai (UH), is determined to address this inequity. C- MORE is committed to increasing diversity in the ocean sciences, particularly among NHPI, at all levels of education and research. Our approach is to work with existing programs with a track record of increasing diversity among NHPI. We are currently developing culturally relevant materials including educational games for K-12 students, mentorships for high school and community college students, and laboratory and shipboard experiences for teachers and undergraduates in partnership with minority-serving organizations. Some of our main partners are EPSCoR (Experimental Program to Stimulate Competitive Research), Ka `Imi `Ike (an NSF- funded program to recruit and retain NHPI undergraduates in geosciences), Upward Bound (an enrichment program for economically disadvantaged high school students which includes intensive summer courses), the UH Center on

  10. Motivating Young Native American Students to Pursue STEM Learning Through a Culturally Relevant Science Program

    Science.gov (United States)

    Stevens, Sally; Andrade, Rosi; Page, Melissa

    2016-12-01

    Data indicate that females and ethnic/race minority groups are underrepresented in the science and engineering workforce calling for innovative strategies to engage and retain them in science education and careers. This study reports on the development, delivery, and outcomes of a culturally driven science, technology, engineering, mathematics (STEM) program, iSTEM, aimed at increasing engagement in STEM learning among Native American 3rd-8th grade students. A culturally relevant theoretical framework, Funds of Knowledge, informs the iSTEM program, a program based on the contention that the synergistic effect of a hybrid program combining two strategic approaches (1) in-school mentoring and (2) out-of-school informal science education experiences would foster engagement and interest in STEM learning. Students are paired with one of three types of mentors: Native American community members, university students, and STEM professionals. The iSTEM program is theme based with all program activities specifically relevant to Native people living in southern Arizona. Student mentees and mentors complete interactive flash STEM activities at lunch hour and attend approximately six field trips per year. Data from the iSTEM program indicate that the program has been successful in engaging Native American students in iSTEM as well as increasing their interest in STEM and their science beliefs.

  11. Turkish Preservice Primary School Teachers' Science Teaching Efficacy Beliefs and Attitudes toward Science: The Effect of a Primary Teacher Education Program

    Science.gov (United States)

    Bayraktar, Sule

    2011-01-01

    The main purpose of this study was to investigate the effectiveness of a primary teacher education program in improving science teaching efficacy beliefs (personal science teaching efficacy beliefs and outcome expectancy beliefs) of preservice primary school teachers. The study also investigated whether the program has an effect on student…

  12. The Maryland nuclear science baccalaureate degree program: The utility perspective

    International Nuclear Information System (INIS)

    Mueller, J.R.

    1989-01-01

    In the early 1980s, Wisconsin Public Service Corporation (WPSC) made a firm commitment to pursue development and subsequent delivery of an appropriate, academically accredited program leading to a baccalaureate degree in nuclear science for its nuclear operations personnel. Recognizing the formidable tasks to be accomplished, WPSC worked closely with the University of Maryland University College (UMUC) in curriculum definition, specific courseware development for delivery by computer-aided instruction, individual student evaluation, and overall program implementation. Instruction began on our nuclear plant site in the fall of 1984. The university anticipates conferring the first degrees from this program at WPSC in the fall of 1989. There are several notable results that WPSC achieved from this degree program. First and most importantly, an increase in the level of education of our employees. It should be stated that this program has been well received by WPSC operator personnel. These employees, now armed with plant experience, a formal degree in nuclear science, and professional education in management are real candidates for advancement in our nuclear organization

  13. Atmospheric Sciences Program summaries of research in FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This document describes the activities and products of the Atmospheric Science Program of the Environmental Sciences Division, Office of Health and Environmental Research, Office of Energy Research, in FY 1993. Each description contains the project`s title; three-year funding history; the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date. Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states its goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used. This document has been indexed to aid the reader in locating research topics, participants, and research institutions in the text and the project descriptions. Comprehensive subject, principal investigator, and institution indexes are provided at the end of the text for this purpose. The comprehensive subject index includes keywords from the introduction and chapter texts in addition to those from the project descriptions.

  14. Marine Structural Biomaterials in Medical Biomimicry.

    Science.gov (United States)

    Green, David W; Lee, Jong-Min; Jung, Han-Sung

    2015-10-01

    Marine biomaterials display properties, behaviors, and functions that have not been artificially matched in relation to their hierarchical construction, crack-stopping properties, growth adaptation, and energy efficiency. The discovery and understanding of such features that are characteristic of natural biomaterials can be used to manufacture more energy-efficient and lightweight materials. However, a more detailed understanding of the design of natural biomaterials with good performance and the mechanism of their design is required. Far-reaching biomolecular characterization of biomaterials and biostructures from the ocean world is possible with sophisticated analytical methods, such as whole-genome RNA-seq, and de novo transcriptome sequencing and mass spectrophotometry-based sequencing. In combination with detailed material characterization, the elements in newly discovered biomaterials and their properties can be reconstituted into biomimetic or bio-inspired materials. A major aim of harnessing marine biomaterials is their translation into biomimetic counterparts. To achieve full translation, the genome, proteome, and hierarchical material characteristics, and their profiles in space and time, have to be associated to allow for smooth biomimetic translation. In this article, we highlight the novel science of marine biomimicry from a materials perspective. We focus on areas of material design and fabrication that have excelled in marine biological models, such as embedded interfaces, chiral organization, and the use of specialized composite material-on-material designs. Our emphasis is primarily on key materials with high value in healthcare in which we evaluate their future prospects. Marine biomaterials are among the most exquisite and powerful aspects in materials science today.

  15. Hypoxia in the changing marine environment

    International Nuclear Information System (INIS)

    Zhang, J; Cowie, G; Naqvi, S W A

    2013-01-01

    The predicted future of the global marine environment, as a combined result of forcing due to climate change (e.g. warming and acidification) and other anthropogenic perturbation (e.g. eutrophication), presents a challenge to the sustainability of ecosystems from tropics to high latitudes. Among the various associated phenomena of ecosystem deterioration, hypoxia can cause serious problems in coastal areas as well as oxygen minimum zones in the open ocean (Diaz and Rosenberg 2008 Science 321 926–9, Stramma et al 2008 Science 320 655–8). The negative impacts of hypoxia include changes in populations of marine organisms, such as large-scale mortality and behavioral responses, as well as variations of species distributions, biodiversity, physiological stress, and other sub-lethal effects (e.g. growth and reproduction). Social and economic activities that are related to services provided by the marine ecosystems, such as tourism and fisheries, can be negatively affected by the aesthetic outcomes as well as perceived or real impacts on seafood quality (STAP 2011 (Washington, DC: Global Environment Facility) p 88). Moreover, low oxygen concentration in marine waters can have considerable feedbacks to other compartments of the Earth system, like the emission of greenhouse gases to the atmosphere, and can affect the global biogeochemical cycles of nutrients and trace elements. It is of critical importance to prediction and adaptation strategies that the key processes of hypoxia in marine environments be precisely determined and understood (cf Zhang et al 2010 Biogeosciences 7 1–24). (synthesis and review)

  16. Ukrainian Program for Material Science in Microgravity

    Science.gov (United States)

    Fedorov, Oleg

    Ukrainian Program for Material Sciences in Microgravity O.P. Fedorov, Space Research Insti-tute of NASU -NSAU, Kyiv, The aim of the report is to present previous and current approach of Ukrainian research society to the prospect of material sciences in microgravity. This approach is based on analysis of Ukrainian program of research in microgravity, preparation of Russian -Ukrainian experiments on Russian segment of ISS and development of new Ukrainian strategy of space activity for the years 2010-2030. Two parts of issues are discussed: (i) the evolution of our views on the priorities in microgravity research (ii) current experiments under preparation and important ground-based results. item1 The concept of "space industrialization" and relevant efforts in Soviet and post -Soviet Ukrainian research institutions are reviewed. The main topics are: melt supercooling, crystal growing, testing of materials, electric welding and study of near-Earth environment. The anticipated and current results are compared. item 2. The main experiments in the framework of Ukrainian-Russian Research Program for Russian Segment of ISS are reviewed. Flight installations under development and ground-based results of the experiments on directional solidification, heat pipes, tribological testing, biocorrosion study is presented. Ground-based experiments and theoretical study of directional solidification of transparent alloys are reviewed as well as preparation of MORPHOS installation for study of succinonitrile -acetone in microgravity.

  17. Marine renewable energies: status and development perspectives

    International Nuclear Information System (INIS)

    2011-01-01

    This document proposes an overview of the marine renewable energy (MRE) market, of the development perspectives, of the industrial, academic and institutional actors, of current technologies and technologies under development, and of French and European research and development programs. These energies comprise: tidal energy, the exploitation of sea temperature differences with respect with depth, wave energy, marine current power energy, osmotic and marine biomass energy

  18. The Catalyst Scholarship Program at Hunter College. A Partnership among Earth Science, Physics, Computer Science and Mathematics

    Science.gov (United States)

    Salmun, Haydee; Buonaiuto, Frank

    2016-01-01

    The Catalyst Scholarship Program at Hunter College of The City University of New York (CUNY) was established with a four-year award from the National Science Foundation (NSF) to fund scholarships to 40 academically talented but financially disadvantaged students majoring in four disciplines of science, technology, engineering and mathematics…

  19. Montgomery Blair Science, Mathematics and Computer Science Magnet Program: A Successful Model for Meeting the Needs of Highly Able STEM Learners

    Science.gov (United States)

    Stein, David; Ostrander, Peter; Lee, G. Maie

    2016-01-01

    The Magnet Program at Montgomery Blair High School is an application-based magnet program utilizing a curriculum focused on science, mathematics, and computer science catering to interested, talented, and eager to learn students in Montgomery County, Maryland. This article identifies and discusses some of the unique aspects of the Magnet Program…

  20. An overview on integrated data system for archiving and sharing marine geology and geophysical data in Korea Institute of Ocean Science & Technology (KIOST)

    Science.gov (United States)

    Choi, Sang-Hwa; Kim, Sung Dae; Park, Hyuk Min; Lee, SeungHa

    2016-04-01

    We established and have operated an integrated data system for managing, archiving and sharing marine geology and geophysical data around Korea produced from various research projects and programs in Korea Institute of Ocean Science & Technology (KIOST). First of all, to keep the consistency of data system with continuous data updates, we set up standard operating procedures (SOPs) for data archiving, data processing and converting, data quality controls, and data uploading, DB maintenance, etc. Database of this system comprises two databases, ARCHIVE DB and GIS DB for the purpose of this data system. ARCHIVE DB stores archived data as an original forms and formats from data providers for data archive and GIS DB manages all other compilation, processed and reproduction data and information for data services and GIS application services. Relational data management system, Oracle 11g, adopted for DBMS and open source GIS techniques applied for GIS services such as OpenLayers for user interface, GeoServer for application server, PostGIS and PostgreSQL for GIS database. For the sake of convenient use of geophysical data in a SEG Y format, a viewer program was developed and embedded in this system. Users can search data through GIS user interface and save the results as a report.

  1. How can we make Science Education and Careers more attractive for Young People?

    Science.gov (United States)

    Knickmeier, K.; Kruse, K.

    2016-02-01

    The Kiel Science Factory (Kieler Forschungswerkstatt) is a school and teaching laboratory, which breaches the gap between school education and university research. Since opening in October 2012, 3.430 pupils worked at the Kiel Science Factory, and joined the different programs (ocean:lab, nano:lab, geo:lab), the numbers of visitors are increasing. The combination of experts in research and experts in education is very effective to attract young peoplés interest for a scientific career, to communicate science and to increase interest of teachers in current science. The biggest lab is the ocean:lab, it is jointly offered by Kiel University, Cluster of Excellence "Future Ocean" and Leibniz Institute for Science and Mathematics Education at Kiel University (IPN). The ocean:lab is addressing to school classes from grade 3 to 13, and it is strongly involved in pre-service teacher education. Appropriate to their respective level of study, pupils and students get fascinating insights into marine sciences and the working methods of real scientists. Furthermore teacher trainings and summer schools are producing an enthusiasm, which affects as well teachers as their students. The visiting pupils are mainly from Northern Germany, but also from e.g. Austria, Poland and Japan. Topics are the ocean as an ecosystem and how it is affected by anthropogenic impacts. The program offers an integrated investigation of the ecosystem "ocean" (from Plankton to marine mammals) with an interdisciplinary focus on biological aspects and abiotic factors of the habitat. In addition to pollution of the ocean through plastic waste and noise, the effects of climate change and eutrophication plays a role in discussions and tasks. New formats (e.g. an international Citizen Science Project and Expeditionary Learning) are carried out. The developed material is part of expedition boxes, which can be borrowed for project work in schools and science centers. http://www.forschungs-werkstatt.de/

  2. Ventures in science status report, Summer 1992. [Program description and Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Fredrick, Wayne C.

    1992-01-01

    The Ventures in Science summer program is directed towards students who are from underrepresented minority groups in mathematics and science professions. The target group of 40 was drawn from eligible students who will be entering high school freshman in the fall of 1992. 450 students applied. The theme for the summer is Chicago as an Ecosystem. The students are instructed in integrated math and science (2 hours), English/ESL (1 1/2 hrs.), counseling (1 hr.) and, physical education (1 hr.) each day four days a week. Integrated math and science are team taught. Parents are invited to participate in two workshops that will be presented based on their input. Parents may also visit the program at any time and participate in any field trip.

  3. Marine Litter, Eutrophication and Noise Assessment Tools

    Science.gov (United States)

    Palazov, Atanas; Velcheva, Maya; Milkova, Tanya; Slabakova, Violeta; Marinova, Veselka

    2017-04-01

    MARLEN - Marine Litter, Eutrophication and Noise Assessment Tools is a project under the Programme BG02.03: Increased capacity for assessing and predicting environmental status in marine and inland waters, managed by Bulgarian Ministry of environment and waters and co-financed by the Financial Mechanism of the European Economic Area (EEA FM) 2009 - 2014. Project Beneficiary is the Institute of oceanology - Bulgarian Academy of Sciences with two partners: Burgas municipality and Bulgarian Black Sea Basin Directorate. Initial assessment of ecological state of Bulgarian marine waters showed lack of data for some descriptors of MSFD. The main goal of MARLEN is to build up tools for assessment of marine environment by implementing new technologies and best practices for addressing three main areas of interest with lack of marine data in particular: a) Marine litter detection and classification in coastal areas; b) Regular near real time surface water eutrophication monitoring on large aquatory; c) Underwater noise monitoring. Developed tools are an important source of real time, near real time and delay mode marine data for Bulgarian Black Sea waters. The partnership within the project increased capacity for environmental assessments and training of personnel and enhances collaboration between scientific institutes, regional and local authorities. Project results supported implementation of MSFD in Bulgarian marine waters for the benefit of coastal population, marine industry, tourism, marine research and marine spatial planning.

  4. Sciences literacy on nutrition program for improving public wellness

    Science.gov (United States)

    Rochman, C.; Nasrudin, D.; Helsy, I.; Rokayah; Kusbudiah, Y.

    2018-05-01

    Increased wellness for a person becomes a necessity now and for the future. Various ways people do to get fit include following and understanding nutrition. This review will inventory the concepts of science involved to understand the nutritional program and its impact on fitness levels. The method used is a quantitative and qualitative descriptive mixed method based on treatment to a number of nutrition group participants in a nutrition group in Bandung. The concepts of science that are the subject of study are the concepts of physics, chemistry, and biology. The results showed that the ability of science literacy and respondent's wellness level varies and there is a relationship between science literacy with one's wellness level. The implications of this research are the need for science literacy and wellness studies for community based on educational level and more specific scientific concepts.

  5. Building Transferable Knowledge and Skills through an Interdisciplinary Polar Science Graduate Program

    Science.gov (United States)

    Culler, L. E.; Virginia, R. A.; Albert, M. R.; Ayres, M.

    2015-12-01

    Modern graduate education must extend beyond disciplinary content to prepare students for diverse careers in science. At Dartmouth, a graduate program in Polar Environmental Change uses interdisciplinary study of the polar regions as a core from which students develop skills and knowledge for tackling complex environmental issues that require cooperation across scientific disciplines and with educators, policy makers, and stakeholders. Two major NSF-funded initiatives have supported professional development for graduate students in this program, including an IGERT (Integrative Graduate Education and Research Traineeship) and leadership of JSEP's (Joint Science Education Project) Arctic Science Education Week in Greenland. We teach courses that emphasize the links between science and the human dimensions of environmental change; host training sessions in science communication; invite guest speakers who work in policy, academia, journalism, government research, etc.; lead an international field-based training that includes policy-focused meetings and a large outreach component; provide multiple opportunities for outreach and collaboration with local schools; and build outreach and education into graduate research programs where students instruct and mentor high school students. Students from diverse scientific disciplines (Ecology, Earth Science, and Engineering) participate in all of the above, which significantly strengthens their interdisciplinary view of polar science and ability to communicate across disciplines. In addition, graduate students have developed awareness, confidence, and the skills to pursue and obtain diverse careers. This is reflected in the fact that recent graduates have acquired permanent and post-doctoral positions in academic and government research, full-time teaching, and also in post-docs focused on outreach and science policy. Dartmouth's interdisciplinary approach to graduate education is producing tomorrow's leaders in science.

  6. Biodiversity research sets sail: showcasing the diversity of marine life.

    Science.gov (United States)

    Webb, Thomas J

    2009-04-23

    The World Congress on Marine Biodiversity was held in the City of Arts and Sciences, Valencia, from 10 to 15 November 2008, showcasing research on all aspects of marine biodiversity from basic taxonomic exploration to innovative conservation strategies and methods to integrate research into environmental policy.

  7. Teaching implementation science in a new Master of Science Program in Germany: a survey of stakeholder expectations.

    Science.gov (United States)

    Ullrich, Charlotte; Mahler, Cornelia; Forstner, Johanna; Szecsenyi, Joachim; Wensing, Michel

    2017-04-27

    Implementation science in healthcare is an evolving discipline in German-speaking countries. In 2015, the Medical Faculty of the University of Heidelberg, Germany, implemented a two-year full-time Master of Science program Health Services Research and Implementation Science. The curriculum introduces implementation science in the context of a broader program that also covers health services research, healthcare systems, research methods, and generic academic skills. Our aim was to assess the expectations of different stakeholder groups regarding the master's program. An online survey listing desired competencies of prospective graduates was developed and administered to four groups: national experts in the field (including potential employers of graduates), teaching staff, enrolled students, and prospective students (N = 169). Competencies were extracted from the curriculum's module handbook. A five-point Likert scale was used for the assessment of 42 specific items. Data were analyzed descriptively. A total of 83 people participated in the survey (response rate 49%). The online survey showed a strong agreement across the groups concerning the desired competencies of graduates. About two-thirds of the listed competencies (27 items) were felt to be crucial or very important by 80% or more of participants, with little difference between stakeholder groups. Of the eight items specifically related to implementation in practice, six were in this category. Knowledge of implementation strategies (90% very important), knowledge of barriers and enablers of implementation (89%), and knowledge of evidence-based practice (89%) were the top priorities. The master's program is largely orientated towards the desired competencies of graduates according to students, teaching staff, and national experts.

  8. Citizen science and natural resource governance: program design for vernal pool policy innovation

    Directory of Open Access Journals (Sweden)

    Bridie McGreavy

    2016-06-01

    Full Text Available Effective natural resource policy depends on knowing what is needed to sustain a resource and building the capacity to identify, develop, and implement flexible policies. This retrospective case study applies resilience concepts to a 16-year citizen science program and vernal pool regulatory development process in Maine, USA. We describe how citizen science improved adaptive capacities for innovative and effective policies to regulate vernal pools. We identified two core program elements that allowed people to act within narrow windows of opportunity for policy transformation, including (1 the simultaneous generation of useful, credible scientific knowledge and construction of networks among diverse institutions, and (2 the formation of diverse leadership that promoted individual and collective abilities to identify problems and propose policy solutions. If citizen science program leaders want to promote social-ecological systems resilience and natural resource policies as outcomes, we recommend they create a system for internal project evaluation, publish scientific studies using citizen science data, pursue resources for program sustainability, and plan for leadership diversity and informal networks to foster adaptive governance.

  9. Bay in Flux: Marine Climate Impacts, Art and Tablet App Design

    Science.gov (United States)

    Kintisch, E. S.

    2012-12-01

    Bay in Flux is a year-long experimental effort to design and develop interactive tablet computer apps exploring the marine impacts of climate change. The goal is to convey, visualize and enliven scientific ideas around this topic, while engaging a broad audience through the design of interactive content. Pioneering new models of scientist-artist collaborations are a central part of the effort as well. The project begins with an innovative studio class at the Rhode Island School of Design (RISD) called Bay in Flux, taught in the Fall 2012 semester. Its three instructor team includes two artist-designers and one science reporter, with active collaborations from affiliated marine scientists. The subject matter focus is the Narragansett Bay, which has shown physical, chemical and ecological impacts of climate change, along with the ongoing efforts of researchers to explain and characterize it. In exploring this rich story, we intend to innovate pioneering means of handling narrative material on interactive e-books, enable data collection by citizen scientists or devise game-like simulations to enable audiences to explore and understand complex natural systems. The lessons we seek to learn in this project include: how to effectively encourage collaborations between scientists and designers around digital design; how to pioneer new and compelling ways to tell science-based nonfiction stories on tablets; and how art and design students with no scientific training can engage with complex scientific content effectively. The project will also challenge us to think about the tablet computer not only as a data output device -- in which the user reads, watches, or interacts with provided content -- but also as a dynamic and ideal tool for mobile data input, enabling citizen science projects and novel connections between working researchers and the public. The intended audience could include high school students or older audiences who currently eschew science journalism. HTML5

  10. Silicon Carbide Defect Qubits/Quantum Memory with Field-Tuning: OSD Quantum Science and Engineering Program (QSEP)

    Science.gov (United States)

    2017-08-01

    TECHNICAL REPORT 3073 August 2017 Silicon Carbide Defect Qubits/Quantum Memory with Field-tuning: OSD Quantum Science and Engineering Program...Quantum Science and Engineering Program) by the Advanced Concepts and Applied Research Branch (Code 71730), the Energy and Environmental Sustainability...the Secretary of Defense (OSD) Quantum Science and Engineering Program (QSEP). Their collaboration topic was to examine the effect of electric-field

  11. THE INCORPORATION OF THE USA ‘SCIENCE MADE SENSIBLE’ PROGRAM IN SOUTH AFRICAN PRIMARY SCHOOLS: A CROSS-CULTURAL APPROACH TO SCIENCE EDUCATION

    Directory of Open Access Journals (Sweden)

    Rian de Villiers

    2016-02-01

    Full Text Available The Science Made Sensible (SMS program began as a partnership between the University of Miami (UM, Florida, USA, and some public schools in Miami. In this program, postgraduate students from UM work with primary school science teachers to engage learners in science through the use of inquiry-based, hands-on activities. Due to the success of the SMS program in Miami, it was extended internationally. The SMS team (two Miami Grade 6/7 science teachers and two UM postgraduate students, 195 learners, and five South African teachers at two primary schools in Pretoria, South Africa, participated in this study. A quantitative research design was employed, and learners, teachers and UM postgraduate students used questionnaires to evaluate the SMS program. The results show that the SMS team was successful in reaching the SMS goals in these South African schools. More than 90% of the learners are of opinion that the SMS team from the USA made them more interested in the natural sciences and fostered an appreciation for the natural sciences. All the South African teachers plan to adopt and adapt some of the pedagogical strategies they learned from the SMS team. This article includes a discussion about the benefits of inquiry-based learning and the similarities and dissimilarities of USA and South Africa’s teaching methods in the science classrooms.

  12. Rationalization and Internal Control: Improving Marine Corps Unit-Level Internal Management Controls for the Government-Wide Commercial Purchase Card Program

    National Research Council Canada - National Science Library

    Wood, Lewis

    2003-01-01

    ... Commercial Purchase Card (GCPC) Program for the first half of fiscal year (FY) 2003, led the author of this article to review GCPC usage in the Marine Corps as the basis for a Naval Postgraduate School Master of Business Administration thesis...

  13. Conceptions of Teaching Science Held by Novice Teachers in an Alternative Certification Program

    Science.gov (United States)

    Koballa, Thomas R.; Glynn, Shawn M.; Upson, Leslie

    2005-01-01

    Case studies to investigate the conceptions of teaching science held by three novice teachers participating in an alternative secondary science teacher certification program were conducted, along with the relationships between their conceptions of science teaching and their science teaching practice. Data used to build the cases included the…

  14. Materials Sciences programs, Fiscal Year 1992

    International Nuclear Information System (INIS)

    1993-02-01

    The Materials Sciences Division supports basic research on materials properties and phenomena important to all energy systems. This report contains a listing of research underway in FY 1992 together with an index to the Division's programs. Recent publications from Division-sponsored panel meetings and workshops are listed. The body of the report is arranged under the following section headings: laboratories, grant and contract research, small business innovation research, major user facilities, other user facilities, funding levels, and index

  15. Understanding science teacher enhancement programs: Essential components and a model

    Science.gov (United States)

    Spiegel, Samuel Albert

    Researchers and practioners alike recognize that "the national goal that every child in the United States has access to high-quality school education in science and mathematics cannot be realized without the availability of effective professional development of teachers" (Hewson, 1997, p. 16). Further, there is a plethora of reports calling for the improvement of professional development efforts (Guskey & Huberman, 1995; Kyle, 1995; Loucks-Horsley, Hewson, Love, & Stiles, 1997). In this study I analyze a successful 3-year teacher enhancement program, one form of professional development, to: (1) identify essential components of an effective teacher enhancement program; and (2) create a model to identify and articulate the critical issues in designing, implementing, and evaluating teacher enhancement programs. Five primary sources of information were converted into data: (1) exit questionnaires, (2) exit surveys, (3) exit interview transcripts, (4) focus group transcripts, and (5) other artifacts. Additionally, a focus group was used to conduct member checks. Data were analyzed in an iterative process which led to the development of the list of essential components. The Components are categorized by three organizers: Structure (e.g., science research experience, a mediator throughout the program), Context (e.g., intensity, collaboration), and Participant Interpretation (e.g., perceived to be "safe" to examine personal beliefs and practices, actively engaged). The model is based on: (1) a 4-year study of a successful teacher enhancement program; (2) an analysis of professional development efforts reported in the literature; and (3) reflective discussions with implementors, evaluators, and participants of professional development programs. The model consists of three perspectives, cognitive, symbolic interaction, and organizational, representing different viewpoints from which to consider issues relevant to the success of a teacher enhancement program. These

  16. Long-Term Stewardship Program Science and Technology Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Joan McDonald

    2002-09-01

    Many of the United States’ hazardous and radioactively contaminated waste sites will not be sufficiently remediated to allow unrestricted land use because funding and technology limitations preclude cleanup to pristine conditions. This means that after cleanup is completed, the Department of Energy will have long-term stewardship responsibilities to monitor and safeguard more than 100 sites that still contain residual contamination. Long-term stewardship encompasses all physical and institutional controls, institutions, information, and other mechanisms required to protect human health and the environment from the hazards remaining. The Department of Energy Long-Term Stewardship National Program is in the early stages of development, so considerable planning is still required to identify all the specific roles and responsibilities, policies, and activities needed over the next few years to support the program’s mission. The Idaho National Engineering and Environmental Laboratory was tasked with leading the development of Science and Technology within the Long-Term Stewardship National Program. As part of that role, a task was undertaken to identify the existing science and technology related requirements, identify gaps and conflicts that exist, and make recommendations to the Department of Energy for future requirements related to science and technology requirements for long-term stewardship. This work is summarized in this document.

  17. SoTL as a Subfield for Political Science Graduate Programs

    Science.gov (United States)

    Trepanier, Lee

    2017-01-01

    This article offers a theoretical proposal of how political science graduate programs can emphasize teaching in the discipline by creating the subfield of the scholarship of teaching and learning (SoTL). Currently, these programs neither prepare their students for academic positions where teaching is valued nor participate in a disciplinary trend…

  18. Science Teacher Leadership: Learning from a Three-Year Leadership Program

    Science.gov (United States)

    Luft, Julie A.; Dubois, Shannon L.; Kaufmann, Janey; Plank, Larry

    2016-01-01

    Teachers are professional learners and leaders. They seek to understand how their students learn, and they participate in programs that provide new instructional skills, curricular materials, and ways to become involved in their community. This study follows a science teacher leadership program over a three-year period of time. There were…

  19. Member Perceptions of Informal Science Institution Graduate Certificate Program: Case Study of a Community of Practice

    Science.gov (United States)

    Ball, Lois A.

    This research attempted to understand the experiences of a cohort of informal and formal science educators and informal science institution (ISI) community representatives during and after completion of a pilot graduate certificate program. Informal science educators (ISEs) find limited opportunities for professional development and support which influence their contributions to America's science literacy and school science education. This emergent design nested case study described how an innovative program provided professional development and enabled growth in participants' abilities to contribute to science literacy. Data were collected through interviews, participant observations, and class artifacts. The program by design and constituency was the overarching entity that accounted for members' experiences. Three principal aspects of the ISI certificate program and cohort which influenced perceptions and reported positive outcomes were (1) the cohort's composition and their collaborative activities which established a vigorous community of practice and fostered community building, mentoring, and networking, (2) long term program design and implementation which promoted experiential learning in a generative classroom, and (3) ability of some members who were able to be independent or autonomous learners to embrace science education reform strategies for greater self-efficacy and career advancement. This research extends the limited literature base for professional development of informal science educators and may benefit informal science institutions, informal and formal science educators, science education reform efforts, and public education and science-technology-society understanding. The study may raise awareness of the need to establish more professional development opportunities for ISEs and to fund professional development. Further, recognizing and appreciating informal science educators as a diverse committed community of professionals who positively

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J Barnes. Articles written in Journal of Earth System Science. Volume 115 Issue 4 August 2006 pp 451-460 Special Section on: Material exchanges at marine boundaries and surface ocean processes: Forcings and feedbacks. Spatial and temporal distribution of methane in ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A Shalini. Articles written in Journal of Earth System Science. Volume 115 Issue 4 August 2006 pp 451-460 Special Section on: Material exchanges at marine boundaries and surface ocean processes: Forcings and feedbacks. Spatial and temporal distribution of methane in ...

  2. Summer Undergraduate Research Program: Environmental studies

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, J. [ed.

    1994-12-31

    The purpose of the summer undergraduate internship program for research in environmental studies is to provide an opportunity for well-qualified students to undertake an original research project as an apprentice to an active research scientist in basic environmental research. The students are offered research topics at the Medical University in the scientific areas of pharmacology and toxicology, epidemiology and risk assessment, environmental microbiology, and marine sciences. Students are also afforded the opportunity to work with faculty at the University of Charleston, SC, on projects with an environmental theme. Ten well-qualified students from colleges and universities throughout the eastern United States were accepted into the program.

  3. Review of the Fusion Theory and Computing Program. Fusion Energy Sciences Advisory Committee (FESAC)

    International Nuclear Information System (INIS)

    Antonsen, Thomas M.; Berry, Lee A.; Brown, Michael R.; Dahlburg, Jill P.; Davidson, Ronald C.; Greenwald, Martin; Hegna, Chris C.; McCurdy, William; Newman, David E.; Pellegrini, Claudio; Phillips, Cynthia K.; Post, Douglass E.; Rosenbluth, Marshall N.; Sheffield, John; Simonen, Thomas C.; Van Dam, James

    2001-01-01

    At the November 14-15, 2000, meeting of the Fusion Energy Sciences Advisory Committee, a Panel was set up to address questions about the Theory and Computing program, posed in a charge from the Office of Fusion Energy Sciences (see Appendix A). This area was of theory and computing/simulations had been considered in the FESAC Knoxville meeting of 1999 and in the deliberations of the Integrated Program Planning Activity (IPPA) in 2000. A National Research Council committee provided a detailed review of the scientific quality of the fusion energy sciences program, including theory and computing, in 2000.

  4. An Examination of Drag Reduction Mechanisms in Marine Animals, with Potential Applications to Uninhabited Aerial Vehicles

    Science.gov (United States)

    Musick, John A.; Patterson, Mark R.; Dowd, Wesley W.

    2002-01-01

    Previous engineering research and development has documented the plausibility of applying biomimetic approaches to aerospace engineering. Past cooperation between the Virginia Institute of Marine Science (VIMS) and NASA focused on the drag reduction qualities of the microscale dermal denticles of shark skin. This technology has subsequently been applied to submarines and aircraft. The present study aims to identify and document the three-dimensional geometry of additional macroscale morphologies that potentially confer drag reducing hydrodynamic qualities upon marine animals and which could be applied to enhance the range and endurance of Uninhabited Aerial Vehicles (UAVs). Such morphologies have evolved over eons to maximize organismal energetic efficiency by reducing the energetic input required to maintain cruising speeds in the viscous marine environment. These drag reduction qualities are manifested in several groups of active marine animals commonly encountered by ongoing VIMS research programs: namely sharks, bony fishes such as tunas, and sea turtles. Through spatial data acquired by molding and digital imagery analysis of marine specimens provided by VIMS, NASA aims to construct scale models of these features and to test these potential drag reduction morphologies for application to aircraft design. This report addresses the efforts of VIMS and NASA personnel on this project between January and November 2001.

  5. Marine resources, biophysical processes, and environmental management of a tropical shelf seaway: Torres Strait, Australia Introduction to the special issue

    Science.gov (United States)

    Harris, P. T.; Butler, A. J.; Coles, R. G.

    2008-09-01

    This special issue of Continental Shelf Research contains 20 papers giving research results produced as part of Australia's Torres Strait Co-operative Research Centre (CRC) Program, which was funded over a three-year period during 2003-2006. Marine biophysical, fisheries, socioeconomic-cultural and extension research in the Torres Strait region of northeastern Australia was carried out to meet three aims: 1) support the sustainable development of marine resources and minimize impacts of resource use in Torres Strait; 2) enhance the conservation of the marine environment and the social, cultural and economic well being of all stakeholders, particularly the Torres Strait peoples; and 3) contribute to effective policy formulation and management decision making. Subjects covered, including commercial and traditional fisheries management, impacts of anthropogenic sediment inputs on seagrass meadows and communication of science results to local communities, have broad applications to other similar environments.

  6. Availability, Uniqueness and Perceived Value of Bachelor of Science in Pharmaceutical Sciences (BSPS Programs in the United States

    Directory of Open Access Journals (Sweden)

    Rabaa M. Al-Rousan

    2013-12-01

    Full Text Available We describe the uniqueness of the Bachelor of Science in Pharmaceutical Sciences (BSPS degree and the factors that contribute to this uniqueness. A total of 18 colleges and schools that offer a BSPS were identified in the literature and compared. A review of the current literature and university websites was conducted in order to compare and contrast the different BSPS programs. BSPS program directors’ perceptions were evaluated through a 14-item online survey instrument. Of the 16 programs surveyed, seven (43.8% responded to the survey. The respondents agreed that most of the BSPS graduates are placed (from the highest to the lowest at pharmacy school, postgraduate education and in the pharmaceutical industry. This is a timely review of coursework, program lengths and job opportunities for graduates of the BSPS. Currently, the BSPS programs have yet to receive a large amount of attention, but the importance in pharmaceutical education cannot be denied.

  7. Research in space science and technology. Semiannual progress report

    International Nuclear Information System (INIS)

    Beckley, L.E.

    1977-08-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed

  8. Gender Differences in the Use of Computers, Programming, and Peer Interactions in Computer Science Classrooms

    Science.gov (United States)

    Stoilescu, Dorian; Egodawatte, Gunawardena

    2010-01-01

    Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new…

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K Krishnamoorthy. Articles written in Journal of Earth System Science. Volume 111 Issue 4 December 2002 pp 425-435. Detection of marine aerosols with IRS P4-Ocean Colour Monitor · Indrani Das M Mohan K Krishnamoorthy · More Details Abstract Fulltext PDF.

  10. [Environmental Hazards Assessment Program annual report, June 1992--June 1993

    International Nuclear Information System (INIS)

    McMillan, J.

    1993-01-01

    The purpose of the summer undergraduate internship program for research in environmental studies is to provide an opportunity for well-qualified students to undertake an original research project as an apprentice to an active research scientist in basic environmental research. Ten students from throughout the midwestern and eastern areas of the country were accepted into the program. These students selected projects in the areas of marine sciences, biostatistics and epidemiology, and toxicology. The research experience for all these students and their mentors was very positive. The seminars were well attended and the students showed their interest in the presentations and environmental sciences as a whole by presenting the speakers with thoughtful and intuitive questions. This report contains the research project written presentations prepared by the student interns

  11. Partners in Science: A Model Cooperative Program Introducing High School Teachers and Students to Leading-Edge Pharmaceutical Science

    Science.gov (United States)

    Woska, Joseph R., Jr.; Collins, Danielle M.; Canney, Brian J.; Arcario, Erin L.; Reilly, Patricia L.

    2005-12-01

    Partners in Science is a cooperative program between Boehringer Ingelheim Pharmaceuticals, Inc. and area high schools in the community surrounding our Connecticut campus. It is a two-phase program that introduces high school students and teachers to the world of drug discovery and leading-edge pharmaceutical research. Phase 1 involves a series of lectures, tours, and demonstrations given by scientists within our research and development division (R&D). Phase 2 involves the selection of a small group of participants to intern for the summer in a research laboratory, working side by side with a scientist within R&D. In this manuscript, the specific aims, goals, and development of the Partners in Science program are described, as well as the syllabus/agenda, the logistics surrounding the operation of the program, and our shared personal experiences with students and teachers who have participated. Some of the pitfalls/problems associated with the program will be presented, and finally, the future direction of the program including areas of improvement and expansion are described.

  12. Increased Science Instrumentation Funding Strengthens Mars Program

    Science.gov (United States)

    Graham, Lee D.; Graff, T. G.

    2012-01-01

    As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest.

  13. [Development of an advanced education program for community medicine by Nagasaki pharmacy and nursing science union consortium].

    Science.gov (United States)

    Teshima, Mugen; Nakashima, Mikiro; Hatakeyama, Susumi

    2012-01-01

    The Nagasaki University School of Pharmaceutical Sciences has conducted a project concerning "development of an advanced education program for community medicine" for its students in collaboration with the University's School of Nursing Sciences, the University of Nagasaki School of Nursing Sciences, and the Nagasaki International University School of Pharmaceutical Sciences. The project was named "formation of a strategic base for the integrated education of pharmacy and nursing science specially focused on home-healthcare and welfare", that has been adopted at "Strategic University Cooperative Support Program for Improving Graduate" by the Ministry of Education, Culture, Sports, Science and Technology, Japan from the 2009 academic year to the 2011 academic year. Our project is a novel education program about team medical care in collaboration with pharmacist and nurse. In order to perform this program smoothly, we established "Nagasaki pharmacy and nursing science union consortium (Nagasaki University, The University of Nagasaki, Nagasaki International University, Nagasaki Pharmaceutical Association, Nagasaki Society of Hospital Pharmacists, Nagasaki Nursing Association, Nagasaki Medical Association, Nagasaki Prefectural Government)". In this symposium, we introduce contents about university education program and life learning program of the project.

  14. Understanding Science and Technology Interactions Through Ocean Science Exploration: A Summer Course for Science Teachers

    Science.gov (United States)

    Baldauf, J.; Denton, J.

    2003-12-01

    In order to replenish the national supply of science and mathematics educators, the National Science Foundation has supported the formation of the Center for Applications of Information Technology in the Teaching and Learning of Science (ITS) at Texas A&M University. The center staff and affiliated faculty work to change in fundamental ways the culture and relationships among scientists, educational researchers, and teachers. ITS is a partnership among the colleges of education, science, geosciences, agriculture and life science at Texas A&M University. Participants (teachers and graduate students) investigate how science is done and how science is taught and learned; how that learning is assessed, and how scholarly networks among all engaged in this work can be encouraged. While the center can offer graduate degrees most students apply as non-degree seekers. ITS participants are schooled on classroom technology applications, experience working on project teams, and access very current research work being conducted by scientists. ITS offers a certificate program consisting of two summer sessions over two years that results in 12 hours of graduate credit that can be applied to a degree. Interdisciplinary project teams spend three intense weeks connecting current research to classroom practices. During the past summer with the beginning of the two-year sequence, a course was implemented that introduced secondary teachers to Ocean Drilling Program (ODP) contributions to major earth science themes, using core and logging data, engineering (technology) tools and processes. Information Technology classroom applications were enhanced through hands-on laboratory exercises, web resources and online databases. The course was structured around the following objectives. 1. Distinguish the purpose and goals of the Ocean Drilling Program from the Integrated Ocean Drilling Program and describe the comparable science themes (ocean circulation, marine sedimentation, climate history

  15. Python in the NERSC Exascale Science Applications Program for Data

    Energy Technology Data Exchange (ETDEWEB)

    Ronaghi, Zahra; Thomas, Rollin; Deslippe, Jack; Bailey, Stephen; Gursoy, Doga; Kisner, Theodore; Keskitalo, Reijo; Borrill, Julian

    2017-11-12

    We describe a new effort at the National Energy Re- search Scientific Computing Center (NERSC) in performance analysis and optimization of scientific Python applications targeting the Intel Xeon Phi (Knights Landing, KNL) many- core architecture. The Python-centered work outlined here is part of a larger effort called the NERSC Exascale Science Applications Program (NESAP) for Data. NESAP for Data focuses on applications that process and analyze high-volume, high-velocity data sets from experimental/observational science (EOS) facilities supported by the US Department of Energy Office of Science. We present three case study applications from NESAP for Data that use Python. These codes vary in terms of “Python purity” from applications developed in pure Python to ones that use Python mainly as a convenience layer for scientists without expertise in lower level programming lan- guages like C, C++ or Fortran. The science case, requirements, constraints, algorithms, and initial performance optimizations for each code are discussed. Our goal with this paper is to contribute to the larger conversation around the role of Python in high-performance computing today and tomorrow, highlighting areas for future work and emerging best practices

  16. Global Journal of Geological Sciences

    African Journals Online (AJOL)

    Global Journal of Geological Sciences is aimed at promoting research in all areas of Geological Sciences including geochemistry, geophysics, engineering geology, hydrogeology, petrology, mineralogy, geochronology, tectonics, mining, structural geology, marine geology, space science etc. Visit the Global Journal Series ...

  17. Marine Natural Products from New Caledonia—A Review

    Directory of Open Access Journals (Sweden)

    Sofia-Eléna Motuhi

    2016-03-01

    Full Text Available Marine micro- and macroorganisms are well known to produce metabolites with high biotechnological potential. Nearly 40 years of systematic prospecting all around the New Caledonia archipelago and several successive research programs have uncovered new chemical leads from benthic and planktonic organisms. After species identification, biological and/or pharmaceutical analyses are performed on marine organisms to assess their bioactivities. A total of 3582 genera, 1107 families and 9372 species have been surveyed and more than 350 novel molecular structures have been identified. Along with their bioactivities that hold promise for therapeutic applications, most of these molecules are also potentially useful for cosmetics and food biotechnology. This review highlights the tremendous marine diversity in New Caledonia, and offers an outline of the vast possibilities for natural products, especially in the interest of pursuing collaborative fundamental research programs and developing local biotechnology programs.

  18. A Primary Grade (K-3) Earth Science Program

    Science.gov (United States)

    Schwartz, Maurice L.; Slesnick, Irwin L.

    1973-01-01

    Describes the rationale and structure of a newly developed earth science program for elementary school children (K-3). The activities involve pre-operational and concrete operational stages, progressing from one to the other. Children show sustained interest and enthusiasm as they investigate landforms, the moon, fossils, and weather phenomena.…

  19. Science programs in Kansas

    Science.gov (United States)

    Kramer, Ariele R.; Kelly, Brian P.

    2017-05-08

    The U.S. Geological Survey (USGS) is a non-regulatory Earth science agency within the Department of the Interior that provides impartial scientific information to describe and understand the health of our ecosystems and environment; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. The USGS cooperates with Federal, State, tribal, and local agencies in Kansas to deliver long-term data in real-time and interpretive reports describing what those data mean to the public and resource management agencies. USGS science programs in Kansas provide real-time groundwater monitoring at more than 23 locations; streamflow monitoring at more than 218 locations; water-quality and trends in the Little Arkansas and Kansas Rivers; inflows and outflows of sediment to/from reservoirs and in streams; harmful algal bloom research in the Kansas River, Milford Lake, and Cheney Reservoir; water-quantity and water-quality effects of artificial groundwater recharge for the Equus Beds Aquifer Storage and Recovery project near Wichita, Kansas; compilation of Kansas municipal and irrigation water-use data statewide; the occurrence, effects, and movement of environmental pesticides, antibiotics, algal toxins, and taste-and-odor compounds; and funding to the Kansas Water Resources Research Institute to further research and education through Kansas universities.

  20. Marine geophysics. By E.J.W. Jones

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, D.G.

    .Earth-Science Reviews 52 2001 381–384 www.elsevier.comrlocaterearscirev Book reviews Marine Geophysics E.J.W. Jones, University College, London, UK, Wiley, Chichester, West Sussex PO19IUD, England, 1999, 466 pp. As a practicing marine geophysicist working... principles, theory, state-of-the-art instruments, latest techniques in data acquisition, processing and interpretation. The book contains 16 chapters, in which the author has done commendable job in presenting the best examples of case studies in critical...