WorldWideScience

Sample records for marine salinities isotope

  1. Study of groundwater salinization in Chaj Doab using environmental isotopes

    International Nuclear Information System (INIS)

    Hussain, S.D.; Sajjid, M.I.; Akram, W.; Ahmad, M.; Rafiq, M.

    1991-09-01

    Environmental isotopes and chemical composition of water have been used to study the origin of groundwater salinity in Chaj Doab. Three important possible processes of salinization i.e. enrichment of salt content of water by evaopration, mixing with connate marine water and dissolution of salts from soil sediments have been investigated. No evidence for mixing with connate maine water could be found. The process of evaporation too does not seem to apply any significant role in salinization of groundwater. The dissolution of salts from soil sediments appears as dominant mechanism for increasing the salt content of water in this area. (author)

  2. Investigations in Marine Chemistry: Salinity II.

    Science.gov (United States)

    Schlenker, Richard M.

    Presented is a science activity in which the student investigates methods of calibration of a simple conductivity meter via a hands-on inquiry technique. Conductivity is mathematically compared to salinity using a point slope formula and graphical techniques. Sample solutions of unknown salinity are provided so that the students can sharpen their…

  3. Investigations in Marine Chemistry: Salinity I.

    Science.gov (United States)

    Schlenker, Richard M.

    Presented is a unit designed for curriculum infusion and which relies on the hands-on discovery method as an instructive device. The student is introduced to the theory of a functioning salt water conductivity meter. The student explores the resistance of salt water as salinity increases and he treats the data which he has gathered,…

  4. Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by Emiliania huxleyi

    Directory of Open Access Journals (Sweden)

    G. M. Weiss

    2017-12-01

    Full Text Available Over the last decade, hydrogen isotopes of long-chain alkenones have been shown to be a promising proxy for reconstructing paleo sea surface salinity due to a strong hydrogen isotope fractionation response to salinity across different environmental conditions. However, to date, the decoupling of the effects of alkalinity and salinity, parameters that co-vary in the surface ocean, on hydrogen isotope fractionation of alkenones has not been assessed. Furthermore, as the alkenone-producing haptophyte, Emiliania huxleyi, is known to grow in large blooms under high light intensities, the effect of salinity on hydrogen isotope fractionation under these high irradiances is important to constrain before using δDC37 to reconstruct paleosalinity. Batch cultures of the marine haptophyte E. huxleyi strain CCMP 1516 were grown to investigate the hydrogen isotope fractionation response to salinity at high light intensity and independently assess the effects of salinity and alkalinity under low-light conditions. Our results suggest that alkalinity does not significantly influence hydrogen isotope fractionation of alkenones, but salinity does have a strong effect. Additionally, no significant difference was observed between the fractionation responses to salinity recorded in alkenones grown under both high- and low-light conditions. Comparison with previous studies suggests that the fractionation response to salinity in culture is similar under different environmental conditions, strengthening the use of hydrogen isotope fractionation as a paleosalinity proxy.

  5. Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by Emiliania huxleyi

    Science.gov (United States)

    Weiss, Gabriella M.; Pfannerstill, Eva Y.; Schouten, Stefan; Sinninghe Damsté, Jaap S.; van der Meer, Marcel T. J.

    2017-12-01

    Over the last decade, hydrogen isotopes of long-chain alkenones have been shown to be a promising proxy for reconstructing paleo sea surface salinity due to a strong hydrogen isotope fractionation response to salinity across different environmental conditions. However, to date, the decoupling of the effects of alkalinity and salinity, parameters that co-vary in the surface ocean, on hydrogen isotope fractionation of alkenones has not been assessed. Furthermore, as the alkenone-producing haptophyte, Emiliania huxleyi, is known to grow in large blooms under high light intensities, the effect of salinity on hydrogen isotope fractionation under these high irradiances is important to constrain before using δDC37 to reconstruct paleosalinity. Batch cultures of the marine haptophyte E. huxleyi strain CCMP 1516 were grown to investigate the hydrogen isotope fractionation response to salinity at high light intensity and independently assess the effects of salinity and alkalinity under low-light conditions. Our results suggest that alkalinity does not significantly influence hydrogen isotope fractionation of alkenones, but salinity does have a strong effect. Additionally, no significant difference was observed between the fractionation responses to salinity recorded in alkenones grown under both high- and low-light conditions. Comparison with previous studies suggests that the fractionation response to salinity in culture is similar under different environmental conditions, strengthening the use of hydrogen isotope fractionation as a paleosalinity proxy.

  6. Assessment of groundwater salinization mechanisms in Santiago Island - Cabo Verde: An environmental isotopic approach

    International Nuclear Information System (INIS)

    Carreira, P.M.; Nunes, D.; Marques, J.M.; Pina, A.; Mota Gomes, A.; Almeida, E.; Goncalves, R.; Monteiro Santos, F.

    2007-01-01

    Two sampling campaigns were carried out at Santiago Island - Cabo Verde under the scope of an isotopic and geochemical research study. An evaluation of the groundwater systems was carried out through the application of environmental isotopes and geochemical data in order to answer questions such as: origin and mechanisms of groundwater recharge; relation between the hydrochemical evolution of the groundwater systems with the geological matrix (minerals dissolution) or mixture with seawater and aerosol marine influence; identification of seawater intrusion mechanisms and, determination of the apparent groundwater 'age'. The results obtained so far are not conclusive on the identification of the process responsible for the increase of salinity. In general, all the data obtained seems to indicate that the waters have the same isotopic history but different geochemical evolution, which depends on the weathering and permeability of the rocks. (author)

  7. Actinide isotopes in the marine environment

    International Nuclear Information System (INIS)

    Holm, E.; Fukai, R.

    1986-01-01

    Studies of actinide isotopes in the environment are important not only from the viewpoint of their radiological effects on human life, but also from the fact that they act as excellent biochemical and geochemical tracers especially in the marine environment. For several of the actinide isotopes there is still a lack of basic data on concentration levels and further investigations on their chemical and physical speciation are required to understand their behaviour in the marine environment. The measured and estimated activity concentration levels of artificial actinides are at present in general a few orders of magnitude lower than those of the natural ones and their concentration factors in biota are relatively low, except in a few species of macroalgae and phytoplankton. The contribution from seafood to total ingestion of actinides by the world population is a few per cent and, therefore, the dose to man from these long-lived radionuclides caused by seafood ingestion is usually low. (orig.)

  8. Groundwater salinity study in the Mekong Delta using isotope techniques

    International Nuclear Information System (INIS)

    Le Van Khoi, Nguyen Kien Chinh; Do Tien Hung

    2002-01-01

    Environmental isotopes D, 18 O and chemical composition were used for study of recharge and salinization of groundwater in the are located between Bassac and Mekong Rivers. The results showed that: (a) Pleistocene aquifers are recharged through flood plains and outcrops located at the same altitude. The sanility of groundwater in these aquifers is mostly due to dissolution of the aquifer material, (b) Pliocene and Miocene aquifers receive recharge through outcrops located at the higher altitude on the northeast extension of the Delta and Cambodia. The salinity of groundwater in the coastal region of the aquifer is attributable to sea water intrusion. There appears to be significant retention of sea water in the coastal sediment during intrusion. (Author)

  9. Iron isotope biogeochemistry of Neoproterozoic marine shales

    Science.gov (United States)

    Kunzmann, Marcus; Gibson, Timothy M.; Halverson, Galen P.; Hodgskiss, Malcolm S. W.; Bui, Thi Hao; Carozza, David A.; Sperling, Erik A.; Poirier, André; Cox, Grant M.; Wing, Boswell A.

    2017-07-01

    Iron isotopes have been widely applied to investigate the redox evolution of Earth's surface environments. However, it is still unclear whether iron cycling in the water column or during diagenesis represents the major control on the iron isotope composition of sediments and sedimentary rocks. Interpretation of isotopic data in terms of oceanic redox conditions is only possible if water column processes dominate the isotopic composition, whereas redox interpretations are less straightforward if diagenetic iron cycling controls the isotopic composition. In the latter scenario, iron isotope data is more directly related to microbial processes such as dissimilatory iron reduction. Here we present bulk rock iron isotope data from late Proterozoic marine shales from Svalbard, northwestern Canada, and Siberia, to better understand the controls on iron isotope fractionation in late Proterozoic marine environments. Bulk shales span a δ 56Fe range from -0.45 ‰ to +1.04 ‰ . Although δ 56Fe values show significant variation within individual stratigraphic units, their mean value is closer to that of bulk crust and hydrothermal iron in samples post-dating the ca. 717-660 Ma Sturtian glaciation compared to older samples. After correcting for the highly reactive iron content in our samples based on iron speciation data, more than 90% of the calculated δ 56Fe compositions of highly reactive iron falls in the range from ca. -0.8 ‰ to +3 ‰ . An isotope mass-balance model indicates that diagenetic iron cycling can only change the isotopic composition of highly reactive iron by control the isotopic composition of highly reactive iron. Considering a long-term decrease in the isotopic composition of the iron source to the dissolved seawater Fe(II) reservoir to be unlikely, we offer two possible explanations for the Neoproterozoic δ 56Fe trend. First, a decreasing supply of Fe(II) to the ferrous seawater iron reservoir could have caused the reservoir to decrease in size

  10. Study of groundwater chemistry and salinization in Rechna Doab using hydrochemical and isotopic tools

    International Nuclear Information System (INIS)

    Sajjad, M.I.; Tasneem, M.A.; Akram, W.; Ahmad, M.; Hussain, S.D.; Khan, I.H.

    1991-09-01

    Isotopic and chemical characterization of groundwater in Rechna Doab were studied. Samples of water from existing shallow and deep wells, etc. were collected and analyzed for their major ionic and stable isotopic (/sup 2/H, /sup 18/O) contents. The chemical data was used to have a knowledge of various aspects of water chemistry. Different compositional types of water existing in the area were identified. It was observed that groundwater at most of the locations belongs to sodium bicarbonate type. The geochemical evaluation of groundwater was also studied. It is suggested that infiltering water picks up carbon dioxide during percolation through the soil zone. This CO/sub 2/rich water upon interaction with the sediments dissolves more soluble ions. With the increase in salinity soluble remains in solution. Chemical quality of water was evaluated for various uses and found satisfactory in most of the cases. Stable isotopic values in combination with conservative ion (Cl) concentration were used to identify the process of groundwater salinization. Three possible processes, mixing with connate marine water, concentration of salts by evaporation and dissolution of salts from sediments was found to be the operating mechanism under the prevailing conditions. (author)

  11. Hyperaccumulation of radioactive isotopes by marine algae

    International Nuclear Information System (INIS)

    Ishii, Toshiaki; Hirano, Shigeki; Watabe, Teruhisa

    2003-01-01

    Hyperaccumlators are effective indicator organisms for monitoring marine pollution by heavy metals and artificial radionuclides. We found a green algae, Bryopsis maxima that hyperaccumulate a stable and radioactive isotopes such as Sr-90, Tc-99, Ba-138, Re-187, and Ra-226. B. maxima showed high concentration factors for heavy alkali earth metals like Ba and Ra, compared with other marine algae in Japan. Furthermore, this species had the highest concentrations for Tc-99 and Re-187. The accumulation and excretion patterns of Sr-85 and Tc-95m were examined by tracer experiments. The chemical states of Sr and Re in living B. maxima were analyzed by HPLC-ICP/MS, LC/MS, and X-ray absorption fine structure analysis using synchrotron radiation. (author)

  12. Origins and processes of groundwater salinization in the urban coastal aquifers of Recife (Pernambuco, Brazil): A multi-isotope approach

    International Nuclear Information System (INIS)

    Cary, Lise; Petelet-Giraud, Emmanuelle; Bertrand, Guillaume; Kloppmann, Wolfram; Aquilina, Luc; Martins, Veridiana; Hirata, Ricardo; Montenegro, Suzana; Pauwels, Hélène; Chatton, Eliot; Franzen, Melissa; Aurouet, Axel; Lasseur, Eric; Picot, Géraldine; Guerrot, Catherine; Fléhoc, Christine

    2015-01-01

    In the coastal multilayer aquifer system of a highly urbanized southern city (Recife, Brazil), where groundwaters are affected by salinization, a multi-isotope approach (Sr, B, O, H) was used to investigate the sources and processes of salinization. The high diversity of the geological bodies, built since the Atlantic opening during the Cretaceous, highly constrains the heterogeneity of the groundwater chemistry, e.g. Sr isotope ratios, and needs to be integrated to explain the salinization processes and groundwater pathways. A paleoseawater intrusion, most probably the 120 ky B.P. Pleistocene marine transgression, and cationic exchange are clearly evidenced in the most salinized parts of the Cabo and Beberibe aquifers. All 87 Sr/ 86 Sr values are above the past and present-day seawater signatures, meaning that the Sr isotopic signature is altered due to additional Sr inputs from dilution with different freshwaters, and water–rock interactions. Only the Cabo aquifer presents a well-delimitated area of Na-HCO 3 water typical of a freshening process. The two deep aquifers also display a broad range of B concentrations and B isotope ratios with values among the highest known to date (63–68.5‰). This suggests multiple sources and processes affecting B behavior, among which mixing with saline water, B sorption on clays and mixing with wastewater. The highly fractionated B isotopic values were explained by infiltration of relatively salty water with B interacting with clays, pointing out the major role played by (palaeo)-channels for the deep Beberibe aquifer recharge. Based on an increase of salinity at the end of the dry season, a present-day seawater intrusion is identified in the surficial Boa Viagem aquifer. Our conceptual model presents a comprehensive understanding of the major groundwater salinization pathways and processes, and should be of benefit for other southern Atlantic coastal aquifers to better address groundwater management issues. - Highlights:

  13. Origins and processes of groundwater salinization in the urban coastal aquifers of Recife (Pernambuco, Brazil): A multi-isotope approach

    Energy Technology Data Exchange (ETDEWEB)

    Cary, Lise, E-mail: l.cary@brgm.fr [BRGM French Geological Survey, 3 Avenue Claude Guillemin, 45060 Orléans Cedex 2 (France); Petelet-Giraud, Emmanuelle [BRGM French Geological Survey, 3 Avenue Claude Guillemin, 45060 Orléans Cedex 2 (France); Bertrand, Guillaume [Institute of Geosciences, University of São Paulo, Rua do Lago, 562 Butantã, 05508-080 Sao Paulo (Brazil); Kloppmann, Wolfram [BRGM French Geological Survey, 3 Avenue Claude Guillemin, 45060 Orléans Cedex 2 (France); Aquilina, Luc [OSUR-Géosciences Rennes, Université Rennes 1 — CNRS, 35000 Rennes (France); Martins, Veridiana; Hirata, Ricardo [Institute of Geosciences, University of São Paulo, Rua do Lago, 562 Butantã, 05508-080 Sao Paulo (Brazil); Montenegro, Suzana [Civil Engineering Department, Federal University of Pernambuco, 50740 Recife, PE Brazil (Brazil); Pauwels, Hélène [BRGM French Geological Survey, 3 Avenue Claude Guillemin, 45060 Orléans Cedex 2 (France); Chatton, Eliot [OSUR-Géosciences Rennes, Université Rennes 1 — CNRS, 35000 Rennes (France); Franzen, Melissa [CPRM, Brazilian Geologic Survey, Avenida Sul 2291, Recife PE (Brazil); Aurouet, Axel [Géo-Hyd, 101 rue Jacques Charles, 45160 Olivet (France); Lasseur, Eric; Picot, Géraldine; Guerrot, Catherine; Fléhoc, Christine [BRGM French Geological Survey, 3 Avenue Claude Guillemin, 45060 Orléans Cedex 2 (France); and others

    2015-10-15

    In the coastal multilayer aquifer system of a highly urbanized southern city (Recife, Brazil), where groundwaters are affected by salinization, a multi-isotope approach (Sr, B, O, H) was used to investigate the sources and processes of salinization. The high diversity of the geological bodies, built since the Atlantic opening during the Cretaceous, highly constrains the heterogeneity of the groundwater chemistry, e.g. Sr isotope ratios, and needs to be integrated to explain the salinization processes and groundwater pathways. A paleoseawater intrusion, most probably the 120 ky B.P. Pleistocene marine transgression, and cationic exchange are clearly evidenced in the most salinized parts of the Cabo and Beberibe aquifers. All {sup 87}Sr/{sup 86}Sr values are above the past and present-day seawater signatures, meaning that the Sr isotopic signature is altered due to additional Sr inputs from dilution with different freshwaters, and water–rock interactions. Only the Cabo aquifer presents a well-delimitated area of Na-HCO{sub 3} water typical of a freshening process. The two deep aquifers also display a broad range of B concentrations and B isotope ratios with values among the highest known to date (63–68.5‰). This suggests multiple sources and processes affecting B behavior, among which mixing with saline water, B sorption on clays and mixing with wastewater. The highly fractionated B isotopic values were explained by infiltration of relatively salty water with B interacting with clays, pointing out the major role played by (palaeo)-channels for the deep Beberibe aquifer recharge. Based on an increase of salinity at the end of the dry season, a present-day seawater intrusion is identified in the surficial Boa Viagem aquifer. Our conceptual model presents a comprehensive understanding of the major groundwater salinization pathways and processes, and should be of benefit for other southern Atlantic coastal aquifers to better address groundwater management issues

  14. Marine water from mid-Holocene sea level highstand trapped in a coastal aquifer: Evidence from groundwater isotopes, and environmental significance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Stephen [School of Civil, Environmental and Chemical Engineering, RMIT University, Melbourne (Australia); Currell, Matthew, E-mail: Matthew.currell@rmit.edu.au [School of Civil, Environmental and Chemical Engineering, RMIT University, Melbourne (Australia); Cendón, Dioni I. [Australian Nuclear Science and Technology Organisation, Kirrawee (Australia); Connected Water Initiative, School of Biological, Earth and Environmental Sciences, University of New South Wales (UNSW), Sydney (Australia)

    2016-02-15

    A multi-layered coastal aquifer in southeast Australia was assessed using environmental isotopes, to identify the origins of salinity and its links to palaeo-environmental setting. Spatial distribution of groundwater salinity (electrical conductivity values ranging from 0.395 to 56.1 mS/cm) was examined along the coastline along with geological, isotopic and chemical data. This allowed assessment of different salinity sources and emplacement mechanisms. Molar chloride/bromide ratios range from 619 to 1070 (621 to 705 in samples with EC > 15 mS/cm), indicating salts are predominantly marine. Two distinct vertical salinity profiles were observed, one with increasing salinity with depth and another with saline shallow water overlying fresh groundwater. The saline shallow groundwater (EC = 45.4 to 55.7 mS/cm) has somewhat marine-like stable isotope ratios (δ{sup 18}O = − 2.4 to − 1.9 ‰) and radiocarbon activities indicative of middle Holocene emplacement (47.4 to 60.4 pMC). This overlies fresher groundwater with late Pleistocene radiocarbon ages and meteoric stable isotopes (δ{sup 18}O = − 5.5 to − 4.6‰). The configuration suggests surface inundation of the upper sediments by marine water during the mid-Holocene (c. 2–8 kyr BP), when sea level was 1–2 m above today's level. Profiles of chloride, stable isotopes, and radiocarbon indicate mixing between this pre-modern marine water and fresh meteoric groundwater to varying degrees around the coastline. Mixing calculations using chloride and stable isotopes show that in addition to fresh-marine water mixing, some salinity is derived from transpiration by halophytic vegetation (e.g. mangroves). The δ{sup 13}C ratios in saline water (− 17.6 to − 18.4‰) also have vegetation/organic matter signatures, consistent with emplacement by surface inundation and extensive interaction between vegetation and recharging groundwater. Saline shallow groundwater is preserved only in areas where low

  15. Isotopic evidence for identifying the mechanism of salinization of groundwater in Bacolod City,Negros Occidental

    International Nuclear Information System (INIS)

    Castaneda, Soledad S.; Almoneda, Rosalinda V.; Sucgang, Raymond J.; Desengano, Daisy; Lim, Fatima

    2008-01-01

    Saline water is easily identified by measurement of the conductivity of the ionic species in the water. In groundwater, it is important to identify the mechanism of salinization for proper management of the resource. Salinization may come from: a) leaching of salts by percolating water, b) intrusion of modern saltwater bodies of connate water, and c) concentration of dissolved salts due to evaporation. The salinity and isotopic concentrations of 18 O, 2 H, and 3 H of the water sources were used to assess the processes which lead to the salinization of groundwater in Bacolod City, Negros Occidental. The isotopic composition of deep groundwater, river water, and springs cluster along the LMWL with δ 18 O ranging from -7.9 ''promille'' to -6.5 ''promille'' and δ 2 H ranging from -52.6 ''promille'' to -39.1''promille''. Two isotopically distinct groups of deep groundwater were deleated; the higher elevation wells yielding isotopically depleted waters while the lowland wells yielding relatively enriched water with higher conductivity. The shallow coastal wells exhibited more enriched isotope values with δ 18 O values from 6.10 ''promille''-5.61''promille'' and δ 2 H from -43.1''promille'' to -38.8''promille'' and highest conductivity. The relative enrichment in the isotopic composition of the deep groundwater in the lowland and the shallow groundwater along the coast is attributed to saltwater intrusion. The process of salinization in these waters is differentiated based on the relationship between their isotopic compositions and the chlorine concentrations. The high salinity of the isotopically enriched and old deep groundwater inland is attributed to mixing with connate water. On the other hand , mixing with modern sea water is evident in the deep and shallow coastal wells. (author)

  16. Use of azeotropic distillation for isotopic analysis of deuterium in soil water and saturate saline solution

    International Nuclear Information System (INIS)

    Santos, Antonio Vieira dos.

    1995-05-01

    The azeotropic distillation technique was adapted to extract soil water and saturate saline solution, which is similar to the sea water for the Isotopic Determination of Deuterium (D). A soil test was used to determine the precision and the nature of the methodology to extract soil water for stable isotopic analysis, using the azeotropic distillation and comparing with traditional methodology of heating under vacuum. This methodology has been very useful for several kinds of soil or saturate saline solution. The apparatus does not have a memory effect, and the chemical reagents do not affect the isotopic composition of soil water. (author). 43 refs., 10 figs., 12 tabs

  17. A carbon isotope budget for an anoxic marine sediment

    International Nuclear Information System (INIS)

    Boehme, S.E.; Blair, N.E.

    1991-01-01

    A carbon isotope budget has been determined for the coastal marine site, Cape Lookout Bight, NC. Isotope measurements of methane and σCO 2 fluxing out and buried in these sediments were applied to previously measured flux data (Martens et al., in press) to predict the isotopic composition of the incoming metabolizable organic matter. Methane leaves the sediment predominantly via ebullition with an isotopic composition of -60 per mil. Less than 2% of the methane produced is buried with an average diffusional flux value of -17 per mil and a burial value of +11 per mil. The isotope budget predicts a metabolizable organic carbon isotope signature of -19.3 per mil which is in excellent agreement with the measured total organic carbon value of -19.2 ± 0.3 per mil implying that the dominant remineralization processes have been identified

  18. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle.

    Science.gov (United States)

    Casciotti, Karen L

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status.

  19. Sr ISOTOPIC EVIDENCE FOR STUDYING THE SALINIZATION OF SOILS: AN EXAMPLE FROM THE SAN VITALE PINEWOOD (RAVENNA

    Directory of Open Access Journals (Sweden)

    Umberto Masi

    2009-12-01

    Full Text Available In the frame of a multidisciplinary project of research on the San Vitale Pinewood ecosystem, north of Ravenna, the Sr isotope study of a soil profile developed on an old coastal dune aiming at detecting the effect of salinization is presented. The Sr isotope ratios of the bulk soil samples decreased significantly from upper (0.717 to lower (0.712 horizons because of the abundant marine salts deposited by the brackish water present in the deep soil. While the main source of Sr in the upper horizons is the silicates, especially the feldspaths contained in the old dune sediments; in contrast, Sr in the lower horizons is significantly also of evaporitic origin (0.707-0.709. This latter is dominantly the strontium bio-available to the plants.

  20. Paleoclimatic and paleoceanographic studies of estuarine and marine sediments using strontium isotopes

    International Nuclear Information System (INIS)

    Ingram, B.L.

    1992-01-01

    Strontium isotopic ratio ( 87 Sr/ 86 Sr) measurements in fossil carbonates and phosphates are used to evaluate paleoceanographic and paleoclimatic environments in Quaternary, Pliocene-Pleistocene, and mid-Cretaceous estuarine and marine sediments. The use of 87 Sr/ 86 Sr measurements as an estuarine paleosalinity and paleoclimatic indicator is developed and applied to San Francisco Bay. 87 Sr/ 86 Sr measurements of foraminifer and molluscan fossils contained in estuarine sediments of late Pleistocene (ca 115 to 125 ka) and late Holocene (4.5 ka) age show cyclic variations indicating that salinity fluctuated with periods of several hundred years, probably reflecting wet-dry cycles associated with fluctuations in solar irradiance caused by sunspot cycles. The average salinity in San Pablo and Richardson bays was significantly lower (by 6 to 8%) over much of the past 4.5 ka than at present, reflecting a combination of decreased freshwater inflow at present associated with water diversion and wetter climatic conditions prior to 2000 years ago. Salinity data are converted to river discharge using salinity-delta flow relations derived from historical records for San Francisco Bay. The data indicate that annual freshwater inflow was at least twice the modern pre-diversion average between 2.5 and 3.0 Ka; this time period is also identified as one of wetter climatic conditions by lake level and treeline records from the Sierra Nevada. Strontium isotopic measurements of marine carbonate and fish teeth to middle Cretaceous age are used to increase the resolution of the existing seawater Sr isotope versus time curve and to assess models for global oceanic anoxic events. The new data using fish teeth show less scatter and variability than previous data. Negative excursions in the 87 Sr/ 86 Sr ratio of 7-14 parts in 10 -5 during Aptian anoxic events suggest a link between increased submarine volcanism and oceanic anoxia

  1. Red Sea circulation during marine isotope stage 5e

    Science.gov (United States)

    Siccha, Michael; Biton, Eli; Gildor, Hezi

    2015-04-01

    We have employed a regional Massachusetts Institute of Technology oceanic general circulation model of the Red Sea to investigate its circulation during marine isotope stage (MIS) 5e, the peak of the last interglacial, approximately 125 ka before present. Compared to present-day conditions, MIS 5e was characterized by higher Northern Hemisphere summer insolation, accompanied by increases in air temperature of more than 2°C and global sea level approximately 8 m higher than today. As a consequence of the increased seasonality, intensified monsoonal conditions with increased winds, rainfall, and humidity in the Red Sea region are evident in speleothem records and supported by model simulations. To assess the dominant factors responsible for the observed changes, we conducted several sensitivity experiments in which the MIS 5 boundary conditions or forcing parameters were used individually. Overall, our model simulation for the last interglacial maximum reconstructs a Red Sea that is colder, less ventilated and probably more oligotrophic than at present day. The largest alteration in Red Sea circulation and properties was found for the simulation of the northward displacement and intensification of the African tropical rain belt during MIS 5e, leading to a notable increase in the fresh water flux into the Red Sea. Such an increase significantly reduced the Red Sea salinity and exchange volume of the Red Sea with the Gulf of Aden. The Red Sea reacted to the MIS 5e insolation forcing by the expected increase in seasonal sea surface temperature amplitude and overall cooling caused by lower temperatures during deep water formation in winter.

  2. Multi-saline sample distillation apparatus for hydrogen isotope analyses : design and accuracy

    Science.gov (United States)

    Hassan, Afifa Afifi

    1981-01-01

    A distillation apparatus for saline water samples was designed and tested. Six samples may be distilled simultaneously. The temperature was maintained at 400 C to ensure complete dehydration of the precipitating salts. Consequently, the error in the measured ratio of stable hydrogen isotopes resulting from incomplete dehydration of hydrated salts during distillation was eliminated. (USGS)

  3. The source of groundwater salinization in the Indus basin - an isotopic evidence

    International Nuclear Information System (INIS)

    Sajjad, M.I.; Hussain, S.D.; Tasneem, M.A.; Ahmad, M.; Khan, I.H.; Akram, W.; Waheed, R.

    1991-09-01

    The isotopic and chemical studies were carried out in three regions of the Indus Basin to ascertain the source of salinity. Samples collected from the Faisalabad are in Rechna Doab, Chaj Doab and Mardan Valley, were analysed on mass spectrometer for D/H, 18O/16O and 34S/32S ratios. Electrical conductivities and pH measurements were made in situ while the analyses of various cations/anions were made in the laboratory. The isotopic results show that the salinity is mainly due to the dissolution of sediments salts by the infiltrating sweet water. The chemical data also support this conclusion. The rise in salinity is also partly due to the use of fertilizers and evaporation processes. (author)

  4. Predictions and Verification of an Isotope Marine Boundary Layer Model

    Science.gov (United States)

    Feng, X.; Posmentier, E. S.; Sonder, L. J.; Fan, N.

    2017-12-01

    A one-dimensional (1D), steady state isotope marine boundary layer (IMBL) model is constructed. The model includes meteorologically important features absent in Craig and Gordon type models, namely height-dependent diffusion/mixing and convergence of subsiding external air. Kinetic isotopic fractionation results from this height-dependent diffusion which starts as pure molecular diffusion at the air-water interface and increases linearly with height due to turbulent mixing. The convergence permits dry, isotopically depleted air subsiding adjacent to the model column to mix into ambient air. In δD-δ18O space, the model results fill a quadrilateral, of which three sides represent 1) vapor in equilibrium with various sea surface temperatures (SSTs) (high d18O boundary of quadrilateral); 2) mixture of vapor in equilibrium with seawater and vapor in the subsiding air (lower boundary depleted in both D and 18O); and 3) vapor that has experienced the maximum possible kinetic fractionation (high δD upper boundary). The results can be plotted in d-excess vs. δ18O space, indicating that these processes all cause variations in d-excess of MBL vapor. In particular, due to relatively high d-excess in the descending air, mixing of this air into the MBL causes an increase in d-excess, even without kinetic isotope fractionation. The model is tested by comparison with seven datasets of marine vapor isotopic ratios, with excellent correspondence; >95% of observational data fall within the quadrilateral area predicted by the model. The distribution of observations also highlights the significant influence of vapor from the nearby converging descending air on isotopic variations in the MBL. At least three factors may explain the affect the isotopic composition of precipitation. The model can be applied to modern as well as paleo- climate conditions.

  5. Salinization of aquifers at the regional scale by marine transgression: Time scales and processes

    Science.gov (United States)

    Armandine Les Landes, A.; Davy, P.; Aquilina, L.

    2014-12-01

    Saline fluids with moderate concentrations have been sampled and reported in the Armorican basement at the regional scale (northwestern France). The horizontal and vertical distributions of high chloride concentrations (60-1400mg/L) at the regional scale support the marine origin and provide constraints on the age of these saline fluids. The current distribution of fresh and "saline" groundwater at depth is the result mostly of processes occurring at geological timescales - seawater intrusion processes followed by fresh groundwater flushing -, and only slightly of recent anthropogenic activities. In this study, we focus on seawater intrusion mechanisms in continental aquifers. We argue that one of the most efficient processes in macrotidal environments is the gravity-driven downconing instability below coastal salinized rivers. 2-D numerical experiments have been used to quantify this process according to four main parameter types: (1) the groundwater system permeability, (2) the salinity degree of the river, (3) the river width and slope, and (4) the tidal amplitude. A general expression of the salinity inflow rates have been derived, which has been used to estimate groundwater salinization rates in Brittany, given the geomorphological and environmental characteristics (drainage basin area, river widths and slopes, tidal range, aquifer permeability). We found that downconing below coastal rivers entail very high saline rates, indicating that this process play a major role in the salinization of regional aquifers. This is also likely to be an issue in the context of climate change, where sea-level rise is expected.

  6. Natural Tracers and Isotope Techniques to Define Groundwater Recharge and Salinization in the Bou Areg Coastal Aquifer (North Morocco)

    Energy Technology Data Exchange (ETDEWEB)

    Re, V. [Department of Molecular Sciences and Nanosystems, University Ca' Foscari, Venice (Italy); Allais, E. [ISO4 s.n.c., Torino (Italy); El Hamouti, N. [Multidisciplinary Faculty of Nador, University of Oujda, Nador (Morocco); Bouchnan, R. [Laboratory of Physical Phenomena and Natural Risk Modelling, University of Tangier, Tangier (Morocco); Sacchi, E. [Department of Earth Sciences, University of Pavia, Pavia (Italy); Rizzo, F. [UNESCO International Hydrological Programme, Paris (France); Zuppi, G. M. [Department of Molecular Sciences and Nanosystems, University Ca' Foscari, Venice and Institute of Environmental Geology and Geoengineering, National Research Council, Monterotondo (Italy)

    2013-07-15

    The geochemical and isotopic ({delta}{sup 2}H, {delta}{sup 18}O, {delta}{sup 13}C, {delta}{sup 15}N{sub NO3},{delta} {sup 18}O{sub NO3}) characterization of the Bou Areg aquifer (North Morocco) based on samples collected during two surveys in November 2009 and June 2010 allowed the identification of run-off from the mountain regions and agricultural return flows as the main sources of aquifer recharge. The high salinization of the aquifer is not only due to the intensive agricultural activities but it is also associated with the natural quality of the catchment. The isotopic signal of dissolved nitrates allowed for the identification of two main sources of nitrogen in the system: (i) fertilizers and (ii) manure and septic effluents. The study, framed within the UNESCO-IHP sub component of the Strategic Partnership for the Mediterranean Large Marine Ecosystem, represents the first isotopic investigation of the area and will serve as a basis for the promotion of robust science based management practices in the region. (author)

  7. Variations of marine pore water salinity and chlorinity in Gulf of Alaska sediments (IODP Expedition 341)

    Science.gov (United States)

    März, Christian; Mix, Alan C.; McClymont, Erin; Nakamura, Atsunori; Berbel, Glaucia; Gulick, Sean; Jaeger, John; Schneider (LeVay), Leah

    2014-05-01

    Pore waters of marine sediments usually have salinities and chlorinities similar to the overlying sea water, ranging around 34-35 psu (Practical Salinity Units) and around 550 mM Cl-, respectively. This is because these parameters are conservative in the sense that they do not significantly participate in biogeochemical cycles. However, pore water studies carried out in the frame of the International Ocean Discovery Program (IODP) and its predecessors have shown that salinities and chlorinities of marine pore waters can substantially deviate from the modern bottom water composition in a number of environmental settings, and various processes have been suggested to explain these phenomena. Also during the recent IODP Expedition 341 that drilled five sites in the Gulf of Alaska (Northeast Pacific Ocean) from the deep Surveyor Fan across the continental slope to the glaciomarine shelf deposits, several occurrences of pore waters with salinities and chlorinities significantly different from respective bottom waters were encountered during shipboard analyses. At the pelagic Sites U1417 and U1418 (~4,200 and ~3,700 m water depth, respectively), salinity and chlorinity maxima occur around 20-50 m sediment depth, but values gradually decrease with increasing drilling depths (down to 30 psu in ~600 m sediment depth). While the pore water freshening at depth is most likely an effect of clay mineral dehydration due to increasing burial depth, the shallow salinity and chlorinity maxima are interpreted as relicts of more saline bottom waters that existed in the North Pacific during the Last Glacial Maximum (Adkins et al., 2002). In contrast, the glaciomarine slope and shelf deposits at Site U1419 to U1421 (~200 to 1,000 m water depth) are characterised by unexpectedly low salinitiy and chlorinity values (as low as 16 psu and 295 mM Cl-, respectively) already in very shallow sediment depths (~10 m), and their records do not show systematic trends with sediment depth. Freshening

  8. Kinetic control on Zn isotope signatures recorded in marine diatoms

    Science.gov (United States)

    Köbberich, Michael; Vance, Derek

    2017-08-01

    Marine diatoms dominate the oceanic cycle of the essential micronutrient zinc (Zn). The stable isotopes of zinc and other metals are increasingly used to understand trace metal micronutrient cycling in the oceans. One clear feature of the early isotope data is the heavy Zn isotope signature of the average oceanic dissolved pool relative to the inputs, potentially driven by uptake of light isotopes into phytoplankton cells and export to sediments. However, despite the fact that diatoms strip Zn from surface waters across the Antarctic polar front in the Southern Ocean, the local upper ocean is not isotopically heavy. Here we use culturing experiments to quantify the extent of Zn isotope fractionation by diatoms and to elucidate the mechanisms driving it. We have cultured two different open-ocean diatom species (T. oceanica and Chaetoceros sp.) in a series of experiments at constant medium Zn concentration but at bioavailable medium Fe ranging from limiting to replete. We find that T. oceanica can maintain high growth rates and Zn uptake rates over the full range of bioavailable iron (Fe) investigated, and that the Zn taken up has a δ66Zn that is unfractionated relative to that of the bioavailable free Zn in the medium. The studied representative of the genus Chaetoceros, on the other hand, shows more significantly reduced Zn uptake rates at low Fe and records more variable biomass δ66Zn signatures, of up to 0.85‰ heavier than the medium. We interpret the preferential uptake of heavy isotopes at extremely low Zn uptake rates as potentially due to either of the following two mechanisms. First, the release of extracellular polymeric substances (EPS), at low Fe levels, may preferentially scavenge heavy Zn isotopes. Second, the Zn uptake rate may be slow enough to establish pseudo-equilibrium conditions at the transporter site, with heavy Zn isotopes forming more stable surface complexes. Thus we find that, in our experiments, Fe-limitation exerts a key control that

  9. Sea surface salinity of the Eocene Arctic Azolla event using innovative isotope modeling

    Science.gov (United States)

    Speelman, E. N.; Sewall, J. O.; Noone, D.; Huber, M.; Sinninghe Damste, J. S.; Reichart, G. J.

    2009-04-01

    With the realization that the Eocene Arctic Ocean was covered with enormous quantities of the free floating freshwater fern Azolla, new questions regarding Eocene conditions facilitating these blooms arose. Our present research focuses on constraining the actual salinity of, and water sources for, the Eocene Arctic basin through the application of stable water isotope tracers. Precipitation pathways potentially strongly affect the final isotopic composition of water entering the Arctic Basin. Therefore we use the Community Atmosphere Model (CAM3), developed by NCAR, combined with a recently developed integrated isotope tracer code to reconstruct the isotopic composition of global Eocene precipitation and run-off patterns. We further addressed the sensitivity of the modeled hydrological cycle to changes in boundary conditions, such as pCO2, sea surface temperatures (SSTs) and sea ice formation. In this way it is possible to assess the effect of uncertainties in proxy estimates of these parameters. Overall, results of all runs with Eocene boundary conditions, including Eocene topography, bathymetry, vegetation patterns, TEX86 derived SSTs and pCO2 estimates, show the presence of an intensified hydrological cycle with precipitation exceeding evaporation in the Arctic region. Enriched, precipitation weighted, isotopic values of around -120‰ are reported for the Arctic region. Combining new results obtained from compound specific isotope analyses (δD) on terrestrially derived n-alkanes extracted from Eocene sediments, and model outcomes make it possible to verify climate reconstructions for the middle Eocene Arctic. Furthermore, recently, characteristic long-chain mid-chain ω20 hydroxy wax constituents of Azolla were found in ACEX sediments. δD values of these C32 - C36 diols provide insight into the isotopic composition of the Eocene Arctic surface water. As the isotopic signature of the runoff entering the Arctic is modelled, and the final isotopic composition of

  10. Evidence of a connection between the Atlantic and Mediterranean during the Messinian Salinity Crisis from Pb and Nd isotopes

    Science.gov (United States)

    Modestou, Sevasti; Gutjahr, Marcus; Fietzke, Jan; Rodés, Ángel; Frank, Martin; Bolhão Muiños, Susana; Ellam, Rob; Flecker, Rachel

    2014-05-01

    Prior to the opening of the Gibraltar Strait at 5.33 Ma, the Betic (southern Spain) and Rifian (northern Morocco) marine palaeocorridors linked the Mediterranean to the Atlantic. Although the central regions of these corridors have been heavily eroded due to uplift, evidence published to date indicates that both closed before the onset of the Messinian Salinity Crisis (MSC; 5.97 to 5.33 Ma [1, 2]). However, pre-MSC corridor closure presents a paradox, as the volume of halite deposited within the Mediterranean basin requires several times the volume of seawater contained in the basin itself. In this regard, radiogenic isotopes such as Sr, Pb, and Nd can provide key information about the timing of exchange through the Betic and Rifian palaeogateways. Due to the resolvable isotopic difference in Nd isotope signatures of outgoing Mediterranean and incoming Atlantic water masses, demonstrated both for the present day as well as the past environment, this isotope system can be used to identify exchange between these two water bodies. Although less well constrained to date, the Pb isotope system can be used in a similar manner due to its short residence time in seawater and interbasin variability. A high resolution Pb isotope record extracted using laser ablation from ferromanganese crust 3514-6 (recovered from the Lion Seamount, NE Atlantic, water depth 690-940 m) indicates a relatively constant Pb isotope signature before, during and after the MSC period. The previously published [3] Nd isotope record of crust 3514-6 corroborates that the crust was deposited in a current distinct from NE Atlantic Deep water or Antarctic Intermediate Water, the principal currents in the region of the Lion Seamount. The combined Pb and Nd isotope evolution suggests that Mediterranean Outflow Water (MOW) was continuously advected into the NE Atlantic during and after the MSC. Furthermore, preliminary Nd isotope records from Late Miocene sediments collected in the Sorbas Basin, Spain

  11. Hydrogen isotope response to changing salinity and rainfall in Australian mangroves.

    Science.gov (United States)

    Ladd, S Nemiah; Sachs, Julian P

    2015-12-01

    Hydrogen isotope ratios ((2) H/(1) H, δ(2) H) of leaf waxes covary with those in precipitation and are therefore a useful paleohydrologic proxy. Mangroves are an exception to this relationship because their δ(2) H values are also influenced by salinity. The mechanisms underlying this response were investigated by measuring leaf lipid δ(2) H and leaf and xylem water δ(2) H and δ(18) O values from three mangrove species over 9.5 months in a subtropical Australian estuary. Net (2) H/(1) H fractionation between surface water and leaf lipids decreased by 0.5-1.0‰ ppt(-1) for n-alkanes and 0.4-0.8‰ ppt(-1) for isoprenoids. Xylem water was (2) H depleted relative to surface water, reflecting (2) H discrimination of 4-10‰ during water uptake at all salinities and opportunistic uptake of freshwater at high salinity. However, leaf water (2) H enrichment relative to estuary water was insensitive to salinity and identical for all species. Therefore, variations in leaf and xylem water δ(2) H values cannot explain the salinity-dependent (2) H depletion in leaf lipids, nor the 30‰ range in leaf lipid δ(2) H values among species. Biochemical changes in direct response to salt stress, such as increased compatible solute production or preferential use of stored carbohydrates, and/or the timing of lipid production and subsequent turnover rates, are more likely causes. © 2015 John Wiley & Sons Ltd.

  12. Silicon Isotopes of Marine Pore Water: Tracking the Destiny of Marine Biogenic Opal

    Science.gov (United States)

    Cassarino, L.; Hendry, K. R.

    2017-12-01

    Silicon isotopes (δ30Si) are a powerful tool for the studying of the past and present silicon cycles, which is closely linked to the carbon cycle. Siliceous phytoplankton, such as diatoms, as one of the major conveyors of carbon to marine sediments. δ30Si from fossil diatoms has been shown to represent past silicic acid (DSi) utilization in the photic zone, since the lighter isotope is preferentially incorporated in their skeleton, the frustule. This assumes that species in the sediments depict past blooms and that frustules are preserved in their initial state during burial. Here we present new silicon isotopes data of sea water and pore water of deep marine sediments from two contrasted environments, the Equatorial Atlantic and West Antarctic Peninsula. δ30Si and DSi concentration, of both sea water and pore water, are negatively correlated. Marine biogenic opal dissolution can be tracked using δ30Si signature of pore water as lighter signals and high DSi concentrations are associated with the biogenic silica. Our data enhances post depositional and diagenesis processes during burial with a clear highlight on the sediment water interface exchanges.

  13.  Marine derived dinoflagellates in Antarctic saline lakes: Community composition and annual dynamics

    DEFF Research Database (Denmark)

    Rengefors, K.; Layborn-Parry, L.; Logares, R.

    2008-01-01

    polar dinoflagellate community, and not freshwater species. Polarella glacialis Montresor, Procaccini et Stoecker, a bipolar marine species, was for the first time described in a lake habitat and was an important phototrophic component in the higher salinity lakes. In the brackish lakes, we found a new...... sibling species to the brackish-water species Scrippsiella hangoei (J. Schiller) J. Larsen, previously observed only in the Baltic Sea....

  14. Strontium isotopes as an indicator for groundwater salinity sources in the Kirkuk region, Iraq

    Energy Technology Data Exchange (ETDEWEB)

    Sahib, Layth Y. [Institute for Applied Geosciences, Technische Universität Darmstadt, Schnittspahnstraße 9, 64287 Darmstadt (Germany); Geology Department, College of Science, University of Baghdad, Jadreya, Baghdad (Iraq); Marandi, Andres; Schüth, Christoph [Institute for Applied Geosciences, Technische Universität Darmstadt, Schnittspahnstraße 9, 64287 Darmstadt (Germany)

    2016-08-15

    The Kirkuk region in northern Iraq hosts some of the largest oil fields in the Middle East. Several anticline structures enabled vertical migration and entrapment of the oil. Frequently, complex fracture systems and faults cut across the Eocene and middle Oligocene reservoirs and the cap rock, the Fatha Formation of Miocene age. Seepage of crude oil and oil field brines are therefore a common observation in the anticline axes and contamination of shallow groundwater resources is a major concern. In this study, 65 water samples were collected in the Kirkuk region to analyze and distinguish mixing processes between shallow groundwater resources, uprising oil field brines, and dissolution of gypsum and halite from the Fatha Formation. Hydrochemical analyses of the water samples included general hydrochemistry, stable water isotopes, as well as strontium concentrations and for 22 of the samples strontium isotopes ({sup 87}Sr/{sup 86}Sr). Strontium concentrations increased close to the anticline axes with highest concentrations in the oil field brines (300 mg/l). Strontium isotopes proved to be a valuable tool to distinguish mixing processes as isotope signatures of the oil field brines and of waters from the Fatha Formation are significantly different. It could be shown, that mixing of shallow groundwater with oil field brines is occurring close to the major fault zones in the anticlines but high concentrations of strontium in the water samples are mainly due to dissolution from the Fatha Formation. - Highlights: • This field study evaluates the salinity sources in the groundwater in Kirkuk region. • Salinity is related to evaporates dissolving and/or mixing with oil field brine. • Strontium isotopes proved to be a valuable tool to distinguish mixing processes.

  15. High congruence of isotope sewage signals in multiple marine taxa

    International Nuclear Information System (INIS)

    Connolly, Rod M.; Gorman, Daniel; Hindell, Jeremy S.; Kildea, Timothy N.; Schlacher, Thomas A.

    2013-01-01

    Highlights: • Sewage inputs are routinely mapped with stable isotopes ( 15 N) in organisms. • We tested whether choice of species influences spatial 15 N distributions. • Spatial gradients were consistent between algae, seagrasses, crabs, and fish. • A match of sewage-N signals in multiple marine taxa has not been reported before. • Spatially-coupled transfers in the food web produce the congruence of N imprints. -- Abstract: Assessments of sewage pollution routinely employ stable nitrogen isotope analysis (δ 15 N) in biota, but multiple taxa are rarely used. This single species focus leads to underreporting of whether derived spatial N patterns are consistent. Here we test the question of ‘reproducibility’, incorporating ‘taxonomic replication’ in the measurement of δ 15 N gradients in algae, seagrasses, crabs and fish with distance from a sewage outfall on the Adelaide coast (southern Australia). Isotopic sewage signals were equally strong in all taxa and declined at the same rate. This congruence amongst taxa has not been reported previously. It implies that sewage-N propagates to fish via a tight spatial coupling between production and consumption processes, resulting from limited animal movement that closely preserves the spatial pollution imprint. In situations such as this where consumers mirror pollution signals of primary producers, analyses of higher trophic levels will capture a broader ambit of ecological effects

  16. V isotope composition in modern marine hydrothermal sediments

    Science.gov (United States)

    Wu, F.; Owens, J. D.; Nielsen, S.; German, C. R.; Rachel, M.

    2017-12-01

    Vanadium is multivalence transition metal with two isotopes (51V and 50V). Recent work has shown that large V isotope variations occur with oxygen variations in modern sediments (Wu et al., 2016 and 2017 Goldschmidt Abstracts), providing its potential as a promising proxy for determining low oxygen conditions. However, the development of V isotopes as a proxy to probe past redox conditions requires a comprehensive understanding of the modern oceanic isotopic mass balance. Therein, the scavenging of V from the hydrous iron oxides in hydrothermal fluid has been shown to be an important removal process from seawater (Rudnicki and Elderfield, 1993 GCA) but remains unquantified. In this study, we analyzed V isotopic compositions of metalliferous sediments around the active TAG hydrothermal mound from the mid-Atlantic Ridge (26° degrees North) and the Eastern Pacific Zonal Transect (GEOTRACES EPZT cruise GP16). The TAG sediments deposited as Fe oxyhydroxides from plume fall-out, and have δ51V values between -0.3 to 0‰. The good correlation between Fe and V for these metalliferous sediments indicate that the accumulation of V in these samples is directly related to the deposition of Fe oxyhydroxides, which also control their V isotope signature. The EPZT samples cover 8,000 km in the South Pacific Ocean with sedimentary areas that underlie the Peru upwelling region and the well-oxygenated deep South Pacific Ocean influenced by hydtorthermal plume material from southern East Pacific Rise (EPR). The sediments collected at the east of the EPR have δ51V values between -1.2 to -0.7‰, similar to previous δ51V of oxic sediments. In contrast, the sediments from the west of the EPR have δ51V values (-0.4 to 0‰) similar to hydrothermal sediments from the mid-Atlantic Ridge, indicating the long transportation (more than 4,000 km, Fitzsimmons et al., 2017 NG) of Fe and Mn from hydrothermal plume and their incorporation into sediments have a major impact on the cycle of V

  17. Salinization and Saline Environments

    Science.gov (United States)

    Vengosh, A.

    2003-12-01

    L-1), although the chloride comprises only a fraction of the total dissolved salts in water. The Cl/TDS ratio varies from 0.1 in nonmarine saline waters to ˜0.5 in marine-associated saline waters. Water salinity is also defined by electrical conductivity (EC). In soil studies, the electrical conductivity and the ratio of Na/√(Ca+Mg) (SAR) are often used as an indirect measure of soil salinity. In addition to chloride, high levels of other dissolved constituents may limit the use of water for domestic, agriculture, and industrial applications. In some parts of Africa, China, and India, for example, high fluoride content is associated with saline groundwater and causes severe dental and skeletal fluorosis (Shiklomanov, 1997). Hence, the "salinity" problem is only the "tip of the iceberg," as high levels of salinity are associated with high concentrations of other inorganic pollutants (e.g., sodium, sulfate, boron, fluoride), and bioaccumulated elements (e.g., selenium, and arsenic) (see Chapter 9.03).The World Health Organization (WHO) recommends that the chloride concentration of the water supply for human consumption should not exceed 250 mg L-1. Agriculture applications also depend upon the salinity level of the supplied water. Many crops, such as citrus, avocado, and mango, are sensitive to chloride concentration in irrigation water (an upper limit of 250 mg L-1). In addition, long-term irrigation with water enriched with sodium results in a significant reduction in the hydraulic conductivity and hence the fertility of the irrigated soil. Similarly, the industrial sector demands water of high quality. For example, the high-tech industry requires a large amount of water with low levels of dissolved salts. Hence, the salinity level of groundwater is one of the limiting factors that determine the suitability of water for a variety of applications.The salinity problem is a global phenomenon but it is more severe in water-scarce areas, such as arid and semi

  18. Salinity shifts in marine sediment: Importance of number of fluctuation rather than their intensities on bacterial denitrifying community.

    Science.gov (United States)

    Zaghmouri, Imen; Michotey, Valerie D; Armougom, Fabrice; Guasco, Sophie; Bonin, Patricia C

    2018-05-01

    The sensitivity of denitrifying community to salinity fluctuations was studied in microcosms filled with marine coastal sediments subjected to different salinity disturbances over time (sediment under frequent salinity changes vs sediment with "stable" salinity pattern). Upon short-term salinity shift, denitrification rate and denitrifiers abundance showed high resistance whatever the sediment origin is. Denitrifying community adapted to frequent salinity changes showed high resistance when salinity increases, with a dynamic nosZ relative expression level. Marine sediment denitrifying community, characterized by more stable pattern, was less resistant when salinity decreases. However, after two successive variations of salinity, it shifted toward the characteristic community of fluctuating conditions, with larger proportion of Pseudomonas-nosZ, exhibiting an increase of nosZ relative expression level. The impact of long-term salinity variation upon bacterial community was confirmed at ribosomal level with a higher percentage of Pseudomonas and lower proportion of nosZII clade genera. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Salinity effect on the maximal growth temperature of some bacteria isolated from marine enviroments.

    Science.gov (United States)

    Stanley, S O; Morita, R Y

    1968-01-01

    Salinity of the growth medium was found to have a marked effect on the maximal growth temperature of four bacteria isolated from marine sources. Vibrio marinus MP-1 had a maximal growth temperature of 21.2 C at a salinity of 35% and a maximal growth temperature of 10.5 C at a salinity of 7%, the lowest salinity at which it would grow. This effect was shown to be due to the presence of various cations in the medium. The order of effectiveness of cations in restoring the normal maximal growth temperature, when added to dilute seawater, was Na(+) > Li(+) > Mg(++) > K(+) > Rb(+) > NH(4) (+). The anions tested, with the exception of SO(4)=, had no marked effect on the maximal growth temperature response. In a completely defined medium, the highest maximal growth temperature was 20.0 C at 0.40 m NaCl. A decrease in the maximal growth temperature was observed at both low and high concentrations of NaCl.

  20. Hydrology of marginal evaporitic basins during the Messinian Salinity Crisis: isotopic investigation of gypsum deposits

    Science.gov (United States)

    El Kilany, Aida; Caruso, Antonio; Dela Pierre, Francesco; Natalicchio, Marcello; Rouchy, Jean-Marie; Pierre, Catherine; Balter, Vincent; Aloisi, Giovanni

    2016-04-01

    The deposition of gypsum in Messinian Mediterranean marginal basins is controlled by basin restriction and the local hydrological cycle (evaporation/precipitation rates and relative importance of continental vs marine water inputs). We are using the stable isotopic composition of gypsum as a proxy of the hydrological cycle that dominated at the moment of gypsum precipitation. We studied the Messinian Caltanissetta (Sicily) and Tertiary Piedmont (north western Italy) basins where we carried out a high-resolution isotopic study of gypsum layers composing gypsum-marl cycles. These cycles are thought to be the sedimentary expression of astronomical precession cycles, lasting approximately 20 kyr, during which the marginal basins experienced a succession of arid and a wet conditions. We determined the isotopic composition of gypsum hydration water (18O and D), of the sulphate ion (34S, 18O) and of Strontium (87/86Sr), all of which are potentially affected by the hydrological cycle. In our samples, the mother water from which gypsum precipitated is considerably lighter (-4.0 micro-scale. This is an essential step in interpreting the isotopic signals of gypsum because we can expect the 18O and D composition of Messinian continental input to be not too dissimilar from that of modern meteoric waters involved in diagenetic processes.

  1. Environmental isotope studies related to groundwater flow and saline encroachment in the chalk aquifer of Lincolnshire, England

    International Nuclear Information System (INIS)

    Lloyd, J.W.; Howard, K.W.F.

    1978-01-01

    The isotopes of tritium and carbon are used to study part of the North Lincolnshire Chalk aquifer in England. The tritium data support the view that the aquifer is a thin fissure system and indicate that some changes in flow direction have occurred due to recent abstraction. The data are also consistent with other chemical data in elucidating groundwater entering the Chalk from deeper aquifers. Carbon isotopes are used to distinguish between saline water bodies and suggest that saline water was entrapped within the aquifer in the Eemian and Flandrian stages of the Pleistocene. (orig.) [de

  2. Biogeochemical cycling of arsenic in coastal salinized aquifers: Evidence from sulfur isotope study

    International Nuclear Information System (INIS)

    Kao, Yu-Hsuan; Wang, Sheng-Wei; Liu, Chen-Wuing; Wang, Pei-Ling; Wang, Chung-Ho; Maji, Sanjoy Kumar

    2011-01-01

    Arsenic (As) contamination of groundwater, accompanied by critical salinization, occurs in the southwestern coastal area of Taiwan. Statistical analyses and geochemical calculations indicate that a possible source of aqueous arsenic is the reductive dissolution of As-bearing iron oxyhydroxides. There are few reports of the influence of sulfate-sulfide redox cycling on arsenic mobility in brackish groundwater. We evaluated the contribution of sulfate reduction and sulfide re-oxidation on As enrichment using δ 34 S [SO 4 ] and δ 18 O [SO 4 ] sulfur isotopic analyses of groundwater. Fifty-three groundwater samples were divided into groups of high-As content and salinized (Type A), low-As and non-salinized (Type B), and high-As and non-salinized (Type C) groundwaters, based on hydro-geochemical analysis. The relatively high enrichment of 34 S [SO 4 ] and 18 O [SO 4 ] present in Type A, caused by microbial-mediated reduction of sulfate, and high 18 O enrichment factor (ε [SO 4 -H 2 O] ), suggests that sulfur disproportionation is an important process during the reductive dissolution of As-containing iron oxyhydroxides. Limited co-precipitation of ion-sulfide increased the rate of As liberation under anaerobic conditions. In contrast to this, Type B and Type C groundwater samples showed high δ 18 O [SO 4 ] and low δ 34 S [SO 4 ] values under mildly reducing conditions. Base on 18 O mass balance calculations, the oxide sources of sulfate are from infiltrated atmospheric O 2 , caused by additional recharge of dissolved oxygen and sulfide re-oxidation. The anthropogenic influence of extensive pumping also promotes atmospheric oxygen entry into aquifers, altering redox conditions, and increasing the rate of As release into groundwater. - Highlights: → Seawater intrusion and elevated As are the main issues of groundwater in Taiwan. → Sulfur and oxygen isotopes of sulfate were analyzed to evaluate the As mobility. → Reductive dissolution of Fe minerals and

  3. Biogeochemical cycling of arsenic in coastal salinized aquifers: Evidence from sulfur isotope study

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Yu-Hsuan [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan, ROC (China); Wang, Sheng-Wei [Agricultural Engineering Research Center, Chungli 320, Taiwan, ROC (China); Liu, Chen-Wuing, E-mail: lcw@gwater.agec.ntu.edu.tw [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan, ROC (China); Wang, Pei-Ling [Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan, ROC (China); Wang, Chung-Ho [Institute of Earth Sciences, Academia Sinica, Taipei 115, Taiwan, ROC (China); Maji, Sanjoy Kumar [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan, ROC (China)

    2011-10-15

    Arsenic (As) contamination of groundwater, accompanied by critical salinization, occurs in the southwestern coastal area of Taiwan. Statistical analyses and geochemical calculations indicate that a possible source of aqueous arsenic is the reductive dissolution of As-bearing iron oxyhydroxides. There are few reports of the influence of sulfate-sulfide redox cycling on arsenic mobility in brackish groundwater. We evaluated the contribution of sulfate reduction and sulfide re-oxidation on As enrichment using {delta}{sup 34}S{sub [SO{sub 4]}} and {delta}{sup 18}O{sub [SO{sub 4]}} sulfur isotopic analyses of groundwater. Fifty-three groundwater samples were divided into groups of high-As content and salinized (Type A), low-As and non-salinized (Type B), and high-As and non-salinized (Type C) groundwaters, based on hydro-geochemical analysis. The relatively high enrichment of {sup 34}S{sub [SO{sub 4]}} and {sup 18}O{sub [SO{sub 4]}} present in Type A, caused by microbial-mediated reduction of sulfate, and high {sup 18}O enrichment factor ({epsilon}{sub [SO{sub 4-H{sub 2O]}}}), suggests that sulfur disproportionation is an important process during the reductive dissolution of As-containing iron oxyhydroxides. Limited co-precipitation of ion-sulfide increased the rate of As liberation under anaerobic conditions. In contrast to this, Type B and Type C groundwater samples showed high {delta}{sup 18}O{sub [SO{sub 4]}} and low {delta}{sup 34}S{sub [SO{sub 4]}} values under mildly reducing conditions. Base on {sup 18}O mass balance calculations, the oxide sources of sulfate are from infiltrated atmospheric O{sub 2}, caused by additional recharge of dissolved oxygen and sulfide re-oxidation. The anthropogenic influence of extensive pumping also promotes atmospheric oxygen entry into aquifers, altering redox conditions, and increasing the rate of As release into groundwater. - Highlights: {yields} Seawater intrusion and elevated As are the main issues of groundwater in Taiwan

  4. Infrared Thermal Signature Evaluation of a Pure and Saline Ice for Marine Operations in Cold Climate

    Directory of Open Access Journals (Sweden)

    Taimur Rashid

    2015-11-01

    Full Text Available Marine operations in cold climates are subjected to abundant ice accretion, which can lead to heavy ice loads over larger surface area. For safe and adequate operations on marine vessels over a larger area, remote ice detection and ice mitigation system can be useful. To study this remote ice detection option, lab experimentation was performed to detect the thermal gradient of ice with the infrared camera. Two different samples of ice blocks were prepared from tap water and saline water collected from the North Atlantic Ocean stream. The surfaces of ice samples were observed at room temperature. A complete thermal signature over the surface area was detected and recorded until the meltdown process was completed. Different temperature profiles for saline and pure ice samples were observed, which were kept under similar conditions. This article is focused to understand the experimentation methodology and thermal signatures of samples. However, challenges remains in terms of the validation of the detection signature and elimination of false detection.

  5. Retrieving Marine Inherent Optical Properties from Satellites Using Temperature and Salinity-dependent Backscattering by Seawater

    Science.gov (United States)

    Werdell, Paul J.; Franz, Bryan Alden; Lefler, Jason Travis; Robinson, Wayne D.; Boss, Emmanuel

    2013-01-01

    Time-series of marine inherent optical properties (IOPs) from ocean color satellite instruments provide valuable data records for studying long-term time changes in ocean ecosystems. Semi-analytical algorithms (SAAs) provide a common method for estimating IOPs from radiometric measurements of the marine light field. Most SAAs assign constant spectral values for seawater absorption and backscattering, assume spectral shape functions of the remaining constituent absorption and scattering components (e.g., phytoplankton, non-algal particles, and colored dissolved organic matter), and retrieve the magnitudes of each remaining constituent required to match the spectral distribution of measured radiances. Here, we explore the use of temperature- and salinity-dependent values for seawater backscattering in lieu of the constant spectrum currently employed by most SAAs. Our results suggest that use of temperature- and salinity-dependent seawater spectra elevate the SAA-derived particle backscattering, reduce the non-algal particles plus colored dissolved organic matter absorption, and leave the derived absorption by phytoplankton unchanged.

  6. Sulfur isotopic study of sulfate in the aquifer of Costa de Hermosillo (Sonora, Mexico) in relation to upward intrusion of saline groundwater, irrigation pumping and land cultivation

    International Nuclear Information System (INIS)

    Szynkiewicz, Anna; Medina, Miguel Rangel; Modelska, Magdalena; Monreal, Rogelio; Pratt, Lisa M.

    2008-01-01

    Groundwater from the Costa de Hermosillo aquifer has been used extensively for irrigation over the past 60 a in the Sonora region of northwestern Mexico resulting in salinization of fresh groundwater resources. Salinization of groundwater is most pronounced on the western/coastal side of the aquifer, with an aerial extent of 26.7 km 2 , where maximum values are reported for conductivity (31 mS/cm) and Cl - concentrations (16,271 mg/L). Salinization is likely to increase if groundwater pumping continues at levels comparable to the present time. Upward incursion of marine water into the aquifer is inferred from δ 2 H (-7.2 per mille ) and δ 18 O (+1.6 per mille ) compositions of groundwater samples with the highest conductivity. Compared to modern seawater in the Gulf of California, ratios of SO 4 /Cl and Cl/Br are small (0.01 and 33, respectively) and the S isotopic composition of SO 4 2- is high (+32.7%) in the most saline portions of the Costa de Hermosillo. This saline groundwater is inferred to result from an earlier phase of dissimilatory bacterial SO 4 2- reduction coupled to decomposition of organic matter in marine blue clays deposited during the Miocene/Pliocene transgression. The isotopic composition of present-day surface discharge from agricultural fields is substantially enriched in 32 S due to widespread application of (NH 4 ) 2 SO 4 fertilizers and potential mobilization of S from mineral resources. Surface water discharging from irrigated fields has δ 34 S values ranging from -2.1 to 3.3 per mille which are distinctly different from groundwater and surface water in adjacent non-agricultural areas with δ 34 S values ranging from 5.2 to 13.5 per mille . Prolonged irrigation pumping that promotes the incursion of air to the subsurface could enhance the weathering of S-bearing minerals such as magmatic sulfides, producing 32 S-enriched SO 4 2-

  7. Multi-saline sample distillation apparatus for hydrogen isotope analyses: design and accuracy. Water-resources investigations

    International Nuclear Information System (INIS)

    Hassan, A.A.

    1981-04-01

    A distillation apparatus for saline water samples was designed and tested. Six samples may be distilled simultaneously. The temperature was maintained at 400 degrees C to ensure complete dehydration of the precipitating salts. Consequently, the error in the measured ratio of stable hydrogen isotopes resulting from incomplete dehydration of hydrated salts during distillation was eliminated

  8. Isotopic composition of methane and inferred methanogenic substrates along a salinity gradient in a hypersaline microbial mat system.

    Science.gov (United States)

    Potter, Elyn G; Bebout, Brad M; Kelley, Cheryl A

    2009-05-01

    The importance of hypersaline environments over geological time, the discovery of similar habitats on Mars, and the importance of methane as a biosignature gas combine to compel an understanding of the factors important in controlling methane released from hypersaline microbial mat environments. To further this understanding, changes in stable carbon isotopes of methane and possible methanogenic substrates in microbial mat communities were investigated as a function of salinity here on Earth. Microbial mats were sampled from four different field sites located within salterns in Baja California Sur, Mexico. Salinities ranged from 50 to 106 parts per thousand (ppt). Pore water and microbial mat samples were analyzed for the carbon isotopic composition of dissolved methane, dissolved inorganic carbon (DIC), and mat material (particulate organic carbon or POC). The POC delta(13)C values ranged from -6.7 to -13.5 per thousand, and DIC delta(13)C values ranged from -1.4 to -9.6 per thousand. These values were similar to previously reported values. The delta(13)C values of methane ranged from -49.6 to -74.1 per thousand; the methane most enriched in (13)C was obtained from the highest salinity area. The apparent fractionation factors between methane and DIC, and between methane and POC, within the mats were also determined and were found to change with salinity. The apparent fractionation factors ranged from 1.042 to 1.077 when calculated using DIC and from 1.038 to 1.068 when calculated using POC. The highest-salinity area showed the least fractionation, the moderate-salinity area showed the highest fractionation, and the lower-salinity sites showed fractionations that were intermediate. These differences in fractionation are most likely due to changes in the dominant methanogenic pathways and substrates used at the different sites because of salinity differences.

  9. Tracing groundwater salinization processes in coastal aquifers: a hydrogeochemical and isotopic approach in Na-Cl brackish waters of north-western Sardinia, Italy

    Science.gov (United States)

    Mongelli, G.; Monni, S.; Oggiano, G.; Paternoster, M.; Sinisi, R.

    2013-01-01

    In the Mediterranean area the demand of good quality water is often threatened by salinization, especially in coastal areas. The salinization is the result of concomitant processes due to both marine water intrusion and rock-water interaction, which in some cases are hardly distinguishable. In northwestern Sardinia, in the Nurra area, salinization due to marine water intrusion has been recently evidenced as consequence of bore hole exploitation. However, the geology of the Nurra records a long history from Paleozoic to Quaternary, resulting in relative structural complexity and in a wide variety of lithologies, including Triassic evaporites. To elucidate the origin of the saline component in the Nurra aquifer, may furnish a useful and more general model for the salinization processes in the Mediterranean area, where the occurrence of evaporitic rocks in coastal aquifers is a common feature. In addition, due to intensive human activities and recent climatic changes, the Nurra has become vulnerable to desertification and, similarly to other Mediterranean islands, surface-water resources can periodically suffer from drastic shortage. With this in mind we report new data, regarding brackish waters of Na-Cl type of the Nurra, including major ions and selected trace elements (B, Br, I and Sr) and isotopic data, including δ18O, δD in water, and δ34S and δ18O in dissolved sulphate. To better depict the origin of the salinity we also analyzed a set of Nurra Triassic evaporites for mineralogical and isotopic composition. The brackish waters have Cl contents up to 2025 mg L-1 and the ratios between dissolved ions and chlorine, with the exception of the Br/Cl ratio, are not those expected on the basis of a simple mixing between rain water and seawater. The δ18O and δD data indicate that most of the waters are within the Regional Meteoric Water Line and the Global Meteoric Water Line supporting the idea that they are meteoric in origin. A relevant consequence of the

  10. Quantification of the carbonaceous matter origin in submicron marine aerosol particles by dual carbon isotope analysis

    Science.gov (United States)

    Ceburnis, D.; Garbaras, A.; Szidat, S.; Rinaldi, M.; Fahrni, S.; Perron, N.; Wacker, L.; Leinert, S.; Remeikis, V.; Facchini, M. C.; Prevot, A. S. H.; Jennings, S. G.; O'Dowd, C. D.

    2011-01-01

    Dual carbon isotope analysis has been performed for the first time demonstrating a potential in organic matter apportionment between three principal sources: marine, terrestrial (non-fossil) and fossil fuel due to unique isotopic signatures. The results presented here, utilising combinations of dual carbon isotope analysis, provides a conclusive evidence of a dominant biogenic organic fraction to organic aerosol over biologically active oceans. In particular, the NE Atlantic, which is also subjected to notable anthropogenic influences via pollution transport processes, was found to contain 80% organic aerosol matter of biogenic origin directly linked to plankton emissions. The remaining carbonaceous aerosol was of fossil-fuel origin. By contrast, for polluted air advecting out from Europe into the NE Atlantic, the source apportionment is 30% marine biogenic, 40% fossil fuel, and 30% continental non-fossil fuel. The dominant marine organic aerosol source in the atmosphere has significant implications for climate change feedback processes.

  11. Performance evaluation of nitrogen isotope ratio determination in marine and lacustrine sediments: An inter-laboratory comparison

    NARCIS (Netherlands)

    Bahlmann, E.; Bernasconi, S.M.; Bouillon, S.; Houtekamer, M.J.; Korntheuer, M.; Langenberg, F.; Mayr, C.; Metzke, M.; Middelburg, J.J.; Nagel, B.; Struck, U.; Voß, M.; Emeis, K.C.

    2010-01-01

    Nitrogen isotopes of organic matter are increasingly studied in marine biogeochemistry and geology, plant and animal ecology, and paleoceanography. Here, we present results of an inter-laboratory test on determination of nitrogen isotope ratios in marine and lacustrine sediments. Six different

  12. Isotopic fractionation during the uptake and elimination of inorganic mercury by a marine fish

    International Nuclear Information System (INIS)

    Xu, Xiaoyu; Wang, Wen-Xiong

    2015-01-01

    This study investigated the mass dependent (MDF) and independent fractionation (MIF) of stable mercury isotopes in fish during the uptake and elimination of inorganic species. Mercury accumulation during the exposure led to re-equilibration of organ isotopic compositions with the external sources, and elimination terminated the equilibrating with isotope ratios moving back to the original values. Generally, the isotopic behaviors corresponded to the changes of Hg accumulation in the muscle and liver, causing by the internal transportation, organ redistribution, and mixing of different sources. A small degree of MDF caused by biotransformation of Hg in the liver was documented during the elimination, whereas MIF was not observed. The absence of MIF during geochemical and metabolic processes suggested that mercury isotopes can be used as source tracers. Additionally, fish liver is a more responsive organ than muscle to track Hg source when it is mainly composed of inorganic species. - Highlights: • Isotopic behavior of Hg(II) during the uptake and elimination by a marine fish was studied. • Hg isotopic fractionation in the organ corresponded to the changes of Hg bioaccumulation. • Internal transportation, redistribution and mixing of different sources explained the isotopic changes. • Mass dependent fractionation in the liver was found during Hg elimination. • Liver is more responsive than muscle to track Hg sources using Hg stable isotopes. - Fish liver is a more responsive organ than muscle when mercury stable isotopes are applied to track sources that are mainly composed of inorganic species.

  13. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junxia; Wang, Yanxin, E-mail: yx.wang@cug.edu.cn; Xie, Xianjun

    2016-02-15

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000–10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ{sup 37}Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. - Highlights: • Natural high arsenic, fluoride and iodine groundwater co-occur with saline water.

  14. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China

    International Nuclear Information System (INIS)

    Li, Junxia; Wang, Yanxin; Xie, Xianjun

    2016-01-01

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000–10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ"3"7Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. - Highlights: • Natural high arsenic, fluoride and iodine groundwater co-occur with saline water. • Groundwater

  15. Tracing groundwater salinization processes in coastal aquifers: a hydrogeochemical and isotopic approach in the Na-Cl brackish waters of northwestern Sardinia, Italy

    Directory of Open Access Journals (Sweden)

    G. Mongelli

    2013-07-01

    Full Text Available Throughout the Mediterranean, salinization threatens water quality, especially in coastal areas. This salinization is the result of concomitant processes related to both seawater intrusion and water–rock interaction, which in some cases are virtually indistinguishable. In the Nurra region of northwestern Sardinia, recent salinization related to marine water intrusion has been caused by aquifer exploitation. However, the geology of this region records a long history from the Palaeozoic to the Quaternary, and is structurally complex and comprises a wide variety of lithologies, including Triassic evaporites. Determining the origin of the saline component of the Jurassic and Triassic aquifers in the Nurra region may provide a useful and more general model for salinization processes in the Mediterranean area, where the occurrence of evaporitic rocks in coastal aquifers is a common feature. In addition, due to intensive human activity and recent climatic change, the Nurra has become vulnerable to desertification and, in common with other Mediterranean islands, surface water resources periodically suffer from severe shortages. With this in mind, we report new data regarding brackish and surface waters (outcrop and lake samples of the Na-Cl type from the Nurra region, including major ions and selected trace elements (B, Br, I, and Sr, in addition to isotopic data including δ18O, δD in water, and δ34S and δ18O in dissolved SO4. To identify the origin of the salinity more precisely, we also analysed the mineralogical and isotopic composition of Triassic evaporites. The brackish waters have Cl contents of up to 2025 mg L−1 , and the ratios between dissolved ions and Cl, with the exception of the Br / Cl ratio, are not those expected on the basis of simple mixing between rainwater and seawater. The δ18O and δD data indicate that most of the waters fall between the regional meteoric water line and the global meteoric water line, supporting the

  16. Tracing groundwater salinization processes in coastal aquifers: a hydrogeochemical and isotopic approach in the Na-Cl brackish waters of northwestern Sardinia, Italy

    Science.gov (United States)

    Mongelli, G.; Monni, S.; Oggiano, G.; Paternoster, M.; Sinisi, R.

    2013-07-01

    Throughout the Mediterranean, salinization threatens water quality, especially in coastal areas. This salinization is the result of concomitant processes related to both seawater intrusion and water-rock interaction, which in some cases are virtually indistinguishable. In the Nurra region of northwestern Sardinia, recent salinization related to marine water intrusion has been caused by aquifer exploitation. However, the geology of this region records a long history from the Palaeozoic to the Quaternary, and is structurally complex and comprises a wide variety of lithologies, including Triassic evaporites. Determining the origin of the saline component of the Jurassic and Triassic aquifers in the Nurra region may provide a useful and more general model for salinization processes in the Mediterranean area, where the occurrence of evaporitic rocks in coastal aquifers is a common feature. In addition, due to intensive human activity and recent climatic change, the Nurra has become vulnerable to desertification and, in common with other Mediterranean islands, surface water resources periodically suffer from severe shortages. With this in mind, we report new data regarding brackish and surface waters (outcrop and lake samples) of the Na-Cl type from the Nurra region, including major ions and selected trace elements (B, Br, I, and Sr), in addition to isotopic data including δ18O, δD in water, and δ34S and δ18O in dissolved SO4. To identify the origin of the salinity more precisely, we also analysed the mineralogical and isotopic composition of Triassic evaporites. The brackish waters have Cl contents of up to 2025 mg L-1 , and the ratios between dissolved ions and Cl, with the exception of the Br / Cl ratio, are not those expected on the basis of simple mixing between rainwater and seawater. The δ18O and δD data indicate that most of the waters fall between the regional meteoric water line and the global meteoric water line, supporting the conclusion that they are

  17. Control of invasive marine invertebrates: an experimental evaluation of the use of low salinity for managing pest corals (Tubastraea spp.).

    Science.gov (United States)

    Moreira, Patrícia L; Ribeiro, Felipe V; Creed, Joel C

    2014-01-01

    This study investigated the use of low salinity as a killing agent for the invasive pest corals Tubastraea coccinea and Tubastraea tagusensis (Dendrophylliidae). Experiments investigated the efficacy of different salinities, the effect of colony size on susceptibility and the influence of length of exposure. Experimental treatments of colonies were carried out in aquaria. Colonies were then fixed onto experimental plates and monitored in the field periodically over a period of four weeks. The killing effectiveness of low salinity depended on the test salinity and the target species, but was independent of colony size. Low salinity was fast acting and prejudicial to survival: discoloration, necrosis, fragmenting and sloughing, exposure of the skeleton and cover by biofoulers occurred post treatment. For T. tagusensis, 50% mortality (LC50) after three days occurred at eight practical salinity units (PSU); for T. coccinea the LC50 was 2 PSU. Exposure to freshwater for 45-120 min resulted in 100% mortality for T. tagusensis, but only the 120 min period was 100% effective in killing T. coccinea. Freshwater is now routinely used for the post-border management of Tubastraea spp. This study also provides insights as to how freshwater may be used as a routine biosecurity management tool when applied pre-border to shipping vectors potentially transporting non-indigenous marine biofouling species.

  18. Bioerosion structures in high-salinity marine environments: Evidence from the Al-Khafji coastline, Saudi Arabia

    Science.gov (United States)

    El-Sorogy, Abdelbaset S.; Alharbi, Talal; Richiano, Sebastián

    2018-05-01

    Salinity is one the major stress factors that controls the biotic activities in marine environments. In general, the mixture with fresh-water has been mention as a great stress factor, but the opposite, i.e. high-salinity conditions, is less developed in the ichnological literature. Along the Al-Khafji coastline, Saudi Arabia, hard substrates (constituted by gastropods, bivalves and coral skeletons) contain diverse and abundant bioerosion traces and associated encrusters. Field and laboratory observations allowed the recognition of eight ichnospecies belong to the ichnogenera Gastrochaenolites, Entobia, Oichnus, Caulostrepsis and Trypanites, which can be attributed to various activities produced by bivalves, sponges, gastropods and annelids. The borings demonstrate two notable ichnological boring assemblages, namely, Entobia-dominated and Gastrochaenolites-dominated assemblages. The highly diversified bioerosion and encrustation in the studied hard organic substrate indicate a long exposition period of organic substrate with slow to moderate rate of deposition in a restricted (high-salinity) marine environment. This bioerosion study shows that high-salinity, at least for the study area, is not an important controlling factor for ichnology.

  19. Faunal and oxygen isotopic evidence for surface water salinity changes during sapropel formation in the eastern Mediterranean

    International Nuclear Information System (INIS)

    Williams, D.F.; Thunell, R.C.

    1979-01-01

    The discovery of the widespread anaerobic deposits (sapropels) in late Cenozoic sediments of the eastern Mediteranean has prompted many workers to propose the periodic occurrence of extremely low surface salinites in the Mediterranean. Oxygen isotopic determinations and total faunal analyses were made at 1000-year intervals across two equivalent sapropels in two piston cores from the Levantine Basin. The sapropel layers were deposited approximately 9000 y.B.P. (Sapropel A) and 80, 000 y. B.P. (Sapropel B). Significant isotopic anomalies were recorded by the foraminiferal species within Sapropels A and B in both cores. The surface dwelling species record a larger 18 O depletion than the mesopelagic species suggesting that surface salinities were reduced by 2-3per 1000 during sapropel formation. The faunal changes associated with the sapropels also indicate that the oceanographic conditions which lead to anoxic conditions in the eastern Mediteranean involve the formation of a low salinity surface layer. The source of the low salinity water might be meltwater produced by disintegration of the Fennoscandian Ice Sheet which drained into the Black Sea, into the Aegean Sea and finally into the eastern Mediterranean. (Auth.)

  20. Trophic niche of squids: Insights from isotopic data in marine systems worldwide

    Science.gov (United States)

    Navarro, Joan; Coll, Marta; Somes, Christoper J.; Olson, Robert J.

    2013-10-01

    Cephalopods are an important prey resource for fishes, seabirds, and marine mammals, and are also voracious predators on crustaceans, fishes, squid and zooplankton. Because of their high feeding rates and abundance, squids have the potential to exert control on the recruitment of commercially important fishes. In this review, we synthesize the available information for two intrinsic markers (δ15N and δ13C isotopic values) in squids for all oceans and several types of ecosystems to obtain a global view of the trophic niches of squids in marine ecosystems. In particular, we aimed to examine whether the trophic positions and trophic widths of squid species vary among oceans and ecosystem types. To correctly compare across systems, we adjusted squid δ15N values for the isotopic variability of phytoplankton at the base of the food web provided by an ocean circulation-biogeochemistry-isotope model. Studies that focused on the trophic ecology of squids using isotopic techniques were few, and most of the information on squids was from studies on their predators. Our results showed that squids occupy a large range of trophic positions and exploit a large range of trophic resources, reflecting the versatility of their feeding behavior and confirming conclusions from food-web models. Clear differences in both trophic position and trophic width were found among oceans and ecosystem types. The study also reinforces the importance of considering the natural variation in isotopic values when comparing the isotopic values of consumers inhabiting different ecosystems.

  1. Evaluation of the Marine Intrusion in Havana Province Groundwater Using Hydrochemical and Isotopic Tools

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, A. M.; Bombuse, D. L.; Estevez Alvarez, J. R. [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Havana (Cuba); others, and

    2013-07-15

    In the present paper the spatial distribution and temporal evolution of the saline intrusion in the most important aquifer of Havana province is presented. Results were obtained through the application of hydrochemical and isotopic tools. Studies were carried out within the framework of the IAEA Regional Project RLA/8/041. The survey was carried out in 2008 during the dry and rainy seasons. Sampling points were selected according to a monitoring network located along the north-south line following the main groundwater flow direction. Stable isotopes ({sup 2}H and {sup 18}O) were used to identify and characterize the groundwater origin and mixing processes. Changes in the chemical composition of groundwater were shown to be mainly controlled by the groundwater and seawater mixing process, followed by cation exchange reactions and a Ca-Mg precipitation process due to the strong influence of the costal wetland. A gradual decreasing of the spatial and temporal saline intrusion was observed. (author)

  2. Influence of salinity on the early development and biochemical dynamics of a marine fish, Inimicus japonicus

    Science.gov (United States)

    Gong, Xu; Huang, Xuxiong; Wen, Wen

    2018-03-01

    Fertilised eggs of the devil stringer ( Inimicus japonicus) were incubated at different salinity levels (21, 25, 29, 33, and 37), and then the hatching performances, morphological parameters, and biochemical composition (protein, lipid and carbohydrate) of the larvae were assayed to determine the influence of salinity on the early development of I. japonicus. The tested salinity levels did not affect the times of hatching or mouth opening for yolk-sac larvae. However, the salinity significantly influenced the hatching and survival rates of open-mouthed larvae, as well as the morphology of yolk-sac larvae. The data indicated that 30.5 to 37.3 and 24.4 to 29.8 were suitable salinity ranges for the survival of embryos and larvae of I. japonicus, respectively. Larvae incubated at a salinity level of 29 had the greatest full lengths, and decreasing yolk volume was positively correlated with the environmental salinity. With increasing salinity, the individual dry weights of newly hatched larvae or open-mouthed larvae decreased significantly. Newly hatched larvae incubated at a salinity level of 29 had the greatest metabolic substrate contents and gross energy levels, while the openmouthed larvae's greatest values occurred at a salinity level of 25. Larvae incubated in the salinity range of 33 to 37 had the lowest nutritional reserves and energy values. Thus, the I. japonicus yolk-sac larvae acclimated more readily to the lower salinity level than the embryos, and higher salinity levels negatively influenced larval growth and development. In conclusion, the environmental salinity level should be maintained at 29-33 during embryogenesis and at 25-29 during early larval development for this species. Our results can be used to provide optimum aquaculture conditions for the early larval development of I. japonicus.

  3. Identification of the mechanisms and origin of salinization of groundwaters in coastal aquifers by means of isotopic techniques

    International Nuclear Information System (INIS)

    Araguas, L. J.; Quejido, A. J.

    2007-01-01

    To study the origin of salinity and the mechanisms operating in coastal aquifers, a set of tools is available to determine the essential aspects of the hydrogeological behaviour of the system. these tools are based on the integrated use of hydrochemical parameters (major constituents and trace elements) and isotopic parameters (oxygen, hydrogen, sulfur, carbon, strontium and boron). In addition to the active intrusion of seawater, salinization in coastal areas may be influenced by various human activities that accelerate the degradation of water quality, such as concentrated pumping, intensive farming techniques with return of irrigation water, or reuse of urban and industrial waste water. Characterization of the dominant processes and mechanisms is required for suitable management of the resource and implementation of corrective measures. (Author)

  4. Relationships of stable isotopes, water-rock interaction and salinization in fractured aquifers, Petrolina region, Pernambuco State, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Priscila Sousa, E-mail: priscila.silva@cprm.gov.br [Serviço Geológico do Brasil (CPRM), Manaus, AM (Brazil); Campos, José Eloi Guimarães; Cunha, Luciano Soares; Mancini, Luís Henrique, E-mail: eloi@unb.br, E-mail: lucianosc@unb.br, E-mail: lmancini@unb.br [Universidade de Brasília (UnB), Brasília, DF (Brazil)

    2018-01-15

    The Petrolina County, Pernambuco State, Brazil, presents specificities that make it unique from a hydrogeological point of view. Water resource scarcity is both a quantitative and qualitative issue. The climate is classified as semiarid, having low precipitation, along with high temperatures and evapotranspiration rates. Aquifer zones are related to low connected fractures resulting in a restricted water flow in the aquifer. The recharge is limited and the groundwater salinity is high. Stable isotope analyses of H and O were developed in groundwater samples (with different electrical conductivity) and surface water collected in a bypass channel flowing from the São Francisco River. The results were plotted in a δD ‰ versus δ{sup 18}O ‰ graph along with the curves of the global and local meteoric water line. Groundwater samples showed unexpected results showing a lighter sign pattern when compared to the meteoric waters. More negative δD and δ{sup 18}O values indicate an enrichment in light isotopes, which show that this process is not influenced by surface processes, where the enrichment occurs in heavy isotopes due to evaporation. The isotopic signature observed is interpreted either as resulting from the water-rock interaction, or as resulting from recharge from paleo rains. The waters are old and show restricted flow. So the water-rock contact time is extended. In the rock weathering processes, through the hydration of feldspars, there is preferential assimilation of heavy isotopes at the expense of the lighter ones that remain in the water. Analyses of the {sup 87}Sr/{sup 86}Sr ratio and isotopic groundwater dating assist in the interpretations. (author)

  5. International Symposium on Isotopes in Hydrology, Marine Ecosystems, and Climate Change Studies. Presentations

    International Nuclear Information System (INIS)

    2011-01-01

    Human activities have had a far-reaching impact on the aquatic environments - both marine and freshwater systems. The protection of these systems against further deterioration and the promotion of sustainable use are vital. In order to deepen understanding about the main processes affecting the present situation, as well as possible developments in the future, further investigation is required. The oceans play a major role in climate change, for example, and ocean acidification by increased CO2 release is one major threat to the world's oceans. Isotope methods can play a critical role in identifying and quantifying key processes within aquatic environments. Addressing the problems of global water resources has become a matter of urgency. Water resources are subject to multiple pressures for various reasons, including increasing populations, climate change, rising food and energy costs, the global economic crisis and pollutant loading. Isotope hydrology provides the unique and critical tools required to address complex water problems and helps managers and policy makers understand the closely intertwined relationship between water resources and the various pressures affecting them, as well as the issue of sustainability. The symposium will be an important forum for the exchange of knowledge on the present state of marine and freshwater environments, use of isotopes in water resources investigations and management, and climate change studies. The meeting will involve leading scientists in the field of climate change and hydrology, as well as representatives from other United Nations bodies and international organizations that focus on climate change and other important environmental issues. TOPICS: The role of isotopes in understanding and modelling climate change, marine ecosystems and the water cycle; Carbon dioxide sequestration and related aspects of the carbon cycle, such as ocean acidification; Isotopes in groundwater flow modelling for large aquifers

  6. Physiochemical and environmental stable isotope profile of marine coastal water, Pakistan

    International Nuclear Information System (INIS)

    Mashiatullah, A.; Qureshi, R.M.; Javed, T.; Fazil, M.; Latif, Z.; Ahmad, N.

    2005-01-01

    Physiochemical and environmental stable isotope (delta /sup 13/C, delta /sup 18/O delta /sup 2/H, delta /sup 34/S) analysis of seawater samples collected from selected locations off Pakistan. Coast was performed to assess pollution scenario during 2002. Objective of the study was to establish a baseline data profile of Pakistan coastal waters. Coastal location includes: Indus Delta, Karachi Harbour, Southeast Coast Karachi, Northwest Coast Karachi, Sonmiani, Ormara. Pasni, Gwadar and Jiwani. In-situ physiochemical parameters such as: pH, electrical conductivity (E.C), salinity, turbidity and dissolved oxygen (DO) were performed with portable meters. Stable isotope of oxygen, hydrogen, carbon and sulfur was performed on GD -150 modified Mass Spectrometer. Values of delta /sup 18/O along the Sindh Coast (Indus Delta, Karachi Harbour High Tide, Karachi Harbour Low Tide, North West Coast South East Coast, Gadani), lie in range of -6.3 to -2.4 , -0.17 to -0.2, -0.13 to + 1.16, + 0.65 to + 1.25, + 0.88 to +0.93, and 1.14 %. SMOW respectively. The values of delta /sup 18/O along Baluchistan Coast (Sonmiani, Ormara, Pasni, Gwadar, and Jiwani) lie in the range of 0.74 to 1.08,0.77 to 0.82, 0.96 to + 1.07,0.38 to 1.23, and 0.45 to 0.83 % SMOW respectively. Values of delta /sup 13/ C of total dissolved inorganic carbon (TDIC) along Sindh Coast lie in the range of -2.7 to 0.55, -7.0 to -2.14, -11.48 to -2.98, -1.26 to 2.12, -2.91 to -0.56, and -1.31 to -0.28 % V- PDB. Values of delta /sup 13/ C of total dissolved inorganic carbon (TDIC) off Baluchistan Coast lie in the range of - 2.65 to -0.68, -8.5 to 0.07, -1.1 to 0.01, -1.3 to 0.47 and -5.2 to 0 % V-PDB respectively. Significantly depleted delta /sup 13/C (TDIC) values observed in water samples collected off Karachi coast, Indus Delta and Armor Coast indicate pollution inputs from industrial and domestic waste drains into shallow marine environment off these coasts. Carbon Isotope data shows that the Gwadar and Pasni are

  7. Behavior of plutonium isotopes in the marine environment of Enewetak atoll

    International Nuclear Information System (INIS)

    Noshkin, V.E.; Robison, W.L.; Eagle, R.J.

    1998-01-01

    There continue to be reports in the literature that suggest a difference in the behavior of 239+240 Pu and 238 Pu in some aquatic environments. Plutonium isotopes have been measured in marine samples collected over 3 decades form Enewetak atoll, one of the sites in the Marshall Islands used by the United States between 1946 and 1958 to test nuclear devices. The plutonium isotopes originated from a variety of complex sources and could possibly coexist in this environment as different physical-chemical species. However results indicate little difference in the mobility and biological availability of 239+240 Pu and 238 Pu. (author)

  8. Natural thorium isotopes in marine sediment core off Labuan port

    Energy Technology Data Exchange (ETDEWEB)

    Hafidz, B. Y.; Asnor, A. S.; Terence, R. C.; Mohamed, C. A. R. [School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600, Bangi, Selangor (Malaysia)

    2014-02-12

    Sediment core was collected from Labuan port and analyzed to determine the radioactivity of thorium (Th) isotopes. The objectives of this study are to determine the possible sources of Th isotopes at Labuan port and estimates the sedimentation rate based on {sup 228}Th/{sup 232}Th model. The results suggest the {sup 230}Th and {sup 232}Th might be originated from terrestrial sedimentary rock while {sup 228}Th originated by authigenic origin. High ratio value of {sup 230}Th/{sup 232}Th detected at the top surface sediment indicates the increasing of {sup 230}Th at the recent years which might be contributed from the anthropogenic sources. The sedimentation rate of core sediment from Labuan Port was successfully estimated by using {sup 228}Th/{sup 232}Th model. The result show high sedimentation rate with 4.67 cm/year indicates rapid deposition occurred at this study area due to the high physical activity at the Labuan port. By assume the constant sedimentation rate at this area; we estimated the age of 142 cm core sediment obtained from Labuan port is 32 years started from 1981 to 2012. This chronology will be used in forthcoming research to investigate the historical profile of anthropogenic activities affecting the Labuan port.

  9. Environmental isotope study related to groundwater age, flow system and saline water origin in Quaternary aquifers of North China Plain

    International Nuclear Information System (INIS)

    Zhang Zhigan; Payne, B.R.

    1988-01-01

    An isotopic hydrology section across the North China Plain has been studied to investigate problems of groundwater age, flow system and saline water origin in a semi-arid pre-mountain artesian basin. Two local and one regional flow system along the section have been recognized. Turnover time of water for alluvial fan, shallow and regional systems are estimated to be the order of 10 2 , 10 3 , and 10 4 years respectively. Specific flow rates for the three systems have been calculated. Only less than 5 percent of flow from alluvial fan is drained by the regional flow system and the rest, in natural conditions, discharges at surface in the front edge of an alluvial fan and forms a groundwater discharge belt at a good distance away from the mountain foot. Developed in the alluvial plain and coastal plain areas the shallow flow system embraces a series of small local systems. Groundwater in these systems appears to be the salt carrier during continental salinization. It washes salt out of the recharge area and deep-occurred strata by circulating and carries it up to the surface in lowland areas. Consequently, in parallel with salinization at surface a desalinization process occurs at depth, which provides an additional explanation for the existing thick deep fresh water zone in most arid and semi-arid regions, where continental salting process is in progress. (author). 6 refs, 8 figs, 4 tabs

  10. Tackling the salinity-pollution nexus in coastal aquifers from arid regions using nitrate and boron isotopes.

    Science.gov (United States)

    Re, V; Sacchi, E

    2017-05-01

    Salinization and nitrate pollution are generally ascertained as the main issues affecting coastal aquifers worldwide. In arid zones, where agricultural activities also result in soil salinization, both phenomena tend to co-exist and synergically contribute to alter groundwater quality, with severe negative impacts on human populations and natural ecosystems' wellbeing. It becomes therefore necessary to understand if and to what extent integrated hydrogeochemical tools can help in distinguishing among possible different salinization and nitrate contamination origins, in order to provide adequate science-based support to local development and environmental protection. The alluvial plain of Bou-Areg (North Morocco) extends over about 190 km 2 and is separated from the Mediterranean Sea by the coastal Lagoon of Nador. Its surface is covered for more than 60% by agricultural activities, although the region has been recently concerned by urban population increase and tourism expansion. All these activities mainly rely on groundwater exploitation and at the same time are the main causes of both aquifer and lagoon water quality degradation. For this reason, it was chosen as a case study representative of the typical situation of coastal aquifers in arid zones worldwide, where a clear identification of salinization and pollution sources is fundamental for the implementation of locally oriented remedies and long-term management strategies. Results of a hydrogeochemical investigation performed between 2009 and 2011 show that the Bou-Areg aquifer presents high salinity (often exceeding 100 mg/L in TDS) due to both natural and anthropogenic processes. The area is also impacted by nitrate contamination, with concentrations generally exceeding the WHO statutory limits for drinking water (50 mg/L) and reaching up to about 300 mg/L, in both the rural and urban/peri-urban areas. The isotopic composition of dissolved nitrates (δ 15 N NO3 and δ 18 O NO ) was used to constrain

  11. Optimizing sample pretreatment for compound-specific stable carbon isotopic analysis of amino sugars in marine sediment

    Science.gov (United States)

    Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.

    2014-09-01

    Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment, employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e., equivalent to ~8 ng of amino sugar carbon. Compound-specific stable carbon isotopic analysis of amino sugars obtained from marine sediment extracts indicated that glucosamine and galactosamine were mainly derived from organic detritus, whereas muramic acid showed isotopic imprints from indigenous bacterial activities. The δ13C analysis of amino sugars provides a valuable addition to the biomarker-based characterization of microbial metabolism in the deep marine biosphere, which so far has been lipid oriented and biased towards the detection of archaeal signals.

  12. Thallium isotope evidence for a permanent increase in marine organic carbon export in the early Eocene

    Science.gov (United States)

    Nielsen, S.G.; Mar-Gerrison, S.; Gannoun, A.; LaRowe, D.; Klemm, V.; Halliday, A.N.; Burton, K.W.; Hein, J.R.

    2009-01-01

    The first high resolution thallium (Tl) isotope records in two ferromanganese crusts (Fe-Mn crusts), CD29 and D11 from the Pacific Ocean are presented. The crusts record pronounced but systematic changes in 205Tl/203Tl that are unlikely to reflect diagenetic overprinting or changes in isotope fractionation between seawater and Fe-Mn crusts. It appears more likely that the Fe-Mn crusts track the Tl isotope composition of seawater over time. The present-day oceanic residence time of Tl is estimated to be about 20,000??yr, such that the isotopic composition should reflect ocean-wide events. New and published Os isotope data are used to construct age models for these crusts that are consistent with each other and significantly different from previous age models. Application of these age models reveals that the Tl isotope composition of seawater changed systematically between ~ 55??Ma and ~ 45??Ma. Using a simple box model it is shown that the present day Tl isotope composition of seawater depends almost exclusively on the ratio between the two principal output fluxes of marine Tl. These fluxes are the rate of removal of Tl from seawater via scavenging by authigenic Fe-Mn oxyhydroxide precipitation and the uptake rate of Tl during low temperature alteration of oceanic crust. It is highly unlikely that the latter has changed greatly. Therefore, assuming that the marine Tl budget has also not changed significantly during the Cenozoic, the low 205Tl/203Tl during the Paleocene is best explained by a more than four-fold higher sequestration of Tl by Fe-Mn oxyhydroxides compared with at the present day. The calculated Cenozoic Tl isotopic seawater curve displays a striking similarity to that of S, providing evidence that both systems may have responded to the same change in the marine environment. A plausible explanation is a marked and permanent increase in organic carbon export from ~ 55??Ma to ~ 45??Ma, which led to higher pyrite burial rates and a significantly reduced

  13. Silicon isotope fractionation by marine sponges and the reconstruction of the silicon isotope composition of ancient deep water

    Science.gov (United States)

    de La Rocha, Christina L.

    2003-05-01

    The silicon isotope composition (δ30Si) of biogenic opal provides a view of the silica cycle at times in the past. Reconstructions require the knowledge of silicon isotope fractionation during opal biomineralization. The δ30Si of specimens of hexactinellid sponges and demosponges growing in the modern ocean ranged from -1.2‰ to -3.7‰ (n = 6), corresponding to the production of opal that has a δ30Si value 3.8‰ ± 0.8‰ more negative than seawater silicic acid and a fractionation factor (α) of 0.9964. This is three times the fractionation observed during opal formation by marine diatoms and terrestrial plants and is the largest fractionation of silicon isotopes observed for any natural process on Earth. The δ30Si values of sponge spicules across the Eocene-Oligocene boundary at Ocean Drilling Program Site 689 on Maud Rise range from -1.1‰ to -3.0‰, overlapping the range observed for sponges growing in modern seawater.

  14. Assessment of nitrogen and oxygen isotopic fractionation during nitrification and its expression in the marine environment.

    Science.gov (United States)

    Casciotti, Karen L; Buchwald, Carolyn; Santoro, Alyson E; Frame, Caitlin

    2011-01-01

    Nitrification is a microbially-catalyzed process whereby ammonia (NH(3)) is oxidized to nitrite (NO(2)(-)) and subsequently to nitrate (NO(3)(-)). It is also responsible for production of nitrous oxide (N(2)O), a climatically important greenhouse gas. Because the microbes responsible for nitrification are primarily autotrophic, nitrification provides a unique link between the carbon and nitrogen cycles. Nitrogen and oxygen stable isotope ratios have provided insights into where nitrification contributes to the availability of NO(2)(-) and NO(3)(-), and where it constitutes a significant source of N(2)O. This chapter describes methods for determining kinetic isotope effects involved with ammonia oxidation and nitrite oxidation, the two independent steps in the nitrification process, and their expression in the marine environment. It also outlines some remaining questions and issues related to isotopic fractionation during nitrification. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Searching for the true diet of marine predators: incorporating Bayesian priors into stable isotope mixing models.

    Directory of Open Access Journals (Sweden)

    André Chiaradia

    Full Text Available Reconstructing the diet of top marine predators is of great significance in several key areas of applied ecology, requiring accurate estimation of their true diet. However, from conventional stomach content analysis to recent stable isotope and DNA analyses, no one method is bias or error free. Here, we evaluated the accuracy of recent methods to estimate the actual proportion of a controlled diet fed to a top-predator seabird, the Little penguin (Eudyptula minor. We combined published DNA data of penguins scats with blood plasma δ(15N and δ(13C values to reconstruct the diet of individual penguins fed experimentally. Mismatch between controlled (true ingested diet and dietary estimates obtained through the separately use of stable isotope and DNA data suggested some degree of differences in prey assimilation (stable isotope and digestion rates (DNA analysis. In contrast, combined posterior isotope mixing model with DNA Bayesian priors provided the closest match to the true diet. We provided the first evidence suggesting that the combined use of these complementary techniques may provide better estimates of the actual diet of top marine predators- a powerful tool in applied ecology in the search for the true consumed diet.

  16. Isotopes in Hydrology, Marine Ecosystems and Climate Change Studies. Vol. I. Proceedings of an International Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-15

    Humanity is facing many water related challenges, including access to safe water, pollution of continental and coastal waters and ocean acidification, as well as the growing impact of climate change on the hydrological cycle. Many countries are confronted by increasingly stressed water resources due to rapidly growing populations, increasing agricultural and energy production demands, industrial development, and pollution. The greatest issues of the 21st century, including competition for resources and possible related conflicts, may well focus on the role of water in food and energy security. For more than 50 years, the IAEA has played a key role in advancing and promoting the development and use of isotope techniques to address global environmental issues, such as water resources assessment and management, the study of marine ecosystems, and more recently the impact of climate change. This symposium was jointly organized by theWater Resources Programme and IAEA Environment Laboratories to commemorate the 50th anniversary of the establishment of the IAEA laboratory in the P rincipality of Monaco, and represented the 13th edition of the quadrennial symposium on isotope hydrology and water resources management, which has been regularly organized by the IAEA since 1963. The main objectives of the symposium were to review the state of the art in isotope hydrology, the use of isotopes in the study of climatic systems and in marine ecosystems and to outline recent developments in the application of isotope techniques, as well as to identify future trends and developments for research and applications. The contributions submitted by the authors are included in two volumes of proceedings with editorial corrections. These proceedings are intended to serve as an aid for those using isotopes for applied problems in hydrology as well as for the research community.

  17. Isotopes in Hydrology, Marine Ecosystems and Climate Change Studies, Vol. 2. Proceedings of the International Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-15

    Humanity is facing many water related challenges, including access to safe water, pollution of continental and coastal waters and ocean acidification, as well as the growing impact of climate change on the hydrological cycle. Many countries are confronted by increasingly stressed water resources due to rapidly growing populations, increasing agricultural and energy production demands, industrial development, and pollution. The greatest issues of the 21st century, including competition for resources and possible related conflicts, may well focus on the role of water in food and energy security. For more than 50 years, the IAEA has played a key role in advancing and promoting the development and use of isotope techniques to address global environmental issues, such as water resources assessment and management, the study of marine ecosystems, and more recently the impact of climate change. This symposium was jointly organized by the Water Resources Programme and IAEA Environment Laboratories to commemorate the 50th anniversary of the establishment of the IAEA laboratory in the Principality of Monaco, and represented the 13th edition of the quadrennial symposium on isotope hydrology and water resources management, which has been regularly organized by the IAEA since 1963. The main objectives of the symposium were to review the state of the art in isotope hydrology, the use of isotopes in the study of climatic systems and in marine ecosystems and to outline recent developments in the application of isotope techniques, as well as to identify future trends and developments for research and applications. The contributions submitted by the authors are included in two volumes of proceedings with editorial corrections. These proceedings are intended to serve as an aid for those using isotopes for applied problems in hydrology as well as for the research community.

  18. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China.

    Science.gov (United States)

    Li, Junxia; Wang, Yanxin; Xie, Xianjun

    2016-02-15

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000-10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ(37)Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. Copyright © 2015. Published by Elsevier B.V.

  19. Chemical and isotopic composition of marine organic matter as indicators of its origin

    International Nuclear Information System (INIS)

    Malej, A.

    1989-07-01

    The present study was carried out to evaluate the relative importance of marine and terrestrial sources of Particulate Organic Matter (POM) in the Northern Adriatic Sea. Samples of POM were obtained from the water column at 14 stations using Niskin bottles at 4 depths and sediment traps (placed near the sea floor). Additional samples were obtained of likely source organic matter: sewage, river POM, phytoplankton bloom material, zooplankton, jelly-fish and bethic macrophytes. All samples were analyzed for total carbon and nitrogen and the delta C-13/C-12 ratio (by mass spectrometry). Marine and terrestrial sources of POM were clearly distinguished by their isotopic ratios. A linear model was set up to evaluate the relative importance of these sources at each sampling station. Except in the immediate vicinity of river sources, the marine component appears to dominate. 7 refs, 5 figs, 1 tab

  20. Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment

    Science.gov (United States)

    Alperin, M. J.; Blair, Neal E.; Albert, D. B.; Hoehler, T. M.; Martens, C. S.

    1993-01-01

    The carbon isotopic composition of methane produced in anoxic marine sediment is controlled by four factors: (1) the pathway of methane formation, (2) the isotopic composition of the methanogenic precursors, (3) the isotope fractionation factors for methane production, and (4) the isotope fractionation associated with methane oxidation. The importance of each factor was evaluated by monitoring stable carbon isotope ratios in methane produced by a sediment microcosm. Methane did not accumulate during the initial 42-day period when sediment contained sulfate, indicating little methane production from 'noncompetitive' substrates. Following sulfate depletion, methane accumulation proceeded in three distinct phases. First, CO2 reduction was the dominant methanogenic pathway and the isotopic composition of the methane produced ranged from -80 to -94 per thousand. The acetate concentration increased during this phase, suggesting that acetoclastic methanogenic bacteria were unable to keep pace with acetate production. Second, acetate fermentation became the dominant methanogenic pathway as bacteria responded to elevated acetate concentrations. The methane produced during this phase was progressively enriched in C-13, reaching a maximum delta(C-13) value of -42 per thousand. Third, the acetate pool experienced a precipitous decline from greater than 5 mM to less than 20 micro-M and methane production was again dominated by CO2 reduction. The delta(C-13) of methane produced during this final phase ranged from -46 to -58 per thousand. Methane oxidation concurrent with methane production was detected throughout the period of methane accumulation, at rates equivalent to 1 to 8 percent of the gross methane production rate. Thus methane oxidation was too slow to have significantly modified the isotopic signature of methane. A comparison of microcosm and field data suggests that similar microbial interactions may control seasonal variability in the isotopic composition of methane

  1. Calcium Isotopic Evidence for Vulnerable Marine Ecosystem Structure Prior to the K/Pg Extinction.

    Science.gov (United States)

    Martin, Jeremy E; Vincent, Peggy; Tacail, Théo; Khaldoune, Fatima; Jourani, Essaid; Bardet, Nathalie; Balter, Vincent

    2017-06-05

    The collapse of marine ecosystems during the end-Cretaceous mass extinction involved the base of the food chain [1] up to ubiquitous vertebrate apex predators [2-5]. Large marine reptiles became suddenly extinct at the Cretaceous-Paleogene (K/Pg) boundary, whereas other contemporaneous groups such as bothremydid turtles or dyrosaurid crocodylomorphs, although affected at the familial, genus, or species level, survived into post-crisis environments of the Paleocene [5-9] and could have found refuge in freshwater habitats [10-12]. A recent hypothesis proposes that the extinction of plesiosaurians and mosasaurids could have been caused by an important drop in sea level [13]. Mosasaurids are unusually diverse and locally abundant in the Maastrichtian phosphatic deposits of Morocco, and with large sharks and one species of elasmosaurid plesiosaurian recognized so far, contribute to an overabundance of apex predators [3, 7, 14, 15]. For this reason, high local diversity of marine reptiles exhibiting different body masses and a wealth of tooth morphologies hints at complex trophic interactions within this latest Cretaceous marine ecosystem. Using calcium isotopes, we investigated the trophic structure of this extinct assemblage. Our results are consistent with a calcium isotope pattern observed in modern marine ecosystems and show that plesiosaurians and mosasaurids indiscriminately fall in the tertiary piscivore group. This suggests that marine reptile apex predators relied onto a single dietary calcium source, compatible with the vulnerable wasp-waist food webs of the modern world [16]. This inferred peculiar ecosystem structure may help explain plesiosaurian and mosasaurid extinction following the end-Cretaceous biological crisis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Stable isotopic techniques to address marine pollution: Karachi coast as a case study

    International Nuclear Information System (INIS)

    Ahmad, N.; Mashiatullah, A.; Javed, T.; Chaudhary, M.Z.; Fazil, M.; Khan, M.S.; Qureshi, R.M.

    2011-01-01

    Seawater of the coastal regions near heavily industrialized and thickly populated urbanized centers normally receive large quantities of domestic, agricultural and industrial sewage. Ocean systems generally appear to be unlimited in their ability to dilute these human discharges and industrial wastes. This limit is now being exceeded in coastal waters in the vicinity of many large industrial and heavy populated coastal zones, causing threat to marine coastal resources of these areas. Considering the increasing threats of the unplanned inventory of untreated wastes into the marine coastal environment, the strength of isotope tools (delta/sup 13/C) is used to understand the complex ecological systems in the marine coastal environment. This technique has been applied to study transport, behavior and fate of organic pollutants in marine coastal ecosystems of Karachi coast mainly as model studies. Carbon flow in heavily contaminated harbour channel (Manora Channel) , southeast and northwest coast have been investigated. The results indicate that shallow marine coastal waters tend to be depleted in /sup 13/C (TDIC) where polluted rivers through the coastal dwellings enter and get mixed with the seawater. Gradual increase in /sup 13/C (TDIC) are observed as the distance from pollution source is increased. Extremely depleted /sup 13/C/sub org/ was observed in sediment of Layari river out fall zone and Karachi fish harbor indicating input of domestic sewage through Layari river. Studies have proved that stable carbon isotope ratios of total dissolved inorganic carbon (TDIC) can be used as an effective tracer of sewage discharge and their transport in shallow marine environment. (author)

  3. Comparison of saline tolerance among genetically similar species of Fusarium and Meloidogyne recovered from marine and terrestrial habitats

    Science.gov (United States)

    Elmer, W. H.; LaMondia, J. A.

    2014-08-01

    Successful plant pathogens co-evolve and adapt to the environmental constraints placed on host plants. We compared the salt tolerance of two salt marsh pathogens, Fusarium palustre and Meloidogyne spartinae, to genetically related terrestrial species, F. sporotrichioides and Meloidogyne hapla, to assess whether the salt marsh species had acquired selective traits for persisting in saline environments or if salt tolerance was comparable among Fusarium and Meloidogyne species. Comparisons of both species were made in vitro in vessels containing increasing concentration of NaCl. We observed that F. palustre was more tolerant to NaCl than F. sporotrichioides. The radial expansion of F. palustre on NaCl-amended agar plates was unaffected by increasing concentrations up to 0.3 M. F. sporotrichioides showed large reductions in growth at the same concentrations. Survival of M. hapla was greatest at 0 M, and reduced by half in a 0.3 M solution for 4 days. No juveniles survived exposure to 0.3 M NaCl for 12 days. M. spartinae survived at all NaCl concentrations tested, including 1.0 M for at least 12 days. These findings are consistent with the hypothesis that marine organisms in the upper tidal zone must osmoregulate to withstand a wide range of salinity and provide evidence that these pathogens evolved in saline conditions and are not recent introductions from terrestrial niches.

  4. Quantification of the carbonaceous matter origin in submicron marine aerosol by 13C and 14C isotope analysis

    Directory of Open Access Journals (Sweden)

    M. Ramonet

    2011-08-01

    Full Text Available Dual carbon isotope analysis of marine aerosol samples has been performed for the first time demonstrating a potential in organic matter apportionment between three principal sources: marine, terrestrial (non-fossil and fossil fuel due to unique isotopic signatures. The results presented here, utilising combinations of dual carbon isotope analysis, provides conclusive evidence of a dominant biogenic organic fraction to organic aerosol over biologically active oceans. In particular, the NE Atlantic, which is also subjected to notable anthropogenic influences via pollution transport processes, was found to contain 80 % organic aerosol matter of biogenic origin directly linked to plankton emissions. The remaining carbonaceous aerosol was of terrestrial origin. By contrast, for polluted air advected out from Europe into the NE Atlantic, the source apportionment is 30 % marine biogenic, 40 % fossil fuel, and 30 % continental non-fossil fuel. The dominant marine organic aerosol source in the atmosphere has significant implications for climate change feedback processes.

  5. Quantification of the carbonaceous matter origin in submicron marine aerosol by 13C and 14C isotope analysis

    Science.gov (United States)

    Ceburnis, D.; Garbaras, A.; Szidat, S.; Rinaldi, M.; Fahrni, S.; Perron, N.; Wacker, L.; Leinert, S.; Remeikis, V.; Facchini, M. C.; Prevot, A. S. H.; Jennings, S. G.; Ramonet, M.; O'Dowd, C. D.

    2011-08-01

    Dual carbon isotope analysis of marine aerosol samples has been performed for the first time demonstrating a potential in organic matter apportionment between three principal sources: marine, terrestrial (non-fossil) and fossil fuel due to unique isotopic signatures. The results presented here, utilising combinations of dual carbon isotope analysis, provides conclusive evidence of a dominant biogenic organic fraction to organic aerosol over biologically active oceans. In particular, the NE Atlantic, which is also subjected to notable anthropogenic influences via pollution transport processes, was found to contain 80 % organic aerosol matter of biogenic origin directly linked to plankton emissions. The remaining carbonaceous aerosol was of terrestrial origin. By contrast, for polluted air advected out from Europe into the NE Atlantic, the source apportionment is 30 % marine biogenic, 40 % fossil fuel, and 30 % continental non-fossil fuel. The dominant marine organic aerosol source in the atmosphere has significant implications for climate change feedback processes.

  6. Studies of marine macroalgae: saline desert water cultivation and effects of environmental stress on proximate composition. Final subcontract report. [Gracilaria tikvahiae; Ulva lactuca

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J.H.; DeBusk, T.A.; Peterson, J.E.

    1985-11-01

    The results presented in this report address the growth potential of marine macroalgae cultivated in desert saline waters, and the effects of certain environmental stresses (e.g., nitrogen, salinity, and temperature) on the proximate composition of several marine macroalgae. Two major desert saline water types were assayed for their ability to support the growth of Gracilaria, Ulva, and Caulerpa. Both water types supported short term growth, but long term growth was not supported. Carbohydrate levels in Gracilaria were increased by cultivation under conditions of high salinity, low temperature, and low nitrogen and phosphorous availability. Data suggests that it may be possible to maximize production of useful proximate constituents by cultivating the algae under optimum conditions for growth, and then holding the resulting biomass under the environmental conditions which favor tissue accumulation of the desired storage products. 16 refs., 21 figs., 19 tabs.

  7. Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records

    Directory of Open Access Journals (Sweden)

    J.-E. Tesdal

    2013-01-01

    Full Text Available The stable isotopes of nitrogen offer a unique perspective on changes in the nitrogen cycle, past and present. However, the presence of multiple forms of nitrogen in marine sediments can complicate the interpretation of bulk nitrogen isotope measurements. Although the large-scale global patterns of seafloor δ15N have been shown to match process-based expectations, small-scale heterogeneity on the seafloor, or alterations of isotopic signals during translation into the subseafloor record, could obscure the primary signals. Here, a public database of nitrogen isotope measurements is described, including both seafloor and subseafloor sediment samples ranging in age from modern to the Pliocene, and used to assess these uncertainties. In general, good agreement is observed between neighbouring seafloor sites within a 100 km radius, with 85% showing differences of < 1‰. There is also a good correlation between the δ15N of the shallowest (< 5 ka subseafloor sediments and neighbouring seafloor sites within a 100 km radius (R2 = 0.83, which suggests a reliable translation of sediments into the buried sediment record. Meanwhile, gradual δ15N decreases over multiple glacial–interglacial cycles appear to reflect post-depositional alteration in records from the deep sea (below 2000 m. We suggest a simple conceptual model to explain these 100-kyr-timescale changes in well-oxygenated, slowly accumulating sediments, which calls on differential loss rates for pools of organic N with different δ15N. We conclude that bulk sedimentary nitrogen isotope records are reliable monitors of past changes in the marine nitrogen cycle at most locations, and could be further improved with a better understanding of systematic post-depositional alteration. Furthermore, geochemical or environmental criteria should be developed in order to effectively identify problematic locations and to account for

  8. Salinity dependent hydrogen isotope fractionation in alkenones produced by coastal and open ocean haptophyte algae

    NARCIS (Netherlands)

    M'boule, D.; Chivall, D.; Sinke-Schoen, D.; Sinninghe Damsté, J.S.; Schouten, S.; van der Meer, M.T.J.

    2014-01-01

    The hydrogen isotope fractionation in alkenones produced by haptophyte algae is a promising new proxy for paleosalinity reconstructions. To constrain and further develop this proxy the coastal haptophyte Isochrysis galbana and the open ocean haptophyte alga Emiliania huxleyi were cultured at

  9. Geochemical and isotopic determination of deep groundwater contributions and salinity to the shallow groundwater and surface water systems, Mesilla Basin, New Mexico, Texas, and Mexico

    Science.gov (United States)

    Robertson, A.; Carroll, K. C.; Kubicki, C.; Purtshert, R.

    2017-12-01

    The Mesilla Basin/Conejos-Médanos aquifer system, extending from southern New Mexico to Chihuahua, Mexico, is a priority transboundary aquifer under the 2006 United States­-Mexico Transboundary Aquifer Assessment Act. Declining water levels, deteriorating water quality, and increasing groundwater use by municipal, industrial, and agricultural users on both sides of the international border raise concerns about long-term aquifer sustainability. Relative contributions of present-day and "paleo" recharge to sustainable fresh groundwater yields has not been determined and evidence suggests that a large source of salinity at the distal end of the Mesilla Basin is saline discharge from deep groundwater flow. The magnitude and distribution of those deep saline flow paths are not determined. The contribution of deep groundwater to discharge and salinity in the shallow groundwater and surface water of the Mesilla Basin will be determined by collecting discrete groundwater samples and analyzing for aqueous geochemical and isotopic tracers, as well as the radioisotopes of argon and krypton. Analytes include major ions, trace elements, the stable isotopes of water, strontium and boron isotopes, uranium isotopes, the carbon isotopes of dissolved inorganic carbon, noble gas concentrations and helium isotope ratios. Dissolved gases are extracted and captured from groundwater wells using membrane contactors in a process known as ultra-trace sampling. Gas samples are analyzed for radioisotope ratios of krypton by the ATTA method and argon by low-level counting. Effectiveness of the ultra-trace sampling device and method was evaluated by comparing results of tritium concentrations to the krypton-85 content. Good agreement between the analyses, especially in samples with undetectable tritium, indicates that the ultra-trace procedure is effective and confirms that introduction of atmospheric air has not occurred. The geochemistry data indicate a complex system of geochemical

  10. Application of carbon isotope stratigraphy to late miocene shallow marine sediments, new zealand.

    Science.gov (United States)

    Loutit, T S; Kennett, J P

    1979-06-15

    A distinct (0.5 per mil) carbon-13/carbon-12 isotopic shift in the light direction has been identified in a shallow marine sedimentary sequence of Late Miocene age at Blind River, New Zealand, and correlated with a similar shift in Late Miocene Deep Sea Drilling Project sequences throughout the Indo-Pacific. A dated piston core provides an age for the shift of 6.2 +/- 0.1 million years. Correlations based on the carbon isotopic change require a revision of the previously established magnetostratigraphy at Blind River. The carbon shift at Blind River occurs between 6.2 and 6.3 +/- 0.1 million years before present. A new chronology provides an age for the evolutionary first appearance datum of Globorotalia conomiozea at 6.1 +/- 0.1 million years, the beginning of a distinct latest Miocene cooling event associated with the Kapitean stage at 6.2 +/- 0.1 million years, and the beginning of a distinct shallowing of water depths at 6.1 +/- 0.1 million years. The Miocene-Pliocene boundary as recognized in New Zealand is now dated at 5.3 +/- 0.1 million years. Extension of carbon isotope stratigraphy to other shallow Late Miocene sequences should provide an important datum for international correlation of Late Miocene shallow and deep marine sequences.

  11. Some Chlorophyceae from the marine salines of Bonaire (Netherlands West Indies)

    NARCIS (Netherlands)

    Koster, Joséphine Th.

    1943-01-01

    A collection of samples containing algae from the salines of Bonaire was brought home by Mr P. Wagenaar Hummelinck from his trips to the Netherlands West Indian Islands in 1930 and in 1936—1937. Though these trips were chiefly undertaken in order to gather zoological material (1, 2) 1), the

  12. 15N Isotopic Study on Decomposition of Organic Residues Incorporated into Alluvial and Sandy Saline Soils

    International Nuclear Information System (INIS)

    El-Kholi, A. F.; Galal, Y. G. M.

    2004-01-01

    Incubation experiment was conducted to study the effect of the nitrogenous fertilizer on the decomposition and mineralization of organic residues (soybean powdered forage) as well as the release of the soil inorganic nitrogen. This technique was carried out using two types of soils, one is alluvial and the other is saline sandy soil collected from Fayoum governorate. Soybean forage has an organic carbon 23.1%, total N 1.6% and C/N ratio 14.4. Regarding the effect of incubation period on the two soil samples, the evolved NH 4 -N was generally reached its highest peak after 30-45 days, in the presence of either the added 15 No3-fertilizer solely or in combination with soybean forage. Reversible trend was occurred with regard to the evolved No3-N. The highest peak of evolved No3-N recorded in unfertilized control, as compared to 15 No3-N treatment, at 30 day incubation period indicated that the addition of labeled mineral fertilizer had appreciably enhanced the immobilization process. Net nitrification revealed that it was the highest in unfertilized control soil where it was significantly decreased in the treated two soil samples. Gross mineralization as affected by the addition of soybean forage in combination with labeled mineral fertilizer had been promoted by 75% in the alluvial soil and by 18% in the sandy saline soil, as compared with the soil samples received 15 No3-fertilizer only. Gross immobilization, in soil samples received 15 No3-fertilizer plus soybean forage had surpassed those received 15 No3-fertilizer only by 16% in the alluvial soil and by 25% in the sandy saline soil. (Authors)

  13. Search for isotopic signatures of a supernova explosion close to the solar system in marine sediments

    International Nuclear Information System (INIS)

    Fitoussi, Caroline

    2006-06-01

    The recent observation of a 60 Fe peak in a deep-sea ferro-manganese crust has been interpreted as due to a supernova explosion relatively close to the solar system 2.8 ± 0.4 Myr ago. To confirm this interpretation with better time-resolved measurements, and the simultaneous access, on the same sample, to other isotopes and geochemical phases, marine sediments seem to be a tool of choice. The objective of this work was to search for isotopic anomalies which would be characteristic for residues of this supernova. More specifically, 129 I, 60 Fe, and 26 Al have been investigated, being measured by Accelerator Mass Spectrometry (AMS). Quantifying these nuclides' fluxes would help constrain stellar nucleosynthesis models. These residues are isotopes initially produced during hydrostatic and/or explosive nucleosynthesis. The physical conditions during the explosion (temperature, neutron density) are such that supernovae are thought to be good candidates for the astrophysical site of the r-process. The 129 I study showed that measurement of pre-anthropogenic 129 I/ 127 I ratios need a very strict control of the various potential 129 I sources, especially when working with small quantities (micrograms) of iodine. This study revealed that the expected pre-anthropogenic 129 I/ 127 I ratio for pre-nuclear samples in the marine environment shows a large discrepancy between theoretical calculations and experimental measurements. 60 Fe and 26 Al measurements allow us to conclude that, in the authigenic phase of the marine sediments, there is no 60 Fe anomaly in the time interval defined by the signal found on the Fe-Mn crust (from 2.4 to 3.2 Myr), and no 26 Al anomaly from 2.6 to 3.2 Myr. (author)

  14. Natural Isotope Radium in Marine Biota at Kapar, Klang Coastal Area

    International Nuclear Information System (INIS)

    Nik Azlin Nik Ariffin; Che Abd Rahim Mohamed

    2014-01-01

    The activities concentration of 226 Ra and 228 Ra in marine biota at Kapar coastal area nearby Sultan Salahudin Abdul Aziz Shah Power Station (SJSSAAS) had been analyzed. The techniques that had been used to determine the activities concentration of 226 Ra dan 228 Ra are radiochemistry procedures and liquid scintillation counter (LSC). Results shows that the distribution of radium isotopes depend on the location and during sampling periods. The activities concentration of 226 Rai and 228 Rai in tissue were ranged 11.82 ± 5.23 Bq/ kg - 17.67 ± 6.81 Bq/ kg and 40.42 ± 16.20 Bq/ kg - 67.86 ± 23.11 Bq/ kg, respectively. The mean activities concentration of radium isotopes in bivalvia such as cockles (anadara granosa) are 61.73 ± 24.15 Bq/ kg (226Raag) and 232.62 ± 119.44 Bq/ kg (228Raag). Meanwhile for green mussles (perna viridis), the mean activities concentration of 226Rapv dan 228Rapv are 38.24 ± 14.19 Bq/ kg dan 99.59 ± 44.91 Bq/ kg, respectively. Concentration Factor (CF) in marine biota is higher than 1 x 10 4 and it is because of the accumulated radium isotopes is low and has a high affinity for organic matter. The study also shows the effectiveness of dose in radium isotopes were measured to ensure the safety of users and it is still below the limit allowed Malaysia which is 1 mSv / year. (author)

  15. Stable carbon isotope ratios of lipid biomarkers and their applications in the marine environment

    International Nuclear Information System (INIS)

    Tolosa, I.; Mora, S. de

    2001-01-01

    Studies on the distribution of lipid biomarkers in the environment help elucidate biogeochemical processes, but recent findings have significantly reduced the specificity of some biomarkers. The analytical development of Gas Chromatography-Combustion-IRMS (GC-C-IRMS) allows the determination of the δ 13 C of specific biomarkers, thereby improving the veracity of source apportionment. In this report, we present a brief description of the analytical approach for sample preparation and carbon isotope measurements of individual biomarkers. Selected examples of the applications in the use of GC-C-IRMS for biomarker source elucidation in the marine environment and potential applications to paleoclimatological studies are reviewed. (author)

  16. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals

    International Nuclear Information System (INIS)

    Schoeninger, M.J.; DeNiro, M.J.

    1984-01-01

    The stable nitrogen and carbon isotope ratios of bone collagen prepared from more than 100 animals representing 66 species of birds, fish, and mammals are presented. The delta 15 N values of bone collagen from animals that fed exclusively in the marine environment are, on average, 9 per mille more positive than those from animals that fed exclusively in the terrestrial environment: ranges for the two groups overlap by less than 1 per mille. Bone collagen delta 15 N values also serve to separate marine fish from the small number of freshwater fish we analyzed. The bone collagen delta 15 N values of birds and fish that spent part of their life cycles feeding in the marine environment and part in the freshwater environment are intermediate between those of animals that fed exclusively in one or the other system. Further, animals that fed at successive trophic levels in the marine and terrestrial environment are separated, on average, by a 3 per mille difference in the delta 15 N values of their bone collagen. Results are given and discussed. (author)

  17. Study of the carbon and oxygen isotopic compositions in marine shells of Salvador-Bahia, Brazil

    International Nuclear Information System (INIS)

    Freitas, J.C.B. de.

    1977-01-01

    The carbon and oxygen isotopic composition of 68 samples of marine shells from the region of Salvador was determined. These samples are from points on the open coast and in the interior of the Todos os Santos Bay and they are composed in part by recent specimens and in part by old specimens taken from Quaternary sediments. The results for δ 18 O are in the range of -2,83per mille to + 1,21per mille (PDB) and for δ 13 C in the range of -3,10per mille to +2,63per mille (PDB). The reults for the recent shells from the interior of the Todos os Santos Bay show variations in the δ 13 C values associated to the dominance of organic matter in some regions. For the old samoles, gathered in te variations in the δ 13 C values was associated to the existence in points of that region of deposits of fluvio-lagunar sediments, originated during the last marine transgression. It was identified, for a few species with the same age and location, the effect of biological fractionations. Nevertheless, the observed dominant factor on the isotopic differentiation was the environmental fractionation. (Author) [pt

  18. Lipids and stable isotopes in marine food webs in West Greenland

    DEFF Research Database (Denmark)

    Møller, Per

    Lipider er essentielle for alle livsformer og er den vigtigste molekyle i energitransporten i de arktiske fødekæder. Inden for det marine miljø har lipidsammensætningen tilpassets, for at maksimere produktiviteten og assimilationseffektiviteten hos primær producenter og konsumenter, med en følgelig...... positiv effekt på biodiversitet og produktivitet. Udover betydning på produktiviteten i disse farvande har befolkninger i Arktis også haft gavn af den favorable lipid sammensætning, da det er påvist at den haver en gavnlig effekt på folkesundheden. Med henblik på anvendelse af lipider og stabile isotoper...... som informationskilde til det det trofiske sammenhæng i det vestgrønlandske marine økosystem (62°N – 72°N) og ernæringskvaliteten af den traditionelle arktiske kost, er der blevet analyseret lipider og stabile isotoper fra 42 arter af særlig betydning, samt kosten fra et udsnit af en lokal befolkning...

  19. The effect of temperature, salinity and growth rate on the stable hydrogen isotopic composition of long chain alkenones produced by Emiliania huxleyi and Gephyrocapsa oceanica

    Directory of Open Access Journals (Sweden)

    S. Schouten

    2006-01-01

    Full Text Available Two haptophyte algae, Emiliania huxleyi and Gephyrocapsa oceanica, were cultured at different temperatures and salinities to investigate the impact of these factors on the hydrogen isotopic composition of long chain alkenones synthesized by these algae. Results showed that alkenones synthesized by G. oceanica were on average depleted in D by 30 compared to those of E. huxleyi when grown under similar temperature and salinity conditions. The fractionation factor, αalkenones-H2O, ranged from 0.760 to 0.815 for E. huxleyi and from 0.741 to 0.788 for G. oceanica. There was no significant correlation of αalkenones-H2O with temperature but a positive linear correlation was observed between αalkenones-H2O and salinity with ~3 change in fractionation per salinity unit and a negative correlation between αalkenones-H2O and growth rate. This suggests that both salinity and growth rate can have a substantial impact on the stable hydrogen isotopic composition of long chain alkenones in natural environments.

  20. Uranium isotope evidence for an expansion of marine anoxia during the end-Triassic extinction

    Science.gov (United States)

    Jost, Adam B.; Bachan, Aviv; van de Schootbrugge, Bas; Lau, Kimberly V.; Weaver, Karrie L.; Maher, Kate; Payne, Jonathan L.

    2017-08-01

    The end-Triassic extinction coincided with an increase in marine black shale deposition and biomarkers for photic zone euxinia, suggesting that anoxia played a role in suppressing marine biodiversity. However, global changes in ocean anoxia are difficult to quantify using proxies for local anoxia. Uranium isotopes (δ238U) in CaCO3 sediments deposited under locally well-oxygenated bottom waters can passively track seawater δ238U, which is sensitive to the global areal extent of seafloor anoxia due to preferential reduction of 238U(VI) relative to 235U(VI) in anoxic marine sediments. We measured δ238U in shallow-marine limestones from two stratigraphic sections in the Lombardy Basin, northern Italy, spanning over 400 m. We observe a ˜0.7‰ negative excursion in δ238U beginning in the lowermost Jurassic, coeval with the onset of the initial negative δ13C excursion and persisting for the duration of subsequent high δ13C values in the lower-middle Hettangian stage. The δ238U excursion cannot be realistically explained by local mixing of uranium in primary marine carbonate and reduced authigenic uranium. Based on output from a forward model of the uranium cycle, the excursion is consistent with a 40-100-fold increase in the extent of anoxic deposition occurring worldwide. Additionally, relatively constant uranium concentrations point toward increased uranium delivery to the oceans from continental weathering, which is consistent with weathering-induced eutrophication following the rapid increase in pCO2 during emplacement of the Central Atlantic Magmatic Province. The relative timing and duration of the excursion in δ238U implies that anoxia could have delayed biotic recovery well into the Hettangian stage.

  1. Tracing carbon flow in an arctic marine food web using fatty acid-stable isotope analysis.

    Science.gov (United States)

    Budge, S M; Wooller, M J; Springer, A M; Iverson, S J; McRoy, C P; Divoky, G J

    2008-08-01

    Global warming and the loss of sea ice threaten to alter patterns of productivity in arctic marine ecosystems because of a likely decline in primary productivity by sea ice algae. Estimates of the contribution of ice algae to total primary production range widely, from just 3 to >50%, and the importance of ice algae to higher trophic levels remains unknown. To help answer this question, we investigated a novel approach to food web studies by combining the two established methods of stable isotope analysis and fatty acid (FA) analysis--we determined the C isotopic composition of individual diatom FA and traced these biomarkers in consumers. Samples were collected near Barrow, Alaska and included ice algae, pelagic phytoplankton, zooplankton, fish, seabirds, pinnipeds and cetaceans. Ice algae and pelagic phytoplankton had distinctive overall FA signatures and clear differences in delta(13)C for two specific diatom FA biomarkers: 16:4n-1 (-24.0+/-2.4 and -30.7+/-0.8 per thousand, respectively) and 20:5n-3 (-18.3+/-2.0 and -26.9+/-0.7 per thousand, respectively). Nearly all delta(13)C values of these two FA in consumers fell between the two stable isotopic end members. A mass balance equation indicated that FA material derived from ice algae, compared to pelagic diatoms, averaged 71% (44-107%) in consumers based on delta(13)C values of 16:4n-1, but only 24% (0-61%) based on 20:5n-3. Our estimates derived from 16:4n-1, which is produced only by diatoms, probably best represented the contribution of ice algae relative to pelagic diatoms. However, many types of algae produce 20:5n-3, so the lower value derived from it likely represented a more realistic estimate of the proportion of ice algae material relative to all other types of phytoplankton. These preliminary results demonstrate the potential value of compound-specific isotope analysis of marine lipids to trace C flow through marine food webs and provide a foundation for future work.

  2. The hydrogeochemical and isotopic investigations of the two-layered Shiraz aquifer in the northwest of Maharlou saline lake, south of Iran

    Science.gov (United States)

    Tajabadi, Mehdi; Zare, Mohammad; Chitsazan, Manouchehr

    2018-03-01

    Maharlou saline lake is the outlet of Shiraz closed basin in southern Iran, surrounded by several disconnected alluvial fresh water aquifers. These aquifers in the west and northwest of the lake are recharged by karstic anticlines such as Kaftarak in the north and Barmshour in the south. Here groundwater salinity varies along the depth so that better quality water is located below brackish or saline waters. The aim of this study is to investigate the reason for the salinity anomaly and the origin of the fresher groundwater in lower depth. Hence, the change in groundwater salinity along depth has been investigated by means of a set of geoelectrical, hydrogeological, hydrogeochemical, and environmental isotopes data. The interpretation of geoelectrical profiles and hydrogeological data indicates that the aquifer in the southeast of Shiraz plain is a two-layer aquifer separated by a fine-grained (silt and clay) layer with an approximate thickness of 40 m at the depth of about 100-120 m. Hydrgeochemistry showed that the shallow aquifer is recharged by Kaftarak karstic anticline and is affected by the saline lake water. The lake water fraction varies in different parts from zero for shallow aquifer close to the karstic anticlines to ∼70 percent in the margin of the lake. The deep aquifer is protected from the intrusion of saline lake water due to the presence of the above-mentioned confining layer with lake water fraction of zero. The stable isotopes signatures also indicate that the 'fresh' groundwater belonging to the deep aquifer is not subject to severe evaporation or mixing which is typical of the karstic water of the area. It is concluded that the characteristics of the deep aquifer are similar to those of the karstic carbonate aquifer. This karstic aquifer is most probably the Barmshour carbonated anticline buried under the shallow aquifer in the southern part. It may also be the extension of the Kaftarak anticline in the northern part.

  3. Analysis of plutonium isotopes in marine samples by radiometric, ICP-MS and AMS techniques

    International Nuclear Information System (INIS)

    Lee, S.H.; Gastaud, J.; La Rosa, J.J.; Liong Wee Kwong, L.; Povinec, P.P.; Wyse, E.

    2001-01-01

    IAEA reference materials (radionuclides in the marine environment) collected in areas affected by nuclear reprocessing plants and nuclear weapons tests have been analysed by semiconductor alpha-spectrometry (SAS), liquid scintillation spectrometry (LSS) and mass spectrometric techniques (high resolution ICP-MS and AMS) with the aim of developing analytical procedures and to study the geochemical behavior of plutonium in the marine environment. The Pu results obtained by SAS, ICP-MS and AMS were in reasonably good agreement (R 2 = 0.99). The mean atom ratios of 240 Pu/ 239 Pu in IAEA reference materials, IAEA-134, 135 and 381 were (0.212±0.010), (0.211±0.004) and (0.242±0.004), respectively. IAEA-384 (Fangataufa Lagoon Sediment) gave a 240 Pu/ 239 Pu mean atom ratio of 0.051±0.001. The results of 241 Pu obtained buy ICP-MS and LSS also show reasonable agreement (R 2 = 0.91). Pu isotopic signatures were useful in tracing Pu origin and in interpreting biogeochemical processes involving Pu in the marine environment. (author)

  4. Isotopic assessment of marine food consumption by natural-foraging chacma baboons on the Cape Peninsula, South Africa.

    Science.gov (United States)

    Lewis, Matthew C; West, Adam G; O'Riain, M Justin

    2018-01-01

    Stable isotope analysis has been used to investigate consumption of marine resources in a variety of terrestrial mammals, including humans, but not yet in extant nonhuman primates. We sought to test the efficacy of stable isotope analysis as a tool for such studies by comparing isotope- and observation-based estimates of marine food consumption by a troop of noncommensal, free-ranging chacma baboons. We determined δ 13 C and δ 15 N values of baboon hair (n = 9) and fecal samples (n = 144), and principal food items (n = 362). These values were used as input for diet models, the outputs of which were compared to observation-based estimates of marine food consumption. Fecal δ 13 C values ranged from -29.3‰ to -25.6‰. δ 15 N values ranged from 0.9‰ to 6.3‰ and were positively correlated with a measure of marine foraging during the dietary integration period. Mean (± SD) δ 13 C values of adult male and female baboon hairs were -21.6‰ (± 0.1) and -21.8‰ (± 0.3) respectively, and corresponding δ 15 N values were 5.0‰ (± 0.3) and 3.9‰ (± 0.2). Models indicated that marine contributions were ≤10% of baboon diet within any season, and contributed ≤17% of dietary protein through the year. Model output and observational data were in agreement, both indicating that despite their abundance in the intertidal region, marine foods comprised only a small proportion of baboon diet. This suggests that stable isotope analysis is a viable tool for investigating marine food consumption by natural-foraging primates in temperate regions. © 2017 Wiley Periodicals, Inc.

  5. Small changes in gene expression of targeted osmoregulatory genes when exposing marine and freshwater threespine stickleback (Gasterosteus aculeatus to abrupt salinity transfers.

    Directory of Open Access Journals (Sweden)

    Annette Taugbøl

    Full Text Available Salinity is one of the key factors that affects metabolism, survival and distribution of fish species, as all fish osmoregulate and euryhaline fish maintain osmotic differences between their extracellular fluid and either freshwater or seawater. The threespine stickleback (Gasterosteus aculeatus is a euryhaline species with populations in both marine and freshwater environments, where the physiological and genomic basis for salinity tolerance adaptation is not fully understood. Therefore, our main objective in this study was to investigate gene expression of three targeted osmoregulatory genes (Na+/K+-ATPase (ATPA13, cystic fibrosis transmembrane regulator (CFTR and a voltage gated potassium channel gene (KCNH4 and one stress related heat shock protein gene (HSP70 in gill tissue from marine and freshwater populations when exposed to non-native salinity for periods ranging from five minutes to three weeks. Overall, the targeted genes showed highly plastic expression profiles, in addition the expression of ATP1A3 was slightly higher in saltwater adapted fish and KCNH4 and HSP70 had slightly higher expression in freshwater. As no pronounced changes were observed in the expression profiles of the targeted genes, this indicates that the osmoregulatory apparatuses of both the marine and landlocked freshwater stickleback population have not been environmentally canalized, but are able to respond plastically to abrupt salinity challenges.

  6. Small changes in gene expression of targeted osmoregulatory genes when exposing marine and freshwater threespine stickleback (Gasterosteus aculeatus) to abrupt salinity transfers.

    Science.gov (United States)

    Taugbøl, Annette; Arntsen, Tina; Ostbye, Kjartan; Vøllestad, Leif Asbjørn

    2014-01-01

    Salinity is one of the key factors that affects metabolism, survival and distribution of fish species, as all fish osmoregulate and euryhaline fish maintain osmotic differences between their extracellular fluid and either freshwater or seawater. The threespine stickleback (Gasterosteus aculeatus) is a euryhaline species with populations in both marine and freshwater environments, where the physiological and genomic basis for salinity tolerance adaptation is not fully understood. Therefore, our main objective in this study was to investigate gene expression of three targeted osmoregulatory genes (Na+/K+-ATPase (ATPA13), cystic fibrosis transmembrane regulator (CFTR) and a voltage gated potassium channel gene (KCNH4) and one stress related heat shock protein gene (HSP70)) in gill tissue from marine and freshwater populations when exposed to non-native salinity for periods ranging from five minutes to three weeks. Overall, the targeted genes showed highly plastic expression profiles, in addition the expression of ATP1A3 was slightly higher in saltwater adapted fish and KCNH4 and HSP70 had slightly higher expression in freshwater. As no pronounced changes were observed in the expression profiles of the targeted genes, this indicates that the osmoregulatory apparatuses of both the marine and landlocked freshwater stickleback population have not been environmentally canalized, but are able to respond plastically to abrupt salinity challenges.

  7. Stable chlorine isotopes in arid non-marine basins: Instances and possible fractionation mechanisms

    International Nuclear Information System (INIS)

    Eastoe, C.J.

    2016-01-01

    Stable chlorine isotopes are useful geochemical tracers in processes involving the formation and evolution of evaporitic halite. Halite and dissolved chloride in groundwater that has interacted with halite in arid non-marine basins has a δ 37 Cl range of 0 ± 3‰, far greater than the range for marine evaporites. Basins characterized by high positive (+1 to +3‰), near-0‰, and negative (−0.3 to −2.6‰) are documented. Halite in weathered crusts of sedimentary rocks has δ 37 Cl values as high as +5.6‰. Salt-excluding halophyte plants excrete salt with a δ 37 Cl range of −2.1 to −0.8‰. Differentiated rock chloride sources exist, e.g. in granitoid micas, but cannot provide sufficient chloride to account for the observed data. Single-pass application of known fractionating mechanisms, equilibrium salt-crystal interaction and disequilibrium diffusive transport, cannot account for the large ranges of δ 37 Cl. Cumulative fractionation as a result of multiple wetting-drying cycles in vadose playas that produce halite crusts can produce observed positive δ 37 Cl values in hundreds to thousands of cycles. Diffusive isotope fractionation as a result of multiple wetting-drying cycles operating at a spatial scale of 1–10 cm can produce high δ 37 Cl values in residual halite. Chloride in rainwater is subject to complex fractionation, but develops negative δ 37 Cl values in certain situations; such may explain halite deposits with bulk negative δ 37 Cl values. Future field studies will benefit from a better understanding of hydrology and rainwater chemistry, and systematic collection of data for both Cl and Br. - Highlights: • δ 37 Cl in halite from arid, non-marine sedimentary basins ranges from −3 to +5.5‰. • Cl − in vadose playas may develop large isotope fractionation through cyclic wetting and drying. • Cl − in phreatic playas undergoes no fractionation as a result of cyclic wetting and drying. • Cl − in weathered

  8. Stable Isotopic Insights into the Foraging Ecology of an Endangered Marine Predator, the Hawaiian Petrel

    Science.gov (United States)

    Wiley, A. E.; Ostrom, P. H.; James, H. F.

    2010-12-01

    Seabirds play vital roles in their ecosystems, both as predators in their oceanic foraging grounds and conduits of marine nutrients to island nesting sites. Despite growing evidence that food availability limits seabird populations, characterization of the diet and even foraging locations of some seabird species remains elusive. Here, we use stable carbon (δ13C) and nitrogen (δ15N) isotopes to study the foraging ecology of an endangered and poorly known seabird, the Hawaiian petrel (Pterodroma sandwichensis). This species nests solely on the main Hawaiian Islands but forages widely across the NE Pacific, sometimes traveling over 10,000km on single foraging trips. δ13C and δ15N values vary with trophic level and at the base of food webs throughout the marine range of the Hawaiian petrel. Thus, we are able to use isotope signatures in modern and ancient petrel tissues to track spatial and temporal variation in foraging location and diet. We find strong evidence of foraging segregation between populations, with hatch-year birds from the island of Hawaii exhibiting feather δ15N and δ13C values over 3‰ and 1 ‰ higher, respectively, than those found in Maui and Kauai hatch-year birds. There is also significant variation in δ15N values between feathers from Kauai, Hawaii, and Maui adults, indicating additional foraging segregation during the winter molt. To distinguish between the effects of trophic level and foraging location, we relate our data to those from seabirds with known diet and foraging location, as well as to previous characterizations of isoscapes in the NE Pacific and at-sea observations of our study species. Finally, we track Hawaiian petrel foraging ecology back in time through examination of stable isotope values in historical feathers and ancient bone collagen. We find that, despite a species-wide decline in δ15N values (consistent with trophic level decline), populations have maintained divergent isotopic niches through at least the past 1

  9. Lead isotopic composition of paleozoic and late proterozoic marine carbonate rocks in the vicinity of Yucca Mountains, Nevada

    International Nuclear Information System (INIS)

    Zartman, R.E.; Kwak, L.M.

    1993-01-01

    Paleozoic and Late Proterozoic marine carbonate rocks (limestones, dolomites, and their metamorphic equivalents) cropping out in the vicinity of Yucca Mountain contain lead with an isotopic composition strongly suggesting them to be a major source of the lead observed at Trench 14 in the carbonate phase of carbonate-silica veins and nearby surficial calcrete deposits. Six whole-rock samples of marine carbonate rocks yield 206 Pb/ 204 Pb = 19.21-29.06, 207 Pb/ 204 Pb = 15.74-16.01, and 208 Pb/ 204 Pb = 37.90-39.25, and leachate and residue fractions of the rocks reveal additional isotopic heterogeneity within individual samples. Two samples of eolian dust also have isotopic compositions lying along a 'carbonate' to 'silicate' mixing trend that appears to arise entirely from pedeogenic processes. The tendency for the marine carbonate rocks to evolve highly uranogenic, but not thorogenic, lead results in a distinctive isotopic composition that serves as a tracer in eolian dust and secondary carbonate minerals derived from the marine carbonate rocks

  10. High-frequency climate linkages between the North Atlantic and the Mediterranean during marine oxygen isotope stage 100 (MIS100)

    NARCIS (Netherlands)

    Becker, Julia; Lourens, L.J.; Raymo, M.E.

    2006-01-01

    High-resolution records of Mediterranean and North Atlantic deep-sea sediments indicate that rapid changes in hydrology and climate occurred during marine oxygen isotope stage 100 (MIS100) (at ~2.52 Ma), which exhibits characteristics similar to late Pleistocene Dansgaard-Oeschger, Bond cycles and

  11. Thallium isotope composition of the upper continental crust and rivers - An investigation of the continental sources of dissolved marine thallium

    Science.gov (United States)

    Nielsen, S.G.; Rehkamper, M.; Porcelli, D.; Andersson, P.; Halliday, A.N.; Swarzenski, P.W.; Latkoczy, C.; Gunther, D.

    2005-01-01

    The thallium (Tl) concentrations and isotope compositions of various river and estuarine waters, suspended riverine particulates and loess have been determined. These data are used to evaluate whether weathering reactions are associated with significant Tl isotope fractionation and to estimate the average Tl isotope composition of the upper continental crust as well as the mean Tl concentration and isotope composition of river water. Such parameters provide key constraints on the dissolved Tl fluxes to the oceans from rivers and mineral aerosols. The Tl isotope data for loess and suspended riverine detritus are relatively uniform with a mean of ??205Tl = -2.0 ?? 0.3 (??205Tl represents the deviation of the 205Tl/203Tl isotope ratio of a sample from NIST SRM 997 Tl in parts per 104). For waters from four major and eight smaller rivers, the majority were found to have Tl concentrations between 1 and 7 ng/kg. Most have Tl isotope compositions very similar (within ??1.5 ??205Tl) to that deduced for the upper continental crust, which indicates that no significant Tl isotope fractionation occurs during weathering. Based on these results, it is estimated that rivers have a mean natural Tl concentration and isotope composition of 6 ?? 4 ng/kg and ??205Tl = -2.5 ?? 1.0, respectively. In the Amazon estuary, both additions and losses of Tl were observed, and these correlate with variations in Fe and Mn contents. The changes in Tl concentrations have much lower amplitudes, however, and are not associated with significant Tl isotope effects. In the Kalix estuary, the Tl concentrations and isotope compositions can be explained by two-component mixing between river water and a high-salinity end member that is enriched in Tl relative to seawater. These results indicate that Tl can display variable behavior in estuarine systems but large additions and losses of Tl were not observed in the present study. Copyright ?? 2005 Elsevier Ltd.

  12. Biomass production of the marine microalga; chroomonas sp. in function of the pH, luminous intensity and salinity

    International Nuclear Information System (INIS)

    Bermudez, Jose Luis; Lodeiros, Cesar; Morales, Ever

    2002-01-01

    We report the characterization of a marine microalga of the genus Chroomonas, isolated from a salt lagoon located to the north of Maracaibo, Zulia State, Venezuela. We evaluated the growth and the pigment production in discontinuous culture at different salinities (5, 10, 35, 50, 70 y 100 ppm), light intensities (39,78,117 and 156 μmol quanta.m 2 . s 1 and pH (5.0, 5.5, 6.0, 7.0, 8.0 and 9.0). The highest cellular density, 117.99±2.62x10 6 fg.cel l , was reached at 35 ppm, 156 μmol quanta.m 2 . s 1 of light intensity and a ph between 6.0 and 8.0. The cellular content of total chlorophyll and carotenoids increased with the salinity up to 100 ppm, with amounts of 246.55 ± 61.8 y 69.79±18.19 fg.cel l , respectively. The cellular productivity 4.31x10 9 cel 1 d 1 was obtained when the microalga, was grown in semi-continuous culture, at a 2.01 volume and at a daily renewal rate of 30 % (v/v). The total amount of chlorophyll and carotenoids was 1.4 and 0.48 mg.l d , respectively. These results indicate that this planktonic microalga could be used as daily live food for larvae in aquaculture and for the production of micro algal biomass and/ or pigments

  13. Plant protein-based feeds and commercial feed enable isotopic tracking of aquaculture emissions into marine macrozoobenthic bioindicator species.

    Science.gov (United States)

    Kusche, Henrik; Hillgruber, Nicola; Rößner, Yvonne; Focken, Ulfert

    2017-06-01

    Brittle stars (Ophiura spp.) and other benthic macrofauna were collected in a prospective mariculture area in the North Sea to determine if these taxa could be used as indicator species to track nutrients released from future offshore aquaculture sites. We analysed natural carbon and nitrogen stable isotopic signatures in tissues from macrofauna and compared these to six feed ingredients and four experimental diets made thereof, as well as to a commercial feed with and without lipid and carbonate removal. Our data suggest practicability of using isotopic signatures of Ophiura spp. to track aquaculture-derived organic material if plant-based fish diet ingredients and commercial feed were used for fish farming in the German Exclusive Economic Zone. Diets with high fish meal content would not be detected in Ophiura spp. using isotopic measures due to the similarity with the marine background. Our data provide valuable baseline information for studies on the impact of offshore aquaculture on the marine environment.

  14. Millennial-scale interaction between ice sheets and ocean circulation during marine isotope stage 100

    Directory of Open Access Journals (Sweden)

    Masao eOhno

    2016-05-01

    Full Text Available Waxing/waning of the ice sheets and the associated change in thermohaline circulation have played an important role in global climate change since major continental ice sheets appeared in the northern hemisphere about 2.75 million years ago. In the earliest glacial stages, however, establishment of the linkage between ice sheet development and ocean circulation remain largely unclear. Here we show new high-resolution records of marine isotope stage 100 recovered from deep-sea sediments on the Gardar Drift, in the subpolar North Atlantic. Results of a wide range of analyses clearly reveal the influence of millennial-scale variability in iceberg discharge on ocean surface condition and bottom current variability in the subpolar North Atlantic during marine isotope stage 100. We identified eight events of ice-rafted debris, which occurred mostly with decreases in sea surface temperature and in current components indicating North Atlantic Deep Water. These decreases are interpreted by weakened deep water formation linked to iceberg discharge, similarly to observations from the last glacial period. Dolomite fraction of the ice-rafted events in early MIS 100 like the last glacial Heinrich events suggests massive collapse of the Laurentide ice sheet in North America. At the same time, our early glacial data suggest differences from the last glacial period: absence of 1470-year periodicity in the interactions between ice sheets and ocean, and northerly shift of the ice-rafted debris belt. Our high-resolution data largely improve the picture of ice-sheet/ocean interactions on millennial time scales in the early glacial period after major Northern Hemisphere glaciation.

  15. Ca Isotope Geochemistry in Marine Deep Sea Sediments of the Eastern Pacific

    Science.gov (United States)

    Wittke, A.; Gussone, N. C.; Derigs, D.; Schälling, M.; Teichert, B. M.

    2017-12-01

    Ca isotope ratio analysis (δ44/40Ca) is a powerful tool to investigate diagenetic reactions in marine sedimentary porewater systems, as it is sensitive to processes such as carbonate dissolution, precipitation, recrystallization, ion exchange and deep fluid sources, due to the isotopic difference between dissolved Ca and solid carbonate minerals (e.g. [1];[2]). We analyzed eight sediment cores of the (paleo-) Pacific equatorial age transect. Two sediment cores show decreasing Ca isotope profiles starting at the sediment/water interface with seawater-like values down to sediment-like values due to recrystallization and an increasing in the bottom part again to seawater-like values. The other studied cores show different degrees of flattening of this middle bulge. We interpret this pattern either as an effect of sediment composition and thickness, decreasing recrystallization rates and/or fluid flux or a combination of all of these factors at the respective sampling sites. Element concentration profiles and Sr-isotope variations on some of these sediment cores show a similar behavior, supporting our findings ([3]; [4]). Seawater influx at (inactive) seamounts is supposed to cause seawater-like values at the bottom of the sediment cores by fluids migrating through the oceanic basement (e.g. [5]). While [6] hypothesizes that two seamounts or bathymetric pits are connected, with a recharge and a discharge site [7] say that uptaken fluids could be released through the surrounding seafloor as well due to diffusive exchange with the underlying oceanic crust. Our Ca isotope results combined with a transport reaction model approach support the latter hypothesis. References: [1] Teichert B. M., Gussone N. and Torres M. E. (2009) [2] Ockert C., Gussone N., Kaufhold S. and Teichert B. (2013) [3] Pälike H., Lyle M., Nishi H., Raffi I., Gamage K. and Klaus A. (eds.) (2010) [4] Voigt J., Hathorne E. C., Frank M., Vollstaedt H. and Eisenhauer A. (2015) [5] Villinger H. W

  16. Sulfur isotope variability of oceanic DMSP generation and its contributions to marine biogenic sulfur emissions.

    Science.gov (United States)

    Oduro, Harry; Van Alstyne, Kathryn L; Farquhar, James

    2012-06-05

    Oceanic dimethylsulfoniopropionate (DMSP) is the precursor to dimethylsulfide (DMS), which plays a role in climate regulation through transformation to methanesulfonic acid (MSA) and non-seasalt sulfate (NSS-SO(4)(2-)) aerosols. Here, we report measurements of the abundance and sulfur isotope compositions of DMSP from one phytoplankton species (Prorocentrum minimum) and five intertidal macroalgal species (Ulva lactuca, Ulva linza, Ulvaria obscura, Ulva prolifera, and Polysiphonia hendryi) in marine waters. We show that the sulfur isotope compositions (δ(34)S) of DMSP are depleted in (34)S relative to the source seawater sulfate by ∼1-3‰ and are correlated with the observed intracellular content of methionine, suggesting a link to metabolic pathways of methionine production. We suggest that this variability of δ(34)S is transferred to atmospheric geochemical products of DMSP degradation (DMS, MSA, and NSS-SO(4)(2-)), carrying implications for the interpretation of variability in δ(34)S of MSA and NSS-SO(4)(2-) that links them to changes in growth conditions and populations of DMSP producers rather than to the contributions of DMS and non-DMS sources.

  17. Seawater and Detrital Marine Pb Isotopes as Monitors of Antarctic Weathering Following Ice Sheet Development

    Science.gov (United States)

    Fenn, C.; Martin, E. E.; Basak, C.

    2011-12-01

    Comparisons of seawater and detrital Pb isotopes from sites proximal to Antarctica at the Eocene/Oligocene transition (EOT) are being used to understand variations in continental weathering associated with the development of the East Antarctic Ice Sheet (EAIS). Previous work has shown that seawater and detrital archives yield similar isotopic values during Eocene warmth, which is interpreted to record congruent chemical weathering of the continent. In contrast, distinct isotopic values for the two phases at the EOT represents increased incongruent mechanical weathering during growth of the ice sheet. For this study we expanded beyond the initial glaciation at the EOT to determine whether less dramatic changes in ice volume and climate also produce variations in weathering and intensity that are recorded by seawater and detrital Pb isotopes. We collected Nd and Pb isotope data from extractions of Fe-Mn oxide coatings of bulk decarbonated marine sediments, which preserve seawater isotopic values, and from complete dissolutions of the remaining silicate fraction for Ocean Drilling Program Site 748 on Kerguelen Plateau (1300 m modern water depth). The data spans an interval of deglaciation from ~23.5-27 Ma documented by δ18O that has been equated to a ~30% decrease in ice volume on Antarctica (Pekar and Christie-Blick, 2008, Palaeogeogr., Palaeoclim., Palaeoecol.). Initial results from Site 748 include the first ɛNd values for intermediate waters in the Oligocene Southern Ocean and reveal a value of ~-8 over the entire 3.5 my interval, which is consistent with values reported for deep Indian Ocean sites at this time and similar to deeper Southern Ocean sites. Corresponding detrital ɛNd values are less radiogenic and decrease from -9 to -13 during the study interval. Detrital 206Pb/204Pb values also decrease during the warming interval, while seawater 206Pb/204Pb values increase. The decrease in detrital values indicates the composition of source materials entering

  18. Oxygen isotopes of marine mollusc shells record Eocene elevation change in the Pyrenees

    Science.gov (United States)

    Huyghe, Damien; Mouthereau, Frédéric; Emmanuel, Laurent

    2012-09-01

    Constraining paleoaltimetry of collisional orogens is critical to understand the dynamics of topographic evolution and climate/tectonics retroactions. Here, we use oxygen stable-isotope record on oyster shells, preserved in marine foreland deposits, to examine the past elevation of the Pyrenees during the Eocene. Our approach is based on the comparison with the Paris basin, an intracratonic basin not influenced by orogenic growth. The finding of a shift of 1.5‰ between 49 and 41 Ma, indicating more negative δ18Oc in the south Pyrenean foreland, is interpreted to reflect the inflow of river water sourced from higher elevation in the Pyrenees. To test this and provide paleoelevation estimate, we adopt a morphologic-hydrological model accounting for the hypsometry of drainage basin. Our best fitting model shows that the Pyrenees rose up to 2000 m. This indicates that the Pyrenees reached high elevation in the Eocene, thus providing new critical constraints on their long-term orogenic development. δ18O of marine mollusc shells are proved potentially attractive for paleoelevation studies, especially for mountain belts where elevated continental surfaces have not been preserved.

  19. Measurement of N2 fixation in Sesbania aculeata pers. and Sorghum bicolor L. grown in intercropping system, under saline conditions, using 15N isotopic dilution technique

    International Nuclear Information System (INIS)

    Kurdali, F.; Khalifa, K.; Janat, M.

    2001-09-01

    A field experiment was conducted under saline conditions (soil EC e 15, water EC w 8 dS/m/m) to evaluate the performance of sole crops and inter crops of Sesbania aculeata and Sorghum bicolor (1:1 row ratio) in terms of dry matter production, total N yield, soil N uptake and N 2 -fixation using 15 N isotope dilution method. Dry matter yield in sole crop of sesbania was significantly higher that that of sole sorghum; whereas, that of the inter cropping was significantly lower than sole sesbania, but was similar to that produced by sole sorghum. Total nitrogen yield in sole sesbania was four-fold than that accumulated in sole sorghum, whereas, that of mixed cropping was 2.6 fold compared to that of sole sorghum. The LER of total N yield was higher than 1 reflecting a greater advantage of inter cropping system in terms of land use efficiency. The proportion of N derived from N 2 fixation (%Ndfa) in the sesbania was increased from 63 to 79%, for sole and inter cropping system, respectively. There was no evidence of a significant transfer of N from the sesbania to the sorghum. Results on the relative growth of plants on saline soil compared with non-saline soil clearly demonstrated that sesbania was more salt tolerant than the sorghum. soil nitrogen uptake by plants, particularly in sorghum, was adversely affected by salinity. However, amounts of N 2 fixed by sole sesbania grown is saline soil was close or even higher than on non-saline soil. The use of inter cropping systems of legumes and non-legumes could be a promising agricultural approach to reutilize wasted lands, after a careful selection of appropriate tolerant genotypes to prevailing saline conditions. (author)

  20. Astronomically forced paleoclimate change from middle Eocene to early Oligocene: continental conditions in central China compared with the global marine isotope record

    Science.gov (United States)

    Huang, C.; Hinnov, L. A.

    2010-12-01

    The early Eocene climatic optimum ended with a long interval of global cooling that began in the early Middle Eocene and ended at the Eocene-Oligocene transition. During this long-term cooling, a series of short-term warming reversals occurred in the marine realm. Here, we investigate corresponding continental climate conditions as revealed in the Qianjiang Formation of the Jianghan Basin in central China, which consists of more than 4000 m of saline lake sediments. The Qianjiang Formation includes, in its deepest sections, a halite-rich rhythmic sediment succession with dark mudstone, brownish-white siltstone and sandstone, and greyish-white halite. Alternating fresh water (humid/cool)—saline water (dry/hot) deposits reflect climate cycles driven by orbital forcing. High-resolution gamma ray (GR) logging from the basin center captures these pronounced lithological rhythms throughout the formation. Several halite-rich intervals are interpreted as short-term warming events within the middle Eocene to early Oligocene, and could be expressions of coeval warming events in the global marine oxygen isotope record, for example, the middle Eocene climate optimum (MECO) event around 41 Ma. The Eocene-Oligocene boundary is distinguished by a radical change from halite-rich to clastic sediments, indicating a dramatic climate change from warm to cool conditions. Power spectral analysis of the GR series indicates strong short (~100 kyr) eccentricity cycling during the warm/hot episodes. Amplitude modulation of the short eccentricity in the GR series occurs with a strong 405 kyr periodicity. This cycling is calibrated to the La2004 orbital eccentricity model. A climate reversal occurs at 36.5 Ma within the long-term marine cooling trend following MECO, which is reflected also in the Qianjiang GR series, with the latter indicating several brief warm/dry reversals within the trend. A ~2.6 Myr halite-rich warm interval occurs in the latest Eocene in the continental record; both

  1. Thermal Inactivation Kinetics and Secondary Structure Change of a Low Molecular Weight Halostable Exoglucanase from a Marine Aspergillus niger at High Salinities.

    Science.gov (United States)

    Xue, Dong-Sheng; Liang, Long-Yuan; Lin, Dong-Qiang; Yao, Shan-Jing

    2017-11-01

    Two kinds of exoglucanase were purified from a marine Aspergillus niger. Catalytic ability of halophilic exoglucanase with a lower molecular weight and secondary structure change was analyzed at different salinities. Activity of the low molecular weight exoglucanase in 10% NaCl solution (w/v) was 1.69-fold higher of that in NaCl-free solution. Half-life time in 10% NaCl solution (w/v) was over 1.27-fold longer of that in NaCl-free solution. Free energy change of the low molecular weight exoglucanase denaturation, △G, in 10% NaCl solution (w/v) was 0.54 kJ/mol more than that in NaCl-free solution. Melt point in 10% NaCl solution (w/v), 52.01 °C, was 4.21 °C higher than that in NaCl-free solution, 47.80 °C. K m value, 0.179 mg/ml in 10% NaCl solution (w/v) was less 0.044 mg/ml than that, 0.224 mg/ml, in NaCl-free solution. High salinity made content of α-helix increased. Secondary structure change caused by high salinities improved exoglucanase thermostability and catalysis activity. The halophilic exoglucanase from a marine A. niger was valuable for hydrolyzing cellulose at high salinities.

  2. Approach to the human diet of the punic population of Can Marines (Ibiza. C an N stable isotope analysis on bone collagen

    Directory of Open Access Journals (Sweden)

    Domingo Carlos Salazar García

    2012-09-01

    Full Text Available We report here on the results of carbon and nitrogen stable isotope analysis on bone collagen of humans from the Punic site of Can Marines (V-IVth BC from the island of Ibiza (Spain. To date, there are few isotopic studies for this period from the Mediterranean. This article reports new isotopic data from a Western Mediterranean Punic rural settlement. The results show a terrestrial based diet with no isotopic evidence of marine or freshwater protein input, and suggest the presence of C4 resources in it.

  3. Coastal groundwater salinization: Focus on the vertical variability in a multi-layered aquifer through a multi-isotope fingerprinting (Roussillon Basin, France)

    Energy Technology Data Exchange (ETDEWEB)

    Petelet-Giraud, Emmanuelle, E-mail: e.petelet@brgm.fr [BRGM, Avenue C. Guillemin, BP 36009, 45060 Orléans Cedex 02 (France); Négrel, Philippe [BRGM, Avenue C. Guillemin, BP 36009, 45060 Orléans Cedex 02 (France); Aunay, Bertrand [BRGM, Réunion Agency, 5, rue Sainte-Anne, CS 51016, 97404 Saint Denis Cedex (France); Ladouche, Bernard; Bailly-Comte, Vincent [BRGM Montpellier Agency, 1039, rue de Pinville, 34000 Montpellier (France); Guerrot, Catherine; Flehoc, Christine [BRGM, Avenue C. Guillemin, BP 36009, 45060 Orléans Cedex 02 (France); Pezard, Philippe; Lofi, Johanna [Géosciences Montpellier, UMR 5243, Université de Montpellier, cc069, Place Eugène Bataillon, 34095 Montpellier Cedex 05 (France); Dörfliger, Nathalie [BRGM, Avenue C. Guillemin, BP 36009, 45060 Orléans Cedex 02 (France)

    2016-10-01

    The Roussillon sedimentary Basin (South France) is a complex multi-layered aquifer, close to the Mediterranean Sea facing seasonally increases of water abstraction and salinization issues. We report geochemical and isotopic vertical variability in this aquifer using groundwater sampled with a Westbay System® at two coastal monitoring sites: Barcarès and Canet. The Westbay sampling allows pointing out and explaining the variation of water quality along vertical profiles, both in productive layers and in the less permeable ones where most of the chemical processes are susceptible to take place. The aquifer layers are not equally impacted by salinization, with electrical conductivity ranging from 460 to 43,000 μS·cm{sup −1}. The δ{sup 2}H–δ{sup 18}O signatures show mixing between seawater and freshwater components with long water residence time as evidenced by the lack of contribution from modern water using {sup 3}H, {sup 14}C and CFCs/SF6. S(SO{sub 4}) isotopes also evidence seawater contribution but some signatures can be related to oxidation of pyrite and/or organically bounded S. In the upper layers {sup 87}Sr/{sup 86}Sr ratios are close to that of seawater and then increase with depth, reflecting water–rock interaction with argillaceous formations while punctual low values reflect interaction with carbonate. Boron isotopes highlight secondary processes such as adsorption/desorption onto clays in addition to mixings. At the Barcarès site (120 m deep), the high salinity in some layers appear to be related neither to present day seawater intrusion, nor to Salses-Leucate lagoonwater intrusion. Groundwater chemical composition thus highlights binary mixing between fresh groundwater and inherited salty water together with cation exchange processes, water–rock interactions and, locally, sedimentary organic matter mineralisation probably enhanced by pyrite oxidation. Finally, combining the results of this study and those of Caballero and Ladouche (2015

  4. Relative sea level and coastal environments in arctic Alaska during Marine Isotope Stage 5

    Science.gov (United States)

    Farquharson, L. M.; Mann, D. H.; Jones, B. M.; Rittenour, T. M.; Grosse, G.; Groves, P.

    2015-12-01

    Marine Isotope Stage (MIS) 5 was characterized by marked fluctuations in climate, the warmest being MIS 5e (124-119 ka) when relative sea level (RSL) stood 2-10 m higher than today along many coastlines. In northern Alaska, marine deposits now 5-10 m above modern sea level are assigned to this time period and termed the Pelukian transgression (PT). Complicating this interpretation is the possibility that an intra-Stage 5 ice shelf extended along the Alaskan coast, causing isostatic depression along its grounded margins, which caused RSL highs even during periods of low, global RSL. Here we use optically stimulated luminescence (OSL) to date inferred PT deposits on the Beaufort Sea coastal plain. A transition from what we interpret to be lagoonal mud to sandy tidal flat deposits lying ~ 2.75 m asl dates to 113+/-18 ka. Above this, a 5-m thick gravelly barrier beach dates to 95 +/- 20 ka. This beach contains well-preserved marine molluscs, whale vertebrae, and walrus tusks. Pleistocene-aged ice-rich eolian silt (yedoma) blanket the marine deposits and date to 57.6 +/-10.9 ka. Our interpretation of this chronostratigraphy is that RSL was several meters higher than today during MIS 5e, and lagoons or brackish lakes were prevalent. Gravel barrier beaches moved onshore as local RSL rose further after MIS 5e. The error range of the OSL age of the barrier-beach unit spans the remaining four substages of MIS 5; however, the highstand of RSL on this arctic coastline appears to occurr after the warmest part of the last interglacial and appears not to be coeval with the eustatic maximum reached at lower latitudes during MIS 5. One possibility is that RSL along the Beaufort Sea coast was affected by isostatic depression caused by an ice shelf associated with widespread, intra-Stage 5 glaciation that was out of phase with lower latitude glaciation and whose extent and timing remains enigmatic.

  5. Broad plasticity in the salinity tolerance of a marine copepod species, Acartia longiremis, in the Baltic Sea

    DEFF Research Database (Denmark)

    Dutz, Jörg; Christensen, Anette Maria

    2018-01-01

    , but decreased significantly at a lower salinity. Survival experiments showed a broad physiological plasticity with no increase in mortality upon immediate exposure to salinities of 16–7. Acclimation of females to low salinity extended the survival range to a salinity of 5. While the response in vital rates...... was characteristic of a tolerant, brackish water species, unusually high respiration rates at a salinity of 7–16 indicated that the species experienced osmotic stress, and that the mechanism maintaining physiological integrity was energetically expensive. Divergent responses of an increase in respiration rate...

  6. Tracking the Fate of Explosive-Trinitrotriazine (RDX) in Coastal Marine Ecosystems Using Stable Isotopic Tracer

    Science.gov (United States)

    Ariyarathna, T. S.; Ballentine, M.; Vlahos, P.; Smith, R. W.; Bohlke, J. K.; Tobias, C. R.; Fallis, S.; Groshens, T.; Cooper, C.

    2017-12-01

    It has been estimated that there are hundreds of explosive-contaminated sites all over the world and managing these contaminated sites is an international challenge. As coastal zones and estuaries are commonly impacted zones, it is vital to understand the fate and transport of munition compounds in these environments. The demand for data on sorption, biodegradation and mineralization of trinitrotriazine (RDX) in coastal ecosystems is the impetus for this study using stable nitrogen isotopes to track its metabolic pathways. Mesocosm experiments representing subtidal vegetated, subtidal unvegetated and intertidal marsh ecocosms were conducted. Steady state concentrations of RDX were maintained in the systems throughout two-week time duration of experiments. Sediment, pore-water and overlying water samples were analyzed for RDX and degradation products. Isotope analysis of the bulk sediments revealed an initial rising inventory of 15N followed by a decay illustrating the role of sediments on sorption and degradation of RDX in anaerobic sediments respectively. Both pore-water and overlying water samples were analyzed for 15N inventories of different inorganic nitrogen pools including ammonium, nitrate, nitrite, nitrous oxide and nitrogen gases. RDX is mineralized to nitrogen gas through a series of intermediates leaving nitrous oxide as the prominent metabolite of RDX. Significant differences in RDX metabolism were observed in the three different ecosystems based on sediment characteristics and redox conditions in the systems. Fine grained organic carbon rich sediments show notably higher mineralization rates of RDX in terms of production of its metabolites. Quantification of degradation and transformation rates leads to mass balances of RDX in the systems. Further analysis of results provides insights for mineralization pathways of RDX into both organic and inorganic nitrogen pools entering the marine nitrogen cycle.

  7. Deposition of carbon nanotubes by a marine suspension feeder revealed by chemical and isotopic tracers

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, Shannon K., E-mail: hanna.shannonk@gmail.com [Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106 (United States); Miller, Robert J. [Marine Science Institute, University of California, Santa Barbara, CA 93106 (United States); Lenihan, Hunter S. [Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106 (United States)

    2014-08-30

    Highlights: • CNTs decrease the filtration rate of mussels by as much as 24%. • Metals in CNTs and their δ{sup 13}C can be used to quantify CNTs in biological samples. • Mussels exposed to CNTs deposit high concentrations of them in biodeposits. • CNTs accumulate mainly in gut tissue of mussels during exposure. - Abstract: Carbon nanotubes (CNTs) are one of the few truly novel nanomaterials and are being incorporated into a wide range of products, which will lead to environmental release and potential ecological impacts. We examined the toxicity of CNTs to marine mussels and the effect of mussels on CNT fate and transport by exposing mussels to 1, 2, or 3 mg CNTs l{sup −1} for four weeks and measuring mussel clearance rate, shell growth, and CNT accumulation in tissues and deposition in biodeposits. We used metal impurities and carbon stable isotope ratios of the CNTs as tracers of CNT accumulation. Mussels decreased clearance rate of phytoplankton by 24% compared with control animals when exposed to CNTs. However, mussel growth rate was unaffected by CNT concentrations up to 3 mg l{sup −1}. Based on metal concentrations and carbon stable isotope values, mussels deposited most CNTs in biodeposits, which contained >110 mg CNTs g{sup −1} dry weight, and accumulated about 1 mg CNTs g{sup −1} dry weight of tissue. We conclude that extremely high concentrations of CNTs are needed to illicit a toxic response in mussels but the ability of mussels to concentrate and deposit CNTs in feces and pseudofeces may impact infaunal organisms living in and around mussel beds.

  8. Stable silicon isotope signatures of marine pore waters - Biogenic opal dissolution versus authigenic clay mineral formation

    Science.gov (United States)

    Ehlert, Claudia; Doering, Kristin; Wallmann, Klaus; Scholz, Florian; Sommer, Stefan; Grasse, Patricia; Geilert, Sonja; Frank, Martin

    2016-10-01

    Dissolved silicon isotope compositions have been analysed for the first time in pore waters (δ30SiPW) of three short sediment cores from the Peruvian margin upwelling region with distinctly different biogenic opal content in order to investigate silicon isotope fractionation behaviour during early diagenetic turnover of biogenic opal in marine sediments. The δ30SiPW varies between +1.1‰ and +1.9‰ with the highest values occurring in the uppermost part close to the sediment-water interface. These values are of the same order or higher than the δ30Si of the biogenic opal extracted from the same sediments (+0.3‰ to +1.2‰) and of the overlying bottom waters (+1.1‰ to +1.5‰). Together with dissolved silicic acid concentrations well below biogenic opal saturation, our collective observations are consistent with the formation of authigenic alumino-silicates from the dissolving biogenic opal. Using a numerical transport-reaction model we find that approximately 24% of the dissolving biogenic opal is re-precipitated in the sediments in the form of these authigenic phases at a relatively low precipitation rate of 56 μmol Si cm-2 yr-1. The fractionation factor between the precipitates and the pore waters is estimated at -2.0‰. Dissolved and solid cation concentrations further indicate that off Peru, where biogenic opal concentrations in the sediments are high, the availability of reactive terrigenous material is the limiting factor for the formation of authigenic alumino-silicate phases.

  9. Secondary ion mass spectrometry and environment. SIMS as applied to the detection of stable and radioactive isotopes in marine organisms

    International Nuclear Information System (INIS)

    Chassard-Bouchaud, C.; Escaig, F.; Hallegot, P.

    1984-01-01

    Several marine species of economical interest, Crustacea (crabs and prawns) and Molluscs (common mussels and oysters) were collected from coastal waters of France: English Channel, Atlantic Ocean and Mediterranean Sea and of Japan. Microanalyses which were performed at the tissue and cell levels, using Secondary Ion Mass Spectrometry, revealed many contaminants; stable isotopes as well as radioactive actinids such as uranium were detected. Uptake, storage and excretion target organs were identified [fr

  10. Determining origin in a migratory marine vertebrate: a novel method to integrate stable isotopes and satellite tracking

    Science.gov (United States)

    Vander Zanden, Hannah B.; Tucker, Anton D.; Hart, Kristen M.; Lamont, Margaret M.; Fujisaki, Ikuko; Addison, David S.; Mansfield, Katherine L.; Phillips, Katrina F.; Wunder, Michael B.; Bowen, Gabriel J.; Pajuelo, Mariela; Bolten, Alan B.; Bjorndal, Karen A.

    2015-01-01

    Stable isotope analysis is a useful tool to track animal movements in both terrestrial and marine environments. These intrinsic markers are assimilated through the diet and may exhibit spatial gradients as a result of biogeochemical processes at the base of the food web. In the marine environment, maps to predict the spatial distribution of stable isotopes are limited, and thus determining geographic origin has been reliant upon integrating satellite telemetry and stable isotope data. Migratory sea turtles regularly move between foraging and reproductive areas. Whereas most nesting populations can be easily accessed and regularly monitored, little is known about the demographic trends in foraging populations. The purpose of the present study was to examine migration patterns of loggerhead nesting aggregations in the Gulf of Mexico (GoM), where sea turtles have been historically understudied. Two methods of geographic assignment using stable isotope values in known-origin samples from satellite telemetry were compared: 1) a nominal approach through discriminant analysis and 2) a novel continuous-surface approach using bivariate carbon and nitrogen isoscapes (isotopic landscapes) developed for this study. Tissue samples for stable isotope analysis were obtained from 60 satellite-tracked individuals at five nesting beaches within the GoM. Both methodological approaches for assignment resulted in high accuracy of foraging area determination, though each has advantages and disadvantages. The nominal approach is more appropriate when defined boundaries are necessary, but up to 42% of the individuals could not be considered in this approach. All individuals can be included in the continuous-surface approach, and individual results can be aggregated to identify geographic hotspots of foraging area use, though the accuracy rate was lower than nominal assignment. The methodological validation provides a foundation for future sea turtle studies in the region to inexpensively

  11. A on-line method for the determination of lead and lead isotope ratios in fresh and saline waters by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Halicz, Ludwik; Lam, J.W.H.; McLaren, J.W.

    1994-01-01

    A previously reported on-line ICP-MS method for the determination of lead and other trace elements in seawater has been re-examined to determine its suitability for the determination of lead isotope ratios ( 206 Pb/ 207 Pb and 207 Pb/ 208 Pb) in fresh and saline natural waters. A detection limit of 0.9 ng/1 for total lead (for a 5 ml sample) was achieved. Precision of isotope ratio data was 0.2-0.3% RSD at a Pb concentration of 1 μg/l, and was still better than 2% at concentrations of only 10-40 ng/1 in seawater certified reference materials (CRMs). For all three natural water CRMs examined, measured precision was very close to the limit predicted by counting statistics. (Author)

  12. An application of nitrogen microwave-induced plasma mass spectrometry to isotope dilution analysis of selenium in marine organisms

    Energy Technology Data Exchange (ETDEWEB)

    Shirasaki, Toshihiro [Hitachi Instruments Engineering Co. Ltd., Hitachinaka, Ibaraki (Japan); Yoshinaga, Jun; Morita, Masatoshi; Okumoto, Toyoharu; Oishi, Konosuke

    1996-01-01

    Nitrogen microwave-induced plasma mass spectrometry was studied for its applicability to the isotope dilution analysis of selenium in biological samples. Spectroscopic interference by calcium, which is present in high concentrations in biological samples, was investigated. No detectable background spectrum was observed for the major selenium isotopes of {sup 78}Se and {sup 80}Se. No detectable interferences by sodium, potassium, calcium and phosphorus on the isotope ratio {sup 80}Se/{sup 78}Se were observed up to concentration of 200 mg/ml. The method was applied to the analysis of selenium in biological reference materials of marine organisms. The results showed good agreement between the certified and found values. (author).

  13. Partition of iodine (129I and 127I) isotopes in soils and marine sediments

    DEFF Research Database (Denmark)

    Hansen, Violeta; Roos, Per; Aldahan, Ala

    2011-01-01

    Natural organic matter, such as humic and fulvic acids and humin, plays a key role in determining the fate and mobility of radioiodine in soil and sediments. The radioisotope 129I is continuously produced and released from nuclear fuel reprocessing plants, and as a biophilic element, its......–60% of the total 129I are associated with organic matter in soil and sediment samples. At a soil/sediment pH below 5.0–5.5, 127I and 129I in the organic fraction associate primarily with the humic acid while at soil/sediment pH > 6 129I was mostly found to be bound to fulvic acid. Anoxic conditions seem...... environmental mobility is strongly linked to organic matter. Due to its long half-life (15.7 million years), 129I builds up in the environment and can be traced since the beginning of the nuclear era in reservoirs such as soils and marine sediments. Nevertheless, partition of the isotope between the different...

  14. Uniform climate development between the subtropical and subpolar Northeast Atlantic across marine isotope stage 11

    Directory of Open Access Journals (Sweden)

    J. P. Helmke

    2008-09-01

    Full Text Available Proxy records from a core site off Northwest Africa were generated and compared with data from the subpolar Northeast Atlantic to unravel some main climatic features of interglacial marine isotope stage (MIS 11 (423–362 ka. The records point to an almost 25 kyr lasting full interglacial period during stage 11 that was preceded by a considerably long glacial-interglacial transition (Termination V. Off NW Africa, a strong reduction of terrestrially derived iron input is noted after 420 ka suggesting a pronounced increase in continental humidity and vegetation cover over Northwest Africa. In analogy to the Holocene climate of the region, this early wet phase of MIS 11 was likely associated with enhanced influence of the West African monsoon system on the Saharan-Sahel region which led to both a reduction in trade wind intensity off NW Africa and the formation of sapropel S11 in the Mediterranean Sea. A detailed comparison with data from the subpolar North Atlantic indicates a remarkable coherent timing for the main environmental changes in both regions giving evidence for strong interglacial climate connection between the low and high latitude North Atlantic. Although our records of MIS 11 compare well with the Holocene in terms of some major climate characteristics there are distinct differences in the temporal evolution of each peak warm interval. This suggests that care should be taken when using MIS 11 as analogue to forecast future interglacial conditions.

  15. Marine subsidies of island communities in the Gulf of California: evidence from stable carbon and nitrogen isotopes

    International Nuclear Information System (INIS)

    Anderson, W.B.; Polis, G.A.

    1998-01-01

    Coastal sites support larger (2 to > 100 x) populations of many consumers than inland sites on islands in the Gulf of California. Previous data suggested that subsidies of energy and nutrients from the ocean allowed large coastal populations. Stable carbon and nitrogen isotopes are frequently used to analyse diet composition of organisms: they are particularly useful to distinguish between diet sources with distinct isotopic signatures, such as marine and terrestrial diets. We analyzed the 13 C and 15 N concentrations of coastal versus inland spiders and scorpions to test the hypothesis that coastal individuals exhibited more strongly marine-based diets than inland individuals. Coastal spiders and scorpions were significantly more enriched in 13 C and 15 N than inland spiders and scorpions, suggesting that the coastal individuals consumed more marine-based foods than their inland counterparts. These patterns existed in both drought years and wet El Nino years. However, the marine influence was stronger in drought years when terrestrial productivity was nearly non-existent, than in wet years when terrestrial productivity increased by an order of magnitude. (au)

  16. Trace element and stable isotope analysis of fourteen species of marine invertebrates from the Bay of Fundy, Canada.

    Science.gov (United States)

    English, Matthew D; Robertson, Gregory J; Mallory, Mark L

    2015-12-15

    The Bay of Fundy, Canada, is a macrotidal bay with a highly productive intertidal zone, hosting a large abundance and diversity of marine invertebrates. We analysed trace element concentrations and stable isotopic values of δ(15)N and δ(13)C in 14 species of benthic marine invertebrates from the Bay of Fundy's intertidal zone to investigate bioaccumulation or biodilution of trace elements in the lower level of this marine food web. Barnacles (Balanus balanus) consistently had significantly greater concentrations of trace elements compared to the other species studied, but otherwise we found low concentrations of non-essential trace elements. In the range of trophic levels that we studied, we found limited evidence of bioaccumulation or biodilution of trace elements across species, likely due to the species examined occupying similar trophic levels in different food chains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Response of lupine plants irrigated with saline water to rhizobium inoculation using 15N-isotope dilution

    International Nuclear Information System (INIS)

    Gadalla, A.M.; El-Ghandour, I.A.; Abdel Aziz, H.A.; Hamdy, A.; Aly, M.M.

    2002-01-01

    The lupine Rhizobium symbiosis and contribution of N 2 fixation under different levels of irrigation water salinity were examined. Lysimeter experiment was established under greenhouse conditions during the year 2002-2003. In this experiment, inoculated plants were imposed to different salinity levels of irrigation water and N-fertilizer treatment. Plant height was decreased under different salinity levels, nitrogen treatments and bacterial inoculation. Similar trend was noticed with leaf area. The highest leaf area was recorded with salt tolerant bacterial inoculation (SBI) and splitting N-treatment. Highest values of N-uptake occurred after 100 day intervals under the tested factors. Relative decrease in N-uptake did not exceed 40% of those recorded with the fresh water treatment as affected by experimental factors. Nitrogen uptake by the whole plant reflected an increase at 3 dS/m salinity level of irrigation water. Relative increases were 5% and 15% for normal bacteria inoculation under single dose (NI) and splitting

  18. A First Look at Oxygen and Silicon Isotope Variations in Diatom Silica from a Pliocene Antarctic Marine Sediment Core

    Science.gov (United States)

    Abbott, T.; Dodd, J. P.; Hackett, H.; Scherer, R. P.

    2016-02-01

    Coupled oxygen (δ18O) and silicon (δ30Si) isotope variations in diatom silica (opal-A) are increasingly used as a proxy to reconstruct paleoenvironmental conditions (water temperatures, water mass mixing, nutrient cycling) in marine environments. Diatom silica is a particularly significant paleoenvironmental proxy in high latitude environments, such as the Southern Ocean, where diatom blooms are abundant and diatom frustules are well preserved in the sediment. The Andrill-1B (AND-1B) sediment core from the Ross Sea (Antarctica) preserves several Pliocene ( 4.5 Ma) age diatomite units. Here we present preliminary δ18O and δ30Si values for a diatomite subunit in the AND-1B sediment core. Initial isotope values for the AND-1B diatoms silica record relatively high variability (range δ18O: 36.3‰ to 39.9‰) that could be interpreted as large-scale changes in the water temperature and/or freshwater mixing in the Ross Sea; however, a significant concern with marine sediment of this age is isotope fractionation during diagenesis and the potential formation of opal-CT lepispheres. The effects of clay contamination on the diatom silica δ18O values have been addressed through sample purification and quantified through chemical and physical analyses of the diatom silica. The isotopic effects of opal-CT are not as clearly understood and more difficult to physically separate from the primary diatom silica. In order to better understand the isotope variations in the AND-1B diatoms, we also evaluated silicon and oxygen isotope fractionation during the transition from opal-A to opal-CT in a controlled laboratory experiment. Opal-A from cultured marine diatoms (Thalassiosira weissflogii) was subjected to elevated temperatures (150°C) in acid digestion vessels for 4 weeks to initiate opal-CT precipitation. Quantifying the effects of opal-CT formation on δ18O and δ30Si variations in biogenic silica improves our understanding of the use of diatom silica isotope values a

  19. Interannual variability in seagrass carbon and nitrogen stable isotopes from the Florida Keys National Marine Sanctuary, a preliminary study

    Science.gov (United States)

    Fourqurean, J. W.; Fourqurean, J. W.; Anderson, W. T.; Anderson, W. T.

    2001-12-01

    The shallow marine waters surrounding the southern tip of Florida provide an ideal environment for seagrasses, which are the most common benthic community in the region. Yet, these communities are susceptible to a variety of anthropogenic disturbances, especially changes in water quality caused by an increase the nutrient flux to the near shore environment. In order to better understand the carbon and nitrogen isotopic ratio in marine plants, an extensive times series analysis was constructed from quarterly sampling of Thalassia testudinum (the dominate species in the study area) from 1996 through 1998. Sites for study where selected from permanent stations within the Florida Keys National Marine Sanctuary (FKNMS), from both sides of the Florida Keys - two stations on the bay side and two stations on the reef side. These data will also help to constrain elements of the carbon and nitrogen cycles affecting this region. The data analyzed over the three year study period show unique cyclic trends associated with seasonal changes in primary productivity and potentially changes in the nitrogen and carbon pools. Additionally, the analysis of our time series indicates that isotope food web studies need to take into account spatial and temporal changes when evaluating trophic levels. The mean carbon and nitrogen isotope values of T. testudinum from all 4 stations vary respectively from -7.2 per mil to -10.41 and 1.1 per mil to 2.2 per mil (n = 48). However, certain stations displayed anonymously depleted nitrogen isotope values, values as low as -1.2 per mil. These values potentially indicated that biogeochmical processes like N fixation, ammonification and denitrification cause regional pattern in the isotopic composition of the source DIN. Both carbon and nitrogen isotopes displayed seasonal enrichment-depletion trends, with maximum enrichment occurring during the summer. The overall seasonal variation for carbon 13 from the different stations ranged from 1 per mil to

  20. Effect of 2,4-dihydroxybenzophenone (BP1) on early life-stage development of the marine copepod Acartia tonsa at different temperatures and salinities

    DEFF Research Database (Denmark)

    Kusk, Kresten Ole; Avdolli, Manola; Wollenberger, Leah

    2011-01-01

    a copepodite stage (DT(½) ) at the different conditions were calculated. The DT(½) values decreased from 296 h at 15°C to 89 h at 25°C and were also affected by salinity (126 h at 15‰ and 167 h at 30‰), whereas the light:dark regime and culture density influenced development only to a minor extent. BP1......Benzophenone (BP)-type ultraviolet (UV) filters are widely used in cosmetic and sunscreen products and can enter the aquatic environment. Therefore, we investigated the subchronic toxicity of 2,4-dihydroxybenzophenone (BP1) on the marine calanoid copepod Acartia tonsa in an early life......-stage development study. Since developmental endpoints depend on environmental conditions, a preceding study of A. tonsa development was performed at three temperatures, four salinities, four light:dark regimes, six food densities, and four culture densities. Times elapsed until 50% of the population had reached...

  1. An integrated hydrogeochemical and isotopic approach to study groundwater Salinization in the overexploited aquifers of Indo-Gangetic Plain, a part of NCR Delhi

    Science.gov (United States)

    Kumari, R.

    2017-12-01

    roundwater resources in arid and semi-arid areas are highly vulnerable to salinity problems. Inadequate availability of surface water supply, vagaries of mansoonal rainfall and overexploitation due to population pressure and rapid landuse change induced decline in groundwater levels and salinization has been observed in many Asian cities. After green revolution, large part of Indo-Gangetic plain groundwater salinization has been reported. One such region is National Capital Region, Delhi- India's largest and the world's second largest agglomeration of people and economic hub of Northern India. The present study includes National capital territory, Delhi, Gurgaon and Faridabad. In the present study, different graphical plots, Piper plot, saturation index values (using PHREEQC), stable isotopes (δ18O and δD) and GIS is used to create the database for analysis of spatial variation in respective water quality parameters as well as to decipher the hydrogeochemical process occurring in the area. Major ions are analysed to describe the composition and distribution of salinization and dissolution/precipitation dynamics. It was observed that groundwater weathering is governed by carbonate and silicate weathering and reverse ion-exchange, however due to semi-arid climate evaporation is also playing a major role in groundwater chemistry and salinity of the area. δ18O and δD regression line of groundwater samples of the study area is below the LMWL also suggest from non-equilibrium fractionation during evaporation. Large lateral variation in chloride concentration indicates impact of evapotranspiration rate during recharge. Most of water facies are of Na-Cl. Stable isotope (δ18O and δD) analysis helps to identify evaporation and to better understand recharge processes and mixing dynamics in the study region. Limited availability of surface water supply, no pricing exists for groundwater extraction has resulted in a widespread decline in the water table and intermixing of

  2. Sulfur Isotope Exchange between S-35 Labeled Inorganic Sulfur-Compounds in Anoxic Marine-Sediments

    DEFF Research Database (Denmark)

    FOSSING, H.; THODEANDERSEN, S.; JØRGENSEN, BB

    1992-01-01

    of isotope exchange, specific radioactivities of the reduced sulfur pools were poorly defined and could not be used to calculate their rates of formation. Such isotope exchange reactions between the reduced inorganic sulfur compounds will affect the stable isotope distribution and are expected to decrease...

  3. Origin of particulate organic carbon in the marine atmosphere as indicated by it stable carbon isotopic composition

    International Nuclear Information System (INIS)

    Chesselet, R.; Fontugne, M.; Buat-Menard, P.; Ezat, U.; Lambert, C.E.

    1981-01-01

    Organic carbon concentration and isotopic composition were determined in samples of atmospheric particulate matter collected in 1979 at remote marine locations (Enewetak atoll, Sargasso Sea) during the SEAREX (Sea-Air Exchange) program field experiments. Atmospheric Particulate Organic Carbon (POC) concentrations were found to be in the range of 0.3 to 1.2 mg. m -3 , in agreement with previous literature data. The major mass of POC was found on the smallest particles (r 13 C/ 12 C of the small particles is close to the one expected (d 13 C = 26 +- 2 0 //sub infinity/) for atmospheric POC of continental origin. For all the samples analysed so far, it appears that more than 80% of atmospheric POC over remote marine areas is of continental origin. This can be explained either by long-range transport of small sized continental organic aserosols or by the production of POC in the marine atmosphere from a vapor phase organic carbon pool of continental origin. The POC in the large size fraction of marine aerosols ( 13 C = -21 +- 2 0 / 00 ) for POC associated with sea-salt droplets transported to the marine atmosphere

  4. Evidence of the exploitation of marine resource by the terrestrial insect Scapteriscus didactylus through stable isotope analyzes of its cuticle

    Directory of Open Access Journals (Sweden)

    Lelarge Caroline

    2006-05-01

    Full Text Available Abstract Background About 4 × 105 eggs in more than 5000 marine turtle nests are deposited every year on a 3.6 km long beach in French Guiana (South America. The dry biomass of eggs is estimated to be 5 × 103 kg, yet only 25% of this organic matter will return to the ocean in the form of hatchlings. Such amounts of organic matter are supposed to drive the functioning of the beach ecosystem. Previous studies have shown that egg predators and detritivorous organisms dominate the trophic relationships and the dynamics of the system. The role of a terrestrial insect Scapteriscus didactylus (Latreille, which damages up to 40% of the eggs of the marine turtle (Dermochelys coriacea, was unexpected. However it was impossible from direct observations to prove that the mole cricket consumed a significant amount of these eggs. Therefore, the precise place of the mole cricket in the nitrogen and carbon cycles of the beach ecosystem could not be determined. In order to answer this question, we looked for a marine signature of carbon and nitrogen source metabolized by the mole cricket. Results This study estimated the individual variability of δ13C and δ15N in the cuticle of Scapteriscus didactylus. The isotopic signature was compared between individuals collected at two sites: a village where mole crickets fed on human food scraps and the nearby Awala-Yalimapo beach, where food availability depends seasonally on the nesting sea turtles. The mole crickets collected near the habitations garbage showed no significant variations in the stable isotopic signature, within-and between age groups. On the contrary, isotopic values shifted from a signature of a terrestrial herbivorous diet in the mole crickets during early developmental stages, to isotopic values in adults in accordance with the exploitation of marine animal resources. Conclusion The heterogeneity of individual signatures during the year is due to a selective exploitation of the food sources

  5. Coupled Mo-U abundances and isotopes in a small marine euxinic basin: Constraints on processes in euxinic basins

    Science.gov (United States)

    Bura-Nakić, Elvira; Andersen, Morten B.; Archer, Corey; de Souza, Gregory F.; Marguš, Marija; Vance, Derek

    2018-02-01

    Sedimentary molybdenum (Mo) and uranium (U) abundances, as well as their isotope systematics, are used to reconstruct the evolution of the oxygenation state of the surface Earth from the geological record. Their utility in this endeavour must be underpinned by a thorough understanding of their behaviour in modern settings. In this study, Mo-U concentrations and their isotope compositions were measured in the water column, sinking particles, sediments and pore waters of the marine euxinic Lake Rogoznica (Adriatic Sea, Croatia) over a two year period, with the aim of shedding light on the specific processes that control Mo-U accumulation and isotope fractionations in anoxic sediment. Lake Rogoznica is a 15 m deep stratified sea-lake that is anoxic and euxinic at depth. The deep euxinic part of the lake generally shows Mo depletions consistent with near-quantitative Mo removal and uptake into sediments, with Mo isotope compositions close to the oceanic composition. The data also, however, show evidence for periodic additions of isotopically light Mo to the lake waters, possibly released from authigenic precipitates formed in the upper oxic layer and subsequently processed through the euxinic layer. The data also show evidence for a small isotopic offset (∼0.3‰ on 98Mo/95Mo) between particulate and dissolved Mo, even at highest sulfide concentrations, suggesting minor Mo isotope fractionation during uptake into euxinic sediments. Uranium concentrations decrease towards the bottom of the lake, where it also becomes isotopically lighter. The U systematics in the lake show clear evidence for a dominant U removal mechanism via diffusion into, and precipitation in, euxinic sediments, though the diffusion profile is mixed away under conditions of increased density stratification between an upper oxic and lower anoxic layer. The U diffusion-driven precipitation is best described with an effective 238U/235U fractionation of +0.6‰, in line with other studied euxinic

  6. Meta-analysis review of fish trophic level at marine protected areas based on stable isotopes data

    Directory of Open Access Journals (Sweden)

    J. J. de LOPE ARIAS

    2016-04-01

    Full Text Available Stable isotopes (δ15N are used to determine trophic level in marine food webs. We assessed if Marine Protected Areas (MPAs affect trophic level of fishes based on stable isotopes on the Western Mediterranean. A total of 22 studies including 600 observations were found and the final dataset consisted of 11 fish species and 146 observations comparing trophic level inside and outside MPAs. The database was analysed by meta-analysis and the covariate selected was the level of protection (inside vs. outside MPAs. The results indicate significant difference between trophic levels inside and outside MPAs. However, results differ from expectations since the trophic level inside was lower than outside MPAs. Three habitats were analysed (coastal lagoons, demersal and littoral and significant differences were found among them. Trophic level was higher in demersal habitats than in coastal lagoons and littoral areas. No significant differences were found in species classified by trophic functional groups. We consider several hypotheses explaining the obtained results linked to protection level of the MPAs, time since protection and MPAs size. We debate the suitability of using the stable isotope (δ15N as direct indicator of trophic level in evaluating MPAs effects on food webs.

  7. Induction of the synthesis of bioactive compounds of the marine alga Tetraselmis tetrathele (West) Butcher grown under salinity stress

    OpenAIRE

    Hala Yassin El-Kassas; Mostafa M. El-Sheekh

    2016-01-01

    This work aims at the induction of the synthesis bioactive compounds in microalgae which are used in aquacultures. Experiments were done using Tetraselmis tetrathele in batch culture for 8 days under different salinity levels. The growth of the alga at salinity 20 ppm was increased by fivefold and synthesis of carotenoids by 20-fold in comparison to the controlled. Increasing NaCl concentration resulted in increasing the fatty acid accumulation in T. tetrathele cells. Saturated fatty acids we...

  8. Isotope geochemistry of fluid inclusions in Permian halite with implications for the isotopic history of ocean water and the origin of saline formation waters

    International Nuclear Information System (INIS)

    Knauth, L.P.; Beeunas, M.A.

    1986-01-01

    deltaD and delta 18 O values have been determined for fluid inclusions in 45 samples of Permian halite. The inclusions are enriched in 18 O relative to the meteoric water line but are depleted in D relative to ocean water. Inclusions with the more positive delta-values coincide with the isotopic compositions expected for evaporating sea water which follows a hooked trajectory on a deltaD-delta 18 O diagram. Inclusions with more negative delta-values may represent more highly evaporated sea water but probably reflect synsedimentary or diagenetic mixing to those of a modern evaporite pan to indicate that Permian sea water was isotopically similar to modern sea water. Connate evaporite brines can have negative delta-values because of the probable hooked isotope trajectory of evaporating sea water and/or synsedimentary mixing of evaporite brines with meteoric waters. (author)

  9. Effect of temperature and salinity on stable isotopic composition of shallow water benthic foraminifera: A laboratory culture study

    Digital Repository Service at National Institute of Oceanography (India)

    Kurtarkar, S.R.; Linshy, V.N.; Saraswat, R.; Nigam, R.

    in the laboratory. In the present work, shallow water benthic foraminiferal species, Rosalina sp. and Pararotalia nipponica were subjected to different combinations of seawater temperature (25�C to 35�C) and salinity (25 psu to 37 psu) in the laboratory to assess...

  10. Susceptibility to saline contamination of coastal confined aquifer of the Uraba banana axis with hydrogeochemical and isotopic techniques

    International Nuclear Information System (INIS)

    Paredes Zuniga, Vanessa

    2010-01-01

    The project has covered an area of study of 8916 km 2 is located in the Northwestern part of the Department of Antioquia, Colombia. Interest area is geologically constituted by tertiary sedimentary rocks (T1 and T2) and alluvial deposits (Quaternary). Hydrogeological units, potentially better use of groundwater, have been established for the unit T2 (confined aquifer) and quaternary deposits.) The area has been of 2600 mm/year to 3600 mm/year of average rainfall. The susceptibility to saline contamination has been determined of coastal aquifer of the Uraba banana axis. Hydrochemical and geological information, geophysics, hydraulic and hydrochemical is used improving existing conceptual hydrogeological model. A hydrochemical characterization has been performed to evaluate the processes of salinity in the confined aquifer. The integration of geological information, geophysical and hydrogeological has been methodology used to validate the hydraulic characteristics of the aquifer, its geometry and operation, updating the conceptual hydrogeological model. The use of complementary tools been able to determine and identify processes that may affect natural physico-chemical characteristics of groundwater. The results have showed that salinization processes present in the coastal aquifer of Uraba Banana Axis could be linked to water-rock interaction, to mixtures with water have become saline as a result of transgression - regression processes in the former study. The hydrogeochemical techniques have become a complementary tool to the hydrogeology allowing respond the questions were presented in complex systems, such as the case of coastal aquifers, where sanitation is usually associated with saline intrusion processes and can also be obeying the conjunction with other hydroclimatological and hydrodynamic aspects. (author) [es

  11. The effects of atmospheric [CO2] on carbon isotope fractionation and magnesium incorporation into biogenic marine calcite

    Science.gov (United States)

    Vieira, Veronica

    1997-01-01

    The influences of atmospheric carbon dioxide on the fractionation of carbon isotopes and the magnesium incorporation into biogenic marine calcite were investigated using samples of the calcareous alga Amphiroa and benthic foraminifer Sorites grown in the Biosphere 2 Ocean system under variable atmospheric CO2 concentrations (approximately 500 to 1200 ppm). Carbon isotope fractionation was studied in both the organic matter and the skeletal carbonate. Magnesium analysis was to be performed on the carbonate removed during decalcification. These data have not been collected due to technical problems. Carbon isotope data from Amphiroa yields a linear relation between [CO2] and Delta(sup 13)C(sub Corg)values suggesting that the fractionation of carbon isotopes during photosynthesis is positively correlated with atmospheric [CO2]. [CO2] and Delta(sup 13)C(sub Corg) values for Sorites produce a relation that is best described by a hyperbolic function where Delta(sup 13)C(sub Corg) values increase between 300 and 700 ppm and decrease from 700 to 1200 ppm. Further investigation of this relation and Sorites physiology is needed.

  12. Determination of Ra natural isotopes in marine samples from Itamaraca coastal regions; Determinacao de isotopos naturais de Ra em amostras costeiras da regiao de Itamaraca (PE)

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Patricia B.; Valentim, Eliane; Lima, Ricardo A. [Centro Regional de Ciencias Nucleares (CRCN), Recife, PE (Brazil)]. E-mail: pbrandao@cnen.gov.br; Medeiros, Carmem [Pernambuco Univ., Recife, PE (Brazil). Dept. de Oceanografia; Oliveira, Joselene [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2005-07-01

    Groundwater plays an important role in the transport of nutrients and pollutants to the coastal marine environment s and other surfaces water. Concentrations of {sup 223}Ra, {sup 224}Ra and {sup 226}Ra in marine water of the Itamaraca coastal region, PE, were measured during the winter of 2004, aiming to investigate the presence of radionuclides as a tracer of submarine groundwater discharges (SGD) in the environment studied. Measurements of temperature, salinity and nutrients were also carried out. (author)

  13. The ecological coherence of temperature and salinity tolerance interaction and pigmentation in a non-marine vibrio isolated from Salar de Atacama

    Directory of Open Access Journals (Sweden)

    Karem Gallardo

    2016-12-01

    Full Text Available The occurrence of microorganisms from the Vibrio genus in saline lakes from northern Chile had been evidenced using Numerical Taxonomy decades before and, more recently, by phylogenetic analyses of environmental samples and isolates. Most of the knowledge about this genus came from marine isolates and showed temperature and salinity to be integral agents in shaping the niche of the Vibrio populations. The stress tolerance phenotypes of Vibrio sp. Teb5a1 isolated from Salar de Atacama was investigated. It was able to grow without NaCl and tolerated up to 100 g/L of the salt. Furthermore, it grew between 17° and 49°C (optimum 30°C in the absence of NaCl, and the range was expanded into cold temperature (4-49°C in the presence of the salt. Other additional adaptive strategies were observed in response to the osmotic stress: pigment production, identified as the known antibacterial prodigiosin, swimming and swarming motility and synthesis of a polar flagellum. It is possible to infer that environmental congruence might explain the cellular phenotypes observed in Vibrio sp. considering that coupling between temperature and salinity tolerance, the production of antibacterial agents at higher temperatures, flagellation and motility increase the chance of Vibrio sp. to survive in salty environments with high daily temperature swings and UV radiation.

  14. Induction of the synthesis of bioactive compounds of the marine alga Tetraselmis tetrathele (West Butcher grown under salinity stress

    Directory of Open Access Journals (Sweden)

    Hala Yassin El-Kassas

    2016-12-01

    Full Text Available This work aims at the induction of the synthesis bioactive compounds in microalgae which are used in aquacultures. Experiments were done using Tetraselmis tetrathele in batch culture for 8 days under different salinity levels. The growth of the alga at salinity 20 ppm was increased by fivefold and synthesis of carotenoids by 20-fold in comparison to the controlled. Increasing NaCl concentration resulted in increasing the fatty acid accumulation in T. tetrathele cells. Saturated fatty acids were the main constituent in the fatty acid methyl esters (FAMEs (3.48 mg/g at salinity 25 ppm. The predominated fatty acids were tridecylic, myristic and pentadecanoic which have potential antimicrobial activities. GC–MS analyses of the alga acetone extract grown under different NaCl concentrations were established. The results showed the presence of 18 bioactive compounds: 9-octadecenamide; in addition to the different esters of some fatty acids: hexanedioic, 1,2-cyclohexanedicarboxylic, phthalic, oleanitrile, hexanedioic and 1,2-cyclohexanedicarboxylic (71.5%; 64.9%; 55.4%; 49.6%; 18.7%; 25.2% and 14.5%, respectively. The study suggested that the alga biosynthesized various bioactive compounds under different salinity levels as defense mechanisms. Accordingly, the growth of T. tetrathele under salinity stress before being used in aquacultures is recommended.

  15. Large-scale spatial and interspecies differences in trace elements and stable isotopes in marine wild fish from Chinese waters

    International Nuclear Information System (INIS)

    Zhang, Wei; Wang, Wen-Xiong

    2012-01-01

    Highlights: ► A large-scale study on trace element levels in marine wild fish from Chinese waters. ► Spatial variation found for Al, As, Cd, Cr, Fe, Ni, Pb, but not for Ag, Cu, Mo, Se and Zn. ► The Pearl River Estuary contained the highest concentrations of Al, Cr, Ni, and Pb. ► No biomagnification occurred for any of the trace elements studied in marine fish. ► No obvious health risk from the intake of trace elements through fish consumption. - Abstract: We conducted a large scale investigation of twelve trace element levels and stable isotopes (δ 13 C and δ 15 N) in twenty-nine marine wild fish species collected from Chinese coastal waters. Trace element levels varied significantly with species. Clear spatial variations were found for Al, As, Cd, Cr, Fe, Ni, and Pb, whereas Ag, Cu, Mo, Se and Zn did not show much spatial variation. The Pearl River Estuary contained the highest concentrations of Al, Cr, Ni, and Pb, whereas the most southern waters (Haikou) contained the lowest concentrations of Al, Fe, and Pb. There was no correlation between log-transformed trace elements concentrations and δ 15 N values or δ 13 C values, indicating no biomagnification among these trace elements. The calculated hazard quotients (HQ) of 10 elements were less than 1, thus there was no obvious health risk from the intake of trace elements through marine wild fish consumption.

  16. Isotopic compositions of potassium and calcium in magnetic spherulesfrom marine sediments

    International Nuclear Information System (INIS)

    Shimarura, T.; Yanagita, S.; Yamakoshi, K.; Nogami, K.; Arai, O.; Tazawa, Y.; Kobayashi, K.

    1979-01-01

    Isotopic compositions of potassium and calcium in individual magnetic spherules were determined. No significant anomaly was observed for potassium within twice the statistical error (2sigma), although for calcium isotopes enrichment of 46 Ca, 44 Ca and 42 Ca were observed in one spherule. The relative excess of 46 Ca, 44 Ca and 42 Ca in the spherule agrees with the relative yield of spallogenic calcium isotopes observed in iron meteorites. This fact indicates that the enrichment in the calcium isotopes was caused by cosmic ray irradiation of the spherule in outer space. (Auth.)

  17. Deep water dissolution in Marine Isotope Stage 3 from the northern South China Sea

    Science.gov (United States)

    Huang, B.

    2015-12-01

    The production, transport, deposition, and dissolution of carbonate profoundly implicate the global carbon cycle affect the inventory and distribution of dissolved organic carbon (DIC) and alkalinity (ALK), which drive atmospheric CO2 change on glacial-interglacial timescale. the process may provide significant clues for improved understanding of the mechanisms that control the global climate system. In this study, we calculate and analyze the foraminiferal dissolution index (FDX) and the fragmentation ratios of planktonic foraminifera over 60-25 ka based on samples from 17924 and ODP 1144 in the northeastern South China Sea (SCS) to reconstruct the deep water carbonate dissolution during Marine Isotope Stage 3 (MIS 3). Result shows that the dissolution of carbonate increases gradually at 17924 but keeps stable at ODP 1144. The changes of FDX coincidence with that of fragmentation ratios at 17924 and ODP 1144 suggest both indexes can be used as reliable dissolving proxies of planktonic foraminifera. Comparing FDX and fragmentation ratios at both sites, we find the FDX and fragmentation ratios at 17924 are higher than those at 1144, indicating that carbonate dissolution is intenser in 17924 core during MIS 3. The increasing total percentage of both N. dutertrei and G. bulloides during MIS 3 reveals the rising primary productivity that may lead to deep water [CO32-] decrease. The slow down of thermohaline circulation may increase deep water residence time and accelerate carbonate dissolution. In addition, the covering of ice caps, iron supply and increased surface-water stratification also contribute to atmosphere CO2 depletion and [CO32-] decrease in deep water. In the meanwhile, regression result from colder temperature increases the input of ALK and DIC to the deep ocean and deepens the carbonate saturation depth, which makes the deep water [CO32-] rise. In ODP Site 1144, the decrease in [CO32-] caused by more CO2 restored in deep water is equal to the increase in

  18. Modelling the enigmatic Late Pliocene Glacial Event - Marine Isotope Stage M2

    Science.gov (United States)

    Dolan, Aisling M.; Haywood, Alan M.; Hunter, Stephen J.; Tindall, Julia C.; Dowsett, Harry J.; Hill, Daniel J.; Pickering, Steven J.

    2015-01-01

    The Pliocene Epoch (5.2 to 2.58 Ma) has often been targeted to investigate the nature of warm climates. However, climate records for the Pliocene exhibit significant variability and show intervals that apparently experienced a cooler than modern climate. Marine Isotope Stage (MIS) M2 (~ 3.3 Ma) is a globally recognisable cooling event that disturbs an otherwise relatively (compared to present-day) warm background climate state. It remains unclear whether this event corresponds to significant ice sheet build-up in the Northern and Southern Hemisphere. Estimates of sea level for this interval vary, and range from modern values to estimates of 65 m sea level fall with respect to present day. Here we implement plausible M2 ice sheet configurations into a coupled atmosphere–ocean climate model to test the hypothesis that larger-than-modern ice sheet configurations may have existed at M2. Climate model results are compared with proxy climate data available for M2 to assess the plausibility of each ice sheet configuration. Whilst the outcomes of our data/model comparisons are not in all cases straight forward to interpret, there is little indication that results from model simulations in which significant ice masses have been prescribed in the Northern Hemisphere are incompatible with proxy data from the North Atlantic, Northeast Arctic Russia, North Africa and the Southern Ocean. Therefore, our model results do not preclude the possibility of the existence of larger ice masses during M2 in the Northern or Southern Hemisphere. Specifically they are not able to discount the possibility of significant ice masses in the Northern Hemisphere during the M2 event, consistent with a global sea-level fall of between 40 m and 60 m. This study highlights the general need for more focused and coordinated data generation in the future to improve the coverage and consistency in proxy records for M2, which will allow these and future M2 sensitivity tests to be interrogated

  19. Mercury and stable isotope signatures in caged marine fish and fish feeds

    Energy Technology Data Exchange (ETDEWEB)

    Onsanit, Sarayut; Chen, Min; Ke, Caihuan [State Key Laboratory for Marine Environmental Science, College of Oceanography and Environmental Science, Xiamen University, Xiamen 361005 (China); Wang, Wen-Xiong [State Key Laboratory for Marine Environmental Science, College of Oceanography and Environmental Science, Xiamen University, Xiamen 361005 (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Mercury concentrations in caged fish were closely related to Hg concentrations in fish feeds. Black-Right-Pointing-Pointer The trophic transfer factor of methylmercury was dependent on fish feeds, and was the highest for fish fed on pellet feeds. Black-Right-Pointing-Pointer Fish farming may be a good way of reducing the human exposure to Hg because Hg levels can be carefully controlled. - Abstract: Total mercury (THg) and methylmercury (MeHg) concentrations were determined in four species of marine caged carnivorous fish, one species of herbivorous fish and three types of fish feeds (dried pellet feed, forage fish and fish viscera), collected from five cage sites in the rural areas along Fujian coastline, China. For the carnivorous fish, the concentrations of THg and MeHg ranged from 0.03 to 0.31 {mu}g/g and from 0.02 to 0.30 {mu}g/g on wet weight basis, respectively. The concentrations were lower for the herbivorous fish with both within the range of 0.01-0.03 {mu}g/g. Out of the three tested fish feeds, tuna viscera contained the highest level of mercury (0.20 {mu}g/g THg and 0.13 {mu}g/g MeHg), with pellet feed containing the lowest level (0.05 {mu}g/g THg and 0.01 {mu}g/g MeHg). The calculated trophic transfer factor of MeHg was the highest (12-64) for fish fed on pellet feeds, and was the lowest for fish fed on tuna viscera. A significant relationship was found between Hg concentrations in caged fish and in fish feeds, thus Hg was primarily accumulated from the diet. Furthermore, the stable isotope {delta}{sup 15}N was positively correlated with the Hg concentration in two caged sites, indicating that {delta}{sup 15}N may be a suitable tool for tracking mercury in caged fish. We conclude that fish farming may be a good way of reducing the human exposure to Hg because mercury levels can be carefully controlled in such farming systems.

  20. Mercury and stable isotope signatures in caged marine fish and fish feeds

    International Nuclear Information System (INIS)

    Onsanit, Sarayut; Chen, Min; Ke, Caihuan; Wang, Wen-Xiong

    2012-01-01

    Highlights: ► Mercury concentrations in caged fish were closely related to Hg concentrations in fish feeds. ► The trophic transfer factor of methylmercury was dependent on fish feeds, and was the highest for fish fed on pellet feeds. ► Fish farming may be a good way of reducing the human exposure to Hg because Hg levels can be carefully controlled. - Abstract: Total mercury (THg) and methylmercury (MeHg) concentrations were determined in four species of marine caged carnivorous fish, one species of herbivorous fish and three types of fish feeds (dried pellet feed, forage fish and fish viscera), collected from five cage sites in the rural areas along Fujian coastline, China. For the carnivorous fish, the concentrations of THg and MeHg ranged from 0.03 to 0.31 μg/g and from 0.02 to 0.30 μg/g on wet weight basis, respectively. The concentrations were lower for the herbivorous fish with both within the range of 0.01–0.03 μg/g. Out of the three tested fish feeds, tuna viscera contained the highest level of mercury (0.20 μg/g THg and 0.13 μg/g MeHg), with pellet feed containing the lowest level (0.05 μg/g THg and 0.01 μg/g MeHg). The calculated trophic transfer factor of MeHg was the highest (12–64) for fish fed on pellet feeds, and was the lowest for fish fed on tuna viscera. A significant relationship was found between Hg concentrations in caged fish and in fish feeds, thus Hg was primarily accumulated from the diet. Furthermore, the stable isotope δ 15 N was positively correlated with the Hg concentration in two caged sites, indicating that δ 15 N may be a suitable tool for tracking mercury in caged fish. We conclude that fish farming may be a good way of reducing the human exposure to Hg because mercury levels can be carefully controlled in such farming systems.

  1. Uranium isotope evidence for an expansion of marine anoxia during the end-Triassic extinction

    NARCIS (Netherlands)

    Jost, Adam B.; Bachan, Aviv; van de Schootbrugge, Bas; Lau, Kimberly V.; Weaver, Karrie L.; Maher, Kate; Payne, Jonathan L.

    The end-Triassic extinction coincided with an increase in marine black shale deposition and biomarkers for photic zone euxinia, suggesting that anoxia played a role in suppressing marine biodiversity. However, global changes in ocean anoxia are difficult to quantify using proxies for local anoxia.

  2. Isotopic and geochemical tracers in the evaluation of groundwater residence time and salinization problems at Santiago Island, Cape Verde

    International Nuclear Information System (INIS)

    Carreira, Paula M.; Nunes, Dina; Marques, Jose M.; Monteiro Santos, Fernando A.; Goncalves, Rui; Pina, Antonio; Mota Gomes, Antonio

    2013-01-01

    Stable isotopes (δ 18 O, δ 2 H) and tritium ( 3 H), together with geochemistry and geophysical data, were used for evaluating groundwater recharge sources, flow paths, and residence times in a watershed on Santiago Island, Cape Verde, West Africa. Stable isotopes indicate the predominance of high-elevation precipitation that undergoes little evaporation prior to groundwater recharge. Low tritium concentrations at seven sampling sites indicate groundwater residence times greater than 50 years. Higher tritium values at other locations suggest more recent recharge. Young ages indicate local recharge and potential groundwater vulnerability to surface contamination and/or salt-water intrusion. Geochemical results indicate that water-rock interaction mechanisms are the major processes responsible for the groundwater quality (mainly calcium-bicarbonate type), reflecting the lithological composition of subsurface soil. (authors)

  3. Isotopic and geochemical tracers in the evaluation of groundwater residence time and salinization problems at Santiago Island, Cape Verde

    Energy Technology Data Exchange (ETDEWEB)

    Carreira, Paula M.; Nunes, Dina [Quimica Analitica e Ambiental, IST/ITN, Universidade Tecnica de Lisboa, Estrada Nacional no. 10, 2686-953 Sacavem (Portugal); Marques, Jose M. [Centro de Petrologia e Geoquimica. Instituto Superior Tecnico, UTL, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Monteiro Santos, Fernando A. [Universidade de Lisboa-IDL, 1749-016 Lisboa (Portugal); Goncalves, Rui [Inst. Politecnico de Tomar, Quinta do Contador, Estrada da Serra, 2300 Tomar (Portugal); Pina, Antonio; Mota Gomes, Antonio [Instituto Superior de Educacao, Praia, Santiago (Cape Verde)

    2013-07-01

    Stable isotopes (δ{sup 18}O, δ{sup 2}H) and tritium ({sup 3}H), together with geochemistry and geophysical data, were used for evaluating groundwater recharge sources, flow paths, and residence times in a watershed on Santiago Island, Cape Verde, West Africa. Stable isotopes indicate the predominance of high-elevation precipitation that undergoes little evaporation prior to groundwater recharge. Low tritium concentrations at seven sampling sites indicate groundwater residence times greater than 50 years. Higher tritium values at other locations suggest more recent recharge. Young ages indicate local recharge and potential groundwater vulnerability to surface contamination and/or salt-water intrusion. Geochemical results indicate that water-rock interaction mechanisms are the major processes responsible for the groundwater quality (mainly calcium-bicarbonate type), reflecting the lithological composition of subsurface soil. (authors)

  4. Study of the geochemistry of the cosmogenic isotope 10Be and the stable isotope 9Be in oceanic environment. Application to marine sediment dating

    International Nuclear Information System (INIS)

    Bourles, D.

    1988-01-01

    The radioisotope 10 Be is formed by spallation reactions in the atmosphere. It is transferred to the oceans in soluble form by precipitation and dry deposition. The stable isotope 9 Be comes from erosion of soils and rocks in the Earth's crust. It is transported by wind and rivers and introduced to the oceans probably in both soluble and insoluble form. 9 Be was measured by atomic absorption spectrometry and 10 Be by A.M.S. The distribution of 10 Be and 9 Be between each phase extracted and the 10 Be/ 9 Be ratios associated were studied in recent marine sediments from Atlantic, Pacific, Indian oceans and Mediterranean sea. The results show that for beryllium the two essential constituent phases of marine sediments are: - the authigenic phase incorporates the soluble beryllium and the detritic phase. The 10 Be/ 9 Be ratio associated with the authigenic fraction varies with location. This suggests that the residence time of beryllium in the soluble phase is lower or comparable to the mixing time of the oceans. The evolution with time of the authigenic 10 Be/ 9 Be ratio is discussed [fr

  5. The use of composite ferrocyanide materials for treatment of high salinity liquid radioactive wastes rich in cesium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Toropov, Andrey S. [National Nuclear Centre of the Republic of Kazakhstan, Kurchatov (Kazakhstan); Shakarim Semey State Univ. (Kazakhstan); Satayeva, Aliya R. [Shakarim Semey State Univ. (Kazakhstan); Mikhalovsky, Sergey [Nazarbayev Univ. (Kazakhstan); Brighton Univ. (United Kingdom); Cundy, Andrew B. [Brighton Univ. (United Kingdom)

    2014-07-01

    The use of composite materials based on metal ferrocyanides combined with natural mineral sorbents for treatment of high salinity Cs-containing liquid radioactive waste (LRW) was investigated. The study indicated that among the investigated composites, the best sorption characteristics for Cs were shown by materials based on copper ferrocyanide. Several factors affecting the removal of cesium from LRW, namely total salt content, pH and organic matter content, were also investigated. High concentrations of complexing organic matter significantly reduced the sorption capacity of ferrocyanide sorbents.

  6. Different transfer pathways of an organochlorine pesticide across marine tropical food webs assessed with stable isotope analysis.

    Directory of Open Access Journals (Sweden)

    Charlotte R Dromard

    Full Text Available Chlordecone is a persistent organochlorine pesticide used in the banana fields of the French West Indies from 1972 to 1993. Three marine habitats (mangroves, seagrass beds and coral reefs of two study sites located downstream contaminated rivers were chosen to evaluate the level of contamination of marine food webs. On each habitat, the food chain collected included suspended organic matter, primary producers (macroalgae, algal turf, seagrass, zooplankton, symbiotic organisms (corals, sea anemones, primary consumers (herbivores, suspension feeders, biofilm feeders, omnivores and detritivores (lobsters, fish, secondary consumers (carnivores 1: invertebrate feeders, planktivores and tertiary consumers (carnivores 2: invertebrate and fish feeders, piscivores. Log-linear regressions of the concentrations of chlordecone versus nitrogen isotopic ratios (δ15N were used to assess the bioaccumulation of chlordecone along trophic food webs. At each site, bioconcentration and bioamplification take part on the transfer of chlordecone in marine organisms. In mangroves (i.e. close to the source of pollution, lower trophic magnification factors (TMF indicated that bioconcentration prevailed over bioamplification phenomenon. The opposite phenomenon appeared on coral reefs in which bioconcentration processes were less important and bioamplification pathway became dominant. Far from the source of pollution, molecules of chlordecone seemed to be transfered to organisms mostly via trophic interactions rather than water contact.

  7. Sm-Nd in marine carbonates and phosphates: implications for Nd isotopes in seawater and crustal ages

    International Nuclear Information System (INIS)

    Shaw, H.F.; Wasserburg, G.J.

    1985-01-01

    This study explores the possibility of establishing Nd isotopic variations in seawater over geologic time. Calcite, aragonite and apatite are examined as possible phases recording seawater values of epsilonsubNd. Modern, biogenic and inorganically precipitated calcite and aragonite from marine environments were found to have Nd concentrations of from 0.2 to 70 ppb, showing that primary marine CaCO 3 contains little REE and that Nd/Ca is not greatly enhanced relative to seawater during carbonate precipitation. Very young marine limestone and dolomite containing no continental detritus have approx. 200 ppb Nd. All the carbonates are LREE enriched. Modern and very young Atlantic and Pacific carbonates have epsilonsub(Nd) in the range of shallow Atlantic and Pacific seawater respectively, implying that they derive their REE from local seawater. The Nd in well preserved carbonate fossils is 4 ppb, much greater than in their modern counterparts but like the high values found for carbonates in other studies. Results are also reported for apatite. They suggest that sedimentary apatite can be used to determine epsilonsub(Nd)(T) in ancient seawater. The seawater values so inferred range between -1.7 and -8.9 over the last 700 my and lie in the range of modern seawater, showing no evidence for drastic changes. (U.K.)

  8. Stable isotopes and metal contamination in caged marine mussel Mytilus galloprovincialis

    International Nuclear Information System (INIS)

    Deudero, S.; Box, A.; Tejada, S.; Tintore, J.

    2009-01-01

    Metal concentrations and isotopic composition were measured in different tissues of the mussel Mytilus galloprovincialis in waters of the Balearic Islands (Western Mediterranean) in order to assess pollution levels. The isotopic composition was correlated with lead, cadmium, selenium and nickel obtained from the digestive gland and foot of the mussels. Significant negative correlations were found between cadmium, selenium and zinc and the mussel foot, mainly for 13 C. Significant correlations were also found between lead and cadmium and the digestive gland. Pearson correlations indicated that the 13 C isotopic signal in foot is a good proxy for the concentration of metals such as lead, cadmium, selenium and zinc. Similarly, 15 N isotopic signatures in the digestive gland reflected the lead and cadmium concentration.

  9. Comparison of interglacial warm events since the marine oxygen isotope stage 11

    Digital Repository Service at National Institute of Oceanography (India)

    Oba, T.; Banakar, V.K.

    Large numbers of oxygen isotopic curves of benthic foraminifcral tests from deep-sea sediment cores have been published. The curves are well-established reliable proxies for past climate and relative sea level fluctuations. In order to understand...

  10. Insights on the marine microbial nitrogen cycle from isotopic approaches to nitrification

    Directory of Open Access Journals (Sweden)

    Karen L Casciotti

    2012-10-01

    Full Text Available The microbial nitrogen (N cycle involves a variety of redox processes that control the availability and speciation of N in the environment and are involved with the production of nitrous oxide (N2O, a climatically important greenhouse gas. Isotopic measurements of ammonium (NH4+, nitrite (NO2-, nitrate (NO3-, and N2O can now be used to track the cycling of these compounds and to infer their sources and sinks, which has lead to new and exciting discoveries. For example, dual isotope measurements of NO3- and NO2- have shown that there is NO3- regeneration in the ocean’s euphotic zone, as well as in and around oxygen deficient zones, indicating that nitrification may play more roles in the ocean’s N cycle than generally thought. Likewise, the inverse isotope effect associated with NO2- oxidation yields unique information about the role of this process in NO2- cycling in the primary and secondary NO2- maxima. Finally, isotopic measurements of N2O in the ocean are indicative of an important role for nitrification in its production. These interpretations rely on knowledge of the isotope effects for the underlying microbial processes, in particular ammonia oxidation and nitrite oxidation. Here we review the isotope effects involved with the nitrification process, the insights provided by this information, and provide a prospectus for future work in this area.

  11. Insights on the marine microbial nitrogen cycle from isotopic approaches to nitrification.

    Science.gov (United States)

    Casciotti, Karen L; Buchwald, Carolyn

    2012-01-01

    The microbial nitrogen (N) cycle involves a variety of redox processes that control the availability and speciation of N in the environment and that are involved with the production of nitrous oxide (N(2)O), a climatically important greenhouse gas. Isotopic measurements of ammonium (NH(+) (4)), nitrite (NO(-) (2)), nitrate (NO(-) (3)), and N(2)O can now be used to track the cycling of these compounds and to infer their sources and sinks, which has lead to new and exciting discoveries. For example, dual isotope measurements of NO(-) (3) and NO(-) (2) have shown that there is NO(-) (3) regeneration in the ocean's euphotic zone, as well as in and around oxygen deficient zones (ODZs), indicating that nitrification may play more roles in the ocean's N cycle than generally thought. Likewise, the inverse isotope effect associated with NO(-) (2) oxidation yields unique information about the role of this process in NO(-) (2) cycling in the primary and secondary NO(-) (2) maxima. Finally, isotopic measurements of N(2)O in the ocean are indicative of an important role for nitrification in its production. These interpretations rely on knowledge of the isotope effects for the underlying microbial processes, in particular ammonia oxidation and nitrite oxidation. Here we review the isotope effects involved with the nitrification process and the insights provided by this information, then provide a prospectus for future work in this area.

  12. Ice-free conditions in Fennoscandia during Marine Oxygen Isotope Stage 3?

    Energy Technology Data Exchange (ETDEWEB)

    Wohlfarth, Barbara (Dept. of Geology and Geochemistry, Stockholm Univ., Stockholm (Sweden))

    2009-04-15

    One of the central aims of the climate research conducted by the Swedish Nuclear Fuel and Waste Management Company (SKB) is to investigate the extremes within which climate conditions may vary within a 100,000 year perspective. The 100,000 year time perspective corresponds to one glacial cycle during which warm interstadial and cold stadial conditions alternated, leading to ice sheet advance and retreat over Fennoscandia. To address the issue of how extreme climate conditions may impact the deep nuclear waste repository, a climate modelling study was initiated with the aim to investigate the response to different climate scenarios: glacial conditions, permafrost conditions and temperate conditions. A model set-up for the permafrost and glacial scenario required information on, for example past ice cover, vegetation, and land-sea configuration. The permafrost climate scenario focussed on a stadial event (Greenland stadial 12) during Marine Oxygen Isotope Stage (MIS) 3, because it was assumed that southern Sweden and the areas of Forsmark and Oskarshamn were not ice covered, but possibly experienced permafrost conditions. This assumption however needed to be validated by paleoenvironmental and paleoclimatic records for MIS 3. Available paleoenvironmental records for this time interval are comparably scarce and due to chronological uncertainties also partly conflicting. Most records are derived from marginal areas of the former Fennoscandian ice sheet and only little and inconsistent information exists for the central part. Geological investigations along the Norwegian coast, in Denmark, southern Sweden, northern and eastern Finland have for example shown that the Fennoscandian ice sheet margin responded distinctly to some of the warmest middle Weichselian interstadials (MIS 3). Interstadial organic sediments from the central part of the former ice sheet have been described from several localities in Sweden, but radiocarbon (14C) dates for these deposits provided ages

  13. Ice-free conditions in Fennoscandia during Marine Oxygen Isotope Stage 3?

    International Nuclear Information System (INIS)

    Wohlfarth, Barbara

    2009-04-01

    One of the central aims of the climate research conducted by the Swedish Nuclear Fuel and Waste Management Company (SKB) is to investigate the extremes within which climate conditions may vary within a 100,000 year perspective. The 100,000 year time perspective corresponds to one glacial cycle during which warm interstadial and cold stadial conditions alternated, leading to ice sheet advance and retreat over Fennoscandia. To address the issue of how extreme climate conditions may impact the deep nuclear waste repository, a climate modelling study was initiated with the aim to investigate the response to different climate scenarios: glacial conditions, permafrost conditions and temperate conditions. A model set-up for the permafrost and glacial scenario required information on, for example past ice cover, vegetation, and land-sea configuration. The permafrost climate scenario focussed on a stadial event (Greenland stadial 12) during Marine Oxygen Isotope Stage (MIS) 3, because it was assumed that southern Sweden and the areas of Forsmark and Oskarshamn were not ice covered, but possibly experienced permafrost conditions. This assumption however needed to be validated by paleoenvironmental and paleoclimatic records for MIS 3. Available paleoenvironmental records for this time interval are comparably scarce and due to chronological uncertainties also partly conflicting. Most records are derived from marginal areas of the former Fennoscandian ice sheet and only little and inconsistent information exists for the central part. Geological investigations along the Norwegian coast, in Denmark, southern Sweden, northern and eastern Finland have for example shown that the Fennoscandian ice sheet margin responded distinctly to some of the warmest middle Weichselian interstadials (MIS 3). Interstadial organic sediments from the central part of the former ice sheet have been described from several localities in Sweden, but radiocarbon ( 14 C) dates for these deposits provided

  14. Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium

    Directory of Open Access Journals (Sweden)

    C. H. Frame

    2010-09-01

    Full Text Available Nitrous oxide (N2O is a trace gas that contributes to the greenhouse effect and stratospheric ozone depletion. The N2O yield from nitrification (moles N2O-N produced per mole ammonium-N consumed has been used to estimate marine N2O production rates from measured nitrification rates and global estimates of oceanic export production. However, the N2O yield from nitrification is not constant. Previous culture-based measurements indicate that N2O yield increases as oxygen (O2 concentration decreases and as nitrite (NO2 concentration increases. Here, we have measured yields of N2O from cultures of the marine β-proteobacterium Nitrosomonas marina C-113a as they grew on low-ammonium (50 μM media. These yields, which were typically between 4 × 10−4 and 7 × 10−4 for cultures with cell densities between 2 × 102 and 2.1 × 104 cells ml−1, were lower than previous reports for ammonia-oxidizing bacteria. The observed impact of O2 concentration on yield was also smaller than previously reported under all conditions except at high starting cell densities (1.5 × 106 cells ml−1, where 160-fold higher yields were observed at 0.5% O2 (5.1 μM dissolved O2 compared with 20% O2 (203 μM dissolved O2. At lower cell densities (2 × 102 and 2.1 × 104 cells ml−1, cultures grown under 0.5% O2 had yields that were only 1.25- to 1.73-fold higher than cultures grown under 20% O2. Thus, previously reported many-fold increases in N2O yield with dropping O2 could be reproduced only at cell densities that far exceeded those of ammonia oxidizers in the ocean. The presence of excess NO2 (up to 1 mM in the growth

  15. Large-scale spatial and interspecies differences in trace elements and stable isotopes in marine wild fish from Chinese waters

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei [Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Wang, Wen-Xiong, E-mail: wwang@ust.hk [Division of Life Science, HKUST, Clear Water Bay, Kowloon (Hong Kong)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer A large-scale study on trace element levels in marine wild fish from Chinese waters. Black-Right-Pointing-Pointer Spatial variation found for Al, As, Cd, Cr, Fe, Ni, Pb, but not for Ag, Cu, Mo, Se and Zn. Black-Right-Pointing-Pointer The Pearl River Estuary contained the highest concentrations of Al, Cr, Ni, and Pb. Black-Right-Pointing-Pointer No biomagnification occurred for any of the trace elements studied in marine fish. Black-Right-Pointing-Pointer No obvious health risk from the intake of trace elements through fish consumption. - Abstract: We conducted a large scale investigation of twelve trace element levels and stable isotopes ({delta}{sup 13}C and {delta}{sup 15}N) in twenty-nine marine wild fish species collected from Chinese coastal waters. Trace element levels varied significantly with species. Clear spatial variations were found for Al, As, Cd, Cr, Fe, Ni, and Pb, whereas Ag, Cu, Mo, Se and Zn did not show much spatial variation. The Pearl River Estuary contained the highest concentrations of Al, Cr, Ni, and Pb, whereas the most southern waters (Haikou) contained the lowest concentrations of Al, Fe, and Pb. There was no correlation between log-transformed trace elements concentrations and {delta}{sup 15}N values or {delta}{sup 13}C values, indicating no biomagnification among these trace elements. The calculated hazard quotients (HQ) of 10 elements were less than 1, thus there was no obvious health risk from the intake of trace elements through marine wild fish consumption.

  16. An ocean–ice coupled response during the last glacial: a view from a marine isotopic stage 3 record south of the Faeroe Shetland Gateway

    NARCIS (Netherlands)

    Zumaque, J.; Eynaud, F.; Zaragosi, S.; Marret, F.; Matsuzaki, K.M.; Kissel, C.; Roche, D.M.V.A.P.; Malaizé, B.; Michel, E.; Billy, I.; Richter, T.; Palis, E.

    2012-01-01

    The rapid climatic variability characterising the Marine Isotopic Stage (MIS) 3 (~60–30 cal ka BP) provides key issues to understand the atmosphere–ocean–cryosphere dynamics. Here we investigate the response of sea-surface paleoenvironments to the MIS3 climatic variability through the study of a

  17. An ocean-ice coupled response during the last glacial: a view from a marine isotopic stage 3 record south of the Faeroe Shetland Gateway

    NARCIS (Netherlands)

    Zumaque, J.; Eynaud, F.; Zaragosi, S.; Marret, F.; Matsuzaki, K.M.; Kissel, C.; Roche, D.M.; Malaize, B.; Michel, E.; Billy, I.; Richter, T.; Palis, E.

    2012-01-01

    The rapid climatic variability characterising the Marine Isotopic Stage (MIS) 3 (similar to 60-30 cal ka BP) provides key issues to understand the atmosphere-ocean-cryosphere dynamics. Here we investigate the response of sea-surface paleoenvironments to the MIS3 climatic variability through the

  18. Combining metagenomics with metaproteomics and stable isotope probing reveals metabolic pathways used by a naturally occurring marine methylotroph

    DEFF Research Database (Denmark)

    Grob, Carolina; Taubert, Martin; Howat, Alexandra M.

    2015-01-01

    A variety of culture-independent techniques have been developed that can be used in conjunction with culture-dependent physiological and metabolic studies of key microbial organisms in order to better understand how the activity of natural populations influences and regulates all major......, we retrieved virtually the whole genome of this bacterium and determined its metabolic potential. Through protein-stable isotope probing, the RuMP cycle was established as the main carbon assimilation pathway, and the classical methanol dehydrogenase-encoding gene mxaF, as well as three out of four...... identified xoxF homologues were found to be expressed. This proof-of-concept study is the first in which the culture-independent techniques of DNA-SIP and protein-SIP have been used to characterize the metabolism of a naturally occurring Methylophaga-like bacterium in the marine environment (i...

  19. Boron isotope evidence for the involvement of non-marine evaporites in the origin of the Broken Hill ore deposits

    Science.gov (United States)

    Slack, J.F.; Palmer, M.R.; Stevens, B.P.J.

    1989-01-01

    IDENTIFYING the palaeogeographic setting and mode of origin of stratabound ore deposits can be difficult in high-grade metamorphic terranes, where the effects of metamorphism may obscure the nature of the protoliths. Here we report boron isotope data for tourmalines from the early Proterozoic Broken Hill block, in Australia, which hosts giant lead-zinc-silver sulphide deposits. With one exception the 11B/10B ratios are lower than those for all other tourmalines from massive sulphide deposits and tour-malinites elsewhere in the world. We propose that these low ratios reflect leaching of boron from non-marine evaporitic borates by convecting hydrothermal fluids associated with early Proterozoic continental rifting. A possible modern analogue is the Salton Sea geothermal field in California. ?? 1989 Nature Publishing Group.

  20. Adaptation of benthic invertebrates to food sources along marine-terrestrial boundaries as indicated by carbon and nitrogen stable isotopes

    Science.gov (United States)

    Lange, G.; Haynert, K.; Dinter, T.; Scheu, S.; Kröncke, I.

    2018-01-01

    Frequent environmental changes and abiotic gradients of the Wadden Sea require appropriate adaptations of the local organisms and make it suitable for investigations on functional structure of macrozoobenthic communities from marine to terrestrial boundaries. To investigate community patterns and food use of the macrozoobenthos, a transect of 11 stations was sampled for species number, abundance and stable isotope values (δ13C and δ15N) of macrozoobenthos and for stable isotope values of potential food resources. The transect was located in the back-barrier system of the island of Spiekeroog (southern North Sea, Germany). Our results show that surface and subsurface deposit feeders, such as Peringia ulvae and different oligochaete species, dominated the community, which was poor in species, while species present at the transect stations reached high abundance. The only exception was the upper salt marsh with low abundances but higher species richness because of the presence of specialized semi-terrestrial and terrestrial taxa. The macrozoobenthos relied predominantly on marine resources irrespective of the locality in the intertidal zone, although δ13C values of the consumers decreased from - 14.1 ± 1.6‰ (tidal flats) to - 21.5 ± 2.4‰ (salt marsh). However, the ubiquitous polychaete Hediste diversicolor showed a δ15N enrichment of 2.8‰ (an increase of about one trophic level) from bare sediments to the first vegetated transect station, presumably due to switching from suspension or deposit feeding to predation on smaller invertebrates. Hence, we conclude that changes in feeding mode represent an important mechanism of adaptation to different Wadden Sea habitats.

  1. Trophic ecology influence on metal bioaccumulation in marine fish: Inference from stable isotope and fatty acid analyses.

    Science.gov (United States)

    Le Croizier, Gaël; Schaal, Gauthier; Gallon, Régis; Fall, Massal; Le Grand, Fabienne; Munaron, Jean-Marie; Rouget, Marie-Laure; Machu, Eric; Le Loc'h, François; Laë, Raymond; De Morais, Luis Tito

    2016-12-15

    The link between trophic ecology and metal accumulation in marine fish species was investigated through a multi-tracers approach combining fatty acid (FA) and stable isotope (SI) analyses on fish from two contrasted sites on the coast of Senegal, one subjected to anthropogenic metal effluents and another one less impacted. The concentrations of thirteen trace metal elements (As, Cd, Co, Cr, Cu, Fe, Li, Mn, Ni, Pb, Sn, U, and Zn) were measured in fish liver. Individuals from each site were classified into three distinct groups according to their liver FA and muscle SI compositions. Trace element concentrations were tested between groups revealing that bioaccumulation of several metals was clearly dependent on the trophic guild of fish. Furthermore, correlations between individual trophic markers and trace metals gave new insights into the determination of their origin. Fatty acids revealed relationships between the dietary regimes and metal accumulation that were not detected with stable isotopes, possibly due to the trace metal elements analysed in this study. In the region exposed to metallic inputs, the consumption of benthic preys was the main pathway for metal transfer to the fish community while in the unaffected one, pelagic preys represented the main source of metals. Within pelagic sources, metallic transfer to fish depended on phytoplankton taxa on which the food web was based, suggesting that microphytoplankton (i.e., diatoms and dinoflagellates) were a more important source of exposition than nano- and picoplankton. This study confirmed the influence of diet in the metal accumulation of marine fish communities, and proved that FAs are very useful and complementary tools to SIs to link metal accumulation in fish with their trophic ecology. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A Three-Dimensional Model of the Marine Nitrogen Cycle during the Last Glacial Maximum Constrained by Sedimentary Isotopes

    Directory of Open Access Journals (Sweden)

    Christopher J. Somes

    2017-05-01

    Full Text Available Nitrogen is a key limiting nutrient that influences marine productivity and carbon sequestration in the ocean via the biological pump. In this study, we present the first estimates of nitrogen cycling in a coupled 3D ocean-biogeochemistry-isotope model forced with realistic boundary conditions from the Last Glacial Maximum (LGM ~21,000 years before present constrained by nitrogen isotopes. The model predicts a large decrease in nitrogen loss rates due to higher oxygen concentrations in the thermocline and sea level drop, and, as a response, reduced nitrogen fixation. Model experiments are performed to evaluate effects of hypothesized increases of atmospheric iron fluxes and oceanic phosphorus inventory relative to present-day conditions. Enhanced atmospheric iron deposition, which is required to reproduce observations, fuels export production in the Southern Ocean causing increased deep ocean nutrient storage. This reduces transport of preformed nutrients to the tropics via mode waters, thereby decreasing productivity, oxygen deficient zones, and water column N-loss there. A larger global phosphorus inventory up to 15% cannot be excluded from the currently available nitrogen isotope data. It stimulates additional nitrogen fixation that increases the global oceanic nitrogen inventory, productivity, and water column N-loss. Among our sensitivity simulations, the best agreements with nitrogen isotope data from LGM sediments indicate that water column and sedimentary N-loss were reduced by 17–62% and 35–69%, respectively, relative to preindustrial values. Our model demonstrates that multiple processes alter the nitrogen isotopic signal in most locations, which creates large uncertainties when quantitatively constraining individual nitrogen cycling processes. One key uncertainty is nitrogen fixation, which decreases by 25–65% in the model during the LGM mainly in response to reduced N-loss, due to the lack of observations in the open ocean most

  3. Molybdenum isotopes in modern marine hydrothermal Fe/Mn deposits: Implications for Archean and Paleoproterozoic Mo cycles

    Science.gov (United States)

    Goto, K. T.; Hein, J. R.; Shimoda, G.; Aoki, S.; Ishikawa, A.; Suzuki, K.; Gordon, G. W.; Anbar, A. D.

    2016-12-01

    Molybdenum isotope (δ98/95Mo) variations recorded in Archean and Paleoproterozoic Fe/Mn-rich sediments have been used to constrain ocean redox conditions at the time of deposition (Canfield et al., 2013 PNAS; Planavsky et al., 2014 Nat. Geo.; Kurzweil et al., 2015 GCA). However, except for hydrogenous Fe-Mn crusts (Siebert et al., 2003), δ98/95Mo variation of modern Fe and Mn oxide deposits has been poorly investigated. Marine hydrothermal systems are thought to be the major source of Fe and Mn in Archean and Paleoproterozoic Fe- and Mn-rich sediments. Hence, to accurately interpret Mo isotope data of those ancient sedimentary rocks, it is important to evaluate the possible influence of hydrothermally derived Mo on δ98/95Mo of modern Fe- and Mn-rich sediments. In this study, we analyzed Mo isotopic compositions of one hydrothermal Fe oxide and 15 Mn oxides from five different hydrothermal systems in the modern ocean. The Fe oxide is composed mainly of goethite, and has a δ98/95Mo of 0.7‰, which is 1.4‰ lighter than that of present-day seawater. The observed offset is similar to isotope fractionation observed during adsorption experiments of Mo on goethite (Δ98/95Mogoethite-solution = -1.4 ± 0.5%; Goldberg et al., 2009 GCA). The 15 hydrothermal Mn oxides show large variations in δ98/95Mo ranging from -1.7 to 0.5‰. However, most of the values are similar to those of modern hydrogenous Fe-Mn crusts (Siebert et al., 2003 EPSL), and fall within the range of estimated δ98/95Mo of Mn oxides precipitated from present-day seawater using the isotope offset reported from adsorption experiments (Δ98/95Mo = -2.7 ± 0.3‰; Wasylenki et al., 2008 GCA). These findings indicate that seawater is the dominant source of Mo for modern hydrothermal Fe and Mn deposits. However, the observed large variation indicates that the contribution Mo from local hydrothermal systems is not negligible. The oceanic Mo inventory during the Archean and Paleoproterozoic is thought to be

  4. Lead isotopic signatures in Antarctic marine sediment cores: A comparison between 1 M HCl partial extraction and HF total digestion pre-treatments for discerning anthropogenic inputs

    International Nuclear Information System (INIS)

    Townsend, A.T.; Snape, I.; Palmer, A.S.; Seen, A.J.

    2009-01-01

    Sensitive analytical techniques are typically required when dealing with samples from Antarctica as even low concentrations of contaminants can have detrimental environmental effects. Magnetic Sector ICP-MS is an ideal technique for environmental assessment as it offers high sensitivity, multi-element capability and the opportunity to determine isotope ratios. Here we consider the Pb isotope record of five marine sediment cores collected from three sites in the Windmill Islands area of East Antarctica: Brown Bay adjacent to the current Australian station Casey, Wilkes near the abandoned US/Australian Station and McGrady Cove lying midway between the two. Two sediment pre-treatment approaches were considered, namely partial extraction with 1 M HCl and total dissolution involving HF. Lead isotope ratio measurements made following sediment partial extraction provided a more sensitive indication of Pb contamination than either Pb concentrations alone (irrespective of sample pre-treatment method) or isotope ratios made after HF digestion, offering greater opportunity for discrimination between impacted and natural/geogenic samples and sites. Over 90% of the easily extractable Pb from sediments near Casey was anthropogenic in origin, consisting of Pb from major Australian deposits. At Wilkes impact from discarded batteries with a unique isotopic signature was found to be a key source of Pb contamination to the marine environment with ∼ 70-80% of Pb being anthropogenic in origin. The country and source of origin of these batteries remain unknown. Little evidence was found suggesting contamination at Wilkes by Pb originating from the major US source, Missouri. No definitive assessment could be made regarding Pb impact at McGrady Cove as the collected sediment core was of insufficient depth. Although Pb isotope ratio signatures may indicate anthropogenic input, spatial concentration gradients at nearby Brown Bay suggest contamination at McGrady Cove is unlikely. We

  5. Effects of ocean acidification on the marine calcium isotope record at the Paleocene-Eocene Thermal Maximum

    Science.gov (United States)

    Griffith, Elizabeth M.; Fantle, Matthew S.; Eisenhauer, Anton; Paytan, Adina; Bullen, Thomas D.

    2015-06-01

    Carbonates are used extensively to reconstruct paleoclimate and paleoceanographic conditions over geologic time scales. However, these archives are susceptible to diagenetic alteration via dissolution, recrystallization and secondary precipitation, particularly during ocean acidification events when intense dissolution can occur. Despite the possible effects of diagenesis on proxy fidelity, the impacts of diagenesis on the calcium isotopic composition (δ44Ca) of carbonates are unclear. To shed light on this issue, bulk carbonate δ44Ca was measured at high resolution in two Pacific deep sea sediment cores (ODP Sites 1212 and 1221) with considerably different dissolution histories over the Paleocene-Eocene Thermal Maximum (PETM, ∼ 55 Ma). The δ44Ca of marine barite was also measured at the deeper Site 1221, which experienced severe carbonate dissolution during the PETM. Large variations (∼ 0.8 ‰) in bulk carbonate δ44Ca occur in the deeper of the two sites at depths corresponding to the peak carbon isotope excursion, which correlate with a large drop in carbonate weight percent. Such an effect is not observed in either the 1221 barite record or the bulk carbonate record at the shallower Site 1212, which is also less affected by dissolution. We contend that ocean chemical changes associated with abrupt and massive carbon release into the ocean-atmosphere system and subsequent ocean acidification at the PETM affected the bulk carbonate δ44Ca record via diagenesis in the sedimentary column. Such effects are considerable, and need to be taken into account when interpreting Ca isotope data and, potentially, other geochemical proxies over extreme climatic events that drive sediment dissolution.

  6. Influence of marine sources on 14C ages : isotopic data from Watom Island, Papua New Guinea inhumations and pig teeth in light of new dietary standards

    International Nuclear Information System (INIS)

    Beavan Athfield, N.R.; Green, R.C.; Craig, J.; McFadgen, B.; Bickler, S.

    2008-01-01

    Gauging the effect of 14 C-depleted marine foods on radiocarbon ages requires an accurate assessment of the likely proportion of marine foods in the diet. Several factors must be considered, including region-specific δ 13 C, δ 15 N and δ 34 S data values (regional stable isotope values can differ from global averages), temporal variations in δ 13 C which offset values in modern dietary standards by up to 1.5 permille, and that modelling which considers only 13 C may overestimate the contribution of various dietary sources. Here, we compare previous calculations by linear interpolation of δ 13 C and a complex computer simulation of marine contribution to the diet of inhumations from the SAC archaeological site Watom Island, Papua New Guinea, with the ISOSOURCE mixing model and a revised database of regional dietary sources and their isotopic values, to estimate marine diet contributions and radiocarbon offsets for burials from the SAC site. Though different estimates of marine contribution to diet do not significantly alter previous calibrations of radiocarbon ages for the inhumations, the new ISOSOURCE calculations challenge the idea of excessive exploitation of marine resources and support evidence for arboriculture and horticulture being a major component in Lapita diet. (author). 87 refs., 3 figs., 8 tabs

  7. Stable carbon and nitrogen isotope variation in the northern lampfish and Neocalanus, marine survival rates of pink salmon, and meso-scale eddies in the Gulf of Alaska

    Science.gov (United States)

    Kline, Thomas C., Jr.

    2010-10-01

    Northern lampfish (NLF), Stenobrachius leucopsarus (Myctophidae), the dominant pelagic fish taxon of the subarctic North Pacific Ocean, were sampled opportunistically in MOCNESS tows made on continental slope waters of the Gulf of Alaska (GOA) as well as in deep areas of Prince William Sound (PWS) during 1997-2006. The overall mean whole-body lipid-corrected stable carbon isotope value of NLF from the GOA was -21.4 (SD = 0.7) whereas that from PWS was -19.5 (SD = 0.9). This pattern is similar to that observed for late feeding stage Neocalanus cristatus copepods thus confirming a mean cross-shelf carbon stable isotope gradient. As well, there was a statistically significant positive correlation between the considerable temporal variation in the monthly mean carbon stable isotope composition of GOA Neocalanus and GOA NLF ( r = 0.69, P food chain length whereas carbon stable isotopes reflect organic carbon production. The carbon stable isotope values of NLF, measured in May, were positively correlated to marine survival rate of PWS hatchery salmon cohorts entering the marine environment the same year ( r = 0.84, P < 0.001). The carbon stable isotope values for Neocalanus in May were also positively correlated to salmon marine survival ( r = 0.82, P < 0.001). Processes thus manifested through the carbon stable isotope value of biota from the continental slope more closely predicted marine survival rate than that of the salmon themselves. The incipient relationships suggested by the correlations are consistent with the hypothesis that exchange between coastal and oceanic waters in the study area is driven by meso-scale eddies. These eddies facilitate the occurrence of slope phytoplankton blooms as well as drive oceanic zooplankton subsidies into coastal waters. The strong as well as more significant correlations of salmon marine survival rate to NLF as well as slope Neocalanus carbon stable isotope values point to processes taking place at the slope (i.e., interactions

  8. The stable isotope composition of nitrogen and carbon and elemental contents in modern and fossil seabird guano from Northern Chile - Marine sources and diagenetic effects.

    Directory of Open Access Journals (Sweden)

    Friedrich Lucassen

    Full Text Available Seabird excrements (guano have been preserved in the arid climate of Northern Chile since at least the Pliocene. The deposits of marine organic material in coastal areas potentially open a window into the present and past composition of the coastal ocean and its food web. We use the stable isotope composition of nitrogen and carbon as well as element contents to compare the principal prey of the birds, the Peruvian anchovy, with the composition of modern guano. We also investigate the impact of diagenetic changes on the isotopic composition and elemental contents of the pure ornithogenic sediments, starting with modern stratified deposits and extending to fossil guano. Where possible, 14C systematics is used for age information. The nitrogen and carbon isotopic composition of the marine prey (Peruvian anchovy of the birds is complex as it shows strong systematic variations with latitude. The detailed study of a modern profile that represents a few years of guano deposition up to present reveals systematic changes in nitrogen and carbon isotopic composition towards heavier values that increase with age, i.e. depth. Only the uppermost, youngest layers of modern guano show compositional affinity to the prey of the birds. In the profile, the simultaneous loss of nitrogen and carbon occurs by degassing, and non-volatile elements like phosphorous and calcium are passively enriched in the residual guano. Fossil guano deposits are very low in nitrogen and low in carbon contents, and show very heavy nitrogen isotopic compositions. One result of the study is that the use of guano for tracing nitrogen and carbon isotopic and elemental composition in the marine food web of the birds is restricted to fresh material. Despite systematic changes during diagenesis, there is little promise to retrieve reliable values of marine nitrogen and carbon signatures from older guano. However, the changes in isotopic composition from primary marine nitrogen isotopic

  9. Nuclear and isotopic techniques underpinning probabilistic ecological risk analysis in coastal marine systems

    International Nuclear Information System (INIS)

    Szymczak, R.; Twining, J.; Hollins, S.; Hughes, C.; Mazumder, D.; Alquezar, R.

    2006-01-01

    Full text: The historical operation of manufacturing, chemical and other industries in the Sydney Harbour catchment over many decades has left a legacy of high chemical contamination in the surrounding catchment, such that a recent report describes Port Jackson as one of the most contaminated harbours in the world (Birch and Taylor, 2005). The legacy in Homebush Bay is amongst the worst in the harbour and presents a considerable management problem. Elucidation of environmental processes is the key to effective ecosystem management, however few tools are available to determine their inter-relationships, rates and directions. This study has four components: (1) determination of linkages between high trophic order species and different habitats resources using stable isotopic analyses of carbon and nitrogen. These studies identify trophic cascades forming the basis for selection of biota for contaminant transfer experiments; (2) short-term (weeks - months) chronology and geochemistry of sediment cores and traps in Homebush Bay to determine rates of sedimentation and resuspension (using environmental/cosmogenic Be). Models derived from these studies provide the contaminants levels against which risk is assessed; (3) biokinetic studies using proxy radiotracer isotopes (eg. 75 Se and 109 Cd for analogous stable metals) of the uptake and trophic transfer of contaminants by specific estaurine biota. Here we identify the rates and extent to which contaminants accumulated and transferred to predators/seafoods; and (4) application of a probabilistic ecological risk assessment model (AQUARISK) set to criteria determined by stakeholder consensus. In this study we analysed the distribution of natural isotopes and redistribution of artificial isotopes injected into ecological compartments to determine the key trophic linkages and contaminant pathways in an estuarine system and contribute to improving the accuracy and specificity of a probabilistic ecological risk assessment

  10. Leatherback Isotopes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC is currently working on a project identifying global marine isotopes using leatherback turtles (Dermochelys coriacea) as the indicator species. We currently...

  11. Contribution of water chemistry and fish condition to otolith chemistry: comparisons across salinity environments.

    Science.gov (United States)

    Izzo, C; Doubleday, Z A; Schultz, A G; Woodcock, S H; Gillanders, B M

    2015-06-01

    This study quantified the per cent contribution of water chemistry to otolith chemistry using enriched stable isotopes of strontium ((86) Sr) and barium ((137) Ba). Euryhaline barramundi Lates calcarifer, were reared in marine (salinity 40), estuarine (salinity 20) and freshwater (salinity 0) under different temperature treatments. To calculate the contribution of water to Sr and Ba in otoliths, enriched isotopes in the tank water and otoliths were quantified and fitted to isotope mixing models. Fulton's K and RNA:DNA were also measured to explore the influence of fish condition on sources of element uptake. Water was the predominant source of otolith Sr (between 65 and 99%) and Ba (between 64 and 89%) in all treatments, but contributions varied with temperature (for Ba), or interactively with temperature and salinity (for Sr). Fish condition indices were affected independently by the experimental rearing conditions, as RNA:DNA differed significantly among salinity treatments and Fulton's K was significantly different between temperature treatments. Regression analyses did not detect relations between fish condition and per cent contribution values. General linear models indicated that contributions from water chemistry to otolith chemistry were primarily influenced by temperature and secondly by fish condition, with a relatively minor influence of salinity. These results further the understanding of factors that affect otolith element uptake, highlighting the necessity to consider the influence of environment and fish condition when interpreting otolith element data to reconstruct the environmental histories of fish. © 2015 The Fisheries Society of the British Isles.

  12. Diet reconstruction and resource partitioning of a Caribbean marine mesopredator using stable isotope bayesian modelling.

    Science.gov (United States)

    Tilley, Alexander; López-Angarita, Juliana; Turner, John R

    2013-01-01

    The trophic ecology of epibenthic mesopredators is not well understood in terms of prey partitioning with sympatric elasmobranchs or their effects on prey communities, yet the importance of omnivores in community trophic dynamics is being increasingly realised. This study used stable isotope analysis of (15)N and (13)C to model diet composition of wild southern stingrays Dasyatis americana and compare trophic niche space to nurse sharks Ginglymostoma cirratum and Caribbean reef sharks Carcharhinus perezi on Glovers Reef Atoll, Belize. Bayesian stable isotope mixing models were used to investigate prey choice as well as viable Diet-Tissue Discrimination Factors for use with stingrays. Stingray δ(15)N values showed the greatest variation and a positive relationship with size, with an isotopic niche width approximately twice that of sympatric species. Shark species exhibited comparatively restricted δ(15)N values and greater δ(13)C variation, with very little overlap of stingray niche space. Mixing models suggest bivalves and annelids are proportionally more important prey in the stingray diet than crustaceans and teleosts at Glovers Reef, in contrast to all but one published diet study using stomach contents from other locations. Incorporating gut contents information from the literature, we suggest diet-tissue discrimination factors values of Δ(15)N ≈ 2.7‰ and Δ(13)C ≈ 0.9‰ for stingrays in the absence of validation experiments. The wide trophic niche and lower trophic level exhibited by stingrays compared to sympatric sharks supports their putative role as important base stabilisers in benthic systems, with the potential to absorb trophic perturbations through numerous opportunistic prey interactions.

  13. Diet reconstruction and resource partitioning of a Caribbean marine mesopredator using stable isotope bayesian modelling.

    Directory of Open Access Journals (Sweden)

    Alexander Tilley

    Full Text Available The trophic ecology of epibenthic mesopredators is not well understood in terms of prey partitioning with sympatric elasmobranchs or their effects on prey communities, yet the importance of omnivores in community trophic dynamics is being increasingly realised. This study used stable isotope analysis of (15N and (13C to model diet composition of wild southern stingrays Dasyatis americana and compare trophic niche space to nurse sharks Ginglymostoma cirratum and Caribbean reef sharks Carcharhinus perezi on Glovers Reef Atoll, Belize. Bayesian stable isotope mixing models were used to investigate prey choice as well as viable Diet-Tissue Discrimination Factors for use with stingrays. Stingray δ(15N values showed the greatest variation and a positive relationship with size, with an isotopic niche width approximately twice that of sympatric species. Shark species exhibited comparatively restricted δ(15N values and greater δ(13C variation, with very little overlap of stingray niche space. Mixing models suggest bivalves and annelids are proportionally more important prey in the stingray diet than crustaceans and teleosts at Glovers Reef, in contrast to all but one published diet study using stomach contents from other locations. Incorporating gut contents information from the literature, we suggest diet-tissue discrimination factors values of Δ(15N ≈ 2.7‰ and Δ(13C ≈ 0.9‰ for stingrays in the absence of validation experiments. The wide trophic niche and lower trophic level exhibited by stingrays compared to sympatric sharks supports their putative role as important base stabilisers in benthic systems, with the potential to absorb trophic perturbations through numerous opportunistic prey interactions.

  14. Study of the geochemistry of the cosmogenic isotope {sup 10}Be and the stable isotope {sup 9}Be in oceanic environment. Application to marine sediment dating; Etude de la geochimie de l`isotope cosmogenique {sup 10}Be et de son isotope stable {sup 9}Be en milieu oceanique. Application a la datation des sediments marins

    Energy Technology Data Exchange (ETDEWEB)

    Bourles, D

    1988-01-01

    The radioisotope {sup 10}Be is formed by spallation reactions in the atmosphere. It is transferred to the oceans in soluble form by precipitation and dry deposition. The stable isotope {sup 9}Be comes from erosion of soils and rocks in the Earth`s crust. It is transported by wind and rivers and introduced to the oceans probably in both soluble and insoluble form. {sup 9}Be was measured by atomic absorption spectrometry and {sup 10}Be by A.M.S. The distribution of {sup 10}Be and {sup 9}Be between each phase extracted and the {sup 10}Be/{sup 9}Be ratios associated were studied in recent marine sediments from Atlantic, Pacific, Indian oceans and Mediterranean sea. The results show that for beryllium the two essential constituent phases of marine sediments are: - the authigenic phase incorporates the soluble beryllium and the detritic phase. The {sup 10}Be/{sup 9}Be ratio associated with the authigenic fraction varies with location. This suggests that the residence time of beryllium in the soluble phase is lower or comparable to the mixing time of the oceans. The evolution with time of the authigenic {sup 10}Be/{sup 9}Be ratio is discussed.

  15. Late Neogene benthic stable isotope record of ODP Site 999: Implications for Caribbean paleoceanography, organic carbon burial and the Messininian salinity crisis

    Science.gov (United States)

    Bickert, T.; Haug, G.; Tiedemann, R.

    2003-04-01

    The late Neogene closure of the seaway between the North and South American continents is thought to have caused extensive changes in ocean circulation and Northern Hemisphere climate. The timing and consequences of the emergence of the Isthmus of Panama for the ocean circulation have been addressed in several papers which indicate a marked reorganization of surface and deep ocean circulation starting 4.6 million years ago. However, the biogeographic development of marine faunas and floras on both sides of the Panama Isthmus suggests that the paleoceanographic changes related to the closing of the isthmus started much earlier. Furthermore, the closing history of the Panama Seaway overlaps with the tectonic evolution of other ocean gateways in the late Miocene, especially the closure of the Strait of Gibraltar, which led to a transient isolation of the Mediterranean Sea from the Atlantic Ocean, known as the Messinian Salinity Crisis. We report on epibenthic foraminiferal d18O and d13C and percentage sand records of the carbonate fraction from Caribbean ODP Site 999 (12°44´N, 78° 44´W, water depth 2828 m) spanning the interval from 8.6 to 5.3 Ma. Low epibenthic d13C values and low sand contents indicate a poorly ventilated deep Caribbean throughout the late Miocene. At this time the deep Caribbean was dominated by a nutrient-rich Southern Ocean water mass. A mostly constant d13C gradient between the Caribbean and deep Atlantic records suggests that the fluctuations in d13C reflect rather global changes in d13C of the dissolved inorganic carbon due to varying erosion of organic carbon from terrigenous soils and shelf sediments. The observed 100-ky cyclicity of epibenthic d13C is in well accordance with the variability of the terrigenous input to the equatorial Atlantic as recorded by susceptibility records of the Ceara Rise. However, some gradient changes between 6.8 and 5.6 Ma indicate a poorer ventilation of the deep Atlantic related to a reduced production of

  16. Sulfur Isotope Exchange between S-35 Labeled Inorganic Sulfur-Compounds in Anoxic Marine-Sediments

    DEFF Research Database (Denmark)

    FOSSING, H.; THODEANDERSEN, S.; JØRGENSEN, BB

    1992-01-01

    Isotope exchange reactions between S-35-labeled sulfur compounds were studied in anoxic estuarine sediment slurries at 21-degrees-C and pH 7.4-7.7. Two experiments labeled with radioactive elemental sulfur (S-35-degrees) and one labeled with radioactive sulfate ((SO42-)-S-35) were performed as time......% of the total S-35 was recovered in the SIGMA-HS- pool in less than 1.5 h. With no detectable SIGMA-HS- (less than 1-mu-M) in the slurry, 58% of the total S-35 was observed in the pyrite pool within 1.5 h. The FeS pool received up to 31% of all S-35 added. The rapid S-35 incorporation from S-35-degrees...... into SIGMA-HS- and FeS pools was explained by isotope exchange reactions. In contrast, there was evidence that the radioactivity observed in the 'pyrite pool' was caused by adhesion of the added S-35-degrees to the FeS2 grains. In all S-35-degrees-labeled experiments we also observed oxidation...

  17. Stable isotopes of carbon dioxide in the marine atmosphere along a hemispheric course from China to Antarctica

    Science.gov (United States)

    Chen, Qingqing; Zhu, Renbin; Xu, Hua

    2013-12-01

    During the 24th Chinese Antarctic Expedition, the air samples were collected at 10:00 and 22:00 (local time) along the track of ship “Xuelong” from Shanghai Harbor, China to Antarctica. Carbon dioxide (CO2) concentrations and its isotopic compositions were measured in these samples. Mean CO2 concentration at 22:00 (419.4 ± 27.1 ppmv) was higher than that at 10:00 (392.7 ± 20.0 ppmv), whereas δ13C-CO2 values at 22:00 (-8.58 ± 0.47‰) were lower than those at 10:00 (-8.23 ± 0.49‰), indicating that the 13C/12C ratio might be associated with the photosynthesis and respiration of terrestrial or marine organisms during the diurnal cycle. Overall the mean δ13C- and δ18O-CO2 were -8.39 ± 0.51‰ and 0.03 ± 1.39‰, respectively, from 30°N to 69°S, and the δ13C significantly negatively correlated with δ18O-CO2. A small but progressive increase in δ13C values with increasing latitudes southward was in good agreement with the expected trend. The enhanced CO2 concentrations occurred in the atmosphere close to Eurasia continent, Philippines, Malaysia and Indonesia, and the δ13C oscillations agreed well with anthropogenic pollution. In the range of 30°S-50°S, CO2 concentrations were generally low with relatively stable δ13C and δ18O values. In Antarctic Convergence Zone, a great difference of δ13C occurred between 10:00 and 22:00, and atmospheric CO2 was significantly depleted in 13C at 22:00. Our results indicated that the isotopic compositions of CO2 in the marine atmosphere might be a sensitive indicator for the strength of CO2 source and sink from the ocean.

  18. Isotopically labeled sulfur compounds and synthetic selenium and tellurium analogues to study sulfur metabolism in marine bacteria

    Directory of Open Access Journals (Sweden)

    Nelson L. Brock

    2013-05-01

    Full Text Available Members of the marine Roseobacter clade can degrade dimethylsulfoniopropionate (DMSP via competing pathways releasing either methanethiol (MeSH or dimethyl sulfide (DMS. Deuterium-labeled [2H6]DMSP and the synthetic DMSP analogue dimethyltelluriopropionate (DMTeP were used in feeding experiments with the Roseobacter clade members Phaeobacter gallaeciensis DSM 17395 and Ruegeria pomeroyi DSS-3, and their volatile metabolites were analyzed by closed-loop stripping and solid-phase microextraction coupled to GC–MS. Feeding experiments with [2H6]DMSP resulted in the incorporation of a deuterium label into MeSH and DMS. Knockout of relevant genes from the known DMSP demethylation pathway to MeSH showed in both species a residual production of [2H3]MeSH, suggesting that a second demethylation pathway is active. The role of DMSP degradation pathways for MeSH and DMS formation was further investigated by using the synthetic analogue DMTeP as a probe in feeding experiments with the wild-type strain and knockout mutants. Feeding of DMTeP to the R. pomeroyi knockout mutant resulted in a diminished, but not abolished production of demethylation pathway products. These results further corroborated the proposed second demethylation activity in R. pomeroyi. Isotopically labeled [2H3]methionine and 34SO42−, synthesized from elemental 34S8, were tested to identify alternative sulfur sources besides DMSP for the MeSH production in P. gallaeciensis. Methionine proved to be a viable sulfur source for the MeSH volatiles, whereas incorporation of labeling from sulfate was not observed. Moreover, the utilization of selenite and selenate salts by marine alphaproteobacteria for the production of methylated selenium volatiles was explored and resulted in the production of numerous methaneselenol-derived volatiles via reduction and methylation. The pathway of selenate/selenite reduction, however, proved to be strictly separated from sulfate reduction.

  19. Organotin persistence in contaminated marine sediments and porewaters: In situ degradation study using species-specific stable isotopic tracers

    Energy Technology Data Exchange (ETDEWEB)

    Furdek, Martina; Mikac, Nevenka [Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, Zagreb (Croatia); Bueno, Maite; Tessier, Emmanuel; Cavalheiro, Joana [Laboratoire de Chimie Analytique Bio-inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l’Environnement et les Matériaux, CNRS UMR 5254, Université de Pau et des Pays de l’Adour, Hélioparc Pau Pyrénées, 2, Av. P. Angot, 64053 Pau Cedex 9 (France); Monperrus, Mathilde, E-mail: mathilde.monperrus@univ-pau.fr [Laboratoire de Chimie Analytique Bio-inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l’Environnement et les Matériaux, CNRS UMR 5254, Université de Pau et des Pays de l’Adour, Hélioparc Pau Pyrénées, 2, Av. P. Angot, 64053 Pau Cedex 9 (France)

    2016-04-15

    Highlights: • Limiting step in OTC degradation in sediments is their desorption into porewater. • TBT persistence in contaminated sediments increases in sediments rich in organic matter. • DBT does not accumulate in sediments as degradation product of TBT. • TBT and DBT degradation in porewaters occurs with half-lives from 2.9 to 9.2 days. • PhTs degradation is slower than BuTs degradation in oxic porewaters. - Abstract: This paper provides a comprehensive study of the persistence of butyltins and phenyltins in contaminated marine sediments and presents the first data on their degradation potentials in porewaters. The study’s aim was to explain the different degradation efficiencies of organotin compounds (OTC) in contaminated sediments. The transformation processes of OTC in sediments and porewaters were investigated in a field experiment using species-specific, isotopically enriched organotin tracers. Sediment characteristics (organic carbon content and grain size) were determined to elucidate their influence on the degradation processes. The results of this study strongly suggest that a limiting step in OTC degradation in marine sediments is their desorption into porewaters because their degradation in porewaters occurs notably fast with half-lives of 9.2 days for tributyltin (TBT) in oxic porewaters and 2.9 ± 0.1 and 9.1 ± 0.9 days for dibutyltin (DBT) in oxic and anoxic porewaters, respectively. By controlling the desorption process, organic matter influences the TBT degradation efficiency and consequently defines its persistence in contaminated sediments, which thus increases in sediments rich in organic matter.

  20. Organotin persistence in contaminated marine sediments and porewaters: In situ degradation study using species-specific stable isotopic tracers

    International Nuclear Information System (INIS)

    Furdek, Martina; Mikac, Nevenka; Bueno, Maite; Tessier, Emmanuel; Cavalheiro, Joana; Monperrus, Mathilde

    2016-01-01

    Highlights: • Limiting step in OTC degradation in sediments is their desorption into porewater. • TBT persistence in contaminated sediments increases in sediments rich in organic matter. • DBT does not accumulate in sediments as degradation product of TBT. • TBT and DBT degradation in porewaters occurs with half-lives from 2.9 to 9.2 days. • PhTs degradation is slower than BuTs degradation in oxic porewaters. - Abstract: This paper provides a comprehensive study of the persistence of butyltins and phenyltins in contaminated marine sediments and presents the first data on their degradation potentials in porewaters. The study’s aim was to explain the different degradation efficiencies of organotin compounds (OTC) in contaminated sediments. The transformation processes of OTC in sediments and porewaters were investigated in a field experiment using species-specific, isotopically enriched organotin tracers. Sediment characteristics (organic carbon content and grain size) were determined to elucidate their influence on the degradation processes. The results of this study strongly suggest that a limiting step in OTC degradation in marine sediments is their desorption into porewaters because their degradation in porewaters occurs notably fast with half-lives of 9.2 days for tributyltin (TBT) in oxic porewaters and 2.9 ± 0.1 and 9.1 ± 0.9 days for dibutyltin (DBT) in oxic and anoxic porewaters, respectively. By controlling the desorption process, organic matter influences the TBT degradation efficiency and consequently defines its persistence in contaminated sediments, which thus increases in sediments rich in organic matter.

  1. Identification of Novel Methane-, Ethane-, and Propane-Oxidizing Bacteria at Marine Hydrocarbon Seeps by Stable Isotope Probing ▿ †

    Science.gov (United States)

    Redmond, Molly C.; Valentine, David L.; Sessions, Alex L.

    2010-01-01

    Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with 13C-labeled methane, ethane, or propane, we confirmed the incorporation of 13C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in 13C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, 13C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, 13C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the 13C-labeled DNA may encode an ethane monooxygenase. Third, 13C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes. PMID:20675448

  2. Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing.

    Science.gov (United States)

    Redmond, Molly C; Valentine, David L; Sessions, Alex L

    2010-10-01

    Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with (13)C-labeled methane, ethane, or propane, we confirmed the incorporation of (13)C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in (13)C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, (13)C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, (13)C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the (13)C-labeled DNA may encode an ethane monooxygenase. Third, (13)C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes.

  3. Measurement of N{sub 2} fixation in Sesbania aculeata pers. and Sorghum bicolor L. grown in intercropping system, under saline conditions, using {sup 15}N isotopic dilution technique

    Energy Technology Data Exchange (ETDEWEB)

    Kurdali, F; Khalifa, K; Janat, M [Atomic Energy Commission, Damascus (Syrian Arab Republic). Dept. of Agriculture

    2001-09-01

    A field experiment was conducted under saline conditions (soil EC{sub e} 15, water EC{sub w} 8 dS/m/m) to evaluate the performance of sole crops and inter crops of Sesbania aculeata and Sorghum bicolor (1:1 row ratio) in terms of dry matter production, total N yield, soil N uptake and N{sub 2}-fixation using {sup 15}N isotope dilution method. Dry matter yield in sole crop of sesbania was significantly higher that that of sole sorghum; whereas, that of the inter cropping was significantly lower than sole sesbania, but was similar to that produced by sole sorghum. Total nitrogen yield in sole sesbania was four-fold than that accumulated in sole sorghum, whereas, that of mixed cropping was 2.6 fold compared to that of sole sorghum. The LER of total N yield was higher than 1 reflecting a greater advantage of inter cropping system in terms of land use efficiency. The proportion of N derived from N{sub 2} fixation (%Ndfa) in the sesbania was increased from 63 to 79%, for sole and inter cropping system, respectively. There was no evidence of a significant transfer of N from the sesbania to the sorghum. Results on the relative growth of plants on saline soil compared with non-saline soil clearly demonstrated that sesbania was more salt tolerant than the sorghum. soil nitrogen uptake by plants, particularly in sorghum, was adversely affected by salinity. However, amounts of N{sub 2} fixed by sole sesbania grown is saline soil was close or even higher than on non-saline soil. The use of inter cropping systems of legumes and non-legumes could be a promising agricultural approach to reutilize wasted lands, after a careful selection of appropriate tolerant genotypes to prevailing saline conditions. (author)

  4. Report on the consultants meeting on identification of crop species/cultivars for drought and salinity tolerance for sustained crop yields by using nuclear techniques, in particular the carbon isotope discrimination

    International Nuclear Information System (INIS)

    2001-01-01

    A Consultants Meeting on Identification of Crop Species/Cultivars for Drought and Salinity Tolerance for Sustained Crop Yields by Using Nuclear Techniques, in Particular the Carbon Isotope Discrimination. was held in Vienna at the IAEA Headquarters from 12-16 November 2001. This meeting was conducted in conjunction with a Group Meeting on Novel Approaches for Improving Crop Tolerance to Salinity and Drought. Five consultants from Australia, Mexico, Pakistan, UK and the USA and one representative from FAO attended the Consultant Meeting and nine participants from Australia, Canada, China, Germany, India, Israel, Pakistan, South Africa and the USA attended the Group Meeting. First two days of the meeting consisted of five technical sessions during which the participants presented papers on various approaches for improving crop tolerance to salinity and drought and the role of nuclear techniques in identification of plants tolerant to the above abiotic stresses. After the presentations, two working groups were formed: one consisting of the participants of the Consultants Meeting and the other the participants of the Group Meeting. The consultants proposed various strategies for using the carbon isotope discrimination technique as a selection tool for identifying higher yielding crop genotypes especially in wheat and rice cropping systems under drought and saline conditions. A proposal was formulated to address the above issues in a framework of a CRP. The participants of the Group Meeting reviewed conventional and molecular approaches for improving crop tolerance to salinity and drought and research priorities were identified for future work on crop productivity improvement under the above stress factors. Recommendations of both working groups were presented at the final session of the meeting. This report provides the details of the proposal formulated by the consultants. Refs

  5. Intraclade heterogeneity in nitrogen utilization by marine prokaryotes revealed using stable isotope probing coupled with tag sequencing (Tag-SIP

    Directory of Open Access Journals (Sweden)

    Michael Morando

    2016-12-01

    Full Text Available Nitrogen can greatly influence the structure and productivity of microbial communities through its relative availability and form. However, roles of specific organisms in the uptake of different nitrogen species remain poorly characterized. Most studies seeking to identify agents of assimilation have been correlative, indirectly linking activity measurements (e.g., nitrate uptake with the presence or absence of biological markers, particularly functional genes and their transcripts. Evidence is accumulating of previously underappreciated functional diversity in major microbial subpopulations, which may confer physiological advantages under certain environmental conditions leading to ecotype divergence. This microdiversity further complicates our view of genetic variation in environmental samples requiring the development of more targeted approaches. Here, next-generation tag sequencing was successfully coupled with stable isotope probing (Tag-SIP to assess the ability of individual phylotypes to assimilate a particular N source. Our results provide the first direct evidence of nitrate utilization by organisms thought to lack the genes required for this process including the heterotrophic clades SAR11 and the Archaeal Marine Group II (MG-II. We also provide new direct evidence of in situ nitrate utilization by the cyanobacterium Prochlorococcus in support of recent findings. Furthermore, these results revealed widespread functional heterogeneity, i.e. different levels of N assimilation within clades, likely reflecting niche partitioning by ecotypes. The addition of nitrate utilization to ecosystem and ecosystem models by these globally dominant clades will likely improve the mechanistic accuracy of these models.

  6. EROD activity and stable isotopes in seabirds to disentangle marine food web contamination after the Prestige oil spill

    International Nuclear Information System (INIS)

    Velando, Alberto; Munilla, Ignacio; Lopez-Alonso, Marta; Freire, Juan; Perez, Cristobal

    2010-01-01

    In this study, we measured via surgical sampling hepatic EROD activity in yellow-legged gulls from oiled and unoiled colonies, 17 months after the Prestige oil spill. We also analyzed stable isotope composition in feathers of the biopsied gulls, in an attempt to monitor oil incorporation into marine food web. We found that yellow-legged gulls in oiled colonies were being exposed to remnant oil as shown by hepatic EROD activity levels. EROD activity was related to feeding habits of individual gulls with apparent consequences on delayed lethality. Capture-recapture analysis of biopsied gulls suggests that the surgery technique did not affect gull survival, giving support to this technique as a monitoring tool for oil exposure assessment. Our study highlights the combination of different veterinary, toxicological and ecological methodologies as a useful approach for the monitoring of exposure to remnant oil after a large oil spill. - Two years after Prestige oil spill, seabirds were exposed to remnant oil related to their feeding habits with consequences on delayed lethality.

  7. EROD activity and stable isotopes in seabirds to disentangle marine food web contamination after the Prestige oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Velando, Alberto, E-mail: avelando@uvigo.e [Departamento de Ecoloxia e Bioloxia Animal, Facultade de Ciencias, Universidade de Vigo, Campus As Lagoas, 36310 Vigo (Spain); Munilla, Ignacio [Departamento de Botanica, Facultade de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Lopez-Alonso, Marta [Departamento de Patoloxia Animal, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo (Spain); Freire, Juan [Grupo de Recursos Marinos y Pesquerias Universidade da Coruna, A Coruna (Spain); Perez, Cristobal [Departamento de Ecoloxia e Bioloxia Animal, Facultade de Ciencias, Universidade de Vigo, Campus As Lagoas, 36310 Vigo (Spain)

    2010-05-15

    In this study, we measured via surgical sampling hepatic EROD activity in yellow-legged gulls from oiled and unoiled colonies, 17 months after the Prestige oil spill. We also analyzed stable isotope composition in feathers of the biopsied gulls, in an attempt to monitor oil incorporation into marine food web. We found that yellow-legged gulls in oiled colonies were being exposed to remnant oil as shown by hepatic EROD activity levels. EROD activity was related to feeding habits of individual gulls with apparent consequences on delayed lethality. Capture-recapture analysis of biopsied gulls suggests that the surgery technique did not affect gull survival, giving support to this technique as a monitoring tool for oil exposure assessment. Our study highlights the combination of different veterinary, toxicological and ecological methodologies as a useful approach for the monitoring of exposure to remnant oil after a large oil spill. - Two years after Prestige oil spill, seabirds were exposed to remnant oil related to their feeding habits with consequences on delayed lethality.

  8. Deep ocean ventilation, carbon isotopes, marine sedimentation and the deglacial CO2 rise

    Directory of Open Access Journals (Sweden)

    C. Heinze

    2011-07-01

    Full Text Available The link between the atmospheric CO2 level and the ventilation state of the deep ocean is an important building block of the key hypotheses put forth to explain glacial-interglacial CO2 fluctuations. In this study, we systematically examine the sensitivity of atmospheric CO2 and its carbon isotope composition to changes in deep ocean ventilation, the ocean carbon pumps, and sediment formation in a global 3-D ocean-sediment carbon cycle model. Our results provide support for the hypothesis that a break up of Southern Ocean stratification and invigorated deep ocean ventilation were the dominant drivers for the early deglacial CO2 rise of ~35 ppm between the Last Glacial Maximum and 14.6 ka BP. Another rise of 10 ppm until the end of the Holocene is attributed to carbonate compensation responding to the early deglacial change in ocean circulation. Our reasoning is based on a multi-proxy analysis which indicates that an acceleration of deep ocean ventilation during early deglaciation is not only consistent with recorded atmospheric CO2 but also with the reconstructed opal sedimentation peak in the Southern Ocean at around 16 ka BP, the record of atmospheric δ13CCO2, and the reconstructed changes in the Pacific CaCO3 saturation horizon.

  9. Distribution and isotopic abundance of sulphur in recent marine sediments off southern California

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, I R; Emergy, K O; Rittenberg, S C

    1963-01-01

    Analyses of sulphur compounds in basin sediments off southern California indicate that elemental sulphur, free sulphide, hydrotroilite, organic sulphur, sulphate and pyrite are present in quantities that vary with environment and depth in the sediments. Pyrite is generally the most abundant form, occurring in oxidizing as well as in reducing sediments and often constituting 90% of total sulphur. A material balance indicates that the total sulphur content is far in excess of the sulphate-sulphur initially trapped in the interstitial water. This evidence, together with failure to detect significant alternate sources, suggests that sulphate-sulphur is extracted from the overlying sea water at the sediment-water interface. Isotope measurements confirm many of the conclusions suggested by the quantitative chemical analyses. The show that biological sulphate reduction is the single most important process in the sulphur cycle. The sulphide released is converted to hydrotrolite and then to pyrite. Elemental and organic sulphur appear to be continually forming and reacting in the sediment column. The organic sulphur released from decaying organic matter apparently plays only a small role in the sulphur economy. Enrichment in S/sup 32/ ranging from 9 to 62% was measured in pyrite fragments, a spread similar to that previously observed in ancient sediments. Data from field and laboratory experiments were combined to determine rate of sulphate reduction, number of sulphate reducing bacteria and the amount of organic matter decomposed during sulphate reduction in the sediment, as well as rate of renewal of water in the basins. The results suggest that the methods used may have many applications for elucidating in situ rate processes.

  10. Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes

    DEFF Research Database (Denmark)

    Detmers, Jan; Brüchert, Volker; Habicht, K S

    2001-01-01

    Batch culture experiments were performed with 32 different sulfate-reducing prokaryotes to explore the diversity in sulfur isotope fractionation during dissimilatory sulfate reduction by pure cultures. The selected strains reflect the phylogenetic and physiologic diversity of presently known...... sulfate reducers and cover a broad range of natural marine and freshwater habitats. Experimental conditions were designed to achieve optimum growth conditions with respect to electron donors, salinity, temperature, and pH. Under these optimized conditions, experimental fractionation factors ranged from 2.......0 to 42.0 per thousand. Salinity, incubation temperature, pH, and phylogeny had no systematic effect on the sulfur isotope fractionation. There was no correlation between isotope fractionation and sulfate reduction rate. The type of dissimilatory bisulfite reductase also had no effect on fractionation...

  11. Identification of the mechanisms and origin of salinization of groundwaters in coastal aquifers by means of isotopic techniques; Identificacion de los mecanismos y del orgien de la salinizacion del agua subterranea en acuiferos costeros mdiante tecnicas isotopicas

    Energy Technology Data Exchange (ETDEWEB)

    Araguas, L. J.; Quejido, A. J.

    2007-07-01

    To study the origin of salinity and the mechanisms operating in coastal aquifers, a set of tools is available to determine the essential aspects of the hydrogeological behaviour of the system. these tools are based on the integrated use of hydrochemical parameters (major constituents and trace elements) and isotopic parameters (oxygen, hydrogen, sulfur, carbon, strontium and boron). In addition to the active intrusion of seawater, salinization in coastal areas may be influenced by various human activities that accelerate the degradation of water quality, such as concentrated pumping, intensive farming techniques with return of irrigation water, or reuse of urban and industrial waste water. Characterization of the dominant processes and mechanisms is required for suitable management of the resource and implementation of corrective measures. (Author)

  12. Using of thorium isotopes to study marine particles in the Southern Ocean, the Barents and the the Mediterranean sea

    International Nuclear Information System (INIS)

    Coppola, Laurent

    2002-01-01

    This work is based on thorium (Th) isotopes to quantify the particles fluxes and exchange between dissolved and particulate phase in three distinct environments. In the shelf region of the Barents Sea, the 234 Th fluxes in the water column suggest that the sediment traps have a good catchment efficiency. To estimate the export of Particulate Organic Carbon (POC), we need to use a POC/ 234 Th ratio. It is 10 times lower in the large trapped particles than in the suspended particles. This is due to a preferential remineralisation of POC vs 234 Th and also to a large quantity of fecal pellets in traps. These results show us the importance of the large particles in the vertical fluxes and suggest that data estimated in previous studies based on the composition of suspended particles in other Arctic regions have been overestimated. In the Indian sector of the Southern Ocean, the export of POC is higher in the Polar Front Zone (PFZ). The 230 Th profiles in the water column indicate a rapid renewal rate of deep water (1-15 y) by the North Atlantic Deep Water (NADW) and the Antarctic Bottom Water (AABW) in the site of study. From 234 Th- 230 Th coupling, we are able to constrain the dynamic processes of marine particles in the upper layer. The results suggest that the settling speed of the filtered large particles are lower in the north of the Agulhas Front (AF). Moreover, we note that the desorption and the disaggregation are higher. This could be explained by the presence of detrital organic matter and/or an efficient microbial loop limiting the export of organic matter to the deep layers. In the Mediterranean studies, we have used 232 Th and 230 Th to estimate the degradation of large marine particles during in vitro experiments. This results suggests that the aggregation of filtered large particles requires to take into account in the particles dynamic models. 230 Th- 232 Th budget of the western Mediterranean Sea indicates that the refractory elements fluxes are

  13. APPLICATION OF O-H-B-Sr ISOTOPE SYSTEMATICS TO THE EXPLORATION OF SALINIZATION AND FLUSHING IN COASTAL AQUIFERS : PRELIMINARY DATA FROM THE PIALASSA BAIONA ECOSYSTEM (ADRIATIC SEA

    Directory of Open Access Journals (Sweden)

    Riccardo Petrini

    2009-07-01

    Full Text Available O, H, B and Sr isotopes were identified from surface-waters, ground-waters and waters percolating in soils at the Pialassa Baiona lagoon and nearby inland areas. The preliminary data demonstrate the occurrence of both conservative mixtures between seawater and freshwaters and cation exchange at the salt/fresh water interface during the intrusion. The O and H isotopes indicate that the freshwater component in the binary mixing had the isotopic features of the rainwater from Apennine catchments. Coupled O-H-B isotopes also show that the major contribution of the moving seawater was confined to the deeper aquifers and some of the soil waters. The Sr isotopes highlight the role of cation exchanges when seawater flushes freshwater aquifers, and allow the recognition of the different components of the solute. Deviations from these processes as revealed by B isotopes are interpreted as the evidence of possible anthropogenic inputs.

  14. Meta-analysis of amino acid stable nitrogen isotope ratios for estimating trophic position in marine organisms.

    Science.gov (United States)

    Nielsen, Jens M; Popp, Brian N; Winder, Monika

    2015-07-01

    Estimating trophic structures is a common approach used to retrieve information regarding energy pathways, predation, and competition in complex ecosystems. The application of amino acid (AA) compound-specific nitrogen (N) isotope analysis (CSIA) is a relatively new method used to estimate trophic position (TP) and feeding relationships in diverse organisms. Here, we conducted the first meta-analysis of δ(15)N AA values from measurements of 359 marine species covering four trophic levels, and compared TP estimates from AA-CSIA to literature values derived from food items, gut or stomach content analysis. We tested whether the AA trophic enrichment factor (TEF), or the (15)N enrichment among different individual AAs is constant across trophic levels and whether inclusion of δ(15)N values from multiple AAs improves TP estimation. For the TEF of glutamic acid relative to phenylalanine (Phe) we found an average value of 6.6‰ across all taxa, which is significantly lower than the commonly applied 7.6‰. We found that organism feeding ecology influences TEF values of several trophic AAs relative to Phe, with significantly higher TEF values for herbivores compared to omnivores and carnivores, while TEF values were also significantly lower for animals excreting urea compared to ammonium. Based on the comparison of multiple model structures using the metadata of δ(15)N AA values we show that increasing the number of AAs in principle improves precision in TP estimation. This meta-analysis clarifies the advantages and limitations of using individual δ(15)N AA values as tools in trophic ecology and provides a guideline for the future application of AA-CSIA to food web studies.

  15. Sea level high stand in Marine Isotope Stage 5e: evidence from coral terraces in Sumba Island, Indonesia

    Science.gov (United States)

    LU, Y.; Rigaud, S.; Leclerc, F.; Liu, X.; Chiang, H. W.; Djamil, Y. S.; Meilano, I.; Bijaksana, S.; Abidin, H. Z.; Tapponnier, P.; Wang, X.

    2017-12-01

    Uplifted coral reef terraces, possibly spanning the last one million years, are extensively exposed along the northern coast of Sumba Island, Indonesia. We collected a suite of fossil coral samples from the inner edges of terraces at Cape Laundi to study past sea level change, particularly that during the marine isotope stage 5e. These samples were dated by the high-precision U/Th disequilibrium dating methods. For those with δ234U-initial values beyond the range of 145±7‰[1,2] , the open-system model by Thompson et al. [3] was then applied to correct their ages. Only less than 20% of the samples could not derive reasonable ages after the correction, and their abnormally high δ234U-initial values (> 180‰) seem to suggest a limitation of open-system correction with the current model. After the correction of long-term uplift rate of 0.3 mm/kyr, we found that the relative sea level at Cape Laundi, Sumba was 7 m during MIS5e and then dropped to -20 m during the MIS5a and 5c. More importantly, our results indicate that sea level reached a high stand at 129±0.6 ka, supported by both U/Th dates on pristine corals and open-system model corrected ages. In line with the sea level reconstruction from western Australia, our results do not support a second and higher sea level during MIS5e. Moreover, there is no significant lead or lag between the timing of sea level high stand in Sumba and the peak of Northern Hemisphere summer insolation. 1. Robinson et al. (2004) Science. 305: 851-854 2. Cheng et al. (2013) Earth and Planetary Science Letters. 371-372: 82-91 3. Thompson et al. (2003) Earth and Planetary Science Letters. 210: 365-381

  16. Insights into North Atlantic deep water formation during the peak interglacial interval of Marine Isotope Stage 9 (MIS 9)

    Science.gov (United States)

    Mokeddem, Zohra; McManus, Jerry F.

    2017-11-01

    Foraminifera abundance and stable isotope records from ODP Site 984 (61.25°N, 24.04°W, 1648 m) in the North Atlantic are used to reconstruct surface circulation variations and the relative strength of the North Atlantic Deep Water (NADW) formation over the period spanning the peak warmth of Marine Interglacial Stage (MIS) 9e ( 324-336 ka). This interval includes the preceding deglaciation, Termination 4 (T4), and the subsequent glacial inception of MIS 9d. The records indicate a greatly reduced contribution of NADW during T4, as observed in more recent deglaciations. In contrast with the most recent deglaciation, the lack of a significant NADW signal extended from T4 well into the peak interglacial MIS 9e and persisted nearly until the transition to the subsequent glacial stage MIS 9d. Although NADW formation resumed during MIS 9e, only depths greater than 2000 m appear to have been ventilated. The poorly ventilated intermediate depth of Site 984 (<2000 m) may have resulted on one hand from a general reduction of deep water ventilation by NADW during the study interval or, on the other hand, from different pathways of the spread of newly formed NADW that bypassed the study location. The intermediate depths may have also been invaded by southern-sourced waters as the formation of intermediate depth NADW weakened. The absence of any significant NADW signal at the water depth of Site 984 during the climatic optimum contrasts sharply with subsequent interglacial peaks (MIS 5e and the Holocene). Despite the perturbed intermediate depth circulation, oceanic heat transport northeastward was not interrupted and may have contributed to the relatively mild interglacial conditions of MIS 9e.

  17. Pan-Arctic concentrations of mercury and stable isotope ratios of carbon (δ{sup 13}C) and nitrogen (δ{sup 15}N) in marine zooplankton

    Energy Technology Data Exchange (ETDEWEB)

    Pomerleau, Corinne, E-mail: corinne.pomerleau@umanitoba.ca [Centre for Earth Observation Science, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada); Greenland Institute of Natural Resources, Kivioq 2, Nuuk 3900, Greenland (Denmark); Stern, Gary A.; Pućko, Monika [Centre for Earth Observation Science, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada); Foster, Karen L. [Foster Environmental, Peterborough, ON K9J 8L2 (Canada); Macdonald, Robie W. [Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC V8L 4B2 (Canada); Fortier, Louis [Québec-Océan, Département de Biologie, Université Laval, Québec, QC G1V 0A6 (Canada)

    2016-05-01

    Zooplankton play a central role in marine food webs, dictating the quantity and quality of energy available to upper trophic levels. They act as “keystone” species in transfer of mercury (Hg) up through the marine food chain. Here, we present the first Pan-Arctic overview of total and monomethylmercury concentrations (THg and MMHg) and stable isotope ratios of carbon (δ{sup 13}C) and nitrogen (δ{sup 15}N) in selected zooplankton species by assembling data collected between 1998 and 2012 from six arctic regions (Laptev Sea, Chukchi Sea, southeastern Beaufort Sea, Canadian Arctic Archipelago, Hudson Bay and northern Baffin Bay). MMHg concentrations in Calanus spp., Themisto spp. and Paraeuchaeta spp. were found to increase with higher δ{sup 15}N and lower δ{sup 13}C. The southern Beaufort Sea exhibited both the highest THg and MMHg concentrations. Biomagnification of MMHg between Calanus spp. and two of its known predators, Themisto spp. and Paraeuchaeta spp., was greatest in the southern Beaufort Sea. Our results show large geographical variations in Hg concentrations and isotopic signatures for individual species related to regional ecosystem features, such as varying water masses and freshwater inputs, and highlight the increased exposure to Hg in the marine food chain of the southern Beaufort Sea. - Highlights: • Assessment of Pan-Arctic variability in zooplankton Hg concentrations • Increased exposure to Hg in the marine food chain of the southern Beaufort Sea • Zooplankton plays a central role in the Hg pathway within Arctic marine food webs.

  18. Marine Biogenic Minerals Hold Clues About Changes in Ocean Chemistry and Climate: Some Important Lessons Learned from Studies of Stable and Radioactive Isotopes of Be and Al

    Directory of Open Access Journals (Sweden)

    Devendra Lal

    2002-01-01

    Full Text Available The elements Be and Al exhibit very short residence time in ocean waters, and therefore serve as useful tracers for the study of biogeochemical processes in seawater. A unique feature of these tracers is that nuclear interactions of cosmic rays in the atmosphere produce appreciable amounts of two radioactive isotopes, 10Be (with a half-life of 1.5 my and 26Al (with a half-life of 0.7 my, which are introduced in the hydrosphere, cryosphere, and lithosphere via precipitation. Thus, these elements are labeled by their respective radioactive isotopes, which help quantitative tagging of their biogeochemical cycles. Finally, as we report here, several marine organisms incorporate them in their skeletal shells in certain fixed proportions to their concentrations in the seawater, so that it seems possible to study changes in the ocean chemistry and climate over the past several million years. We summarize here the recent discovery by Dong et al.[9] of significant enrichments of intrinsic Be and Al in marine foraminiferal calcite and coral aragonite, and of Al in opal (radiolarians and aragonite (corals, which should make it possible to determine 10Be/Be and 26Al/Al in oceans in the past. We also summarize their measured 10Be/9Be in foraminiferal calcite in Pacific Ocean cores, which reveal that the concentrations and ratios of the stable and cosmogenic isotopes of Be and Al have varied significantly in the past 30 ky. The implications of these results are discussed.

  19. Insights into the diagenetic environment of fossil marine vertebrates of the Pisco Formation (late Miocene, Peru) from mineralogical and Sr-isotope data

    Science.gov (United States)

    Gioncada, A.; Petrini, R.; Bosio, G.; Gariboldi, K.; Collareta, A.; Malinverno, E.; Bonaccorsi, E.; Di Celma, C.; Pasero, M.; Urbina, M.; Bianucci, G.

    2018-01-01

    The late Miocene Pisco Formation of Peru is an outstanding example of richness and high-quality preservation of fossil marine vertebrates. In order to reconstruct the fossilization path, we present new textural, mineralogical and Sr-isotope data of diagenetic minerals formed in correspondence of fossil specimens such as marine vertebrates and mollusks. These fossil specimens were found at Cerro los Quesos, in the Ica Desert, within the diatomaceous strata of the Pisco Formation. Dolomite, gypsum, anhydrite and Mn minerals are the main phases found, while the calcium carbonate originally forming the mollusk valves is replaced by gypsum. An early formation of dolomite and of Mn minerals, triggered by the modifications of the geochemical environment due to organic matter degradation, is suggested by the textural relationships and is confirmed by the Sr isotopic ratio of dolomite, which agrees with that of seawater at the time of sedimentation. Instead, gypsum Sr isotopic ratios indicate a pre-Miocene seawater-derived brine circulating within the sedimentary sequence as a source for Sr. Oxidation of diagenetic sulfide causing a lowering of the pH of porewater is proposed as an explanation for Ca-carbonate dissolution. The diagenetic chemical environment was, nevertheless, favorable to bone preservation.

  20. Origin of water salinity in the coastal Sarafand aquifer (South-Lebanon)

    International Nuclear Information System (INIS)

    Hashash, Adnan; Aranyossy, J.F.

    1996-01-01

    Author.The geochemical and isotopic study, based on the analysis of twenty water samples from well in the coastal plain of Sarafand (South-Lebanon), permit to eliminate the hypothesis of marine intrusion in this aquifer. The increase of salinity observed in certain wells is due to the contamination of cretaceous aquifer water by the quaternary formations. The two poles of mixing are respectively characterized: by weak tritium contents (between 2 and 3 UT) and a value of stable isotopes (-5,9<0,18<-5,5) corresponding to the appearance of cretaceous formation area; by the high tritium contents and enrichment relative to heavy isotope in the mineralized water of superficial formations. On the other hand, the isotope contents permit the set a rapid renewal of the cretaceous aquifer water due to quick circulation in the Karstic system

  1. Multi-isotopic determination of plutonium (239Pu, 240Pu, 241Pu and 242Pu) in marine sediments using sector-field inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Donard, O F X; Bruneau, F; Moldovan, M; Garraud, H; Epov, V N; Boust, D

    2007-03-28

    Among the transuranic elements present in the environment, plutonium isotopes are mainly attached to particles, and therefore they present a great interest for the study and modelling of particle transport in the marine environment. Except in the close vicinity of industrial sources, plutonium concentration in marine sediments is very low (from 10(-4) ng kg(-1) for (241)Pu to 10 ng kg(-1) for (239)Pu), and therefore the measurement of (238)Pu, (239)Pu, (240)Pu, (241)Pu and (242)Pu in sediments at such concentration level requires the use of very sensitive techniques. Moreover, sediment matrix contains huge amounts of mineral species, uranium and organic substances that must be removed before the determination of plutonium isotopes. Hence, an efficient sample preparation step is necessary prior to analysis. Within this work, a chemical procedure for the extraction, purification and pre-concentration of plutonium from marine sediments prior to sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS) analysis has been optimized. The analytical method developed yields a pre-concentrated solution of plutonium from which (238)U and (241)Am have been removed, and which is suitable for the direct and simultaneous measurement of (239)Pu, (240)Pu, (241)Pu and (242)Pu by SF-ICP-MS.

  2. Search for isotopic signatures of a supernova explosion close to the solar system in marine sediments; Recherche de signatures isotopiques dans les sediments marins de l'explosion d'une supernova proche du systeme solaire

    Energy Technology Data Exchange (ETDEWEB)

    Fitoussi, Caroline [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, (CSNSM) IN2P3/CNRS, Campus d' Orsay, Bat 108, 91405 Orsay (France)

    2006-06-15

    The recent observation of a {sup 60}Fe peak in a deep-sea ferro-manganese crust has been interpreted as due to a supernova explosion relatively close to the solar system 2.8 {+-} 0.4 Myr ago. To confirm this interpretation with better time-resolved measurements, and the simultaneous access, on the same sample, to other isotopes and geochemical phases, marine sediments seem to be a tool of choice. The objective of this work was to search for isotopic anomalies which would be characteristic for residues of this supernova. More specifically, {sup 129}I, {sup 60}Fe, and {sup 26}Al have been investigated, being measured by Accelerator Mass Spectrometry (AMS). Quantifying these nuclides' fluxes would help constrain stellar nucleosynthesis models. These residues are isotopes initially produced during hydrostatic and/or explosive nucleosynthesis. The physical conditions during the explosion (temperature, neutron density) are such that supernovae are thought to be good candidates for the astrophysical site of the r-process. The {sup 129}I study showed that measurement of pre-anthropogenic {sup 129}I/{sup 127}I ratios need a very strict control of the various potential {sup 129}I sources, especially when working with small quantities (micrograms) of iodine. This study revealed that the expected pre-anthropogenic {sup 129}I/{sup 127}I ratio for pre-nuclear samples in the marine environment shows a large discrepancy between theoretical calculations and experimental measurements. {sup 60}Fe and {sup 26}Al measurements allow us to conclude that, in the authigenic phase of the marine sediments, there is no {sup 60}Fe anomaly in the time interval defined by the signal found on the Fe-Mn crust (from 2.4 to 3.2 Myr), and no {sup 26}Al anomaly from 2.6 to 3.2 Myr. (author)

  3. Correlating carbon and oxygen isotope events in early to middle Miocene shallow marine carbonates in the Mediterranean region using orbitally tuned chemostratigraphy and lithostratigraphy

    Science.gov (United States)

    Auer, Gerald; Piller, Werner E.; Reuter, Markus; Harzhauser, Mathias

    2015-04-01

    During the Miocene prominent oxygen isotope events (Mi-events) reflect major changes in glaciation, while carbonate isotope maxima (CM-events) reflect changes in organic carbon burial, particularly during the Monterey carbon isotope excursion. However, despite their importance to the global climate history they have never been recorded in shallow marine carbonate successions. The Decontra section on the Maiella Platform (central Apennines, Italy), however, allows to resolve them for the first time in such a setting during the early to middle Miocene. The present study improves the stratigraphic resolution of parts of the Decontra section via orbital tuning of high-resolution gamma ray (GR) and magnetic susceptibility data to the 405 kyr eccentricity metronome. The tuning allows, within the established biostratigraphic, sequence stratigraphic, and isotope stratigraphic frameworks, a precise correlation of the Decontra section with pelagic records of the Mediterranean region, as well as the global paleoclimatic record and the global sea level curve. Spectral series analyses of GR data further indicate that the 405 kyr orbital cycle is particularly well preserved during the Monterey Event. Since GR is a direct proxy for authigenic uranium precipitation during increased burial of organic carbon in the Decontra section, it follows the same long-term orbital pacing as observed in the carbon isotope records. The 405 kyr GR beat is thus correlated with the carbon isotope maxima observed during the Monterey Event. Finally, the Mi-events can now be recognized in the δ18O record and coincide with plankton-rich, siliceous, or phosphatic horizons in the lithology of the section.

  4. Geochemical characteristics of Tertiary saline lacustrine oils in the Western Qaidam Basin, northwest China

    International Nuclear Information System (INIS)

    Zhu Yangming; Weng Huanxin; Su Aiguo; Liang Digang; Peng Dehua

    2005-01-01

    Based on the systematic analyses of light hydrocarbon, saturate, aromatic fractions and C isotopes of over 40 oil samples along with related Tertiary source rocks collected from the western Qaidam basin, the geochemical characteristics of the Tertiary saline lacustrine oils in this region was investigated. The oils are characterized by bimodal n-alkane distributions with odd-to-even (C 11 -C 17 ) and even-to-odd (C 18 -C 28 ) predominance, low Pr/Ph (mostly lower than 0.6), high concentration of gammacerane, C 35 hopane and methylated MTTCs, reflecting the high salinity and anoxic setting typical of a saline lacustrine depositional environment. Mango's K 1 values in the saline oils are highly variable (0.99-1.63), and could be associated with the facies-dependent parameters such as Pr/Ph and gammacerane indexes. Compared with other Tertiary oils, the studied Tertiary saline oils are marked by enhanced C 28 sterane abundance (30% or more of C 27 -C 29 homologues), possibly derived from halophilic algae. It is noted that the geochemical parameters of the oils in various oilfields exhibit regular spatial changes, which are consistent with the depositional phase variations of the source rocks. The oils have uncommon heavy C isotopic ratios (-24%o to -26%o) and a flat shape of the individual n-alkane isotope profile, and show isotopic characteristics similar to marine organic matter. The appearance of oleanane and high 24/(24 + 27)-norcholestane ratios (0.57-0.87) in the saline oils and source rocks confirm a Tertiary organic source

  5. Biogeochemical Indicators in High- and Low-Arctic Marine and Terrestrial Avian Community Changes: Comparative Isotopic (13C, 15N, and 34S) Studies in Alaska and Greenland

    Science.gov (United States)

    Causey, D.; Bargmann, N. A.; Burnham, K. K.; Burnham, J. L.; Padula, V. M.; Johnson, J. A.; Welker, J. M.

    2011-12-01

    Understanding the complex dynamics of environmental change in northern latitudes is of paramount importance today, given documented rapid shifts in sea ice, plant phenology, temperatures, deglaciation, and habitat fidelity. This knowledge is particularly critical for Arctic avian communities, which are integral components by which biological teleconnections are maintained between the mid and northern latitudes. Furthermore, Arctic birds are fundamental to Native subsistence lifestyles and a focus for conservation activities. Avian communities of marine and terrestrial Arctic environments represent a broad spectrum of trophic levels, from herbivores (eg., geese Chen spp.), planktivores (eg., auklets Aethia spp.), and insectivores (eg., passerines: Wheatears Oenanthe spp., Longspurs Calcarius spp.), to predators of marine invertebrates (eg., eiders Somateria spp.), nearshore and offshore fish (eg., cormorants Phalacrocorax spp, puffins Fratercula spp.), even other bird species (eg., gulls Larus spp., falcons Peregrinus spp.). This diversity of trophic interconnections is an integral factor in the dynamics of Arctic ecosystem ecology, and they are key indicators for the strength and trajectories of change. We are especially interested in their feeding ecology, using stable isotope-diet relations to examine historical diets and to predict future feeding ecology by this range of species. Since 2009, we have been studying the foodweb ecology using stable isotopes (δ13C, δ15N, δ34S) of contemporaneous coastal and marine bird communities in High Arctic (Northwest Greenland) and Low Arctic (western Aleutian Islands, AK). We are quantifying the isotopic values of blood, organ tissues, and feathers, and have carried out comparisons between native and lipid-extracted samples. Although geographically distant, these communities comprise similar taxonomic and ecological congeners, including several species common to both (eg., Common Eider, Black-legged Kittiwake, Northern

  6. Major dust events in Europe during marine isotope stage 5 (130–74 ka: a climatic interpretation of the "markers"

    Directory of Open Access Journals (Sweden)

    D.-D. Rousseau

    2013-09-01

    Full Text Available At present, major dust storms are occurring at mid-latitudes in the Middle East and Asia, as well as at low latitudes in Northern Africa and in Australia. Western Europe, though, does not experience such dramatic climate events, except for some African dust reaching it from the Sahara. This modern situation is of particular interest, in the context of future climate projections, since the present interglacial is usually interpreted, in this context, as an analog of the warm Eemian interval. European terrestrial records show, however, major dust events during the penultimate interglacial and early glacial. These events are easily observed in loess records by their whitish-color deposits, which lie above and below dark chernozem paleosols in Central European records of Marine Isotope Stage (MIS 5 age. We describe here the base of the Dolni Vestonice (DV loess sequence, Czech Republic, as the reference of such records. The dust is deposited during intervals that are characterized by poor vegetation – manifested by high δ13C values and low magnetic susceptibility – while the fine sand and clay in the deposits shows grain sizes that are clearly different from the overlying pleniglacial loess deposits. Some of these dust events have been previously described as "Markers" or Marker Silts (MS by one of us (G. Kukla, and are dated at about 111–109 ka and 93–92 ka, with a third and last one slightly visible at about 75–73 ka. Other events correspond to the loess material of Kukla's cycles, and are described as eolian silts (ES; they are observed in the same DV sequence and are dated at about 106–105 ka, 88–86 ka, and 78.5–77 ka. These dates are determined by considering the OSL ages with their errors measured on the studied sequence, and the comparison with Greenland ice-core and European speleothem chronologies. The fine eolian deposits mentioned above, MS as well as ES, correspond to short events that lasted about 2 ka; they are

  7. Stable isotope study of a new chondrichthyan fauna (Kimmeridgian, Porrentruy, Swiss Jura): an unusual freshwater-influenced isotopic composition for the hybodont shark Asteracanthus

    Science.gov (United States)

    Leuzinger, L.; Kocsis, L.; Billon-Bruyat, J.-P.; Spezzaferri, S.; Vennemann, T.

    2015-12-01

    Chondrichthyan teeth (sharks, rays, and chimaeras) are mineralized in isotopic equilibrium with the surrounding water, and parameters such as water temperature and salinity can be inferred from the oxygen isotopic composition (δ18Op) of their bioapatite. We analysed a new chondrichthyan assemblage, as well as teeth from bony fish (Pycnodontiformes). All specimens are from Kimmeridgian coastal marine deposits of the Swiss Jura (vicinity of Porrentruy, Ajoie district, NW Switzerland). While the overall faunal composition and the isotopic composition of bony fish are generally consistent with marine conditions, unusually low δ18Op values were measured for the hybodont shark Asteracanthus. These values are also lower compared to previously published data from older European Jurassic localities. Additional analyses on material from Solothurn (Kimmeridgian, NW Switzerland) also have comparable, low-18O isotopic compositions for Asteracanthus. The data are hence interpreted to represent a so far unique, freshwater-influenced isotopic composition for this shark that is classically considered a marine genus. While reproduction in freshwater or brackish realms is established for other hybodonts, a similar behaviour for Asteracanthus is proposed here. Regular excursions into lower salinity waters can be linked to the age of the deposits and correspond to an ecological adaptation, most likely driven by the Kimmeridgian transgression and by the competition of the hybodont shark Asteracanthus with the rapidly diversifying neoselachians (modern sharks).

  8. Application of isotope techniques to investigate groundwater pollution in India

    International Nuclear Information System (INIS)

    Shivanna, K.; Navada, S.V.; Kulkarni, K.M.; Sinha, U.K.; Sharma, S.

    1998-01-01

    Environmental isotopes ( 2 H, 18 O, 34 S, 3 H, and 14 C) techniques have been used along with hydrogeology and hydrochemistry to investigate: (a). the source of salinity and origin of sulphate in groundwaters of coastal Orissa, Orissa State, India and (b) to study the source of salinity in deep saline groundwaters of charnockite terrain at Kokkilimedu, South of Chennai, India. In the first case, as a part of large drinking water supply project, thousands of hand pumps were installed from 1985. Many of them became quickly unacceptable for potable supply due to salinity, increased iron and sulphate contents of the groundwater. In this alluvial, multiaquifer system, fresh, brackish and saline groundwaters occur in a rather complicated fashion. The conditions change from phreatic to confined flowing type with increasing depth. The results of the isotope geochemical investigation indicate that the shallow groundwater (depth/<50m) is fresh and modern. Groundwater salinity in intermediate aquifer (50 - 100m) is due to the Flandrian transgression during Holocene period. Fresh and modern deep groundwater forms a well developed aquifer which receives recharge through weathered basement rock. The saline groundwater found below the fresh deep aquifer have marine water entrapped during late Pleistocene. The source of high sulphate in the groundwater is of marine origin. In the second case, under the host rock characterization programme, the charnockite rock formation at Kokkilimedu, Kalpakkam was evaluated to assess its suitability as host medium for location of a geological repository for high level radioactive waste. Four deep boreholes were drilled in this area, the depth varying from 200 to 618 m. In these boreholes, large variations in groundwater salinity were observed over a distance of only a few hundred meters and no regional pattern could be identified. The results of the isotope investigation show that there are two different sources of salinity in this area. Among

  9. Coral Reef Response to Marine Isotope Stage (MIS) 5e Sea Level Changes in the Granitic Seychelles

    Science.gov (United States)

    Vyverberg, K.; Dechnik, B.; Dutton, A.; Webster, J.; Zwartz, D.

    2015-12-01

    Sea-level position has a direct control on coral reef morphology and composition. Examining changes in these parameters in fossil reefs can inform reconstructions of past sea-level behavior and, indirectly, ice sheet dynamics. Here we provide a detailed examination of fossil reefs from Marine Isotope Stage (MIS) 5e. These fossil reefs are located in the granitic Seychelles, which is tectonically stable site and far-field from the former margins of Northern Hemisphere ice sheets. To reconstruct relative sea level (RSL), we combine RTK and Total Station elevation surveys with sedimentary and taxonomic evaluations of eight fossil reef sites. Carbonate coralgal reef buildups of the shallowest portion of the reef are preserved in limestone outcrops that are protected by granite boulder overhangs. Two primary outcrop morphologies were observed at these sites: plastering and massive. Plastering outcrops manifest as thin (~ 1 m height x 1 m width x 0.5 m depth) vertical successions of reef framework and detritus, while massive outcrops are larger (~ 2-6 m height x 2-6 m width x 1-2 m depth). The base of these limestone outcrops consistently record a period of reef growth, characterized by corals or coralline algae colonizing the surface or face of a granite boulder and building upwards. This lower reefal unit is capped by a disconformity that is commonly overlain by coral rubble or a ~10 cm thick layer of micrite. Rubble units contain coarse fragments of the coralgal reef buildups while micrite layers consist of a relatively homogeneous fine-grained carbonate, bearing coral-dwelling, Pyrgomatid barnacles. In many of the outcrops, this succession is repeated upsection with another unit of coralgal reef framework capped by a disconformity that is recognized by the sharp transition to coral rubble or micrite with barnacles. We identified four distinct fossil coralgal assemblages in the limestone outcrops. These assemblages are consistent with modern assemblages which

  10. How did Marine Isotope Stage 3 and Last Glacial Maximum climates differ? – Perspectives from equilibrium simulations

    Directory of Open Access Journals (Sweden)

    C. J. Van Meerbeeck

    2009-03-01

    Full Text Available Dansgaard-Oeschger events occurred frequently during Marine Isotope Stage 3 (MIS3, as opposed to the following MIS2 period, which included the Last Glacial Maximum (LGM. Transient climate model simulations suggest that these abrupt warming events in Greenland and the North Atlantic region are associated with a resumption of the Thermohaline Circulation (THC from a weak state during stadials to a relatively strong state during interstadials. However, those models were run with LGM, rather than MIS3 boundary conditions. To quantify the influence of different boundary conditions on the climates of MIS3 and LGM, we perform two equilibrium climate simulations with the three-dimensional earth system model LOVECLIM, one for stadial, the other for interstadial conditions. We compare them to the LGM state simulated with the same model. Both climate states are globally 2°C warmer than LGM. A striking feature of our MIS3 simulations is the enhanced Northern Hemisphere seasonality, July surface air temperatures being 4°C warmer than in LGM. Also, despite some modification in the location of North Atlantic deep water formation, deep water export to the South Atlantic remains unaffected. To study specifically the effect of orbital forcing, we perform two additional sensitivity experiments spun up from our stadial simulation. The insolation difference between MIS3 and LGM causes half of the 30–60° N July temperature anomaly (+6°C. In a third simulation additional freshwater forcing halts the Atlantic THC, yielding a much colder North Atlantic region (−7°C. Comparing our simulation with proxy data, we find that the MIS3 climate with collapsed THC mimics stadials over the North Atlantic better than both control experiments, which might crudely estimate interstadial climate. These results suggest that freshwater forcing is necessary to return climate from warm interstadials to cold stadials during MIS3. This changes our perspective, making the stadial

  11. Salinity-related variation in gene expression in wild populations of the black-chinned tilapia from various West African coastal marine, estuarine and freshwater habitats

    Science.gov (United States)

    Tine, Mbaye; McKenzie, David J.; Bonhomme, François; Durand, Jean-Dominique

    2011-01-01

    This study measured the relative expression of the genes coding for Na +, K +-ATPase 1α(NAKA), voltage-dependent anion channel (VDAC), cytochrome c oxidase-1 (COX), and NADH dehydrogenase (NDH), in gills of six wild populations of a West African tilapia species, acclimatised to a range of seasonal (rainy or dry) salinities in coastal, estuarine and freshwater sites. Previous laboratory experiments have demonstrated that these genes, involved in active ion transport, oxidative phosphorylation, and intra-cellular ATP transport, are relatively over-expressed in gill tissues of this species acclimated to high salinity. Positive correlations between relative expression and ambient salinity were found for all genes in the wild populations (Spearman rank correlation, p < 0.05), although for some genes these were only significant in either the rainy season or dry season. Most significantly, however, relative expression was positively correlated amongst the four genes, indicating that they are functionally interrelated in adaptation of Sarotherodon melanotheron to salinity variations in its natural environment. In the rainy season, when salinity was unstable and ranged between zero and 37 psu across the sites, overall mean expression of the genes was higher than in the dry season, which may have reflected more variable particularly sudden fluctuations in salinity and poorer overall water quality. In the dry season, when the salinity is more stable but ranged between zero and 100 psu across the sites, NAKA, NDH and VDAC expression revealed U-shaped relationships with lowest relative expression at salinities approaching seawater, between 25 and 45 psu. Although it is not simple to establish direct relationship between gene expression levels and energy requirement for osmoregulation, these results may indicate that costs of adaptation to salinity are lowest in seawater, the natural environment of this species. While S. melanotheron can colonise environments with extremely

  12. Physical hydrogeology and environmental isotopes to constrain the age, origins, and stability of a low-salinity groundwater lens formed by periodic river recharge: Murray Basin, Australia

    Science.gov (United States)

    Cartwright, Ian; Weaver, Tamie R.; Simmons, Craig T.; Fifield, L. Keith; Lawrence, Charles R.; Chisari, Robert; Varley, Simon

    2010-01-01

    SummaryA low-salinity (total dissolved solids, TDS, Australia. Hydraulic heads, surface water elevations, δ 18O values, major ion geochemistry, 14C activities, and 3H concentrations show that the lens is recharged from the Murray River largely through the riverbank with limited recharge through the floodplain. Recharge of the lens occurs mainly at high river levels and the low-salinity groundwater forms baseflow to some river reaches during times of low river levels. Within the lens, flow through the shallow Channel Sands and deeper Parilla Sands aquifers is sub-horizontal. While the Blanchetown Clay locally separates the Channel Sands and the Parilla Sands, the occurrence of recently recharged low-salinity groundwater below the Blanchetown Clay suggests that there is considerable leakage through this unit, implying that it is not an efficient aquitard. The lateral margin of the lens with the regional groundwater (TDS >25,000 mg/L) is marked by a hectometer to kilometer scale transition in TDS concentrations that is not stratigraphically controlled. Rather this boundary represents a mixing zone with the regional groundwater, the position of which is controlled by the rate of recharge from the river. The lens is part of an active and dynamic hydrogeological system that responds over years to decades to changes in river levels. The lens has shrunk during the drought of the late 1990s to the mid 2000s, and it will continue to shrink unless regular high flows in the Murray River are re-established. Over longer timescales, the rise of the regional water table due to land clearing will increase the hydraulic gradient between the regional groundwater and the groundwater in the lens, which will also cause it to degrade. Replacement of low-salinity groundwater in the lens with saline groundwater will ultimately increase the salinity of the Murray River reducing its utility for water supply and impacting riverine ecosystems.

  13. Contaminants, lipids, fatty acids, and stable isotopes in tissues of various marine mammals - Biomonitoring of marine mammals as part of the Marine Mammal Health and Stranding Response Program (MMHSRP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Mammal Health and Stranding Response Program (MMHSRP) was established in 1992 under Title IV of the Marine Mammal Protection Act (MMPA). The MMHSRP...

  14. Variations in stable hydrogen and oxygen isotopes in atmospheric water vapor in the marine boundary layer across a wide latitude range.

    Science.gov (United States)

    Liu, Jingfeng; Xiao, Cunde; Ding, Minghu; Ren, Jiawen

    2014-11-01

    The newly-developed cavity ring-down laser absorption spectroscopy analyzer with special calibration protocols has enabled the direct measurement of atmospheric vapor isotopes at high spatial and temporal resolution. This paper presents real-time hydrogen and oxygen stable isotope data for atmospheric water vapor above the sea surface, over a wide range of latitudes spanning from 38°N to 69°S. Our results showed relatively higher values of δ(18)O and δ(2)H in the subtropical regions than those in the tropical and high latitude regions, and also a notable decreasing trend in the Antarctic coastal region. By combining the hydrogen and oxygen isotope data with meteoric water line and backward trajectory model analysis, we explored the kinetic fractionation caused by subsiding air masses and related saturated vapor pressure in the subtropics, and the evaporation-driven kinetic fractionation in the Antarctic region. Simultaneous observations of meteorological and marine variables were used to interpret the isotopic composition characteristics and influential factors, indicating that d-excess is negatively correlated with humidity across a wide range of latitudes and weather conditions worldwide. Coincident with previous studies, d-excess is also positively correlated with sea surface temperature and air temperature (Tair), with greater sensitivity to Tair. Thus, atmospheric vapor isotopes measured with high accuracy and good spatial-temporal resolution could act as informative tracers for exploring the water cycle at different regional scales. Such monitoring efforts should be undertaken over a longer time period and in different regions of the world. Copyright © 2014. Published by Elsevier B.V.

  15. Combined ice core and climate-model evidence for the collapse of the West Antarctic Ice Sheet during Marine Isotope Stage 5e.

    Science.gov (United States)

    Steig, Eric J.; Huybers, Kathleen; Singh, Hansi A.; Steiger, Nathan J.; Frierson, Dargan M. W.; Popp, Trevor; White, James W. C.

    2015-04-01

    It has been speculated that collapse of the West Antarctic Ice Sheet explains the very high eustatic sea level rise during the last interglacial period, marine isotope stage (MIS) 5e, but the evidence remains equivocal. Changes in atmospheric circulation resulting from a collapse of the West Antarctic Ice Sheet (WAIS) would have significant regional impacts that should be detectable in ice core records. We conducted simulations using general circulation models (GCMs) at varying levels of complexity: a gray-radiation aquaplanet moist GCM (GRaM), the slab ocean version of GFDL-AM2 (also as an aquaplanet), and the fully-coupled version of NCAR's CESM with realistic topography. In all the experiments, decreased elevation from the removal of the WAIS leads to greater cyclonic circulation over the West Antarctic region. This creates increased advection of relatively warm marine air from the Amundsen-Bellingshausen Seas towards the South Pole, and increased cold-air advection from the East Antarctic plateau towards the Ross Sea and coastal Marie Byrd Land. The result is anomalous warming in some areas of the East Antarctic interior, and significant cooling in Marie Byrd Land. Comparison of ice core records shows good agreement with the model predictions. In particular, isotope-paleotemperature records from ice cores in East Antarctica warmed more between the previous glacial period (MIS 6) and MIS 5e than coastal Marie Byrd Land. These results add substantial support to other evidence for WAIS collapse during the last interglacial period.

  16. Human-Induced Long-Term Shifts in Gull Diet from Marine to Terrestrial Sources in North America's Coastal Pacific: More Evidence from More Isotopes (δ2H, δ34S).

    Science.gov (United States)

    Hobson, Keith A; Blight, Louise K; Arcese, Peter

    2015-09-15

    Measurements of naturally occurring stable isotopes in tissues of seabirds and their prey are a powerful tool for investigating long-term changes in marine foodwebs. Recent isotopic (δ(15)N, δ(13)C) evidence from feathers of Glaucous-winged Gulls (Larus glaucescens) has shown that over the last 150 years, this species shifted from a midtrophic marine diet to one including lower trophic marine prey and/or more terrestrial or freshwater foods. However, long-term isotopic patterns of δ(15)N and δ(13)C cannot distinguish between the relative importance of lower trophic-level marine foods and terrestrial sources. We examined 48 feather stable-hydrogen (δ(2)H) and -sulfur (δ(34)S) isotope values from this same 150-year feather set and found additional isotopic evidence supporting the hypothesis that gulls shifted to terrestrial and/or freshwater prey. Mean feather δ(2)H and δ(34)S values (± SD) declined from the earliest period (1860-1915; n = 12) from -2.5 ± 21.4 ‰ and 18.9 ± 2.7 ‰, respectively, to -35.5 ± 15.5 ‰ and 14.8 ± 2.4 ‰, respectively, for the period 1980-2009 (n = 12). We estimated a shift of ∼ 30% increase in dependence on terrestrial/freshwater sources. These results are consistent with the hypothesis that gulls increased terrestrial food inputs in response to declining forage fish availability.

  17. Investigation on the Sources of Recharge and Salinity in Deep Groundwater System Underlying a Coastal City of Bangladesh by Combined Geochemical and Isotopic Approaches

    Science.gov (United States)

    Rahman, M.; Tokunaga, T.

    2017-12-01

    The Khulna city, situated in the southwestern coastal Bangladesh, has been abstracting deep groundwater (DGW, >150 m below ground level, bgl) since 1970s due to the prevalence of salinity, iron, and arsenic in shallow groundwater (SGW, groundwater management and ensuring long-term freshwater supply for the Khulna city, Bangladesh.

  18. Tracing the cycling and fate of the explosive 2,4,6-trinitrotoluene in coastal marine systems with a stable isotopic tracer, 15N-[TNT

    Science.gov (United States)

    Smith, Richard W.; Vlahos, Penny; Böhlke, John Karl; Ariyarathna, Thivanka; Ballentine, Mark; Cooper, Christopher; Fallis, Stephen; Groshens, Thomas J.; Tobias, Craig

    2015-01-01

    2,4,6-Trinitrotoluene (TNT) has been used as a military explosive for over a hundred years. Contamination concerns have arisen as a result of manufacturing and use on a large scale; however, despite decades of work addressing TNT contamination in the environment, its fate in marine ecosystems is not fully resolved. Here we examine the cycling and fate of TNT in the coastal marine systems by spiking a marine mesocosm containing seawater, sediments, and macrobiota with isotopically labeled TNT (15N-[TNT]), simultaneously monitoring removal, transformation, mineralization, sorption, and biological uptake over a period of 16 days. TNT degradation was rapid, and we observed accumulation of reduced transformation products dissolved in the water column and in pore waters, sorbed to sediments and suspended particulate matter (SPM), and in the tissues of macrobiota. Bulk δ15N analysis of sediments, SPM, and tissues revealed large quantities of 15N beyond that accounted for in identifiable derivatives. TNT-derived N was also found in the dissolved inorganic N (DIN) pool. Using multivariate statistical analysis and a 15N mass balance approach, we identify the major transformation pathways of TNT, including the deamination of reduced TNT derivatives, potentially promoted by sorption to SPM and oxic surface sediments.

  19. Effect of salinity on 2H/1H fractionation in lipids from continuous cultures of the coccolithophorid Emiliania huxleyi

    Science.gov (United States)

    Sachs, Julian P.; Maloney, Ashley E.; Gregersen, Josh; Paschall, Christopher

    2016-09-01

    Salinity and temperature dictate the buoyancy of seawater, and by extension, ocean circulation and heat transport. Yet there remain few widely applicable proxies for salinity with the precision necessary to infer all but the largest hydrographic variations in the past. In the last decade the hydrogen isotope composition (2H/1H or δ2H) of microalgal lipids has been shown to increase systematically with salinity, providing a foundation for its use as a paleosalinity proxy. Culture and field studies have indicated a wide range of sensitivities for this response, ranging from about 0.6-3.3‰ ppt-1 depending on the lipid, location and/or culturing conditions. Lacking in these studies has been the controlled conditions necessary to isolate the response to salinity while keeping all other growth parameters constant. Here we show that the hydrogen isotope composition of lipids in the marine coccolithophorid Emiliania huxleyi grown in chemostats increased by 1.6 ± 0.3‰ ppt-1 (p huxleyi, which can be attributed to the fact that previous experiments were performed with batch cultures in which growth rates and other parameters differed between salinity treatments. The underlying cause of this response to salinity remains unknown, but may result from changes in (1) the proportion of lipid hydrogen derived from NADPH versus water, (2) the proportion of lipid hydrogen derived from NADPH from Photosystem I versus the oxidative pentose phosphate pathway (and other metabolic sources), or (3) the δ2H value of intracellular water.

  20. Time-series water temperature and salinity at the Hatfield Marine Science Center's in-building seawater system, January - August 2000 (NODC Accession 0001135)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water characteristics of Yaquina Bay and Hatfield Marine Science Center's in-building seawater system, measured every six minutes since 1988. Tide height data is...

  1. Time-series water temperature and salinity at the Hatfield Marine Science Center's in-building seawater system, July 2002 - February 2003 (NODC Accession 0001119)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water characteristics of Yaquina Bay and Hatfield Marine Science Center's in-building seawater system, measured every six minutes since 1988. Tide height data is...

  2. GEOTRACES – An international study of the global marine biogeochemical cycles of trace elements and their isotopes

    OpenAIRE

    Henderson, G.M.; Anderson, R.F.; Adkins, J.; Andersson, P.; Boyle, E.A.; Cutter, Greg; Baar, H. de; Eisenhauer, Anton; Frank, Martin; Francois, R.; Orians, Kristin; Gamo, T.; German, C.; Jenkins, W.; Moffett, J.

    2007-01-01

    Trace elements serve important roles as regulators of ocean processes including marine ecosystem dynamics and carbon cycling. The role of iron, for instance, is well known as a limiting micronutrient in the surface ocean. Several other trace elements also play crucial roles in ecosystem function and their supply therefore controls the structure, and possibly the productivity, of marine ecosystems. Understanding the biogeochemical cycling of these micronutrients requires knowledge of their div...

  3. Biological cycling of elements and stable isotopes in marine environments. Progress report, April 1, 1972-May 1, 1973

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, I. R.

    1973-01-01

    Research effort was directed toward four projects: development of a rapid technique for the measurement of total uranium content in marine sediments; understanding of the quantitative aspects involved in the anaerobic degradation of organic matter on the sea floor; evaluation of the magnitude of ionic diffusion constants in marine sediments; and development of a rapid monitoring system for dissolved sulfate in sea water and sediments to determine pollution of the ocean floor.

  4. Constraining calcium isotope fractionation (δ44/40Ca) in modern and fossil scleractinian coral skeleton

    OpenAIRE

    Pretet, Chloé; Samankassou, Elias; Felis, Thomas; Reynaud, Stéphanie; Böhm, Florian; Eisenhauer, Anton; Ferrier-Pagès, Christine; Gattuso, Jean-Pierre; Camoin, Gilbert

    2013-01-01

    The present study investigates the influence of environmental (temperature, salinity) and biological (growth rate, inter-generic variations) parameters on calcium isotope fractionation (δ44/40Ca) in scleractinian coral skeleton to better constrain this record. Previous studies focused on the δ44/40Ca record in different marine organisms to reconstruct seawater composition or temperature, but only few studies investigated corals. This study presents measurements performed on modern corals f...

  5. Radioactivity in the Marine Environment. Chapter 1

    International Nuclear Information System (INIS)

    Zal U'yun Wan Mahmood; Abdul Kadir Ishak; Norfaizal Mohamad; Wo, Y.M.; Kamarudin Samuding

    2015-01-01

    Radionuclide (radioactive isotopes or radioisotopes is widely distributed on the ground primarily in marine environments. Nowadays, more than 340 isotopes has been identified exist in our earth especially in marine environment. From that total, 80 isotopes was radioactive. The existence of radioactivity in the marine environment is through the direct and indirect distribution of radionuclides

  6. Application of Isotope Dilution Mass Spectrometry for Reference Measurements of Cadmium. Copper, Mercury, Lead, Zinc and Methyl Mercury in Marine Sediment Sample

    Directory of Open Access Journals (Sweden)

    Vasileva E.

    2013-04-01

    Full Text Available Marine sediment was selected as a test sample for the laboratory inter-comparison studies organized by the Environment Laboratoryes of the International Atomic Energy. The analytical procedure to establish the reference values for the Cd, Cu, Hg, Methyl Hg, Pb and Zn amount contents was based on Isotope Dilution Inductively Coupled Plasma-Mass Spectrometry (ID ICP-MS applied as a primary method of measurement..The Hg and Methyl Hg determination will be detailed more specifically because of the problems encountered with this element, including sample homogeneity issues, memory effects and possible matrix effects during the ICP- MS measurement stage. Reference values, traceable to the SI, with total uncertainties of less than 2% relative expanded uncertainty (k=2 were obtained for Cd, Cu, Zn and Pb and around 5% for Hg and CH3Hg.

  7. The chromium isotopic composition of an Early to Middle Ordovician marine carbonate platform, eastern Precordillera, San Juan, Argentina

    DEFF Research Database (Denmark)

    D'Arcy, Joan Mary; Frei, Robert; Gilleaudeau, Geoffrey Jon

    A broad suite of redox proxy data suggest that despite ocean and atmosphere oxygenation in the late Neoproterozoic, euxinic conditions persisted in the global deep oceans until the at least Ordovician [1,2,3]. Major changes in the sulphur isotopic composition of carbonate associated sulphate and ...

  8. The use of isotope techniques to investigate saltwater intruded aquifers in the Philippines

    International Nuclear Information System (INIS)

    Peralta, G.L.

    1988-01-01

    Studies in Metro Manila area have identified inland bodies of saline water which have been called ''connate water''. It has been refered to in literature as saline water occurring inland at a range of depths, in close association with freshwater. The relationships between these various bodies of saline water are not clear and for groundwater development planning it would be useful to determine whether the inland cases are a series of small isolated residual bodies from the last marine transgression or parts of a large continuous saline body. Furthermore the origin and mechanism of natural groundwater recharges are often not clear from the chemical and hydrogeological data as in the island of Cebu. In these circumstances it was recommended that useful planning data be obtained from a study of the concentrations of natural isotopes in the groundwater, particularly in the areas of Manila, Cebu and Bulacan-Pampanga. (author)

  9. Effects of low environmental salinity on the cellular profiles and expression of Na+, K+-ATPase and Na+, K+, 2Cl- cotransporter 1 of branchial mitochondrion-rich cells in the juvenile marine fish Monodactylus argenteus.

    Science.gov (United States)

    Kang, Chao-Kai; Liu, Fu-Chen; Chang, Wen-Been; Lee, Tsung-Han

    2012-06-01

    The goal of this study was to determine the osmoregulatory ability of a juvenile marine fish, silver moony (Monodactylus argenteus), for the purpose of developing a new experimental species for ecophysiological research. In this study, M. argenteus was acclimated to freshwater (FW), brackish water (BW), or seawater (SW). The salinity tolerance of this euryhaline species was effective, and the fish survived well upon osmotic challenges. The largest apical surface of mitochondrion-rich cells was found in the FW individuals. Immunohistochemical staining revealed that Na(+), K(+)-ATPase immunoreactive (NKA-IR) cells were distributed in the interlamellar region of the gill filaments of the silver moony in all experimental groups. In addition to the filaments, NKA-IR cells were also found in the lamellae of the FW individuals. The number of NKA-IR cells in the gills of the FW individuals exceeded that of the BW and SW individuals. The NKA-IR cells of FW and SW individuals exhibited bigger size than that of BW fish. The NKA activities and protein expression of the NKA α-subunit in the gills of the FW individuals were significantly higher than in the BW and SW groups. Additionally, the relative amounts of Na(+), K(+), 2Cl(-) cotransporter 1 (NKCC1) were salinity-dependent in the gills. Immunofluorescent signals of NKCC1 were localized to the basolateral membrane of NKA-IR cells in all groups. In the gills of the FW individuals, however, some NKA-IR cells did not exhibit a basolateral NKCC1 signal. In conclusion, the present study illustrated the osmoregulatory mechanisms of this easy- and economic-to-rear marine teleost with euryhaline capacity and proved the silver moony to be a good experimental animal.

  10. Seasonal variations in the nitrogen isotope composition of Okinotori coral in the tropical western Pacific: A new proxy for marine nitrate dynamics

    Science.gov (United States)

    Yamazaki, Atsuko; Watanabe, Tsuyoshi; Ogawa, Nanako O.; Ohkouchi, Naohiko; Shirai, Kotaro; Toratani, Mitsuhiro; Uematsu, Mitsuo

    2011-12-01

    To demonstrate the utility of coral skeletons as a recorder of nitrate dynamics in the surface ocean, we collected coral skeletons of Porites lobata and determined their nitrogen isotope composition (δ15Ncoral) from 2002 to 2006. Skeletons were collected at Okinotori Island in southwestern Japan, far from any sources of terrestrial nitrogen. Nitrogen isotope compositions along the growth direction were determined at 800 μm intervals (˜1 month resolution) and compared against the skeletal carbon isotope composition (δ13Ccoral-carb), barium/calcium ratio (Ba/Ca), and Chlorophyll-a concentration (Chl-a). From 2002 to 2004, ratios of the δ15Ncoral varied between +0.8 and +8.3‰ with inverse variation to SST (r = -0.53). Ba/Ca ratios and Chl-a concentrations were also observed to be high during seasons with low SST. These results suggested that the vertical mixing that occurs during periods of low SST carries nutrients from deeper water (δ15NDIN; +5˜+6‰) to the sea surface. In 2005 onward, δ15Ncoral and Ba/Ca ratios also had positive peaks even in high SST during periods of transient upwelling caused by frequent large typhoons (maximum wind speed 30 m/s). In addition, low δ15Ncoral (+0.8˜+2.0‰) four months after the last typhoon implied nitrogen fixation because of the lack of typhoon upwelling through the four years record of δ15Ncoral. Variations in the δ13Ccoral-carb and δ15Ncoral were synchronized, suggesting that nitrate concentration could control zooxanthellae photosynthesis. Our results suggested that δ15Ncoral holds promise as a proxy for reconstructing the transport dynamics of marine nitrate and thus also a tool for estimating nitrate origins in the tropical and subtropical oceans.

  11. Isotopic identification of natural vs. anthropogenic lead sources in marine sediments from the inner Ria de Vigo (NW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Iglesias, P., E-mail: palvarez@uvigo.es [Department of Marine Geosciences and Land Use Management, Faculty of Marine Sciences, University of Vigo (Spain); Laboratorio de Analisis Quimico Instrumental, C.A.C.T.I., Universidad de Vigo (Spain); Rubio, B., E-mail: brubio@uvigo.es [Department of Marine Geosciences and Land Use Management, Faculty of Marine Sciences, University of Vigo (Spain); Millos, J., E-mail: jmillos@uvigo.es [Laboratorio de Analisis Quimico Instrumental, C.A.C.T.I., Universidad de Vigo (Spain)

    2012-10-15

    San Simon Bay, the inner part of the Ria de Vigo (NW Spain), an area previously identified as highly polluted by Pb, was selected for the application of Pb stable isotope ratios as a fingerprinting tool in subtidal and intertidal sediment cores. Lead isotopic ratios were determined by inductively coupled plasma mass spectrometry on extracts from bulk samples after total acid digestion. Depth-wise profiles of {sup 206}Pb/{sup 207}Pb, {sup 206}Pb/{sup 204}Pb, {sup 207}Pb/{sup 204}Pb, {sup 208}Pb/{sup 204}Pb and {sup 208}Pb/{sup 207}Pb ratios showed, in general, an upward decrease for both intertidal and subtidal sediments as a consequence of the anthropogenic activities over the last century, or centuries. Waste channel samples from a nearby ceramic factory showed characteristic Pb stable isotope ratios different from those typical of coal and petrol. Natural isotope ratios from non-polluted samples were established for the study area, differentiating sediments from granitic or schist-gneiss sources. A binary mixing model employed on the polluted samples allowed estimating the anthropogenic inputs to the bay. These inputs represented between 25 and 98% of Pb inputs in intertidal samples, and 9-84% in subtidal samples, their contributions varying with time. Anthropogenic sources were apportioned according to a three-source model. Coal combustion-related emissions were the main anthropogenic source Pb to the bay (60-70%) before the establishment of the ceramic factory in the area (in the 1970s) which has since constituted the main source (95-100%), followed by petrol-related emissions. The Pb inputs history for the intertidal area was determined for the 20th century, and, for the subtidal area, the 19th and 20th centuries. -- Highlights: Black-Right-Pointing-Pointer Pb stable isotope ratios were applied to study Pb sources in coastal sediments. Black-Right-Pointing-Pointer Pb isotopic ratios were determined for pre-pollution and for industrial samples. Black

  12. The marine cyanobacterium

    NARCIS (Netherlands)

    Pade, N.; Compaoré, J.; Klähn, S.; Stal, L.J.; Hagemann, M.

    2012-01-01

    Compatible solutes are small organic molecules that are involved in the acclimation to various stresses such as temperature and salinity. Marine or moderate halotolerant cyanobacteria accumulate glucosylglycerol, while cyanobacteria with low salt tolerance (freshwater strains) usually accumulate

  13. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand

    International Nuclear Information System (INIS)

    Rogers, Karyne M.

    2003-01-01

    Stable carbon and nitrogen isotopes have been used to assess sewage contamination of a sewage outfall, discharging milli-screened effluent into Moa Point Bay, New Zealand, and monitor the recovery of flora and fauna after the outfall's closure. An initial study characterising the extent of the discharge and the effects on seaweed (Ulva lactuca L.), blue mussels (Mytilus galloprovincialis) and limpets (Cellana denticulata) from the area, showed effects of the sewage discharge on flora and fauna were localised within in the bay. The immediate area surrounding the discharge area was found to contain limited biodiversity, with an abundance of Ulva lactuca, a bright green lettuce-like seaweed, typically found in areas with high nutrient input, limpets and small blue mussels. The nitrogen isotopic signature (δ 15 N) is shown to be a good tracer of sewage pollution in seaweed and associated grazers (i.e. limpets) as a result of the increased contribution of urea and ammonia to seawater nitrogen derived from the effluent. The carbon isotopic signature (δ 13 C) is suggested as a more appropriate sewage tracer for mussels, which filter feed the effluent's particulate organic matter from the water. Lower carbon:nitrogen ratios were found in Ulva lactuca sampled from around the outfall region compared to uncontaminated control sites. However carbon:nitrogen ratios do not vary significantly amongst shellfish species. After closure, monitoring continued for 9 months and showed that the carbon and nitrogen isotopic signatures of algae (Ulva lactuca L.) returned to similar control site levels within 3 months. Limpet and blue mussels (Cellana denticulata and Mytilus galloprovincialis) showed slower recovery times than the Ulva lactuca, with detectable levels of the sewage-derived carbon and nitrogen remaining in the animal's tissue for up to 9 months

  14. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Karyne M

    2003-07-01

    Stable carbon and nitrogen isotopes have been used to assess sewage contamination of a sewage outfall, discharging milli-screened effluent into Moa Point Bay, New Zealand, and monitor the recovery of flora and fauna after the outfall's closure. An initial study characterising the extent of the discharge and the effects on seaweed (Ulva lactuca L.), blue mussels (Mytilus galloprovincialis) and limpets (Cellana denticulata) from the area, showed effects of the sewage discharge on flora and fauna were localised within in the bay. The immediate area surrounding the discharge area was found to contain limited biodiversity, with an abundance of Ulva lactuca, a bright green lettuce-like seaweed, typically found in areas with high nutrient input, limpets and small blue mussels. The nitrogen isotopic signature ({delta}{sup 15}N) is shown to be a good tracer of sewage pollution in seaweed and associated grazers (i.e. limpets) as a result of the increased contribution of urea and ammonia to seawater nitrogen derived from the effluent. The carbon isotopic signature ({delta}{sup 13}C) is suggested as a more appropriate sewage tracer for mussels, which filter feed the effluent's particulate organic matter from the water. Lower carbon:nitrogen ratios were found in Ulva lactuca sampled from around the outfall region compared to uncontaminated control sites. However carbon:nitrogen ratios do not vary significantly amongst shellfish species. After closure, monitoring continued for 9 months and showed that the carbon and nitrogen isotopic signatures of algae (Ulva lactuca L.) returned to similar control site levels within 3 months. Limpet and blue mussels (Cellana denticulata and Mytilus galloprovincialis) showed slower recovery times than the Ulva lactuca, with detectable levels of the sewage-derived carbon and nitrogen remaining in the animal's tissue for up to 9 months.

  15. Salinity changes and anoxia resulting from enhanced run-off during the late Permian global warming and mass extinction event

    Directory of Open Access Journals (Sweden)

    E. E. van Soelen

    2018-04-01

    in salinity can only be explained by increased run-off. High amounts of both terrestrial and marine organic fragments in the first anoxic layers suggest that high run-off, increased nutrient availability, possibly in combination with soil erosion, are responsible for the development of anoxia in the basin. Enhanced run-off could result from changes in the hydrological cycle during the late Permian extinction event, which is a likely consequence of global warming. In addition, vegetation destruction and soil erosion may also have resulted in enhanced run-off. Salinity stratification could potentially explain the development of anoxia in other shallow marine sites. The input of freshwater and related changes in coastal salinity could also have implications for the interpretation of oxygen isotope records and seawater temperature reconstructions at some sites.

  16. Salinity changes and anoxia resulting from enhanced run-off during the late Permian global warming and mass extinction event

    Science.gov (United States)

    van Soelen, Elsbeth E.; Twitchett, Richard J.; Kürschner, Wolfram M.

    2018-04-01

    explained by increased run-off. High amounts of both terrestrial and marine organic fragments in the first anoxic layers suggest that high run-off, increased nutrient availability, possibly in combination with soil erosion, are responsible for the development of anoxia in the basin. Enhanced run-off could result from changes in the hydrological cycle during the late Permian extinction event, which is a likely consequence of global warming. In addition, vegetation destruction and soil erosion may also have resulted in enhanced run-off. Salinity stratification could potentially explain the development of anoxia in other shallow marine sites. The input of freshwater and related changes in coastal salinity could also have implications for the interpretation of oxygen isotope records and seawater temperature reconstructions at some sites.

  17. Origin of Boron and Brine Evolution in Saline Springs in the Nangqen Basin, Southern Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Ji-long Han

    2018-01-01

    Full Text Available The Nangqen Basin is a typical shearing-extensional basin situated in the hinterland of the Tibetan Plateau. It contains abundant saline spring resources and abnormal trace element enrichments. The hydrochemical molar ratios (Na/Cl, B/Cl, and Br/Cl, H-O isotopes, and B isotopes of the saline spring were systematically measured to describe the evolution of brines and the origin of the boron. The sodium chloride coefficient of the water samples in this area is around 1.0 or slightly greater, which is characteristic of leached brines; the highest B/Cl value is 4.25 (greater than that of seawater. The Na/Cl, B/Cl, and Br/Cl values of the springs are clear indicators of a crustal origin. The δ18O values of the spring waters range from −12.88‰ to −16.05‰, and the δD values range from −100.91‰ to −132.98‰. Meanwhile the B content and B isotopes in the saline springs are in the ranges of 1.00 to 575.56 ppm and +3.55‰ to +29.59‰, respectively. It has been proven that the saline springs in the Nangqen Basin are a type of leached brine, suggesting that the saline springs have a terrestrial origin. The δ11B-B characteristics of the springs are similar to those observed in the Tibetan geothermal area, indicating that these two places have the same B source. Moreover, they have a crustal origin (marine carbonate rocks and volcanic rocks instead of a deep mantle source.

  18. Salinization of porewater in a multiple aquitard-aquifer system in Jiangsu coastal plain, China

    Science.gov (United States)

    Li, Jing; Liang, Xing; Zhang, Yanian; Liu, Yan; Chen, Naijia; Abubakari, Alhassan; Jin, Menggui

    2017-12-01

    Chemical and isotopic compositions were analyzed in porewater squeezed from a clayey aquitard in Jiangsu coastal plain, eastern China, to interpret the salinity origin, chemical evolution and water-mass mixing process. A strong geochemical fingerprint was obtained with an aligned Cl/Br ratio of 154 in the salinized aquitard porewater over a wide Cl- concentration range (396-9,720 mg/L), indicating that porewater salinity is likely derived from a mixing with old brine with a proportion of less than 20%. Very small contributions of brine exerted limited effects on water stable isotopes. The relationships between porewater δ18O and δD indicate that shallow and intermediate porewaters could be original seawater and were subsequently diluted with modern meteoric water, whereas deep porewaters with depleted stable isotopic values were probably recharged during a cooler period and modified by evaporation and seawater infiltration. The cation-Cl relationship and mineralogy of associated strata indicate that porewater has been chemically modified by silicate weathering and ion-exchange reactions. 87Sr/86Sr ratios of 0.7094-0.7112 further confirm the input source of silicate minerals. Numerical simulations were used to evaluate the long-term salinity evolution of the deep porewater. The alternations of boundary conditions (i.e., the third aquifer mixed with brine at approximately 70 ka BP, followed by recharge of glacial meltwater at 20-25 ka BP, and then mixing with Holocene seawater at 7-10 ka BP) are responsible for the shift in porewater salinity. These timeframes correspond with the results of previous studies on ancient marine transgression-regression in Jiangsu coastal plain.

  19. Transfer of organic carbon through marine water columns to sediments – insights from stable and radiocarbon isotopes of lipid biomarkers

    OpenAIRE

    S. G. Wakeham; A. P. McNichol

    2014-01-01

    Compound-specific 13C and 14C compositions of diverse lipid biomarkers (fatty acids, alkenones, hydrocarbons, sterols and fatty alcohols) were measured in sinking particulate matter collected in sediment traps and from underlying surface sediments in the Black Sea, the Arabian Sea and the Ross Sea. The goal was to develop a multiparameter approach to constrain relative inputs of organic carbon (OC) from marine biomass, terrigenous vascular-plant and relict-kerogen sources. U...

  20. The dependence of entrainment and drizzle in marine stratiform clouds on biomass burning aerosols derived from stable isotope and thermodynamic profiles

    Science.gov (United States)

    Henze, D.; Noone, D.

    2017-12-01

    A third of the world's biomass burning aerosol (BBA) particles are generated in southern Africa, and these particles are swept into the midlevel troposphere over the southeast Atlantic Ocean. The presence of these aerosols over the marine environment of the south east Atlantic offers a unique natural laboratory for studying aerosol effects on climate, and specifically a modification to the hydrologic cycle and microphysical characteristics of clouds. Different rates of condensation with high aerosol numbers change the precipitation rates in drizzling stratiform clouds, while the mixing of aerosols into the cloud layer is synonymous with entrainment from above cloud top near the top of the subtropical inversion. To better understanding the magnitude of the aerosol influence on southeast Atlantic boundary layer clouds we analyze the cloud-top entrainment and drizzle as a function of aerosol loading to determine the impact of BBA. Entrainment was determined from mixing line analysis based on profile measurements of moist static energy, total water, and the two most common heavy isotopes of water - HDO and H218O. Data was collected on the P-3 Orion aircraft during the NASA 2017 ORACLES campaign. Using these measurements, a box model was constructed using the combined conservation laws associated with all four of these quantities to estimate the entrainment and rainout of cloud liquid. The population of profiles sampled by the aircraft over the course of the 30 day mission spans varying concentrations of BBA. Initial plots of the water isotope mixing lines show where and to what degree the BBA air mass has mixed into the boundary layer air mass from above. This is demonstrated by the fact that the mixing end-members are the same for the different areas sampled, but the rate at which the various mixing lines are traversed as a function of altitude varies. Further, the mixing lines as a function of height traverse back and forth between end members multiple times over one

  1. Productive use of saline lands

    International Nuclear Information System (INIS)

    2003-01-01

    Water is essential for life, and not least for agricultural activity. It interacts with solar energy to determine the climate of the globe, and its interaction with carbon dioxide inside a plant results in photosynthesis on which depends survival of all life. Much of the water available to man is used for agriculture and yet its usage has not been well managed. One result has been the build up of soil salinity. The Department of Technical Co-operation is sponsoring a programme, with technical support from the Department of Research and Isotopes, to make more productive use of salt-affected land and to limit future build up of salinity. (IAEA)

  2. Linking foraging strategies of marine calanoid copepods to patterns of nitrogen stable isotope signatures in a mesocosm study

    DEFF Research Database (Denmark)

    Sommer, Frank; Saage, A.; Santer, B.

    2005-01-01

    foraging mode and, further, with its nitrogen stable isotope signature (delta(15)N). This is because a more carnivorous diet may be expected to result in a higher delta(15)N. We tested this hypothesis in a mesocosm study using a density gradient (0 to 80 ind. 1(-1)) of calanoid copepods. We expected......The foraging modes of calanoid copepods differ in that stationary suspension-feeding is more easily detected by prey with strong escape responses (ciliates) than is 'cruising' or 'ambushing' feeding. Thus, the ability of a copepod to include heterotrophic prey in its diet may be associated with its...

  3. An ocean–ice coupled response during the last glacial: a view from a marine isotopic stage 3 record south of the Faeroe Shetland Gateway

    Directory of Open Access Journals (Sweden)

    J. Zumaque

    2012-12-01

    Full Text Available The rapid climatic variability characterising the Marine Isotopic Stage (MIS 3 (~60–30 cal ka BP provides key issues to understand the atmosphere–ocean–cryosphere dynamics. Here we investigate the response of sea-surface paleoenvironments to the MIS3 climatic variability through the study of a high resolution oceanic sedimentological archive (core MD99-2281, 60°21' N; 09°27' W; 1197 m water depth, retrieved during the MD114-IMAGES (International Marine Global Change Study cruise from the southern part of the Faeroe Bank. This sector was under the proximal influence of European ice sheets (Fennoscandian Ice Sheet to the East, British Irish Ice Sheet to the South during the last glacial and thus probably responded to the MIS3 pulsed climatic changes.

    We conducted a multi-proxy analysis of core MD99-2281, including magnetic properties, x-ray fluorescence measurements, characterisation of the coarse (>150 μm lithic fraction (grain concentration and the analysis of selected biogenic proxies (assemblages and stable isotope ratio of calcareous planktonic foraminifera, dinoflagellate cyst – e.g. dinocyst – assemblages. Results presented here are focussed on the dinocyst response, this proxy providing the reconstruction of past sea-surface hydrological conditions, qualitatively as well as quantitatively (e.g. transfer function sensu lato. Our study documents a very coherent and sensitive oceanic response to the MIS3 rapid climatic variability: strong fluctuations, matching those of stadial/interstadial climatic oscillations as depicted by Greenland ice cores, are recorded in the MD99-2281 archive. Proxies of terrigeneous and detritical material suggest increases in continental advection during Greenland Stadials (including Heinrich events, the latter corresponding also to southward migrations of polar waters. At the opposite, milder sea-surface conditions seem to develop during Greenland Interstadials. After 30 ka

  4. {sup 127}I and {sup 129}I/{sup 127}I isotopic ratio in marine alga Fucus virsoides from the North Adriatic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Osterc, Andrej [Department of Environmental Sciences, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Stibilj, Vekoslava [Department of Environmental Sciences, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)], E-mail: vekoslava.stibilj@ijs.si

    2008-04-15

    The only stable iodine isotope is {sup 127}I and the natural {sup 129}I/{sup 127}I ratio in the biosphere has increased from 10{sup -15}-10{sup -14} to 10{sup -10}-10{sup -9}, mainly due to emissions from nuclear fuel reprocessing plants. In Europe they are located at La Hague (France) and Sellafield (England), where the ratio of {sup 129}I/{sup 127}I is up to 10{sup -4}. The marine environment, i.e. the oceans, is the major source of iodine with average concentrations of around 60 {mu}g L{sup -1} iodine in seawater. Brown algae accumulate iodine at high levels of up to 1.0% of dry weight, and therefore they are an ideal bioindicator for studying the levels of {sup 127}I and {sup 129}I in the marine environment. A radiochemical neutron activation analysis (RNAA) method, developed at our laboratory, was used for {sup 129}I determination in the brown alga Fucus virsoides (Donati) J. Agardh, and the same technique of RNAA was used for total {sup 127}I determination. The samples were collected along the coast of the Gulf of Trieste and the West coast of Istria in the North Adriatic Sea in the period from 2005 to 2006. Values of the {sup 129}I/{sup 127}I ratio up to 10{sup -9} were found, which is in agreement with the present average global distribution of {sup 129}I. The levels of stable iodine found were in the range from 235 to 506 {mu}g g{sup -1} and the levels of {sup 129}I from 1.7 to 7.3 x 10{sup -3} Bq kg{sup -1} (2.6-10.9 x 10{sup -7} {mu}g g{sup -1}), on a dry matter basis.

  5. N2-fixation in fababean (vicia faba l.) grown in saline and non saline conditions using 15N tracer technique

    International Nuclear Information System (INIS)

    Khalifa, Kh.; Kurdali, F.

    2002-09-01

    A pot experiment was conducted to study the performance of growing fababean and barley under saline conditions, in terms of, dry matter yield, total nitrogen and, percentages and amount of N derived from soil, fertilizer and atmosphere using 15 N isotope dilution method. Three saline treatments were performed: First, plants were grown in saline soil and irrigated with saline water (Ws Ss), Second, Plants were grown in saline soil and irrigated with saline water (Ws Ss); and Third, Plants grown in non saline soil and irrigated with saline water (Ws Sn). Furthermore, a control treatment was performed by using non-saline soil and non-saline water (Wn Sn). The different salinity treatments reduced plant growth and the reduction was more pronounced in fababean than in barley. However, under conditions of either saline soil-soft irrigation water or non saline soil-salty irrigation water, the relative growth reduction did not exceed 50% of the control; whereas, a significant negative effect was obtained when plants were grown under completely saline conditions of both soil and irrigation water. Percentage of N 2 -fixed (% Ndfa) was not negatively affected by saline conditions. However, our results clearly demonstrated that the effect of salinity in fababean was more evident on plant growth than on N 2 -fixing activity. Further studies are needed to obtain more salt tolerant faba bean genotypes in terms of growth and yield. This could be simultaneously improve yield and N 2 -fixation under sever saline conditions. (author)

  6. Evidence for millennial-scale climate change during marine isotope stages 2 and 3 at Little Lake, Western Oregon, U.S.A.

    Science.gov (United States)

    Grigg, L.D.; Whitlock, C.; Dean, W.E.

    2001-01-01

    Pollen and geochemical data from Little Lake, western Oregon, suggest several patterns of millennial-scale environmental change during marine isotope stage (MIS) 2 (14,100-27,600 cal yr B.P.) and the latter part of MIS 3 (27,600-42,500 cal yr B.P.). During MIS 3, a series of transitions between warm- and cold-adapted taxa indicate that temperatures oscillated by ca. 2??-4??C every 1000-3000 yr. Highs and lows in summer insolation during MIS 3 are generally associated with the warmest and coldest intervals. Warm periods at Little Lake correlate with warm sea-surface temperatures in the Santa Barbara Basin. Changes in the strength of the subtropical high and the jet stream may account for synchronous changes at the two sites. During MIS 2, shifts between mesic and xeric subalpine forests suggest changes in precipitation every 1000-3000 yr. Increases in Tsuga heterophylla pollen at 25,000 and 22,000 cal yr B.P. imply brief warmings. Minimum summer insolation and maximum global ice-volumes during MIS 2 correspond to cold and dry conditions. Fluctuations in precipitation at Little Lake do not correlate with changes in the Santa Barbara Basin and may be explained by variations in the strength of the glacial anticyclone and the position of the jet stream. ?? 2001 University of Washington.

  7. Sea-level records from the U.S. mid-Atlantic constrain Laurentide Ice Sheet extent during Marine Isotope Stage 3.

    Science.gov (United States)

    Pico, T; Creveling, J R; Mitrovica, J X

    2017-05-30

    The U.S. mid-Atlantic sea-level record is sensitive to the history of the Laurentide Ice Sheet as the coastline lies along the ice sheet's peripheral bulge. However, paleo sea-level markers on the present-day shoreline of Virginia and North Carolina dated to Marine Isotope Stage (MIS) 3, from 50 to 35 ka, are surprisingly high for this glacial interval, and remain unexplained by previous models of ice age adjustment or other local (for example, tectonic) effects. Here, we reconcile this sea-level record using a revised model of glacial isostatic adjustment characterized by a peak global mean sea level during MIS 3 of approximately -40 m, and far less ice volume within the eastern sector of the Laurentide Ice Sheet than traditional reconstructions for this interval. We conclude that the Laurentide Ice Sheet experienced a phase of very rapid growth in the 15 kyr leading into the Last Glacial Maximum, thus highlighting the potential of mid-field sea-level records to constrain areal extent of ice cover during glacial intervals with sparse geological observables.

  8. Environmental status of the Jilantai Basin, North China, on the northwestern margin of the modern Asian summer monsoon domain during Marine Isotope Stage 3

    Science.gov (United States)

    Fan, Yuxin; Wang, Yongda; Mou, Xuesong; Zhao, Hui; Zhang, Fu; Zhang, Fan; Liu, Wenhao; Hui, Zhengchuang; Huang, Xiaozhong; Ma, Jun

    2017-10-01

    Two drill cores were obtained from the Jilantai sub-depression (JLT(d)) and the neighboring Dengkou sub-uplift (DK(u)), within a huge, former lake basin in northern China. From an analysis of the lithology and pollen assemblages, combined with radiocarbon dating of extracted pollen and OSL dating of extracted quartz, we concluded the following: JLT(d) was continuously occupied by lakes since 85 ka; however, DK(u), the neighboring sub-uplift, was covered by lakes during 80-74 ka, 50-44 ka, 32.5-27.5 ka and DK(u) during Marine Isotope Stage (MIS) 3. Evidence from shorelines, previously published cores, and the sedimentary and chronological evidence presented in this paper indicate the occurrence of a sub-humid environment, characterized by the occurrence of lakes separated by dunes, in the Jilantai Basin during MIS 3. However, further work is needed to understand the environmental significance of the co-existence of lakes and dunes during MIS 3, although a sub-humid climate background during MIS 3 is supported by well-dated geological archives along the western front of the present-day Asian Summer Monsoon domain and its eastern extensional area.

  9. Removal of toxic chromium from aqueous solution, wastewater and saline water by marine red alga Pterocladia capillacea and its activated carbon

    Directory of Open Access Journals (Sweden)

    Ahmed El Nemr

    2015-01-01

    Full Text Available Pterocladia capillacea, a red marine macroalgae, was tested for its ability to remove toxic hexavalent chromium from aqueous solution. A new activated carbon obtained from P. capillacea via acid dehydration was also investigated as an adsorbent for toxic chromium. The experiments were conducted to study the effect of important parameters such as pH, chromium concentration and adsorbent weight. Batch equilibrium tests at different pH conditions showed that at pH 1.0, a maximum chromium uptake was observed for both inactivated dried red alga P. capillacea and its activated carbon. The maximum sorption capacities for dried red alga and its activated carbon were about 12 and 66 mgg−1, respectively, as calculated by Langmuir model. The ability of inactivated red alga P. capillacea and developed activated carbon to remove chromium from synthetic sea water, natural sea water and wastewater was investigated as well. Different isotherm models were used to analyze the experimental data and the models parameters were evaluated. This study showed that the activated carbon developed from red alga P. capillacea is a promising activated carbon for removal of toxic chromium.

  10. Statistical Classification Of the Environmental Isotopes and the Hydrochemical data in the main Shallow Coastal Aquifer System in North West, Egypt

    International Nuclear Information System (INIS)

    Nada, A.A.; AL-Gamal, S.A.

    1999-01-01

    Multivariate statistical analysis of hydrochemical data and environmental isotopes were used in differentiating ground waters of different types within the quaternary aquifer in the north western coast of Egypt. Three main groups of water types were differentiated, in close agreement with three isotopic water groups, based on field and laboratory studies. The first group includes the sodium bicarbonate water type of meteoric origin (cluster 1 in multivariate analysis and isotopic water group 1) whereas, the second group includes both sodium chloride and sodium sulphate waters.(cluster in multivariate analysis and isotopic group 2). The third group represents ground water of salt water intrusion whose water type is sodium chloride (cluster 111 and isotopic water groups 3) .The data show that salinity ranges from 385 mg/L representing very fresh water to 12260 mg/L representing water contaminated with marine water due to excessive pumping in some Localities.

  11. Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 3, Gastropoda (Vetigastropoda - Littorinimorpha)

    International Nuclear Information System (INIS)

    Beu, A.G.

    2010-01-01

    Three new species: Grandicrepidula hemispherica (Nukumaruan, S Hawke's Bay), Pelicaria Granttaylori (Mangapanian-early Nukumaruan, Wanganui-Hawke's Bay), Pelicaria arahura (Waipipian-early Mangapanian, Westland and Hawke's Bay). Drawings of marine species in Smith's (1874) three plates of New Zealand molluscan types are republished. Further Australian molluscs in Wanganui Basin: Sabia australis (Lamarck), Clanculus plebejus (Philippi), both early Nukumaruan. Further northern New Zealand molluscs in Wanganui Basin: Stephopoma roseum (Quoy and Gaimard), OIS 13, 9. Distinctive gastropods extinct at end Nukumaruan: Struthiolaria frazeri (Hutton), Taxonia suteri (Marwick). Taniella planisuturalis (Marwick) (Opoitian-Nukumaruan, southern NZ) and Trivia (Ellatrivia) zealandica (Kirk) (Nukumaruan, Hawke's Bay-Wanganui; Castlecliffian, North Canterbury) occur in Castlecliffian (OIS 15?) rocks at Whakatane. Cantharidella tessellate (A. Adams) and Risellopsis varia (Hutton), formerly Haweran, are recorded from Nukumaruan and Castlecliffian rocks, respectively. New fossil late Nukumaruan-early Castlecliffian records listed from Mikonui-1 offshore well, Westland, include Malluvium calcareum (Suter) and 10 other species. Other biostratigraphically useful gastropods: Calliostoma (Maurea) nukumaruense (Laws) (Mangapanian-OIS 17); Argobuccinum pustulosum (Lightfoot), Semicassis labiate (Perry) (both earliest in OIS 7). New synonymy: Zeacumantus perplexus (Marshall and Murdoch) =Z. lutulentus (Kiener); Pelicaria vermis (Martyn) =all named Nukumaruan-Recent forms (other than P. rugosa (Marwick) and P. granttaylori n. sp.); Trivia flora Marwick =T.zealandica Kirk. Taxonomy revised: Zelippistes benhami (Suter) (OIS 13 and 9 at Wanganui), distinguished from Lippistes and Separatista; Stiracolpus species, informally; Maoricrypta profunda (Hutton), Waipipian-early Castlecliffian (- OIS 19); M. radiata (Hutton) (=incurva Zittel,=hochetteriana Woods, =wilckensi Finlay), (Middle Miocene

  12. Fingerprinting groundwater salinity sources in the Gulf Coast Aquifer System, USA

    Science.gov (United States)

    Chowdhury, Ali H.; Scanlon, Bridget R.; Reedy, Robert C.; Young, Steve

    2018-02-01

    Understanding groundwater salinity sources in the Gulf Coast Aquifer System (GCAS) is a critical issue due to depletion of fresh groundwater and concerns for potential seawater intrusion. The study objective was to assess sources of groundwater salinity in the GCAS using ˜1,400 chemical analyses and ˜90 isotopic analyses along nine well transects in the Texas Gulf Coast, USA. Salinity increases from northeast (median total dissolved solids (TDS) 340 mg/L) to southwest (median TDS 1,160 mg/L), which inversely correlates with the precipitation distribution pattern (1,370- 600 mm/yr, respectively). Molar Cl/Br ratios (median 540-600), depleted δ2H and δ18O (-24.7‰, -4.5‰) relative to seawater (Cl/Br ˜655 and δ2H, δ18O 0‰, 0‰, respectively), and elevated 36Cl/Cl ratios (˜100), suggest precipitation enriched with marine aerosols as the dominant salinity source. Mass balance estimates suggest that marine aerosols could adequately explain salt loading over the large expanse of the GCAS. Evapotranspiration enrichment to the southwest is supported by elevated chloride concentrations in soil profiles and higher δ18O. Secondary salinity sources include dissolution of salt domes or upwelling brines from geopressured zones along growth faults, mainly near the coast in the northeast. The regional extent and large quantities of brackish water have the potential to support moderate-sized desalination plants in this location. These results have important implications for groundwater management, suggesting a current lack of regional seawater intrusion and a suitable source of relatively low TDS water for desalination.

  13. Physico-Chemical Study of the Separation of Calcium Isotopes by Chemical Exchange Between Amalgam and Salt Solutions; Etude physico-chimique de la separation des isotopes du calcium par echange chimique entre amalgame et solution saline

    Energy Technology Data Exchange (ETDEWEB)

    Duie, P; Dirian, G [Commissariat a l' Energie Atomique. Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1962-07-01

    In a preliminary study of the isotopic exchange between Ca amalgam and aqueous or organic solutions of Ca salts, the main parameters governing the feasibility of a separation process based on these systems such as separation factor, exchange kinetics, rate of decomposition of the amalgam were investigated. The separation factor between {sup 40}Ca and {sup 46}Ca was found to be of the order of 1.02. The rate of the exchange reaction is rather low for aqueous solutions, extremely low for organic solutions. The amalgam seems not to be attacked by dimethyl-formamide solutions; but it is rapidly decomposed by aqueous solutions of Ca halides. This decomposition is slow in the case of aqueous solutions of calcium formate and still slower for Ca(OH){sub 2}; however, except in particular conditions, the observed rate is often much higher, owing to interfering reactions between amalgam and water vapor contained in H{sub 2} bubbles. (authors) [French] On a fait une etude preliminaire, pour des systemes amalgame de calcium - solution aqueuse ou organique de sels de calcium, des principaux parametres pouvant intervenir dans l'application d'un procede d'echange a l'enrichissement isotopique du calcium: facteur de separation, cinetique de l'echange, cinetique de la decomposition de l'amalgame. Les facteurs de separation {sup 40}Ca-{sup 46}Ca sont de l'ordre de 1,02. L'echange est assez lent pour les solutions aqueuses, extremement lent pour les solutions organiques. La decomposition de l'amalgame est pratiquement inexistante avec les solutions dans le dimethyl- formamide, appreciable pour les solutions alcooliques, rapide pour les solutions aqueuses d'halogenures; elle est normalement lente pour les solutions aqueuses de formiate et surtout de chaux, mais la decomposition est en general acceleree par une reaction parasite entre l'amalgame et l'eau a l'etat vapeur, reaction que l'on n'evite dans des conditions tres particulieres. (auteurs)

  14. A high-resolution paleosecular variation record from Black Sea sediments indicating fast directional changes associated with low field intensities during marine isotope stage (MIS) 4

    Science.gov (United States)

    Nowaczyk, Norbert R.; Jiabo, Liu; Frank, Ute; Arz, Helge W.

    2018-02-01

    A total of nine sediment cores recovered from the Archangelsky Ridge in the SE Black Sea were systematically subjected to intense paleo- and mineral magnetic analyses. Besides 16 accelerator mass spectrometry (AMS) 14C ages available for another core from this area, dating was accomplished by correlation of short-term warming events during the last glacial monitored by high-resolution X-ray fluorescence (XRF) scanning as maxima in both Ca/Ti and K/Ti ratios in Black Sea sediments to the so-called 'Dansgaard-Oeschger events' recognized from Greenland ice cores. Thus, several hiatuses could be identified in the various cores during the last glacial/interglacial cycle. Finally, core sections documenting marine isotope stage (MIS) 4 at high resolution back to 69 ka were selected for detailed analyses. At 64.5 ka, according to obtained results from Black Sea sediments, the second deepest minimum in relative paleointensity during the past 69 ka occurred, with the Laschamp geomagnetic excursion at 41 ka being associated with the lowest field intensities. The field minimum during MIS 4 is associated with large declination swings beginning about 3 ka before the minimum. While a swing to 50°E is associated with steep inclinations (50-60°) according to the coring site at 42°N, the subsequent declination swing to 30°W is associated with shallow inclinations of down to 40°. Nevertheless, these large deviations from the direction of a geocentric axial dipole field (I = 61 °, D = 0 °) still can not yet be termed as 'excursional', since latitudes of corresponding virtual geomagnetic poles (VGP) only reach down to 51.5°N (120°E) and 61.5°N (75°W), respectively. However, these VGP positions at opposite sides of the globe are linked with VGP drift rates of up to 0.2° per year in between. These extreme secular variations might be the mid-latitude expression of a geomagnetic excursion with partly reversed inclinations found at several sites much further North in Arctic

  15. Centennial-scale vegetation dynamics and climate variability in SE Europe during Marine Isotope Stage 11 based on a pollen record from Lake Ohrid

    Science.gov (United States)

    Kousis, Ilias; Koutsodendris, Andreas; Peyron, Odile; Leicher, Niklas; Francke, Alexander; Wagner, Bernd; Giaccio, Biagio; Knipping, Maria; Pross, Jörg

    2018-06-01

    To better understand climate variability during Marine Isotope Stage (MIS) 11, we here present a new, centennial-scale-resolution pollen record from Lake Ohrid (Balkan Peninsula) derived from sediment cores retrieved during an International Continental Scientific Drilling Program (ICDP) campaign. Our palynological data, augmented by quantitative pollen-based climate reconstructions, provide insight into the vegetation dynamics and thus also climate variability in SE Europe during one of the best orbital analogues for the Holocene. Comparison of our palynological results with other proxy data from Lake Ohrid as well as with regional and global climate records shows that the vegetation in SE Europe responded sensitively both to long- and short-term climate change during MIS 11. The chronology of our palynological record is based on orbital tuning, and is further supported by the detection of a new tephra from the Vico volcano, central Italy, dated to 410 ± 2 ka. Our study indicates that MIS 11c (∼424-398 ka) was the warmest interval of MIS 11. The younger part of the interglacial (i.e., MIS 11b-11a; ∼398-367 ka) exhibits a gradual cooling trend passing over into MIS 10. It is characterized by considerable millennial-scale variability as inferred by six abrupt forest-contraction events. Interestingly, the first forest contraction occurred during full interglacial conditions of MIS 11c; this event lasted for ∼1.7 kyrs (406.2-404.5 ka) and was characterized by substantial reductions in winter temperature and annual precipitation. Most notably, it occurred ∼7 ka before the end of MIS 11c and ∼15 ka before the first strong ice-rafted debris event in the North Atlantic. Our findings suggest that millennial-scale climate variability during MIS 11 was established in Southern Europe already during MIS 11c, which is earlier than in the North Atlantic where it is registered only from MIS 11b onwards.

  16. Calcareous nannofossil evidence for Marine Isotope Stage 31 (1 Ma) in the AND-1B Core, ANDRILL McMurdo Ice Shelf Project (Antarctica).

    Science.gov (United States)

    Villa, G.; Persico, D.; Wise, S. W.; Gadaleta, A.

    2009-04-01

    , Thoracosphaera spp.. The presence of several Tertiary reworked species and rare Cretaceous reworked taxa are interpreted in terms of provenance. As the lower temperature limit for living calcareous nannoplankton is about 2.5°C, the presence of nannofossils from 86 to 96 mbsf, though rare, is an indication of ice-free and sea surface temperatures warmer than today, in the Ross Sea. The presence of numerous volcaniclastic units and biosiliceous sediments from 86.6 to 92.5 mbsf indicate an extended period of open-water conditions with no sea ice, beyond the calving line. An 40Ar/39Ar age of 1.014 ± 0.004 Ma on pumice at 85.50 mbsf confirms the age assignment given by diatom biostratigraphy (1.07 Ma) for this interval. Accordingly, the short normal magnetozone between 84.97 and 91.13 mbsf is correlated with the Jaramillo Subchron (C1r.1n) (Wilson et al., 2007). The presence of nannofossil in the biogenic interglacial sediments is consistent with warm episode of surface waters and open marine conditions during the Jaramillo subchron, at ~1 Ma, which corresponds with Marine isotope stage (MIS-31) (Naish et al., 2007). The "superinterglacial" associated with MIS 31 was the last significant warm interglacial of the obliquity-dominated world, and may represent a precursor to the high-amplitude eccentricity-dominated cycles that followed the mid-Pleistocene climate shift. Climate proxies from other studies from the Southern Ocean at ODP Site 1165 (Villa et al., 2008), at ODP Site 1094 (Scherer et al., 2008), and from the Antarctic margin in a shelly carbonate sequence at Cape Roberts 1 (Villa and Wise, 1998; Scherer et al., 2008) also support the idea of a warming event during this time, suggesting that it was extended around the Antarctic Continent. This in turn implies a total or partial collapse of McMurdo Ice Shelf and a concurrent shift or temporary dissipation of the Polar Front (Antarctic Convergence) and Antarctic Divergence that currently serve as barriers to the influx of

  17. Measurement of N2 fixation in Sesbania aculeata pers. and Sorghum bicolor L. grown in intercropping system, using sup 1 sup 5 N isotopic dilution technique. 1: Field evaluation under non-saline conditions

    International Nuclear Information System (INIS)

    Kurdali, F.; Khalifa, K.; Janat, M.

    2002-01-01

    A field experiment on Sesbania aculeata and Sorghum bicolor grown in mono cropping and in inter cropping systems was conducted under non-saline conditions (soil EC sub e 0.16, water EC sub w 1 ds/m/m) to evaluate dry matter production, total N yield, soil N uptake and N sub 2 -fixation using sup 1 sup 5 N isotope dilution method. Three different row ratios of sesbania (ses) and sorghum (sor) were subjected in the inter cropping system (2 ses: 1 sor; 1 ses: 1 sor and 1 ses: 2 sor row ratio). Dry matter yield of sole sorghum was higher than that of sole sesbania, and it was similar to that produced by the inter cropping treatments. However, total N yield of sole sorghum was significantly the lowest, with no differences being obtained between sole sesbania and inter cropping treatments. The LERs of total N yield were, in all cases, higher than 1, reflecting a greater advantage of inter cropping system in terms of land use efficiency. Percentages of N sub 2 fixation in the inter cropped sesbania were considerably enhanced compared with the pure stand of sesbania. This was mainly attributed to the depletion of soil N resulting from the greater apparent competitiveness of sorghum for soil N, and consequently, a greater dependence of sesbania on N sub 2 fixation. However, the degree of the intraspecific competition for soil N uptake was affected by the proportion of crops in the mixture, and it was considerably reduced in the 2 ses: 1 sor row ratio. This was demonstrated when an equal depletion of soil and fertilizer N uptake occurred for both crops. We excluded in all-inter cropping treatments the possibility of N transfer from sesbania to sorghum. Row inter cropping, with crops grown in alternation of two rows of sesbania with one row of sorghum, seemed to be the most adequate row ratio in terms of total N yield, LER, N sub 2 -fixation and soil N uptake balance of the component crops. (author)

  18. A Record of the Eastern Tropical Pacific of Water Column Structure Reorganization during the Rapid Climate Changes of Marine Isotope Stage 3.

    Science.gov (United States)

    Hendy, I. L.

    2007-05-01

    Little is known about the details of paleoceanographic changes in the Eastern Tropical Pacific (ETP) during marine isotope stage 3. Here we present a high resolution record of climate change from core ME0005A 10JC (15.7°N; 95.3°E, 1040 m water depth) collected in the Gulf of Tehuantepec spanning 48 to 38 Ka. Planktonic and benthic stable isotope records have been generated alongside Corg, carbonate, δ15N and trace metal concentrations of bulk sediments. Seasonal intense wind forced upwelling produces high Corg flux in the Gulf. In winter, high atmospheric pressures in the Gulf of Mexico and low pressures in the ETP (associated with the ITCZ) create a strong pressure gradient generally blocked by high mountains along the isthmus. A gap near the Gulf of Tehuantepec allows air to spill over into the Pacific creating a hurricane force wind (the Tehuanos) that pushes water off the broad shelf, producing non-Ekman upwelling. Corg production increases from 48 to 38 Ka in association with increasing nitrate utilization as indicated by increasing δ15N values. Conservative trace metals increase relative to non-conservative between 45 and 43 Ka simultaneously with shift to more positive benthic δ13C, while non-conservative (nutrient- like) metals increase after 43 Ka. A prominent short ~1‰ negative shift in benthic δ18O occurs at 44.5 Ka with a 0.5‰ positive step occurring at 43.5 Ka. Globigerina ruber records δ18O values of ~-1‰ between 46 and 45 Ka, decreasing by ~1‰ at 45 Ka, while δ13C values vary between 0 and 1‰. Globigerina bulloides records δ18O values of ~0.5‰ and δ13C of 1‰ between 46 and 45 Ka, but records δ18O values of ~-1‰ and δ13C of -1‰ between 44 and 42 Ka. G. bulloides is associated with winter upwelling in the region, while G. ruber is a surface dweller associated with the Costa Rica Current that enters the Gulf in summer. Neogloboquadrina dutertrei and Globorotalia menardii generally record δ18O values of 0.5 to 0‰ and δ13

  19. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries.

    Science.gov (United States)

    Webster, Gordon; Watt, Lynsey C; Rinna, Joachim; Fry, John C; Evershed, Richard P; Parkes, R John; Weightman, Andrew J

    2006-09-01

    Marine sediment slurries enriched for anaerobic, sulfate-reducing prokaryotic communities utilizing glucose and acetate were used to provide the first comparison between stable-isotope probing (SIP) of phospholipid fatty acids (PLFA) and DNA (16S rRNA and dsrA genes) biomarkers. Different 13C-labelled substrates (glucose, acetate and pyruvate) at low concentrations (100 microM) were used over a 7-day incubation to follow and identify carbon flow into different members of the community. Limited changes in total PLFA and bacterial 16S rRNA gene DGGE profiles over 7 days suggested the presence of a stable bacterial community. A broad range of PLFA were rapidly labelled (within 12 h) in the 13C-glucose slurry but this changed with time, suggesting the presence of an active glucose-utilizing population and later development of another population able to utilize glucose metabolites. The identity of the major glucose-utilizers was unclear as 13C-enriched PLFA were common (16:0, 16:1, 18:1omega7, highest incorporation) and there was little difference between 12C- and 13C-DNA 16S rRNA gene denaturing gradient gel electrophoresis (DGGE) profiles. Seemingly glucose, a readily utilizable substrate, resulted in widespread incorporation consistent with the higher extent of 13C-incorporation (approximately 10 times) into PLFA compared with 13C-acetate or 13C-pyruvate. 13C-PLFA in the 13C-acetate and 13C-pyruvate slurries were similar to each other and to those that developed in the 13C-glucose slurry after 4 days. These were more diagnostic, with branched odd-chain fatty acids (i15:0, a15:0 and 15:1omega6) possibly indicating the presence of Desulfococcus or Desulfosarcina sulfate-reducing bacteria (SRB) and sequences related to these SRB were in the 13C-acetate-DNA dsrA gene library. The 13C-acetate-DNA 16S rRNA gene library also contained sequences closely related to SRB, but these were the acetate-utilizing Desulfobacter sp., as well as a broad range of uncultured Bacteria. In

  20. Climate and environments during Marine Isotope Stage 11 in the central Iberian Peninsula: the herpetofaunal assemblage from the Acheulean site of Áridos-1, Madrid

    Science.gov (United States)

    Blain, Hugues-Alexandre; Santonja, Manuel; Pérez-González, Alfredo; Panera, Joaquin; Rubio-Jara, Susana

    2014-06-01

    The interglacial episodes of the Quaternary Period are currently the focus of a great deal of attention within the scientific community, primarily because they can help us to understand how the climate of the current interglacial may have evolved without human intervention and to assess the impact of these climate changes on ecological systems. In the central Iberian Peninsula, the archaeological site of Áridos-1 (Arganda, Madrid), with numeric dates of 379.7 ± 45 ka obtained by AAR for the upper part of the sedimentological unit of Arganda I, in combination with the evolved state of the small mammals, has been chronologically attributed to Marine Isotope Stage (MIS) 11. Given the diversified faunal assemblages delivered by the 1976 excavations, Áridos-1 is probably one of the best terrestrial candidates for an understanding of the climatic and environmental conditions that prevailed in central Spain during the MIS 11 interglacial. In consequence, the fossil amphibians and squamate reptiles stored in the collections of the Museo Arqueológico Nacional of Madrid have been newly described and quantified in order to apply the mutual climatic range and habitat weighting methods for estimating quantitative data. The Mediterranean climate is shown to have been warmer and wetter than today in central Spain during MIS 11, with the mean annual temperature 1.7 °C higher and mean annual precipitation 223.9 mm higher than at present. The monthly climatic reconstruction shows differences in the distribution of precipitation over the course of the year, with more abundant precipitation during the winter months, at the beginning of spring and at the end of fall (from October to March) and less precipitation than today during the summer months and at the end of spring (from May to August), suggesting stronger rainfall seasonality between winter and summer than currently occurs. Such climate reconstruction is consistent with other European MIS 11 paleoclimatic records. The

  1. Ground-water pollution determined by boron isotope systematics

    International Nuclear Information System (INIS)

    Vengosh, A.; Kolodny, Y.; Spivack, A.J.

    1998-01-01

    Boron isotopic systematics as related to ground-water pollution is reviewed. We report isotopic results of contaminated ground water from the coastal aquifers of the Mediterranean in Israel, Cornia River in north-western Italy, and Salinas Valley, California. In addition, the B isotopic composition of synthetic B compounds used for detergents and fertilizers was investigated. Isotopic analyses were carried out by negative thermal ionization mass spectrometry. The investigated ground water revealed different contamination sources; underlying saline water of a marine origin in saline plumes in the Mediterranean coastal aquifer of Israel (δ 11 B=31.7 per mille to 49.9 per mille, B/Cl ratio ∼1.5x10 -3 ), mixing of fresh and sea water (25 per mille to 38 per mille, B/Cl∼7x10 -3 ) in saline water associated with salt-water intrusion to Salinas Valley, California, and a hydrothermal contribution (high B/Cl of ∼0.03, δ 11 B=2.4 per mille to 9.3 per mille) in ground water from Cornia River, Italy. The δ 11 B values of synthetic Na-borate products (-0.4 per mille to 7.5 per mille) overlap with those of natural Na-borate minerals (-0.9 per mille to 10.2 per mille). In contrast, the δ 11 B values of synthetic Ca-borate and Na/Ca borate products are significantly lower (-15 per mille to -12.1 per mille) and overlap with those of the natural Ca-borate minerals. We suggest that the original isotopic signature of the natural borate minerals is not modified during the manufacturing process of the synthetic products, and it is controlled by the crystal chemistry of borate minerals. The B concentrations in pristine ground-waters are generally low ( 11 B=39 per mille), salt-water intrusion and marine-derived brines (40 per mille to 60 per mille) are sharply different from hydrothermal fluids (δ 11 B=10 per mille to 10 per mille) and anthropogenic sources (sewage effluent: δ 11 B=0 per mille to 10 per mille; boron-fertilizer: δ 11 B=-15 per mille to 7 per mille). some

  2. Geochemical approach of the salinization mechanisms of coastal aquifers - 14C - 226Ra chronologies

    International Nuclear Information System (INIS)

    Barbecot, F.

    1999-11-01

    Through time, coastal aquifers which constitute a great part of available fresh water resources from sedimentary basins in France, were submitted to changes in hydraulic gradients and hydrodynamic properties mainly due to discharge/recharge phases in response to sea level variations and/or anthropic forcing. Performed in the framework of the European program PALAEAUX ('Management of coastal aquifers in Europe, paleo-waters and natural controls'), this work aimed to understand the salinization process originating from the recharge/discharge conditions and recognized in three study aquifers: the calcareous Dogger aquifers along the Channel (Caen area), and the Atlantic coast (Marais Poitevin), and the Astian sandy aquifer (Cap d'Agde). Besides the conventional hydrogeological and hydrochemical methods, the main tools used are those of isotope geochemistry. For the three sites, the modern, fresh groundwaters are marked by the anthropisation of the recharge area. The evolution of isotopic signatures along a flow path depending on the mineralogy of the aquifer matrix, is linked to water-rock interactions such as cation exchange, and equilibrium with aluminosilicates. For the three study sites, the modern fresh groundwaters are marked by the anthropisation of the recharge area. The evolution of isotopic signatures along a flow path depending on the mineralogy of the aquifer matrix, is linked to water-rock interactions such as cation exchange, and equilibrium with aluminosilicates. Residence times of these fresh groundwater are from Present (Atlantic site) up to the 14 C detection limit (Channel site). Groundwater of the Astian aquifer belongs to Holocene, as determined by both 14 C and 226 Ra. From Present to 3 ka, 14 C and 226 Ra ages are coherent. Beyond, the discrepancy observed can be associated to the under-estimation of in- situ 226 Ra production, but more likely, to the 'buffer' effect of the matrix with respect to the 14 C isotopic equilibration. The salty waters

  3. Isotopic evaluation of ocean circulation in the Late Cretaceous North American seaway

    Science.gov (United States)

    Coulson, Alan B.; Kohn, Matthew J.; Barrick, Reese E.

    2011-12-01

    During the mid- and Late Cretaceous period, North America was split by the north-south oriented Western Interior Seaway. Its role in creating and maintaining Late Cretaceous global greenhouse conditions remains unclear. Different palaeoceanographic reconstructions portray diverse circulation patterns. The southward extent of relatively cool, low-salinity, low-δ18O surface waters critically distinguishes among these models, but past studies of invertebrates could not independently assess water temperature and isotopic compositions. Here we present oxygen isotopes in biophosphate from coeval marine turtle and fish fossils from western Kansas, representing the east central seaway, and from the Mississippi embayment, representing the marginal Tethys Ocean. Our analyses yield precise seawater isotopic values and geographic temperature differences during the main transition from the Coniacian to the early Campanian age (87-82 Myr), and indicate that the seaway oxygen isotope value and salinity were 2‰ and 3‰ lower, respectively, than in the marginal Tethys Ocean. We infer that the influence of northern freshwater probably reached as far south as Kansas. Our revised values imply relatively large temperature differences between the Mississippi embayment and central seaway, explain the documented regional latitudinal palaeobiogeographic zonation and support models with relatively little inflow of surface waters from the Tethys Ocean to the Western Interior Seaway.

  4. The Source Book of Marine Sciences.

    Science.gov (United States)

    Beakley, John C.; And Others

    Included is a teachers resource collection of 42 marine science activities for high school students. Both the biological and the physical factors of the marine environment are investigated, including the study of tides, local currents, microscope measuring, beaches, turbidity, sea water solids, pH, and salinity, marine bacteriology, microbiology,…

  5. Submarine Ground Water Discharge and Fate Along the Coast of Kaloko-Honokohau National Historical Park, Hawai'i:Part 2, Spatial and Temporal Variations in Salinity, Radium-Isotope Activity, and Nutrient Concentrations in Coastal Waters, December 2003-April 2006

    Science.gov (United States)

    Knee, Karen; Street, Joseph; Grossman, Eric E.; Paytan, Adina

    2008-01-01

    The aquatic resources of Kaloko-Honokohau National Historical Park, including rocky shoreline, fishponds, and anchialine pools, provide habitat to numerous plant and animal species and offer recreational opportunities to local residents and tourists. A considerable amount of submarine groundwater discharge was known to occur in the park, and this discharge was suspected to influence the park's water quality. Thus, the goal of this study was to characterize spatial and temporal variations in the quality and quantity of groundwater discharge in the park. Samples were collected in December 2003, November 2005, and April 2006 from the coastal ocean, beach pits, three park observation wells, anchialine pools, fishponds, and Honokohau Harbor. The activities of two Ra isotopes commonly used as natural ground-water tracers (223Ra and 224Ra), salinity, and nutrient concentrations were measured. Fresh ground water composed a significant proportion (8-47 volume percent) of coastal-ocean water. This percentage varied widely between study sites, indicating significant spatial variation in submarine groundwater discharge at small (meter to kilometer) scales. Nitrate + nitrite, phosphate, and silica concentrations were significantly higher in nearshore coastal-ocean samples relative to samples collected 1 km or more offshore, and linear regression showed that most of this difference was due to fresh ground-water discharge. High-Ra-isotope-activity, higher-salinity springs were a secondary source of nutrients, particularly phosphate, at Honokohau Harbor and Aiopio Fishtrap. Salinity, Ra-isotope activity, and nutrient concentrations appeared to vary in response to the daily tidal cycle, although little seasonal variation was observed, indicating that submarine ground-water discharge may buffer the park's water quality against the severe seasonal changes that would occur in a system where freshwater inputs were dominated by rivers and runoff. Ra-isotope-activity ratios indicated

  6. Carbon and oxygen stable isotope data as paleoenvironmental indicators for limestones from the Campos, Santos and Espirito Santo Basins, Brazil

    International Nuclear Information System (INIS)

    Takaki, T.; Rodrigues, R.

    1984-01-01

    Carbon and oxygen isotope data of limestones from Campos, Santos and Espirito Santo basins provided additional information on the sedimentation environments of these carbonates. The predominance of δ 13 C values between + 1,0 per mille and - 1,0 per mille samples from the Tertiary and the middle section of the Jiquia Stage (Lower Cretaceous) could indiccate, for both carbonate sequences, deposition in a normal marine environment. However, the absence of marine fossils in the Jiquia Stage but not in the Tertiary allows to suggest a normal marine environment for the latter and saline lakes for the former. More positive δ 13 C values in the upper portion of the Jiquia Stage and in the Alagoas Stage suggest a restricted marine environment, with a tendency to hypersalinity. During the Albian the carbonate sedimentation could have occurred in a marine enrironment with an above normal salinity, as indicated by values of δ 13 C between + 3,0 per mille and + 4,0 per mille. According to δ 18 O data, the surface waters were warm, with a tendency of becoming gradually cooler towards the top of the Tertiary. (Author) [pt

  7. Multiple water isotope proxy reconstruction of extremely low last glacial temperatures in Eastern Beringia (Western Arctic)

    NARCIS (Netherlands)

    Porter, Trevor J.; Froese, Duane G.; Feakins, Sarah J.; Bindeman, Ilya N.; Mahony, Matthew E.; Pautler, Brent G.; Reichart, Gert-Jan; Sanborn, Paul T.; Simpson, Myrna J.; Weijers, Johan W H

    2016-01-01

    Precipitation isotopes are commonly used for paleothermometry in high latitude regions. Here we present multiple water isotope proxies from the same sedimentary context - perennially frozen loess deposits in the Klondike Goldfields in central Yukon, Canada, representing parts of Marine Isotope

  8. Climate and isotopic tracers

    International Nuclear Information System (INIS)

    Jean-Baptiste, Ph.

    1997-01-01

    The applications of natural radioactivity and isotopic measurements in the sciences concerning Earth and its atmosphere, are numerous: carbon 14 dating with the Tandetron apparatus at the Cea, measurement of oxygen 18 in coral or sediment limestone for the determination of ocean temperature and salinity, carbon 14 dating of corals for the determination of sea level variations, deuterium content in polar ice-cap leads to temperature variations determination; isotopic measurements also enable the determination of present climate features such as global warming, oceanic general circulation

  9. Radiogenic isotope geochemistry of sedimentary and aquatic systems

    International Nuclear Information System (INIS)

    Stille, P.; Shields, G.

    1997-01-01

    The following topics are discussed: Basic principles of isotopic geochemistry; weathering; isotopic geochemistry of river water; isotopic geochemistry in the environment; isotopic composition of seawater past and present (Sr, Nd, Pb, Os, Ce); isotope geochemistry of detrital and authigenic clay minerals in marine sediemnts (Rb-Sr, K-Ar, O); the Sm-N isotope system in detrital and authigenic argillaceous sediments. (SR), provided they are of exceptional interest and focused on a single topic. (orig./SR)

  10. Radiogenic isotope geochemistry of sedimentary and aquatic systems

    Energy Technology Data Exchange (ETDEWEB)

    Stille, P.; Shields, G. [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Centre de Sedimentologie et Geochimie de la Surface

    1997-12-31

    The following topics are discussed: Basic principles of isotopic geochemistry; weathering; isotopic geochemistry of river water; isotopic geochemistry in the environment; isotopic composition of seawater past and present (Sr, Nd, Pb, Os, Ce); isotope geochemistry of detrital and authigenic clay minerals in marine sediemnts (Rb-Sr, K-Ar, O); the Sm-N isotope system in detrital and authigenic argillaceous sediments. (SR), provided they are of exceptional interest and focused on a single topic. (orig./SR)

  11. Intracellular Cadmium Isotope Fractionation

    Science.gov (United States)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  12. Isotopic composition on ground ice in Western Yamal (Marre-Sale

    Directory of Open Access Journals (Sweden)

    I. D. Streletskaya

    2013-01-01

    Full Text Available The profile of Quaternary sediments near Marre-Salle polar station, Western Yamal Peninsula, has large bodies of tabular ground ice. This profile is considered strata-typical and critical in understanding of paleogeographic conditions of the Arctic in Pleistocene-Holocene. However, interpretation of the profile is under discussion. It consists of two distinct strata: upper layer of 10–15 m thick represented by continental sediments and lower one with a thickness of more than 100 m represented by marine sediments. Lower layer of saline marine clays has lenses of tabular ground ice (more than 20 m thick, the bases of which are below the sea level. Upper continental layer is characterized by syngenetic ice-wedges of different generations. Samples were collected from ice-wedges and tabular ground ice for chemical and isotope analysis. The results of the analysis allow to reconstruct paleogeographic conditions of the sedimentation and freezing of Quaternary sediments. Heavy stable isotope content and relationship between oxygen and hydrogen isotopes show that the ice bodies in the lower layer were formed in-situ within the ground. In the upper layer, heavier isotope content found in younger ice-wedges relative to the old-generation wedges. Formation of massive syngenetic Upper-Pleistocene ice-wedges occurred in conditions of colder winter temperatures than at present. Syngenetic Holocene wedges were formed after Holocene Optimum under winter conditions similar to present. Younger ice wedges formed smaller polygons, were smaller and often were developing in the locations of the degraded old wedges. Results of the isotope analysis of various types of ground ice near Marre-Sale allow reconstructing changes of marine sedimentation to continental one around Kargino time (MIS 3 and changes in climatic conditions in Arctic in Late Pleistocene and Holocene.

  13. Comparison of the Sr isotopic signatures in brines of the Canadian and Fennoscandian shields

    International Nuclear Information System (INIS)

    Negrel, Philippe; Casanova, Joel

    2005-01-01

    A synthesis of Sr isotope data from shallow and deep groundwaters, and brines from the Fennoscandian and Canadian Shields is presented. A salinity gradient is evident in the water with concentrations varying from approximately 1-75 g L -1 below 1500 m depth in the Fennoscandian Shield and from 10 up to 300 g L -1 below 650 m depth in the Canadian Shield. Strontium isotope ratios were measured to assess the origin of the salinity and evaluate the degree of water-rock interaction in the systems. In both shields, the Sr concentrations are enriched relative to Cl, defining a positive trend parallel to the seawater dilution line and indicative of Sr addition through weathering processes. The depth distribution for Sr concentration increases strongly with increasing depth in both shields although the variation in Sr-isotope composition does not mirror that of Sr concentrations. Strontium-isotope compositions are presented for surface waters, and groundwaters in several sites in the Fennoscandian and Canadian Shields. Numerous mixing lines can be drawn reflecting water-rock interaction. A series of calculated lines links the surface end-members (surface water and shallow groundwater) and the deep brines; these mixing lines define a range of 87 Sr/ 86 Sr ratios for the deep brines in different selected sites. All sites show a specific 87 Sr/ 86 Sr signature and the occurrence of large 87 Sr/ 86 Sr variations is site specific in both shields. In Canadian Shield brines, the Sr isotope ratios clearly highlight large water rock interaction that increases the 87 Sr/ 86 Sr ratio from water that could have been of marine origin. In contrast to the Canadian Shield, groundwater does not occur in closed pockets in the Fennoscandian, and the well-constrained 87 Sr/ 86 Sr signatures in deep brines should correspond to a large, well-mixed and homogeneous water reservoir, whose Sr isotope signature results from water-rock interaction

  14. Isotopic characteristics of shells Mytilus galloprovincialis from eastern coastal area of Adriatic Sea

    Directory of Open Access Journals (Sweden)

    Tjaša Kanduč

    2006-06-01

    Full Text Available Samples of Mytilus galloprovincialis were collected from entire Eastern Adriatic coast to determine δ18O and δ13C performed on calcite and aragonite shell layers. The aim of this work was to check whether shells of M. galloprovincialis are good environmental indicators (water temperature, salinity. Based on measured isotopic composition of oxygen in shell layers and assumed isotopic composition in water temperatures of calcite and aragonite of shell layers were calculated. The calculated temperatures for M. galloprovincialis shell growth of calcite and aragonite shell layer are in good agreement with measured temperatures of sea water. According to our results of δ18O and δ13C in shell layers we canseparate the locations of the investigated area into three groups: those with more influence of fresh water, those with less influence of fresh water and those of marine environments.

  15. Scottish saline lagoons: Impacts and challenges of climate change

    Science.gov (United States)

    Angus, Stewart

    2017-11-01

    The majority of Scotland's saline lagoons are located on the low-lying coastlines of the Western Isles and the northern archipelagos of Orkney and Shetland, where recorded annual relative sea level rise rates are among the highest in Scotland. The sediment-impounded lagoons of Orkney and Shetland will either lose their impoundment and become incorporated in marine coastal waters, or become increasingly saline, as relative sea levels rise. The rock-basin lagoons of the Western Isles will retain their restricted exchange with the sea but will also become more saline with rising sea level. Specialist lagoonal organisms tend to have wide salinity tolerances but may succumb to competition from marine counterparts. In all areas, there are sufficient fresh-water inland water bodies with potential to be captured as lagoons to compensate for loss of extent and number, but the specialist lagoon biota tend to have limited dispersal powers. It is thus possible that they will be unable to transfer to their analogue sites before existing lagoons become fully marine, giving conservation managers the problem of deciding on management options: leave natural processes to operate without interference, manage the saline inflow to maintain the current salinity regime, or translocate lagoon organisms perceived as threatened by rising salinities. Timing of conversion and capture is unpredictable due to local topography and complications caused by variable stratification.

  16. Incorporation of diet information derived from Bayesian stable isotope mixing models into mass-balanced marine ecosystem models: A case study from the Marennes-Oleron Estuary, France

    Science.gov (United States)

    We investigated the use of output from Bayesian stable isotope mixing models as constraints for a linear inverse food web model of a temperate intertidal seagrass system in the Marennes-Oléron Bay, France. Linear inverse modeling (LIM) is a technique that estimates a complete net...

  17. Algal and archaeal polyisoprenoids in a recent marine sediment: Molecular isotopic evidence for anaerobic oxidation of methane RID C-7675-2009

    DEFF Research Database (Denmark)

    Bian, LQ; Hinrichs, KU; Xie, TM

    2001-01-01

    the sediment section is indicated by significant concentrations of 2,6,10,15,19-pentamethylicosane (PMI) and of ether-bound phytane and biphytane. The PMI reaches a minimum delta value of -47 parts per thousand well below the transition zone. Its isotopic depletion could reflect either methanogenic...

  18. Environmental isotopes investigation in groundwater of Challaghatta ...

    African Journals Online (AJOL)

    Administrator

    Radiogenic isotopes (3H and 14C) and stable isotope (18O) together with TDS, EC and salinity of water were used to ..... Tritium (3H). Relative dating of groundwater has been carried ... that falls to Earth has small amounts of tritium. During the.

  19. Fractionation of sulfur isotopes during heterogeneous oxidation of SO2 on sea salt aerosol: a new tool to investigate non-sea salt sulfate production in the marine boundary layer

    Directory of Open Access Journals (Sweden)

    S. Borrmann

    2012-05-01

    Full Text Available The oxidation of SO2 to sulfate on sea salt aerosols in the marine environment is highly important because of its effect on the size distribution of sulfate and the potential for new particle nucleation from H2SO4 (g. However, models of the sulfur cycle are not currently able to account for the complex relationship between particle size, alkalinity, oxidation pathway and rate – which is critical as SO2 oxidation by O3 and Cl catalysis are limited by aerosol alkalinity, whereas oxidation by hypohalous acids and transition metal ions can continue at low pH once alkalinity is titrated. We have measured 34S/32S fractionation factors for SO2 oxidation in sea salt, pure water and NaOCl aerosol, as well as the pH dependency of fractionation. Oxidation of SO2 by NaOCl aerosol was extremely efficient, with a reactive uptake coefficient of ≈0.5, and produced sulfate that was enriched in 32S with αOCl = 0.9882±0.0036 at 19 °C. Oxidation on sea salt aerosol was much less efficient than on NaOCl aerosol, suggesting alkalinity was already exhausted on the short timescale of the experiments. Measurements at pH = 2.1 and 7.2 were used to calculate fractionation factors for each step from SO2(g → multiple steps → SOOCl2−. Oxidation on sea salt aerosol resulted in a lower fractionation factor than expected for oxidation of SO32− by O3 (αseasalt = 1.0124±0.0017 at 19 °C. Comparison of the lower fractionation during oxidation on sea salt aerosol to the fractionation factor for high pH oxidation shows HOCl contributed 29% of S(IV oxidation on sea salt in the short experimental timescale, highlighting the potential importance of hypohalous acids in the marine environment. The sulfur isotope fractionation factors measured in this study allow differentiation between the alkalinity-limited pathways – oxidation by O3 and by Cl catalysis (α34 = 1.0163±0.0018 at 19 °C in pure water or 1.0199±0.0024 at pH = 7.2 – which favour the heavy isotope, and

  20. Fractionation of sulfur isotopes during heterogeneous oxidation of SO2 on sea salt aerosol: a new tool to investigate non-sea salt sulfate production in the marine boundary layer

    Science.gov (United States)

    Harris, E.; Sinha, B.; Hoppe, P.; Foley, S.; Borrmann, S.

    2012-05-01

    The oxidation of SO2 to sulfate on sea salt aerosols in the marine environment is highly important because of its effect on the size distribution of sulfate and the potential for new particle nucleation from H2SO4 (g). However, models of the sulfur cycle are not currently able to account for the complex relationship between particle size, alkalinity, oxidation pathway and rate - which is critical as SO2 oxidation by O3 and Cl catalysis are limited by aerosol alkalinity, whereas oxidation by hypohalous acids and transition metal ions can continue at low pH once alkalinity is titrated. We have measured 34S/32S fractionation factors for SO2 oxidation in sea salt, pure water and NaOCl aerosol, as well as the pH dependency of fractionation. Oxidation of SO2 by NaOCl aerosol was extremely efficient, with a reactive uptake coefficient of ≈0.5, and produced sulfate that was enriched in 32S with αOCl = 0.9882±0.0036 at 19 °C. Oxidation on sea salt aerosol was much less efficient than on NaOCl aerosol, suggesting alkalinity was already exhausted on the short timescale of the experiments. Measurements at pH = 2.1 and 7.2 were used to calculate fractionation factors for each step from SO2(g) → multiple steps → SOOCl2-. Oxidation on sea salt aerosol resulted in a lower fractionation factor than expected for oxidation of SO32- by O3 (αseasalt = 1.0124±0.0017 at 19 °C). Comparison of the lower fractionation during oxidation on sea salt aerosol to the fractionation factor for high pH oxidation shows HOCl contributed 29% of S(IV) oxidation on sea salt in the short experimental timescale, highlighting the potential importance of hypohalous acids in the marine environment. The sulfur isotope fractionation factors measured in this study allow differentiation between the alkalinity-limited pathways - oxidation by O3 and by Cl catalysis (α34 = 1.0163±0.0018 at 19 °C in pure water or 1.0199±0.0024 at pH = 7.2) - which favour the heavy isotope, and the alkalinity non

  1. Isotopic composition of daily precipitation along the southern foothills of the Himalayas: impact of marine and continental sources of atmospheric moisture

    Directory of Open Access Journals (Sweden)

    G. Jeelani

    2018-06-01

    Full Text Available The flow of the Himalayan rivers, a key source of fresh water for more than a billion people primarily depends upon the strength, behaviour and duration of the Indian summer monsoon (ISM and the western disturbances (WD, two contrasting circulation regimes of the regional atmosphere. An analysis of the 2H and 18O isotope composition of daily precipitation collected along the southern foothills of the Himalayas, combined with extensive backward trajectory modelling, was used to gain deeper insight into the mechanisms controlling the isotopic composition of precipitation and the origin of atmospheric moisture and precipitation during ISM and WD periods. Daily precipitation samples were collected during the period from September 2008 to December 2011 at six stations, extending from Srinagar in the west (Kashmir state to Dibrugarh in the east (Assam state. In total, 548 daily precipitation samples were collected and analysed for their stable isotope composition. It is suggested that the gradual reduction in the 2H and 18O content of precipitation in the study region, progressing from δ18O values close to zero down to ca. −10 ‰ in the course of ISM evolution, stems from regional, large-scale recycling of moisture-driven monsoonal circulation. Superimposed on this general trend are short-term fluctuations of the isotopic composition of rainfall, which might have stem from local effects such as enhanced convective activity and the associated higher degree of rainout of moist air masses (local amount effect, the partial evaporation of raindrops, or the impact of isotopically heavy moisture generated in evapotranspiration processes taking place in the vicinity of rainfall sampling sites. Seasonal footprint maps constructed for three stations representing the western, central and eastern portions of the Himalayan region indicate that the influence of monsoonal circulation reaches the western edges of the Himalayan region. While the characteristic

  2. Stable carbon isotope ratios as indicators of marine versus terrestrial inputs to the diets of wild and captive tuatara (Sphenodon punctatus)

    International Nuclear Information System (INIS)

    Cree, A.; Cartland-Shaw, L.; Tyrrell, C.; Lyon, G.L.

    1999-01-01

    Stable carbon isotope analysis was used to examine feeding relationships of wild tuatara on Stephens Island and captive tuatara in New Zealand institutions. We first measured delta 13 C in three food items of wild tuatara. Pectoral muscle of fairy prions (a seabird eaten seasonally by tuatara) was significantly enriched in 13 C compared with whole bodies of wild insects (darkling beetles and tree weta). Values for delta 13 C in blood cells varied significantly among wild tuatara of different life-history stages. Male tuatara were more enriched in 13 C than were females or juveniles, suggesting that males prey more heavily on seabirds. Insect foods of captive tuatara varied dramatically in delta/sup 13/C; this is attributed to differential consumption of plant material derived from the C 3 and C 4 photosynthetic pathways. Blood cells from four different groups of captive tuatara differed significantly in delta 13 C. This was perhaps related to assimilation of insects with different delta 13 C values, and cannot be attributed to differences in seabird predation as captive tuatara do not have access to seabirds. For wild tuatara on Stephens Island, stable carbon isotope analysis provides support for the dietary information available from behavioural observations, gut analyses and measurements of plasma composition. (author). 47 refs., 1 tab., 2 figs

  3. Salinization mechanisms in semi-arid regions

    International Nuclear Information System (INIS)

    Santiago, M.M.F.

    1984-01-01

    During a period of three years the basins of the Pereira de Miranda and Caxitore dams, located in the crystalline rock area of Ceara, Brazil, were studied in order to determine the mechanisms of salinization of their waters. Isotope methods ( 18 O/ 16 O) and hidrochemistry (determination of the of the maior ions) were applied to surface, underground and rain water in this study. An isotope model was designed and applied to the determination of evaporation and percolation of dams in semi-arid zones during the dry season. The results are compared to those from a conventional chemical model. As causes of salinization of the water in the dams, the contributions of the rain itself and the lixiviation of the soil are quantified. An interaction between the dams and the underground water is imperceptible. The salinization of the underground water is attributed to recharge of the aquifer with rain water from the surface runoff followed by evaporation of the water rising, due to capilarity, in a one-directional flow to the surface. (Author) [pt

  4. Study the mechanisms of recharge of the phreatic aquifers, south east egypt, using environmental isotopes and hydro geochemistry

    International Nuclear Information System (INIS)

    Hassan, T.M.; Awad, M.A.; Hamza, M.S.

    1994-01-01

    The recharge rate is the most critical factor to groundwater resources management especially in semi-arid and arid areas. This paper presents a study on the feasibility of a groundwater development plan for south east egypt area. Environmental stable isotopes (oxygen-18 and deuterium), and hydro geochemistry techniques were used to investigate the recharge sources of groundwater. The examined groundwater wells tap the quaternary, basement and Nubian sandstone aquifers. The isotopic compositions of these groundwater samples indicate that there is a mixing among three different sources of recharge, local precipitation, palaeo water and sea water intrusion along the coastal plain, from the hydrochemical point of view, the predominant water types reflect meteoric, as well as marine waters genesis. The changes in salinity depend upon the dissolution of terrestrial salts, distance from the catchment area and seepage from deep aquifers. 7 figs., 2 tabs

  5. Variability in δ{sup 15}N of intertidal brown algae along a salinity gradient: Differential impact of nitrogen sources

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Inés G., E-mail: inesgviana@gmail.com; Bode, Antonio

    2015-04-15

    While it is generally agreed that δ{sup 15}N of brown macroalgae can discriminate between anthropogenic and natural sources of nitrogen, this study provides new insights on net fractionation processes occurring in some of these species. The contribution of continental and marine sources of nitrogen to benthic macroalgae in the estuary-ria system of A Coruña (NW Spain) was investigated by analyzing the temporal (at a monthly and annual basis) and spatial (up to 10 km) variability of δ{sup 15}N in the macroalgae Ascophyllum nodosum and three species of the genus Fucus (F. serratus, F. spiralis and F. vesiculosus). Total nitrate and ammonium concentrations and δ{sup 15}N-DIN, along with salinity and temperature in seawater were also studied to address the sources of such variability. Macroalgal δ{sup 15}N and nutrient concentrations decreased from estuarine to marine waters, suggesting larger dominance of anthropogenic nitrogen sources in the estuary. However, δ{sup 15}N values of macroalgae were generally higher than those of ambient nitrogen at all temporal and spatial scales considered. This suggests that the isotopic composition of these macroalgae is strongly affected by fractionation during uptake, assimilation or release of nitrogen. The absence of correlation between macroalgal and water samples suggests that the δ{sup 15}N of the species considered cannot be used for monitoring short-term changes. But their long lifespan and slow turnover rates make them suitable to determine the impact of the different nitrogen sources integrated over long-time periods. - Highlights: • Variability of Fucacean δ{sup 15}N indicates N sources along a salinity gradient. • δ{sup 15}N of Fucaceae and seawater are not correlated at short time scales. • Isotopic fractionation in macroalgal tissue varies at seasonal and at local scale. • Fucacean species are suitable for monitoring chronic N loadings.

  6. Terrestrial mollusc records from Xifeng and Luochuan L9 loess strata and their implications for paleoclimatic evolution in the Chinese Loess Plateau during marine Oxygen Isotope Stages 24-22

    Directory of Open Access Journals (Sweden)

    B. Wu

    2011-04-01

    Full Text Available Marine Isotope Stages 24-22 is a key period of the Mid-Pleistocene Transition, however, its climate variability is still unclear. The coarse-grained loess unit L9, one of the most prominent units in the Chinese loess stratigraphy, yields a high potential terrestrial record of paleoclimatic and paleoenvironmental changes during this period. In this study, two high-resolution terrestrial mollusc records of L9 loess strata from the Xifeng and Luochuan sequences in the Chinese Loess Plateau were analysed. Our mollusc results show that the MIS 24, the early and late parts of MIS 22 were dominated by cold and dry climate. Relatively mild-humid climate occurred in MIS 23 and the middle part of MIS 22. The climatic conditions at Xifeng region were cooler and more unstable compared to Luochuan region. A comparison of mollusc species composition and other proxies of L9 strata (MIS 24-22 with those of L1 loess units (MIS 4-2 indicates that the L9 loess was not deposited under the most severe glacial conditions in Quaternary climate history as suggested in previous studies. Our study shows that climatic conditions in the Loess Plateau during the L9 loess forming period were similar to that of gentle glacials (MIS 24 and MIS 22 and interglacial (MIS 23, as suggested by the marine δ18O record. Three cooling fluctuations occurred at ~930 ka, 900 ka and 880 ka, which might hint to the global "900 ka cooling event". The "900-ka event" in the Loess Plateau does not seem to be a simple long glaciation, but rather several complex climatic fluctuations superposed on a general cooling trend. The uplift of the Tibetan Plateau and the general cooling experienced by the Earth during this period may have resulted in abundant dust sources and increased dust transport capability, as indicated by increased grain size and the mass accumulation rate of L9 loess.

  7. The origin of brackish and saline groundwater in the coastal area of the Netherlands

    NARCIS (Netherlands)

    Post, VEA; Van der Plicht, H; Meijer, HAJ

    An explanation is presented for the origin of brackish to saline groundwater in the coastal area of the Netherlands based on geological, chemical (chlorinity), isotopic and geophysical data. A critical review of all possible salinization mechanisms shows that the origin of the brackish water is

  8. Age of ground water and the origin of its salinity in the Leba region

    International Nuclear Information System (INIS)

    Kwaterkiewicz, A.; Sadurski, A.; Zuber, A.

    1999-01-01

    Intensive exploitation of ground waters in the Leba region caused a strong increase of salinity, which on the basis of hydrochemistry, was supposed to result from the intrusion of the Baltic Sea water. Environmental isotope data revealed that water in the tertiary sediments is of glacial origin and its salinity is related to the admixture of ascending older waters. (author)

  9. Plutonium isotopes, ''2''4''1Am and ''1''3''7Cs activity concentrations in marine sediments of Gokova Bay agean Turkish coast

    International Nuclear Information System (INIS)

    Ugur Tanbay, A.; Yener, G.

    2001-01-01

    Samples of marine surface sediments of different grain sizes collected in Goekova , a small bay on the Aegean Turkish Coast, have been examined to measure α- and γ- radioactivity. The purpose of this research is to define a baseline study of man-made radionuclides on sediments collected along Goekova Bay, using a combination of direct gamma spectrometry, radiochemical separation and a-spectrometry. As the artificial radionuclides, ''1''3''7Cs for all sediment cores samples were under detection limit. The activity concentrations of the ''2''3''9'',''2''4''0Pu were observed to be in the range of 0.13±0.017-0.85±0.15Bq.kg''-''1. ''2''4''1Am and ''2''3''8Pu were identified at a very low level

  10. Investigation of Groundwater transport using environmental isotopes along the north-eastern part of sinai peninsula

    International Nuclear Information System (INIS)

    Hamza, M.S.; Awad, M.A.; Nada, A.A.; Abd El-Samie, S.G.; Zaghloul, A.

    1998-01-01

    Fourteen groundwater samples were collected from the north-eastern part of sinai peninsula representing different eater bearing formations from younger to older: The sand and gravel interbeds (quaternary), the fissured and fracture limestone of eocene and upper cretaceous and the fractured sandstone (Lower cretaceous). The chemical and isotopic analysis reflected the changes in the meteoric origin of the groundwater in these aquifers with respect to the recharge sources and the rock types. The groundwater in the quaternary aquifer have the metric water type which are affected by evaporation and sea spray deposits. The majority of the wells tapping in the eocene aquifer have the fresh water character while the other have the marine water originated from two sources; the first is the dissolution of the host rock (mainly limestone) which increase the groundwater salinity without changes in the isotopic content. The second source is mixing with connote water seeped to the aquifer through cracks and causing isotopic enrichment in these samples. Otherwise, the depleted values of the stable isotopes in the groundwater of lower and Upper cretaceous represent mixing with palaeo water in these aquifers. High values of tritium content were detected in wells in the eastern part. Further survey is needed to follow up the tritium content

  11. Salinity controls on Na incorporation in Red Sea planktonic foraminifera

    Science.gov (United States)

    Mezger, E. M.; de Nooijer, L. J.; Boer, W.; Brummer, G. J. A.; Reichart, G. J.

    2016-12-01

    Whereas several well-established proxies are available for reconstructing past temperatures, salinity remains challenging to assess. Reconstructions based on the combination of (in)organic temperature proxies and foraminiferal stable oxygen isotopes result in relatively large uncertainties, which may be reduced by application of a direct salinity proxy. Cultured benthic and planktonic foraminifera showed that Na incorporation in foraminiferal shell calcite provides a potential independent proxy for salinity. Here we present the first field calibration of such a potential proxy. Living planktonic foraminiferal specimens from the Red Sea surface waters were collected and analyzed for their Na/Ca content using laser ablation quadrupole inductively coupled plasma mass spectrometry. Using the Red Sea as a natural laboratory, the calibration covers a broad range of salinities over a steep gradient within the same water mass. For both Globigerinoides ruber and Globigerinoides sacculifer calcite Na/Ca increases with salinity, albeit with a relatively large intraspecimen and interspecimen variability. The field-based calibration is similar for both species from a salinity of 36.8 up to 39.6, while values for G. sacculifer deviate from this trend in the northernmost transect. It is hypothesized that the foraminifera in the northernmost part of the Red Sea are (partly) expatriated and hence should be excluded from the Na/Ca-salinity calibration. Incorporation of Na in foraminiferal calcite therefore provides a potential proxy for salinity, although species-specific calibrations are still required and more research on the effect of temperature is needed.

  12. Iron Isotope Fractionation during Fe(II) Oxidation Mediated by the Oxygen-Producing Marine Cyanobacterium Synechococcus PCC 7002

    Energy Technology Data Exchange (ETDEWEB)

    Swanner, E. D.; Bayer, T.; Wu, W.; Hao, L.; Obst, M.; Sundman, A.; Byrne, J. M.; Michel, F. M.; Kleinhanns, I. C.; Kappler, A.; Schoenberg, R.

    2017-04-11

    In this study, we couple iron isotope analysis to microscopic and mineralogical investigation of iron speciation during circumneutral Fe(II) oxidation and Fe(III) precipitation with photosynthetically produced oxygen. In the presence of the cyanobacterium Synechococcus PCC 7002, aqueous Fe(II) (Fe(II)aq) is oxidized and precipitated as amorphous Fe(III) oxyhydroxide minerals (iron precipitates, Feppt), with distinct isotopic fractionation (ε56Fe) values determined from fitting the δ56Fe(II)aq (1.79‰ and 2.15‰) and the δ56Feppt (2.44‰ and 2.98‰) data trends from two replicate experiments. Additional Fe(II) and Fe(III) phases were detected using microscopy and chemical extractions and likely represent Fe(II) and Fe(III) sorbed to minerals and cells. The iron desorbed with sodium acetate (FeNaAc) yielded heavier δ56Fe compositions than Fe(II)aq. Modeling of the fractionation during Fe(III) sorption to cells and Fe(II) sorption to Feppt, combined with equilibration of sorbed iron and with Fe(II)aq using published fractionation factors, is consistent with our resulting δ56FeNaAc. The δ56Feppt data trend is inconsistent with complete equilibrium exchange with Fe(II)aq. Because of this and our detection of microbially excreted organics (e.g., exopolysaccharides) coating Feppt in our microscopic analysis, we suggest that electron and atom exchange is partially suppressed in this system by biologically produced organics. These results indicate that cyanobacteria influence the fate and composition of iron in sunlit environments via their role in Fe(II) oxidation through O2 production, the capacity of their cell surfaces to sorb iron, and the interaction of secreted organics with Fe(III) minerals.

  13. Towards the development of a salinity impact category for South ...

    African Journals Online (AJOL)

    DRINIE

    2003-07-03

    Jul 3, 2003 ... nature from existing categories to warrant a separate salinity impact category. A conceptual method is ... compounds to the environment from all stages of a product's life- cycle are ... Marine. - Terrestrial. • Photo-oxidant formation. • Acidification .... algae. Reduced light input. Oxygen depletion near bottom.

  14. Home Brew Salinity Measuring Devices: Their Construction and Use.

    Science.gov (United States)

    Schlenker, Richard M.

    This paper discusses several inexpensive methods of evaluating the salinity of seawater. One method is presented in some detail. This method has several attractive features. First, it can be used to provide instruction, not only in marine chemistry, but also in studying the mathematics of the point slope formula, and as an aid in teaching students…

  15. Combined Effects of Temperature and Salinity on Larval ...

    African Journals Online (AJOL)

    It was found that P. catenata larvae develop optimally in near to seawater salinity at a temperature of around 25 ºC. These results support the assumption that newly-hatched larvae of this species are exported from the estuarine environment to the sea for development. Western Indian Ocean Journal of Marine Science ...

  16. Anthropogenic and tidal influences on salinity levels of the Shatt al-Arab River, Basra, Iraq

    NARCIS (Netherlands)

    Abdullah, Ali Dinar; Karim, Usama F.A.; Masih, Ilyas; Popescu, Ioana; van der Zaag, Pieter

    2016-01-01

    ABSTRACT: Understanding the salinity variation caused by a combination of anthropogenic and marine sources is important for water resource management in heavily used rivers impacted by tidal influence. A quantitative analysis of intra-annual variability of salinity levels was conducted in the Shatt

  17. Isotopic clusters

    International Nuclear Information System (INIS)

    Geraedts, J.M.P.

    1983-01-01

    Spectra of isotopically mixed clusters (dimers of SF 6 ) are calculated as well as transition frequencies. The result leads to speculations about the suitability of the laser-cluster fragmentation process for isotope separation. (Auth.)

  18. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  19. Salinity and temperature variations around Peninsula Malaysia coastal waters

    International Nuclear Information System (INIS)

    Abdul Kadir Ishak; Jeremy Andy Anak Dominic; Nazrul Hizam Yusof; Mohd Rafaei Murtadza

    2004-01-01

    Vertical profiles of salinity and temperature were measured at several offshore stations along east and west coast of Peninsula Malaysia coastal waters. The measurements which covered South China Sea and Straits of Malacca were made during sampling cruises for Marine Database Project for Peninsula Malaysia, and during an IAEA regional training course for Marine Pollution Project. The results show that the water temperature is highest at the surface and minimum at bottom, while the salinity is lowest at the surface and highest at the bottom. In Malacca Straits, the highest surface water temperature was 30.6 degree C and the lowest bottom water temperature was 20.4 degree C, recorded at a station located in Andaman Sea. The same station also recorded the highest surface and bottom salinity i.e. 31.3 ppt and 34.4 ppt, respectively. For South China Sea, the maximum surface water temperature was 30.4 degree C and the minimum bottom temperature was 25.9 degree C, while the highest surface salinity was 33.2 ppt and the highest bottom salinity was 34.1 ppt. The water in South China Sea also showed some degrees of stratifications with thermocline zones located between 10-40 m water depths. In Malacca Straits, stronger thermocline develops at higher latitude, while at lower latitude the water is more readily mixed. Beside the spatial variations, the seawater temperature and salinity around Peninsula Malaysia also subjected to temporal variation as seawater. (Author)

  20. Isotope separation

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1979-01-01

    A method of isotope separation is described which involves the use of a laser photon beam to selectively induce energy level transitions of an isotope molecule containing the isotope to be separated. The use of the technique for 235 U enrichment is demonstrated. (UK)

  1. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from WECOMA in the Gulf of the Farallones National Marine Sanctuary, Monterey Bay National Marine Sanctuary and others from 2011-08-12 to 2011-08-30 (NCEI Accession 0157458)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157458 includes biological, chemical, discrete sample, physical and profile data collected from WECOMA in the Gulf of the Farallones National Marine...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from WECOMA in the Cordell Bank National Marine Sanctuary, Gulf of the Farallones National Marine Sanctuary and others from 2011-08-12 to 2011-08-30 (NCEI Accession 0157448)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157448 includes Surface underway, chemical, meteorological and physical data collected from WECOMA in the Cordell Bank National Marine Sanctuary,...

  3. Oceanographic profile temperature and salinity data collected by instrumented marine mammals in the Southern Ocean, South Atlantic and other locations for the Marine Mammals Exploring the Oceans Pole to Pole (MEOP) project from 2004-01-27 to 2015-05-26 (NCEI Accession 0131830)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Some marine mammals travel thousands of kilometres to find their food, continuously diving to great depths. By instrumenting them, it is possible to directly observe...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship DAVID STARR JORDAN in the Channel Islands National Marine Sanctuary, Cordell Bank National Marine Sanctuary and others from 2007-07-25 to 2007-10-28 (NCEI Accession 0144352)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144352 includes Surface underway data collected from NOAA Ship DAVID STARR JORDAN in the Channel Islands National Marine Sanctuary, Cordell Bank...

  5. Variations in isotopic compositions of chlorine in evaporation-controlled salt lake brines of Qaidam Basin, China

    Digital Repository Service at National Institute of Oceanography (India)

    Xiao, Ying-kai; Liu, Wei-guo; Zhou, Y.M.; Wang, Yun-hui; Shirodkar, P.V.

    The variations in the isotopic compositions of chlorine in evaporation-controlled saline lake brines were determined by using an improved procedure for precise measurement of chlorine isotopes based on Cs sub(2) Cl sup(+) ion by thermal ionization...

  6. Geophysical and Seawater intrusion models to distinguish Modern and Palaeo salinity in the Central Godvari Delta, Andhra Pradesh, India

    Science.gov (United States)

    Lagudu, S.; Nandan, M. J.; Durgaprasad, M.; Gurunadha Rao, V. V. S.

    2015-12-01

    Central Godavari Delta is located in the East coast of Andhra Pradesh along Bay of Bengal. Ample surface water is made available for irrigation and aqua culture through well distributed canals drawn from Godavari River since last 150 years. Groundwater in the area is highly saline though the groundwater levels are very shallow ranging from 1 to 3 m below ground level. Integrated Electrical Resistivity Tomograms (ERT), hydrochemical (pH, TDS, Ca2+, Mg2+, K+, F-, Cl-, SO42-, NO3-, HCO3- and CO3-), isotopic (Br- and δ18O ) and density dependant solute tranport (SEAWAT) modelling studies have been carried out for four years (2006, 2007, 2014 and 2015) to identify the salinity sources and to understand the possible extent of seawater intrusion. The integration of all these data sets revealed that coarse grained sands exhibits resistivity of 4-20 Ωm forming the surface layer, clay layer exhibits Na2++ K+) and (Ca2++Mg2+), (Na+-Cl- ) vs. Ca2++Mg2+-HCO3--SO42-)) and ionic ratios ( Na2+/Cl-, SO42-/Cl-, Mg2+/Ca2+, Mg2+/Cl- and Cl-/Br) and δ18O does not reflect any modern seawater signatures. These models indicated that salinity in the shallow wells is due to dissolution of evaporitic minerals and ion exchange processes. In the pumping wells the salinity is due to upconing of entrapped sea water that belongs to Palaeo origin and wells located near the coast and mudflats is due to physical mixing of marine water. The estimated regional groundwater balance using SEAWAT model indicate significant amount of submarine groundwater discharge as outfall to the Bay of Bengal. Assuming observed hydrological conditions, no considerable advance in seawater intrusion would be expected into the delta region.

  7. Fatty Acid and Carbon Isotopic Evidence for type I Methanotrophs in Microbial Mats from a Shallow Marine Gas Seep, Coal Oil Point, CA.

    Science.gov (United States)

    Ding, H.; Valentine, D.

    2005-12-01

    To study the microbial community in a Southern California seep field, sediment and bacterial mat samples were collected from natural gas-bearing and gas-free surfaces at two distinct seeps in the Coal Oil Point seep field, offshore Santa Barbara. Fatty acids in these samples were extracted, analyzed and identified. Using gas chromatography (GC), more than 30 different fatty acids were separated. Generally, fatty acid concentrations in natural gas-bearing samples were about 5-fold higher compared to gas-free samples. Using gas chromatography mass sepctrometry (GC-MS), all separated fatty acids were identified in each sample. The major constituents included saturated 14:0, 16:0, 18:0, branched i-15, a-15 and unsaturated 16:1 and 18:1 series fatty acids. GC-IRMS (isotope ratio mass spectrometry) analysis provided the 13C of all major fatty acids and some 16:1 series fatty acids were found to be more depleted than -40% in samples associated with gas seepage. After treatment with dimethyl disufide (DMDS), the 16:1 series fatty acids were resolved into five distinct components, including common composition 16:1(7), bacterial specific i-16:1(7) and typical biomarkers of type I methnotrophs 16:1(8), 16(6) and 16:1(5), suggesting an important role for methnotrophs in seep sediments and microbial mats. These results provide evidence for the activity of type I methanotrophic bacteria in microbial mats and surficial sediments at the Coal Oil Point seep field, and have implications for methane cycling in this and other seep

  8. The marine isotope stage 1-5 cryptotephra record of Tenaghi Philippon, Greece: Towards a detailed tephrostratigraphic framework for the Eastern Mediterranean region

    Science.gov (United States)

    Wulf, Sabine; Hardiman, Mark J.; Staff, Richard A.; Koutsodendris, Andreas; Appelt, Oona; Blockley, Simon P. E.; Lowe, J. John; Manning, Christina J.; Ottolini, Luisa; Schmitt, Axel K.; Smith, Victoria C.; Tomlinson, Emma L.; Vakhrameeva, Polina; Knipping, Maria; Kotthoff, Ulrich; Milner, Alice M.; Müller, Ulrich C.; Christanis, Kimon; Kalaitzidis, Stavros; Tzedakis, Polychronis C.; Schmiedl, Gerhard; Pross, Jörg

    2018-04-01

    The iconic climate archive of Tenaghi Philippon (TP), NE Greece, allows the study of short-term palaeoclimatic and environmental change throughout the past 1.3 Ma. To provide high-quality age control for detailed palaeoclimate reconstructions based on the TP archive, (crypto)tephra studies of a peat core 'TP-2005' have been carried out for the 0-130 ka interval. The results show that the TP basin is ideally positioned to receive tephra fall from both the Italian and Aegean Arc volcanic provinces. Two visible tephra layers, the Santorini Cape Riva/Y-2 (c. 22 ka) and the Campanian Ignimbrite (CI)/Y-5 (c. 39.8 ka) tephras, and six primary cryptotephra layers, namely the early Holocene E1 tephra from the Aeolian Islands (c. 8.3 ka), the Campanian Y-3 (c. 29 ka) and X-6 tephras (c. 109.5 ka), as well as counterpart tephras TM-18-1d (c. 40.4 ka), TM-23-11 (c. 92.4 ka) and TM-33-1a (c. 116.7 ka) from the Lago Grande di Monticchio sequence (southern Italy), were identified along with repeatedly redeposited Y-2 and CI tephra material. Bayesian modelling of the ages of seven of the primary tephra layers, 60 radiocarbon measurements and 20 palynological control points have been applied to markedly improve the chronology of the TP archive. This revised chronology constrains the age of tephra TM-18-1d to 40.90-41.66 cal ka BP (95.4% range). Several tephra layers identified in the TP record form important isochrons for correlating this archive with other terrestrial (e.g., Lago Grande di Monticchio, Sulmona Basin and Lake Ohrid) and marine (e.g., Adriatic Sea core PRAD 1-2 and Aegean Sea core LC21) palaeoclimate records in the Mediterranean region.

  9. Protecting the Marine Environment in Cuba

    International Nuclear Information System (INIS)

    Gorisek, Alexandra Sasa

    2013-01-01

    The Cienfuegos Environmental Studies Centre (CEAC) in Cuba is a marine environmental research centre with expertise in nuclear and isotopic technologies. Cuba’s food security, transportation and tourism depend upon a healthy marine environment. CEAC scientists master resource challenges to produce the validated data needed for better environmental management

  10. Radioisotopes leakage of Fukushima may hit marine life

    International Nuclear Information System (INIS)

    Wu Qing; Liu Qiang

    2012-01-01

    So many radioisotopes were released into the Pacific Ocean after the Fukushima Daiichi nuclear disaster in Japan. Although the isotopes will be vastly diluted and the contamination is unlikely to cause immediate harm to marine organisms, but long-lived isotopes are expected to accumulate in the food chain and may cause problems such as increased mortality in fish and marine-mammal populations. Viewpoints and recommendations for radioactivity pollution survey to the marine ecosystem by experts were reviewed in this paper. (authors)

  11. Marine mollusca of oxygen isotope stages of the last 2 million years in New Zealand. Part 1, Revised generic positions and recognition of warm-water and cool-water migrants

    International Nuclear Information System (INIS)

    Beu, A.G.

    2004-01-01

    Warm-water molluscs were transported to Wanganui Basin from the northeastern North Island during Pleistocene time as planktotrophic larvae. This is not possible at present, so their occurrence in Wanganui Basin correlates with breaches of the Auckland isthmus during high sea levels. The end of Nukumaruan time is clearly defined by the extinction of 29 genera of molluscs (most only locally) during this stage, including 15 at the end. The extinction likely was caused by the initial closure of the Auckland isthmus. Migrants to Wanganui from the northeastern North Island indicate that breaches of the isthmus during interglacials commenced in oxygen isotope stage (OIS) 25, just before the mid-Pleistocene transition (MPT). Appearances of taxa from Australia at Wanganui during OIS 17-9 therefore indicate that warm-water taxa were transported to New Zealand during interglacial maxima after the MPT. The migrants provide the first molluscan biostratigraphy at the OIS scale. The Castlecliffian/Nukumaruan boundary, at the base of Ototoka tephra at Ototoka Beach, Wanganui, falls within OIS 57, with an age of c. 1.63 Ma. It is also dated at 1.63 Ma by the position with respect to the geomagnetic polarity time-scale of three chemically indistinguishable tephra in ODP core 1123. This paper presents the first results of a reassessment of the taxonomy and time ranges of the fossil marine molluscan fauna that occupied New Zealand during the last 2 m.y. (latest Pliocene-Holocene). Time ranges are compiled in oxygen isotope stages rather than in the traditional 'local' (or regional) stages in use in New Zealand. This should provide precision in time ranges of the order of 40,000-100,000 yr, rather than the 0.34-1.3 m.y. duration of New Zealand local stages of the latest Neogene (Nukumaruan, Castlecliffian, and Haweran Stages). The reassessment is aimed also, though, at providing evidence from Mollusca of climate change over this period. Much useful information on paleoclimates can be

  12. Desiccation-crack-induced salinization in deep clay sediment

    Directory of Open Access Journals (Sweden)

    S. Baram

    2013-04-01

    Full Text Available A study on water infiltration and solute transport in a clayey vadose zone underlying a dairy farm waste source was conducted to assess the impact of desiccation cracks on subsurface evaporation and salinization. The study is based on five years of continuous measurements of the temporal variation in the vadose zone water content and on the chemical and isotopic composition of the sediment and pore water in it. The isotopic composition of water stable isotopes (δ18O and δ2H in water and sediment samples, from the area where desiccation crack networks prevail, indicated subsurface evaporation down to ~ 3.5 m below land surface, and vertical and lateral preferential transport of water, following erratic preferential infiltration events. Chloride (Cl− concentrations in the vadose zone pore water substantially increased with depth, evidence of deep subsurface evaporation and down flushing of concentrated solutions from the evaporation zones during preferential infiltration events. These observations led to development of a desiccation-crack-induced salinization (DCIS conceptual model. DCIS suggests that thermally driven convective air flow in the desiccation cracks induces evaporation and salinization in relatively deep sections of the subsurface. This conceptual model supports previous conceptual models on vadose zone and groundwater salinization in fractured rock in arid environments and extends its validity to clayey soils in semi-arid environments.

  13. The density-salinity relation of standard seawater

    Science.gov (United States)

    Schmidt, Hannes; Seitz, Steffen; Hassel, Egon; Wolf, Henning

    2018-01-01

    The determination of salinity by means of electrical conductivity relies on stable salt proportions in the North Atlantic Ocean, because standard seawater, which is required for salinometer calibration, is produced from water of the North Atlantic. To verify the long-term stability of the standard seawater composition, it was proposed to perform measurements of the standard seawater density. Since the density is sensitive to all salt components, a density measurement can detect any change in the composition. A conversion of the density values to salinity can be performed by means of a density-salinity relation. To use such a relation with a target uncertainty in salinity comparable to that in salinity obtained from conductivity measurements, a density measurement with an uncertainty of 2 g m-3 is mandatory. We present a new density-salinity relation based on such accurate density measurements. The substitution measurement method used is described and density corrections for uniform isotopic and chemical compositions are reported. The comparison of densities calculated using the new relation with those calculated using the present reference equations of state TEOS-10 suggests that the density accuracy of TEOS-10 (as well as that of EOS-80) has been overestimated, as the accuracy of some of its underlying density measurements had been overestimated. The new density-salinity relation may be used to verify the stable composition of standard seawater by means of routine density measurements.

  14. Saline groundwater in crystalline bedrock

    International Nuclear Information System (INIS)

    Lampen, P.

    1992-11-01

    The State-of-art report describes research made on deep saline groundwaters and brines found in crystalline bedrock, mainly in site studies for nuclear waste disposal. The occurrence, definitions and classifications of saline groundwaters are reviewed with a special emphasis on the different theories concerning the origins of saline groundwaters. Studies of the saline groundwaters in Finland and Sweden have been reviewed more thoroughly. Also the mixing of different bodies of groundwaters, observations of the contact of saline groundwaters and permafrost, and the geochemical modelling of saline groundwaters as well as the future trends of research have been discussed. (orig.)

  15. N and C Isotopic Compositions of the Lower Triassic of Southern Primorye and Reconstruction of Habitat Conditions of Marine Organisms after Mass Extinction at the End of the Permian

    Science.gov (United States)

    Zakharov, Y. D.; Horacek, M.; Shigeta, Y.; Popov, A. M.; Maekawa, T.

    2018-02-01

    Data on the N and C isotopic composition are presented for the Lower Triassic claystones of the Abrek section of southern Primorye (Far East). The results showed five N isotopic intervals and several negative C isotopic excursions of the Induan-lower Olenekian stages of the Abrek section.

  16. Constraining the origin of the Messinian gypsum deposits using coupled measurement of δ^{18}O$/δD in gypsum hydration water and salinity of fluid inclusions

    Science.gov (United States)

    Evans, Nicholas P.; Gázquez, Fernando; McKenzie, Judith A.; Chapman, Hazel J.; Hodell, David A.

    2016-04-01

    We used oxygen and hydrogen isotopes of gypsum hydration water (GHW) coupled with salinity deduced from ice melting temperatures of primary fluid inclusions in the same samples (in tandem with 87Sr/86Sr, δ34S and other isotopic measurements) to determine the composition of the mother fluids that formed the gypsum deposits of the Messinian Salinity Crisis from shallow and intermediate-depth basins. Using this method, we constrain the origin of the Messinian Primary Lower Gypsum (PLG) of the Sorbas basin (Betic foreland) and both the Upper Gypsum (UG) and the Lower Gypsum of the Sicilian basin. We then compare these results to measurements made on UG recovered from the deep Ionian and Balearic basins drilled during DSDP Leg 42A. The evolution of GHW δ18O/δD vs. salinity is controlled by mixing processes between fresh and seawater, coupled with the degree of evaporation. Evaporation and subsequent precipitation of gypsum from fluids dominated by freshwater will result in a depressed 87Sr/86Sr values and different trajectory in δ18O/δD vs. salinity space compared to fluids dominated by seawater. The slopes of these regression equations help to define the end-members from which the fluid originated. For example, salinity estimates from PLG cycle 6 in the Sorbas basin range from 18 to 51ppt, and after correction for fractionation factors, estimated δ18O and δD values of the mother water are low (-2.6 meteoric water during gypsum deposition, while 87Sr/86Sr (0.708942 fall below those expected from the evaporation of seawater alone, the slope of the regression equation is similar to that of seawater evaporation. This implies that there is a change up-section from a dominantly marine environment in cycle 2 to a greater influence of meteoric water in cycle 6. The UG from the Sicilian basin display greater δ18O/δD values (2.9 meteoric water that subsequently underwent intense evaporation. This observation concurs with the low values of 87Sr/86Sr from the same UG

  17. On the Sources of Salinity in Groundwater under Plain Areas. Insights from {delta}{sup 18}O, {delta}{sup 2}H and Hydrochemistry in the Azul River Basin, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Zabala, M. E.; Varni, M.; Weinzettel, P. [Instituto de Hidrologia de llanuras, Azul (Argentina); Manzano, M. [Technical University of Cartagena (Spain)

    2013-07-15

    The Azul River basin, with some 6200 km{sup 2}, is located in the plains of Buenos Aires Province, Argentina. The Azul River flows along 160 km from the Tandilia Range, in the SW, to the Channel 11, in the NE. Average annual precipitation is 1005 mm (1988-2000); mean reference evapotranspiration is 1090 mm. The geology consists of Miocene to recent sediments, mostly sands and silts with some clay and calcrete layers, overlying crystalline rocks and marine sediments. The water table is shallow and groundwater in the aquifer upper 30 m displays an increasing salinity from SW to NE. The previous hypothesis to explain the salinity was infiltration of evapo-concentrated surface water, as the small soil slope in the northern basin (< 0.2%) induces rainfall accumulation in lowlands, where water evaporates prior to infiltration. But recent chemical and isotopic data reveal two salinity sources: evaporation of recent recharge water, and mixing with old saline groundwater of yet unknown origin. (author)

  18. Origin of sulphur compounds and application of isotope geothermometry in selected geothermal systems of China

    International Nuclear Information System (INIS)

    Pang Zhonghe

    2005-01-01

    Geothermal and groundwater samples from East of Heber (EH) Province in the North China Basin and South of Fujian (SF) Province in Southeast of China were studied using sulphur and water isotopes. EH is located in a Mesozoic-Cenozoic sedimentary basin while SF is composed of small fault-block basins formed in Quaternary period. These systems belong to non-volcanic geothermal environments. Samples were collected from exploratory and production geothermal wells: 11 wells in EH and 17 wells in SF. The samples were analyzed for oxygen-18 (δ 18 O) and deuterium (δ 2 H) in water, sulfur-34 (δ 34 S) and oxygen-18 ((δ 18 O) in aqueous sulphate (SO 4 ). Chemical composition of the water samples was also determined. Results show that aqueous sulphate in the saline thermal waters of SF is of marine origin. The aqueous sulphate in EH waters is of non-marine origin. Reservoir temperature estimated using the oxygen isotope geothermometer is not compatible to those by chemical geothermometers or by down-hole measurements in the sedimentary environment for EH, different from that for the SF samples where aqueous sulphate seems to have reached equilibrium with thermal waters in the main up-flow zone. (author)

  19. Climate stability in Central Anatolia during the Messinian Salinity Crisis

    Science.gov (United States)

    Meijers, Maud J.M.; Peynircioğlu, Ahmet A; Cosca, Michael A.; Brocard, Gilles Y.; Whitney, Donna L.; Langereis, Cor G.; Mulch, Andreas

    2018-01-01

    Deposition of large amounts of evaporites and erosion of deep canyons within the Mediterranean Basin as a result of reduced basin connectivity with the Atlantic Ocean and the epicontinental Paratethys Sea characterized the Messinian Salinity Crisis (MSC, 5.97–5.33 Ma). The influence of the MSC on Mediterranean environmental conditions within the basin itself has been intensely studied from marine records, but reconstructing the impact of the MSC on circum-Mediterranean continental climate has been hampered by the absence of continuous sedimentary archives that span the duration of the event.Here, we report results of a continental record of carbon (δ13C) and oxygen (δ18O) isotopes from lake carbonates framed by new magnetostratigraphic and 40Ar/39Ar dating, as well as by existing mammal stratigraphy (Kangal Basin, central Anatolia). The sampled section records continuous fluvio-lacustrine sedimentation from ~6.6 Ma to 4.9 Ma, which spans the MSC and the Miocene-Pliocene boundary. This dataset so far represents the only continuous continental paleoenvironmental record of the MSC in the circum-Mediterranean realm.The Kangal Basin isotope record indicates a low degree of evaporation. Furthermore, covariance between δ13C and δ18O suggests a coupling between lake water balance and biologic productivity. Variations in δ13C and δ18O therefore likely reflect changes in the amount of incoming precipitation, rather than changes in δ18O values of incoming precipitation. The most prominent spike in δ13C and δ18O occurs during the acme of the MSC and is therefore interpreted to have resulted from a decrease in the amount of incoming moisture correlative to a period of vigorous erosion and sea level lowering in the Mediterranean Basin. Major sea level lowering of Mediterranean basin waters during the acme of the MSC could have therefore led to slightly dryer conditions over Anatolia, which is also suggested by modeling studies. Overall, changes in δ13C and

  20. Elemental and Isotopic Incorporation into the Aragonitic Shells of Arctica Islandica: Insights from Temperature Controlled Experiments

    Science.gov (United States)

    Wanamaker, A. D.; Gillikin, D. P.

    2014-12-01

    The long-lived ocean quahog, Arctica islandica, is a fairly well developed and tested marine proxy archive, however, the utility of elemental ratios in A. islandica shell material as environmental proxies remains questionable. To further evaluate the influence of seawater temperature on elemental and isotopic incorporation during biomineralization, A. islandica shells were grown at constant temperatures under two regimes during a 16-week period from March 27 to July 21, 2011. Seawater from the Darling Marine Center in Walpole, Maine was pumped into temperature and flow controlled tanks that were exposed to ambient food and salinity conditions. A total of 20 individual juvenile clams with an average shell height of 36 mm were stained with calcein (a commonly used biomarker) and cultured at 10.3 ± 0.3 °C for six weeks. After this, shell heights were measured and the clams were again stained with calcein and cultured at 15.0 ± 0.4 °C for an additional 9.5 weeks. The average shell growth during the first phase of the experiment was 2.4 mm with a linear extension rate of 0.40 mm/week. The average shell growth during the second phase of the experiment was 3.2 mm with an extension rate of 0.34 mm/week. Average salinity values were 30.2 ± 0.7 and 30.7 ±0.7 in the first and second phases of the experiment, respectively. Oxygen isotopes from the cultured seawater were collected throughout the experiment and provide the basis for establishing if shells grew in oxygen isotopic equilibrium. Elemental ratios (primarily Ba/Ca, Mg/Ca, Sr/Ca) in the aragonitic shells were determined via laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), while stable oxygen and carbon isotope ratios were measured using continuous flow isotope ratio mass spectrometry. Continuous sampling within and across the temperature conditions (from 10 °C to 15 °C) coupled with the calcein markings provides the ability to place each sample into a precise temporal framework. The

  1. Isotope enrichment

    International Nuclear Information System (INIS)

    Garbuny, M.

    1979-01-01

    The invention discloses a method for deriving, from a starting material including an element having a plurality of isotopes, derived material enriched in one isotope of the element. The starting material is deposited on a substrate at less than a critical submonatomic surface density, typically less than 10 16 atoms per square centimeter. The deposit is then selectively irradiated by a laser (maser or electronic oscillator) beam with monochromatic coherent radiation resonant with the one isotope causing the material including the one istope to escape from the substrate. The escaping enriched material is then collected. Where the element has two isotopes, one of which is to be collected, the deposit may be irradiated with radiation resonant with the other isotope and the residual material enriched in the one isotope may be evaporated from the substrate and collected

  2. Functional tradeoffs underpin salinity-driven divergence in microbial community composition.

    Directory of Open Access Journals (Sweden)

    Chris L Dupont

    Full Text Available Bacterial community composition and functional potential change subtly across gradients in the surface ocean. In contrast, while there are significant phylogenetic divergences between communities from freshwater and marine habitats, the underlying mechanisms to this phylogenetic structuring yet remain unknown. We hypothesized that the functional potential of natural bacterial communities is linked to this striking divide between microbiomes. To test this hypothesis, metagenomic sequencing of microbial communities along a 1,800 km transect in the Baltic Sea area, encompassing a continuous natural salinity gradient from limnic to fully marine conditions, was explored. Multivariate statistical analyses showed that salinity is the main determinant of dramatic changes in microbial community composition, but also of large scale changes in core metabolic functions of bacteria. Strikingly, genetically and metabolically different pathways for key metabolic processes, such as respiration, biosynthesis of quinones and isoprenoids, glycolysis and osmolyte transport, were differentially abundant at high and low salinities. These shifts in functional capacities were observed at multiple taxonomic levels and within dominant bacterial phyla, while bacteria, such as SAR11, were able to adapt to the entire salinity gradient. We propose that the large differences in central metabolism required at high and low salinities dictate the striking divide between freshwater and marine microbiomes, and that the ability to inhabit different salinity regimes evolved early during bacterial phylogenetic differentiation. These findings significantly advance our understanding of microbial distributions and stress the need to incorporate salinity in future climate change models that predict increased levels of precipitation and a reduction in salinity.

  3. Benthic foraminifera cultured over a large salinity gradient: first results and comparison with field data from the Baltic Sea.

    Science.gov (United States)

    Groeneveld, Jeroen; Filipsson, Helena L.; Austin, William E. N.; Darling, Kate; Quintana Krupinski, Nadine B.

    2015-04-01

    Some of the most significant challenges in paleoclimate research arise from the need to both understand and reduce the uncertainty associated with proxy methods for climate reconstructions. This is especially important for shelf and coastal environments where increasing numbers of high-resolution paleorecords are being generated. These challenges are further highlighted in connection with ECORD/IODP Expedition 347: Baltic Sea Paleoenvironments. This large-scale drilling operation took place in the Baltic Sea region during the autumn of 2013. At this time, there is a pressing need for proxy calibrations directly targeted at the brackish Baltic environment. Within the CONTEMPORARY project we are investigating different temperature and salinity proxy variables through a combination of field- and culture-based benthic foraminiferal samples, together with genetic characterization (genotyping) of the morphospecies. We have completed two field campaigns where we collected (living) foraminifera and water samples at several sites, ranging from fully marine to low salinity conditions. The core-top foraminifera have been analysed for trace metal/Ca, stable oxygen and carbon isotopes, and faunal composition. Living foraminifera collected from the sediment-water interface were cultured in sea water in two long-term experiments at different temperatures (5°C and 10°C) and at three different salinities (15, 25, and 35). The first experiment yielded a large number of reproduced and experimentally-grown Elphidium specimens. The second experiment resulted in growth but no reproduction. We will provide a summary of the experimentally grown material and discuss the challenges of generating new proxy calibrations for foraminiferal shell geochemistry in the Baltic Sea. Furthermore, specimens of Elphidium and Ammonia, found at two sampling sites (Anholt, Kattegat and Hanöbay) with differing salinities, were genotyped and the results indicate that the same genotype of Elphidium is

  4. Stable isotopes

    International Nuclear Information System (INIS)

    Brazier, J.L.; Guinamant, J.L.

    1995-01-01

    According to the progress which has been realised in the technology of separating and measuring isotopes, the stable isotopes are used as preferable 'labelling elements' for big number of applications. The isotopic composition of natural products shows significant variations as a result of different reasons like the climate, the seasons, or their geographic origins. So, it was proved that the same product has a different isotopic composition of alimentary and agriculture products. It is also important in detecting the pharmacological and medical chemicals. This review article deals with the technology, like chromatography and spectrophotometry, adapted to this aim, and some important applications. 17 refs. 6 figs

  5. Isotope separation

    International Nuclear Information System (INIS)

    Bartlett, R.J.; Morrey, J.R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated

  6. Status of Coral Reef Fish Communities within the Mombasa Marine ...

    African Journals Online (AJOL)

    investigated in the Mombasa Marine Protected Area (MPA) on the Kenya coast ... in 1991 in an urban and tourism development ... Coast Province of Kenya in ..... environmental factors such as salinity and ... SEM when sampling is difficult.

  7. Salinity information in coral δ18O records

    Science.gov (United States)

    Conroy, J. L.; Thompson, D. M.; Dassié, E. P.; Stevenson, S.; Konecky, B. L.; DeLong, K. L.; Sayani, H. R.; Emile-Geay, J.; Partin, J. W.; Abram, N. J.; Martrat, B.

    2017-12-01

    Coral oxygen isotopic ratios (δ18O) are typically utilized to reconstruct sea surface temperature (SST), or SST-based El Niño-Southern Oscillation metrics (e.g., NIÑO3.4), despite the influence of both SST and the oxygen isotopic composition of seawater (δ18Osw) on coral δ18O. The ideal way to isolate past δ18Osw variations is to develop independent and univariate SST and δ18Osw responders, for instance, via paired coral δ18O and Sr/Ca analyses. Nonetheless, many coral δ18O records without paired Sr/Ca records already exist in the paleoclimatic literature, and these may be able to provide some insight into past δ18Osw and salinity changes due to the nature of the significant positive relationship between instrumental salinity and δ18Osw. Here we use coral δ18O records from the new PAGES Iso2k database to assess the regions in which coral δ18O has the greatest potential to provide salinity information based on the strength of the relationship between instrumental salinity and coral δ18O values. We find from annual pseudocoral similations that corals in the western tropical Pacific share a substantial fraction of their variance with δ18Osw rather than SST. In contrast, in the Indian Ocean and eastern tropical Pacific it is SST that predominantly explains coral δ18O variance. In agreement with this variance decomposition, we find that coral δ18O time series from the western tropical Pacific are significantly correlated with mid to late 20th century salinity. However, variations in the strength of the δ18Osw-salinity relationship across the western tropical Pacific will likely have a significant influence on coral δ18O-based salinity reconstructions. Additionally, in some cases a strong, negative correlation between SST and δ18Osw might not allow their influences to be adequately separated in coral δ18O records without the use of coupled Sr/Ca estimates of the temperature contribution. Overall, we find a range of modern salinity and SST

  8. Extremozymes from Marine Actinobacteria.

    Science.gov (United States)

    Suriya, J; Bharathiraja, S; Krishnan, M; Manivasagan, P; Kim, S-K

    Marine microorganisms that have the possibility to survive in diverse conditions such as extreme temperature, pH, pressure, and salinity are known as extremophiles. They produce biocatalysts so named as extremozymes that are active and stable at extreme conditions. These enzymes have numerous industrial applications due to its distinct properties. Till now, only a fraction of microorganisms on Earth have been exploited for screening of extremozymes. Novel techniques used for the cultivation and production of extremophiles, as well as cloning and overexpression of their genes in various expression systems, will pave the way to use these enzymes for chemical, food, pharmaceutical, and other industrial applications. © 2016 Elsevier Inc. All rights reserved.

  9. Heterogeneity of elemental composition and natural abundance of stables isotopes of C and N in soils and leaves of mangroves at their southernmost West Atlantic range.

    Science.gov (United States)

    Tognella, M M P; Soares, M L G; Cuevas, E; Medina, E

    2016-01-01

    Mangrove communities were selected in the state of Santa Catarina, Brazil, near their southernmost limit of distribution, to study mineral nutrient relation in soils and plants. Communities included three true mangrove species, Rhizophora mangle, Laguncularia racemosa and Avicennia germinans, and two associated species, the fern Acrostichum danaeifolium, and the grass Spartina densiflora. The sites included communities in the lower Río Tavares near Florianopolis city, Sonho beach near Palhoça city, and the Santo Antonio lagoon. These sites included a full range of mangroves under humid climate where winter temperatures, instead of salinity, may be the main factor regulating their productive capacity and species composition. Soil salinity was determined by the concentration of soluble Na, and soil C and N were linearly correlated indicating their association in organic matter. Tavares site showed higher specific conductivity, and concentrations of Na and Mg in the soil layer below 40 cm depth, indicating larger influence of marine water. Isotopic signature of C increased with soil depth suggesting that microorganisms decomposing organic matter are releasing 13C depleted CO2. Nitrogen isotopic signature decreased with soil depth, indicating enrichment in 15N possibly as a result of denitrification in the upper soil layers. Mineral elements in leaf tissues showed A. schaueriana with higher concentrations of N, P, Na, K, Cu, Zn, and Na/Ca ratio. Spartina densiflora was characterized by the lowest N and K concentrations, and the highest concentrations of Al and Fe. Rhizophora mangle and L. racemosa had the highest Ca concentrations. Carbon isotopic signatures identified S. densiflora as a C4 plant, and A. schaueriana as the mangrove species occupying comparatively more water stressed microsites than the rest. Leaf nitrogen isotopic signatures were positive, in correspondence with the soil values. The results support the hypothesis that sites sampled were comparatively

  10. Corrosion in marine atmospheres. Effect of distance from the coast

    International Nuclear Information System (INIS)

    Chico, B.; Otero, E.; Morcillos, M.; Mariaca, L.

    1998-01-01

    In marine atmospheres the deposition of saline particles on the surface of metals intensifies the metallic corrosion process. However, quantitative information about the effect of atmospheric salinity on metallic corrosion is very scarce. This paper reports the relationship between salinity and metallic corrosion, where a clear linear relation (r=0.97) has been found for a broad interval of salinities (4-500 mg Cl''-/m''2.d), as well as the relationship between salinity (or metallic corrosion) and distance from the coast. A hyperbolic function seems to be established both variables; there is an exponential drop in salinity (or corrosion) as shoreline distance increases tending towards and asymptotic value. The study has been based on information obtained from field research conducted at a marine atmosphere in Tarragona (Spain) and data compiled from the literature. (Author) 14 refs

  11. Tomographic, hydrochemical and isotopic investigations of the ...

    Indian Academy of Sciences (India)

    An electrical imaging tomography survey was carried out to identify the lateral and vertical salinity distribution in the oasis shallow aquifers of the Nefzaoua region located in southwestern Tunisia. In addition, hydrochemical and isotopic data were examined to determine the main factors and mechanisms controlling the ...

  12. Empirical tools for simulating salinity in the estuaries in Everglades National Park, Florida

    Science.gov (United States)

    Marshall, F. E.; Smith, D. T.; Nickerson, D. M.

    2011-12-01

    Salinity in a shallow estuary is affected by upland freshwater inputs (surface runoff, stream/canal flows, groundwater), atmospheric processes (precipitation, evaporation), marine connectivity, and wind patterns. In Everglades National Park (ENP) in South Florida, the unique Everglades ecosystem exists as an interconnected system of fresh, brackish, and salt water marshes, mangroves, and open water. For this effort a coastal aquifer conceptual model of the Everglades hydrologic system was used with traditional correlation and regression hydrologic techniques to create a series of multiple linear regression (MLR) salinity models from observed hydrologic, marine, and weather data. The 37 ENP MLR salinity models cover most of the estuarine areas of ENP and produce daily salinity simulations that are capable of estimating 65-80% of the daily variability in salinity depending upon the model. The Root Mean Squared Error is typically about 2-4 salinity units, and there is little bias in the predictions. However, the absolute error of a model prediction in the nearshore embayments and the mangrove zone of Florida Bay may be relatively large for a particular daily simulation during the seasonal transitions. Comparisons show that the models group regionally by similar independent variables and salinity regimes. The MLR salinity models have approximately the same expected range of simulation accuracy and error as higher spatial resolution salinity models.

  13. Validation of salinity data from ARGO floats: Comparison between the older ARGO floats and that of later deployments

    Digital Repository Service at National Institute of Oceanography (India)

    Youn, Y.-H.; Lee, H.; Chang, Y.-S.; Pankajakshan, T.

    Continued observation of ARGO floats or years (about 4 years) makes the conductivity sensor more vulnerable to fouling by marine life and associated drift in salinity measurements. In this paper, we address this issue by making use of floats...

  14. Isotopic separation

    International Nuclear Information System (INIS)

    Castle, P.M.

    1979-01-01

    This invention relates to molecular and atomic isotope separation and is particularly applicable to the separation of 235 U from other uranium isotopes including 238 U. In the method described a desired isotope is separated mechanically from an atomic or molecular beam formed from an isotope mixture utilising the isotropic recoil momenta resulting from selective excitation of the desired isotope species by radiation, followed by ionization or dissociation by radiation or electron attachment. By forming a matrix of UF 6 molecules in HBr molecules so as to collapse the V 3 vibrational mode of the UF 6 molecule the 235 UF 6 molecules are selectively excited to promote reduction of UF 6 molecules containing 235 U and facilitate separation. (UK)

  15. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.L.

    1979-01-01

    Isotopic species in an isotopic mixture including a first species having a first isotope and a second species having a second isotope are separated by selectively exciting the first species in preference to the second species and then reacting the selectively excited first species with an additional preselected radiation, an electron or another chemical species so as to form a product having a mass different from the original species and separating the product from the balance of the mixture in a centrifugal separating device such as centrifuge or aerodynamic nozzle. In the centrifuge the isotopic mixture is passed into a rotor where it is irradiated through a window. Heavier and lighter components can be withdrawn. The irradiated mixture experiences a large centrifugal force and is separated in a deflection area into lighter and heavier components. (UK)

  16. Origin of salinity in produced waters from the Palm Valley gas field, Northern Territory, Australia

    International Nuclear Information System (INIS)

    Andrew, Anita S.; Whitford, David J.; Berry, Martin D.; Barclay, Stuart A.; Giblin, Angela M.

    2005-01-01

    The chemical composition and evolution of produced waters associated with gas production in the Palm Valley gas field, Northern Territory, has important implications for issues such as gas reserve calculations, reservoir management and saline water disposal. The occurrence of saline formation water in the Palm Valley field has been the subject of considerable debate. There were no occurrences of mobile water early in the development of the field and only after gas production had reduced the reservoir pressure, was saline formation water produced. Initially this was in small quantities but has increased dramatically with time, particularly after the initiation of compression in November 1996. The produced waters range from highly saline (up to 300,000 mg/L TDS), with unusual enrichments in Ca, Ba and Sr, to low salinity fluids that may represent condensate waters. The Sr isotopic compositions of the waters ( 87 Sr/ 86 Sr = 0.7041-0.7172) are also variable but do not correlate closely with major and trace element abundances. Although the extreme salinity suggests possible involvement of evaporite deposits lower in the stratigraphic sequence, the Sr isotopic composition of the high salinity waters suggests a more complex evolutionary history. The formation waters are chemically and isotopically heterogeneous and are not well mixed. The high salinity brines have Sr isotopic compositions and other geochemical characteristics more consistent with long-term residence within the reservoir rocks than with present-day derivation from a more distal pool of brines associated with evaporites. If the high salinity brines entered the reservoir during the Devonian uplift and were displaced by the reservoir gas into a stagnant pool, which has remained near the reservoir for the last 300-400 Ma, then the size of the brine pool is limited. At a minimum, it might be equivalent to the volume displaced by the reservoired gas

  17. Marine ecology

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Studies on marine ecology included marine pollution; distribution patterns of Pu and Am in the marine waters, sediments, and organisms of Bikini Atoll and the influence of physical, chemical, and biological factors on their movements through marine biogeochemical systems; transfer and dispersion of organic pollutants from an oil refinery through coastal waters; transfer of particulate pollutants, including sediments dispersed during construction of offshore power plants; and raft culture of the mangrove oysters

  18. Marine pollution

    International Nuclear Information System (INIS)

    Albaiges, J.

    1989-01-01

    This book covers the following topics: Transport of marine pollutants; Transformation of pollutants in the marine environment; Biological effects of marine pollutants; Sources and transport of oil pollutants in the Persian Gulf; Trace metals and hydrocarbons in Syrian coastal waters; and Techniques for analysis of trace pollutants

  19. Synopsis of strontium isotope variations in groundwater at Aspo, southern Sweden

    Science.gov (United States)

    Peterman, Z.E.; Wallin, B.

    1999-01-01

    Strontium isotope ratios are used to identify end-member ground-water compositions at Aspo in southeastern Sweden where the Hard Rock Laboratory (HRL) has been constructed to evaluate the suitability of crystalline rock for the geologic disposal of nuclear waste. The Hard Rock Laboratory is a decline (tunnel) constructed in 1.8 Ga-old granitic rock that forms islands in an archipelago along the Swedish coast. Ground-water samples were obtained for isotopic analyses from boreholes drilled from the surface and from side boreholes drilled within the HRL. Infiltration at Aspo occurs primarily through fractures zones in the granitic bedrock beneath thin soils throughout the area. Because of extremely low Sr concentrations, rain and snow are not important contributors to the Sr isotope budget of the ground-water system. At shallow levels, water percolating downward along fractures and fracture zones acquires a ??87Sr between +9.5 and +10.0??? and maintains this value downward while Sr concentrations increase by two orders of magnitude. Ground-water samples from both boreholes and from in the HRL show the effects of mixing with saline waters containing as much as 59 mg/L Sr and ??87Sr values as large as +13.92%, Baltic Sea water is a potential component of the groundwater system with ??87Sr values only slightly larger than modern marine values (+0.3???) but with much lower concentrations (1.5 mg/L) than ocean water (8 mg/L). However, because of large Sr concentration differences between the saline groundwater (59 mg/L) and Baltic Sea water (1.5 rag/L), ??87Sr values are not particularly sensitive indicators of sea-water intrusion even though their ??87Sr values differ substantially.

  20. Bacterial sulphate reduction and mixing processes at the Aespoe Hard Rock Laboratory indicated by groundwater δ34S isotope signatures

    International Nuclear Information System (INIS)

    Wallin, Bill

    2011-04-01

    sulphate-reducing bacteria (SRB) and groundwater mixing from shallow marine and deeper, older groundwater sources during tunnel construction. These isotope changes were likely induced by the up-coning of deeper saline water and the inflow of Baltic Sea water to an intermediate depth (e.g., 200-400 m) at Aspo. The increase in δ 34 S isotope values of dissolved SO 4 2- , peaking at +28 per mille CDT (probably due to position of the tunnel below the Baltic Sea), was accompanied by a decrease in sulphate concentration in many places and, in some samples, also by changes in bicarbonate concentration, all of which are evidence of microbial sulphate reduction

  1. Isotopic characterization and genetic origin of crude oils from Gulf of Suez and western desert fields in Egypt

    International Nuclear Information System (INIS)

    Abd El Samie, S.G.

    2006-01-01

    Stable carbon isotopes were used to asses the general characteristics of the western desert and Gulf of Suez crude oils in accordance with hydrocarbon generation, source rocks, thermal gradient and maturation level. The carbon isotopic results of all the analyzed oil samples in both areas lie in the range from -29.62 to -24.11 %. The av. σ 13 C values in the Gulf of Suez reaches about -28.6% and -26.4% in western desert. It was accounted a marginal difference between the two areas by about 2.5 : 3% in carbon-13 isotope of the whole oil indicated two distinct oil types of different organic input and varies in the depositional environment. It was found that Gulf of Suez oils are dominated by marine organic matter (plankton algae) deposited in saline environment. The derived oils from the northern and central provinces of the Gulf are isotopically light, higher in sulfur content, lower in API gravity degree and have Pristane/Phytane (Pr/Ph) ratio less than or equal one (Pr/Ph = 1). In the southern province, about 0.5% isotopic enrichment was recorded in the produced oils from shallower depths, associated with gradual increment in API and maturity level as thermal gradient increase. However, low API gravity degree and less maturity of the Gulf of Suez oils could be related to the rifting temperature that forced and accelerated the expulsion rate and hydrocarbon generation prior reaching higher maturation levels. On the other hand, the produced oils from the western desert fields belong mostly to terrestrial organic debris (with minor marine fragment in some basins) deposited at deeper geological formations. It is characterized by isotopic enrichment, paraffinic waxy oils, low in sulphur content, have Pr/Ph = 1, high in API gravity and maturity level. Hydrocarbon generated from the western desert fields has been controlled by time-temperature effect in the source rocks and reservoirs where the humic organic matter are affected by high temperature over longer period of

  2. Toxicity of common ions to marine organisms

    International Nuclear Information System (INIS)

    Pillard, D.A.; DuFresne, D.L.; Evans, J.

    1995-01-01

    Produced waters from oil and gas drilling operations are typically very saline, and these may cause acute toxicity to marine organisms due to osmotic imbalances as well as to an excess or deficiency of specific common ions. In order to better understand the relationship between toxicity and ion concentration, laboratory toxicity tests were conducted using mysid shrimp (Mysidopsis bahia), sheepshead minnow (Cyprinodon variegatus), and inland silverside (Menidia beryllina). For each species the ionic concentration of standard laboratory water was proportionally increased or decreased to produce test solutions with a range of salinities. Organisms were exposed for 48 hours. Individual ions (sodium, potassium, calcium, magnetsium, strontium, chloride, bromide, sulfate, bicarbonate, and borate) were also manipulated to examine individual ion toxicity. The three test species differ in their tolerance of salinity. Mysid shrimp show a marked decrease in survival at salinities less than approximately 5 ppt. Both fish species tolerated low salinity water, however, silversides were less tolerant of saline waters (salinity greater than 40 ppt). There were also significant differences in the responses of the organisms to different ions. The results show that the salinity of the test solution may play an important role in the responses of the organisms to the produced water effluent. Predictable toxicity/ion relationships developed in this study can be used to estimate whether toxicity in a produced water is a result of common ions, salinity, or some other unknown toxicant

  3. Certification of butyltins and phenyltins in marine sediment certified reference material by species-specific isotope-dilution mass spectrometric analysis using synthesized {sup 118}Sn-enriched organotin compounds

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Kazumi; Takatsu, Akiko; Watanabe, Takuro; Aoyagi, Yoshie; Yarita, Takashi; Okamoto, Kensaku; Chiba, Koichi [National Institute of Advanced Industrial Science and Technology (AIST), Environmental Standard Section, National Metrology Institute of Japan (NMIJ), Tsukuba, Ibaraki (Japan)

    2007-04-15

    A new marine sediment certified reference material, NMIJ CRM 7306-a, for butyltin and phenyltin analysis has been prepared and certified by the National Metrological Institute of Japan at the National Institute of Advanced Industrial Science and Technology (NMIJ/AIST). Candidate sediment material was collected at a bay near industrial activity in Japan. After air-drying, sieving, and mixing the material was sterilized with {gamma}-ray irradiation. The material was re-mixed and packaged into 250 glass bottles (15 g each) and these were stored in a freezer at -30 C. Certification was performed by use of three different types of species-specific isotope-dilution mass spectrometry (SSID-MS) - SSID-GC-ICP-MS, SSID-GC-MS, and SSID-LC-ICP-MS, with {sup 118}Sn-enriched organotin compounds synthesized from {sup 118}Sn-enriched metal used as a spike. The {sup 118}Sn-enriched mono-butyltin (MBT), dibutyltin (DBT), and tributyltin (TBT) were synthesized as a mixture whereas the {sup 118}Sn-enriched di-phenyltin (DPhT) and triphenyltin (TPhT) were synthesized individually. Four different extraction methods, mechanical shaking, ultrasonic, microwave-assisted, and pressurized liquid extraction, were adopted to avoid possible analytical bias caused by non-quantitative extraction and degradation or inter-conversion of analytes in sample preparations. Tropolone was used as chelating agent in all the extraction methods. Certified values are given for TBT 44{+-}3 {mu}g kg{sup -1} as Sn, DBT 51 {+-} 2 {mu}g kg{sup -1} as Sn, MBT 67 {+-} 3 {mu}g kg{sup -1} as Sn, TPhT 6.9 {+-} 1.2 {mu}g kg{sup -1} as Sn, and DPhT 3.4 {+-} 1.2 {mu}g kg{sup -1} as Sn. These levels are lower than in other sediment CRMs currently available for analysis of organotin compounds. (orig.)

  4. Gypsum Formation during the Messinian Salinity Crisis: an Alternative Model

    Science.gov (United States)

    Grothe, A.; Krijgsman, W.; Sangiorgi, F.; Vasiliev, I.; Baak, C. V.; Wolthers, M.; Stoica, M.; Reichart, G. J.; Davies, G.

    2016-12-01

    During the Messinian Salinity Crisis (MSC; 5.97 - 5.33 Myr ago), thick packages of evaporites (gypsum and halite) were deposited in the Mediterranean Basin. Traditionally, the occurrence of these evaporites is explained by the so-called "desiccation-model", in which evaporites are considered to result from a (partly) desiccated basin. In the last decade, it was thought that changes in the Mediterranean-Atlantic connectivity could explain the formation of gypsum. Stable isotope studies, however, show that the gypsum formed under influence of large freshwater input. Here we present new strontium isotope data from two well-dated Messinian sections in the Black and Caspian Seas. Our Sr isotope records suggest a persistent Mediterranean-Black Sea connection throughout the salinity crisis, which implies a large additional freshwater source to the Mediterranean. We claim that low saline waters from the Black Sea region are a prerequisite for gypsum formation in the Mediterranean and speculate about the mechanisms explaining this apparent paradox.

  5. Marine genomics

    DEFF Research Database (Denmark)

    Oliveira Ribeiro, Ângela Maria; Foote, Andrew David; Kupczok, Anne

    2017-01-01

    Marine ecosystems occupy 71% of the surface of our planet, yet we know little about their diversity. Although the inventory of species is continually increasing, as registered by the Census of Marine Life program, only about 10% of the estimated two million marine species are known. This lag......-throughput sequencing approaches have been helping to improve our knowledge of marine biodiversity, from the rich microbial biota that forms the base of the tree of life to a wealth of plant and animal species. In this review, we present an overview of the applications of genomics to the study of marine life, from...

  6. Isotope angiocardiography

    International Nuclear Information System (INIS)

    Stepinska, J.; Ruzyllo, W.; Konieczny, W.

    1979-01-01

    Method of technetium isotope 99 m pass through the heart recording with the aid of radioisotope scanner connected with seriograph and computer is being presented. Preliminary tests were carried out in 26 patients with coronary disease without or with previous myocardial infarction, cardiomyopathy, ventricular septal defect and in patients with artificial mitral and aortic valves. The obtained scans were evaluated qualitatively and compared with performed later contrast X-rays of the heart. Size of the right ventricle, volume and rate of left atrial evacuation, size and contractability of left ventricle were evaluated. Similarity of direct and isotope angiocardiographs, non-invasional character and repeatability of isotope angiocardiography advocate its usefulness. (author)

  7. A box model of the Late Miocene Mediterranean Sea: implications from combined 87Sr/86Sr and salinity data

    NARCIS (Netherlands)

    Topper, R.P.M.; Flecker, R.; Meijer, P.Th.; Wortel, M.J.R.

    2011-01-01

    Under certain conditions the strontium isotope ratio in the water of a semi‐enclosed basin is known to be sensitive to the relative size of ocean water inflow and river input. Combining Sr‐isotope ratios measured in Mediterranean Late Miocene successions with data on past salinity, one can derive

  8. Isotope Identification

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-18

    The objective of this training modules is to examine the process of using gamma spectroscopy for radionuclide identification; apply pattern recognition to gamma spectra; identify methods of verifying energy calibration; and discuss potential causes of isotope misidentification.

  9. Isotope laboratories

    International Nuclear Information System (INIS)

    1978-01-01

    This report from the Dutch Ministry of Health is an advisory document concerned with isotope laboratories in hospitals, in connection with the Dutch laws for hospitals. It discusses which hospitals should have isotope laboratories and concludes that as many hospitals as possible should have small laboratories so that emergency cases can be dealt with. It divides the Netherlands into regions and suggests which hospitals should have these facilities. The questions of how big each lab. is to be, what equipment each has, how each lab. is organised, what therapeutic and diagnostic work should be carried out by each, etc. are discussed. The answers are provided by reports from working groups for in vivo diagnostics, in vitro diagnostics, therapy, and safety and their results form the criteria for the licences of isotope labs. The results of a questionnaire for isotope labs. already in the Netherlands are presented, and their activities outlined. (C.F.)

  10. Linking water and carbon cycles through salinity observed from space

    Science.gov (United States)

    Xie, X.; Liu, W. T.

    2017-12-01

    The association of ocean surface salinity in global hydrological cycle and climate change has been traditionally studied through the examination of its tendency and advection as manifestation of ocean's heat and water fluxes with the atmosphere. The variability of surface heat and water fluxes are linked to top of atmosphere radiation, whose imbalance is the main cause of global warming. Besides the link of salinity to greenhouse warming through water balance, this study will focus on the effect of changing salinity on carbon dioxide flux between the ocean and the atmosphere. We have built statistical models to estimate the partial pressure of carbon dioxide (pCO2) and ocean acidification (in terms of total alkalinity and pH) using spacebased data. PCO2 is a critical parameter governing ocean as source and sink of the accumulated greenhouse gas in the atmosphere. The exchange also causes ocean acidification, which is detrimental to marine lives and ecology. Before we had sufficient spacebased salinity measurements coincident with in situ pCO2 measurement, we trained our statistical models to use satellite sea surface temperature and chlorophyll, with one model using salinity climatology and the other without. We found significant differences between the two models in regions of strong water input through river discharge and surface water flux. The pCO2 output follows the seasonal salinity advection of the Amazon outflow. The seasonal salinity advection between Bay of Bengal and Arabian Sea are followed by change of pCO2 and total alkalinity. At shorter time scales, the signatures of rain associated with intraseasonal organized convection of summer monsoon can be detected. We have observed distribution agreement of among pCO2, surface salinity, and surface water flux for variation from a few days to a few years under the Pacific ITCZ; the agreement varies slightly with season and longitudes and the reason is under study.

  11. Stable-isotope paleoclimatology

    International Nuclear Information System (INIS)

    Deuser, W.G.

    1978-01-01

    Seasonal variations of temperature and salinity in the surface waters of large parts of the oceans are well established. Available data on seasonal distributions of planktonic foraminifera show that the abundances of different species groups peak at different times of the year with an apparent succession of abundance peaks through most of the year. This evidence suggests that a measure of seasonal contrast is recorded in the isotope ratios of oxygen, and perhaps carbon, in the tests of different foraminiferal species. The evaluation of this potential paleoclimatologic tool awaits planned experiments with recent foraminifera in well-known settings, but a variety of available data is consistent with the idea that interspecies differences in 18 O content contain a seasonal component.(auth.)

  12. Isotopic chirality

    Energy Technology Data Exchange (ETDEWEB)

    Floss, H.G. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  13. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.L.

    1982-01-01

    A method is described for separating isotopes in which photo-excitation of selected isotope species is used together with the reaction of the excited species with postive ions of predetermined ionization energy, other excited species, or free electrons to produce ions or ion fragments of the selected species. Ions and electrons are produced by an electrical discharge, and separation is achieved through radial ambipolar diffusion, electrostatic techniques, or magnetohydrodynamic methods

  14. Isotope enrichment

    International Nuclear Information System (INIS)

    Lydtin, H-J.; Wilden, R.J.; Severin, P.J.W.

    1978-01-01

    The isotope enrichment method described is based on the recognition that, owing to mass diffusion and thermal diffusion in the conversion of substances at a heated substrate while depositing an element or compound onto the substrate, enrichment of the element, or a compound of the element, with a lighter isotope will occur. The cycle is repeated for as many times as is necessary to obtain the degree of enrichment required

  15. Hurricane Ingrid and Tropical Storm Hanna's effects on the salinity of the coastal aquifer, Quintana Roo, Mexico

    Science.gov (United States)

    Kovacs, Shawn E.; Reinhardt, Eduard G.; Stastna, Marek; Coutino, Aaron; Werner, Christopher; Collins, Shawn V.; Devos, Fred; Le Maillot, Christophe

    2017-08-01

    There is a lack of information on aquifer dynamics in anchialine systems, especially in the Yucatán Peninsula of Mexico. Most of our knowledge is based on ;spot; measurements of the aquifer with no long-term temporal monitoring. In this study spanning four years (2012-2016), sensors (water depth and conductivity (salinity)) were deployed and positioned (-9 and -10 m) in the meteoric Water Mass (WM) close to the transition with the marine WM (halocline) in 2 monitoring sites within the Yax Chen cave system to investigate precipitation effects on the salinity of the coastal aquifer. The results show variation in salinity (95 mm) such as Hurricane Ingrid (2013) and Tropical Storm Hanna (2014) shows meteoric water mass salinity rapidly increasing (approx. 6.39 to >8.6 ppt), but these perturbations have a shorter duration (weeks and days). Wavelet analysis of the salinity record indicates seasonal mixing effects in agreement with the wet and dry periods, but also seasonal effects of tidal mixing (meteoric and marine water masses) occurring on shorter time scales (diurnal and semi-diurnal). These results demonstrate that the salinity of the freshwater lens is influenced by precipitation and turbulent mixing with the marine WM. The salinity response is scaled with precipitation; larger more intense rainfall events (>95 mm) create a larger response in terms of the magnitude and duration of the salinity perturbation (>1 ppt). The balance of precipitation and its intensity controls the temporal and spatial patterning of meteoric WM salinity.

  16. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2005-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. (author). 52 refs., 11 figs., 2 tabs

  17. Evidence for a marine incursion along the lower Colorado River corridor

    Science.gov (United States)

    McDougall, Kristin; Martínez, Adriana Yanet Miranda

    2014-01-01

    Foraminiferal assemblages in the stratigraphically lower part of the Bouse Formation in the Blythe Basin indicate marine conditions whereas assemblages in the upper part of the Bouse Formation indicate lacustrine conditions and suggest the presence of a saline lake. Benthic foraminiferal assemblages in the lower part of the Bouse Formation are similar to lagoonal and inner neritic biofacies of the modern Gulf of California. Evidence suggesting a change from marine to lacustrine conditions includes the highest occurrence of planktic foraminifers at an elevation of 123 m asl, the change from low diversity to monospecific foraminiferal assemblages composed only of Ammonia beccarii (between 110 to126 m asl), an increase in abundance of A. beccarii specimens (above ~110 m asl), increased number of deformed tests (above ~123 m asl), first appearance of Chara (at ~85 m asl), lowest occurrence of reworked Cretaceous coccoliths (at ~110 m), a decrease in strontium isotopic values (between 70-120 m), and δ18O and δ13C values similar to sea water (between 70-100 m asl). Planktic foraminifers indicate a late Miocene age between 8.10 and 5.3 Ma for the oldest part of the Bouse Formation in the southern part of the Blythe Basin. Benthic and planktic foraminifers correlate with other late Miocene sections and suggest that the basal Bouse Formation in the Blythe Basin was deposited at the northern end of the proto-Gulf of California. After the marine connection was restricted or eliminated, the Colorado River flowed into the Blythe Basin forming a saline lake. This lake supported a monospecific foraminiferal assemblage of A. beccarii until the lake spilled into the Salton Trough and the Colorado River became a through-flowing river.

  18. Monaco and marine environmental protection

    International Nuclear Information System (INIS)

    Grimaldi, Albert II Prince

    2006-01-01

    The importance of the protection of the marine environment for sustainable development and economy of coastal countries, like Monaco, is well known. Sadly, this environment has been under continuous threats from development, tourism, urbanisation and demographic pressure. The semi-enclosed Mediterranean sea is challenged by new pollutant cocktails, problems of fresh water management, over-fishing, and now increasingly climate change impacts. Monaco has a long history in the investigation of the marine environment. Prince Albert I, was one of the pioneers in oceanographic exploration, organizer of European oceanographic research and founder of several international organizations including the Musee Oceanographique. The International Atomic Energy Agency established in 1961 its Marine Environment Laboratory in Monaco, the only marine laboratory in the United Nations system. More than 40 years ago the IAEA joined forces with the Grimaldi family and several interested governments to establish the Marine Environment Laboratory in Monaco. Their first purpose-built facilities, dedicated to marine research, launched a new era in the investigation of the marine environment using radioactive and stable isotopes as tracers for better understanding of processes in the oceans and seas, addressing their pollution and promoting wide international cooperation. The Government of the Principality of Monaco has been actively engaged in these developments and is continuously supporting activities of the Monaco Laboratory

  19. Carbon and Oxygen isotopic composition in paleoenvironmental determination

    International Nuclear Information System (INIS)

    Silva, J.R.M. da.

    1978-01-01

    This work reports that the carbon and oxygen isotopic composition separate the mollusks from marine environment of the mollusks from continental environment in two groups isotopically different, making the biological control outdone by environment control, in the isotopic fragmentation mechanisms. The patterns from the continental environment are more rich in O 16 than the patterns from marine environments. The C 12 is also more frequent in the mollusks from continental environments. The carbon isotopic composition in paterns from continental environments is situated betwen - 10.31 and - 4,05% and the oxygen isotopic composition is situated between - 6,95 and - 2,41%. To the marine environment patterns the carbon isotopic composition is between - 2,08 and + 2,65% and the oxigen isotopic composition is between - 2,08 and + 0,45%. Was also analysed fossil marine mollusks shells and their isotopic composition permit the formulation of hypothesis about the environment which they lived. (C.D.G.) [pt

  20. Marine renewable energy in China: Current status and perspectives

    OpenAIRE

    Yong-liang Zhang; Zheng Lin; Qiu-lin Liu

    2014-01-01

    Based on a general review of marine renewable energy in China, an assessment of the development status and amount of various marine renewable energy resources, including tidal energy, tidal current energy, wave energy, ocean thermal energy, and salinity gradient energy in China's coastal seas, such as the Bohai Sea, the Yellow Sea, the East China Sea, and the South China Sea, is presented. We have found that these kinds of marine renewable energy resources will play an important role in meeti...

  1. Linking Marine Ecosystem Services to the North Sea’s Energy Fields in Transnational Marine Spatial Planning

    Directory of Open Access Journals (Sweden)

    Christina Vogel

    2018-06-01

    Full Text Available Marine spatial planning temporally and spatially allocates marine resources to different users. The ecosystem approach aims at optimising the social and economic benefits people derive from marine resources while preserving the ecosystem’s health. Marine ecosystem services are defined as the benefits people obtain from marine ecosystems. The aim of this study is to determine which interrelations between marine ecosystem services and the marine energy industry can be identified for use in transnational marine spatial planning exemplified in the North Sea region. As the North Sea is one of the busiest seas worldwide, the risk of impairing the ecosystems through anthropogenic pressures is high. Drawing on a literature-based review, 23 marine ecosystem services provided by the North Sea region were defined and linked to seven offshore energy fields comprising oil and natural gas, wind, tides and currents, waves, salinity gradients, algal biomass, and geothermal heat. The interactions were divided into four categories: dependence, impact, bidirectional, or no interaction. Oil and natural gas, as well as algae biomass, are the fields with the most relations with marine ecosystem services while waves and salinity gradients exhibit the least. Some marine ecosystem services (Conditions for Infrastructure, Regulation of Water Flows, and Cognitive Development are needed for all fields; Recreation and Tourism, Aesthetic and Cultural Perceptions and Traditions, Cognitive Development, and Sea Scape are impacted by all fields. The results of this research provide an improved basis for an ecosystem approach in transnational marine spatial planning.

  2. Reservoir age variations and stable isotope values of bulk sediment in a core from the Limfjord, Denmark

    DEFF Research Database (Denmark)

    Philippsen, Bente; Olsen, Jesper; Rasmussen, Peter

    The Limfjord is a sound in Northern Jutland, Denmark, connecting the North Sea with the Kattegat. A multi-proxy approach has been applied to a sediment core from Kilen, a former fjord arm near the town of Struer, to reveal the Limfjord’s development in more detail. In this paper, we concentrate...... on radiocarbon dating of shells and on stable isotope measurements of bulk sediment from 7400 to 1300 cal BP. Reservoir ages in coastal waters and estuaries can differ considerably from the global model ocean. The seas around Denmark have a reservoir age of c. 400 years, while a hardwater effect of a few...... of organic matter can thus be estimated. The d13C and C/N inferred salinity can be related to changes in Delta-R and other palaeoenvironmental proxies. An increasing marine influence throughout the largest part of the core is followed by large variations around 2000 cal BP....

  3. Marine renewable energies. Stakes and technical solutions

    International Nuclear Information System (INIS)

    Lacroix, Olivier; Macadre, Laura-Mae

    2012-05-01

    Marine renewable energies are able to supply carbon free energy from various ocean resources (tides, waves, currents, winds, salinity and temperature gradients). This sector, currently at an early stage of deployment, has good prospects of development in the coming years. ENEA releases a report on marine renewable energies giving a transversal vision of the associated stakes and prospects of development. Technical and economic characteristics, maturity level and specificities of each marine energy are analyzed. French and European sources of funding, regulatory framework and potential environmental and social impacts are also reported

  4. Marine biology

    International Nuclear Information System (INIS)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index

  5. Exploring the isotopic niche: isotopic variance, physiological incorporation, and the temporal dynamics of foraging

    Directory of Open Access Journals (Sweden)

    Justin Douglas Yeakel

    2016-01-01

    Full Text Available Consumer foraging behaviors are dynamic, changing in response to prey availability, seasonality, competition, and even the consumer's physiological state. The isotopic composition of a consumer is a product of these factors as well as the isotopic `landscape' of its prey, i.e. the isotopic mixing space. Stable isotope mixing models are used to back-calculate the most likely proportional contribution of a set of prey to a consumer's diet based on their respective isotopic distributions, however they are disconnected from ecological process. Here we build a mechanistic framework that links the ecological and physiological processes of an individual consumer to the isotopic distribution that describes its diet, and ultimately to the isotopic composition of its own tissues, defined as its `isotopic niche’. By coupling these processes, we systematically investigate under what conditions the isotopic niche of a consumer changes as a function of both the geometric properties of its mixing space and foraging strategies that may be static or dynamic over time. Results of our derivations reveal general insight into the conditions impacting isotopic niche width as a function of consumer specialization on prey, as well as the consumer's ability to transition between diets over time. We show analytically that moderate specialization on isotopically unique prey can serve to maximize a consumer's isotopic niche width, while temporally dynamic diets will tend to result in peak isotopic variance during dietary transitions. We demonstrate the relevance of our theoretical findings by examining a marine system composed of nine invertebrate species commonly consumed by sea otters. In general, our analytical framework highlights the complex interplay of mixing space geometry and consumer dietary behavior in driving expansion and contraction of the isotopic niche. Because this approach is established on ecological mechanism, it is well-suited for enhancing the

  6. Saline agriculture in Mediterranean environments

    Directory of Open Access Journals (Sweden)

    Albino Maggio

    2011-03-01

    Full Text Available Salinization is increasingly affecting world's agricultural land causing serious yield loss and soil degradation. Understanding how we could improve crop productivity in salinized environments is therefore critical to meet the challenging goal of feeding 9.3 billion people by 2050. Our comprehension of fundamental physiological mechanisms in plant salt stress adaptation has greatly advanced over the last decades. However, many of these mechanisms have been linked to salt tolerance in simplified experimental systems whereas they have been rarely functionally proven in real agricultural contexts. In-depth analyses of specific crop-salinity interactions could reveal important aspects of plant salt stress adaptation as well as novel physiological/agronomic targets to improve salinity tolerance. These include the developmental role of root vs. shoot systems respect to water-ion homeostasis, morphological vs. metabolic contributions to stress adaptation, developmental processes vs. seasonal soil salinity evolution, residual effects of saline irrigation in non-irrigated crops, critical parameters of salt tolerance in soil-less systems and controlled environments, response to multiple stresses. Finally, beneficial effects of salinization on qualitative parameters such as stress-induced accumulation of high nutritional value secondary metabolites should be considered, also. In this short review we attempted to highlight the multifaceted nature of salinity in Mediterranean agricultural systems by summarizing most experimental activity carried out at the Department of Agricultural Engineering and Agronomy of University of Naples Federico II in the last few years.

  7. Marine geochemistry ocean circulation, carbon cycle and climate change

    CERN Document Server

    Roy-Barman, Matthieu

    2016-01-01

    Marine geochemistry uses chemical elements and their isotopes to study how the ocean works. It brings quantitative answers to questions such as: What is the deep ocean mixing rate? How much atmospheric CO2 is pumped by the ocean? How fast are pollutants removed from the ocean? How do ecosystems react to the anthropogenic pressure? The book provides a simple introduction to the concepts (environmental chemistry, isotopes), the methods (field approach, remote sensing, modeling) and the applications (ocean circulation, carbon cycle, climate change) of marine geochemistry with a particular emphasis on isotopic tracers. Marine geochemistry is not an isolated discipline: numerous openings on physical oceanography, marine biology, climatology, geology, pollutions and ecology are proposed and provide a global vision of the ocean. It includes new topics based on ongoing research programs such as GEOTRACES, Global Carbon Project, Tara Ocean. It provides a complete outline for a course in marine geochemistry. To favor a...

  8. Multiple water isotope proxy reconstruction of extremely low last glacial temperatures in Eastern Beringia (Western Arctic)

    NARCIS (Netherlands)

    Porter, T.J.; Froese, D.G.; Feakins, S.J.; Bindeman, I.N.; Mahony, M.E.; Pautler, B.G.; Reichart, G.-J.; Sanborn, P.T.; Simpson, M.J.; Weijers, J.W.H.

    2016-01-01

    Precipitation isotopes are commonly used for paleothermometry in high latitude regions. Here we present multiple water isotope proxies from the same sedimentary context – perennially frozen loess deposits in the Klondike Goldfields in central Yukon, Canada, representing parts of Marine Isotope

  9. Isotopes Project

    International Nuclear Information System (INIS)

    Dairiki, J.M.; Browne, E.; Firestone, R.B.; Lederer, C.M.; Shirley, V.S.

    1984-01-01

    The Isotopes Project compiles and evaluates nuclear structure and decay data and disseminates these data to the scientific community. From 1940-1978 the Project had as its main objective the production of the Table of Isotopes. Since publication of the seventh (and last) edition in 1978, the group now coordinates its nuclear data evaluation efforts with those of other data centers via national and international nuclear data networks. The group is currently responsible for the evaluation of mass chains A = 167-194. All evaluated data are entered into the International Evaluated Nuclear Structure Data File (ENSDF) and are published in Nuclear Data Sheets. In addition to the evaluation effort, the Isotopes Project is responsible for production of the Radioactivity Handbook

  10. Isotope production

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Dewi M.

    1995-07-15

    Some 2 0% of patients using radiopharmaceuticals receive injections of materials produced by cyclotrons. There are over 200 cyclotrons worldwide; around 35 are operated by commercial companies solely for the production of radio-pharmaceuticals with another 25 accelerators producing medically useful isotopes. These neutron-deficient isotopes are usually produced by proton bombardment. All commonly used medical isotopes can be generated by 'compact' cyclotrons with energies up to 40 MeV and beam intensities in the range 50 to 400 microamps. Specially designed target systems contain gram-quantities of highly enriched stable isotopes as starting materials. The targets can accommodate the high power densities of the proton beams and are designed for automated remote handling. The complete manufacturing cycle includes large-scale target production, isotope generation by cyclotron beam bombardment, radio-chemical extraction, pharmaceutical dispensing, raw material recovery, and labelling/packaging prior to the rapid delivery of these short-lived products. All these manufacturing steps adhere to the pharmaceutical industry standards of Good Manufacturing Practice (GMP). Unlike research accelerators, commercial cyclotrons are customized 'compact' machines usually supplied by specialist companies such as IBA (Belgium), EBCO (Canada) or Scanditronix (Sweden). The design criteria for these commercial cyclotrons are - small magnet dimensions, power-efficient operation of magnet and radiofrequency systems, high intensity extracted proton beams, well defined beam size and automated computer control. Performance requirements include rapid startup and shutdown, high reliability to support the daily production of short-lived isotopes and low maintenance to minimize the radiation dose to personnel. In 1987 a major step forward in meeting these exacting industrial requirements came when IBA, together with the University of Louvain-La-Neuve in Belgium, developed the Cyclone-30

  11. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high ... or by any means without permission in writing from the copyright holder. ..... Journal of Chemical Engineering Research and Design 82 ... Indian Ocean Marine Science Association Technical.

  12. Marine Biomedicine

    Science.gov (United States)

    Bang, Frederik B.

    1977-01-01

    Describes early scientific research involving marine invertebrate pathologic processes that may have led to new insights into human disease. Discussed are inquiries of Metchnikoff, Loeb, and Cantacuzene (immunolgic responses in sea stars, horseshoe crabs, and marine worms, respectively). Describes current research stemming from these early…

  13. Marine Biology

    Science.gov (United States)

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  14. Influence of salinity on permeability characteristics of marine sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Jose, U.V.; Bhat, S.T.; Nayak, B.U.

    off Mauritius Coast. Liquid limit and plasticity index varied widely from 45 to 75 and 10 to 35, respectively. Permeability was found at different void ratios with distilled water and 0.2, 0.4, and 0.8 N NaCl solutions as permeating fluid. It was found...

  15. Isotopically modified compounds

    International Nuclear Information System (INIS)

    Kuruc, J.

    2009-01-01

    In this chapter the nomenclature of isotopically modified compounds in Slovak language is described. This chapter consists of following parts: (1) Isotopically substituted compounds; (2) Specifically isotopically labelled compounds; (3) Selectively isotopically labelled compounds; (4) Non-selectively isotopically labelled compounds; (5) Isotopically deficient compounds.

  16. Riverine dominance of a nearshore marine demersal food web ...

    African Journals Online (AJOL)

    The aim of this study was to determine (i) the importance of riverine and marine organic matter for the Thukela Bank food web; and (ii) whether there are seasonal changes in the Thukela River stable isotope values, and, if so, whether these are reflected in the isotope values of demersal organisms. Estuarine organic matter ...

  17. Survival and growth of invasive Indo-Pacific lionfish at low salinities

    Science.gov (United States)

    Schofield, Pamela J.; Huge, Dane H.; Rezek, Troy C.; Slone, Daniel H.; Morris, James A.

    2015-01-01

    Invasive Indo-Pacific lionfish [Pterois volitans (Linnaeus, 1758) and P. miles (Bennett, 1828)] are now established throughout the Western North Atlantic. Several studies have documented negative effects of lionfish on marine fauna including significant changes to reef fish community composition. Established populations of lionfish have been documented in several estuaries, and there is concern that the species may invade other low-salinity environments where they could potentially affect native fauna. To gain a better understanding of their low-salinity tolerance, we exposed lionfish to four salinities [5, 10, 20 and 34 (control)]. No lionfish mortality was observed at salinities of 34, 20 or 10, but all fish died at salinity = 5 within 12 days. Lionfish survived for at least a month at a salinity of 10 and an average of about a week at 5. Fish started the experiment at an average mass of 127.9 g, which increased at a rate of 0.55 g per day while they were alive, regardless of salinity treatment. Our research indicated lionfish can survive salinities down to 5 for short periods and thus may penetrate and persist in a variety of estuarine habitats. Further study is needed on effects of salinity levels on early life stages (eggs, larvae).

  18. Isotope generator

    International Nuclear Information System (INIS)

    1979-01-01

    The patent describes an isotope generator incorporating the possibility of stopping elution before the elution vessel is completely full. Sterile ventilation of the whole system can then occur, including of both generator reservoir and elution vessel. A sterile, and therefore pharmaceutically acceptable, elution fluid is thus obtained and the interior of the generator is not polluted with non-sterile air. (T.P.)

  19. NOAA Average Annual Salinity (3-Zone)

    Data.gov (United States)

    California Natural Resource Agency — The 3-Zone Average Annual Salinity Digital Geography is a digital spatial framework developed using geographic information system (GIS) technology. These salinity...

  20. Chlorine stable isotope studies of old groundwater, southwestern Great Artesian Basin, Australia

    International Nuclear Information System (INIS)

    Zhang Min; Frape, Shaun K.; Love, Andrew J.; Herczeg, Andrew L.; Lehmann, B.E.; Beyerle, U.; Purtschert, R.

    2007-01-01

    Stable Cl isotope ratios ( 37 Cl/ 35 Cl) were measured in groundwater samples from the southwestern flow system of the Great Artesian Basin, Australia to gain a better understanding of the Cl - sources and transport mechanisms. δ 37 Cl values range from 0 per mille to -2.5 per mille (SMOC), and are inversely correlated with Cl - concentration along the inferred flow direction. The Cl isotopic compositions, in conjunction with other geochemical parameters, suggest that Cl - in groundwaters is not derived from salt dissolution. Mixing of the recharge water with saline groundwater cannot explain the relationship between δ 37 Cl and Cl - concentration measured. Marine aerosols deposited via rainfall and subsequent evapotranspiration appear to be responsible for the Cl - concentrations observed in wells that are close to the recharge area, and in groundwaters sampled along the southern transect. δ 37 Cl values measured in the leachate of the Bulldog shale suggest that the aquitard is the subsurface source of Cl - for the majority of groundwater samples studied. Diffusion is likely the mechanism through which Cl - is transported from the pore water of the Bulldog shale to the aquifer. However, a more detailed study of the aquitard rocks is required to verify this hypothesis

  1. Isotope hydrology of ground waters of the Kalahari, Gordonia

    International Nuclear Information System (INIS)

    Verhagen, B.Th.

    1985-01-01

    Environmental isotope observations were conducted on ground waters from approximately 50 boreholes covering a substantial part of Gordonia. The quality of these waters ranges from fresh to saline. The observed isotope ratios cover a wide range of values, indicating varied hydrological conditions. The most important conclusions arrived at by this study are: 1. no important regional movement of ground water occurs at present; 2. there is widespread evidence of diffuse rainfall recharge; and 3. an important part of ground-water salinity is derived from the unsaturated zone, during such recharge

  2. Salinity tolerances and use of saline environments by freshwater turtles: implications of sea level rise.

    Science.gov (United States)

    Agha, Mickey; Ennen, Joshua R; Bower, Deborah S; Nowakowski, A Justin; Sweat, Sarah C; Todd, Brian D

    2018-03-25

    The projected rise in global mean sea levels places many freshwater turtle species at risk of saltwater intrusion into freshwater habitats. Freshwater turtles are disproportionately more threatened than other taxa; thus, understanding the role of salinity in determining their contemporary distribution and evolution should be a research priority. Freshwater turtles are a slowly evolving lineage; however, they can adapt physiologically or behaviourally to various levels of salinity and, therefore, temporarily occur in marine or brackish environments. Here, we provide the first comprehensive global review on freshwater turtle use and tolerance of brackish water ecosystems. We link together current knowledge of geographic occurrence, salinity tolerance, phylogenetic relationships, and physiological and behavioural mechanisms to generate a baseline understanding of the response of freshwater turtles to changing saline environments. We also review the potential origins of salinity tolerance in freshwater turtles. Finally, we integrate 2100 sea level rise (SLR) projections, species distribution maps, literature gathered on brackish water use, and a phylogeny to predict the exposure of freshwater turtles to projected SLR globally. From our synthesis of published literature and available data, we build a framework for spatial and phylogenetic conservation prioritization of coastal freshwater turtles. Based on our literature review, 70 species (∼30% of coastal freshwater turtle species) from 10 of the 11 freshwater turtle families have been reported in brackish water ecosystems. Most anecdotal records, observations, and descriptions do not imply long-term salinity tolerance among freshwater turtles. Rather, experiments show that some species exhibit potential for adaptation and plasticity in physiological, behavioural, and life-history traits that enable them to endure varying periods (e.g. days or months) and levels of saltwater exposure. Species that specialize on

  3. A novel membrane inlet mass spectrometer method to measure ¹⁵NH4₄⁺ for isotope-enrichment experiments in aquatic ecosystems.

    Science.gov (United States)

    Yin, Guoyu; Hou, Lijun; Liu, Min; Liu, Zhanfei; Gardner, Wayne S

    2014-08-19

    Nitrogen (N) pollution in aquatic ecosystems has attracted much attention over the past decades, but the dynamics of this bioreactive element are difficult to measure in aquatic oxygen-transition environments. Nitrogen-transformation experiments often require measurement of (15)N-ammonium ((15)NH4(+)) ratios in small-volume (15)N-enriched samples. Published methods to determine N isotope ratios of dissolved ammonium require large samples and/or costly equipment and effort. We present a novel ("OX/MIMS") method to determine N isotope ratios for (15)NH4(+) in experimental waters previously enriched with (15)N compounds. Dissolved reduced (15)N (dominated by (15)NH4(+)) is oxidized with hypobromite iodine to nitrogen gas ((29)N2 and/or (30)N2) and analyzed by membrane inlet mass spectrometry (MIMS) to quantify (15)NH4(+) concentrations. The N isotope ratios, obtained by comparing the (15)NH4(+) to total ammonium (via autoanalyzer) concentrations, are compared to the ratios of prepared standards. The OX/MIMS method requires only small sample volumes of water (ca. 12 mL) or sediment slurries and is rapid, convenient, accurate, and precise (R(2) = 0.9994, p < 0.0001) over a range of salinities and (15)N/(14)N ratios. It can provide data needed to quantify rates of ammonium regeneration, potential ammonium uptake, and dissimilatory nitrate reduction to ammonium (DNRA). Isotope ratio results agreed closely (R = 0.998, P = 0.001) with those determined independently by isotope ratio mass spectrometry for DNRA measurements or by ammonium isotope retention time shift liquid chromatography for water-column N-cycling experiments. Application of OX/MIMS should simplify experimental approaches and improve understanding of N-cycling rates and fate in a variety of freshwater and marine environments.

  4. A novel methodology to investigate isotopic biosignatures

    Science.gov (United States)

    Horner, T. J.; Lee, R. B. Y.; Henderson, G. M.; Rickaby, R. E. M.

    2012-04-01

    . coli (e.g. membranes, cytosol, etc.), including the catalytic metal atoms within CdCA. These experiments allow isotopic exchange reactions to be observed in biological systems at an unparalleled resolution, demonstrating that isotopic fractionation can occur, in vivo, on length scales as small as a few Å. We will explore future applications of this technique using the marine geochemistry of Cd as a case study. This experimental approach has great promise for studying the individual isotopic biosignatures of other biochemical reactions, in particular those which may have been active during early Earth History.

  5. Marine Renewable Energy Seascape

    Directory of Open Access Journals (Sweden)

    Alistair G.L. Borthwick

    2016-03-01

    Full Text Available Energy production based on fossil fuel reserves is largely responsible for carbon emissions, and hence global warming. The planet needs concerted action to reduce fossil fuel usage and to implement carbon mitigation measures. Ocean energy has huge potential, but there are major interdisciplinary problems to be overcome regarding technology, cost reduction, investment, environmental impact, governance, and so forth. This article briefly reviews ocean energy production from offshore wind, tidal stream, ocean current, tidal range, wave, thermal, salinity gradients, and biomass sources. Future areas of research and development are outlined that could make exploitation of the marine renewable energy (MRE seascape a viable proposition; these areas include energy storage, advanced materials, robotics, and informatics. The article concludes with a sustainability perspective on the MRE seascape encompassing ethics, legislation, the regulatory environment, governance and consenting, economic, social, and environmental constraints. A new generation of engineers is needed with the ingenuity and spirit of adventure to meet the global challenge posed by MRE.

  6. Natural radioactivity aspects of the marine environment

    International Nuclear Information System (INIS)

    Iyengar, M.A.R.

    2005-01-01

    A review of the natural radioactivity distributions and their movement in the oceans and their significance, is of considerable interest, while attempting to understand the impact of man-made radioactivity sources on the marine environment. In this context the interesting environmental behaviour of Radium isotopes ( 226 Ra and 228 Ra) and 210 Pb and 210 Po pair of radionuclides in the marine environment -occurring in 238 U and 232 Th natural radionuclides series have been the subject of considerable investigations as part of the marine biogeochemical studies, some aspects of which are discussed

  7. Iron isotopic fractionation during continental weathering

    Energy Technology Data Exchange (ETDEWEB)

    Fantle, Matthew S.; DePaolo, Donald J.

    2003-10-01

    The biological activity on continents and the oxygen content of the atmosphere determine the chemical pathways through which Fe is processed at the Earth's surface. Experiments have shown that the relevant chemical pathways fractionate Fe isotopes. Measurements of soils, streams, and deep-sea clay indicate that the {sup 56}Fe/{sup 54}Fe ratio ({delta}{sup 56}Fe relative to igneous rocks) varies from +1{per_thousand} for weathering residues like soils and clays, to -3{per_thousand} for dissolved Fe in streams. These measurements confirm that weathering processes produce substantial fractionation of Fe isotopes in the modern oxidizing Earth surface environment. The results imply that biologically-mediated processes, which preferentially mobilize light Fe isotopes, are critical to Fe chemistry in weathering environments, and that the {delta}{sup 56}Fe of marine dissolved Fe should be variable and negative. Diagenetic reduction of Fe in marine sediments may also be a significant component of the global Fe isotope cycle. Iron isotopes provide a tracer for the influence of biological activity and oxygen in weathering processes through Earth history. Iron isotopic fractionation during weathering may have been smaller or absent in an oxygen-poor environment such as that of the early Precambrian Earth.

  8. Reconstruction of a saline, lacustrine carbonate system (Priabonian, St-Chaptes Basin, SE France): Depositional models, paleogeographic and paleoclimatic implications

    Science.gov (United States)

    Lettéron, Alexandre; Hamon, Youri; Fournier, François; Séranne, Michel; Pellenard, Pierre; Joseph, Philippe

    2018-05-01

    A 220-m thick carbonate-dominated succession has been deposited in shallow-water, saline lake environments during the early to middle Priabonian (MP17A-MP18 mammal zones) in the Saint-Chaptes Basin (south-east France). The palaeoenvironmental, paleoclimatic and palaeogeographic significance of such saline lake carbonates has been deciphered on the basis of a multi-proxy analyses including: 1) depositional and diagenetic features; 2) biological components (molluscs, benthic foraminifera, characean gyrogonites, spores and pollens); 3) carbon and oxygen stable isotopes; 4) trace elements; and 5) clay mineralogy. Five stages of lacustrine system evolution have been identified: 1) fresh-water closed lake under dry climate (unit U1); 2) fresh to brackish water lacustrine deltaic system with a mixed carbonate-siliciclastic sedimentation under relatively wet climatic conditions (unit U2); 3) salt-water lacustrine carbonate system under humid climatic setting (unit U3); 4) evaporitic lake (unit U4); and 5) closed lake with shallow-water carbonate sedimentation under subtropical to Mediterranean climate with dry seasons (unit U5). Upper Eocene aridification is evidenced to have started as early as the earliest Priabonian (unit U1: MP17A mammal zone). A change from humid to dryer climatic conditions is recorded between units U3 and U4. The early to middle Priabonian saline lake is interpreted as an athalassic (inland) lake that have been transiently connected with neighboring salt lakes influenced by seawater and/or fed with sulfates deriving from recycling of evaporites. Maximum of connection with neighboring saline lakes (Mormoiron Basin, Camargue and Central grabens, Hérault Basin) likely occurred during unit U3 and at the base of unit U5. The most likely sources of salts of these adjacent basins are: 1) Triassic evaporites derived from salt-diapirs (Rhône valley) or from paleo-outcrops located east of the Durance fault or offshore in the Gulf of Lion; or 2) marine

  9. Salinity and Temperature Tolerance of the Nemertean Worm Carcinonemertes errans, an Egg Predator of the Dungeness Crab.

    Science.gov (United States)

    Dunn, Paul H; Young, Craig M

    2015-04-01

    Estuaries can be harsh habitats for the marine animals that enter them, but they may also provide these species with sub-saline refuges from their parasites. The nemertean egg predator Carcinonemertes errans is known to occur less frequently and in smaller numbers on its host, the Dungeness crab Metacarcinus magister, when the hosts are found within estuaries. We examined the temperature and salinity tolerances of C. errans to determine if this observed distribution represents a true salinity refuge. We monitored the survival of juvenile and larval worms exposed to ecologically relevant salinities (5-30) and temperatures (8-20 °C) over the course of several days under laboratory conditions. Juvenile worms were unaffected by the experimental temperature levels and exhibited robustness to salinity treatments 25 and 30. However, significant mortality was seen at salinity treatments 20 and below. Larvae were less tolerant than juveniles to lowered salinity and were also somewhat more susceptible to the higher temperatures tested. Given that the Dungeness crab can tolerate forays into mesohaline (salinity 5-18) waters for several days at a time, our findings suggest that salinity gradients play an important role in creating a parasite refuge for this species within the estuaries of the Pacific Northwest. © 2015 Marine Biological Laboratory.

  10. World Ocean Atlas 2005, Salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World Ocean Atlas 2005 (WOA05) is a set of objectively analyzed (1° grid) climatological fields of in situ temperature, salinity, dissolved oxygen, Apparent Oxygen...

  11. Soil disturbance as a driver of increased stream salinity in a semiarid watershed undergoing energy development

    Science.gov (United States)

    Bern, Carleton R.; Clark, Melanie L.; Schmidt, Travis S.; Holloway, JoAnn M.; Mcdougal, Robert

    2015-01-01

    Salinization is a global threat to the quality of streams and rivers, but it can have many causes. Oil and gas development were investigated as one of several potential causes of changes in the salinity of Muddy Creek, which drains 2470 km2 of mostly public land in Wyoming, U.S.A. Stream discharge and salinity vary with seasonal snowmelt and define a primary salinity-discharge relationship. Salinity, measured by specific conductance, increased substantially in 2009 and was 53-71% higher at low discharge and 33-34% higher at high discharge for the years 2009-2012 compared to 2005-2008. Short-term processes (e.g., flushing of efflorescent salts) cause within-year deviations from the primary relation but do not obscure the overall increase in salinity. Dissolved elements associated with increased salinity include calcium, magnesium, and sulfate, a composition that points to native soil salts derived from marine shales as a likely source. Potential causes of the salinity increase were evaluated for consistency by using measured patterns in stream chemistry, slope of the salinity-discharge relationship, and inter-annual timing of the salinity increase. Potential causes that were inconsistent with one or more of those criteria included effects from precipitation, evapotranspiration, reservoirs, grazing, irrigation return flow, groundwater discharge, discharge of energy co-produced waters, and stream habitat restoration. In contrast, surface disturbance of naturally salt-rich soil by oil and gas development activities, such as pipeline, road, and well pad construction, is a reasonable candidate for explaining the salinity increase. As development continues to expand in semiarid lands worldwide, the potential for soil disturbance to increase stream salinity should be considered, particularly where soils host substantial quantities of native salts.

  12. Salinity of irrigation water in the Philippi farming area of the Cape ...

    African Journals Online (AJOL)

    Salinity of irrigation water in the Philippi farming area of the Cape Flats, Cape Town, ... Isotope analysis was done for the summer samples so as to assess effects of ... It is concluded that the accumulation of salts in groundwater and soil in the ...

  13. Hydrochemical and physical processes influencing salinization and freshening in Mediterranean low-lying coastal environments

    NARCIS (Netherlands)

    Mollema, P.N.; Antonelli, M.; Dinelli, E.; Gabbianelli, G.; Greggio, N.; Stuijfzand, P.J.

    2013-01-01

    Ground- and surface water chemistry and stable isotope data from the coastal zone near Ravenna (Italy) have been examined to determine the geochemical conditions and processes that occur and their implications for fresh water availability in the various brackish/saline coastal environments. Fresh

  14. Oceanographic profile temperature, salinity and pressure measurements collected using moored buoy in the Indian Ocean from 2001-2006 (NODC Accession 0002733)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity measurements in the Equatorial Indian from 2001 to 2006 from the TRITON (TRIANGLE TRANS-OCEAN BUOY NETWORK); JAPAN AGENCY FOR MARINE-EARTH...

  15. Marine Science

    African Journals Online (AJOL)

    between humans and the coastal and marine environment. ... The journal has a new and more modern layout, published online only, and the editorial .... the population structure of Platorchestia fayetta sp. nov. and their interaction with the.

  16. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the ... tidal height and amplitude can influence light penetra- ...... to environmental parameters in cage culture area of Sepanggar Bay, Malaysia.

  17. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ... consist of special issues on major events or important thematic issues. ... of sources, including plant and animal by- products.

  18. Marine biotoxins

    National Research Council Canada - National Science Library

    2004-01-01

    ... (ciguatera fish poisoning). It discusses in detail the causative toxins produced by marine organisms, chemical structures and analytical methods, habitat and occurrence of the toxin-producing organisms, case studies and existing regulations...

  19. Marine Science

    African Journals Online (AJOL)

    pod diversity and distribution are important especially since studies on marine biodiversity are scarce .... Method II –. Zamoum &. Furla (2012) protocol. Method III. – Geist et al (2008) protocol ..... Public Library Of Science One 8: 51273.

  20. Marine pollution

    International Nuclear Information System (INIS)

    Clark, R.B.

    1992-01-01

    The effects of petroleum, waste materials, halogenated hydrocarbons, radioactivity and heat on the marine ecosystem, the fishing industry and human health are discussed using the example of the North Sea. (orig.) [de

  1. Marine Science

    African Journals Online (AJOL)

    No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form ... to optimize nucleic acid extraction protocols from marine gastropods, present an ...... Greenfield., Gomez E, Harvell CD, Sale PF, Edwards.

  2. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high ..... circulation patterns include the nutrient-rich Somali ...... matical Structures in Computer Science 24: e240311.

  3. Marine insects

    National Research Council Canada - National Science Library

    Cheng, Lanna

    1976-01-01

    .... Not only are true insects, such as the Collembola and insect parasites of marine birds and mammals, considered, but also other kinds of intertidal air-breathing arthropods, notably spiders, scorpions...

  4. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue .... shell growth is adversely affected. ... local stressors in action, such as ocean acidification ..... that the distribution of many intertidal sessile animals.

  5. Stable and strontium isotopic records of molluscan shells, lower jurassic, Cuenca Neuquina, southwestern Mendoza, Argentina

    International Nuclear Information System (INIS)

    Cagnoni, M.C.; Valencio, S.A.; Ramos, A.M; Riccardi, A.C; Panarello, H.O

    2001-01-01

    The strontium, carbon and oxygen isotopic signal of the past oceans is accurately recorded by authigenic marine minerals such as carbonates, sulfates and phosphates. The variation of these isotope ratios through the geological time is used as a tool in correlating and dating marine sedimentary rocks. Many works have been done concerning to the changes in carbon, oxygen and strontium isotope ratios of different marine successions in the world. These allow the construction of curves of secular variations of the isotope signals with geological time (Jones et al., 1994a, 1994b; Veizer et al., 1999; Jacobsen and Kaufman, 1999). This work presents strontium, carbon and oxygen isotope ratios of Early Jurassic biogenic marine carbonates of Cuenca Neuquina in southwestern Mendoza (au)

  6. Isotope hydrology

    International Nuclear Information System (INIS)

    Drost, W.

    1978-01-01

    The International Symposium on Isotope Hydrology was jointly organized by the IAEA and UNESCO, in co-operation with the National Committee of the Federal Republic of Germany for the International Hydrological Programme (IHP) and the Gesellschaft fuer Strahlen- und Umweltforschung mbH (GSF). Upon the invitation of the Federal Republic of Germany the Symposium was held from 19-23 June 1978 in Neuherberg on the GSF campus. The Symposium was officially opened by Mr. S. Eklund, Director General of the IAEA. The symposium - the fifth meeting held on isotope hydrology - was attended by over 160 participants from 44 countries and four international organizations and by about 30 observers from the Federal Republic of Germany. Due to the absence of scientists from the USSR five papers were cancelled and therefore only 46 papers of the original programme were presented in ten sessions

  7. Insights from stable S and O isotopes into biogeochemical processes and genesis of Lower Cambrian barite–pyrite concretions of South China

    Digital Repository Service at National Institute of Oceanography (India)

    Goldberg, T.; Mazumdar, A.; Strauss, H.; Shields, G.

    water trace metal chemistry of laminated sediments from the Gulf of California, Mexico. Marine Chemistry 14, 89-106. Canfield, D.E., 2001. Biogeochemistry of sulphur isotopes. In: Valley, J.W. & Cole, D.R. (Eds.), Stable Isotope Geochemistry. Reviews.... Age curves of sulphur and oxygen isotopes in marine sulphate and their mutual interpretation. Chemical Geology 28, 199-206. Coleman, M.L. & Raiswell, R., 1981. Carbon, oxygen and sulphur isotope variations in concretions from the Upper Lias of N...

  8. Salinity critical threshold values for photosynthesis of two cosmopolitan seaweed species: providing baselines for potential shifts on seaweed assemblages.

    Science.gov (United States)

    Scherner, Fernando; Ventura, Robson; Barufi, José Bonomi; Horta, Paulo Antunes

    2013-10-01

    Climate change has increased precipitation in several South American regions leading to higher freshwater inputs into marine systems with potential to cause salinity declines along the coast. The current salinity profile on the southern coast of Brazil was surveyed during four years providing a baseline of the current salinity pattern in the region. Additionally, the effects of salinity decreases on the photosynthesis of the seaweeds Ulva lactuca and Sargassum stenophyllum were investigated in laboratory. Seaweeds were cultured at salinities 5, 15 and 34 and at the mean winter and summer temperatures. Photosynthetic performance was measured following 24 and 96 h from the beginning of experiment. U. lactuca remained practically unaltered by low salinities while S. stenophyllum presented declines of important photosynthetic parameters. This is due to the different regulation abilities of energy distribution at the PSII of the two species. These differences have potential to lead to seaweed community shifts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Compound-specific C- and H-isotope compositions of enclosed organic matter in carbonate rocks: Implications for source identification of sedimentary organic matter and paleoenvironmental reconstruction

    International Nuclear Information System (INIS)

    Xiong Yongqiang; Wang Yanmei; Wang Yongquan; Xu Shiping

    2007-01-01

    The Bohai Bay Basin is one of the most important oil-producing provinces in China. Molecular organic geochemical characteristics of Lower Paleozoic source rocks in this area have been investigated by analyzing chemical and isotopic compositions of solvent extracts and acid-released organic matter from the Lower Paleozoic carbonate rocks in the Jiyang Sub-basin of the Bohai Bay Basin. The results indicate that enclosed organic matter in carbonate rocks has not been recognizably altered by post-depositional processes. Two end-member compositions are suggested for early organic matter trapped in the Lower Paleozoic carbonate rocks: (1) a source dominated by aquatic organisms and deposited in a relatively deep marine environment and (2) a relatively high saline, evaporative marine depositional environment. In contrast, chemical and isotopic compositions of solvent extracts from these Lower Paleozoic carbonate rocks are relatively complicated, not only inheriting original characteristics of their precursors, but also overprinted by various post-depositional alterations, such as thermal maturation, biodegradation and mixing. Therefore, the integration of both organic matter characteristics can provide more useful information on the origin of organic matter present in carbonate rocks and the environments of their deposition

  10. Compound-specific C- and H-isotope compositions of enclosed organic matter in carbonate rocks: Implications for source identification of sedimentary organic matter and paleoenvironmental reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Yongqiang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)], E-mail: xiongyq@gig.ac.cn; Wang Yanmei; Wang Yongquan; Xu Shiping [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2007-11-15

    The Bohai Bay Basin is one of the most important oil-producing provinces in China. Molecular organic geochemical characteristics of Lower Paleozoic source rocks in this area have been investigated by analyzing chemical and isotopic compositions of solvent extracts and acid-released organic matter from the Lower Paleozoic carbonate rocks in the Jiyang Sub-basin of the Bohai Bay Basin. The results indicate that enclosed organic matter in carbonate rocks has not been recognizably altered by post-depositional processes. Two end-member compositions are suggested for early organic matter trapped in the Lower Paleozoic carbonate rocks: (1) a source dominated by aquatic organisms and deposited in a relatively deep marine environment and (2) a relatively high saline, evaporative marine depositional environment. In contrast, chemical and isotopic compositions of solvent extracts from these Lower Paleozoic carbonate rocks are relatively complicated, not only inheriting original characteristics of their precursors, but also overprinted by various post-depositional alterations, such as thermal maturation, biodegradation and mixing. Therefore, the integration of both organic matter characteristics can provide more useful information on the origin of organic matter present in carbonate rocks and the environments of their deposition.

  11. Combined Stable Carbon Isotope and C/N Ratios as Indicators of Source and Fate of Organic Matter in the Bang Pa kong River Estuary, Thailand

    International Nuclear Information System (INIS)

    Boonphakdee, Thanomsak; Kasai, Akihide; Fujiwara, Tateki; Sawangwong, Pichan; Cheevaporn, Voravit

    2007-08-01

    Full text: Stable carbon isotopes and C/N ratios of particulate organic matter (POM) in suspended solids and surficial sediment were used to define the spatial and temporal variability in an anthropogenic tropical river estuary, the Bang Pa kong River Estuary. Samples were taken along salinity gradients during the four different river discharges in the beginning, high river discharge and at the end of the wet season, and low river discharge during the dry season. The values of [C/N]a ratio and d13C in the river estuary revealed significant differences from those of the offshore station. Conservative behaviors of [C/N]a and d13C in the estuary during the wet season indicated major contribution of terrigenous C3 plants derived OM. By contrast, during the dry season, marine input mainly dominated OM contribution with an evidence of anthropogenic input to the estuary. These compositions of the bulk sedimentary OM were dominated by paddy rice soils and marine derived OM during the wet and dry seasons, respectively. These results show that the combined stable carbon isotopes and C/N ratios can be used to identify the source and fate of OM even in a river estuary. This tool will be useful to achieve sustainable management in coastal zone

  12. Suspended silt and salinity tolerances of the first zoeal stage of the ...

    African Journals Online (AJOL)

    undergo the zoeal stage of development in open-ocean waters, where they experience stable salinity levels, low turbidity and reduced predation. The St ... Despite recent attempts to improve marine connectivity, it remains limited, occurring primarily on the flood tide through channels connected to the adjacent Mfolozi River.

  13. Trials advance low-salinity culture of cobia, pompano, other species

    Science.gov (United States)

    A collaborative effort between the Agricultural Research Service of USDA and Harbor Branch Oceanographic Institute of Florida Atlantic University, which was established to develop technologies for rearing marine fish in low-cost, energy efficient low-salinity recirculating aquaculture systems (RAS) ...

  14. Isotopegeochemical investigations and dating on minerals and fossils from sedimentary rocks: 1. Glauconites from Jura, Molasse and Helveticum (K-Ar, Rb-Sr), 2. 87Sr/86Sr-Isotope stratigraphy on marine and limnetic micro- and macro-fossils, 3. Primary minerals from tertiary bentonites and tuffs (U-Pb, K-Ar)

    International Nuclear Information System (INIS)

    Fischer, H.

    1988-01-01

    Glauconite investigations: the main problem in dating glauconites lies in the identification of authigenic minerals which have not been influenced by post-sedimentary processes. The age determination on glauconites from the three different tectonic units: the Jura mountains, the molasse basin and the Helvetic nappes, yield inconsistent results. Up to 35% too young K-Ar ''ages'' of glauconites from limestones from the Helvetic nappes can be traced to partial Ar loss caused by sediment-lithification and tectonic events. Sr-isotope stratigraphy: multiple analyses of recent samples from the Mediterranean Sea and from the North Atlantic show that the 87 Sr/ 86 Sr isotope ratios correspond well. In a stratigraphic ideal section from the Upper marine molasse a resolution of 206 Pb/ 238 U method zircons from the Fish Canyon Tuff were measured and yielded ages of 28.49±0.10, 24.46±0.11 and 28.46±0.13 Ma. These values correspond well with the published mean value of zircon and apatite fission track age of 28.4±0.7 Ma. Thus, the U-Pb method for dating young volcanic minerals seems to be suitable. However, the published mean value (''solid state age'') of Naeser et al. (1981) is higher than the published (''gas age'') mean value of 27.2±0.7 Ma based on biotite, sanidine, hornblende and plagioclase. (author) figs., tabs., refs

  15. Apparent digestible protein, energy, and amino acid availability of three plant proteins in Florida pompano Trachinotus carolinus L. in seawater and low-salinity

    Science.gov (United States)

    There is interest in rearing the marine euryhaline Florida pompano in low-salinity. However, insufficient nutrient availability data to formulate well-balanced low-cost diets presents an obstacle to large-scale commercial production. Evidence also suggests salinity affects nutrient availability in ...

  16. Measurement of flowing water salinity within or behind wellbore casing

    International Nuclear Information System (INIS)

    Arnold, D.M.

    1981-01-01

    Water flowing within or behind a wellbore casing is irradiated with 14 MeV neutrons from a source in a downhole sonde. Gamma radiation from the isotope nitrogen-16 induced from the O 16 (n,p)N 16 reaction and the products of either the Na 23 (n,α)F 20 or the Cl 37 (n,α)P 34 reactions is measured in intensity and energy with detectors in the sonde. From the gamma radiation measurements, the relative presence of oxygen to at least one of sodium or chlorine in the water is measured, and from the measurement the salinity of the water is to be determined. (author)

  17. Diversity in transcripts and translational pattern of stress proteins in marine extremophiles

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, I.V.A.; LokaBharathi, P.A.

    of marine microbes. The cellular machinery of such extreme-lovers could be highly flexible to cope with such harsh environments. Extreme conditions of temperature, pressure, salinity, pH, oxidative stress, radiation, etc., above the physiological tolerance...

  18. Last Glacial Maximum Salinity Reconstruction

    Science.gov (United States)

    Homola, K.; Spivack, A. J.

    2016-12-01

    It has been previously demonstrated that salinity can be reconstructed from sediment porewater. The goal of our study is to reconstruct high precision salinity during the Last Glacial Maximum (LGM). Salinity is usually determined at high precision via conductivity, which requires a larger volume of water than can be extracted from a sediment core, or via chloride titration, which yields lower than ideal precision. It has been demonstrated for water column samples that high precision density measurements can be used to determine salinity at the precision of a conductivity measurement using the equation of state of seawater. However, water column seawater has a relatively constant composition, in contrast to porewater, where variations from standard seawater composition occur. These deviations, which affect the equation of state, must be corrected for through precise measurements of each ion's concentration and knowledge of apparent partial molar density in seawater. We have developed a density-based method for determining porewater salinity that requires only 5 mL of sample, achieving density precisions of 10-6 g/mL. We have applied this method to porewater samples extracted from long cores collected along a N-S transect across the western North Atlantic (R/V Knorr cruise KN223). Density was determined to a precision of 2.3x10-6 g/mL, which translates to salinity uncertainty of 0.002 gms/kg if the effect of differences in composition is well constrained. Concentrations of anions (Cl-, and SO4-2) and cations (Na+, Mg+, Ca+2, and K+) were measured. To correct salinities at the precision required to unravel LGM Meridional Overturning Circulation, our ion precisions must be better than 0.1% for SO4-/Cl- and Mg+/Na+, and 0.4% for Ca+/Na+, and K+/Na+. Alkalinity, pH and Dissolved Inorganic Carbon of the porewater were determined to precisions better than 4% when ratioed to Cl-, and used to calculate HCO3-, and CO3-2. Apparent partial molar densities in seawater were

  19. Soil Moisture Ocean Salinity (SMOS) salinity data validation over Malaysia coastal water

    International Nuclear Information System (INIS)

    Reba, M N M; Rosli, A Z; Rahim, N A

    2014-01-01

    The study of sea surface salinity (SSS) plays an important role in the marine ecosystem, estimation of global ocean circulation and observation of fisheries, aquaculture, coral reef and sea grass habitats. The new challenge of SSS estimation is to exploit the ocean surface brightness temperature (Tb) observed by the Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) onboard the Soil Moisture Ocean Salinity (SMOS) satellite that is specifically designed to provide the best retrieval of ocean salinity and soil moisture using the L band of 1.4 GHz radiometer. Tb observed by radiometer is basically a function of the dielectric constant, sea surface temperature (SST), wind speed (U), incidence angle, polarization and SSS. Though, the SSS estimation is an ill-posed inversion problem as the relationship between the Tb and SSS is non-linear function. Objective of this study is to validate the SMOS SSS estimates with the ground-truth over the Malaysia coastal water. The LM iteratively determines the SSS of SMOS by the reduction of the sum of squared errors between Tb SMOS and Tb simulation (using in-situ) based on the updated geophysical triplet in the direction of the minimum of the cost function. The minimum cost function is compared to the desired threshold at each iteration and this recursive least square process updates the SST, U and SSS until the cost function converged. The designed LM's non-linear inversion algorithm simultaneously estimates SST, U and SSS and thus, map of SSS over Malaysia coastal water is produced from the regression model and accuracy assessment between the SMOS and in-situ retrieved SSS. This study found a good agreement in the validation with R square of 0.9 and the RMSE of 0.4. It is concluded that the non-linear inversion method is effective and practical to extract SMOS SSS, U and SST simultaneously

  20. Life-history responses to changing temperature and salinity of the Baltic Sea copepod Eurytemora affinis.

    Science.gov (United States)

    Karlsson, Konrad; Puiac, Simona; Winder, Monika

    2018-01-01

    To understand the effects of predicted warming and changing salinity of marine ecosystems, it is important to have a good knowledge of species vulnerability and their capacity to adapt to environmental changes. In spring and autumn of 2014, we conducted common garden experiments to investigate how different populations of the copepod Eurytemora affinis from the Baltic Sea respond to varying temperatures and salinity conditions. Copepods were collected in the Stockholm archipelago, Bothnian Bay, and Gulf of Riga (latitude, longitude: 58°48.19', 17°37.52'; 65°10.14', 23°14.41'; 58°21.67', 24°30.83'). Using individuals with known family structure, we investigated within population variation of the reaction norm (genotype and salinity interaction) as a means to measure adaptive capacity. Our main finding was that low salinity has a detrimental effect on development time, the additive effects of high temperature and low salinity have a negative effect on survival, and their interaction has a negative effect on hatching success. We observed no variation in survival and development within populations, and all genotypes had similar reaction norms with higher survival and faster development in higher salinities. This suggests that there is no single genotype that performs better in low salinity or high salinity; instead, the best genotype in any given salinity is best in all salinities. Genotypes with fast development time also had higher survival compared to slow developing genotypes at all salinities. Our results suggest that E. affinis can tolerate close to freshwater conditions also in high temperatures, but with a significant reduction in fitness.

  1. Marine biogeochemistry of radionuclides

    International Nuclear Information System (INIS)

    Fowler, S.W.

    1997-01-01

    Radionuclides entering the ocean from runoff, fallout, or deliberate release rapidly become involved in marine biogeochemical cycles. Sources, sinks and transport of radionuclides and analogue elements are discussed with emphasis placed on how these elements interact with marine organisms. Water, food and sediments are the source terms from which marine biota acquire radionuclides. Uptake from water occurs by surface adsorption, absorption across body surfaces, or a combination of both. Radionuclides ingested with food are either assimilated into tissue or excreted. The relative importance of the food and water pathway in uptake varies with the radionuclide and the conditions under which exposure occurs. Evidence suggests that, compared to the water and food pathways, bioavailability of sediment-bound radionuclides is low. Bioaccumulation processes are controlled by many environmental and intrinsic factors including exposure time, physical-chemical form of the radionuclide, salinity, temperature, competitive effects with other elements, organism size, physiology, life cycle and feeding habits. Once accumulated, radionuclides are transported actively by vertical and horizontal movements of organisms and passively by release of biogenic products, e.g., soluble excreta, feces, molts and eggs. Through feeding activities, particles containing radionuclides are ''packaged'' into larger aggregates which are redistributed upon release. Most radionuclides are not irreversibly bound to such particles but are remineralized as they sink and/or decompose. In the pelagic zones, sinking aggregates can further scavenge particle-reactive elements thus removing them from the surface layers and transporting them to depth. Evidence from both radiotracer experiments and in situ sediment trap studies is presented which illustrates the importance of biological scavenging in controlling the distribution of radionuclides in the water column. (author)

  2. Otters, Marine

    Science.gov (United States)

    Estes, James A.; Bodkin, James L.; Ben-David, M.; Perrin, William F.; Würsing, Bernd; Thewissen, J.G.M.

    2009-01-01

    The otters (Mustelidae; Lutrinae) provide an exceptional perspective into the evolution of marine living by mammals. Most extant marine mammals (e.g. the cetaceans, pinnipeds, and sirenians) have been so highly modified by long periods of selection for life in the sea that they bear little resemblance to their terrestrial ancestors. Marine otters, in contrast, are more recent expatriates from freshwater habitats and some species still live in both environments. Contrasts among species within the otters, and among the otters, terrestrial mammals, and the more highly adapted pinnipeds and cetaceans provide powerful insights into mammalian adaptations to life in the sea (Estes, 1989). Among the marine mammals, sea otters (Enhydra lutris, Fig. 1) provide the clearest understanding of consumer-induced effects on ecosystem function. This is due in part to opportunities provided by history and in part to the relative ease with which shallow coastal systems where sea otters live can be observed and studied. Although more difficult to study than sea otters, other otter species reveal the connectivity among the marine, freshwater, and terrestrial systems. These three qualities of the otters – their comparative biology, their role as predators, and their role as agents of ecosystem connectivity – are what make them interesting to marine mammalogy.The following account provides a broad overview of the comparative biology and ecology of the otters, with particular emphasis on those species or populations that live in the sea. Sea otters are features prominently, in part because they live exclusively in the sea whereas other otters have obligate associations with freshwater and terrestrial environments (Kenyon, 1969; Riedman and Estes, 1990).

  3. Assessment of risk to aquatic biota from elevated salinity -- a case study from the Hunter River, Australia.

    Science.gov (United States)

    Muschal, Monika

    2006-05-01

    An ecological risk assessment was performed on salinity levels of the Hunter River and its tributaries to respond to concerns that high salinity may be damaging aquatic ecosystems. Probabilistic techniques were used to assess likelihood and consequence, and hence the risk to aquatic biota from salinity. Continuous electrical conductivity distributions were used to describe the likelihood that high salinity would occur (exposure dataset) and toxicity values were compiled from the limited literature sources available to describe the consequence of high salinity (effects dataset). The assessment was preliminary in the sense that it modelled risk on the basis of existing data and did not undertake site-specific toxicity testing. Some sections of the Hunter River catchment have geologies that are saline because of their marine origins. Catchment development has increased the liberation rates of salts into surface-waters. Such modifying activities include coal-mining, power generation and land clearing. The aquatic biota of tributaries had a greater risk of impairment from high salinity than that of the Hunter River. High salinities in the tributaries were attributed to the combined factors of naturally saline geologies, increased liberation of salts due to modification of the landscape, and reduced dilution by flushing flows. A salinity guideline trigger value of 1100 mg L(-1) was recommended.

  4. Marine Battlefields

    DEFF Research Database (Denmark)

    Harðardóttir, Sara

    as they are an important food source for various marine animals. For both phytoand zooplankton predation is a major cause of mortality, and strategies for protection or avoidance are important for survival. Diatoms of the genera Nitzschia and Pseudo-nitzschia are known to produce a neuro-toxin, domoic acid (DA). Despite......Phytoplankton species are photosynthetic organisms found in most aquatic habitats. In the ocean, phytoplankton are tremendously important because they produce the energy that forms the base of the marine food web. Zooplankton feed on phytoplankton and mediate the energy to higher trophic levels...

  5. Environmental isotope study of a groundwater supply project in the Kalahari of Gordonia

    International Nuclear Information System (INIS)

    Verhagen, B.T.

    1984-01-01

    A feasibility study for a central fresh groundwater supply scheme in the Kalahari of the Gordonia district, South Africa, provided the opportunity to study fresh and saline water occurrences in detail with environmental isotopes. The isotopic and chemical signals show a clear contrast among groundwaters below a river bed, an extended fresh groundwater body and saline groundwaters in close proximity to the river. Carbon-14, tritium and stable-isotope data lead to a vertical rain recharge model rather than a regional flow mechanism for an understanding of the various water occurrences, their interrelationships and varied hydrochemistry. (author)

  6. Salinity, temperature and density data for the Canadian Beaufort Sea shelf, March 1988

    Energy Technology Data Exchange (ETDEWEB)

    Hopky, G E; Chiperzak, D B; Lawrence, M J

    1988-01-01

    This report contains salinity, temperature and density (CTD) data collected in the waters of the Canadian Beaufort Sea Shelf during March 1988. Salinity and temperature profile data were measured using a Guildline Model 8870 probe deployed from the ice surface. Ice thickness was also measured. Density was calculated using salinity and temperature values. CTD profiles were measured at five stations. The maximum depths of profiles measured from the ice surface ranged from 31.2 to 16.8 dbar. Salinity and temperature measurements ranged from 0.35 to 34.83, and -1.87 to 1.08/sup 0/C, respectively. The data presented in this report will assist in the identification and delineation of potential habitat types, as part of the Critical Arctic Estuarine and Marine Habitat Project of the Northern Oil and Gas Program. 5 refs., 7 figs., 6 tabs.

  7. Etched FBG coated with polyimide for simultaneous detection the salinity and temperature

    Science.gov (United States)

    Luo, Dong; Ma, Jianxun; Ibrahim, Zainah; Ismail, Zubaidah

    2017-06-01

    In marine environment, concrete structures can corrode because of the PH alkalinity of concrete paste; and the salinity PH is heavily related with the concentration of salt in aqueous solutions. In this study, an optical fiber salinity sensor is proposed on the basis of an etched FBG (EFBG) coated with a layer of polyimide. Chemical etching is employed to reduce the diameter of FBG and to excite Cladding Mode Resonance Wavelengths (CMRWs). CMRW and Fundamental Mode Resonance Wavelength (FMRW) can be used to measure the Refractive index (RI) and temperature of salinity. The proposed sensor is then characterized with a matrix equation. Experimental results show that FMRW and 5th CMRW have the detection sensitivities of 15.407 and 125.92 nm/RIU for RI and 0.0312 and 0.0435 nm/°C for temperature, respectively. The proposed sensor can measure salinity and temperature simultaneously.

  8. The taxonomic status, and isotopic evidence for paleoenvironments, of giant oysters from the Oligocene Te Kuiti Group, South Auckland, New Zealand

    International Nuclear Information System (INIS)

    Nelson, C.S.; Burns, D.A.; Rodgers, K.A.

    1983-01-01

    Close inspection of the morphologic characteristics of giant oysters from the Oligocene Te Kuiti Group indicates that they do not belong in any of the several genera so far assigned them in the literature, including the estuarine genus Crassostrea. They are most typical of the tribe Flemingostreini Stenzel, but without more extensive and specialist study it is premature to give them generic status, which might only perpetrate further taxonomic confusion. Carbon and oxygen isotopic analyses of the oyster shells, as well as independent evidence, suggest that oysters in: (1) the Mangakotuku Siltstone formed in a protected, shallow marine embayment, open only to the north, having locally restricted circulation, but mainly normal to only slightly reduced salinites, the light carbon in shells being derived more from the reaction with seawater of locally produced CO 2 from decomposition of abundant organic debris in the bottom sediments than from widespread dilution of seawater by freshwater; (2) the Whaingaroa Siltstone formed in open, shallow shelf waters of normal marine salinity; and (3) the prominent oyster beds in the Orahiri Limestone developed in a fully marine, tideswept strait, in water depths of 25-50 m and bottom temperatures of possibly c. 14 0 C. (auths)

  9. Clumped-isotope geochemistry of carbonates: A new tool for the reconstruction of temperature and oxygen isotope composition of seawater

    Energy Technology Data Exchange (ETDEWEB)

    Bernasconi, Stefano M., E-mail: Stefano.bernasconi@erdw.ethz.ch [Geological Institute, ETH Zuerich, Sonneggstrasse 5, 8092 Zuerich (Switzerland); Schmid, Thomas W.; Grauel, Anna-Lena [Geological Institute, ETH Zuerich, Sonneggstrasse 5, 8092 Zuerich (Switzerland); Mutterlose, Joerg [Institut fuer Geologie, Mineralogie und Geophysik, Ruhr Universitaet Bochum, Universitaetsstr. 150, 44801 Bochum (Germany)

    2011-06-15

    Highlights: > Clumped-isotope thermometry of carbonates is discussed. > Clumped isotopes of Belemnites show higher sea surface temperatures than commonly assumed for the lower Cretaceous. > The potential of clumped-isotope measurement on foraminifera is discussed. - Abstract: Clumped-isotope geochemistry deals with State of ordering of rare isotopes in molecules, in particular with their tendency to form bonds with other rare isotopes rather than with the most abundant ones. Among its possible applications, carbonate clumped-isotope thermometry is the one that has gained most attention because of the wide potential of applications in many disciplines of the earth sciences. In particular, it allows reconstructing the temperature of formation of carbonate minerals without knowledge of the isotopic composition of the water from which they were formed. In addition, the O isotope composition of the waters from which they were formed can be calculated using the {delta}{sup 18}O of the same carbonate sample. This feature offers new approaches in paleoclimatology for reconstructing past global geochemical cycles. In this contribution two applications of this method are presented. First the potential of a new analytical method of measurement of clumped isotopes on small samples of foraminifera, for high-resolution SST and seawater {delta}{sup 18}O reconstructions from marine sediments is shown. Furthermore the potential of clumped isotope analysis of belemnites, for reconstructing seawater {delta}{sup 18}O and temperatures in the Cretaceous is shown.

  10. Marine Science

    African Journals Online (AJOL)

    Science. The journal has a new and more modern layout, published online only, and the editorial. Board was increased to include more disciplines pertaining to marine sciences. While important chal- lenges still lie ahead, we are steadily advancing our standard to increase visibility and dissemination throughout the global ...

  11. Marine Mammals.

    Science.gov (United States)

    Meith, Nikki

    Marine mammals have not only fascinated and inspired human beings for thousands of years, but they also support a big business by providing flesh for sea-borne factories, sustaining Arctic lifestyles and traditions, and attracting tourists to ocean aquaria. While they are being harpooned, bludgeoned, shot, netted, and trained to jump through…

  12. Marine Science

    African Journals Online (AJOL)

    Mauritius Marine Conservation Society through their. Abstract. While no populations of seals are resident in the tropical Indian Ocean, vagrant animals are occasionally sighted in the region. Here we detail two new sightings of pinnipeds in the Mascarene Islands (Mauritius, Reunion and Rodri- gues) since 1996 and review ...

  13. Marine Science

    African Journals Online (AJOL)

    J O U R N A L O F. Marine Science. Coral reefs of Mauritius in a changing global climate ..... in confined aquifers, and a lesser influence in uncon- fined systems. On the ... massive cloud cover during the critical months, some. 70% bleaching ...

  14. Marine Science

    African Journals Online (AJOL)

    Copy Editor Timothy Andrew. Published ... 2007; Zhou et al., 2009) and they play an important role in the ... At both sites, zonal variation in TMPB was evident with significantly higher C-biomass closer to ... ton is considered to be an essential parameter in eco- systems ...... logical significance of toxic marine dinoflagellates.

  15. Marine Science

    African Journals Online (AJOL)

    sustainable coastal development in the region, as well as contributing to the ... between humans and the coastal and marine environment. ... exploitation for timber, fuel wood, aquaculture, urban. Abstract. Given the high dependence of coastal communities on natural resources, mangrove conservation is a challenge in.

  16. Marine Science

    African Journals Online (AJOL)

    No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means ... USA/Norway ... The last couple of years have been a time of change for the Western Indian Ocean Journal of Marine.

  17. Marine Science

    African Journals Online (AJOL)

    Chief Editor José Paula | Faculty of Sciences of University of Lisbon, Portugal. Copy Editor Timothy Andrew. Published biannually. Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high quality research generated in the Western Indian Ocean (WIO) ...

  18. Salinity, can be indicator for radioactivity

    International Nuclear Information System (INIS)

    Patrascu, V.

    2006-01-01

    Radioactivity being within nature is an incontestable reality. Less than a century, man have diversified and intensified its presence, especially after nuclear weapons and peaceful use of fission power. Secondary, the risks of ionizing radiation effects on live matter have increased. The need of environmental radioactivity assessment and knowledge development in the field is and remains actually in follow time. The nuclear techniques are generally expensive and the radioanalytical methods are no so fast. Sometimes it is necessary to make the rapid and cheapest estimation, without to replace them. This is possible by finding of some accessible correlated parameters and easy to be analyzed. These parameters could indicate the availability of radionuclides in different ecosystems or the availability of ecosystems for different radionuclides. K-40 is a remarkable presence in marine natural radioactivity and plays an important role for euphotic and deep levels. As nutrient it can influence coastal ecosystems and its radiation power can be significant for microbiological processes. This present work analyzed the correlation between salinity and water K-40 radioactivity (beta, gamma) and proposes an empirical connection formula on the base of the good correlation that has been identified

  19. Fractionation of boron isotopes in Icelandic hydrothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.K.

    1995-01-01

    Boron isotope ratios have been determined in a variety of different geothermal waters from hydrothermal systems across Iceland. Isotope ratios from the high temperature meteoric water recharged systems reflect the isotope ratio of the host rocks without any apparent fractionation. Seawater recharged geothermal systems exhibit more positive δ 1 1B values than the meteoric water recharged geothermal systems. Water/rock ratios can be assessed from boron isotope ratios in the saline hydrothermal systems. Low temperature hydrothermal systems also exhibit more positive δ 1 1B than the high temperature systems, indicating fractionation of boron due to absorption of the lighter isotope onto secondary minerals. Fractionation of boron in carbonate deposits may indicate the level of equilibrium attained within the systems. (author). 14 refs., 2 figs

  20. Variability in copepod trophic levels and feeding selectivity based on stable isotope analysis in Gwangyang Bay of the southern coast of the Korean Peninsula

    Science.gov (United States)

    Chen, Mianrun; Kim, Dongyoung; Liu, Hongbin; Kang, Chang-Keun

    2018-04-01

    Trophic preference (i.e., food resources and trophic levels) of different copepod groups was assessed along a salinity gradient in the temperate estuarine Gwangyang Bay of Korea, based on seasonal investigation of taxonomic results in 2015 and stable isotope analysis incorporating multiple linear regression models. The δ13C and δ15N values of copepods in the bay displayed significant spatial heterogeneity as well as seasonal variations, which were indicated by their significant relationships with salinity and temperature, respectively. Both spatial and temporal variations reflected those in isotopic values of food sources. The major calanoid groups (marine calanoids and brackish water calanoids) had a mean trophic level of 2.2 relative to nanoplankton as the basal food source, similar to the bulk copepod assemblage; however, they had dissimilar food sources based on the different δ13C values. Calanoid isotopic values indicated a mixture of different genera including species with high δ15N values (e.g., Labidocera, Sinocalanus, and Tortanus), moderate values (Calanus sinicus, Centropages, Paracalanus, and Acartia), and relatively low δ15N values (Eurytemora pacifica and Pseudodiaptomus). Feeding preferences of different copepods probably explain these seasonal and spatial patterns of the community trophic niche. Bayesian mixing model calculations based on source materials of two size fractions of particulate organic matter (nanoplankton at simple energy flow of the planktonic food web of Gwangyang Bay: from primary producers (nanoplankton) and a mixture of primary producers and herbivores (microplankton) through omnivores (Acartia, Calanus, Centropages, and Paracalanus) and detritivores (Pseudodiaptomus, Eurytemora, and harpacticoids) to carnivores (Corycaeus, Tortanus, Labidocera, and Sinocalanus).

  1. Natural isotopes

    International Nuclear Information System (INIS)

    Vogel, J.C.

    1986-01-01

    14 C dates between 600 and 900 AD were obtained for early Iron Age sites in Natal, and from 1300 to 1450 AD for rock engraving sites in Bushmanland. Palaeoenvironmental data derived from the dating of samples related to sedimentary and geomorphic features in the central and northern Namib Desert enabled the production of a tentative graph for the changes in humidity in the region over the past 40000 years. These results suggest that relatively humid conditions came to an end in the Namib at ±25000 BP (before present). The increased precision of the SIRA mass spectrometer enabled the remeasurement of 13 C and 18 O in the Cango stalagmite. This data confirmed that the environmental temperatures in the Southern Cape remained constant to within ±1 o C during the past 5500 years. Techniques and applications for environmental isotopes in hydrology were developed to determine the origin and movement of ground water. Isotopic fractionation effects in light elements in nature were investigated. The 15 N/ 14 N ratio in bones of animals and humans increases in proportion to the aridity of the environment. This suggests that 15 N in bone from dated archaeological sites could be used to detect changes in past climatic conditions as naturally formed nitrate minerals are higly soluble and are only preserved in special, very dry environments. The sources and sinks of CO 2 on the South African subcontinent were also determined. The 13 C/ 12 C ratios of air CO 2 obtained suggest that the vegetation provides the major proportion of respired CO 2 . 9 refs., 1 fig

  2. Marine renewable energy in China: Current status and perspectives

    Directory of Open Access Journals (Sweden)

    Yong-liang Zhang

    2014-07-01

    Full Text Available Based on a general review of marine renewable energy in China, an assessment of the development status and amount of various marine renewable energy resources, including tidal energy, tidal current energy, wave energy, ocean thermal energy, and salinity gradient energy in China's coastal seas, such as the Bohai Sea, the Yellow Sea, the East China Sea, and the South China Sea, is presented. We have found that these kinds of marine renewable energy resources will play an important role in meeting China's future energy needs. Additionally, considering the uneven distribution of China's marine renewable energy and the influences of its exploitation on the environment, we have suggested several sites with great potential for each kind of marine energy. Furthermore, perspectives on and challenges related with marine renewable energy in China are addressed.

  3. Golden alga presence and abundance are inversely related to salinity in a high-salinity river ecosystem, Pecos River, USA

    Science.gov (United States)

    Israël, Natascha M.D.; VanLandeghem, Matthew M.; Denny, Shawn; Ingle, John; Patino, Reynaldo

    2014-01-01

    Prymnesium parvum (golden alga, GA) is a toxigenic harmful alga native to marine ecosystems that has also affected brackish inland waters. The first toxic bloom of GA in the western hemisphere occurred in the Pecos River, one of the saltiest rivers in North America. Environmental factors (water quality) associated with GA occurrence in this basin, however, have not been examined. Water quality and GA presence and abundance were determined at eight sites in the Pecos River basin with or without prior history of toxic blooms. Sampling was conducted monthly from January 2012 to July 2013. Specific conductance (salinity) varied spatiotemporally between 4408 and 73,786 mS/cm. Results of graphical, principal component (PCA), and zero-inflated Poisson (ZIP) regression analyses indicated that the incidence and abundance of GA are reduced as salinity increases spatiotemporally. LOWESS regression and correlation analyses of archived data for specific conductance and GA abundance at one of the study sites retrospectively confirmed the negative association between these variables. Results of PCA also suggested that at <15,000 mS/cm, GA was present at a relatively wide range of nutrient (nitrogen and phosphorus) concentrations whereas at higher salinity, GA was observed only at mid-to-high nutrient levels. Generally consistent with earlier studies, results of ZIP regression indicated that GA presence is positively associated with organic phosphorus and in samples where GA is present, GA abundance is positively associated with organic nitrogen and negatively associated with inorganic nitrogen. This is the first report of an inverse relation between salinity and GA presence and abundance in riverine waters and of interaction effects of salinity and nutrients in the field. These observations contribute to a more complete understanding of environmental conditions that influence GA distribution in inland waters.

  4. The role of salinity in the trophic transfer of 137Cs in euryhaline fish.

    Science.gov (United States)

    Pouil, Simon; Oberhänsli, François; Swarzenski, Peter W; Bustamante, Paco; Metian, Marc

    2018-09-01

    In order to better understand the influence of changing salinity conditions on the trophic transfer of 137 Cs in marine fish that live in dynamic coastal environments, its depuration kinetics was investigated in controlled aquaria. The juvenile turbot Scophthalmus maximus was acclimated to three distinct salinity conditions (10, 25 and 38) and then single-fed with compounded pellets that were radiolabelled with 137 Cs. At the end of a 21-d depuration period, assimilation efficiencies (i.e. AEs = proportion of 137 Cs ingested that is actually assimilated by turbots) were determined from observational data acquired over the three weeks. Our results showed that AEs of 137 Cs in the turbots acclimated to the highest salinity condition were significantly lower than for the other conditions (p < 0.05). Osmoregulation likely explains the decreasing AE observed at the highest salinity condition. Indeed, observations indicate that fish depurate ingested 137 Cs at a higher rate when they increase ion excretion, needed to counterbalance the elevated salinity. Such data confirm that ambient salinity plays an important role in trophic transfer of 137 Cs in some fish species. Implications for such findings extend to seafood safety and climate change impact studies, where the salinity of coastal waters may shift in future years in response to changing weather patterns. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. LEUKOCYTE DIFFERENTIAL OF ANGUILLID EEL, Anguilla bicolor McClelland, EXPOSED TO VARIED SALINITIES

    Directory of Open Access Journals (Sweden)

    Fita Fatimah

    2017-06-01

    Full Text Available The anguillid eel is a catadromous eel capable of inhabiting freshwater growth habitat and seawater spawning habitat throughout their life cycle. At the juvenile to mature stage, they inhabit freshwater then migrate to marine water to spawn. Changes in salinity, which is one of the stressful environmental factors for the eel, affect their physiological condition by increasing the leukocytes number. This increase is an adaptation method to improve their immune system as a response to salinity change. This study intended to evaluate the leukocyte differential of anguillid eel (Anguilla bicolor McClelland exposed to various salinities. This research applied a Completely Randomized Design. The treatment was three levels of saline media including 4 ppt, 15 ppt, and 30 ppt with five replicates. The independent variable was the different salinity, and the dependent variable was the leukocyte differential. The parameters measured consisted of the different percentage of neutrophils, lymphocytes, monocytes, and eosinophils in which the measurements administered after two months of the eel exposure. We analyzed the data with ANOVA at the confidence level of 95%. The results showed that exposure of salinity significantly affected the percentage of leukocyte differential (P < 0.05. The increase in salinity decreased the neutrophils and monocytes, but increased the lymphocytes, and showed no effect on eosinophils.

  6. Experimentally derived salinity tolerance of hatchling Burmese pythons (Python molurus bivittatus) from the Everglades, Florida (USA)

    Science.gov (United States)

    Hart, Kristen M.; Schofield, Pamela J.; Gregoire, Denise R.

    2012-01-01

    In a laboratory setting, we tested the ability of 24 non-native, wild-caught hatchling Burmese pythons (Python molurus bivittatus) collected in the Florida Everglades to survive when given water containing salt to drink. After a one-month acclimation period in the laboratory, we grouped snakes into three treatments, giving them access to water that was fresh (salinity of 0, control), brackish (salinity of 10), or full-strength sea water (salinity of 35). Hatchlings survived about one month at the highest marine salinity and about five months at the brackish-water salinity; no control animals perished during the experiment. These results are indicative of a "worst-case scenario", as in the laboratory we denied access to alternate fresh-water sources that may be accessible in the wild (e.g., through rainfall). Therefore, our results may underestimate the potential of hatchling pythons to persist in saline habitats in the wild. Because of the effect of different salinity regimes on survival, predictions of ultimate geographic expansion by non-native Burmese pythons that consider salt water as barriers to dispersal for pythons may warrant re-evaluation, especially under global climate change and associated sea-level-rise scenarios.

  7. Plutonium isotope ratios in polychaete worms

    International Nuclear Information System (INIS)

    Beasley, T.M.; Fowler, S.W.

    1976-01-01

    Reference is made to recent reports that suggest that terrestrial and aquatic organisms may preferentially take up 238 Pu compared with sup(239+240)Pu. It is stated that although kinetic isotope effects are known to occur in biological systems for low mass number elements, such as H, C and N, such effects are generally discounted with higher mass numbers, and differences in the biological 'uptake' of isotopes of high mass number elements, such as those of Pu, are normally attributable to differences in the chemical or physical forms of the isotopes or to different quantities of isotopes available to organisms. This has been applied to explain differential Pu isotope behaviour in animals under controlled laboratory conditions, but it is not certain that it can be applied to explain anomalies of Pu isotope behaviour in organisms contaminated by nuclear test debris or by wastes from nuclear fuel reprocessing plants. Geochemical weathering may also have an effect. Described here are experiments in which it was found that deposit feeding marine worms living in sediments contaminated in different ways with Pu isotopes did not show preferential accumulation of 238 Pu. The worms had been exposed to different chemical and physical forms of the isotopes, including exposure to laboratory-labelled sediment, sediment collected from a former weapons test site, and sediment contaminated by wastes from a nuclear fuel reprocessing plant. The worms were allowed to accumulate Pu for times of 5 to 40 days. Isotope ratios were determined by α-spectrometric techniques. It is considered that the results are important for environmental samples where Pu activity levels are low. (U.K.)

  8. Coastal niches for terrestrial predators: a stable isotope study

    Energy Technology Data Exchange (ETDEWEB)

    Mellbrand, K.; Hamback, P.A., E-mail: peter.hamback@botan.su.se [Stockholm Univ., Dept. of Botany, Stockholm (Sweden)

    2010-12-15

    The purpose of this study was to identify the use of marine versus terrestrial food items by terrestrial arthropod predators on Baltic Sea shores. The inflow of marine nutrients in the area consists mainly of marine algal detritus and emerging aquatic insects (e.g., chironomids). Diets of coastal arthropods were examined using carbon and nitrogen stable isotope analysis in a two source mixing model. The results suggest that spiders are the terrestrial predators mainly utilizing nutrients and energy of marine origin on Baltic Sea shores, whereas insect predators such as beetles and heteropterans mainly utilize nutrients and energy derived from terrestrial sources, possibly owing to differences in hunting behaviour. That spiders are the predators which benefit the most from the marine inflow suggest that eventual effects of marine subsidies for the coastal ecosystem as a whole are likely mediated by spiders. (author)

  9. Coastal niches for terrestrial predators: a stable isotope study

    International Nuclear Information System (INIS)

    Mellbrand, K.; Hamback, P.A.

    2010-01-01

    The purpose of this study was to identify the use of marine versus terrestrial food items by terrestrial arthropod predators on Baltic Sea shores. The inflow of marine nutrients in the area consists mainly of marine algal detritus and emerging aquatic insects (e.g., chironomids). Diets of coastal arthropods were examined using carbon and nitrogen stable isotope analysis in a two source mixing model. The results suggest that spiders are the terrestrial predators mainly utilizing nutrients and energy of marine origin on Baltic Sea shores, whereas insect predators such as beetles and heteropterans mainly utilize nutrients and energy derived from terrestrial sources, possibly owing to differences in hunting behaviour. That spiders are the predators which benefit the most from the marine inflow suggest that eventual effects of marine subsidies for the coastal ecosystem as a whole are likely mediated by spiders. (author)

  10. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from THOMAS G. THOMPSON in the North Pacific Ocean and Papahanaumokuakea Marine National Monument from 1985-03-30 to 1985-04-30 (NCEI Accession 0143395)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0143395 includes discrete sample and profile data collected from THOMAS G. THOMPSON in the North Pacific Ocean and Papahanaumokuakea Marine National...

  11. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the THOMAS WASHINGTON in the Monterey Bay National Marine Sanctuary, North Pacific Ocean and South Pacific Ocean from 1991-05-31 to 1991-07-11 (NODC Accession 0115000)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115000 includes chemical, discrete sample, physical and profile data collected from THOMAS WASHINGTON in the Monterey Bay National Marine Sanctuary,...

  12. Temperature, salinity, and nutrients data from bottle and CTD casts in the NE Pacific (limit-180) from the MELVILLE in support of the Marine Optical Characterization Experiment (MOCE) from 1999-10-01 to 1999-10-21 (NODC Accession 0000693)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This report contains results from the fifth cruise of the Marine Optical Characterization Experiment. A variety of spectroradiometric observations of the upper water...

  13. Selection by higher-order effects of salinity and bacteria on early life-stages of Western Baltic spring-spawning herring.

    Science.gov (United States)

    Poirier, Maude; Listmann, Luisa; Roth, Olivia

    2017-07-01

    Habitat stratification by abiotic and biotic factors initiates divergence of populations and leads to ecological speciation. In contrast to fully marine waters, the Baltic Sea is stratified by a salinity gradient that strongly affects fish physiology, distribution, diversity and virulence of important marine pathogens. Animals thus face the challenge to simultaneously adapt to the concurrent salinity and cope with the selection imposed by the changing pathogenic virulence. Western Baltic spring-spawning herring ( Clupea harengus ) migrate to spawning grounds characterized by different salinities to which herring are supposedly adapted. We hypothesized that herring populations do not only have to cope with different salinity levels but that they are simultaneously exposed to higher-order effects that accompany the shifts in salinity, that is induced pathogenicity of Vibrio bacteria in lower saline waters. To experimentally evaluate this, adults of two populations were caught in their spawning grounds and fully reciprocally crossed within and between populations. Larvae were reared at three salinity levels, representing the spawning ground salinity of each of the two populations, or Atlantic salinity conditions resembling the phylogenetic origin of Clupea harengus . In addition, larvae were exposed to a Vibrio spp . infection. Life-history traits and gene expression analysis served as response variables. Herring seem adapted to Baltic Sea conditions and cope better with low saline waters. However, upon a bacterial infection, herring larvae suffer more when kept at lower salinities implying reduced resistance against Vibrio or higher Vibrio virulence. In the context of recent climate change with less saline marine waters in the Baltic Sea, such interactions may constitute key future stressors.

  14. Ancient DNA from marine mammals

    DEFF Research Database (Denmark)

    Foote, Andrew David; Hofreiter, Michael; Morin, Philip A.

    2012-01-01

    such as bone, tooth, baleen, skin, fur, whiskers and scrimshaw using ancient DNA (aDNA) approaches provide an oppor- tunity for investigating such changes over evolutionary and ecological timescales. Here, we review the application of aDNA techniques to the study of marine mammals. Most of the studies have...... focused on detecting changes in genetic diversity following periods of exploitation and environmental change. To date, these studies have shown that even small sample sizes can provide useful information on historical genetic diversity. Ancient DNA has also been used in investigations of changes...... in distribution and range of marine mammal species; we review these studies and discuss the limitations of such ‘presence only’ studies. Combining aDNA data with stable isotopes can provide further insights into changes in ecology and we review past studies and suggest future potential applications. We also...

  15. Groundwater salinity in coastal aquifer of Karachi, Pakistan

    International Nuclear Information System (INIS)

    Mashiatullah, A.; Qureshi, R.M.; Ahmad, E.; Tasneem, M.A.; Sajjad, M.I.; Khan, H.A.

    2002-01-01

    Potable groundwater salinity has become a problem of great concern in the Karachi Metropolis, which is not only the most populous and biggest industrial base but also the largest coastal dwelling of Pakistan. Stable isotope techniques [O/sup 18/ content of Oxygen in the water molecular and C/sup 13/ content of the Total Dissolved Inorganic Carbon (TDIC)] have been used, in conjunction with physiochemical tools (temperature, dissolved oxygen, pH, redox electrical conductivity, salinity), to examine the quality of potable water and the source of salinity. Surface water samples (12 No.) were collected from polluted streams, namely: Layeri River, Malir River; Hub River/Hub Lake and the Indus River. Shallow groundwater samples (7 No. ) were collected from operating dug wells. Relatively deep groundwater samples (12 No.) were collected from operating dug wells, relatively deep groundwater samples (12 No.) were collected from pumping wells/tube-wells. Physicochemical analysis of water samples was completed in the field. In the laboratory, water samples were analyzed for O/sup 18/ content of oxygen in the water molecule and C/sup 13/ content of the TDIC, using specific gas extraction systems and a modified GD-150 gas source mass spectrometer. It is concluded from this preliminary investigation that the potable aquifer system in coastal Karachi hosts a mixture of precipitation (rainwater only) from hinterlands, trapped seawater in relatively deep aquifer system, as well as intruded seawater under natural infiltration conditions and/or induced recharge conditions (in shallow aquifers). (author)

  16. Stable isotope studies

    International Nuclear Information System (INIS)

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs

  17. Method for separating isotopes

    International Nuclear Information System (INIS)

    Jepson, B.E.

    1975-01-01

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether

  18. Saline water irrigation for crop production

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Singh, S S; Singh, S R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India)

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation.

  19. Saline water irrigation for crop production

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Singh, S.R.

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation

  20. Following Carbon Isotopes from Methane to Molecules

    Science.gov (United States)

    Freeman, K. H.

    2017-12-01

    Continuous-flow methods introduced by Hayes (Matthews and Hayes, 1978; Freeman et al., 1990; Hayes et al., 1990) for compound-specific isotope analyses (CSIA) transformed how we study the origins and fates of organic compounds. This analytical revolution launched several decades of research in which researchers connect individual molecular structures to diverse environmental and climate processes affecting their isotopic profiles. Among the first applications, and one of the more dramatic isotopically, was tracing the flow of natural methane into cellular carbon and cellular biochemical constituents. Microbial oxidation of methane can be tracked by strongly 13C-depleted organic carbon in early Earth sedimentary environments, in marine and lake-derived biomarkers in oils, and in modern organisms and their environments. These signatures constrain microbial carbon cycling and inform our understanding of ocean redox. The measurement of molecular isotopes has jumped forward once again, and it is now possible to determine isotope abundances at specific positions within increasingly complex organic structures. In addition, recent analytical developments have lowered sample sensitivity limits of CSIA to picomole levels. These new tools have opened new ways to measure methane carbon in the natural environment and within biochemical pathways. This talk will highlight how molecular isotope methods enable us to follow the fate of methane carbon in complex environments and along diverse metabolic pathways, from trace fluids to specific carbon positions within microbial biomarkers.