WorldWideScience

Sample records for marine planktonic diatom

  1. Cenozoic planktonic marine diatom diversity and correlation to climate change.

    Directory of Open Access Journals (Sweden)

    David Lazarus

    Full Text Available Marine planktonic diatoms export carbon to the deep ocean, playing a key role in the global carbon cycle. Although commonly thought to have diversified over the Cenozoic as global oceans cooled, only two conflicting quantitative reconstructions exist, both from the Neptune deep-sea microfossil occurrences database. Total diversity shows Cenozoic increase but is sample size biased; conventional subsampling shows little net change. We calculate diversity from a separately compiled new diatom species range catalog, and recalculate Neptune subsampled-in-bin diversity using new methods to correct for increasing Cenozoic geographic endemism and decreasing Cenozoic evenness. We find coherent, substantial Cenozoic diversification in both datasets. Many living cold water species, including species important for export productivity, originate only in the latest Miocene or younger. We make a first quantitative comparison of diatom diversity to the global Cenozoic benthic ∂(18O (climate and carbon cycle records (∂(13C, and 20-0 Ma pCO2. Warmer climates are strongly correlated with lower diatom diversity (raw: rho = .92, p.9, detrended r>.6, all p<.001, but only weakly over the earlier Cenozoic, suggesting increasingly strong linkage of diatom and climate evolution in the Neogene. Our results suggest that many living marine planktonic diatom species may be at risk of extinction in future warm oceans, with an unknown but potentially substantial negative impact on the ocean biologic pump and oceanic carbon sequestration. We cannot however extrapolate our my-scale correlations with generic climate proxies to anthropogenic time-scales of warming without additional species-specific information on proximate ecologic controls.

  2. Limits to gene flow in a cosmopolitan marine planktonic diatom.

    Science.gov (United States)

    Casteleyn, Griet; Leliaert, Frederik; Backeljau, Thierry; Debeer, Ann-Eline; Kotaki, Yuichi; Rhodes, Lesley; Lundholm, Nina; Sabbe, Koen; Vyverman, Wim

    2010-07-20

    The role of geographic isolation in marine microbial speciation is hotly debated because of the high dispersal potential and large population sizes of planktonic microorganisms and the apparent lack of strong dispersal barriers in the open sea. Here, we show that gene flow between distant populations of the globally distributed, bloom-forming diatom species Pseudo-nitzschia pungens (clade I) is limited and follows a strong isolation by distance pattern. Furthermore, phylogenetic analysis implies that under appropriate geographic and environmental circumstances, like the pronounced climatic changes in the Pleistocene, population structuring may lead to speciation and hence may play an important role in diversification of marine planktonic microorganisms. A better understanding of the factors that control population structuring is thus essential to reveal the role of allopatric speciation in marine microorganisms.

  3. Cenozoic planktonic marine diatom diversity and correlation to climate change

    Science.gov (United States)

    Lazarus, David; Barron, John; Renaudie, Johan; Diver, Patrick; Türke, Andreas

    2014-01-01

    Marine planktonic diatoms export carbon to the deep ocean, playing a key role in the global carbon cycle. Although commonly thought to have diversified over the Cenozoic as global oceans cooled, only two conflicting quantitative reconstructions exist, both from the Neptune deep-sea microfossil occurrences database. Total diversity shows Cenozoic increase but is sample size biased; conventional subsampling shows little net change. We calculate diversity from a separately compiled new diatom species range catalog, and recalculate Neptune subsampled-in-bin diversity using new methods to correct for increasing Cenozoic geographic endemism and decreasing Cenozoic evenness. We find coherent, substantial Cenozoic diversification in both datasets. Many living cold water species, including species important for export productivity, originate only in the latest Miocene or younger. We make a first quantitative comparison of diatom diversity to the global Cenozoic benthic ∂18O (climate) and carbon cycle records (∂13C, and 20-0 Ma pCO2). Warmer climates are strongly correlated with lower diatom diversity (raw: rho = .92, p2 were only moderately higher than today. Diversity is strongly correlated to both ∂13C and pCO2 over the last 15 my (for both: r>.9, detrended r>.6, all p<.001), but only weakly over the earlier Cenozoic, suggesting increasingly strong linkage of diatom and climate evolution in the Neogene. Our results suggest that many living marine planktonic diatom species may be at risk of extinction in future warm oceans, with an unknown but potentially substantial negative impact on the ocean biologic pump and oceanic carbon sequestration. We cannot however extrapolate our my-scale correlations with generic climate proxies to anthropogenic time-scales of warming without additional species-specific information on proximate ecologic controls.

  4. Effect of Low ph on Carbohydrate Production by a Marine Planktonic Diatom (Chaetoceros muelleri)

    International Nuclear Information System (INIS)

    Thornton, D.C.O.

    2009-01-01

    Rising carbon dioxide (CO 2 ) concentrations in the atmosphere due to human activity are causing the surface ocean to become more acidic. Diatoms play a pivotal role in biogeochemical cycling and ecosystem function in the ocean. ph affected the quantum efficiency of photosystem II and carbohydrate metabolism in a planktonic diatom (Chaetoceros muelleri), representative of a widely distributed genus. In batch cultures grown at low ph, the proportion of total carbohydrate stored within the cells decreased and more dissolved carbohydrates were exuded from the cells into the surrounding medium. Changes in productivity and the way in which diatoms allocate carbon into carbohydrates may affect ecosystem function and the efficiency of the biological carbon pump in a low ph ocean.

  5. Linking the planktonic and benthic habitat: genetic structure of the marine diatom Skeletonema marinoi.

    Science.gov (United States)

    Godhe, Anna; Härnström, Karolina

    2010-10-01

    Dormant life stages are important strategies for many aquatic organisms. The formation of resting stages will provide a refuge from unfavourable conditions in the water column, and their successive accumulation in the benthos will constitute a genetic reservoir for future planktonic populations. We have determined the genetic structure of a common bloom-forming diatom, Skeletonema marinoi, in the sediment and the plankton during spring, summer and autumn two subsequent years (2007-2009) in Gullmar Fjord on the Swedish west coast. Eight polymorphic microsatellite loci were used to assess the level of genetic differentiation and the respective gene diversity of the two different habitats. We also determined the degree of genetic differentiation between the seed banks inside the fjord and the open sea. The results indicate that Gullmar Fjord has one dominant endogenous population of S. marinoi, which is genetically differentiated from the open sea population. The fjord population is encountered in the plankton and in the sediment. Shifts from the dominant population can happen, and in our study, two genetically differentiated plankton populations, displaying reduced genetic diversity, occurred in September 2007 and 2008. Based on our results, we suggest that sill fjords maintain local long-lived and well-adapted protist populations, which continuously shift between the planktonic and benthic habitats. Intermittently, short-lived and mainly asexually reproducing populations can replace the dominant population in the water column, without influencing the genetic structure of the benthic seed bank. © 2010 Blackwell Publishing Ltd.

  6. Bioprospecting Marine Plankton

    Directory of Open Access Journals (Sweden)

    Chris Bowler

    2013-11-01

    Full Text Available The ocean dominates the surface of our planet and plays a major role in regulating the biosphere. For example, the microscopic photosynthetic organisms living within provide 50% of the oxygen we breathe, and much of our food and mineral resources are extracted from the ocean. In a time of ecological crisis and major changes in our society, it is essential to turn our attention towards the sea to find additional solutions for a sustainable future. Remarkably, while we are overexploiting many marine resources, particularly the fisheries, the planktonic compartment composed of zooplankton, phytoplankton, bacteria and viruses, represents 95% of marine biomass and yet the extent of its diversity remains largely unknown and underexploited. Consequently, the potential of plankton as a bioresource for humanity is largely untapped. Due to their diverse evolutionary backgrounds, planktonic organisms offer immense opportunities: new resources for medicine, cosmetics and food, renewable energy, and long-term solutions to mitigate climate change. Research programs aiming to exploit culture collections of marine micro-organisms as well as to prospect the huge resources of marine planktonic biodiversity in the oceans are now underway, and several bioactive extracts and purified compounds have already been identified. This review will survey and assess the current state-of-the-art and will propose methodologies to better exploit the potential of marine plankton for drug discovery and for dermocosmetics.

  7. Origin of marine planktonic cyanobacteria.

    Science.gov (United States)

    Sánchez-Baracaldo, Patricia

    2015-12-01

    Marine planktonic cyanobacteria contributed to the widespread oxygenation of the oceans towards the end of the Pre-Cambrian and their evolutionary origin represents a key transition in the geochemical evolution of the Earth surface. Little is known, however, about the evolutionary events that led to the appearance of marine planktonic cyanobacteria. I present here phylogenomic (135 proteins and two ribosomal RNAs), Bayesian relaxed molecular clock (18 proteins, SSU and LSU) and Bayesian stochastic character mapping analyses from 131 cyanobacteria genomes with the aim to unravel key evolutionary steps involved in the origin of marine planktonic cyanobacteria. While filamentous cell types evolved early on at around 2,600-2,300 Mya and likely dominated microbial mats in benthic environments for most of the Proterozoic (2,500-542 Mya), marine planktonic cyanobacteria evolved towards the end of the Proterozoic and early Phanerozoic. Crown groups of modern terrestrial and/or benthic coastal cyanobacteria appeared during the late Paleoproterozoic to early Mesoproterozoic. Decrease in cell diameter and loss of filamentous forms contributed to the evolution of unicellular planktonic lineages during the middle of the Mesoproterozoic (1,600-1,000 Mya) in freshwater environments. This study shows that marine planktonic cyanobacteria evolved from benthic marine and some diverged from freshwater ancestors during the Neoproterozoic (1,000-542 Mya).

  8. Diatoms as Proxies for Abrupt Events in the Hudson River Estuary

    Science.gov (United States)

    Skorski, W.; Abbott, D. H.; Recasens, C.; Breger, D. L.

    2014-12-01

    The Hudson River estuary has been subject to many abrupt events throughout its history including hurricanes, droughts and pluvials. Hurricanes in particular are rare, discrete events that if fingerprinted can be used to develop better age models for Hudson River sediments. Proxies use observed physical characteristics or biological assemblages (e.g. diatom and foraminiferal assemblages) as tools to reconstruct past conditions prior to the modern instrumental record. Using a sediment core taken from the Hudson River (CDO2-29A), in New York City, drought and pluvial layers were selected based on Cs-137 dating while hurricane layers were determined from occurrences of tropical to subtropical foraminifera. Contrary to previous studies (Weaver, 1970, Weiss et al, 1978), more than sixty different diatom species have been identified using a scanning electron microscope (SEM). Cosmopolitan, hurricane and drought assemblages have begun to be identified after observing multiple layers (Table 1). Tropical foraminifera dominated by Globigerinoides ruber pink were also found in a hurricane layer that we infer was deposited during Hurricane Belle in 1976. More diatom abundance analyses and cataloged SEM pictures will provide further insight into these proxies. Table 1 Diatom Genera and Species Environment Clarification Cyclotella caspia Planktonic, marine-brackish Cosmopolitan Karayevia clevei Freshwater Cosmopolitan Melosira sp Planktonic, marine Cosmopolitan Thalassiosira sp Marine, brackish Cosmopolitan Staurosirella leptostauron Benthic, freshwater Cosmopolitan Actinoptychus senarius Planktonic or benthic, freshwater to brackish Hurricane and pluvial layers Amphora aff. sp Benthic, marine or freshwater Hurricane layers only Nitzschia sp Benthic, marine or freshwater Hurricane layers only Gomphonema sp Freshwater Hurricane layers only Surirella sp Marine-brackish Drought layer only Triceratium sp Marine Drought layer only Other Genera and species Environment Clarification

  9. Diatom assemblages as guides to flow conditions during the 2004 Indian Ocean tsunami at Phra Thong Island, Thailand

    Science.gov (United States)

    Sawai, Y.; Jankaew, K.; Martin, M. E.; Choowong, M.; Charoentitirat, T.; Prendergast, A.

    2008-12-01

    Diatom assemblages in the 2004 tsunami deposits of Phra Thong Island, Thailand represent flow conditions during the tsunami. The tsunami deposit consists of single or multiple graded beds. Diatom assemblages in the lowermost part of the deposit predominantly comprise beach and subtidal species. In the middle part of the deposit, the assemblages are dominated by marine plankton with increasing finer fractions. A mixed assemblage of freshwater, brackish, and marine species occupies the uppermost part of the deposit. Changes in flow conditions during the tsunami can explain these diatom assemblage variations. During fast current velocities, medium sand is deposited; only beach and subtidal diatoms that live attached to the sand can be incorporated into the tsunami deposit under these flow conditions. It is difficult for diatoms in suspension to settle out under fast current velocities. With decreasing current velocities, marine plankton can settle out of the water column .Finally, during the suspension stage (calm currents) between tsunami waves, the entrained freshwater, brackish, and marine species settle out with mud and plant trash. Fewer broken valves in the lowermost part of the deposit is probably a results of rapid entrainment, whilst selective breakage of marine plankton (Thalassionema nitzschioides, and Thalassiosira and Coscinodiscus spp.) in the middle part of the deposit probably results from abrasion by turbulent current before their deposition.

  10. [Research advances in ecological stoichiometry of marine plankton].

    Science.gov (United States)

    Chen, Lei; Li, Chao-Lun

    2014-10-01

    Ecological stoichiometry can be simply defined as: The biology of elements from molecules to the biosphere, which spans all levels of the environment and of the life. It's a new idea to build a unified theory and becomes an inevitable trend to develop the ecological science. Marine ecosystems, which contribute to 50% of the biosphere biomass, are the important component of the global biogeochemical cycles. Marine zooplankton plays an important role in the material circulation and energy flow of marine ecosystems and serves as a connecting link between the preceding and the following in a more precise understanding of the key elemental cycles. However, research on ecological stoichiometry of marine plankton is fragmentary and rare. This article summarized the ecological phenomena and mechanisms of limiting elements affecting marine plankton, the response of biochemical substances to nutrition limitation, and the food chain transmission and feedback of nutrition limitation. Meanwhile, we also put forward some perspectives for future research of ecological stoichiometry of plankton in China' s seas.

  11. Some aspects of water quality in a polluted lowland river in relation to the intracellular chemical levels in planktonic and epilithic diatoms.

    Science.gov (United States)

    Tien, Chien-Jung

    2004-04-01

    Changes in elemental concentrations of diatoms and river water from the river Erh-Jen were determined using scanning electron microscopy energy-dispersive X-ray microanalysis and inductively coupled plasma mass spectrometry. Relatively large amounts of copper and lead found in both planktonic and epilithic diatoms implied these algae might play an important role in biogeochemical cycles and in the transfer of those elements to higher trophic levels in the aquatic environment. Changes in elemental concentrations within diatom cells were found to vary with other elements within cells and the same or different elements in water. Planktonic and epilithic cells showed different correlation patterns. For epilithic diatoms, negative correlations were found between concentrations of total phosphorus and phosphate in water and those of phosphorus within cells, and between concentrations of lead in water and in cells. Concentrations of chromium and mercury within planktonic cells and those of phosphorus, manganese and lead within epilithic ones were found to be easily influenced by other elements in river water, indicating appearance of the competitive manner on uptake of such elements by algal cells. Relatively high concentration factors (CFs) for cadmium, mercury and lead by diatoms in this study suggested they are good accumulators for these heavy metals. Significant negative corrections were found between the CFs of diatoms and the concentrations of elements in river water.

  12. Effect of ageing on survival of benthic diatom propagules

    Digital Repository Service at National Institute of Oceanography (India)

    Anil, A.C.; Mitbavkar, S.; De; Hegde, S.; De; Meher, S.S.; Banerjee, D.

    unfavorable for vegetative growth, many diatoms form resting stages to survive cell degradation or death (Anderson, 1975; Malone, 1980; Hargraves and French, 1983; Fryxell, 1990). Various external factors like availability of nutrients (N, P, Fe, Si.... 128, 497-508. 15 Lewis, J., Harris, A.S.D., Jones, K.J., Edmonds, R.L., 1999. Long-term survival of marine planktonic diatoms and dinoflagellates in stored sediment samples. J. Plank. Res. 21, 343- 354. Malone, T.C., 1980. Algal size. In...

  13. First records of two planktonic Indo-Pacific diatoms: Chaetoceros bacteriastroides and C. pseudosymmetricus in the Adriatic Sea

    Directory of Open Access Journals (Sweden)

    Marijeta Čalić

    2018-01-01

    Full Text Available Unusual occurrence of planktonic diatom species, Chaetoceros bacteriastroides and Chaetoceros pseudosymmetricus, was noticed in three different marine ecosystems of Adriatic Sea: the Krka Estuary and Telaščica Bay in the Central Adriatic, and in southern Adriatic offshore. From 2010 to 2015, these two Chaetoceros species were recorded in heterogeneous environmental conditions and in a very low abundances. Both species are regarded as very rare in world oceans, and consequently knowledge of their distribution and ecology is rather poor. Primarily described from tropical waters and showing Indo-Pacific distribution, C. bacteriastroides and C. pseudosymmetricus findings in Adriatic represent the northernmost records in world's oceans and seas. For C. pseudosymmetricus this is also the first occurrence in European seas. Areal expansion and introduction of new phytoplankton species in the Adriatic Sea might be related to different circulation regimes in the Ionian Sea and the concurrent rise in sea temperature in the Mediterranean in the last decade. Recent investigations have shown that entering currents, of either Atlantic/Western Mediterranean or Eastern Mediterranean origin, modify the composition of the plankton community in the Adriatic by bringing different newcomers.

  14. Developmental Stages of some Tropical and Subtropical Planktonic Marine Copepods

    NARCIS (Netherlands)

    Björnberg, Tagea K.S.

    1972-01-01

    Most planktonic marine copepods have nauplii which differ greatly from the copepodids so that it is difficult to relate them to the adult form. Rearing experiments are usually unsuccessful; only 8% of ca. 800 species of planktonic marine copepods have identified nauplii (see below cited list). To

  15. Influence of diatom diversity on the ocean biological carbon pump

    Science.gov (United States)

    Tréguer, Paul; Bowler, Chris; Moriceau, Brivaela; Dutkiewicz, Stephanie; Gehlen, Marion; Aumont, Olivier; Bittner, Lucie; Dugdale, Richard; Finkel, Zoe; Iudicone, Daniele; Jahn, Oliver; Guidi, Lionel; Lasbleiz, Marine; Leblanc, Karine; Levy, Marina; Pondaven, Philippe

    2018-01-01

    Diatoms sustain the marine food web and contribute to the export of carbon from the surface ocean to depth. They account for about 40% of marine primary productivity and particulate carbon exported to depth as part of the biological pump. Diatoms have long been known to be abundant in turbulent, nutrient-rich waters, but observations and simulations indicate that they are dominant also in meso- and submesoscale structures such as fronts and filaments, and in the deep chlorophyll maximum. Diatoms vary widely in size, morphology and elemental composition, all of which control the quality, quantity and sinking speed of biogenic matter to depth. In particular, their silica shells provide ballast to marine snow and faecal pellets, and can help transport carbon to both the mesopelagic layer and deep ocean. Herein we show that the extent to which diatoms contribute to the export of carbon varies by diatom type, with carbon transfer modulated by the Si/C ratio of diatom cells, the thickness of the shells and their life strategies; for instance, the tendency to form aggregates or resting spores. Model simulations project a decline in the contribution of diatoms to primary production everywhere outside of the Southern Ocean. We argue that we need to understand changes in diatom diversity, life cycle and plankton interactions in a warmer and more acidic ocean in much more detail to fully assess any changes in their contribution to the biological pump.

  16. Kelimpahan dan Keanekaragaman Plankton di Perairan Selat Bali (Plankton Abundance and Diversity in the Bali Strait

    Directory of Open Access Journals (Sweden)

    Ruly Isfatul Khasanah

    2013-12-01

    transitional season in November 2012 and the west season in February 2013. This research was done to observe the differences in the abundance and diversity of plankton in the two monsoon seasons. Water sample and plankton sample were collected simultaneously at the same location. Water samples were taken using a water sampler, while plankton were taken by using a planktonnet with mesh size 20 μm. Samples were taken vertically and horizontally at a depth of 1 m and 20 m below the surface. The result of nutrient measurement at Bali Strait during transitional II season showed that the concentration of phosphate, nitrate, organic matter, sillica and chlorofill-a are higher than during west season. This result indicates that there is probably movement of water mass from deeper water column to shallower area. Phosphate and nitrate are required by phytoplankton to maintain their cell membrane and sillica are used to form cell wall, especially for diatom. The reasearch also revealed that diatom (Bacillariophyceae are 95,9 % of total species and abundance of phytoplankton, and the rest are Dinophyceae. It was found that highest abundance occur during transitional season was Rhizosolenia stolterfothii of 51.405 sel.L-1 (80,1 %. While during the west monsoon the Copepod had dominates at 8.178 cell.L-1 (88,3 %. These results indicate that with plankton abundance the Bali Strait has the potential to support pelagic marine life. Keywords: plankton, Bali strait, rhizosolenia stolterfothii, monsoon

  17. Dynamic diatom response to changing climate 0–1.2 Ma at Lake El'gygytgyn, Far East Russian Arctic

    Directory of Open Access Journals (Sweden)

    J. A. Snyder

    2013-06-01

    Full Text Available The Lake El'gygytgyn sediment record contains an abundant diatom flora through most intervals of the lake's history, providing a means to create and test hypotheses concerning the lake's response to changing climates. The 0–1.2 Ma core interval is characterized by shifts in the dominant planktonic genera and events of exceptional concentration and diversity. Warm interglacial intervals have enhanced concentration and diversity of the plankton. This response is most extreme during exceptional events corresponding to marine isotope stages (MIS 11 and 31. Diatom concentration and diversity also increase during some cold intervals (e.g., MIS 2, suggesting conditions of lake circulation and nutrient cycling promoting diatom production during these events. Short intervals of low plankton concentration accompanied by shifts in the dominant genus of the lake suggest conditions during certain cold events generate a severe impact on plankton production. The absence of these events during extended intervals of low summer insolation variability suggests a muted cold-event response of the lake system linked to regional climate.

  18. Role of Diatoms in marine biofouling

    Digital Repository Service at National Institute of Oceanography (India)

    Anil, A; Patil, J.S..; Mitbavkar, S.; DeCosta, P.M.; DeSilva, S.; Hegde, S.; Naik, R.

    . Ltd., New Delhi, pp. 293-6. de Nys, R., Leya, T., Maximilien, R., Afsar, A., Nair, P. S. R. & Steinberg, P. D. 1996. The need for standardized broad scale bioassay testing: a case study using the red alga Laurencia rigida. Biofouling 10:213-24. de...-1 Content-Type text/plain; charset=ISO-8859-1 Recent Advances on Applied Aspects of Indian Marine Algae with Reference to Global Scenario, Volume 1, A. Tewari (Ed.), 2006 Central Salt & Marine Chemicals Research Institute Role of Diatoms...

  19. Interactions of marine plankton with transuranic elements. II

    International Nuclear Information System (INIS)

    Fisher, N.S.; Bjerregaard, P.; Huynh-Ngoc, L.; Harvey, G.R.

    1983-01-01

    To assess the significance of naturally occurring dissolved organic matter (DOM) on complexation of transuranic elements in seawater, a series of bioassay experiments was conducted in which the effect of DOM on the accumulation of 241 Am, 237 Pu(III-IV), and 237 Pu(V-VI) by the marine diatom Thalassiosira pseudonana was measured. EDTA at 0.3 μM complexed both metals substantially, resulting in reduced radio-isotope uptake by the diatom; the greatest effect was on Pu(III-IV). In contrast, there was no apparent complexation of either element by equimolar concentrations of marine fulvic (MFA) or humic acids (MHA), naturally occurring photooxidizable DOM (uncharacterized), or diatom exudates, as none of these materials reduced isotope uptake; on the contrary, there were indications that some of this DOM enhanced transuranic bioaccumulation in the diatom slightly. Subsequent experiments showed this enhancement was probably due to complexation of transition metals by the DOM, leading to fewer ambient ions 'competing' for binding sites on the cells; 241 Am uptake rates were negatively correlated (r = -0.846, P<.01) with ΣASV-labile Cu + Zn + Cd + Pb. These experiments suggest that naturally occurring DOM may not appreciably complex Am or Pu or greatly affect their bioavailability in the sea. (Auth.)

  20. Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom

    Science.gov (United States)

    Ianora, Adrianna; Miralto, Antonio; Poulet, Serge A.; Carotenuto, Ylenia; Buttino, Isabella; Romano, Giovanna; Casotti, Raffaella; Pohnert, Georg; Wichard, Thomas; Colucci-D'Amato, Luca; Terrazzano, Giuseppe; Smetacek, Victor

    2004-05-01

    The growth cycle in nutrient-rich, aquatic environments starts with a diatom bloom that ends in mass sinking of ungrazed cells and phytodetritus. The low grazing pressure on these blooms has been attributed to the inability of overwintering copepod populations to track them temporally. We tested an alternative explanation: that dominant diatom species impair the reproductive success of their grazers. We compared larval development of a common overwintering copepod fed on a ubiquitous, early-blooming diatom species with its development when fed on a typical post-bloom dinoflagellate. Development was arrested in all larvae in which both mothers and their larvae were fed the diatom diet. Mortality remained high even if larvae were switched to the dinoflagellate diet. Aldehydes, cleaved from a fatty acid precursor by enzymes activated within seconds after crushing of the cell, elicit the teratogenic effect. This insidious mechanism, which does not deter the herbivore from feeding but impairs its recruitment, will restrain the cohort size of the next generation of early-rising overwinterers. Such a transgenerational plant-herbivore interaction could explain the recurringly inefficient use of a predictable, potentially valuable food resource-the spring diatom bloom-by marine zooplankton.

  1. Assimilation of Ocean-Color Plankton Functional Types to Improve Marine Ecosystem Simulations

    Science.gov (United States)

    Ciavatta, S.; Brewin, R. J. W.; Skákala, J.; Polimene, L.; de Mora, L.; Artioli, Y.; Allen, J. I.

    2018-02-01

    We assimilated phytoplankton functional types (PFTs) derived from ocean color into a marine ecosystem model, to improve the simulation of biogeochemical indicators and emerging properties in a shelf sea. Error-characterized chlorophyll concentrations of four PFTs (diatoms, dinoflagellates, nanoplankton, and picoplankton), as well as total chlorophyll for comparison, were assimilated into a physical-biogeochemical model of the North East Atlantic, applying a localized Ensemble Kalman filter. The reanalysis simulations spanned the years 1998-2003. The skill of the reference and reanalysis simulations in estimating ocean color and in situ biogeochemical data were compared by using robust statistics. The reanalysis outperformed both the reference and the assimilation of total chlorophyll in estimating the ocean-color PFTs (except nanoplankton), as well as the not-assimilated total chlorophyll, leading the model to simulate better the plankton community structure. Crucially, the reanalysis improved the estimates of not-assimilated in situ data of PFTs, as well as of phosphate and pCO2, impacting the simulation of the air-sea carbon flux. However, the reanalysis increased further the model overestimation of nitrate, in spite of increases in plankton nitrate uptake. The method proposed here is easily adaptable for use with other ecosystem models that simulate PFTs, for, e.g., reanalysis of carbon fluxes in the global ocean and for operational forecasts of biogeochemical indicators in shelf-sea ecosystems.

  2. Toxicity of dissolved and precipitated aluminium to marine diatoms.

    Science.gov (United States)

    Gillmore, Megan L; Golding, Lisa A; Angel, Brad M; Adams, Merrin S; Jolley, Dianne F

    2016-05-01

    Localised aluminium contamination can lead to high concentrations in coastal waters, which have the potential for adverse effects on aquatic organisms. This research investigated the toxicity of 72-h exposures of aluminium to three marine diatoms (Ceratoneis closterium (formerly Nitzschia closterium), Minutocellus polymorphus and Phaeodactylum tricornutum) by measuring population growth rate inhibition and cell membrane damage (SYTOX Green) as endpoints. Toxicity was correlated to the time-averaged concentrations of different aluminium size-fractions, operationally defined as aluminium exposure varied between diatom species. C. closterium was the most sensitive species (10% inhibition of growth rate (72-h IC10) of 80 (55-100)μg Al/L (95% confidence limits)) while M. polymorphus (540 (460-600)μg Al/L) and P. tricornutum (2100 (2000-2200)μg Al/L) were less sensitive (based on measured total aluminium). Dissolved aluminium was the primary contributor to toxicity in C. closterium, while a combination of dissolved and precipitated aluminium forms contributed to toxicity in M. polymorphus. In contrast, aluminium toxicity to the most tolerant diatom P. tricornutum was due predominantly to precipitated aluminium. Preliminary investigations revealed the sensitivity of C. closterium and M. polymorphus to aluminium was influenced by initial cell density with aluminium toxicity significantly (paluminium toxicity to diatoms do not involve compromising the plasma membrane. These results indicate that marine diatoms have a broad range in sensitivity to aluminium with toxic mechanisms related to both dissolved and precipitated aluminium. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Insights into global diatom distribution and diversity in the world’s ocean

    KAUST Repository

    Malviya, Shruti; Scalco, Eleonora; Audic, Sté phane; Vincent, Flora; Veluchamy, Alaguraj; Poulain, Julie; Wincker, Patrick; Iudicone, Daniele; de Vargas, Colomban; Bittner, Lucie; Zingone, Adriana; Bowler, Chris

    2016-01-01

    Diatoms (Bacillariophyta) constitute one of the most diverse and ecologically important groups of phytoplankton. They are considered to be particularly important in nutrient-rich coastal ecosystems and at high latitudes, but considerably less so in the oligotrophic open ocean. The Tara Oceans circumnavigation collected samples from a wide range of oceanic regions using a standardized sampling procedure. Here, a total of ∼12 million diatom V9-18S ribosomal DNA (rDNA) ribotypes, derived from 293 sizefractionated plankton communities collected at 46 sampling sites across the global ocean euphotic zone, have been analyzed to explore diatom global diversity and community composition. We provide a new estimate of diversity of marine planktonic diatoms at 4,748 operational taxonomic units (OTUs). Based on the total assigned ribotypes, Chaetoceros was the most abundant and diverse genus, followed by Fragilariopsis, Thalassiosira, and Corethron. We found only a few cosmopolitan ribotypes displaying an even distribution across stations and high abundance, many of which could not be assigned with confidence to any known genus. Three distinct communities from South Pacific, Mediterranean, and Southern Ocean waters were identified that share a substantial percentage of ribotypes within them. Sudden drops in diversity were observed at Cape Agulhas, which separates the Indian and Atlantic Oceans, and across the Drake Passage between the Atlantic and Southern Oceans, indicating the importance of these ocean circulation choke points in constraining diatom distribution and diversity. We also observed high diatom diversity in the open ocean, suggesting that diatoms may be more relevant in these oceanic systems than generally considered.

  4. Insights into global diatom distribution and diversity in the world’s ocean

    KAUST Repository

    Malviya, Shruti

    2016-03-01

    Diatoms (Bacillariophyta) constitute one of the most diverse and ecologically important groups of phytoplankton. They are considered to be particularly important in nutrient-rich coastal ecosystems and at high latitudes, but considerably less so in the oligotrophic open ocean. The Tara Oceans circumnavigation collected samples from a wide range of oceanic regions using a standardized sampling procedure. Here, a total of ∼12 million diatom V9-18S ribosomal DNA (rDNA) ribotypes, derived from 293 sizefractionated plankton communities collected at 46 sampling sites across the global ocean euphotic zone, have been analyzed to explore diatom global diversity and community composition. We provide a new estimate of diversity of marine planktonic diatoms at 4,748 operational taxonomic units (OTUs). Based on the total assigned ribotypes, Chaetoceros was the most abundant and diverse genus, followed by Fragilariopsis, Thalassiosira, and Corethron. We found only a few cosmopolitan ribotypes displaying an even distribution across stations and high abundance, many of which could not be assigned with confidence to any known genus. Three distinct communities from South Pacific, Mediterranean, and Southern Ocean waters were identified that share a substantial percentage of ribotypes within them. Sudden drops in diversity were observed at Cape Agulhas, which separates the Indian and Atlantic Oceans, and across the Drake Passage between the Atlantic and Southern Oceans, indicating the importance of these ocean circulation choke points in constraining diatom distribution and diversity. We also observed high diatom diversity in the open ocean, suggesting that diatoms may be more relevant in these oceanic systems than generally considered.

  5. Mercury-induced genotoxicity in marine diatom (Chaetoceros tenuissimus)

    Digital Repository Service at National Institute of Oceanography (India)

    Sarker, S.; Desai, S.R.; Verlecar, X.N.; Sarker, M.S.; Sarkar, A.

    In this paper, we present an evaluation of genotoxic responses in marine diatom, Chaetoceros tenuissimus, isolated from Kandla Creek (lat 23.03° N, long 70.22° E), Gujarat, India, in terms of impairment of DNA integrity as a function...

  6. Genomes of planktonic Acidimicrobiales: widening horizons for marine Actinobacteria by metagenomics.

    Science.gov (United States)

    Mizuno, Carolina Megumi; Rodriguez-Valera, Francisco; Ghai, Rohit

    2015-02-10

    The genomes of four novel marine Actinobacteria have been assembled from large metagenomic data sets derived from the Mediterranean deep chlorophyll maximum (DCM). These are the first marine representatives belonging to the order Acidimicrobiales and only the second group of planktonic marine Actinobacteria to be described. Their streamlined genomes and photoheterotrophic lifestyle suggest that they are planktonic, free-living microbes. A novel rhodopsin clade, acidirhodopsins, related to freshwater actinorhodopsins, was found in these organisms. Their genomes suggest a capacity to assimilate C2 compounds, some using the glyoxylate bypass and others with the ethylmalonyl-coenzyme A (CoA) pathway. They are also able to derive energy from dimethylsulfopropionate (DMSP), sulfonate, and carbon monoxide oxidation, all commonly available in the marine habitat. These organisms appear to be prevalent in the deep photic zone at or around the DCM. The presence of sister clades to the marine Acidimicrobiales in freshwater aquatic habitats provides a new example of marine-freshwater transitions with potential evolutionary insights. Despite several studies showing the importance and abundance of planktonic Actinobacteria in the marine habitat, a representative genome was only recently described. In order to expand the genomic repertoire of marine Actinobacteria, we describe here the first Acidimicrobidae genomes of marine origin and provide insights about their ecology. They display metabolic versatility in the acquisition of carbon and appear capable of utilizing diverse sources of energy. One of the genomes harbors a new kind of rhodopsin related to the actinorhodopsin clade of freshwater origin that is widespread in the oceans. Our data also support their preference to inhabit the deep chlorophyll maximum and the deep photic zone. This work contributes to the perception of marine actinobacterial groups as important players in the marine environment with distinct and

  7. Genotoxicity of cadmium in marine diatom Chaetoceros tenuissimus using the alkaline Comet assay

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, S.R.; Verlecar, X.N.; Nagarajappa; Goswami, U.

    of Cd increased growth of the diatom decreased. Alkaline single-cell gel electrophoresis (Comet assay) method, which is highly sensitive in detection of DNA damage in eukaryotic cells, was used to observe genomic changes in marine diatom cells. DNA...

  8. Quasi-planktonic behavior of foraging top marine predators

    Science.gov (United States)

    Della Penna, Alice; de Monte, Silvia; Kestenare, Elodie; Guinet, Christophe; D'Ovidio, Francesco

    2015-12-01

    Monitoring marine top predators is fundamental for assessing the health and functioning of open ocean ecosystems. Although recently tracking observations have substantially increased, factors determining the horizontal exploration of the ocean by marine predators are still largely unknown, especially at the scale of behavioral switches (1-100 km, days-weeks). It is commonly assumed that the influence of water movement can be neglected for animals capable of swimming faster than the current. Here, we challenge this assumption by combining the use of biologging (GPS and accelerometry), satellite altimetry and in-situ oceanographic data (ADCP and drifting buoys) to investigate the effect of the mesoscale ocean dynamics on a marine predator, the southern elephant seal. A Lagrangian approach reveals that trajectories of elephant seals are characterized by quasi-planktonic bouts where the animals are horizontally drifting. These bouts correspond to periods of increased foraging effort, indicating that in the quasi-planktonic conditions energy is allocated to diving and chasing, rather than in horizontal search of favourable grounds. These results suggest that mesoscale features like eddies and fronts may act as a focal points for trophic interactions not only by bottom-up modulation of nutrient injection, but also by directly entraining horizontal displacements of the upper trophic levels.

  9. Marine plankton as an indicator of low-level radionuclide contamination in the Southern Ocean

    International Nuclear Information System (INIS)

    Marsh, K.V.; Buddemeier, R.W.

    1984-07-01

    We have initiated an investigation of the utility of marine plankton as bioconcentrating samplers of low-level marine radioactivity in the southern hemisphere. A literature review shows that both freshwater and marine plankton have trace element and radionuclide concentration factors (relative to water) of up to 10 4 . In the years 1956-1958, considerable work was done on the accumulation and distribution of a variety of fission and activation products produced by the nuclear tests in the Marshall Islands. Since then, studies have largely been confined to a few selected radionuclides, and by far most of this work has been done in the northern hemisphere. We participated in Operation Deepfreeze 1981, collecting 32 plankton samples from the U.S. Coast Guard Cutter Glacier on its Antarctic cruise, while Battelle Pacific Northwest Laboratories concurrently sampled air, water, rain and fallout. We were able to measure concentrations of the naturally occurring radionuclides 7 Be, 40 K and the U and th series, and we believe that we have detected low levels of 144 Ce and 95 Nb in seven samples ranging as far south as 68 0 . There is a definite association between the radionuclide content of plankton and air filters, suggesting that aerosol resuspension of marine radioactivity may be occurring. Biological identification of the plankton suggests a possible correlation between radionuclide concentration and foraminifera content of the samples. 38 references, 7 figures, 3 tables

  10. Laser damage to marine plankton and its application to checking biofouling and invasion by aquatic species: a laboratory study.

    Science.gov (United States)

    Nandakumar, Kanavillil; Obika, Hideki; Sreekumari, Kurissery; Utsumi, Akihiro; Ooie, Toshihiko; Yano, Tetsuo

    2009-01-01

    In this laboratory study, the ability of low-power pulsed laser irradiation to kill planktonic organisms in a flowing water system was examined, thus, to test the possibility of using this technique as a water treatment strategy to reduce biofouling growth in condenser tubes of power plants and to reduce bioinvasion via the ballast water of ships. Two flow rates (4.6 and 9.0 l h(-1)) were tested on three planktonic organisms: two marine centric diatoms viz. Skeletonema costatum and Chaetoceros gracilis and a dinoflagellate, Heterocapsa circularisquama. A low-power pulsed laser irradiation at 532 nm with a fluence of 0.1 J cm(-2) from a frequency-doubled Nd:YAG laser was used as the irradiation source. The laser irradiation resulted in a heavy mortality of the test cells. The mortality observed was >90% for S. costatum and H. circularisqama and >70% for C. gracilis. The results suggest that laser irradiation has the potential to act as a water treatment strategy to reduce biofouling of condenser tubes in power plants as well as to reduce species invasion via the ballast water of ships.

  11. Specificity of lipoxygenase pathways supports species delineation in the marine diatom genus Pseudo-nitzschia.

    Directory of Open Access Journals (Sweden)

    Nadia Lamari

    Full Text Available Oxylipins are low-molecular weight secondary metabolites derived from the incorporation of oxygen into the carbon chains of polyunsaturated fatty acids (PUFAs. Oxylipins are produced in many prokaryotic and eukaryotic lineages where they are involved in a broad spectrum of actions spanning from stress and defense responses, regulation of growth and development, signaling, and innate immunity. We explored the diversity in oxylipin patterns in the marine planktonic diatom Pseudo-nitzschia. This genus includes several species only distinguishable with the aid of molecular markers. Oxylipin profiles of cultured strains were obtained by reverse phase column on a liquid chromatograph equipped with UV photodiode detector and q-ToF mass spectrometer. Lipoxygenase compounds were mapped on phylogenies of the genus Pseudo-nitzschia inferred from the nuclear encoded hyper-variable region of the LSU rDNA and the plastid encoded rbcL. Results showed that the genus Pseudo-nitzschia exhibits a rich and varied lipoxygenase metabolism of eicosapentaenoic acid (EPA, with a high level of specificity for oxylipin markers that generally corroborated the genotypic delineation, even among genetically closely related cryptic species. These results suggest that oxylipin profiles constitute additional identification tools for Pseudo-nitzschia species providing a functional support to species delineation obtained with molecular markers and morphological traits. The exploration of the diversity, patterns and plasticity of oxylipin production across diatom species and genera will also provide insights on the ecological functions of these secondary metabolites and on the selective pressures driving their diversification.

  12. Coastal and marine biodiversity of India

    Digital Repository Service at National Institute of Oceanography (India)

    Venkataraman, K.; Wafar, M.V.M.

    endangered eco-regions of the world 1 . Among the Asian countries, India is perhaps the only one that has a long INDIAN J. MAR. SCI., VOL. 34, No. 1, MARCH 2005 58 record of inventories of coastal and marine biodiversity dating back to at least two..., planktonic algae appear to have been more completely catalogued 2,3 . Their compilation suggests that the number of pennate diatoms in the world oceans could range from 500 to 784 and that of centric diatoms, from 865 to 999. Compared with these, not more...

  13. Relationship between diatom communities and environmental ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-30

    Nov 30, 2011 ... The relationship between diatom species and measured environmental variables was explored at different sites of Honghe wetland region located in northeastern China. Planktonic and epiphytic diatom assemblages in the wetland were identified from May to October of 2007 and 2008. Their relationships.

  14. Relationship between diatom communities and environmental ...

    African Journals Online (AJOL)

    Abstract. The relationship between diatom species and measured environmental variables was explored at different sites of Honghe wetland region located in northeastern China. Planktonic and epiphytic diatom assemblages in the wetland were identified from May to October of 2007 and 2008. Their relationships with ...

  15. Impact of multispecies diatom bloom on plankton community structure in Sundarban mangrove wetland, India

    International Nuclear Information System (INIS)

    Biswas, Sejuti Naha; Rakshit, Dibyendu; Sarkar, Santosh Kumar; Sarangi, Ranjit Kumar; Satpathy, Kamala Kanta

    2014-01-01

    Highlights: • A multispecies algal bloom was studied in coastal regions of Sundarban wetland. • Sharp changes in plankton community structure and hydrological parameters observed. • Chlorophyll a showed highest cell density (11.4 × 10 5 cells l −1 ) during bloom phase. • MODIS Aqua derived chlorophyll maps have been interpreted. - Abstract: A multispecies bloom caused by the centric diatoms, viz. Coscinodiscus radiatus, Chaetoceros lorenzianus and the pennate diatom Thalassiothrix frauenfeldii was investigated in the context of its impact on phytoplankton and microzooplankton (the loricate ciliate tintinnids) in the coastal regions of Sagar Island, the western part of Sundarban mangrove wetland, India. Both number (15–18 species) and cell densities (12.3 × 10 3 cells l −1 to 11.4 × 10 5 cells l −1 ) of phytoplankton species increased during peak bloom phase, exhibiting moderately high species diversity (H′ = 2.86), richness (R′ = 6.38) and evenness (E′ = 0.80). The diatom bloom, which existed for a week, had a negative impact on the tintinnid community in terms of drastic changes in species diversity index (1.09–0.004) and population density (582.5 × 10 3 to 50 × 10 3 ind m −3 ). The bloom is suggested to have been driven by the aquaculture activities and river effluents resulting high nutrient concentrations in this region. An attempt has been made to correlate the satellite remote sensing-derived information to the bloom conditions. MODIS-Aqua derived chlorophyll maps have been interpreted

  16. Reduced calcification of marine plankton in response to increased atmospheric CO2.

    Science.gov (United States)

    Riebesell, U; Zondervan, I; Rost, B; Tortell, P D; Zeebe, R E; Morel, F M

    2000-09-21

    The formation of calcareous skeletons by marine planktonic organisms and their subsequent sinking to depth generates a continuous rain of calcium carbonate to the deep ocean and underlying sediments. This is important in regulating marine carbon cycling and ocean-atmosphere CO2 exchange. The present rise in atmospheric CO2 levels causes significant changes in surface ocean pH and carbonate chemistry. Such changes have been shown to slow down calcification in corals and coralline macroalgae, but the majority of marine calcification occurs in planktonic organisms. Here we report reduced calcite production at increased CO2 concentrations in monospecific cultures of two dominant marine calcifying phytoplankton species, the coccolithophorids Emiliania huxleyi and Gephyrocapsa oceanica. This was accompanied by an increased proportion of malformed coccoliths and incomplete coccospheres. Diminished calcification led to a reduction in the ratio of calcite precipitation to organic matter production. Similar results were obtained in incubations of natural plankton assemblages from the north Pacific ocean when exposed to experimentally elevated CO2 levels. We suggest that the progressive increase in atmospheric CO2 concentrations may therefore slow down the production of calcium carbonate in the surface ocean. As the process of calcification releases CO2 to the atmosphere, the response observed here could potentially act as a negative feedback on atmospheric CO2 levels.

  17. Ether lipids of planktonic archae in the marine water column

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Hoefs, M.J.L.; Schouten, S.; King, L.L.; Wakeham, S.G.; Leeuw, J.W. de

    1997-01-01

    Acyclic and cyclic biphytanes derived from the membrane ether lipids of archaea were found in water column particulate and sedimentary organic matter from several oxic and anoxic marine environments. Compound-specific isotope analyses of the carbon skeletons suggest that planktonic archaea utilize

  18. Effect of Industrial Effluent on the Growth of Marine Diatom ...

    African Journals Online (AJOL)

    The marine centric diatom,Chaetoceros simplex (Ostenfeld, 1901) was exposed to five different concentrations of industrial effluent for 96 hrs to investigate the effect on growth. The physico-chemical parameters viz. colour, odour, temperature, salinity, dissolved oxygen, turbidity, pH, alkalinity, hardness, ammonia, nitrite, ...

  19. Determining Microeukaryotic Plankton Community around Xiamen Island, Southeast China, Using Illumina MiSeq and PCR-DGGE Techniques.

    Directory of Open Access Journals (Sweden)

    Lingyu Yu

    Full Text Available Microeukaryotic plankton are important components of aquatic environments and play key roles in marine microbial food webs; however, little is known about their genetic diversity in subtropical offshore areas. Here we examined the community composition and genetic diversity of the microeukaryotic plankton in Xiamen offshore water by PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis, clone-based sequencing and Illumina based sequencing. The Illumina MiSeq sequencing revealed a much (approximately two orders of magnitude higher species richness of the microeukaryotic community than DGGE, but there were no significant difference in species richness and diversity among the northern, eastern, southern or western stations based on both methods. In this study, Copepoda, Ciliophora, Chlorophyta, Dinophyceae, Cryptophyta and Bacillariophyta (diatoms were the dominant groups even though diatoms were not detected by DGGE. Our Illumina based results indicated that two northern communities (sites N2 and N3 were significantly different from others in having more protozoa and fewer diatoms. Redundancy analysis (RDA showed that both temperature and salinity were the significant environmental factors influencing dominant species communities, whereas the full microeukaryotic community appeared to be affected by a complex of environmental factors. Our results suggested that extensive sampling combined with more deep sequencing are needed to obtain the complete diversity of the microeukaryotic community, and different diversity patterns for both abundant and rare taxa may be important in evaluating the marine ecosystem health.

  20. Aggregate Formation During the Viral Lysis of a Marine Diatom

    Directory of Open Access Journals (Sweden)

    Yosuke Yamada

    2018-05-01

    Full Text Available Recent studies have suggested that the viral lysis of microbes not only facilitates the conversion of particulate organic matter into dissolved organic matter, but also promotes the formation of organic aggregates, which enhance the export of organic carbon from the surface ocean to the deep sea. However, experimental data supporting this proposition are limited. Here, we tested the hypothesis that the viral infection of marine diatoms enhances aggregate formation. We used a model system consisting of Chaetoceros tenuissimus, a bloom-forming diatom with an approximate cell size of 3–10 μm, and a DNA virus, CtenDNAV type II, which replicates in the nucleus of C. tenuissimus. The volume of large particles (50–400 μm in equivalent spherical diameters, determined from photographic images was measured over time (up to 15 days in the diatom-alone control and a virus-added diatom culture. We also determined the concentrations of Coomassie-stainable particles (CSP, proteinaceous particles and transparent exopolymeric particles (TEP, acid-polysaccharide-rich particles with colorimetric methods. The total volume of large particles was significantly higher (5–59 fold in the virus-added diatoms than in the diatom-alone control during the period in which the viral lysis of the diatoms proceeded. One class of large particles produced in the virus-added diatoms was flake-shaped. The flakes were tightly packed and dense, and sank rapidly, possibly playing an important role in the vertical delivery of materials from the surface to the deep sea. The bulk CSP concentrations tended to be higher in the virus-added diatoms than in the diatom-alone control, whereas the reverse was true for the TEP. These results suggest that proteinaceous polymers are involved in aggregate formation. Our data support the emerging notion that the viral lysis of microbes facilitates aggregate formation and the export of organic carbon in the ocean.

  1. Intraseasonal patterns in coastal plankton biomass off central Chile derived from satellite observations and a biochemical model

    Science.gov (United States)

    Gomez, Fabian A.; Spitz, Yvette H.; Batchelder, Harold P.; Correa-Ramirez, Marco A.

    2017-10-01

    Subseasonal (5-130 days) environmental variability can strongly affect plankton dynamics, but is often overlooked in marine ecology studies. We documented the main subseasonal patterns of plankton biomass in the coastal upwelling system off central Chile, the southern part of the Humboldt System. Subseasonal variability was extracted from temporal patterns in satellite data of wind stress, sea surface temperature, and chlorophyll from the period 2003-2011, and from a realistically forced eddy-resolving physical-biochemical model from 2003 to 2008. Although most of the wind variability occurs at submonthly frequencies (< 30 days), we found that the dominant subseasonal pattern of phytoplankton biomass is within the intraseasonal band (30-90 days). The strongest intraseasonal coupling between wind and plankton is in spring-summer, when increased solar radiation enhances the phytoplankton response to upwelling. Biochemical model outputs show intraseasonal shifts in plankton community structure, mainly associated with the large fluctuations in diatom biomass. Diatom biomass peaks near surface during strong upwelling, whereas small phytoplankton biomass peaks at subsurface depths during relaxation or downwelling periods. Strong intraseasonally forced changes in biomass and species composition could strongly impact trophodynamics connections in the ecosystem, including the recruitment of commercially important fish species such as common sardine and anchovy. The wind-driven variability of chlorophyll concentration was connected to mid- and high-latitude atmospheric anomalies, which resemble disturbances with frequencies similar to the tropical Madden-Julian Oscillation.

  2. Diatoms from a peat bog on the Pešter plateau (southwestern Serbia: New records for diatom flora of Serbia

    Directory of Open Access Journals (Sweden)

    Vidaković Danijela

    2016-01-01

    Full Text Available The distribution of diatoms was studied in three types of diatom communities (epiphytes, benthos and plankton of a peat bog on the Pešter plateau. The observed diatom flora inhabited all investigated communities, comprising in total 250 taxa in 53 genera. Among them, 45 taxa were new records for the Serbian diatom flora. Identified taxa belonged to different groups of algae, however alkaliphile diatoms were dominant. New ecological data for Encyonopsis minuta, Pinnularia isostauron and P. marchica are presented here. All the diatoms were documented by light micrographs, and brief notes on their morphology, distribution and ecology are provided. [Projekat Ministarstva nauke Republike Srbije, br. TR 037009

  3. Effect of UV-B radiation on the marine diatom bellerochea yucatanensis

    International Nuclear Information System (INIS)

    Doehler, G.

    1982-01-01

    There exists no information about the UV-B fluence on several photosynthetic products and nitrogen metabolism. The present report describes the effect of low levels of UV-B radiation on pigments, 14 C- and 15 N-incorporation of the marine diatom Bellerochea yucatanensis. (orig./AJ)

  4. Comparison between sedimentary and living diatoms in Lago Maggiore (N. Italy: implications of using transfer functions

    Directory of Open Access Journals (Sweden)

    Simona MUSAZZI

    2001-02-01

    Full Text Available We compared the recent history of living planktonic diatom assemblages in Lago Maggiore with the remains found in the topmost section of 14 sediment cores taken from the lake. Sediment samples showed a marked domination of planktonic taxa, but a significant proportion of benthic taxa was found in cores collected close to river mouths. Between-core variability in diatom assemblage and in diatom-inferred total phosphorus concentration was also estimated. The implications of our results for calibration data sets relating environmental variables to diatom assemblages are also discussed.

  5. Tinted windows: The presence of the UV absorbing compounds called mycosporine-like amino acids embedded in the frustules of marine diatoms

    Science.gov (United States)

    Ingalls, Anitra E.; Whitehead, Kenia; Bridoux, Maxime C.

    2010-01-01

    Diatom frustule-bound organic compounds presumably play an important role in biomineralization and constitute an important pool of organic matter preserved in diatom frustule-rich sediments. In this study, detailed analysis of diatom frustule-bound organic matter in opal-rich Southern Ocean plankton and sediments revealed for the first time the presence of low molecular weight, UV light absorbing compounds called mycosporine-like amino acids (MAAs). Chemically cleaned diatom frustule-derived biosilica was dissolved in HF, releasing bound or entrapped organic compounds that were subsequently characterized using liquid chromatography with UV-Vis and electrospray ionization mass spectrometry (LC/PDA/ESI-MS). Palythine ([M+H] + = 245), porphyra-334 ([M+H] + = 347) and shinorine ([M+H] + = 333) were the most abundant MAAs detected in HF digests of plankton and sediment. Traces of asterina ([M+H] + = 289), palythinol ([M+H] + = 303) and palythinic acid ([M+H] + = 329) were also detected. MAAs in cleaned HF digested frustules were up to two orders of magnitude more abundant than methanol extractable MAAs. MAAs are substituted with acid hydrolysable amino acid residues. Our results suggest that MAAs, and not proteins, could be responsible for the high proportion of the amino acids glycine and threonine found in hydrolysates of HF digested diatom-rich environmental samples. Total MAAs accounted for 3-27% of the carbon and 2-18% of total nitrogen in the frustules undergoing various chemical cleaning treatments. This is the first report of MAAs in close association with a mineral phase and we hypothesize that the mineral matrix could stabilize these compounds, thereby enhancing photoprotection against the harmful effects of UV light. The presence of frustule-bound MAAs in sediment cores further suggests the possibility that they could be used in compound-specific isotope analysis of diatom-bound organic matter and as indicators of past solar irradiance.

  6. Diatom-Specific Oligosaccharide and Polysaccharide Structures Help to Unravel Biosynthetic Capabilities in Diatoms

    Directory of Open Access Journals (Sweden)

    Bruno Gügi

    2015-09-01

    Full Text Available Diatoms are marine organisms that represent one of the most important sources of biomass in the ocean, accounting for about 40% of marine primary production, and in the biosphere, contributing up to 20% of global CO2 fixation. There has been a recent surge in developing the use of diatoms as a source of bioactive compounds in the food and cosmetic industries. In addition, the potential of diatoms such as Phaeodactylum tricornutum as cell factories for the production of biopharmaceuticals is currently under evaluation. These biotechnological applications require a comprehensive understanding of the sugar biosynthesis pathways that operate in diatoms. Here, we review diatom glycan and polysaccharide structures, thus revealing their sugar biosynthesis capabilities.

  7. Mapping the diatom redox-sensitive proteome provides insight into response to nitrogen stress in the marine environment.

    Science.gov (United States)

    Rosenwasser, Shilo; Graff van Creveld, Shiri; Schatz, Daniella; Malitsky, Sergey; Tzfadia, Oren; Aharoni, Asaph; Levin, Yishai; Gabashvili, Alexandra; Feldmesser, Ester; Vardi, Assaf

    2014-02-18

    Diatoms are ubiquitous marine photosynthetic eukaryotes responsible for approximately 20% of global photosynthesis. Little is known about the redox-based mechanisms that mediate diatom sensing and acclimation to environmental stress. Here we used a quantitative mass spectrometry-based approach to elucidate the redox-sensitive signaling network (redoxome) mediating the response of diatoms to oxidative stress. We quantified the degree of oxidation of 3,845 cysteines in the Phaeodactylum tricornutum proteome and identified approximately 300 redox-sensitive proteins. Intriguingly, we found redox-sensitive thiols in numerous enzymes composing the nitrogen assimilation pathway and the recently discovered diatom urea cycle. In agreement with this finding, the flux from nitrate into glutamine and glutamate, measured by the incorporation of (15)N, was strongly inhibited under oxidative stress conditions. Furthermore, by targeting the redox-sensitive GFP sensor to various subcellular localizations, we mapped organelle-specific oxidation patterns in response to variations in nitrogen quota and quality. We propose that redox regulation of nitrogen metabolism allows rapid metabolic plasticity to ensure cellular homeostasis, and thus is essential for the ecological success of diatoms in the marine ecosystem.

  8. A Pliocene marine diatom δ18O record of terrestrial-marine feedbacks and orbitally-paced cryogenic brine formation in the McMurdo Dry Valleys

    Science.gov (United States)

    Dodd, J. P.; Abbott, T.; Gibbons, J. A.

    2017-12-01

    Orbital frequencies are well documented in a number of terrestrial and marine climate records throughout the Cenozoic; however, assessing the feedbacks and timing of terrestrial-marine systems on glacial-interglacial timescales is often challenging. This is particularly the case in high-latitude, near-shore environments where traditional proxy records like benthic foraminifera are absent. Here we present oxygen isotope (δ18O and δ17O) values from marine diatom silica in the mid-Pliocene (3.5 - 4.7Ma) section of the AND-1B core from McMurdo Sound, Antarctica. Diatom silica δ18O values range between +28.1 and +36.4‰ VSMOW. Over a range of temperatures (0 to 10°C) that reflect both growth and shallow (fall on a mixing line between marine and meteoric waters, which also supports our cryogenic brine hypothesis. The AND-1B δ18O values have an inverse relationship with the stacked benthic foraminifera δ18O record where lower δ18O values in the AND-1B diatom silica correspond with colder intervals, and we interpret variations in the diatom δ18O values as increased brine flux from the MDV to McMurdo Sound. Currently, subsurface brines in the MDV are hydrologically connected with McMurdo Sound. Density-driven transport of these brines from the MDV to the marine costal environments during the warm mid-Pliocene indicate a potentially overlooked terrestrial source of hypersaline waters. Although the lateral extent of these brines is not known, mixing between the terrestrial cryogenic brines and seawater may represent a significant flux of hypersaline water to the marine environment during warmer-than-present global conditions.

  9. A fast Na+/Ca2+-based action potential in a marine diatom.

    Directory of Open Access Journals (Sweden)

    Alison R Taylor

    Full Text Available BACKGROUND: Electrical impulses in animals play essential roles in co-ordinating an array of physiological functions including movement, secretion, environmental sensing and development. Underpinning many of these electrical signals is a fast Na+-based action potential that has been fully characterised only in cells associated with the neuromuscular systems of multicellular animals. Such rapid action potentials are thought to have evolved with the first metazoans, with cnidarians being the earliest representatives. The present study demonstrates that a unicellular protist, the marine diatom Odontella sinensis, can also generate a fast Na+/Ca2+ based action potential that has remarkably similar biophysical and pharmacological properties to invertebrates and vertebrate cardiac and skeletal muscle cells. METHODOLOGY/PRINCIPAL FINDINGS: The kinetic, ionic and pharmacological properties of the rapid diatom action potential were examined using single electrode current and voltage clamp techniques. Overall, the characteristics of the fast diatom currents most closely resemble those of vertebrate and invertebrate muscle Na+/Ca2+ currents. CONCLUSIONS/SIGNIFICANCE: This is the first demonstration of voltage-activated Na+ channels and the capacity to generate fast Na+-based action potentials in a unicellular photosynthetic organism. The biophysical and pharmacological characteristics together with the presence of a voltage activated Na+/Ca2+ channel homologue in the recently sequenced genome of the diatom Thalassiosira pseudonana, provides direct evidence supporting the hypothesis that this rapid signalling mechanism arose in ancestral unicellular eukaryotes and has been retained in at least two phylogenetically distant lineages of eukaryotes; opisthokonts and the stramenopiles. The functional role of the fast animal-like action potential in diatoms remains to be elucidated but is likely involved in rapid environmental sensing of these widespread and

  10. An integrative analysis of post-translational histone modifications in the marine diatom Phaeodactylum tricornutum

    KAUST Repository

    Veluchamy, Alaguraj

    2015-05-20

    Background: Nucleosomes are the building blocks of chromatin where gene regulation takes place. Chromatin landscapes have been profiled for several species, providing insights into the fundamental mechanisms of chromatin-mediated transcriptional regulation of gene expression. However, knowledge is missing for several major and deep-branching eukaryotic groups, such as the Stramenopiles, which include the diatoms. Diatoms are highly diverse and ubiquitous species of phytoplankton that play a key role in global biogeochemical cycles. Dissecting chromatin-mediated regulation of genes in diatoms will help understand the ecological success of these organisms in contemporary oceans. Results: Here, we use high resolution mass spectrometry to identify a full repertoire of post-translational modifications on histones of the marine diatom Phaeodactylum tricornutum, including eight novel modifications. We map five histone marks coupled with expression data and show that P. tricornutum displays both unique and broadly conserved chromatin features, reflecting the chimeric nature of its genome. Combinatorial analysis of histone marks and DNA methylation demonstrates the presence of an epigenetic code defining activating or repressive chromatin states. We further profile three specific histone marks under conditions of nitrate depletion and show that the histone code is dynamic and targets specific sets of genes. Conclusions: This study is the first genome-wide characterization of the histone code from a stramenopile and a marine phytoplankton. The work represents an important initial step for understanding the evolutionary history of chromatin and how epigenetic modifications affect gene expression in response to environmental cues in marine environments. © 2015 Veluchamy et al.

  11. Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms

    Czech Academy of Sciences Publication Activity Database

    Coesel, S.; Oborník, Miroslav; Varela, J.; Falciatore, A.; Bowler, C.

    2008-01-01

    Roč. 3, č. 8 (2008), s. 1-16 E-ISSN 1932-6203 R&D Projects: GA AV ČR IAA500220502 Institutional research plan: CEZ:AV0Z60220518 Keywords : marine diatoms * carotenoid pathway * evolution Subject RIV: EB - Genetics ; Molecular Biology

  12. Characterization of Light and Nitrogen Regulated Gene Expression Pathways in Marine Diatoms

    Science.gov (United States)

    1992-12-31

    DNA and cDNA from the seagrass Zostera marina and marine unicellular chlorophyte Dunaliella tertiolecta, using oligonucleotide primers based on...availability of carbon skeletons from photosynthesis may also function in the modulation of gene expression in diatoms. FCP abundance did not exhibit any

  13. A First Look at Oxygen and Silicon Isotope Variations in Diatom Silica from a Pliocene Antarctic Marine Sediment Core

    Science.gov (United States)

    Abbott, T.; Dodd, J. P.; Hackett, H.; Scherer, R. P.

    2016-02-01

    Coupled oxygen (δ18O) and silicon (δ30Si) isotope variations in diatom silica (opal-A) are increasingly used as a proxy to reconstruct paleoenvironmental conditions (water temperatures, water mass mixing, nutrient cycling) in marine environments. Diatom silica is a particularly significant paleoenvironmental proxy in high latitude environments, such as the Southern Ocean, where diatom blooms are abundant and diatom frustules are well preserved in the sediment. The Andrill-1B (AND-1B) sediment core from the Ross Sea (Antarctica) preserves several Pliocene ( 4.5 Ma) age diatomite units. Here we present preliminary δ18O and δ30Si values for a diatomite subunit in the AND-1B sediment core. Initial isotope values for the AND-1B diatoms silica record relatively high variability (range δ18O: 36.3‰ to 39.9‰) that could be interpreted as large-scale changes in the water temperature and/or freshwater mixing in the Ross Sea; however, a significant concern with marine sediment of this age is isotope fractionation during diagenesis and the potential formation of opal-CT lepispheres. The effects of clay contamination on the diatom silica δ18O values have been addressed through sample purification and quantified through chemical and physical analyses of the diatom silica. The isotopic effects of opal-CT are not as clearly understood and more difficult to physically separate from the primary diatom silica. In order to better understand the isotope variations in the AND-1B diatoms, we also evaluated silicon and oxygen isotope fractionation during the transition from opal-A to opal-CT in a controlled laboratory experiment. Opal-A from cultured marine diatoms (Thalassiosira weissflogii) was subjected to elevated temperatures (150°C) in acid digestion vessels for 4 weeks to initiate opal-CT precipitation. Quantifying the effects of opal-CT formation on δ18O and δ30Si variations in biogenic silica improves our understanding of the use of diatom silica isotope values a

  14. Habitat suitability and ecological niches of different plankton functional types in the global ocean

    Science.gov (United States)

    Vogt, Meike; Brun, Philipp; Payne, Mark R.; O'Brien, Colleen J.; Bednaršek, Nina; Buitenhuis, Erik T.; Doney, Scott C.; Leblanc, Karine; Le Quéré, Corinne; Luo, Yawei; Moriarty, Róisín; O'Brien, Todd D.; Schiebel, Ralf; Swan, Chantal

    2013-04-01

    Marine plankton play a central role in the biogeochemical cycling of important elements such as carbon, nitrogen, and sulphur. While our knowledge about marine ecosystem structure and functioning is still scarce and episodic, several recent observational studies confirm that marine ecosystems have been changing due to recent climate change, overfishing, and coastal eutrophication. In order to better understand marine ecosystem dynamics, the MAREDAT initiative has recently collected abundance and biomass data for 5 autotrophic (diatoms, Phaeocystis, coccolithophores, nitrogen fixers, picophytoplankton), and 6 heterotrophic plankton functional types (PFTs; bacteria, micro-, meso- and macrozooplankton, foraminifera and pteropods). Species distribution models (SDMs) are statistical tools that can be used to derive information about species habitats in space and time. They have been used extensively for a wide range of ecological applications in terrestrial ecosystems, but here we present the first global application in the marine realm, which was made possible by the MAREDAT data synthesis effort. We use a maximum entropy SDM to simulate global habitat suitability, habitat extent and ecological niches for different PFTs in the modern ocean. Present habitat suitability is derived from presence-only MAREDAT data and the observed annual and monthly mean levels of physiologically relevant variables such as SST, nutrient concentration or photosynthetic active radiation received in the mixed layer. This information can then be used to derive ecological niches for different species or taxa within each PFT, and to compare the ecological niches of different PFTs. While these results still need verification because data was not available for all ocean regions for all PFTs, they can give a first indication what present and future plankton habitats may look like, and what consequences we may have to expect for future marine ecosystem functioning and service provision in a warmer

  15. Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation

    Directory of Open Access Journals (Sweden)

    Zhiqian Yi

    2015-09-01

    Full Text Available Marine diatoms have recently gained much attention as they are expected to be a promising resource for sustainable production of bioactive compounds such as carotenoids and biofuels as a future clean energy solution. To develop photosynthetic cell factories, it is important to improve diatoms for value-added products. In this study, we utilized UVC radiation to induce mutations in the marine diatom Phaeodactylum tricornutum and screened strains with enhanced accumulation of neutral lipids and carotenoids. Adaptive laboratory evolution (ALE was also used in parallel to develop altered phenotypic and biological functions in P. tricornutum and it was reported for the first time that ALE was successfully applied on diatoms for the enhancement of growth performance and productivity of value-added carotenoids to date. Liquid chromatography-mass spectrometry (LC-MS was utilized to study the composition of major pigments in the wild type P. tricornutum, UV mutants and ALE strains. UVC radiated strains exhibited higher accumulation of fucoxanthin as well as neutral lipids compared to their wild type counterpart. In addition to UV mutagenesis, P. tricornutum strains developed by ALE also yielded enhanced biomass production and fucoxanthin accumulation under combined red and blue light. In short, both UV mutagenesis and ALE appeared as an effective approach to developing desired phenotypes in the marine diatoms via electromagnetic radiation-induced oxidative stress.

  16. Carbohydrade metabolism in suspended and attached cells of marine fouling diatom, Navicula sp.

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Sawant, S.S.; Garg, A.; Wagh, A.B.

    A marine fouling diatom, @iNavicula@@ sp. was cultured in the laboratory under 12-hour light : 12-hour dark conditions. Cells in suspension and attached to the flask walls were analyzed for chlorophyll a, cell organic carbon, total cell carbohydrate...

  17. Cadmium sensitivity, uptake, subcellular distribution and thiol induction in a marine diatom: Exposure to cadmium

    International Nuclear Information System (INIS)

    Wang Mengjiao; Wang Wenxiong

    2011-01-01

    The aims of this study were to (1) evaluate the changes in the Cd tolerance of a marine diatom after exposure under different Cd concentrations for various durations and (2) to explore the potential subcellular and biochemical mechanisms underlying these changes. The 72-h toxicity, short-term Cd uptake, subcellular Cd distribution, as well as the synthesis of phytochelatins (PCs) were measured in a marine diatom Thalassiosira nordenskioeldii after exposure to a range of free Cd ion concentrations ([Cd 2+ ], 0.01-84 nM) for 1-15 days. Surprisingly, the diatoms did not acquire higher resistance to Cd after exposure; instead their sensitivity to Cd increased with a higher exposed [Cd 2+ ] and a longer exposure period. The underlying mechanisms could be traced to the responses of Cd cellular accumulation and the intrinsic detoxification ability of the preconditioned diatoms. Generally, exposure to a higher [Cd 2+ ] and for a longer period increased the Cd uptake rate, cellular accumulation, as well as the Cd concentration in metal-sensitive fraction (MSF) in these diatoms. In contrast, although PCs were induced by the environmental Cd stress (with PC 2 being the most affected), the increased intracellular Cd to PC-SH ratio implied that the PCs' detoxification ability had reduced after Cd exposure. All these responses resulted in an elevated Cd sensitivity as exposed [Cd 2+ ] and duration increased. This study shows that the physiological/biochemical and kinetic responses of phytoplankton upon metal exposure deserve further investigation.

  18. Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms.

    Directory of Open Access Journals (Sweden)

    Sacha Coesel

    Full Text Available Carotenoids are produced by all photosynthetic organisms, where they play essential roles in light harvesting and photoprotection. The carotenoid biosynthetic pathway of diatoms is largely unstudied, but is of particular interest because these organisms have a very different evolutionary history with respect to the Plantae and are thought to be derived from an ancient secondary endosymbiosis between heterotrophic and autotrophic eukaryotes. Furthermore, diatoms have an additional xanthophyll-based cycle for dissipating excess light energy with respect to green algae and higher plants. To explore the origins and functions of the carotenoid pathway in diatoms we searched for genes encoding pathway components in the recently completed genome sequences of two marine diatoms. Consistent with the supplemental xanthophyll cycle in diatoms, we found more copies of the genes encoding violaxanthin de-epoxidase (VDE and zeaxanthin epoxidase (ZEP enzymes compared with other photosynthetic eukaryotes. However, the similarity of these enzymes with those of higher plants indicates that they had very probably diversified before the secondary endosymbiosis had occurred, implying that VDE and ZEP represent early eukaryotic innovations in the Plantae. Consequently, the diatom chromist lineage likely obtained all paralogues of ZEP and VDE genes during the process of secondary endosymbiosis by gene transfer from the nucleus of the algal endosymbiont to the host nucleus. Furthermore, the presence of a ZEP gene in Tetrahymena thermophila provides the first evidence for a secondary plastid gene encoded in a heterotrophic ciliate, providing support for the chromalveolate hypothesis. Protein domain structures and expression analyses in the pennate diatom Phaeodactylum tricornutum indicate diverse roles for the different ZEP and VDE isoforms and demonstrate that they are differentially regulated by light. These studies therefore reveal the ancient origins of several

  19. Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms.

    Science.gov (United States)

    Coesel, Sacha; Oborník, Miroslav; Varela, Joao; Falciatore, Angela; Bowler, Chris

    2008-08-06

    Carotenoids are produced by all photosynthetic organisms, where they play essential roles in light harvesting and photoprotection. The carotenoid biosynthetic pathway of diatoms is largely unstudied, but is of particular interest because these organisms have a very different evolutionary history with respect to the Plantae and are thought to be derived from an ancient secondary endosymbiosis between heterotrophic and autotrophic eukaryotes. Furthermore, diatoms have an additional xanthophyll-based cycle for dissipating excess light energy with respect to green algae and higher plants. To explore the origins and functions of the carotenoid pathway in diatoms we searched for genes encoding pathway components in the recently completed genome sequences of two marine diatoms. Consistent with the supplemental xanthophyll cycle in diatoms, we found more copies of the genes encoding violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZEP) enzymes compared with other photosynthetic eukaryotes. However, the similarity of these enzymes with those of higher plants indicates that they had very probably diversified before the secondary endosymbiosis had occurred, implying that VDE and ZEP represent early eukaryotic innovations in the Plantae. Consequently, the diatom chromist lineage likely obtained all paralogues of ZEP and VDE genes during the process of secondary endosymbiosis by gene transfer from the nucleus of the algal endosymbiont to the host nucleus. Furthermore, the presence of a ZEP gene in Tetrahymena thermophila provides the first evidence for a secondary plastid gene encoded in a heterotrophic ciliate, providing support for the chromalveolate hypothesis. Protein domain structures and expression analyses in the pennate diatom Phaeodactylum tricornutum indicate diverse roles for the different ZEP and VDE isoforms and demonstrate that they are differentially regulated by light. These studies therefore reveal the ancient origins of several components of the

  20. Dangerous relations in the Arctic marine food web: Interactions between toxin producing Pseudo-nitzschia diatoms and Calanus copepodites

    DEFF Research Database (Denmark)

    Hardardottir, Sara; Pancic, Marina; Tammilehto, Anna

    2015-01-01

    Diatoms of the genus Pseudo-nitzschia produce domoic acid (DA), a toxin that is vectored in the marine food web, thus causing serious problems for marine organisms and humans. In spite of this, knowledge of interactions between grazing zooplankton and diatoms is restricted. In this study, we...... examined the interactions between Calanus copepodites and toxin producing Pseudo-nitzschia. The copepodites were fed with different concentrations of toxic P. seriata and a strain of P. obtusa that previously was tested to be non-toxic. The ingestion rates did not differ among the diets (P. seriata, P...

  1. Pliocene diatoms from the Bryce Canyon Area, Utah

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.

    habitat. The fragmentary condition of these indicated agitation during sedimentation. The ratio between the planktonic and benthonic diatoms indicated near-shore deposition. The two extinct species (?), @iSurirella craticula@@ (= @iStictodesmis craticula...

  2. Influence of plankton community structure on the sinking velocity of marine aggregates

    Science.gov (United States)

    Bach, L. T.; Boxhammer, T.; Larsen, A.; Hildebrandt, N.; Schulz, K. G.; Riebesell, U.

    2016-08-01

    About 50 Gt of carbon is fixed photosynthetically by surface ocean phytoplankton communities every year. Part of this organic matter is reprocessed within the plankton community to form aggregates which eventually sink and export carbon into the deep ocean. The fraction of organic matter leaving the surface ocean is partly dependent on aggregate sinking velocity which accelerates with increasing aggregate size and density, where the latter is controlled by ballast load and aggregate porosity. In May 2011, we moored nine 25 m deep mesocosms in a Norwegian fjord to assess on a daily basis how plankton community structure affects material properties and sinking velocities of aggregates (Ø 80-400 µm) collected in the mesocosms' sediment traps. We noted that sinking velocity was not necessarily accelerated by opal ballast during diatom blooms, which could be due to relatively high porosity of these rather fresh aggregates. Furthermore, estimated aggregate porosity (Pestimated) decreased as the picoautotroph (0.2-2 µm) fraction of the phytoplankton biomass increased. Thus, picoautotroph-dominated communities may be indicative for food webs promoting a high degree of aggregate repackaging with potential for accelerated sinking. Blooms of the coccolithophore Emiliania huxleyi revealed that cell concentrations of 1500 cells/mL accelerate sinking by about 35-40%, which we estimate (by one-dimensional modeling) to elevate organic matter transfer efficiency through the mesopelagic from 14 to 24%. Our results indicate that sinking velocities are influenced by the complex interplay between the availability of ballast minerals and aggregate packaging; both of which are controlled by plankton community structure.

  3. Effect of UV-B radiation on biomass production, pigmentation and protein content of marine diatoms

    International Nuclear Information System (INIS)

    Doehler, G.

    1984-01-01

    Several species of marine diatoms were grown at + 18 0 C and + 22 0 C under normal air conditions (0.035 vol.% CO 2 ) at a light/dark alteration of 14.8 h. Intensity of white light was 1 mW (approx.= 5000 lux). An artifical nutrient solution of 35per mille salinity was used. Algae - harvested during exponential growth - were exposed to different intensities of UV-B radiation (439, 717 and 1230 J m -2 m -1 ) for 2 days. UV-B radiation depressed the growth of all tested marine diatoms. Low levels of UV-B resulted in a slight increase of the biomass production (dry weight) compared to not UV-B treated cells. Enhanced UV-B doses caused a diminution of the primary productivity in all species. Algae exposed to UV-B stress showed a marked decrease in the protein and pigment content (chlorophyll a, chlorophyll c 1 + c 2 and carotenoids). In + 22 0 C grown cells of Lauderia annulata and Thalassiosira rotula were more sensitive to UV-B radiation than those cultures grown at + 18 0 C. Bellerochea yucatanensis cells grown at + 22 0 C were less affected after UV-B exposure than at + 18 0 C grown algae. The UV-B sensibility and growth of the individual species varied in a mixture of several marine diatoms. Results were discussed with reference to the UV-B effect on metabolic processes. (orig.)

  4. Diatom records in the Quaternary marine sequences around the Japanese Islands

    OpenAIRE

    Koizumi, Itaru; Yamamoto, Hirofumi

    2016-01-01

    Understanding the Quaternary is a key to estimating what the Earth's climate will be like in the future. Such studies demand high-resolution analyses based on paleoclimatic proxy records of changing Earth's orbital forcing and solar insolation that affect the climate system. Quaternary diatom biostratigraphy and paleoceanography have been well established based on the Quaternary marine sequences obtained by piston coring and deep-sea drilling around the Japanese Islands. This paper firstly re...

  5. Diuron causes sinking retardation and physiochemical alteration in marine diatoms Thalassiosira pseudonana and Skeletonema marinoi-dohrnii complex.

    Science.gov (United States)

    Khanam, Mst Ruhina Margia; Shimasaki, Yohei; Hosain, Md Zahangir; Mukai, Koki; Tsuyama, Michito; Qiu, Xuchun; Tasmin, Rumana; Goto, Hiroshi; Oshima, Yuji

    2017-05-01

    The present research investigated the effect of diuron on sinking rate and the physiochemical changes in two marine diatoms, Thalassiosira pseudonana (single-celled species) and Skeletonema marinoi-dohrnii complex (chain-forming species). The results revealed that the sinking rate of both diatoms exposed to diuron at a level of 50% effective concentration for growth (EC50) decreased significantly compared with the control. Photosynthetic performance (Fv/Fm and PI ABS ) of both diatoms also decreased significantly with diuron exposure. The number of cells per chain in S. marinoi-dohrnii decreased significantly with diuron treatment, but T. pseudonana cell diameter remained stable. Neutral lipid concentration per cell was significantly higher compared with control at 72 h in both diatom species exposed to EC50 level diuron. And water-soluble protein concentration per cell at 72 h was lower than control in the T. pseudonana EC50 group only. These biochemical changes may decrease specific gravity of cells and seems to cause a decreased sinking rate in diatoms. The positive significant correlation between the numbers of cells per chain and sinking rate in S. marinoi-dohrnii indicated that chain length is also an important factor in sinking rate regulation for chain-forming diatoms. Thus, our present study suggested that suppression of photosynthetic performance and the resultant physiochemical changes induced the decreased sinking rate that may inhibit the normal survival strategy (avoidance from the surface layer where strong light either causes photo-inhibition or interrupts resting cell formation). Therefore, the use of antifouling agents should be considered for the sustainable marine environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Diatom Stratigraphy of FA-1 Core, Qarun Lake, Records of Holocene Environmental and Climatic Change in Faiyum Oasis, Egypt

    Directory of Open Access Journals (Sweden)

    Zalat Abdelfattah A.

    2017-06-01

    Full Text Available This study evaluates changes in the environmental and climatic conditions in the Faiyum Oasis during the Holocene based on diatom analyses of the sediment FA-1 core from the southern seashore of the Qarun Lake. The studied FA-1 core was 26 m long and covered the time span ca. 9.000 cal. yrs BP. Diatom taxa were abundant and moderately to well-preserved throughout the core sediments. Planktonic taxa were most abundant than the benthic and epiphytic forms, which were very rare and sparsely distributed. The most dominant planktonic genera were Aulacoseira and Stephanodiscus followed by frequently distribution of Cyclostephanos and Cyclotella species. The stratigraphic distribution patterns of the recorded diatoms through the Holocene sediments explained five ecological diatom groups. These groups represent distinctive environmental conditions, which were mainly related to climatic changes through the early and middle Holocene, in addition to anthropogenic activity during the late Holocene. Comparison of diatom assemblages in the studied sediment core suggests that considerable changes occurred in water level as well as salinity. There were several high stands of the freshwater lake level during humid, warmer-wet climatic phases marked by dominance of planktonic, oligohalobous and alkaliphilous diatoms alternated with lowering of the lake level and slight increases in salinity and alkalinity during warm arid conditions evident by prevalence of brackish water diatoms.

  7. Combined toxicity effects of chlorine, ammonia, and temperature on marine plankton. Progress report, September 16, 1975--September 30, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, J. C.; Ryther, J. H.

    1976-10-01

    Research on the combined effects of chlorine, ammmonia and temperature on marine plankton have been carried out for 20 months. To date continuous-flow bioassays have been conducted on lobster larvae (Homarus americanus), oyster larvae (Crassostrea virginica), copepods (Acartia tonsa), rotifers (Brachionus plicatilis), three juvenile and larval fish, killifish (Fundulus heteroclitus), scup (Stenotomus versicolor), and winter flounder (Pseudopleuronectes americanus), and phytoplankton (the diatom Phaeodactylum tricornutum). In addition, studies on zooplankton metabolism, filtration rates, and growth were carried out on exposed organisms. In general, the responses of invertebrates were distinctly different than those of fish: increasing mortality with increasing chlorine dose and greater sensitivity to chloramines than free chlorine in the former, and a threshold level of chlorine and greater sensitivity to free chlorine in the latter. Phytoplankton responses indicate that chlorine effects on primary producers are minimal compared to the serious effects on zooplankton, particularly larval forms that spawn intermittently. The overall conclusion of our studies is that chlorine application at power plants must be carried out with extreme caution and that serious consideration should be given to applying dechlorination at all coastal cooling systems.

  8. Competitive advantage and higher fitness in native populations of genetically structured planktonic diatoms.

    Science.gov (United States)

    Sildever, Sirje; Sefbom, Josefin; Lips, Inga; Godhe, Anna

    2016-12-01

    It has been shown that the planktonic diatom Skeletonema from neighbouring areas are genetically differentiated despite absence of physical dispersal barriers. We revisited two sites, Mariager Fjord and Kattegat, NE Atlantic, and isolated new strains. Microsatellite genotyping and F-statistics revealed that the populations were genetically differentiated. An experiment was designed to investigate if populations are locally adapted and have a native competitive advantage. Ten strains from each location were grown individually in native and foreign water to investigate differences in produced biomass. Additionally, we mixed six pairs, one strain from each site, and let them grow together in native and foreign water. Strains from Mariager Fjord and Kattegat produced higher biomass in native water. In the competition experiment, strains from both sites displayed higher relative abundance and demonstrated competitive advantage in their native water. The cause of the differentiated growth is unknown, but could possibly be attributed to differences in silica concentration or viruses in the two water types. Our data show that dispersal potential does not influence the genetic structure of the populations. We conclude that genetic adaptation has not been overruled by gene flow, but instead the responses to different selection conditions are enforcing the observed genetic structure. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Emissions of hydrocarbons from marine phytoplankton—Some results from controlled laboratory experiments

    Science.gov (United States)

    McKay, W. A.; Turner, M. F.; Jones, B. M. R.; Halliwell, C. M.

    Laboratory experiments have been carried out to help assess and quantify the role of marine phytoplankton in the production of non-methane hydrocarbons. Evidence is presented here that supports the hypothesis that some short-chain hydrocarbons are produced during diatom and dinoflagellate lifecycles. The pattern of their emissions to the air above axenic unicultures of diatoms and dinoflagellates has been followed. The results suggest that ethane, ethene, propane and propene are produced during the autolysis of some phytoplankton, possibly by the oxidation of polyunsaturated lipids released into their culture medium. In contrast, isoprene and hexane appear during phytoplankton growth and are thus most likely produced either directly by the plankton or through the oxidation of exuded dissolved organic carbon.

  10. Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins.

    Directory of Open Access Journals (Sweden)

    Stefano Varrella

    Full Text Available Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure.

  11. Mechanisms of carbon dioxide acquisition and CO2 sensing in marine diatoms: a gateway to carbon metabolism.

    Science.gov (United States)

    Matsuda, Yusuke; Hopkinson, Brian M; Nakajima, Kensuke; Dupont, Christopher L; Tsuji, Yoshinori

    2017-09-05

    Diatoms are one of the most successful marine eukaryotic algal groups, responsible for up to 20% of the annual global CO 2 fixation. The evolution of a CO 2 -concentrating mechanism (CCM) allowed diatoms to overcome a number of serious constraints on photosynthesis in the marine environment, particularly low [CO 2 ] aq in seawater relative to concentrations required by the CO 2 fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), which is partly due to the slow diffusion rate of CO 2 in water and a limited CO 2 formation rate from [Formula: see text] in seawater. Diatoms use two alternative strategies to take up dissolved inorganic carbon (DIC) from the environment: one primarily relies on the direct uptake of [Formula: see text] through plasma-membrane type solute carrier (SLC) 4 family [Formula: see text] transporters and the other is more reliant on passive diffusion of CO 2 formed by an external carbonic anhydrase (CA). Bicarbonate taken up into the cytoplasm is most likely then actively transported into the chloroplast stroma by SLC4-type transporters on the chloroplast membrane system. Bicarbonate in the stroma is converted into CO 2 only in close proximity to RubisCO preventing unnecessary CO 2 leakage. CAs play significant roles in mobilizing DIC as it is progressively moved towards the site of fixation. However, the evolutionary types and subcellular locations of CAs are not conserved between different diatoms, strongly suggesting that this DIC mobilization strategy likely evolved multiple times with different origins. By contrast, the recent discovery of the thylakoid luminal θ-CA indicates that the strategy to supply CO 2 to RubisCO in the pyrenoid may be very similar to that of green algae, and strongly suggests convergent coevolution in CCM function of the thylakoid lumen not only among diatoms but among eukaryotic algae in general. In this review, both experimental and corresponding theoretical models of the diatom CCMs are

  12. Effects of titanium dioxide nanoparticles derived from consumer products on the marine diatom Thalassiosira pseudonana.

    Science.gov (United States)

    Galletti, Andrea; Seo, Seokju; Joo, Sung Hee; Su, Chunming; Blackwelder, Pat

    2016-10-01

    Increased manufacture of TiO 2 nanoproducts has caused concern about the potential toxicity of these products to the environment and in public health. Identification and confirmation of the presence of TiO 2 nanoparticles derived from consumer products as opposed to industrial TiO 2 NPs warrant examination in exploring the significance of their release and resultant impacts on the environment. To this end, we examined the significance of the release of these particles and their toxic effect on the marine diatom algae Thalassiosira pseudonana. Our results indicate that nano-TiO 2 sunscreen and toothpaste exhibit more toxicity in comparison to industrial TiO 2 and inhibited the growth of the marine diatom T. pseudonana. This inhibition was proportional to the exposure time and concentrations of nano-TiO 2 . Our findings indicate a significant effect, and therefore, further research is warranted in evaluation and assessment of the toxicity of modified nano-TiO 2 derived from consumer products and their physicochemical properties.

  13. Ecological Stoichiometry of Ocean Plankton

    Science.gov (United States)

    Moreno, Allison R.; Martiny, Adam C.

    2018-01-01

    Marine plankton elemental stoichiometric ratios can deviate from the Redfield ratio (106C:16N:1P); here, we examine physiological and biogeochemical mechanisms that lead to the observed variation across lineages, regions, and seasons. Many models of ecological stoichiometry blend together acclimative and adaptive responses to environmental conditions. These two pathways can have unique molecular mechanisms and stoichiometric outcomes, and we attempt to disentangle the two processes. We find that interactions between environmental conditions and cellular growth are key to understanding stoichiometric regulation, but the growth rates of most marine plankton populations are poorly constrained. We propose that specific physiological mechanisms have a strong impact on plankton and community stoichiometry in nutrient-rich environments, whereas biogeochemical interactions are important for the stoichiometry of the oligotrophic gyres. Finally, we outline key areas with missing information that is needed to advance understanding of the present and future ecological stoichiometry of ocean plankton.

  14. Scaling of fecundity, growth and development in marine planktonic copepods

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Sabatini, M.

    1995-01-01

    We compiled information from the literature on female and egg sizes and maximum egg production, growth and developmental rates in marine planktonic copepods. While specific growth and developmental rates are invariant with body mass, weight- specific fecundity scales with female body mass(-0...... to 50% and have weight-specific fecundities that are 2.5 times and egg production rates that are 7.5 times those of the former, Nauplii develop faster (by a factor of 2) but grow slower (by 20 to 40%) than copepodites in both spawning types. The main demographic implications of these findings are (1...

  15. UV-B induces DNA damage and DNA synthesis delay in the marine diatom Cyclotella sp

    NARCIS (Netherlands)

    Buma, A.G.J.; Van Hannen, E.J.; Veldhuis, M.; Gieskes, W.W.C.

    1996-01-01

    The effect of UV-B on the occurrence of DNA damage and consequences for the cell cycle were studied in the marine diatom Cyclotella sp. DNA damage was quantified by immunofluorescent detection of thymine dimers in nuclear DNA of single cells using flow cytometry. A total UV-B dose (biologically

  16. UV-B induces DNA damage and DNA synthesis delay in the marine diatom Cyclotella sp.

    NARCIS (Netherlands)

    Buma, A.G.J.; van Hannen, E.J; Veldhuis, M.J W; Gieskes, W.W C

    The effect of UV-B on the occurrence of DNA damage and consequences for the cell cycle were studied in the marine diatom Cyclotella sp. DNA damage was quantified by immunofluorescent detection of thymine dimers in nuclear DNA of single cells using flow cytometry. A total UV-B dose (biologically

  17. Improvement of Neutral Lipid and Polyunsaturated Fatty Acid Biosynthesis by Overexpressing a Type 2 Diacylglycerol Acyltransferase in Marine Diatom Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    Ying-Fang Niu

    2013-11-01

    Full Text Available Microalgae have been emerging as an important source for the production of bioactive compounds. Marine diatoms can store high amounts of lipid and grow quite quickly. However, the genetic and biochemical characteristics of fatty acid biosynthesis in diatoms remain unclear. Glycerophospholipids are integral as structural and functional components of cellular membranes, as well as precursors of various lipid mediators. In addition, diacylglycerol acyltransferase (DGAT is a key enzyme that catalyzes the last step of triacylglyceride (TAG biosynthesis. However, a comprehensive sequence-structure and functional analysis of DGAT in diatoms is lacking. In this study, an isoform of diacylglycerol acyltransferase type 2 of the marine diatom Phaeodactylum tricornutum was characterized. Surprisingly, DGAT2 overexpression in P. tricornutum stimulated more oil bodies, and the neutral lipid content increased by 35%. The fatty acid composition showed a significant increase in the proportion of polyunsaturated fatty acids; in particular, EPA was increased by 76.2%. Moreover, the growth rate of transgenic microalgae remained similar, thereby maintaining a high biomass. Our results suggest that increased DGAT2 expression could alter fatty acid profile in the diatom, and the results thus represent a valuable strategy for polyunsaturated fatty acid production by genetic manipulation.

  18. Chronic Iron Limitation Confers Transient Resistance to Oxidative Stress in Marine Diatoms.

    Science.gov (United States)

    Graff van Creveld, Shiri; Rosenwasser, Shilo; Levin, Yishai; Vardi, Assaf

    2016-10-01

    Diatoms are single-celled, photosynthetic, bloom-forming algae that are responsible for at least 20% of global primary production. Nevertheless, more than 30% of the oceans are considered "ocean deserts" due to iron limitation. We used the diatom Phaeodactylum tricornutum as a model system to explore diatom's response to iron limitation and its interplay with susceptibility to oxidative stress. By analyzing physiological parameters and proteome profiling, we defined two distinct phases: short-term (chronic (>5 d, phase II) iron limitation. While at phase I no significant changes in physiological parameters were observed, molecular markers for iron starvation, such as Iron Starvation Induced Protein and flavodoxin, were highly up-regulated. At phase II, down-regulation of numerous iron-containing proteins was detected in parallel to reduction in growth rate, chlorophyll content, photosynthetic activity, respiration rate, and antioxidant capacity. Intriguingly, while application of oxidative stress to phase I and II iron-limited cells similarly oxidized the reduced glutathione (GSH) pool, phase II iron limitation exhibited transient resistance to oxidative stress, despite the down regulation of many antioxidant proteins. By comparing proteomic profiles of P. tricornutum under iron limitation and metatranscriptomic data of an iron enrichment experiment conducted in the Pacific Ocean, we propose that iron-limited cells in the natural environment resemble the phase II metabolic state. These results provide insights into the trade-off between optimal growth rate and susceptibility to oxidative stress in the response of diatoms to iron quota in the marine environment. © 2016 American Society of Plant Biologists. All Rights Reserved.

  19. Kinetic control on Zn isotope signatures recorded in marine diatoms

    Science.gov (United States)

    Köbberich, Michael; Vance, Derek

    2017-08-01

    Marine diatoms dominate the oceanic cycle of the essential micronutrient zinc (Zn). The stable isotopes of zinc and other metals are increasingly used to understand trace metal micronutrient cycling in the oceans. One clear feature of the early isotope data is the heavy Zn isotope signature of the average oceanic dissolved pool relative to the inputs, potentially driven by uptake of light isotopes into phytoplankton cells and export to sediments. However, despite the fact that diatoms strip Zn from surface waters across the Antarctic polar front in the Southern Ocean, the local upper ocean is not isotopically heavy. Here we use culturing experiments to quantify the extent of Zn isotope fractionation by diatoms and to elucidate the mechanisms driving it. We have cultured two different open-ocean diatom species (T. oceanica and Chaetoceros sp.) in a series of experiments at constant medium Zn concentration but at bioavailable medium Fe ranging from limiting to replete. We find that T. oceanica can maintain high growth rates and Zn uptake rates over the full range of bioavailable iron (Fe) investigated, and that the Zn taken up has a δ66Zn that is unfractionated relative to that of the bioavailable free Zn in the medium. The studied representative of the genus Chaetoceros, on the other hand, shows more significantly reduced Zn uptake rates at low Fe and records more variable biomass δ66Zn signatures, of up to 0.85‰ heavier than the medium. We interpret the preferential uptake of heavy isotopes at extremely low Zn uptake rates as potentially due to either of the following two mechanisms. First, the release of extracellular polymeric substances (EPS), at low Fe levels, may preferentially scavenge heavy Zn isotopes. Second, the Zn uptake rate may be slow enough to establish pseudo-equilibrium conditions at the transporter site, with heavy Zn isotopes forming more stable surface complexes. Thus we find that, in our experiments, Fe-limitation exerts a key control that

  20. The velocity of light intensity increase modulates the photoprotective response in coastal diatoms.

    Directory of Open Access Journals (Sweden)

    Vasco Giovagnetti

    Full Text Available In aquatic ecosystems, the superimposition of mixing events to the light diel cycle exposes phytoplankton to changes in the velocity of light intensity increase, from diurnal variations to faster mixing-related ones. This is particularly true in coastal waters, where diatoms are dominant. This study aims to investigate if coastal diatoms differently activate the photoprotective responses, xanthophyll cycle (XC and non-photochemical fluorescence quenching (NPQ, to cope with predictable light diel cycle and unpredictable mixing-related light variations. We compared the effect of two fast light intensity increases (simulating mixing events with that of a slower increase (corresponding to the light diel cycle on the modulation of XC and NPQ in the planktonic coastal diatom Pseudo-nitzschia multistriata. During each light treatment, the photon flux density (PFD progressively increased from darkness to five peaks, ranging from 100 to 650 µmol photons m-2 s-1. Our results show that the diel cycle-related PFD increase strongly activates XC through the enhancement of the carotenoid biosynthesis and induces a moderate and gradual NPQ formation over the light gradient. In contrast, during mixing-related PFD increases, XC is less activated, while higher NPQ rapidly develops at moderate PFD. We observe that together with the light intensity and its increase velocity, the saturation light for photosynthesis (Ek is a key parameter in modulating photoprotection. We propose that the capacity to adequately regulate and actuate alternative photoprotective 'safety valves' in response to changing velocity of light intensity increase further enhances the photophysiological flexibility of diatoms. This might be an evolutionary outcome of diatom adaptation to turbulent marine ecosystems characterized by unpredictable mixing-related light changes over the light diel cycle.

  1. Combined toxicity effects of chlorine, ammonia, and temperature on marine plankton. Progress report, November 1976--31 January 1978

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, J. C.

    1978-02-01

    Studies on the effects of chlorine, chloramines, and temperature on marine plankton have been carried out for three years. Species studied include marine phytoplankton, lobster larvae (Homarus americanus), oyster larvae (Crassostrea virginica), copepods (Acartia tonsa), rotifers (Brachionas plicatilis), grass shrimp (Palamonetes pugio) summer flounder larvae (Paralichthys dentatus), larval and juvenile killifish (Fundulus heteroclitus), juvenile scup (Stenotomus versicolor), and juvenile winter flounder (Pseudopleuronectes americanus). In addition extensive studies on chlorine chemistry in seawater have been carried out. The major conclusions are that entrainment effects on permanent plankton such as phytoplankton, copepods, and rotifers are temporary, that is those organisms surviving chlorination and temperature shocks are capable of renewed and unrestricted growth once returned to the receiving water. Because chlorine is only applied for short periods daily in most power plants, the total population of the above organisms actually exposed to chlorine is small and the effects may be hardly measurable in receiving waters. However, chlorination effects on larval species that spawn intermittently could be catastrophic. In addition, there are many unanswered questions regarding the fate of chlorine that is dissipated in marine waters. Are the losses real and, if so, do they pose a toxicity threat to marine biota.

  2. TRIGLYCERIDE COMPOSITION OF SIXTEEN STRAINS OF MARINE DIATOM

    Directory of Open Access Journals (Sweden)

    Lily M.G. Panggabean

    2013-07-01

    Full Text Available Trigliceride or triacylglicerol (TAG composition in crude oil of sixteen strain of marine diatom has been detected by spectra analyses on an Electrospray - Ion Trap – Mass Spectrometry (ESI-IT-MS HCT Bruker-Daltonic GmbH instrument with AgNO3 used as coordination ionization agent. Biomass samples of each microalga strain were taken from early and late stationary cultures in f/2 enriched seawater and algal oils were extracted according to Bligh and Dyer. Results from spectra analysis showed that P-Pt-P (C16:0-C16:1-C16:0 were distinguished in TAG from diatom strains Chaetoceros sp.1, Chaetoceros sp.2, Thalasiossira sp.1, Thalasiossira sp.2, Thalasiossira sp.3, Navicula sp. 1, Navicula sp. 2, Navicula sp. 3, Navicula sp. 4, Nitzschia sp. 2 and Amphora sp. In contrast, TAGs in Melosira sp. included P-P-P (C16:0-C16:0-C16:0 and P-P-O (C16:0-C16:0-C18:1 were identified. TAGs from Chaetoceros sp. were the most varies among samples, i.e. P-Pt-P (C16:0-C16:1-C16:0, A-P-M (C20:4-C16:0-C14:0, P-Pt-Lt (C16:0-C16:1-C18:3, P-Pt-A (C16:0-C16:1-C20:4, D-P-P (C22:6-C16:0-C16:0, A-Ln-P (C20:4-C18:2-C16:0. Various TAGs were also detected in Nitzschia sp.2, i.e. P-Pt-M (C16:0-C16:1-C14:0, P-Pt-P (C16:0-C16:1-C16:0, P-Pt-S (C16:0-C16:1-C18:0, P-Pt-A (C16:0-C16:1-C20:4. TAGs composition in Skeletonema strains that similar to those in Nitzschia sp.1 has longer carbon, i.e. P-P-O (C16:0-C16:0-C18:1, P-O-O (C16:0-C18:1-C18:1 and O-O-O (C18:1-C18:1-C18:1. TAGs with longer carbon chain and more double bond including highly unsaturated fatty acid C20:4 were increased with culture age in diatoms Chaetoceros sp.1, Chaetoceros sp.2, Thalasiossira sp.2, Navicula sp.1 and Nitzschia sp. 2.Keywords: diatom, TAG, ESI-IT-MS, f/2, early and late stationary

  3. Marine Biology

    Science.gov (United States)

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  4. Environmental investigations using diatom microfossils

    Science.gov (United States)

    Smith, Kathryn E.L.; Flocks, James G.

    2010-01-01

    Diatoms are unicellular phytoplankton (microscopic plant-like organisms) with cell walls made of silica (called a frustule). They live in both freshwater and saltwater and can be found in just about every place on Earth that is wet. The shape and morphology of the diatom frustule unique to each species are used for identification. Due to the microscopic size of diatoms, high-power microscopy is required for diatom identification. Diatoms are vital to life on Earth. They are photosynthetic primary producers, using sunlight to create oxygen and organic carbon from carbon dioxide and water. They are a significant source of the oxygen we breathe, have a major impact on the global carbon cycle (Smetacek, 1999), and are a food source for many aquatic organisms (Mann, 1993). Diatom abundance has even been demonstrated to have an influence on the diversity of larger marine mammals, including whales (Marx and Uhen, 2010). Data on diatom abundance and diversity are extremely useful in environmental studies.

  5. Structural identification of the C-25 highly branched isoprenoid pentaene in the marine diatom Rhizosolenia setigera

    NARCIS (Netherlands)

    Damste, JSS; Rijpstra, WIC; Hopmans, EC; Peletier, H; Gieskes, WWC; Geenevasen, JAJ

    1999-01-01

    2,6,10, 14-tetramethyl-7-(3-methylpent-4-enyl)-pentadeca-2,5E,9E, 13-tetraene I possessing a C-25 highly branched isoprenoid skeleton has been isolated from the marine diatom Rhizosolenia setigera and identified by H-1 and C-13 NMR spectroscopy. (C) 1999 Elsevier Science Ltd. All rights reserved.

  6. In situ camera observations reveal major role of zooplankton in modulating marine snow formation during an upwelling-induced plankton bloom

    Science.gov (United States)

    Taucher, Jan; Stange, Paul; Algueró-Muñiz, María; Bach, Lennart T.; Nauendorf, Alice; Kolzenburg, Regina; Büdenbender, Jan; Riebesell, Ulf

    2018-05-01

    Particle aggregation and the consequent formation of marine snow alter important properties of biogenic particles (size, sinking rate, degradability), thus playing a key role in controlling the vertical flux of organic matter to the deep ocean. However, there are still large uncertainties about rates and mechanisms of particle aggregation, as well as the role of plankton community structure in modifying biomass transfer from small particles to large fast-sinking aggregates. Here we present data from a high-resolution underwater camera system that we used to observe particle size distributions and formation of marine snow (aggregates >0.5 mm) over the course of a 9-week in situ mesocosm experiment in the Eastern Subtropical North Atlantic. After an oligotrophic phase of almost 4 weeks, addition of nutrient-rich deep water (650 m) initiated the development of a pronounced diatom bloom and the subsequent formation of large marine snow aggregates in all 8 mesocosms. We observed a substantial time lag between the peaks of chlorophyll a and marine snow biovolume of 9-12 days, which is much longer than previously reported and indicates a marked temporal decoupling of phytoplankton growth and marine snow formation during our study. Despite this time lag, our observations revealed substantial transfer of biomass from small particle sizes (single phytoplankton cells and chains) to marine snow aggregates of up to 2.5 mm diameter (ESD), with most of the biovolume being contained in the 0.5-1 mm size range. Notably, the abundance and community composition of mesozooplankton had a substantial influence on the temporal development of particle size spectra and formation of marine snow aggregates: While higher copepod abundances were related to reduced aggregate formation and biomass transfer towards larger particle sizes, the presence of appendicularia and doliolids enhanced formation of large marine snow. Furthermore, we combined in situ particle size distributions with

  7. Preparation and method of study of fossil diatoms

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.

    Two methods of chemical concentration of diatoms occurring in fresh-water sediments, and one chemico-mechanical method of concentration for diatoms occurring in marine sediments are outlined, with emphasis on the extreme care that needs...

  8. Comparative toxicological effects of two antifouling biocides on the marine diatom Chaetoceros lorenzianus: Damage and post-exposure recovery.

    Science.gov (United States)

    Chavan, Pooja; Kumar, Rajesh; Kirubagaran, Ramalingam; Venugopalan, Vayalam P

    2017-10-01

    Antifouling biocides are commonly used in coastal electric power stations to prevent biofouling in their condenser cooling systems. However, the environmental impact of the chemical biocides is less understood than the thermal stress effects caused by the condenser effluents. In this study, Chaetoceros lorenzianus, a representative marine diatom, was used to analyse the toxicity of two antifouling biocides, chlorine and chlorine dioxide. The diatom cells were subjected to a range of concentrations of the biocides (from 0.05 to 2mg/L, as total residual oxidants, TRO) for contact time of 30min. They were analysed for viability, genotoxicity, chlorophyll a and cell density endpoints. The cells were affected at all concentrations of the biocides (0.05-2mg/L), showing dose-dependent decrease in viability and increase in DNA damage. The treated cells were later incubated in filtered seawater devoid of biocide to check for recovery. The cells were able to recover in terms of overall viability and DNA damage, when they had been initially treated with low concentrations of the biocides (0.5mg/L of Cl 2 or 0.2mg/L of ClO 2 ). Chlorophyll a analysis showed irreparable damage at all concentrations, while cell density showed increasing trend of reduction, if treated above 0.5mg/L of Cl 2 and 0.2mg/L of ClO 2 . The data indicated that in C. lorenzianus, cumulative toxic effects and recovery potential of ClO 2 up to 0.2mg/L were comparable with those of Cl 2 , up to 0.5mg/L concentration in terms of the studied endpoints. The results indicate that at the biocide levels currently being used at power stations, recovery of the organism is feasible upon return to ambient environment. Similar studies should be carried out on other planktonic and benthic organisms, which will be helpful in the formulation of future guidelines for discharge of upcoming antifouling biocides such as chlorine dioxide. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Plankton of Southern Chilean fjords: trends and linkages

    Directory of Open Access Journals (Sweden)

    Tarcisio Antezana

    1999-12-01

    Full Text Available The present paper compiles and reviews past and recent results from Magellan and Fuegian fjords for an overview of the planktonic assemblage there. It first examines linkages to local, adjacent and remote environments. The plankton assemblage presents deviations from the biota of the Magellan biogeographic Province, where the occasional presence of Antarctic species is related to oceanographic phenomena at the Polar Front. Complex bathymetric and hydrographic features within the fjords suggest that the plankton is rather isolated. Adaptations and constraints for population survival, and the role of diel migrators and gregarious zooplankters with regard to bentho-pelagic coupling are discussed. Results on seasonal differences in the plankton of the largest and most isolated basin of the Strait of Magellan are compiled. In spring the plankton was dominated by large diatoms suggesting a short food chain where most of the phytoplankton bloom goes to the bottom, to the meroplankton and to a few dominant holoplankters. In summer, the phytoplankton was dominated by pico- and nanophytoplankton suggesting a more complex food web mediated by a bacterial loop. High abundance of holo- and meroplanktonic larvae coincided with spring blooming conditions.

  10. Radionuclides in plankton from the South Pacific Basin

    International Nuclear Information System (INIS)

    Marsh, K.V.; Buddemeier, R.W.

    1984-01-01

    An investigation has been initiated of the utility of marine plankton as bioconcentrating samplers of low-level marine radioactivity in the southern hemisphere. A literature review has shown that both freshwater and marine plankton have trace element and radionuclide concentration factors (relative to water) of up to 10 4 . In 1956 and 1958 considerable work was done on the accumulation and distribution of a variety of fission and activation products produced by nuclear tests in the Marshall Islands. Since then, studies, have largely been confined to a few radionuclides, and most of the work in the last twenty years has been done in the northern hemisphere. The authors participated in Operations Deepfreeze 1981 and 1982, collecting a total of 48 plankton samples from the USCGC Glacier on its Antarctic cruises. Battelle Pacific Northwest Laboratories sampled air, water, rain, and fallout. The authors were able to measure concentrations in plankton of the naturally-occurring radionuclides 7 Be, 40 K, and the U and Th series, and they believe that they have detected low levels of 144 Ce and 95 Nb in seven samples ranging as far south as 68 0 . Biological identification of the plankton suggests a possible correlation between radionuclide concentration and the protozoa content of the samples. 7 references, 5 figures, 1 table

  11. Bacterial colonization of the freshwater planktonic diatom Fragilaria crotonensis

    Czech Academy of Sciences Publication Activity Database

    Znachor, Petr; Šimek, Karel; Nedoma, Jiří

    2012-01-01

    Roč. 66, č. 1 (2012), s. 87-94 ISSN 0948-3055 R&D Projects: GA ČR(CZ) GA206/08/0015; GA ČR(CZ) GAP504/11/2177; GA ČR(CZ) GAP504/11/2182 Institutional research plan: CEZ:AV0Z60170517 Keywords : PDMPO * bacterial colonization * diatoms * Fragilaria crotonensis * flood * reservoir Subject RIV: DA - Hydrology ; Limnology Impact factor: 2.037, year: 2012

  12. [Changes in phytoperiphyton community during seasonal succession: influence of plankton sedimentation and grazing by phytophages--Chironomid larvae].

    Science.gov (United States)

    Lukin, V B

    2002-01-01

    The investigation of seasonal changes in spatial structure of phytoperiphyton during succession was conducted at the lower reaches of Akulovsky water channel from April to August 2000. At the beginning of succession from April to June dominant forms were chain-forming diatoms and filamentous green algae, sedimented from plankton. Later, at the middle of June under increasing pressure of herbivorous, they were replaced by stretched unicellular diatoms and colonial cyanobacteria. In late June-August, when herbivorous predation was the most intensive, the relative abundance of typical periphytonic forms decreased while that of settled planktonic forms increased. The effect of planktonic algae sedimentation on periphyton composition was evaluated as similarity between phytoperiphyton and phytoplankton communities measured with Chekanovski--Sorensen index. The value of this index tends to decrease with the development of periphyton while showing some relation to intensity of herbivorous pressure. Minimal values of Chekanovski--Sorensen index were under moderate herbivorous density, whereas maximal values were observed in periods of extremely high or low herbivorous density.

  13. Interaction of a dinoflagellate neurotoxin with voltage-activated ion channels in a marine diatom.

    Science.gov (United States)

    Kitchen, Sheila A; Bourdelais, Andrea J; Taylor, Alison R

    2018-01-01

    The potent neurotoxins produced by the harmful algal bloom species Karenia brevis are activators of sodium voltage-gated channels (VGC) in animals, resulting in altered channel kinetics and membrane hyperexcitability. Recent biophysical and genomic evidence supports widespread presence of homologous sodium (Na + ) and calcium (Ca 2+ ) permeable VGCs in unicellular algae, including marine phytoplankton. We therefore hypothesized that VGCs of these phytoplankton may be an allelopathic target for waterborne neurotoxins produced by K. brevis blooms that could lead to ion channel dysfunction and disruption of signaling in a similar manner to animal Na + VGCs. We examined the interaction of brevetoxin-3 (PbTx-3), a K. brevis neurotoxin, with the Na + /Ca 2+ VGC of the non-toxic diatom Odontella sinensi s using electrophysiology. Single electrode current- and voltage- clamp recordings from O. sinensis in the presence of PbTx-3 were used to examine the toxin's effect on voltage gated Na + /Ca 2+ currents. In silico analysis was used to identify the putative PbTx binding site in the diatoms. We identified Na + /Ca 2+ VCG homologs from the transcriptomes and genomes of 12 diatoms, including three transcripts from O. sinensis and aligned them with site-5 of Na + VGCs, previously identified as the PbTx binding site in animals. Up to 1 µM PbTx had no effect on diatom resting membrane potential or membrane excitability. The kinetics of fast inward Na + /Ca 2+ currents that underlie diatom action potentials were also unaffected. However, the peak inward current was inhibited by 33%, delayed outward current was inhibited by 25%, and reversal potential of the currents shifted positive, indicating a change in permeability of the underlying channels. Sequence analysis showed a lack of conservation of the PbTx binding site in diatom VGC homologs, many of which share molecular features more similar to single-domain bacterial Na + /Ca 2+ VGCs than the 4-domain eukaryote channels

  14. Effect of hypochlorite on the planktonic and attached (biofilm) diatom cells

    International Nuclear Information System (INIS)

    Nancharaiah, Y.V.; Vinnitha, E.; Venugopalan, V.P.

    2008-01-01

    Rapid, sensitive, multi-species and multi-parametric techniques are desirable for determining treatment efficacy and environmentally realistic toxicity assessment of oxidizing biocides. In this work, the effect of in-use levels the antifouling biocide chlorine was studied using attached and freely suspended cultures of the diatom Cocconeis scutellum. Using confocal microscopy, in vivo chlorophyll fluorescence was collected in x, y and z dimensions for determining mean fluorescence intensity (MFI) per individual cell and related to hypochlorite treatment. The inhibition in the chlorophyll fluorescence of C. scutellum cells was almost 50% after 1 hour of treatment with 2 mg l -1 of added hypochlorite (1.2 mg l -1 total residual oxidant, TRO) and increased to 68 % during recovery period (18 h). On the contrary, attached Cocconeis cells did not show any significant reduction in their chlorophyll fluorescence after treatment with up to 3 mg l -1 hypochlorite for up to 3 h. Reduction in the chlorophyll fluorescence in the attached Cocconeis cells was observed after prolonged (18 h) incubation in seawater dosed with 2.3 or 3.8 mg I-I hypochlorite (1.5 and 3 mg l -1 TRO). The data obtained in this study clearly suggest that (i) hypochlorite treated diatom cells do not recover in terms of chlorophyll fluorescence in short-term assays and (ii) attached diatom cells exhibit enhanced resistance to chlorination-induced cellular injury. (author)

  15. Chronic Iron Limitation Confers Transient Resistance to Oxidative Stress in Marine Diatoms1

    Science.gov (United States)

    Graff van Creveld, Shiri; Rosenwasser, Shilo; Vardi, Assaf

    2016-01-01

    Diatoms are single-celled, photosynthetic, bloom-forming algae that are responsible for at least 20% of global primary production. Nevertheless, more than 30% of the oceans are considered “ocean deserts” due to iron limitation. We used the diatom Phaeodactylum tricornutum as a model system to explore diatom’s response to iron limitation and its interplay with susceptibility to oxidative stress. By analyzing physiological parameters and proteome profiling, we defined two distinct phases: short-term (5 d, phase II) iron limitation. While at phase I no significant changes in physiological parameters were observed, molecular markers for iron starvation, such as Iron Starvation Induced Protein and flavodoxin, were highly up-regulated. At phase II, down-regulation of numerous iron-containing proteins was detected in parallel to reduction in growth rate, chlorophyll content, photosynthetic activity, respiration rate, and antioxidant capacity. Intriguingly, while application of oxidative stress to phase I and II iron-limited cells similarly oxidized the reduced glutathione (GSH) pool, phase II iron limitation exhibited transient resistance to oxidative stress, despite the down regulation of many antioxidant proteins. By comparing proteomic profiles of P. tricornutum under iron limitation and metatranscriptomic data of an iron enrichment experiment conducted in the Pacific Ocean, we propose that iron-limited cells in the natural environment resemble the phase II metabolic state. These results provide insights into the trade-off between optimal growth rate and susceptibility to oxidative stress in the response of diatoms to iron quota in the marine environment. PMID:27503604

  16. Bacterioplankton: a sink for carbon in a coastal marine plankton community

    International Nuclear Information System (INIS)

    Ducklow, H.W.; Purdie, D.A.; Williams, P.J.LeB.; Davis, J.M.

    1986-01-01

    Recent determinations of high production rates (up to 30% of primary production in surface waters) implicate free-living marine bacterioplankton as a link in a microbial loop that supplements phytoplankton as food for herbivores. An enclosed water column of 300 cubic meters was used to test the microbial loop hypothesis by following the fate of carbon-14-labeled bacterioplankton for over 50 days. Only 2% of the label initially fixed from carbon-14-labeled glucose by bacteria was present in larger organisms after 13 days, at which time about 20% of the total label added remained in the particulate fraction. Most of the label appeared to pass directly from particles smaller than 1 micrometer (heterotrophic bacterioplankton and some bacteriovores) to respired labeled carbon dioxide or to regenerated dissolved organic carbon-14. Secondary (and, by implication, primary) production by organisms smaller than 1 micrometer may not be an important food source in marine food chains. Bacterioplankton can be a sink for carbon in planktonic food webs and may serve principally as agents of nutrient regeneration rather than as food

  17. Grazer-induced transcriptomic and metabolomic response of the chain-forming diatom Skeletonema marinoi

    DEFF Research Database (Denmark)

    Amato, Alberto; Sabatino, Valeria; Nylund, Göran M.

    2018-01-01

    Diatoms and copepods are main actors in marine food webs. The prey-predator interactions between them affect bloom dynamics, shape marine ecosystems and impact the energy transfer to higher trophic levels. Recently it has been demonstrated that the presence of grazers may affect the diatom prey b...

  18. Production and decomposition of new DOC by marine plankton communities: carbohydrates, refractory components and nutrient limitation

    DEFF Research Database (Denmark)

    Kragh, T.; Søndergaard, Morten

    2009-01-01

    The accumulation and biodegradation of dissolved organic carbon (DOC) and dissolved and particulate combined neutral sugars (DCNS, PCNS) were followed during a period of 22 days in experimental marine phytoplankton incubations. Five different growth regimes were established in 11 m(3) coastal...... in the mesocosms with diatoms dominating could be explained by DCNS, while only 6% was explained in the mesocosms with few diatoms. PCNS composition was similar in all mesocosms and with dominance of glucose and mannose, while DCNS were more evenly distributed with the following mole percentages fucose 15......, rhamnose 14, arabinose 6, galactose 27, glucose 20 and mannose 18%. The DCNS composition did not reflect the PCNS composition at any time during the experiment. Accumulated DCNS were quickly degraded and only 1% of the new RDOC was explained by DCNS. RDOC accumulated after day #17 in the two mesocosms...

  19. Comprehensive model of annual plankton succession based on the whole-plankton time series approach.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Romagnan

    Full Text Available Ecological succession provides a widely accepted description of seasonal changes in phytoplankton and mesozooplankton assemblages in the natural environment, but concurrent changes in smaller (i.e. microbes and larger (i.e. macroplankton organisms are not included in the model because plankton ranging from bacteria to jellies are seldom sampled and analyzed simultaneously. Here we studied, for the first time in the aquatic literature, the succession of marine plankton in the whole-plankton assemblage that spanned 5 orders of magnitude in size from microbes to macroplankton predators (not including fish or fish larvae, for which no consistent data were available. Samples were collected in the northwestern Mediterranean Sea (Bay of Villefranche weekly during 10 months. Simultaneously collected samples were analyzed by flow cytometry, inverse microscopy, FlowCam, and ZooScan. The whole-plankton assemblage underwent sharp reorganizations that corresponded to bottom-up events of vertical mixing in the water-column, and its development was top-down controlled by large gelatinous filter feeders and predators. Based on the results provided by our novel whole-plankton assemblage approach, we propose a new comprehensive conceptual model of the annual plankton succession (i.e. whole plankton model characterized by both stepwise stacking of four broad trophic communities from early spring through summer, which is a new concept, and progressive replacement of ecological plankton categories within the different trophic communities, as recognised traditionally.

  20. A C-25 highly branched isoprenoid alkene and C-25 and C-27 n-polyenes in the marine diatom Rhizosolenia setigera

    NARCIS (Netherlands)

    Sinninghe Damste, J.S; Rijpstra, W.I C; Schouten, S; Peletier, H.; van der Maarel, M.J.E.C.; Gieskes, W.W C

    1999-01-01

    A North Atlantic strain of the marine diatom Rhizosolenia setigera was examined for the presence of hydrocarbons. This strain biosynthesizes a highly branched isoprenoid (HBI) C-25 pentaene, in contrast to Australian strains of R. setigera which produce HBI C-30 alkenes. The more widespread

  1. The genome of the diatom Thalassiosira pseudonana: Ecology,evolution, and metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Ambrust, E.V.; Berges, J.; Bowler, C.; Green, B.; Martinez, D.; Putnam, N.; Zhou, S.; Allen, A.; Apt, K.; Bechner, M.; Brzezinski, M.; Chaal, B.; Chiovitti, A.; Davis, A.; Goodstein, D.; Hadi, M.; Hellsten,U.; Hildebrand, M.; Jenkins, B.; Jurka, J.; Kapitonov, V.; Kroger, N.; Lau, W.; Lane, T.; Larimer, F.; Lippmeier, J.; Lucas, S.; Medina, M.; Montsant, A.; Obornik, M.; Parker, M. Schnitzler; Palenik, B.; Pazour,G.; Richardson, P.; Rynearson, T.; Saito, M.; Schwartz, D.; Thamatrakoln,K.; Valentin, K.; Vardi, A.; Wilkerson, F.; Rokhsar, D.; Vardi, A.; Wilkerson, F.P.; Rokhsar, D.S.

    2004-09-01

    Diatoms are unicellular algae with plastids acquired by secondary endosymbiosis. They are responsible for {approx}20% of global carbon fixation. We report the 34 Mbp draft nuclear genome of the marine diatom, Thalassiosira pseudonana and its 129 Kbp plastid and 44 Kbp mitochondrial genomes. Sequence and optical restriction mapping revealed 24 diploid nuclear chromosomes. We identified novel genes for silicic acid transport and formation of silica-based cell walls, high-affinity iron uptake, biosynthetic enzymes for several types of polyunsaturated fatty acids, utilization of a range of nitrogenous compounds and a complete urea cycle, all attributes that allow diatoms to prosper in the marine environment. Diatoms are unicellular, photosynthetic, eukaryotic algae found throughout the world's oceans and freshwater systems. They form the base of short, energetically-efficient food webs that support large-scale coastal fisheries. Photosynthesis by marine diatoms generates as much as 40% of the 45-50 billion tonnes of organic carbon produced each year in the sea (1), and their role in global carbon cycling is predicted to be comparable to that of all terrestrial rainforests combined (2, 3). Over geological time, diatoms may have influenced global climate by changing the flux of atmospheric carbon dioxide into the oceans (4). A defining feature of diatoms is their ornately patterned silicified cell wall or frustule, which displays species-specific nano-structures of such fine detail that diatoms have long been used to test the resolution of optical microscopes. Recent attention has focused on biosynthesis of these nano-structures as a paradigm for future silica nanotechnology (5). The long history (over 180 million years) and dominance of diatoms in the oceans is reflected by their contributions to vast deposits of diatomite, most cherts and a significant fraction of current petroleum reserves (6). As photosynthetic heterokonts, diatoms reflect a fundamentally

  2. Continuous gene flow contributes to low global species abundance and distribution of a marine model diatom

    KAUST Repository

    Rastogi, Achal

    2017-08-15

    Unlike terrestrial ecosystems where geographical isolation often leads to a restricted gene flow between species, genetic admixing in aquatic micro-eukaryotes is likely to be frequent. Diatoms inhabit marine ecosystems since the Mesozoic period and presently constitute one of the major primary producers in the world ocean. They are a highly diversified group of eukaryotic phytoplankton with estimates of up to 200,000 species. Since decades, Phaeodactylum tricornutum is used as a model diatom species to characterize the functional pathways, physiology and evolution of diatoms in general. In the current study, using whole genome sequencing of ten P. tricornutum strains, sampled at broad geospatial and temporal scales, we show a continuous dispersal and genetic admixing between geographically isolated strains. We also describe a very high level of heterozygosity and propose it to be a consequence of frequent ancestral admixture. Our finding that P. tricornutum sequences are plausibly detectable at low but broadly distributed levels in the world ocean further suggests that high admixing between geographically isolated strains may create a significant bottleneck, thus influencing their global abundance and distribution in nature. Finally, in an attempt to understand the functional implications of genetic diversity between different P. tricornutum ecotypes, we show the effects of domestication in inducing changes in the selection pressure on many genes and metabolic pathways. We propose these findings to have significant implications for understanding the genetic structure of diatom populations in nature and provide a framework to assess the genomic underpinnings of their ecological success.

  3. Continuous gene flow contributes to low global species abundance and distribution of a marine model diatom

    KAUST Repository

    Rastogi, Achal; Deton-Cabanillas, Anne-Flore; Rocha Jimenez Vieira, Fabio; Veluchamy, Alaguraj; Cantrel, Catherine; Wang, Gaohong; Vanormelingen, Pieter; Bowler, Chris; Piganeau, Gwenael; Tirichine, Leila; Hu, Hanhua

    2017-01-01

    Unlike terrestrial ecosystems where geographical isolation often leads to a restricted gene flow between species, genetic admixing in aquatic micro-eukaryotes is likely to be frequent. Diatoms inhabit marine ecosystems since the Mesozoic period and presently constitute one of the major primary producers in the world ocean. They are a highly diversified group of eukaryotic phytoplankton with estimates of up to 200,000 species. Since decades, Phaeodactylum tricornutum is used as a model diatom species to characterize the functional pathways, physiology and evolution of diatoms in general. In the current study, using whole genome sequencing of ten P. tricornutum strains, sampled at broad geospatial and temporal scales, we show a continuous dispersal and genetic admixing between geographically isolated strains. We also describe a very high level of heterozygosity and propose it to be a consequence of frequent ancestral admixture. Our finding that P. tricornutum sequences are plausibly detectable at low but broadly distributed levels in the world ocean further suggests that high admixing between geographically isolated strains may create a significant bottleneck, thus influencing their global abundance and distribution in nature. Finally, in an attempt to understand the functional implications of genetic diversity between different P. tricornutum ecotypes, we show the effects of domestication in inducing changes in the selection pressure on many genes and metabolic pathways. We propose these findings to have significant implications for understanding the genetic structure of diatom populations in nature and provide a framework to assess the genomic underpinnings of their ecological success.

  4. Comparing Ecological and Genetic Diversity Within the Marine Diatom Genus Pseudo-nitzschia: A Multiregional Synthesis

    Science.gov (United States)

    Hubbard, K.; Bruzek, S.

    2016-02-01

    The globally distributed marine diatom genus Pseudo-nitzschia consists of approximately 40 species, more than half of which occur in US coastal waters. Here, sensitive genetic tools targeting a variable portion of the internal transcribed spacer 1 (ITS1) region of the rRNA gene were used to assess Pseudo-nitzschia spp. diversity in more than 600 environmental DNA samples collected from US Atlantic, Pacific, and Gulf of Mexico waters. Community-based approaches employed genus-specific primers for environmental DNA fingerprinting and targeted sequencing. For the Gulf of Mexico samples especially, a nested PCR approach (with or without degenerate primers) improved resolution of species diversity. To date, more than 40 unique ITS1 amplicon sizes have been repeatedly observed in ITS1 fingerprints. Targeted sequencing of environmental DNA as well as single chains isolated from live samples indicate that many of these represent novel and known inter- and intra-specific Pseudo-nitzschia diversity. A few species (e.g., P. pungens, P. cuspidata) occur across all three regions, whereas other species and intraspecific variants occurred at local to regional spatial scales only. Generally, species frequently co-occur in complex assemblages, and transitions in Pseudo-nitzschia community composition occur seasonally, prior to bloom initiation, and across (cross-shelf, latitudinal, and vertical) environmental gradients. These observations highlight the dynamic nature of diatom community composition in the marine environment and the importance of classifying diversity at relevant ecological and/or taxonomic scales.

  5. Groundfish overfishing, diatom decline, and the marine silica cycle: Lessons from Saanich Inlet, Canada, and the Baltic Sea cod crash

    Science.gov (United States)

    Katz, Timor; Yahel, Gitai; Yahel, Ruthy; Tunnicliffe, Verena; Herut, Barak; Snelgrove, Paul; Crusius, John; Lazar, Boaz

    2009-12-01

    In this study, we link groundfish activity to the marine silica cycle and suggest that the drastic mid-1980s crash of the Baltic Sea cod (Gadus morhua) population triggered a cascade of events leading to decrease in dissolved silica (DSi) and diatom abundance in the water. We suggest that this seemingly unrelated sequence of events was caused by a marked decline in sediment resuspension associated with reduced groundfish activity resulting from the cod crash. In a study in Saanich Inlet, British Columbia, Canada, we discovered that, by resuspending bottom sediments, groundfish triple DSi fluxes from the sediments and reduce silica accumulation therein. Using these findings and the available oceanographic and environmental data from the Baltic Sea, we estimate that overfishing and recruitment failure of Baltic cod reduced by 20% the DSi supply from bottom sediments to the surface water leading to a decline in the diatom population in the Baltic Sea. The major importance of the marginal ocean in the marine silica cycle and the associated high population density of groundfish suggest that groundfish play a major role in the silica cycle. We postulate that dwindling groundfish populations caused by anthropogenic perturbations, e.g., overfishing and bottom water anoxia, may cause shifts in marine phytoplankton communities.

  6. Marine Group II Dominates Planktonic Archaea in Water Column of the Northeastern South China Sea

    Directory of Open Access Journals (Sweden)

    Haodong Liu

    2017-06-01

    Full Text Available Temperature, nutrients, and salinity are among the important factors constraining the distribution and abundance of microorganisms in the ocean. Marine Group II (MGII belonging to Euryarchaeota commonly dominates the planktonic archaeal community in shallow water and Marine Group I (MGI, now is called Thaumarchaeota in deeper water in global oceans. Results of quantitative PCR (qPCR and 454 sequencing in our study, however, showed the dominance of MGII in planktonic archaea throughout the water column of the northeastern South China Sea (SCS that is characterized by strong water mixing. The abundance of ammonia-oxidizing archaea (AOA representing the main group of Thaumarchaeota in deeper water in the northeastern SCS was significantly lower than in other oceanic regions. Phylogenetic analysis showed that the top operational taxonomic units (OTUs of the MGII occurring predominantly below 200 m depth may be unique in the northeastern SCS based on the observation that they are distantly related to known sequences (identity ranging from 90–94%. The abundance of MGII was also significantly correlated with total bacteria in the whole column, which may indicate that MGII and bacteria may have similar physiological or biochemical properties or responses to environmental variation. This study provides valuable information about the dominance of MGII over AOA in both shallow and deep water in the northeastern SCS and highlights the need for comprehensive studies integrating physical, chemical, and microbial oceanography.

  7. Mixotrophy in the marine plankton

    DEFF Research Database (Denmark)

    Stoecker, Diane K.; Hansen, Per Juel; Caron, David

    2017-01-01

    Mixotrophs are important components of the bacterioplankton, phytoplankton, microzooplankton, and (sometimes) zooplankton in coastal and oceanic waters. Bacterivory among the phytoplankton may be important for alleviating inorganic nutrient stress and may increase primary production in oligotrophic...... waters. Mixotrophic phytoflagellates and dinoflagellates are often dominant components of the plankton during seasonal stratification. Many of the microzooplankton grazers, including ciliates and Rhizaria, are mixotrophic owing to their retention of functional algal organelles or maintenance of algal...

  8. Metabarcoding and metabolome analyses of copepod grazing reveal feeding preference and linkage to metabolite classes in dynamic microbial plankton communities.

    Science.gov (United States)

    Ray, Jessica L; Althammer, Julia; Skaar, Katrine S; Simonelli, Paolo; Larsen, Aud; Stoecker, Diane; Sazhin, Andrey; Ijaz, Umer Z; Quince, Christopher; Nejstgaard, Jens C; Frischer, Marc; Pohnert, Georg; Troedsson, Christofer

    2016-11-01

    In order to characterize copepod feeding in relation to microbial plankton community dynamics, we combined metabarcoding and metabolome analyses during a 22-day seawater mesocosm experiment. Nutrient amendment of mesocosms promoted the development of haptophyte (Phaeocystis pouchetii)- and diatom (Skeletonema marinoi)-dominated plankton communities in mesocosms, in which Calanus sp. copepods were incubated for 24 h in flow-through chambers to allow access to prey particles (<500 μm). Copepods and mesocosm water sampled six times spanning the experiment were analysed using metabarcoding, while intracellular metabolite profiles of mesocosm plankton communities were generated for all experimental days. Taxon-specific metabarcoding ratios (ratio of consumed prey to available prey in the surrounding seawater) revealed diverse and dynamic copepod feeding selection, with positive selection on large diatoms, heterotrophic nanoflagellates and fungi, while smaller phytoplankton, including P. pouchetii, were passively consumed or even negatively selected according to our indicator. Our analysis of the relationship between Calanus grazing ratios and intracellular metabolite profiles indicates the importance of carbohydrates and lipids in plankton succession and copepod-prey interactions. This molecular characterization of Calanus sp. grazing therefore provides new evidence for selective feeding in mixed plankton assemblages and corroborates previous findings that copepod grazing may be coupled to the developmental and metabolic stage of the entire prey community rather than to individual prey abundances. © 2016 John Wiley & Sons Ltd.

  9. Magnetic light cloaking control in the marine planktonic copepod Sapphirina

    Science.gov (United States)

    Kashiwagi, H.; Mizukawa, Y.; Iwasaka, M.; Ohtsuka, S.

    2017-05-01

    We investigated the light cloaking behavior of the marine planktonic copepod Sapphirina under a magnetic field. Optical interferences in the multi-laminated guanine crystal layer beneath the dorsal body surface create a brilliant structural color, which can be almost entirely removed by changing the light reflection. In the investigation, we immersed segments of Sapphirina in seawater contained in an optical chamber. When the derived Sapphirina segments were attached to the container surface, they were inert to magnetic fields up to 300 mT. However, when the back plate segments were attached to the substrate at a point, with most of the plate floating in the seawater, the plate rotated oppositely to the applied magnetic field. In addition, the brilliant parts of the Sapphirina back plate rotated backward and forward by changing the magnetic field directions. Our experiment suggests a new model of an optical micro-electro-mechanical system that is controllable by magnetic fields.

  10. Planktonic Crustacean Culture - Live Planktonic Crustaceans as Live Feed for Finfish and Shrimps in Aquaculture

    DEFF Research Database (Denmark)

    Jepsen, Per Meyer; Syberg, Kristian; Drillet, Guillaume

    2018-01-01

    The cultivation of planktonic crustaceans as live feed is of paramount importance for the aquaculture and aquarium industries. The use of live cladocerans as feed for freshwater fish is limited to the aquarium industry, whereas Artemia and copepods are used to feed edible marine fish larvae...... assessments for hazardous chemicals. Cladocerans are widely used for ecotoxicology testing but Artemia and copepods are emerging new model species. In the present chapter, we review the culturing procedures of these important planktonic crustaceans: Artemia, cladocerans and copepods and discuss their use...

  11. Planktonic Euryarchaeota are a significant source of archaeal tetraether lipids in the ocean.

    Science.gov (United States)

    Lincoln, Sara A; Wai, Brenner; Eppley, John M; Church, Matthew J; Summons, Roger E; DeLong, Edward F

    2014-07-08

    Archaea are ubiquitous in marine plankton, and fossil forms of archaeal tetraether membrane lipids in sedimentary rocks document their participation in marine biogeochemical cycles for >100 million years. Ribosomal RNA surveys have identified four major clades of planktonic archaea but, to date, tetraether lipids have been characterized in only one, the Marine Group I Thaumarchaeota. The membrane lipid composition of the other planktonic archaeal groups--all uncultured Euryarchaeota--is currently unknown. Using integrated nucleic acid and lipid analyses, we found that Marine Group II Euryarchaeota (MG-II) contributed significantly to the tetraether lipid pool in the North Pacific Subtropical Gyre at shallow to intermediate depths. Our data strongly suggested that MG-II also synthesize crenarchaeol, a tetraether lipid previously considered to be a unique biomarker for Thaumarchaeota. Metagenomic datasets spanning 5 y indicated that depth stratification of planktonic archaeal groups was a stable feature in the North Pacific Subtropical Gyre. The consistent prevalence of MG-II at depths where the bulk of exported organic matter originates, together with their ubiquitous distribution over diverse oceanic provinces, suggests that this clade is a significant source of tetraether lipids to marine sediments. Our results are relevant to archaeal lipid biomarker applications in the modern oceans and the interpretation of these compounds in the geologic record.

  12. The predictive skill of species distribution models for plankton in a changing climate

    DEFF Research Database (Denmark)

    Brun, Philipp Georg; Kiørboe, Thomas; Licandro, Priscilla

    2016-01-01

    Statistical species distribution models (SDMs) are increasingly used to project spatial relocations of marine taxa under future climate change scenarios. However, tests of their predictive skill in the real-world are rare. Here, we use data from the Continuous Plankton Recorder program, one...... null models, is essential to assess the robustness of projections of marine planktonic species under climate change...

  13. Growth inhibition of periphytic diatoms by methanol extracts of sponges and holothurians

    Digital Repository Service at National Institute of Oceanography (India)

    Mokashe, S.S.; Garg, A; Anil, A; Wagh, A

    Crude methanol extracts of a holothurian Holothuria leucospilota, and two sponges Craniella sp. and Ircinia ramosa were tested for their inhibitory effects on the growth of two marine diatoms, Navicula subinflata and N. crucicula, by diatom plating...

  14. Ribosomal RNA analysis indicates a benthic pennate diatom ancestry for the endosymbionts of the dinoflagellates Peridinium foliaceum and Peridinium balticum (Pyrrhophyta).

    Science.gov (United States)

    Chesnick, J M; Kooistra, W H; Wellbrock, U; Medlin, L K

    1997-01-01

    The establishment of chloroplasts as cellular organelles in the dinoflagellate, heterokont (stramenopile), haptophyte, and cryptophyte algae is widely accepted to have been the result of secondary endosymbiotic events, that is, the uptake of a photosynthetic eukaryote by a phagotrophic eukaryote. However, the circumstances that promote such associations between two phylogenetically distinct organisms and result in the integration of their genomes to form a single functional photosynthetic cell is unclear. The dinoflagellates Peridinium foliaceum and Peridinium balticum are unusual in that each contains a membrane-bound eukaryotic heterokont endosymbiont. These symbioses have been interpreted, through data derived from ultrastructural and biochemical investigations, to represent an intermediate stage of secondary endosymbiotic chloroplast acquisition. In this study we have examined the phylogenetic origin of the P. foliaceum and P. balticum heterokont endosymbionts through analysis of their nuclear small subunit ribosomal RNA genes. Our analyses clearly demonstrate both endosymbionts are pennate diatoms belonging to the family Bacillariaceae. Since members of the Bacillariaceae are usually benthic, living on shallow marine sediments, the manner in which establishment of a symbiosis between a planktonic flagellated dinoflagellate and a bottom-dwelling diatom is discussed. In particular, specific environmentally-associated life strategy stages of the host and symbiont, coupled with diatom food preferences by the dinoflagellate, may have been vital to the formation of this association.

  15. Ecological partitioning and diversity in tropical planktonic foraminifera

    Directory of Open Access Journals (Sweden)

    Seears Heidi A

    2012-04-01

    Full Text Available Abstract Background Ecological processes are increasingly being viewed as an important mode of diversification in the marine environment, where the high dispersal potential of pelagic organisms, and a lack of absolute barriers to gene flow may limit the occurrence of allopatric speciation through vicariance. Here we focus on the potential role of ecological partitioning in the diversification of a widely distributed group of marine protists, the planktonic foraminifera. Sampling was conducted in the tropical Arabian Sea, during the southwest (summer monsoon, when pronounced environmental conditions result in a strong disparity in temperature, salinity and productivity between distinct northern and southern water masses. Results We uncovered extensive genetic diversity within the Arabian Sea planktonic foraminifera, identifying 13 morphospecies, represented by 20 distinct SSU rRNA genetic types. Several morphospecies/genetic types displayed non-random biogeographical distributions, partitioning between the northern and southern water masses, giving a strong indication of independent ecological adaptations. Conclusions We propose sea-surface primary productivity as the main factor driving the geographical segregation of Arabian Sea planktonic foraminifera, during the SW monsoon, with variations in symbiotic associations possibly playing a role in the specific ecological adaptations observed. Our findings suggest that ecological partitioning could be contributing to the high levels of 'cryptic' genetic diversity observed within the planktonic foraminifera, and support the view that ecological processes may play a key role in the diversification of marine pelagic organisms.

  16. Assessing the effects of climate and volcanism on diatom and chironomid assemblages in an Andean lake near Quito, Ecuador

    Directory of Open Access Journals (Sweden)

    Neal Michelutti

    2015-12-01

    Full Text Available The tropical Andes are undergoing climate changes that rival those occurring anywhere else on the planet, and are likely to have profound consequences for ecosystems. Paleolimnological investigations of remote mountain lakes can provide details of past environmental change, especially where monitoring data are absent. Here, we reconstruct fossil diatom and chironomid communities spanning the last several hundred years from an Andean lake located in an ecological reserve near Quito, Ecuador. Both diatoms and chironomids recorded assemblage shifts reflective of changing climate conditions. The diatoms are likely responding primarily to temperature-related limnological changes, recording an increase in the number of planktonic taxa in the most recent sediments. This change is consistent with warmer conditions that result in enhanced periods of thermal stratification, allowing planktonic species to proliferate. The chironomids appear to respond mainly to a change in precipitation regime, recording a greater number of terrestrial and semi-terrestrial taxa that have been transported to the lake. A thick tephra deposit at the base of the sediment core affected both diatom and chironomid assemblages. The diatoms registered a change in species composition highlighting the ability of certain taxa to rapidly colonize new environments. In contrast, the chironomids showed a marked drop in abundance immediately following the tephra, but no change in species composition. In both cases the ecological response was short-lived, illustrating the resiliency of the lake to return to baseline conditions following volcanic inputs.

  17. A new diatom growth inhibition assay using the XTT colorimetric method.

    Science.gov (United States)

    Jiang, Weina; Akagi, Takuya; Suzuki, Hidekazu; Takimoto, Ayaka; Nagai, Hiroshi

    2016-01-01

    Marine biofouling, which leads to significant operational stress and economic damage on marine infrastructures, is a major problem in marine related industries. Currently, the most common way to avoid marine biofouling involves the use of biocidal products in surface coatings. However, the need for environmentally friendly antibiofouling compounds has increased rapidly with the recent global prohibition of harmful antifoulants, such as tributyltin (TBT). In particular, periphytic diatoms have been shown to contribute significantly to biofilms, which play an important role in biofouling. Therefore, inhibiting the proliferation of fouling diatoms is a very important step in the prevention of marine biofouling. In this study, we developed a new, rapid, accurate, and convenient growth inhibition assay using the XTT colorimetric method to prevent the growth of the fouling periphytic diatom, Nitzschia amabilis Hidek. Suzuki (replaced synonym, Nitzschia laevis Hustedt). The feasibility of this method was verified by determining the growth inhibition activities of two standard photosynthetic inhibitors, DCMU and CuSO4. However, neither inhibitor had any cytotoxic activities at the range of concentrations tested. Moreover, this method was applied by screening and purification of herbicidic but non-cytotoxic compounds from cyanobacteria extracts. Our results demonstrate the utility of this newly established growth inhibition assay for the identification of marine anti-biofouling compounds. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Public aquaria as long-term enrichments for investigating planktonic Archaea

    Science.gov (United States)

    Goldenstein, Nadine I.; Warren, Courtney E.; Lipp, Julius S.; Pagani, Mark; Hinrichs, Kai-Uwe

    2016-04-01

    The most abundant group of planktonic Archaea , the so-called Thaumarchaeota, represents 20% of all marine planktonic microorganisms (Karner et al., 2001) and their energy efficient performance of nitrification makes them key players in the global nitrogen- and carbon-cycle (Könneke et al., 2014). Furthermore, planktonic Archaea are considered to be the major producers of specific microbial membrane lipids that are extensively used as paleoproxies in marine climate research (Schouten et al., 2002). Therefore, assessing the parameters controlling the distribution of Archaea in the marine water column is crucial for studies of modern and past marine environments. Although diverse studies utilizing DNA- and biomarker-based approaches have constrained the turnover and distribution of marine Archaea, the environmental factors affecting their abundance and activity (e.g., Wuchter et al., 2006; Bale et al., 2013) are still poorly understood. Further, previous surveys, using enrichment cultivation and pure culture experiments, provided valuable information on adaptation of planktonic Archaea to changes of parameters affecting growth conditions, such as temperature, salinity and growth stage (Elling et al., 2014, 2015). Hence, we know that planktonic Archaea directly adapt their membranes to changing growth conditions, but also that environmental selection for individual phylogenetic groups of these organisms is also reflected in the membrane lipid pool. Extending these studies, this project further aims at constraining the environmental parameters controlling archaeal abundance in the marine environment. Public aquaria, which are comparable to perfectly monitored long-term enrichment cultures, are optimal sampling sites for this task. A comprehensive set of 120 water and substrate samples from fresh, marine and brackish systems exhibiting diverse conditions was selected from 15 public aquaria at the east and west coast of the USA. These samples were examined for their

  19. Effect of Cadmium on the population growth of the marine diatom Chaetoceros gracilis Schutt

    Directory of Open Access Journals (Sweden)

    Giovana Vera

    2014-06-01

    Full Text Available Phytoplankton constitutes the base of the trophic webs in the marine environment, so it is important to know the possible effects of pollutants on the algal populations. In the present paper the effect of cadmium on the population growth of the diatom Chaetoceros gracilis was assessed. The microalgae were cultured in the a modified “f/2” Guillard medium, and were exposed to different concentrations of cadmium between 50 and 100000 µg.–1, which produced an inhibitory effect from 20% to 99% on the population growth of Chaetoceros gracilis. Based on the dose (cadmium-response (inhibition relationship, a mean effective concentration (EC50% equal to 591 µg.L–1 of cadmium was obtained.

  20. Data integration for European marine biodiversity research: creating a database on benthos and plankton to study large-scale patterns and long-term changes

    NARCIS (Netherlands)

    Vandepitte, L.; Vanhoorne, B.; Kraberg, A.; Anisimova, N.; Antoniadou, C.; Araújo, R.; Bartsch, I.; Beker, B.; Benedetti-Cecchi, L.; Bertocci, I.; Cochrane, S.J.; Cooper, K.; Craeymeersch, J.A.; Christou, E.; Crisp, D.J.; Dahle, S.; de Boissier, M.; De Kluijver, M.; Denisenko, S.; De Vito, D.; Duineveld, G.; Escaravage, V.L.; Fleischer, D.; Fraschetti, S.; Giangrande, A.; Heip, C.H.R.; Hummel, H.; Janas, U.; Karez, R.; Kedra, M.; Kingston, P.; Kuhlenkamp, R.; Libes, M.; Martens, P.; Mees, J.; Mieszkowska, N.; Mudrak, S.; Munda, I.; Orfanidis, S.; Orlando-Bonaca, M.; Palerud, R.; Rachor, E.; Reichert, K.; Rumohr, H.; Schiedek, D.; Schubert, P.; Sistermans, W.C.H.; Sousa Pinto, I.S.; Southward, A.J.; Terlizzi, A.; Tsiaga, E.; Van Beusekom, J.E.E.; Vanden Berghe, E.; Warzocha, J.; Wasmund, N.; Weslawski, J.M.; Widdicombe, C.; Wlodarska-Kowalczuk, M.; Zettler, M.L.

    2010-01-01

    The general aim of setting up a central database on benthos and plankton was to integrate long-, medium- and short-term datasets on marine biodiversity. Such a database makes it possible to analyse species assemblages and their changes on spatial and temporal scales across Europe. Data collation

  1. Modelling emergent trophic strategies in plankton

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Aksnes, Dag L.; Berge, Terje

    2015-01-01

    Plankton are typically divided into phytoplankton and zooplankton in marine ecosystem models. Yet, most protists in the photic zone engage in some degree of phagotrophy, and it has been suggested that trophic strategy is really a continuum between pure phototrophs (phytoplankton) and pure...

  2. Taxonomic studies of centric diatoms (Diatomeae: unusual nanoplanktonic forms and new records for Brazil

    Directory of Open Access Journals (Sweden)

    Kaoli Pereira Cavalcante

    2013-06-01

    Full Text Available There have been few taxonomic studies of centric diatoms in lotic freshwater environments in Brazil, especially in terms of those including nanoplanktonic forms, which are often neglected in studies of local floras, because of their small size or confusing taxonomy. This is the first study focusing on centric diatoms in the flora of the state of Bahia, in northeastern Brazil. Plankton and periphyton attached to Eichornia crassipes were collected in the winter of 2009 in the Cachoeira River. The diatoms were analyzed and described under light and electron microscopies. Seventeen infrageneric taxa were identified. Cyclotella was represented by five taxa, and concerning of similarities between diacritical features of species in this genus, their descriptions were thoroughly detailed. This was the first time that Cyclotella atomus var. marina, previously recorded only in coastal areas of Japan and Korea, has been documented in a river in South America. We also identified two diatom taxa previously unrecorded in the flora of Brazil: C. cryptica and C. meduanae. Finally, we present a detailed light, transmission and scanning electron microscopy analysis of Skeletonema potamos, a diatom rarely found in the Brazilian literature.

  3. Oceanographic and Biogeochemical Insights from Diatom Genomes

    Science.gov (United States)

    Bowler, Chris; Vardi, Assaf; Allen, Andrew E.

    2010-01-01

    Diatoms are the most successful group of eukaryotic phytoplankton in the modern ocean and have risen to dominance relatively quickly over the last 100 million years. Recently completed whole genome sequences from two species of diatom, Thalassiosira pseudonana and Phaeodactylum tricornutum, have revealed a wealth of information about the evolutionary origins and metabolic adaptations that have led to their ecological success. A major finding is that they have incorporated genes both from their endosymbiotic ancestors and by horizontal gene transfer from marine bacteria. This unique melting pot of genes encodes novel capacities for metabolic management, for example, allowing the integration of a urea cycle into a photosynthetic cell. In this review we show how genome-enabled approaches are being leveraged to explore major phenomena of oceanographic and biogeochemical relevance, such as nutrient assimilation and life histories in diatoms. We also discuss how diatoms may be affected by climate change-induced alterations in ocean processes.

  4. Automatic plankton image classification combining multiple view features via multiple kernel learning.

    Science.gov (United States)

    Zheng, Haiyong; Wang, Ruchen; Yu, Zhibin; Wang, Nan; Gu, Zhaorui; Zheng, Bing

    2017-12-28

    Plankton, including phytoplankton and zooplankton, are the main source of food for organisms in the ocean and form the base of marine food chain. As the fundamental components of marine ecosystems, plankton is very sensitive to environment changes, and the study of plankton abundance and distribution is crucial, in order to understand environment changes and protect marine ecosystems. This study was carried out to develop an extensive applicable plankton classification system with high accuracy for the increasing number of various imaging devices. Literature shows that most plankton image classification systems were limited to only one specific imaging device and a relatively narrow taxonomic scope. The real practical system for automatic plankton classification is even non-existent and this study is partly to fill this gap. Inspired by the analysis of literature and development of technology, we focused on the requirements of practical application and proposed an automatic system for plankton image classification combining multiple view features via multiple kernel learning (MKL). For one thing, in order to describe the biomorphic characteristics of plankton more completely and comprehensively, we combined general features with robust features, especially by adding features like Inner-Distance Shape Context for morphological representation. For another, we divided all the features into different types from multiple views and feed them to multiple classifiers instead of only one by combining different kernel matrices computed from different types of features optimally via multiple kernel learning. Moreover, we also applied feature selection method to choose the optimal feature subsets from redundant features for satisfying different datasets from different imaging devices. We implemented our proposed classification system on three different datasets across more than 20 categories from phytoplankton to zooplankton. The experimental results validated that our system

  5. Drivers of Change in a 7300-Year Holocene Diatom Record from the Hemi-Boreal Region of Ontario, Canada.

    Directory of Open Access Journals (Sweden)

    Kristen K Beck

    Full Text Available A Holocene lake sediment record spanning the past 7300 years from Wishart Lake in the Turkey Lakes Watershed in the Hemi-Boreal of central Ontario, Canada, was used to evaluate the potential drivers of long-term change in diatom assemblages at this site. An analysis of diatom assemblages found that benthic and epiphytic taxa dominated the mid-Holocene (7300-4000 cal yr BP, indicating shallow, oligotrophic, circum-neutral conditions, with macrophytes present. A significant shift in diatom assemblages towards more planktonic species (mainly Cyclotella sensu lato, but also several species of Aulacoseira, and Tabellaria flocculosa occurred ~4000 cal yr BP. This change likely reflects an increase in lake level, coincident with the onset of a more strongly positive moisture balance following the drier climates of the middle Holocene, established by numerous regional paleoclimate records. Pollen-inferred regional changes in vegetation around 4000 yrs BP, including an increase in Betula and other mesic taxa, may have also promoted changes in diatom assemblages through watershed processes mediated by the chemistry of runoff. A more recent significant change in limnological conditions is marked by further increases in Cyclotella sensu lato beginning in the late 19th century, synchronous with the Ambrosia pollen rise and increases in sediment bulk density, signaling regional and local land clearance at the time of Euro-Canadian settlement (1880 AD. In contrast to the mid-Holocene increase in planktonic diatoms, the modern increase in Cyclotella sensu lato likely indicates a response to land use and vegetation change, and erosion from the watershed, rather than a further increase in water level. The results from Wishart Lake illustrate the close connection between paleoclimate change, regional vegetation, watershed processes, and diatom assemblages and also provides insight into the controls on abundance of Cyclotella sensu lato, a diatom taxonomic group

  6. Fouling diatom community with reference to substratum variability in tropical marine environment

    Digital Repository Service at National Institute of Oceanography (India)

    Mitbavkar, S.; Desai, D.V.; Khandeparker, L.; Anil, A.C.; Wagh, A.B.

    form encountered. The paper deals with the qualitative and quantitative aspects of diatom colonization, their community structure, and correlation between the prevailing diatom population in the environment and that in the fouling community...

  7. Low-Molecular-Weight Metabolites from Diatoms: Structures, Biological Roles and Biosynthesis

    Directory of Open Access Journals (Sweden)

    Valentin Stonik

    2015-06-01

    Full Text Available Diatoms are abundant and important biological components of the marine environment that biosynthesize diverse natural products. These microalgae are rich in various lipids, carotenoids, sterols and isoprenoids, some of them containing toxins and other metabolites. Several groups of diatom natural products have attracted great interest due to their potential practical application as energy sources (biofuel, valuable food constituents, and prospective materials for nanotechnology. In addition, hydrocarbons, which are used in climate reconstruction, polyamines which participate in biomineralization, new apoptotic agents against tumor cells, attractants and deterrents that regulate the biochemical communications between marine species in seawaters have also been isolated from diatoms. However, chemical studies on these microalgae are complicated by difficulties, connected with obtaining their biomass, and the influence of nutrients and contaminators in their environment as well as by seasonal and climatic factors on the biosynthesis of the corresponding natural products. Overall, the number of chemically studied diatoms is lower than that of other algae, but further studies, particularly those connected with improvements in the isolation and structure elucidation technique as well as the genomics of diatoms, promise both to increase the number of studied species with isolated biologically active natural products and to provide a clearer perception of their biosynthesis.

  8. Iron fertilization and the structure of planktonic communities in high nutrient regions of the Southern Ocean

    Science.gov (United States)

    Quéguiner, Bernard

    2013-06-01

    In this review article, plankton community structure observations are analyzed both for artificial iron fertilization experiments and also for experiments dedicated to the study of naturally iron-fertilized systems in the Atlantic, Indian and Pacific sectors of the Southern Ocean in the POOZ (Permanently Open Ocean Zone) and the PFZ (Polar Frontal Zone). Observations made in natural systems are combined with those from artificially perturbed systems, in order to evaluate the seasonal evolution of pelagic communities, taking into account controlling factors related to the life cycles and the ecophysiology of dominant organisms. The analysis considers several types of planktonic communities, including both autotrophs and heterotrophs. These communities are spatially segregated owing to different life strategies. A conceptual general scheme is proposed to account for these observations and their variability, regardless of experiment type. Diatoms can be separated into 2 groups: Group 1 has slightly silicified fast growing cells that are homogeneously distributed in the surface mixed layer, and Group 2 has strongly silicified slowly growing cells within discrete layers. During the growth season, Group 1 diatoms show a typical seasonal succession of dominant species, within time windows of development that are conditioned by physical factors (light and temperature) as well as endogenous specific rhythms (internal clock), and biomass accumulation is controlled by the availability of nutrients. Group 1 diatoms are not directly grazed by mesozooplankton which is fed by protozooplankton, linking the microbial food web to higher trophic levels. Instead, successive dominant species of Group 1 are degraded via bacterial activity at the end of their growth season. Organic detritus fragments feed protozooplankton and mesozooplankton. The effective silicon pump leads to the progressive disappearance of silicic acid in surface waters. In contrast, Group 2 is resistant to grazing

  9. PFR²: a curated database of planktonic foraminifera 18S ribosomal DNA as a resource for studies of plankton ecology, biogeography and evolution.

    Science.gov (United States)

    Morard, Raphaël; Darling, Kate F; Mahé, Frédéric; Audic, Stéphane; Ujiié, Yurika; Weiner, Agnes K M; André, Aurore; Seears, Heidi A; Wade, Christopher M; Quillévéré, Frédéric; Douady, Christophe J; Escarguel, Gilles; de Garidel-Thoron, Thibault; Siccha, Michael; Kucera, Michal; de Vargas, Colomban

    2015-11-01

    Planktonic foraminifera (Rhizaria) are ubiquitous marine pelagic protists producing calcareous shells with conspicuous morphology. They play an important role in the marine carbon cycle, and their exceptional fossil record serves as the basis for biochronostratigraphy and past climate reconstructions. A major worldwide sampling effort over the last two decades has resulted in the establishment of multiple large collections of cryopreserved individual planktonic foraminifera samples. Thousands of 18S rDNA partial sequences have been generated, representing all major known morphological taxa across their worldwide oceanic range. This comprehensive data coverage provides an opportunity to assess patterns of molecular ecology and evolution in a holistic way for an entire group of planktonic protists. We combined all available published and unpublished genetic data to build PFR(2), the Planktonic foraminifera Ribosomal Reference database. The first version of the database includes 3322 reference 18S rDNA sequences belonging to 32 of the 47 known morphospecies of extant planktonic foraminifera, collected from 460 oceanic stations. All sequences have been rigorously taxonomically curated using a six-rank annotation system fully resolved to the morphological species level and linked to a series of metadata. The PFR(2) website, available at http://pfr2.sb-roscoff.fr, allows downloading the entire database or specific sections, as well as the identification of new planktonic foraminiferal sequences. Its novel, fully documented curation process integrates advances in morphological and molecular taxonomy. It allows for an increase in its taxonomic resolution and assures that integrity is maintained by including a complete contingency tracking of annotations and assuring that the annotations remain internally consistent. © 2015 John Wiley & Sons Ltd.

  10. Impact of marine influence and cultivation on the diatom flora of ...

    African Journals Online (AJOL)

    During a limnological and palaeolimnological study of the western part of the Great Coast of Senegal, an analysis of diatoms was carried out in Thiaroye Pond in the suburbs of Dakar. Current diatom flora in the water and on floating plants, and subfossil flora in two cores were sampled in 1996 and 2003. A total of 104 ...

  11. CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    U. Riebesell

    2010-09-01

    Full Text Available CO2/pH perturbation experiments were carried out under two different pCO2 levels (39.3 and 101.3 Pa to evaluate effects of CO2-induced ocean acidification on the marine diatom Phaeodactylum tricornutum. After acclimation (>20 generations to ambient and elevated CO2 conditions (with corresponding pH values of 8.15 and 7.80, respectively, growth and photosynthetic carbon fixation rates of high CO2 grown cells were enhanced by 5% and 12%, respectively, and dark respiration stimulated by 34% compared to cells grown at ambient CO2. The half saturation constant (Km for carbon fixation (dissolved inorganic carbon, DIC increased by 20% under the low pH and high CO2 condition, reflecting a decreased affinity for HCO3– or/and CO2 and down-regulated carbon concentrating mechanism (CCM. In the high CO2 grown cells, the electron transport rate from photosystem II (PSII was photoinhibited to a greater extent at high levels of photosynthetically active radiation, while non-photochemical quenching was reduced compared to low CO2 grown cells. This was probably due to the down-regulation of CCM, which serves as a sink for excessive energy. The balance between these positive and negative effects on diatom productivity will be a key factor in determining the net effect of rising atmospheric CO2 on ocean primary production.

  12. Skeletonema (Bacillariophyceae) in Indian waters: A reappraisal

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, R.K.; Sarno, D.; Kooistra, W.H.C.F.; DeCosta, P.M.; Anil, A.C.

    The planktonic diatom genus Skeletonema is common in Indian coastal waters. Recent taxonomic studies have uncovered high diversity in this genus, and it is expected that several species occur also in the highly diverse marine habitats along...

  13. Eukaryotic Plankton Species Diversity in the Western Channel of the Korea Strait using 18S rDNA Sequences and its Implications for Water Masses

    Science.gov (United States)

    Lee, Sang-Rae; Song, Eun Hye; Lee, Tongsup

    2018-03-01

    Organisms entering the East Sea (Sea of Japan) through the Korea Strait, together with water, salt, and energy, affect the East Sea ecosystem. In this study, we report on the biodiversity of eukaryotic plankton found in the Western Channel of the Korea Strait for the first time using small subunit ribosomal RNA gene (18S rDNA) sequences. We also discuss the characteristics of water masses and their physicochemical factors. Diverse taxonomic groups were recovered from 18S rDNA clone libraries, including putative novel, higher taxonomic entities affiliated with Cercozoa, Raphidophyceae, Picozoa, and novel marine Stramenopiles. We also found that there was cryptic genetic variation at both the intraspecific and interspecific levels among arthropods, diatoms, and green algae. Specific plankton assemblages were identified at different sampling depths and they may provide useful information that could be used to interpret the origin and the subsequent mixing history of the water masses that contribute to the Tsushima Warm Current waters. Furthermore, the biological information highlighted in this study may help improve our understanding about the complex water mass interactions that were highlighted in the Korea Strait.

  14. Photosynthetic Pigments in Diatoms.

    Science.gov (United States)

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-09-16

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries.

  15. Photosynthetic Pigments in Diatoms

    Directory of Open Access Journals (Sweden)

    Paulina Kuczynska

    2015-09-01

    Full Text Available Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries.

  16. Research highlights: impacts of microplastics on plankton.

    Science.gov (United States)

    Lin, Vivian S

    2016-02-01

    Each year, millions of metric tons of the plastic produced for food packaging, personal care products, fishing gear, and other human activities end up in lakes, rivers, and the ocean. The breakdown of these primary plastics in the environment results in microplastics, small fragments of plastic typically less than 1-5 mm in size. These synthetic particles have been detected in all of the world's oceans and also in many freshwater systems, accumulating in sediment, on shorelines, suspended in surface waters, and being ingested by plankton, fish, birds, and marine mammals. While the occurrence of plastics in surface waters has been surveyed in a number of studies, the impacts of microplastics on marine organisms are still being elucidated. This highlight features three recent publications that explore the interactions of microplastics with planktonic organisms to clarify the effects of these pollutants on some of the ocean's smallest and most important inhabitants.

  17. Diatom-inferred hydrological changes and Holocene geomorphic transitioning of Africa's largest estuarine system, Lake St Lucia

    Science.gov (United States)

    Gomes, M.; Humphries, M. S.; Kirsten, K. L.; Green, A. N.; Finch, J. M.; de Lecea, A. M.

    2017-06-01

    The diverse lagoons and coastal lakes along the east coast of South Africa occupy incised valleys that were flooded during the rise and subsequent stabilisation of relative sea-level during the Holocene. Sedimentary deposits contained within these waterbodies provide an opportunity to investigate complex hydrological and sedimentological processes, and examine sea-level controls governing system geomorphic evolution. In this paper, we combine diatom and sulfur isotope analyses from two sediment cores extracted from the northern sub-basins of Lake St Lucia, a large shallow estuarine lake that is today largely isolated from direct ocean influence behind a Holocene-Pleistocene barrier complex. Analyses allow the reconstruction of hydrological changes associated with the geomorphic development of the system over the mid-to late Holocene. The sedimentary sequences indicate that St Lucia was a shallow, partially enclosed estuary/embayment dominated by strong tidal flows prior to ∼6200 cal. BP. Infilling was initiated when sea-level rise slowed and stabilised around present day levels, resulting in the accumulation of fine-grained sediment behind an emergent proto-barrier. Diatom assemblages, dominated by marine benthic and epiphytic species, reveal a system structured by marine water influx and characterised by marsh and tidal flat habitats until ∼4550 cal. BP. A shift in the biological community at ∼4550 cal. BP is linked to the development of a back-barrier water body that supported a brackish community. Marine planktonics and enrichments in δ34S suggest recurrent, large-scale barrier inundation events during this time, coincident with a mid-Holocene sea-level highstand. Periodic marine incursions associated with episodes of enhanced storminess and overwash remained prevalent until ∼1200 cal. BP, when further barrier construction ultimately isolated the northern basins from the ocean. This study provides the first reconstruction of the palaeohydrological

  18. Effect of ocean acidification on the fatty acid composition of a natural plankton community

    Science.gov (United States)

    Leu, E.; Daase, M.; Schulz, K. G.; Stuhr, A.; Riebesell, U.

    2013-02-01

    The effect of ocean acidification on the fatty acid composition of a natural plankton community in the Arctic was studied in a large-scale mesocosm experiment, carried out in Kongsfjorden (Svalbard, Norway) at 79° N. Nine mesocosms of ~50 m3 each were exposed to 8 different pCO2 levels (from natural background conditions to ~1420 μatm), yielding pH values (on the total scale) from ~8.3 to 7.5. Inorganic nutrients were added on day 13. The phytoplankton development during this 30-day experiment passed three distinct phases: (1) prior to the addition of inorganic nutrients, (2) first bloom after nutrient addition, and (3) second bloom after nutrient addition. The fatty acid composition of the natural plankton community was analysed and showed, in general, high percentages of polyunsaturated fatty acids (PUFAs): 44-60% of total fatty acids. Positive correlations with pCO2 were found for most PUFAs during phases 2 and/or 3, with the exception of 20:5n3 (eicosapentaenoic acid, EPA), an important diatom marker. These correlations are probably linked to changes in taxonomic composition in response to pCO2. While diatoms (together with prasinophytes and haptophytes) increased during phase 3 mainly in the low and intermediate pCO2 treatments, dinoflagellates were favoured by high CO2 concentrations during the same time period. This is reflected in the development of group-specific fatty acid trophic markers. No indications were found for a generally detrimental effect of ocean acidification on the planktonic food quality in terms of essential fatty acids.

  19. Plankton biodiversity of Dharamtar creek adjoining Mumbai harbour

    Digital Repository Service at National Institute of Oceanography (India)

    Tiwari, L.R.; Nair, V.R.

    rich plankton community. However, recent industrial development along the banks of creek may pose the problem due to waste disposal into this creek system. Losses of marine life diversity are largely the results of conflicting uses, in particular...

  20. Steady-state growth of the marine diatom Thalassiosira pseudonana

    International Nuclear Information System (INIS)

    Olson, R.J.; SooHoo, J.B.; Kiefer, D.A.

    1980-01-01

    Seasonal studies of the vertical distribution of nitrate, nitrite, and phytoplankton in the oceans and studies using 15 N as a tracer of nitrate metabolism indicate that the reduction of nitrate by phytoplankton is a source of nitrite in the upper waters of the ocean. To better understand this process, the relationship between nitrate uptake and nitrite production has been examined with continuous cultures of the small marine diatom Thalassiosira pseudonana. In a turbidostat culture, the rates of nitrite production by T. Pseudonana increase with light intensity. This process is only loosely coupled to rates of nitrate assimilation since the ratio of net nitrite production to total nitrate assimilation increases with increased rates of growth. In continuous cultures where steady-state concentrations of nitrate and nitrite were varied, T. pseudonana produced nitrite at rates which increased with increasing concentrations of nitrate. Again, the rates of nitrite production were uncoupled from rates of nitrate assimilation. The study was used to derive a mathematical description of nitrate and nitrite metabolism by T. pseudonana. The validity of this model was supported by the results of a study in which 15 N-labeled nitrite was introduced into the continuous culture, and the model was used to examine patterns in distribution of nitrite in the Antarctic Ocean and the Sargasso Sea

  1. Diatom production in the marine environment : implications for larval fish growth and condition

    DEFF Research Database (Denmark)

    St. John, Michael; Clemmesen, C.; Lund, T.

    2001-01-01

    To test the effects of diatom production on larval fish growth and condition. laboratory experiments were performed with larval North Sea cod reared on different algal food chains. These food chains were based on cultures of (a) the diatoms Skeletonema costatum and Thalassiosira weissflogii: (b....../omega6 fatty acids in the algal source had no significant effect. The highest and lowest growth rates were observed in food chains based on H. triquetra and T. weissflogii. respectively (means for days 14-16 of 4.0 and - 4.7). The mixed diatom/dinoflagellate diet resulted in inter- mediate growth rates...... and condition. Regressions of growth rates against EPA and DHA content indicated no inhibitory effect of diatom production on growth in larval cod...

  2. Mandibular gnathobases of marine planktonic copepods – feeding tools with complex micro- and nanoscale composite architectures

    Directory of Open Access Journals (Sweden)

    Jan Michels

    2015-03-01

    Full Text Available Copepods are dominant members of the marine zooplankton. Their diets often comprise large proportions of diatom taxa whose silicified frustules are mechanically stable and offer protection against grazers. Despite of this protection, many copepod species are able to efficiently break even the most stable frustule types. This ability requires specific feeding tools with mechanically adapted architectures, compositions and properties. When ingesting food, the copepods use the gnathobases of their mandibles to grab and, if necessary, crush and mince the food items. The morphology of these gnathobases is related to the diets of the copepods. Gnathobases of copepod species that mainly feed on phytoplankton feature compact and stable tooth-like structures, so-called teeth. In several copepod species these gnathobase teeth have been found to contain silica. Recent studies revealed that the siliceous teeth are complex microscale composites with silica-containing cap-like structures located on chitinous exoskeleton sockets that are connected with rubber-like bearings formed by structures with high proportions of the soft and elastic protein resilin. In addition, the silica-containing cap-like structures exhibit a nanoscale composite architecture. They contain some amorphous silica and large proportions of the crystalline silica type α-cristobalite and are pervaded by a fine chitinous fibre network that very likely serves as a scaffold during the silicification process. All these intricate composite structures are assumed to be the result of a coevolution between the copepod gnathobases and diatom frustules in an evolutionary arms race. The composites very likely increase both the performance of the siliceous teeth and their resistance to mechanical damage, and it is conceivable that their development has favoured the copepods’ dominance of the marine zooplankton observed today.

  3. Effects on the function of three trophic levels in marine plankton communities under stress from the antifouling compound zinc pyrithione

    International Nuclear Information System (INIS)

    Hjorth, M.; Dahlloef, I.; Forbes, V.E.

    2006-01-01

    This study aimed to investigate functional responses of natural marine planktonic communities to stress from the antifouling compound zinc pyrithione (ZPT). Isotope labelling techniques ( 14 C) were applied to study bacterial incorporation of leucine, photosynthetic activity of phytoplankton and grazing of labelled prey by zooplankton communities for 6 days after exposures to nominal concentrations of 0, 5, 25, 50 nM ZPT in a mesocosm experiment in Isefjord, Denmark. Significant direct effects were visible on chlorophyll a concentrations, which decreased in all exposed communities, to between 48 and 36% of control concentrations on Day 3, 1 day after the last exposure. Phytoplankton activities were also significantly affected on Day 3 with activities between 9 and 26% of control levels, as was zooplankton activities in the 25 and 50 nM exposures. In the 50 nM exposure the total community zooplankton activity was reduced to 25 ± 4%, and per individual to 46 ± 11% of control levels. Bacterial communities showed positive indirect effects with high activities (up to 183 ± 40%) due to higher amounts of available substrate from algal death. Pollution induced community tolerance analyses performed on phytoplankton and bacterial communities at the end of the experiment indicated a development of increased tolerance for phytoplankton in the 50 nM exposed communities, whereas there were no changes in tolerance in the bacterial communities. Multivariate analysis of the integrated functional response by the plankton communities revealed a significant difference (p < 0.05) between exposed communities compared to controls in the first 3 days after last exposure and in the end of the experiment. The study provides evidence of diverse effects on the functions of marine plankton communities under stress from a pollutant. Direct effects lead to cascading indirect effects throughout the community, eventually causing different developments. Continuous exposure to ZPT could lead to

  4. Carbon isotope ratios of organic matter in Bering Sea settling particles. Extremely high remineralization of organic carbon derived from diatoms

    International Nuclear Information System (INIS)

    Yasuda, Saki; Akagi, Tasuku; Naraoka, Hiroshi; Kitajima, Fumio; Takahashi, Kozo

    2016-01-01

    The carbon isotope ratios of organic carbon in settling particles collected in the highly-diatom-productive Bering Sea were determined. Wet decomposition was employed to oxidize relatively fresh organic matter. The amount of unoxidised organic carbon in the residue following wet decomposition was negligible. The δ 13 C of organic carbon in the settling particles showed a clear relationship against SiO 2 /CaCO 3 ratio of settling particles: approximately -26‰ and -19‰ at lower and higher SiO 2 /CaCO 3 ratios, respectively. The δ 13 C values were largely interpreted in terms of mixing of two major plankton sources. Both δ 13 C and compositional data can be explained consistently only by assuming that more than 98% of diatomaceous organic matter decays and that organic matter derived from carbonate-shelled plankton may remain much less remineralized. A greater amount of diatom-derived organic matter is discovered to be trapped with the increase of SiO 2 /CaCO 3 ratio of the settling particles. The ratio of organic carbon to inorganic carbon, known as the rain ratio, therefore, tends to increase proportionally with the SiO 2 /CaCO 3 ratio under an extremely diatom-productive condition. (author)

  5. Seasonal variations in fouling diatom communities on the Yantai coast

    Science.gov (United States)

    Yang, Cuiyun; Wang, Jianhua; Yu, Yang; Liu, Sujing; Xia, Chuanhai

    2015-03-01

    Fouling diatoms are a main component of biofilm, and play an important role in marine biofouling formation. We investigated seasonal variations in fouling diatom communities that developed on glass slides immersed in seawater, on the Yantai coast, northern Yellow Sea, China, using microscopy and molecular techniques. Studies were conducted during 2012 and 2013 over 3, 7, 14, and 21 days in each season. The abundance of attached diatoms and extracellular polymeric substances increased with exposure time of the slides to seawater. The lowest diatom density appeared in winter and the highest species richness and diversity were found in summer and autumn. Seasonal variation was observed in the structure of fouling diatom communities. Pennate diatoms Cylindrotheca, Nitzschia, Navicula, Amphora, Gomphonema, and Licmophora were the main fouling groups. Cylindrotheca sp. dominated in the spring. Under laboratory culture conditions, we found that Cylindrotheca grew very fast, which might account for the highest density of this diatom in spring. The lower densities in summer and autumn might result from the emergence of fouling animals and environmental factors. The Cylindrotheca sp. was identified as Cylindrotheca closterium using18S rDNA sequencing. The colonization process of fouling diatoms and significant seasonal variation in this study depended on environmental and biological factors. Understanding the basis of fouling diatoms is essential and important for developing new antifouling techniques.

  6. Zinc affects differently growth, photosynthesis, antioxidant enzyme activities and phytochelatin synthase expression of four marine diatoms.

    Science.gov (United States)

    Nguyen-Deroche, Thi Le Nhung; Caruso, Aurore; Le, Thi Trung; Bui, Trang Viet; Schoefs, Benoît; Tremblin, Gérard; Morant-Manceau, Annick

    2012-01-01

    Zinc-supplementation (20 μM) effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase), and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa). Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses.

  7. Zinc Affects Differently Growth, Photosynthesis, Antioxidant Enzyme Activities and Phytochelatin Synthase Expression of Four Marine Diatoms

    Directory of Open Access Journals (Sweden)

    Thi Le Nhung Nguyen-Deroche

    2012-01-01

    Full Text Available Zinc-supplementation (20 μM effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase, and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa. Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses.

  8. Radiolarians decreased silicification as an evolutionary response to reduced Cenozoic ocean silica availability.

    Science.gov (United States)

    Lazarus, David B; Kotrc, Benjamin; Wulf, Gerwin; Schmidt, Daniela N

    2009-06-09

    It has been hypothesized that increased water column stratification has been an abiotic "universal driver" affecting average cell size in Cenozoic marine plankton. Gradually decreasing Cenozoic radiolarian shell weight, by contrast, suggests that competition for dissolved silica, a shared nutrient, resulted in biologic coevolution between radiolaria and marine diatoms, which expanded dramatically in the Cenozoic. We present data on the 2 components of shell weight change--size and silicification--of Cenozoic radiolarians. In low latitudes, increasing Cenozoic export of silica to deep waters by diatoms and decreasing nutrient upwelling from increased water column stratification have created modern silica-poor surface waters. Here, radiolarian silicification decreases significantly (r = 0.91, P stratification and abundance of diatoms. In high southern latitudes, Southern Ocean circulation, present since the late Eocene, maintains significant surface water silica availability. Here, radiolarian silicification decreased insignificantly (r = 0.58, P = 0.1), from approximately 0.13 at 35 Ma to 0.11 today. Trends in shell size in both time series are statistically insignificant and are not correlated with each other. We conclude that there is no universal driver changing cell size in Cenozoic marine plankton. Furthermore, biologic and physical factors have, in concert, by reducing silica availability in surface waters, forced macroevolutionary changes in Cenozoic low-latitude radiolarians.

  9. A stress surveillance system based on calcium and nitric oxide in marine diatoms.

    Directory of Open Access Journals (Sweden)

    Assaf Vardi

    2006-03-01

    Full Text Available Diatoms are an important group of eukaryotic phytoplankton, responsible for about 20% of global primary productivity. Study of the functional role of chemical signaling within phytoplankton assemblages is still in its infancy although recent reports in diatoms suggest the existence of chemical-based defense strategies. Here, we demonstrate how the accurate perception of diatom-derived reactive aldehydes can determine cell fate in diatoms. In particular, the aldehyde (2E,4E/Z-decadienal (DD can trigger intracellular calcium transients and the generation of nitric oxide (NO by a calcium-dependent NO synthase-like activity, which results in cell death. However, pretreatment of cells with sublethal doses of aldehyde can induce resistance to subsequent lethal doses, which is reflected in an altered calcium signature and kinetics of NO production. We also present evidence for a DD-derived NO-based intercellular signaling system for the perception of stressed bystander cells. Based on these findings, we propose the existence of a sophisticated stress surveillance system in diatoms, which has important implications for understanding the cellular mechanisms responsible for acclimation versus death during phytoplankton bloom successions.

  10. Diatom community structure on in-service cruise ship hulls.

    Science.gov (United States)

    Hunsucker, Kelli Zargiel; Koka, Abhishek; Lund, Geir; Swain, Geoffrey

    2014-10-01

    Diatoms are an important component of marine biofilms found on ship hulls. However, there are only a few published studies that describe the presence and abundance of diatoms on ships, and none that relate to modern ship hull coatings. This study investigated the diatom community structure on two in-service cruise ships with the same cruise cycles, one coated with an antifouling (AF) system (copper self-polishing copolymer) and the other coated with a silicone fouling-release (FR) system. Biofilm samples were collected during dry docking from representative areas of the ship and these provided information on the horizontal and vertical zonation of the hull, and intact and damaged coating and niche areas. Diatoms from the genera Achnanthes, Amphora and Navicula were the most common, regardless of horizontal ship zonation and coating type. Other genera were abundant, but their presence was more dependent on the ship zonation and coating type. Samples collected from damaged areas of the hull coating had a similar community composition to undamaged areas, but with higher diatom abundance. Diatom fouling on the niche areas differed from that of the surrounding ship hull and paralleled previous studies that investigated differences in diatom community structure on static and dynamically exposed coatings; niche areas were similar to static immersion and the hull to dynamic immersion. Additionally, diatom richness was greater on the ship with the FR coating, including the identification of several new genera to the biofouling literature, viz. Lampriscus and Thalassiophysa. These results are the first to describe diatom community composition on in-service ship hulls coated with a FR system. This class of coatings appears to have a larger diatom community compared to copper-based AF systems, with new diatom genera that have the ability to stick to ship hulls and withstand hydrodynamic forces, thus creating the potential for new problematic species in the biofilm.

  11. Marennine, Promising Blue Pigments from a Widespread Haslea Diatom Species Complex

    Directory of Open Access Journals (Sweden)

    Romain Gastineau

    2014-05-01

    Full Text Available In diatoms, the main photosynthetic pigments are chlorophylls a and c, fucoxanthin, diadinoxanthin and diatoxanthin. The marine pennate diatom Haslea ostrearia has long been known for producing, in addition to these generic pigments, a water-soluble blue pigment, marennine. This pigment, responsible for the greening of oysters in western France, presents different biological activities: allelopathic, antioxidant, antibacterial, antiviral, and growth-inhibiting. A method to extract and purify marennine has been developed, but its chemical structure could hitherto not be resolved. For decades, H. ostrearia was the only organism known to produce marennine, and can be found worldwide. Our knowledge about H. ostrearia-like diatom biodiversity has recently been extended with the discovery of several new species of blue diatoms, the recently described H. karadagensis, H. silbo sp. inedit. and H. provincialis sp. inedit. These blue diatoms produce different marennine-like pigments, which belong to the same chemical family and present similar biological activities. Aside from being a potential source of natural blue pigments, H. ostrearia-like diatoms thus present a commercial potential for aquaculture, cosmetics, food and health industries.

  12. A stress surveillance system based on calcium and nitric oxide in marine diatoms

    NARCIS (Netherlands)

    Vardi, A.; Formiggini, F.; Casotti, R.; De Martino, A.; Ribalet, F.; Miralto, A.; Bowler, C.

    2006-01-01

    Diatoms are an important group of eukaryotic phytoplankton, responsible for about 20% of global primary productivity. Study of the functional role of chemical signaling within phytoplankton assemblages is still in its infancy although recent reports in diatoms suggest the existence of chemical-based

  13. A stress surveillance system based on calcium and nitric oxide in marine diatoms.

    NARCIS (Netherlands)

    Vardi, A.; Formiggini, F.; Casotti, R.; De Martino, A.; Ribalet, F.; Miralto, A.; Bowler, C.

    2006-01-01

    Diatoms are an important group of eukaryotic phytoplankton, responsible for about 20% of global primary productivity. Study of the functional role of chemical signaling within phytoplankton assemblages is still in its infancy although recent reports in diatoms suggest the existence of chemical-based

  14. Reverse transcriptase genes are highly abundant and transcriptionally active in marine plankton assemblages

    KAUST Repository

    Lescot, Magali

    2015-11-27

    Genes encoding reverse transcriptases (RTs) are found in most eukaryotes, often as a component of retrotransposons, as well as in retroviruses and in prokaryotic retroelements. We investigated the abundance, classification and transcriptional status of RTs based on Tara Oceans marine metagenomes and metatranscriptomes encompassing a wide organism size range. Our analyses revealed that RTs predominate large-size fraction metagenomes (>5 μm), where they reached a maximum of 13.5% of the total gene abundance. Metagenomic RTs were widely distributed across the phylogeny of known RTs, but many belonged to previously uncharacterized clades. Metatranscriptomic RTs showed distinct abundance patterns across samples compared with metagenomic RTs. The relative abundances of viral and bacterial RTs among identified RT sequences were higher in metatranscriptomes than in metagenomes and these sequences were detected in all metatranscriptome size fractions. Overall, these observations suggest an active proliferation of various RT-assisted elements, which could be involved in genome evolution or adaptive processes of plankton assemblage.

  15. Reverse transcriptase genes are highly abundant and transcriptionally active in marine plankton assemblages

    KAUST Repository

    Lescot, Magali; Hingamp, Pascal; Kojima, Kenji K; Villar, Emilie; Romac, Sarah; Veluchamy, Alaguraj; Boccara, Martine; Jaillon, Olivier; Ludicone, Daniele; Bowler, Chris; Wincker, Patrick; Claverie, Jean-Michel; Ogata, Hiroyuki

    2015-01-01

    Genes encoding reverse transcriptases (RTs) are found in most eukaryotes, often as a component of retrotransposons, as well as in retroviruses and in prokaryotic retroelements. We investigated the abundance, classification and transcriptional status of RTs based on Tara Oceans marine metagenomes and metatranscriptomes encompassing a wide organism size range. Our analyses revealed that RTs predominate large-size fraction metagenomes (>5 μm), where they reached a maximum of 13.5% of the total gene abundance. Metagenomic RTs were widely distributed across the phylogeny of known RTs, but many belonged to previously uncharacterized clades. Metatranscriptomic RTs showed distinct abundance patterns across samples compared with metagenomic RTs. The relative abundances of viral and bacterial RTs among identified RT sequences were higher in metatranscriptomes than in metagenomes and these sequences were detected in all metatranscriptome size fractions. Overall, these observations suggest an active proliferation of various RT-assisted elements, which could be involved in genome evolution or adaptive processes of plankton assemblage.

  16. Indications for chlororespiration in relation to light regime in the marine diatom Thalassiosira weissflogii.

    Science.gov (United States)

    Dijkman, Nicole A; Kroon, Bernd M A

    2002-04-01

    The marine diatom Thalassiosira weissflogii was cultured under a light regime simulating the daily rise and fall of the sun. The light regime caused a daily cycle in non-photochemical quenching. Remarkable were the changes in fluorescence directly after a light-to-dark transition that occurred in addition to the changes induced by non-photochemical quenching. A transient non-photochemical reduction of PQ and of Q(A) was indicated by a transient increase in apparent F(o) and by changes in the shape of the fluorescence induction curve. The observed changes developed approximately the first 100-120 s after a light-to-dark transition and could be reversed by the application of far-red illumination. Chlororespiration is thought to cause the reduction of PQ and, as the PQ-pool is in equilibrium with Q(A), also a reduction of Q(A). The function and ecological relevance of chlororespiration are discussed.

  17. Study the Seasonal Variability of Plankton and Forage Fish in the Gulf of Khambhat Using Npzfd Model

    Science.gov (United States)

    Kumar, V.; Kumar, S.

    2016-02-01

    Numerical modelling of marine ecology exploits several assumptions and it is indeed quite challenging to include marine ecological phenomena into a mathematical framework with too many unknown parameters. The governing ordinary differential equations represent the interaction of the biological and chemical processes in a marine environment. The key concern in the development of a numerical models are parameterizations based on output, viz., mathematical modelling of ecological system mainly depends on parameters and its variations. Almost, all constituents of each trophic level of marine food web are depended on phytoplankton, which are mostly influenced by initial slope of P-I curve and nutrient stock in the study domain. Whereas, the earlier plankton dynamic models rarely include a compartment of small fish and as an agent in zooplankton mortality, which is most important for the modelling of higher trophic level of marine species. A compartment of forage fish in the modelling of plankton dynamics has been given more realistic mortality rates of plankton, viz., they feed upon phytoplankton and zooplankton. The inclusion of an additional compartment increases complexity of earlier plankton dynamics model as it introduces additional unknown parameters, which has been specified for performing the numerical simulations.As a case study we applied our analysis to explain the aquatic ecology of Gulf of Khambhat (19o 48' N - 22o20' N, 65o E - 72o40' E), west coast of India, which has rich bio-diversity and a high productive area in the form of plankton and forage fish. It has elevated turbidity and varying geography location, viz., one of the regions among world's ocean with high biological productivity.The model presented in this study is able to bring out the essential features of the observed data; that includes the bimodal oscillations in the observed data, monthly mean chlorophyll-a in the SeaWiFs/MODIS Aqua data and in-situ data of plankton. The additional

  18. Enhancement of the reactive iron pool by marine diatoms

    NARCIS (Netherlands)

    Rijkenberg, Micha J. A.; Gerringa, Loes J. A.; Timmermans, Klaas R.; Fischer, Astrid C.; Kroon, Koos J.; Buma, Anita G. J.; Wolterbeek, Bert Th.; de Baar, Hein J. W.

    2008-01-01

    Short term (2 days) laboratory experiments were performed to study the change in irradiance induced production of Fe(II) in seawater in the presence of two open oceanic Southern Ocean diatom species, Thalassiosira sp. and Chaetoceros brevis. Three irradiance conditions were applied: 1) UVB+UVA+VIS,

  19. Changes of the elemental distributions in marine diatoms as a reporter of sample preparation artefacts. A nuclear microscopy application

    International Nuclear Information System (INIS)

    Godinho, R.M.; Cabrita, M.T.; Alves, L.C.; Pinheiro, T.

    2015-01-01

    Studies of the elemental composition of whole marine diatoms cells have high interest as they constitute a direct measurement of environmental changes, and allow anticipating consequences of anthropogenic alterations to organisms, ecosystems and global marine geochemical cycles. Nuclear microscopy is a powerful tool allowing direct measurement of whole cells giving qualitative imaging of distribution, and quantitative determination of intracellular concentration. Major obstacles to the analysis of marine microalgae are high medium salinity and the recurrent presence of extracellular exudates produced by algae to maintain colonies in natural media and in vitro. The objective of this paper was to optimize the methodology of sample preparation of marine unicellular algae for elemental analysis with nuclear microscopy, allowing further studies on cellular response to metals. Primary cultures of Coscinodiscus wailesii maintained in vitro were used to optimize protocols for elemental analysis with nuclear microscopy techniques. Adequate cell preparation procedures to isolate the cells from media components and exudates were established. The use of chemical agents proved to be inappropriate for elemental determination and for intracellular morphological analysis. The assessment of morphology and elemental partitioning in cell compartments obtained with nuclear microscopy techniques enabled to infer their function in natural environment and imbalances in exposure condition. Exposure to metal affected C. wailesii morphology and internal elemental distribution

  20. Changes of the elemental distributions in marine diatoms as a reporter of sample preparation artefacts. A nuclear microscopy application

    Energy Technology Data Exchange (ETDEWEB)

    Godinho, R.M. [Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Instituto Português do Mar e da Atmosfera, Lisboa (Portugal); Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto (Portugal); Cabrita, M.T. [Instituto Português do Mar e da Atmosfera, Lisboa (Portugal); Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto (Portugal); Alves, L.C. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Sacavém (Portugal); Pinheiro, T., E-mail: murmur@ctn.ist.utl.pt [Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal)

    2015-04-01

    Studies of the elemental composition of whole marine diatoms cells have high interest as they constitute a direct measurement of environmental changes, and allow anticipating consequences of anthropogenic alterations to organisms, ecosystems and global marine geochemical cycles. Nuclear microscopy is a powerful tool allowing direct measurement of whole cells giving qualitative imaging of distribution, and quantitative determination of intracellular concentration. Major obstacles to the analysis of marine microalgae are high medium salinity and the recurrent presence of extracellular exudates produced by algae to maintain colonies in natural media and in vitro. The objective of this paper was to optimize the methodology of sample preparation of marine unicellular algae for elemental analysis with nuclear microscopy, allowing further studies on cellular response to metals. Primary cultures of Coscinodiscus wailesii maintained in vitro were used to optimize protocols for elemental analysis with nuclear microscopy techniques. Adequate cell preparation procedures to isolate the cells from media components and exudates were established. The use of chemical agents proved to be inappropriate for elemental determination and for intracellular morphological analysis. The assessment of morphology and elemental partitioning in cell compartments obtained with nuclear microscopy techniques enabled to infer their function in natural environment and imbalances in exposure condition. Exposure to metal affected C. wailesii morphology and internal elemental distribution.

  1. Intracellular Nitrate of Marine Diatoms as a Driver of Anaerobic Nitrogen Cycling in Sinking Aggregates

    Directory of Open Access Journals (Sweden)

    Anja Kamp

    2016-11-01

    Full Text Available Diatom-bacteria aggregates are key for the vertical transport of organic carbon in the ocean. Sinking aggregates also represent pelagic microniches with intensified microbial activity, oxygen depletion in the center, and anaerobic nitrogen cycling. Since some of the aggregate-forming diatom species store nitrate intracellularly, we explored the fate of intracellular nitrate and its availability for microbial metabolism within anoxic diatom-bacteria aggregates. The ubiquitous nitrate-storing diatom Skeletonema marinoi was studied as both axenic cultures and laboratory-produced diatom-bacteria aggregates. Stable 15N isotope incubations under dark and anoxic conditions revealed that axenic S. marinoi is able to reduce intracellular nitrate to ammonium that is immediately excreted by the cells. When exposed to a light:dark cycle and oxic conditions, S. marinoi stored nitrate intracellularly in concentrations > 60 mmol L-1 both as free-living cells and associated to aggregates. Intracellular nitrate concentrations exceeded extracellular concentrations by three orders of magnitude. Intracellular nitrate was used up within 2-3 days after shifting diatom-bacteria aggregates to dark and anoxic conditions. Thirty-one percent of the diatom-derived nitrate was converted to nitrogen gas, indicating that a substantial fraction of the intracellular nitrate pool of S. marinoi becomes available to the aggregate-associated bacterial community. Only 5% of the intracellular nitrate was reduced to ammonium, while 59% was recovered as nitrite. Hence, aggregate-associated diatoms accumulate nitrate from the surrounding water and sustain complex nitrogen transformations, including loss of fixed nitrogen, in anoxic, pelagic microniches. Additionally, it may be expected that intracellular nitrate not converted before the aggregates have settled onto the seafloor could fuel benthic nitrogen transformations.

  2. Global marine plankton functional type biomass distributions : Phaeocystis spp

    NARCIS (Netherlands)

    Vogt, M.; O'Brien, C.; Peloquin, J.; Schoemann, V.; Breton, E.; Estrada, M.; Gibson, J.; Karentz, D.; van Leeuwe, M. A.; Stefels, J.; Widdicombe, C.; Peperzak, L.

    2012-01-01

    The planktonic haptophyte Phaeocystis has been suggested to play a fundamental role in the global biogeochemical cycling of carbon and sulphur, but little is known about its global biomass distribution. We have collected global microscopy data of the genus Phaeocystis and converted abundance data to

  3. System responses to equal doses of photosynthetically usable radiation of blue, green, and red light in the marine diatom Phaeodactylum tricornutum.

    Directory of Open Access Journals (Sweden)

    Kristin Collier Valle

    Full Text Available Due to the selective attenuation of solar light and the absorption properties of seawater and seawater constituents, free-floating photosynthetic organisms have to cope with rapid and unpredictable changes in both intensity and spectral quality. We have studied the transcriptional, metabolic and photo-physiological responses to light of different spectral quality in the marine diatom Phaeodactylum tricornutum through time-series studies of cultures exposed to equal doses of photosynthetically usable radiation of blue, green and red light. The experiments showed that short-term differences in gene expression and profiles are mainly light quality-dependent. Transcription of photosynthesis-associated nuclear genes was activated mainly through a light quality-independent mechanism likely to rely on chloroplast-to-nucleus signaling. In contrast, genes encoding proteins important for photoprotection and PSII repair were highly dependent on a blue light receptor-mediated signal. Changes in energy transfer efficiency by light-harvesting pigments were spectrally dependent; furthermore, a declining trend in photosynthetic efficiency was observed in red light. The combined results suggest that diatoms possess a light quality-dependent ability to activate photoprotection and efficient repair of photodamaged PSII. In spite of approximately equal numbers of PSII-absorbed quanta in blue, green and red light, the spectral quality of light is important for diatom responses to ambient light conditions.

  4. Effect of ocean acidification on the fatty acid composition of a natural plankton community

    Directory of Open Access Journals (Sweden)

    E. Leu

    2013-02-01

    Full Text Available The effect of ocean acidification on the fatty acid composition of a natural plankton community in the Arctic was studied in a large-scale mesocosm experiment, carried out in Kongsfjorden (Svalbard, Norway at 79° N. Nine mesocosms of ~50 m3 each were exposed to 8 different pCO2 levels (from natural background conditions to ~1420 μatm, yielding pH values (on the total scale from ~8.3 to 7.5. Inorganic nutrients were added on day 13. The phytoplankton development during this 30-day experiment passed three distinct phases: (1 prior to the addition of inorganic nutrients, (2 first bloom after nutrient addition, and (3 second bloom after nutrient addition. The fatty acid composition of the natural plankton community was analysed and showed, in general, high percentages of polyunsaturated fatty acids (PUFAs: 44–60% of total fatty acids. Positive correlations with pCO2 were found for most PUFAs during phases 2 and/or 3, with the exception of 20:5n3 (eicosapentaenoic acid, EPA, an important diatom marker. These correlations are probably linked to changes in taxonomic composition in response to pCO2. While diatoms (together with prasinophytes and haptophytes increased during phase 3 mainly in the low and intermediate pCO2 treatments, dinoflagellates were favoured by high CO2 concentrations during the same time period. This is reflected in the development of group-specific fatty acid trophic markers. No indications were found for a generally detrimental effect of ocean acidification on the planktonic food quality in terms of essential fatty acids.

  5. Progress Towards a Global Understanding of Plankton Dynamics: The Global Alliance of CPR Surveys (GACS)

    Science.gov (United States)

    Batten, S.; Richardson, A.; Melrose, C.; Muxagata, E.; Hosie, G.; Verheye, H.; Hall, J.; Edwards, M.; Koubbi, P.; Abu-Alhaija, R.; Chiba, S.; Wilson, W.; Nagappa, R.; Takahashi, K.

    2016-02-01

    The Continuous Plankton Recorder (CPR) was first used in 1931 to routinely sample plankton and its continued deployment now sustains the longest-running, and spatially most extensive marine biological sampling programme in the world. Towed behind, for the most part commercial, ships it collects plankton samples from the surface waters that are subsequently analysed to provide taxonomically-resolved abundance data on a broad range of planktonic organisms from the size of coccolithophores to euphausiids. Plankton appear to integrate changes in the physical environment and by underpinning most marine food-webs, pass on this variability to higher trophic levels which have societal value. CPRs are deployed increasingly around the globe in discrete regional surveys that until recently interacted in an informal way. In 2011 the Global Alliance of CPR Surveys (GACS) was launched to bring these surveys together to collaborate more productively and address issues such as: methodological standardization, data integration, capacity building, and data analysis. Early products include a combined global database and regularly-released global marine ecological status reports. There are, of course, limitations to the exploitation of CPR data as well as the current geographic coverage. A current focus of GACS is integration of the data with models to meaningfully extrapolate across time and space. In this way the output could be used to provide more robust synoptic representations of key plankton variables. Recent years have also seen the CPR used as a platform in itself with the inclusion of additional sensors and water samplers that can sample the microplankton. The archive of samples has already been used for some molecular investigations and curation of samples is maintained for future studies. Thus the CPR is a key element of any regional to global ocean observing system of biodiversity.

  6. The role of ultraviolet-adaptation of a marine diatom in photoenhanced toxicity of acridine.

    Science.gov (United States)

    Wiegman, Saskia; Barranguet, Christiane; Spijkerman, Elly; Kraak, Michiel Harm Steven; Admiraal, Wim

    2003-03-01

    Cultures of the marine diatom Phaeodactylum tricornutum were grown under laboratory light with a different fraction of ultraviolet radiation (UV) to study the potential role of photoadaptation in determining the sensitivity to photoenhanced toxicity of acridine. In short-term experiments, a higher acridine concentration was needed to inhibit the photosynthetic electron flux, monitored with chlorophyll a fluorescence, in algae exposed to fluorescent light (low UV) than to mercury light (high UV), consistent with the expected role of UV. The two types of light in long-term exposures led to changes in the pigment composition and photosystem I (PS I) to photosystem II (PS II) stoichiometry to optimize the utilization of fluorescent and mercury light. Despite the adaptation of the photosynthetic apparatus to a small fraction of UV, long-term exposure to mercury light did show a constant sensitivity of the photosynthetic efficiency of P. tricornutum to the phototoxic acridine. It is concluded that the prime receptor of photoenhanced toxicity may be unrelated to the photosynthetic machinery.

  7. Nutrient supply, surface currents, and plankton dynamics predict zooplankton hotspots in coastal upwelling systems

    Science.gov (United States)

    Messié, Monique; Chavez, Francisco P.

    2017-09-01

    A simple combination of wind-driven nutrient upwelling, surface currents, and plankton growth/grazing equations generates zooplankton patchiness and hotspots in coastal upwelling regions. Starting with an initial input of nitrate from coastal upwelling, growth and grazing equations evolve phytoplankton and zooplankton over time and space following surface currents. The model simulates the transition from coastal (large phytoplankton, e.g., diatoms) to offshore (picophytoplankton and microzooplankton) communities, and in between generates a large zooplankton maximum. The method was applied to four major upwelling systems (California, Peru, Northwest Africa, and Benguela) using latitudinal estimates of wind-driven nitrate supply and satellite-based surface currents. The resulting zooplankton simulations are patchy in nature; areas of high concentrations coincide with previously documented copepod and krill hotspots. The exercise highlights the importance of the upwelling process and surface currents in shaping plankton communities.

  8. Effect of different CO2 concentrations on biomass, pigment content, and lipid production of the marine diatom Thalassiosira pseudonana.

    Science.gov (United States)

    Sabia, Alessandra; Clavero, Esther; Pancaldi, Simonetta; Salvadó Rovira, Joan

    2018-02-01

    The marine diatom Thalassiosira pseudonana grown under air (0.04% CO 2 ) and 1 and 5% CO 2 concentrations was evaluated to determine its potential for CO 2 mitigation coupled with biodiesel production. Results indicated that the diatom cultures grown at 1 and 5% CO 2 showed higher growth rates (1.14 and 1.29 div day -1 , respectively) and biomass productivities (44 and 48 mg AFDW L -1  day -1 ) than air grown cultures (with 1.13 div day -1 and 26 mg AFDW L -1  day -1 ). The increase of CO 2 resulted in higher cell volume and pigment content per cell of T. pseudonana. Interestingly, lipid content doubled when air was enriched with 1-5% CO 2 . Moreover, the analysis of the fatty acid composition of T. pseudonana revealed the predominance of monounsaturated acids (palmitoleic-16:1 and oleic-18:1) and a decrease of the saturated myristic acid-14:0 and polyunsaturated fatty acids under high CO 2 levels. These results suggested that T. pseudonana seems to be an ideal candidate for biodiesel production using flue gases.

  9. Intracellular nitrate of marine diatoms as a driver of anaerobic nitrogen cycling in sinking aggregates

    DEFF Research Database (Denmark)

    Kamp, Anja; Stief, Peter; Bristow, Laura A.

    2016-01-01

    % was recovered as nitrite. Hence, aggregate-associated diatoms accumulate nitrate from the surrounding water and sustain complex nitrogen transformations, including loss of fixed nitrogen, in anoxic, pelagic microniches. Additionally, it may be expected that intracellular nitrate not converted before...... store nitrate intracellularly, we explored the fate of intracellular nitrate and its availability for microbial metabolism within anoxic diatom-bacteria aggregates. The ubiquitous nitrate-storing diatom Skeletonema marinoi was studied as both axenic cultures and laboratory-produced diatom......-bacteria aggregates. Stable 15N isotope incubations under dark and anoxic conditions revealed that axenic S. marinoi is able to reduce intracellular nitrate to ammonium that is immediately excreted by the cells. When exposed to a light:dark cycle and oxic conditions, S. marinoi stored nitrate intracellularly...

  10. Diatoms dominate the eukaryotic metatranscriptome during spring in coastal 'dead zone' sediments.

    Science.gov (United States)

    Broman, Elias; Sachpazidou, Varvara; Dopson, Mark; Hylander, Samuel

    2017-10-11

    An important characteristic of marine sediments is the oxygen concentration that affects many central metabolic processes. There has been a widespread increase in hypoxia in coastal systems (referred to as 'dead zones') mainly caused by eutrophication. Hence, it is central to understand the metabolism and ecology of eukaryotic life in sediments during changing oxygen conditions. Therefore, we sampled coastal 'dead zone' Baltic Sea sediment during autumn and spring, and analysed the eukaryotic metatranscriptome from field samples and after incubation in the dark under oxic or anoxic conditions. Bacillariophyta (diatoms) dominated the eukaryotic metatranscriptome in spring and were also abundant during autumn. A large fraction of the diatom RNA reads was associated with the photosystems suggesting a constitutive expression in darkness. Microscope observation showed intact diatom cells and these would, if hatched, represent a significant part of the pelagic phytoplankton biomass. Oxygenation did not significantly change the relative proportion of diatoms nor resulted in any major shifts in metabolic 'signatures'. By contrast, diatoms rapidly responded when exposed to light suggesting that light is limiting diatom development in hypoxic sediments. Hence, it is suggested that diatoms in hypoxic sediments are on 'standby' to exploit the environment if they reach suitable habitats. © 2017 The Author(s).

  11. Particulate Trace Element Cycling in a Diatom Bloom at Station ALOHA

    Science.gov (United States)

    Weisend, R.; Morton, P. L.; Landing, W. M.; Fitzsimmons, J. N.; Hayes, C. T.; Boyle, E. A.

    2014-12-01

    Phytoplankton in oligotrophic marine deserts depend on remote sources to supply trace nutrients. To examine these sources, marine particulate matter samples from the central North Pacific (Station ALOHA) were collected during the July-August 2012 HOE-DYLAN cruises and analyzed for a suite of trace (e.g., Fe, Mn) and major (e.g. Al, P) elements. Daily surface SPM samples were examined for evidence of atmospheric deposition and biological uptake, while five vertical profiles were examined for evidence of surface vertical export and subsurface horizontal transport from nearby sources (e.g., margin sediments, hydrothermal plumes). Maxima in surface particulate P (a biological tracer) corresponded with a diatom bloom, and surprisingly also coincided with maxima in particulate Al (typically a tracer for lithogenic inputs). The surface particulate Al distributions likely result from the adsorption of dissolved Al onto diatom silica frustules, not from atmospheric dust deposition. In addition, a subsurface maximum in particulate Al and P was observed four days later at 75m, possibly resulting from vertical export of the surface diatom bloom. The distributions of other bioactive trace elements (e.g. Cd, Co, Cu) will be presented in the context of the diatom bloom and other biological, chemical and physical features. A second, complementary poster is also being presented which examines the cycling of trace elements in lithogenic particles (Morton et al., "Trace Element Cycling in Lithogenic Particles at Station ALOHA").

  12. Heterospecific mating and partial prezygotic reproductive isolation in the planktonic marine copepods Centropages typicus and Centropages hamatus

    DEFF Research Database (Denmark)

    Goetze, Erica

    2008-01-01

    Using three-dimensional (3D) video observations in laboratory experiments, I describe interspecific and intergeneric mating behaviors and motility patterns of the common planktonic marine copepods Centropages typicus, Centropages hamatus, and Temora longicornis. These observations are then used...... to estimate heterospecific and conspecific male mate-search volume rates and mate encounter rates in North Sea Centropages populations. Behavioral prezygotic reproductive isolation between Centropages species is incomplete, since males of each species pursued, contacted, captured, and, in rare cases, placed...... a spermatophore on the urosome of heterospecific females. T. longicornis males also detected the diffusible pheromone trail and pursued C. typicus females to the point of mate contact. Male mate-search tracking behavior was equally effective on diffusible pheromone trails of heterospecific and conspecific females...

  13. Porous silicon and diatoms micro-shells: an example of inverse biomimetic

    Science.gov (United States)

    De Tommasi, Edoardo; Rea, Ilaria; Rendina, Ivo; De Stefano, Luca

    2011-05-01

    Porous silicon (PSi) is by far a very useful technological platform for optical monitoring of chemical and biological substances and due to its peculiar physical and morphological properties it is worldwide used in sensing experiments. On the other hand, we have discovered a natural material, the micro-shells of marine diatoms, ubiquitous unicellular algae, which are made of hydrated amorphous silica, but, most of all, show geometrical structures made of complex patterns of pores which are surprisingly similar to those of porous silicon. Moreover, under laser irradiation, this material is photoluminescent and the photoluminescence is very sensitive to the surrounding atmosphere, which means that the material can act as a transducer. Starting from our experience on PSi devices, we explore the optical and photonic properties of marine diatoms micro-shells in a sort of inverse biomimicry.

  14. In vivo exposure to northern diatoms arrests sea urchin embryonic development.

    Science.gov (United States)

    Gudimova, Elena; Eilertsen, Hans C; Jørgensen, Trond Ø; Hansen, Espen

    2016-01-01

    There are numerous reports indicating that marine diatoms may act harmful to early developmental stages of invertebrates. It is believed that the compounds responsible for these detrimental effects are oxylipins resulting from oxidized polyunsaturated fatty acids, and that they may function as grazing deterrents. Most studies reporting these effects have exposed test organisms to diatom extracts or purified toxins, but data from in vivo exposure to intact diatoms are scarce. We have conducted sea urchin egg incubation and plutei feeding experiments to test if intact diatom cells affected sea urchin embryo development and survival. This was done by exposing the common northern sea urchins Strongylocentrotus droebachiensis and Echinus acutus to northern strains of the diatoms Chaetoceros socialis, Skeletonema marinoi, Chaetoceros furcellatus, Attheya longicornis, Thalassiosira gravida and Porosira glacialis. The intact diatom cell suspensions were found to inhibit sea urchin egg hatching and embryogenesis. S. marinoi was the most potent one as it caused acute mortality in S. droebachiensis eggs after only four hours exposure to high (50 μg/L Chla) diatom concentrations, as well as 24 h exposure to normal (20 μg/L Chla) and high diatom concentrations. The second most potent species was T. gravida that caused acute mortality after 24 h exposure to both diatom concentrations. A. longicornis was the least harmful of the diatom species in terms of embryo development arrestment, and it was the species that was most actively ingested by S. droebachiensis plutei. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Molecular fossils of diatoms. Applications in petroleum geochemistry and palaeoenvironmental studies

    Energy Technology Data Exchange (ETDEWEB)

    Rampen, S.W.

    2009-06-11

    different Proboscia species and culture experiments showed increasing chain-lengths and a decreasing degree of unsaturation for 1,14-diols with increasing growth temperature. Lipid analyses from surface sediments from the eastern South Atlantic suggested a significant relationship between long-chain 1,14-diol chain-length and sea surface temperature, but the degree of unsaturation for 1,14-diols seems also determined by other factors. Sediment trap data from the Arabian Sea confirmed that Proboscia lipids can be used as proxies for upwelling conditions and also showed that long-chain 1,15-diols are not limited to upwelling conditions. A sediment core taken from the Somali continental slope showed strong fluctuations of long-chain 1,14- and 1,15-diols with time; 1,14-diols were relatively high during the Holocene when upwelling occurred and much lower during the Late Glacial Maximum and the last Glacial when upwelling was suppressed. Elevated 1,14-diol concentrations during the first half of Marine Isotope Stage 3 and at the end of Marine Isotope Stage 5.1 suggest intensified glacial upwelling during those periods. Analyses of long-chain diols in a sediment core from the North Western Antarctic Peninsula suggest that Proboscia diatom productivity in this area is associated with upwelling of Upper Circumpolar Deep Water at the shelf break. Comparison of the diol record with melt events in Siple Dome ice core indicates that this upwelling is driven by the same climatic processes that are responsible for changes in regional climate.

  16. Chemical composition of phytoplankton and Particulate Organic Matter in the Ría de Vigo (NW Spain

    Directory of Open Access Journals (Sweden)

    A. F. Ríos

    1998-09-01

    Full Text Available Elemental (C, H, O, N, Si, P and biochemical composition (proteins, carbohydrates, lipids, phosphorus compounds, chlorophyll and opal in particulate organic matter, diatoms, other autotrophs, heterotrophs and detritus from natural plankton were established simultaneously by measuring relatively few components. Using standard techniques in marine chemistry on board ship, it is possible to infer a great deal about the composition and condition of the plankton. In addition, the organic matter content in terms of cell volume was determined for each group of plankton. Variation of chemical composition with depth was also considered. The ratio carbohydrates/lipids (Cbh/Lip was used as an indicator of the chemical quality of the plankton.

  17. Diatom diversity and response in metal-polluted river environment: preliminary reports from Gromolo Torrent (Liguria, Italy)

    Science.gov (United States)

    Capello, Marco; Tolotti, Raffaella; Bernabè, Dimitri; Carbone, Cristina; Consani, Sirio; Vagge, Greta; Cutroneo, Laura

    2016-04-01

    Mineral content and physico-chemical properties of the freshwaters are the main factors affecting both algal assemblages and distributions, while presence of dissolved silicon, low water conductivity, and rocky-mountain habitats host benthic diatom assemblages of high species richness. It is shown that diatoms are sensible to the freshwater acidification (used as pH indicators in acid waters), environmental and climate changes, river organic load, and heavy metal water pollution. For this characteristic, diatoms are among the major biological markers for a variety of environmental and stratigraphic applications. In particular, qualitative and quantitative analyses (assemblage analyses) together with biotic indices as well as morphological and ultrastructure parameterisation provide tools for detailed environmental control and paleo-environmental reconstructions. Severe environmental problems are typically caused by "abandoned mine" and are consequences of the cessation of the mining activity with a lack in infrastructure maintenance. The mine waters which flow into the Gromolo Torrent are almost acidic (pH varying from 2.4 to 5) and enriched in heavy metals and SO42-. This pollution is caused by Acid Mine Drainage (AMD) processes that interest the Libiola mining area, known as a typical example of active AMD processes. The aim of this work is: 1) to characterise the local benthic diatom assemblages along the acidic mine effluents that discharge from Libiola mine, the entire Gromolo torrent course, and in the marine area off the torrent mouth; 2) to identify the main diatom biomarker taxa; 3) to highlight striking situations of equilibrium-disequilibrium in the algal communities, and 4) to point out types and frequency of some teratologies affecting specific diatom taxa as a response to environmental stressors (such as metal-metalloid enrichment). A total of 17 diatom samples was collected and examined, including some marine samples. Diatoms were collected in the

  18. The possible role of bacterial signal molecules N-acyl homoserine lactones in the formation of diatom-biofilm (Cylindrotheca sp.)

    International Nuclear Information System (INIS)

    Yang, Cuiyun; Fang, Shengtao; Chen, Dehui; Wang, Jianhua; Liu, Fanghua; Xia, Chuanhai

    2016-01-01

    Bacterial quorum sensing signal molecules N-acyl homoserine lactones (AHLs) (C10-HSL, 3-OXO-C10-HSL and 3-OH-C10-HSL) as possible chemical cues were employed to investigate the role in the formation of fouling diatom-biofilm (Cylindrotheca sp.). Results showed that AHLs promoted Chlorophyll a (Chl.a) and extracellular polymeric substance (EPS) contents in the diatom-biofilm. In the presence of AHLs-inhibitor 3, 4-Dibromo-2(5)H-furanone, which was used to avoid the possible interference of AHLs from bacteria, AHLs also increased the Chl.a and EPS contents. Scanning electron microscope and confocal laser scanning microscope analysis further demonstrated that AHLs promoted the formation of the diatom-biofilm. Non-invasive micro-test technique showed that AHLs promoted Ca 2+ efflux in Cylindrotheca sp., which implied that Ca 2+ might be correlated with AHLs-induced positive effect on the formation of diatom-biofilm. This study provides direct evidences that AHLs play an important role in developing the diatom-biofilm and AHLs-inhibitors might be promising active agents in marine antifouling. - Highlights: •AHLs effectively increase Chl.a and EPS contents in diatom-biofilm. •SEM and CLSM further demonstrate that AHLs promote the formation of diatom-biofilm. •AHLs trigger algal cellular Ca 2+ efflux. •AHLs-inhibitors might be promising active agents in marine antifouling.

  19. Influence of ocean acidification and deep water upwelling on oligotrophic plankton communities in the subtropical North Atlantic

    DEFF Research Database (Denmark)

    Taucher, Jan; Bach, Lennart T.; Boxhammer, Tim

    2017-01-01

    Oceanic uptake of anthropogenic carbon dioxide (CO2) causes pronounced shifts in marine carbonate chemistry and a decrease in seawater pH. Increasing evidence indicates that these changes-summarized by the term ocean acidification (OA)-can significantly affect marine food webs and biogeochemical...... cycles. However, current scientific knowledge is largely based on laboratory experiments with single species and artificial boundary conditions, whereas studies of natural plankton communities are still relatively rare. Moreover, the few existing community-level studies were mostly conducted in rather...... and successfully simulated a deep water upwelling event that induced a pronounced plankton bloom. Our study revealed significant effects of OA on the entire food web, leading to a restructuring of plankton communities that emerged during the oligotrophic phase, and was further amplified during the bloom...

  20. Planktonic foraminifera-derived environmental DNA extracted from abyssal sediments preserves patterns of plankton macroecology

    Directory of Open Access Journals (Sweden)

    R. Morard

    2017-06-01

    Full Text Available Deep-sea sediments constitute a unique archive of ocean change, fueled by a permanent rain of mineral and organic remains from the surface ocean. Until now, paleo-ecological analyses of this archive have been mostly based on information from taxa leaving fossils. In theory, environmental DNA (eDNA in the sediment has the potential to provide information on non-fossilized taxa, allowing more comprehensive interpretations of the fossil record. Yet, the process controlling the transport and deposition of eDNA onto the sediment and the extent to which it preserves the features of past oceanic biota remains unknown. Planktonic foraminifera are the ideal taxa to allow an assessment of the eDNA signal modification during deposition because their fossils are well preserved in the sediment and their morphological taxonomy is documented by DNA barcodes. Specifically, we re-analyze foraminiferal-specific metabarcodes from 31 deep-sea sediment samples, which were shown to contain a small fraction of sequences from planktonic foraminifera. We confirm that the largest portion of the metabarcode originates from benthic bottom-dwelling foraminifera, representing the in situ community, but a small portion (< 10 % of the metabarcodes can be unambiguously assigned to planktonic taxa. These organisms live exclusively in the surface ocean and the recovered barcodes thus represent an allochthonous component deposited with the rain of organic remains from the surface ocean. We take advantage of the planktonic foraminifera portion of the metabarcodes to establish to what extent the structure of the surface ocean biota is preserved in sedimentary eDNA. We show that planktonic foraminifera DNA is preserved in a range of marine sediment types, the composition of the recovered eDNA metabarcode is replicable and that both the similarity structure and the diversity pattern are preserved. Our results suggest that sedimentary eDNA could preserve the ecological structure of

  1. Ecological dispersal barrier across the equatorial Atlantic in a migratory planktonic copepod

    Science.gov (United States)

    Goetze, Erica; Hüdepohl, Patricia T.; Chang, Chantel; Van Woudenberg, Lauren; Iacchei, Matthew; Peijnenburg, Katja T. C. A.

    2017-11-01

    Resolving the large-scale genetic structure of plankton populations is important to understanding their responses to climate change. However, few studies have reported on the presence and geographic extent of genetically distinct populations of marine zooplankton at ocean-basin scales. Using mitochondrial sequence data (mtCOI, 718 animals) from 18 sites across a basin-scale Atlantic transect (39°N-40°S), we show that populations of the dominant migratory copepod, Pleuromamma xiphias, are genetically subdivided across subtropical and tropical waters (global FST = 0.15, global ΦST = 0.21, both P marine plankton, and we suggest that this may be a dominant mechanism driving the large-scale genetic structure of zooplankton species. Our results also demonstrate the potential importance of the Atlantic equatorial province as a region of evolutionary novelty for the holoplankton.

  2. Identification of major planktonic sulfur oxidizers in stratified freshwater lake.

    Directory of Open Access Journals (Sweden)

    Hisaya Kojima

    Full Text Available Planktonic sulfur oxidizers are important constituents of ecosystems in stratified water bodies, and contribute to sulfide detoxification. In contrast to marine environments, taxonomic identities of major planktonic sulfur oxidizers in freshwater lakes still remain largely unknown. Bacterioplankton community structure was analyzed in a stratified freshwater lake, Lake Mizugaki in Japan. In the clone libraries of 16S rRNA gene, clones very closely related to a sulfur oxidizer isolated from this lake, Sulfuritalea hydrogenivorans, were detected in deep anoxic water, and occupied up to 12.5% in each library of different water depth. Assemblages of planktonic sulfur oxidizers were specifically analyzed by constructing clone libraries of genes involved in sulfur oxidation, aprA, dsrA, soxB and sqr. In the libraries, clones related to betaproteobacteria were detected with high frequencies, including the close relatives of Sulfuritalea hydrogenivorans.

  3. Contribution of offshore petroleum deposits to marine food chain

    Science.gov (United States)

    Mori, S.

    2009-12-01

    Petroleum production out of offshore petroleum deposits often coincides with abundant fisheries in the world. Superposition of marine microorganism concentration distribution and offshore petroleum field distribution from various data in the literature provides to prove this coincidence. Sakhalin Island coastal regions, North Sea, Gulf of Mexico, etc. are chosen for the superpositions. Significant conformity is observed between the plankton concentration distribution and the offshore petroleum deposit distribution in all those regions. Also, most studies on the consequence of oil spills to marine eco-systems have focused mainly on hazardous marine pollution caused by spilled petroleum at high concentration in marine environment. However, some of those data clearly indicate stimulation of plankton population in properly low concentration levels of dissolved hydrocarbons and dissolved petroleum compositions. Further, increase of hydrocarbon concentration leads to its inhibition from its stimulation conditions upon crossing over a critical concentration level—a plankton stimulation/inhibition threshold concentration (SITC) of hydrocarbons. The SITC varies depending on hydrocarbon compounds, petroleum compositions, and microorganisms such as planktons. Further, petroleum composition diffusing through subterranean layers from petroleum deposits reacts with dissolved oxygen to be consumed at the ocean floor to precipitate the agglomerate suspension of hydrocarbons, leaving the sea water in a condition of oxygen depletion on the ocean floor. Such incidents are also briefly discussed.Plankton stimulation/inhibition threshold concentration of petroleum fractions

  4. Preparation and characteristics of biosilica derived from marine diatom biomass of Nitzschia closterium and Thalassiosira

    Science.gov (United States)

    Qi, Yarong; Wang, Xin; Cheng, Jay Jiayang

    2017-05-01

    In this study, biosilica of high purity was successfully prepared from marine diatom ( Nitzschia closterium and Thalassiosira) biomass using an optimized novel method with acid washing treatment followed by thermal treatment of the biomass. The optimal condition of the method was 2% diluted HCl washing and baking at 600°C. The SiO2 contents of N. closterium biosilica and Thalassiosira biosilica were 92.23% and 91.52%, respectively, which were both higher than that of diatomite biosilica. The SiO2 morphologies of both biosilica are typical amorphous silica. Besides, N. closterium biosilica possessed micropores and fibers with a surface area of 59.81m2/g. And Thalassiosira biosilica possessed a mesoporous hierarchical skeleton with a surface area of 9.91m2/g. The results suggest that the biosilica samples obtained in this study present highly porous structures. The prepared porous biosilica material possesses great potential to be used as drug delivery carrier, biosensor, biocatalyst as well as adsorbent in the future.

  5. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition.

    Science.gov (United States)

    Alberti, Adriana; Poulain, Julie; Engelen, Stefan; Labadie, Karine; Romac, Sarah; Ferrera, Isabel; Albini, Guillaume; Aury, Jean-Marc; Belser, Caroline; Bertrand, Alexis; Cruaud, Corinne; Da Silva, Corinne; Dossat, Carole; Gavory, Frédérick; Gas, Shahinaz; Guy, Julie; Haquelle, Maud; Jacoby, E'krame; Jaillon, Olivier; Lemainque, Arnaud; Pelletier, Eric; Samson, Gaëlle; Wessner, Mark; Acinas, Silvia G; Royo-Llonch, Marta; Cornejo-Castillo, Francisco M; Logares, Ramiro; Fernández-Gómez, Beatriz; Bowler, Chris; Cochrane, Guy; Amid, Clara; Hoopen, Petra Ten; De Vargas, Colomban; Grimsley, Nigel; Desgranges, Elodie; Kandels-Lewis, Stefanie; Ogata, Hiroyuki; Poulton, Nicole; Sieracki, Michael E; Stepanauskas, Ramunas; Sullivan, Matthew B; Brum, Jennifer R; Duhaime, Melissa B; Poulos, Bonnie T; Hurwitz, Bonnie L; Pesant, Stéphane; Karsenti, Eric; Wincker, Patrick

    2017-08-01

    A unique collection of oceanic samples was gathered by the Tara Oceans expeditions (2009-2013), targeting plankton organisms ranging from viruses to metazoans, and providing rich environmental context measurements. Thanks to recent advances in the field of genomics, extensive sequencing has been performed for a deep genomic analysis of this huge collection of samples. A strategy based on different approaches, such as metabarcoding, metagenomics, single-cell genomics and metatranscriptomics, has been chosen for analysis of size-fractionated plankton communities. Here, we provide detailed procedures applied for genomic data generation, from nucleic acids extraction to sequence production, and we describe registries of genomics datasets available at the European Nucleotide Archive (ENA, www.ebi.ac.uk/ena). The association of these metadata to the experimental procedures applied for their generation will help the scientific community to access these data and facilitate their analysis. This paper complements other efforts to provide a full description of experiments and open science resources generated from the Tara Oceans project, further extending their value for the study of the world's planktonic ecosystems.

  6. An integrated analysis of molecular acclimation to high light in the marine diatom Phaeodactylum tricornutum

    DEFF Research Database (Denmark)

    Nymark, Marianne; Valle, Kristin C; Brembu, Tore

    2009-01-01

    Photosynthetic diatoms are exposed to rapid and unpredictable changes in irradiance and spectral quality, and must be able to acclimate their light harvesting systems to varying light conditions. Molecular mechanisms behind light acclimation in diatoms are largely unknown. We set out to investiga...

  7. Diatom-Based Paleoenvironmental Reconstruction of Lake Telmen for the Last 6230 Years

    Directory of Open Access Journals (Sweden)

    N.Soninkhishig

    2003-06-01

    Full Text Available The preserved diatom flora in a 14C dated (0-6230 yBP, 343 cm long core sequence from Lake Telmen, Mongolia, was investigated to determine the nature of the lake-ecosystem and watershed response to Late Holocene climate change. Modern Lake Telmen is a slightly saline (presently 4 g L-1 closed- basin lake located along a N-S and E-W aridity ecotone in north-central Mongolia, making it sensitive to climate-driven changes in effective moisture balance. Diatoms were not preserved regularly in two areas of the Lake Telmen sediment record (5380-41 50 yBP and 1050-425 yBP possibly due to high carbonate preservation; however, diatom preservation between these areas was good to excellent. Diatom-based paleosalinity reconstruction using species-specific salinity optima from the Northern Great Plains of North America and community analysis suggests the following climate-lake response model during the Late Holocene. From 6230 to 5520 radiocarbon years ago, warm-dry climate resulted in a small salty (20 g L-1 lake in the Telmen basin that was dominated by high salinity indicator species (e.g. Cyclotella caspia, Navicellapusilla, Brachysira aponina. From 3 860 to 1200 radiocarbon yBP, Lake Telmen recorded a period of a modulating climate that resulted in regular fluctuations in paleosalinity from 2 to 4 g L-1 in conjunction with lake level changes. Dominance in the diatom flora fluctuated between the freshwater planktonic form Cyclotella bodanica var. affinis and the salinity-tolerant benthic taxon Anomoeoneis sphaerophora f. costata during this period characterized by generally more humid climatic periods interspersed with dry-as-present conditions. The most modern samples (0-250 yBP preserve floristic assemblages similar to those found between 3860 to 1200 radiocarbon yBP and indicate that as recently as 250 years ago Lake Telmen had lower salinity values than modern day.

  8. Diatoms in water quality assessment: to count or not to count them?

    Czech Academy of Sciences Publication Activity Database

    Brabcová, B.; Marvan, P.; Opatřilová, L.; Brabec, K.; Fránková, Markéta; Heteša, J.

    2017-01-01

    Roč. 795, č. 1 (2017), s. 113-127 ISSN 0018-8158 Institutional support: RVO:67985939 Keywords : diatoms * quantification * streams Subject RIV: EH - Ecology, Behaviour OBOR OECD: Marine biology, freshwater biology, limnology Impact factor: 2.056, year: 2016

  9. Biofuel and Biochemical Analysis of Amphora coffeaeformis RR03, a Novel Marine Diatom, Cultivated in an Open Raceway Pond

    Directory of Open Access Journals (Sweden)

    Muthu Ganesan Rajaram

    2018-05-01

    Full Text Available (1 Background: To increase the biochemical productivity and to reduce the production cost of microalgal biodiesel, this study aimed to investigate the effects of CO2 on biomass, fatty acids, carbon-hydrogen, and biochemical accumulation of the marine diatom, Amphora coffeaeformis RR03 (A. coffeaeformis RR03. (2 Methods: Fatty acid composition of the dry biomass of A. coffeaeformis RR03 was analysed using Gas chromatography-mass spectrometry (GC-MS. (3 Results: The results showed that A. coffeaeformis RR03 contained high biomass productivity and biochemical composition in different cultivation conditions. A. coffeaeformis RR03 showed maximum growth of 5.2 × 106/mL on 21st day cultivation under CO2 supply. The bio-crude oil production from A. coffeaeformis RR03 was 36.19 megajoule (MJ. GC-MS analysis found that the dry biomass of A. coffeaeformis RR03 contained maximum of 47.72% fatty acids of 16-octadecanoic acid methyl ester (10:12 and 19.58% pentadecanoic acid, 13-methyl-, and methyl ester (9.24. (4 Conclusion: The results of this study may suggest that a novel diatom of A. coffeaeformis RR03 could be a suitable candidate for biocrude production in order to meet the future demand of energy.

  10. Computer vision for continuous plankton monitoring

    OpenAIRE

    Damian Janusz Matuszewski

    2014-01-01

    Plankton microorganisms constitute the base of the marine food web and play a great role in global atmospheric carbon dioxide drawdown. Moreover, being very sensitive to any environmental changes they allow noticing (and potentially counteracting) them faster than with any other means. As such they not only influence the fishery industry but are also frequently used to analyze changes in exploited coastal areas and the influence of these interferences on local environment and climate. As a co...

  11. Microphytobenthos in ecotoxicology: a review of the use of marine benthic diatoms in bioassays.

    Science.gov (United States)

    Araújo, Cristiano V M; Blasco, Julián; Moreno-Garrido, Ignacio

    2010-08-01

    Contamination in coastal zones is an increasing problem that adversely affects biological diversity and the functioning of coastal ecosystems. Sediment is an important compartment of these zones since large quantities of diverse contaminants can accumulate there. Whole-sediment toxicity assays are of increasing importance, and several assay methods using mainly invertebrates have been developed. However, an important part of the benthic community, the microphytobenthos (represented principally by benthic diatoms and cyanobacteria), has surprisingly been neglected. Recently, comprehensive studies have been conducted using benthic marine microalgae with the object of establishing a toxicity assay method for sediment samples. The main results published to date in the literature and obtained by our own team have been compiled and are discussed in this review. The value and feasibility of using certain organisms of the microphytobenthos group in ecotoxicology studies are also discussed, and a sediment quality guideline based on multivariate procedure has been derived from data obtained in previous studies. Finally, future perspectives for research in this field are discussed. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Spectral radiation dependent photoprotective mechanism in the diatom Pseudo-nitzschia multistriata.

    Directory of Open Access Journals (Sweden)

    Christophe Brunet

    Full Text Available Phytoplankton, such as diatoms, experience great variations of photon flux density (PFD and light spectrum along the marine water column. Diatoms have developed some rapidly-regulated photoprotective mechanisms, such as the xanthophyll cycle activation (XC and the non-photochemical chlorophyll fluorescence quenching (NPQ, to protect themselves from photooxidative damages caused by excess PFD. In this study, we investigate the role of blue fluence rate in combination with red radiation in shaping photoacclimative and protective responses in the coastal diatom Pseudo-nitzschia multistriata. This diatom was acclimated to four spectral light conditions (blue, red, blue-red, blue-red-green, each of them provided with low and high PFD. Our results reveal that the increase in the XC pool size and the amplitude of NPQ is determined by the blue fluence rate experienced by cells, while cells require sensing red radiation to allow the development of these processes. Variations in the light spectrum and in the blue versus red radiation modulate either the photoprotective capacity, such as the activation of the diadinoxanthin-diatoxanthin xanthophyll cycle, the diadinoxanthin de-epoxidation rate and the capacity of non-photochemical quenching, or the pigment composition of this diatom. We propose that spectral composition of light has a key role on the ability of diatoms to finely balance light harvesting and photoprotective capacity.

  13. First record of the invasive diatom Didymosphenia geminata (Lyngbye) Schmidt in a Patagonian Andean river of Argentina

    OpenAIRE

    Sastre, Alicia Viviana; Santinelli, Norma Herminia; Bauer, Gabriel A.; Ayesterán, M. Gabriel; Uyua, Noelia Mariel

    2017-01-01

    The Futaleufú River, Argentina, was monitored monthly from June 2010 to August 2011, in order to detect the invasive diatom Didymosphenia geminata, which was previously observed in Chile. Plankton and periphyton samples were taken from 10 sites. Didymosphenia geminata was not found until late winter. In August 2010, the species was first detected at isolated points of the river but in spring and summer the algal coverage extended along several kilometers. The coverage of blooms, spread to dee...

  14. Een methode ter bepaling van de respiratieaktiviteit in marien plankton

    NARCIS (Netherlands)

    Lambeck, R.H.D.

    1973-01-01

    The usefulness of a method, described by T.T. Packard (1971), for the determination of the potential respiratory rate in marine plankton, based on the use of tetrazolium dye, was tested. Especially the influence of a few aspects of the homogenisation procedure on the final results was investigated.

  15. Impact of UV-B (290-320 nm) radiation on photosynthesis-mediated uptake of 15N-ammonia and 15N-nitrate of several marine diatoms

    International Nuclear Information System (INIS)

    Doehler, G.; Stolter, H.

    1986-01-01

    The marine diatoms Ditylum brigthwellii, Lithodesmium variabile, Odontella sinensis, Synedra planctonica and Thalassiosira rotula grown at 18 0 C under normal air conditions (0.035 vol.% CO 2 ) were exposed to different levels (439 and 717 J m -2 d -1 , weighted) of UV-B radiation for 2 d (5 h/d). Pigmentation, protein and total nitrogen content were reduced linearly to the dose of UV-B radiation. Photosynthesis-mediated uptake of 15 N-ammonia was more affected by UV-B irradiance in all tested diatoms than that of 15 N-nitrate. A species-dependent behavior in the assimilation of inorganic nitrogenous compounds has been observed: Synedra was a very sensitive species to UV-B radiation whereas the same UV-B doses had no effect on the assimilation rate of ammonia and nitrate of the Lithodesmium cells. The results were discussed with reference to the inhibition of the enzymes of the nitrogen metabolism. (author)

  16. Transformation techniques for metabolic engineering of diatoms and haptophytes: current state and prospects.

    Science.gov (United States)

    Velmurugan, Natarajan; Deka, Deepi

    2018-05-01

    Diatoms and haptophytes represent a key segment of the dominant phytoplankton communities that frequently form massive blooms in the photic zone of the ocean and are considered indicators of global climate changes. Diatoms and haptophytes also play a vital role in the biological carbon fixation in the carbon cycles. Carbon partitioning within diatoms and haptophytes possesses a wide range of chemical compounds and storage materials, such as lipids, carbohydrates, and chlorophyll. Among the marine microorganisms, diatoms and haptophytes have been recognized as promising sources of long- and very long-chain polyunsaturated fatty acids (PUFA). So far, a variety of approaches have been employed for genetic modification in the nuclei of diatoms and haptophytes. Studies on transformation and metabolic engineering in various intracellular genomes, such as chloroplast and mitochondria, are scarce. Particle bombardment, Agrobacterium and PEG-mediated gene transfer, and electroporation have been reported for foreign gene transformation into the diatoms and haptophytes. Antibiotics (G418 and chloramphenicol) and herbicides (zeocin, hygromycin, and norflurazon) have been successfully demonstrated as the best selection markers. Despite the availability of a wide range of molecular tools for foreign gene expression in microalgae, very few promoters (lhcf1, nr, h4, ef2, fcp, and pds) have been reported for diatoms and haptophytes. Therefore, in this review, we first summarize the significant progress that has been achieved in transgene expression in diatoms and haptophytes and highlight the importance and availability of recently developed novel tools that are suitable for transgenic expression in diatoms and haptophytes.

  17. Hundred years of genetic structure in a sediment revived diatom population

    DEFF Research Database (Denmark)

    Haernstroem, Karolina; Ellegaard, Marianne; Andersen, Thorbjørn Joest

    2011-01-01

    This paper presents research on the genetic structure and diversity of populations of a common marine protist and their changes over time. The bloom-forming diatom Skeletonema marinoi was used as a model organism. Strains were revived from anoxic discrete layers of a 210Pb-dated sediment core...

  18. Role of Diatoms in the Spatial-Temporal Distribution of Intracellular Nitrate in Intertidal Sediment

    DEFF Research Database (Denmark)

    Stief, P.; Kamp, A.; de Beer, D.

    2013-01-01

    Intracellular nitrate storage allows microorganisms to survive fluctuating nutrient availability and anoxic conditions in aquatic ecosystems. Here we show that diatoms, ubiquitous and highly abundant microalgae, represent major cellular reservoirs of nitrate in an intertidal flat of the German Wa...... in anaerobic nitrate respiration. Due to the widespread dominance of diatoms in microphytobenthos, the total nitrate pool in coastal marine sediments may generally be at least two times larger than derived from porewater measurements and partially be recycled to ammonium....

  19. Diatom species abundance and morphologically-based dissolution proxies in coastal Southern Ocean assemblages

    Science.gov (United States)

    Warnock, Jonathan P.; Scherer, Reed P.

    2015-07-01

    Taphonomic processes alter diatom assemblages in sediments, thus potentially negatively impacting paleoclimate records at various rates across space, time, and taxa. However, quantitative taphonomic data is rarely included in diatom-based paleoenvironmental reconstructions and no objective standard exists for comparing diatom dissolution in sediments recovered from marine depositional settings, including the Southern Ocean's opal belt. Furthermore, identifying changes to diatom dissolution through time can provide insight into the efficiency of both upper water column nutrient recycling and the biological pump. This is significant in that reactive metal proxies (e.g. Al, Ti) in the sediments only account for post-depositional dissolution, not the water column where the majority of dissolution occurs. In order to assess the range of variability of responses to dissolution in a typical Southern Ocean diatom community and provide a quantitative guideline for assessing taphonomic variability in diatoms recovered from core material, a sediment trap sample was subjected to controlled, serial dissolution. By evaluating dissolution-induced changes to diatom species' relative abundance, three preservational categories of diatoms have been identified: gracile, intermediate, and robust. The relative abundances of these categories can be used to establish a preservation grade for diatom assemblages. However, changes to the relative abundances of diatom species in sediment samples may reflect taphonomic or ecological factors. In order to address this complication, relative abundance changes have been tied to dissolution-induced morphological change to the areolae of Fragilariopsis curta, a significant sea-ice indicator in Southern Ocean sediments. This correlation allows differentiation between gracile species loss to dissolution versus ecological factors or sediment winnowing. These results mirror a similar morphological dissolution index from a parallel study utilizing

  20. Sexual selection in marine plankton

    DEFF Research Database (Denmark)

    Sichlau, Mie Hylstofte

    Copepods are among the most abundant metazoans on the planet and play an important role in the marine food web. Many aspects of their ecology have consequently been studied, including details of their reproductive biology and mating behaviour. Sexual selection, the part of evolution which selects...

  1. Cadmium sensitivity, uptake, subcellular distribution and thiol induction in a marine diatom: Recovery from cadmium exposure

    Energy Technology Data Exchange (ETDEWEB)

    Wang Mengjiao [State Key Laboratory in Marine Pollution, Section of Marine Ecology and Biotechnology, Division of Life Science, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.hk [State Key Laboratory in Marine Pollution, Section of Marine Ecology and Biotechnology, Division of Life Science, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2011-01-25

    Studies in the recovery from metal stress and the tolerance development to metal exposure of aquatic organisms are important for the understanding of epidemic pollution. In this study, the responses of a marine diatom, Thalassiosira nordenskioeldii, following recovery from environmental cadmium (Cd) stress were investigated. The diatoms were exposed to different concentrations of Cd for 7 days, and were then allowed different periods of time to recover. The Cd sensitivity increased after recovery from Cd stress, followed by a gradual restoration. The extent of restoration depended on both the recovery time and the environmental Cd stress during the exposure period. A complete restoration of Cd tolerance proved to be impossible for cells pre-exposed to High-Cd. The Cd cellular burden and subcellular Cd concentration decreased to the control level within the first day of recovery, indicating that the elevated sensitivity may have been due to the accumulation of functional damage caused by Cd exposure instead of a result of physical Cd accumulation. The rapid change in phytochelatins (PC) to both the increase in and the withdrawal of environmental Cd stress made it a good quantitative bioindicator of environmental Cd contamination. However, the relationships between Cd distribution in the metal sensitive fraction (MSF-Cd) or intracellular Cd to thiol ratio (intra-Cd/PC-SH) and the relative change in the median inhibition [Cd{sup 2+}] ([Cd{sup 2+}]-based-IC{sub 50}, i.e., Cd sensitivity) differed for the various exposure and recovery periods tested. Our study suggests that more attention should be given to the recovery of aquatic organisms from episodic metal exposure.

  2. Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms

    Science.gov (United States)

    McQuaid, Jeffrey B.; Kustka, Adam B.; Oborník, Miroslav; Horák, Aleš; McCrow, John P.; Karas, Bogumil J.; Zheng, Hong; Kindeberg, Theodor; Andersson, Andreas J.; Barbeau, Katherine A.; Allen, Andrew E.

    2018-03-01

    In vast areas of the ocean, the scarcity of iron controls the growth and productivity of phytoplankton. Although most dissolved iron in the marine environment is complexed with organic molecules, picomolar amounts of labile inorganic iron species (labile iron) are maintained within the euphotic zone and serve as an important source of iron for eukaryotic phytoplankton and particularly for diatoms. Genome-enabled studies of labile iron utilization by diatoms have previously revealed novel iron-responsive transcripts, including the ferric iron-concentrating protein ISIP2A, but the mechanism behind the acquisition of picomolar labile iron remains unknown. Here we show that ISIP2A is a phytotransferrin that independently and convergently evolved carbonate ion-coordinated ferric iron binding. Deletion of ISIP2A disrupts high-affinity iron uptake in the diatom Phaeodactylum tricornutum, and uptake is restored by complementation with human transferrin. ISIP2A is internalized by endocytosis, and manipulation of the seawater carbonic acid system reveals a second-order dependence on the concentrations of labile iron and carbonate ions. In P. tricornutum, the synergistic interaction of labile iron and carbonate ions occurs at environmentally relevant concentrations, revealing that carbonate availability co-limits iron uptake. Phytotransferrin sequences have a broad taxonomic distribution and are abundant in marine environmental genomic datasets, suggesting that acidification-driven declines in the concentration of seawater carbonate ions will have a negative effect on this globally important eukaryotic iron acquisition mechanism.

  3. Photophysiological variability of microphytobenthic diatoms after growth in different types of culture conditions

    NARCIS (Netherlands)

    Forster, R.M.; Martin-Jézéquel, V.R.

    2005-01-01

    Microphytobenthic diatoms have great ecological importance in estuarine and coastal marine ecosystenis, yet many aspects of their physiology have not been investigated under controlled conditions. This work describes patterns in growth rates and photosynthesis in different types of culture for

  4. Persistent organic pollutants in Mediterranean seawater and processes affecting their accumulation in plankton.

    Science.gov (United States)

    Berrojalbiz, Naiara; Dachs, Jordi; Del Vento, Sabino; Ojeda, María José; Valle, María Carmen; Castro-Jiménez, Javier; Mariani, Giulio; Wollgast, Jan; Hanke, Georg

    2011-05-15

    The Mediterranean and Black Seas are unique marine environments subject to important anthropogenic pressures due to riverine and atmospheric inputs of organic pollutants. Here, we report the results obtained during two east-west sampling cruises in June 2006 and May 2007 from Barcelona to Istanbul and Alexandria, respectively, where water and plankton samples were collected simultaneously. Both matrixes were analyzed for hexaclorochyclohexanes (HCHs), hexachlorobenzene (HCB), and 41 polychlorinated biphenyl (PCB) congeners. The comparison of the measured HCB and HCHs concentrations with previously reported dissolved phase concentrations suggests a temporal decline in their concentrations since the 1990s. On the contrary, PCB seawater concentrations did not exhibit such a decline, but show a significant spatial variability in dissolved concentrations with lower levels in the open Western and South Eastern Mediterranean, and higher concentrations in the Black, Marmara, and Aegean Seas and Sicilian Strait. PCB and OCPs (organochlorine pesticides) concentrations in plankton were higher at lower plankton biomass, but the intensity of this trend depended on the compound hydrophobicity (K(OW)). For the more persistent PCBs and HCB, the observed dependence of POP concentrations in plankton versus biomass can be explained by interactions between air-water exchange, particle settling, and/or bioaccumulation processes, whereas degradation processes occurring in the photic zone drive the trends shown by the more labile HCHs. The results presented here provide clear evidence of the important physical and biogeochemical controls on POP occurrence in the marine environment.

  5. Summer Epiphytic Diatoms from Terra Nova Bay and Cape Evans (Ross Sea, Antarctica) - A Synthesis and Final Conclusions

    Science.gov (United States)

    Majewska, Roksana; Convey, Peter; De Stefano, Mario

    2016-01-01

    Despite recent advances in polar marine biology and related fields, many aspects of the ecological interactions that are crucial for the functioning of Antarctic shallow water habitats remain poorly understood. Although epiphytic diatoms play an essential role in the Antarctic marine food web, basic information regarding their ecology, biodiversity and biogeography is largely unavailable. Here, we synthesise studies on Ross Sea epiphytic diatoms collected during 11 summer Antarctic expeditions between the years 1989/90 and 2011/12, presenting a full list of diatom taxa associated with three macroalgal species (Iridaea cordata, Phyllophora antarctica, and Plocamium cartilagineum) and their epiphytic sessile fauna. Diatom communities found during the three summer months at various depths and sampling stations differed significantly in terms of species composition, growth form structure and abundances. Densities ranged from 21 to >8000 cells mm-2, and were significantly higher on the surface of epiphytic micro-fauna than on any of the macroalgal species examined. Generally, host organisms characterized by higher morphological heterogeneity (sessile microfauna, ramified Plocamium) supported richer diatom communities than those with more uniform surfaces (Iridaea). Differences between epiphytic communities associated with different macroalgae were reflected better in species composition than in growth form structure. The latter changed significantly with season, which was related strongly to the changing ice conditions. A general trend towards an increasing number of erect forms in deeper waters and tube-dwelling diatoms in the shallowest sites (2–5 m) was also observed. This study explores further important and largely previously unknown aspects of relationships and interactions between Antarctic epiphytic diatoms and their micro- and macro-environments. PMID:27078637

  6. Planktonic benthonic foraminiferal ratios: Modern patterns and Tertiary applicability

    Science.gov (United States)

    Gibson, T.G.

    1989-01-01

    The abundance of planktonic specimens in foraminiferal assemblages was determined in numerous bottom samples from inner neritic to deep oceanic depths along the Atlantic margin of the northeastern United States. The results augment previous studies in other areas that have shown a general increase in percentage of planktonic specimens in total foraminiferal bottom assemblages as water depth increases. The patterns found in this area of complex shelf bathymetry and hydrography illustrate the influence on the planktonic-benthonic percentages of water depth, distance from shore, different water mass properties and downslope movement of tests in high energy areas. The patterns found in the 661 samples from the Atlantic margin were compared with results from 795 stations in the Gulf of Mexico, Pacific Ocean and Red Sea. The relative abundance of planktonic specimens and water depth correlates positively in all open oceanic areas even though taxonomic composition and diversity of the faunas from different areas is variable. The variation of planktonic percentages in bottom samples within most depth intervals is large so that a precise depth determination cannot be made for any given value. However, an approximate upper depth limit for given percentages can be estimated for open ocean environments. A decrease in planktonic percentages is seen in the lower salinity and higher turbidity coastal waters of the Gulf of Maine. Planktonic percentages intermediate between the lower values in the less saline coastal waters and the higher values in the normal open oceanic conditions occur in the transitional area between the Gulf of Maine and the open marine Atlantic Ocean to the east. Similarly lowered values in another area of restricted oceanic circulation occur in the high salinity, clear, but nutrient-poor waters of the Gulf of Aqaba off the Red Sea. A comparison of the similarity of modern planktonic percentage values to those found in earlier Tertiary assemblages was made to

  7. Shared Epizoic Taxa and Differences in Diatom Community Structure Between Green Turtles (Chelonia mydas) from Distant Habitats.

    Science.gov (United States)

    Majewska, Roksana; de Vijver, Bart Van; Nasrolahi, Ali; Ehsanpour, Maryam; Afkhami, Majid; Bolaños, Federico; Iamunno, Franco; Santoro, Mario; De Stefano, Mario

    2017-11-01

    The first reports of diatoms growing on marine mammals date back to the early 1900s. However, only recently has direct evidence been provided for similar associations between diatoms and sea turtles. We present a comparison of diatom communities inhabiting carapaces of green turtles Chelonia mydas sampled at two remote sites located within the Indian (Iran) and Atlantic (Costa Rica) Ocean basins. Diatom observations and counts were carried out using scanning electron microscopy. Techniques involving critical point drying enabled observations of diatoms and other microepibionts still attached to sea turtle carapace and revealed specific aspects of the epizoic community structure. Species-poor, well-developed diatom communities were found on all examined sea turtles. Significant differences between the two host sea turtle populations were observed in terms of diatom abundance and their community structure (including growth form structure). A total of 12 and 22 diatom taxa were found from sea turtles in Iran and Costa Rica, respectively, and eight of these species belonging to Amphora, Chelonicola, Cocconeis, Navicula, Nitzschia and Poulinea genera were observed in samples from both locations. Potential mechanisms of diatom dispersal and the influence of the external environment, sea turtle behaviour, its life stage, and foraging and breeding habitats, as well as epibiotic bacterial flora on epizoic communities, are discussed.

  8. Biophotonics of diatoms

    DEFF Research Database (Denmark)

    Gössling, Johannes Wilhelm

    Diatoms are unicellular microalgae present in all aquatic environments on earth. Due to their high photosynthetic productivity and abundance, diatoms are main components of aquatic food webs and among the main contributors of global photosynthetic carbon fixation. A unique feature of diatoms...

  9. Quantification and localization of trace metals in natural plankton using a synchrotron x-ray fluorescence microprobe

    International Nuclear Information System (INIS)

    Twining, B. S.; Baines, S. B.; Fisher, N. S.; Jacobsen, C.; Maser, J.; State Univ. of New York at Stony Brook

    2003-01-01

    The accumulation of trace metals by planktonic protists influences the growth of primary producers, metal biogeochemical cycling, and metal bioaccumulation in aquatic food chains. Despite their importance, unequivocal measurements of trace element concentrations in individual plankton cells have not been possible to date. We have used the 2-ID-E side-branch hard x-ray microprobe at the Advanced Photon Source to measure trace elements in individual marine plankton cells. This microprobe employs zoneplate optics to produce the sub-micron spatial resolution and low background fluorescence required to produce trace element maps of planktonic protist cells ranging in size from 3 to >50 (micro)m. We have developed preservation, rinsing, and mounting protocols that remove most of the salt from our marine samples, thus simplifying the identification of unknown cells and reducing high Cl-related background fluorescence. We have also developed spectral modeling techniques that account for the frequent overlap of adjacent fluorescence peaks and non-uniform detector response. Finally, we have used parallel soft x-ray transmission and epifluorescence microscopy images to estimate C normalized trace element concentrations, identify functional cell types (e.g., photosynthetic vs. non-photosynthetic), and correlate cell structures with spatial patterns in trace element fluorescence

  10. Probing the evolutionary history of epigenetic mechanisms: what can we learn from marine diatoms

    Directory of Open Access Journals (Sweden)

    Achal Rastogi

    2015-07-01

    Full Text Available Recent progress made on epigenetic studies revealed the conservation of epigenetic features in deep diverse branching species including Stramenopiles, plants and animals. This suggests their fundamental role in shaping species genomes across different evolutionary time scales. Diatoms are a highly successful and diverse group of phytoplankton with a fossil record of about 190 million years ago. They are distantly related from other super-groups of Eukaryotes and have retained some of the epigenetic features found in mammals and plants suggesting their ancient origin. Phaeodactylum tricornutum and Thalassiosira pseudonana, pennate and centric diatoms, respectively, emerged as model species to address questions on the evolution of epigenetic phenomena such as what has been lost, retained or has evolved in contemporary species. In the present work, we will discuss how the study of non-model or emerging model organisms, such as diatoms, helps understand the evolutionary history of epigenetic mechanisms with a particular focus on DNA methylation and histone modifications.

  11. Using ATTO dyes to probe bacterial interactions with the marine diatom Pseudo-nitzschia.

    Science.gov (United States)

    Mehic, S.; Sison-Mangus, M.

    2016-02-01

    Pseudo-nitzschia blooms are known to be highly toxic and detrimental to wildlife. The neurotoxin produced by the algae can ripple through the entire food web creating a direct impact on oceanic life and human-related industries. With coastal blooms increasing in both size and duration in recent years, it is crucial that we uncover more microbial interactions that may affect the toxicity of these blooms. Current harmful algal bloom studies have shown that different bacterial consortia can have a great impact Pseudo-nitzschia physiology. More specifically, research suggests that bacteria affect both growth rates and domoic acid concentrations of laboratory grown cultures. However, these studies do not explore the attachment patterns of these bacteria with the diatom. Bacterial attachment may dictate the different types of interactions between bacteria and the diatoms, a trait that is largely unexplored in the symbiotic interactions between the two organisms. In this study, we seek to identify direct and indirect interactions between four bacteria taxa from different phyla and three different species of Pseudo-nitzschia. Our preliminary scanning electron microscopy and DAPI staining experiments hint at distinct differences in attachment among bacterial taxa. To explore this work further, we aim to employ ATTO dyes and epifluorescent microscopy on both binary and multiple cultures to visualize patterns in attachment. By utilizing ATTO dyes with distinct wavelength emissions, we can perform a series experiment that highlights the interaction between bacteria and diatoms, without inserting a fluorescent reporter gene in the bacteria. Multiple cultures will be used to identify possible cooperative or negative interactive traits between bacteria that can affect diatom host physiology. Implications on both phytoplankton physiology and nutrient cycling will be subsequently discussed.

  12. Effects of the oxylipin-producing diatom Skeletonema marinoi on gene expression levels of the calanoid copepod Calanus sinicus.

    Science.gov (United States)

    Lauritano, Chiara; Carotenuto, Ylenia; Vitiello, Valentina; Buttino, Isabella; Romano, Giovanna; Hwang, Jiang-Shiou; Ianora, Adrianna

    2015-12-01

    Diatoms are eukaryotic unicellular plants that constitute one of the major components of marine phytoplankton, comprising up to 40% of annual productivity at sea and representing 25% of global carbon-fixation. Diatoms have traditionally been considered a preferential food for zooplankton grazers such as copepods, but, in the last two decades, this beneficial role has been challenged after the discovery that many species of diatoms produce toxic metabolites, collectively termed oxylipins, that induce reproductive failure in zooplankton grazers. Diatoms are the dominant natural diet of Calanus sinicus, a cold-temperate calanoid copepod that supports secondary production of important fisheries in the shelf ecosystems of the Northwest Pacific Ocean, Yellow Sea, Sea of Japan and South China Sea. In this study, the effect of the oxylipin-producing diatom Skeletonema marinoi on C. sinicus has been evaluated by analyzing expression level changes of genes involved in defense and detoxification systems. Results show that C. sinicus is more resistant to a diet of this diatom species in terms of gene expression patterns, compared to the congeneric species Calanus helgolandicus which is an important constituent of the temperate waters of the Atlantic Ocean and northern Mediterranean Sea. These findings contribute to the better understanding of genetic and/or phenotypic flexibility of copepod species and their capabilities to cope with stress by identifying molecular markers (such as stress and detoxification genes) as biosensors for environmental perturbations (e.g. toxins and contaminants) affecting marine copepods. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Phenotypic plasticity of southern ocean diatoms: key to success in the sea ice habitat?

    Directory of Open Access Journals (Sweden)

    Olivia Sackett

    Full Text Available Diatoms are the primary source of nutrition and energy for the Southern Ocean ecosystem. Microalgae, including diatoms, synthesise biological macromolecules such as lipids, proteins and carbohydrates for growth, reproduction and acclimation to prevailing environmental conditions. Here we show that three key species of Southern Ocean diatom (Fragilariopsis cylindrus, Chaetoceros simplex and Pseudo-nitzschia subcurvata exhibited phenotypic plasticity in response to salinity and temperature regimes experienced during the seasonal formation and decay of sea ice. The degree of phenotypic plasticity, in terms of changes in macromolecular composition, was highly species-specific and consistent with each species' known distribution and abundance throughout sea ice, meltwater and pelagic habitats, suggesting that phenotypic plasticity may have been selected for by the extreme variability of the polar marine environment. We argue that changes in diatom macromolecular composition and shifts in species dominance in response to a changing climate have the potential to alter nutrient and energy fluxes throughout the Southern Ocean ecosystem.

  14. Seasonal patterns in plankton communities in a pluriannual time series at a coastal Mediterranean site (Gulf of Naples: an attempt to discern recurrences and trends

    Directory of Open Access Journals (Sweden)

    M. Ribera d'Alcalà

    2004-04-01

    Full Text Available The annual cycle of plankton was studied over 14 years from 1984 to 2000 at a coastal station in the Gulf of Naples, with the aim of assessing seasonal patterns and interannual trends. Phytoplankton biomass started increasing over the water column in February-early March, and generally achieved peak values in the upper layers in late spring. Another peak was often recorded in autumn. Diatoms and phytoflagellates dominated for the largest part of the year. Ciliates showed their main peaks in phase with phytoplankton and were mainly represented by small (< 30 mm naked choreotrichs. Mesozooplankton increased in March-April, reaching maximum concentrations in summer. Copepods were always the most abundant group, followed by cladocerans in summer. At the interannual scale, a high variability and a decreasing trend were recorded over the sampling period for autotrophic biomass. Mesozooplankton biomass showed a less marked interannual variability. From 1995 onwards, phytoplankton populations increased in cell number but decreased in cell size, with intense blooms of small diatoms and undetermined coccoid species frequently observed in recent years. In spite of those interannual variations, the different phases of the annual cycle and the occurrence of several plankton species were remarkably regular.

  15. Effect of chlorination on the development of marine biofilms dominated by diatoms

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, J.S.; Jagadeesan, V.

    , and Thalassionema did not increase in density after chlorine treatment. It was also demonstrated that diatoms can colonize, grow and photosynthesize on chlorine-treated surfaces. Under pulse chlorination (treatment every 6 h), irrespective of chlorine concentration...

  16. Addressing the impact of environmental uncertainty in plankton model calibration with a dedicated software system: the Marine Model Optimization Testbed (MarMOT 1.1 alpha)

    Science.gov (United States)

    Hemmings, J. C. P.; Challenor, P. G.

    2012-04-01

    A wide variety of different plankton system models have been coupled with ocean circulation models, with the aim of understanding and predicting aspects of environmental change. However, an ability to make reliable inferences about real-world processes from the model behaviour demands a quantitative understanding of model error that remains elusive. Assessment of coupled model output is inhibited by relatively limited observing system coverage of biogeochemical components. Any direct assessment of the plankton model is further inhibited by uncertainty in the physical state. Furthermore, comparative evaluation of plankton models on the basis of their design is inhibited by the sensitivity of their dynamics to many adjustable parameters. Parameter uncertainty has been widely addressed by calibrating models at data-rich ocean sites. However, relatively little attention has been given to quantifying uncertainty in the physical fields required by the plankton models at these sites, and tendencies in the biogeochemical properties due to the effects of horizontal processes are often neglected. Here we use model twin experiments, in which synthetic data are assimilated to estimate a system's known "true" parameters, to investigate the impact of error in a plankton model's environmental input data. The experiments are supported by a new software tool, the Marine Model Optimization Testbed, designed for rigorous analysis of plankton models in a multi-site 1-D framework. Simulated errors are derived from statistical characterizations of the mixed layer depth, the horizontal flux divergence tendencies of the biogeochemical tracers and the initial state. Plausible patterns of uncertainty in these data are shown to produce strong temporal and spatial variability in the expected simulation error variance over an annual cycle, indicating variation in the significance attributable to individual model-data differences. An inverse scheme using ensemble-based estimates of the

  17. The effects of the Sea Empress oil spill on the plankton of the southern Irish Sea

    International Nuclear Information System (INIS)

    Batten, S.; Allen, R.; Wotton, C.

    1997-07-01

    This report describes the methodology used to determine any effects of the Sea Empress oil spill on the plankton communities of the southern Irish Sea. The Continuous Plankton Recorder (CPR) survey has monitored the plankton in this area since 1970 so there is a long time series of data collected before the spill, almost 2000 samples, with which to compare the post-spill data. The analytical procedures applied and results obtained are presented and reveal that in the majority of cases no significant effects were evident. Some exceptions are also described. The results suggest that no further analysis of the plankton communities is necessary, unless other studies reveal that other marine habitats which may have an influence on the plankton of this area are continuing to display effects of the spill. There is scope for further investigation of the trends and events described in this report but this is outside the remit of the project. (author)

  18. Red and green algal origin of diatom membrane transporters: insights into environmental adaptation and cell evolution.

    Directory of Open Access Journals (Sweden)

    Cheong Xin Chan

    Full Text Available Membrane transporters (MTs facilitate the movement of molecules between cellular compartments. The evolutionary history of these key components of eukaryote genomes remains unclear. Many photosynthetic microbial eukaryotes (e.g., diatoms, haptophytes, and dinoflagellates appear to have undergone serial endosymbiosis and thereby recruited foreign genes through endosymbiotic/horizontal gene transfer (E/HGT. Here we used the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum as models to examine the evolutionary origin of MTs in this important group of marine primary producers. Using phylogenomics, we used 1,014 diatom MTs as query against a broadly sampled protein sequence database that includes novel genome data from the mesophilic red algae Porphyridium cruentum and Calliarthron tuberculosum, and the stramenopile Ectocarpus siliculosus. Our conservative approach resulted in 879 maximum likelihood trees of which 399 genes show a non-lineal history between diatoms and other eukaryotes and prokaryotes (at the bootstrap value ≥70%. Of the eukaryote-derived MTs, 172 (ca. 25% of 697 examined phylogenies have members of both red/green algae as sister groups, with 103 putatively arising from green algae, 19 from red algae, and 50 have an unresolved affiliation to red and/or green algae. We used topology tests to analyze the most convincing cases of non-lineal gene history in which red and/or green algae were nested within stramenopiles. This analysis showed that ca. 6% of all trees (our most conservative estimate support an algal origin of MTs in stramenopiles with the majority derived from green algae. Our findings demonstrate the complex evolutionary history of photosynthetic eukaryotes and indicate a reticulate origin of MT genes in diatoms. We postulate that the algal-derived MTs acquired via E/HGT provided diatoms and other related microbial eukaryotes the ability to persist under conditions of fluctuating ocean chemistry, likely

  19. Taxonomic and Environmental Variability in the Elemental Composition and Stoichiometry of Individual Dinoflagellate and Diatom Cells from the NW Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Mariona Segura-Noguera

    Full Text Available Here we present, for the first time, the elemental concentration, including C, N and O, of single phytoplankton cells collected from the sea. Plankton elemental concentration and stoichiometry are key variables in phytoplankton ecophysiology and ocean biogeochemistry, and are used to link cells and ecosystems. However, most field studies rely on bulk techniques that overestimate carbon and nitrogen because the samples include organic matter other than plankton organisms. Here we used X-ray microanalysis (XRMA, a technique that, unlike bulk analyses, gives simultaneous quotas of C, N, O, Mg, Si, P, and S, in single-cell organisms that can be collected directly from the sea. We analysed the elemental composition of dinoflagellates and diatoms (largely Chaetoceros spp. collected from different sites of the Catalan coast (NW Mediterranean Sea. As expected, a lower C content is found in our cells compared to historical values of cultured cells. Our results indicate that, except for Si and O in diatoms, the mass of all elements is not a constant fraction of cell volume but rather decreases with increasing cell volume. Also, diatoms are significantly less dense in all the measured elements, except Si, compared to dinoflagellates. The N:P ratio of both groups is higher than the Redfield ratio, as it is the N:P nutrient ratio in deep NW Mediterranean Sea waters (N:P = 20-23. The results suggest that the P requirement is highest for bacterioplankton, followed by dinoflagellates, and lowest for diatoms, giving them a clear ecological advantage in P-limited environments like the Mediterranean Sea. Finally, the P concentration of cells of the same genera but growing under different nutrient conditions was the same, suggesting that the P quota of these cells is at a critical level. Our results indicate that XRMA is an accurate technique to determine single cell elemental quotas and derived conversion factors used to understand and model ocean biogeochemical

  20. Diatom paleoecology Pass Key core 37, Everglades National Park, Florida Bay

    Science.gov (United States)

    Pyle, Laura; Cooper, S.R.; Huvane, J.K.

    1998-01-01

    During the 20th century, there have been large-scale anthropogenic modifications to the South Florida ecosystem. The effects of these changes on Florida Bay and its biological communities are currently of political and scientific interest. This study is part of a larger effort to reconstruct the history of environmental changes in the bay, using paleoecological techniques. We are using diatom indicators preserved in Florida Bay sediments to infer long-term water quality, productivity, nutrient, and salinity changes. We are also obtaining information concerning the natural variability of the ecosystem. Diatoms are microscopic algae, the remains of which are generally well preserved in sediments, and their distributions are closely linked to water quality. Diatoms were extracted from a 70-cm sediment core collected from the Pass Key mudbank of Florida Bay by the U.S. Geological Survey. Between 300-500 diatom valves from each of 15 core samples were identified and counted. Estimates of absolute abundance, species richness, Shannon-Wiener diversity, and centric:pennate ratios were calculated for each sample that was counted. Information on the ecology of the diatom species is presented, and changes in diatom community composition are evaluated. Samples contained an average of four million diatom valves per gram of sediment. Major changes in the diatom community are evident down core. These include increases in the percent abundance of marine diatoms in the time period represented by the core, probably the result of increasing salinity at Pass Key. Benthic diatoms become less abundant in the top half of the core. This may be related to a number of factors including the die-off of sea grass beds or increased turbidity of the water column. Once the chronology of the Pass Key core 37 is established, these down-core changes can be related to historical events and compared with other indicators in the sedimentary record that are currently being investigated by U.S Geological

  1. Molecular evidence of the toxic effects of diatom diets on gene expression patterns in copepods.

    Directory of Open Access Journals (Sweden)

    Chiara Lauritano

    Full Text Available Diatoms are dominant photosynthetic organisms in the world's oceans and are considered essential in the transfer of energy through marine food chains. However, these unicellular plants at times produce secondary metabolites such as polyunsaturated aldehydes and other products deriving from the oxidation of fatty acids that are collectively termed oxylipins. These cytotoxic compounds are responsible for growth inhibition and teratogenic activity, potentially sabotaging future generations of grazers by inducing poor recruitment in marine organisms such as crustacean copepods.Here we show that two days of feeding on a strong oxylipin-producing diatom (Skeletonema marinoi is sufficient to inhibit a series of genes involved in aldehyde detoxification, apoptosis, cytoskeleton structure and stress response in the copepod Calanus helgolandicus. Of the 18 transcripts analyzed by RT-qPCR at least 50% were strongly down-regulated (aldehyde dehydrogenase 9, 8 and 6, cellular apoptosis susceptibility and inhibitor of apoptosis IAP proteins, heat shock protein 40, alpha- and beta-tubulins compared to animals fed on a weak oxylipin-producing diet (Chaetoceros socialis which showed no changes in gene expression profiles.Our results provide molecular evidence of the toxic effects of strong oxylipin-producing diatoms on grazers, showing that primary defense systems that should be activated to protect copepods against toxic algae can be inhibited. On the other hand other classical detoxification genes (glutathione S-transferase, superoxide dismutase, catalase, cytochrome P450 were not affected possibly due to short exposure times. Given the importance of diatom blooms in nutrient-rich aquatic environments these results offer a plausible explanation for the inefficient use of a potentially valuable food resource, the spring diatom bloom, by some copepod species.

  2. Consequences of Stinging Plankton Blooms on Finfish Mariculture in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Mar Bosch-Belmar

    2017-08-01

    Full Text Available In recent years, caged finfish mariculture across European seas suffered production losses by severe fish mortality, following episodic outbreaks of invertebrate cnidarian stingers. Due to their stinging cells and injectable venoms, medusozoan jellyfish, or drifting propagules of polyp colonies at high density may impair caged fish health through toxic effects on vulnerable tissues of gills and skin, and related secondary bacterial infections. Gill disorders in European sea bass (Dicentrarchus labrax fish farms along the Spanish Mediterranean coast are commonly reported, but regular monitoring of the frequency of cnidarian outbreaks and their potential impacts on caged fish is still poorly enforced. In this study, two sea bass mariculture farms in Southern Spain (Málaga; Almería were monitored biweekly for zooplankton, phytoplankton and fish gills condition, over 13 or 30 months for the Málaga and Almería facilities, respectively, within the period 2012–2014. Significant, direct correlations were found among low water temperature, recorded fish mortalities, and high abundances of planktonic cnidarians, particularly of the hydrozoan siphonophores Muggiaea atlantica and M. kochii, and the larval stage of Ectopleura larynx, a common member of cage biofouling communities. A significant relationship between cnidarian densities and the quantitative scoring of gill pathology was also observed. In addition, high densities of long-bristled planktonic diatoms (Chaetoceros spp. coincided with a major fish mortality event (April 2012, Almería farm. Standardised monitoring of plankton dynamics and composition may help in promoting response capacities of Mediterranean mariculture managers to fish health challenges (such as stinging plankton blooms by (a improving diagnostic tools and preventative countermeasures and (b supporting the development of science-based spatial planning and sustainable growth of coastal mariculture.

  3. Stratification of archaeal membrane lipids in the ocean and implications for adaptation and chemotaxonomy of planktonic archaea.

    Science.gov (United States)

    Zhu, Chun; Wakeham, Stuart G; Elling, Felix J; Basse, Andreas; Mollenhauer, Gesine; Versteegh, Gerard J M; Könneke, Martin; Hinrichs, Kai-Uwe

    2016-12-01

    Membrane lipids of marine planktonic archaea have provided unique insights into archaeal ecology and paleoceanography. However, past studies of archaeal lipids in suspended particulate matter (SPM) and sediments mainly focused on a small class of fully saturated glycerol dibiphytanyl glycerol tetraether (GDGT) homologues identified decades ago. The apparent low structural diversity of GDGTs is in strong contrast to the high diversity of metabolism and taxonomy among planktonic archaea. Furthermore, adaptation of archaeal lipids in the deep ocean remains poorly constrained. We report the archaeal lipidome in SPM from diverse oceanic regimes. We extend the known inventory of planktonic archaeal lipids to include numerous unsaturated archaeal ether lipids (uns-AELs). We further reveal (i) different thermal regulations and polar headgroup compositions of membrane lipids between the epipelagic (≤ 100 m) and deep (>100 m) populations of archaea, (ii) stratification of unsaturated GDGTs with varying redox conditions, and (iii) enrichment of tetra-unsaturated archaeol and fully saturated GDGTs in epipelagic and deep oxygenated waters, respectively. Such stratified lipid patterns are consistent with the typical distribution of archaeal phylotypes in marine environments. We, thus, provide an ecological context for GDGT-based paleoclimatology and bring about the potential use of uns-AELs as biomarkers for planktonic Euryarchaeota. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Late Maastrichtian foraminiferids and diatoms from the Polish Carpathians (Ropianka Formation, Skole Nappe): a case study from the Chmielnik-Grabówka composite section

    Science.gov (United States)

    Gasiński, M. Adam; Olshtynska, Alexandra; Uchman, Alfred

    2013-12-01

    Gasiński, M.A., Olshtynska, A. and Uchman, A. 2013. Late Maastrichtian foraminiferids and diatoms from the Polish Carpathians (Ropianka Formation, Skole Nappe): a case study from the Chmielnik-Grabowka composite section. Acta Geologica Polonica, 63(4), 515-525. Warszawa. Well-preserved foraminiferids have been found in the Chmielnik-Grabowka section (Skole Nappe, Polish Carpathians). The Abathomphalus mayaroensis (late Maastrichtian) and Racemiguembelina fructicosa (earlylate Maastrichtian) standard planktonic foraminiferal biozones have been recognized, based on the occurrence of their respective index species. Sediments of the R. fructicosa Zone contain diatoms, which are a rare component of Cretaceous flysch microfossil assemblages in the Carpathians. The diatom frustules and some foraminiferid tests are pyritized, probably after burial in the sediment, below the redox boundary or in the oxygen- deficient microenvironment inside the frustules or tests of microfossils; the presence of trace fossils and bioturbational structures in the same bed indicate an oxygenated sea floor.

  5. Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Martinez, Asuncion; Mincer, Tracy J

    2006-01-01

    Planktonic Bacteria, Archaea and Eukarya reside and compete in the ocean's photic zone under the pervasive influence of light. Bacteria in this environment were recently shown to contain photoproteins called proteorhodopsins, thought to contribute to cellular energy metabolism by catalysing light...... phylogenetic distribution of proteorhodopsins reflects their significant light-dependent fitness contributions, which drive the photoprotein's lateral acquisition and retention, but constrain its dispersal to the photic zone....

  6. Drivers of Plankton Patch Formation, Persistence and Decline in East Sound, Orcas Island, Washington

    Science.gov (United States)

    2012-09-30

    Population dynamics of the marine planktonic ciliate Strombidinopsis multiauris: its potential to control phytoplankton blooms . Aquat. Microb. Ecol., 20...radii with patch exploitation in the coastal ocean. 5th International Zooplankton Production Symposium. Pucón, Chile Menden-Deuer S & Harvey* EL

  7. Interactions of bacteria with diatoms: Influence on natural marine biofilms.

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, L.; DeCosta, P.M.; Anil, A.C.; Sawant, S.S.

    therein). In fact, biofilms are considered a reservoir and source of dissemination for V. cholerae (Shikuma & Hadfield 2010). Nutrient concentrations in the surrounding waters also affect the progression of the biofilm community (Qian et al. 2007... to render diatom monocultures near axenic (Patil & Anil 2005c). The following diluents were used – Aged Sea Water (ASW; unenriched control), ASW+streptomycin (ASW+S), ASW+chloramphenicol (ASW+C), f/2 medium (Guillard and Ryther, 1962) prepared in ASW [f...

  8. Evolution and metabolic significance of the urea cycle in photosynthetic diatoms

    Czech Academy of Sciences Publication Activity Database

    Allen, A. E.; Dupont, Ch. L.; Oborník, Miroslav; Horák, Aleš; Nunes-Nesi, A.; McCrow, J. P.; Zheng, H.; Johnson, D. A.; Hu, H.; Fernie, A. R.; Bowler, Ch.

    2011-01-01

    Roč. 473, č. 7346 (2011), s. 203-209 ISSN 0028-0836 R&D Projects: GA ČR GA206/08/1423 Institutional research plan: CEZ:AV0Z60220518 Keywords : CARBAMOYL-PHOSPHATE SYNTHETASE * PHAEODACTYLUM-TRICORNUTUM * MAXIMUM-LIKELIHOOD * PHYLOGENETIC RECONSTRUCTION * MOLECULAR EVOLUTION * SEQUENCE ALIGNMENT * DIVERGENCE TIMES * MARINE DIATOMS * MIXED MODELS * TREE Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 36.280, year: 2011

  9. Isolation and characterization of extracellular polysaccharides from the epipelic diatoms Cylindrotheca closterium and Navicula salinarum

    NARCIS (Netherlands)

    Staats, N.; de Winder, B.; Stal, L.J.; Mur, L.R.

    1999-01-01

    The production and composition of extracellular polymeric substances (EPS) in axenic batch cultures of the benthic marine epipelic diatoms Navicula salinarum and Cylindrotheca closterium were investigated. EPS was secreted into the medium and the bulk was loosely associated with the cells. Neither

  10. Rio de la Plata river: as paleoenvironmental focus using diatoms as proxies

    International Nuclear Information System (INIS)

    Perez, L; Garcia-Rodriguez, F; Hanebuth, T.

    2012-01-01

    The objective of this study is the reconstruction of the environmental history of the Rio de la Plata system in relation to the anthropogenic impact and historical changes in the flow with emphasis on salinity variations during the late Holocene. For this reason it was analyzed the composition of diatoms (grouped in freshwater (D), saline (S) and marine (M))

  11. Physiology, Fe(II oxidation, and Fe mineral formation by a marine planktonic cyanobacterium grown under ferruginous conditions

    Directory of Open Access Journals (Sweden)

    Elizabeth D. Swanner

    2015-10-01

    Full Text Available Evidence for Fe(II oxidation and deposition of Fe(III-bearing minerals from anoxic or redox-stratified Precambrian oceans has received support from decades of sedimentological and geochemical investigation of Banded Iron Formations (BIF. While the exact mechanisms of Fe(II oxidation remains equivocal, reaction with O2 in the marine water column, produced by cyanobacteria or early oxygenic phototrophs, was likely. In order to understand the role of cyanobacteria in the deposition of Fe(III minerals to BIF, we must first know how planktonic marine cyanobacteria respond to ferruginous (anoxic and Fe(II-rich waters in terms of growth, Fe uptake and homeostasis, and Fe mineral formation. We therefore grew the common marine cyanobacterium Synechococcus PCC 7002 in closed bottles that began anoxic, and contained Fe(II concentrations that span the range of possible concentrations in Precambrian seawater. These results, along with cell suspension experiments, indicate that Fe(II is likely oxidized by this strain via chemical oxidation with oxygen produced during photosynthesis, and not via any direct enzymatic or photosynthetic pathway. Imaging of the cell-mineral aggregates with scanning electron microscopy (SEM and confocal laser scanning microscopy (CLSM are consistent with extracellular precipitation of Fe(III (oxyhydroxide minerals, but that >10% of Fe(III sorbs to cell surfaces rather than precipitating. Proteomic experiments support the role of reactive oxygen species (ROS in Fe(II toxicity to Synechococcus PCC 7002. The proteome expressed under low Fe conditions included multiple siderophore biosynthesis and siderophore and Fe transporter proteins, but most siderophores are not expressed during growth with Fe(II. These results provide a mechanistic and quantitative framework for evaluating the geochemical consequences of perhaps life’s greatest metabolic innovation, i.e. the evolution and activity of oxygenic photosynthesis, in ferruginous

  12. Ocean Acidification-Induced Restructuring of the Plankton Food Web Can Influence the Degradation of Sinking Particles

    Directory of Open Access Journals (Sweden)

    Paul Stange

    2018-04-01

    Full Text Available Ocean acidification (OA is expected to alter plankton community structure in the future ocean. This, in turn, could change the composition of sinking organic matter and the efficiency of the biological carbon pump. So far, most OA experiments involving entire plankton communities have been conducted in meso- to eutrophic environments. However, recent studies suggest that OA effects may be more pronounced during prolonged periods of nutrient limitation. In this study, we investigated how OA-induced changes in low-nutrient adapted plankton communities of the subtropical North Atlantic Ocean may affect particulate organic matter (POM standing stocks, POM fluxes, and POM stoichiometry. More specifically, we compared the elemental composition of POM suspended in the water column to the corresponding sinking material collected in sediment traps. Three weeks into the experiment, we simulated a natural upwelling event by adding nutrient-rich deep-water to all mesocosms, which induced a diatom-dominated phytoplankton bloom. Our results show that POM was more efficiently retained in the water column in the highest CO2 treatment levels (>800 μatm pCO2 subsequent to this bloom. We further observed significantly lower C:N and C:P ratios in post-bloom sedimented POM in the highest CO2 treatments, suggesting that degradation processes were less pronounced. This trend is most likely explained by differences in micro- and mesozooplankton abundance during the bloom and post-bloom phase. Overall, this study shows that OA can indirectly alter POM fluxes and stoichiometry in subtropical environments through changes in plankton community structure.

  13. Localised mixing and heterogeneity in the plankton food web in a frontal region of the Sargasso Sea

    DEFF Research Database (Denmark)

    Richardson, Katherine; Bendtsen, Joøgen; Christensen, Jens Tang

    2014-01-01

    the diatom communities at 10 m and > 100 m (in the deep chlorophyll maximum, DCM) than in other parts of the frontal region. Thorpe displacements supported the hypothesis of elevated mixing intensities around these stations, as did vertical mixing rates inferred from stratification and vertical current shear...... influence the plankton food web, as indicated by elevated values/concentrations of (1) primary production, (2) variable fluorescence (F-v/F-m) and (3) total seston. In addition, the fraction of the total biomass of both copepods and nauplii found closest to the DCM in the frontal region correlated...

  14. Marine Battlefields

    DEFF Research Database (Denmark)

    Harðardóttir, Sara

    as they are an important food source for various marine animals. For both phytoand zooplankton predation is a major cause of mortality, and strategies for protection or avoidance are important for survival. Diatoms of the genera Nitzschia and Pseudo-nitzschia are known to produce a neuro-toxin, domoic acid (DA). Despite......Phytoplankton species are photosynthetic organisms found in most aquatic habitats. In the ocean, phytoplankton are tremendously important because they produce the energy that forms the base of the marine food web. Zooplankton feed on phytoplankton and mediate the energy to higher trophic levels...

  15. Influence of elevated temperature and pCO2 on the marine periphytic diatom Navicula distans and its associated organisms in culture

    Digital Repository Service at National Institute of Oceanography (India)

    Baragi, L.V.; Khandeparker, L.; Anil, A.C.

    are available for diatoms (Sett et al., 2014; Torstensson et al., 2013). Diatoms are the major primary producers and dominate the fouling community in the shallow water photic system. Fouling diatoms are: (a) a source of primary production for higher... (picoperiphyte and heterotrophic bacteria). Materials and methods Culture conditions Navicula distans, a pennate periphytic diatom, was isolated from a biofilm developed on a glass slide submerged in the waters of Dona Paula Bay located along the west coast...

  16. The effects of the Sea Empress oil spill on the plankton of the Southern Irish Sea

    International Nuclear Information System (INIS)

    Batten, S.D.; Allen, R.J.S.; Wotton, C.O.M.

    1998-01-01

    This study investigates the effects of the Sea Empress oil spill on the local plankton communities which are an important component of the marine ecosystem. The Continuous Plankton Recorder survey has monitored the plankton in this area since 1970 giving an extensive time series for comparison with post-spill samples. The analytical procedures applied and results obtained are presented and reveal that, with some exceptions, no significant effects were evident. Barnacle larvae were not recorded post-spill and the spring zooplankton community was somewhat different to the previous year. A long-term trend is apparent in the community but the most common taxa showed no significant changes, suggesting a minor shift in species composition rather than a dramatic change. (author)

  17. Chapter D: With or Without Salt-a Comparison of Marine and Continental-Lacustrine Diatomite Deposits

    Science.gov (United States)

    Moyle, Phillip R.; Dolley, Thomas P.

    2003-01-01

    Diatoms in sedimentary deposits of marine and continental, especially lacustrine, origin have similar nutrient (for example, phosphate, nitrate, and silica) and light requirements; however, their geologic ranges and physiographic environments vary. Marine diatoms range in age from Early Cretaceous to Holocene, and continental diatoms range in age from Eocene to Holocene; however, most commercial diatomites, both marine and lacustrine, were deposited during the Miocene. Marine deposits of commercial value generally accumulated along continental margins with submerged coastal basins and shelves where wind-driven boundary currents provided the nutrient-rich upwelling conditions capable of supporting a productive diatom habitat. Commercial freshwater diatomite deposits occur in volcanic terrains associated with events that formed sediment-starved drainage basins, such as the Basin and Range Province, particularly in Nevada. Marine habitats generally are characterized by stable conditions of temperature, salinity, pH, nutrients, and water currents, in contrast to lacustrine habitats, which are characterized by wide variations in these conditions. Marine deposits generally are of higher quality and contain larger resources, owing to their greater areal extent and thickness, whereas most of the world's known diatomites are of lacustrine origin. Both types of deposit are commonly mined by open-pit methods and subjected to processing designed to remove organic matter, CO2, pore water, and inorganic contaminants in order to produce purified products. The highest quality diatomites, predominantly from marine sources, are used in filtration, although both types of deposit produce filter grades, and additional end uses include fillers, additives, absorbents, and abrasives.

  18. Diatomeas marinas de aguas costeras de la provincia de Buenos Aires (Argentina.: III Géneros potencialmente nocivos Asterionellopsis, Cerataulina, Ceratoneis y Leptocylindrus Marine diatoms from Buenos Aires coastal waters (Argentina: Ill Potentially harmful genus Asterionellopsis,Cerataulina, Ceratoneis y Leptocylindrus

    Directory of Open Access Journals (Sweden)

    INÉS SUNESEN

    2007-12-01

    Full Text Available El presente trabajo está abocado al estudio morfológico, taxonómico y distribucional de las especies de diatomeas pertenecientes a los géneros Asterionellopsis, Cerataulina, Ceratoneis y Leptocylindrus halladas en aguas costeras marinas de la provincia de Buenos Aires, Argentina. Las muestras planctónicas fueron colectadas en San Clemente del Tuyú, Santa Teresita, La Lucila del Mar, Mar de Ajó, Nueva Atlantis, Pinamar y Villa Gesell, entre noviembre de 1994 y septiembre de 2000. Material sin tratar y tratado fue analizado con microscopio óptico y microscopio electrónico de barrido. Seis taxa correspondientes a los géneros mencionados fueron determinados, de los cuales Cerataulina dentata es citada por primera vez para Argentina y Leptocylindrus minimus es citada por primera vez para el área costera de la provincia de Buenos Aires. Todas las especies reportadas como nocivas no toxígenas para otras áreas geográficas fueron encontradas. Cerataulina pelágica, Ceratoneis closterium y Leptocylindrus minimus, componentes ocasionales del plancton del área siempre en bajas densidades, no fueron nunca asociadas a episodios de floración. Asterionellopsis glacialis, componente habitual del plancton, fue causante de discoloraciones nocivas para el turismo y las actividades recreacionalesThe present work is devoted to the morphological, taxonomic, and distributional study of the diatom species belonging to the genera Asterionellopsis, Cerataulina, Ceratoneis and Leptocylindrus found in the marine coastal waters of Buenos Aires Province, Argentina. Planktonic samples were collected from November 1994 to September 2000 at San Clemente del Tuyú, Santa Teresita, La Lucila del Mar, Mar de Ajó, Nueva Atlantis, Pinamar and Villa Gesell. Raw and cleaned samples were analysed with light and scanning electron microscopy. Six taxa of the mentioned genera were determined, of which Cerataulina dentata is reported for the first time for Argentina and

  19. Chiral separation of a diketopiperazine pheromone from marine diatoms using supercritical fluid chromatography.

    Science.gov (United States)

    Frenkel, Johannes; Wess, Carsten; Vyverman, Wim; Pohnert, Georg

    2014-03-01

    The proline derived diketopiperazine has been identified in plants, insects and fungi with unknown function and was recently also reported as the first pheromone from a diatom. Nevertheless the stereochemistry and enantiomeric excess of this natural product remained inaccessible using direct analytical methods. Here we introduce a chiral separation of this metabolite using supercritical fluid chromatography/mass spectrometry. Several chromatographic methods for chiral analysis of the diketopiperazine from the diatom Seminavis robusta and synthetic enantiomers have been evaluated but neither gas chromatography nor high performance liquid chromatography on different chiral cyclodextrin phases were successful in separating the enantiomers. In contrast, supercritical fluid chromatography achieved baseline separation within four minutes of run time using amylose tris(3,5-dimethylphenylcarbamate) as stationary phase and 2-propanol/CO2 as mobile phase. This very rapid chromatographic method in combination with ESI mass spectrometry allowed the direct analysis of the cyclic dipeptide out of the complex sea water matrix after SPE enrichment. The method could be used to determine the enantiomeric excess of freshly released pheromone and to follow the rapid degradation observed in diatom cultures. Initially only trace amounts of c(d-Pro-d-Pro) were found besides the dominant c(l-Pro-l-Pro) in the medium. However the enantiomeric excess decreased upon pheromone degradation within few hours indicating that a preferential conversion and thus inactivation of the l-proline derived natural product takes place. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Isolation and Characterization of Silaffin that Catalyze Biosilica Formation from Marine Diatom Chaetoceros gracilis

    Directory of Open Access Journals (Sweden)

    AGNES IMELDA MANURUNG

    2007-09-01

    Full Text Available The method of making silica in industries requires extreme conditions. The finding of proteins involved in the formation of biosilica from diatoms, has opened up an alternative way of production. Chaetoceros gracilis is one of the diatoms, which is potential in producing silaffin protein. This study aimed to isolate and to characterize the protein. We also analyzed the protein activity toward tetraethoxyorthosilicate (TEOS substrate in in vitro reaction. Diatom biomass was harvested and further kept in 2% SDS/100 mM EDTA solution. Protein isolation was conducted by dissolving the silica and separating the protein by soaking in 2 M HF/8 M NH4F. Protein concentration was analyzed using Bradford method and the molecular weight was estimated through SDS-PAGE. Protein activity was observed by reacting it with TEOS substrate to form silica polymer and measured by colorimetric molibdate assay. Protein concentration was 1.20 mg/ml and appeared filamentous. The apparent molecular weights consisted of 12, 23, 42, 44 kDa. These protein was able to polymerize the silica at room temperature within 10 min. As much as 85.65 μmol TEOS was polymerized per 1.4 × 106 silaffin protein per min. SEM analysis showed the formation of spherical, aggregate biosilica.

  1. Isolation and Characterization of Silaffin that Catalyze Biosilica Formation from Marine Diatom Chaetoceros gracilis

    Directory of Open Access Journals (Sweden)

    AGNES IMELDA MANURUNG

    2007-09-01

    Full Text Available The method of making silica in industries requires extreme conditions. The finding of proteins involved in the formation of biosilica from diatoms, has opened up an alternative way of production. Chaetoceros gracilis is one of the diatoms, which is potential in producing silaffin protein. This study aimed to isolate and to characterize the protein. We also analyzed the protein activity toward tetraethoxyorthosilicate (TEOS substrate in in vitro reaction. Diatom biomass was harvested and further kept in 2% SDS/100 mM EDTA solution. Protein isolation was conducted by dissolving the silica and separating the protein by soaking in 2 M HF/8 M NH4F. Protein concentration was analyzed using Bradford method and the molecular weight was estimated through SDS-PAGE. Protein activity was observed by reacting it with TEOS substrate to form silica polymer and measured by colorimetric molibdate assay. Protein concentration was 1.20 mg/ml and appeared filamentous. The apparent molecular weights consisted of 12, 23, 42, 44 kDa. These protein was able to polymerize the silica at room temperature within 10 min. As much as 85.65 mol TEOS was polymerized per 1.4 x 106 silaffin protein per min. SEM analysis showed the formation of spherical, aggregate biosilica.

  2. The plastic-associated microorganisms of the North Pacific Gyre

    International Nuclear Information System (INIS)

    Carson, Henry S.; Nerheim, Magnus S.; Carroll, Katherine A.; Eriksen, Marcus

    2013-01-01

    Highlights: • Microorganisms mediate processes affecting the fate and impacts of marine plastic. • North Pacific Gyre (NPG) plastics were examined with scanning-electron microscopy. • Bacillus bacteria and pennate diatoms dominated the NPG plastic fouling community. • Bacterial abundance was patchily distributed but increased on foamed polystyrene. • Diatom abundance increased on rough surfaces and at sites with high plastic density. -- Abstract: Microorganisms likely mediate processes affecting the fate and impacts of marine plastic pollution, including degradation, chemical adsorption, and colonization or ingestion by macroorganisms. We investigated the relationship between plastic-associated microorganism communities and factors such as location, temperature, salinity, plankton abundance, plastic concentration, item size, surface roughness, and polymer type. Small plastic items from the surface of the North Pacific Gyre in 2011 were examined using scanning electron microscopy. Bacillus bacteria (mean 1664 ± 247 individuals mm −2 ) and pennate diatoms (1097 ± 154 mm −2 ) were most abundant, with coccoid bacteria, centric diatoms, dinoflagellates, coccolithophores, and radiolarians present. Bacterial abundance was patchy, but increased on foamed polystyrene. Diatom abundance increased on items with rough surfaces and at sites with high plastic concentrations. Morphotype richness increased slightly on larger fragments, and a biogeographic transition occurred between pennate diatom groups. Better characterizing this community will aid in understanding how it interacts with plastic pollution

  3. Large centric diatoms allocate more cellular nitrogen to photosynthesis to counter slower RUBISCO turnover rates

    Directory of Open Access Journals (Sweden)

    Yaping eWu

    2014-12-01

    Full Text Available Diatoms contribute ~40% of primary production in the modern ocean and encompass the largest cell size range of any phytoplankton group. Diatom cell size influences their nutrient uptake, photosynthetic light capture, carbon export efficiency, and growth responses to increasing pCO2. We therefore examined nitrogen resource allocations to the key protein complexes mediating photosynthesis across six marine centric diatoms, spanning 5 orders of magnitude in cell volume, under past, current and predicted future pCO2 levels, in balanced growth under nitrogen repletion. Membrane bound photosynthetic protein concentrations declined with cell volume in parallel with cellular concentrations of total protein, total nitrogen and chlorophyll. Larger diatom species, however, allocated a greater fraction (by 3.5 fold of their total cellular nitrogen to the soluble RUBISCO carbon fixation complex than did smaller species. Carbon assimilation per unit of RUBISCO large subunit (C RbcL-1 s-1 decreased with cell volume, from ~8 to ~2 C RbcL-1 s-1 from the smallest to the largest cells. Whilst a higher allocation of cellular nitrogen to RUBISCO in larger cells increases the burden upon their nitrogen metabolism, the higher RUBISCO allocation buffers their lower achieved RUBISCO turnover rate to enable larger diatoms to maintain carbon assimilation rates per total protein comparable to small diatoms. Individual species responded to increased pCO2, but cell size effects outweigh pCO2 responses across the diatom species size range examined. In large diatoms a higher nitrogen cost for RUBISCO exacerbates the higher nitrogen requirements associated with light absorption, so the metabolic cost to maintain photosynthesis is a cell size-dependent trait.

  4. Towards a representative periphytic diatom sample

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The need to acquire a representative periphytic diatom sample for river water quality monitoring has been recognised in the development of existing diatom indices, important in the development and employment of diatom monitoring tools for the Water Framework Directive. In this study, a nested design with replication is employed to investigate the magnitude of variation in diatom biomass, composition and Trophic Diatom Index at varying scales within a small chalk river. The study shows that the use of artificial substrates may not result in diatom communities that are typical of the surrounding natural substrates. Periphytic diatom biomass and composition varies between artificial and natural substrates, riffles and glides and between two stretches of the river channel. The study also highlights the existence of high variation in diatom frustule frequency and biovolume at the individual replicate scale which may have implications for the use of diatoms in routine monitoring.

  5. Planktonic foraminifera in the Arctic: potentials and issues regarding modern and quaternary populations

    International Nuclear Information System (INIS)

    Eynaud, Frederique

    2011-01-01

    Calcareous microfossils are widely used by paleoceanographers to investigate past sea-surface hydrology. Among these microfossils, planktonic foraminifera are probably the most extensively used tool (e.g. [1] for a review), as they are easy to extract from the sediment and can also be used for coupled geochemical (e.g; δ 18 O, δ 13 C, Mg/Ca) and paleo-ecological investigations. Planktonic foraminifera are marine protists, which build a calcareous shell made of several chambers which reflect in their chemistry the properties of the ambient water-masses. Planktonic foraminifera are known to thrive in various habitats, distributed not only along a latitudinal gradient, but also along different water-depth intervals within surface waters (0-1000 m). Regarding their biogeographical distribution, planktonic foraminifera assemblages therefore mirror different water-masses properties, such as temperature, salinity and nutrient content of the surface water in which they live. The investigation of the specific composition of a fossil assemblage (relative abundances) is therefore a way to empirically obtain (paleo)information on past variations of sea-surface hydrological parameters. This paper focuses on the planktonic foraminifera record from the Arctic domain. This polar region records peculiar sea-surface conditions, with the influence of nearly perennial sea-ice cover development. This has strong impact on living foraminifera populations and on the preservation of their shells in the underlying sediments.

  6. Planktonic foraminifera in the Arctic: potentials and issues regarding modern and quaternary populations

    Energy Technology Data Exchange (ETDEWEB)

    Eynaud, Frederique, E-mail: f.eynaud@epoc.u-bordeaux1.fr [Universite Bordeaux I, Laboratoire EPOC (Environnements et Paleoenvironnements OCeaniques), UMR CNRS 5805, Avenue des facultes, 33405 Talence cedex - France (France)

    2011-05-15

    Calcareous microfossils are widely used by paleoceanographers to investigate past sea-surface hydrology. Among these microfossils, planktonic foraminifera are probably the most extensively used tool (e.g. [1] for a review), as they are easy to extract from the sediment and can also be used for coupled geochemical (e.g; {delta}{sup 18}O, {delta}{sup 13}C, Mg/Ca) and paleo-ecological investigations. Planktonic foraminifera are marine protists, which build a calcareous shell made of several chambers which reflect in their chemistry the properties of the ambient water-masses. Planktonic foraminifera are known to thrive in various habitats, distributed not only along a latitudinal gradient, but also along different water-depth intervals within surface waters (0-1000 m). Regarding their biogeographical distribution, planktonic foraminifera assemblages therefore mirror different water-masses properties, such as temperature, salinity and nutrient content of the surface water in which they live. The investigation of the specific composition of a fossil assemblage (relative abundances) is therefore a way to empirically obtain (paleo)information on past variations of sea-surface hydrological parameters. This paper focuses on the planktonic foraminifera record from the Arctic domain. This polar region records peculiar sea-surface conditions, with the influence of nearly perennial sea-ice cover development. This has strong impact on living foraminifera populations and on the preservation of their shells in the underlying sediments.

  7. Chemical ecology of the marine plankton.

    Science.gov (United States)

    Roy, Jessie S; Poulson-Ellestad, Kelsey L; Drew Sieg, R; Poulin, Remington X; Kubanek, Julia

    2013-10-11

    This review summarizes recent work in the chemical ecology of pelagic marine ecosystems. In order to provide a comprehensive overview of advances in the field over the period covered, we have organized this review by ecological interaction type beginning with intraspecific interactions, then interspecific interactions (including mutualism, parasitism, competition, and predation), and finally community- and ecosystem-wide interactions.

  8. The Community Structure of Phytoplankton in Seagrass Ecosystem and its Relationship with Environmental Characterstics

    Directory of Open Access Journals (Sweden)

    Gede Iwan Setiabudi

    2016-12-01

    Full Text Available The aimed of this study was to determine  the plankton communities and its relationship with the chemical and physical condition in seagrass ecosystem at Pegametan Bay. The composition and abundance of plankton were observed in the sea water underneath the surface and were identified based on the guideline of Illustration of the Marine Plankton of Japan. The water quality was measured in situ using WQC HI 9829. The water sample was measured using closed reflux spectrometry for COD, TOC analyzer for DOC and APHA 2102 (4500 method for Nt and Pt. There are 27 species of plankton identified, which can be classified into three groups. Diatom group consists of 18 species with a 74.56% abundance. The non-litoral group consists of 6 species with a 23.35% abundance. Moreover, dinoflagellate group consist of 3 species with a 2.09% abundance. An abundance of plankton greater than 104 cell.L-1 was found in diatome group (Nitzschia sp., Thalassiosira sp., Chaetoceros sp., Flagillaria sp., Thalassiothrix sp., and Melosira sp. and non-litoral group (Oscillatoria sp. and Spirogyra sp.. The abundance of those species indicated the algae bloom phenomenon. Dinophysis sp. was also identified, which was harmful algal blooms.How to CiteSetiabudi, G. I., Bengen, D. G., Effendi, H., & Radjasa, O. K. (2016. The Community Structure of Phytoplankton in Seagrass Ecosystem and its Relationship with Environmental Characterstics. Biosaintifika: Journal of Biology & Biology Education, 8(3, 257-269.

  9. Bioavailability of autochthonous dissolved organic nitrogen in marine plankton communities

    DEFF Research Database (Denmark)

    Knudsen, Helle; Markager, Svend Stiig; Søndergaard, Morten

    The purpose of this study was to investigate the bioavailability of dissolved organic nitrogen (DON) produced during a phytoplankton bloom. The experiments were conducted with natural plankton communities as batch growth experiments over approximately 30 days with nitrogen limitation. Five to six...... times during the exponential and stationary phases of each experimental bloom the bioavailability of DON was measured over 60 days together with DOC and oxygen consumption. The overall aim was to quantify remineralization of the added nitrate. The results showed that maximum 33 % of the added nitrate...

  10. Silicon Isotopes of Marine Pore Water: Tracking the Destiny of Marine Biogenic Opal

    Science.gov (United States)

    Cassarino, L.; Hendry, K. R.

    2017-12-01

    Silicon isotopes (δ30Si) are a powerful tool for the studying of the past and present silicon cycles, which is closely linked to the carbon cycle. Siliceous phytoplankton, such as diatoms, as one of the major conveyors of carbon to marine sediments. δ30Si from fossil diatoms has been shown to represent past silicic acid (DSi) utilization in the photic zone, since the lighter isotope is preferentially incorporated in their skeleton, the frustule. This assumes that species in the sediments depict past blooms and that frustules are preserved in their initial state during burial. Here we present new silicon isotopes data of sea water and pore water of deep marine sediments from two contrasted environments, the Equatorial Atlantic and West Antarctic Peninsula. δ30Si and DSi concentration, of both sea water and pore water, are negatively correlated. Marine biogenic opal dissolution can be tracked using δ30Si signature of pore water as lighter signals and high DSi concentrations are associated with the biogenic silica. Our data enhances post depositional and diagenesis processes during burial with a clear highlight on the sediment water interface exchanges.

  11. Taxonomic and functional diversity of a coastal planktonic bacterial community in a river-influenced marine area.

    Science.gov (United States)

    Thiele, Stefan; Richter, Michael; Balestra, Cecilia; Glöckner, Frank Oliver; Casotti, Raffaella

    2017-04-01

    The Gulf of Naples is a dynamical area with intense exchanges between offshore oligotrophic and coastal eutrophic waters with frequent freshwater inputs. The Sarno River, one of the most polluted rivers in Europe, strongly contributes to the pollution of the area, discharging high amounts of heavy metals and organic wastes from heavily cultivated and industrial areas. This paper reports on the diversity and community structure of the marine residential Bacteria and Archaea of the Gulf of Naples in an area close to the river Sarno plume and investigates their small-scale taxonomic diversity and expression patterns as a proxy of potential metabolic activity using metagenomics and metatranscriptomics. Bacteria and Archaea were mainly represented by marine clades, with only minor contributors from freshwater ones. The community was dominated by Alpha- and Gammaproteobacteria, of which Rhodospirillales, Pelagibacteriales, and Oceanospirilalles were most represented. However, Alteromonadales and Rhodobacterales were the most active, despite their relative lower abundance, suggesting that they are important for overall ecosystem functioning and nutrient cycling. Nitrification and a reversed form of dissimilatory sulfate reduction were the major metabolic processes found in the metatrascriptomes and were mainly associated to Nitrosopumilales and Pelagibacter, respectively. No clear indication of transcripts related to stress induced by heavy metals or organic pollutants was found. In general, despite the high loads of pollutants discharged continuously by the Sarno River, the microbial community did not show marks of stress-induced changes neither structural nor functional, thus suggesting that this river has little or no effect on the planktonic bacterial community of the Gulf of Naples. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Faster recovery of a diatom from UV damage under ocean acidification.

    Science.gov (United States)

    Wu, Yaping; Campbell, Douglas A; Gao, Kunshan

    2014-11-01

    Diatoms are the most important group of primary producers in marine ecosystems. As oceanic pH declines and increased stratification leads to the upper mixing layer becoming shallower, diatoms are interactively affected by both lower pH and higher average exposures to solar ultraviolet radiation. The photochemical yields of a model diatom, Phaeodactylum tricornutum, were inhibited by ultraviolet radiation under both growth and excess light levels, while the functional absorbance cross sections of the remaining photosystem II increased. Cells grown under ocean acidification (OA) were less affected during UV exposure. The recovery of PSII under low photosynthetically active radiation was much faster than in the dark, indicating that photosynthetic processes were essential for the full recovery of photosystem II. This light dependent recovery required de novo synthesized protein. Cells grown under ocean acidification recovered faster, possibly attributable to higher CO₂ availability for the Calvin cycle producing more resources for repair. The lower UV inhibition combined with higher recovery rate under ocean acidification could benefit species such as P.tricornutum, and change their competitiveness in the future ocean. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Attraction Pheromone of The Benthic Diatom Seminavis robusta: Studies on Structure-Activity Relationships.

    Science.gov (United States)

    Lembke, Christine; Stettin, Daniel; Speck, Franziska; Ueberschaar, Nico; De Decker, Sam; Vyverman, Wim; Pohnert, Georg

    2018-04-01

    Recently the first pheromone of a marine diatom was identified to be the diketopiperazine (S,S)-diproline. This compound facilitates attraction between mating partners in the benthic diatom Seminavis robusta. Interestingly, sexualized S. robusta cells are attracted to both the natural pheromone (S,S)-diproline as well as to its enantiomer (R,R)-diproline. Usually stereospecificity is a prerequisite for successful substrate-receptor interactions, and especially pheromone perception is often highly enantioselective. Here we introduce a structure-activity relationship study, to learn more about the principles of pheromone reception in diatoms. We analyzed the activity of nine different diketopiperazines in attraction and interference assays. The pheromone diproline itself, as well as a pipecolic acid derived diketopiperazine with two expanded aliphatic ring systems, showed the highest attractivity. Hydroxylatoin of the aliphatic rings abolished any bioactivity. Diketopiperazines derived from acyclic amino acids were not attrative as well. All stereoisomers of both the diproline and the pipecolic acid derived diketopiperazine were purified by enantioselective high-performance liquid chromatography, and application in bioactivity tests confirmed that attraction pheromone perception in this diatom is indeed not stereospecific. However, the lack of activity of diketopiperazines derived from acyclic amino acids suggests a specificity that prevents misguidance to sources of other naturally occurring diketopiperazines.

  14. Bio-PIXE marine science. Otoliths and plankton

    International Nuclear Information System (INIS)

    Malmqvist, K.G.; Buelow, K.; Elfman, M.; Kristiansson, P; Pallon, J.; Shariff, S.; Limburg, K.E.; Karlsson, C.

    1999-01-01

    Otoliths and phytoplanktons have been investigated using a nuclear microprobe. A brief description of sample preparation and irradiation conditions is given. The results indicate a great potential of the technique in marine sciences. (author)

  15. Diatom-inspired templates for 3D replication: natural diatoms versus laser written artificial diatoms

    International Nuclear Information System (INIS)

    Belegratis, M R; Schmidt, V; Nees, D; Stadlober, B; Hartmann, P

    2014-01-01

    The diatoms are ubiquitous, exist in large numbers and show a great diversity of features on their porous silica structures. Therefore, they inspire the fabrication of nanostructured templates for nanoimprint processes (NIL), where large structured areas with nanometer precision are required. In this study, two approaches regarding the respective challenges and potential exploitations are followed and discussed: the first one takes advantage of a template that is directly made of natural occurring diatoms. Here, two replication steps via soft lithography are needed to obtain a template which is subsequently used for NIL. The second approach exploits the technical capabilities of the precise 3D laser lithography (3DLL) based on two-photon polymerization of organic materials. This method enables the fabrication of arbitrary artificial diatom-inspired micro- and nanostructures and the design of an inverse structure. Therefore, only one replication step is needed to obtain a template for NIL. In both approaches, a replication technique for true 3D structures is shown. (paper)

  16. An integrative analysis of post-translational histone modifications in the marine diatom Phaeodactylum tricornutum

    KAUST Repository

    Veluchamy, Alaguraj; Rastogi, Achal; Lin, Xin; Lombard, Bé rangè re; Murik, Omer; Thomas, Yann; Dingli, Florent; Rivarola, Maximo; Ott, Sandra; Liu, Xinyue; Sun, Yezhou; Rabinowicz, Pablo D.; McCarthy, James; Allen, Andrew E.; Loew, Damarys; Bowler, Chris; Tirichine, Leï la

    2015-01-01

    in global biogeochemical cycles. Dissecting chromatin-mediated regulation of genes in diatoms will help understand the ecological success of these organisms in contemporary oceans. Results: Here, we use high resolution mass spectrometry to identify a full

  17. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms

    Science.gov (United States)

    Young, Jodi N.; Heureux, Ana M.C.; Sharwood, Robert E.; Rickaby, Rosalind E.M.; Morel, François M.M.; Whitney, Spencer M.

    2016-01-01

    While marine phytoplankton rival plants in their contribution to global primary productivity, our understanding of their photosynthesis remains rudimentary. In particular, the kinetic diversity of the CO2-fixing enzyme, Rubisco, in phytoplankton remains unknown. Here we quantify the maximum rates of carboxylation (k cat c), oxygenation (k cat o), Michaelis constants (K m) for CO2 (K C) and O2 (K O), and specificity for CO2 over O2 (SC/O) for Form I Rubisco from 11 diatom species. Diatom Rubisco shows greater variation in K C (23–68 µM), SC/O (57–116mol mol−1), and K O (413–2032 µM) relative to plant and algal Rubisco. The broad range of K C values mostly exceed those of C4 plant Rubisco, suggesting that the strength of the carbon-concentrating mechanism (CCM) in diatoms is more diverse, and more effective than previously predicted. The measured k cat c for each diatom Rubisco showed less variation (2.1–3.7s−1), thus averting the canonical trade-off typically observed between K C and k cat c for plant Form I Rubisco. Uniquely, a negative relationship between K C and cellular Rubisco content was found, suggesting variation among diatom species in how they allocate their limited cellular resources between Rubisco synthesis and their CCM. The activation status of Rubisco in each diatom was low, indicating a requirement for Rubisco activase. This work highlights the need to better understand the correlative natural diversity between the Rubisco kinetics and CCM of diatoms and the underpinning mechanistic differences in catalytic chemistry among the Form I Rubisco superfamily. PMID:27129950

  18. Particulate matter and plankton dynamics in the Ross Sea Polynya of Terra Nova Bay during the Austral Summer 1997/98

    Science.gov (United States)

    Fonda Umani, S.; Accornero, A.; Budillon, G.; Capello, M.; Tucci, S.; Cabrini, M.; Del Negro, P.; Monti, M.; De Vittor, C.

    2002-07-01

    The structure and variability of the plankton community and the distribution and composition of suspended particulate matter, were investigated in the polynya of Terra Nova Bay (western Ross Sea) during the austral summer 1997/1998, with the ultimate objective of understanding the trophic control of carbon export from the upper water column. Sampling was conducted along a transect parallel to the shore, near the retreating ice edge at the beginning of December, closer to the coast at the beginning of February, and more offshore in late February. Hydrological casts and water sampling were performed at several depths to measure total particulate matter (TPM), particulate organic carbon (POC), biogenic silica (BSi), chlorophyll a (Chl a) and phaeopigment (Phaeo) concentrations. Subsamples were taken for counting autotrophic and heterotrophic pico- and nanoplankton and to assess the abundance and composition of microphyto- and microzooplankton. Statistical analysis identified two major groups of samples: the first included the most coastal surface samples of early December, characterized by the prevalence of autotrophic nanoplankton biomass; the second included all the remaining samples and was dominated by microphytoplankton. With regard to the relation of the plankton community composition to the biogenic suspended and sinking material, we identified the succession of three distinct periods. In early December Phaeocystis dominated the plankton assemblage in the well-mixed water column, while at the retreating ice-edge a bloom of small diatoms (ND) was developing in the lens of superficial diluted water. Concentrations of biogenic particulates were generally low and confined to the uppermost layer. The very low downward fluxes, the near absence of faecal pellets and the high Chl a/Phaeo ratios suggested that the herbivorous food web was not established yet or, at least, was not working efficiently. In early February the superficial pycnocline and the increased water

  19. Environmental changes induced by human activities in the Northern Curonian Lagoon (Eastern Baltic: diatoms and stable isotope data

    Directory of Open Access Journals (Sweden)

    Giedrė Vaikutienė

    2017-05-01

    Full Text Available A sediment core collected from the northwestern part of the Curonian Lagoon, which was deposited approximately during 1800-2002, was analysed for several proxy records. Changes in diatom assemblages and carbon, nitrogen and oxygen stable isotopes (δ13C, δ15N and δ18O revealed two periods, which are characterized by differences in the sedimentation rate, sediment type and trophic state of the northern part of the Curonian Lagoon. Low δ15N values in organics and prevailing fresh-brackish benthic diatoms indicate low enrichment in the shallow, freshwater lagoon during the period 1800-1955. The eutrophic conditions in this shallow lagoon are reflected by a high abundance of planktonic diatoms common in nutrient-rich basins and increased d15N values in organics of the sediments since 1955. Starting approximately in the 1960s, decreased freshwater run-off and increased brackish-water inflow into the lagoon were observed. These changes were likely caused by the construction of the hydropower station (and a reservoir near the Nemunas River and the artificial deepening of the Klaipėda Strait during 1960-1962 and later, also by the rising sea level in the SE Baltic. The changed river run-off and the artificially deepened strait significantly influenced the fresh-brackish water circulation and environmental conditions in the northern part of the Curonian Lagoon in the last decades.

  20. Zooplankton motile behavior: traits and trade-offs in planktonic copepods

    DEFF Research Database (Denmark)

    van Someren Gréve, Hans

    Research on planktonic copepod ecology is vital to understand the factors controlling marine food web dynamics since copepods are the major components of zooplankton communities and the main link between trophic levels in marine environments. Despite their taxonomic diversity, copepods share...... certain phenotypic characteristics, or ´traits´, that are essential in determining trophic interactions and fitness. One important characteristic that decisively influences organism interactions is behavior. Copepods display two distinct behavioral strategies in terms of motility: ´active´ (feeding...... differences between genders in feeding efficiency and predation risk. Finally, we also found that foraging activity decreased with increasing food availability, especially in active feeding strategies, resulting in a decrease in predation risk. Therefore, changes in behavior depending on food availability...

  1. The plastic-associated microorganisms of the North Pacific Gyre.

    Science.gov (United States)

    Carson, Henry S; Nerheim, Magnus S; Carroll, Katherine A; Eriksen, Marcus

    2013-10-15

    Microorganisms likely mediate processes affecting the fate and impacts of marine plastic pollution, including degradation, chemical adsorption, and colonization or ingestion by macroorganisms. We investigated the relationship between plastic-associated microorganism communities and factors such as location, temperature, salinity, plankton abundance, plastic concentration, item size, surface roughness, and polymer type. Small plastic items from the surface of the North Pacific Gyre in 2011 were examined using scanning electron microscopy. Bacillus bacteria (mean 1664 ± 247 individuals mm(-2)) and pennate diatoms (1097 ± 154 mm(-2)) were most abundant, with coccoid bacteria, centric diatoms, dinoflagellates, coccolithophores, and radiolarians present. Bacterial abundance was patchy, but increased on foamed polystyrene. Diatom abundance increased on items with rough surfaces and at sites with high plastic concentrations. Morphotype richness increased slightly on larger fragments, and a biogeographic transition occurred between pennate diatom groups. Better characterizing this community will aid in understanding how it interacts with plastic pollution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The transcription factor bZIP14 regulates the TCA cycle in the diatom Phaeodactylum tricornutum.

    Science.gov (United States)

    Matthijs, Michiel; Fabris, Michele; Obata, Toshihiro; Foubert, Imogen; Franco-Zorrilla, José Manuel; Solano, Roberto; Fernie, Alisdair R; Vyverman, Wim; Goossens, Alain

    2017-06-01

    Diatoms are amongst the most important marine microalgae in terms of biomass, but little is known concerning the molecular mechanisms that regulate their versatile metabolism. Here, the pennate diatom Phaeodactylum tricornutum was studied at the metabolite and transcriptome level during nitrogen starvation and following imposition of three other stresses that impede growth. The coordinated upregulation of the tricarboxylic acid (TCA) cycle during the nitrogen stress response was the most striking observation. Through co-expression analysis and DNA binding assays, the transcription factor bZIP14 was identified as a regulator of the TCA cycle, also beyond the nitrogen starvation response, namely in diurnal regulation. Accordingly, metabolic and transcriptional shifts were observed upon overexpression of bZIP14 in transformed P. tricornutum cells. Our data indicate that the TCA cycle is a tightly regulated and important hub for carbon reallocation in the diatom cell during nutrient starvation and that bZIP14 is a conserved regulator of this cycle. © 2017 The Authors.

  3. Front-Eddy Influence on Water Column Properties, Phytoplankton Community Structure, and Cross-Shelf Exchange of Diatom Taxa in the Shelf-Slope Area off Concepción (˜36-37°S)

    Science.gov (United States)

    Morales, Carmen E.; Anabalón, Valeria; Bento, Joaquim P.; Hormazabal, Samuel; Cornejo, Marcela; Correa-Ramírez, Marco A.; Silva, Nelson

    2017-11-01

    In eastern boundary current systems (EBCSs), submesoscale to mesocale variability contributes to cross-shore exchanges of water properties, nutrients, and plankton. Data from a short-term summer survey and satellite time series (January-February 2014) were used to characterize submesoscale variability in oceanographic conditions and phytoplankton distribution across the coastal upwelling and coastal transition zones north of Punta Lavapié, and to explore cross-shelf exchanges of diatom taxa. A thermohaline front (FRN-1) flanked by a mesoscale anticyclonic intrathermocline eddy (ITE-1), or mode-water eddy, persisted during the time series and the survey was undertaken during a wind relaxation event. At the survey time, ITE-1 contributed to an onshore intrusion of warm oceanic waters (southern section) and an offshore advection of cold coastal waters (northern section), with the latter forming a cold, high chlorophyll-a filament. In situ phytoplankton and diatom biomasses were highest at the surface in FRN-1 and at the subsurface in ITE-1, whereas values in the coastal zone were lower and dominated by smaller cells. Diatom species typical of the coastal zone and species dominant in oceanic waters were both found in the FRN-1 and ITE-1 interaction area, suggesting that this mixture was the result of both offshore and onshore advection. Overall, front-eddy interactions in EBCSs could enhance cross-shelf exchanges of coastal and oceanic plankton, as well as sustain phytoplankton growth in the slope area through localized upward injections of nutrients in the frontal zone, combined with ITE-induced advection and vertical nutrient inputs to the surface layer.

  4. Geochemical and diatom records of recent changes in depositional environment of a tropical wetland, central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Pande, A.; Nayak, G.N.; Prasad, V.; PrakashBabu, C

    size, total organic carbon, total nitrogen, carbon/nitrogen ratio (TOC/TN), selected metals and pH) and diatom records The sub-channel (S-61) represents river environment which opens into main channel (S-60) which represents marine environment being...

  5. Ecological roulette: the global transport of nonindigenous marine organisms.

    Science.gov (United States)

    Cariton, J T; Geller, J B

    1993-07-02

    Ocean-going ships carry, as ballast, seawater that is taken on in port and released at subsequent ports of call. Plankton samples from Japanese ballast water released in Oregon contained 367 taxa. Most taxa with a planktonic phase in their life cycle were found in ballast water, as were all major marine habitat and trophic groups. Transport of entire coastal planktonic assemblages across oceanic barriers to similar habitats renders bays, estuaries, and inland waters among the most threatened ecosystems in the world. Presence of taxonomically difficult or inconspicuous taxa in these samples suggests that ballast water invasions are already pervasive.

  6. Transparent Exopolymeric Particles (TEP Selectively Increase Biogenic Silica Dissolution From Fossil Diatoms as Compared to Fresh Diatoms

    Directory of Open Access Journals (Sweden)

    Jordan Toullec

    2018-03-01

    Full Text Available Diatom production is mainly supported by the dissolution of biogenic silica (bSiO2 within the first 200 m of the water column. The upper oceanic layer is enriched in dissolved and/or colloidal organic matter, such as exopolymeric polysaccharides (EPS and transparent exopolymeric particles (TEP excreted by phytoplankton in large amounts, especially at the end of a bloom. In this study we explored for the first time the direct influence of TEP-enriched diatom excretions on bSiO2 dissolution. Twelve dissolution experiments on fresh and fossil diatom frustules were carried out on seawater containing different concentrations of TEP extracted from diatom cultures. Fresh diatom frustules were cleaned from the organic matter by low ash temperature, and fossil diatoms were made from diatomite powder. Results confirm that newly formed bSiO2 dissolved at a faster rate than fossil diatoms due to a lower aluminum (Al content. Diatom excretions have no effect on the dissolution of the newly formed bSiO2 from Chaetoceros muelleri. Reversely, the diatomite specific dissolution rate constant and solubility of the bSiO2 were positively correlated to TEP concentrations, suggesting that diatom excretion may provide an alternative source of dSi when limitations arise.

  7. High resilience of two coastal plankton communities to 21st century seawater acidification: Evidence from microcosm studies

    DEFF Research Database (Denmark)

    Nielsen, Lasse Tor; Jakobsen, Hans Henrik; Hansen, Per Juul

    2010-01-01

    Increased free CO2 and ocean acidification are among the consequences of anthropogenic carbon emissions. Responses of marine protists to increased levels of CO2 are highly species-specific, and this has been suggested to cause an alteration in plankton species composition, community functions...

  8. Novel adenosine 3',5'-cyclic monophosphate dependent protein kinases in a marine diatom

    International Nuclear Information System (INIS)

    Lin, P.P.C.; Volcani, B.E.

    1989-01-01

    Two novel adenosine 3',5'-cyclic monophosphate (cAMP) dependent protein kinases have been isolated from the diatom Cylindrotheca fusiformis. The kinases, designated I and II, are eluted from DEAE-Sephacel at 0.10 and 0.15 M NaCl. They have a high affinity for cAMP and are activated by micromolar cAMP. They exhibit maximal activity at 5 mM Mg 2+ and pH 8 with the preferred phosphate donor ATP and phosphate acceptor histone H1. They phosphorylate sea urchin sperm histone H1 on a single serine site in the sequence Arg-Lys-Gly-Ser( 32 P)-Ser-Asn-Ala-Arg and have an apparent M r of 75,000 as determined by gel filtration and sucrose density sedimentation. In the kinase I preparation a single protein band with an apparent M r of about 78,000 is photolabeled with 8-azido[ 32 P]cAMP and is also phosphorylated with [γ- 32 P]ATP in a cAMP-dependent manner, after autoradiography following sodium dodecyl sulfate gel electrophoresis. The rate of phosphorylation of the 78,000-dalton band is independent of the enzyme concentration. The results indicate that (i) these diatom cAMP-dependent protein kinases are monomeric proteins, possessing both the cAMP-binding regulatory and catalytic domains on the same polypeptide chain, (ii) the enzymes do not dissociate into smaller species upon activation by binding cAMP, and (iii) self-phosphorylation of the enzymes by an intrapeptide reaction is cAMP dependent. The two diatom cAMP kinases are refractory to the heat-stable protein kinase modulator from rabbit muscle, but they respond differently to proteolytic degradation and to inhibition by arachidonic acid and several microbial alkaloids

  9. Environmental and Spatial Influences on Biogeography and Community Structure of Benthic Diatoms

    Science.gov (United States)

    Plante, C.; Hill-Spanik, K.; Lowry, J.

    2016-02-01

    Several theoretical and practical reasons suggest that benthic microalgae could be useful bioindicators. For instance, an ideal indicator species or community would be associated with a given habitat due to local physical conditions or biotic interactions (i.e., `environmental filtering'), not due to dispersal limitation. Due to their small size, immense abundances, and reliance on passive dispersal, the popular notion about micro-organisms is that `Everything is everywhere, but, the environment selects' (Baas-Becking 1934). Although much recent research concerning planktonic bacteria and dispersal limitation has been conducted, very little in this regard is known about microeukaryotes, especially benthic microbes. The purpose of our study was to identify and compare spatial and environmental influences on benthic diatom community structure and biogeography. In summer 2015, sediment was sampled at various spatial scales from four barrier island beaches in South Carolina, USA, and high-throughput (Ion Torrent) DNA sequencing was used to characterize diatom assemblages. ANOSIM and principal coordinates analysis revealed that communities were statistically distinct on the four islands. Community dissimilarity was compared to both spatial distance and environmental differences to determine potential influences of these variables on community structure. We found that geographic distance had the strongest correlation with community similarity, with and without one anomalous location, while differences in temperature (air, water, and sediment), nutrients, organic matter, and turbidity also had significant but weaker relationships with community structure. Surprisingly, air temperature, which changes on very short time scales, appeared to be the environmental factor most strongly related to diatom species composition, potentially implicating some unmeasured variable (e.g., cloud cover). However, we also found that temperature and geographic distance were strongly

  10. A direct pre-screen for marine bacteria producing compounds inhibiting quorum sensing reveals diverse planktonic bacteria that are bioactive.

    Science.gov (United States)

    Linthorne, Jamie S; Chang, Barbara J; Flematti, Gavin R; Ghisalberti, Emilio L; Sutton, David C

    2015-02-01

    A promising new strategy in antibacterial research is inhibition of the bacterial communication system termed quorum sensing. In this study, a novel and rapid pre-screening method was developed to detect the production of chemical inhibitors of this system (quorum-quenching compounds) by bacteria isolated from marine and estuarine waters. This method involves direct screening of mixed populations on an agar plate, facilitating specific isolation of bioactive colonies. The assay showed that between 4 and 46 % of culturable bacteria from various samples were bioactive, and of the 95 selectively isolated bacteria, 93.7 % inhibited Vibrio harveyi bioluminescence without inhibiting growth, indicating potential production of quorum-quenching compounds. Of the active isolates, 21 % showed further activity against quorum-sensing-regulated pigment production by Serratia marcescens. The majority of bioactive isolates were identified by 16S ribosomal DNA (rDNA) amplification and sequencing as belonging to the genera Vibrio and Pseudoalteromonas. Extracts of two strongly bioactive Pseudoalteromonas isolates (K1 and B2) were quantitatively assessed for inhibition of growth and quorum-sensing-regulated processes in V. harveyi, S. marcescens and Chromobacterium violaceum. Extracts of the isolates reduced V. harveyi bioluminescence by as much as 98 % and C. violaceum pigment production by 36 % at concentrations which had no adverse effect on growth. The activity found in the extracts indicated that the isolates may produce quorum-quenching compounds. This study further supports the suggestion that quorum quenching may be a common attribute among culturable planktonic marine and estuarine bacteria.

  11. Dynamics of short-term acclimation to UV radiation in marine diatoms.

    Science.gov (United States)

    Fouqueray, Manuela; Mouget, Jean-Luc; Morant-Manceau, Annick; Tremblin, Gérard

    2007-11-12

    In order to investigate the dynamics of the acclimation of marine diatoms to ultraviolet radiation (UVR), Amphora coffeaeformis, Odontella aurita and Skeletonema costatum were exposed for 5 h per day to a combination of UVA and UVB (UVBR/UVAR ratio 4.5%) with a total UVR daily dose of 110 kJ m(-2), which is equivalent to that observed in the natural environment. This treatment was applied in the middle of the photoperiod and was repeated on five successive days. During the UVR treatment, chlorophyll fluorescence parameters were monitored, damage and repair constants were calculated from effective quantum yield values (phi(PSII)), and rapid light curves (electron transport rate versus irradiance curves using short light steps of different intensity) were plotted to determine the maximum relative electron transport rate (rETR(max)) and maximum light use efficiency (alpha). In all species the growth rate was lower than control from day 1-3, but increased thereafter, except for S. costatum. The cellular chlorophyll a content increased significantly with repeated daily exposure to UVR for A. coffeaeformis only. In all species, the fluorescence parameters (F(m), the maximum fluorescence level measured in the dark, phi(PSII), rETR(max) and alpha) decreased during UVR exposure, in contrast to F(0) (the minimum fluorescence level measured in the dark). The response to UVR stress was species-specific. S. costatum was very sensitive, and failed to survive for more than three days, whereas A. coffeaeformis and O. aurita were able to acclimate to UVR stress. These two species used different strategies. In A. coffeaeformis, the repair constant was lower than the damage constant, but phi(PSII) values returned to baseline values at the beginning of each experimental day, indicating that an effective active recovery process occurred after stress. In O. aurita, the repair processes took place during the stress, and could account for the UVR tolerance of this species.

  12. Effect of Engineered Nanoparticles on Exopolymeric Substances Release from Marine Phytoplankton

    OpenAIRE

    Chiu, Meng-Hsuen; Khan, Zafir A.; Garcia, Santiago G.; Le, Andre D.; Kagiri, Agnes; Ramos, Javier; Tsai, Shih-Ming; Drobenaire, Hunter W.; Santschi, Peter H.; Quigg, Antonietta; Chin, Wei-Chun

    2017-01-01

    Engineered nanoparticles (ENPs), products from modern nanotechnologies, can potentially impact the marine environment to pose serious threats to marine ecosystems. However, the cellular responses of marine phytoplankton to ENPs are still not well established. Here, we investigate four different diatom species (Odontella mobiliensis, Skeletonema grethae, Phaeodactylum tricornutum, Thalassiosira pseudonana) and one green algae (Dunaliella tertiolecta) for their extracellular polymeric substance...

  13. Influence of ocean acidification on plankton community structure during a winter-to-summer succession: An imaging approach indicates that copepods can benefit from elevated CO2 via indirect food web effects

    Science.gov (United States)

    Taucher, Jan; Haunost, Mathias; Boxhammer, Tim; Bach, Lennart T.; Algueró-Muñiz, María; Riebesell, Ulf

    2017-01-01

    Plankton communities play a key role in the marine food web and are expected to be highly sensitive to ongoing environmental change. Oceanic uptake of anthropogenic carbon dioxide (CO2) causes pronounced shifts in marine carbonate chemistry and a decrease in seawater pH. These changes–summarized by the term ocean acidification (OA)–can significantly affect the physiology of planktonic organisms. However, studies on the response of entire plankton communities to OA, which also include indirect effects via food-web interactions, are still relatively rare. Thus, it is presently unclear how OA could affect the functioning of entire ecosystems and biogeochemical element cycles. In this study, we report from a long-term in situ mesocosm experiment, where we investigated the response of natural plankton communities in temperate waters (Gullmarfjord, Sweden) to elevated CO2 concentrations and OA as expected for the end of the century (~760 μatm pCO2). Based on a plankton-imaging approach, we examined size structure, community composition and food web characteristics of the whole plankton assemblage, ranging from picoplankton to mesozooplankton, during an entire winter-to-summer succession. The plankton imaging system revealed pronounced temporal changes in the size structure of the copepod community over the course of the plankton bloom. The observed shift towards smaller individuals resulted in an overall decrease of copepod biomass by 25%, despite increasing numerical abundances. Furthermore, we observed distinct effects of elevated CO2 on biomass and size structure of the entire plankton community. Notably, the biomass of copepods, dominated by Pseudocalanus acuspes, displayed a tendency towards elevated biomass by up to 30–40% under simulated ocean acidification. This effect was significant for certain copepod size classes and was most likely driven by CO2-stimulated responses of primary producers and a complex interplay of trophic interactions that allowed this

  14. Isolation and partial chemical analysis of exopolysaccharides from cultivated marine diatom Coscinodiscus wailesii (Coscinodiscales, Bacillariophyta); Isolamento e analise quimica parcial de exopolissacarideos da diatomacea marinha cultivada Coscinodiscus wailesii (Coscinodiscales, Bacillariophyta)

    Energy Technology Data Exchange (ETDEWEB)

    Marson-Ascencio, Poliana G.; Ascencio, Sergio Donizeti [Universidade Federal do Tocantins, Palmas, TO (Brazil); Baggio, Selma Faria Zawadzki, E-mail: polianamarson@uft.edu.br [Universidade Federal do Parana, Curitiba, PR (Brazil). Centro Politecnico. Dept. de Bioquimica e Biologia Molecular

    2012-07-01

    The marine diatom Coscinodiscus wailesii has attracted ecological interest because their blooms affect fishing areas. The aim of this work was the isolation, extraction and partial chemical characterization of soluble exopolysaccharide and bound exopolysaccharide from C. wailesii. Cultures were grown in Guillards f/2 medium under controlled conditions of temperature, aeration, photo period and light intensity. Percentage of carbohydrate, uronic acids, sulfates groups and cellular lipids was determined. Ion exchange chromatography of exopolysaccharides produced three fractions whose partial chemical structures were disclosed using {sup 13}C NMR and methylation techniques. (author)

  15. Gelatinous plankton is central to the diet of European eel (Anguilla anguilla) larvae in the Sargasso Sea

    DEFF Research Database (Denmark)

    Ayala, Daniel Jiro; Munk, Peter; Lundgreen, Regitze B. C.

    2018-01-01

    endangered species. Next-generation 18S rRNA gene sequencing data of Sargasso Sea eel larvae gut contents and marine snow aggregates was compared with a reference plankton database to assess the trophic relations of eel larvae. Gut contents of A. anguilla larvae were not well explained by the eukaryotic...... composition of marine snow aggregates; gut contents being dominated by gene sequences of Hydrozoa taxa (phylum Cnidaria), while snow aggregates were dominated by Crustacea taxa. Pronounced differences between gut contents and marine snow aggregates were also seen in the prokaryotic 16S rRNA gene composition...

  16. Sedimentation of phytoplankton during a diatom bloom : Rates and mechanisms

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Hansen, J.L.S.; Alldredge, A.L.

    1996-01-01

    Phytoplankton blooms are uncoupled from grazing and are normally terminated by sedimentation. There are several potential mechanisms by which phytoplankton cells may settle out of the photic zone: sinking of individual cells or chains, coagulation of cells into aggregates with high settling...... velocities, settling of cells attached to marine snow aggregates formed from discarded larvacean houses or pteropod feeding webs, and packaging of cells into rapidly falling zooplankton fecal pellets. We quantified the relative significance of these different mechanisms during a diatom bloom in a temperate...... to marine snow aggregates formed from discarded larvacean houses, whereas settling of unaggregated cells was insignificant. Formation rates of phytoplankton aggregates by physical coagulation was very low, and losses by this mechanism were much less than 0.07 d(-1); phytoplankton aggregates were neither...

  17. Cultivation of seaweed Gracilaria lemaneiformis enhanced biodiversity in a eukaryotic plankton community as revealed via metagenomic analyses.

    Science.gov (United States)

    Chai, Zhao Yang; He, Zhi Li; Deng, Yun Yan; Yang, Yu Feng; Tang, Ying Zhong

    2018-02-01

    Plankton diversity reflects the quality and health of waters and should be monitored as a critical feature of marine ecosystems. This study applied a pair of 28S rRNA gene-specific primers and pyrosequencing to assess the effects of large-scale cultivation of the seaweed Gracilaria lemaneiformis on the biodiversity of eukaryotic plankton community in the coastal water of Guangdong, China. With 1 million sequences (2,221 operational taxonomic units [OTUs]) obtained from 51 samples, we found that the biodiversity of eukaryotic plankton community was significantly higher in the seaweed cultivation area than that in the nearby control area as reflected in OTU richness, evenness (Shannon-Wiener index) and dominance (Simpson index) for total plankton community and its four subcategories when Gracilaria biomass reached the maximum, while no such a significant difference was observed before seaweed inoculation. Our laboratory experiment using an artificial phytoplankton community of nine species observed the same effects of Gracilaria exposure. Principal component analysis and principal coordinates analysis showed the plankton community structure in cultivation area markedly differed from the control area when Gracilaria biomass reached its maximum. Redundancy analysis showed that G. lemaneiformis was the critical factor in controlling the dynamics of eukaryotic plankton communities in the studied coastal ecosystem. Our results explicitly demonstrated G. lemaneiformis cultivation could enhance biodiversity of plankton community via allelopathy, which prevents one or several plankton species from blooming and consequently maintains a relatively higher biodiversity. Our study provided further support for using large-scale G. lemaneiformis cultivation as an effective approach for improving costal ecosystem health. © 2018 John Wiley & Sons Ltd.

  18. C5 glycolipids of heterocystous cyanobacteria track symbiont abundance in the diatom Hemiaulus hauckii across the tropical North Atlantic

    Science.gov (United States)

    Bale, Nicole J.; Villareal, Tracy A.; Hopmans, Ellen C.; Brussaard, Corina P. D.; Besseling, Marc; Dorhout, Denise; Sinninghe Damsté, Jaap S.; Schouten, Stefan

    2018-03-01

    Diatom-diazotroph associations (DDAs) include marine heterocystous cyanobacteria found as exosymbionts and endosymbionts in multiple diatom species. Heterocysts are the site of N2 fixation and have thickened cell walls containing unique heterocyst glycolipids which maintain a low oxygen environment within the heterocyst. The endosymbiotic cyanobacterium Richelia intracellularis found in species of the diatom genus Hemiaulus and Rhizosolenia makes heterocyst glycolipids (HGs) which are composed of C30 and C32 diols and triols with pentose (C5) moieties that are distinct from limnetic cyanobacterial HGs with predominantly hexose (C6) moieties. Here we applied a method for analysis of intact polar lipids to the study of HGs in suspended particulate matter (SPM) and surface sediment from across the tropical North Atlantic. The study focused on the Amazon plume region, where DDAs are documented to form extensive surface blooms, in order to examine the utility of C5 HGs as markers for DDAs as well as their transportation to underlying sediments. C30 and C32 triols with C5 pentose moieties were detected in both marine SPM and surface sediments. We found a significant correlation between the water column concentration of these long-chain C5 HGs and DDA symbiont counts. In particular, the concentrations of both the C5 HGs (1-(O-ribose)-3,27,29-triacontanetriol (C5 HG30 triol) and 1-(O-ribose)-3,29,31-dotriacontanetriol (C5 HG32 triol)) in SPM exhibited a significant correlation with the number of Hemiaulus hauckii symbionts. This result strengthens the idea that long-chain C5 HGs can be applied as biomarkers for marine endosymbiotic heterocystous cyanobacteria. The presence of the same C5 HGs in surface sediment provides evidence that they are effectively transported to the sediment and hence have potential as biomarkers for studies of the contribution of DDAs to the paleo-marine N cycle.

  19. Thalassiosira mala (Bacillariophyta), a potentially harmful, marine ...

    Indian Academy of Sciences (India)

    Thalassiosira malaitalic> (Bacillariophyta), a potentially harmful, marine diatom from Chilka Lake and other coastal localities of Odisha, India: Nomenclature, ... Department of Biological Science, Florida State University, Tallahassee, FL 32306–4370, USA; Department of Biology, Valdosta State University, Valdosta, GA ...

  20. The background to the proposition that plankton be used as food in the United Kingdom during the Second World War.

    Science.gov (United States)

    Moore, P G

    2011-01-01

    Food shortages, particularly of proteins, in Britain during the Second World War led to the suggestion re-surfacing that marine plankton might be harvested on an industrial scale first as human food, then turning to its potential use as a supplement to stock and poultry feed. The notion emanated in the United Kingdom from Sir John Graham Kerr, at Glasgow University. He encouraged Alister Hardy, at Hull, to develop the idea and the natural testing ground was the Clyde Sea Area (given the extensive history of plankton research at Millport). Unpublished documents from the archives of the Scottish Association for Marine Science shed new light on the interactions behind the scenes of this project between Kerr, Hardy and the Millport Marine Station's then director, Richard Elmhirst. Elmhirst, who was sceptical about the feasibility of the plan from the outset, went along with it; not least as a way of attracting welcome research funding during lean times but also, doubtless, regarding it as his patriotic duty in case the proposal proved worthwhile.

  1. Design and calibration of a new optical plankton counter capable of sizing small zooplankton

    Science.gov (United States)

    Herman, Alex W.

    1992-04-01

    A new design of optical plankton counter (OPC) capable of sizing zooplankton in the size range of 256μ to 2 cm is presented. The detection sensitivity is the result of new optical design of the previous system ( HERMAN, 1988, Continental Shelf Research, 8, 205-221) that originally had a lower detection limit of 550 μm. Both theoretical and experimental calibrations for the OPC are derived and compared. Preserved copepods and eggs introduced in a flow tank demonstrate the response of the OPC and its capability for detecting plankton to a limit of 250 μm. Copepod profiles measured by the OPC mounted on plankton net samplers provided intercomparisons that showed good agreement in identifying copepod layers and identifying some species, for example, copepods as small as Calanus finmarchicus II and up to the adult stages. Profiles containing marine snow and Ceratium illustrate some of the limitations of the OPC in directly measuring and identifying copepods. An additional modification to the OPC may result in a potential lower limit detection of 120 μm, and the practicality of such applications are discussed.

  2. Insights into bioassessment of marine pollution using body-size distinctness of planktonic ciliates based on a modified trait hierarchy.

    Science.gov (United States)

    Xu, Henglong; Jiang, Yong; Xu, Guangjian

    2016-06-15

    Based on a modified trait hierarchy of body-size units, the feasibility for bioassessment of water pollution using body-size distinctness of planktonic ciliates was studied in a semi-enclosed bay, northern China. An annual dataset was collected at five sampling stations within a gradient of heavy metal contaminants. Results showed that: (1) in terms of probability density, the body-size spectra of the ciliates represented significant differences among the five stations; (2) bootstrap average analysis demonstrated a spatial variation in body-size rank patterns in response to pollution stress due to heavy metals; and (3) the average body-size distinctness (Δz(+)) and variation in body-size distinctness (Λz(+)), based on the modified trait hierarchy, revealed a clear departure pattern from the expected body-size spectra in areas with pollutants. These results suggest that the body-size diversity measures based on the modified trait hierarchy of the ciliates may be used as a potential indicator of marine pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Italy. Report 2 [Marine Radioecology. Current Research and Future Scope

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, B. [Istituto di Zoologia, Universita-Parma (Italy)

    1967-03-15

    Present research programme (long-term): Radionuclides in plankton an marine sediments. Ecology of Anvantheria as Sr ''scanengers''. General distribution of radionuclides in marine environment Systematics and ecology of Avantharia, studied in different seas as a biological problem. Content of {sup 90}Sr in plankton in relation to the presence or absence of Avantharia Radiochemistry of sea sediments (littoral); sedimentological and petrographical researches for stratigraphic purposes. Fall-out and wastes radionuclides absorbed by sediments. Correlation between Acantharia and concentration factor for {sup 90}Sr. Stratigraphy of fall-out radionuclides in sea sediments. Biological researches on Acantharia rearing for turnover studies in vitro. Stratigraphical researches on recent coastal sediments for geochronological problems by means of fall-out radionuclides.

  4. Italy. Report 2 [Marine Radioecology. Current Research and Future Scope

    International Nuclear Information System (INIS)

    Schreiber, B.

    1967-01-01

    Present research programme (long-term): Radionuclides in plankton an marine sediments. Ecology of Anvantheria as Sr ''scanengers''. General distribution of radionuclides in marine environment Systematics and ecology of Avantharia, studied in different seas as a biological problem. Content of 90 Sr in plankton in relation to the presence or absence of Avantharia Radiochemistry of sea sediments (littoral); sedimentological and petrographical researches for stratigraphic purposes. Fall-out and wastes radionuclides absorbed by sediments. Correlation between Acantharia and concentration factor for 90 Sr. Stratigraphy of fall-out radionuclides in sea sediments. Biological researches on Acantharia rearing for turnover studies in vitro. Stratigraphical researches on recent coastal sediments for geochronological problems by means of fall-out radionuclides

  5. Gelatinous plankton is central to the diet of European eel (Anguilla anguilla) larvae in the Sargasso Sea

    DEFF Research Database (Denmark)

    Ayala, Daniel Jiro; Munk, Peter; Lundgreen, Regitze B. C.

    2018-01-01

    endangered species. Next-generation 18S rRNA gene sequencing data of Sargasso Sea eel larvae gut contents and marine snow aggregates was compared with a reference plankton database to assess the trophic relations of eel larvae. Gut contents of A. anguilla larvae were not well explained by the eukaryotic...

  6. Millennial-scale plankton regime shifts in the subtropical North Pacific Ocean.

    Science.gov (United States)

    McMahon, Kelton W; McCarthy, Matthew D; Sherwood, Owen A; Larsen, Thomas; Guilderson, Thomas P

    2015-12-18

    Climate change is predicted to alter marine phytoplankton communities and affect productivity, biogeochemistry, and the efficacy of the biological pump. We reconstructed high-resolution records of changing plankton community composition in the North Pacific Ocean over the past millennium. Amino acid-specific δ(13)C records preserved in long-lived deep-sea corals revealed three major plankton regimes corresponding to Northern Hemisphere climate periods. Non-dinitrogen-fixing cyanobacteria dominated during the Medieval Climate Anomaly (950-1250 Common Era) before giving way to a new regime in which eukaryotic microalgae contributed nearly half of all export production during the Little Ice Age (~1400-1850 Common Era). The third regime, unprecedented in the past millennium, began in the industrial era and is characterized by increasing production by dinitrogen-fixing cyanobacteria. This picoplankton community shift may provide a negative feedback to rising atmospheric carbon dioxide concentrations. Copyright © 2015, American Association for the Advancement of Science.

  7. Luminescence properties of a nanoporous freshwater diatom.

    Science.gov (United States)

    Goswami, Bondita; Choudhury, Amarjyoti; Buragohain, Alak K

    2012-01-01

    Freshwater diatom frustules show special optical properties. In this paper we observed luminescence properties of the freshwater diatom Cyclotella meneghiniana. To confirm the morphological properties we present scanning electron microscopy (SEM) images. X-ray diffraction (XRD) studies were carried out to visualize the structural properties of the frustules, confirming that silica present in diatom frustules crystallizes in an α-quartz structure. Study of the optical properties of the silica frustules of diatoms using ultra-violet-visible (UV-vis) spectroscopy and photoluminescence spectroscopy confirmed that the diatom C. meneghiniana shows luminescence in the blue region of the electromagnetic spectrum when irradiated with UV light. This property of diatoms can be exploited to obtain many applications in day-to-day life. Also, using time-resolved photoluminescence spectroscopy (TRPL) it was confirmed that this species of diatom shows bi-exponential decay. Copyright © 2011 John Wiley & Sons, Ltd.

  8. Marine snow derived from abandoned larvacean houses: Sinking rates, particle content and mechanisms of aggregate formation

    DEFF Research Database (Denmark)

    Hansen, J.L.S.; Kiørboe, Thomas; Alldredge, A.L.

    1996-01-01

    The dynamics and formation mechanisms of marine snow aggregates from abandoned larvacean houses were examined by laboratory experiments and field sampling during a spring diatom bloom in a shallow fjord on the west coast of the USA. Intact aggregates were sampled both from sediment traps and dire......The dynamics and formation mechanisms of marine snow aggregates from abandoned larvacean houses were examined by laboratory experiments and field sampling during a spring diatom bloom in a shallow fjord on the west coast of the USA. Intact aggregates were sampled both from sediment traps...

  9. Occurrence of Priming in the Degradation of Lignocellulose in Marine Sediments.

    Science.gov (United States)

    Gontikaki, Evangelia; Thornton, Barry; Cornulier, Thomas; Witte, Ursula

    2015-01-01

    More than 50% of terrestrially-derived organic carbon (terrOC) flux from the continents to the ocean is remineralised in the coastal zone despite its perceived high refractivity. The efficient degradation of terrOC in the marine environment could be fuelled by labile marine-derived material, a phenomenon known as "priming effect", but experimental data to confirm this mechanism are lacking. We tested this hypothesis by treating coastal sediments with 13C-lignocellulose, as a proxy for terrOC, with and without addition of unlabelled diatom detritus that served as the priming inducer. The occurrence of priming was assessed by the difference in lignocellulose mineralisation between diatom-amended treatments and controls in aerobic sediment slurries. Priming of lignocellulose degradation was observed only at the initial stages of the experiment (day 7) and coincided with overall high microbial activity as exemplified by total CO2 production. Lignocellulose mineralisation did not differ consistently between diatom treatments and control for the remaining experimental time (days 14-28). Based on this pattern, we hypothesize that the faster initiation of lignocellulose mineralisation in diatom-amended treatments is attributed to the decomposition of accessible polysaccharide components within the lignocellulose complex by activated diatom degraders. The fact that diatom-degraders contributed to lignocellulose degradation was also supported by the different patterns in 13C-enrichment of phospholipid fatty acids between treatments. Although we did not observe differences between treatments in the total quantity of respired lignocellulose at the end of the experiment, differences in timing could be important in natural ecosystems where the amount of time that a certain compound is subject to aerobic degradation before burial to deeper anoxic sediments may be limited.

  10. Decadal variations in diatoms and dinoflagellates on the inner shelf of the East China Sea, China

    Science.gov (United States)

    Abate, Rediat; Gao, Yahui; Chen, Changping; Liang, Junrong; Mu, Wenhua; Kifile, Demeke; Chen, Yanghang

    2017-11-01

    Diatoms and dinoflagellates are two major groups of phytoplankton that flourish in the oceans, particularly in coastal zone and upwelling systems, and their contrasting production have been reported in several world seas. However, this information is not available in the coastal East China Sea (ECS). Thus, to investigate and compare the decadal trends in diatoms and dinoflagellates, a sediment core, 47 cm long, was collected from the coastal zone of the ECS. Sediment chlorophyll- a (Chl- a), phytoplankton-group specific pigment signatures of diatoms and dinoflagellates, and diatom valve concentrations were determined. The sediment core covered the period from 1961 to 2011 AD. The chlorophyll- a contents ranged from 2.32 to 73 µg/g dry sediment (dw) and averaged 9.81 µg/g dw. Diatom absolute abundance ranged from 29152 to 177501 valve/gram (v/g) dw and averaged 72137 v/g dw. Diatom valve and diatom specific pigment marker concentrations were not significantly correlated. Peridinin increased after the 1980s in line with intensified use of fertilizer and related increases in nutrient inputs into the marine environment. The increased occurrence of dinoflagellate dominance after the 1980s can be mostly explained by the increase in nutrients. However, the contribution of dinoflagellates to total phytoplankton production (Chl- a) decreased during the final decade of this study, probably because of the overwhelming increase in diatom production that corresponded with the construction of the Three Gorges Dam (TGD) and related light availability. Similarly, the mean ratio of fucoxanthin/peridinin for the period from 1982 to 2001 was 6% less than for 1961 to 1982, while the ratio for 2001 to 2011 was 45.3% greater than for 1982 to 2001. The decadal variation in the fucoxanthin/peridinin ratio implies that dinoflagellate production had been gradually increasing until 2001. We suggest that the observed changes can be explained by anthropogenic impacts, such as nutrient

  11. Estimation of the Potential Detection of Diatom Assemblages Based on Ocean Color Radiance Anomalies in the North Sea

    Directory of Open Access Journals (Sweden)

    Anne-Hélène Rêve-Lamarche

    2017-12-01

    Full Text Available Over the past years, a large number of new approaches in the domain of ocean-color have been developed, leading to a variety of innovative descriptors for phytoplankton communities. One of these methods, named PHYSAT, currently allows for the qualitative detection of five main phytoplankton groups from ocean-color measurements. Even though PHYSAT products are widely used in various applications and projects, the approach is limited by the fact it identifies only dominant phytoplankton groups. This current limitation is due to the use of biomarker pigment ratios for establishing empirical relationships between in-situ information and specific ocean-color radiance anomalies in open ocean waters. However, theoretical explanations of PHYSAT suggests that it could be possible to detect more than dominance cases but move more toward phytoplanktonic assemblage detection. Thus, to evaluate the potential of PHYSAT for the detection of phytoplankton assemblages, we took advantage of the Continuous Plankton Recorder (CPR survey, collected in both the English Channel and the North Sea. The available CPR dataset contains information on diatom abundance in two large areas of the North Sea for the period 1998-2010. Using this unique dataset, recurrent diatom assemblages were retrieved based on classification of CPR samples. Six diatom assemblages were identified in-situ, each having indicators taxa or species. Once this first step was completed, the in-situ analysis was used to empirically associate the diatom assemblages with specific PHYSAT spectral anomalies. This step was facilitated by the use of previous classifications of regional radiance anomalies in terms of shape and amplitude, coupled with phenological tools. Through a matchup exercise, three CPR assemblages were associated with specific radiance anomalies. The maps of detection of these specific radiances anomalies are in close agreement with current in-situ ecological knowledge.

  12. Late Quaternary landscape evolution of northeastern Amazonia from pollen and diatom records

    Directory of Open Access Journals (Sweden)

    DARCILÉA F. CASTRO

    2013-03-01

    Full Text Available The main goal of this study was to reconstruct the Late Pleistocene-Holocene floristic composition in an area of the northern Brazilian Amazonia, comparing the results with other Amazonian localities in order to discuss the factors that have influenced phytophysiognomic changes over this time period. The work in eastern Marajó Island at the mouth of the Amazonas River was approached based on analysis of 98 pollen and diatom samples from core data distributed along a proximal to distal transect of a paleoestuarine system. The results indicated high concentration of Rhizophora, associated with arboreal pollen grains typical of the modern Amazonian rainforest during the last 40,000 cal yrs BP. Pollen composition also included wetland herbs. Diatoms were dominated by marine and fresh water taxa. Wetland forest, mangrove and, subordinately herbs remained constant during most of the latest Pleistocene-early/middle Holocene. At 5,000 cal yrs BP, there was a distinguished change from forest and mangrove to wet grassland savanna due to sea level fluctuation. As marine influence decreased, the estuary gave rise to fresh water lacustrine and swamp environments, with establishment of herbaceous campos. A main conclusion from this study is that solely the occurrence of herbaceous savanna can not be used as a definitive indicator of past dry climates in Amazonian areas.

  13. Spatial Distribution of Viruses Associated with Planktonic and Attached Microbial Communities in Hydrothermal Environments

    Science.gov (United States)

    Nunoura, Takuro; Kazama, Hiromi; Noguchi, Takuroh; Inoue, Kazuhiro; Akashi, Hironori; Yamanaka, Toshiro; Toki, Tomohiro; Yamamoto, Masahiro; Furushima, Yasuo; Ueno, Yuichiro; Yamamoto, Hiroyuki; Takai, Ken

    2012-01-01

    Viruses play important roles in marine surface ecosystems, but little is known about viral ecology and virus-mediated processes in deep-sea hydrothermal microbial communities. In this study, we examined virus-like particle (VLP) abundances in planktonic and attached microbial communities, which occur in physical and chemical gradients in both deep and shallow submarine hydrothermal environments (mixing waters between hydrothermal fluids and ambient seawater and dense microbial communities attached to chimney surface areas or macrofaunal bodies and colonies). We found that viruses were widely distributed in a variety of hydrothermal microbial habitats, with the exception of the interior parts of hydrothermal chimney structures. The VLP abundance and VLP-to-prokaryote ratio (VPR) in the planktonic habitats increased as the ratio of hydrothermal fluid to mixing water increased. On the other hand, the VLP abundance in attached microbial communities was significantly and positively correlated with the whole prokaryotic abundance; however, the VPRs were always much lower than those for the surrounding hydrothermal waters. This is the first report to show VLP abundance in the attached microbial communities of submarine hydrothermal environments, which presented VPR values significantly lower than those in planktonic microbial communities reported before. These results suggested that viral lifestyles (e.g., lysogenic prevalence) and virus interactions with prokaryotes are significantly different among the planktonic and attached microbial communities that are developing in the submarine hydrothermal environments. PMID:22210205

  14. Trophic efficiency of plankton food webs: Observations from the Gulf of Mannar and the Palk Bay, Southeast Coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Anjusha, A.; Jyothibabu, R; Jagadeesan, L.; Mohan, A.P.; Sudheesh, K.; Krishna, K.; Ullas, N.; Deepak, M.P.

    This paper introduces the structure and trophic efficiency of plankton food webs in the Gulf of Mannar (GoM) and the Palk Bay (PB) - two least studied marine environments located between India and Sri Lanka. The study is based on the results...

  15. The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response.

    Directory of Open Access Journals (Sweden)

    Sonya T Dyhrman

    Full Text Available Phosphorus (P is a critical driver of phytoplankton growth and ecosystem function in the ocean. Diatoms are an abundant class of marine phytoplankton that are responsible for significant amounts of primary production. With the control they exert on the oceanic carbon cycle, there have been a number of studies focused on how diatoms respond to limiting macro and micronutrients such as iron and nitrogen. However, diatom physiological responses to P deficiency are poorly understood. Here, we couple deep sequencing of transcript tags and quantitative proteomics to analyze the diatom Thalassiosira pseudonana grown under P-replete and P-deficient conditions. A total of 318 transcripts were differentially regulated with a false discovery rate of <0.05, and a total of 136 proteins were differentially abundant (p<0.05. Significant changes in the abundance of transcripts and proteins were observed and coordinated for multiple biochemical pathways, including glycolysis and translation. Patterns in transcript and protein abundance were also linked to physiological changes in cellular P distributions, and enzyme activities. These data demonstrate that diatom P deficiency results in changes in cellular P allocation through polyphosphate production, increased P transport, a switch to utilization of dissolved organic P through increased production of metalloenzymes, and a remodeling of the cell surface through production of sulfolipids. Together, these findings reveal that T. pseudonana has evolved a sophisticated response to P deficiency involving multiple biochemical strategies that are likely critical to its ability to respond to variations in environmental P availability.

  16. Effects of Pollutants on Marine Life Probed

    Science.gov (United States)

    Chemical and Engineering News, 1973

    1973-01-01

    Discusses research activities conducted by scientists from the United State of America, Canada, and the United Kingdom to determine the long-term effects on natural marine ecosystems, especially plankton communities, of such pollutants as heavy metals, synthetic hydrocarbons, and petroleum hydrocarbons. (CC)

  17. Ocean acidification modulates expression of genes and physiological performance of a marine diatom

    Science.gov (United States)

    Li, Y.; Zhuang, S.; Wu, Y.; Ren, H.; Cheng, F.; Lin, X.; Wang, K.; Beardall, J.; Gao, K.

    2015-09-01

    Ocean Acidification (OA) is known to affect various aspects of the physiological performance of diatoms, but there is little information on the underlining molecular mechanisms involved. Here, we show that in the model diatom Phaeodactylum tricornutum expression of the genes related to light harvesting, carbon acquisition and carboxylation, nitrite assimilation and ATP synthesis are modulated by OA. Growth and photosynthetic carbon fixation were enhanced by elevated CO2 (1000 μatm) under both constant indoor and fluctuating outdoor light regimes. The genetic expression of nitrite reductase (NiR) was up-regulated by OA regardless of light levels and/or regimes. The transcriptional expression of fucoxanthin chlorophyll a/c protein (lhcf type (FCP)) and mitochondrial ATP synthase (mtATP synthase) genes were also enhanced by OA, but only under high light intensity. OA treatment decreased the expression of β-carbonic anhydrase (β-CA) along with down-regulation of CO2 concentrating mechanisms (CCMs). Additionally, the genes for these proteins (NiR, FCP, mtATP synthase, β-CA) showed diel expressions either under constant indoor light or fluctuating sunlight. Thus, OA enhanced photosynthetic and growth rates by stimulating nitrogen assimilation and indirectly by down-regulating the energy-costly inorganic carbon acquisition process.

  18. Estimating planktonic diversity through spatial dominance patterns in a model ocean.

    Science.gov (United States)

    Soccodato, Alice; d'Ovidio, Francesco; Lévy, Marina; Jahn, Oliver; Follows, Michael J; De Monte, Silvia

    2016-10-01

    In the open ocean, the observation and quantification of biodiversity patterns is challenging. Marine ecosystems are indeed largely composed by microbial planktonic communities whose niches are affected by highly dynamical physico-chemical conditions, and whose observation requires advanced methods for morphological and molecular classification. Optical remote sensing offers an appealing complement to these in-situ techniques. Global-scale coverage at high spatiotemporal resolution is however achieved at the cost of restrained information on the local assemblage. Here, we use a coupled physical and ecological model ocean simulation to explore one possible metrics for comparing measures performed on such different scales. We show that a large part of the local diversity of the virtual plankton ecosystem - corresponding to what accessible by genomic methods - can be inferred from crude, but spatially extended, information - as conveyed by remote sensing. Shannon diversity of the local community is indeed highly correlated to a 'seascape' index, which quantifies the surrounding spatial heterogeneity of the most abundant functional group. The error implied in drastically reducing the resolution of the plankton community is shown to be smaller in frontal regions as well as in regions of intermediate turbulent energy. On the spatial scale of hundreds of kms, patterns of virtual plankton diversity are thus largely sustained by mixing communities that occupy adjacent niches. We provide a proof of principle that in the open ocean information on spatial variability of communities can compensate for limited local knowledge, suggesting the possibility of integrating in-situ and satellite observations to monitor biodiversity distribution at the global scale. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Biofilm and Diatom Succession on Polyethylene (PE) and Biodegradable Plastic Bags in Two Marine Habitats: Early Signs of Degradation in the Pelagic and Benthic Zone?

    Science.gov (United States)

    Eich, Andreas; Mildenberger, Tobias; Laforsch, Christian; Weber, Miriam

    2015-01-01

    The production of biodegradable plastic is increasing. Given the augmented littering of these products an increasing input into the sea is expected. Previous laboratory experiments have shown that degradation of plastic starts within days to weeks. Little is known about the early composition and activity of biofilms found on biodegradable and conventional plastic debris and its correlation to degradation in the marine environment. In this study we investigated the early formation of biofilms on plastic shopper bags and its consequences for the degradation of plastic. Samples of polyethylene and biodegradable plastic were tested in the Mediterranean Sea for 15 and 33 days. The samples were distributed equally to a shallow benthic (sedimentary seafloor at 6 m water depth) and a pelagic habitat (3 m water depth) to compare the impact of these different environments on fouling and degradation. The amount of biofilm increased on both plastic types and in both habitats. The diatom abundance and diversity differed significantly between the habitats and the plastic types. Diatoms were more abundant on samples from the pelagic zone. We anticipate that specific surface properties of the polymer types induced different biofilm communities on both plastic types. Additionally, different environmental conditions between the benthic and pelagic experimental site such as light intensity and shear forces may have influenced unequal colonisation between these habitats. The oxygen production rate was negative for all samples, indicating that the initial biofilm on marine plastic litter consumes oxygen, regardless of the plastic type or if exposed in the pelagic or the benthic zone. Mechanical tests did not reveal degradation within one month of exposure. However, scanning electron microscopy (SEM) analysis displayed potential signs of degradation on the plastic surface, which differed between both plastic types. This study indicates that the early biofilm formation and composition

  20. Biofilm and Diatom Succession on Polyethylene (PE and Biodegradable Plastic Bags in Two Marine Habitats: Early Signs of Degradation in the Pelagic and Benthic Zone?

    Directory of Open Access Journals (Sweden)

    Andreas Eich

    Full Text Available The production of biodegradable plastic is increasing. Given the augmented littering of these products an increasing input into the sea is expected. Previous laboratory experiments have shown that degradation of plastic starts within days to weeks. Little is known about the early composition and activity of biofilms found on biodegradable and conventional plastic debris and its correlation to degradation in the marine environment. In this study we investigated the early formation of biofilms on plastic shopper bags and its consequences for the degradation of plastic. Samples of polyethylene and biodegradable plastic were tested in the Mediterranean Sea for 15 and 33 days. The samples were distributed equally to a shallow benthic (sedimentary seafloor at 6 m water depth and a pelagic habitat (3 m water depth to compare the impact of these different environments on fouling and degradation. The amount of biofilm increased on both plastic types and in both habitats. The diatom abundance and diversity differed significantly between the habitats and the plastic types. Diatoms were more abundant on samples from the pelagic zone. We anticipate that specific surface properties of the polymer types induced different biofilm communities on both plastic types. Additionally, different environmental conditions between the benthic and pelagic experimental site such as light intensity and shear forces may have influenced unequal colonisation between these habitats. The oxygen production rate was negative for all samples, indicating that the initial biofilm on marine plastic litter consumes oxygen, regardless of the plastic type or if exposed in the pelagic or the benthic zone. Mechanical tests did not reveal degradation within one month of exposure. However, scanning electron microscopy (SEM analysis displayed potential signs of degradation on the plastic surface, which differed between both plastic types. This study indicates that the early biofilm formation

  1. Mercury speciation in plankton from the Cabo Frio Bay, SE--Brazil.

    Science.gov (United States)

    Silva-Filho, Emmanoel V; Kütter, Vinicius T; Figueiredo, Thiago S; Tessier, Emmanuel; Rezende, Carlos E; Teixeira, Daniel C; Silva, Carlos A; Donard, Olivier F X

    2014-12-01

    Mercury (Hg) is considered a global pollutant, and the scientific community has shown great concern about its toxicity as it may affect the biota of entire systems, through bioaccumulation and bioamplification processes of its organic form, methylmercury (MeHg), along food web. However, few research studies deal with bioaccumulation of Hg from marine primary producers and the first-order consumers. So, this study aims to determine Hg distribution and concentration levels in phytoplankton and zooplankton in the Cabo Frio Bay, Brazil, a site influenced by coastal upwelling. The results from Hg speciation analyses show that inorganic mercury Hg(II) was the predominant specie in plankton from this bay. The annual Hg species distribution in plankton shown mean concentration of 2.00 ± 1.28 ng Hg(II) g(-1) and 0.15 ± 0.08 ng MeHg g(-1) wet weight (phytoplankton) and 2.5 ± 2.03 ng Hg(II) g(-1) and 0.25 ± 0.09 ng MeHg g(-1) wet weight (zooplankton). Therefore, upwelling zones should be considered in the Hg biogeochemical cycle models as a process that enhances Hg(II) bioaccumulation in plankton, raising its bioavailability and shelf deposition.

  2. Evolution of a Holsteinian (MIS 11c) palaeolake based on a 12-ka-long diatom record from Dethlingen (northern Germany)

    NARCIS (Netherlands)

    Koutsodendris, A.; Lotter, A.F.; Kirilova, E.P.|info:eu-repo/dai/nl/304838071; Verhagen, F.; Brauer, A.; Pross, J.

    2013-01-01

    To provide insights into the long-term evolution of aquatic ecosystems without human interference, we hereevaluate a decadal- to centennial-scale-resolution diatom record spanning about 12 ka of the Holsteinian inter-glacial (Marine Isotope Stage 11c). Using a partially varved sediment core from the

  3. Influence of Ocean Acidification on a Natural Winter-to-Summer Plankton Succession: First Insights from a Long-Term Mesocosm Study Draw Attention to Periods of Low Nutrient Concentrations.

    Directory of Open Access Journals (Sweden)

    Lennart T Bach

    Full Text Available Every year, the oceans absorb about 30% of anthropogenic carbon dioxide (CO2 leading to a re-equilibration of the marine carbonate system and decreasing seawater pH. Today, there is increasing awareness that these changes-summarized by the term ocean acidification (OA-could differentially affect the competitive ability of marine organisms, thereby provoking a restructuring of marine ecosystems and biogeochemical element cycles. In winter 2013, we deployed ten pelagic mesocosms in the Gullmar Fjord at the Swedish west coast in order to study the effect of OA on plankton ecology and biogeochemistry under close to natural conditions. Five of the ten mesocosms were left unperturbed and served as controls (~380 μatm pCO2, whereas the others were enriched with CO2-saturated water to simulate realistic end-of-the-century carbonate chemistry conditions (~760 μatm pCO2. We ran the experiment for 113 days which allowed us to study the influence of high CO2 on an entire winter-to-summer plankton succession and to investigate the potential of some plankton organisms for evolutionary adaptation to OA in their natural environment. This paper is the first in a PLOS collection and provides a detailed overview on the experimental design, important events, and the key complexities of such a "long-term mesocosm" approach. Furthermore, we analyzed whether simulated end-of-the-century carbonate chemistry conditions could lead to a significant restructuring of the plankton community in the course of the succession. At the level of detail analyzed in this overview paper we found that CO2-induced differences in plankton community composition were non-detectable during most of the succession except for a period where a phytoplankton bloom was fueled by remineralized nutrients. These results indicate: (1 Long-term studies with pelagic ecosystems are necessary to uncover OA-sensitive stages of succession. (2 Plankton communities fueled by regenerated nutrients may be

  4. Influence of Ocean Acidification on a Natural Winter-to-Summer Plankton Succession: First Insights from a Long-Term Mesocosm Study Draw Attention to Periods of Low Nutrient Concentrations

    Science.gov (United States)

    Taucher, Jan; Boxhammer, Tim; Ludwig, Andrea; Achterberg, Eric P.; Algueró-Muñiz, María; Anderson, Leif G.; Bellworthy, Jessica; Büdenbender, Jan; Czerny, Jan; Ericson, Ylva; Esposito, Mario; Fischer, Matthias; Haunost, Mathias; Hellemann, Dana; Horn, Henriette G.; Hornick, Thomas; Meyer, Jana; Sswat, Michael; Zark, Maren; Riebesell, Ulf

    2016-01-01

    Every year, the oceans absorb about 30% of anthropogenic carbon dioxide (CO2) leading to a re-equilibration of the marine carbonate system and decreasing seawater pH. Today, there is increasing awareness that these changes–summarized by the term ocean acidification (OA)–could differentially affect the competitive ability of marine organisms, thereby provoking a restructuring of marine ecosystems and biogeochemical element cycles. In winter 2013, we deployed ten pelagic mesocosms in the Gullmar Fjord at the Swedish west coast in order to study the effect of OA on plankton ecology and biogeochemistry under close to natural conditions. Five of the ten mesocosms were left unperturbed and served as controls (~380 μatm pCO2), whereas the others were enriched with CO2-saturated water to simulate realistic end-of-the-century carbonate chemistry conditions (~760 μatm pCO2). We ran the experiment for 113 days which allowed us to study the influence of high CO2 on an entire winter-to-summer plankton succession and to investigate the potential of some plankton organisms for evolutionary adaptation to OA in their natural environment. This paper is the first in a PLOS collection and provides a detailed overview on the experimental design, important events, and the key complexities of such a “long-term mesocosm” approach. Furthermore, we analyzed whether simulated end-of-the-century carbonate chemistry conditions could lead to a significant restructuring of the plankton community in the course of the succession. At the level of detail analyzed in this overview paper we found that CO2-induced differences in plankton community composition were non-detectable during most of the succession except for a period where a phytoplankton bloom was fueled by remineralized nutrients. These results indicate: (1) Long-term studies with pelagic ecosystems are necessary to uncover OA-sensitive stages of succession. (2) Plankton communities fueled by regenerated nutrients may be more

  5. Phylogeography of the tropical planktonic foraminifera lineage globigerinella reveals isolation inconsistent with passive dispersal by ocean currents.

    Science.gov (United States)

    Weiner, Agnes K M; Weinkauf, Manuel F G; Kurasawa, Atsushi; Darling, Kate F; Kucera, Michal; Grimm, Guido W

    2014-01-01

    Morphologically defined species of marine plankton often harbor a considerable level of cryptic diversity. Since many morphospecies show cosmopolitan distribution, an understanding of biogeographic and evolutionary processes at the level of genetic diversity requires global sampling. We use a database of 387 single-specimen sequences of the SSU rDNA of the planktonic foraminifera Globigerinella as a model to assess the biogeographic and phylogenetic distributions of cryptic diversity in marine microplankton on a global scale. Our data confirm the existence of multiple, well isolated genetic lineages. An analysis of their abundance and distribution indicates that our sampling is likely to approximate the actual total diversity. Unexpectedly, we observe an uneven allocation of cryptic diversity among the phylogenetic lineages. We show that this pattern is neither an artifact of sampling intensity nor a function of lineage age. Instead, we argue that it reflects an ongoing speciation process in one of the three major lineages. Surprisingly, four of the six genetic types in the hyperdiverse lineage are biogeographically restricted to the Indopacific. Their mutual co-occurrence and their hierarchical phylogenetic structure provide no evidence for an origin through sudden habitat fragmentation and their limitation to the Indopacific challenges the view of a global gene flow within the warm-water provinces. This phenomenon shows that passive dispersal is not sufficient to describe the distribution of plankton diversity. Rather, these organisms show differentiated distribution patterns shaped by species interactions and reflecting phylogenetic contingency with unique histories of diversification rates.

  6. Quantification of Dissolved and Particulate Polyunsaturated Aldehydes in the Adriatic Sea

    Directory of Open Access Journals (Sweden)

    Raffaella Casotti

    2011-03-01

    Full Text Available Polyunsaturated aldehydes (PUA are supposed to play critical roles in chemically-mediated plankton interactions. Laboratory studies suggest that they act as mediators of chemical defense and chemical communication. PUA are oxylipins containing an α,β,γ,δ-unsaturated aldehyde structure element and are mainly found in diatoms. We present here a detailed surface mapping of PUA during a spring bloom of the diatom Skeletonema marinoi in the Adriatic Sea. We monitored dissolved PUA, as well as particulate PUA, which are produced by phytoplankton after cell disintegration. Our survey revealed a patchy distribution of PUA and shows that at most stations S. marinoi is the major contributor to the overall PUA. Our data also suggest that lysis of a diatom bloom can contribute significantly to the dissolved PUA concentrations and that other producers, which are smaller in cell size compared to diatoms, have to be taken into account as well if the total PUA content of marine samples is considered. The analyses of samples collected in deeper water suggests that diatom contribution to PUA decreases with depth, while smaller-sized unidentified organisms take place as dominant contributors to the PUA concentrations.

  7. The ecology of plankton in biological oceanography: a tribute to Marta Estrada’s task

    Directory of Open Access Journals (Sweden)

    Jordi Solé

    2016-09-01

    Full Text Available Plankton ecology has been the object of intense research and progress in the last few decades. This has been partly due to technological advances that have facilitated the multidisciplinary and high-resolution sampling of ecosystems and improved experimentation and analytical methodologies, and to sophisticated modelling. In addition, exceptional researchers have had the vision to integrate all these innovative tools to form a solid theoretical background in ecology. Here we provide an overview of the outstanding research work conducted by Professor Marta Estrada and her pioneering contribution to different areas of research in the last four decades. Her research in biological oceanography has mainly focussed on phytoplankton ecology, taxonomy and physiology, the functional structure of plankton communities, and physical and biological interactions in marine ecosystems. She has combined a variety of field and laboratory approaches and methodologies, from microscopy to satellite observations, including in-depth statistical data analysis and modelling. She has been a reference for scientists all over the world. Here, her contributions to plankton ecology are summarized by some of her students and closest collaborators, who had the privilege to share their science and everyday experiences with her.

  8. The diatom flora of Lake Kinneret (Israel) - Paleolimnological evidence for Holocene climate change and human impact in the southeastern Mediterranean

    Science.gov (United States)

    Vossel, Hannah; Reed, Jane M.; Litt, Thomas

    2015-04-01

    by the clear dominance of planktonic species, such as Cyclotella ocellata PANTOCSEK and Cyclotella paleo-ocellata VOSSEL & VAN DE VIJVER (a newly described centric diatom which may be endemic (Vossel et al., 2015), in phases of high diatom concentration. Such inferred lake-level oscillations correlate well with the output from the climatic models from the Levant region, representing changes in moisture availability (Litt et al., 2012), although the signal is obscured in the last 3,000 years by the effects of anthropogenic eutrophication. References Litt, T.; Ohlwein, C.; Neumann, F. H.; Hense, A. & Stein, M. (2012): Holocene climate variability in the Levant from the Dead Sea pollen record. - Quat. Sci. Rev., 49: 95-105. Schiebel, V. (2013): Vegetation and climate history of the southern Levant during the last 30,000 years based on palynological investigation. - Unpublished PhD thesis. Vossel, H.; Reed, J. M.; Houk, V.; Cvetkoska, A. & Van de Vijver, B. (2015): Cyclotella paleo-ocellata, a new centric diatom (Bacillariophyta) from Lake Kinneret (Israel). Fottea, 15 (1), in press.

  9. Occurrence of Priming in the Degradation of Lignocellulose in Marine Sediments.

    Directory of Open Access Journals (Sweden)

    Evangelia Gontikaki

    Full Text Available More than 50% of terrestrially-derived organic carbon (terrOC flux from the continents to the ocean is remineralised in the coastal zone despite its perceived high refractivity. The efficient degradation of terrOC in the marine environment could be fuelled by labile marine-derived material, a phenomenon known as "priming effect", but experimental data to confirm this mechanism are lacking. We tested this hypothesis by treating coastal sediments with 13C-lignocellulose, as a proxy for terrOC, with and without addition of unlabelled diatom detritus that served as the priming inducer. The occurrence of priming was assessed by the difference in lignocellulose mineralisation between diatom-amended treatments and controls in aerobic sediment slurries. Priming of lignocellulose degradation was observed only at the initial stages of the experiment (day 7 and coincided with overall high microbial activity as exemplified by total CO2 production. Lignocellulose mineralisation did not differ consistently between diatom treatments and control for the remaining experimental time (days 14-28. Based on this pattern, we hypothesize that the faster initiation of lignocellulose mineralisation in diatom-amended treatments is attributed to the decomposition of accessible polysaccharide components within the lignocellulose complex by activated diatom degraders. The fact that diatom-degraders contributed to lignocellulose degradation was also supported by the different patterns in 13C-enrichment of phospholipid fatty acids between treatments. Although we did not observe differences between treatments in the total quantity of respired lignocellulose at the end of the experiment, differences in timing could be important in natural ecosystems where the amount of time that a certain compound is subject to aerobic degradation before burial to deeper anoxic sediments may be limited.

  10. Risk assessment of excessive CO_2 emission on diatom heavy metal consumption

    International Nuclear Information System (INIS)

    Liu, Fengjiao; Li, Shunxing; Zheng, Fengying; Huang, Xuguang

    2016-01-01

    Diatoms are the dominant group of phytoplankton in the modern ocean, accounting for approximately 40% of oceanic primary productivity and critical foundation of coastal food web. Rising dissolution of anthropogenic CO_2 in seawater may directly/indirectly cause ocean acidification and desalination. However, little is known about dietary diatom-associated changes, especially for diatom heavy metal consumption sensitivity to these processes, which is important for seafood safety and nutrition assessment. Here we show some links between ocean acidification/desalination and heavy metal consumption by Thalassiosira weissflogii. Excitingly, under desalination stress, the relationships between Cu, Zn, and Cd were all positively correlated, especially between Cu and Zn (r = 0.989, total intracellular concentration) and between Zn and Cd (r = 0.962, single-cell intracellular concentration). Heavy metal consumption activity in decreasing order was acidification < acidification + desalination < desalination for Zn, acidification < desalination < acidification + desalination for Cu and Cd, i.e., heavy metal uptake (or release) were controlled by environmental stress. Our findings showed that heavy metal uptake (or release) was already responded to ongoing excessive CO_2 emission-driven acidification and desalination, which was important for risk assessment of climate change on diatom heavy metal consumption, food web and then seafood safety in future oceans. - Highlights: • Excessive CO_2 in seawater may causes ocean acidification and desalination. • The relationships between Cu, Zn, and Cd were all positively correlated by desalination. • Significant effects of salinity on intracellular concentration of Cu and Cd • Cu and Cd in marine phytoplankton could be regulated by metal excretion. • Heavy metal consumption was affect by excessive CO_2.

  11. [Research advances in heavy metals pollution ecology of diatom].

    Science.gov (United States)

    Ding, Teng-Da; Ni, Wan-Min; Zhang, Jian-Ying

    2012-03-01

    Diatom, due to its high sensitivity to environmental change, is one of the bio-indicators of aquatic ecosystem health, and some typical diatom species have been applied to indicate the heavy metals pollution of water body. With the focus on the surface water heavy metals pollution, this paper reviewed the research advances in the toxic effect of heavy metals pollution on diatom, biosorption and bioaccumulation of heavy metals by diatom, ecological adaptation mechanisms of diatom to heavy metals pollution, and roles of diatom as bio-indicator and in ecological restoration of heavy metals pollution. The growth tendency of diatom and the morphological change of frustule under heavy metals pollution as well as the differences in heavy metals biosorption and bioaccumulation by diatom, the ecological adaptation mechanisms of diatom on heavy metals surface complexation and ion exchange, and the roles of diatom as bio-indicator and in ecological restoration of heavy metals polluted water body were also discussed. This review could provide scientific evidences for the prevention of aquatic ecosystems heavy metals pollution and related early warning techniques.

  12. Sampler collection gadget for epilithic diatoms.

    Science.gov (United States)

    Salomoni, S E; Torgan, L C; Rocha, O

    2007-11-01

    This work present a new gadget for sampling epilithic diatoms from both lentic and lotic enviroments. The sampler consists of a polystyrene cylinder, left to float on the surface of the water, to which stone substrates are attached. This epilithic diatom sampler (EDS) can be used to detect spatial and temporal richness and density variation in the study of the diatom community, as well as in water quality monitoring.

  13. Grazer-induced chain lenght plasticity reduces grazing risk in a marine diatom

    DEFF Research Database (Denmark)

    Bergkvist, Johanna; Thor, Peter; Jakobsen, Hans Henrik

    2012-01-01

    . marinoi was exposed to chemical cues from caged A. tonsa without physical contact with the responding cells. The reductions in chain length significantly reduced copepod grazing; grazing rates on chains (four cells or more) were several times higher compared to that of single cells. This suggests...... that chain length plasticity is a means for S. marinoi to reduce copepod grazing. In contrast, chain length was not suppressed in cultures exposed to the microzooplankton grazer Gyrodinium dominans. Size-selective predation may have played a key role in the evolution of chain formation and chain length...... plasticity in diatoms...

  14. Paleolimnological assessment of nutrient enrichment on diatom assemblages in a priori defined nitrogen- and phosphorus-limited lakes downwind of the Athabasca Oil Sands, Canada

    Directory of Open Access Journals (Sweden)

    Kathleen R. Laird

    2017-04-01

    Full Text Available As the industrial footprint of the Athabasca Oil Sands Region (AOSR continues to expand, concern about the potential impacts of pollutants on the surrounding terrestrial and aquatic ecosystems need to be assessed. An emerging issue is whether recent increases in lake production downwind of the development can be linked to AOSR activities, and/or whether changing climatic conditions are influencing lake nutrient status. To decipher the importance of pollutants, particularly atmospheric deposition of reactive nitrogen (Nr, and the effects of climate change as potential sources of increasing lake production, lakes from both within and outside of the nitrogen deposition zone were analyzed for historical changes in diatom assemblages. Lake sediment cores were collected from a priori defined nitrogen (N - and phosphorus (P - limited lakes within and outside the N plume associated with the AOSR. Diatom assemblages were quantified at sub-decadal resolution since ca. 1890 to compare conditions prior to oil sands expansion and regional climate warming, to the more recent conditions in each group of lakes (Reference and Impacted, N- and P-limited lakes. Analyses of changes in assemblage similarity and species turnover indicates that changes in diatom assemblages were minimal both within and across all lake groups.  Small changes in percent composition of planktonic taxa, particularly small centric taxa (Discostella and Cyclotella species and pennate taxa, such as Asterionella formosa and Fragilaria crotonensis, occurred in some of the lakes. While these changes were consistent with potential climate effects on algal growth, water column stability and other factors; the timing and direction of biotic changes were variable among sites suggesting that any apparent response to climate was lake dependent. The absence of a consistent pattern of diatom changes associated with receipt of reactive nitrogen or intrinsic nutrient-limitation status of the lake

  15. Shift in the species composition of the diatom community in the eutrophic Mauritanian coastal upwelling: Results from a multi-year sediment trap experiment (2003-2010)

    Science.gov (United States)

    Romero, Oscar E.; Fischer, Gerhard

    2017-12-01

    A multiannual, continuous sediment trap experiment was conducted at the mooring site CBeu (Cape Blanc eutrophic, ca. 20 °N, ca. 18 °W; trap depth = 1256-1296 m) in the high-productive Mauritanian coastal upwelling. Here we present fluxes and the species-specific composition of the diatom assemblage, and fluxes of biogenic silica (BSi, opal) and total organic carbon (TOC) for the time interval June 2003-Feb 2010. Flux ranges of studied parameters are (i) total diatoms = 1.2 ∗ 108-4.7 ∗ 104 valves m-2 d-1 (average = 5.9 × 106 valves ± 1.4 × 107); (ii) BSi = 296-0.5 mg m-2 d-1 (average = 41.1 ± 53.5 mg m-2 d-1), and (iii) TOC = 97-1 mg m-2 d-1 (average = 20.5 ± 17.8 mg m-2 d-1). Throughout the experiment, the overall good match of total diatom, BSi and TOC fluxes is reasonably consistent and reflects well the temporal occurrence of the main Mauritanian upwelling season. Spring and summer are the most favorable seasons for diatom production and sedimentation: out of the recorded 14 diatom maxima of different magnitude, six occurred in spring and four in summer. The diverse diatom community at site CBeu is composed of four main assemblages: benthic, coastal upwelling, coastal planktonic and open-ocean diatoms, reflecting different productivity conditions and water masses. A striking feature of the temporal variability of the diatom populations is the persistent pattern of seasonal groups' contribution: benthic and coastal upwelling taxa dominated during the main upwelling season in spring, while open-ocean diatoms were more abundant in fall and winter, when the upper water column becomes stratified, upwelling relaxes and productivity decreases. The relative abundance of benthic diatoms strongly increased after 2006, yet their spring-summer contribution remained high until the end of the trap experiment. The occurrence of large populations of benthic diatoms at the hemipelagic CBeu site is interpreted to indicate transport from shallow waters via nepheloid

  16. Sampler collection gadget for epilithic diatoms

    Directory of Open Access Journals (Sweden)

    SE. Salomoni

    Full Text Available This work present a new gadget for sampling epilithic diatoms from both lentic and lotic enviroments. The sampler consists of a polystyrene cylinder, left to float on the surface of the water, to which stone substrates are attached. This epilithic diatom sampler (EDS can be used to detect spatial and temporal richness and density variation in the study of the diatom community, as well as in water quality monitoring.

  17. Phytoplankton Biogeography and Community Stability in the Ocean

    Science.gov (United States)

    Cermeño, Pedro; de Vargas, Colomban; Abrantes, Fátima; Falkowski, Paul G.

    2010-01-01

    Background Despite enormous environmental variability linked to glacial/interglacial climates of the Pleistocene, we have recently shown that marine diatom communities evolved slowly through gradual changes over the past 1.5 million years. Identifying the causes of this ecological stability is key for understanding the mechanisms that control the tempo and mode of community evolution. Methodology/Principal Findings If community assembly were controlled by local environmental selection rather than dispersal, environmental perturbations would change community composition, yet, this could revert once environmental conditions returned to previous-like states. We analyzed phytoplankton community composition across >104 km latitudinal transects in the Atlantic Ocean and show that local environmental selection of broadly dispersed species primarily controls community structure. Consistent with these results, three independent fossil records of marine diatoms over the past 250,000 years show cycles of community departure and recovery tightly synchronized with the temporal variations in Earth's climate. Conclusions/Significance Changes in habitat conditions dramatically alter community structure, yet, we conclude that the high dispersal of marine planktonic microbes erases the legacy of past environmental conditions, thereby decreasing the tempo of community evolution. PMID:20368810

  18. Predicting plankton net community production in the Atlantic Ocean

    Science.gov (United States)

    Serret, Pablo; Robinson, Carol; Fernández, Emilio; Teira, Eva; Tilstone, Gavin; Pérez, Valesca

    2009-07-01

    We present, test and implement two contrasting models to predict euphotic zone net community production (NCP), which are based on 14C primary production (PO 14CP) to NCP relationships over two latitudinal (ca. 30°S-45°N) transects traversing highly productive and oligotrophic provinces of the Atlantic Ocean (NADR, CNRY, BENG, NAST-E, ETRA and SATL, Longhurst et al., 1995 [An estimation of global primary production in the ocean from satellite radiometer data. Journal of Plankton Research 17, 1245-1271]). The two models include similar ranges of PO 14CP and community structure, but differ in the relative influence of allochthonous organic matter in the oligotrophic provinces. Both models were used to predict NCP from PO 14CP measurements obtained during 11 local and three seasonal studies in the Atlantic, Pacific and Indian Oceans, and from satellite-derived estimates of PO 14CP. Comparison of these NCP predictions with concurrent in situ measurements and geochemical estimates of NCP showed that geographic and annual patterns of NCP can only be predicted when the relative trophic importance of local vs. distant processes is similar in both modeled and predicted ecosystems. The system-dependent ability of our models to predict NCP seasonality suggests that trophic-level dynamics are stronger than differences in hydrodynamic regime, taxonomic composition and phytoplankton growth. The regional differences in the predictive power of both models confirm the existence of biogeographic differences in the scale of trophic dynamics, which impede the use of a single generalized equation to estimate global marine plankton NCP. This paper shows the potential of a systematic empirical approach to predict plankton NCP from local and satellite-derived P estimates.

  19. Colloquium on diatom-copepod interactions

    DEFF Research Database (Denmark)

    Paffenhofer, G.A.; Ianora, A.; Miralto, A.

    2005-01-01

    in situ were also addressed. During the plenary session, the most recent advances on this topic were presented. The plenary session was followed by 3 working groups on (1) production of aldehydes by phytoplankton, (2) toxic and nutritional effects of diatoms on zooplankton, and (3) the chemistry of diatom...

  20. Controlling dynamics in diatomic systems

    Indian Academy of Sciences (India)

    WINTEC

    Abstract. Controlling molecular energetics using laser pulses is exemplified for nuclear motion in two different diatomic systems. The problem of finding the optimized field for maximizing a desired quantum dynamical target is formulated using an iterative method. The method is applied for two diatomic sys- tems, HF and OH.

  1. Variation partitioning of diatom species data matrices: Understanding the influence of multiple factors on benthic diatom communities in tropical streams

    Energy Technology Data Exchange (ETDEWEB)

    Bere, Taurai, E-mail: tbere2015@gmail.com; Mangadze, Tinotenda; Mwedzi, Tongai

    2016-10-01

    Elucidating the confounding influence of multiple environmental factors on benthic diatom communities is important in developing water quality predictive models for better guidance of stream management efforts. The objective of this study was to explore the relative impact of metal pollution and hydromorphological alterations in, addition to nutrient enrichment and organic pollution, on diatom taxonomic composition with the view to improve stream diatom-based water quality inference models. Samples were collected twice at 20 sampling stations in the tropical Manyame Catchment, Zimbabwe. Diatom, macroinvertebrate communities and environmental factors were sampled and analysed. The variations in diatom community composition explained by different categories of environmental factors were analysed using canonical correspondence analysis using variance partitioning (partial CCA). The following variations were explained by the different predictor matrices: nutrient levels and organic pollution - 10.4%, metal pollution - 8.3% and hydromorphological factors - 7.9%. Thus, factors other than nutrient levels and organic pollution explain additional significant variation in these diatom communities. Development of diatom-based stream water quality inference models that incorporate metal pollution and hydromorphological alterations, where these are key issues, is thus deemed necessary. - Highlights: • Confounding influences of multiple environmental factors on diatom communities are elucidated. • Variation explained: nutrients + organic pollution - 10.4%, metals - 8.3% and hydromorphological factors - 7.9%. • Calibration of existing or development of new indices may be necessary.

  2. Variation partitioning of diatom species data matrices: Understanding the influence of multiple factors on benthic diatom communities in tropical streams

    International Nuclear Information System (INIS)

    Bere, Taurai; Mangadze, Tinotenda; Mwedzi, Tongai

    2016-01-01

    Elucidating the confounding influence of multiple environmental factors on benthic diatom communities is important in developing water quality predictive models for better guidance of stream management efforts. The objective of this study was to explore the relative impact of metal pollution and hydromorphological alterations in, addition to nutrient enrichment and organic pollution, on diatom taxonomic composition with the view to improve stream diatom-based water quality inference models. Samples were collected twice at 20 sampling stations in the tropical Manyame Catchment, Zimbabwe. Diatom, macroinvertebrate communities and environmental factors were sampled and analysed. The variations in diatom community composition explained by different categories of environmental factors were analysed using canonical correspondence analysis using variance partitioning (partial CCA). The following variations were explained by the different predictor matrices: nutrient levels and organic pollution - 10.4%, metal pollution - 8.3% and hydromorphological factors - 7.9%. Thus, factors other than nutrient levels and organic pollution explain additional significant variation in these diatom communities. Development of diatom-based stream water quality inference models that incorporate metal pollution and hydromorphological alterations, where these are key issues, is thus deemed necessary. - Highlights: • Confounding influences of multiple environmental factors on diatom communities are elucidated. • Variation explained: nutrients + organic pollution - 10.4%, metals - 8.3% and hydromorphological factors - 7.9%. • Calibration of existing or development of new indices may be necessary.

  3. Marine sampling in Malaysia coastal area: the challenge, problems and solution

    International Nuclear Information System (INIS)

    Norfaizal Mohamed; Khairul Nizam Razali; Mohd Rafaie Mohd Murtadza; Muhammad Amin Abdul Ghani; Zaharudin Ahmad; Abdul Kadir Ishak

    2005-01-01

    Malaysia Marine Radioactivity Database Development Project is one of the five research contracts that was signed between MINT and AELB. Three marine sampling expeditions had been carried out using K.L. PAUS vessel owned by Malaysian Fisheries Institute, Chendering, Terengganu. The first marine sampling expedition was taken place at East Coast Peninsular Malaysia waters on August 2003, followed on February 2004 at West Coast Peninsular Malaysia waters, and lastly at Sarawak-Sabah waters on July 2004. Many challenges and problems were faced when collecting sediment, water, biota and plankton sample during this marine sampling. (Author)

  4. Phylogeography of the tropical planktonic foraminifera lineage globigerinella reveals isolation inconsistent with passive dispersal by ocean currents.

    Directory of Open Access Journals (Sweden)

    Agnes K M Weiner

    Full Text Available Morphologically defined species of marine plankton often harbor a considerable level of cryptic diversity. Since many morphospecies show cosmopolitan distribution, an understanding of biogeographic and evolutionary processes at the level of genetic diversity requires global sampling. We use a database of 387 single-specimen sequences of the SSU rDNA of the planktonic foraminifera Globigerinella as a model to assess the biogeographic and phylogenetic distributions of cryptic diversity in marine microplankton on a global scale. Our data confirm the existence of multiple, well isolated genetic lineages. An analysis of their abundance and distribution indicates that our sampling is likely to approximate the actual total diversity. Unexpectedly, we observe an uneven allocation of cryptic diversity among the phylogenetic lineages. We show that this pattern is neither an artifact of sampling intensity nor a function of lineage age. Instead, we argue that it reflects an ongoing speciation process in one of the three major lineages. Surprisingly, four of the six genetic types in the hyperdiverse lineage are biogeographically restricted to the Indopacific. Their mutual co-occurrence and their hierarchical phylogenetic structure provide no evidence for an origin through sudden habitat fragmentation and their limitation to the Indopacific challenges the view of a global gene flow within the warm-water provinces. This phenomenon shows that passive dispersal is not sufficient to describe the distribution of plankton diversity. Rather, these organisms show differentiated distribution patterns shaped by species interactions and reflecting phylogenetic contingency with unique histories of diversification rates.

  5. Risk assessment of excessive CO{sub 2} emission on diatom heavy metal consumption

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fengjiao; Li, Shunxing, E-mail: shunxing_li@aliyun.com; Zheng, Fengying; Huang, Xuguang

    2016-10-01

    Diatoms are the dominant group of phytoplankton in the modern ocean, accounting for approximately 40% of oceanic primary productivity and critical foundation of coastal food web. Rising dissolution of anthropogenic CO{sub 2} in seawater may directly/indirectly cause ocean acidification and desalination. However, little is known about dietary diatom-associated changes, especially for diatom heavy metal consumption sensitivity to these processes, which is important for seafood safety and nutrition assessment. Here we show some links between ocean acidification/desalination and heavy metal consumption by Thalassiosira weissflogii. Excitingly, under desalination stress, the relationships between Cu, Zn, and Cd were all positively correlated, especially between Cu and Zn (r = 0.989, total intracellular concentration) and between Zn and Cd (r = 0.962, single-cell intracellular concentration). Heavy metal consumption activity in decreasing order was acidification < acidification + desalination < desalination for Zn, acidification < desalination < acidification + desalination for Cu and Cd, i.e., heavy metal uptake (or release) were controlled by environmental stress. Our findings showed that heavy metal uptake (or release) was already responded to ongoing excessive CO{sub 2} emission-driven acidification and desalination, which was important for risk assessment of climate change on diatom heavy metal consumption, food web and then seafood safety in future oceans. - Highlights: • Excessive CO{sub 2} in seawater may causes ocean acidification and desalination. • The relationships between Cu, Zn, and Cd were all positively correlated by desalination. • Significant effects of salinity on intracellular concentration of Cu and Cd • Cu and Cd in marine phytoplankton could be regulated by metal excretion. • Heavy metal consumption was affect by excessive CO{sub 2}.

  6. Response of the marine diatom Thalassiosira weissflogii to iron stress

    International Nuclear Information System (INIS)

    Harrison, G.I.; Morel, F.M.M.

    1986-01-01

    The coastal diatom Thalassiosira weissflogii responds to iron limitation with decreasing growth rate, decreasing quotas of cellular iron, and increasing rates of maximum short term uptake. Growth response to steady iron limitation can be modeled according to the equations of Droop and Monod. The cellular iron quota varies from about 2 to 25 x 10 -1 mol iron per liter-cell with increasing iron; the half-saturation constant for growth, Kμ, is 1.1 x 10 -21 M (free ferric ion). In contrast, the half-saturation constant for 59 I iron uptake, K/sub rho/ is about 3 x 10 -19 M; the maximum iron uptake rate (rho/sub max/) is increased several-fold under iron limitation, resulting in a potential short term uptake rate that is a few hundred times the steady state rate. At a fixed concentration of free manganese ion, the cellular manganese quota is increased several-fold in iron-limited cultures compared to iron-sufficient cultures

  7. Marine Benthic Invertebrates in Mamala Bay, Oahu, Hawaii 1994 (NODC Accession 9900151)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Planktonic larval stages of many benthic marine invertebrates are especially susceptible to environmental stress, such as the presence of pollution. Recruitment of...

  8. Diatom genomics: genetic acquisitions and mergers.

    Science.gov (United States)

    Nisbet, R Ellen R; Kilian, Oliver; McFadden, Geoffrey I

    2004-12-29

    Diatom algae arose by two-step endosymbiosis. The complete genome of the diatom Thalassiosira pseudonana has now been sequenced, allowing us to reconstruct the remarkable intracellular gene transfers that occurred during this convoluted cellular evolution.

  9. Picocyanobacteria Dominance in Deep Biomass Layers: Relation to Diatom Presence and Episodic Events.

    Science.gov (United States)

    Aguilar, C.; Cuhel, R. L.

    2016-02-01

    In Offshore Marine and Large Lake Waters, most of the biomass and the productivity of phytoplankton occur below surface observation capabilities. Sub-mixed layer phytoplankton populations develop, increase, persist, and decay in relation to physical structure such as pycnocline density gradients interacting with progressively changing light fields. Basin-scale meteorological events and persistence of major invasive species have also left marks on biogeochemical cycling and ecosystem function in Lake Michigan. Among the former are precipitation and turbulence alterations brought on by unusual winter ice cover and a century-scale flood during 2008. Dampened seasonal silicate cycling indicated a basin-wide reduction of diatom production following mussel establishment. Communities in Lake Michigan shifted from diatom and big cell-dominated to small cell picocyanobacteria-dominated phytoplankton. Picocyanobacteria were beneficiaries of profound oligotrophication of the ecosystem starting in 2003. Photosynthetic parameters of pre-2003 Deep Biomass populations dominated by diatoms were systematically different from the cyanobacterial epoch following quagga mussel establishment and increase in depth of 1% incident light to 50-60m. Deep cyanobacterial production has now often been on the same scale as overlying waters. Photophysiology changes in a smooth depth gradient in this clear water as opposed to previous abrupt transition to shade adaptation. Among these many physicochemical permutations, community structure has consistently been a tradeoff between diatoms and picocyanobacteria. Opposing fluctuations of biomass favor one or the other on seasonal time frames of sequential years, with a complete system reset between each (winter mixing). For the Great Flood example, diatom surface blooms increased light extinction and drove the deep biomass maximum up - as populations settled into the pycnocline they had already outcompeted the picocyanobacteria. The opposite was true

  10. The Cretaceous-Tertiary boundary marine extinction and global primary productivity collapse

    Science.gov (United States)

    Zachos, J. C.; Arthus, M. A.; Dean, W. E.

    1988-01-01

    The extinction of marine phyto-and zoo-plankton across the K-T boundary has been well documented. Such an event may have resulted in decreased photosynthetic fixation of carbon in surface waters and a collapse of the food chain in the marine biosphere. Because the vertical and horizontal distribution of the carbon isotopic composition of total dissolved carton (TDC) in the modern ocean is controlled by the transfer of organic carbon from the surface to deep reservoirs, it follows that a major disruption of the marine biosphere would have had a major effect on the distribution of carbon isotopes in the ocean. Negative carbon isotope excursions have been identified at many marine K-T boundary sequences worldwide and are interpreted as a signal of decreased oceanic primary productivity. However, the magnitude, duration and consequences of this productivity crisis have been poorly constrained. On the basis of planktonic and benthic calcareous microfossil carbon isotope and other geochemical data from DSDP Site 577 located on the Shatsky Rise in the north-central Pacific, as well as other sites, researchers have been able to provide a reasonable estimate of the duration and magnitude of this event.

  11. Plankton bloom controlled by horizontal stirring

    Science.gov (United States)

    McKiver, W.; Neufeld, Z.; Scheuring, I.

    2009-10-01

    Here we show a simple mechanism in which changes in the rate of horizontal stirring by mesoscale ocean eddies can trigger or suppress plankton blooms and can lead to an abrupt change in the average plankton density. We consider a single species phytoplankton model with logistic growth, grazing and a spatially non-uniform carrying capacity. The local dynamics have multiple steady states for some values of the carrying capacity that can lead to localized blooms as fluid moves across the regions with different properties. We show that for this model even small changes in the ratio of biological timescales relative to the flow timescales can greatly enhance or reduce the global plankton productivity. Thus, this may be a possible mechanism in which changes in horizontal mixing can trigger plankton blooms or cause regime shifts in some oceanic regions. Comparison between the spatially distributed model and Lagrangian simulations considering temporal fluctuations along fluid trajectories, demonstrates that small scale transport processes also play an important role in the development of plankton blooms with a significant influence on global biomass.

  12. Coupled states approximation for scattering of two diatoms

    International Nuclear Information System (INIS)

    Heil, T.G.; Green, S.; Kouri, D.J.

    1978-01-01

    The coupled states (CS) approximation is developed in detail for the general case of two colliding diatomic molecules. The high energy limit of the exact Lippmann-Schwinger equation is used to obtain the CS equations so that the sufficiency conditions of Kouri, Heil, and Shimoni apply. In addition, care is taken to ensure correct treatment of parity in the CS, as well as correct labeling of the CS by an effective orbital angular momentum. The analysis follows that given by Shimoni and Kouri for atom-diatom collisions where the coupled rotor angular momentum j 12 and projection lambda 12 replace the single diatom angular momentum j and projection lambda. The result is an expression for the differential scattering amplitude which is a generalization of the highly successful McGuire-Kouri differential scattering amplitude for atom-diatom collisions. Also, the opacity function is found to be a generalization of the Clebsch-Gordon weight atom-diatom expression of Shimoni and Kouri. The diatom-diatom CS body frame T matrix T/sup J/(j 1 'j 2 'j 12 'lambda 12 'vertical-bar j 1 j 2 j 12 lambda 12 ) is also found to be nondiagonal in lambda' 12 ,lambda 12 , just as in the atom-diatom case. The parity and identical molecule interchange symmetries are also considered in detail in both the exact close coupling and CS approximations. Symmetrized expressions for all relevant quantities are obtained, along with the symmetrized coupled equations one must solve. The properly labeled and symmetrized CS equations have not been derived before this present work. The present correctly labeled CS theory is tested computationally by applications to three different diatom-diatom potentials. First we carry out calculations for para-para, ortho-ortho, and ortho-para H 2 -H 2 collisions using the experimental potential of Farrar and Lee

  13. Response of shallow water benthic foraminifera to a 13C-labeled food pulse in the laboratory

    Digital Repository Service at National Institute of Oceanography (India)

    Linshy, V.N.; Nigam, R; Heinz, P.

    foraminifera in deep-sea food webs and carbon cycling In: Rowe GT, Pariente V (eds) Deep-Sea food chains and global carbon cycle, Kluwer Academic publishers, The Netherlands, p.63-91 Giullard RR, Ryther JH (1962) Studies of marine planktonic diatoms. I... afterwards to avoid the lysis of cells and stored at −80°C until freeze-drying. The final 13C- concentration in the algae was 75 atom % 13C. 2.3 Experiment Set-up Two time series were incubated for these investigations: one for Ammonia tepida and one...

  14. The Continuous Plankton Imaging and Classification Sensor (CPICS): A Sensor for Quantifying Mesoplankton Biodiversity and Community Structure

    Science.gov (United States)

    Gallager, S. M.

    2016-02-01

    Marine ecosystems are changing at a variety of time scales as a function of a diverse suite of forcing functions both natural and anthropogenic. Establishing a continuous plankton time series consisting of scales from rapid (seconds) to long-term (decades), provides a sentinel for ecosystem change. The key is to measure plankton biodiversity at sufficiently fast time scales that allow disentanglement of physical (transport) and biological (growth) properties of an ecosystem. CPICS is a plankton and particle imaging microscope system that is designed to produce crisp darkfield images of light scattering material in aquatic environments. The open flow design is non-invasive and non-restrictive providing images of very fragile plankton in their natural orientation. Several magnifications are possible from 0.5 to 5x forming a field of view of 10cm to 1mm, respectively. CPICS has been installed on several cabled observing systems called OceanCubes off the coast of Okinawa and Tokyo, Japan providing a continuous stream of plankton images to a machine vision image classifier located at WHOI. Image features include custom algorithms for texture, color pattern, morphology and shape, which are extracted from in-focus target. The features are then used to train a classifier (e.g., Random Forest) resulting in classifications that are tested using cross-validation, confusion matrices and ROC curves. High (>90%) classification accuracies are possible depending on the number of training categories and target complexity. A web-based utility allows access to raw images, training sets, classifiers and classification results. Combined with chemical and physical data from the observatories, an ecologically meaningful plankton index of biodiversity and its variance is developed using a combination of species and taxon groups, which provides an approach for understanding ecosystem change without the need to identify all targets to species. http://oceancubes.whoi.edu/instruments/CPICS

  15. Effects of organic pollution on biological communities of marine biofilm on hard substrata

    International Nuclear Information System (INIS)

    Sanz-Lázaro, C.; Fodelianakis, S.; Guerrero-Meseguer, L.; Marín, A.; Karakassis, I.

    2015-01-01

    We examined the effect of organic enrichment on diatom and bacterial assemblages of marine epilithic biofilms on two locations in the Mediterranean, one situated in Spain and the other in Greece. Total organic carbon, total organic nitrogen, stable isotopes (δ 13 C and δ 15 N) and chlorophyll a indicated significant incorporation of organic wastes, increased primary production and trophic niche modifications on the biofilms close to the organic enrichment source. In Spain, where the organic load was higher than in Greece, diatom and, to some extent, bacterial assemblages varied following the organic enrichment gradient. The taxonomic richness of diatom and bacterial communities was not influenced by organic enrichment. Classical community parameters showed consistent patterns to organic pollution in both locations, whereas community assemblages were only influenced when organic pollution was greatest. The successional patterns of these communities were similar to other epilithic communities. The modification of community assemblages induced by organic pollution may affect ecological functions. - Highlights: • We examined the effect of organic enrichment on assemblages of marine biofilms. • Classical community parameters showed consistent patterns to organic pollution. • Diatom and bacterial assemblages were affected under high level of organic enrichment. • Successional patterns were similar to other communities inhabiting hard substrata. • Assemblage modifications induced by organic pollution may affect ecological functions. - Organic pollution modifies the assemblages of biofilm communities which may affect important ecological functions

  16. The Effect of Dissolved Polyunsaturated Aldehydes on Microzooplankton Growth Rates in the Chesapeake Bay and Atlantic Coastal Waters

    Directory of Open Access Journals (Sweden)

    Peter J. Lavrentyev

    2015-05-01

    Full Text Available Allelopathy is wide spread among marine phytoplankton, including diatoms, which can produce cytotoxic secondary metabolites such as polyunsaturated aldehydes (PUA. Most studies on diatom-produced PUA have been dedicated to their inhibitory effects on reproduction and development of marine invertebrates. However, little information exists on their impact on key herbivores in the ocean, microzooplankton. This study examined the effects of dissolved 2E,4E-octadienal and 2E,4E-heptadienal on the growth rates of natural ciliate and dinoflagellate populations in the Chesapeake Bay and the coastal Atlantic waters. The overall effect of PUA on microzooplankton growth was negative, especially at the higher concentrations, but there were pronounced differences in response among common planktonic species. For example, the growth of Codonella sp., Leegaardiella sol, Prorodon sp., and Gyrodinium spirale was impaired at 2 nM, whereas Strombidium conicum, Cyclotrichium gigas, and Gymnodinium sp. were not affected even at 20 nM. These results indicate that PUA can induce changes in microzooplankton dynamics and species composition.

  17. The Effect of Dissolved Polyunsaturated Aldehydes on Microzooplankton Growth Rates in the Chesapeake Bay and Atlantic Coastal Waters

    Science.gov (United States)

    Lavrentyev, Peter J.; Franzè, Gayantonia; Pierson, James J.; Stoecker, Diane K.

    2015-01-01

    Allelopathy is wide spread among marine phytoplankton, including diatoms, which can produce cytotoxic secondary metabolites such as polyunsaturated aldehydes (PUA). Most studies on diatom-produced PUA have been dedicated to their inhibitory effects on reproduction and development of marine invertebrates. However, little information exists on their impact on key herbivores in the ocean, microzooplankton. This study examined the effects of dissolved 2E,4E-octadienal and 2E,4E-heptadienal on the growth rates of natural ciliate and dinoflagellate populations in the Chesapeake Bay and the coastal Atlantic waters. The overall effect of PUA on microzooplankton growth was negative, especially at the higher concentrations, but there were pronounced differences in response among common planktonic species. For example, the growth of Codonella sp., Leegaardiella sol, Prorodon sp., and Gyrodinium spirale was impaired at 2 nM, whereas Strombidium conicum, Cyclotrichium gigas, and Gymnodinium sp. were not affected even at 20 nM. These results indicate that PUA can induce changes in microzooplankton dynamics and species composition. PMID:25955757

  18. Eco-biology of marine diatoms with emphasis on the influence of physico-chemical parameters

    Digital Repository Service at National Institute of Oceanography (India)

    Mitbavkar, S.

    cell abundance of epipelic diatoms was high only during the morning low tide whereas in winter it was found to be the highest during the mid-morning high tide and continued to be so even during the following evening low tide. This ability... of microphytobenthos to migrate vertically within the surface sediment when their requirements are fulfilled may be considered as a form of behavioral photoacclimation, allowing cells to avoid potentially 166 damaging irradiance and temperature conditions (Kromkamp...

  19. Cellular metabolic responses of the marine diatom Pseudo-nitzschia multiseries associated with cell wall formation.

    Science.gov (United States)

    Xu, Bin; Luo, Chun-Shan; Liang, Jun-Rong; Chen, Dan-Dan; Zhuo, Wen-Hao; Gao, Ya-Hui; Chen, Chang-Ping; Song, Si-Si

    2014-08-01

    In this study a comparative proteomics approach involving a mass spectrometric analysis of synchronized cells was employed to investigate the cellular-level metabolic mechanisms associated with siliceous cell wall formation in the pennate diatom Pseudo-nitzschia multiseries. Cultures of P. multiseries were synchronized using the silicate limitation method. Approximately 75% of cells were arrested at the G2+M phase of the cell cycle after 48 h of silicate starvation. The majority of cells progressed to new valve synthesis within 5h of silicon replenishment. We compared the proteome of P. multiseries at 0, 4, 5, and 6h of synchronization progress upon silicon replenishment using two-dimensional gel electrophoresis. Forty-eight differentially expressed protein spots were identified in abundance (greater than two-fold change; Pwall formation. The proteomic profile analysis suggests that P. multiseries most likely employs multiple synergistic biochemical mechanisms for cell wall formation. These results improve our understanding of the molecular mechanisms underlying silicon cell wall formation and enhance our understanding of the important role played by diatoms in silicon biogeochemical cycling. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Applications of Diatoms as Potential Microalgae in Nanobiotechnology

    Directory of Open Access Journals (Sweden)

    Ahmad Yari Khosroushahi

    2012-05-01

    Full Text Available Introduction: Diatoms are single cell eukaryotic microalgae, which present in nearly every water habitat make them ideal tools for a wide range of applications such as oil explora­tion, forensic examination, environmental indication, biosilica pattern generation, toxicity testing and eutrophication of aqueous ecosystems. Methods: Essential information on diatoms were reviewed and discussed towards impacts of diatoms on biosynthesis and bioremediation. Results: In this review, we present the recent progress in this century on the application of diatoms in waste degradation, synthesis of biomaterial, biomineraliza­tion, toxicity and toxic effects of mineral elements evaluations. Conclusion: Diatoms can be considered as metal toxicity bioindicators and they can be applied for biomineralization, synthesis of biomaterials, and degradation of wastes.

  1. Planktonic foraminiferal abnormalities in coastal and open marine eastern Mediterranean environments: A natural stress monitoring approach in recent and early Holocene marine systems

    Science.gov (United States)

    Antonarakou, A.; Kontakiotis, G.; Zarkogiannis, S.; Mortyn, P. G.; Drinia, H.; Koskeridou, E.; Anastasakis, G.

    2018-05-01

    Marine environmental status can be assessed through the study of bio-indicator species. Here, we monitor natural environmental stress by the occurrence of morphologically abnormal planktonic foraminiferal specimens from a suite of surface sediments in the eastern Mediterranean Sea. We also compare Scanning Electron Microscopy (SEM) abnormality observations from sapropel S1-derived sediments in the Aegean, Libyan and Levantine basins, since they provide a direct record of a natural stress experiment that took place over past time scales. At initial sapropel deposition levels, we observe increased growth asymmetry in Globigerinoides ruber twinned and twisted individuals, possibly associated with eutrophication and anoxia. In modern material, a range of malformations and aberrant morphologies from slight deformity with smaller or overdeveloped chambers to more severe deformity with abnormally protruding or misplaced chambers, distorted spirals, and double tests is also observed, as a result of the hypersaline, oligotrophic and oxygen-depleted nature of the Mediterranean Sea water column. Overall, we highlight the current use of the relative abundance of abnormal tests as a bio-indicator for monitoring natural stress, especially the occurrence of twin specimens as indicative of high-salinity stress conditions, and further illustrate the necessity to map both their spatial and temporal distribution for accurate paleoenvironmental reconstructions. Such an approach presents the advantage to rapidly provide information over wide spatial and temporal scales, extending our ability to monitor a wide variety of environments (from coastal to the open-sea). However, further investigations should extend this approach to test the robustness of our findings in a number of similar oceanic settings.

  2. Structure-based optics of centric diatom frustules: modulation of the in vivo light field for efficient diatom photosynthesis.

    Science.gov (United States)

    Goessling, Johannes W; Su, Yanyan; Cartaxana, Paulo; Maibohm, Christian; Rickelt, Lars F; Trampe, Erik C L; Walby, Sandra L; Wangpraseurt, Daniel; Wu, Xia; Ellegaard, Marianne; Kühl, Michael

    2018-07-01

    The optical properties of diatom silicate frustules inspire photonics and nanotechnology research. Whether light interaction with the nano-structure of the frustule also affects diatom photosynthesis has remained unclear due to lack of information on frustule optical properties under more natural conditions. Here we demonstrate that the optical properties of the frustule valves in water affect light harvesting and photosynthesis in live cells of centric diatoms (Coscinodiscus granii). Microscale cellular mapping of photosynthesis around localized spot illumination demonstrated optical coupling of chloroplasts to the valve wall. Photonic structures of the three-layered C. granii valve facilitated light redistribution and efficient photosynthesis in cell regions distant from the directly illuminated area. The different porous structure of the two sides of the valve exhibited photon trapping and forward scattering of blue light enhancing photosynthetic active radiation inside the cell. Photonic structures of diatom frustules thus alter the cellular light field with implications on diatom photobiology. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  3. Planktonic interactions and chaotic advection in Langmuir circulation

    DEFF Research Database (Denmark)

    Bees, Martin Alan; Mezic, I.; McGlade, J.

    1998-01-01

    The role of unsteady laminar flows for planktonic communities is investigated. Langmuir circulation is used, as a typical medium-scale structure, to illustrate mechanisms for the generation of plankton patches. Two behaviours are evident: chaotic regions that help to spread plankton and locally...

  4. Selective silicate-directed motility in diatoms

    DEFF Research Database (Denmark)

    Bondoc, Karen Grace V.; Heuschele, Jan; Gillard, Jeroen

    2016-01-01

    the major sink in the global Si cycle. Dissolved silicic acid (dSi) availability frequently limits diatom productivity and influences species composition of communities. We show that benthic diatoms selectively perceive and behaviourally react to gradients of dSi. Cell speed increases under d...

  5. Composition of planktonic organisms and its associated physico ...

    African Journals Online (AJOL)

    Composition of plankton communities in two ponds at African Regional Agriculture Centre (ARAC) Aluu, Port Harcourt was undertaken between May and June 2004, to assess the composition, relative abundance and distribution of plankton. The diversity of plankton was poor. Twenty-eight taxa representing four (4) families ...

  6. Foraging strategy switch of a top marine predator according to seasonal resource differences

    Directory of Open Access Journals (Sweden)

    Malcolm Daniel O'Toole

    2015-04-01

    Full Text Available The spatio-temporal variability in marine resources influences the foraging behaviour and success of top marine predators. However, little is known about the links between these animals and ocean productivity, specifically, how plankton density influences their foraging behaviour. Southern elephant seals (Mirounga leonina have two annual at-sea foraging trips: a two month post-breeding foraging trip (Nov – Jan that coincides with elevated summer productivity; and an eight month post-moulting foraging trip (Feb – Oct over winter, when productivity is low. Physical parameters are often used to describe seal habitat, whereas information about important biological parameters is lacking. We used electronic tags deployed on elephant seals during both trips to determine their movement and foraging behaviour. The tags also recorded light, which measured the bio-optical properties of the water column, the bulk of which is presumably influenced by phytoplankton. We investigated the relationship between plankton density and seal foraging behaviour; comparing trends between summer and winter trips. We found a positive relationship between plankton density and foraging behaviour, which did not vary seasonally. We propose that profitable concentrations of seal prey are more likely to coincide with planktonic aggregations, but we also acknowledge that trophic dynamics may shift in response to seasonal trends in productivity. Seal prey (mid-trophic level and plankton (lower-trophic level are expected to overlap in space and time during summer trips when peak phytoplankton blooms occur. In contrast, aggregated patches of lower trophic levels are likely to be more dispersed during winter trips when plankton density is considerably lower and heterogeneous. These results show that southern elephant seals are able to exploit prey resources in different ways throughout the year as demonstrated by the variation observed between seal foraging behaviour and trophic

  7. Computation of diatomic molecular spectra for selected transitions of aluminum monoxide, cyanide, diatomic carbon, and titanium monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Parigger, Christian G., E-mail: cparigge@tennessee.edu [The University of Tennessee/University of Tennessee Space Institute, Center for Laser Applications, 411 B.H. Goethert Parkway, Tullahoma, TN 37388-9700 (United States); Woods, Alexander C.; Surmick, David M.; Gautam, Ghaneshwar; Witte, Michael J. [The University of Tennessee/University of Tennessee Space Institute, Center for Laser Applications, 411 B.H. Goethert Parkway, Tullahoma, TN 37388-9700 (United States); Hornkohl, James O. [Hornkohl Consulting, Tullahoma, TN 37388 (United States)

    2015-05-01

    Laser ablation studies with laser-induced breakdown spectroscopy (LIBS) typically emphasize atomic species yet fingerprints from molecular species can occur subsequently or concurrently. In this work, selected molecular transitions of aluminum monixide (AlO), diatomic carbon (C{sub 2}), cyanide (CN), and titanium monoxide (TiO) are accurately computed. Line strength tables are used to describe the radiative transitions of diatomic molecules primarily in the visible, optical region. Details are elaborated of the computational procedure that allows one to utilize diatomic spectra as a predictive and as a diagnostic tool. In order to create a computed spectrum, the procedure requires information regarding the temperature of the diatomic transitions along with other input such as the spectral resolution. When combined with a fitting algorithm to optimize such parameters, this procedure is used to infer information from an experimentally obtained spectrum. Furthermore, the programs and data files are provided for LIBS investigations that also reveal AlO, C{sub 2}, CN, and TiO diatomic spectra. - Highlights: • We present a program for fitting of molecular spectra. • This includes data base for AlO, C{sub 2}, CN, and TiO. • We discuss the details of the program including fitting. • We show computed examples and reference current work.

  8. 9 Records of Diatoms and Physicochemical.cdr

    African Journals Online (AJOL)

    Administrator

    between some physicochemical parameters and diatom species in these ponds. ..... Diversity and relative abundance (%) of diatoms species in selected seasonal ponds in Zaria, Nigeria ..... connection with reference conditions of the water.

  9. The upstream regulatory sequence of the light harvesting complex Lhcf2 gene of the marine diatom Phaeodactylum tricornutum enhances transcription in an orientation- and distance-independent fashion.

    Science.gov (United States)

    Russo, Monia Teresa; Annunziata, Rossella; Sanges, Remo; Ferrante, Maria Immacolata; Falciatore, Angela

    2015-12-01

    Diatoms are a key phytoplankton group in the contemporary ocean, showing extraordinary adaptation capacities to rapidly changing environments. The recent availability of whole genome sequences from representative species has revealed distinct features in their genomes, like novel combinations of genes encoding distinct metabolisms and a significant number of diatom-specific genes. However, the regulatory mechanisms driving diatom gene expression are still largely uncharacterized. Considering the wide variety of fields of study orbiting diatoms, ranging from ecology, evolutionary biology to biotechnology, it is thus essential to increase our understanding of fundamental gene regulatory processes such as transcriptional regulation. To this aim, we explored the functional properties of the 5'-flanking region of the Phaeodatylum tricornutum Lhcf2 gene, encoding a member of the Light Harvesting Complex superfamily and we showed that this region enhances transcription of a GUS reporter gene in an orientation- and distance-independent fashion. This represents the first example of a cis-regulatory sequence with enhancer-like features discovered in diatoms and it is instrumental for the generation of novel genetic tools and diatom exploitation in different areas of study. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Planktonic Foraminifera Proxies Calibration Off the NW Iberian Margin: Nutrients Approach

    Science.gov (United States)

    Salgueiro, E.; Castro, C. G.; Zuniga, D.; Martin, P. A.; Groeneveld, J.; de la Granda, F.; Villaceiros-Robineau, N.; Alonso-Perez, F.; Alberto, A.; Rodrigues, T.; Rufino, M. M.; Abrantes, F. F. G.; Voelker, A. H. L.

    2014-12-01

    Planktonic foraminifera (PF) shells preserved in marine sediments are a useful tool to reconstruct productivity conditions at different geological timescales. However, the accuracy of these paleoreconstructions depends on the data set and calibration quality. Several calibration works have been defining and improving the use of proxies for productivity and nutrient cycling parameters. Our contribution is centred on a multi-proxy calibration at a regional coastal upwelling system. To minimize the existing uncertainties affecting the use of trace elements and C stable isotopes as productivity proxy in the high productivity upwelling areas, we investigate the content and distribution of Ba/Ca and δ13C in the water column, its transference into the planktonic foraminifera shells, and, how the living planktonic foraminifera Ba/Ca and δ13C signal is related to the same planktonic foraminiferal species preserved in the sediment record. This study is based on a large data set from two stations (RAIA - 75m water depth, and CALIBERIA - 350m water depth) located off the NW Iberian margin (41.5-42.5ºN; 9-10ºW), and includes: i) two year monthly water column data (temperature, salinity, nutrients, chlorophyll a, Ba/Ca, and δ13C-DIC); ii) seasonal Ba/Ca, δ13C in several living PF species at both stations; and iii) Ba/Ca and δ13C in several PF species from a large set of core-top sediment samples in the study region. Additionally, total organic carbon and total alkenones were also measured in the sediment. Our results showed the link between productivity proxies in the surface sediment foraminifera assemblage and the processes regulating the actual phytoplankton dynamics in an upwelling area. The understanding of this relationship has special relevance since it gives fundamental information related to the past oceanic biogeochemistry and/or climate and improves the prevision of future changes against possible climate variability due to anthropogenic forcing.

  11. Influence of UVB radiation on the lethal and sublethal toxicity of dispersed crude oil to planktonic copepod nauplii.

    Science.gov (United States)

    Almeda, Rodrigo; Harvey, Tracy E; Connelly, Tara L; Baca, Sarah; Buskey, Edward J

    2016-06-01

    Toxic effects of petroleum to marine zooplankton have been generally investigated using dissolved petroleum hydrocarbons and in the absence of sunlight. In this study, we determined the influence of natural ultraviolet B (UVB) radiation on the lethal and sublethal toxicity of dispersed crude oil to naupliar stages of the planktonic copepods Acartia tonsa, Temora turbinata and Pseudodiaptomus pelagicus. Low concentrations of dispersed crude oil (1 μL L(-1)) caused a significant reduction in survival, growth and swimming activity of copepod nauplii after 48 h of exposure. UVB radiation increased toxicity of dispersed crude oil by 1.3-3.8 times, depending on the experiment and measured variables. Ingestion of crude oil droplets may increase photoenhanced toxicity of crude oil to copepod nauplii by enhancing photosensitization. Photoenhanced sublethal toxicity was significantly higher when T. turbinata nauplii were exposed to dispersant-treated oil than crude oil alone, suggesting that chemical dispersion of crude oil may promote photoenhanced toxicity to marine zooplankton. Our results demonstrate that acute exposure to concentrations of dispersed crude oil and dispersant (Corexit 9500) commonly found in the sea after oil spills are highly toxic to copepod nauplii and that natural levels of UVB radiation substantially increase the toxicity of crude oil to these planktonic organisms. Overall, this study emphasizes the importance of considering sunlight in petroleum toxicological studies and models to better estimate the impact of crude oil spills on marine zooplankton. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Evidence for marine microfossils from amber.

    Science.gov (United States)

    Girard, Vincent; Schmidt, Alexander R; Saint Martin, Simona; Struwe, Steffi; Perrichot, Vincent; Saint Martin, Jean-Paul; Grosheny, Danièle; Breton, Gérard; Néraudeau, Didier

    2008-11-11

    Amber usually contains inclusions of terrestrial and rarely limnetic organisms that were embedded in the places were they lived in the amber forests. Therefore, it has been supposed that amber could not have preserved marine organisms. Here, we report the discovery amber-preserved marine microfossils. Diverse marine diatoms as well as radiolarians, sponge spicules, a foraminifer, and a spine of a larval echinoderm were found in Late Albian and Early Cenomanian amber samples of southwestern France. The highly fossiliferous resin samples solidified approximately 100 million years ago on the floor of coastal mixed forests dominated by conifers. The amber forests of southwestern France grew directly along the coast of the Atlantic Ocean and were influenced by the nearby sea: shells and remnants of marine organisms were probably introduced by wind, spray, or high tide from the beach or the sea onto the resin flows.

  13. Microbial plankton communities in the coastal southeastern Black Sea: biomass, composition and trophic interactions

    Directory of Open Access Journals (Sweden)

    Ulgen Aytan

    2018-04-01

    Full Text Available Summary: We investigated biomass and composition of the pico-, nano- and microplankton communities in a coastal station of the southeastern Black Sea during 2011. We also examined trophic interactions within these communities from size-fractionated dilution experiments in February, June and December. Autotrophic and heterotrophic biomasses showed similar seasonal trends, with a peak in June, but heterotrophs dominated throughout the year. Autotrophic biomass was mainly comprised by nanoflagellates and diatoms in the first half of the year, and by dinoflagellates and Synechococcus spp. in the second half. Heterotrophic biomass was mostly dominated by heterotrophic bacteria, followed by nanoflagellates and microzooplankton. Dilution experiments suggest that nano- and microzooplankton were significant consumers of autotrophs and heterotrophic bacteria. More than 100% of bacterial production was consumed by grazers in all experiments, while 46%, 21% and 30% of daily primary production were consumed in February, June and December, respectively. In February, autotrophs were the main carbon source, but in December, it was heterotrophic bacteria. An intermediate situation was observed in June, with similar carbon flows from autotrophs and heterotrophic bacteria. Size-fraction dilution experiments suggested that heterotrophic nanoflagellates are an important link between the high heterotrophic bacterial biomass and microzooplankton. In summary, these results indicate that nano- and microzooplankton were responsible for comprising a significant fraction of total microbial plankton biomass, standing stocks, growth and grazing processes. This suggests that in 2011, the microbial food web was an important compartment of the planktonic food web in the coastal southeastern Black Sea. Keywords: Phytoplankton, Microzooplankton, Carbon biomass, Microbial food web, Grazing, Black Sea

  14. A linkage between Asian dust, dissolved iron and marine export production in the deep ocean

    Science.gov (United States)

    Han, Yongxiang; Zhao, Tianliang; Song, Lianchun; Fang, Xiaomin; Yin, Yan; Deng, Zuqin; Wang, Suping; Fan, Shuxian

    2011-08-01

    Iron-addition experiments have revealed that iron supply exerts controls on biogeochemical cycles in the ocean and ultimately influences the Earth's climate system. The iron hypothesis in its broad outlines has been proved to be correct. However, the hypothesis needs to be verified with an observable biological response to specific dust deposition events. Plankton growth following the Asian dust storm over Ocean Station PAPA (50°N, 145°W) in the North Pacific Ocean in April 2001 was the first supportive evidence of natural aeolian iron inputs to ocean; The data were obtained through the SeaWiFS satellite and robot carbon explorers by Bishop et al. Using the NARCM modeling results in this study, the calculated total dust deposition flux was 35 mg m -2 per day in PAPA region from the dust storm of 11-13 April, 2001 into 0.0615 mg m -2 d -1 (about 1100 nM) soluble iron in the surface layer at Station PAPA. It was enough for about 1100 nM to enhance the efficiency of the marine biological pump and trigger the rapid increase of POC and chlorophyll. The iron fertilization hypothesis therefore is plausible. However, even if this specific dust event can support the iron fertilization hypothesis, long-term observation data are lacking in marine export production and continental dust. In this paper, we also conducted a simple correlation analysis between the diatoms and foraminifera at about 3000 m and 4000 m at two subarctic Pacific stations and the dust aerosol production from China's mainland. The correlation coefficient between marine export production and dust storm frequency in the core area of the dust storms was significantly high, suggesting that aerosols generated by Asian dust storm are the source of iron for organic matter fixation in the North Pacific Ocean. These results suggest that there could be an interlocking chain for the change of atmospheric dust aerosol-soluble iron-marine export production.

  15. Diatoms and the nanotechnology

    International Nuclear Information System (INIS)

    Toekesi, K.; Bereczky, R.J.; Lakatos, Gy.; Cserhati, C.

    2004-01-01

    Complete text of publication follows. During the last decade studies of interactions between highly charged ions (HCI) and solid surfaces are at the center of interest which is partly stimulated by potential future technical application such as nanofabrication. The investigation of the interactions of highly charged ions with internal surfaces recently become available due to the advances in the fabrication of micro- and nanocapillaries. These target materials offer the opportunity to observe 'hollow atom' formation in free space. Hollow atoms are an exotic form of matter where the atomic charge cloud resides in shells with large diameters while the core is virtually empty. In the past there has been an increasing amount of indirect evidence for the existence of this atomic state. Microcapillary transmission promises to provide direct evidence for the hollow atom formation for the first time. Our earlier theoretical descriptions rely on metallic microcapillaries which have proven to be quite successful in comparison with experimental data. However, since very detailed measurements have recently become available for insulator nanocapillaries, critical and precise tests of theory are only now being possible. We note, that the theoretical description of the interaction between the HCI and insulator nanocapillaries is far from being well understood. One of the key point of the experimental investigations is the preparation of the nanocapillaries. In this work we propose an alternative way to prepare insulator nanocapillaries. We take an advantage of the nature that during the evolution the cylindrical shape nanostructure was developed as a truss of diatoms. The truss of the diatoms contains roughly 99 % SiO 2 and in some cases of diatoms it form almost ideal cylindrical shape. As an example Fig. 1 shows the scanning electron micrograph of the diatom. The size of the holes in the truss are in the nanometer range (see Fig. 1a). On the basis of these properties the

  16. The effect of antibiotics on diatom communities

    Digital Repository Service at National Institute of Oceanography (India)

    DeCosta, P.M.; Anil, A.C.

    Effect of antibiotics (penicillin (P), streptomycin (S) and chloramphenicol (C)) on benthic diatom communities was evaluated using a modified extinction–dilution method. The high antibiotic combinations (2PSC and PSC) reduced diatoms by 99...

  17. Standing out from the crowd: Spotting your targets in a mixed plankton sample.

    Science.gov (United States)

    Harada, Alice E; Burton, Ronald S

    2017-11-01

    The diversity of marine organisms is staggering, and this fact is readily appreciated by microscopic examination of the contents of a plankton net after a short tow across the ocean surface. Although this diversity is beautiful, it can present a significant problem for those seeking to extract information about a single species of interest. Enumeration of the eggs and larvae of a specific target species can provide a quantitative window into reproductive dynamics that are of great use for fisheries stock assessment and management. But how do you efficiently sort through the mass of plankton and identify target species' eggs and larvae that may be morphologically indistinguishable from those of a number of other local species? In this issue of Molecular Ecology Resources, Oxley et al. () describe an innovative in situ hybridization (ISH) approach that successfully solves this important problem and opens an exciting new avenue to ichthyoplankton analysis that may be widely adopted by both fish ecologists and fisheries managers. © 2017 John Wiley & Sons Ltd.

  18. Carbon conversion and metabolic rate in two marine sponges

    NARCIS (Netherlands)

    Koopmans, M.; Van Rijswijk, P.; Martens, D.; Egorova-Zachernyuk, T.A.; Middelburg, J.J.; Wijffels, R.H.

    2011-01-01

    The carbon metabolism of two marine sponges, Haliclona oculata and Dysidea avara, has been studied using a 13C isotope pulse-chase approach. The sponges were fed 13C-labeled diatoms (Skeletonema costatum) for 8 h and they took up between 75 and 85%. At different times, sponges were sampled for total

  19. Fabrication of insulator nanocapillaries from diatoms

    International Nuclear Information System (INIS)

    Bereczky, R.J.; Tokesi, K.

    2006-01-01

    Complete text of publication follows. Diatoms are unicellular microscopic organisms with silicon-dioxide based skeleton enveloped with an organic material, which composes essentially polysaccharides and proteins (see Fig. 1a.). As it was shown, the valva of the diatoms build up almost from clean silicondioxide [1]. Therefore, removing the organic compounds from the diatom, we can have in our hand an ideal, about 100 μ m-sized, and almost cylindrical shaped insulating nanostructure. There are various techniques available to disembarrass the diatom from its organic compounds. We used the so called hydrogen peroxide method. The advantageous properties of this method are the followings: a) this is one of the fastest procedures among the possible methods, b) do not require special equipment, c) cheap, and last but not least it is less harmful for health compared to other methods. This procedure can be an alternative way of the fabrication of insulator nanocapillaries. In this case the preparation of the nanocapillaries is simple and quick. Moreover, we do not need to invest expensive special techniques, (like micromachining-, electrochemical etching technique, moulding process etc) as it was necessary for the case of previously developed method producing insulator nanocapillaries [2,3]. Fig. 1b and Fig. 1c. show the scanning electron micrograph of the skeleton of the diatoms. The size of the cylindrical holes are roughly 200 nm (see Fig. 1c). (author)

  20. Evolution of a Planktonic Foraminifer during Environmental Changes in the Tropical Oceans.

    Science.gov (United States)

    Ujiié, Yurika; Ishitani, Yoshiyuki

    2016-01-01

    Ecological adaptation to environmental changes is a strong driver of evolution, enabling speciation of pelagic plankton in the open ocean without the presence of effective physical barriers to gene flow. The tropical ocean environment, which plays an important role in shaping marine biodiversity, has drastically and frequently changed since the Pliocene. Nevertheless, the evolutionary history of tropical pelagic plankton has been poorly understood, as phylogeographic investigations are still in the developing state and paleontological approaches are insufficient to obtain a sequential record from the deep-sea sediments. The planktonic foraminifer Pulleniatina obliquiloculata is widely distributed in the tropical area throughout the world's oceans, and its phylogeography is well established. It is thus one of the best candidates to examine how past environmental changes may have shifted the spatial distribution and affected the diversification of tropical pelagic plankton. Such an examination requires the divergence history of the planktonic foraminifers, yet the gene marker (partial small subunit (SSU) rDNA) previously used for phylogeographic studies was not powerful enough to achieve a high accuracy in estimating the divergence times. The present study focuses on improving the precision of divergence time estimates for the splits between sibling species (genetic types) of planktonic foraminifers by increasing the number of genes as well as the number of nucleotide bases used for molecular clock estimates. We have amplified the entire coding regions of two ribosomal RNA genes (SSU rDNA and large subunit (LSU) rDNA) of three genetic types of P. obliquiloculata and two closely related species for the first time and applied them to the Bayesian relaxed clock method. The comparison of the credible intervals of the four datasets consisting either of sequences of the partial SSU rDNA, the complete SSU rDNA, LSU rDNA, or a combination of both genes (SSU+LSU) clearly

  1. Current trends to comprehend lipid metabolism in diatoms.

    Science.gov (United States)

    Zulu, Nodumo Nokulunga; Zienkiewicz, Krzysztof; Vollheyde, Katharina; Feussner, Ivo

    2018-04-01

    Diatoms are the most dominant phytoplankton species in oceans and they continue to receive a great deal of attention because of their significant contributions in ecosystems and the environment. Due to triacylglycerol (TAG) profiles that are abundant in medium-chain fatty acids, diatoms have emerged to be better feed stocks for biofuel production, in comparison to the commonly studied green microalgal species (chlorophytes). Importantly, diatoms are also known for their high levels of the essential ω3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and are considered to be a promising alternative source of these components. The two most commonly exploited diatoms include Thalassiosira pseudonana and Phaeodactylum tricornutum. Although obvious similarities between diatoms and chlorophytes exist, there are some substantial differences in their lipid metabolism. This review provides an overview on lipid metabolism in diatoms, with P. tricornutum as the most explored model. Special emphasis is placed on the synthesis and incorporation of very long chain ω3 fatty acids into lipids. Furthermore, current approaches including genetic engineering and biotechnological methods aimed at improving and maximizing lipid production in P. tricornutum are also discussed. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Tracing carbon flow in an arctic marine food web using fatty acid-stable isotope analysis.

    Science.gov (United States)

    Budge, S M; Wooller, M J; Springer, A M; Iverson, S J; McRoy, C P; Divoky, G J

    2008-08-01

    Global warming and the loss of sea ice threaten to alter patterns of productivity in arctic marine ecosystems because of a likely decline in primary productivity by sea ice algae. Estimates of the contribution of ice algae to total primary production range widely, from just 3 to >50%, and the importance of ice algae to higher trophic levels remains unknown. To help answer this question, we investigated a novel approach to food web studies by combining the two established methods of stable isotope analysis and fatty acid (FA) analysis--we determined the C isotopic composition of individual diatom FA and traced these biomarkers in consumers. Samples were collected near Barrow, Alaska and included ice algae, pelagic phytoplankton, zooplankton, fish, seabirds, pinnipeds and cetaceans. Ice algae and pelagic phytoplankton had distinctive overall FA signatures and clear differences in delta(13)C for two specific diatom FA biomarkers: 16:4n-1 (-24.0+/-2.4 and -30.7+/-0.8 per thousand, respectively) and 20:5n-3 (-18.3+/-2.0 and -26.9+/-0.7 per thousand, respectively). Nearly all delta(13)C values of these two FA in consumers fell between the two stable isotopic end members. A mass balance equation indicated that FA material derived from ice algae, compared to pelagic diatoms, averaged 71% (44-107%) in consumers based on delta(13)C values of 16:4n-1, but only 24% (0-61%) based on 20:5n-3. Our estimates derived from 16:4n-1, which is produced only by diatoms, probably best represented the contribution of ice algae relative to pelagic diatoms. However, many types of algae produce 20:5n-3, so the lower value derived from it likely represented a more realistic estimate of the proportion of ice algae material relative to all other types of phytoplankton. These preliminary results demonstrate the potential value of compound-specific isotope analysis of marine lipids to trace C flow through marine food webs and provide a foundation for future work.

  3. Ciona intestinalis as a Marine Model System to Study Some Key Developmental Genes Targeted by the Diatom-Derived Aldehyde Decadienal

    Directory of Open Access Journals (Sweden)

    Anna Lettieri

    2015-03-01

    Full Text Available The anti-proliferative effects of diatoms, described for the first time in copepods, have also been demonstrated in benthic invertebrates such as polychaetes, sea urchins and tunicates. In these organisms PUAs (polyunsaturated aldehydes induce the disruption of gametogenesis, gamete functionality, fertilization, embryonic mitosis, and larval fitness and competence. These inhibitory effects are due to the PUAs, produced by diatoms in response to physical damage as occurs during copepod grazing. The cell targets of these compounds remain largely unknown. Here we identify some of the genes targeted by the diatom PUA 2-trans-4-trans-decadienal (DD using the tunicate Ciona intestinalis. The tools, techniques and genomic resources available for Ciona, as well as the suitability of Ciona embryos for medium-to high-throughput strategies, are key to their employment as model organisms in different fields, including the investigation of toxic agents that could interfere with developmental processes. We demonstrate that DD can induce developmental aberrations in Ciona larvae in a dose-dependent manner. Moreover, through a preliminary analysis, DD is shown to affect the expression level of genes involved in stress response and developmental processes.

  4. Microfouling communities from pelagic and benthic marine plastic debris sampled across Mediterranean coastal waters

    Directory of Open Access Journals (Sweden)

    Mercedes Masó

    2016-09-01

    Full Text Available The present study used scanning electron microscopy to characterize the organisms colonizing marine plastic debris collected from pelagic and benthic habitats across Mediterranean coastal waters of Greece, Italy and Spain. A total of 42 fragments of plastic were collected during the COMSOM experimental cruise, 16 from the seafloor and 26 from surface waters. The results showed that diatoms were the most abundant organisms on both pelagic and benthic plastics. The diatom Ceratoneis closterium, frequently observed on surface plastics (73%, is a harmful microalgae associated with mucilage events in the Mediterranean. The abundance of marine plastic in coastal and oceanic waters may provide new habitats that offer an easy substrate for these invasive organisms. Furthermore, the colonization of these new environments might reduce the success of life strategies, or drive the organisms out of their essential habitat by dispersion and rafting phenomena. The results of the present work highlight the need to increase our knowledge of the consequences of colonization of plastics introduced into the marine environment, and the need to raise awareness of the potential impacts of debris accumulation on biodiversity of marine ecosystems.

  5. Evolutionary relationship between dinoflagellates bearing obligate diatom endosymbionts: insight into tertiary endosymbiosis.

    Science.gov (United States)

    Inagaki, Y; Dacks, J B; Doolittle, W F; Watanabe, K I; Ohama, T

    2000-11-01

    The marine dinoflagellates Peridinium balticum and Peridinium foliaceum are known for bearing diatom endosymbionts instead of peridinin-containing plastids. While evidence clearly indicates that their endosymbionts are closely related, the relationship between the host dinoflagellate cells is not settled. To examine the relationship of the two dinoflagellates, the DNA sequences of nuclear small-subunit rRNA genes (SSU rDNA) from Peridinium balticum, Peridinium foliaceum and one other peridinin-containing species, Peridinium bipes, were amplified, cloned and sequenced. While phylogenetic analyses under simple models of nucleotide substitution weakly support the monophyly of Peridinium balticum and Peridinium foliaceum, analyses under more sophisticated models significantly increased the statistical support for this relationship. Combining these results with the similarity between the two endosymbionts, it is concluded that (i) the two hosts have the closest sister relationship among dinoflagellates tested, (ii) the hypothesis that the diatom endosymbiosis occurred prior to the separation of the host cells is most likely to explain their evolutionary histories, and (iii) phylogenetic inferences under complex nucleotide evolution models seem to be able to compensate significant rate variation in the two SSU rDNA.

  6. Plankton food-webs: to what extent can they be simplified?

    Directory of Open Access Journals (Sweden)

    Domenico D'Alelio

    2016-05-01

    Full Text Available Plankton is a hugely diverse community including both unicellular and multicellular organisms, whose individual dimensions span over seven orders of magnitude. Plankton is a fundamental part of biogeochemical cycles and food-webs in aquatic systems. While knowledge has progressively accumulated at the level of single species and single trophic processes, the overwhelming biological diversity of plankton interactions is insufficiently known and a coherent and unifying trophic framework is virtually lacking. We performed an extensive review of the plankton literature to provide a compilation of data suitable for implementing food-web models including plankton trophic processes at high taxonomic resolution. We identified the components of the plankton community at the Long Term Ecological Research Station MareChiara in the Gulf of Naples. These components represented the sixty-three nodes of a plankton food-web. To each node we attributed biomass and vital rates, i.e. production, consumption, assimilation rates and ratio between autotrophy and heterotrophy in mixotrophic protists. Biomasses and rates values were defined for two opposite system’s conditions; relatively eutrophic and oligotrophic states. We finally identified 817 possible trophic links within the web and provided each of them with a relative weight, in order to define a diet-matrix, valid for both trophic states, which included all consumers, fromn anoflagellates to carnivorous plankton. Vital rates for plankton resulted, as expected, very wide; this strongly contrasts with the narrow ranges considered in plankton system models implemented so far. Moreover, the amount and variety of trophic links highlighted by our review is largely excluded by state-of-the-art biogeochemical and food-web models for aquatic systems. Plankton models could potentially benefit from the integration of the trophic diversity outlined in this paper: first, by using more realistic rates; second, by better

  7. Feeding, growth, and food conversion of the marine planktonic copepod Calanus helgolandicus

    Energy Technology Data Exchange (ETDEWEB)

    Paffenhoefer, G.A.

    1976-01-01

    Food intake, growth rate, and food conversion of nauplii, copepodids, and adult females of Calanus helgolandicus were investigated experimentally at 15/sup 0/C. The diatom Lauderia borealis and the dinoflagellates Gonyaulax polyedra, Gymnodinium splendens, and Prorocentrum micans were offered separately as food at concentrations ranging from 41 to 101 ..mu..g C liter/sup -1/. Amounts of food ingested differed with concentration and species. Daily exponential growth rates were highest for nauplii and young copepodids (k = 0.29 to 0.41) and decreased gradually with increasing age of the copepods to k = 0.02. Gross growth efficiency changed during the different juvenile life periods of the copepod with maximum values for the period CdI to CIII. Feeding on L. borealis at lower food concentrations resulted in an increase in gross growth efficiency. (auth)

  8. Japan [Marine Radioecology. Current Research and Future Scope

    International Nuclear Information System (INIS)

    Saiki, M.

    1967-01-01

    Among the present research programmes: Studies on rcidiochemical analysis of sea-water and fishes; Studies on uptake of radionuclides by marine organisms; Studies on internal exposure arising from marine products; The convenient and appropriate method of analysis and determination of radioactivity in sea— water and fishes is investigated; Biological concentration of fission products and induced products in fishes and plankton arc studied from the radioecological point of view; Contribution of radionuclides in fishes and algae to those in the total Japanese diet is studied, in connection with fall-out studies

  9. Isolation and characterization of a gene encoding a S-adenosyl-l-methionine-dependent halide/thiol methyltransferase (HTMT) from the marine diatom Phaeodactylum tricornutum: Biogenic mechanism of CH(3)I emissions in oceans.

    Science.gov (United States)

    Toda, Hiroshi; Itoh, Nobuya

    2011-04-01

    Several marine algae including diatoms exhibit S-adenosyl-l-methionine (SAM) halide/thiol methyltransferase (HTMT) activity, which is involved in the emission of methyl halides. In this study, the in vivo biogenic emission of methyl iodide from the diatom Phaeodactylum tricornutum was found to be clearly correlated with iodide concentration in the incubation media. The gene encoding HTMT (Pthtmt) was isolated from P. tricornutum CCAP 1055/1, and expressed in Escherichia coli. The molecular weight of the enzyme was 29.7kDa including a histidine tag, and the optimal pH was around pH 7.0. The kinetic properties of recombinant PtHTMT towards Cl(-), Br(-), I(-), [SH](-), [SCN](-), and SAM were 637.88mM, 72.83mM, 8.60mM, 9.92mM, 7.9mM, and 0.016mM, respectively, and were similar to those of higher-plant HTMTs, except that the activity towards thiocyanate was lower. The biogenic emission of methyl halides from the cultured cells and the enzymatic properties of HTMT suggest that the HMT/HTMT reaction is key to understanding the biogenesis of methyl halides in oceanic environments as well as terrestrial ones. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. De scheiding van slib en plankton

    NARCIS (Netherlands)

    Budding, M.C.

    1974-01-01

    It is possible to separate non-living suspended matter and living plankton with the help of a common laboratory centrifuge and a commercial silica-gel called LUDOX. With this method it becomes possible to determine particle size of suspended matter and plankton separately with e.g. a Coulter

  11. Polar Frontal Migration in the Warm Late Pliocene: Diatom Evidence from The Wilkes Land Margin, East Antarctic

    Science.gov (United States)

    Riesselman, C. R.; Taylor-Silva, B.; Patterson, M. O.

    2017-12-01

    The Late Pliocene is the most recent interval in Earth's history to sustain global temperatures within the range of warming predicted for the 21st century. Published global reconstructions and climate models find an average +2° C summer SST anomaly relative to modern during the 3.3-3.0 Ma PRISM interval, when atmospheric CO2 concentrations last reached 400 ppm. Here, we present a new diatom-based reconstruction of Pliocene interglacial sea surface conditions from IODP Site U1361, on the East Antarctic continental rise. U1361 biogenic silica concentrations document the alternation of diatom-rich and diatom-poor lithologies; we interpret 8 diatom-rich mudstones within this sequence to record interglacial periods between 3.8 and 2.8 Ma. We find that open-ocean conditions in the mid-Pliocene became increasingly influenced by sea ice from 3.6-3.2 Ma, prior to the onset of Northern Hemisphere glaciation. This cooling trend was interrupted by a temporary southward migration of the Antarctic Polar Front, bathing U1361 in warmer subantarctic waters during a single interglacial, marine isotope stage KM3 (3.17-3.15 Ma), that corresponds to a maximum in summer insolation at 65°S. Following this interval of transient warmth, interglacial periods became progressively cooler starting at 3 Ma, coinciding with a transition from obliquity to precession as the dominant orbital driver of Antarctic ice sheet fluctuations. Building on the identification of a single outlier interglacial within the PRISM interval, we have revisited older reconstructions to explore the response of the Southern Ocean/cryosphere system to peak late Pliocene warmth. By applying a modern chronostratigraphic framework to those low-resolution "mean interglacial" records, we identify the same frontal migration in 4 other cores in the Pacific sector of the Southern Ocean, documenting a major migration of the polar front during a key interval of warm climate. These new results suggest that increased summer

  12. Electron transport through a diatomic molecule

    International Nuclear Information System (INIS)

    Imran, Muhammad

    2014-01-01

    Electron transport through a diatomic molecular tunnel junction shows wave like interference phenomenon. By using Keldysh non-equilibrium Green's function (NEGF) theory, we have explicitly presented current and differential conductance calculation for a diatomic molecular and two isolated atoms (two atoms having zero hybridization between their energy orbitals) tunnel junctions. In case of a diatomic molecular tunnel junction, Green's function propagators entering into current and differential conductance formula interfere constructively for a molecular anti-bonding state and destructively for bonding state. Consequently, conductance through a molecular bonding state is suppressed, and to conserve current, conductance through anti-bonding state is enhanced. Therefore, current steps and differential conductance peaks amplitude show asymmetric correspondence between molecular bonding and anti-bonding states. Interestingly, for a diatomic molecule, comprising of two atoms of same energy level, these propagators interfere completely destructively for molecular bonding state and constructively for molecular anti-bonding state. Hence under such condition, a single step or a single peak is shown up in current versus voltage or differential conductance versus voltage studies.

  13. New perspectives on the functioning and evolution of photosymbiosis in plankton

    Science.gov (United States)

    Decelle, Johan

    2013-01-01

    Photosymbiosis is common and widely distributed in plankton and is considered to be beneficial for both partners (mutualism). Such intimate associations involving heterotrophic hosts and microalgal symbionts have been extensively studied in coral reefs, but in the planktonic realm, the ecology and evolution of photosymbioses remain poorly understood. Acantharia (Radiolaria) are ubiquitous and abundant heterotrophic marine protists, many of which host endosymbiotic microalgae. Two types of photosymbiosis involving acantharians have recently been described using molecular techniques: one found in a single acantharian species involving multiple microalgal partners (dinoflagellates and haptophytes), and the other observed in more than 25 acantharian species exclusively living with the haptophyte Phaeocystis. Contrary to most benthic and terrestrial mutualistic symbioses, these symbiotic associations share the common feature of involving symbionts that are abundant in their free-living stage. We propose a hypothetical framework that may explain this original mode of symbiosis, and discuss the ecological and evolutionary implications. We suggest that photosymbiosis in Acantharia, and probably in other planktonic hosts, may not be a mutualistic relationship but rather an “inverted parasitism,” from which only hosts seem to benefit by sequestrating and exploiting microalgal cells. The relatively small population size of microalgae in hospite would prevent reciprocal evolution that can select uncooperative symbionts, therefore making this horizontally-transmitted association stable over evolutionary time. The more we learn about the diversity of life and the structure of genomes, the more it appears that much of the evolution of biodiversity is about the manipulation of other species—to gain resources and, in turn, to avoid being manipulated (John Thompson, 1999). PMID:23986805

  14. Applications of Diatoms as Potential Microalgae in Nanobiotechnology

    OpenAIRE

    Ahmad Yari Khosroushahi; Miguel de la Guardia; Mohamad Moradi Ghorakhlu; Ali Akbar Jamali; Fariba Akbari

    2012-01-01

    Introduction: Diatoms are single cell eukaryotic microalgae, which present in nearly every water habitat make them ideal tools for a wide range of applications such as oil explora­tion, forensic examination, environmental indication, biosilica pattern generation, toxicity testing and eutrophication of aqueous ecosystems. Methods: Essential information on diatoms were reviewed and discussed towards impacts of diatoms on biosynthesis and bioremediation. Results: In this review, we present the ...

  15. Inorganic carbon availability in benthic diatom communities: photosynthesis and migration.

    Science.gov (United States)

    Marques da Silva, Jorge; Cruz, Sónia; Cartaxana, Paulo

    2017-09-05

    Diatom-dominated microphytobenthos (MPB) is the main primary producer of many intertidal and shallow subtidal environments, being therefore of critical importance to estuarine and coastal food webs. Owing to tidal cycles, intertidal MPB diatoms are subjected to environmental conditions far more variable than the ones experienced by pelagic diatoms (e.g. light, temperature, salinity, desiccation and nutrient availability). Nevertheless, benthic diatoms evolved adaptation mechanisms to these harsh conditions, including the capacity to move within steep physical and chemical gradients, allowing them to perform photosynthesis efficiently. In this contribution, we will review present knowledge on the effects of dissolved inorganic carbon (DIC) availability on photosynthesis and productivity of diatom-dominated MPB. We present evidence of carbon limitation of photosynthesis in benthic diatom mats and highly productive MPB natural communities. Furthermore, we hypothesize that active vertical migration of epipelic motile diatoms could overcome local depletion of DIC in the photic layer, providing the cells alternately with light and inorganic carbon supply. The few available longer-term experiments on the effects of inorganic carbon enrichment on the productivity of diatom-dominated MPB have yielded inconsistent results. Therefore, further studies are needed to properly assess the response of MPB communities to increased CO 2 and ocean acidification related to climate change.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).

  16. Whole-cell response to nitrogen deprivation in the diatom Phaeodactylum tricornutum.

    Science.gov (United States)

    Alipanah, Leila; Rohloff, Jens; Winge, Per; Bones, Atle M; Brembu, Tore

    2015-10-01

    Algal growth is strongly affected by nitrogen (N) availability. Diatoms, an ecologically important group of unicellular algae, have evolved several acclimation mechanisms to cope with N deprivation. In this study, we integrated physiological data with transcriptional and metabolite data to reveal molecular and metabolic modifications in N-deprived conditions in the marine diatom Phaeodactylum tricornutum. Physiological and metabolite measurements indicated that the photosynthetic capacity and chlorophyll content of the cells decreased, while neutral lipids increased in N-deprived cultures. Global gene expression analysis showed that P. tricornutum responded to N deprivation through an increase in N transport, assimilation, and utilization of organic N resources. Following N deprivation, reduced biosynthesis and increased recycling of N compounds like amino acids, proteins, and nucleic acids was observed at the transcript level. The majority of the genes associated with photosynthesis and chlorophyll biosynthesis were also repressed. Carbon metabolism was restructured through downregulation of the Calvin cycle and chrysolaminarin biosynthesis, and co-ordinated upregulation of glycolysis, the tricarboxylic acid cycle, and pyruvate metabolism, leading to funnelling of carbon sources to lipid metabolism. Finally, reallocation of membrane lipids and induction of de novo triacylglycerol biosynthesis directed cells to accumulation of neutral lipids. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Influence of water mixing and food web status on the response of planktonic communities to enhanced ultraviolet-B radiation

    Science.gov (United States)

    Mostajir, B.; Uvbr Team

    2003-04-01

    Two series of mesocosm experiments were carried out in 1996 and 1997 using the natural planktonic assemblage, ultraviolet-B radiation (UVBR: 280-320 nm) at the community level. The water used in the first experiment was rich in nitrate (ca. 8-10 μM) and phytoplankton biomass (5 μg Chlorophyll a L-1: Chl a), conditions typical of an eutrophic coastal zone with herbivorous food web characteristics. In contrast, the water used in the second experiment was poor in nitrate (food web. Furthermore, to understand the influence of vertical mixing on the effects of UVBR on the planktonic community, two mixing regimes (fast and slow) were tested during the mesocosm experiments of 1997. The results showed that the mixing regime can moderate the effects of UVBR on the planktonic community and can also modify completely the species composition in the mesocosms much more than the UVBR. Comparison between the impact of UVBR on the planktonic community presented in these two experiments suggested that regenerated production-based systems (e.g. microbial food webs) tolerate the effects of UVBR more efficiently than do new production-based systems (herbivorous food webs). Results regarding the potential effects of UVBR in different marine systems, coastal versus oceanic, where different physical systems dominate, fast versus slow mixing, and consequently the development of different food webs are favored, herbivorous versus microbial, will be discussed.

  18. Impacts of combined overfishing and oil spills on the plankton trophodynamics of the West Florida shelf over the last half century of 1965-2011: A two-dimensional simulation analysis of biotic state transitions, from a zooplankton- to a bacterioplankton-modulated ecosystem.

    Science.gov (United States)

    Walsh, J. J.; Lenes, J. M.; Darrow, B.; Parks, A.; Weisberg, R. H.

    2016-03-01

    Over 50 years of multiple anthropogenic perturbations, Florida zooplankton stocks of the northeastern Gulf of Mexico declined ten-fold, with increments of mainly dominant toxic dinoflagellate harmful algal blooms (HABs), rather than diatoms, and a shift in loci of nutrient remineralization and oxygen depletion by bacterioplankton, from the sea floor to near surface waters. Yet, lytic bacterial biomass and associated ammonification only increased at most five-fold over the same time period, with consequently little indication of new, expanded "dead zones" of diatom-induced hypoxia. After bacterial lysis of intact cells of these increased HABs, the remaining residues of zooplankton biomass decrements evidently instead exited the water column as malign aerosolized HAB asthma triggers, correlated by co-traveling mercury aerosols, within wind-borne sea sprays. To unravel the causal mechanisms of these inferred decadal food web transitions, a 36-state variable plankton model of algal, bacterial, protozoan, and copepod component communities replicated daily time series of each plankton group's representatives on the West Florida shelf (WFS) during 1965-2011. At the lower phytoplankton trophic levels, 52% of the ungrazed HAB increments, between 1965-1967 and 2001-2002 before recent oil spills, remained in the water column to kill fishes and fuel bacterioplankton. But, another 48% of the WFS primary production then left the ocean's surface as a harbinger of increased public health hazards during continuing sea spray exports of salts, HAB toxins, and Hg poisons. Following the Deepwater Horizon petroleum releases in 2010, little additional change of element partition among the altered importance of WFS food web components of the trophic pyramid then pertained between 2001-2002 and 2010-2011, despite when anomalous upwelled nutrient supplies instead favored retrograde benign, oil-tolerant diatoms over the HABs during 2010. Indeed, by 2011 HABs were back, with biomass

  19. Three Kanto Earthquakes Inferred from the Tsunami Deposits and the Relative Sea Level Change in the Miura Peninsula, Central Japan

    Science.gov (United States)

    Kim, H.; Shimazaki, K.; Chiba, T.; Ishibe, T.; Okamura, M.; Matsuoka, H.; Tsuji, Y.; Satake, K.

    2010-12-01

    The Kanto earthquake is a great interplate earthquake caused by subduction of the Philippine Sea Plate beneath the Japan Island along the Sagami Trough. The 1923 Kanto earthquake (M=7.9) and the 1703 Kanto earthquake (M~8.0) are two of the most devastating earthquake those struck Tokyo Metropolitan area, respectively. These earthquakes brought large (~5 m) tsunami to the coast area and uplifted the Miura peninsula by ~1.4 m. The tide gauge station, moreover, records the subsidence during the interseismic period before and after the 1923 earthquake. Present study clarifies the past Kanto earthquake prior to the 1703 earthquake based on the sedimentary analysis in the Koajiro bay of the southern Miura Peninsula. The continuous samples of inner bay fine sediments were taken by the boring survey using 3-m-long geoslicer. Three layers of coarse sediments, T1, T2, and T3 units from top toward bottom, are observed in the bay sediments at almost all the sites. These units are composed of mixture of materials such as shell fragments, rock clasts and gravel, and some of units have eroded the lower fine sediments, indicating the event deposits by the strong traction flow. The grain sizes of the bay sediments are grading upward and abruptly become larger after the deposition of the T1, T2 and T3 units. Very little diatom is observed in these units, but the total number of diatoms increase in the bay sediments. The ratio of the marine planktonic species against the benthic species gradually rises from the lower part to the upper part in the bay sediment. In the tidal flat sediment, the freshwater planktonic species appear in place of the marine planktonic diatom. The changes of grain size and diatom species make a presumption that the sea depth suddenly becomes shallow by the event and deeper during the interseismic period. The T1, T2 and T3 units, thus, are correlated with the tsunami deposits conveyed by the Kanto earthquake. The T1 and T2 units are inferred to be the tsunami

  20. Microbial eukaryote plankton communities of high-mountain lakes from three continents exhibit strong biogeographic patterns.

    Science.gov (United States)

    Filker, Sabine; Sommaruga, Ruben; Vila, Irma; Stoeck, Thorsten

    2016-05-01

    Microbial eukaryotes hold a key role in aquatic ecosystem functioning. Yet, their diversity in freshwater lakes, particularly in high-mountain lakes, is relatively unknown compared with the marine environment. Low nutrient availability, low water temperature and high ultraviolet radiation make most high-mountain lakes extremely challenging habitats for life and require specific molecular and physiological adaptations. We therefore expected that these ecosystems support a plankton diversity that differs notably from other freshwater lakes. In addition, we hypothesized that the communities under study exhibit geographic structuring. Our rationale was that geographic dispersal of small-sized eukaryotes in high-mountain lakes over continental distances seems difficult. We analysed hypervariable V4 fragments of the SSU rRNA gene to compare the genetic microbial eukaryote diversity in high-mountain lakes located in the European Alps, the Chilean Altiplano and the Ethiopian Bale Mountains. Microbial eukaryotes were not globally distributed corroborating patterns found for bacteria, multicellular animals and plants. Instead, the plankton community composition emerged as a highly specific fingerprint of a geographic region even on higher taxonomic levels. The intraregional heterogeneity of the investigated lakes was mirrored in shifts in microbial eukaryote community structure, which, however, was much less pronounced compared with interregional beta-diversity. Statistical analyses revealed that on a regional scale, environmental factors are strong predictors for plankton community structures in high-mountain lakes. While on long-distance scales (>10 000 km), isolation by distance is the most plausible scenario, on intermediate scales (up to 6000 km), both contemporary environmental factors and historical contingencies interact to shift plankton community structures. © 2016 John Wiley & Sons Ltd.

  1. Methanol Production by a Broad Phylogenetic Array of Marine Phytoplankton.

    Science.gov (United States)

    Mincer, Tracy J; Aicher, Athena C

    2016-01-01

    Methanol is a major volatile organic compound on Earth and serves as an important carbon and energy substrate for abundant methylotrophic microbes. Previous geochemical surveys coupled with predictive models suggest that the marine contributions are exceedingly large, rivaling terrestrial sources. Although well studied in terrestrial ecosystems, methanol sources are poorly understood in the marine environment and warrant further investigation. To this end, we adapted a Purge and Trap Gas Chromatography/Mass Spectrometry (P&T-GC/MS) method which allowed reliable measurements of methanol in seawater and marine phytoplankton cultures with a method detection limit of 120 nanomolar. All phytoplankton tested (cyanobacteria: Synechococcus spp. 8102 and 8103, Trichodesmium erythraeum, and Prochlorococcus marinus), and Eukarya (heterokont diatom: Phaeodactylum tricornutum, coccolithophore: Emiliania huxleyi, cryptophyte: Rhodomonas salina, and non-diatom heterokont: Nannochloropsis oculata) produced methanol, ranging from 0.8-13.7 micromolar in culture and methanol per total cellular carbon were measured in the ranges of 0.09-0.3%. Phytoplankton culture time-course measurements displayed a punctuated production pattern with maxima near early stationary phase. Stabile isotope labeled bicarbonate incorporation experiments confirmed that methanol was produced from phytoplankton biomass. Overall, our findings suggest that phytoplankton are a major source of methanol in the upper water column of the world's oceans.

  2. Methanol Production by a Broad Phylogenetic Array of Marine Phytoplankton

    Science.gov (United States)

    Mincer, Tracy J.; Aicher, Athena C.

    2016-01-01

    Methanol is a major volatile organic compound on Earth and serves as an important carbon and energy substrate for abundant methylotrophic microbes. Previous geochemical surveys coupled with predictive models suggest that the marine contributions are exceedingly large, rivaling terrestrial sources. Although well studied in terrestrial ecosystems, methanol sources are poorly understood in the marine environment and warrant further investigation. To this end, we adapted a Purge and Trap Gas Chromatography/Mass Spectrometry (P&T-GC/MS) method which allowed reliable measurements of methanol in seawater and marine phytoplankton cultures with a method detection limit of 120 nanomolar. All phytoplankton tested (cyanobacteria: Synechococcus spp. 8102 and 8103, Trichodesmium erythraeum, and Prochlorococcus marinus), and Eukarya (heterokont diatom: Phaeodactylum tricornutum, coccolithophore: Emiliania huxleyi, cryptophyte: Rhodomonas salina, and non-diatom heterokont: Nannochloropsis oculata) produced methanol, ranging from 0.8–13.7 micromolar in culture and methanol per total cellular carbon were measured in the ranges of 0.09–0.3%. Phytoplankton culture time-course measurements displayed a punctuated production pattern with maxima near early stationary phase. Stabile isotope labeled bicarbonate incorporation experiments confirmed that methanol was produced from phytoplankton biomass. Overall, our findings suggest that phytoplankton are a major source of methanol in the upper water column of the world’s oceans. PMID:26963515

  3. Methanol Production by a Broad Phylogenetic Array of Marine Phytoplankton.

    Directory of Open Access Journals (Sweden)

    Tracy J Mincer

    Full Text Available Methanol is a major volatile organic compound on Earth and serves as an important carbon and energy substrate for abundant methylotrophic microbes. Previous geochemical surveys coupled with predictive models suggest that the marine contributions are exceedingly large, rivaling terrestrial sources. Although well studied in terrestrial ecosystems, methanol sources are poorly understood in the marine environment and warrant further investigation. To this end, we adapted a Purge and Trap Gas Chromatography/Mass Spectrometry (P&T-GC/MS method which allowed reliable measurements of methanol in seawater and marine phytoplankton cultures with a method detection limit of 120 nanomolar. All phytoplankton tested (cyanobacteria: Synechococcus spp. 8102 and 8103, Trichodesmium erythraeum, and Prochlorococcus marinus, and Eukarya (heterokont diatom: Phaeodactylum tricornutum, coccolithophore: Emiliania huxleyi, cryptophyte: Rhodomonas salina, and non-diatom heterokont: Nannochloropsis oculata produced methanol, ranging from 0.8-13.7 micromolar in culture and methanol per total cellular carbon were measured in the ranges of 0.09-0.3%. Phytoplankton culture time-course measurements displayed a punctuated production pattern with maxima near early stationary phase. Stabile isotope labeled bicarbonate incorporation experiments confirmed that methanol was produced from phytoplankton biomass. Overall, our findings suggest that phytoplankton are a major source of methanol in the upper water column of the world's oceans.

  4. Unraveling the atomic structure of biogenic silica: evidence of the structural association of Al and Si in diatom frustules

    Science.gov (United States)

    Gehlen, M.; Beck, L.; Calas, G.; Flank, A.-M.; Van Bennekom, A. J.; Van Beusekom, J. E. E.

    2002-05-01

    We used X-ray absorption spectroscopy at the Al K-edge to investigate the atomic structure of biogenic silica and to assess the effect of Al on its crystal chemistry. Our study provides the first direct evidence for a structural association of Al and Si in biogenic silica. In samples of cultured diatoms, Al is present exclusively in fourfold coordination. The location and relative intensity of X-ray absorption near-edge structure (XANES) features suggests the structural insertion of tetrahedral Al inside the silica framework synthesized by the organism. In diatom samples collected in the marine environment, Al is present in mixed six- and fourfold coordination. The relative intensity of XANES structures indicates the coexistence of structural Al with a clay component, which most likely reflects sample contamination by adhering mineral particles. Extended X-ray absorption fine structure spectroscopy has been used to get Al-O distances in biogenic silica of cultured diatoms, confirming a tetrahedral coordination. Because of its effect on solubility and reaction kinetics of biogenic silica, the structural association between Al and biogenic silica at the stage of biosynthesis has consequences for the use of sedimentary biogenic silica as an indicator of past environmental conditions.

  5. Formation of Calcium Silicates during Ignition of Marine Sediments and its Implication on the State of Silica on the Sea Floor

    International Nuclear Information System (INIS)

    Duursma, E.K.; Bosch, C.J.; Eisma, D.

    1976-01-01

    Anomalies in the formation of calcium silicates in various marine sediment samples were observed on ignition at 800°C. The hypothesis is put forward that silica, originating from the land and from marine diatoms, undergoes a slow hydrolysis in the seabed and becomes more reactive. (author)

  6. A caveat regarding diatom-inferred nitrogen concentrations in oligotrophic lakes

    Science.gov (United States)

    Arnett, Heather A.; Saros, Jasmine E.; Mast, M. Alisa

    2012-01-01

    Atmospheric deposition of reactive nitrogen (Nr) has enriched oligotrophic lakes with nitrogen (N) in many regions of the world and elicited dramatic changes in diatom community structure. The lakewater concentrations of nitrate that cause these community changes remain unclear, raising interest in the development of diatom-based transfer functions to infer nitrate. We developed a diatom calibration set using surface sediment samples from 46 high-elevation lakes across the Rocky Mountains of the western US, a region spanning an N deposition gradient from very low to moderate levels (phosphorus, and hypolimnetic water temperature were related to diatom distributions. A transfer function was developed for nitrate and applied to a sedimentary diatom profile from Heart Lake in the central Rockies. The model coefficient of determination (bootstrapping validation) of 0.61 suggested potential for diatom-inferred reconstructions of lakewater nitrate concentrations over time, but a comparison of observed versus diatom-inferred nitrate values revealed the poor performance of this model at low nitrate concentrations. Resource physiology experiments revealed that nitrogen requirements of two key taxa were opposite to nitrate optima defined in the transfer function. Our data set reveals two underlying ecological constraints that impede the development of nitrate transfer functions in oligotrophic lakes: (1) even in lakes with nitrate concentrations below quantification (<1 μg L−1), diatom assemblages were already dominated by species indicative of moderate N enrichment; (2) N-limited oligotrophic lakes switch to P limitation after receiving only modest inputs of reactive N, shifting the controls on diatom species changes along the length of the nitrate gradient. These constraints suggest that quantitative inferences of nitrate from diatom assemblages will likely require experimental approaches.

  7. Epibiotic Diatoms Are Universally Present on All Sea Turtle Species

    Science.gov (United States)

    Majewska, Roksana; Lazo-Wasem, Eric A.; Nel, Ronel; Paladino, Frank V.; Rojas, Lourdes; Zardus, John D.; Pinou, Theodora

    2016-01-01

    The macro-epibiotic communities of sea turtles have been subject to growing interest in recent years, yet their micro-epibiotic counterparts are almost entirely unknown. Here, we provide the first evidence that diatoms are epibionts for all seven extant species of sea turtle. Using Scanning Electron Microscopy, we inspected superficial carapace or skin samples from a single representative of each turtle species. We distinguished 18 diatom taxa from these seven individuals, with each sea turtle species hosting at least two diatom taxa. We recommend that future research is undertaken to confirm whether diatom communities vary between sea turtle species and whether these diatom taxa are facultative or obligate commensals. PMID:27257972

  8. Responses of diatom communities to hydrological processes during rainfall events

    Science.gov (United States)

    Wu, Naicheng; Faber, Claas; Ulrich, Uta; Fohrer, Nicola

    2015-04-01

    The importance of diatoms as a tracer of hydrological processes has been recently recognized (Pfister et al. 2009, Pfister et al. 2011, Tauro et al. 2013). However, diatom variations in a short-term scale (e.g., sub-daily) during rainfall events have not been well documented yet. In this study, rainfall event-based diatom samples were taken at the outlet of the Kielstau catchment (50 km2), a lowland catchment in northern Germany. A total of nine rainfall events were caught from May 2013 to April 2014. Non-metric multidimensional scaling (NMDS) revealed that diatom communities of different events were well separated along NMDS axis I and II, indicating a remarkable temporal variation. By correlating water level (a proxy of discharge) and different diatom indices, close relationships were found. For example, species richness, biovolume (μm3), Shannon diversity and moisture index01 (%, classified according to van Dam et al. 1994) were positively related with water level at the beginning phase of the rainfall (i.e. increasing limb of discharge peak). However, in contrast, during the recession limb of the discharge peak, diatom indices showed distinct responses to water level declines in different rainfall events. These preliminary results indicate that diatom indices are highly related to hydrological processes. The next steps will include finding out the possible mechanisms of the above phenomena, and exploring the contributions of abiotic variables (e.g., hydrologic indices, nutrients) to diatom community patterns. Based on this and ongoing studies (Wu et al. unpublished data), we will incorporate diatom data into End Member Mixing Analysis (EMMA) and select the tracer set that is best suited for separation of different runoff components in our study catchment. Keywords: Diatoms, Rainfall event, Non-metric multidimensional scaling, Hydrological process, Indices References: Pfister L, McDonnell JJ, Wrede S, Hlúbiková D, Matgen P, Fenicia F, Ector L, Hoffmann L

  9. SAR11 Bacteria: The Most Abundant Plankton in the Oceans.

    Science.gov (United States)

    Giovannoni, Stephen J

    2017-01-03

    SAR11 is a group of small, carbon-oxidizing bacteria that reach a global estimated population size of 2.4×10 28 cells-approximately 25% of all plankton. They are found throughout the oceans but reach their largest numbers in stratified, oligotrophic gyres, which are an expanding habitat in the warming oceans. SAR11 likely had a Precambrian origin and, over geological time, evolved into the niche of harvesting labile, low-molecular-weight dissolved organic matter (DOM). SAR11 cells are minimal in size and complexity, a phenomenon known as streamlining that is thought to benefit them by lowering the material costs of replication and maximizing transport functions that are essential to competition at ultralow nutrient concentrations. One of the surprises in SAR11 metabolism is their ability to both oxidize and produce a variety of volatile organic compounds that can diffuse into the atmosphere. SAR11 cells divide slowly and lack many forms of regulation commonly used by bacterial cells to adjust to changing environmental conditions. As a result of genome reduction, they require an unusual range of nutrients, which leads to complex biochemical interactions with other plankton. The study of SAR11 is providing insight into the biogeochemistry of labile DOM and is affecting microbiology beyond marine science by providing a model for understanding the evolution and function of streamlined cells.

  10. Some lower food web organisms in the nutrition of marine harpacticoid copepods: an experimental study

    Science.gov (United States)

    Rieper, Marianna

    1985-12-01

    Some lower food web organisms from the marine littoral environment were studied as food for harpacticoid copepods. In laboratory experiments, it could be shown that, among the ciliates, the slow-moving Uronema sp. was taken up while the fast-moving Euplotes sp. was not. Asterionella glacialis, a pennate diatom with spiny projections, was unsuitable as food. The centric diatom Skeletonema costatum was ingested by all harpacticoid species tested, including Tisbe holothuriae, Paramphiascella vararensis, Amphiascoides debilis and Dactylopodia vulgaris. All are epibenthic and phytal species occurring in the shallow waters of Helgoland (North Sea). The amount of ciliate and algal carbon taken up was less than that provided by bacteria under laboratory conditions. However, some diatom food may be essential for the development of D. vulgaris.

  11. Nitrogenase genes in non-cyanobacterial plankton: prevalence, diversity, and regulation in marine waters

    DEFF Research Database (Denmark)

    Riemann, Lasse; Farnelid, H.; Steward, G.F.

    2010-01-01

    Marine waters are generally considered to be nitrogen (N) limited and are therefore favourable environments for diazotrophs, i.e. organisms converting atmospheric N2 into ammonium or nitrogen oxides available for growth. In some regions, this import of N supports up to half of the primary...... productivity. Diazotrophic Cyanobacteria appear to be the major contributors to marine N2 fixation in surface waters, whereas the contribution of heterotrophic or chemoautotrophic diazotrophs to this process is usually regarded inconsequential. Culture-independent studies reveal that non......-cyanobacterial diazotrophs are diverse, widely distributed, and actively expressing the nitrogenase gene in marine and estuarine environments. The detection of nifH genes and nifH transcripts, even in N-replete marine waters, suggests that N2 fixation is an ecologically important process throughout the oceans. Because...

  12. Diatomic interaction potential theory applications

    CERN Document Server

    Goodisman, Jerry

    2013-01-01

    Diatomic Interaction Potential Theory, Volume 2: Applications discusses the variety of applicable theoretical material and approaches in the calculations for diatomic systems in their ground states. The volume covers the descriptions and illustrations of modern calculations. Chapter I discusses the calculation of the interaction potential for large and small values of the internuclear distance R (separated and united atom limits). Chapter II covers the methods used for intermediate values of R, which in principle means any values of R. The Hartree-Fock and configuration interaction schemes des

  13. Production of live prey for marine fish larvae

    OpenAIRE

    Kraul, S

    1989-01-01

    Tropical marine fish larvae vary in their requirements for live planktonic food. Selection of live prey species for culture depends on larval size and larval tolerance of water quality. This report describes some of the cultured prey species, and their uses and limits as effective food for fish larvae. Methods are presented for the culture of phytoplankton, rotifers, copepods, and other live feeds.

  14. Epibiotic Diatoms Are Universally Present on All Sea Turtle Species.

    Directory of Open Access Journals (Sweden)

    Nathan J Robinson

    Full Text Available The macro-epibiotic communities of sea turtles have been subject to growing interest in recent years, yet their micro-epibiotic counterparts are almost entirely unknown. Here, we provide the first evidence that diatoms are epibionts for all seven extant species of sea turtle. Using Scanning Electron Microscopy, we inspected superficial carapace or skin samples from a single representative of each turtle species. We distinguished 18 diatom taxa from these seven individuals, with each sea turtle species hosting at least two diatom taxa. We recommend that future research is undertaken to confirm whether diatom communities vary between sea turtle species and whether these diatom taxa are facultative or obligate commensals.

  15. Nucleopolyhedrovirus detection and distribution in terrestrial, freshwater, and marine habitats of Appledore Island, Gulf of Maine.

    Science.gov (United States)

    Hewson, Ian; Brown, Julia M; Gitlin, Shari A; Doud, Devin F

    2011-07-01

    Viruses in aquatic ecosystems comprise those produced by both autochthonous and allochthonous host taxa. However, there is little information on the diversity and abundance of viruses of allochthonous origin, particularly from non-anthropogenic sources, in freshwater and marine ecosystems. We investigated the presence of nucleopolyhedroviruses (NPV) (Baculovirus), which commonly infect terrestrial lepidopteran taxa, across the landscape of Appledore Island, Gulf of Maine. PCR and qPCR primers were developed around a 294-bp fragment of the polyhedrin (polH) gene, which is the major constituent protein of NPV multivirion polyhedral occlusion bodies. polH was successfully amplified from several aquatic habitats, and recovered polH sequences were most similar to known lepidopteran NPV. Using quantitative PCR designed around a cluster of detected sequences, we detected polH in Appledore Island soils, supratidal freshwater ponds, nearshore sediments, near- and offshore plankton, and in floatsam. This diverse set of locations suggests that NPVs are widely dispersed along the terrestrial--marine continuum and that free polyhedra may be washed into ponds and eventually to sea. The putative hosts of detected NPVs were webworms (Hyphantria sp.) which form dense nests in late summer on the dominant Appledore Island vegetation (Prunus virginiana). Our data indicate that viruses of terrestrial origin (i.e., allochthonous viruses) may be dispersed widely in coastal marine habitats. The dispersal of NPV polH and detection within offshore net plankton (>64 μm) demonstrates that terrestrial viruses may interact with larger particles and plankton of coastal marine ecosystem, which further suggests that viral genomic information may be transported between biomes.

  16. All New Faces of Diatoms: Potential Source of Nanomaterials and Beyond

    Directory of Open Access Journals (Sweden)

    Meerambika Mishra

    2017-07-01

    Full Text Available Nature’s silicon marvel, the diatoms have lately astounded the scientific community with its intricate designs and lasting durability. Diatoms are a major group of phytoplanktons involved in the biogeochemical cycling of silica and are virtually inherent in every environment ranging from water to ice to soil. The usage of diatoms has proved prudently cost effective and its handling neither requires costly materials nor sophisticated instruments. Diatoms can easily be acquired from the environment, their culture requires ambient condition and does not involve any costly media or expensive instruments, besides, they can be transported in small quantities and proliferated to a desirable confluence from that scratch, thus are excellent cost effective industrial raw material. Naturally occurring diatom frustules are a source of nanomaterials. Their silica bio-shells have raised curiosity among nanotechnologists who hope that diatoms will facilitate tailoring minuscule structures which are beyond the capabilities of material scientists. Additionally, there is a colossal diversity in the dimensions of diatoms as the frustule shape differs from species to species; this provides a scope for the choice of a particular species of diatom to be tailored to an exacting requisite, thus paving the way to create desired three dimensional nanocomposites. The present article explores the use of diatoms in various arenas of science, may it be in nanotechnology, biotechnology, environmental science, biophysics or biochemistry and summarizes facets of diatom biology under one umbrella. Special emphasis has been given to biosilicification, biomineralization and use of diatoms as nanomaterials’, drug delivery vehicles, optical and immune-biosensors, filters, immunodiagnostics, aquaculture feeds, lab-on-a-chip, metabolites, and biofuels.

  17. Automated measurement of diatom size

    Science.gov (United States)

    Spaulding, Sarah A.; Jewson, David H.; Bixby, Rebecca J.; Nelson, Harry; McKnight, Diane M.

    2012-01-01

    Size analysis of diatom populations has not been widely considered, but it is a potentially powerful tool for understanding diatom life histories, population dynamics, and phylogenetic relationships. However, measuring cell dimensions on a light microscope is a time-consuming process. An alternative technique has been developed using digital flow cytometry on a FlowCAM® (Fluid Imaging Technologies) to capture hundreds, or even thousands, of images of a chosen taxon from a single sample in a matter of minutes. Up to 30 morphological measures may be quantified through post-processing of the high resolution images. We evaluated FlowCAM size measurements, comparing them against measurements from a light microscope. We found good agreement between measurement of apical cell length in species with elongated, straight valves, including small Achnanthidium minutissimum (11-21 µm) and largeDidymosphenia geminata (87–137 µm) forms. However, a taxon with curved cells, Hannaea baicalensis (37–96 µm), showed differences of ~ 4 µm between the two methods. Discrepancies appear to be influenced by the choice of feret or geodesic measurement for asymmetric cells. We describe the operating conditions necessary for analysis of size distributions and present suggestions for optimal instrument conditions for size analysis of diatom samples using the FlowCAM. The increased speed of data acquisition through use of imaging flow cytometers like the FlowCAM is an essential step for advancing studies of diatom populations.

  18. LC-MS-MS aboard ship: tandem mass spectrometry in the search for phycotoxins and novel toxigenic plankton from the North Sea.

    Science.gov (United States)

    Krock, Bernd; Tillmann, Urban; John, Uwe; Cembella, Allan

    2008-11-01

    Phycotoxins produced by various species of toxigenic microalgae occurring in the plankton are a global threat to the security of seafood resources and the health of humans and coastal marine ecosystems. This has necessitated the development and application of advanced methods in liquid chromatography coupled to mass spectrometry (LC-MS) for monitoring of these compounds, particularly in plankton and shellfish. Most such chemical analyses are conducted in land-based laboratories on stored samples, and thus much information on the near real-time biogeographical distribution and dynamics of phycotoxins in the plankton is unavailable. To resolve this problem, we conducted ship-board analysis of a broad spectrum of phycotoxins collected directly from the water column on an oceanographic cruise along the North Sea coast of Scotland, Norway, and Denmark. We equipped the ship with a triple-quadrupole linear ion-trap hybrid LC-MS-MS system for detection and quantitative analysis of toxins, such as domoic acid, gymnodimine, spirolides, dinophysistoxins, okadaic acid, pectenotoxins, yessotoxins, and azaspiracids (AZAs). We focused particular attention on the detection of AZAs, a group of potent nitrogenous polyether toxins, because the culprit species associated with the occurrence of these toxins in shellfish has been controversial. Marine toxins were analyzed directly from size-fractionated plankton net tows (20 microm mesh size) and Niskin bottle samples from discrete depths, after rapid methanolic extraction but without any further clean-up. Almost all expected phycotoxins were detected in North Sea plankton samples, with domoic acid and 20-methylspirolide G being most abundant. Although AZA was the least abundant of these toxins, the high sensitivity of the LC-MS-MS enabled detailed quantification, indicating that the highest amounts of AZA-1 were present in the southern Skagerrak in the 3-20 microm size-fraction. The direct on-board toxin measurements enabled isolation

  19. Transfer of diazotroph-derived nitrogen towards non-diazotrophic planktonic communities: a comparative study between Trichodesmium erythraeum, Crocosphaera watsonii and Cyanothece sp.

    Science.gov (United States)

    Berthelot, Hugo; Bonnet, Sophie; Grosso, Olivier; Cornet, Véronique; Barani, Aude

    2016-07-01

    Biological dinitrogen (N2) fixation is the major source of new nitrogen (N) for the open ocean, and thus promotes marine productivity, in particular in the vast N-depleted regions of the surface ocean. Yet, the fate of the diazotroph-derived N (DDN) in marine ecosystems is poorly understood, and its transfer to auto- and heterotrophic surrounding plankton communities is rarely measured due to technical limitations. Moreover, the different diazotrophs involved in N2 fixation (Trichodesmium spp. vs. UCYN) exhibit distinct patterns of N2 fixation and inhabit different ecological niches, thus having potentially different fates in the marine food webs that remain to be explored. Here we used nanometer scale secondary ion mass spectrometry (nanoSIMS) coupled with 15N2 isotopic labelling and flow cytometry cell sorting to examine the DDN transfer to specific groups of natural phytoplankton and bacteria during artificially induced diazotroph blooms in New Caledonia (southwestern Pacific). The fate of the DDN was compared according to the three diazotrophs: the filamentous and colony-forming Trichodesmium erythraeum (IMS101), and the unicellular strains Crocosphaera watsonii WH8501 and Cyanothece ATCC51142. After 48 h, 7-17 % of the N2 fixed during the experiment was transferred to the dissolved pool and 6-12 % was transferred to non-diazotrophic plankton. The transfer was twice as high in the T. erythraeum bloom than in the C. watsonii and Cyanothece blooms, which shows that filamentous diazotrophs blooms are more efficient at promoting non-diazotrophic production in N-depleted areas. The amount of DDN released in the dissolved pool did not appear to be a good indicator of the DDN transfer efficiency towards the non-diazotrophic plankton. In contrast, the 15N-enrichment of the extracellular ammonium (NH4+) pool was a good indicator of the DDN transfer efficiency: it was significantly higher in the T. erythraeum than in unicellular diazotroph blooms, leading to a DDN

  20. Partitioning of organic production in marine plankton communities

    DEFF Research Database (Denmark)

    Conan, P.; Søndergaard, Morten; Kragh, T.

    2007-01-01

    We investigated the partitioning of carbon, nitrogen, and phosphorus between particulate and dissolved production using 11-m(3) marine mesocosms (bags) in a Norwegian fjord with a salinity of 28.3, a chlorophyll concentration of 0.6 mu g L-1, an even biomass among five algal groups, and nitrogen...... between 17 and 58 in the P-replete bags. The C: P ratio of new DOM in the +Si bags was about 300 at all dosing regimes. Consequently, the range in N: P ratios was also large, with values from below 1 to about 30. Carbon-rich DOM in oceans and coastal waters is not necessarily a function of a slow...

  1. THE INFLUENCE OF SUBMERGED MACROPHYTES ON SEDIMENTARY DIATOM ASSEMBLAGES(1).

    Science.gov (United States)

    Vermaire, Jesse C; Prairie, Yves T; Gregory-Eaves, Irene

    2011-12-01

    Submerged macrophytes are a central component of lake ecosystems; however, little is known regarding their long-term response to environmental change. We have examined the potential of diatoms as indicators of past macrophyte biomass. We first sampled periphyton to determine whether habitat was a predictor of diatom assemblage. We then sampled 41 lakes in Quebec, Canada, to evaluate whether whole-lake submerged macrophyte biomass (BiomEpiV) influenced surface sediment diatom assemblages. A multivariate regression tree (MRT) was used to construct a semiquantitative model to reconstruct past macrophyte biomass. We determined that periphytic diatom assemblages on macrophytes were significantly different from those on wood and rocks (ANOSIM R = 0.63, P macrophyte, nutrient-limited lakes (BiomEpiV ≥525 μg · L(-1) ; total phosphorus [TP] macrophyte, nutrient-limited lakes (BiomEpiV macrophytes have a significant influence on diatom community structure and that sedimentary diatom assemblages can be used to infer past macrophyte abundance. © 2011 Phycological Society of America.

  2. Moderate effect of damming the Romaine River (Quebec, Canada) on coastal plankton dynamics

    Science.gov (United States)

    Senneville, Simon; Schloss, Irene R.; St-Onge Drouin, Simon; Bélanger, Simon; Winkler, Gesche; Dumont, Dany; Johnston, Patricia; St-Onge, Isabelle

    2018-04-01

    Rivers' damming disrupts the seasonal cycle of freshwater and nutrient inputs into the marine system, which can lead to changes in coastal plankton dynamics. Here we use a 3-D 5-km resolution coupled biophysical model and downscale it to a 400-m resolution to simulate the effect of damming the Romaine River in Québec, Canada, which discharges on average 327 m3 s-1 of freshwater into the northern Gulf of St. Lawrence. Model results are compared with environmental data obtained from 2 buoys and in situ sampling near the Romaine River mouth during the 2013 spring-summer period. Noteworthy improvements are made to the light attenuation parametrization and the trophic links of the biogeochemical model. The modelled variables reproduced most of the observed levels of variability. Comparisons between natural and regulated discharge simulation show differences in primary production and in the dominance of plankton groups in the Romaine River plume. The maximum increase in primary production when averaged over the inner part of Mingan Archipelago is 41%, but 7.1% when the primary production anomaly is averaged from March to September.

  3. Derivation of a water quality guideline for aluminium in marine waters.

    Science.gov (United States)

    Golding, Lisa A; Angel, Brad M; Batley, Graeme E; Apte, Simon C; Krassoi, Rick; Doyle, Chris J

    2015-01-01

    Metal risk assessment of industrialized harbors and coastal marine waters requires the application of robust water quality guidelines to determine the likelihood of biological impacts. Currently there is no such guideline available for aluminium in marine waters. A water quality guideline of 24 µg total Al/L has been developed for aluminium in marine waters based on chronic 10% inhibition or effect concentrations (IC10 or EC10) and no-observed-effect concentrations (NOECs) from 11 species (2 literature values and 9 species tested including temperate and tropical species) representing 6 taxonomic groups. The 3 most sensitive species tested were a diatom Ceratoneis closterium (formerly Nitzschia closterium; IC10 = 18 µg Al/L, 72-h growth rate inhibition) aluminium forms of aluminate (Al(OH4 (-) ) and aluminium hydroxide (Al(OH)3 (0) ) although both dissolved, and particulate aluminium contributed to toxicity in the diatom Minutocellus polymorphus and green alga Dunaliella tertiolecta. In contrast, aluminium toxicity to the green flagellate alga Tetraselmis sp. was the result of particulate aluminium only. Four species, a brown macroalga (Hormosira banksii), sea urchin embryo (Heliocidaris tuberculata), and 2 juvenile fish species (Lates calcarifer and Acanthochromis polyacanthus), were not adversely affected at the highest test concentration used. © 2014 SETAC.

  4. Genetic and metabolic engineering in diatoms.

    Science.gov (United States)

    Huang, Weichao; Daboussi, Fayza

    2017-09-05

    Diatoms have attracted considerable attention due to their success in diverse environmental conditions, which probably is a consequence of their complex origins. Studies of their metabolism will provide insight into their adaptation capacity and are a prerequisite for metabolic engineering. Several years of investigation have led to the development of the genome engineering tools required for such studies, and a profusion of appropriate tools is now available for exploring and exploiting the metabolism of these organisms. Diatoms are highly prized in industrial biotechnology, due to both their richness in natural lipids and carotenoids and their ability to produce recombinant proteins, of considerable value in diverse markets. This review provides an overview of recent advances in genetic engineering methods for diatoms, from the development of gene expression cassettes and gene delivery methods, to cutting-edge genome-editing technologies. It also highlights the contributions of these rapid developments to both basic and applied research: they have improved our understanding of key physiological processes; and they have made it possible to modify the natural metabolism to favour the production of specific compounds or to produce new compounds for green chemistry and pharmaceutical applications.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).

  5. Isolation and biochemical characterization of underwater adhesives from diatoms.

    Science.gov (United States)

    Poulsen, Nicole; Kröger, Nils; Harrington, Matthew J; Brunner, Eike; Paasch, Silvia; Buhmann, Matthias T

    2014-01-01

    Many aquatic organisms are able to colonize surfaces through the secretion of underwater adhesives. Diatoms are unicellular algae that have the capability to colonize any natural and man-made submerged surfaces. There is great technological interest in both mimicking and preventing diatom adhesion, yet the biomolecules responsible have so far remained unidentified. A new method for the isolation of diatom adhesive material is described and its amino acid and carbohydrate composition determined. The adhesive materials from two model diatoms show differences in their amino acid and carbohydrate compositions, but also share characteristic features including a high content of uronic acids, the predominance of hydrophilic amino acid residues, and the presence of 3,4-dihydroxyproline, an extremely rare amino acid. Proteins containing dihydroxyphenylalanine, which mediate underwater adhesion of mussels, are absent. The data on the composition of diatom adhesives are consistent with an adhesion mechanism based on complex coacervation of polyelectrolyte-like biomolecules.

  6. Dispersal similarly shapes both population genetics and community patterns in the marine realm

    KAUST Repository

    Chust, Guillem

    2016-06-27

    Dispersal plays a key role to connect populations and, if limited, is one of the main processes to maintain and generate regional biodiversity. According to neutral theories of molecular evolution and biodiversity, dispersal limitation of propagules and population stochasticity are integral to shaping both genetic and community structure. We conducted a parallel analysis of biological connectivity at genetic and community levels in marine groups with different dispersal traits. We compiled large data sets of population genetic structure (98 benthic macroinvertebrate and 35 planktonic species) and biogeographic data (2193 benthic macroinvertebrate and 734 planktonic species). We estimated dispersal distances from population genetic data (i.e., FST vs. geographic distance) and from β-diversity at the community level. Dispersal distances ranked the biological groups in the same order at both genetic and community levels, as predicted by organism dispersal ability and seascape connectivity: macrozoobenthic species without dispersing larvae, followed by macrozoobenthic species with dispersing larvae and plankton (phyto- and zooplankton). This ranking order is associated with constraints to the movement of macrozoobenthos within the seabed compared with the pelagic habitat. We showed that dispersal limitation similarly determines the connectivity degree of communities and populations, supporting the predictions of neutral theories in marine biodiversity patterns.

  7. Dispersal similarly shapes both population genetics and community patterns in the marine realm

    Science.gov (United States)

    Chust, Guillem; Villarino, Ernesto; Chenuil, Anne; Irigoien, Xabier; Bizsel, Nihayet; Bode, Antonio; Broms, Cecilie; Claus, Simon; Fernández de Puelles, María L.; Fonda-Umani, Serena; Hoarau, Galice; Mazzocchi, Maria G.; Mozetič, Patricija; Vandepitte, Leen; Veríssimo, Helena; Zervoudaki, Soultana; Borja, Angel

    2016-06-01

    Dispersal plays a key role to connect populations and, if limited, is one of the main processes to maintain and generate regional biodiversity. According to neutral theories of molecular evolution and biodiversity, dispersal limitation of propagules and population stochasticity are integral to shaping both genetic and community structure. We conducted a parallel analysis of biological connectivity at genetic and community levels in marine groups with different dispersal traits. We compiled large data sets of population genetic structure (98 benthic macroinvertebrate and 35 planktonic species) and biogeographic data (2193 benthic macroinvertebrate and 734 planktonic species). We estimated dispersal distances from population genetic data (i.e., FST vs. geographic distance) and from β-diversity at the community level. Dispersal distances ranked the biological groups in the same order at both genetic and community levels, as predicted by organism dispersal ability and seascape connectivity: macrozoobenthic species without dispersing larvae, followed by macrozoobenthic species with dispersing larvae and plankton (phyto- and zooplankton). This ranking order is associated with constraints to the movement of macrozoobenthos within the seabed compared with the pelagic habitat. We showed that dispersal limitation similarly determines the connectivity degree of communities and populations, supporting the predictions of neutral theories in marine biodiversity patterns.

  8. Dispersal similarly shapes both population genetics and community patterns in the marine realm

    KAUST Repository

    Chust, Guillem; Villarino, Ernesto; Chenuil, Anne; Irigoien, Xabier; Bizsel, Nihayet; Bode, Antonio; Broms, Cecilie; Claus, Simon; Ferná ndez de Puelles, Marí a L.; Fonda-Umani, Serena; Hoarau, Galice; Mazzocchi, Maria G.; Mozetič, Patricija; Vandepitte, Leen; Verí ssimo, Helena; Zervoudaki, Soultana; Borja, Angel

    2016-01-01

    Dispersal plays a key role to connect populations and, if limited, is one of the main processes to maintain and generate regional biodiversity. According to neutral theories of molecular evolution and biodiversity, dispersal limitation of propagules and population stochasticity are integral to shaping both genetic and community structure. We conducted a parallel analysis of biological connectivity at genetic and community levels in marine groups with different dispersal traits. We compiled large data sets of population genetic structure (98 benthic macroinvertebrate and 35 planktonic species) and biogeographic data (2193 benthic macroinvertebrate and 734 planktonic species). We estimated dispersal distances from population genetic data (i.e., FST vs. geographic distance) and from β-diversity at the community level. Dispersal distances ranked the biological groups in the same order at both genetic and community levels, as predicted by organism dispersal ability and seascape connectivity: macrozoobenthic species without dispersing larvae, followed by macrozoobenthic species with dispersing larvae and plankton (phyto- and zooplankton). This ranking order is associated with constraints to the movement of macrozoobenthos within the seabed compared with the pelagic habitat. We showed that dispersal limitation similarly determines the connectivity degree of communities and populations, supporting the predictions of neutral theories in marine biodiversity patterns.

  9. Epipsammic diatoms in streams influenced by urban pollution, São Carlos, SP, Brazil

    Directory of Open Access Journals (Sweden)

    T. Bere

    Full Text Available Epipsammic diatoms have important implications for ecosystem processes in lotic environments. Most of the studies on benthic diatoms concentrate on epilithic diatoms and very little is known about epipsammic diatoms. The objective of this study was to assess epipsammic diatom communities in streams in relation to environmental conditions. Epipsammic diatoms and water quality sampling was done at 7 sites during summer base flow period (2008. Forward stepwise multiple regression and canonical correspondence analysis (CCA were used to determine environmental gradients along which species vary with physical and chemical variables. A total of 112 diatom species distributed among 44 genera were recorded. Altitude and the process of eutrophication played a significant role in structuring diatom communities in the study region.

  10. Using diatom assemblages and sulphur in sediments to uncover the effects of historical mining on Lake Arnoux (Quebec, Canada: A retrospective of economic benefits versus environmental debt

    Directory of Open Access Journals (Sweden)

    Paul Brian Hamilton

    2015-09-01

    Full Text Available Monitoring changes in environmental conditions is increasingly important as the Canadian economic infrastructure ramps up exploration and mining development in the more inaccessible northern regions of Canada. Governments are concurrently assessing effects from past mining activities and absorbing the economic cost to society with on-going remediation and monitoring initiatives. The abandoned Aldermac mine in northwestern Quebec, mined from 1932–1943, is an excellent case study for assessing the state of environmental and economic effects of past mining operations. A paleolimnological approach, using diatoms as environmental proxies, was used to evaluate the spatial and temporal impacts on aquatic receiving environments. Based on the inferences drawn from diatom assemblages in Lake Arnoux, prior to mining activity, lake water pH was similar to that of surrounding lakes (circumneutral to weakly acidic. After mining operations terminated, changes in pH and alkalinity in Lake Arnoux coincided with distinct increases in sediment sulphur content. Across a 30- to 40-year span (circa 1940 to 1970s a significant decline in phytoplankton flora coincided with lake acidification and increased clarity of the water column. This resulted in an increase in the benthic diatom population (>90%, replacing the planktonic diatoms. Observed shifts in environmental proxies are concurrent with one, and possibly two, reported tailings pond breaches at the abandoned mine site. Adverse effects of the abandoned Aldermac mine on nearby ecosystems, combined with pressure from local citizens and environmental groups, forced responsible accountability for site restoration led by the Quebec government. Based on the historical period of economic growth, the financial benefits of the Aldermac mine were significant and justify the current pay-it-backward costs for environmental remediation. However, it has now been documented that the pay-it-backward model is not sustainable in

  11. Environmental Impacts—Marine Ecosystems

    DEFF Research Database (Denmark)

    Brander, Keith; Ottersen, Geir; Bakker, J.P.

    2016-01-01

    This chapter presents a review of what is known about the impacts of climate change on the biota (plankton, benthos, fish, seabirds and marine mammals) of the North Sea. Examples show how the changing North Sea environment is affecting biological processes and organisation at all scales, including...... the physiology, reproduction, growth, survival, behaviour and transport of individuals; the distribution, dynamics and evolution of populations; and the trophic structure and coupling of ecosystems. These complex responses can be detected because there are detailed long-term biological and environmental records...

  12. Codon adaptation and synonymous substitution rate in diatom plastid genes.

    Science.gov (United States)

    Morton, Brian R; Sorhannus, Ulf; Fox, Martin

    2002-07-01

    Diatom plastid genes are examined with respect to codon adaptation and rates of silent substitution (Ks). It is shown that diatom genes follow the same pattern of codon usage as other plastid genes studied previously. Highly expressed diatom genes display codon adaptation, or a bias toward specific major codons, and these major codons are the same as those in red algae, green algae, and land plants. It is also found that there is a strong correlation between Ks and variation in codon adaptation across diatom genes, providing the first evidence for such a relationship in the algae. It is argued that this finding supports the notion that the correlation arises from selective constraints, not from variation in mutation rate among genes. Finally, the diatom genes are examined with respect to variation in Ks among different synonymous groups. Diatom genes with strong codon adaptation do not show the same variation in synonymous substitution rate among codon groups as the flowering plant psbA gene which, previous studies have shown, has strong codon adaptation but unusually high rates of silent change in certain synonymous groups. The lack of a similar finding in diatoms supports the suggestion that the feature is unique to the flowering plant psbA due to recent relaxations in selective pressure in that lineage.

  13. Quantification of diatoms in biofilms: Standardisation of methods

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, J.S.; Anil, A.C.

    of the difficulty in sampling and enumeration. Scraping or brushing are the traditional methods used for removal of diatoms from biofilms developed on solid substrata. The method of removal is the most critical step in enumerating the biofilm diatom community...

  14. PtAUREO1a and PtAUREO1b knockout mutants of the diatom Phaeodactylum tricornutum are blocked in photoacclimation to blue light.

    Science.gov (United States)

    Mann, Marcus; Serif, Manuel; Jakob, Torsten; Kroth, Peter G; Wilhelm, Christian

    2017-10-01

    Aureochromes are blue light receptors specifically found in photosynthetic Stramenopiles (algae). Four different Aureochromes have been identified in the marine diatom Phaeodactylum tricornutum (PtAUREO 1a, 1b, 1c, and 2). Since blue light is necessary for high light acclimation in diatoms, it has been hypothesized that Aureochromes might play an important role in the light acclimation capacity of diatoms. This hypothesis was supported by an RNAi knockdown line of PtAUREO1a, which showed a phenotype different from wild type cells when grown in either blue or red light. Here, we show for the first time the phenotype and the photoacclimation reaction of TALEN-mediated knockout mutants of PtAUREO1a and PtAUREO1b, clearly proving the necessity of Aureochromes for light acclimation under blue light. However, both mutants do also show specific differences in their respective phenotypes. Hence, PtAUREO1a and 1b are not functionally redundant in photoacclimation to blue light, and their specific contribution needs to be clarified further. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Architecture and material properties of diatom shells provide effective mechanical protection

    Science.gov (United States)

    Hamm, Christian E.; Merkel, Rudolf; Springer, Olaf; Jurkojc, Piotr; Maier, Christian; Prechtel, Kathrin; Smetacek, Victor

    2003-02-01

    Diatoms are the major contributors to phytoplankton blooms in lakes and in the sea and hence are central in aquatic ecosystems and the global carbon cycle. All free-living diatoms differ from other phytoplankton groups in having silicified cell walls in the form of two `shells' (the frustule) of manifold shape and intricate architecture whose function and role, if any, in contributing to the evolutionary success of diatoms is under debate. We explored the defence potential of the frustules as armour against predators by measuring their strength. Real and virtual loading tests (using calibrated glass microneedles and finite element analysis) were performed on centric and pennate diatom cells. Here we show that the frustules are remarkably strong by virtue of their architecture and the material properties of the diatom silica. We conclude that diatom frustules have evolved as mechanical protection for the cells because exceptional force is required to break them. The evolutionary arms race between diatoms and their specialized predators will have had considerable influence in structuring pelagic food webs and biogeochemical cycles.

  16. Diatoms - nature materials with great potential for bioapplications

    Directory of Open Access Journals (Sweden)

    Medarević Đorđe P.

    2016-01-01

    Full Text Available Diatoms are widespread unicellular photosynthetic algae that produce unique highly ordered siliceous cell wall, called frustule. Micro- to nanoporous structure with high surface area that can be easily modified, high mechanical resistance, unique optical features (light focusing and luminescence and biocompatibility make diatom frustule as a suitable raw material for the development of devices such as bio- and gas sensors, microfluidic particle sorting devices, supercapacitors, batteries, solar cells, electroluminescent devices and drug delivery systems. Their wide availability in the form of fossil remains (diatomite or diatomaceous earth as well as easy cultivation in the artificial conditions further supports use of diatoms in many different fields of application. This review focused on the recent achievements in the diatom bioapplications such as drug delivery, biomolecules immobilization, bio- and gas sensing, since great progress was made in this field over the last several years.

  17. Modified Ribose Receptor Response in Isolated Diatom Frustules

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, Carly R.

    2011-08-26

    Diatoms are a distinctive group of microalgae with the unique ability to produce a highly-ordered biosilica matrix, known as the frustule. Diatoms hold significant potential in the biotechnology field as a silica scaffold for embedding proteins. In this study, we analyzed the funtionalization of biosilica with a receptor complex through genetic modification of the diatom, Thalassiosira pseudonana. Through the use of Foerster Resonance Energy Transfer (FRET), the receptor was shown to remain active in transformed frustules after the inner cellular contents were removed. In addition to protein functionality, growth conditions for T. pseudonana were optimized. Untransformed cultures receiving aeration grew more rapidly than stagnant untransformed cultures. Surprisingly, transformed cultures grew more quickly than untransformed cultures. This study demonstrates isolated diatom frustules provide an effective scaffold for embedded receptor complexes. Through this research, we provide the groundwork for the development of new biosensors for use in diagnostics and environmental remediation.

  18. ASSESSING THE STATE OF THE PELAGIC HABITAT: A CASE STUDY OF PLANKTON AND ITS ENVIRONMENT IN THE WESTERN IRISH SEA

    Directory of Open Access Journals (Sweden)

    Cordula Scherer

    2016-11-01

    Full Text Available Much work had been undertaken on tracking change in the condition of marine pelagic ecosystems and on identifying regime shifts. However, it is also necessary to relate change to states of good ecosystem health or what the European Marine Strategy Framework Directive (MSFD calls 'Good Environmental Status' (GES. Drawing on existing scientific and legislative principles, including those of OSPAR's 'Strategy to Combat Eutrophication', we propose a framework for assessing the status of what the MSFD calls the 'pelagic habitat' in temperate coastal seas. The framework uses knowledge of local ecohydrodynamic conditions, especially those relating to the stratification and optical environment, to guide expectations of what would be recognised as healthy in terms of ecosystem 'organisation' and 'vigour'. We apply this framework to the seasonally stratified regime of the Western Irish Sea, drawing on published and new work on stratification, nutrient and phytoplankton seasonal cycles, zooplankton, and the implications of plankton community structure and production for higher trophic levels. We conclude that, despite human pressures including nutrient enrichment, and the food-web effects of fisheries, the pelagic ecosystem here is in GES, and hence may be used as a reference for the 'Plankton Index' method of tracking change in state space in seasonally stratified waters.

  19. Community barcoding reveals little effect of ocean acidification on the composition of coastal plankton communities: Evidence from a long-term mesocosm study in the Gullmar Fjord, Skagerrak.

    Directory of Open Access Journals (Sweden)

    Julia A F Langer

    Full Text Available The acidification of the oceans could potentially alter marine plankton communities with consequences for ecosystem functioning. While several studies have investigated effects of ocean acidification on communities using traditional methods, few have used genetic analyses. Here, we use community barcoding to assess the impact of ocean acidification on the composition of a coastal plankton community in a large scale, in situ, long-term mesocosm experiment. High-throughput sequencing resulted in the identification of a wide range of planktonic taxa (Alveolata, Cryptophyta, Haptophyceae, Fungi, Metazoa, Hydrozoa, Rhizaria, Straminipila, Chlorophyta. Analyses based on predicted operational taxonomical units as well as taxonomical compositions revealed no differences between communities in high CO2 mesocosms (~ 760 μatm and those exposed to present-day CO2 conditions. Observed shifts in the planktonic community composition were mainly related to seasonal changes in temperature and nutrients. Furthermore, based on our investigations, the elevated CO2 did not affect the intraspecific diversity of the most common mesozooplankter, the calanoid copepod Pseudocalanus acuspes. Nevertheless, accompanying studies found temporary effects attributed to a raise in CO2. Differences in taxa composition between the CO2 treatments could, however, only be observed in a specific period of the experiment. Based on our genetic investigations, no compositional long-term shifts of the plankton communities exposed to elevated CO2 conditions were observed. Thus, we conclude that the compositions of planktonic communities, especially those in coastal areas, remain rather unaffected by increased CO2.

  20. Community barcoding reveals little effect of ocean acidification on the composition of coastal plankton communities: Evidence from a long-term mesocosm study in the Gullmar Fjord, Skagerrak.

    Science.gov (United States)

    Langer, Julia A F; Sharma, Rahul; Schmidt, Susanne I; Bahrdt, Sebastian; Horn, Henriette G; Algueró-Muñiz, María; Nam, Bora; Achterberg, Eric P; Riebesell, Ulf; Boersma, Maarten; Thines, Marco; Schwenk, Klaus

    2017-01-01

    The acidification of the oceans could potentially alter marine plankton communities with consequences for ecosystem functioning. While several studies have investigated effects of ocean acidification on communities using traditional methods, few have used genetic analyses. Here, we use community barcoding to assess the impact of ocean acidification on the composition of a coastal plankton community in a large scale, in situ, long-term mesocosm experiment. High-throughput sequencing resulted in the identification of a wide range of planktonic taxa (Alveolata, Cryptophyta, Haptophyceae, Fungi, Metazoa, Hydrozoa, Rhizaria, Straminipila, Chlorophyta). Analyses based on predicted operational taxonomical units as well as taxonomical compositions revealed no differences between communities in high CO2 mesocosms (~ 760 μatm) and those exposed to present-day CO2 conditions. Observed shifts in the planktonic community composition were mainly related to seasonal changes in temperature and nutrients. Furthermore, based on our investigations, the elevated CO2 did not affect the intraspecific diversity of the most common mesozooplankter, the calanoid copepod Pseudocalanus acuspes. Nevertheless, accompanying studies found temporary effects attributed to a raise in CO2. Differences in taxa composition between the CO2 treatments could, however, only be observed in a specific period of the experiment. Based on our genetic investigations, no compositional long-term shifts of the plankton communities exposed to elevated CO2 conditions were observed. Thus, we conclude that the compositions of planktonic communities, especially those in coastal areas, remain rather unaffected by increased CO2.

  1. Comparing optical properties of different species of diatoms

    DEFF Research Database (Denmark)

    Maibohm, Christian; Friis, Søren Michael Mørk; Su, Y.

    2015-01-01

    species dependent with huge variety in size, shape, and micro- structure. We have experimentally investigated optical properties of frustules of several species of diatoms to further understand light harvesting properties together with commo n traits, effects and differences between the different...... analysis software. The software uses parameters which are extracted from experimental im ages as basis for simulation and allows us to extract the influence of the different elements of the frustule. The information could be used both for predicting optical properties of diatoms and by changing frustule...... parameters, maybe by altering growth conditions of the diatoms tailor their optical properties....

  2. The response of calcifying plankton to climate change in the Pliocene

    Directory of Open Access Journals (Sweden)

    C. V. Davis

    2013-09-01

    Full Text Available As a result of anthropogenic pCO2 increases, future oceans are growing warmer and lower in pH and oxygen, conditions that are likely to impact planktic communities. Past intervals of elevated and changing pCO2 and temperatures can offer a glimpse into the response of marine calcifying plankton to changes in surface oceans under conditions similar to those projected for the future. Here we present new records of planktic foraminiferal and coccolith calcification (weight and size from Deep Sea Drilling Project Site 607 (mid-North Atlantic and Ocean Drilling Program Site 999 (Caribbean Sea from the Pliocene, the last time that pCO2 was similar to today, and extending through a global cooling event into the intensification of Northern Hemisphere glaciation (3.3 to 2.6 million years ago. Test weights of both surface-dwelling Foraminifera Globigerina bulloides and thermocline-dwelling Foraminifera Globorotalia puncticulata vary with a potential link to regional temperature variation in the North Atlantic, whereas in the tropics Globigerinoides ruber test weight remains stable. In contrast, reticulofenestrid coccoliths show a narrowing size range and a decline in the largest lith diameters over this interval. Our results suggest no major changes in plankton calcite production during the high pCO2 Pliocene or during the transition into an icehouse world.

  3. Reconstruction of Oceanographic Changes Based on the Diatom Records of the Central Okhotsk Sea over the last 500000 Years

    Directory of Open Access Journals (Sweden)

    Wei-Lung Wang Liang-Chi Wang

    2008-01-01

    Full Text Available This study provides insight into changes in sea ice conditions and the oceanographic environment over the past 500 kyr through analysis of the diatom record. Based on the relative abundance of 13 diatoms species in piston core MD012414, four types of environmental conditions in the central Okhotsk Sea over the last 330 ka BP have been distinguished: (1 open-ocean alternating with seasonal sea-ice cover in Stages 9, 5, and 1; (2 almost open-ocean free of sea-ice cover in Stages 7 and 3; (3 perennial sea-ice cover in Stages 6, 4, and 2; and (4 a warm ice-age dominated by open ocean assemblages in Stage 8. The littoral diatom species, Paralia sulcata, showed a sudden increase from the glacial period to the nterglacial period over the last 330 ka BP, except during Stage 8. Such a result implies that melting sea-ice transported terrigenous materials from the north Okhotsk Sea continental shelves to the central ocean during eglaciation. From Stage 13 to Stage 10, however, cold and warm marine conditions unexpectedly occurred in the late interglacial periods and the glacial periods, respectively. One possible reason for this is a lack of age control points from Stage 13 to Stage 10, and the different sediment accumulation rates between glacial and interglacial periods. This study suggests not only the process by which oceanographic variation of sea ice occurred, but also new significance for Paralia sulcata as an indicator in the diatom record of the Okhotsk Sea.

  4. A new cell primo-culture method for freshwater benthic diatom communities

    OpenAIRE

    Debenest, Timothée; Silvestre, Jérôme; Coste, Michel; Delmas, François; Pinelli, Eric

    2009-01-01

    A new cell primo-culture method was developed for the benthic diatom community isolated from biofilm sampled in rivers. The approach comprised three steps: (1) scraping biofilm from river pebbles, (2) diatom isolation from biofilm, and (3) diatom community culture. With a view to designing a method able to stimulate the growth of diatoms, to limit the development of other microorganisms, and to maintain in culture a community similar to the original natural one, different factors were test...

  5. Diatoms: a fossil fuel of the future.

    Science.gov (United States)

    Levitan, Orly; Dinamarca, Jorge; Hochman, Gal; Falkowski, Paul G

    2014-03-01

    Long-term global climate change, caused by burning petroleum and other fossil fuels, has motivated an urgent need to develop renewable, carbon-neutral, economically viable alternatives to displace petroleum using existing infrastructure. Algal feedstocks are promising candidate replacements as a 'drop-in' fuel. Here, we focus on a specific algal taxon, diatoms, to become the fossil fuel of the future. We summarize past attempts to obtain suitable diatom strains, propose future directions for their genetic manipulation, and offer biotechnological pathways to improve yield. We calculate that the yields obtained by using diatoms as a production platform are theoretically sufficient to satisfy the total oil consumption of the US, using between 3 and 5% of its land area. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. New perspectives on the functioning and evolution of photosymbiosis in plankton: Mutualism or parasitism?

    Science.gov (United States)

    Decelle, Johan

    2013-07-01

    Photosymbiosis is common and widely distributed in plankton and is considered to be beneficial for both partners (mutualism). Such intimate associations involving heterotrophic hosts and microalgal symbionts have been extensively studied in coral reefs, but in the planktonic realm, the ecology and evolution of photosymbioses remain poorly understood. Acantharia (Radiolaria) are ubiquitous and abundant heterotrophic marine protists, many of which host endosymbiotic microalgae. Two types of photosymbiosis involving acantharians have recently been described using molecular techniques: one found in a single acantharian species involving multiple microalgal partners (dinoflagellates and haptophytes), and the other observed in more than 25 acantharian species exclusively living with the haptophyte Phaeocystis. Contrary to most benthic and terrestrial mutualistic symbioses, these symbiotic associations share the common feature of involving symbionts that are abundant in their free-living stage. We propose a hypothetical framework that may explain this original mode of symbiosis, and discuss the ecological and evolutionary implications. We suggest that photosymbiosis in Acantharia, and probably in other planktonic hosts, may not be a mutualistic relationship but rather an "inverted parasitism," from which only hosts seem to benefit by sequestrating and exploiting microalgal cells. The relatively small population size of microalgae in hospite would prevent reciprocal evolution that can select uncooperative symbionts, therefore making this horizontally-transmitted association stable over evolutionary time. The more we learn about the diversity of life and the structure of genomes, the more it appears that much of the evolution of biodiversity is about the manipulation of other species-to gain resources and, in turn, to avoid being manipulated (John Thompson, 1999).

  7. Effect of the Silica Content of Diatoms on Protozoan Grazing

    Directory of Open Access Journals (Sweden)

    Shuwen Zhang

    2017-06-01

    Full Text Available This study examined the effect that silica content in diatom cells has on the behavior of protists. The diatoms Thalassiosira weissflogii and T. pseudonana were cultured in high or low light conditions to achieve low and high silica contents, respectively. These cells were then fed to a heterotrophic dinoflagellate Noctiluca scintillans and a ciliate Euplotes sp. in single and mixed diet experiments. Our results showed that in general, N. scintillans and Euplotes sp. both preferentially ingested the diatoms with a low silica content rather than those with a high silica content. However, Euplotes sp. seemed to be less influenced by the silica content than was N. scintillans. In the latter case, the clearance and ingestion rate of the low silica diatoms were significantly higher, both in the short (6-h and long (1-d duration grazing experiments. Our results also showed that N. scintillans required more time to digest the high silica-containing cells. As the high silica diatoms are harder to digest, this might explain why N. scintillans exhibits a strong preference for the low silica prey. Thus, the presence of high silica diatoms might limit the ability of the dinoflagellate to feed. Our findings suggest that the silica content of diatoms affects their palatability and digestibility and, consequently, the grazing activity and selectivity of protozoan grazers.

  8. Diatom-induced silicon isotopic fractionation in Antarctic sea ice

    Science.gov (United States)

    Francois, F.; Damien, C.; Jean-Louis, T.; Anthony, W.; Luc, A.

    2006-12-01

    We measured silicon-isotopic composition of dissolved silicon and biogenic silica collected by sequential melting from spring 2003 Antarctic pack ice (Australian sector). Sea ice is a key ecosystem in the Southern Ocean and its melting in spring has been often thought to have a seeding effect for the surface waters, triggering blooms in the mixed layer. This work is the first investigation of the silicon isotopes' proxy in sea ice and allows to estimate the activity of sea-ice diatoms in the different brine structures and the influence of sea- ice diatoms on the spring ice edge blooms. The relative use of the dissolved silicon pool by sea-ice diatoms is usually assessed by calculating nutrient:salinity ratios in the brines. However such an approach is biased by difficulties in evaluating the initial nutrient concentrations in the different brines structures, and by the impossibility to account for late sporadic nutrient replenishments. The silicon-isotopic composition of biogenic silica is a convenient alternative since it integrates an average Si utilization on all generations of diatoms. Measurements were performed on a MC-ICP-MS, in dry plasma mode using external Mg doping. Results are expressed as delta29Si relative to the NBS28 standard. From three sea ice cores with contrasted physico-chemical characteristics, we report significant isotopic fractionations linked to the diatoms activity, with distinct silicon biogeochemical dynamics between different brine structure. The diatoms in snow ice and in brine pockets of frazil or congelation ice have the most positive silicon-isotopic composition (+0.53 to +0.86 p.mil), indicating that they grow in a closed system and use a significant part of the small dissolved silicon pool. In the brine channels and skeletal layer, diatoms display a relatively less positive Si-isotopic composition (+0.41 to +0.70 p.mil), although it is still heavier compared to equilibrium fractionation (+0.38 p.mil). This suggests that they have

  9. [Interdependence of plankton spatial distribution and plancton biomass temporal oscillations: mathematical simulation].

    Science.gov (United States)

    Medvedinskiĭ, A B; Tikhonova, I A; Li, B L; Malchow, H

    2003-01-01

    The dynamics of aquatic biological communities in a patchy environment is of great interest in respect to interrelations between phenomena at various spatial and time scales. To study the complex plankton dynamics in relation to variations of such a biologically essential parameter as the fish predation rate, we use a simple reaction-diffusion model of trophic interactions between phytoplankton, zooplankton, and fish. We suggest that plankton is distributed between two habitats one of which is fish-free due to hydrological inhomogeneity, while the other is fish-populated. We show that temporal variations in the fish predation rate do not violate the strong correspondence between the character of spatial distribution of plankton and changes of plankton biomass in time: regular temporal oscillations of plankton biomass correspond to large-scale plankton patches, while chaotic oscillations correspond to small-scale plankton patterns. As in the case of the constant fish predation rate, the chaotic plankton dynamics is characterized by coexistence of the chaotic attractor and limit cycle.

  10. Progress towards a controlled culture of the marine sponge Pseudosuberites andrewsi in a bioreactor

    NARCIS (Netherlands)

    Osinga, R.; Belarbi, El H.; Molina Grima, E.; Tramper, J.; Wijffels, R.H.

    2003-01-01

    Explants of the tropical sponge Pseudosuberites andrewsi were fed with the marine diatom Phaeodactylum tricornotum. The food was supplied either as intact algae or as a filtered crude extract. Growth (measured as an increase in underwater weight) was found in both experiments. The explants fed with

  11. Nitric oxide mediates the stress response induced by diatom aldehydes in the sea urchin Paracentrotus lividus.

    Directory of Open Access Journals (Sweden)

    Giovanna Romano

    Full Text Available Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadienal in embryos of the sea urchin Paracentrotus lividus. At high decadienal concentrations, nitric oxide mediates initial apoptotic events leading to loss of mitochondrial functionality through the generation of peroxynitrite. At low decadienal concentrations, nitric oxide contributes to the activation of hsp70 gene expression thereby protecting embryos against the toxic effects of this aldehyde. When nitric oxide levels were lowered by inhibiting nitric oxide synthase activity, the expression of hsp70 in swimming blastula decreased and the proportion of abnormal plutei increased. However, in later pluteus stages nitric oxide was no longer able to exert this protective function: hsp70 and nitric oxide synthase expression decreased with a consequent increase in the expression of caspase-8. Our findings that nitric oxide production increases rapidly in response to a toxic exogenous stimulus opens new perspectives on the possible role of this gas as an important messenger to environmental stress in sea urchins and for understanding the cellular mechanisms underlying toxicity during diatom blooms.

  12. Automated Diatom Classification (Part A: Handcrafted Feature Approaches

    Directory of Open Access Journals (Sweden)

    Gloria Bueno

    2017-07-01

    Full Text Available This paper deals with automatic taxa identification based on machine learning methods. The aim is therefore to automatically classify diatoms, in terms of pattern recognition terminology. Diatoms are a kind of algae microorganism with high biodiversity at the species level, which are useful for water quality assessment. The most relevant features for diatom description and classification have been selected using an extensive dataset of 80 taxa with a minimum of 100 samples/taxon augmented to 300 samples/taxon. In addition to published morphological, statistical and textural descriptors, a new textural descriptor, Local Binary Patterns (LBP, to characterize the diatom’s valves, and a log Gabor implementation not tested before for this purpose are introduced in this paper. Results show an overall accuracy of 98.11% using bagging decision trees and combinations of descriptors. Finally, some phycological features of diatoms that are still difficult to integrate in computer systems are discussed for future work.

  13. Wave of chaos in a diffusive system: Generating realistic patterns of patchiness in plankton-fish dynamics

    International Nuclear Information System (INIS)

    Upadhyay, Ranjit Kumar; Kumari, Nitu; Rai, Vikas

    2009-01-01

    We show that wave of chaos (WOC) can generate two-dimensional time-independent spatial patterns which can be a potential candidate for understanding planktonic patchiness observed in marine environments. These spatio-temporal patterns were obtained in computer simulations of a minimal model of phytoplankton-zooplankton dynamics driven by forces of diffusion. We also attempt to figure out the average lifetimes of these non-linear non-equilibrium patterns. These spatial patterns serve as a realistic model for patchiness found in aquatic systems (e.g., marine and oceanic). Additionally, spatio-temporal chaos produced by bi-directional WOCs is robust to changes in key parameters of the system; e.g., intra-specific competition among individuals of phytoplankton and the rate of fish predation. The ideas contained in the present paper may find applications in diverse fields of human endeavor.

  14. What if the Diatoms of the Deep Chlorophyll Maximum Can Ascend?

    Science.gov (United States)

    Villareal, T. A.

    2016-02-01

    Buoyancy regulation is an integral part of diatom ecology via its role in sinking rates and is fundamental to understanding their distribution and abundance. Numerous studies have documented the effects of size and nutrition on sinking rates. Many pelagic diatoms have low intrinsic sinking rates when healthy and nutrient-replete (deep chlorophyll maximum. The potential for ascending behavior adds an additional layer of complexity by allowing both active depth regulation similar to that observed in flagellated taxa and upward transport by some fraction of deep euphotic zone diatom blooms supported by nutrient injection. In this talk, I review the data documenting positive buoyancy in small diatoms, offer direct visual evidence of ascending behavior in common diatoms typical of both oceanic and coastal zones, and note the characteristics of sinking rate distributions within a single species. Buoyancy control leads to bidirectional movement at similar rates across a wide size spectrum of diatoms although the frequency of ascending behavior may be only a small portion of the individual species' abundance. While much remains to be learned, the paradigm of unidirectional downward movement by diatoms is both inaccurate and an oversimplification.

  15. Isolation of microplastics in biota-rich seawater samples and marine organisms

    Science.gov (United States)

    Cole, Matthew; Webb, Hannah; Lindeque, Pennie K.; Fileman, Elaine S.; Halsband, Claudia; Galloway, Tamara S.

    2014-01-01

    Microplastic litter is a pervasive pollutant present in aquatic systems across the globe. A range of marine organisms have the capacity to ingest microplastics, resulting in adverse health effects. Developing methods to accurately quantify microplastics in productive marine waters, and those internalized by marine organisms, is of growing importance. Here we investigate the efficacy of using acid, alkaline and enzymatic digestion techniques in mineralizing biological material from marine surface trawls to reveal any microplastics present. Our optimized enzymatic protocol can digest >97% (by weight) of the material present in plankton-rich seawater samples without destroying any microplastic debris present. In applying the method to replicate marine samples from the western English Channel, we identified 0.27 microplastics m−3. The protocol was further used to extract microplastics ingested by marine zooplankton under laboratory conditions. Our findings illustrate that enzymatic digestion can aid the detection of microplastic debris within seawater samples and marine biota. PMID:24681661

  16. The effects of oil pollution on Antarctic benthic diatom communities over 5 years

    International Nuclear Information System (INIS)

    Polmear, R.; Stark, J.S.; Roberts, D.; McMinn, A.

    2015-01-01

    Highlights: • We examine the impact of hydrocarbon pollution on Antarctic benthic diatoms. • The effect of standard synthetic lubricant oil and a biodegradable oil were examined. • There were significant effects from both treatments for over 5 years. • There was little difference between the different types of oil. - Abstract: Although considered pristine, Antarctica has not been impervious to hydrocarbon pollution. Antarctica’s history is peppered with oil spills and numerous abandoned waste disposal sites. Both spill events and constant leakages contribute to previous and current sources of pollution into marine sediments. Here we compare the response of the benthic diatom communities over 5 years to exposure to a commonly used standard synthetic lubricant oil, an alternative lubricant marketed as more biodegradable, in comparison to a control treatment. Community composition varied significantly over time and between treatments with some high variability within contaminated treatments suggesting community stress. Both lubricants showed evidence of significant effects on community composition after 5 years even though total petroleum hydrocarbon reduction reached approximately 80% over this time period. It appears that even after 5 years toxicity remains high for both the standard and biodegradable lubricants revealing the temporal scale at which pollutants persist in Antarctica

  17. Marine Biology: Ecology of the Sea. A Zephyr Learning Packet. Revised.

    Science.gov (United States)

    Tanner, Joey

    From the smallest plankton to the most massive whales, marine biology is the study of the flora and fauna, the living creatures of the ocean. This Zephyr self-directed study unit was developed to bridge the gap between students as passive learners to students as active participants. Originally developed for gifted students, these units emphasize…

  18. Diatom-based water quality monitoring in southern Africa ...

    African Journals Online (AJOL)

    The purpose of this review is to summarise the challenges and future prospects associated with biological water quality monitoring using diatoms with special focus on southern Africa. Much work still needs to be carried out on diatom tolerances, ecological preferences and ecophysiology. It is recommended that past ...

  19. Progress in Late Cretaceous planktonic foraminiferal stable isotope paleoecology and implications for paleoceanographic reconstructions

    Science.gov (United States)

    Petrizzo, Maria Rose; Falzoni, Francesca; Huber, Brian T.; MacLeod, Kenneth G.

    2015-04-01

    were adapted to shallow layers and eutrophic environments (Falzoni et al., 2013; Falzoni et al., in prep.). Interestingly, globigeriniform planktonic foraminifera with meridional ornamentation (Paracostellagerina and Rugoglobigerina), a morphological feature generally considered to be genetically controlled and thus taxonomically significant, typically yield higher δ13C values than co-occurring finely ornamented morphotypes (Petrizzo et al., 2008). A possible explanation to these results invokes the presence of facultative photosymbionts enhancing test calcification or alternatively, the occurrence of ecophenotypes adapted to a different sea-surface 13C/12C ratio within the same fossil species (Falzoni et al., 2014). Finally, we discuss evidences against the traditional species depth-distribution model and highlight the restrictions in performing Late Cretaceous paleoenvironmental and paleoceanographic reconstructions based on shell morphology and/or inferred life strategies of planktonic foraminifera. References Falzoni, F., Petrizzo, M.R., MacLeod, K.G., Huber, B.T. (2013). Santonian-Campanian planktonic foraminifera from Tanzania, Shatsky Rise and Exmouth Plateau: species depth ecology and paleoceanographic inferences. Marine Micropaleontology 103, 15-29. Falzoni, F., Petrizzo, M.R., Huber, B.T., MacLeod, K.G. (2014). Insights into the meridional ornamentation of the planktonic foraminiferal genus Rugoglobigerina (Late Cretaceous) and implications for taxonomy. Cretaceous Research 47, 87-104. Petrizzo, M.R., Huber, B.T., Wilson, P.A., MacLeod, K.G. (2008). Late Albian paleoceanography of the western subtropical North Atlantic. Paleoceanography 23. http://dx.doi.org/10.1029/2007PA001517 (PA1213).

  20. Validation and application of fossil DNA as a recorder of past marine ecosystems and environmental conditions

    NARCIS (Netherlands)

    Boere, A.C.

    2010-01-01

    The majority of planktonic species, including those that are informative in the reconstructions of past marine environmental conditions, do not produce diagnostic features (e.g., cysts, spores, or lipid biomarkers) and would therefore escape identification from the fossil record using traditional

  1. Large-scale ocean connectivity and planktonic body size

    KAUST Repository

    Villarino, Ernesto; Watson, James R.; Jö nsson, Bror; Gasol, Josep M.; Salazar, Guillem; Acinas, Silvia G.; Estrada, Marta; Massana, Ramó n; Logares, Ramiro; Giner, Caterina R.; Pernice, Massimo C.; Olivar, M. Pilar; Citores, Leire; Corell, Jon; Rodrí guez-Ezpeleta, Naiara; Acuñ a, José Luis; Molina-Ramí rez, Axayacatl; Gonzá lez-Gordillo, J. Ignacio; Có zar, André s; Martí , Elisa; Cuesta, José A.; Agusti, Susana; Fraile-Nuez, Eugenio; Duarte, Carlos M.; Irigoien, Xabier; Chust, Guillem

    2018-01-01

    Global patterns of planktonic diversity are mainly determined by the dispersal of propagules with ocean currents. However, the role that abundance and body size play in determining spatial patterns of diversity remains unclear. Here we analyse spatial community structure - β-diversity - for several planktonic and nektonic organisms from prokaryotes to small mesopelagic fishes collected during the Malaspina 2010 Expedition. β-diversity was compared to surface ocean transit times derived from a global circulation model, revealing a significant negative relationship that is stronger than environmental differences. Estimated dispersal scales for different groups show a negative correlation with body size, where less abundant large-bodied communities have significantly shorter dispersal scales and larger species spatial turnover rates than more abundant small-bodied plankton. Our results confirm that the dispersal scale of planktonic and micro-nektonic organisms is determined by local abundance, which scales with body size, ultimately setting global spatial patterns of diversity.

  2. Large-scale ocean connectivity and planktonic body size

    KAUST Repository

    Villarino, Ernesto

    2018-01-04

    Global patterns of planktonic diversity are mainly determined by the dispersal of propagules with ocean currents. However, the role that abundance and body size play in determining spatial patterns of diversity remains unclear. Here we analyse spatial community structure - β-diversity - for several planktonic and nektonic organisms from prokaryotes to small mesopelagic fishes collected during the Malaspina 2010 Expedition. β-diversity was compared to surface ocean transit times derived from a global circulation model, revealing a significant negative relationship that is stronger than environmental differences. Estimated dispersal scales for different groups show a negative correlation with body size, where less abundant large-bodied communities have significantly shorter dispersal scales and larger species spatial turnover rates than more abundant small-bodied plankton. Our results confirm that the dispersal scale of planktonic and micro-nektonic organisms is determined by local abundance, which scales with body size, ultimately setting global spatial patterns of diversity.

  3. Soliton solutions in a diatomic lattice system

    International Nuclear Information System (INIS)

    Yajima, Nobuo; Satsuma, Junkichi.

    1979-04-01

    A continuum limit is considered for a diatomic lattice system with a cubic nonlinearity. A long wave equation describing the interaction of acoustic and optical modes is obtained. It reduces, in certain approximations, to equations having coupled wave solutions. The solutions exhibit trapping of an optical mode by an acoustic soliton. The form of the trapped optical wave depends on the mass ratio of adjacent particles in the diatomic lattice. (author)

  4. Circadian cycles in growth and feeding rates of heterotrophic protist plankton

    DEFF Research Database (Denmark)

    Jakobsen, Hans Henrik; Strom, S.L.

    2004-01-01

    Growth and feeding rates of four species of planktonic marine heterotrophic protists showed pronounced diel cycles. In most cases, rates were higher during the day and lower at night. However, for the ciliate Strobilidium sp., growth was highest at night. In another ciliate species, Balanion...... comatum, no day-night difference in growth and feeding rates was found. Maintenance of day-night rate differences during 24-h exposures to continuous darkness demonstrated that most of these protists had circadian cycles. The heterotrophic dinoflagellate Oxyrrhis marina exhibited a clear irradiance...... to culturing in a day: night light cycle in O. marina and found that resetting the circadian cycle in this dinoflagellate temporarily arrested growth and feeding. We suggest that protists use a time-integrated light threshold rather than an instantaneous irradiance to maintain the circadian cell cycle...

  5. SEAMAP 2015 Fall Plankton Survey (PC1504, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During the 2015 Fall Plankton Survey, plankton samples were collected from a systematic grid of stations to assess distribution, occurrence and abundance of the...

  6. SEAMAP 2013 Fall Plankton Survey (PC1305, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During the 2013 Fall Plankton Survey, plankton samples were collected from a systematic grid of stations to assess distribution, occurrence and abundance of the...

  7. SEAMAP 2013 Fall Plankton Survey (PC1305, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During the 2013 Fall Plankton Survey, plankton samples were collected from a systematic grid of stations to assess distribution, occurrence and abundance of the...

  8. SEAMAP Spring 2015 Plankton Survey (GU1501, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During the 2015 Spring Plankton Survey, plankton samples were collected from a systematic grid of stations to assess distribution, occurrence and abundance of the...

  9. SEAMAP Spring 2016 Plankton Survey (R21601, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During the 2016 Spring Plankton Survey, plankton samples were collected from a systematic grid of stations to assess distribution, occurrence and abundance of the...

  10. SEAMAP Fall 2014 Plankton Survey (GU1405, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During the 2014 Fall Plankton Survey, plankton samples were collected from a systematic grid of stations to assess distribution, occurrence and abundance of the...

  11. Review--Interactions between diatoms and stainless steel: focus on biofouling and biocorrosion.

    Science.gov (United States)

    Landoulsi, J; Cooksey, K E; Dupres, V

    2011-11-01

    There is a considerable body of information regarding bacterially enhanced corrosion, however, this review focuses on diatoms (unicellular algae) whose contribution to biocorrosion is less well studied. The reasons why diatoms have been neglected in studies of biocorrosion in natural waters are discussed and the question whether diatoms should be considered as inert with respect of electrochemical processes is considered. A particular focus is given to the case of stainless steels (SS), which are widely used in variety of applications in natural waters. Basic information on the cell biology of diatoms is included in the review, particularly with respect to their ability to 'sense' and adhere to surfaces. Investigations at the nanoscale are reviewed as these studies provide information about the behavior of cells at interfaces. Recent advances include the use of atomic force microscopy (AFM), although only a few studies have been applied to diatoms. Regarding the electrochemical behavior of SS, the mechanisms by which diatoms influence the potential ennoblement process is discussed. Such studies reveal the association of diatoms, in addition to bacteria, with biocorrosion processes.

  12. Optimisation of critical medium components and culture conditions for enhanced biomass and lipid production in the oleaginous diatom Navicula phyllepta: a statistical approach.

    Science.gov (United States)

    Sabu, Sanyo; Singh, Isaac Sarojini Bright; Joseph, Valsamma

    2017-12-01

    Diatoms hold great promise as potential sources of biofuel production. In the present study, the biomass and lipid production in the marine diatom Navicula phyllepta, isolated from Cochin estuary, India and identified as a potential biodiesel feedstock, were optimized using Plackett-Burman (PB) statistical experimental design followed by central composite design (CCD) and response surface methodology (RSM). The growth analyses of the isolate in different nitrogen sources, salinities and five different enriched sea water media showed the best growth in the cheapest medium with minimum components using urea as nitrogen source at salinity between 25 and 40 g kg -1 . Plackett-Burman experimental analyses for screening urea, sodium metasilicate, sodium dihydrogen phosphate, ferric chloride, salinity, temperature, pH and agitation influencing lipid and biomass production showed that silicate and temperature had a positive coefficient on biomass production, and temperature had a significant positive coefficient, while urea and phosphate showed a negative coefficient on lipid content. A 2 4 factorial central composite design (FCCD) was used to optimize the concentration of the factors selected. The optimized media resulted in 1.62-fold increase (64%) in biomass (1.2 ± 0.08 g L -1 ) and 1.2-fold increase (22%) in estimated total lipid production (0.11 ± 0.003 g L -1 ) compared to original media within 12 days of culturing. A significantly higher biomass and lipid production in the optimized medium demands further development of a two-stage strategy of biomass production followed by induction of high lipid production under nutrient limitation or varying culture conditions for large-scale production of biodiesel from the marine diatom.

  13. Marine biogeography and evolution : Diversity patterns of planktonic gastropods and amphipods

    NARCIS (Netherlands)

    Burridge, A.K.

    2017-01-01

    Current changes in the oceans, including global warming and ocean acidification, are partially caused by human activity, unlike earlier episodes of change throughout geological history. Understanding and forecasting the responses of marine organisms to these changes is top priority for scientists,

  14. Planktonic food web structure at a coastal time-series site: I. Partitioning of microbial abundances and carbon biomass

    Science.gov (United States)

    Caron, David A.; Connell, Paige E.; Schaffner, Rebecca A.; Schnetzer, Astrid; Fuhrman, Jed A.; Countway, Peter D.; Kim, Diane Y.

    2017-03-01

    Biogeochemistry in marine plankton communities is strongly influenced by the activities of microbial species. Understanding the composition and dynamics of these assemblages is essential for modeling emergent community-level processes, yet few studies have examined all of the biological assemblages present in the plankton, and benchmark data of this sort from time-series studies are rare. Abundance and biomass of the entire microbial assemblage and mesozooplankton (>200 μm) were determined vertically, monthly and seasonally over a 3-year period at a coastal time-series station in the San Pedro Basin off the southwestern coast of the USA. All compartments of the planktonic community were enumerated (viruses in the femtoplankton size range [0.02-0.2 μm], bacteria + archaea and cyanobacteria in the picoplankton size range [0.2-2.0 μm], phototrophic and heterotrophic protists in the nanoplanktonic [2-20 μm] and microplanktonic [20-200 μm] size ranges, and mesozooplankton [>200 μm]. Carbon biomass of each category was estimated using standard conversion factors. Plankton abundances varied over seven orders of magnitude across all categories, and total carbon biomass averaged approximately 60 μg C l-1 in surface waters of the 890 m water column over the study period. Bacteria + archaea comprised the single largest component of biomass (>1/3 of the total), with the sum of phototrophic protistan biomass making up a similar proportion. Temporal variability at this subtropical station was not dramatic. Monthly depth-specific and depth-integrated biomass varied 2-fold at the station, while seasonal variances were generally web structure and function at this coastal observatory.

  15. Isolation of diatom Navicula cryptocephala and characterization of ...

    African Journals Online (AJOL)

    sjce

    synthesis to the storage of neutral lipids (Qiang et al.,. 2008). Diatoms were shown ... chemical analysis of the oil inside diatom oil droplets, a method for separating ... 120°C for 20 min. 0.1 mg.L. −1. Thiamine, 0.5 μg.L. −1. Biotin and 0.5 μg.L−1.

  16. Taxonomic and Functional Microbial Signatures of the Endemic Marine Sponge Arenosclera brasiliensis

    Science.gov (United States)

    Trindade-Silva, Amaro E.; Rua, Cintia; Silva, Genivaldo G. Z.; Dutilh, Bas E.; Moreira, Ana Paula B.; Edwards, Robert A.; Hajdu, Eduardo; Lobo-Hajdu, Gisele; Vasconcelos, Ana Tereza; Berlinck, Roberto G. S.; Thompson, Fabiano L.

    2012-01-01

    The endemic marine sponge Arenosclera brasiliensis (Porifera, Demospongiae, Haplosclerida) is a known source of secondary metabolites such as arenosclerins A-C. In the present study, we established the composition of the A. brasiliensis microbiome and the metabolic pathways associated with this community. We used 454 shotgun pyrosequencing to generate approximately 640,000 high-quality sponge-derived sequences (∼150 Mb). Clustering analysis including sponge, seawater and twenty-three other metagenomes derived from marine animal microbiomes shows that A. brasiliensis contains a specific microbiome. Fourteen bacterial phyla (including Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Cloroflexi) were consistently found in the A. brasiliensis metagenomes. The A. brasiliensis microbiome is enriched for Betaproteobacteria (e.g., Burkholderia) and Gammaproteobacteria (e.g., Pseudomonas and Alteromonas) compared with the surrounding planktonic microbial communities. Functional analysis based on Rapid Annotation using Subsystem Technology (RAST) indicated that the A. brasiliensis microbiome is enriched for sequences associated with membrane transport and one-carbon metabolism. In addition, there was an overrepresentation of sequences associated with aerobic and anaerobic metabolism as well as the synthesis and degradation of secondary metabolites. This study represents the first analysis of sponge-associated microbial communities via shotgun pyrosequencing, a strategy commonly applied in similar analyses in other marine invertebrate hosts, such as corals and algae. We demonstrate that A. brasiliensis has a unique microbiome that is distinct from that of the surrounding planktonic microbes and from other marine organisms, indicating a species-specific microbiome. PMID:22768320

  17. Diatom diet selectivity by early post-larval abalone Haliotis diversicolor supertexta under hatchery conditions

    Science.gov (United States)

    Zhang, Yuyu; Gao, Yahui; Liang, Junrong; Chen, Changping; Zhao, Donghai; Li, Xuesong; Li, Yang; Wu, Wenzhong

    2010-11-01

    Benthic diatoms constitute the primary diet of abalone during their early stages of development. To evaluate the dietary preferences of early post-larval abalone, Haliotis diversicolor supertexta, we analyzed the gut contents of post-larvae that settled on diatom films. We compared the abundance and species diversity of diatom assemblages in the gut to those of the epiphytic diatom assemblages on the attachment films, and identified 40 benthic diatom species in the gut contents of post-larvae 12 to 24 d after settlement. The most abundant taxa in the gut contents were Navicula spp., Amphora copulate, and Amphora coffeaeformis. Navicula spp. accounted for 64.0% of the cell density. In the attachment films, we identified 110 diatom species belonging to 38 genera. Pennate diatoms were the dominant members including the species Amphiprora alata, Cocconeis placentula var. euglypta, Cylindrotheca closterium, Navicula sp. 2, and A. coffeaeformis. Nano-diatoms (abalone seed. The difference of the composition and abundance of diatoms between in the guts and on the biofilms suggests that early post-larval grazing was selective. An early post-larval abalone preferred nano-diatoms and the genera Navicula and Amphora during the month after settlement.

  18. Effects of organic pollution on biological communities of marine biofilm on hard substrata.

    Science.gov (United States)

    Sanz-Lázaro, C; Fodelianakis, S; Guerrero-Meseguer, L; Marín, A; Karakassis, I

    2015-06-01

    We examined the effect of organic enrichment on diatom and bacterial assemblages of marine epilithic biofilms on two locations in the Mediterranean, one situated in Spain and the other in Greece. Total organic carbon, total organic nitrogen, stable isotopes (δ(13)C and δ(15)N) and chlorophyll a indicated significant incorporation of organic wastes, increased primary production and trophic niche modifications on the biofilms close to the organic enrichment source. In Spain, where the organic load was higher than in Greece, diatom and, to some extent, bacterial assemblages varied following the organic enrichment gradient. The taxonomic richness of diatom and bacterial communities was not influenced by organic enrichment. Classical community parameters showed consistent patterns to organic pollution in both locations, whereas community assemblages were only influenced when organic pollution was greatest. The successional patterns of these communities were similar to other epilithic communities. The modification of community assemblages induced by organic pollution may affect ecological functions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Persistence of trophic hotspots and relation to human impacts within an upwelling marine ecosystem.

    Science.gov (United States)

    Santora, Jarrod A; Sydeman, William J; Schroeder, Isaac D; Field, John C; Miller, Rebecca R; Wells, Brian K

    2017-03-01

    Human impacts (e.g., fishing, pollution, and shipping) on pelagic ecosystems are increasing, causing concerns about stresses on marine food webs. Maintaining predator-prey relationships through protection of pelagic hotspots is crucial for conservation and management of living marine resources. Biotic components of pelagic, plankton-based, ecosystems exhibit high variability in abundance in time and space (i.e., extreme patchiness), requiring investigation of persistence of abundance across trophic levels to resolve trophic hotspots. Using a 26-yr record of indicators for primary production, secondary (zooplankton and larval fish), and tertiary (seabirds) consumers, we show distributions of trophic hotspots in the southern California Current Ecosystem result from interactions between a strong upwelling center and a productive retention zone with enhanced nutrients, which concentrate prey and predators across multiple trophic levels. Trophic hotspots also overlap with human impacts, including fisheries extraction of coastal pelagic and groundfish species, as well as intense commercial shipping traffic. Spatial overlap of trophic hotspots with fisheries and shipping increases vulnerability of the ecosystem to localized depletion of forage fish, ship strikes on marine mammals, and pollution. This study represents a critical step toward resolving pelagic areas of high conservation interest for planktonic ecosystems and may serve as a model for other ocean regions where ecosystem-based management and marine spatial planning of pelagic ecosystems is warranted. © 2016 by the Ecological Society of America.

  20. Contribution of fish to the marine inorganic carbon cycle.

    Science.gov (United States)

    Wilson, R W; Millero, F J; Taylor, J R; Walsh, P J; Christensen, V; Jennings, S; Grosell, M

    2009-01-16

    Oceanic production of calcium carbonate is conventionally attributed to marine plankton (coccolithophores and foraminifera). Here we report that marine fish produce precipitated carbonates within their intestines and excrete these at high rates. When combined with estimates of global fish biomass, this suggests that marine fish contribute 3 to 15% of total oceanic carbonate production. Fish carbonates have a higher magnesium content and solubility than traditional sources, yielding faster dissolution with depth. This may explain up to a quarter of the increase in titratable alkalinity within 1000 meters of the ocean surface, a controversial phenomenon that has puzzled oceanographers for decades. We also predict that fish carbonate production may rise in response to future environmental changes in carbon dioxide, and thus become an increasingly important component of the inorganic carbon cycle.

  1. Marine Natural Products from New Caledonia—A Review

    Directory of Open Access Journals (Sweden)

    Sofia-Eléna Motuhi

    2016-03-01

    Full Text Available Marine micro- and macroorganisms are well known to produce metabolites with high biotechnological potential. Nearly 40 years of systematic prospecting all around the New Caledonia archipelago and several successive research programs have uncovered new chemical leads from benthic and planktonic organisms. After species identification, biological and/or pharmaceutical analyses are performed on marine organisms to assess their bioactivities. A total of 3582 genera, 1107 families and 9372 species have been surveyed and more than 350 novel molecular structures have been identified. Along with their bioactivities that hold promise for therapeutic applications, most of these molecules are also potentially useful for cosmetics and food biotechnology. This review highlights the tremendous marine diversity in New Caledonia, and offers an outline of the vast possibilities for natural products, especially in the interest of pursuing collaborative fundamental research programs and developing local biotechnology programs.

  2. Bioaccumulation of Cs-137 and Co-57 by marine phytoplankton

    International Nuclear Information System (INIS)

    Heldal, H.E.; Stupakoff, I.; Fisher, N.S.

    1999-01-01

    Under controlled laboratory conditions we have examined the bioaccumulation of Cs-137 and Co-57 in three prymnesiophytes, the coccolithophorid Emiliania huxleyi and the non-calcareous species Isochrysis galbana and Phaeocystis globosa, and two diatoms Skeletonema costatum and Thalassiosira pseudonana. We measured uptake in growing and non-growing cells, and determined concentration factors on both volume and dry weight basis. For Co-57 uptake in non-growing cells, volume concentration factors (VCF) at equilibrium ranged from 0.2 * 10 3 for Emiliana huxleyi to 4 * 10 3 for the diatom Thalassiosira pseudonana. For Cs-137 uptake in non-growing cells the VCFs were close to zero. The results suggest that, in contrast to Co, the cycling and bioaccumulation in animals of Cs in marine systems is unlikely to be affected by primary producers. (au)

  3. The biomass of the deep-sea benthopelagic plankton

    Science.gov (United States)

    Wishner, K. F.

    1980-04-01

    Deep-sea benthopelagic plankton samples were collected with a specially designed opening-closing net system 10 to 100 m above the bottom in five different oceanic regions at depths from 1000 to 4700 m. Benthopelagic plankton biomasses decrease exponentially with depth. At 1000 m the biomass is about 1% that of the surface zooplankton, at 5000 m about 0.1%. Effects of differences in surface primary productivity on deep-sea plankton biomass are much less than the effect of depth and are detectable only in a few comparisons of extreme oceanic regions. The biomass at 10 m above the bottom is greater than that at 100 m above the bottom (in a three-sample comparison), which could be a consequence of an enriched near-bottom environment. The deep-sea plankton biomass in the Red Sea is anomalously low. This may be due to increased decomposition rates in the warm (22°C) deep Red Sea water, which prevent much detritus from reaching the deep sea. A model of organic carbon utilization in the benthic boundary layer (bottom 100 m), incorporating results from deep-sea sediment trap and respiration studies, indicates that the benthopelagic plankton use only a small amount of the organic carbon flux. A large fraction of the flux is unaccounted for by present estimates of benthic and benthopelagic respiration.

  4. Acidification counteracts negative effects of warming on diatom silicification

    KAUST Repository

    Coello-Camba, Alexandra; Agusti, Susana

    2016-01-01

    Diatoms are a significant group contributing up to 40 % of annual primary production in the oceans. They have a special siliceous cell wall that, acting as a ballast, plays a key role in the sequestration of global carbon and silica. Diatoms dominate primary production in the Arctic Ocean, where global climate change is causing increases in water temperature and in the partial pressure of CO2 (pCO2). Here we show that as water temperature increases diatoms become stressed, grow to smaller sizes, and decrease their silicification rates. But at higher pCO2, as the pH of seawater decreases, silica incorporation rates are increased. In a future warmer Arctic ocean diatoms may have a competitive advantage under increased ocean acidification, as increased pCO2 counteracts the adverse effects of increasing temperature on silicification and buffers its consequences in the biogeochemical cycles of carbon and silica.

  5. Acidification counteracts negative effects of warming on diatom silicification

    KAUST Repository

    Coello-Camba, Alexandra

    2016-10-24

    Diatoms are a significant group contributing up to 40 % of annual primary production in the oceans. They have a special siliceous cell wall that, acting as a ballast, plays a key role in the sequestration of global carbon and silica. Diatoms dominate primary production in the Arctic Ocean, where global climate change is causing increases in water temperature and in the partial pressure of CO2 (pCO2). Here we show that as water temperature increases diatoms become stressed, grow to smaller sizes, and decrease their silicification rates. But at higher pCO2, as the pH of seawater decreases, silica incorporation rates are increased. In a future warmer Arctic ocean diatoms may have a competitive advantage under increased ocean acidification, as increased pCO2 counteracts the adverse effects of increasing temperature on silicification and buffers its consequences in the biogeochemical cycles of carbon and silica.

  6. Effects of the global changes on the aquatic ecosystems in West Europe - role of the plankton communities

    International Nuclear Information System (INIS)

    Souissi, S.

    2007-01-01

    Examination of long-term records of aquatic ecosystems has provided useful information to find out their major driving forces. Understanding the impact of climate change on these ecosystems, the management of their resources and the extrapolation between sites are the main scopes of actual and emerging studies. Such goals can be achieved by inter-site and inter-ecosystem comparisons. This approach was undertaken during our project which has the originality to tackle with marine and freshwater ecosystems. It allowed us to compile and validate several multi-decadal time series of planktonic and other physical driving forces at local and regional scales. Then, the same methodology based on the analysis of the variability of climate indices and biological data across several spatial scales was used. The different ecosystems analyzed here showed clear response to the North Atlantic climate variability. Although the local differences abrupt changes in community composition occurred in all ecosystems in the middle of the years 80. During this period there was also a major shift in climatic conditions during winter and early spring, suggesting an impact of climatic factors. Phenological changes were also observed in plankton communities in all sites. The consequences of the modifications of plankton dynamics on higher trophic levels were also showed. Fluctuations in plankton have resulted in long-term changes in cod recruitment in the North Sea (bottom-up control). On the other hand, both climate change and the improvement of trophic status in Geneva Lake favored the outbreak of whitefish during the years 90. Lower larval mortality and better recruitment are supposed to be linked to faster growth associated with warmer temperatures and better food conditions induced by better temporal overlap between larvae hatching and zooplankton development. (author)

  7. Short-term effects of medetomidine on photosynthesis and protein synthesis in periphyton, epipsammon and plankton communities in relation to predicted environmental concentrations.

    Science.gov (United States)

    Ohlauson, Cecilia; Eriksson, Karl Martin; Blanck, Hans

    2012-01-01

    Medetomidine is a new antifouling substance, highly effective against barnacles. As part of a thorough ecotoxicological evaluation of medetomidine, its short-term effects on algal and bacterial communities were investigated and environmental concentrations were predicted with the MAMPEC model. Photosynthesis and bacterial protein synthesis for three marine communities, viz. periphyton, epipsammon and plankton were used as effect indicators, and compared with the predicted environmental concentrations (PECs). The plankton community showed a significant decrease in photosynthetic activity of 16% at 2 mg l⁻¹ of medetomidine, which was the only significant effect observed. PECs were estimated for a harbor, shipping lane and marina environment using three different model scenarios (MAMPEC default, Baltic and OECD scenarios). The highest PEC of 57 ng l⁻¹, generated for a marina with the Baltic scenario, was at least 10,000-fold lower than the concentration that significantly decreased photosynthetic activity. It is concluded that medetomidine does not cause any acute toxic effects on bacterial protein synthesis and only small acute effects on photosynthesis at high concentrations in marine microbial communities. It is also concluded that the hazard from medetomidine on these processes is low since the effect levels are much lower than the highest PEC.

  8. Automated Diatom Analysis Applied to Traditional Light Microscopy: A Proof-of-Concept Study

    Science.gov (United States)

    Little, Z. H. L.; Bishop, I.; Spaulding, S. A.; Nelson, H.; Mahoney, C.

    2017-12-01

    Diatom identification and enumeration by high resolution light microscopy is required for many areas of research and water quality assessment. Such analyses, however, are both expertise and labor-intensive. These challenges motivate the need for an automated process to efficiently and accurately identify and enumerate diatoms. Improvements in particle analysis software have increased the likelihood that diatom enumeration can be automated. VisualSpreadsheet software provides a possible solution for automated particle analysis of high-resolution light microscope diatom images. We applied the software, independent of its complementary FlowCam hardware, to automated analysis of light microscope images containing diatoms. Through numerous trials, we arrived at threshold settings to correctly segment 67% of the total possible diatom valves and fragments from broad fields of view. (183 light microscope images were examined containing 255 diatom particles. Of the 255 diatom particles present, 216 diatoms valves and fragments of valves were processed, with 170 properly analyzed and focused upon by the software). Manual analysis of the images yielded 255 particles in 400 seconds, whereas the software yielded a total of 216 particles in 68 seconds, thus highlighting that the software has an approximate five-fold efficiency advantage in particle analysis time. As in past efforts, incomplete or incorrect recognition was found for images with multiple valves in contact or valves with little contrast. The software has potential to be an effective tool in assisting taxonomists with diatom enumeration by completing a large portion of analyses. Benefits and limitations of the approach are presented to allow for development of future work in image analysis and automated enumeration of traditional light microscope images containing diatoms.

  9. Community cascades in a marine pelagic food web controlled by the non-visual apex predator Mnemiopsis leidyi

    DEFF Research Database (Denmark)

    Tiselius, Peter; Møller, Lene Friis

    2017-01-01

    Trophic cascades are a ubiquitous feature of many terrestrial and fresh-water food webs, but have been difficult to demonstrate in marine systems with multispecies trophic levels. Here we describe significant trophic cascades in an open coastal planktonic ecosystem exposed to an introduced top...... predator. The ctenophore Mnemiopsis leidyi was monitored for an 8-year period concurrent with measures of the food web structure of the plankton and strong trophic cascades were evident. In the 5 years when M. leidyi were found, their target prey (grazing copepods) were reduced 5-fold and the primary...

  10. Microbial extracellular polymeric substances in marine biogeochemical processes

    Digital Repository Service at National Institute of Oceanography (India)

    Bhaskar, P.V.; Bhosle, N.B.

    and are found in free dissolved form, colloids, discreet partcles like TEP and/or associated with particulate matter, including cell aggregates, detritus, biofilms, microbial mats, etc. The chemical composition of EPS is influenced by various factors... of EPS in marine waters. Hence, various aspects of EPS di- cussed hereafter indicate bacterial and/or phyto origin unless specified. Characteristics of EPS Microorganisms grow in free planktonic state16,17 or are ata- ched to surfaces (natural...

  11. A synthesis of post-glacial diatom records from Lake Baikal

    Science.gov (United States)

    Bradbury, J. Platt; Bezrukova, E.; Chernyaeva, G.; Colman, S.M.; Khursevich, G.; King, J.W.; Likoshway, Ye. V.

    1994-01-01

    The biostratigraphy of fossil diatoms contributes important chronologic, paleolimnologic, and paleoclimatic information from Lake Baikal in southeastern Siberia. Diatoms are the dominant and best preserved microfossils in the sediments, and distinctive assemblages and species provide inter-core correlations throughout the basin at millennial to centennial scales, in both high and low sedimentation-rate environments. Distributions of unique species, once dated by radiocarbon, allow diatoms to be used as dating tools for the Holocene history of the lake.Diatom, pollen, and organic geochemical records from site 305, at the foot of the Selenga Delta, provide a history of paleolimnologic and paleoclimatic changes from the late glacial (15 ka) through the Holocene. Before 14 ka diatoms were very rare, probably because excessive turbidity from glacial meltwater entering the lake impeded productivity. Between 14 and 12 ka, lake productivity increased, perhaps as strong winds promoted deep mixing and nutrient regeneration. Pollen evidence suggests a cold shrub — steppe landscape dominated the central Baikal depression at this time. As summer insolation increased, conifers replaced steppe taxa, but diatom productivity declined between 11 and 9 ka perhaps as a result of increased summer turbidity resulting from violent storm runoff entering the lake via short, steep drainages. After 8 ka, drier, but more continental climates prevailed, and the modern diatom flora of Lake Baikal came to prominence.On Academician Ridge, a site of slow sedimentation rates, Holocene diatom assemblages at the top of 10-m cores reappear at deeper levels suggesting that such cores record at least two previous interglacial (or interstadial?) periods. Nevertheless, distinctive species that developed prior to the last glacial period indicate that the dynamics of nutrient cycling in Baikal and the responsible regional climatic environments were not entirely analogous to Holocene conditions. During

  12. Iron Availability Influences Silicon Isotope Fractionation in Two Southern Ocean Diatoms (Proboscia inermis and Eucampia antarctica and a Coastal Diatom (Thalassiosira pseudonana

    Directory of Open Access Journals (Sweden)

    Scott Meyerink

    2017-07-01

    Full Text Available The fractionation of silicon (Si isotopes was measured in two Southern Ocean diatoms (Proboscia inermis and Eucampia Antarctica and a coastal diatom (Thalassiosira pseudonana that were grown under varying iron (Fe concentrations. Varying Fe concentrations had no effect on the Si isotope enrichment factor (ε in T. pseudonana, whilst E. Antarctica and P. inermis exhibited significant variations in the value of ε between Fe-replete and Fe-limited conditions. Mean ε values in P. inermis and E. Antarctica decreased from (± 1SD −1.11 ± 0.15‰ and −1.42 ± 0.41 ‰ (respectively under Fe-replete conditions, to −1.38 ± 0.27 ‰ and −1.57 ± 0.5 ‰ (respectively under Fe-limiting conditions. These variations likely arise from adaptations in diatoms arising from the nutrient status of their environment. T. pseudonana is a coastal clone typically accustomed to low Si but high Fe conditions whereas E. Antarctica and P. inermis are typically accustomed to High Si, High nitrate low Fe conditions. Growth induced variations in silicic acid (Si(OH4 uptake arising from Fe-limitation is the likely mechanism leading to Si-isotope variability in E. Antarctica and P. inermis. The multiplicative effects of species diversity and resource limitation (e.g., Fe on Si-isotope fractionation in diatoms can potentially alter the Si-isotope composition of diatom opal in diatamaceous sediments and sea surface Si(OH4. This work highlights the need for further in vitro studies into intracellular mechanisms involved in Si(OH4 uptake, and the associated pathways for Si-isotope fractionation in diatoms.

  13. Fluxes of diatoms in the Dona Paula Bay, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Garg, A.; Bhaskar, P.V.

    of POC and diatom carbon was 251 and 0.39 mg C m sup(-2) day sup(-1), respectively. The diatom carbon accounted for 0.15% of the POC flux. Mass flux of diatoms showed significant negative correlation with the concentration of nitrate and phosphate...

  14. Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms

    International Nuclear Information System (INIS)

    Thi Thuy Duong; Morin, Soizic; Herlory, Olivier; Feurtet-Mazel, Agnes; Coste, Michel; Boudou, Alain

    2008-01-01

    The relationships between diatom species and cadmium (Cd) accumulated in biofilms of the Riou-Mort River (SW, France) were studied in July 2004 and March 2005. Biofilms were sampled from artificial substrates immersed along a metallic pollution gradient during 20 days. Dynamics of diatom communities and cadmium accumulation were followed by collecting samples after 4, 7, 14 and 20 days of biofilm colonization. Cd accumulation in biofilms during experiment was significantly higher in Cd polluted station (Joanis) than in reference station (Firmi) for both seasons. Periphytic diatom composition varied between sites and seasons. At Firmi station, seasonal dynamics of diatom communities were stable with the dominance of Cyclotella meneghiniana and Melosira varians in July and Surirellabrebissonnii and Navicula gregaria in March. At Joanis station, diatom communities mainly responded to high levels of metal by a high proportion of small, adnate species. Positive correlations between Eolimna minima, Nitzschia palea, Encyonema minutum, Surirella angusta, and Gomphonema parvulum and cadmium accumulation were observed, indicating that these species are tolerant to high levels of cadmium. On the other hand, negative correlations of C. meneghiniana, N. gregaria, Navicula lanceolata, M. varians and Nitzschia dissipata with cadmium qualify them as sensitive diatom species. Periphytic diatom composition through the presence of specific species highlight metal tolerant indicator diatom groups which will be meaningful for biomonitoring pollution in natural aquatic systems

  15. Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Thi Thuy Duong [Institute of Environmental Technology, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi (Viet Nam); Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France)], E-mail: duongthuy0712@yahoo.com; Morin, Soizic [Cemagref, UR REBX, 50 avenue de Verdun, F-33612 Cestas cedex (France); Herlory, Olivier [Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France); Feurtet-Mazel, Agnes [Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France)], E-mail: a.feurtet-mazel@epoc.u-bordeaux1.fr; Coste, Michel [Cemagref, UR REBX, 50 avenue de Verdun, F-33612 Cestas cedex (France); Boudou, Alain [Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France)

    2008-10-20

    The relationships between diatom species and cadmium (Cd) accumulated in biofilms of the Riou-Mort River (SW, France) were studied in July 2004 and March 2005. Biofilms were sampled from artificial substrates immersed along a metallic pollution gradient during 20 days. Dynamics of diatom communities and cadmium accumulation were followed by collecting samples after 4, 7, 14 and 20 days of biofilm colonization. Cd accumulation in biofilms during experiment was significantly higher in Cd polluted station (Joanis) than in reference station (Firmi) for both seasons. Periphytic diatom composition varied between sites and seasons. At Firmi station, seasonal dynamics of diatom communities were stable with the dominance of Cyclotella meneghiniana and Melosira varians in July and Surirellabrebissonnii and Navicula gregaria in March. At Joanis station, diatom communities mainly responded to high levels of metal by a high proportion of small, adnate species. Positive correlations between Eolimna minima, Nitzschia palea, Encyonema minutum, Surirella angusta, and Gomphonema parvulum and cadmium accumulation were observed, indicating that these species are tolerant to high levels of cadmium. On the other hand, negative correlations of C. meneghiniana, N. gregaria, Navicula lanceolata, M. varians and Nitzschia dissipata with cadmium qualify them as sensitive diatom species. Periphytic diatom composition through the presence of specific species highlight metal tolerant indicator diatom groups which will be meaningful for biomonitoring pollution in natural aquatic systems.

  16. Colonization of diatom aggregates by the dinoflagellate Noctiluca scintillans

    DEFF Research Database (Denmark)

    Tiselius, P.; Kiørboe, Thomas

    1998-01-01

    coagulation of diatom cells and not by mucus feeding behavior of N. scintillans. N. scintillans can be positively buoyant, and estimates of encounter rates between N. scintillans and diatom aggregates during ascent demonstrates that this mechanism is sufficient to account for the observed colonization...

  17. Ecological effects of scrubber water discharge on coastal plankton: Potential synergistic effects of contaminants reduce survival and feeding of the copepod Acartia tonsa

    DEFF Research Database (Denmark)

    Koski, Marja; Stedmon, Colin; Trapp, Stefan

    2017-01-01

    and hydrocarbons. We investigated 1) the threshold concentrations of scrubber discharge water for survival, feeding and reproduction of the copepod Acartia tonsa, 2) whether the effects depend on the exposure route and 3) whether exposure to discharge water can be detected in field-collected organisms. A direct...... constituents could have synergistic effects on plankton productivity and bioaccumulation of metals, although the effects will depend on their dilution in the marine environment....

  18. Diatom feeding across trophic guilds in tidal flat nematodes, and the importance of diatom cell size

    Science.gov (United States)

    Moens, Tom; Vafeiadou, Anna-Maria; De Geyter, Ellen; Vanormelingen, Pieter; Sabbe, Koen; De Troch, Marleen

    2014-09-01

    We examine the capacity of nematodes from three feeding types (deposit feeder, epistrate feeder, predator) to utilize microphytobenthos (MPB), and assess whether diatom cell size and consumer body size are important drivers of their feeding. We analyzed natural stable isotope ratios of carbon and nitrogen in abundant nematode genera and a variety of carbon sources at an estuarine intertidal flat. All nematodes had δ13C indicating that MPB is their major carbon source. δ15N, however, demonstrated that only one deposit and one epistrate feeder genus obtained most of their carbon from direct grazing on MPB, whereas other deposit feeders and predators obtained at least part of their carbon by predation on MPB grazers. We then performed a microcosm experiment in which equal cell numbers of each of three differently sized strains of the pennate diatom Seminavis were offered as food to four, one and one genera of deposit feeders, epistrate feeders and predators, respectively. Previous studies have shown that all but the epistrate feeder ingest whole diatoms, whereas the epistrate feeder pierces cells and sucks out their contents. Most genera showed markedly higher carbon absorption from medium and large cells than from small ones. When considering the number of cells consumed, however, none of the nematodes which ingest whole cells exhibited a clear preference for any specific diatom size. The epistrate feeder was the smallest nematode taxon considered here, yet it showed a marked preference for large cells. These results highlight that the feeding mechanism is much more important than consumer size as a driver of particle size selection in nematodes grazing MPB.

  19. A marine to freshwater sediment succession from Kowhai Beach wetland, Northland : implications for Holocene sea level

    International Nuclear Information System (INIS)

    Hicks, H.; Nichol, S.L.

    2007-01-01

    An infilled wetland located behind coastal dunes in north-east Northland is used to reconstruct a local history of environmental change spanning early Holocene (c. 7000 yr BP) to modern time. Proxy indicators (sediment texture, diatoms and pollen) provide evidence for a transition from marginal marine- to brackish- to freshwater-conditions in the wetland. Radiocarbon ages constrain the chronology of this succession to 7880-7430 cal. yr BP for the early period of marine conditions, 3570-3210 cal. yr BP for the latter brackish phase and 1060-800 cal. yr BP for the change to freshwater conditions. Within this succession, the diatom record preserves a strong brackish signal at core depths above the limit of the modern tidal range. This is presented as preliminary evidence for a mid-Holocene sea level highstand for northern New Zealand of approximately 1.2 m above present mean sea level. (author). 40 refs., 7 figs., 1 tab

  20. Cancer Preventive Efficacy of Marine Carotenoid Fucoxanthin: Cell Cycle Arrest and Apoptosis

    Directory of Open Access Journals (Sweden)

    Thamaraiselvan Rengarajan

    2013-12-01

    Full Text Available Epidemiological investigations have shown that overcoming the risk of cancer is related to the consumption of green vegetables and fruits. Many compounds from different origins, such as terrestrial plants and marine and microbial sources, have been reported to have therapeutic effects of which marine sources are the most important because the diversity of marine life is more varied than other sources. Fucoxanthin is one important compound with a marine origin and belongs to the group of carotenoids; it can be found in marine brown seaweeds, macroalgae, and diatoms, all of which have remarkable biological properties. Numerous studies have shown that fucoxanthin has considerable medicinal potential and promising applications in human health. In this review, we summarize the anticancer effects of fucoxanthin through several different mechanisms including anti-proliferation, induction of apoptosis, cell cycle arrest and anti-angiogenesis, and its possible role in the treatment of cancer.

  1. Diatoms in Liyu Lake, Eastern Taiwan

    Directory of Open Access Journals (Sweden)

    Liang-Chi Wang

    2010-09-01

    Full Text Available This study described the diatoms appeared in the sediments of Liyu Lake, a lowland natural lake situated at Hualen, eastern Taiwan. A total of 50 species was found in the sediments of this eutrophic lake. In them, 8 species were reported for the first time in Taiwan. They are: Cymbella thienemannii, Navicula absoluta, Navicula bacillum, Frustulia rhomboides var. crassinervia, Gyrosigma procerum, Nitzschia paleacea Epithemia smithii and Eunotia subarcuatioides. The ultrastructures of each species were described on the basis of observations under a scanning electron microscope. The ecological implications of the occurrence of these diatom species in this lake were inferred.

  2. Molecular adaptations to phosphorus deprivation and comparison with nitrogen deprivation responses in the diatom Phaeodactylum tricornutum.

    Science.gov (United States)

    Alipanah, Leila; Winge, Per; Rohloff, Jens; Najafi, Javad; Brembu, Tore; Bones, Atle M

    2018-01-01

    Phosphorus, an essential element for all living organisms, is a limiting nutrient in many regions of the ocean due to its fast recycling. Changes in phosphate (Pi) availability in aquatic systems affect diatom growth and productivity. We investigated the early adaptive mechanisms in the marine diatom Phaeodactylum tricornutum to P deprivation using a combination of transcriptomics, metabolomics, physiological and biochemical experiments. Our analysis revealed strong induction of gene expression for proteins involved in phosphate acquisition and scavenging, and down-regulation of processes such as photosynthesis, nitrogen assimilation and nucleic acid and ribosome biosynthesis. P deprivation resulted in alterations of carbon allocation through the induction of the pentose phosphate pathway and cytosolic gluconeogenesis, along with repression of the Calvin cycle. Reorganization of cellular lipids was indicated by coordinated induced expression of phospholipases, sulfolipid biosynthesis enzymes and a putative betaine lipid biosynthesis enzyme. A comparative analysis of nitrogen- and phosphorus-deprived P. tricornutum revealed both common and distinct regulation patterns in response to phosphate and nitrate stress. Regulation of central carbon metabolism and amino acid metabolism was similar, whereas unique responses were found in nitrogen assimilation and phosphorus scavenging in nitrogen-deprived and phosphorus-deprived cells, respectively.

  3. Selective and context-dependent effects of chemical stress across trophic levels at the basis of marine food webs.

    Science.gov (United States)

    Mensens, Christoph; De Laender, Frederik; Janssen, Colin R; Rivera, Frances Camille; Sabbe, Koen; De Troch, Marleen

    2018-04-26

    Human activities increasingly impact the functioning of marine food webs, but anthropogenic stressors are seldom included in ecological study designs. Diet quality, as distinct from just diet quantity, has moreover rarely been highlighted in food web studies in a stress context. We measured the effects of metal and pesticide stress (copper and atrazine) on the contribution of a benthic intertidal diatom community to two processes that are key to the functioning of intertidal systems: biomass (diet quantity) and lipid (diet quality) production. We then examined if stressors affected diatom functioning by selectively targeting the species contributing most to functioning (selective stress effects) or by changing the species' functional contribution (context-dependent effects). Finally, we tested if stress-induced changes in diet quality altered the energy flow to the diatoms' main grazers (harpacticoid copepods). Diatom diet quantity was reduced by metal stress but not by low pesticide levels due to the presence of an atrazine-tolerant, mixotrophic species. Selective effects of the pesticide reduced diatom diet quality by 60% and 75% at low and high pesticide levels respectively, by shifting diatom community structure from dominance by lipid-rich species toward dominance by an atrazine-tolerant, but lipid-poor, species. Context-dependent effects did not affect individual diatom lipid content at low levels of both stressors, but caused diatoms to lose 40% of their lipids at high copper stress. Stress-induced changes in diet quality predicted the energy flow from the diatoms to their copepod consumers, which lost half of their lipids when feeding on diatoms grown under low and high pesticide and high metal stress. Selective pesticide effects were a more important threat for trophic energy transfer than context-dependent effects of both stressors, with shifts in diatom community structure affecting the energy flow to their copepod grazers at stress levels where no

  4. Genes and Structural Proteins of the Phage Syn5 of the Marine Cyanobacteria Synechococcus

    Science.gov (United States)

    2005-09-01

    Morgan et al., 2002; van de Putte et al., 1980). Inversion of the segment is controlled by a phage encoded invertase , expressed by the gene gin, which...growth of marine planktonic cyanobacteria. Methods in Enzymology , 167, 100-105. 170 Weigele, P.R., Scanlon, E. and King, J. (2003) Homotrimeric, beta

  5. The health of benthic diatom assemblages in lower stretch

    Indian Academy of Sciences (India)

    This study examines the ecological state of epilithic diatom assemblages along the lower stretch of Mandakini, a glacier-fed Himalayan river. The diatoms were sampled at four stations during winter and summer, only once in each season. Valve counts were obtained from Naphrax mounts prepared from each sample.

  6. Plankton communities and summertime declines in algal abundance associated with low dissolved oxygen in the Tualatin River, Oregon

    Science.gov (United States)

    Carpenter, Kurt D.; Rounds, Stewart A.

    2013-01-01

    Phytoplankton populations in the Tualatin River in northwestern Oregon are an important component of the dissolved oxygen (DO) budget of the river and are critical for maintaining DO levels in summer. During the low-flow summer period, sufficient nutrients and a long residence time typically combine with ample sunshine and warm water to fuel blooms of cryptophyte algae, diatoms, green and blue-green algae in the low-gradient, slow-moving reservoir reach of the lower river. Algae in the Tualatin River generally drift with the water rather than attach to the river bottom as a result of moderate water depths, slightly elevated turbidity caused by suspended colloidal material, and dominance of silty substrates. Growth of algae occurs as if on a “conveyor belt” of streamflow, a dynamic system that is continually refreshed with inflowing water. Transit through the system can take as long as 2 weeks during the summer low-flow period. Photosynthetic production of DO during algal blooms is important in offsetting oxygen consumption at the sediment-water interface caused by the decomposition of organic matter from primarily terrestrial sources, and the absence of photosynthesis can lead to low DO concentrations that can harm aquatic life. The periods with the lowest DO concentrations in recent years (since 2003) typically occur in August following a decline in algal abundance and activity, when DO concentrations often decrease to less than State standards for extended periods (nearly 80 days). Since 2003, algal populations have tended to be smaller and algal blooms have terminated earlier compared to conditions in the 1990s, leading to more frequent declines in DO to levels that do not meet State standards. This study was developed to document the current abundance and species composition of phytoplankton in the Tualatin River, identify the possible causes of the general decline in algae, and evaluate hypotheses to explain why algal blooms diminish in midsummer. Plankton

  7. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability.

    Science.gov (United States)

    Marchetti, Adrian; Schruth, David M; Durkin, Colleen A; Parker, Micaela S; Kodner, Robin B; Berthiaume, Chris T; Morales, Rhonda; Allen, Andrew E; Armbrust, E Virginia

    2012-02-07

    In vast expanses of the oceans, growth of large phytoplankton such as diatoms is limited by iron availability. Diatoms respond almost immediately to the delivery of iron and rapidly compose the majority of phytoplankton biomass. The molecular bases underlying the subsistence of diatoms in iron-poor waters and the plankton community dynamics that follow iron resupply remain largely unknown. Here we use comparative metatranscriptomics to identify changes in gene expression associated with iron-stimulated growth of diatoms and other eukaryotic plankton. A microcosm iron-enrichment experiment using mixed-layer waters from the northeastern Pacific Ocean resulted in increased proportions of diatom transcripts and reduced proportions of transcripts from most other taxa within 98 h after iron addition. Hundreds of diatom genes were differentially expressed in the iron-enriched community compared with the iron-limited community; transcripts of diatom genes required for synthesis of photosynthesis and chlorophyll components, nitrate assimilation and the urea cycle, and synthesis of carbohydrate storage compounds were significantly overrepresented. Transcripts of genes encoding rhodopsins in eukaryotic phytoplankton were significantly underrepresented following iron enrichment, suggesting rhodopsins help cells cope with low-iron conditions. Oceanic diatoms appear to display a distinctive transcriptional response to iron enrichment that allows chemical reduction of available nitrogen and carbon sources along with a continued dependence on iron-free photosynthetic proteins rather than substituting for iron-containing functional equivalents present within their gene repertoire. This ability of diatoms to divert their newly acquired iron toward nitrate assimilation may underlie why diatoms consistently dominate iron enrichments in high-nitrate, low-chlorophyll regions.

  8. Polonium (210Po) and lead (210Pb) in marine organisms and their transfer in marine food chains

    International Nuclear Information System (INIS)

    Carvalho, Fernando P.

    2011-01-01

    The determination of 210 Po and 210 Pb was performed in marine organisms from the seashore to abyssal depths, encompassing a plethora of species from the microscopic plankton to the sperm whale. Concentrations of those radionuclides ranged from low values of about 5 x 10 -1 Bq kg -1 (wet wt.) in jellyfish, to very high values of about of 3 x 10 4 Bq kg -1 (wet wt.) in the gut walls of sardines, with a common pattern of 210 Po > 210 Pb.These radionuclides are primarily absorbed from water and concentrated by phyto- and microzooplankton, and then are transferred to the next trophic level along marine food chains. Investigation in epipelagic, mesopelagic, bathypelagic and abyssobenthic organisms revealed that 210 Po is transferred in the marine food webs with transfer factors ranging from 0.1 to 0.7, and numerically similar to those of the energy transfer in the marine food chains. As 210 Po preferentially binds to amino acids and proteins, its transfer in food chains likely traces protein transfer and, thus, 210 Po transfer factors are similar to ecotrophic coefficients. 210 Pb is transferred less efficiently in marine food chains and this contributes to increased 210 Po: 210 Pb activity ratios in some trophic levels.

  9. A trait database for marine copepods

    Science.gov (United States)

    Brun, Philipp; Payne, Mark R.; Kiørboe, Thomas

    2017-02-01

    The trait-based approach is gaining increasing popularity in marine plankton ecology but the field urgently needs more and easier accessible trait data to advance. We compiled trait information on marine pelagic copepods, a major group of zooplankton, from the published literature and from experts and organized the data into a structured database. We collected 9306 records for 14 functional traits. Particular attention was given to body size, feeding mode, egg size, spawning strategy, respiration rate, and myelination (presence of nerve sheathing). Most records were reported at the species level, but some phylogenetically conserved traits, such as myelination, were reported at higher taxonomic levels, allowing the entire diversity of around 10 800 recognized marine copepod species to be covered with a few records. Aside from myelination, data coverage was highest for spawning strategy and body size, while information was more limited for quantitative traits related to reproduction and physiology. The database may be used to investigate relationships between traits, to produce trait biogeographies, or to inform and validate trait-based marine ecosystem models. The data can be downloaded from PANGAEA, PANGAEA.862968" target="_blank">doi:10.1594/PANGAEA.862968.

  10. Investigation of the hydrodynamic behavior of diatom aggregates using particle image velocimetry.

    Science.gov (United States)

    Xiao, Feng; Li, Xiaoyan; Lam, Kitming; Wang, Dongsheng

    2012-01-01

    The hydrodynamic behavior of diatom aggregates has a significant influence on the interactions and flocculation kinetics of algae. However, characterization of the hydrodynamics of diatoms and diatom aggregates in water is rather difficult. In this laboratory study, an advanced visualization technique in particle image velocimetry (PIV) was employed to investigate the hydrodynamic properties of settling diatom aggregates. The experiments were conducted in a settling column filled with a suspension of fluorescent polymeric beads as seed tracers. A laser light sheet was generated by the PIV setup to illuminate a thin vertical planar region in the settling column, while the motions of particles were recorded by a high speed charge-coupled device (CCD) camera. This technique was able to capture the trajectories of the tracers when a diatom aggregate settled through the tracer suspension. The PIV results indicated directly the curvilinear feature of the streamlines around diatom aggregates. The rectilinear collision model largely overestimated the collision areas of the settling particles. Algae aggregates appeared to be highly porous and fractal, which allowed streamlines to penetrate into the aggregate interior. The diatom aggregates have a fluid collection efficiency of 10%-40%. The permeable feature of aggregates can significantly enhance the collisions and flocculation between the aggregates and other small particles including algal cells in water.

  11. Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities

    Directory of Open Access Journals (Sweden)

    Josep M. Gasol

    2000-06-01

    Full Text Available Flow cytometry is rapidly becoming a routine methodology in aquatic microbial ecology. The combination of simple to use bench-top flow cytometers and highly fluorescent nucleic acid stains allows fast and easy determination of microbe abundance in the plankton of lakes and oceans. The different dyes and protocols used to stain and count planktonic bacteria as well as the equipment in use are reviewed, with special attention to some of the problems encountered in daily routine practice such as fixation, staining and absolute counting. One of the main advantages of flow cytometry over epifluorescence microscopy is the ability to obtain cell-specific measurements in large numbers of cells with limited effort. We discuss how this characteristic has been used for differentiating photosynthetic from non-photosynthetic prokaryotes, for measuring bacterial cell size and nucleic acid content, and for estimating the relative activity and physiological state of each cell. We also describe how some of the flow cytometrically obtained data can be used to characterize the role of microbes on carbon cycling in the aquatic environment and we prospect the likely avenues of progress in the study of planktonic prokaryotes through the use of flow cytometry.

  12. Synchrotron X-ray microscopy of marine calcifiers: how plankton record past climate change

    International Nuclear Information System (INIS)

    Redfern, S A T; Branson, O; Read, E

    2017-01-01

    We have used STXM and PEEM to reveal the underpinning chemistry and nanoscale structure behind palaeo-climate geochemical signatures, such as trace Mg in shells- proposed proxies for palaeo-ocean temperature. This has allowed us to test the chemical assumptions and mechanisms underpinning the use of such empirical proxies. We have determined the control on driving chemical variations in biogenic carbonates using STXM at the absorption edge of Mg, B, and Na in the shells of modern plankton. The power of these observations lies in their ability to link changes in chemistry, microstructure, and growth process in biogenic carbonate to environmental influences. We have seen that such changes occur at length scales of tens of nanometres and demonstrated that STXM provides an invaluable route to understanding chemical environment and key heterogeneity at the appropriate length scale. This new understanding provides new routes for future measurements of past climate variation in the sea floor fossil record. (paper)

  13. A simple digestion method with a Lefort aqua regia solution for diatom extraction.

    Science.gov (United States)

    Wang, Huipin; Liu, Yan; Zhao, Jian; Hu, Sunlin; Wang, Yuzhong; Liu, Chao; Zhang, Yanji

    2015-01-01

    Presence of diatoms in tissues has been considered as a significant sign of drowning. However, there are limitations in the present extraction methods. We developed a new digestion method using the Lefort aqua regia solution (3:1 nitric acid to hydrochloric acid) for diatom extraction and evaluated the digestive capability, diatom destruction, and diatoms' recovery of this new method. The kidney tissues from rabbit mixed with water rich in diatoms were treated by the Lefort aqua regia digestion method (n = 10) and the conventional acid digestion method (n = 10). The results showed that the digestive capability of Lefort aqua regia digestion method was superior to conventional acid digestion method (p 0.05). The Lefort aqua regia reagent is an improvement over the conventional acid digestion for recovery of diatoms from tissue samples. © 2014 American Academy of Forensic Sciences.

  14. Spaceborne Lidar in the Study of Marine Systems.

    Science.gov (United States)

    Hostetler, Chris A; Behrenfeld, Michael J; Hu, Yongxiang; Hair, Johnathan W; Schulien, Jennifer A

    2018-01-03

    Satellite passive ocean color instruments have provided an unbroken ∼20-year record of global ocean plankton properties, but this measurement approach has inherent limitations in terms of spatial-temporal sampling and ability to resolve vertical structure within the water column. These limitations can be addressed by coupling ocean color data with measurements from a spaceborne lidar. Airborne lidars have been used for decades to study ocean subsurface properties, but recent breakthroughs have now demonstrated that plankton properties can be measured with a satellite lidar. The satellite lidar era in oceanography has arrived. Here, we present a review of the lidar technique, its applications in marine systems, a perspective on what can be accomplished in the near future with an ocean- and atmosphere-optimized satellite lidar, and a vision for a multiplatform virtual constellation of observational assets that would enable a three-dimensional reconstruction of global ocean ecosystems.

  15. Spaceborne Lidar in the Study of Marine Systems

    Science.gov (United States)

    Hostetler, Chris A.; Behrenfeld, Michael J.; Hu, Yongxiang; Hair, Johnathan W.; Schulien, Jennifer A.

    2018-01-01

    Satellite passive ocean color instruments have provided an unbroken ˜20-year record of global ocean plankton properties, but this measurement approach has inherent limitations in terms of spatial-temporal sampling and ability to resolve vertical structure within the water column. These limitations can be addressed by coupling ocean color data with measurements from a spaceborne lidar. Airborne lidars have been used for decades to study ocean subsurface properties, but recent breakthroughs have now demonstrated that plankton properties can be measured with a satellite lidar. The satellite lidar era in oceanography has arrived. Here, we present a review of the lidar technique, its applications in marine systems, a perspective on what can be accomplished in the near future with an ocean- and atmosphere-optimized satellite lidar, and a vision for a multiplatform virtual constellation of observational assets that would enable a three-dimensional reconstruction of global ocean ecosystems.

  16. Using the marine unicellular algae in biological monitoring

    OpenAIRE

    Kapkov V. I.; Shoshina E. V.; Belenikina O. A.

    2017-01-01

    The possibility of using marine unicellular algae from natural plankton community in biomonitoring of pollution by heavy metals has been investigated. Algae of different taxa from the Mediterranean Sea have been allocated to culture. In the laboratory the culture conditions – i. e. growth medium, temperature, photoperiod, level of artificial light and initial density – have been selected for every species. The impact of heavy metals (Hg, Cd, Cu, Pb) in the form of chloride salts on the growth...

  17. Effects of ocean acidification on the physiological performance and carbon production of the Antarctic sea ice diatom Nitzschia sp. ICE-H.

    Science.gov (United States)

    Qu, Chang-Feng; Liu, Fang-Ming; Zheng, Zhou; Wang, Yi-Bin; Li, Xue-Gang; Yuan, Hua-Mao; Li, Ning; An, Mei-Ling; Wang, Xi-Xi; He, Ying-Ying; Li, Lu-Lu; Miao, Jin-Lai

    2017-07-15

    Ocean acidification (OA) resulting from increasing atmospheric CO 2 strongly influences marine ecosystems, particularly in the polar ocean due to greater CO 2 solubility. Here, we grew the Antarctic sea ice diatom Nitzschia sp. ICE-H in a semicontinuous culture under low (~400ppm) and high (1000ppm) CO 2 levels. Elevated CO 2 resulted in a stimulated physiological response including increased growth rates, chlorophyll a contents, and nitrogen and phosphorus uptake rates. Furthermore, high CO 2 enhanced cellular particulate organic carbon production rates, indicating a greater shift from inorganic to organic carbon. However, the cultures grown in high CO 2 conditions exhibited a decrease in both extracellular and intracellular carbonic anhydrase activity, suggesting that the carbon concentrating mechanisms of Nitzschia sp. ICE-H may be suppressed by elevated CO 2 . Our results revealed that OA would be beneficial to the survival of this sea ice diatom strain, with broad implications for global carbon cycles in the future ocean. Copyright © 2017. Published by Elsevier Ltd.

  18. Larval and Juvenile Ascothoracida (Crustacea) from the Plankton

    OpenAIRE

    Grygier, Mark J.

    1988-01-01

    Two kinds of previously recorded ascothoracid larvae from plankton over coral reefs in Hawaii and the Virgin Islands are redescribed as possible representatives of the Lauridae and Petrarcidae, respectively. A bathyal, tropical Atlantic ascothoracid larva from an epibenthic sled sample cannot confidently be identified to family. A planktonic, juvenile ascothoracidan from the eastern Indian Ocean belongs to the genus Synagoga.

  19. Doping of magnetite nanoparticles facilitates clean harvesting of diatom oil as biofuel for sustainable energy

    Science.gov (United States)

    Kumar, Vikas; Singh, Ramesh; Thakur, Shipra; Ballabh Joshi, Khashti; Vinayak, Vandana

    2018-04-01

    Photosynthetic unicellular brown algae diatoms are considered as photobioreactors (PBRs) that synthesize and store oil in the form of lipid droplets and the much of the crude oil we use comes from fossil diatoms. The clean extraction of this crude oil from diatoms is difficult task. The construction of green chemical protocols for the clean separation of diatom oil from cells without killing or to harm the diatom cells is still in its primitive stage. In this report we would like to propose that facile doping of magnetite on diatoms can be used for clean oil separation in PBRs. We doped magnetite nanoparticles onto the surface of diatom Diadesmis confervaceae a diatom which oozes oil naturally. Doping magnetite onto diatoms can also facilitate easy separation of oil when cells are kept in an electromagnetic field. The cell wall of diatom besides having SiOH group has 281 amino acids of which 187–188 amino acids are conserved and are known for metal binding sites. The magnetite nanoparticles bind to the SiOH groups and metal binding sites of amino acids. The presence of appropriate amine functionalized linkers forming peptide aminosilane shells can further facilitate the binding of peptide/polypeptides which can be used in drug delivery. Besides this the magnetite doped diatoms have wide applications in removal of phosphates and chromium from waste water too.

  20. Diatom community response to climate variability over the past 37,000 years in the sub-tropics of the Southern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Hembrow, Sarah C., E-mail: sarah.hembrow@scu.edu.au [School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480 (Australia); Taffs, Kathryn H. [School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480 (Australia); Atahan, Pia [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Kirrawee, NSW 2232 (Australia); Parr, Jeff [School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480 (Australia); Zawadzki, Atun; Heijnis, Henk [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Kirrawee, NSW 2232 (Australia)

    2014-01-01

    Climate change is impacting global surface water resources, increasing the need for a deeper understanding of the interaction between climate and biological diversity. This is particularly the case in the Southern Hemisphere sub-tropics, where little information exists on the aquatic biota response to climate variations. Palaeolimnological techniques, in particular the use of diatoms, are well established and can significantly contribute to the understanding of climatic variability and the impacts that change in climate have on aquatic ecosystems. A sediment core from Lake McKenzie, Fraser Island (Australia), was used to investigate interactions between climate influences and aquatic ecosystems. This study utilises a combination of proxies including biological (diatom), geochemical and chronological techniques to investigate long-term aquatic changes within the perched-dune lake. A combination of {sup 210}Pb and AMS {sup 14}C dates showed that the retrieved sediment represented a history of ca. 37,000 cal. yBP. The sedimentation rate in Lake McKenzie is very low, ranging on average from 0.11 mm to 0.26 mm per year. A sediment hiatus was observed between ca. 18,300 and 14,000 cal. yBP suggesting a period of dry conditions at the site. The diatom record shows little variability over the period of record, with benthic, freshwater acidic tolerant species dominating. Relative abundance of planktonic species and geochemical results indicates a period of increased water depth and lake productivity in the early Holocene and a gradual decrease in effective precipitation throughout the Holocene. Results from this study not only support earlier work conducted on Fraser Island using pollen reconstructions but also demonstrate that diatom community diversity has been relatively consistent throughout the Holocene and late Pleistocene with only minor cyclical fluctuation evident. This record is consistent with the few other aquatic palaeoecological records from the Southern