WorldWideScience

Sample records for marine plankton cells

  1. Origin of marine planktonic cyanobacteria.

    Science.gov (United States)

    Sánchez-Baracaldo, Patricia

    2015-12-01

    Marine planktonic cyanobacteria contributed to the widespread oxygenation of the oceans towards the end of the Pre-Cambrian and their evolutionary origin represents a key transition in the geochemical evolution of the Earth surface. Little is known, however, about the evolutionary events that led to the appearance of marine planktonic cyanobacteria. I present here phylogenomic (135 proteins and two ribosomal RNAs), Bayesian relaxed molecular clock (18 proteins, SSU and LSU) and Bayesian stochastic character mapping analyses from 131 cyanobacteria genomes with the aim to unravel key evolutionary steps involved in the origin of marine planktonic cyanobacteria. While filamentous cell types evolved early on at around 2,600-2,300 Mya and likely dominated microbial mats in benthic environments for most of the Proterozoic (2,500-542 Mya), marine planktonic cyanobacteria evolved towards the end of the Proterozoic and early Phanerozoic. Crown groups of modern terrestrial and/or benthic coastal cyanobacteria appeared during the late Paleoproterozoic to early Mesoproterozoic. Decrease in cell diameter and loss of filamentous forms contributed to the evolution of unicellular planktonic lineages during the middle of the Mesoproterozoic (1,600-1,000 Mya) in freshwater environments. This study shows that marine planktonic cyanobacteria evolved from benthic marine and some diverged from freshwater ancestors during the Neoproterozoic (1,000-542 Mya).

  2. Bioprospecting Marine Plankton

    Directory of Open Access Journals (Sweden)

    Chris Bowler

    2013-11-01

    Full Text Available The ocean dominates the surface of our planet and plays a major role in regulating the biosphere. For example, the microscopic photosynthetic organisms living within provide 50% of the oxygen we breathe, and much of our food and mineral resources are extracted from the ocean. In a time of ecological crisis and major changes in our society, it is essential to turn our attention towards the sea to find additional solutions for a sustainable future. Remarkably, while we are overexploiting many marine resources, particularly the fisheries, the planktonic compartment composed of zooplankton, phytoplankton, bacteria and viruses, represents 95% of marine biomass and yet the extent of its diversity remains largely unknown and underexploited. Consequently, the potential of plankton as a bioresource for humanity is largely untapped. Due to their diverse evolutionary backgrounds, planktonic organisms offer immense opportunities: new resources for medicine, cosmetics and food, renewable energy, and long-term solutions to mitigate climate change. Research programs aiming to exploit culture collections of marine micro-organisms as well as to prospect the huge resources of marine planktonic biodiversity in the oceans are now underway, and several bioactive extracts and purified compounds have already been identified. This review will survey and assess the current state-of-the-art and will propose methodologies to better exploit the potential of marine plankton for drug discovery and for dermocosmetics.

  3. Mixotrophy in the marine plankton

    DEFF Research Database (Denmark)

    Stoecker, Diane K.; Hansen, Per Juel; Caron, David

    2017-01-01

    Mixotrophs are important components of the bacterioplankton, phytoplankton, microzooplankton, and (sometimes) zooplankton in coastal and oceanic waters. Bacterivory among the phytoplankton may be important for alleviating inorganic nutrient stress and may increase primary production in oligotrophic...... waters. Mixotrophic phytoflagellates and dinoflagellates are often dominant components of the plankton during seasonal stratification. Many of the microzooplankton grazers, including ciliates and Rhizaria, are mixotrophic owing to their retention of functional algal organelles or maintenance of algal...

  4. Sexual selection in marine plankton

    DEFF Research Database (Denmark)

    Sichlau, Mie Hylstofte

    Copepods are among the most abundant metazoans on the planet and play an important role in the marine food web. Many aspects of their ecology have consequently been studied, including details of their reproductive biology and mating behaviour. Sexual selection, the part of evolution which selects...

  5. Developmental Stages of some Tropical and Subtropical Planktonic Marine Copepods

    NARCIS (Netherlands)

    Björnberg, Tagea K.S.

    1972-01-01

    Most planktonic marine copepods have nauplii which differ greatly from the copepodids so that it is difficult to relate them to the adult form. Rearing experiments are usually unsuccessful; only 8% of ca. 800 species of planktonic marine copepods have identified nauplii (see below cited list). To

  6. Ether lipids of planktonic archae in the marine water column

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Hoefs, M.J.L.; Schouten, S.; King, L.L.; Wakeham, S.G.; Leeuw, J.W. de

    1997-01-01

    Acyclic and cyclic biphytanes derived from the membrane ether lipids of archaea were found in water column particulate and sedimentary organic matter from several oxic and anoxic marine environments. Compound-specific isotope analyses of the carbon skeletons suggest that planktonic archaea utilize

  7. Limits to gene flow in a cosmopolitan marine planktonic diatom.

    Science.gov (United States)

    Casteleyn, Griet; Leliaert, Frederik; Backeljau, Thierry; Debeer, Ann-Eline; Kotaki, Yuichi; Rhodes, Lesley; Lundholm, Nina; Sabbe, Koen; Vyverman, Wim

    2010-07-20

    The role of geographic isolation in marine microbial speciation is hotly debated because of the high dispersal potential and large population sizes of planktonic microorganisms and the apparent lack of strong dispersal barriers in the open sea. Here, we show that gene flow between distant populations of the globally distributed, bloom-forming diatom species Pseudo-nitzschia pungens (clade I) is limited and follows a strong isolation by distance pattern. Furthermore, phylogenetic analysis implies that under appropriate geographic and environmental circumstances, like the pronounced climatic changes in the Pleistocene, population structuring may lead to speciation and hence may play an important role in diversification of marine planktonic microorganisms. A better understanding of the factors that control population structuring is thus essential to reveal the role of allopatric speciation in marine microorganisms.

  8. [Research advances in ecological stoichiometry of marine plankton].

    Science.gov (United States)

    Chen, Lei; Li, Chao-Lun

    2014-10-01

    Ecological stoichiometry can be simply defined as: The biology of elements from molecules to the biosphere, which spans all levels of the environment and of the life. It's a new idea to build a unified theory and becomes an inevitable trend to develop the ecological science. Marine ecosystems, which contribute to 50% of the biosphere biomass, are the important component of the global biogeochemical cycles. Marine zooplankton plays an important role in the material circulation and energy flow of marine ecosystems and serves as a connecting link between the preceding and the following in a more precise understanding of the key elemental cycles. However, research on ecological stoichiometry of marine plankton is fragmentary and rare. This article summarized the ecological phenomena and mechanisms of limiting elements affecting marine plankton, the response of biochemical substances to nutrition limitation, and the food chain transmission and feedback of nutrition limitation. Meanwhile, we also put forward some perspectives for future research of ecological stoichiometry of plankton in China' s seas.

  9. Chemical ecology of the marine plankton.

    Science.gov (United States)

    Roy, Jessie S; Poulson-Ellestad, Kelsey L; Drew Sieg, R; Poulin, Remington X; Kubanek, Julia

    2013-10-11

    This review summarizes recent work in the chemical ecology of pelagic marine ecosystems. In order to provide a comprehensive overview of advances in the field over the period covered, we have organized this review by ecological interaction type beginning with intraspecific interactions, then interspecific interactions (including mutualism, parasitism, competition, and predation), and finally community- and ecosystem-wide interactions.

  10. Quasi-planktonic behavior of foraging top marine predators

    Science.gov (United States)

    Della Penna, Alice; de Monte, Silvia; Kestenare, Elodie; Guinet, Christophe; D'Ovidio, Francesco

    2015-12-01

    Monitoring marine top predators is fundamental for assessing the health and functioning of open ocean ecosystems. Although recently tracking observations have substantially increased, factors determining the horizontal exploration of the ocean by marine predators are still largely unknown, especially at the scale of behavioral switches (1-100 km, days-weeks). It is commonly assumed that the influence of water movement can be neglected for animals capable of swimming faster than the current. Here, we challenge this assumption by combining the use of biologging (GPS and accelerometry), satellite altimetry and in-situ oceanographic data (ADCP and drifting buoys) to investigate the effect of the mesoscale ocean dynamics on a marine predator, the southern elephant seal. A Lagrangian approach reveals that trajectories of elephant seals are characterized by quasi-planktonic bouts where the animals are horizontally drifting. These bouts correspond to periods of increased foraging effort, indicating that in the quasi-planktonic conditions energy is allocated to diving and chasing, rather than in horizontal search of favourable grounds. These results suggest that mesoscale features like eddies and fronts may act as a focal points for trophic interactions not only by bottom-up modulation of nutrient injection, but also by directly entraining horizontal displacements of the upper trophic levels.

  11. Scaling of fecundity, growth and development in marine planktonic copepods

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Sabatini, M.

    1995-01-01

    We compiled information from the literature on female and egg sizes and maximum egg production, growth and developmental rates in marine planktonic copepods. While specific growth and developmental rates are invariant with body mass, weight- specific fecundity scales with female body mass(-0...... to 50% and have weight-specific fecundities that are 2.5 times and egg production rates that are 7.5 times those of the former, Nauplii develop faster (by a factor of 2) but grow slower (by 20 to 40%) than copepodites in both spawning types. The main demographic implications of these findings are (1...

  12. Magnetic light cloaking control in the marine planktonic copepod Sapphirina

    Science.gov (United States)

    Kashiwagi, H.; Mizukawa, Y.; Iwasaka, M.; Ohtsuka, S.

    2017-05-01

    We investigated the light cloaking behavior of the marine planktonic copepod Sapphirina under a magnetic field. Optical interferences in the multi-laminated guanine crystal layer beneath the dorsal body surface create a brilliant structural color, which can be almost entirely removed by changing the light reflection. In the investigation, we immersed segments of Sapphirina in seawater contained in an optical chamber. When the derived Sapphirina segments were attached to the container surface, they were inert to magnetic fields up to 300 mT. However, when the back plate segments were attached to the substrate at a point, with most of the plate floating in the seawater, the plate rotated oppositely to the applied magnetic field. In addition, the brilliant parts of the Sapphirina back plate rotated backward and forward by changing the magnetic field directions. Our experiment suggests a new model of an optical micro-electro-mechanical system that is controllable by magnetic fields.

  13. Cenozoic planktonic marine diatom diversity and correlation to climate change

    Science.gov (United States)

    Lazarus, David; Barron, John; Renaudie, Johan; Diver, Patrick; Türke, Andreas

    2014-01-01

    Marine planktonic diatoms export carbon to the deep ocean, playing a key role in the global carbon cycle. Although commonly thought to have diversified over the Cenozoic as global oceans cooled, only two conflicting quantitative reconstructions exist, both from the Neptune deep-sea microfossil occurrences database. Total diversity shows Cenozoic increase but is sample size biased; conventional subsampling shows little net change. We calculate diversity from a separately compiled new diatom species range catalog, and recalculate Neptune subsampled-in-bin diversity using new methods to correct for increasing Cenozoic geographic endemism and decreasing Cenozoic evenness. We find coherent, substantial Cenozoic diversification in both datasets. Many living cold water species, including species important for export productivity, originate only in the latest Miocene or younger. We make a first quantitative comparison of diatom diversity to the global Cenozoic benthic ∂18O (climate) and carbon cycle records (∂13C, and 20-0 Ma pCO2). Warmer climates are strongly correlated with lower diatom diversity (raw: rho = .92, p2 were only moderately higher than today. Diversity is strongly correlated to both ∂13C and pCO2 over the last 15 my (for both: r>.9, detrended r>.6, all p<.001), but only weakly over the earlier Cenozoic, suggesting increasingly strong linkage of diatom and climate evolution in the Neogene. Our results suggest that many living marine planktonic diatom species may be at risk of extinction in future warm oceans, with an unknown but potentially substantial negative impact on the ocean biologic pump and oceanic carbon sequestration. We cannot however extrapolate our my-scale correlations with generic climate proxies to anthropogenic time-scales of warming without additional species-specific information on proximate ecologic controls.

  14. Cenozoic planktonic marine diatom diversity and correlation to climate change.

    Directory of Open Access Journals (Sweden)

    David Lazarus

    Full Text Available Marine planktonic diatoms export carbon to the deep ocean, playing a key role in the global carbon cycle. Although commonly thought to have diversified over the Cenozoic as global oceans cooled, only two conflicting quantitative reconstructions exist, both from the Neptune deep-sea microfossil occurrences database. Total diversity shows Cenozoic increase but is sample size biased; conventional subsampling shows little net change. We calculate diversity from a separately compiled new diatom species range catalog, and recalculate Neptune subsampled-in-bin diversity using new methods to correct for increasing Cenozoic geographic endemism and decreasing Cenozoic evenness. We find coherent, substantial Cenozoic diversification in both datasets. Many living cold water species, including species important for export productivity, originate only in the latest Miocene or younger. We make a first quantitative comparison of diatom diversity to the global Cenozoic benthic ∂(18O (climate and carbon cycle records (∂(13C, and 20-0 Ma pCO2. Warmer climates are strongly correlated with lower diatom diversity (raw: rho = .92, p.9, detrended r>.6, all p<.001, but only weakly over the earlier Cenozoic, suggesting increasingly strong linkage of diatom and climate evolution in the Neogene. Our results suggest that many living marine planktonic diatom species may be at risk of extinction in future warm oceans, with an unknown but potentially substantial negative impact on the ocean biologic pump and oceanic carbon sequestration. We cannot however extrapolate our my-scale correlations with generic climate proxies to anthropogenic time-scales of warming without additional species-specific information on proximate ecologic controls.

  15. Epithelial cell detachment by Porphyromonas gingivalis biofilm and planktonic cultures

    NARCIS (Netherlands)

    Huang, L.; van Loveren, C.; Ling, J.; Wei, X.; Crielaard, W.; Deng, D.M.

    2016-01-01

    Porphyromonas gingivalis is present as a biofilm at the sites of periodontal infections. The detachment of gingival epithelial cells induced by P. gingivalis biofilms was examined using planktonic cultures as a comparison. Exponentially grown planktonic cultures or 40-h biofilms were co-incubated

  16. Global marine plankton functional type biomass distributions: Phaeocystis spp.

    Directory of Open Access Journals (Sweden)

    C. Widdicombe

    2012-09-01

    Full Text Available The planktonic haptophyte Phaeocystis has been suggested to play a fundamental role in the global biogeochemical cycling of carbon and sulphur, but little is known about its global biomass distribution. We have collected global microscopy data of the genus Phaeocystis and converted abundance data to carbon biomass using species-specific carbon conversion factors. Microscopic counts of single-celled and colonial Phaeocystis were obtained both through the mining of online databases and by accepting direct submissions (both published and unpublished from Phaeocystis specialists. We recorded abundance data from a total of 1595 depth-resolved stations sampled between 1955–2009. The quality-controlled dataset includes 5057 counts of individual Phaeocystis cells resolved to species level and information regarding life-stages from 3526 samples. 83% of stations were located in the Northern Hemisphere while 17% were located in the Southern Hemisphere. Most data were located in the latitude range of 50–70° N. While the seasonal distribution of Northern Hemisphere data was well-balanced, Southern Hemisphere data was biased towards summer months. Mean species- and form-specific cell diameters were determined from previously published studies. Cell diameters were used to calculate the cellular biovolume of Phaeocystis cells, assuming spherical geometry. Cell biomass was calculated using a carbon conversion factor for prymnesiophytes. For colonies, the number of cells per colony was derived from the colony volume. Cell numbers were then converted to carbon concentrations. An estimation of colonial mucus carbon was included a posteriori, assuming a mean colony size for each species. Carbon content per cell ranged from 9 pg C cell−1 (single-celled Phaeocystis antarctica to 29 pg C cell−1 (colonial Phaeocystis globosa. Non-zero Phaeocystis cell biomasses (without mucus carbon range from 2.9 × 10−5 to 5.4 × 103 μg C l−1, with a mean of 45.7 μg C

  17. Marine plankton as an indicator of low-level radionuclide contamination in the Southern Ocean

    International Nuclear Information System (INIS)

    Marsh, K.V.; Buddemeier, R.W.

    1984-07-01

    We have initiated an investigation of the utility of marine plankton as bioconcentrating samplers of low-level marine radioactivity in the southern hemisphere. A literature review shows that both freshwater and marine plankton have trace element and radionuclide concentration factors (relative to water) of up to 10 4 . In the years 1956-1958, considerable work was done on the accumulation and distribution of a variety of fission and activation products produced by the nuclear tests in the Marshall Islands. Since then, studies have largely been confined to a few selected radionuclides, and by far most of this work has been done in the northern hemisphere. We participated in Operation Deepfreeze 1981, collecting 32 plankton samples from the U.S. Coast Guard Cutter Glacier on its Antarctic cruise, while Battelle Pacific Northwest Laboratories concurrently sampled air, water, rain and fallout. We were able to measure concentrations of the naturally occurring radionuclides 7 Be, 40 K and the U and th series, and we believe that we have detected low levels of 144 Ce and 95 Nb in seven samples ranging as far south as 68 0 . There is a definite association between the radionuclide content of plankton and air filters, suggesting that aerosol resuspension of marine radioactivity may be occurring. Biological identification of the plankton suggests a possible correlation between radionuclide concentration and foraminifera content of the samples. 38 references, 7 figures, 3 tables

  18. Global marine plankton functional type biomass distributions : Phaeocystis spp

    NARCIS (Netherlands)

    Vogt, M.; O'Brien, C.; Peloquin, J.; Schoemann, V.; Breton, E.; Estrada, M.; Gibson, J.; Karentz, D.; van Leeuwe, M. A.; Stefels, J.; Widdicombe, C.; Peperzak, L.

    2012-01-01

    The planktonic haptophyte Phaeocystis has been suggested to play a fundamental role in the global biogeochemical cycling of carbon and sulphur, but little is known about its global biomass distribution. We have collected global microscopy data of the genus Phaeocystis and converted abundance data to

  19. Interactions of marine plankton with transuranic elements. II

    International Nuclear Information System (INIS)

    Fisher, N.S.; Bjerregaard, P.; Huynh-Ngoc, L.; Harvey, G.R.

    1983-01-01

    To assess the significance of naturally occurring dissolved organic matter (DOM) on complexation of transuranic elements in seawater, a series of bioassay experiments was conducted in which the effect of DOM on the accumulation of 241 Am, 237 Pu(III-IV), and 237 Pu(V-VI) by the marine diatom Thalassiosira pseudonana was measured. EDTA at 0.3 μM complexed both metals substantially, resulting in reduced radio-isotope uptake by the diatom; the greatest effect was on Pu(III-IV). In contrast, there was no apparent complexation of either element by equimolar concentrations of marine fulvic (MFA) or humic acids (MHA), naturally occurring photooxidizable DOM (uncharacterized), or diatom exudates, as none of these materials reduced isotope uptake; on the contrary, there were indications that some of this DOM enhanced transuranic bioaccumulation in the diatom slightly. Subsequent experiments showed this enhancement was probably due to complexation of transition metals by the DOM, leading to fewer ambient ions 'competing' for binding sites on the cells; 241 Am uptake rates were negatively correlated (r = -0.846, P<.01) with ΣASV-labile Cu + Zn + Cd + Pb. These experiments suggest that naturally occurring DOM may not appreciably complex Am or Pu or greatly affect their bioavailability in the sea. (Auth.)

  20. Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Martinez, Asuncion; Mincer, Tracy J

    2006-01-01

    Planktonic Bacteria, Archaea and Eukarya reside and compete in the ocean's photic zone under the pervasive influence of light. Bacteria in this environment were recently shown to contain photoproteins called proteorhodopsins, thought to contribute to cellular energy metabolism by catalysing light...... phylogenetic distribution of proteorhodopsins reflects their significant light-dependent fitness contributions, which drive the photoprotein's lateral acquisition and retention, but constrain its dispersal to the photic zone....

  1. Genomes of planktonic Acidimicrobiales: widening horizons for marine Actinobacteria by metagenomics.

    Science.gov (United States)

    Mizuno, Carolina Megumi; Rodriguez-Valera, Francisco; Ghai, Rohit

    2015-02-10

    The genomes of four novel marine Actinobacteria have been assembled from large metagenomic data sets derived from the Mediterranean deep chlorophyll maximum (DCM). These are the first marine representatives belonging to the order Acidimicrobiales and only the second group of planktonic marine Actinobacteria to be described. Their streamlined genomes and photoheterotrophic lifestyle suggest that they are planktonic, free-living microbes. A novel rhodopsin clade, acidirhodopsins, related to freshwater actinorhodopsins, was found in these organisms. Their genomes suggest a capacity to assimilate C2 compounds, some using the glyoxylate bypass and others with the ethylmalonyl-coenzyme A (CoA) pathway. They are also able to derive energy from dimethylsulfopropionate (DMSP), sulfonate, and carbon monoxide oxidation, all commonly available in the marine habitat. These organisms appear to be prevalent in the deep photic zone at or around the DCM. The presence of sister clades to the marine Acidimicrobiales in freshwater aquatic habitats provides a new example of marine-freshwater transitions with potential evolutionary insights. Despite several studies showing the importance and abundance of planktonic Actinobacteria in the marine habitat, a representative genome was only recently described. In order to expand the genomic repertoire of marine Actinobacteria, we describe here the first Acidimicrobidae genomes of marine origin and provide insights about their ecology. They display metabolic versatility in the acquisition of carbon and appear capable of utilizing diverse sources of energy. One of the genomes harbors a new kind of rhodopsin related to the actinorhodopsin clade of freshwater origin that is widespread in the oceans. Our data also support their preference to inhabit the deep chlorophyll maximum and the deep photic zone. This work contributes to the perception of marine actinobacterial groups as important players in the marine environment with distinct and

  2. Bioavailability of autochthonous dissolved organic nitrogen in marine plankton communities

    DEFF Research Database (Denmark)

    Knudsen, Helle; Markager, Svend Stiig; Søndergaard, Morten

    The purpose of this study was to investigate the bioavailability of dissolved organic nitrogen (DON) produced during a phytoplankton bloom. The experiments were conducted with natural plankton communities as batch growth experiments over approximately 30 days with nitrogen limitation. Five to six...... times during the exponential and stationary phases of each experimental bloom the bioavailability of DON was measured over 60 days together with DOC and oxygen consumption. The overall aim was to quantify remineralization of the added nitrate. The results showed that maximum 33 % of the added nitrate...

  3. Bio-PIXE marine science. Otoliths and plankton

    International Nuclear Information System (INIS)

    Malmqvist, K.G.; Buelow, K.; Elfman, M.; Kristiansson, P; Pallon, J.; Shariff, S.; Limburg, K.E.; Karlsson, C.

    1999-01-01

    Otoliths and phytoplanktons have been investigated using a nuclear microprobe. A brief description of sample preparation and irradiation conditions is given. The results indicate a great potential of the technique in marine sciences. (author)

  4. Reduced calcification of marine plankton in response to increased atmospheric CO2.

    Science.gov (United States)

    Riebesell, U; Zondervan, I; Rost, B; Tortell, P D; Zeebe, R E; Morel, F M

    2000-09-21

    The formation of calcareous skeletons by marine planktonic organisms and their subsequent sinking to depth generates a continuous rain of calcium carbonate to the deep ocean and underlying sediments. This is important in regulating marine carbon cycling and ocean-atmosphere CO2 exchange. The present rise in atmospheric CO2 levels causes significant changes in surface ocean pH and carbonate chemistry. Such changes have been shown to slow down calcification in corals and coralline macroalgae, but the majority of marine calcification occurs in planktonic organisms. Here we report reduced calcite production at increased CO2 concentrations in monospecific cultures of two dominant marine calcifying phytoplankton species, the coccolithophorids Emiliania huxleyi and Gephyrocapsa oceanica. This was accompanied by an increased proportion of malformed coccoliths and incomplete coccospheres. Diminished calcification led to a reduction in the ratio of calcite precipitation to organic matter production. Similar results were obtained in incubations of natural plankton assemblages from the north Pacific ocean when exposed to experimentally elevated CO2 levels. We suggest that the progressive increase in atmospheric CO2 concentrations may therefore slow down the production of calcium carbonate in the surface ocean. As the process of calcification releases CO2 to the atmosphere, the response observed here could potentially act as a negative feedback on atmospheric CO2 levels.

  5. Psd1 Effects on Candida albicans Planktonic Cells and Biofilms

    Directory of Open Access Journals (Sweden)

    Sónia Gonçalves

    2017-06-01

    Full Text Available Candida albicans is an important human pathogen, causing opportunistic infections. The adhesion of planktonic cells to a substrate is the first step for biofilm development. The antimicrobial peptide (AMP Psd1 is a defensin isolated from Pisum sativum seeds. We tested the effects of this AMP on C. albicans biofilms and planktonic cells, comparing its activity with amphotericin B and fluconazole. Three C. albicans variants were studied, one of them a mutant deficient in glucosylceramide synthase, conferring resistance to Psd1 antifungal action. Atomic force microscopy (AFM was used to assess morphological and biomechanical changes on fungal cells. Surface alterations, with membrane disruption and leakage of cellular contents, were observed. Cytometry assays and confocal microscopy imaging showed that Psd1 causes cell death, in a time and concentration-dependent manner. These results demonstrate Psd1 pleiotropic action against a relevant fungal human pathogen, suggesting its use as natural antimycotic agent.

  6. Mortality of marine planktonic copepods : global rates and patterns

    DEFF Research Database (Denmark)

    Hirst, A.G.; Kiørboe, Thomas

    2002-01-01

    Using life history theory we make predictions of mortality rates in marine epi-pelagic copepods from field estimates of adult fecundity, development times and adult sex ratios. Predicted mortality increases with temperature in both broadcast and sac spawning copepods, and declines with body weight...... in broadcast spawners, while mortality in sac spawners is invariant with body size. Although the magnitude of copepod mortality does lie close to the overall general pattern for pelagic animals, copepod mortality scaling is much weaker, implying that small copepods are avoiding some mortality agent....../s that other pelagic animals of a similar size do not, We compile direct in situ estimates of copepod mortality and compare these with our indirect predictions; we find the predictions generally match the field measurements well with respect to average rates and patterns. Finally, by comparing in situ adult...

  7. Partitioning of organic production in marine plankton communities

    DEFF Research Database (Denmark)

    Conan, P.; Søndergaard, Morten; Kragh, T.

    2007-01-01

    We investigated the partitioning of carbon, nitrogen, and phosphorus between particulate and dissolved production using 11-m(3) marine mesocosms (bags) in a Norwegian fjord with a salinity of 28.3, a chlorophyll concentration of 0.6 mu g L-1, an even biomass among five algal groups, and nitrogen...... between 17 and 58 in the P-replete bags. The C: P ratio of new DOM in the +Si bags was about 300 at all dosing regimes. Consequently, the range in N: P ratios was also large, with values from below 1 to about 30. Carbon-rich DOM in oceans and coastal waters is not necessarily a function of a slow...

  8. Marine Group II Dominates Planktonic Archaea in Water Column of the Northeastern South China Sea

    Directory of Open Access Journals (Sweden)

    Haodong Liu

    2017-06-01

    Full Text Available Temperature, nutrients, and salinity are among the important factors constraining the distribution and abundance of microorganisms in the ocean. Marine Group II (MGII belonging to Euryarchaeota commonly dominates the planktonic archaeal community in shallow water and Marine Group I (MGI, now is called Thaumarchaeota in deeper water in global oceans. Results of quantitative PCR (qPCR and 454 sequencing in our study, however, showed the dominance of MGII in planktonic archaea throughout the water column of the northeastern South China Sea (SCS that is characterized by strong water mixing. The abundance of ammonia-oxidizing archaea (AOA representing the main group of Thaumarchaeota in deeper water in the northeastern SCS was significantly lower than in other oceanic regions. Phylogenetic analysis showed that the top operational taxonomic units (OTUs of the MGII occurring predominantly below 200 m depth may be unique in the northeastern SCS based on the observation that they are distantly related to known sequences (identity ranging from 90–94%. The abundance of MGII was also significantly correlated with total bacteria in the whole column, which may indicate that MGII and bacteria may have similar physiological or biochemical properties or responses to environmental variation. This study provides valuable information about the dominance of MGII over AOA in both shallow and deep water in the northeastern SCS and highlights the need for comprehensive studies integrating physical, chemical, and microbial oceanography.

  9. Laser damage to marine plankton and its application to checking biofouling and invasion by aquatic species: a laboratory study.

    Science.gov (United States)

    Nandakumar, Kanavillil; Obika, Hideki; Sreekumari, Kurissery; Utsumi, Akihiro; Ooie, Toshihiko; Yano, Tetsuo

    2009-01-01

    In this laboratory study, the ability of low-power pulsed laser irradiation to kill planktonic organisms in a flowing water system was examined, thus, to test the possibility of using this technique as a water treatment strategy to reduce biofouling growth in condenser tubes of power plants and to reduce bioinvasion via the ballast water of ships. Two flow rates (4.6 and 9.0 l h(-1)) were tested on three planktonic organisms: two marine centric diatoms viz. Skeletonema costatum and Chaetoceros gracilis and a dinoflagellate, Heterocapsa circularisquama. A low-power pulsed laser irradiation at 532 nm with a fluence of 0.1 J cm(-2) from a frequency-doubled Nd:YAG laser was used as the irradiation source. The laser irradiation resulted in a heavy mortality of the test cells. The mortality observed was >90% for S. costatum and H. circularisqama and >70% for C. gracilis. The results suggest that laser irradiation has the potential to act as a water treatment strategy to reduce biofouling of condenser tubes in power plants as well as to reduce species invasion via the ballast water of ships.

  10. Biofilms and planktonic cells of Deinococcus geothermalis in extreme environments

    Science.gov (United States)

    Panitz, Corinna; Reitz, Guenther; Rabbow, Elke; Rettberg, Petra; Flemming, Hans-Curt; Wingender, Jost; Froesler, Jan

    In addition to the several extreme environments on Earth, Space can be considered as just another exceptional environment with a unique mixture of stress factors comprising UV radiation, vacuum, desiccation, temperature, ionizing radiation and microgravity. Life that processes in these environments can depend on the life forms and their state of living. The question is whether there are different strategies for individual microorganisms compared to communities of the same organisms to cope with the different factors of their surroundings. Comparative studies of the survi-val of these communities called biofilms and planktonic cell samples of Deinococcus geothermalis stand at the focal point of the presented investigations. A biofilm is a structured community of microorganisms that live encapsulated in a matrix of extracellular polymeric substances on a surface. Microorganisms living in a biofilm usually have significantly different properties to cooperate than individually living microorganisms of the same species. An advantage of the biofilm is increased resistance to various chemical and physical effects, while the dense extracellular matrix and the outer layer of the cells protect the interior of the microbial consortium. The space experiment BOSS (Biofilm organisms surfing Space) as part the ESA experimental unit EXPOSE R-2 with a planned launch date in July 2014 will be subsequently mounted on the Russian Svesda module outside the ISS. An international team of scientists coordinated by Dr. P. Rettberg will investigate the hypothesis whether microorganisms organized as biofilm outmatch the same microorganisms exposed individually in the long-term survival of the harsh environmental conditions as they occur in space and on Mars. Another protective function in the samples could be dust par-ticles for instance Mars regolith simulant contained inside the biofilms or mixed with the planktonic cells, as additional shelter especially against the extraterrestrial UV

  11. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition.

    Science.gov (United States)

    Alberti, Adriana; Poulain, Julie; Engelen, Stefan; Labadie, Karine; Romac, Sarah; Ferrera, Isabel; Albini, Guillaume; Aury, Jean-Marc; Belser, Caroline; Bertrand, Alexis; Cruaud, Corinne; Da Silva, Corinne; Dossat, Carole; Gavory, Frédérick; Gas, Shahinaz; Guy, Julie; Haquelle, Maud; Jacoby, E'krame; Jaillon, Olivier; Lemainque, Arnaud; Pelletier, Eric; Samson, Gaëlle; Wessner, Mark; Acinas, Silvia G; Royo-Llonch, Marta; Cornejo-Castillo, Francisco M; Logares, Ramiro; Fernández-Gómez, Beatriz; Bowler, Chris; Cochrane, Guy; Amid, Clara; Hoopen, Petra Ten; De Vargas, Colomban; Grimsley, Nigel; Desgranges, Elodie; Kandels-Lewis, Stefanie; Ogata, Hiroyuki; Poulton, Nicole; Sieracki, Michael E; Stepanauskas, Ramunas; Sullivan, Matthew B; Brum, Jennifer R; Duhaime, Melissa B; Poulos, Bonnie T; Hurwitz, Bonnie L; Pesant, Stéphane; Karsenti, Eric; Wincker, Patrick

    2017-08-01

    A unique collection of oceanic samples was gathered by the Tara Oceans expeditions (2009-2013), targeting plankton organisms ranging from viruses to metazoans, and providing rich environmental context measurements. Thanks to recent advances in the field of genomics, extensive sequencing has been performed for a deep genomic analysis of this huge collection of samples. A strategy based on different approaches, such as metabarcoding, metagenomics, single-cell genomics and metatranscriptomics, has been chosen for analysis of size-fractionated plankton communities. Here, we provide detailed procedures applied for genomic data generation, from nucleic acids extraction to sequence production, and we describe registries of genomics datasets available at the European Nucleotide Archive (ENA, www.ebi.ac.uk/ena). The association of these metadata to the experimental procedures applied for their generation will help the scientific community to access these data and facilitate their analysis. This paper complements other efforts to provide a full description of experiments and open science resources generated from the Tara Oceans project, further extending their value for the study of the world's planktonic ecosystems.

  12. Assimilation of Ocean-Color Plankton Functional Types to Improve Marine Ecosystem Simulations

    Science.gov (United States)

    Ciavatta, S.; Brewin, R. J. W.; Skákala, J.; Polimene, L.; de Mora, L.; Artioli, Y.; Allen, J. I.

    2018-02-01

    We assimilated phytoplankton functional types (PFTs) derived from ocean color into a marine ecosystem model, to improve the simulation of biogeochemical indicators and emerging properties in a shelf sea. Error-characterized chlorophyll concentrations of four PFTs (diatoms, dinoflagellates, nanoplankton, and picoplankton), as well as total chlorophyll for comparison, were assimilated into a physical-biogeochemical model of the North East Atlantic, applying a localized Ensemble Kalman filter. The reanalysis simulations spanned the years 1998-2003. The skill of the reference and reanalysis simulations in estimating ocean color and in situ biogeochemical data were compared by using robust statistics. The reanalysis outperformed both the reference and the assimilation of total chlorophyll in estimating the ocean-color PFTs (except nanoplankton), as well as the not-assimilated total chlorophyll, leading the model to simulate better the plankton community structure. Crucially, the reanalysis improved the estimates of not-assimilated in situ data of PFTs, as well as of phosphate and pCO2, impacting the simulation of the air-sea carbon flux. However, the reanalysis increased further the model overestimation of nitrate, in spite of increases in plankton nitrate uptake. The method proposed here is easily adaptable for use with other ecosystem models that simulate PFTs, for, e.g., reanalysis of carbon fluxes in the global ocean and for operational forecasts of biogeochemical indicators in shelf-sea ecosystems.

  13. Comparative transcriptome analysis of biofilm and planktonic cells of Bacillus cereus ATCC 14579

    NARCIS (Netherlands)

    Wijman, Janneke; Mols, M.; Tempelaars, Marcel; Abee, Tjakko

    2015-01-01

    Planktonic and biofilm cells of Bacillus cereus ATCC 14579 and ATCC 10987 were studied using microscopy and transcriptome analysis. By microscopy, clear differences could be observed between biofilm and planktonic cells as well as between the two strains. By using hierarchical clustering of the

  14. Comparative transcriptome analysis of biofilm and planktonic cells of Bacillus cereus ATCC 10987

    NARCIS (Netherlands)

    Wijman, Janneke; Mols, M.; Tempelaars, Marcel; Abee, Tjakko

    2015-01-01

    Planktonic and biofilm cells of Bacillus cereus ATCC 14579 and ATCC 10987 were studied using microscopy and transcriptome analysis. By microscopy, clear differences could be observed between biofilm and planktonic cells as well as between the two strains. By using hierarchical clustering of the

  15. Physiology, Fe(II oxidation, and Fe mineral formation by a marine planktonic cyanobacterium grown under ferruginous conditions

    Directory of Open Access Journals (Sweden)

    Elizabeth D. Swanner

    2015-10-01

    Full Text Available Evidence for Fe(II oxidation and deposition of Fe(III-bearing minerals from anoxic or redox-stratified Precambrian oceans has received support from decades of sedimentological and geochemical investigation of Banded Iron Formations (BIF. While the exact mechanisms of Fe(II oxidation remains equivocal, reaction with O2 in the marine water column, produced by cyanobacteria or early oxygenic phototrophs, was likely. In order to understand the role of cyanobacteria in the deposition of Fe(III minerals to BIF, we must first know how planktonic marine cyanobacteria respond to ferruginous (anoxic and Fe(II-rich waters in terms of growth, Fe uptake and homeostasis, and Fe mineral formation. We therefore grew the common marine cyanobacterium Synechococcus PCC 7002 in closed bottles that began anoxic, and contained Fe(II concentrations that span the range of possible concentrations in Precambrian seawater. These results, along with cell suspension experiments, indicate that Fe(II is likely oxidized by this strain via chemical oxidation with oxygen produced during photosynthesis, and not via any direct enzymatic or photosynthetic pathway. Imaging of the cell-mineral aggregates with scanning electron microscopy (SEM and confocal laser scanning microscopy (CLSM are consistent with extracellular precipitation of Fe(III (oxyhydroxide minerals, but that >10% of Fe(III sorbs to cell surfaces rather than precipitating. Proteomic experiments support the role of reactive oxygen species (ROS in Fe(II toxicity to Synechococcus PCC 7002. The proteome expressed under low Fe conditions included multiple siderophore biosynthesis and siderophore and Fe transporter proteins, but most siderophores are not expressed during growth with Fe(II. These results provide a mechanistic and quantitative framework for evaluating the geochemical consequences of perhaps life’s greatest metabolic innovation, i.e. the evolution and activity of oxygenic photosynthesis, in ferruginous

  16. Influence of plankton community structure on the sinking velocity of marine aggregates

    Science.gov (United States)

    Bach, L. T.; Boxhammer, T.; Larsen, A.; Hildebrandt, N.; Schulz, K. G.; Riebesell, U.

    2016-08-01

    About 50 Gt of carbon is fixed photosynthetically by surface ocean phytoplankton communities every year. Part of this organic matter is reprocessed within the plankton community to form aggregates which eventually sink and export carbon into the deep ocean. The fraction of organic matter leaving the surface ocean is partly dependent on aggregate sinking velocity which accelerates with increasing aggregate size and density, where the latter is controlled by ballast load and aggregate porosity. In May 2011, we moored nine 25 m deep mesocosms in a Norwegian fjord to assess on a daily basis how plankton community structure affects material properties and sinking velocities of aggregates (Ø 80-400 µm) collected in the mesocosms' sediment traps. We noted that sinking velocity was not necessarily accelerated by opal ballast during diatom blooms, which could be due to relatively high porosity of these rather fresh aggregates. Furthermore, estimated aggregate porosity (Pestimated) decreased as the picoautotroph (0.2-2 µm) fraction of the phytoplankton biomass increased. Thus, picoautotroph-dominated communities may be indicative for food webs promoting a high degree of aggregate repackaging with potential for accelerated sinking. Blooms of the coccolithophore Emiliania huxleyi revealed that cell concentrations of 1500 cells/mL accelerate sinking by about 35-40%, which we estimate (by one-dimensional modeling) to elevate organic matter transfer efficiency through the mesopelagic from 14 to 24%. Our results indicate that sinking velocities are influenced by the complex interplay between the availability of ballast minerals and aggregate packaging; both of which are controlled by plankton community structure.

  17. Antimicrobial activity of vanadium chloroperoxidase on planktonic Streptococcus mutans cells and Streptococcus mutans biofilms

    NARCIS (Netherlands)

    Hoogenkamp, M.A.; Crielaard, W.; ten Cate, J.M.; Wever, R.; Hartog, A.F.; Renirie, R.

    2009-01-01

    The aim of this study was to investigate the antimicrobial activity of vanadium chloroperoxidase (VCPO) reaction products on planktonic and biofilm cellsof Streptococcus mutans C180-2. Planktonic and biofilm cells were incubated in a buffered reaction mixture containing VCPO, halide (either chloride

  18. Bacterioplankton: a sink for carbon in a coastal marine plankton community

    International Nuclear Information System (INIS)

    Ducklow, H.W.; Purdie, D.A.; Williams, P.J.LeB.; Davis, J.M.

    1986-01-01

    Recent determinations of high production rates (up to 30% of primary production in surface waters) implicate free-living marine bacterioplankton as a link in a microbial loop that supplements phytoplankton as food for herbivores. An enclosed water column of 300 cubic meters was used to test the microbial loop hypothesis by following the fate of carbon-14-labeled bacterioplankton for over 50 days. Only 2% of the label initially fixed from carbon-14-labeled glucose by bacteria was present in larger organisms after 13 days, at which time about 20% of the total label added remained in the particulate fraction. Most of the label appeared to pass directly from particles smaller than 1 micrometer (heterotrophic bacterioplankton and some bacteriovores) to respired labeled carbon dioxide or to regenerated dissolved organic carbon-14. Secondary (and, by implication, primary) production by organisms smaller than 1 micrometer may not be an important food source in marine food chains. Bacterioplankton can be a sink for carbon in planktonic food webs and may serve principally as agents of nutrient regeneration rather than as food

  19. Effect of Low ph on Carbohydrate Production by a Marine Planktonic Diatom (Chaetoceros muelleri)

    International Nuclear Information System (INIS)

    Thornton, D.C.O.

    2009-01-01

    Rising carbon dioxide (CO 2 ) concentrations in the atmosphere due to human activity are causing the surface ocean to become more acidic. Diatoms play a pivotal role in biogeochemical cycling and ecosystem function in the ocean. ph affected the quantum efficiency of photosystem II and carbohydrate metabolism in a planktonic diatom (Chaetoceros muelleri), representative of a widely distributed genus. In batch cultures grown at low ph, the proportion of total carbohydrate stored within the cells decreased and more dissolved carbohydrates were exuded from the cells into the surrounding medium. Changes in productivity and the way in which diatoms allocate carbon into carbohydrates may affect ecosystem function and the efficiency of the biological carbon pump in a low ph ocean.

  20. Factors Affecting Catalase Expression in Pseudomonas aeruginosa Biofilms and Planktonic Cells

    OpenAIRE

    Frederick, Jesse R.; Elkins, James G.; Bollinger, Nikki; Hassett, Daniel J.; McDermott, Timothy R.

    2001-01-01

    Previous work with Pseudomonas aeruginosa showed that catalase activity in biofilms was significantly reduced relative to that in planktonic cells. To better understand biofilm physiology, we examined possible explanations for the differential expression of catalase in cells cultured in these two different conditions. For maximal catalase activity, biofilm cells required significantly more iron (25 μM as FeCl3) in the medium, whereas planktonic cultures required no addition of iron. However, ...

  1. Reverse transcriptase genes are highly abundant and transcriptionally active in marine plankton assemblages

    KAUST Repository

    Lescot, Magali

    2015-11-27

    Genes encoding reverse transcriptases (RTs) are found in most eukaryotes, often as a component of retrotransposons, as well as in retroviruses and in prokaryotic retroelements. We investigated the abundance, classification and transcriptional status of RTs based on Tara Oceans marine metagenomes and metatranscriptomes encompassing a wide organism size range. Our analyses revealed that RTs predominate large-size fraction metagenomes (>5 μm), where they reached a maximum of 13.5% of the total gene abundance. Metagenomic RTs were widely distributed across the phylogeny of known RTs, but many belonged to previously uncharacterized clades. Metatranscriptomic RTs showed distinct abundance patterns across samples compared with metagenomic RTs. The relative abundances of viral and bacterial RTs among identified RT sequences were higher in metatranscriptomes than in metagenomes and these sequences were detected in all metatranscriptome size fractions. Overall, these observations suggest an active proliferation of various RT-assisted elements, which could be involved in genome evolution or adaptive processes of plankton assemblage.

  2. Reverse transcriptase genes are highly abundant and transcriptionally active in marine plankton assemblages

    KAUST Repository

    Lescot, Magali; Hingamp, Pascal; Kojima, Kenji K; Villar, Emilie; Romac, Sarah; Veluchamy, Alaguraj; Boccara, Martine; Jaillon, Olivier; Ludicone, Daniele; Bowler, Chris; Wincker, Patrick; Claverie, Jean-Michel; Ogata, Hiroyuki

    2015-01-01

    Genes encoding reverse transcriptases (RTs) are found in most eukaryotes, often as a component of retrotransposons, as well as in retroviruses and in prokaryotic retroelements. We investigated the abundance, classification and transcriptional status of RTs based on Tara Oceans marine metagenomes and metatranscriptomes encompassing a wide organism size range. Our analyses revealed that RTs predominate large-size fraction metagenomes (>5 μm), where they reached a maximum of 13.5% of the total gene abundance. Metagenomic RTs were widely distributed across the phylogeny of known RTs, but many belonged to previously uncharacterized clades. Metatranscriptomic RTs showed distinct abundance patterns across samples compared with metagenomic RTs. The relative abundances of viral and bacterial RTs among identified RT sequences were higher in metatranscriptomes than in metagenomes and these sequences were detected in all metatranscriptome size fractions. Overall, these observations suggest an active proliferation of various RT-assisted elements, which could be involved in genome evolution or adaptive processes of plankton assemblage.

  3. Combined toxicity effects of chlorine, ammonia, and temperature on marine plankton. Progress report, November 1976--31 January 1978

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, J. C.

    1978-02-01

    Studies on the effects of chlorine, chloramines, and temperature on marine plankton have been carried out for three years. Species studied include marine phytoplankton, lobster larvae (Homarus americanus), oyster larvae (Crassostrea virginica), copepods (Acartia tonsa), rotifers (Brachionas plicatilis), grass shrimp (Palamonetes pugio) summer flounder larvae (Paralichthys dentatus), larval and juvenile killifish (Fundulus heteroclitus), juvenile scup (Stenotomus versicolor), and juvenile winter flounder (Pseudopleuronectes americanus). In addition extensive studies on chlorine chemistry in seawater have been carried out. The major conclusions are that entrainment effects on permanent plankton such as phytoplankton, copepods, and rotifers are temporary, that is those organisms surviving chlorination and temperature shocks are capable of renewed and unrestricted growth once returned to the receiving water. Because chlorine is only applied for short periods daily in most power plants, the total population of the above organisms actually exposed to chlorine is small and the effects may be hardly measurable in receiving waters. However, chlorination effects on larval species that spawn intermittently could be catastrophic. In addition, there are many unanswered questions regarding the fate of chlorine that is dissipated in marine waters. Are the losses real and, if so, do they pose a toxicity threat to marine biota.

  4. Linking the planktonic and benthic habitat: genetic structure of the marine diatom Skeletonema marinoi.

    Science.gov (United States)

    Godhe, Anna; Härnström, Karolina

    2010-10-01

    Dormant life stages are important strategies for many aquatic organisms. The formation of resting stages will provide a refuge from unfavourable conditions in the water column, and their successive accumulation in the benthos will constitute a genetic reservoir for future planktonic populations. We have determined the genetic structure of a common bloom-forming diatom, Skeletonema marinoi, in the sediment and the plankton during spring, summer and autumn two subsequent years (2007-2009) in Gullmar Fjord on the Swedish west coast. Eight polymorphic microsatellite loci were used to assess the level of genetic differentiation and the respective gene diversity of the two different habitats. We also determined the degree of genetic differentiation between the seed banks inside the fjord and the open sea. The results indicate that Gullmar Fjord has one dominant endogenous population of S. marinoi, which is genetically differentiated from the open sea population. The fjord population is encountered in the plankton and in the sediment. Shifts from the dominant population can happen, and in our study, two genetically differentiated plankton populations, displaying reduced genetic diversity, occurred in September 2007 and 2008. Based on our results, we suggest that sill fjords maintain local long-lived and well-adapted protist populations, which continuously shift between the planktonic and benthic habitats. Intermittently, short-lived and mainly asexually reproducing populations can replace the dominant population in the water column, without influencing the genetic structure of the benthic seed bank. © 2010 Blackwell Publishing Ltd.

  5. In situ camera observations reveal major role of zooplankton in modulating marine snow formation during an upwelling-induced plankton bloom

    Science.gov (United States)

    Taucher, Jan; Stange, Paul; Algueró-Muñiz, María; Bach, Lennart T.; Nauendorf, Alice; Kolzenburg, Regina; Büdenbender, Jan; Riebesell, Ulf

    2018-05-01

    Particle aggregation and the consequent formation of marine snow alter important properties of biogenic particles (size, sinking rate, degradability), thus playing a key role in controlling the vertical flux of organic matter to the deep ocean. However, there are still large uncertainties about rates and mechanisms of particle aggregation, as well as the role of plankton community structure in modifying biomass transfer from small particles to large fast-sinking aggregates. Here we present data from a high-resolution underwater camera system that we used to observe particle size distributions and formation of marine snow (aggregates >0.5 mm) over the course of a 9-week in situ mesocosm experiment in the Eastern Subtropical North Atlantic. After an oligotrophic phase of almost 4 weeks, addition of nutrient-rich deep water (650 m) initiated the development of a pronounced diatom bloom and the subsequent formation of large marine snow aggregates in all 8 mesocosms. We observed a substantial time lag between the peaks of chlorophyll a and marine snow biovolume of 9-12 days, which is much longer than previously reported and indicates a marked temporal decoupling of phytoplankton growth and marine snow formation during our study. Despite this time lag, our observations revealed substantial transfer of biomass from small particle sizes (single phytoplankton cells and chains) to marine snow aggregates of up to 2.5 mm diameter (ESD), with most of the biovolume being contained in the 0.5-1 mm size range. Notably, the abundance and community composition of mesozooplankton had a substantial influence on the temporal development of particle size spectra and formation of marine snow aggregates: While higher copepod abundances were related to reduced aggregate formation and biomass transfer towards larger particle sizes, the presence of appendicularia and doliolids enhanced formation of large marine snow. Furthermore, we combined in situ particle size distributions with

  6. Xylella fastidiosa differentially accumulates mineral elements in biofilm and planktonic cells.

    Science.gov (United States)

    Cobine, Paul A; Cruz, Luisa F; Navarrete, Fernando; Duncan, Daniel; Tygart, Melissa; De La Fuente, Leonardo

    2013-01-01

    Xylella fastidiosa is a bacterial plant pathogen that infects numerous plant hosts. Disease develops when the bacterium colonizes the xylem vessels and forms a biofilm. Inductively coupled plasma optical emission spectroscopy was used to examine the mineral element content of this pathogen in biofilm and planktonic states. Significant accumulations of copper (30-fold), manganese (6-fold), zinc (5-fold), calcium (2-fold) and potassium (2-fold) in the biofilm compared to planktonic cells were observed. Other mineral elements such as sodium, magnesium and iron did not significantly differ between biofilm and planktonic cells. The distribution of mineral elements in the planktonic cells loosely mirrors the media composition; however the unique mineral element distribution in biofilm suggests specific mechanisms of accumulation from the media. A cell-to-surface attachment assay shows that addition of 50 to 100 µM Cu to standard X. fastidiosa media increases biofilm, while higher concentrations (>200 µM) slow cell growth and prevent biofilm formation. Moreover cell-to-surface attachment was blocked by specific chelation of copper. Growth of X. fastidiosa in microfluidic chambers under flow conditions showed that addition of 50 µM Cu to the media accelerated attachment and aggregation, while 400 µM prevented this process. Supplementation of standard media with Mn showed increased biofilm formation and cell-to-cell attachment. In contrast, while the biofilm accumulated Zn, supplementation to the media with this element caused inhibited growth of planktonic cells and impaired biofilm formation. Collectively these data suggest roles for these minerals in attachment and biofilm formation and therefore the virulence of this pathogen.

  7. Xylella fastidiosa differentially accumulates mineral elements in biofilm and planktonic cells.

    Directory of Open Access Journals (Sweden)

    Paul A Cobine

    Full Text Available Xylella fastidiosa is a bacterial plant pathogen that infects numerous plant hosts. Disease develops when the bacterium colonizes the xylem vessels and forms a biofilm. Inductively coupled plasma optical emission spectroscopy was used to examine the mineral element content of this pathogen in biofilm and planktonic states. Significant accumulations of copper (30-fold, manganese (6-fold, zinc (5-fold, calcium (2-fold and potassium (2-fold in the biofilm compared to planktonic cells were observed. Other mineral elements such as sodium, magnesium and iron did not significantly differ between biofilm and planktonic cells. The distribution of mineral elements in the planktonic cells loosely mirrors the media composition; however the unique mineral element distribution in biofilm suggests specific mechanisms of accumulation from the media. A cell-to-surface attachment assay shows that addition of 50 to 100 µM Cu to standard X. fastidiosa media increases biofilm, while higher concentrations (>200 µM slow cell growth and prevent biofilm formation. Moreover cell-to-surface attachment was blocked by specific chelation of copper. Growth of X. fastidiosa in microfluidic chambers under flow conditions showed that addition of 50 µM Cu to the media accelerated attachment and aggregation, while 400 µM prevented this process. Supplementation of standard media with Mn showed increased biofilm formation and cell-to-cell attachment. In contrast, while the biofilm accumulated Zn, supplementation to the media with this element caused inhibited growth of planktonic cells and impaired biofilm formation. Collectively these data suggest roles for these minerals in attachment and biofilm formation and therefore the virulence of this pathogen.

  8. Effects on the function of three trophic levels in marine plankton communities under stress from the antifouling compound zinc pyrithione

    International Nuclear Information System (INIS)

    Hjorth, M.; Dahlloef, I.; Forbes, V.E.

    2006-01-01

    This study aimed to investigate functional responses of natural marine planktonic communities to stress from the antifouling compound zinc pyrithione (ZPT). Isotope labelling techniques ( 14 C) were applied to study bacterial incorporation of leucine, photosynthetic activity of phytoplankton and grazing of labelled prey by zooplankton communities for 6 days after exposures to nominal concentrations of 0, 5, 25, 50 nM ZPT in a mesocosm experiment in Isefjord, Denmark. Significant direct effects were visible on chlorophyll a concentrations, which decreased in all exposed communities, to between 48 and 36% of control concentrations on Day 3, 1 day after the last exposure. Phytoplankton activities were also significantly affected on Day 3 with activities between 9 and 26% of control levels, as was zooplankton activities in the 25 and 50 nM exposures. In the 50 nM exposure the total community zooplankton activity was reduced to 25 ± 4%, and per individual to 46 ± 11% of control levels. Bacterial communities showed positive indirect effects with high activities (up to 183 ± 40%) due to higher amounts of available substrate from algal death. Pollution induced community tolerance analyses performed on phytoplankton and bacterial communities at the end of the experiment indicated a development of increased tolerance for phytoplankton in the 50 nM exposed communities, whereas there were no changes in tolerance in the bacterial communities. Multivariate analysis of the integrated functional response by the plankton communities revealed a significant difference (p < 0.05) between exposed communities compared to controls in the first 3 days after last exposure and in the end of the experiment. The study provides evidence of diverse effects on the functions of marine plankton communities under stress from a pollutant. Direct effects lead to cascading indirect effects throughout the community, eventually causing different developments. Continuous exposure to ZPT could lead to

  9. Antimicrobial Resistance Profile of Planktonic and Biofilm Cells of Staphylococcus aureus and Coagulase-Negative Staphylococci

    Directory of Open Access Journals (Sweden)

    Adilson de Oliveira

    2016-09-01

    Full Text Available The objective of the present study was to determine the antimicrobial resistance profile of planktonic and biofilm cells of Staphylococcus aureus and coagulase-negative staphylococci (CoNS. Two hundred Staphylococcus spp. strains were studied, including 50 S. aureus and 150 CoNS strains (50 S. epidermidis, 20 S. haemolyticus, 20 S. warneri, 20 S. hominis, 20 S. lugdunensis, and 20 S. saprophyticus. Biofilm formation was investigated by adherence to polystyrene plates. Positive strains were submitted to the broth microdilution method to determine the minimum inhibitory concentration (MIC for planktonic and biofilm cells and the minimal bactericidal concentration for biofilm cells (MBCB. Forty-nine Staphylococcus spp. strains (14 S. aureus, 13 S. epidermidis, 13 S. saprophyticus, 3 S. haemolyticus, 1 S. hominis, 3 S. warneri, and 2 S. lugdunensis were biofilm producers. These isolates were evaluated regarding their resistance profile. Determination of planktonic cell MIC identified three (21.4% S. aureus strains that were resistant to oxacillin and six (42.8% that were resistant to erythromycin. Among the CoNS, 31 (88.6% strains were resistant to oxacillin, 14 (40% to erythromycin, 18 (51.4% to gentamicin, and 8 (22.8% to sulfamethoxazole/trimethoprim. None of the planktonic isolates were resistant to vancomycin or linezolid. MICs were 2-, 4-, 8-, and up to 16-fold higher for biofilm cells than for planktonic cells. This observation was more common for vancomycin and erythromycin. The MBCB ranged from 8 to >256 µg/mL for oxacillin, 128 to >128 µg/mL for vancomycin, 256 to >256 µg/mL for erythromycin and gentamicin, >64 µg/mL for linezolid, and 32/608 to >32/608 µg/mL for sulfamethoxazole/trimethoprim. The results showed considerably higher MICs for S. aureus and CoNS biofilm cells compared to planktonic cells. Analysis of MBCM confirmed that even high concentrations of vancomycin were unable to eliminate the biofilms of S. aureus and Co

  10. Data integration for European marine biodiversity research: creating a database on benthos and plankton to study large-scale patterns and long-term changes

    NARCIS (Netherlands)

    Vandepitte, L.; Vanhoorne, B.; Kraberg, A.; Anisimova, N.; Antoniadou, C.; Araújo, R.; Bartsch, I.; Beker, B.; Benedetti-Cecchi, L.; Bertocci, I.; Cochrane, S.J.; Cooper, K.; Craeymeersch, J.A.; Christou, E.; Crisp, D.J.; Dahle, S.; de Boissier, M.; De Kluijver, M.; Denisenko, S.; De Vito, D.; Duineveld, G.; Escaravage, V.L.; Fleischer, D.; Fraschetti, S.; Giangrande, A.; Heip, C.H.R.; Hummel, H.; Janas, U.; Karez, R.; Kedra, M.; Kingston, P.; Kuhlenkamp, R.; Libes, M.; Martens, P.; Mees, J.; Mieszkowska, N.; Mudrak, S.; Munda, I.; Orfanidis, S.; Orlando-Bonaca, M.; Palerud, R.; Rachor, E.; Reichert, K.; Rumohr, H.; Schiedek, D.; Schubert, P.; Sistermans, W.C.H.; Sousa Pinto, I.S.; Southward, A.J.; Terlizzi, A.; Tsiaga, E.; Van Beusekom, J.E.E.; Vanden Berghe, E.; Warzocha, J.; Wasmund, N.; Weslawski, J.M.; Widdicombe, C.; Wlodarska-Kowalczuk, M.; Zettler, M.L.

    2010-01-01

    The general aim of setting up a central database on benthos and plankton was to integrate long-, medium- and short-term datasets on marine biodiversity. Such a database makes it possible to analyse species assemblages and their changes on spatial and temporal scales across Europe. Data collation

  11. Comparison of the cytotoxic effect of polystyrene latex nanoparticles on planktonic cells and bacterial biofilms

    International Nuclear Information System (INIS)

    Nomura, Toshiyuki; Fujisawa, Eri; Itoh, Shikibu; Konishi, Yasuhiro

    2016-01-01

    The cytotoxic effect of positively charged polystyrene latex nanoparticles (PSL NPs) was compared between planktonic bacterial cells and bacterial biofilms using confocal laser scanning microscopy, atomic force microscopy, and a colony counting method. Pseudomonas fluorescens, which is commonly used in biofilm studies, was employed as the model bacteria. We found that the negatively charged bacterial surface of the planktonic cells was almost completely covered with positively charged PSL NPs, leading to cell death, as indicated by the NP concentration being greater than that required to achieve single layer coverage. In addition, the relationship between surface coverage and cell viability of P. fluorescens cells correlated well with the findings in other bacterial cells (Escherichia coli and Lactococcuslactis). However, most of the bacterial cells that formed the biofilm were viable despite the positively charged PSL NPs being highly toxic to planktonic bacterial cells. This indicated that bacterial cells embedded in the biofilm were protected by self-produced extracellular polymeric substances (EPS) that provide resistance to antibacterial agents. In conclusion, mature biofilms covered with EPS exhibit resistance to NP toxicity as well as antibacterial agents.

  12. Comparison of the cytotoxic effect of polystyrene latex nanoparticles on planktonic cells and bacterial biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Toshiyuki, E-mail: nomura@chemeng.osakafu-u.ac.jp; Fujisawa, Eri; Itoh, Shikibu; Konishi, Yasuhiro [Osaka Prefecture University, Department of Chemical Engineering (Japan)

    2016-06-15

    The cytotoxic effect of positively charged polystyrene latex nanoparticles (PSL NPs) was compared between planktonic bacterial cells and bacterial biofilms using confocal laser scanning microscopy, atomic force microscopy, and a colony counting method. Pseudomonas fluorescens, which is commonly used in biofilm studies, was employed as the model bacteria. We found that the negatively charged bacterial surface of the planktonic cells was almost completely covered with positively charged PSL NPs, leading to cell death, as indicated by the NP concentration being greater than that required to achieve single layer coverage. In addition, the relationship between surface coverage and cell viability of P. fluorescens cells correlated well with the findings in other bacterial cells (Escherichia coli and Lactococcuslactis). However, most of the bacterial cells that formed the biofilm were viable despite the positively charged PSL NPs being highly toxic to planktonic bacterial cells. This indicated that bacterial cells embedded in the biofilm were protected by self-produced extracellular polymeric substances (EPS) that provide resistance to antibacterial agents. In conclusion, mature biofilms covered with EPS exhibit resistance to NP toxicity as well as antibacterial agents.

  13. Comparison of the cytotoxic effect of polystyrene latex nanoparticles on planktonic cells and bacterial biofilms

    Science.gov (United States)

    Nomura, Toshiyuki; Fujisawa, Eri; Itoh, Shikibu; Konishi, Yasuhiro

    2016-06-01

    The cytotoxic effect of positively charged polystyrene latex nanoparticles (PSL NPs) was compared between planktonic bacterial cells and bacterial biofilms using confocal laser scanning microscopy, atomic force microscopy, and a colony counting method. Pseudomonas fluorescens, which is commonly used in biofilm studies, was employed as the model bacteria. We found that the negatively charged bacterial surface of the planktonic cells was almost completely covered with positively charged PSL NPs, leading to cell death, as indicated by the NP concentration being greater than that required to achieve single layer coverage. In addition, the relationship between surface coverage and cell viability of P. fluorescens cells correlated well with the findings in other bacterial cells ( Escherichia coli and Lactococcus lactis). However, most of the bacterial cells that formed the biofilm were viable despite the positively charged PSL NPs being highly toxic to planktonic bacterial cells. This indicated that bacterial cells embedded in the biofilm were protected by self-produced extracellular polymeric substances (EPS) that provide resistance to antibacterial agents. In conclusion, mature biofilms covered with EPS exhibit resistance to NP toxicity as well as antibacterial agents.

  14. Heterospecific mating and partial prezygotic reproductive isolation in the planktonic marine copepods Centropages typicus and Centropages hamatus

    DEFF Research Database (Denmark)

    Goetze, Erica

    2008-01-01

    Using three-dimensional (3D) video observations in laboratory experiments, I describe interspecific and intergeneric mating behaviors and motility patterns of the common planktonic marine copepods Centropages typicus, Centropages hamatus, and Temora longicornis. These observations are then used...... to estimate heterospecific and conspecific male mate-search volume rates and mate encounter rates in North Sea Centropages populations. Behavioral prezygotic reproductive isolation between Centropages species is incomplete, since males of each species pursued, contacted, captured, and, in rare cases, placed...... a spermatophore on the urosome of heterospecific females. T. longicornis males also detected the diffusible pheromone trail and pursued C. typicus females to the point of mate contact. Male mate-search tracking behavior was equally effective on diffusible pheromone trails of heterospecific and conspecific females...

  15. Methodology for single-cell genetic analysis of planktonic foraminifera for studies of protist diversity and evolution

    Directory of Open Access Journals (Sweden)

    Agnes Katharina Maria Weiner

    2016-12-01

    Full Text Available Single-cell genetic analysis is an essential method to investigate the biodiversity and evolutionary ecology of marine protists. In protist groups that do not reproduce under laboratory conditions, this approach provides the only means to directly associate molecular sequences with cell morphology. The resulting unambiguous taxonomic identification of the DNA sequences is a prerequisite for barcoding and analyses of environmental metagenomic data. Extensive single-cell genetic studies have been carried out on planktonic foraminifera over the past 20 years to elucidate their phylogeny, cryptic diversity, biogeography and the relationship between genetic and morphological variability. In the course of these investigations, it has become evident that genetic analysis at the individual specimen level is confronted by innumerable challenges ranging from the negligible amount of DNA present in the single cell to the substantial amount of DNA contamination introduced by endosymbionts or food particles. Consequently, a range of methods has been developed and applied throughout the years for the genetic analysis of planktonic foraminifera in order to enhance DNA amplification success rates. Yet, the description of these methods in the literature rarely occurred with equivalent levels of detail and the different approaches have never been compared in terms of their efficiency and reproducibility. Here, aiming at a standardization of methods, we provide a comprehensive review of all methods that have been employed for the single-cell genetic analysis of planktonic foraminifera. We compile data on success rates of DNA amplification and use these to evaluate the effects of key parameters associated with the methods of sample collection, storage and extraction of single-cell DNA. We show that the chosen methods influence the success rates of single-cell genetic studies, but the differences between them are not sufficient to hinder comparisons between studies

  16. A direct pre-screen for marine bacteria producing compounds inhibiting quorum sensing reveals diverse planktonic bacteria that are bioactive.

    Science.gov (United States)

    Linthorne, Jamie S; Chang, Barbara J; Flematti, Gavin R; Ghisalberti, Emilio L; Sutton, David C

    2015-02-01

    A promising new strategy in antibacterial research is inhibition of the bacterial communication system termed quorum sensing. In this study, a novel and rapid pre-screening method was developed to detect the production of chemical inhibitors of this system (quorum-quenching compounds) by bacteria isolated from marine and estuarine waters. This method involves direct screening of mixed populations on an agar plate, facilitating specific isolation of bioactive colonies. The assay showed that between 4 and 46 % of culturable bacteria from various samples were bioactive, and of the 95 selectively isolated bacteria, 93.7 % inhibited Vibrio harveyi bioluminescence without inhibiting growth, indicating potential production of quorum-quenching compounds. Of the active isolates, 21 % showed further activity against quorum-sensing-regulated pigment production by Serratia marcescens. The majority of bioactive isolates were identified by 16S ribosomal DNA (rDNA) amplification and sequencing as belonging to the genera Vibrio and Pseudoalteromonas. Extracts of two strongly bioactive Pseudoalteromonas isolates (K1 and B2) were quantitatively assessed for inhibition of growth and quorum-sensing-regulated processes in V. harveyi, S. marcescens and Chromobacterium violaceum. Extracts of the isolates reduced V. harveyi bioluminescence by as much as 98 % and C. violaceum pigment production by 36 % at concentrations which had no adverse effect on growth. The activity found in the extracts indicated that the isolates may produce quorum-quenching compounds. This study further supports the suggestion that quorum quenching may be a common attribute among culturable planktonic marine and estuarine bacteria.

  17. Synchrotron X-ray microscopy of marine calcifiers: how plankton record past climate change

    International Nuclear Information System (INIS)

    Redfern, S A T; Branson, O; Read, E

    2017-01-01

    We have used STXM and PEEM to reveal the underpinning chemistry and nanoscale structure behind palaeo-climate geochemical signatures, such as trace Mg in shells- proposed proxies for palaeo-ocean temperature. This has allowed us to test the chemical assumptions and mechanisms underpinning the use of such empirical proxies. We have determined the control on driving chemical variations in biogenic carbonates using STXM at the absorption edge of Mg, B, and Na in the shells of modern plankton. The power of these observations lies in their ability to link changes in chemistry, microstructure, and growth process in biogenic carbonate to environmental influences. We have seen that such changes occur at length scales of tens of nanometres and demonstrated that STXM provides an invaluable route to understanding chemical environment and key heterogeneity at the appropriate length scale. This new understanding provides new routes for future measurements of past climate variation in the sea floor fossil record. (paper)

  18. Nitrogenase genes in non-cyanobacterial plankton: prevalence, diversity, and regulation in marine waters

    DEFF Research Database (Denmark)

    Riemann, Lasse; Farnelid, H.; Steward, G.F.

    2010-01-01

    Marine waters are generally considered to be nitrogen (N) limited and are therefore favourable environments for diazotrophs, i.e. organisms converting atmospheric N2 into ammonium or nitrogen oxides available for growth. In some regions, this import of N supports up to half of the primary...... productivity. Diazotrophic Cyanobacteria appear to be the major contributors to marine N2 fixation in surface waters, whereas the contribution of heterotrophic or chemoautotrophic diazotrophs to this process is usually regarded inconsequential. Culture-independent studies reveal that non......-cyanobacterial diazotrophs are diverse, widely distributed, and actively expressing the nitrogenase gene in marine and estuarine environments. The detection of nifH genes and nifH transcripts, even in N-replete marine waters, suggests that N2 fixation is an ecologically important process throughout the oceans. Because...

  19. Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: relationship among Candida spp.

    OpenAIRE

    Silva-Dias, Ana; Miranda, Isabel M.; Branco, Joana; Monteiro-Soares, Matilde; Pina-Vaz, Cid?lia; Rodrigues, Ac?cio G.

    2015-01-01

    We have performed the characterization of the adhesion profile, biofilm formation, cell surface hydrophobicity (CSH) and antifungal susceptibility of 184 Candida clinical isolates obtained from different human reservoirs. Adhesion was quantified using a flow cytometric assay and biofilm formation was evaluated using two methodologies: XTT and crystal violet assay. CSH was quantified with the microbial adhesion to hydrocarbons test while planktonic susceptibility was assessed accordingly the C...

  20. The identification of plankton, water quality, blood cell, and histology in culture pond of tilapia Oreochromis niloticus which infected by viral nervous necrosis (VNN)

    Science.gov (United States)

    Yanuhar, U.; Rahayu, D. T.; Musa, M.; Arfiati, D.

    2018-04-01

    Currently, Viral Nervous Necrotic (VNN) is not only attacking the marine fish but also the freshwater fish like tilapia (Oreochromis niloticus). The aims of study to identify the type of plankton, water quality status, blood cell status, also histology of VNN infected tilapia obtained in culture ponds. The methods included plankton identification and water quality analysis from the infected fish pond in the Krakal, Blitar. The quality of blood cells and the histology of tilapia infected by VNN observed using a microscope with Hematoxylin-Eosin staining. The result show plankton in a fish pond of infected tilapia includes 3 divisions: Chlorophyta, Cyanophyta, and Bacillariophyta and 2 phyla: Arthropoda, and Rotifera. The values of erythrocyte, hematocrit, and hemoglobin were smaller than normal tilapia, however, the leukocyte and macronucleus values of VNN-infected fish were higher than normal fish. The fish histology shows the vacuolation in the brain and eyes tissue. The water quality of the culture pond have the temperature, pH, turbidity, DO, CO2, NO3, PO4, TOM in the range of 30-32°C 7.0-9.0; 25cm; 6.082–7.44mg/L 3.98–9.08mg/L 1.039–1.139 mg/L; 0.051-0.054mg/L; and 11.377-13.905mg/L, respectively. VNN causing high leukocyte and macronuclei and the damaging in brain and eyes tissue in infected tilapia.

  1. Marine biogeography and evolution : Diversity patterns of planktonic gastropods and amphipods

    NARCIS (Netherlands)

    Burridge, A.K.

    2017-01-01

    Current changes in the oceans, including global warming and ocean acidification, are partially caused by human activity, unlike earlier episodes of change throughout geological history. Understanding and forecasting the responses of marine organisms to these changes is top priority for scientists,

  2. Specialized activities and expression differences for Clostridium thermocellum biofilm and planktonic cells.

    Science.gov (United States)

    Dumitrache, Alexandru; Klingeman, Dawn M; Natzke, Jace; Rodriguez, Miguel; Giannone, Richard J; Hettich, Robert L; Davison, Brian H; Brown, Steven D

    2017-02-27

    Clostridium (Ruminiclostridium) thermocellum is a model organism for its ability to deconstruct plant biomass and convert the cellulose into ethanol. The bacterium forms biofilms adherent to lignocellulosic feedstocks in a continuous cell-monolayer in order to efficiently break down and uptake cellulose hydrolysates. We developed a novel bioreactor design to generate separate sessile and planktonic cell populations for omics studies. Sessile cells had significantly greater expression of genes involved in catabolism of carbohydrates by glycolysis and pyruvate fermentation, ATP generation by proton gradient, the anabolism of proteins and lipids and cellular functions critical for cell division consistent with substrate replete conditions. Planktonic cells had notably higher gene expression for flagellar motility and chemotaxis, cellulosomal cellulases and anchoring scaffoldins, and a range of stress induced homeostasis mechanisms such as oxidative stress protection by antioxidants and flavoprotein co-factors, methionine repair, Fe-S cluster assembly and repair in redox proteins, cell growth control through tRNA thiolation, recovery of damaged DNA by nucleotide excision repair and removal of terminal proteins by proteases. This study demonstrates that microbial attachment to cellulose substrate produces widespread gene expression changes for critical functions of this organism and provides physiological insights for two cells populations relevant for engineering of industrially-ready phenotypes.

  3. Insights into bioassessment of marine pollution using body-size distinctness of planktonic ciliates based on a modified trait hierarchy.

    Science.gov (United States)

    Xu, Henglong; Jiang, Yong; Xu, Guangjian

    2016-06-15

    Based on a modified trait hierarchy of body-size units, the feasibility for bioassessment of water pollution using body-size distinctness of planktonic ciliates was studied in a semi-enclosed bay, northern China. An annual dataset was collected at five sampling stations within a gradient of heavy metal contaminants. Results showed that: (1) in terms of probability density, the body-size spectra of the ciliates represented significant differences among the five stations; (2) bootstrap average analysis demonstrated a spatial variation in body-size rank patterns in response to pollution stress due to heavy metals; and (3) the average body-size distinctness (Δz(+)) and variation in body-size distinctness (Λz(+)), based on the modified trait hierarchy, revealed a clear departure pattern from the expected body-size spectra in areas with pollutants. These results suggest that the body-size diversity measures based on the modified trait hierarchy of the ciliates may be used as a potential indicator of marine pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Combined toxicity effects of chlorine, ammonia, and temperature on marine plankton. Progress report, September 16, 1975--September 30, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, J. C.; Ryther, J. H.

    1976-10-01

    Research on the combined effects of chlorine, ammmonia and temperature on marine plankton have been carried out for 20 months. To date continuous-flow bioassays have been conducted on lobster larvae (Homarus americanus), oyster larvae (Crassostrea virginica), copepods (Acartia tonsa), rotifers (Brachionus plicatilis), three juvenile and larval fish, killifish (Fundulus heteroclitus), scup (Stenotomus versicolor), and winter flounder (Pseudopleuronectes americanus), and phytoplankton (the diatom Phaeodactylum tricornutum). In addition, studies on zooplankton metabolism, filtration rates, and growth were carried out on exposed organisms. In general, the responses of invertebrates were distinctly different than those of fish: increasing mortality with increasing chlorine dose and greater sensitivity to chloramines than free chlorine in the former, and a threshold level of chlorine and greater sensitivity to free chlorine in the latter. Phytoplankton responses indicate that chlorine effects on primary producers are minimal compared to the serious effects on zooplankton, particularly larval forms that spawn intermittently. The overall conclusion of our studies is that chlorine application at power plants must be carried out with extreme caution and that serious consideration should be given to applying dechlorination at all coastal cooling systems.

  5. Taxonomic and functional diversity of a coastal planktonic bacterial community in a river-influenced marine area.

    Science.gov (United States)

    Thiele, Stefan; Richter, Michael; Balestra, Cecilia; Glöckner, Frank Oliver; Casotti, Raffaella

    2017-04-01

    The Gulf of Naples is a dynamical area with intense exchanges between offshore oligotrophic and coastal eutrophic waters with frequent freshwater inputs. The Sarno River, one of the most polluted rivers in Europe, strongly contributes to the pollution of the area, discharging high amounts of heavy metals and organic wastes from heavily cultivated and industrial areas. This paper reports on the diversity and community structure of the marine residential Bacteria and Archaea of the Gulf of Naples in an area close to the river Sarno plume and investigates their small-scale taxonomic diversity and expression patterns as a proxy of potential metabolic activity using metagenomics and metatranscriptomics. Bacteria and Archaea were mainly represented by marine clades, with only minor contributors from freshwater ones. The community was dominated by Alpha- and Gammaproteobacteria, of which Rhodospirillales, Pelagibacteriales, and Oceanospirilalles were most represented. However, Alteromonadales and Rhodobacterales were the most active, despite their relative lower abundance, suggesting that they are important for overall ecosystem functioning and nutrient cycling. Nitrification and a reversed form of dissimilatory sulfate reduction were the major metabolic processes found in the metatrascriptomes and were mainly associated to Nitrosopumilales and Pelagibacter, respectively. No clear indication of transcripts related to stress induced by heavy metals or organic pollutants was found. In general, despite the high loads of pollutants discharged continuously by the Sarno River, the microbial community did not show marks of stress-induced changes neither structural nor functional, thus suggesting that this river has little or no effect on the planktonic bacterial community of the Gulf of Naples. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Preliminary Transcriptome Analysis of Mature Biofilm and Planktonic Cells of Salmonella Enteritidis Exposure to Acid Stress

    Directory of Open Access Journals (Sweden)

    Kun Jia

    2017-09-01

    Full Text Available Salmonella has emerged as a well-recognized food-borne pathogen, with many strains able to form biofilms and thus cause cross-contamination in food processing environments where acid-based disinfectants are widely encountered. In the present study, RNA sequencing was employed to establish complete transcriptome profiles of Salmonella Enteritidis in the forms of planktonic and biofilm-associated cells cultured in Tryptic Soytone Broth (TSB and acidic TSB (aTSB. The gene expression patterns of S. Enteritidis significantly differed between biofilm-associated and planktonic cells cultivated under the same conditions. The assembled transcriptome of S. Enteritidis in this study contained 5,442 assembled transcripts, including 3,877 differentially expressed genes (DEGs identified in biofilm and planktonic cells. These DEGs were enriched in terms such as regulation of biological process, metabolic process, macromolecular complex, binding and transferase activity, which may play crucial roles in the biofilm formation of S. Enteritidis cultivated in aTSB. Three significant pathways were observed to be enriched under acidic conditions: bacterial chemotaxis, porphyrin-chlorophyll metabolism and sulfur metabolism. In addition, 15 differentially expressed novel non-coding small RNAs (sRNAs were identified, and only one was found to be up-regulated in mature biofilms. This preliminary study of the S. Enteritidis transcriptome serves as a basis for future investigations examining the complex network systems that regulate Salmonella biofilm in acidic environments, which provide information on biofilm formation and acid stress interaction that may facilitate the development of novel disinfection procedures in the food processing industry.

  7. Diversity of marine planktonic ostracods in South China Sea: a DNA taxonomy approach.

    Science.gov (United States)

    Xu, Lei; Wang, Lianggen; Ning, Jiajia; Li, Hong; Ji, Yingying; Du, Feiyan

    2018-04-19

    Ostracods (Crustacea, Ostracoda) are small bivalved crustaceans, contributing over 200 described species to the marine zooplankton community. They are widely distributed and are relatively abundant components of the mesozooplankton, playing an important role in the transport of organic matter to deep layers. However, identification of ostracods based on micro-morphological characters is extremely difficult and time-consuming. Previous fragmentary taxonomic studies of ostracods in the South China Sea (SCA), were based solely on morphology. Here, by analysing the mitochondrial COI gene, we explore the taxa across the SCA using molecular tools for the first time. Our results show that sequence divergence among species varies within a large range, from 12.93% to 35.82%. Sixteen of the taxonomic units recovered by DNA taxonomy agree well with morphology, but Paraconchoecia oblonga, Conchoecia magna and Halocypris brevirostris split into two clades each, each of which contains cryptic species.

  8. Production and decomposition of new DOC by marine plankton communities: carbohydrates, refractory components and nutrient limitation

    DEFF Research Database (Denmark)

    Kragh, T.; Søndergaard, Morten

    2009-01-01

    The accumulation and biodegradation of dissolved organic carbon (DOC) and dissolved and particulate combined neutral sugars (DCNS, PCNS) were followed during a period of 22 days in experimental marine phytoplankton incubations. Five different growth regimes were established in 11 m(3) coastal...... in the mesocosms with diatoms dominating could be explained by DCNS, while only 6% was explained in the mesocosms with few diatoms. PCNS composition was similar in all mesocosms and with dominance of glucose and mannose, while DCNS were more evenly distributed with the following mole percentages fucose 15......, rhamnose 14, arabinose 6, galactose 27, glucose 20 and mannose 18%. The DCNS composition did not reflect the PCNS composition at any time during the experiment. Accumulated DCNS were quickly degraded and only 1% of the new RDOC was explained by DCNS. RDOC accumulated after day #17 in the two mesocosms...

  9. Dynamics of autotrophic marine planktonic thaumarchaeota in the East China Sea.

    Science.gov (United States)

    Hu, Anyi; Yang, Zao; Yu, Chang-Ping; Jiao, Nianzhi

    2013-01-01

    The ubiquitous and abundant distribution of ammonia-oxidizing Thaumarchaeota in marine environments is now well documented, and their crucial role in the global nitrogen cycle has been highlighted. However, the potential contribution of Thaumarchaeota in the carbon cycle remains poorly understood. Here we present for the first time a seasonal investigation on the shelf region (bathymetry≤200 m) of the East China Sea (ECS) involving analysis of both thaumarchaeal 16S rRNA and autotrophy-related genes (acetyl-CoA carboxylase gene, accA). Quantitative PCR results clearly showed a higher abundance of thaumarchaeal 16S and accA genes in late-autumn (November) than summer (August), whereas the diversity and community structure of autotrophic Thaumarchaeota showed no statistically significant difference between different seasons as revealed by thaumarchaeal accA gene clone libraries. Phylogenetic analysis indicated that shallow ecotypes dominated the autotrophic Thaumarchaeota in the ECS shelf (86.3% of total sequences), while a novel non-marine thaumarchaeal accA lineage was identified in the Changjiang estuary in summer (when freshwater plumes become larger) but not in autumn, implying that Changjiang freshwater discharge played a certain role in transporting terrestrial microorganisms to the ECS. Multivariate statistical analysis indicated that the biogeography of the autotrophic Thaumarchaeota in the shelf water of the ECS was influenced by complex hydrographic conditions. However, an in silico comparative analysis suggested that the diversity and abundance of the autotrophic Thaumarchaeota might be biased by the 'universal' thaumarchaeal accA gene primers Cren529F/Cren981R since this primer set is likely to miss some members within particular phylogenetic groups. Collectively, this study improved our understanding of the biogeographic patterns of the autotrophic Thaumarchaeota in temperate coastal waters, and suggested that new accA primers with improved coverage

  10. Mandibular gnathobases of marine planktonic copepods – feeding tools with complex micro- and nanoscale composite architectures

    Directory of Open Access Journals (Sweden)

    Jan Michels

    2015-03-01

    Full Text Available Copepods are dominant members of the marine zooplankton. Their diets often comprise large proportions of diatom taxa whose silicified frustules are mechanically stable and offer protection against grazers. Despite of this protection, many copepod species are able to efficiently break even the most stable frustule types. This ability requires specific feeding tools with mechanically adapted architectures, compositions and properties. When ingesting food, the copepods use the gnathobases of their mandibles to grab and, if necessary, crush and mince the food items. The morphology of these gnathobases is related to the diets of the copepods. Gnathobases of copepod species that mainly feed on phytoplankton feature compact and stable tooth-like structures, so-called teeth. In several copepod species these gnathobase teeth have been found to contain silica. Recent studies revealed that the siliceous teeth are complex microscale composites with silica-containing cap-like structures located on chitinous exoskeleton sockets that are connected with rubber-like bearings formed by structures with high proportions of the soft and elastic protein resilin. In addition, the silica-containing cap-like structures exhibit a nanoscale composite architecture. They contain some amorphous silica and large proportions of the crystalline silica type α-cristobalite and are pervaded by a fine chitinous fibre network that very likely serves as a scaffold during the silicification process. All these intricate composite structures are assumed to be the result of a coevolution between the copepod gnathobases and diatom frustules in an evolutionary arms race. The composites very likely increase both the performance of the siliceous teeth and their resistance to mechanical damage, and it is conceivable that their development has favoured the copepods’ dominance of the marine zooplankton observed today.

  11. Inactivation kinetics of various chemical disinfectants on Aeromonas hydrophila planktonic cells and biofilms.

    Science.gov (United States)

    Jahid, Iqbal Kabir; Ha, Sang-Do

    2014-05-01

    The present article focuses on the inactivation kinetics of various disinfectants including ethanol, sodium hypochlorite, hydrogen peroxide, peracetic acid, and benzalkonium chloride against Aeromonas hydrophila biofilms and planktonic cells. Efficacy was determined by viable plate count and compared using a modified Weibull model. The removal of the biofilms matrix was determined by the crystal violet assay and was confirmed by field-emission scanning electron microscope. The results revealed that all the experimental data and calculated Weibull α (scale) and β (shape) parameters had a good fit, as the R(2) values were between 0.88 and 0.99. Biofilms are more resistant to disinfectants than planktonic cells. Ethanol (70%) was the most effective in killing cells in the biofilms and significantly reduced (preduction as well as the effectiveness of chemical disinfectants on biofilms. The study showed that the Weibull model could successfully be used on food and food contact surfaces to determine the exact contact time for killing biofilms-forming foodborne pathogens.

  12. Dynamics of autotrophic marine planktonic thaumarchaeota in the East China Sea.

    Directory of Open Access Journals (Sweden)

    Anyi Hu

    Full Text Available The ubiquitous and abundant distribution of ammonia-oxidizing Thaumarchaeota in marine environments is now well documented, and their crucial role in the global nitrogen cycle has been highlighted. However, the potential contribution of Thaumarchaeota in the carbon cycle remains poorly understood. Here we present for the first time a seasonal investigation on the shelf region (bathymetry≤200 m of the East China Sea (ECS involving analysis of both thaumarchaeal 16S rRNA and autotrophy-related genes (acetyl-CoA carboxylase gene, accA. Quantitative PCR results clearly showed a higher abundance of thaumarchaeal 16S and accA genes in late-autumn (November than summer (August, whereas the diversity and community structure of autotrophic Thaumarchaeota showed no statistically significant difference between different seasons as revealed by thaumarchaeal accA gene clone libraries. Phylogenetic analysis indicated that shallow ecotypes dominated the autotrophic Thaumarchaeota in the ECS shelf (86.3% of total sequences, while a novel non-marine thaumarchaeal accA lineage was identified in the Changjiang estuary in summer (when freshwater plumes become larger but not in autumn, implying that Changjiang freshwater discharge played a certain role in transporting terrestrial microorganisms to the ECS. Multivariate statistical analysis indicated that the biogeography of the autotrophic Thaumarchaeota in the shelf water of the ECS was influenced by complex hydrographic conditions. However, an in silico comparative analysis suggested that the diversity and abundance of the autotrophic Thaumarchaeota might be biased by the 'universal' thaumarchaeal accA gene primers Cren529F/Cren981R since this primer set is likely to miss some members within particular phylogenetic groups. Collectively, this study improved our understanding of the biogeographic patterns of the autotrophic Thaumarchaeota in temperate coastal waters, and suggested that new accA primers with

  13. Adhesion, biofilm formation, cell surface hydrophobicity and antifungal planktonic susceptibility: relationship among Candida spp.

    Directory of Open Access Journals (Sweden)

    Ana Isabel Silva-Dias

    2015-03-01

    Full Text Available We have performed the characterization of the adhesion profile, biofilm formation, cell surface hydrophobicity (CSH and antifungal susceptibility of 184 Candida clinical isolates obtained from different human reservoirs. Adhesion was quantified using a flow cytometric assay and biofilm formation was evaluated using two methodologies: XTT and crystal violet assay. CSH was quantified with the microbial adhesion to hydrocarbons test while planktonic susceptibility was assessed accordingly the CLSI protocol for yeast M27-A3 S4.Yeast cells of non-albicans species exhibit increased ability to adhere and form biofilm. However the correlation between adhesion and biofilm formation varied according to species and also with the methodology used for biofilm assessment. No association was found between strain´s site of isolation or planktonic antifungal susceptibility and adhesion or biofilm formation. Finally CSH seemed to be a good predictor for biofilm formation but not for adhesion.Despite the marked variability registered intra and inter species, C. tropicalis and C. parapsilosis were the species exhibiting high adhesion profile. C. tropicalis, C. guilliermondii and C. krusei revealed higher biofilm formation values in terms of biomass. C. parapsilosis was the species with lower biofilm metabolic activity.

  14. Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: relationship among Candida spp.

    Science.gov (United States)

    Silva-Dias, Ana; Miranda, Isabel M; Branco, Joana; Monteiro-Soares, Matilde; Pina-Vaz, Cidália; Rodrigues, Acácio G

    2015-01-01

    We have performed the characterization of the adhesion profile, biofilm formation, cell surface hydrophobicity (CSH) and antifungal susceptibility of 184 Candida clinical isolates obtained from different human reservoirs. Adhesion was quantified using a flow cytometric assay and biofilm formation was evaluated using two methodologies: XTT and crystal violet assay. CSH was quantified with the microbial adhesion to hydrocarbons test while planktonic susceptibility was assessed accordingly the CLSI protocol for yeast M27-A3 S4. Yeast cells of non-albicans species exhibit increased ability to adhere and form biofilm. However, the correlation between adhesion and biofilm formation varied according to species and also with the methodology used for biofilm assessment. No association was found between strain's site of isolation or planktonic antifungal susceptibility and adhesion or biofilm formation. Finally CSH seemed to be a good predictor for biofilm formation but not for adhesion. Despite the marked variability registered intra and inter species, C. tropicalis and C. parapsilosis were the species exhibiting high adhesion profile. C. tropicalis, C. guilliermondii, and C. krusei revealed higher biofilm formation values in terms of biomass. C. parapsilosis was the species with lower biofilm metabolic activity.

  15. Assembling the Marine Metagenome, One Cell at a Time

    Energy Technology Data Exchange (ETDEWEB)

    Woyke, Tanja; Xie, Gary; Copeland, Alex; Gonzalez, Jose M.; Han, Cliff; Kiss, Hajnalka; Saw, Jimmy H.; Senin, Pavel; Yang, Chi; Chatterji, Sourav; Cheng, Jan-Fang; Eisen, Jonathan A.; Sieracki, Michael E.; Stepanauskas, Ramunas

    2010-06-24

    The difficulty associated with the cultivation of most microorganisms and the complexity of natural microbial assemblages, such as marine plankton or human microbiome, hinder genome reconstruction of representative taxa using cultivation or metagenomic approaches. Here we used an alternative, single cell sequencing approach to obtain high-quality genome assemblies of two uncultured, numerically significant marine microorganisms. We employed fluorescence-activated cell sorting and multiple displacement amplification to obtain hundreds of micrograms of genomic DNA from individual, uncultured cells of two marine flavobacteria from the Gulf of Maine that were phylogenetically distant from existing cultured strains. Shotgun sequencing and genome finishing yielded 1.9 Mbp in 17 contigs and 1.5 Mbp in 21 contigs for the two flavobacteria, with estimated genome recoveries of about 91percent and 78percent, respectively. Only 0.24percent of the assembling sequences were contaminants and were removed from further analysis using rigorous quality control. In contrast to all cultured strains of marine flavobacteria, the two single cell genomes were excellent Global Ocean Sampling (GOS) metagenome fragment recruiters, demonstrating their numerical significance in the ocean. The geographic distribution of GOS recruits along the Northwest Atlantic coast coincided with ocean surface currents. Metabolic reconstruction indicated diverse potential energy sources, including biopolymer degradation, proteorhodopsin photometabolism, and hydrogen oxidation. Compared to cultured relatives, the two uncultured flavobacteria have small genome sizes, few non-coding nucleotides, and few paralogous genes, suggesting adaptations to narrow ecological niches. These features may have contributed to the abundance of the two taxa in specific regions of the ocean, and may have hindered their cultivation. We demonstrate the power of single cell DNA sequencing to generate reference genomes of uncultured

  16. Antifungal Activity of 14-Helical β-Peptides against Planktonic Cells and Biofilms of Candida Species

    Directory of Open Access Journals (Sweden)

    Namrata Raman

    2015-08-01

    Full Text Available Candida albicans is the most prevalent cause of fungal infections and treatment is further complicated by the formation of drug resistant biofilms, often on the surfaces of implanted medical devices. In recent years, the incidence of fungal infections by other pathogenic Candida species such as C. glabrata, C. parapsilosis and C. tropicalis has increased. Amphiphilic, helical β-peptide structural mimetics of natural antimicrobial α-peptides have been shown to exhibit specific planktonic antifungal and anti-biofilm formation activity against C. albicans in vitro. Here, we demonstrate that β-peptides are also active against clinically isolated and drug resistant strains of C. albicans and against other opportunistic Candida spp. Different Candida species were susceptible to β-peptides to varying degrees, with C. tropicalis being the most and C. glabrata being the least susceptible. β-peptide hydrophobicity directly correlated with antifungal activity against all the Candida clinical strains and species tested. While β-peptides were largely ineffective at disrupting existing Candida biofilms, hydrophobic β-peptides were able to prevent the formation of C. albicans, C. glabrata, C. parapsilosis and C. tropicalis biofilms. The broad-spectrum antifungal activity of β-peptides against planktonic cells and in preventing biofilm formation suggests the promise of this class of molecules as therapeutics.

  17. Addressing the impact of environmental uncertainty in plankton model calibration with a dedicated software system: the Marine Model Optimization Testbed (MarMOT 1.1 alpha)

    Science.gov (United States)

    Hemmings, J. C. P.; Challenor, P. G.

    2012-04-01

    A wide variety of different plankton system models have been coupled with ocean circulation models, with the aim of understanding and predicting aspects of environmental change. However, an ability to make reliable inferences about real-world processes from the model behaviour demands a quantitative understanding of model error that remains elusive. Assessment of coupled model output is inhibited by relatively limited observing system coverage of biogeochemical components. Any direct assessment of the plankton model is further inhibited by uncertainty in the physical state. Furthermore, comparative evaluation of plankton models on the basis of their design is inhibited by the sensitivity of their dynamics to many adjustable parameters. Parameter uncertainty has been widely addressed by calibrating models at data-rich ocean sites. However, relatively little attention has been given to quantifying uncertainty in the physical fields required by the plankton models at these sites, and tendencies in the biogeochemical properties due to the effects of horizontal processes are often neglected. Here we use model twin experiments, in which synthetic data are assimilated to estimate a system's known "true" parameters, to investigate the impact of error in a plankton model's environmental input data. The experiments are supported by a new software tool, the Marine Model Optimization Testbed, designed for rigorous analysis of plankton models in a multi-site 1-D framework. Simulated errors are derived from statistical characterizations of the mixed layer depth, the horizontal flux divergence tendencies of the biogeochemical tracers and the initial state. Plausible patterns of uncertainty in these data are shown to produce strong temporal and spatial variability in the expected simulation error variance over an annual cycle, indicating variation in the significance attributable to individual model-data differences. An inverse scheme using ensemble-based estimates of the

  18. Planktonic foraminiferal abnormalities in coastal and open marine eastern Mediterranean environments: A natural stress monitoring approach in recent and early Holocene marine systems

    Science.gov (United States)

    Antonarakou, A.; Kontakiotis, G.; Zarkogiannis, S.; Mortyn, P. G.; Drinia, H.; Koskeridou, E.; Anastasakis, G.

    2018-05-01

    Marine environmental status can be assessed through the study of bio-indicator species. Here, we monitor natural environmental stress by the occurrence of morphologically abnormal planktonic foraminiferal specimens from a suite of surface sediments in the eastern Mediterranean Sea. We also compare Scanning Electron Microscopy (SEM) abnormality observations from sapropel S1-derived sediments in the Aegean, Libyan and Levantine basins, since they provide a direct record of a natural stress experiment that took place over past time scales. At initial sapropel deposition levels, we observe increased growth asymmetry in Globigerinoides ruber twinned and twisted individuals, possibly associated with eutrophication and anoxia. In modern material, a range of malformations and aberrant morphologies from slight deformity with smaller or overdeveloped chambers to more severe deformity with abnormally protruding or misplaced chambers, distorted spirals, and double tests is also observed, as a result of the hypersaline, oligotrophic and oxygen-depleted nature of the Mediterranean Sea water column. Overall, we highlight the current use of the relative abundance of abnormal tests as a bio-indicator for monitoring natural stress, especially the occurrence of twin specimens as indicative of high-salinity stress conditions, and further illustrate the necessity to map both their spatial and temporal distribution for accurate paleoenvironmental reconstructions. Such an approach presents the advantage to rapidly provide information over wide spatial and temporal scales, extending our ability to monitor a wide variety of environments (from coastal to the open-sea). However, further investigations should extend this approach to test the robustness of our findings in a number of similar oceanic settings.

  19. Proinflammatory effect in whole blood by free soluble bacterial components released from planktonic and biofilm cells

    Directory of Open Access Journals (Sweden)

    Thay Bernard

    2008-11-01

    Full Text Available Abstract Background Aggregatibacter actinomycetemcomitans is an oral bacterium associated with aggressive forms of periodontitis. Increasing evidence points to a link between periodontitis and cardiovascular diseases, however, the underlying mechanisms are poorly understood. This study investigated the pathogenic potential of free-soluble surface material, released from live planktonic and biofilm A. actinomycetemcomitans cells. Results By employing an ex vivo insert model (filter pore size 20 nm we demonstrated that the A. actinomycetemcomitans strain D7S and its derivatives, in both planktonic and in biofilm life-form, released free-soluble surface material independent of outer membrane vesicles. This material clearly enhanced the production of several proinflammatory cytokines (IL-1β, TNF-α, IL-6, IL-8, MIP-1β in human whole blood, as evidenced by using a cytokine antibody array and dissociation-enhanced-lanthanide-fluorescent-immunoassay. In agreement with this, quantitative real-time PCR indicated a concomitant increase in transcription of each of these cytokine genes. Experiments in which the LPS activity was blocked with polymyxin B showed that the stimulatory effect was only partly LPS-dependent, suggesting the involvement of additional free-soluble factors. Consistent with this, MALDI-TOF-MS and immunoblotting revealed release of GroEL-like protein in free-soluble form. Conversely, the immunomodulatory toxins, cytolethal distending toxin and leukotoxin, and peptidoglycan-associated lipoprotein, appeared to be less important, as evidenced by studying strain D7S cdt/ltx double, and pal single mutants. In addition to A. actinomycetemcomitans a non-oral species, Escherichia coli strain IHE3034, tested in the same ex vivo model also released free-soluble surface material with proinflammatory activity. Conclusion A. actinomycetemcomitans, grown in biofilm and planktonic form, releases free-soluble surface material independent of outer

  20. Proinflammatory effect in whole blood by free soluble bacterial components released from planktonic and biofilm cells.

    Science.gov (United States)

    Oscarsson, Jan; Karched, Maribasappa; Thay, Bernard; Chen, Casey; Asikainen, Sirkka

    2008-11-27

    Aggregatibacter actinomycetemcomitans is an oral bacterium associated with aggressive forms of periodontitis. Increasing evidence points to a link between periodontitis and cardiovascular diseases, however, the underlying mechanisms are poorly understood. This study investigated the pathogenic potential of free-soluble surface material, released from live planktonic and biofilm A. actinomycetemcomitans cells. By employing an ex vivo insert model (filter pore size 20 nm) we demonstrated that the A. actinomycetemcomitans strain D7S and its derivatives, in both planktonic and in biofilm life-form, released free-soluble surface material independent of outer membrane vesicles. This material clearly enhanced the production of several proinflammatory cytokines (IL-1 beta, TNF-alpha, IL-6, IL-8, MIP-1 beta) in human whole blood, as evidenced by using a cytokine antibody array and dissociation-enhanced-lanthanide-fluorescent-immunoassay. In agreement with this, quantitative real-time PCR indicated a concomitant increase in transcription of each of these cytokine genes. Experiments in which the LPS activity was blocked with polymyxin B showed that the stimulatory effect was only partly LPS-dependent, suggesting the involvement of additional free-soluble factors. Consistent with this, MALDI-TOF-MS and immunoblotting revealed release of GroEL-like protein in free-soluble form. Conversely, the immunomodulatory toxins, cytolethal distending toxin and leukotoxin, and peptidoglycan-associated lipoprotein, appeared to be less important, as evidenced by studying strain D7S cdt/ltx double, and pal single mutants. In addition to A. actinomycetemcomitans a non-oral species, Escherichia coli strain IHE3034, tested in the same ex vivo model also released free-soluble surface material with proinflammatory activity. A. actinomycetemcomitans, grown in biofilm and planktonic form, releases free-soluble surface material independent of outer membrane vesicles, which induces proinflammatory

  1. Marine Biology

    Science.gov (United States)

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  2. Ecological Stoichiometry of Ocean Plankton

    Science.gov (United States)

    Moreno, Allison R.; Martiny, Adam C.

    2018-01-01

    Marine plankton elemental stoichiometric ratios can deviate from the Redfield ratio (106C:16N:1P); here, we examine physiological and biogeochemical mechanisms that lead to the observed variation across lineages, regions, and seasons. Many models of ecological stoichiometry blend together acclimative and adaptive responses to environmental conditions. These two pathways can have unique molecular mechanisms and stoichiometric outcomes, and we attempt to disentangle the two processes. We find that interactions between environmental conditions and cellular growth are key to understanding stoichiometric regulation, but the growth rates of most marine plankton populations are poorly constrained. We propose that specific physiological mechanisms have a strong impact on plankton and community stoichiometry in nutrient-rich environments, whereas biogeochemical interactions are important for the stoichiometry of the oligotrophic gyres. Finally, we outline key areas with missing information that is needed to advance understanding of the present and future ecological stoichiometry of ocean plankton.

  3. 3D Restoration Microscopy Improves Quantification of Enzyme-Labeled Fluorescence-Based Single-Cell Phosphatase Activity in Plankton

    OpenAIRE

    Diaz-de-Quijano, Daniel; Palacios, Pilar; Hornák, Karel; Felip, Marisol

    2014-01-01

    The ELF or fluorescence-labeled enzyme activity (FLEA) technique is a culture-independent single-cell tool for assessing plankton enzyme activity in close-to-in situ conditions. We demonstrate that single-cell FLEA quantifications based on two-dimensional (2D) image analysis were biased by up to one order of magnitude relative to deconvolved 3D. This was basically attributed to out-of-focus light, and partially to object size. Nevertheless, if sufficient cells were measured (25-40 cells), bia...

  4. Variable Responses to Carbon Utilization between Planktonic and Biofilm Cells of a Human Carrier Strain of Salmonella enterica Serovar Typhi.

    Directory of Open Access Journals (Sweden)

    Kalaivani Kalai Chelvam

    Full Text Available Salmonella enterica serovar Typhi (S. Typhi is a foodborne pathogen that causes typhoid fever and infects only humans. The ability of S. Typhi to survive outside the human host remains unclear, particularly in human carrier strains. In this study, we have investigated the catabolic activity of a human carrier S. Typhi strain in both planktonic and biofilm cells using the high-throughput Biolog Phenotype MicroArray, Minimum Biofilm Eradication Concentration (MBEC biofilm inoculator (96-well peg lid and whole genome sequence data. Additional strains of S. Typhi were tested to further validate the variation of catabolism in selected carbon substrates in the different bacterial growth phases. The analyzes of the carbon utilization data indicated that planktonic cells of the carrier strain, S. Typhi CR0044 could utilize a broader range of carbon substrates compared to biofilm cells. Pyruvic acid and succinic acid which are related to energy metabolism were actively catabolised in the planktonic stage compared to biofilm stage. On the other hand, glycerol, L-fucose, L-rhamnose (carbohydrates and D-threonine (amino acid were more actively catabolised by biofilm cells compared to planktonic cells. Notably, dextrin and pectin could induce strong biofilm formation in the human carrier strain of S. Typhi. However, pectin could not induce formation of biofilm in the other S. Typhi strains. Phenome data showed the utilization of certain carbon substrates which was supported by the presence of the catabolism-associated genes in S. Typhi CR0044. In conclusion, the findings showed the differential carbon utilization between planktonic and biofilm cells of a S. Typhi human carrier strain. The differences found in the carbon utilization profiles suggested that S. Typhi uses substrates mainly found in the human biliary mucus glycoprotein, gallbladder, liver and cortex of the kidney of the human host. The observed diversity in the carbon catabolism profiles among

  5. Kelimpahan dan Keanekaragaman Plankton di Perairan Selat Bali (Plankton Abundance and Diversity in the Bali Strait

    Directory of Open Access Journals (Sweden)

    Ruly Isfatul Khasanah

    2013-12-01

    transitional season in November 2012 and the west season in February 2013. This research was done to observe the differences in the abundance and diversity of plankton in the two monsoon seasons. Water sample and plankton sample were collected simultaneously at the same location. Water samples were taken using a water sampler, while plankton were taken by using a planktonnet with mesh size 20 μm. Samples were taken vertically and horizontally at a depth of 1 m and 20 m below the surface. The result of nutrient measurement at Bali Strait during transitional II season showed that the concentration of phosphate, nitrate, organic matter, sillica and chlorofill-a are higher than during west season. This result indicates that there is probably movement of water mass from deeper water column to shallower area. Phosphate and nitrate are required by phytoplankton to maintain their cell membrane and sillica are used to form cell wall, especially for diatom. The reasearch also revealed that diatom (Bacillariophyceae are 95,9 % of total species and abundance of phytoplankton, and the rest are Dinophyceae. It was found that highest abundance occur during transitional season was Rhizosolenia stolterfothii of 51.405 sel.L-1 (80,1 %. While during the west monsoon the Copepod had dominates at 8.178 cell.L-1 (88,3 %. These results indicate that with plankton abundance the Bali Strait has the potential to support pelagic marine life. Keywords: plankton, Bali strait, rhizosolenia stolterfothii, monsoon

  6. Disinfection efficiencies of sage and spearmint essential oils against planktonic and biofilm Staphylococcus aureus cells in comparison with sodium hypochlorite.

    Science.gov (United States)

    Vetas, Dimitrios; Dimitropoulou, Eleni; Mitropoulou, Gregoria; Kourkoutas, Yiannis; Giaouris, Efstathios

    2017-09-18

    Staphylococcus aureus causes human infections and foodborne intoxications. This study explored the potential antibacterial actions of sage and spearmint essential oils (EOs) against both its planktonic and biofilm cells, in comparison with sodium hypochlorite (NaOCl), a commonly applied chemical sanitizer. Initially, the minimum inhibitory and bactericidal concentrations (MICs, MBCs) of each plant mixture were determined against planktonic cultures, following growth at 30°C for 24h. Stationary phase planktonic bacteria were then individually exposed for 6min to either each EO (applied at 1-2×MBC; 2.5-5%), or NaOCl (250-450ppm). These were also left to form biofilms on 96-well polystyrene microplates, at 30°C for 96h, with medium renewal at 48h, in the presence of 10 different concentrations of each EO, expanding from sub- to super-inhibitory for planktonic growth, and the minimum biofilm inhibitory concentrations (MBICs; >90% inhibition) of each plant mixture were calculated. Formed biofilms were finally exposed for 6min to either each EO (applied at 2-6×MBC; 5-15%), or NaOCl (7500-25,000ppm; applied either alone or in combination with each EO at 5%). Results showed that both EOs presented MIC and MBC equal to 1.25 and 2.5%, respectively. As expected, their application at their MIC and above significantly inhibited biofilm formation, while spearmint EO was still able to cause this at ½ of its MIC, with MBICs equal to 1.25 and 0.63% for sage and spearmint EOs, respectively. Alarmingly, the application of both EOs at 1/8 to 1/16 of their MIC further increased biofilm formation. Regarding biofilm disinfection experiments, the individual application of each EO against the pre-established sessile communities resulted in log decrease ranges of 0.8-3logCFU/cm 2 , while in the case of NaOCl application (either alone or combined with each EO), the observed reductions never exceeded 1.7logCFU/cm 2 . These last results highlight the great antimicrobial recalcitrance of

  7. Flow cytometry detection of planktonic cells with polycyclic aromatic hydrocarbons sorbed to cell surfaces

    KAUST Repository

    Cerezo, Maria I.

    2017-02-17

    Polycyclic aromatic hydrocarbons are very important components of oil pollution. These pollutants tend to sorb to cell surfaces, exerting toxic effects on organisms. Our study developed a flow cytometric method for the detection of PAHs sorbed to phytoplankton by exploiting their spectral characteristics. We discriminated between cells with PAHs from cells free of PAHs. Clear discrimination was observed with flow cytometer provided with 375 or 405nm lasers in addition to the standard 488nm laser necessary to identify phytoplankton. Using this method, we measured the relationship between the percentages of phytoplankton organisms with PAHs, with the decrease in the growth rate. Moreover, the development of this method could be extended to facilitate the study of PAHs impact on cell cultures from a large variety of organisms.

  8. Flow cytometry detection of planktonic cells with polycyclic aromatic hydrocarbons sorbed to cell surfaces

    KAUST Repository

    Cerezo, Maria I.; Linden, Matthew; Agusti, Susana

    2017-01-01

    Polycyclic aromatic hydrocarbons are very important components of oil pollution. These pollutants tend to sorb to cell surfaces, exerting toxic effects on organisms. Our study developed a flow cytometric method for the detection of PAHs sorbed

  9. Relative invasion risk for plankton across marine and freshwater systems: examining efficacy of proposed international ballast water discharge standards.

    Directory of Open Access Journals (Sweden)

    Oscar Casas-Monroy

    Full Text Available Understanding the implications of different management strategies is necessary to identify best conservation trajectories for ecosystems exposed to anthropogenic stressors. For example, science-based risk assessments at large scales are needed to understand efficacy of different vector management approaches aimed at preventing biological invasions associated with commercial shipping. We conducted a landscape-scale analysis to examine the relative invasion risk of ballast water discharges among different shipping pathways (e.g., Transoceanic, Coastal or Domestic, ecosystems (e.g., freshwater, brackish and marine, and timescales (annual and per discharge event under current and future management regimes. The arrival and survival potential of nonindigenous species (NIS was estimated based on directional shipping networks and their associated propagule pressure, environmental similarity between donor-recipient ecosystems (based on salinity and temperature, and effects of current and future management strategies (i.e., ballast water exchange and treatment to meet proposed international biological discharge standards. Our findings show that current requirements for ballast water exchange effectively reduce invasion risk to freshwater ecosystems but are less protective of marine ecosystems because of greater environmental mismatch between source (oceanic and recipient (freshwater ecoregions. Future requirements for ballast water treatment are expected to reduce risk of zooplankton NIS introductions across ecosystem types but are expected to be less effective in reducing risk of phytoplankton NIS. This large-scale risk assessment across heterogeneous ecosystems represents a major step towards understanding the likelihood of invasion in relation to shipping networks, the relative efficacy of different invasion management regimes and seizing opportunities to reduce the ecological and economic implications of biological invasions.

  10. Combined treatments of enterocin AS-48 with biocides to improve the inactivation of methicillin-sensitive and methicillin-resistant Staphylococcus aureus planktonic and sessile cells.

    Science.gov (United States)

    Caballero Gómez, Natacha; Abriouel, Hikmate; Grande, M José; Pérez Pulido, Rubén; Gálvez, Antonio

    2013-05-15

    Control of staphylococci during cleaning and disinfection is important to the food industry. Broad-spectrum bacteriocins with proved anti-staphylococcal activity, such as enterocin AS-48, could open new possibilities for disinfection in combination with biocides. In the present study, enterocin AS-48 was tested singly or in combination with biocides against a cocktail of six Staphylococcus aureus strains (including three methicillin-resistant strains) in planktonic state as well as in biofilms formed on polystyrene microtiter plates. Cells were challenged with enterocin, biocides or enterocin/biocide combinations. Inactivation of planktonic cells increased significantly (penterocin AS-48 (25mg/l) was tested in combination with benzalkonium chloride (BC), cetrimide (CT) and hexadecylpyridinium chloride (HDP), and non-significantly in combination with didecyldimethylammonium bromide (AB), triclosan (TC), hexachlorophene (CF), polyhexamethylen guanidinium chloride (PHMG), chlorhexidine (CH) or P3-oxonia (OX). In the sessile state (24h biofilms), staphylococci required higher biocide concentrations in most cases, except for OX. Inactivation of sessile staphylococci increased remarkably when biocides were applied in combination with enterocin AS-48, especially when the bacteriocin was added at 50mg/l. During storage, the concentrations of sessile as well as planktonic cells in the treated samples decreased remarkably for BC, TC and PHMG, but OX failed to inhibit proliferation of the treated biofilms as well as growth of planktonic cells. The observed inhibitory effects during storage were potentiated when the biocides were combined with 50 mg/l enterocin AS-48. Results from this study suggest that selected combinations of enterocin AS-48 and biocides offer potential use against planktonic and sessile, methicillin-sensitive and methicillin-resistant S. aureus. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Synthetical Analysis for Morphology, biological Species, and stable Isotopes (SAMSI) of single-cell planktonic foraminifer

    Science.gov (United States)

    Ujiie, Y.; Kimoto, K.; Ishimura, T.

    2017-12-01

    Planktonic foraminifers are widely used in the studies of paleontology and paleoceanography, because the morphology of their calcareous shells is enough highly variable to identify the morphospecies and the chemical composition of the shells reflect ambient seawater condition. Although the morphospecies were believed to represent environments associating with latitudinal temperature range of the world ocean, molecular phylogeographic studies have unveiled the presence of multiple biological species in a single morphospecies and their species-specific distributions. This implicates the actual complexity of planktonic foraminiferal ecology. Conversely, these biological species have a high potential for providing novel ecological and environmental information to us. In order to reassess the morphological and geochemical characters of biological species, the DNA extraction method with the guanidium isothiocyanate buffer was developed to preserve the calcareous shells. The present study carefully tested the physical and chemical damages of the DNA extraction process to the shells, by our novel approaches with geochemical analysis of the shells after non-destructive analysis for morphometrics on a same specimen. First, we checked the changes of the shell densities between pre- and post-DNA extraction by using the micro-focus X-ray CT (MXCT) scanning. Based on the simultaneous measurement of a sample and the standard material, we confirmed no significant changes to the shell densities through the DNA extraction process. As a next step, we compared stable oxygen and carbon isotopes among individuals of three sample sets: (1) no chemical and incubation as control, (2) incubation in the DNA extraction buffer at 65-70°C for 40 minutes as standard way, and (3) incubation in the DNA extraction buffer at 65-70°C for 120 minutes, by using the microscale isotopic analytical system (MICAL3c). Consequently, there were no significant differences among the three sample sets. These

  12. A new apparatus to induce lysis of planktonic microbial cells by shock compression, cavitation and spray

    Science.gov (United States)

    Schiffer, A.; Gardner, M. N.; Lynn, R. H.; Tagarielli, V. L.

    2017-03-01

    Experiments were conducted on an aqueous growth medium containing cultures of Escherichia coli (E. coli) XL1-Blue, to investigate, in a single experiment, the effect of two types of dynamic mechanical loading on cellular integrity. A bespoke shock tube was used to subject separate portions of a planktonic bacterial culture to two different loading sequences: (i) shock compression followed by cavitation, and (ii) shock compression followed by spray. The apparatus allows the generation of an adjustable loading shock wave of magnitude up to 300 MPa in a sterile laboratory environment. Cultures of E. coli were tested with this apparatus and the spread-plate technique was used to measure the survivability after mechanical loading. The loading sequence (ii) gave higher mortality than (i), suggesting that the bacteria are more vulnerable to shear deformation and cavitation than to hydrostatic compression. We present the results of preliminary experiments and suggestions for further experimental work; we discuss the potential applications of this technique to sterilize large volumes of fluid samples.

  13. The effect of a plasma needle on bacteria in planktonic samples and on peripheral blood mesenchymal stem cells

    International Nuclear Information System (INIS)

    Lazovic, Sasa; Puac, Nevena; Maletic, Dejan; Malovic, Gordana; Petrovic, Zoran; Miletic, Maja; Pavlica, Dusan; Jovanovic, Milena; Milenkovic, Pavle; Bugarski, Diana; Mojsilovic, Slavko

    2010-01-01

    In this paper, we study the application of a plasma needle to induce necrosis in planktonic samples containing a single breed of bacteria. Two different types of bacteria, Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922), were covered in this study. In all experiments with bacteria, the samples were liquid suspensions of several different concentrations of bacteria prepared according to the McFarland standard. The second system studied in this paper was human peripheral blood mesenchymal stem cells (hPB-MSC). In the case of hPB-MSC, two sets of experiments were performed: when cells were covered with a certain amount of liquid (indirect) and when the cell sample was in direct contact with the plasma. Most importantly, the study is made with the aim to see the effects when the living cells are in a liquid medium, which normally acts as protection against the many agents that may be released by plasmas. It was found that a good effect may be expected for a wide range of initial cell densities and operating conditions causing destruction of several orders of magnitude even under the protection of a liquid. It was established independently that a temperature increase could not affect the cells under the conditions of our experiment, so the effect could originate only from the active species produced by the plasma. In the case of those hPB-MSC that were not protected by a liquid, gas flow proved to produce a considerable effect, presumably due to poor adhesion of the cells, but in a liquid the effect was only due to the plasma. Further optimization of the operation may be attempted, opening up the possibility of localized in vivo sterilization.

  14. The effect of a plasma needle on bacteria in planktonic samples and on peripheral blood mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Lazovic, Sasa; Puac, Nevena; Maletic, Dejan; Malovic, Gordana; Petrovic, Zoran [Institute of Physics, Pregrevica 118, 11080 Belgrade (Serbia); Miletic, Maja; Pavlica, Dusan; Jovanovic, Milena; Milenkovic, Pavle [Faculty of Stomatology, Dr Subotica 8, 11000 Belgrade (Serbia); Bugarski, Diana; Mojsilovic, Slavko, E-mail: lazovic@ipb.ac.r [Institute for Medical Research, Dr Subotica-starijeg 4, 11000 Belgrade (Serbia)

    2010-08-15

    In this paper, we study the application of a plasma needle to induce necrosis in planktonic samples containing a single breed of bacteria. Two different types of bacteria, Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922), were covered in this study. In all experiments with bacteria, the samples were liquid suspensions of several different concentrations of bacteria prepared according to the McFarland standard. The second system studied in this paper was human peripheral blood mesenchymal stem cells (hPB-MSC). In the case of hPB-MSC, two sets of experiments were performed: when cells were covered with a certain amount of liquid (indirect) and when the cell sample was in direct contact with the plasma. Most importantly, the study is made with the aim to see the effects when the living cells are in a liquid medium, which normally acts as protection against the many agents that may be released by plasmas. It was found that a good effect may be expected for a wide range of initial cell densities and operating conditions causing destruction of several orders of magnitude even under the protection of a liquid. It was established independently that a temperature increase could not affect the cells under the conditions of our experiment, so the effect could originate only from the active species produced by the plasma. In the case of those hPB-MSC that were not protected by a liquid, gas flow proved to produce a considerable effect, presumably due to poor adhesion of the cells, but in a liquid the effect was only due to the plasma. Further optimization of the operation may be attempted, opening up the possibility of localized in vivo sterilization.

  15. The effect of a plasma needle on bacteria in planktonic samples and on peripheral blood mesenchymal stem cells

    Science.gov (United States)

    Lazović, Saša; Puač, Nevena; Miletić, Maja; Pavlica, Dušan; Jovanović, Milena; Bugarski, Diana; Mojsilović, Slavko; Maletić, Dejan; Malović, Gordana; Milenković, Pavle; Petrović, Zoran

    2010-08-01

    In this paper, we study the application of a plasma needle to induce necrosis in planktonic samples containing a single breed of bacteria. Two different types of bacteria, Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922), were covered in this study. In all experiments with bacteria, the samples were liquid suspensions of several different concentrations of bacteria prepared according to the McFarland standard. The second system studied in this paper was human peripheral blood mesenchymal stem cells (hPB-MSC). In the case of hPB-MSC, two sets of experiments were performed: when cells were covered with a certain amount of liquid (indirect) and when the cell sample was in direct contact with the plasma. Most importantly, the study is made with the aim to see the effects when the living cells are in a liquid medium, which normally acts as protection against the many agents that may be released by plasmas. It was found that a good effect may be expected for a wide range of initial cell densities and operating conditions causing destruction of several orders of magnitude even under the protection of a liquid. It was established independently that a temperature increase could not affect the cells under the conditions of our experiment, so the effect could originate only from the active species produced by the plasma. In the case of those hPB-MSC that were not protected by a liquid, gas flow proved to produce a considerable effect, presumably due to poor adhesion of the cells, but in a liquid the effect was only due to the plasma. Further optimization of the operation may be attempted, opening up the possibility of localized in vivo sterilization.

  16. Whole transcriptome analysis of Acinetobacter baumannii assessed by RNA-sequencing reveals different mRNA expression profiles in biofilm compared to planktonic cells.

    Directory of Open Access Journals (Sweden)

    Soraya Rumbo-Feal

    Full Text Available Acinetobacterbaumannii has emerged as a dangerous opportunistic pathogen, with many strains able to form biofilms and thus cause persistent infections. The aim of the present study was to use high-throughput sequencing techniques to establish complete transcriptome profiles of planktonic (free-living and sessile (biofilm forms of A. baumannii ATCC 17978 and thereby identify differences in their gene expression patterns. Collections of mRNA from planktonic (both exponential and stationary phase cultures and sessile (biofilm cells were sequenced. Six mRNA libraries were prepared following the mRNA-Seq protocols from Illumina. Reads were obtained in a HiScanSQ platform and mapped against the complete genome to describe the complete mRNA transcriptomes of planktonic and sessile cells. The results showed that the gene expression pattern of A. baumannii biofilm cells was distinct from that of planktonic cells, including 1621 genes over-expressed in biofilms relative to stationary phase cells and 55 genes expressed only in biofilms. These differences suggested important changes in amino acid and fatty acid metabolism, motility, active transport, DNA-methylation, iron acquisition, transcriptional regulation, and quorum sensing, among other processes. Disruption or deletion of five of these genes caused a significant decrease in biofilm formation ability in the corresponding mutant strains. Among the genes over-expressed in biofilm cells were those in an operon involved in quorum sensing. One of them, encoding an acyl carrier protein, was shown to be involved in biofilm formation as demonstrated by the significant decrease in biofilm formation by the corresponding knockout strain. The present work serves as a basis for future studies examining the complex network systems that regulate bacterial biofilm formation and maintenance.

  17. Differential roles of RND efflux pumps in antimicrobial drug resistance of sessile and planktonic Burkholderia cenocepacia cells.

    Science.gov (United States)

    Buroni, Silvia; Matthijs, Nele; Spadaro, Francesca; Van Acker, Heleen; Scoffone, Viola C; Pasca, Maria Rosalia; Riccardi, Giovanna; Coenye, Tom

    2014-12-01

    Burkholderia cenocepacia is notorious for causing respiratory tract infections in people with cystic fibrosis. Infections with this organism are particularly difficult to treat due to its high level of intrinsic resistance to most antibiotics. Multidrug resistance in B. cenocepacia can be ascribed to different mechanisms, including the activity of efflux pumps and biofilm formation. In the present study, the effects of deletion of the 16 operons encoding resistance-nodulation-cell division (RND)-type efflux pumps in B. cenocepacia strain J2315 were investigated by determining the MICs of various antibiotics and by investigating the antibiofilm effect of these antibiotics. Finally, the expression levels of selected RND genes in treated and untreated cultures were investigated using reverse transcriptase quantitative PCR (RT-qPCR). Our data indicate that the RND-3 and RND-4 efflux pumps are important for resistance to various antimicrobial drugs (including tobramycin and ciprofloxacin) in planktonic B. cenocepacia J2315 populations, while the RND-3, RND-8, and RND-9 efflux systems protect biofilm-grown cells against tobramycin. The RND-8 and RND-9 efflux pumps are not involved in ciprofloxacin resistance. Results from the RT-qPCR experiments on the wild-type strain B. cenocepacia J2315 suggest that there is little regulation at the level of mRNA expression for these efflux pumps under the conditions tested. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. Comparison of transcriptional heterogeneity of eight genes between batch Desulfovibrio vulgaris biofilm and planktonic culture at a single-cell level

    Directory of Open Access Journals (Sweden)

    Zhenhua eQi

    2016-04-01

    Full Text Available Sulfate-reducing bacteria (SRB biofilm formed on metal surfaces can change the physicochemical properties of metals and cause metal corrosion. To enhance understanding of differential gene expression in Desulfovibrio vulgaris under planktonic and biofilm growth modes, a single-cell based RT-qPCR approach was applied to determine gene expression levels of 8 selected target genes in four sets of the 31 individual cells isolated from each growth condition (i.e., biofilm formed on a stainless steel (SS) and planktonic cultures, exponential and stationary phases. The results showed obvious gene-expression heterogeneity for the target genes among D. vulgaris single cells of both biofilm and planktonic cultures. In addition, an increased gene-expression heterogeneity in the D. vulgaris biofilm when compared with the planktonic culture was also observed for seven out of eight selected genes, which may be contributing to the increased complexity in terms of structures and morphology in the biofilm. Moreover, the results showed up-regulation of DVU0281 gene encoding exopolysaccharide biosynthesis protein, and down-regulation of genes involved in energy metabolism (i.e., DVU0434 and DVU0588, stress responses (i.e., DVU2410 and response regulator (i.e., DVU3062 in the D. vulgaris biofilm cells. Finally, the gene (DVU2571 involved in iron transportation was found down-regulated, and two genes (DVU1340 and DVU1397 involved in ferric uptake repressor and iron storage were up-regulated in D. vulgaris biofilm, suggesting their possible roles in maintaining normal metabolism of the D. vulgaris biofilm under environments of high concentration of iron. This study showed that the single-cell based analysis could be a useful approach in deciphering metabolism of microbial biofilms.

  19. Origanum vulgare subsp. hirtum essential oil prevented biofilm formation and showed antibacterial activity against planktonic and sessile bacterial cells.

    Science.gov (United States)

    Schillaci, Domenico; Napoli, Edoardo Marco; Cusimano, Maria Grazia; Vitale, Maria; Ruberto, Andgiuseppe

    2013-10-01

    Essential oils from six different populations of Origanum vulgare subsp. hirtum were compared for their antibiofilm properties. The six essential oils (A to F) were characterized by a combination of gas chromatography with flame ionization detector and gas chromatography with mass spectrometer detector analyses. All oils showed weak activity against the planktonic form of a group of Staphylococcus aureus strains and against a Pseudomonas aeruginosa ATCC 15442 reference strain. The ability to inhibit biofilm formation was investigated at sub-MIC levels of 200, 100, and 50 m g/ml by staining sessile cells with safranin. Sample E showed the highest average effectiveness against all tested strains at 50 m g/ml and had inhibition percentages ranging from 30 to 52%. In the screening that used preformed biofilm from the reference strain P. aeruginosa, essential oils A through E were inactive at 200 m g/ml; F was active with a percentage of inhibition equal to 53.2%. Oregano essential oil can inhibit the formation of biofilms of various food pathogens and food spoilage organisms.

  20. Comprehensive model of annual plankton succession based on the whole-plankton time series approach.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Romagnan

    Full Text Available Ecological succession provides a widely accepted description of seasonal changes in phytoplankton and mesozooplankton assemblages in the natural environment, but concurrent changes in smaller (i.e. microbes and larger (i.e. macroplankton organisms are not included in the model because plankton ranging from bacteria to jellies are seldom sampled and analyzed simultaneously. Here we studied, for the first time in the aquatic literature, the succession of marine plankton in the whole-plankton assemblage that spanned 5 orders of magnitude in size from microbes to macroplankton predators (not including fish or fish larvae, for which no consistent data were available. Samples were collected in the northwestern Mediterranean Sea (Bay of Villefranche weekly during 10 months. Simultaneously collected samples were analyzed by flow cytometry, inverse microscopy, FlowCam, and ZooScan. The whole-plankton assemblage underwent sharp reorganizations that corresponded to bottom-up events of vertical mixing in the water-column, and its development was top-down controlled by large gelatinous filter feeders and predators. Based on the results provided by our novel whole-plankton assemblage approach, we propose a new comprehensive conceptual model of the annual plankton succession (i.e. whole plankton model characterized by both stepwise stacking of four broad trophic communities from early spring through summer, which is a new concept, and progressive replacement of ecological plankton categories within the different trophic communities, as recognised traditionally.

  1. Plankton biodiversity of Dharamtar creek adjoining Mumbai harbour

    Digital Repository Service at National Institute of Oceanography (India)

    Tiwari, L.R.; Nair, V.R.

    rich plankton community. However, recent industrial development along the banks of creek may pose the problem due to waste disposal into this creek system. Losses of marine life diversity are largely the results of conflicting uses, in particular...

  2. Trophic strategies of unicellular plankton

    DEFF Research Database (Denmark)

    Chakraborty, Subhendu; Nielsen, Lasse Tor; Andersen, Ken Haste

    2017-01-01

    . To this end, we develop and calibrate a trait-based model for unicellular planktonic organisms characterized by four traits: cell size and investments in phototrophy, nutrient uptake, and phagotrophy. We use the model to predict how optimal trophic strategies depend on cell size under various environmental...... unicellulars are colimited by organic carbon and nutrients, and only large photoautotrophs and smaller mixotrophs are nutrient limited; (2) trophic strategy is bottom-up selected by the environment, while optimal size is top-down selected by predation. The focus on cell size and trophic strategies facilitates......Unicellular plankton employ trophic strategies ranging from pure photoautotrophs over mixotrophy to obligate heterotrophs (phagotrophs), with cell sizes from 10-8 to 1 μg C. A full understanding of how trophic strategy and cell size depend on resource environment and predation is lacking...

  3. Quantification and localization of trace metals in natural plankton using a synchrotron x-ray fluorescence microprobe

    International Nuclear Information System (INIS)

    Twining, B. S.; Baines, S. B.; Fisher, N. S.; Jacobsen, C.; Maser, J.; State Univ. of New York at Stony Brook

    2003-01-01

    The accumulation of trace metals by planktonic protists influences the growth of primary producers, metal biogeochemical cycling, and metal bioaccumulation in aquatic food chains. Despite their importance, unequivocal measurements of trace element concentrations in individual plankton cells have not been possible to date. We have used the 2-ID-E side-branch hard x-ray microprobe at the Advanced Photon Source to measure trace elements in individual marine plankton cells. This microprobe employs zoneplate optics to produce the sub-micron spatial resolution and low background fluorescence required to produce trace element maps of planktonic protist cells ranging in size from 3 to >50 (micro)m. We have developed preservation, rinsing, and mounting protocols that remove most of the salt from our marine samples, thus simplifying the identification of unknown cells and reducing high Cl-related background fluorescence. We have also developed spectral modeling techniques that account for the frequent overlap of adjacent fluorescence peaks and non-uniform detector response. Finally, we have used parallel soft x-ray transmission and epifluorescence microscopy images to estimate C normalized trace element concentrations, identify functional cell types (e.g., photosynthetic vs. non-photosynthetic), and correlate cell structures with spatial patterns in trace element fluorescence

  4. Effect of hypochlorite on the planktonic and attached (biofilm) diatom cells

    International Nuclear Information System (INIS)

    Nancharaiah, Y.V.; Vinnitha, E.; Venugopalan, V.P.

    2008-01-01

    Rapid, sensitive, multi-species and multi-parametric techniques are desirable for determining treatment efficacy and environmentally realistic toxicity assessment of oxidizing biocides. In this work, the effect of in-use levels the antifouling biocide chlorine was studied using attached and freely suspended cultures of the diatom Cocconeis scutellum. Using confocal microscopy, in vivo chlorophyll fluorescence was collected in x, y and z dimensions for determining mean fluorescence intensity (MFI) per individual cell and related to hypochlorite treatment. The inhibition in the chlorophyll fluorescence of C. scutellum cells was almost 50% after 1 hour of treatment with 2 mg l -1 of added hypochlorite (1.2 mg l -1 total residual oxidant, TRO) and increased to 68 % during recovery period (18 h). On the contrary, attached Cocconeis cells did not show any significant reduction in their chlorophyll fluorescence after treatment with up to 3 mg l -1 hypochlorite for up to 3 h. Reduction in the chlorophyll fluorescence in the attached Cocconeis cells was observed after prolonged (18 h) incubation in seawater dosed with 2.3 or 3.8 mg I-I hypochlorite (1.5 and 3 mg l -1 TRO). The data obtained in this study clearly suggest that (i) hypochlorite treated diatom cells do not recover in terms of chlorophyll fluorescence in short-term assays and (ii) attached diatom cells exhibit enhanced resistance to chlorination-induced cellular injury. (author)

  5. Modelling emergent trophic strategies in plankton

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Aksnes, Dag L.; Berge, Terje

    2015-01-01

    Plankton are typically divided into phytoplankton and zooplankton in marine ecosystem models. Yet, most protists in the photic zone engage in some degree of phagotrophy, and it has been suggested that trophic strategy is really a continuum between pure phototrophs (phytoplankton) and pure...

  6. Roles for Cell Wall Glycopeptidolipid in Surface Adherence and Planktonic Dispersal of Mycobacterium avium

    Science.gov (United States)

    The opportunistic pathogen Mycobacterium avium is a significant inhabitant of biofilms in drinking water distribution systems. M. avium expresses on its cell surface serovar-specific glycopeptidolipids (ssGPLs). Studies have implicated the core GPL in biofilm formation by M. aviu...

  7. Marine snow, zooplankton and thin layers: indications of a trophic link from small-scale sampling with the Video Plankton Recorder

    DEFF Research Database (Denmark)

    Möller, Klas O.; St. John, Michael; Temming, Axel

    2012-01-01

    Marine aggregates of biogenic origin, known as marine snow, are considered to play a major role in the ocean’s particle flux and may represent a concentrated food source for zooplankton. However, observing the marine snow−zooplankton interaction in the field is difficult since conventional net sa...... to aggregates and demonstrating feeding behaviour, which also suggests a trophic interaction. Our observations highlight the potential significance of marine snow in marine ecosystems and its potential as a food resource for various trophic levels, from bacteria up to fish...

  8. Morphological and Production Changes in Planktonic and Biofilm Cells Monitored Using SEM and Raman Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Hrubanová, Kamila; Krzyžánek, Vladislav; Samek, Ota; Skoupý, Radim; Šiler, Martin; Ježek, Jan; Obruča, S.; Zemánek, Pavel

    2017-01-01

    Roč. 23, S1 (2017), s. 1158-1159 ISSN 1431-9276 R&D Projects: GA ČR(CZ) GA15-20645S; GA ČR(CZ) GA16-12477S; GA ČR(CZ) GA17-15451S; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : biofilm cells * SEM * Raman spectroscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Electrical and electronic engineering Impact factor: 1.891, year: 2016

  9. Evaluation of the Effects of Photodynamic Therapy Alone and Combined with Standard Antifungal Therapy on Planktonic Cells and Biofilms of Fusarium spp. and Exophiala spp.

    Science.gov (United States)

    Gao, Lujuan; Jiang, Shaojie; Sun, Yi; Deng, Meiqi; Wu, Qingzhi; Li, Ming; Zeng, Tongxiang

    2016-01-01

    Infections of Fusarium spp. and Exophiala spp. are often chronic, recalcitrant, resulting in significant morbidity, causing discomfort, disfigurement, social isolation. Systemic disseminations happen in compromised patients, which are often refractory to available antifungal therapies and thereby lead to death. The antimicrobial photodynamic therapy (aPDT) has been demonstrated to effectively inactivate multiple pathogenic fungi and is considered as a promising alternative treatment for mycoses. In the present study, we applied methylene blue (8, 16, and 32 μg/ml) as a photosensitizing agent and light emitting diode (635 ± 10 nm, 12 and 24 J/cm(2)), and evaluated the effects of photodynamic inactivation on five strains of Fusarium spp. and five strains of Exophiala spp., as well as photodynamic effects on in vitro susceptibility to itraconazole, voriconazole, posaconazole and amphotericin B, both planktonic and biofilm forms. Photodynamic therapy was efficient in reducing the growth of all strains tested, exhibiting colony forming unit-reductions of up to 6.4 log10 and 5.6 log10 against planktonic cultures and biofilms, respectively. However, biofilms were less sensitive since the irradiation time was twice longer than that of planktonic cultures. Notably, the photodynamic effects against Fusarium strains with high minimal inhibitory concentration (MIC) values of ≥16, 4-8, 4-8, and 2-4 μg/ml for itraconazole, voriconazole, posaconazole and amphotericin B, respectively, were comparable or even superior to Exophiala spp., despite Exophiala spp. showed relatively better antifungal susceptibility profile. MIC ranges against planktonic cells of both species were up to 64 times lower after aPDT treatment. Biofilms of both species showed high sessile MIC50 (SMIC50) and SMIC80 of ≥16 μg/ml for all azoles tested and variable susceptibilities to amphotericin B, with SMIC ranging between 1 and 16 μg/ml. Biofilms subjected to aPDT exhibited a distinct reduction in

  10. Unraveling the intricate dynamics of planktonic Arctic marine food webs. A sensitivity analysis of a well-documented food web model

    Science.gov (United States)

    Saint-Béat, Blanche; Maps, Frédéric; Babin, Marcel

    2018-01-01

    The extreme and variable environment shapes the functioning of Arctic ecosystems and the life cycles of its species. This delicate balance is now threatened by the unprecedented pace and magnitude of global climate change and anthropogenic pressure. Understanding the long-term consequences of these changes remains an elusive, yet pressing, goal. Our work was specifically aimed at identifying which biological processes impact Arctic planktonic ecosystem functioning, and how. Ecological Network Analysis (ENA) indices reveal emergent ecosystem properties that are not accessible through simple in situ observation. These indices are based on the architecture of carbon flows within food webs. But, despite the recent increase in in situ measurements from Arctic seas, many flow values remain unknown. Linear inverse modeling (LIM) allows missing flow values to be estimated from existing flow observations and, subsequent reconstruction of ecosystem food webs. Through a sensitivity analysis on a LIM model of the Amundsen Gulf in the Canadian Arctic, we were able to determine which processes affected the emergent properties of the planktonic ecosystem. The analysis highlighted the importance of an accurate knowledge of the various processes controlling bacterial production (e.g. bacterial growth efficiency and viral lysis). More importantly, a change in the fate of the microzooplankton within the food web can be monitored through the trophic level of mesozooplankton. It can be used as a "canary in the coal mine" signal, a forewarner of larger ecosystem change.

  11. In vitro activity of the new water-dispersible Fe3O4@usnic acid nanostructure against planktonic and sessile bacterial cells

    Science.gov (United States)

    Grumezescu, Alexandru Mihai; Cotar, Ani Ioana; Andronescu, Ecaterina; Ficai, Anton; Ghitulica, Cristina Daniela; Grumezescu, Valentina; Vasile, Bogdan Stefan; Chifiriuc, Mariana Carmen

    2013-07-01

    A new water-dispersible nanostructure based on magnetite (Fe3O4) and usnic acid (UA) was prepared in a well-shaped spherical form by a precipitation method. Nanoparticles were well individualized and homogeneous in size. The presence of Fe3O4@UA was confirmed by transmission electron microscopy, Fourier transform-infrared spectroscopy, and X-ray diffraction. The UA was entrapped in the magnetic nanoparticles during preparation and the amount of entrapped UA was estimated by thermogravimetric analysis. Fabricated nanostructures were tested on planktonic cells growth (minimal inhibitory concentration assay) and biofilm development on Gram-positive Staphylococcus aureus ( S. aureus), Enterococcus faecalis ( E. faecalis) and Gram-negative Escherichia coli ( E. coli), Pseudomonas aeruginosa (P. aeruginosa) reference strains. Concerning the influence of Fe3O4@UA on the planktonic bacterial cells, the functionalized magnetic nanoparticles exhibited a significantly improved antimicrobial activity against E. faecalis and E. coli, as compared with the Fe3O4 control. The UA incorporated into the magnetic nanoparticles exhibited a very significant inhibitory effect on the biofilm formed by the S. aureus and E. faecalis, on a wide range of concentrations, while in case of the Gram-negative microbial strains, the UA-loaded nanoparticles inhibited the E. coli biofilm development, only at high concentrations, while for P. aeruginosa biofilms, no inhibitory effect was observed. The obtained results demonstrate that the new water-dispersible Fe3O4@UA nanosystem, combining the advantages of the intrinsic antimicrobial features of the UA with the higher surface to volume ratio provided by the magnetic nanocarrier dispersible in water, exhibits efficient antimicrobial activity against planktonic and adherent cells, especially on Gram-positive strains.

  12. In vitro activity of the new water-dispersible Fe3O4@usnic acid nanostructure against planktonic and sessile bacterial cells

    International Nuclear Information System (INIS)

    Grumezescu, Alexandru Mihai; Cotar, Ani Ioana; Andronescu, Ecaterina; Ficai, Anton; Ghitulica, Cristina Daniela; Grumezescu, Valentina; Vasile, Bogdan Stefan; Chifiriuc, Mariana Carmen

    2013-01-01

    A new water-dispersible nanostructure based on magnetite (Fe 3 O 4 ) and usnic acid (UA) was prepared in a well-shaped spherical form by a precipitation method. Nanoparticles were well individualized and homogeneous in size. The presence of Fe 3 O 4 @UA was confirmed by transmission electron microscopy, Fourier transform-infrared spectroscopy, and X-ray diffraction. The UA was entrapped in the magnetic nanoparticles during preparation and the amount of entrapped UA was estimated by thermogravimetric analysis. Fabricated nanostructures were tested on planktonic cells growth (minimal inhibitory concentration assay) and biofilm development on Gram-positive Staphylococcusaureus (S.aureus),Enterococcus faecalis (E.faecalis) and Gram-negative Escherichia coli (E.coli),Pseudomonasaeruginosa (P.aeruginosa) reference strains. Concerning the influence of Fe 3 O 4 @UA on the planktonic bacterial cells, the functionalized magnetic nanoparticles exhibited a significantly improved antimicrobial activity against E.faecalis and E.coli, as compared with the Fe 3 O 4 control. The UA incorporated into the magnetic nanoparticles exhibited a very significant inhibitory effect on the biofilm formed by the S.aureus and E.faecalis, on a wide range of concentrations, while in case of the Gram-negative microbial strains, the UA-loaded nanoparticles inhibited the E.coli biofilm development, only at high concentrations, while for P.aeruginosa biofilms, no inhibitory effect was observed. The obtained results demonstrate that the new water-dispersible Fe 3 O 4 @UA nanosystem, combining the advantages of the intrinsic antimicrobial features of the UA with the higher surface to volume ratio provided by the magnetic nanocarrier dispersible in water, exhibits efficient antimicrobial activity against planktonic and adherent cells, especially on Gram-positive strains

  13. In vitro activity of the new water-dispersible Fe{sub 3}O{sub 4}@usnic acid nanostructure against planktonic and sessile bacterial cells

    Energy Technology Data Exchange (ETDEWEB)

    Grumezescu, Alexandru Mihai, E-mail: grumezescu@yahoo.com [Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Department of Science and Engineering of Oxidic Materials and Nanomaterials (Romania); Cotar, Ani Ioana [Faculty of Biology, University of Bucharest, Department of Microbiology Immunology (Romania); Andronescu, Ecaterina; Ficai, Anton; Ghitulica, Cristina Daniela; Grumezescu, Valentina; Vasile, Bogdan Stefan [Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Department of Science and Engineering of Oxidic Materials and Nanomaterials (Romania); Chifiriuc, Mariana Carmen [Faculty of Biology, University of Bucharest, Department of Microbiology Immunology (Romania)

    2013-07-15

    A new water-dispersible nanostructure based on magnetite (Fe{sub 3}O{sub 4}) and usnic acid (UA) was prepared in a well-shaped spherical form by a precipitation method. Nanoparticles were well individualized and homogeneous in size. The presence of Fe{sub 3}O{sub 4}@UA was confirmed by transmission electron microscopy, Fourier transform-infrared spectroscopy, and X-ray diffraction. The UA was entrapped in the magnetic nanoparticles during preparation and the amount of entrapped UA was estimated by thermogravimetric analysis. Fabricated nanostructures were tested on planktonic cells growth (minimal inhibitory concentration assay) and biofilm development on Gram-positive Staphylococcusaureus (S.aureus),Enterococcus faecalis (E.faecalis) and Gram-negative Escherichia coli (E.coli),Pseudomonasaeruginosa (P.aeruginosa) reference strains. Concerning the influence of Fe{sub 3}O{sub 4}@UA on the planktonic bacterial cells, the functionalized magnetic nanoparticles exhibited a significantly improved antimicrobial activity against E.faecalis and E.coli, as compared with the Fe{sub 3}O{sub 4} control. The UA incorporated into the magnetic nanoparticles exhibited a very significant inhibitory effect on the biofilm formed by the S.aureus and E.faecalis, on a wide range of concentrations, while in case of the Gram-negative microbial strains, the UA-loaded nanoparticles inhibited the E.coli biofilm development, only at high concentrations, while for P.aeruginosa biofilms, no inhibitory effect was observed. The obtained results demonstrate that the new water-dispersible Fe{sub 3}O{sub 4}@UA nanosystem, combining the advantages of the intrinsic antimicrobial features of the UA with the higher surface to volume ratio provided by the magnetic nanocarrier dispersible in water, exhibits efficient antimicrobial activity against planktonic and adherent cells, especially on Gram-positive strains.

  14. The predictive skill of species distribution models for plankton in a changing climate

    DEFF Research Database (Denmark)

    Brun, Philipp Georg; Kiørboe, Thomas; Licandro, Priscilla

    2016-01-01

    Statistical species distribution models (SDMs) are increasingly used to project spatial relocations of marine taxa under future climate change scenarios. However, tests of their predictive skill in the real-world are rare. Here, we use data from the Continuous Plankton Recorder program, one...... null models, is essential to assess the robustness of projections of marine planktonic species under climate change...

  15. SAR11 Bacteria: The Most Abundant Plankton in the Oceans.

    Science.gov (United States)

    Giovannoni, Stephen J

    2017-01-03

    SAR11 is a group of small, carbon-oxidizing bacteria that reach a global estimated population size of 2.4×10 28 cells-approximately 25% of all plankton. They are found throughout the oceans but reach their largest numbers in stratified, oligotrophic gyres, which are an expanding habitat in the warming oceans. SAR11 likely had a Precambrian origin and, over geological time, evolved into the niche of harvesting labile, low-molecular-weight dissolved organic matter (DOM). SAR11 cells are minimal in size and complexity, a phenomenon known as streamlining that is thought to benefit them by lowering the material costs of replication and maximizing transport functions that are essential to competition at ultralow nutrient concentrations. One of the surprises in SAR11 metabolism is their ability to both oxidize and produce a variety of volatile organic compounds that can diffuse into the atmosphere. SAR11 cells divide slowly and lack many forms of regulation commonly used by bacterial cells to adjust to changing environmental conditions. As a result of genome reduction, they require an unusual range of nutrients, which leads to complex biochemical interactions with other plankton. The study of SAR11 is providing insight into the biogeochemistry of labile DOM and is affecting microbiology beyond marine science by providing a model for understanding the evolution and function of streamlined cells.

  16. Identification of pectenotoxins in plankton, filter feeders, and isolated cells of a Dinophysis acuminata with an atypical toxin profile, from Chile.

    Science.gov (United States)

    Blanco, Juan; Alvarez, Gonzalo; Uribe, Eduardo

    2007-04-01

    A bloom of Dinophysis acuminata produced, in autumn of 2005, a closure of the scallop harvesting in Bahía Inglesa, in the Chilean III region. Isolated cells of this Dinophysis species were shown to contain 180 pg cell(-1) of pectenotoxin 2 but neither okadaic acid nor any of its analogs or derivatives (at least at a detectable level). Examination of plankton and filter-feeder samples covering an area of ca. 350 km, from the location where the toxicity was recorded to Bahía Tongoy, showed that the unique toxin profile found in the first bloom was widespread over that part of Chile and persisted for months. The analysis were carried out by HPLC-ESI-MS using positive ionization mode, with a detection limit below 2 ng of OA mL(-1) of methanolic extract. This is the first report of the presence of pectenotoxins in the plankton of the Pacific coast of America and in the studied filter feeders. This is also the first report of a Dinophysis species containing pectenotoxins and not any toxin of the okadaic acid group.

  17. Research highlights: impacts of microplastics on plankton.

    Science.gov (United States)

    Lin, Vivian S

    2016-02-01

    Each year, millions of metric tons of the plastic produced for food packaging, personal care products, fishing gear, and other human activities end up in lakes, rivers, and the ocean. The breakdown of these primary plastics in the environment results in microplastics, small fragments of plastic typically less than 1-5 mm in size. These synthetic particles have been detected in all of the world's oceans and also in many freshwater systems, accumulating in sediment, on shorelines, suspended in surface waters, and being ingested by plankton, fish, birds, and marine mammals. While the occurrence of plastics in surface waters has been surveyed in a number of studies, the impacts of microplastics on marine organisms are still being elucidated. This highlight features three recent publications that explore the interactions of microplastics with planktonic organisms to clarify the effects of these pollutants on some of the ocean's smallest and most important inhabitants.

  18. Planktonic Crustacean Culture - Live Planktonic Crustaceans as Live Feed for Finfish and Shrimps in Aquaculture

    DEFF Research Database (Denmark)

    Jepsen, Per Meyer; Syberg, Kristian; Drillet, Guillaume

    2018-01-01

    The cultivation of planktonic crustaceans as live feed is of paramount importance for the aquaculture and aquarium industries. The use of live cladocerans as feed for freshwater fish is limited to the aquarium industry, whereas Artemia and copepods are used to feed edible marine fish larvae...... assessments for hazardous chemicals. Cladocerans are widely used for ecotoxicology testing but Artemia and copepods are emerging new model species. In the present chapter, we review the culturing procedures of these important planktonic crustaceans: Artemia, cladocerans and copepods and discuss their use...

  19. Computer vision for continuous plankton monitoring

    OpenAIRE

    Damian Janusz Matuszewski

    2014-01-01

    Plankton microorganisms constitute the base of the marine food web and play a great role in global atmospheric carbon dioxide drawdown. Moreover, being very sensitive to any environmental changes they allow noticing (and potentially counteracting) them faster than with any other means. As such they not only influence the fishery industry but are also frequently used to analyze changes in exploited coastal areas and the influence of these interferences on local environment and climate. As a co...

  20. Is Ammonification Rate in Marine Sediment Related to Plankton Composition and Abundance? A Time-series Study in Villefranche Bay (NW Mediterranean)

    Science.gov (United States)

    Fernex, François E.; Braconnot, Jean-Claude; Dallot, Serge; Boisson, Michel

    1996-09-01

    Observations were made near Cap Ferrat (Station B, about 80 m in water depth) France, in the water column and in the sediment, in order to evaluate to what extent variations in the ammonia and nitrate concentrations of the sediments are related to plankton population abundance and composition. Nitrate, nitrite, ammonia and chlorophyll awere measured several times during 1987 to 1989, at two depths (1 and 40 m). Copepods and salps in the upper 75 m of the water column were counted several times a week from 1987 to 1990. Ammonia and nitrate concentrations and ammonification rate were determined in the underlying sediments. During Spring 1987, phytoplankton biomass showed a maximum at the end of March; copepod populations increased regularly till the end of April, and salps increased from this time to the end of May. These populations were not so well developed during Spring 1988 and 1989. During the blooms, salp were mainly represented by Thalia democratica. The biomass of phytoplankton and zooplankton was low in summer. The sequence suggests that the copepod decline was related to reduced food levels after the phytoplankton decline. Salp population growth was not at the expense of phytoplankton and it can be assumed that the salp fed on other material. In 1987 and 1988, maximum organic nitrogen concentration in the bottom sediment and maximum ammonification rate directly followed the salp spring bloom. In 1987, the highest ammonification rate measured in the surficial sediment (0-2 cm) reached 0·05 μ M cm 3day -1(in June). In 1990, the rate exceeded 0·1 μM cm -3 day -1during an important salp bloom. Therefore, it seems that the sinking of salp fecal pellets plays an important part in the transfer of organic matter to the bottom, and microbial activity in the surficial sediment leads to mineralization of a great part of the organic nitrogen quickly after its deposition.

  1. Cell kinetics of the marine sponge Halisarca caerulea reveal rapid cell turnover and shedding

    NARCIS (Netherlands)

    Goeij, de J.M.; Kluijver, de A.; Duyl, van F.C.; Vacelet, J.; Wijffels, R.H.; Goeij, de A.F.P.M.; Cleutjens, J.P.M.; Schutte, B.

    2009-01-01

    This study reveals the peculiar in vivo cell kinetics and cell turnover of the marine sponge Halisarca caerulea under steady-state conditions. The tropical coral reef sponge shows an extremely high proliferation activity, a short cell cycle duration and massive cell shedding. Cell turnover is

  2. Radionuclides in plankton from the South Pacific Basin

    International Nuclear Information System (INIS)

    Marsh, K.V.; Buddemeier, R.W.

    1984-01-01

    An investigation has been initiated of the utility of marine plankton as bioconcentrating samplers of low-level marine radioactivity in the southern hemisphere. A literature review has shown that both freshwater and marine plankton have trace element and radionuclide concentration factors (relative to water) of up to 10 4 . In 1956 and 1958 considerable work was done on the accumulation and distribution of a variety of fission and activation products produced by nuclear tests in the Marshall Islands. Since then, studies, have largely been confined to a few radionuclides, and most of the work in the last twenty years has been done in the northern hemisphere. The authors participated in Operations Deepfreeze 1981 and 1982, collecting a total of 48 plankton samples from the USCGC Glacier on its Antarctic cruises. Battelle Pacific Northwest Laboratories sampled air, water, rain, and fallout. The authors were able to measure concentrations in plankton of the naturally-occurring radionuclides 7 Be, 40 K, and the U and Th series, and they believe that they have detected low levels of 144 Ce and 95 Nb in seven samples ranging as far south as 68 0 . Biological identification of the plankton suggests a possible correlation between radionuclide concentration and the protozoa content of the samples. 7 references, 5 figures, 1 table

  3. Een methode ter bepaling van de respiratieaktiviteit in marien plankton

    NARCIS (Netherlands)

    Lambeck, R.H.D.

    1973-01-01

    The usefulness of a method, described by T.T. Packard (1971), for the determination of the potential respiratory rate in marine plankton, based on the use of tetrazolium dye, was tested. Especially the influence of a few aspects of the homogenisation procedure on the final results was investigated.

  4. Ecological partitioning and diversity in tropical planktonic foraminifera

    Directory of Open Access Journals (Sweden)

    Seears Heidi A

    2012-04-01

    Full Text Available Abstract Background Ecological processes are increasingly being viewed as an important mode of diversification in the marine environment, where the high dispersal potential of pelagic organisms, and a lack of absolute barriers to gene flow may limit the occurrence of allopatric speciation through vicariance. Here we focus on the potential role of ecological partitioning in the diversification of a widely distributed group of marine protists, the planktonic foraminifera. Sampling was conducted in the tropical Arabian Sea, during the southwest (summer monsoon, when pronounced environmental conditions result in a strong disparity in temperature, salinity and productivity between distinct northern and southern water masses. Results We uncovered extensive genetic diversity within the Arabian Sea planktonic foraminifera, identifying 13 morphospecies, represented by 20 distinct SSU rRNA genetic types. Several morphospecies/genetic types displayed non-random biogeographical distributions, partitioning between the northern and southern water masses, giving a strong indication of independent ecological adaptations. Conclusions We propose sea-surface primary productivity as the main factor driving the geographical segregation of Arabian Sea planktonic foraminifera, during the SW monsoon, with variations in symbiotic associations possibly playing a role in the specific ecological adaptations observed. Our findings suggest that ecological partitioning could be contributing to the high levels of 'cryptic' genetic diversity observed within the planktonic foraminifera, and support the view that ecological processes may play a key role in the diversification of marine pelagic organisms.

  5. Responses of marine plankton to pollutant stress

    DEFF Research Database (Denmark)

    Hjorth, M.

    to reveal indirect effects and co-effects with the abiotic environment on three trophic levels, namely bacteria, phytoplankton and zooplankton. The role of mesocosms and community studies in risk assessment and their usefulness in integrating ecological knowledge into ecotoxicology is discussed...... with examples of work done on natural communities of phytoplankton and zooplankton. Abiotic conditions such as UV light and nutrient concentrations are shown to influence pollutant effects....

  6. Identification of major planktonic sulfur oxidizers in stratified freshwater lake.

    Directory of Open Access Journals (Sweden)

    Hisaya Kojima

    Full Text Available Planktonic sulfur oxidizers are important constituents of ecosystems in stratified water bodies, and contribute to sulfide detoxification. In contrast to marine environments, taxonomic identities of major planktonic sulfur oxidizers in freshwater lakes still remain largely unknown. Bacterioplankton community structure was analyzed in a stratified freshwater lake, Lake Mizugaki in Japan. In the clone libraries of 16S rRNA gene, clones very closely related to a sulfur oxidizer isolated from this lake, Sulfuritalea hydrogenivorans, were detected in deep anoxic water, and occupied up to 12.5% in each library of different water depth. Assemblages of planktonic sulfur oxidizers were specifically analyzed by constructing clone libraries of genes involved in sulfur oxidation, aprA, dsrA, soxB and sqr. In the libraries, clones related to betaproteobacteria were detected with high frequencies, including the close relatives of Sulfuritalea hydrogenivorans.

  7. Proteinase production in Pseudomonas fluorescens ON2 is affected by carbon sources and allows surface-attached but not planktonic cells to utilize protein for growth in lake water

    DEFF Research Database (Denmark)

    Nicolaisen, Mette Haubjerg; Worm, Jakob; Jørgensen, Niels O. G.

    2012-01-01

    -colonies were able to utilize this resource, while planktonic cells were not. Our experiments are the first to experimentally support models predicting that production of extra-cellular enzymes in dilute environments may be a waste of resources, whereas it represents a favorable feeding strategy in organic...... and there was no evidence for cell density-regulated or starvation-induced proteinase production. Proteinase was produced in the absence of an organic nitrogen source, and citrate had a negative while glucose had a positive effect on the production. Hence P. fluorescens ON2 seems to exploit protein sources by expressing...

  8. Differences in carbohydrate profiles in batch culture grown planktonic and biofilm cells of Amphora rostrata Wm. Sm

    Digital Repository Service at National Institute of Oceanography (India)

    Khodse, V.B.; Bhosle, N.B.

    material in the central equatorial Pacific. Deep-Sea Res I 43:1181-1204. Hitchcock GL. 1977. The concentration of particulate carbohydrates in a region of the West Africa upwelling zone during March 1974. Deep-Sea Res 24:83-93. Hoagland KD, Rosowski JR... and Biochemistry, IIB. Academic Press, London, pp 537-568 Roszkowski W, Beuth J, Ko HL, Uhlenbruck G, Pulverer G. 1989. Blocking of lectin like adhesion molecules on pulmonary cells inhibits lung sarcoma L colonization in BALB/c-mice. Experientia 45...

  9. Paleolatitudinal Gradients in Marine Phytoplankton Composition and Cell Size

    Science.gov (United States)

    Henderiks, J.; Bordiga, M.; Bartol, M.; Šupraha, L.

    2014-12-01

    Coccolithophores, a prominent group of marine calcifying unicellular algae, are widely studied in context of current and past climate change. We know that marine phytoplankton are sensitive to climatic changes, but the complex interplay of several processes such as warming, changes in nutrient content, and ocean acidification, makes future scenarios difficult to predict. Some taxa may be more susceptible to environmental perturbations than others, as evidenced by significantly different species-specific sensitivities observed in laboratory experiments. However, short-term plastic responses may not translate into longer-term climatic adaptation, nor should we readily extrapolate the behavior of single strains in the laboratory to natural, multi-species assemblages and their interactions in the ocean. The extensive fossil record of coccolithophores (in the form of coccoliths) reveals high morphological and taxonomic diversity and allows reconstructing the cell size of individual taxonomic groups. In a suite of deep-sea drilling sites from the Atlantic Ocean, we document distinct latitudinal gradients in phytoplankton composition and cell size across major climate transitions of the late Eocene - earliest Oligocene, and the middle - late Miocene. With these data we test hypotheses of species migration, phenotypic evolution, as well as the rates of species extinction and speciation in relation to concurrent paleoenvironmental changes during the Cenozoic.

  10. The effects of the Sea Empress oil spill on the plankton of the southern Irish Sea

    International Nuclear Information System (INIS)

    Batten, S.; Allen, R.; Wotton, C.

    1997-07-01

    This report describes the methodology used to determine any effects of the Sea Empress oil spill on the plankton communities of the southern Irish Sea. The Continuous Plankton Recorder (CPR) survey has monitored the plankton in this area since 1970 so there is a long time series of data collected before the spill, almost 2000 samples, with which to compare the post-spill data. The analytical procedures applied and results obtained are presented and reveal that in the majority of cases no significant effects were evident. Some exceptions are also described. The results suggest that no further analysis of the plankton communities is necessary, unless other studies reveal that other marine habitats which may have an influence on the plankton of this area are continuing to display effects of the spill. There is scope for further investigation of the trends and events described in this report but this is outside the remit of the project. (author)

  11. Microbial extracellular polymeric substances in marine biogeochemical processes

    Digital Repository Service at National Institute of Oceanography (India)

    Bhaskar, P.V.; Bhosle, N.B.

    and are found in free dissolved form, colloids, discreet partcles like TEP and/or associated with particulate matter, including cell aggregates, detritus, biofilms, microbial mats, etc. The chemical composition of EPS is influenced by various factors... of EPS in marine waters. Hence, various aspects of EPS di- cussed hereafter indicate bacterial and/or phyto origin unless specified. Characteristics of EPS Microorganisms grow in free planktonic state16,17 or are ata- ched to surfaces (natural...

  12. Planktonic benthonic foraminiferal ratios: Modern patterns and Tertiary applicability

    Science.gov (United States)

    Gibson, T.G.

    1989-01-01

    The abundance of planktonic specimens in foraminiferal assemblages was determined in numerous bottom samples from inner neritic to deep oceanic depths along the Atlantic margin of the northeastern United States. The results augment previous studies in other areas that have shown a general increase in percentage of planktonic specimens in total foraminiferal bottom assemblages as water depth increases. The patterns found in this area of complex shelf bathymetry and hydrography illustrate the influence on the planktonic-benthonic percentages of water depth, distance from shore, different water mass properties and downslope movement of tests in high energy areas. The patterns found in the 661 samples from the Atlantic margin were compared with results from 795 stations in the Gulf of Mexico, Pacific Ocean and Red Sea. The relative abundance of planktonic specimens and water depth correlates positively in all open oceanic areas even though taxonomic composition and diversity of the faunas from different areas is variable. The variation of planktonic percentages in bottom samples within most depth intervals is large so that a precise depth determination cannot be made for any given value. However, an approximate upper depth limit for given percentages can be estimated for open ocean environments. A decrease in planktonic percentages is seen in the lower salinity and higher turbidity coastal waters of the Gulf of Maine. Planktonic percentages intermediate between the lower values in the less saline coastal waters and the higher values in the normal open oceanic conditions occur in the transitional area between the Gulf of Maine and the open marine Atlantic Ocean to the east. Similarly lowered values in another area of restricted oceanic circulation occur in the high salinity, clear, but nutrient-poor waters of the Gulf of Aqaba off the Red Sea. A comparison of the similarity of modern planktonic percentage values to those found in earlier Tertiary assemblages was made to

  13. Effect of salinity and incubation time of planktonic cells on biofilm formation, motility, exoprotease production, and quorum sensing of Aeromonas hydrophila.

    Science.gov (United States)

    Jahid, Iqbal Kabir; Mizan, Md Furkanur Rahaman; Ha, Angela J; Ha, Sang-Do

    2015-08-01

    The aim of this study was to determine the effect of salinity and age of cultures on quorum sensing, exoprotease production, and biofilm formation by Aeromonas hydrophila on stainless steel (SS) and crab shell as substrates. Biofilm formation was assessed at various salinities, from fresh (0%) to saline water (3.0%). For young and old cultures, planktonic cells were grown at 30 °C for 24 h and 96 h, respectively. Biofilm formation was assessed on SS, glass, and crab shell; viable counts were determined in R2A agar for SS and glass, but Aeromonas-selective media was used for crab shell samples to eliminate bacterial contamination. Exoprotease activity was assessed using a Fluoro™ protease assay kit. Quantification of acyl-homoserine lactone (AHL) was performed using the bioreporter strain Chromobacterium violaceum CV026 and the concentration was confirmed using high-performance liquid chromatography (HPLC). The concentration of autoinducer-2 (AI-2) was determined with Vibrio harveyi BB170. The biofilm structure at various salinities (0-3 %) was assessed using field emission electron microscopy (FESEM). Young cultures of A. hydrophila grown at 0-0.25% salinity showed gradual increasing of biofilm formation on SS, glass and crab shell; swarming and swimming motility; exoproteases production, AHL and AI-2 quorum sensing; while all these phenotypic characters reduced from 0.5 to 3.0% salinity. The FESEM images also showed that from 0 to 0.25% salinity stimulated formation of three-dimensional biofilm structures that also broke through the surface by utilizing the chitin surfaces of crab, while 3% salinity stimulated attachment only for young cultures. However, in marked contrast, salinity (0.1-3%) had no effect on the stimulation of biofilm formation or on phenotypic characters for old cultures. However, all concentrations reduced biofilm formation, motility, protease production and quorum sensing for old culture. Overall, 0-0.25% salinity enhanced biofilm formation

  14. Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities

    Directory of Open Access Journals (Sweden)

    Josep M. Gasol

    2000-06-01

    Full Text Available Flow cytometry is rapidly becoming a routine methodology in aquatic microbial ecology. The combination of simple to use bench-top flow cytometers and highly fluorescent nucleic acid stains allows fast and easy determination of microbe abundance in the plankton of lakes and oceans. The different dyes and protocols used to stain and count planktonic bacteria as well as the equipment in use are reviewed, with special attention to some of the problems encountered in daily routine practice such as fixation, staining and absolute counting. One of the main advantages of flow cytometry over epifluorescence microscopy is the ability to obtain cell-specific measurements in large numbers of cells with limited effort. We discuss how this characteristic has been used for differentiating photosynthetic from non-photosynthetic prokaryotes, for measuring bacterial cell size and nucleic acid content, and for estimating the relative activity and physiological state of each cell. We also describe how some of the flow cytometrically obtained data can be used to characterize the role of microbes on carbon cycling in the aquatic environment and we prospect the likely avenues of progress in the study of planktonic prokaryotes through the use of flow cytometry.

  15. Planktonic foraminifera-derived environmental DNA extracted from abyssal sediments preserves patterns of plankton macroecology

    Directory of Open Access Journals (Sweden)

    R. Morard

    2017-06-01

    Full Text Available Deep-sea sediments constitute a unique archive of ocean change, fueled by a permanent rain of mineral and organic remains from the surface ocean. Until now, paleo-ecological analyses of this archive have been mostly based on information from taxa leaving fossils. In theory, environmental DNA (eDNA in the sediment has the potential to provide information on non-fossilized taxa, allowing more comprehensive interpretations of the fossil record. Yet, the process controlling the transport and deposition of eDNA onto the sediment and the extent to which it preserves the features of past oceanic biota remains unknown. Planktonic foraminifera are the ideal taxa to allow an assessment of the eDNA signal modification during deposition because their fossils are well preserved in the sediment and their morphological taxonomy is documented by DNA barcodes. Specifically, we re-analyze foraminiferal-specific metabarcodes from 31 deep-sea sediment samples, which were shown to contain a small fraction of sequences from planktonic foraminifera. We confirm that the largest portion of the metabarcode originates from benthic bottom-dwelling foraminifera, representing the in situ community, but a small portion (< 10 % of the metabarcodes can be unambiguously assigned to planktonic taxa. These organisms live exclusively in the surface ocean and the recovered barcodes thus represent an allochthonous component deposited with the rain of organic remains from the surface ocean. We take advantage of the planktonic foraminifera portion of the metabarcodes to establish to what extent the structure of the surface ocean biota is preserved in sedimentary eDNA. We show that planktonic foraminifera DNA is preserved in a range of marine sediment types, the composition of the recovered eDNA metabarcode is replicable and that both the similarity structure and the diversity pattern are preserved. Our results suggest that sedimentary eDNA could preserve the ecological structure of

  16. Strategies to Maximize the Potential of Marine Biomaterials as a Platform for Cell Therapy

    Science.gov (United States)

    Kim, Hyeongmin; Lee, Jaehwi

    2016-01-01

    Marine biopolymers have been explored as a promising cell therapy system for efficient cell delivery and tissue engineering. However, the marine biomaterial-based systems themselves have exhibited limited performance in terms of maintenance of cell viability and functions, promotion of cell proliferation and differentiation as well as cell delivery efficiency. Thus, numerous novel strategies have been devised to improve cell therapy outcomes. The strategies include optimization of physical and biochemical properties, provision of stimuli-responsive functions, and design of platforms for efficient cell delivery and tissue engineering. These approaches have demonstrated substantial improvement of therapeutic outcomes in a variety of research settings. In this review, therefore, research progress made with marine biomaterials as a platform for cell therapy is reported along with current research directions to further advance cell therapies as a tool to cure incurable diseases. PMID:26821034

  17. New perspectives on the functioning and evolution of photosymbiosis in plankton

    Science.gov (United States)

    Decelle, Johan

    2013-01-01

    Photosymbiosis is common and widely distributed in plankton and is considered to be beneficial for both partners (mutualism). Such intimate associations involving heterotrophic hosts and microalgal symbionts have been extensively studied in coral reefs, but in the planktonic realm, the ecology and evolution of photosymbioses remain poorly understood. Acantharia (Radiolaria) are ubiquitous and abundant heterotrophic marine protists, many of which host endosymbiotic microalgae. Two types of photosymbiosis involving acantharians have recently been described using molecular techniques: one found in a single acantharian species involving multiple microalgal partners (dinoflagellates and haptophytes), and the other observed in more than 25 acantharian species exclusively living with the haptophyte Phaeocystis. Contrary to most benthic and terrestrial mutualistic symbioses, these symbiotic associations share the common feature of involving symbionts that are abundant in their free-living stage. We propose a hypothetical framework that may explain this original mode of symbiosis, and discuss the ecological and evolutionary implications. We suggest that photosymbiosis in Acantharia, and probably in other planktonic hosts, may not be a mutualistic relationship but rather an “inverted parasitism,” from which only hosts seem to benefit by sequestrating and exploiting microalgal cells. The relatively small population size of microalgae in hospite would prevent reciprocal evolution that can select uncooperative symbionts, therefore making this horizontally-transmitted association stable over evolutionary time. The more we learn about the diversity of life and the structure of genomes, the more it appears that much of the evolution of biodiversity is about the manipulation of other species—to gain resources and, in turn, to avoid being manipulated (John Thompson, 1999). PMID:23986805

  18. New perspectives on the functioning and evolution of photosymbiosis in plankton: Mutualism or parasitism?

    Science.gov (United States)

    Decelle, Johan

    2013-07-01

    Photosymbiosis is common and widely distributed in plankton and is considered to be beneficial for both partners (mutualism). Such intimate associations involving heterotrophic hosts and microalgal symbionts have been extensively studied in coral reefs, but in the planktonic realm, the ecology and evolution of photosymbioses remain poorly understood. Acantharia (Radiolaria) are ubiquitous and abundant heterotrophic marine protists, many of which host endosymbiotic microalgae. Two types of photosymbiosis involving acantharians have recently been described using molecular techniques: one found in a single acantharian species involving multiple microalgal partners (dinoflagellates and haptophytes), and the other observed in more than 25 acantharian species exclusively living with the haptophyte Phaeocystis. Contrary to most benthic and terrestrial mutualistic symbioses, these symbiotic associations share the common feature of involving symbionts that are abundant in their free-living stage. We propose a hypothetical framework that may explain this original mode of symbiosis, and discuss the ecological and evolutionary implications. We suggest that photosymbiosis in Acantharia, and probably in other planktonic hosts, may not be a mutualistic relationship but rather an "inverted parasitism," from which only hosts seem to benefit by sequestrating and exploiting microalgal cells. The relatively small population size of microalgae in hospite would prevent reciprocal evolution that can select uncooperative symbionts, therefore making this horizontally-transmitted association stable over evolutionary time. The more we learn about the diversity of life and the structure of genomes, the more it appears that much of the evolution of biodiversity is about the manipulation of other species-to gain resources and, in turn, to avoid being manipulated (John Thompson, 1999).

  19. Circadian cycles in growth and feeding rates of heterotrophic protist plankton

    DEFF Research Database (Denmark)

    Jakobsen, Hans Henrik; Strom, S.L.

    2004-01-01

    Growth and feeding rates of four species of planktonic marine heterotrophic protists showed pronounced diel cycles. In most cases, rates were higher during the day and lower at night. However, for the ciliate Strobilidium sp., growth was highest at night. In another ciliate species, Balanion...... comatum, no day-night difference in growth and feeding rates was found. Maintenance of day-night rate differences during 24-h exposures to continuous darkness demonstrated that most of these protists had circadian cycles. The heterotrophic dinoflagellate Oxyrrhis marina exhibited a clear irradiance...... to culturing in a day: night light cycle in O. marina and found that resetting the circadian cycle in this dinoflagellate temporarily arrested growth and feeding. We suggest that protists use a time-integrated light threshold rather than an instantaneous irradiance to maintain the circadian cell cycle...

  20. Increasing Water Temperature Triggers Dominance of Small Freshwater Plankton.

    Science.gov (United States)

    Rasconi, Serena; Gall, Andrea; Winter, Katharina; Kainz, Martin J

    2015-01-01

    Climate change scenarios predict that lake water temperatures will increase up to 4°C and rainfall events will become more intense and frequent by the end of this century. Concurrently, supply of humic substances from terrestrial runoff is expected to increase, resulting in darker watercolor ("brownification") of aquatic ecosystems. Using a multi-seasonal, low trophic state mesocosm experiment, we investigated how higher water temperature and brownification affect plankton community composition, phenology, and functioning. We tested the hypothesis that higher water temperature (+3°C) and brownification will, a) cause plankton community composition to shift toward small sized phytoplankton and cyanobacteria, and, b) extend the length of the growing season entailing higher phytoplankton production later in the season. We demonstrate that the 3°C increase of water temperature favored the growth of heterotrophic bacteria and small sized autotrophic picophytoplankton cells with significantly higher primary production during warmer fall periods. However, 3X darker water (effect of brownification) caused no significant changes in the plankton community composition or functioning relative to control conditions. Our findings reveal that increased temperature change plankton community structure by favoring smaller sized species proliferation (autotrophic phytoplankton and small size cladocerans), and increase primary productivity and community turnover. Finally, results of this multi-seasonal experiment suggest that warming by 3°C in aquatic ecosystems of low trophic state may cause planktonic food web functioning to become more dominated by fast growing, r-trait species (i.e., small sizes and rapid development).

  1. Simulated Sampling of Estuary Plankton

    Science.gov (United States)

    Fortner, Rosanne W.; Jenkins, Deborah Bainer

    2009-01-01

    To find out about the microscopic life in the valuable estuary environment, it is usually necessary to be near the water. This dry lab offers an alternative, using authentic data and a simulation of plankton sampling. From the types of organisms found in the sample, middle school students can infer relationships in the biological and physical…

  2. Planktonic Euryarchaeota are a significant source of archaeal tetraether lipids in the ocean.

    Science.gov (United States)

    Lincoln, Sara A; Wai, Brenner; Eppley, John M; Church, Matthew J; Summons, Roger E; DeLong, Edward F

    2014-07-08

    Archaea are ubiquitous in marine plankton, and fossil forms of archaeal tetraether membrane lipids in sedimentary rocks document their participation in marine biogeochemical cycles for >100 million years. Ribosomal RNA surveys have identified four major clades of planktonic archaea but, to date, tetraether lipids have been characterized in only one, the Marine Group I Thaumarchaeota. The membrane lipid composition of the other planktonic archaeal groups--all uncultured Euryarchaeota--is currently unknown. Using integrated nucleic acid and lipid analyses, we found that Marine Group II Euryarchaeota (MG-II) contributed significantly to the tetraether lipid pool in the North Pacific Subtropical Gyre at shallow to intermediate depths. Our data strongly suggested that MG-II also synthesize crenarchaeol, a tetraether lipid previously considered to be a unique biomarker for Thaumarchaeota. Metagenomic datasets spanning 5 y indicated that depth stratification of planktonic archaeal groups was a stable feature in the North Pacific Subtropical Gyre. The consistent prevalence of MG-II at depths where the bulk of exported organic matter originates, together with their ubiquitous distribution over diverse oceanic provinces, suggests that this clade is a significant source of tetraether lipids to marine sediments. Our results are relevant to archaeal lipid biomarker applications in the modern oceans and the interpretation of these compounds in the geologic record.

  3. Cultivation of Marine Sponges: From Sea to Cell

    NARCIS (Netherlands)

    Sipkema, D.

    2004-01-01

    Marine sponges are one of the richest natural sources of secondary metabolites with a potential pharmaceutical application. A plethora of chemical compounds, with widely varying carbon skeletons, possessing among other anticancer, antiviral, antibiotic, antiinflammatory and antimalaria activity has

  4. Carbohydrade metabolism in suspended and attached cells of marine fouling diatom, Navicula sp.

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Sawant, S.S.; Garg, A.; Wagh, A.B.

    A marine fouling diatom, @iNavicula@@ sp. was cultured in the laboratory under 12-hour light : 12-hour dark conditions. Cells in suspension and attached to the flask walls were analyzed for chlorophyll a, cell organic carbon, total cell carbohydrate...

  5. Sensitivity of planktonic and biofilm-associated Aeromonas spp. to ionizing radiation

    International Nuclear Information System (INIS)

    Nagar, Vandan; Bandekar, J.R.

    2015-01-01

    Genus Aeromonas has emerged as an important human pathogen because it causes a variety of diseases including gastroenteritis and extra-intestinal infections. Aeromonas have the ability to adhere and form biofilms on food surfaces and food contact surfaces. Biofilm formation on foods and food contact surfaces is the major reason for contamination, cross contamination and post-processing contamination of the final food product leading to food spoilage, product rejection, economic losses and food-borne diseases. Biofilms have shown high resistance to heat, desiccation, acidic condition, high salt concentration, antibiotics and other food preservatives. Earlier studies in our laboratory have shown that ionizing radiation effectively inactivates Aeromonas in different food products. However, the relative efficacy of this process against biofilm associated cells versus free-living planktonic cells of Aeromonas is not well documented. Therefore, the dose of gamma radiation required to reduce the population by 90% (D10) was calculated for planktonic and biofilm-associated A. salmonicida Y567 and A. hydrophila A331 cells. Both A. hydrophila A331 and A. salmonicida Y567 expressed significant ability to attach and grow on glass surface following incubation at 30℃ in TSB. Ionizing radiation effectively reduced the populations of both planktonic and biofilm-associated cells for both the strains. Mean cell counts of survivors and surviving fraction of planktonic and biofilm-associated cells decreased with increased irradiation doses. The D10 values of planktonic cells and biofilm cells for A. salmonicida (Y567) were 232.65 Gy and 248.41 Gy, respectively; whereas, the D10 values of planktonic cells and biofilm cells for A. hydrophila (A331) were 249.2 Gy and 240.2 Gy respectively. No significant difference in the D10 values of planktonic and biofilm associated Aeromonas was observed. The influence of the cultured state of the organism, i.e., planktonic versus biofilm associated

  6. Automatic plankton image classification combining multiple view features via multiple kernel learning.

    Science.gov (United States)

    Zheng, Haiyong; Wang, Ruchen; Yu, Zhibin; Wang, Nan; Gu, Zhaorui; Zheng, Bing

    2017-12-28

    Plankton, including phytoplankton and zooplankton, are the main source of food for organisms in the ocean and form the base of marine food chain. As the fundamental components of marine ecosystems, plankton is very sensitive to environment changes, and the study of plankton abundance and distribution is crucial, in order to understand environment changes and protect marine ecosystems. This study was carried out to develop an extensive applicable plankton classification system with high accuracy for the increasing number of various imaging devices. Literature shows that most plankton image classification systems were limited to only one specific imaging device and a relatively narrow taxonomic scope. The real practical system for automatic plankton classification is even non-existent and this study is partly to fill this gap. Inspired by the analysis of literature and development of technology, we focused on the requirements of practical application and proposed an automatic system for plankton image classification combining multiple view features via multiple kernel learning (MKL). For one thing, in order to describe the biomorphic characteristics of plankton more completely and comprehensively, we combined general features with robust features, especially by adding features like Inner-Distance Shape Context for morphological representation. For another, we divided all the features into different types from multiple views and feed them to multiple classifiers instead of only one by combining different kernel matrices computed from different types of features optimally via multiple kernel learning. Moreover, we also applied feature selection method to choose the optimal feature subsets from redundant features for satisfying different datasets from different imaging devices. We implemented our proposed classification system on three different datasets across more than 20 categories from phytoplankton to zooplankton. The experimental results validated that our system

  7. Cancer Preventive Efficacy of Marine Carotenoid Fucoxanthin: Cell Cycle Arrest and Apoptosis

    Directory of Open Access Journals (Sweden)

    Thamaraiselvan Rengarajan

    2013-12-01

    Full Text Available Epidemiological investigations have shown that overcoming the risk of cancer is related to the consumption of green vegetables and fruits. Many compounds from different origins, such as terrestrial plants and marine and microbial sources, have been reported to have therapeutic effects of which marine sources are the most important because the diversity of marine life is more varied than other sources. Fucoxanthin is one important compound with a marine origin and belongs to the group of carotenoids; it can be found in marine brown seaweeds, macroalgae, and diatoms, all of which have remarkable biological properties. Numerous studies have shown that fucoxanthin has considerable medicinal potential and promising applications in human health. In this review, we summarize the anticancer effects of fucoxanthin through several different mechanisms including anti-proliferation, induction of apoptosis, cell cycle arrest and anti-angiogenesis, and its possible role in the treatment of cancer.

  8. Drivers of Plankton Patch Formation, Persistence and Decline in East Sound, Orcas Island, Washington

    Science.gov (United States)

    2012-09-30

    Population dynamics of the marine planktonic ciliate Strombidinopsis multiauris: its potential to control phytoplankton blooms . Aquat. Microb. Ecol., 20...radii with patch exploitation in the coastal ocean. 5th International Zooplankton Production Symposium. Pucón, Chile Menden-Deuer S & Harvey* EL

  9. Plankton Dynamics and Mesoscale Turbulence

    Science.gov (United States)

    2010-06-29

    transformation of inorganic materials and light into living matter by photosynthesis) is operated mainly by small, unicellular algae that float freely in the...Aquatic ecosystems are characterized by the essential role played by fluid dynamics. The small organisms which compose the plankton are advected by the...surrounding flow and must cope with environmental currents, turbulence, and waves. And those organisms which anchor themselves to the rocks and to the

  10. Accelerator Analysis of Tributyltin Adsorbed onto the Surface of a Tributyltin Resistant Marine Pseudoalteromonas sp. Cell

    OpenAIRE

    Mimura, Haruo; Sato, Ryusei; Sasaki, Yu; Furuyama, Yuichi; Taniike, Akira; Yoshida, Kazutoshi; Kitamura, Akira

    2008-01-01

    Tributyltin (TBT) released into seawater from ship hulls is a stable marine pollutant and obviously remains in marine environments. We isolated a TBT resistant marine Pseudoalteromonas sp. TBT1 from sediment of a ship’s ballast water. The isolate (109.3 ± 0.2 colony-forming units mL-1) adsorbed TBT in proportion to the concentrations of TBTCl externally added up to 3 mM, where the number of TBT adsorbed by a single cell was estimated to be 108.2. The value was reduced to about one-fif...

  11. PFR²: a curated database of planktonic foraminifera 18S ribosomal DNA as a resource for studies of plankton ecology, biogeography and evolution.

    Science.gov (United States)

    Morard, Raphaël; Darling, Kate F; Mahé, Frédéric; Audic, Stéphane; Ujiié, Yurika; Weiner, Agnes K M; André, Aurore; Seears, Heidi A; Wade, Christopher M; Quillévéré, Frédéric; Douady, Christophe J; Escarguel, Gilles; de Garidel-Thoron, Thibault; Siccha, Michael; Kucera, Michal; de Vargas, Colomban

    2015-11-01

    Planktonic foraminifera (Rhizaria) are ubiquitous marine pelagic protists producing calcareous shells with conspicuous morphology. They play an important role in the marine carbon cycle, and their exceptional fossil record serves as the basis for biochronostratigraphy and past climate reconstructions. A major worldwide sampling effort over the last two decades has resulted in the establishment of multiple large collections of cryopreserved individual planktonic foraminifera samples. Thousands of 18S rDNA partial sequences have been generated, representing all major known morphological taxa across their worldwide oceanic range. This comprehensive data coverage provides an opportunity to assess patterns of molecular ecology and evolution in a holistic way for an entire group of planktonic protists. We combined all available published and unpublished genetic data to build PFR(2), the Planktonic foraminifera Ribosomal Reference database. The first version of the database includes 3322 reference 18S rDNA sequences belonging to 32 of the 47 known morphospecies of extant planktonic foraminifera, collected from 460 oceanic stations. All sequences have been rigorously taxonomically curated using a six-rank annotation system fully resolved to the morphological species level and linked to a series of metadata. The PFR(2) website, available at http://pfr2.sb-roscoff.fr, allows downloading the entire database or specific sections, as well as the identification of new planktonic foraminiferal sequences. Its novel, fully documented curation process integrates advances in morphological and molecular taxonomy. It allows for an increase in its taxonomic resolution and assures that integrity is maintained by including a complete contingency tracking of annotations and assuring that the annotations remain internally consistent. © 2015 John Wiley & Sons Ltd.

  12. Progress Towards a Global Understanding of Plankton Dynamics: The Global Alliance of CPR Surveys (GACS)

    Science.gov (United States)

    Batten, S.; Richardson, A.; Melrose, C.; Muxagata, E.; Hosie, G.; Verheye, H.; Hall, J.; Edwards, M.; Koubbi, P.; Abu-Alhaija, R.; Chiba, S.; Wilson, W.; Nagappa, R.; Takahashi, K.

    2016-02-01

    The Continuous Plankton Recorder (CPR) was first used in 1931 to routinely sample plankton and its continued deployment now sustains the longest-running, and spatially most extensive marine biological sampling programme in the world. Towed behind, for the most part commercial, ships it collects plankton samples from the surface waters that are subsequently analysed to provide taxonomically-resolved abundance data on a broad range of planktonic organisms from the size of coccolithophores to euphausiids. Plankton appear to integrate changes in the physical environment and by underpinning most marine food-webs, pass on this variability to higher trophic levels which have societal value. CPRs are deployed increasingly around the globe in discrete regional surveys that until recently interacted in an informal way. In 2011 the Global Alliance of CPR Surveys (GACS) was launched to bring these surveys together to collaborate more productively and address issues such as: methodological standardization, data integration, capacity building, and data analysis. Early products include a combined global database and regularly-released global marine ecological status reports. There are, of course, limitations to the exploitation of CPR data as well as the current geographic coverage. A current focus of GACS is integration of the data with models to meaningfully extrapolate across time and space. In this way the output could be used to provide more robust synoptic representations of key plankton variables. Recent years have also seen the CPR used as a platform in itself with the inclusion of additional sensors and water samplers that can sample the microplankton. The archive of samples has already been used for some molecular investigations and curation of samples is maintained for future studies. Thus the CPR is a key element of any regional to global ocean observing system of biodiversity.

  13. High motility reduces grazing mortality of planktonic bacteria

    DEFF Research Database (Denmark)

    Matz, Carsten; Jurgens, K.

    2005-01-01

    We tested the impact of bacterial swimming speed on the survival of planktonic bacteria in the presence of protozoan grazers. Grazing experiments with three common bacterivorous nanoflagellates revealed low clearance rates for highly motile bacteria. High-resolution video microscopy demonstrated...... size revealed highest grazing losses for moderately motile bacteria with a cell size between 0.2 and 0.4 mum(3). Grazing mortality was lowest for cells of >0.5 mum(3) and small, highly motile bacteria. Survival efficiencies of >95% for the ultramicrobacterial isolate CP-1 (less than or equal to0.1 mum......(3), >50 mum s(-1)) illustrated the combined protective action of small cell size and high motility. Our findings suggest that motility has an important adaptive function in the survival of planktonic bacteria during protozoan grazing....

  14. Plankton composition and biomass development

    DEFF Research Database (Denmark)

    Jakobsen, H.H.; Jepsen, P.M.; Blanda, E.

    2016-01-01

    Plankton food web dynamics were studied during a complete production season in a semi-intensive land-based facility for rearing of turbot (Scophthalmus maximus) larvae. The production season was divided into three production cycles of 3–5 weeks. Phytoplankton biomass (using chlorophyll a as biomass...... proxy) peaked in each production cycle. However, the maximum biomass decreased from spring (18 μg chlorophyll a L−1) to fall (ca. 7 μg chlorophyll a L−1), simultaneous with a decline in the concentration of dissolved nitrogen in the inoculating water. During the three production cycles, we observed...

  15. Hydromechanical signals in the plankton

    DEFF Research Database (Denmark)

    Visser, Andre

    2001-01-01

    The distance at which plankters can detect and thus interact with each other depends on their sensitivity, size, and motion, as well as the hydrodynamic characteristics of their behaviour. Through a simple consideration of the distribution of forces exerted on the ambient fluid by different...... proportional to a(3)Ur(-3). Within this context, observed planktonic interactions, particularly for copepods, were analysed and showed reasonably good support for the theory. The remote detection of inert particles by feeding-current-generating and free-swimming copepods was found to be feasible for known...... swimming ciliates under turbulent conditions showed good agreement with previously reported observations....

  16. Increasing Water Temperature Triggers Dominance of Small Freshwater Plankton.

    Directory of Open Access Journals (Sweden)

    Serena Rasconi

    Full Text Available Climate change scenarios predict that lake water temperatures will increase up to 4°C and rainfall events will become more intense and frequent by the end of this century. Concurrently, supply of humic substances from terrestrial runoff is expected to increase, resulting in darker watercolor ("brownification" of aquatic ecosystems. Using a multi-seasonal, low trophic state mesocosm experiment, we investigated how higher water temperature and brownification affect plankton community composition, phenology, and functioning. We tested the hypothesis that higher water temperature (+3°C and brownification will, a cause plankton community composition to shift toward small sized phytoplankton and cyanobacteria, and, b extend the length of the growing season entailing higher phytoplankton production later in the season. We demonstrate that the 3°C increase of water temperature favored the growth of heterotrophic bacteria and small sized autotrophic picophytoplankton cells with significantly higher primary production during warmer fall periods. However, 3X darker water (effect of brownification caused no significant changes in the plankton community composition or functioning relative to control conditions. Our findings reveal that increased temperature change plankton community structure by favoring smaller sized species proliferation (autotrophic phytoplankton and small size cladocerans, and increase primary productivity and community turnover. Finally, results of this multi-seasonal experiment suggest that warming by 3°C in aquatic ecosystems of low trophic state may cause planktonic food web functioning to become more dominated by fast growing, r-trait species (i.e., small sizes and rapid development.

  17. Studies on marine ecosystem in particular emphasis on phytoplankton (lecture by the member awarded the oceanographic society of Japan prize for 1992). Shokubutsu plankton wo chushintoshita kaiyo seitaikei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, M. (The University of Tokyo, Tokyo (Japan). Faculty of Science)

    1993-06-25

    This paper, while introducing major study results of the author, summarizes his studies on ecosystems in lakes and oceans with respect mainly to phytoplanktons. The studies include the following subjects: A proposal on mathematical model equations to estimate growth of photosynthetic bacterial populations in deep lake beds; evaluation of stimulative effects for photosynthetic production provided by fertilizer application in lakes, and influences of phytoplanktons on population structures; evaluation on effects imposed on ecosystems from dumping chemical substances, as observed in experimental ecosystems that incorporate part of marine ecosystems; correlation between red-tide life absorbing proliferation stimulating substances and red tide generation; growth of high-concentration phytoplankton populations containing algae as a dominant species in local upwelling environments in oceans; and verification on establishment of specific phytoplankton populations containing pico-phytoplankton as a dominant species in oligotrophic environments in open seas. The paper mentions influences of the author's book, Biological Oceanographic Processes under joint authorship with Parsons on marine ecosystem researchers. 66 refs., 8 figs.

  18. De scheiding van slib en plankton

    NARCIS (Netherlands)

    Budding, M.C.

    1974-01-01

    It is possible to separate non-living suspended matter and living plankton with the help of a common laboratory centrifuge and a commercial silica-gel called LUDOX. With this method it becomes possible to determine particle size of suspended matter and plankton separately with e.g. a Coulter

  19. The effects of the Sea Empress oil spill on the plankton of the Southern Irish Sea

    International Nuclear Information System (INIS)

    Batten, S.D.; Allen, R.J.S.; Wotton, C.O.M.

    1998-01-01

    This study investigates the effects of the Sea Empress oil spill on the local plankton communities which are an important component of the marine ecosystem. The Continuous Plankton Recorder survey has monitored the plankton in this area since 1970 giving an extensive time series for comparison with post-spill samples. The analytical procedures applied and results obtained are presented and reveal that, with some exceptions, no significant effects were evident. Barnacle larvae were not recorded post-spill and the spring zooplankton community was somewhat different to the previous year. A long-term trend is apparent in the community but the most common taxa showed no significant changes, suggesting a minor shift in species composition rather than a dramatic change. (author)

  20. Cytotoxic activity of ethanolic extract of the marine sponge Aaptos suberitoides against T47D cell

    Science.gov (United States)

    Nurhayati, Awik Puji Dyah; Prastiwi, Rarastoeti; Sukardiman, Wahyuningsih, Tri

    2018-04-01

    Aaptos suberitoides marine sponge produce many kinds of secondary metabolites. The purpose of this study were to examine the cytotoxic, proliferation inhibition and apoptosis induction of marine sponge A.suberitoides. The sponge was extracted with 96 % ethanol. Ethanol extract cytotoxicity assay were performed with MTT method (Microculture Tetrazolium) against to cell line of T47D. The proliferation inhibition were done by doubling time. The apoptosis induction by observing the treated cell morphology after staining with acrydine orange. The results show that cytotoxic activity of the ethanol extract was 153.109 µg/mL, inhibits cell proliferation cell lines of T47D at 24 hours of incubation and apoptosis induction.

  1. Planktonic foraminifera in the Arctic: potentials and issues regarding modern and quaternary populations

    International Nuclear Information System (INIS)

    Eynaud, Frederique

    2011-01-01

    Calcareous microfossils are widely used by paleoceanographers to investigate past sea-surface hydrology. Among these microfossils, planktonic foraminifera are probably the most extensively used tool (e.g. [1] for a review), as they are easy to extract from the sediment and can also be used for coupled geochemical (e.g; δ 18 O, δ 13 C, Mg/Ca) and paleo-ecological investigations. Planktonic foraminifera are marine protists, which build a calcareous shell made of several chambers which reflect in their chemistry the properties of the ambient water-masses. Planktonic foraminifera are known to thrive in various habitats, distributed not only along a latitudinal gradient, but also along different water-depth intervals within surface waters (0-1000 m). Regarding their biogeographical distribution, planktonic foraminifera assemblages therefore mirror different water-masses properties, such as temperature, salinity and nutrient content of the surface water in which they live. The investigation of the specific composition of a fossil assemblage (relative abundances) is therefore a way to empirically obtain (paleo)information on past variations of sea-surface hydrological parameters. This paper focuses on the planktonic foraminifera record from the Arctic domain. This polar region records peculiar sea-surface conditions, with the influence of nearly perennial sea-ice cover development. This has strong impact on living foraminifera populations and on the preservation of their shells in the underlying sediments.

  2. Planktonic foraminifera in the Arctic: potentials and issues regarding modern and quaternary populations

    Energy Technology Data Exchange (ETDEWEB)

    Eynaud, Frederique, E-mail: f.eynaud@epoc.u-bordeaux1.fr [Universite Bordeaux I, Laboratoire EPOC (Environnements et Paleoenvironnements OCeaniques), UMR CNRS 5805, Avenue des facultes, 33405 Talence cedex - France (France)

    2011-05-15

    Calcareous microfossils are widely used by paleoceanographers to investigate past sea-surface hydrology. Among these microfossils, planktonic foraminifera are probably the most extensively used tool (e.g. [1] for a review), as they are easy to extract from the sediment and can also be used for coupled geochemical (e.g; {delta}{sup 18}O, {delta}{sup 13}C, Mg/Ca) and paleo-ecological investigations. Planktonic foraminifera are marine protists, which build a calcareous shell made of several chambers which reflect in their chemistry the properties of the ambient water-masses. Planktonic foraminifera are known to thrive in various habitats, distributed not only along a latitudinal gradient, but also along different water-depth intervals within surface waters (0-1000 m). Regarding their biogeographical distribution, planktonic foraminifera assemblages therefore mirror different water-masses properties, such as temperature, salinity and nutrient content of the surface water in which they live. The investigation of the specific composition of a fossil assemblage (relative abundances) is therefore a way to empirically obtain (paleo)information on past variations of sea-surface hydrological parameters. This paper focuses on the planktonic foraminifera record from the Arctic domain. This polar region records peculiar sea-surface conditions, with the influence of nearly perennial sea-ice cover development. This has strong impact on living foraminifera populations and on the preservation of their shells in the underlying sediments.

  3. Transfer of diazotroph-derived nitrogen towards non-diazotrophic planktonic communities: a comparative study between Trichodesmium erythraeum, Crocosphaera watsonii and Cyanothece sp.

    Science.gov (United States)

    Berthelot, Hugo; Bonnet, Sophie; Grosso, Olivier; Cornet, Véronique; Barani, Aude

    2016-07-01

    Biological dinitrogen (N2) fixation is the major source of new nitrogen (N) for the open ocean, and thus promotes marine productivity, in particular in the vast N-depleted regions of the surface ocean. Yet, the fate of the diazotroph-derived N (DDN) in marine ecosystems is poorly understood, and its transfer to auto- and heterotrophic surrounding plankton communities is rarely measured due to technical limitations. Moreover, the different diazotrophs involved in N2 fixation (Trichodesmium spp. vs. UCYN) exhibit distinct patterns of N2 fixation and inhabit different ecological niches, thus having potentially different fates in the marine food webs that remain to be explored. Here we used nanometer scale secondary ion mass spectrometry (nanoSIMS) coupled with 15N2 isotopic labelling and flow cytometry cell sorting to examine the DDN transfer to specific groups of natural phytoplankton and bacteria during artificially induced diazotroph blooms in New Caledonia (southwestern Pacific). The fate of the DDN was compared according to the three diazotrophs: the filamentous and colony-forming Trichodesmium erythraeum (IMS101), and the unicellular strains Crocosphaera watsonii WH8501 and Cyanothece ATCC51142. After 48 h, 7-17 % of the N2 fixed during the experiment was transferred to the dissolved pool and 6-12 % was transferred to non-diazotrophic plankton. The transfer was twice as high in the T. erythraeum bloom than in the C. watsonii and Cyanothece blooms, which shows that filamentous diazotrophs blooms are more efficient at promoting non-diazotrophic production in N-depleted areas. The amount of DDN released in the dissolved pool did not appear to be a good indicator of the DDN transfer efficiency towards the non-diazotrophic plankton. In contrast, the 15N-enrichment of the extracellular ammonium (NH4+) pool was a good indicator of the DDN transfer efficiency: it was significantly higher in the T. erythraeum than in unicellular diazotroph blooms, leading to a DDN

  4. [Effect of Pseudomonas aeruginosa exometabolites on planktonic and biofilm cultures of Escherichia coli].

    Science.gov (United States)

    Kuznetsova, M V; Karpunina, T I; Maslennikova, I L; Nesterova, L Iu; Demakov, V A

    2012-01-01

    Study the effect of P. aeruginosa exometabolites on planktonic and biofilm cultures of bioluminescent E. coli strain. E. coli K12 TG1 (pF1 lux+ Ap(r)) recombinant bioluminescent strain, P. aeruginosa ATCC 27853 reference strain and 2 nosocomial isolates were used. Pyocyanin and pyoverdin content in supernatant of P. aeruginosa over-night cultures was evaluated according to E. Deziel et al. (2001). Planktonic and biofilm cultures of E. coli were obtained in 96-well plates (LB, statically, 37 degrees C), optical density of plankton, film biomass (OD600, OD580) and bioluminescence in plankton and biofilm were evaluated in microplate reader Infiniti M200 (Tecan, Austria). P. aeruginosa exometabolites increased the duration of lag-phase in E. coli, and short term exposition inhibited luminescence of planktonic cells. These effects are determined by bactericidal action ofpyocyanin and pyoverdin. Supernatants ofover-night cultures of P. aeruginosa inhibit formation of biofilm and disrupt the formed biofilm of E. coli. Effect of pyocyanin and pyoverdin on these processes is not established, other factors may have higher significance. Bioluminescence of E. coli K12 TGI that reflects the energetic status of the cell allows to evaluate and prognose the character of coexistence of P. aeruginosa in combined with E. coli planktonic and biofilm culture.

  5. Accelerator Analysis of Tributyltin Adsorbed onto the Surface of a Tributyltin Resistant Marine Pseudoalteromonas sp. Cell

    Directory of Open Access Journals (Sweden)

    Akira Kitamura

    2008-10-01

    Full Text Available Tributyltin (TBT released into seawater from ship hulls is a stable marine pollutant and obviously remains in marine environments. We isolated a TBT resistant marine Pseudoalteromonas sp. TBT1 from sediment of a ship’s ballast water. The isolate (109.3 ± 0.2 colony-forming units mL-1 adsorbed TBT in proportion to the concentrations of TBTCl externally added up to 3 mM, where the number of TBT adsorbed by a single cell was estimated to be 108.2. The value was reduced to about one-fifth when the lysozyme-treated cells were used. The surface of ethanol treated cells became rough, but the capacity of TBT adsorption was the same as that for native cells. These results indicate that the function of the cell surface, rather than that structure, plays an important role to the adsorption of TBT. The adsorption state of TBT seems to be multi-layer when the number of more than 106.8 TBT molecules is adsorbed by a single cell.

  6. Persistent organic pollutants in Mediterranean seawater and processes affecting their accumulation in plankton.

    Science.gov (United States)

    Berrojalbiz, Naiara; Dachs, Jordi; Del Vento, Sabino; Ojeda, María José; Valle, María Carmen; Castro-Jiménez, Javier; Mariani, Giulio; Wollgast, Jan; Hanke, Georg

    2011-05-15

    The Mediterranean and Black Seas are unique marine environments subject to important anthropogenic pressures due to riverine and atmospheric inputs of organic pollutants. Here, we report the results obtained during two east-west sampling cruises in June 2006 and May 2007 from Barcelona to Istanbul and Alexandria, respectively, where water and plankton samples were collected simultaneously. Both matrixes were analyzed for hexaclorochyclohexanes (HCHs), hexachlorobenzene (HCB), and 41 polychlorinated biphenyl (PCB) congeners. The comparison of the measured HCB and HCHs concentrations with previously reported dissolved phase concentrations suggests a temporal decline in their concentrations since the 1990s. On the contrary, PCB seawater concentrations did not exhibit such a decline, but show a significant spatial variability in dissolved concentrations with lower levels in the open Western and South Eastern Mediterranean, and higher concentrations in the Black, Marmara, and Aegean Seas and Sicilian Strait. PCB and OCPs (organochlorine pesticides) concentrations in plankton were higher at lower plankton biomass, but the intensity of this trend depended on the compound hydrophobicity (K(OW)). For the more persistent PCBs and HCB, the observed dependence of POP concentrations in plankton versus biomass can be explained by interactions between air-water exchange, particle settling, and/or bioaccumulation processes, whereas degradation processes occurring in the photic zone drive the trends shown by the more labile HCHs. The results presented here provide clear evidence of the important physical and biogeochemical controls on POP occurrence in the marine environment.

  7. Influence of ocean acidification and deep water upwelling on oligotrophic plankton communities in the subtropical North Atlantic

    DEFF Research Database (Denmark)

    Taucher, Jan; Bach, Lennart T.; Boxhammer, Tim

    2017-01-01

    Oceanic uptake of anthropogenic carbon dioxide (CO2) causes pronounced shifts in marine carbonate chemistry and a decrease in seawater pH. Increasing evidence indicates that these changes-summarized by the term ocean acidification (OA)-can significantly affect marine food webs and biogeochemical...... cycles. However, current scientific knowledge is largely based on laboratory experiments with single species and artificial boundary conditions, whereas studies of natural plankton communities are still relatively rare. Moreover, the few existing community-level studies were mostly conducted in rather...... and successfully simulated a deep water upwelling event that induced a pronounced plankton bloom. Our study revealed significant effects of OA on the entire food web, leading to a restructuring of plankton communities that emerged during the oligotrophic phase, and was further amplified during the bloom...

  8. A Lactose-Binding Lectin from the Marine Sponge Cinachyrella Apion (Cal) Induces Cell Death in Human Cervical Adenocarcinoma Cells

    Science.gov (United States)

    Rabelo, Luciana; Monteiro, Norberto; Serquiz, Raphael; Santos, Paula; Oliveira, Ruth; Oliveira, Adeliana; Rocha, Hugo; Morais, Ana Heloneida; Uchoa, Adriana; Santos, Elizeu

    2012-01-01

    Cancer represents a set of more than 100 diseases, including malignant tumors from different locations. Strategies inducing differentiation have had limited success in the treatment of established cancers. Marine sponges are a biological reservoir of bioactive molecules, especially lectins. Several animal and plant lectins were purified with antitumor activity, mitogenic, anti-inflammatory and antiviral, but there are few reports in the literature describing the mechanism of action of lectins purified from marine sponges to induce apoptosis in human tumor cells. In this work, a lectin purified from the marine sponge Cinachyrella apion (CaL) was evaluated with respect to its hemolytic, cytotoxic and antiproliferative properties, besides the ability to induce cell death in tumor cells. The antiproliferative activity of CaL was tested against HeLa, PC3 and 3T3 cell lines, with highest growth inhibition for HeLa, reducing cell growth at a dose dependent manner (0.5–10 µg/mL). Hemolytic activity and toxicity against peripheral blood cells were tested using the concentration of IC50 (10 µg/mL) for both trials and twice the IC50 for analysis in flow cytometry, indicating that CaL is not toxic to these cells. To assess the mechanism of cell death caused by CaL in HeLa cells, we performed flow cytometry and western blotting. Results showed that lectin probably induces cell death by apoptosis activation by pro-apoptotic protein Bax, promoting mitochondrial membrane permeabilization, cell cycle arrest in S phase and acting as both dependent and/or independent of caspases pathway. These results indicate the potential of CaL in studies of medicine for treating cancer. PMID:22690140

  9. A Lactose-Binding Lectin from the Marine Sponge Cinachyrella Apion (Cal Induces Cell Death in Human Cervical Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Adriana Uchoa

    2012-03-01

    Full Text Available Cancer represents a set of more than 100 diseases, including malignant tumors from different locations. Strategies inducing differentiation have had limited success in the treatment of established cancers. Marine sponges are a biological reservoir of bioactive molecules, especially lectins. Several animal and plant lectins were purified with antitumor activity, mitogenic, anti-inflammatory and antiviral, but there are few reports in the literature describing the mechanism of action of lectins purified from marine sponges to induce apoptosis in human tumor cells. In this work, a lectin purified from the marine sponge Cinachyrella apion (CaL was evaluated with respect to its hemolytic, cytotoxic and antiproliferative properties, besides the ability to induce cell death in tumor cells. The antiproliferative activity of CaL was tested against HeLa, PC3 and 3T3 cell lines, with highest growth inhibition for HeLa, reducing cell growth at a dose dependent manner (0.5–10 µg/mL. Hemolytic activity and toxicity against peripheral blood cells were tested using the concentration of IC50 (10 µg/mL for both trials and twice the IC50 for analysis in flow cytometry, indicating that CaL is not toxic to these cells. To assess the mechanism of cell death caused by CaL in HeLa cells, we performed flow cytometry and western blotting. Results showed that lectin probably induces cell death by apoptosis activation by pro-apoptotic protein Bax, promoting mitochondrial membrane permeabilization, cell cycle arrest in S phase and acting as both dependent and/or independent of caspases pathway. These results indicate the potential of CaL in studies of medicine for treating cancer.

  10. Adsorption of tributyltin by tributyltin resistant marine Pseudoalteromonas sp. cells

    International Nuclear Information System (INIS)

    Mimura, Haruo; Sato, Ryusei; Furuyama, Yuichi; Taniike, Akira; Yagi, Masahiro; Yoshida, Kazutoshi; Kitamura, Akira

    2008-01-01

    The isolate, Pesudoalteromonas sp. TBT1, could grow to overcome the toxicity of tributyltin chloride (TBTCl) up to 30 μM in the absence of Cl - in the medium until the cells reached an exponential phase of growth. The viability, however, was reduced after the cells reached a stationary phase. The degradation products, such as dibutyltin (DBT) and monobutyltin (MBT), were not detected in the growth medium, indicating that the isolate has no ability to degrade TBT into less toxic DBT and MBT. Up to about 10 7.5 TBT molecules were adsorbed by a single cell. The observation of morphological changes with an electron microscope showed that the cell surface became wrinkled after exposure to the lethal concentration of 10 mM TBTCl. These results indicate that the resistance of the isolate toward the toxicity of TBTCl is not related to the unique cell surface, which seems to play an important role in preventing the diffusion of TBTCl into the cytoplasm

  11. Adsorption of tributyltin by tributyltin resistant marine Pseudoalteromonas sp. cells

    Energy Technology Data Exchange (ETDEWEB)

    Mimura, Haruo [Graduate School of Maritime Sciences, Kobe University, 5-1-1, Fukae, Higashinada, Kobe 658-0022 (Japan)], E-mail: hmimura@maritime.kobe-u.ac.jp; Sato, Ryusei; Furuyama, Yuichi; Taniike, Akira [Graduate School of Maritime Sciences, Kobe University, 5-1-1, Fukae, Higashinada, Kobe 658-0022 (Japan); Yagi, Masahiro [Department of Environmental Chemistry, Kobe Institute of Health, 4-6, Minatojima, Chuo, Kobe 650-0046 (Japan); Yoshida, Kazutoshi [Hyogo Prefectural Institute of Technology, 3-1-12, Yukihira, Suma, Kobe 654-0037 (Japan); Kitamura, Akira [Graduate School of Maritime Sciences, Kobe University, 5-1-1, Fukae, Higashinada, Kobe 658-0022 (Japan)

    2008-07-01

    The isolate, Pesudoalteromonas sp. TBT1, could grow to overcome the toxicity of tributyltin chloride (TBTCl) up to 30 {mu}M in the absence of Cl{sup -} in the medium until the cells reached an exponential phase of growth. The viability, however, was reduced after the cells reached a stationary phase. The degradation products, such as dibutyltin (DBT) and monobutyltin (MBT), were not detected in the growth medium, indicating that the isolate has no ability to degrade TBT into less toxic DBT and MBT. Up to about 10{sup 7.5} TBT molecules were adsorbed by a single cell. The observation of morphological changes with an electron microscope showed that the cell surface became wrinkled after exposure to the lethal concentration of 10 mM TBTCl. These results indicate that the resistance of the isolate toward the toxicity of TBTCl is not related to the unique cell surface, which seems to play an important role in preventing the diffusion of TBTCl into the cytoplasm.

  12. Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, C.; Basseguy, R.; Etcheverry, L.; Bergel, A. [Laboratoire de Genie Chimique, CNRS-INPT, Toulouse Cedex (France); Mollica, A. [CNR-ISMAR, Genoa (Italy); Feron, D. [SCCME, CEA Saclay, Gif-sur-Yvette (France)

    2007-12-01

    Numerous biocorrosion studies have stated that biofilms formed in aerobic seawater induce an efficient catalysis of the oxygen reduction on stainless steels. This property was implemented here for the first time in a marine microbial fuel cell (MFC). A prototype was designed with a stainless steel anode embedded in marine sediments coupled to a stainless steel cathode in the overlying seawater. Recording current/potential curves during the progress of the experiment confirmed that the cathode progressively acquired effective catalytic properties. The maximal power density produced of 4 mW m{sup -2} was lower than those reported previously with marine MFC using graphite electrodes. Decoupling anode and cathode showed that the cathode suffered practical problems related to implementation in the sea, which may found easy technical solutions. A laboratory fuel cell based on the same principle demonstrated that the biofilm-covered stainless steel cathode was able to supply current density up to 140 mA m{sup -2} at +0.05 V versus Ag/AgCl. The power density of 23 mW m{sup -2} was in this case limited by the anode. These first tests presented the biofilm-covered stainless steel cathodes as very promising candidates to be implemented in marine MFC. The suitability of stainless steel as anode has to be further investigated. (author)

  13. Predicting plankton net community production in the Atlantic Ocean

    Science.gov (United States)

    Serret, Pablo; Robinson, Carol; Fernández, Emilio; Teira, Eva; Tilstone, Gavin; Pérez, Valesca

    2009-07-01

    We present, test and implement two contrasting models to predict euphotic zone net community production (NCP), which are based on 14C primary production (PO 14CP) to NCP relationships over two latitudinal (ca. 30°S-45°N) transects traversing highly productive and oligotrophic provinces of the Atlantic Ocean (NADR, CNRY, BENG, NAST-E, ETRA and SATL, Longhurst et al., 1995 [An estimation of global primary production in the ocean from satellite radiometer data. Journal of Plankton Research 17, 1245-1271]). The two models include similar ranges of PO 14CP and community structure, but differ in the relative influence of allochthonous organic matter in the oligotrophic provinces. Both models were used to predict NCP from PO 14CP measurements obtained during 11 local and three seasonal studies in the Atlantic, Pacific and Indian Oceans, and from satellite-derived estimates of PO 14CP. Comparison of these NCP predictions with concurrent in situ measurements and geochemical estimates of NCP showed that geographic and annual patterns of NCP can only be predicted when the relative trophic importance of local vs. distant processes is similar in both modeled and predicted ecosystems. The system-dependent ability of our models to predict NCP seasonality suggests that trophic-level dynamics are stronger than differences in hydrodynamic regime, taxonomic composition and phytoplankton growth. The regional differences in the predictive power of both models confirm the existence of biogeographic differences in the scale of trophic dynamics, which impede the use of a single generalized equation to estimate global marine plankton NCP. This paper shows the potential of a systematic empirical approach to predict plankton NCP from local and satellite-derived P estimates.

  14. Ecological dispersal barrier across the equatorial Atlantic in a migratory planktonic copepod

    Science.gov (United States)

    Goetze, Erica; Hüdepohl, Patricia T.; Chang, Chantel; Van Woudenberg, Lauren; Iacchei, Matthew; Peijnenburg, Katja T. C. A.

    2017-11-01

    Resolving the large-scale genetic structure of plankton populations is important to understanding their responses to climate change. However, few studies have reported on the presence and geographic extent of genetically distinct populations of marine zooplankton at ocean-basin scales. Using mitochondrial sequence data (mtCOI, 718 animals) from 18 sites across a basin-scale Atlantic transect (39°N-40°S), we show that populations of the dominant migratory copepod, Pleuromamma xiphias, are genetically subdivided across subtropical and tropical waters (global FST = 0.15, global ΦST = 0.21, both P marine plankton, and we suggest that this may be a dominant mechanism driving the large-scale genetic structure of zooplankton species. Our results also demonstrate the potential importance of the Atlantic equatorial province as a region of evolutionary novelty for the holoplankton.

  15. Trophic efficiency of plankton food webs: Observations from the Gulf of Mannar and the Palk Bay, Southeast Coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Anjusha, A.; Jyothibabu, R; Jagadeesan, L.; Mohan, A.P.; Sudheesh, K.; Krishna, K.; Ullas, N.; Deepak, M.P.

    This paper introduces the structure and trophic efficiency of plankton food webs in the Gulf of Mannar (GoM) and the Palk Bay (PB) - two least studied marine environments located between India and Sri Lanka. The study is based on the results...

  16. Gelatinous plankton is central to the diet of European eel (Anguilla anguilla) larvae in the Sargasso Sea

    DEFF Research Database (Denmark)

    Ayala, Daniel Jiro; Munk, Peter; Lundgreen, Regitze B. C.

    2018-01-01

    endangered species. Next-generation 18S rRNA gene sequencing data of Sargasso Sea eel larvae gut contents and marine snow aggregates was compared with a reference plankton database to assess the trophic relations of eel larvae. Gut contents of A. anguilla larvae were not well explained by the eukaryotic...

  17. High resilience of two coastal plankton communities to 21st century seawater acidification: Evidence from microcosm studies

    DEFF Research Database (Denmark)

    Nielsen, Lasse Tor; Jakobsen, Hans Henrik; Hansen, Per Juul

    2010-01-01

    Increased free CO2 and ocean acidification are among the consequences of anthropogenic carbon emissions. Responses of marine protists to increased levels of CO2 are highly species-specific, and this has been suggested to cause an alteration in plankton species composition, community functions...

  18. Sheldon spectrum and the plankton paradox: two sides of the same coin-a trait-based plankton size-spectrum model.

    Science.gov (United States)

    Cuesta, José A; Delius, Gustav W; Law, Richard

    2018-01-01

    The Sheldon spectrum describes a remarkable regularity in aquatic ecosystems: the biomass density as a function of logarithmic body mass is approximately constant over many orders of magnitude. While size-spectrum models have explained this phenomenon for assemblages of multicellular organisms, this paper introduces a species-resolved size-spectrum model to explain the phenomenon in unicellular plankton. A Sheldon spectrum spanning the cell-size range of unicellular plankton necessarily consists of a large number of coexisting species covering a wide range of characteristic sizes. The coexistence of many phytoplankton species feeding on a small number of resources is known as the Paradox of the Plankton. Our model resolves the paradox by showing that coexistence is facilitated by the allometric scaling of four physiological rates. Two of the allometries have empirical support, the remaining two emerge from predator-prey interactions exactly when the abundances follow a Sheldon spectrum. Our plankton model is a scale-invariant trait-based size-spectrum model: it describes the abundance of phyto- and zooplankton cells as a function of both size and species trait (the maximal size before cell division). It incorporates growth due to resource consumption and predation on smaller cells, death due to predation, and a flexible cell division process. We give analytic solutions at steady state for both the within-species size distributions and the relative abundances across species.

  19. Costs and Benefits of Using Fuel Cells for Stationary Power Generation at Marine Corps Logistics Base Barstow Maintenance Center

    National Research Council Canada - National Science Library

    Schendler, Phillip

    2002-01-01

    We compare the costs and benefits of using two types of fuel cell power generation systems versus Southern California Edison to provide the base electricity load for the Marine Corps Logistics Base...

  20. Effects of DNP on the cell surface properties of marine bacteria and its implication for adhesion to surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    Jain, A.; Nishad, K.K.; Bhosle, N.B.

    The effect of 2, 4-dinitrophenol (DNP) on extracelluar polysaccharides (EPS), cell surface charge, and hydrophobicity of six marine bacterial cultures was studied, and its influence on attachment of these bacteria to glass and polystyrene...

  1. Habitat suitability and ecological niches of different plankton functional types in the global ocean

    Science.gov (United States)

    Vogt, Meike; Brun, Philipp; Payne, Mark R.; O'Brien, Colleen J.; Bednaršek, Nina; Buitenhuis, Erik T.; Doney, Scott C.; Leblanc, Karine; Le Quéré, Corinne; Luo, Yawei; Moriarty, Róisín; O'Brien, Todd D.; Schiebel, Ralf; Swan, Chantal

    2013-04-01

    Marine plankton play a central role in the biogeochemical cycling of important elements such as carbon, nitrogen, and sulphur. While our knowledge about marine ecosystem structure and functioning is still scarce and episodic, several recent observational studies confirm that marine ecosystems have been changing due to recent climate change, overfishing, and coastal eutrophication. In order to better understand marine ecosystem dynamics, the MAREDAT initiative has recently collected abundance and biomass data for 5 autotrophic (diatoms, Phaeocystis, coccolithophores, nitrogen fixers, picophytoplankton), and 6 heterotrophic plankton functional types (PFTs; bacteria, micro-, meso- and macrozooplankton, foraminifera and pteropods). Species distribution models (SDMs) are statistical tools that can be used to derive information about species habitats in space and time. They have been used extensively for a wide range of ecological applications in terrestrial ecosystems, but here we present the first global application in the marine realm, which was made possible by the MAREDAT data synthesis effort. We use a maximum entropy SDM to simulate global habitat suitability, habitat extent and ecological niches for different PFTs in the modern ocean. Present habitat suitability is derived from presence-only MAREDAT data and the observed annual and monthly mean levels of physiologically relevant variables such as SST, nutrient concentration or photosynthetic active radiation received in the mixed layer. This information can then be used to derive ecological niches for different species or taxa within each PFT, and to compare the ecological niches of different PFTs. While these results still need verification because data was not available for all ocean regions for all PFTs, they can give a first indication what present and future plankton habitats may look like, and what consequences we may have to expect for future marine ecosystem functioning and service provision in a warmer

  2. Single-cell technologies in molecular marine studies

    KAUST Repository

    Kodzius, Rimantas

    2015-01-24

    Middle Eastern countries are experiencing a renaissance, with heavy investment in both in infrastructure and science. King Abdullah University of Science and Technology (KAUST) is a new and modern university in Saudi Arabia. At the Computational Bioscience Research Center (CBRC) we are working on exploring the Red Sea and beyond, collaborating with Japanese and other research centers. We are using the environment to collect and analyze the microorganisms present. The platform being established at CBRC allows to process samples in a pipeline. The pipeline components consist of sample collection, processing and sequencing, following the in silico analysis, determining the gene functions, identifying the organisms. The genomes of microorganisms of interest are targeted modified by genome editing technology such as CRISPR and desired properties are selected by single cell instrumentation. The final output is to identify valuable microorganisms with production of bio-energy, nutrients, the food and fine chemicals.

  3. Cultivation of seaweed Gracilaria lemaneiformis enhanced biodiversity in a eukaryotic plankton community as revealed via metagenomic analyses.

    Science.gov (United States)

    Chai, Zhao Yang; He, Zhi Li; Deng, Yun Yan; Yang, Yu Feng; Tang, Ying Zhong

    2018-02-01

    Plankton diversity reflects the quality and health of waters and should be monitored as a critical feature of marine ecosystems. This study applied a pair of 28S rRNA gene-specific primers and pyrosequencing to assess the effects of large-scale cultivation of the seaweed Gracilaria lemaneiformis on the biodiversity of eukaryotic plankton community in the coastal water of Guangdong, China. With 1 million sequences (2,221 operational taxonomic units [OTUs]) obtained from 51 samples, we found that the biodiversity of eukaryotic plankton community was significantly higher in the seaweed cultivation area than that in the nearby control area as reflected in OTU richness, evenness (Shannon-Wiener index) and dominance (Simpson index) for total plankton community and its four subcategories when Gracilaria biomass reached the maximum, while no such a significant difference was observed before seaweed inoculation. Our laboratory experiment using an artificial phytoplankton community of nine species observed the same effects of Gracilaria exposure. Principal component analysis and principal coordinates analysis showed the plankton community structure in cultivation area markedly differed from the control area when Gracilaria biomass reached its maximum. Redundancy analysis showed that G. lemaneiformis was the critical factor in controlling the dynamics of eukaryotic plankton communities in the studied coastal ecosystem. Our results explicitly demonstrated G. lemaneiformis cultivation could enhance biodiversity of plankton community via allelopathy, which prevents one or several plankton species from blooming and consequently maintains a relatively higher biodiversity. Our study provided further support for using large-scale G. lemaneiformis cultivation as an effective approach for improving costal ecosystem health. © 2018 John Wiley & Sons Ltd.

  4. Effects of Photoactivated Titanium Dioxide Nanopowders and Coating on Planktonic and Biofilm Growth of Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Polo, Andrea; Diamanti, Maria Vittoria; Bjarnsholt, Thomas

    2011-01-01

    eradication of P. aeruginosa planktonic cells (initial concentration 10(8) cells/ml) in 24 h compared to a 3-log reduction caused by UV-A light alone. In contrast, neither the photocatalytic treatment with TiO(2) film nor that with TiO(2) nanopowder had any effect on P. aeruginosa biofilms at all...

  5. Conditional and specific cell ablation in the marine annelid Platynereis dumerilii.

    Directory of Open Access Journals (Sweden)

    Vinoth Babu Veedin-Rajan

    Full Text Available The marine annelid Platynereis dumerilii has become a model system for evo-devo, neurobiology and marine biology. The functional assessment of its cell types, however, has so far been very limited. Here we report on the establishment of a generally applicable, cell type specific ablation technique to overcome this restriction. Using a transgenic strain expressing the bacterial enzyme nitroreductase (ntr under the control of the worm's r-opsin1 locus, we show that the demarcated photoreceptor cells can be specifically ablated by the addition of the prodrug metronidazole (mtz. TUNEL staining indicates that ntr expressing cells undergo apoptotic cell death. As we used a transgenic strain co-expressing ntr with enhanced green fluorescent protein (egfp coding sequence, we were able to validate the ablation of photoreceptors not only in fixed tissue, using r-opsin1 riboprobes, but also by monitoring eGFP+ cells in live animals. The specificity of the ablation was demonstrated by the normal presence of the eye pigment cells, as well as of neuronal markers expressed in other cells of the brain, such as phc2, tyrosine hydroxylase and brn1/2/4. Additional analyses of the position of DAPI stained nuclei, the brain's overall neuronal scaffold, as well as the positions and projections of serotonergic neurons further confirmed that mtz treatment did not induce general abnormalities in the worm's brain. As the prodrug is administered by adding it to the water, targeted ablation of specific cell types can be achieved throughout the life of the animal. We show that ablation conditions need to be adjusted to the size of the worms, likely due to differences in the penetration of the prodrug, and establish ablation conditions for worms containing 10 to 55 segments. Our results establish mtz/ntr mediated conditional cell ablation as a powerful functional tool in Platynereis.

  6. A deep-sea agglutinated foraminifer tube constructed with planktonic foraminifer shells of a single species

    Science.gov (United States)

    Pearson, Paul N.; Expedition 363 Shipboard Scientific Party, IODP

    2018-01-01

    Agglutinated foraminifera are marine protists that show apparently complex behaviour in constructing their shells, involving selecting suitable sedimentary grains from their environment, manipulating them in three dimensions, and cementing them precisely into position. Here we illustrate a striking and previously undescribed example of complex organisation in fragments of a tube-like foraminifer (questionably assigned to Rhabdammina) from 1466 m water depth on the northwest Australian margin. The tube is constructed from well-cemented siliciclastic grains which form a matrix into which hundreds of planktonic foraminifer shells are regularly spaced in apparently helical bands. These shells are of a single species, Turborotalita clarkei, which has been selected to the exclusion of all other bioclasts. The majority of shells are set horizontally in the matrix with the umbilical side upward. This mode of construction, as is the case with other agglutinated tests, seems to require either an extraordinarily selective trial-and-error process at the site of cementation or an active sensory and decision-making system within the cell.

  7. Plankton bloom controlled by horizontal stirring

    Science.gov (United States)

    McKiver, W.; Neufeld, Z.; Scheuring, I.

    2009-10-01

    Here we show a simple mechanism in which changes in the rate of horizontal stirring by mesoscale ocean eddies can trigger or suppress plankton blooms and can lead to an abrupt change in the average plankton density. We consider a single species phytoplankton model with logistic growth, grazing and a spatially non-uniform carrying capacity. The local dynamics have multiple steady states for some values of the carrying capacity that can lead to localized blooms as fluid moves across the regions with different properties. We show that for this model even small changes in the ratio of biological timescales relative to the flow timescales can greatly enhance or reduce the global plankton productivity. Thus, this may be a possible mechanism in which changes in horizontal mixing can trigger plankton blooms or cause regime shifts in some oceanic regions. Comparison between the spatially distributed model and Lagrangian simulations considering temporal fluctuations along fluid trajectories, demonstrates that small scale transport processes also play an important role in the development of plankton blooms with a significant influence on global biomass.

  8. Comparative proteomic analysis of Listeria monocytogenes exposed to enterocin AS-48 in planktonic and sessile states.

    Science.gov (United States)

    Caballero Gómez, Natacha; Abriouel, Hikmate; Ennahar, Said; Gálvez, Antonio

    2013-10-15

    Enterocin AS-48 is a cyclic peptide of great interest for application in food preservation and sanitation. In the present study, the proteome response of Listeria monocytogenes to purified enterocin AS-48 was studied under two different conditions: planktonic cells and sessile cells grown on polystyrene plates. Ten different proteins were differentially expressed in planktonic L. monocytogenes cells treated with 0.1 μg/ml enterocin AS-48 compared to the untreated controls. Overexpressed proteins were related to stress response (DnaK) or carbohydrate transport and metabolism, while underexpressed and unexpressed proteins were related to metabolism (such as glyceraldehyde-3-phosphate dehydrogenase, pyruvate oxidase, glutamate dehydrogenase or glutamate decarboxylase) or stress (GroEL). In the sessile state, L. monocytogenes cells tolerated up to 10 μg/ml bacteriocin, and the treated biofilm cells overexpressed a set of 11 proteins, some of which could be related to stress response (DnaK, GroEL), protein synthesis and carbohydrate metabolism, while glyceraldehyde-3-phosphate dehydrogenase was the only unexpressed protein. Some of the overexpressed proteins (such as elongation factor Tu and GroEL) could also be implicated in cell adhesion. These results suggest different cell responses of L. monocytogenes to enterocin AS-48 in the planktonic and in the sessile state, including stress response and cell metabolism proteins. While in the planktonic state the bacterium may tend to compensate for the cytoplasmic cell permeability changes induced by AS-48 by reinforcing carbohydrate transport and metabolism, sessile cells seem to respond by shifting carbohydrate metabolism and reinforcing protein synthesis. Stress response proteins also seem to be important in the response to AS-48, but the stress response seems to be different in planktonic and in sessile cells. © 2013.

  9. Decomposition in pelagic marine ecosytems

    International Nuclear Information System (INIS)

    Lucas, M.I.

    1986-01-01

    During the decomposition of plant detritus, complex microbial successions develop which are dominated in the early stages by a number of distinct bacterial morphotypes. The microheterotrophic community rapidly becomes heterogenous and may include cyanobacteria, fungi, yeasts and bactivorous protozoans. Microheterotrophs in the marine environment may have a biomass comparable to that of all other heterotrophs and their significance as a resource to higher trophic orders, and in the regeneration of nutrients, particularly nitrogen, that support 'regenerated' primary production, has aroused both attention and controversy. Numerous methods have been employed to measure heterotrophic bacterial production and activity. The most widely used involve estimates of 14 C-glucose uptake; the frequency of dividing cells; the incorporation of 3 H-thymidine and exponential population growth in predator-reduced filtrates. Recent attempts to model decomposition processes and C and N fluxes in pelagic marine ecosystems are described. This review examines the most sensitive components and predictions of the models with particular reference to estimates of bacterial production, net growth yield and predictions of N cycling determined by 15 N methodology. Directed estimates of nitrogen (and phosphorus) flux through phytoplanktonic and bacterioplanktonic communities using 15 N (and 32 P) tracer methods are likely to provide more realistic measures of nitrogen flow through planktonic communities

  10. MATHEMATICAL MODELING OF THE ELECTRIC CURRENT GENERATION IN A MICROBIAL FUEL CELL INOCULATED WITH MARINE SEDIMENT

    Directory of Open Access Journals (Sweden)

    J. T. Teleken

    Full Text Available Abstract Microbial fuel cells (MFC are electrochemical devices that utilize the ability of some microorganisms to oxidize organic matter and transfer electrons resulting from their metabolism to an insoluble acceptor. The goal of the present study was to model the kinetics of electrical current generation from an MFC inoculated with marine sediment. For this purpose, a differential equation system was used, including the Nernst-Monod relationship and Ohm's Law, to describe the microbial metabolism and the mechanism of extracellular electron transfer (EET, respectively. The experimental data obtained by cyclic voltammetry analysis were properly described by the model. It was concluded that marine microorganisms preferably use a direct mechanism of EET by means of nanowires to establish the electrochemical contact with the anode. The mathematical modeling could help understand MFC operation and, consequently, contribute to improving power generation from this source.

  11. Spatial Distribution of Viruses Associated with Planktonic and Attached Microbial Communities in Hydrothermal Environments

    Science.gov (United States)

    Nunoura, Takuro; Kazama, Hiromi; Noguchi, Takuroh; Inoue, Kazuhiro; Akashi, Hironori; Yamanaka, Toshiro; Toki, Tomohiro; Yamamoto, Masahiro; Furushima, Yasuo; Ueno, Yuichiro; Yamamoto, Hiroyuki; Takai, Ken

    2012-01-01

    Viruses play important roles in marine surface ecosystems, but little is known about viral ecology and virus-mediated processes in deep-sea hydrothermal microbial communities. In this study, we examined virus-like particle (VLP) abundances in planktonic and attached microbial communities, which occur in physical and chemical gradients in both deep and shallow submarine hydrothermal environments (mixing waters between hydrothermal fluids and ambient seawater and dense microbial communities attached to chimney surface areas or macrofaunal bodies and colonies). We found that viruses were widely distributed in a variety of hydrothermal microbial habitats, with the exception of the interior parts of hydrothermal chimney structures. The VLP abundance and VLP-to-prokaryote ratio (VPR) in the planktonic habitats increased as the ratio of hydrothermal fluid to mixing water increased. On the other hand, the VLP abundance in attached microbial communities was significantly and positively correlated with the whole prokaryotic abundance; however, the VPRs were always much lower than those for the surrounding hydrothermal waters. This is the first report to show VLP abundance in the attached microbial communities of submarine hydrothermal environments, which presented VPR values significantly lower than those in planktonic microbial communities reported before. These results suggested that viral lifestyles (e.g., lysogenic prevalence) and virus interactions with prokaryotes are significantly different among the planktonic and attached microbial communities that are developing in the submarine hydrothermal environments. PMID:22210205

  12. SEAMAP 2015 Fall Plankton Survey (PC1504, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During the 2015 Fall Plankton Survey, plankton samples were collected from a systematic grid of stations to assess distribution, occurrence and abundance of the...

  13. SEAMAP 2013 Fall Plankton Survey (PC1305, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During the 2013 Fall Plankton Survey, plankton samples were collected from a systematic grid of stations to assess distribution, occurrence and abundance of the...

  14. SEAMAP Fall 2014 Plankton Survey (GU1405, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During the 2014 Fall Plankton Survey, plankton samples were collected from a systematic grid of stations to assess distribution, occurrence and abundance of the...

  15. SEAMAP 2013 Fall Plankton Survey (PC1305, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During the 2013 Fall Plankton Survey, plankton samples were collected from a systematic grid of stations to assess distribution, occurrence and abundance of the...

  16. SEAMAP Spring 2016 Plankton Survey (R21601, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During the 2016 Spring Plankton Survey, plankton samples were collected from a systematic grid of stations to assess distribution, occurrence and abundance of the...

  17. SEAMAP Spring 2015 Plankton Survey (GU1501, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During the 2015 Spring Plankton Survey, plankton samples were collected from a systematic grid of stations to assess distribution, occurrence and abundance of the...

  18. Temperature and UV light affect the activity of marine cell-free enzymes

    Directory of Open Access Journals (Sweden)

    B. Thomson

    2017-09-01

    Full Text Available Microbial extracellular enzymatic activity (EEA is the rate-limiting step in the degradation of organic matter in the oceans. These extracellular enzymes exist in two forms: cell-bound, which are attached to the microbial cell wall, and cell-free, which are completely free of the cell. Contrary to previous understanding, cell-free extracellular enzymes make up a substantial proportion of the total marine EEA. Little is known about these abundant cell-free enzymes, including what factors control their activity once they are away from their sites (cells. Experiments were run to assess how cell-free enzymes (excluding microbes respond to ultraviolet radiation (UVR and temperature manipulations, previously suggested as potential control factors for these enzymes. The experiments were done with New Zealand coastal waters and the enzymes studied were alkaline phosphatase (APase, β-glucosidase, (BGase, and leucine aminopeptidase (LAPase. Environmentally relevant UVR (i.e. in situ UVR levels measured at our site reduced cell-free enzyme activities by up to 87 % when compared to controls, likely a consequence of photodegradation. This effect of UVR on cell-free enzymes differed depending on the UVR fraction. Ambient levels of UV radiation were shown to reduce the activity of cell-free enzymes for the first time. Elevated temperatures (15 °C increased the activity of cell-free enzymes by up to 53 % when compared to controls (10 °C, likely by enhancing the catalytic activity of the enzymes. Our results suggest the importance of both UVR and temperature as control mechanisms for cell-free enzymes. Given the projected warming ocean environment and the variable UVR light regime, it is possible that there could be major changes in the cell-free EEA and in the enzymes contribution to organic matter remineralization in the future.

  19. A validated dynamic model of the first marine molten carbonate fuel cell

    International Nuclear Information System (INIS)

    Ovrum, E.; Dimopoulos, G.

    2012-01-01

    In this work we present a modular, dynamic and multi-dimensional model of a molten carbonate fuel cell (MCFC) onboard the offshore supply vessel “Viking Lady” serving as an auxiliary power unit. The model is able to capture detailed thermodynamic, heat transfer and electrochemical reaction phenomena within the fuel cell layers. The model has been calibrated and validated with measured performance data from a prototype installation onboard the vessel. The model is able to capture detailed thermodynamic, heat transfer and electrochemical reaction phenomena within the fuel cell layers. The model has been calibrated and validated with measured performance data from a prototype installation onboard the offshore supply vessel. The calibration process included parameter identification, sensitivity analysis to identify the critical model parameters, and iterative calibration of these to minimize the overall prediction error. The calibrated model has a low prediction error of 4% for the operating range of the cell, exhibiting at the same time a physically sound qualitative behavior in terms of thermodynamic heat transfer and electrochemical phenomena, both on steady-state and transient operation. The developed model is suitable for a wide range of studies covering the aspects of thermal efficiency, performance, operability, safety and endurance/degradation, which are necessary to introduce fuel cells in ships. The aim of this MCFC model is to aid to the introduction, design, concept approval and verification of environmentally friendly marine applications such as fuel cells, in a cost-effective, fast and safe manner. - Highlights: ► We model the first marine molten carbonate fuel cell auxiliary power unit. ► The model is distributed spatially and models both steady state and transients. ► The model is validated against experimental data. ► The paper illustrates how the model can be used in safety and reliability studies.

  20. Composition of planktonic organisms and its associated physico ...

    African Journals Online (AJOL)

    Composition of plankton communities in two ponds at African Regional Agriculture Centre (ARAC) Aluu, Port Harcourt was undertaken between May and June 2004, to assess the composition, relative abundance and distribution of plankton. The diversity of plankton was poor. Twenty-eight taxa representing four (4) families ...

  1. Planktonic interactions and chaotic advection in Langmuir circulation

    DEFF Research Database (Denmark)

    Bees, Martin Alan; Mezic, I.; McGlade, J.

    1998-01-01

    The role of unsteady laminar flows for planktonic communities is investigated. Langmuir circulation is used, as a typical medium-scale structure, to illustrate mechanisms for the generation of plankton patches. Two behaviours are evident: chaotic regions that help to spread plankton and locally...

  2. Cytotoxicity Study of Cyclopentapeptide Analogues of Marine Natural Product Galaxamide towards Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jignesh Lunagariya

    2017-01-01

    Full Text Available Herein, we report the cytotoxicity of cyclopentapeptide analogues of marine natural product galaxamide towards breast carcinoma cells and the underlying mechanisms. We examined the effect of the novel galaxamide analogues on cancer cell proliferation by MTT assay and also further examined the most active compound for morphological changes using Hoechst33342 staining technique, induction of apoptosis, cell cycle phases, mitochondrial membrane potential (MMP, and reactive oxygen species (ROS generation using flow cytometry in human breast cancer MCF-7 cells in vitro. Galaxamide and its analogues effectively induced toxicity in human hepatocellular carcinoma HepG2, human breast carcinoma MCF-7, human epitheloid cervix carcinoma HeLa, and human breast carcinoma MB-MDA-231 cell lines. Amongst them, compound 3 exhibited excellent toxicity towards MCF-7 cells. This galaxamide analogue significantly induced apoptosis in a dose-dependent manner in MCF-7 cells involves cell cycle arrest in the G1 phase, a reduction of MMP, and a marked increase in generation of ROS. Particularly, compound 3 of galaxamide analogues might be a potential candidate for the treatment of breast cancer.

  3. Gelatinous plankton is central to the diet of European eel (Anguilla anguilla) larvae in the Sargasso Sea

    DEFF Research Database (Denmark)

    Ayala, Daniel Jiro; Munk, Peter; Lundgreen, Regitze B. C.

    2018-01-01

    endangered species. Next-generation 18S rRNA gene sequencing data of Sargasso Sea eel larvae gut contents and marine snow aggregates was compared with a reference plankton database to assess the trophic relations of eel larvae. Gut contents of A. anguilla larvae were not well explained by the eukaryotic...... composition of marine snow aggregates; gut contents being dominated by gene sequences of Hydrozoa taxa (phylum Cnidaria), while snow aggregates were dominated by Crustacea taxa. Pronounced differences between gut contents and marine snow aggregates were also seen in the prokaryotic 16S rRNA gene composition...

  4. Unveiling in situ interactions between marine protists and bacteria through single cell sequencing

    Science.gov (United States)

    Martinez-Garcia, Manuel; Brazel, David; Poulton, Nicole J; Swan, Brandon K; Gomez, Monica Lluesma; Masland, Dashiell; Sieracki, Michael E; Stepanauskas, Ramunas

    2012-01-01

    Heterotrophic protists are a highly diverse and biogeochemically significant component of marine ecosystems, yet little is known about their species-specific prey preferences and symbiotic interactions in situ. Here we demonstrate how these previously unresolved questions can be addressed by sequencing the eukaryote and bacterial SSU rRNA genes from individual, uncultured protist cells collected from their natural marine environment and sorted by flow cytometry. We detected Pelagibacter ubique in association with a MAST-4 protist, an actinobacterium in association with a chrysophyte and three bacteroidetes in association with diverse protist groups. The presence of identical phylotypes among the putative prey and the free bacterioplankton in the same sample provides evidence for predator–prey interactions. Our results also suggest a discovery of novel symbionts, distantly related to Rickettsiales and the candidate divisions ZB3 and TG2, associated with Cercozoa and Chrysophyta cells. This study demonstrates the power of single cell sequencing to untangle ecological interactions between uncultured protists and prokaryotes. PMID:21938022

  5. A harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yan-Lin, E-mail: yanlin.shao@dnvgl.com; Faltinsen, Odd M.

    2014-10-01

    We propose a new efficient and accurate numerical method based on harmonic polynomials to solve boundary value problems governed by 3D Laplace equation. The computational domain is discretized by overlapping cells. Within each cell, the velocity potential is represented by the linear superposition of a complete set of harmonic polynomials, which are the elementary solutions of Laplace equation. By its definition, the method is named as Harmonic Polynomial Cell (HPC) method. The characteristics of the accuracy and efficiency of the HPC method are demonstrated by studying analytical cases. Comparisons will be made with some other existing boundary element based methods, e.g. Quadratic Boundary Element Method (QBEM) and the Fast Multipole Accelerated QBEM (FMA-QBEM) and a fourth order Finite Difference Method (FDM). To demonstrate the applications of the method, it is applied to some studies relevant for marine hydrodynamics. Sloshing in 3D rectangular tanks, a fully-nonlinear numerical wave tank, fully-nonlinear wave focusing on a semi-circular shoal, and the nonlinear wave diffraction of a bottom-mounted cylinder in regular waves are studied. The comparisons with the experimental results and other numerical results are all in satisfactory agreement, indicating that the present HPC method is a promising method in solving potential-flow problems. The underlying procedure of the HPC method could also be useful in other fields than marine hydrodynamics involved with solving Laplace equation.

  6. A comparison between fuel cells and other alternatives for marine electric power generation

    Directory of Open Access Journals (Sweden)

    Yousri M.A. Welaya

    2011-06-01

    Full Text Available The world is facing a challenge in meeting its needs for energy. Global energy consumption in the last half-century has increased very rapidly and is expected to continue to grow over the next 50 years. However, it is expected to see significant differences between the last 50 years and the next. This paper aims at introducing a good solution to replace or work with conventional marine power plants. This includes the use of fuel cell power plant operated with hydrogen produced through water electrolysis or hydrogen produced from natural gas, gasoline, or diesel fuels through steam reforming processes to mitigate air pollution from ships.

  7. A comparison between fuel cells and other alternatives for marine electric power generation

    Science.gov (United States)

    Welaya, Yousri M. A.; El Gohary, M. Morsy; Ammar, Nader R.

    2011-06-01

    The world is facing a challenge in meeting its needs for energy. Global energy consumption in the last halfcentury has increased very rapidly and is expected to continue to grow over the next 50 years. However, it is expected to see significant differences between the last 50 years and the next. This paper aims at introducing a good solution to replace or work with conventional marine power plants. This includes the use of fuel cell power plant operated with hydrogen produced through water electrolysis or hydrogen produced from natural gas, gasoline, or diesel fuels through steam reforming processes to mitigate air pollution from ships.

  8. Size distribution of planktonic autotrophy and microheterotrophy in DeGray Reservoir, Arkansas

    International Nuclear Information System (INIS)

    Kimmel, B.L.; Groeger, A.W.

    1983-01-01

    Naturally occurring assemblages of phytoplankton and bacterioplankton were radiolabelled with sodium 14 C-bicarbonate and sodium 3 H-acetate and size fractionated to determine the size structure of planktonic autotrophy and microheterotrophy in DeGray Reservoir, an oligotrophic impoundment of the Caddo River in south-central Arkansas. Size distributions of autotrophy and microheterotrophy were remarkably uniform seasonally, vertically within the water column, and along the longitudinal axis of the reservoir despite significant changes in environmental conditions. Planktonic autotrophy was dominated by small algal cells with usually >50% of the photosynthetic carbon uptake accounted for by organisms 75% of the planktonic microheterotrophy. Longitudinal patterns in autotrophic and microheterotrophic activities associated with >3-μm and >1-μm size fractions, respectively, suggest an uplake to downlake shift from riverine to lacustrine environmental influences within the reservoir. 83 references, 7 figures

  9. 16S rRNA gene metabarcoding and TEM reveals different ecological strategies within the genus Neogloboquadrina (planktonic foraminifer.

    Directory of Open Access Journals (Sweden)

    Clare Bird

    Full Text Available Uncovering the complexities of trophic and metabolic interactions among microorganisms is essential for the understanding of marine biogeochemical cycling and modelling climate-driven ecosystem shifts. High-throughput DNA sequencing methods provide valuable tools for examining these complex interactions, although this remains challenging, as many microorganisms are difficult to isolate, identify and culture. We use two species of planktonic foraminifera from the climatically susceptible, palaeoceanographically important genus Neogloboquadrina, as ideal test microorganisms for the application of 16S rRNA gene metabarcoding. Neogloboquadrina dutertrei and Neogloboquadrina incompta were collected from the California Current and subjected to either 16S rRNA gene metabarcoding, fluorescence microscopy, or transmission electron microscopy (TEM to investigate their species-specific trophic interactions and potential symbiotic associations. 53-99% of 16S rRNA gene sequences recovered from two specimens of N. dutertrei were assigned to a single operational taxonomic unit (OTU from a chloroplast of the phylum Stramenopile. TEM observations confirmed the presence of numerous intact coccoid algae within the host cell, consistent with algal symbionts. Based on sequence data and observed ultrastructure, we taxonomically assign the putative algal symbionts to Pelagophyceae and not Chrysophyceae, as previously reported in this species. In addition, our data shows that N. dutertrei feeds on protists within particulate organic matter (POM, but not on bacteria as a major food source. In total contrast, of OTUs recovered from three N. incompta specimens, 83-95% were assigned to bacterial classes Alteromonadales and Vibrionales of the order Gammaproteobacteria. TEM demonstrates that these bacteria are a food source, not putative symbionts. Contrary to the current view that non-spinose foraminifera are predominantly herbivorous, neither N. dutertrei nor N. incompta

  10. Factors affecting egg ratios in planktonic rotifers

    NARCIS (Netherlands)

    Sarma, S.S.S.; Gulati, R.D.; Nandini, S.

    2005-01-01

    Edmondson’s egg ratio (number of amictic eggs per female) is an important life history variable, which has been in wide use to understand and predict patterns of population growth in planktonic rotifers under field conditions. It is also useful as an indicator of the health of rotifers under culture

  11. Public aquaria as long-term enrichments for investigating planktonic Archaea

    Science.gov (United States)

    Goldenstein, Nadine I.; Warren, Courtney E.; Lipp, Julius S.; Pagani, Mark; Hinrichs, Kai-Uwe

    2016-04-01

    The most abundant group of planktonic Archaea , the so-called Thaumarchaeota, represents 20% of all marine planktonic microorganisms (Karner et al., 2001) and their energy efficient performance of nitrification makes them key players in the global nitrogen- and carbon-cycle (Könneke et al., 2014). Furthermore, planktonic Archaea are considered to be the major producers of specific microbial membrane lipids that are extensively used as paleoproxies in marine climate research (Schouten et al., 2002). Therefore, assessing the parameters controlling the distribution of Archaea in the marine water column is crucial for studies of modern and past marine environments. Although diverse studies utilizing DNA- and biomarker-based approaches have constrained the turnover and distribution of marine Archaea, the environmental factors affecting their abundance and activity (e.g., Wuchter et al., 2006; Bale et al., 2013) are still poorly understood. Further, previous surveys, using enrichment cultivation and pure culture experiments, provided valuable information on adaptation of planktonic Archaea to changes of parameters affecting growth conditions, such as temperature, salinity and growth stage (Elling et al., 2014, 2015). Hence, we know that planktonic Archaea directly adapt their membranes to changing growth conditions, but also that environmental selection for individual phylogenetic groups of these organisms is also reflected in the membrane lipid pool. Extending these studies, this project further aims at constraining the environmental parameters controlling archaeal abundance in the marine environment. Public aquaria, which are comparable to perfectly monitored long-term enrichment cultures, are optimal sampling sites for this task. A comprehensive set of 120 water and substrate samples from fresh, marine and brackish systems exhibiting diverse conditions was selected from 15 public aquaria at the east and west coast of the USA. These samples were examined for their

  12. Impact of ultraviolet-B radiation on planktonic fish larvae: Alteration of the osmoregulatory function

    Energy Technology Data Exchange (ETDEWEB)

    Sucre, Elliott, E-mail: elliott.sucre@univ-montp2.fr [AEO Team (Adaptation Ecophysiologique et Ontogenese), UMR 5119 Ecosym UM2, CNRS, IRD, Ifremer, UM1, Universite Montpellier 2, cc092, Pl. Eugene Bataillon, 34095 Montpellier, Cx 05 (France); Vidussi, Francesca [RESEAUX Team (Reseaux Planctoniques et Changement Environnemental), UMR 5119 Ecosym UM2, CNRS, IRD, Ifremer, UM1, Universite Montpellier 2, cc093, Pl. Eugene Bataillon, 34095 Montpellier, Cx 05 (France); Mostajir, Behzad [RESEAUX Team (Reseaux Planctoniques et Changement Environnemental), UMR 5119 Ecosym UM2, CNRS, IRD, Ifremer, UM1, Universite Montpellier 2, cc093, Pl. Eugene Bataillon, 34095 Montpellier, Cx 05 (France); Centre d' ecologie marine experimentale MEDIMEER (Mediterranean centre for Marine Ecosystem Experimental Research), Universite Montpellier 2-CNRS (UMS 3301), Station Mediterraneenne de l' Environnement Littoral, MEDIMEER, 2 Rue des Chantiers, 34200 Sete (France); Charmantier, Guy; Lorin-Nebel, Catherine [AEO Team (Adaptation Ecophysiologique et Ontogenese), UMR 5119 Ecosym UM2, CNRS, IRD, Ifremer, UM1, Universite Montpellier 2, cc092, Pl. Eugene Bataillon, 34095 Montpellier, Cx 05 (France)

    2012-03-15

    Coastal marine ecosystems are submitted to variations of several abiotic and biotic parameters, some of them related to global change. Among them the ultraviolet-B (UV-B) radiation (UVBR: 280-320 nm) may strongly impact planktonic fish larvae. The consequences of an increase of UVBR on the osmoregulatory function of Dicentrarchus labrax larvae have been investigated in this study. In young larvae of D. labrax, as in other teleosts, osmoregulation depends on tegumentary ion transporting cells, or ionocytes, mainly located on the skin of the trunk and of the yolk sac. As early D. labrax larvae passively drift in the top water column, ionocytes are exposed to solar radiation. The effect of UVBR on larval osmoregulation in seawater was evaluated through nanoosmometric measurements of the blood osmolality after exposure to different UV-B treatments. A loss of osmoregulatory capability occured in larvae after 2 days of low (50 {mu}W cm{sup -2}: 4 h L/20 h D) and medium (80 {mu}W cm{sup -2}: 4 h L/20 h D) UVBR exposure. Compared to control larvae kept in the darkness, a significant increase in blood osmolality, abnormal behavior and high mortalities were detected in larvae exposed to UVBR from 2 days on. At the cellular level, an important decrease in abundance of tegumentary ionocytes and mucous cells was observed after 2 days of exposure to UVBR. In the ionocytes, two major osmoeffectors were immunolocalized, the Na{sup +}/K{sup +}-ATPase and the Na{sup +}/K{sup +}/2Cl{sup -} cotransporter. Compared to controls, the fluorescent immunostaining was lower in UVBR-exposed larvae. We hypothesize that the impaired osmoregulation in UVBR-exposed larvae originates from the lower number of tegumentary ionocytes and mucous cells. This alteration of the osmoregulatory function could negatively impact the survival of young larvae at the surface water exposed to UVBR.

  13. Standard filtration practices may significantly distort planktonic microbial diversity estimates

    Directory of Open Access Journals (Sweden)

    Cory Cruz Padilla

    2015-06-01

    Full Text Available Fractionation of biomass by filtration is a standard method for sampling planktonic microbes. It is unclear how the taxonomic composition of filtered biomass changes depending on sample volume. Using seawater from a marine oxygen minimum zone, we quantified the 16S rRNA gene composition of biomass on a prefilter (1.6 μm pore-size and a downstream 0.2 μm filter over sample volumes from 0.05 to 5 L. Significant community shifts occurred in both filter fractions, and were most dramatic in the prefilter community. Sequences matching Vibrionales decreased from ~40-60% of prefilter datasets at low volumes (0.05-0.5 L to less than 5% at higher volumes, while groups such at the Chromatiales and Thiohalorhabdales followed opposite trends, increasing from minor representation to become the dominant taxa at higher volumes. Groups often associated with marine particles, including members of the Deltaproteobacteria, Planctomycetes and Bacteroidetes, were among those showing the greatest increase with volume (4 to 27-fold. Taxon richness (97% similarity clusters also varied significantly with volume, and in opposing directions depending on filter fraction, highlighting potential biases in community complexity estimates. These data raise concerns for studies using filter fractionation for quantitative comparisons of aquatic microbial diversity, for example between free-living and particle-associated communities.

  14. Millennial-scale plankton regime shifts in the subtropical North Pacific Ocean.

    Science.gov (United States)

    McMahon, Kelton W; McCarthy, Matthew D; Sherwood, Owen A; Larsen, Thomas; Guilderson, Thomas P

    2015-12-18

    Climate change is predicted to alter marine phytoplankton communities and affect productivity, biogeochemistry, and the efficacy of the biological pump. We reconstructed high-resolution records of changing plankton community composition in the North Pacific Ocean over the past millennium. Amino acid-specific δ(13)C records preserved in long-lived deep-sea corals revealed three major plankton regimes corresponding to Northern Hemisphere climate periods. Non-dinitrogen-fixing cyanobacteria dominated during the Medieval Climate Anomaly (950-1250 Common Era) before giving way to a new regime in which eukaryotic microalgae contributed nearly half of all export production during the Little Ice Age (~1400-1850 Common Era). The third regime, unprecedented in the past millennium, began in the industrial era and is characterized by increasing production by dinitrogen-fixing cyanobacteria. This picoplankton community shift may provide a negative feedback to rising atmospheric carbon dioxide concentrations. Copyright © 2015, American Association for the Advancement of Science.

  15. High content live cell imaging for the discovery of new antimalarial marine natural products

    Directory of Open Access Journals (Sweden)

    Cervantes Serena

    2012-01-01

    Full Text Available Abstract Background The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, Plasmodium falciparum. Methods A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown in vitro in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope. Results Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts. Conclusion Collectively, our results show that high-content live cell-imaging (HCLCI can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials.

  16. High content live cell imaging for the discovery of new antimalarial marine natural products.

    Science.gov (United States)

    Cervantes, Serena; Stout, Paige E; Prudhomme, Jacques; Engel, Sebastian; Bruton, Matthew; Cervantes, Michael; Carter, David; Tae-Chang, Young; Hay, Mark E; Aalbersberg, William; Kubanek, Julia; Le Roch, Karine G

    2012-01-03

    The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, Plasmodium falciparum. A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown in vitro in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope. Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts. Collectively, our results show that high-content live cell-imaging (HCLCI) can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials. © 2011 Cervantes et al; licensee BioMed Central Ltd.

  17. Effects of ultraviolet radiation on the lower levels of the planktonic food web in Antarctica

    International Nuclear Information System (INIS)

    Ferreyra, Gustavo A.; Schloss, Irene; Tosonotto, Gabriela; Calvino, Eduardo; Rodriguez, Silvia; Cantoni, Leonardo; Gonzalez, Oscar; Ulrich, Alejandro; Hernando, Marcelo; Hernandez, Edgardo; Oyarbide, Fabricio

    2004-01-01

    Full text: Most of the studies that investigated the effects of ultraviolet radiation (UVR, 280-400 NM) on the first levels of the marine food web used experimental approaches (in situ incubations, micro and mesocosms). However, research on the responses to UVR of the micro community in their natural environment is scarce. A time series study including most of the oceanographic parameters described as controlling bacteria and phytoplankton dynamics was carried out (PAR, tidal mixing, turbulent mixing by winds and currents, nutrient stress). In this case, however, the effects of ultraviolet A and B (UVB, 280-320 nm and UVA, 320-400 nm, respectively) were added as forcing parameters. Fieldwork was done in the vicinity of Melchior Station (64 degrees 20' S, 62 degrees 59' W, Observatory Island). It involved the automated measurement of physical variables (currents, tides and meteorological data), as well as discrete sampling of physical (salinity, temperature), chemical (macro nutrients) and biological variables (bacterial and phytoplankton abundance and production, PSI I system, photo protective compounds). Sub-surface sampling (0.5 m depth) was conducted with 5 L Niskin bottles at a fixed station (sampling every 6/12 h centered at local noon during the whole study period), and vertical profiles at 6 fixed depths (0, 5, 10, 20, 30 and 50 m) were done every four days. The whole study lasted for one month, from February 11 to March 12 2002. Average upper mixed layer (UML) was around 20 m and the depth of the euphotic zone (1% of incident radiation) for UVB and UVA was respectively 17 and 32 m, suggesting a strong influence of UVR on cells within the UML. PSII activity showed a significant inverse correlation with UVB, phased with irradiance oscillations. Bacterio plankton and phytoplankton biomass and production of both presented a similar response, but minimum values were lagged by 4-6 h from UVR maxima. Mycosporin like aminoacids (MAA's) were also phased and directly

  18. Stratification of archaeal membrane lipids in the ocean and implications for adaptation and chemotaxonomy of planktonic archaea.

    Science.gov (United States)

    Zhu, Chun; Wakeham, Stuart G; Elling, Felix J; Basse, Andreas; Mollenhauer, Gesine; Versteegh, Gerard J M; Könneke, Martin; Hinrichs, Kai-Uwe

    2016-12-01

    Membrane lipids of marine planktonic archaea have provided unique insights into archaeal ecology and paleoceanography. However, past studies of archaeal lipids in suspended particulate matter (SPM) and sediments mainly focused on a small class of fully saturated glycerol dibiphytanyl glycerol tetraether (GDGT) homologues identified decades ago. The apparent low structural diversity of GDGTs is in strong contrast to the high diversity of metabolism and taxonomy among planktonic archaea. Furthermore, adaptation of archaeal lipids in the deep ocean remains poorly constrained. We report the archaeal lipidome in SPM from diverse oceanic regimes. We extend the known inventory of planktonic archaeal lipids to include numerous unsaturated archaeal ether lipids (uns-AELs). We further reveal (i) different thermal regulations and polar headgroup compositions of membrane lipids between the epipelagic (≤ 100 m) and deep (>100 m) populations of archaea, (ii) stratification of unsaturated GDGTs with varying redox conditions, and (iii) enrichment of tetra-unsaturated archaeol and fully saturated GDGTs in epipelagic and deep oxygenated waters, respectively. Such stratified lipid patterns are consistent with the typical distribution of archaeal phylotypes in marine environments. We, thus, provide an ecological context for GDGT-based paleoclimatology and bring about the potential use of uns-AELs as biomarkers for planktonic Euryarchaeota. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Marine Benthic Invertebrates in Mamala Bay, Oahu, Hawaii 1994 (NODC Accession 9900151)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Planktonic larval stages of many benthic marine invertebrates are especially susceptible to environmental stress, such as the presence of pollution. Recruitment of...

  20. Lethal and sublethal effects of marine sediment extracts on fish cells and chromosomes

    Science.gov (United States)

    Landolt, Marsha L.; Kocan, Richard M.

    1984-03-01

    The cost of conducting conventional chronic bioassays with every potentially toxic compound found in marine ecosystems is prohibitive; therefore short-term toxicity tests which can be used for rapid screening were developed. The tests employ cultured fish cells to measure lethal, sublethal or genotoxic effects of pure compounds and complex mixtures. The sensitivity of these tests has been proven under laboratory conditions; the following study used two of these tests, the anaphase aberration test and a cytotoxicity assay, under field conditions. Sediment was collected from 97 stations within Puget Sound, Washington. Serial washings of the sediment in methanol and dichloromethane yielded an organic extract which was dried, dissolved in DMSO and incubated as a series of dilutions with rainbow trout gonad (RTG-2) cells. The toxic effects of the extract were measured by examining the rate of cell proliferation and the percentage of damaged anaphase figures. Anaphase figures were considered to be abnormal if they exhibited non-disjunctions, chromosome fragments, or chromosome bridges. A second cell line (bluegill fry, BF-2) was also tested for cell proliferation and was included because, unlike the RTG-2 cell line, it contains little or no mixed function oxygenase activity. Of 97 stations tested, 35 showed no genotoxic activity, 42 showed high genotoxic activity (P≤.01) and the remainder were intermediate. Among the toxic sites were several deep water stations adjacent to municipal sewage outfalls and four urban waterways contaminated by industrial and municipal effluents. Extracts from areas that showed genotoxic effects also inhibited cell proliferation and were cytotoxic to RTG-2 cells. Few effects were noted in the MFO deficient BF-2 cells. Short term in vitro tests provide aquatic toxicologists with a versatile and cost effective tool for screening complex environments. Through these tests one can identify compounds or geographic regions that exhibit high

  1. Study the Seasonal Variability of Plankton and Forage Fish in the Gulf of Khambhat Using Npzfd Model

    Science.gov (United States)

    Kumar, V.; Kumar, S.

    2016-02-01

    Numerical modelling of marine ecology exploits several assumptions and it is indeed quite challenging to include marine ecological phenomena into a mathematical framework with too many unknown parameters. The governing ordinary differential equations represent the interaction of the biological and chemical processes in a marine environment. The key concern in the development of a numerical models are parameterizations based on output, viz., mathematical modelling of ecological system mainly depends on parameters and its variations. Almost, all constituents of each trophic level of marine food web are depended on phytoplankton, which are mostly influenced by initial slope of P-I curve and nutrient stock in the study domain. Whereas, the earlier plankton dynamic models rarely include a compartment of small fish and as an agent in zooplankton mortality, which is most important for the modelling of higher trophic level of marine species. A compartment of forage fish in the modelling of plankton dynamics has been given more realistic mortality rates of plankton, viz., they feed upon phytoplankton and zooplankton. The inclusion of an additional compartment increases complexity of earlier plankton dynamics model as it introduces additional unknown parameters, which has been specified for performing the numerical simulations.As a case study we applied our analysis to explain the aquatic ecology of Gulf of Khambhat (19o 48' N - 22o20' N, 65o E - 72o40' E), west coast of India, which has rich bio-diversity and a high productive area in the form of plankton and forage fish. It has elevated turbidity and varying geography location, viz., one of the regions among world's ocean with high biological productivity.The model presented in this study is able to bring out the essential features of the observed data; that includes the bimodal oscillations in the observed data, monthly mean chlorophyll-a in the SeaWiFs/MODIS Aqua data and in-situ data of plankton. The additional

  2. Mercury methylation rates of biofilm and plankton microorganisms from a hydroelectric reservoir in French Guiana.

    Science.gov (United States)

    Huguet, L; Castelle, S; Schäfer, J; Blanc, G; Maury-Brachet, R; Reynouard, C; Jorand, F

    2010-02-15

    The Petit-Saut ecosystem is a hydroelectric reservoir covering 365km(2) of flooded tropical forest. This reservoir and the Sinnamary Estuary downstream of the dam are subject to significant mercury methylation. The mercury methylation potential of plankton and biofilm microorganisms/components from different depths in the anoxic reservoir water column and from two different sites along the estuary was assessed. For this, reservoir water and samples of epiphytic biofilms from the trunk of a submerged tree in the anoxic water column and from submerged branches in the estuary were batch-incubated from 1h to 3 months with a nominal 1000ng/L spike of Hg(II) chloride enriched in (199)Hg. Methylation rates were determined for different reservoir and estuarine communities under natural nutrient (reservoir water, estuary freshwater) and artificial nutrient (culture medium) conditions. Methylation rates in reservoir water incubations were the highest with plankton microorganisms sampled at -9.5m depth (0.5%/d) without addition of biofilm components. Mercury methylation rates of incubated biofilm components were strongly enhanced by nutrient addition. The results suggested that plankton microorganisms strongly contribute to the total Hg methylation in the Petit-Saut reservoir and in the Sinnamary Estuary. Moreover, specific methylation efficiencies (%Me(199)Hg(net)/cell) suggested that plankton microorganisms could be more efficient methylating actors than biofilm consortia and that their methylation efficiency may be reduced in the presence of biofilm components. Extrapolation to the reservoir scale of the experimentally determined preliminary methylation efficiencies suggested that plankton microorganisms in the anoxic water column could produce up to 27mol MeHg/year. Taking into account that (i) demethylation probably occurs in the reservoir and (ii) that the presence of biofilm components may limit the methylation efficiency of plankton microorganisms, this result is

  3. Effects of Pollutants on Marine Life Probed

    Science.gov (United States)

    Chemical and Engineering News, 1973

    1973-01-01

    Discusses research activities conducted by scientists from the United State of America, Canada, and the United Kingdom to determine the long-term effects on natural marine ecosystems, especially plankton communities, of such pollutants as heavy metals, synthetic hydrocarbons, and petroleum hydrocarbons. (CC)

  4. Ecological roulette: the global transport of nonindigenous marine organisms.

    Science.gov (United States)

    Cariton, J T; Geller, J B

    1993-07-02

    Ocean-going ships carry, as ballast, seawater that is taken on in port and released at subsequent ports of call. Plankton samples from Japanese ballast water released in Oregon contained 367 taxa. Most taxa with a planktonic phase in their life cycle were found in ballast water, as were all major marine habitat and trophic groups. Transport of entire coastal planktonic assemblages across oceanic barriers to similar habitats renders bays, estuaries, and inland waters among the most threatened ecosystems in the world. Presence of taxonomically difficult or inconspicuous taxa in these samples suggests that ballast water invasions are already pervasive.

  5. TOF-SIMS characterization of planktonic foraminifera

    International Nuclear Information System (INIS)

    Vering, G.; Crone, C.; Bijma, J.; Arlinghaus, H.F.

    2003-01-01

    Oceanic sediment properties that are closely related to former environmental (e.g. climatic) parameters are called 'proxies'. Planktonic foraminifera are small protists which make up part of the plankton. Certain element concentrations, element ratios and isotopic ratios of their calcite shell found in the sediment can be used as proxies reflecting the state of the ocean during the life of the animal; they supply useful information for the reconstruction of environmental parameters. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) was used to examine the inner and outer part of foraminiferal shells, as well as foraminiferal shells dissolved in HCl. High resolution elemental images and mass spectra were obtained from the foraminifera. The data show that TOF-SIMS is a useful technique for determining the elemental distribution and for measuring isotope ratios such as δ 11 B with high precision in a single foraminiferal shell

  6. TOF-SIMS characterization of planktonic foraminifera

    Energy Technology Data Exchange (ETDEWEB)

    Vering, G.; Crone, C.; Bijma, J.; Arlinghaus, H.F

    2003-01-15

    Oceanic sediment properties that are closely related to former environmental (e.g. climatic) parameters are called 'proxies'. Planktonic foraminifera are small protists which make up part of the plankton. Certain element concentrations, element ratios and isotopic ratios of their calcite shell found in the sediment can be used as proxies reflecting the state of the ocean during the life of the animal; they supply useful information for the reconstruction of environmental parameters. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) was used to examine the inner and outer part of foraminiferal shells, as well as foraminiferal shells dissolved in HCl. High resolution elemental images and mass spectra were obtained from the foraminifera. The data show that TOF-SIMS is a useful technique for determining the elemental distribution and for measuring isotope ratios such as {delta}{sup 11}B with high precision in a single foraminiferal shell.

  7. The structure and evolution of plankton communities

    Science.gov (United States)

    Longhurst, Alan R.

    New understanding of the circulation of ancient oceans is not yet matched by progress in our understanding of their pelagic ecology, though it was the planktonic ecosystems that generated our offshore oil and gas reserves. Can we assume that present-day models of ecosystem function are also valid for ancient seas? This question is addressed by a study of over 4000 plankton samples to derive a comprehensive, global description of zooplankton community structure in modern oceans: this shows that copepods form only 50% of the biomass of all plankton, ranging from 70% in polar to 35% in tropical seas. Comparable figures are derived from 14 other taxonomic categories of zooplankton. For trophic groupings, the data indicate globally: geletinous predators - 14%; gelatinous herbivores - 4%; raptorial predators - 33%; macrofiltering herbivores - 20%; macrofiltering omnivores - 25%; and detritivores - 3%. A simple, idealized model for the modern pelagic ecosystem is derived from these percentages which indicates that metazooplankton are not the most important consumers of pico- and nano-plankton production which itself probably constitutes 90% of primary production in warm oceans. This model is then compared with candidate life-forms available in Palaeozoic and Mesozoic oceans to determine to what extent it is also valid for ancient ecosystems: it is concluded that it is probably unnecessary to postulate models fundamentally differing from it in order to accommodate the life-forms, both protozoic and metazoic, known to have populated ancient seas. Remarkably few life-forms have existed which cannot be paralleled in the modern ocean, which contains remarkably few life-forms which cannot be paralleled in the Palaeozoic ocean. As a first assumption, then, it is reasonable to assume that energy pathways were similar in ancient oceans to those we study today.

  8. Effects of solar ultraviolet radiation (UVR) on molecular diversity of plankton from the Chubut rivers estuary

    International Nuclear Information System (INIS)

    Manrique, J.M.; Halac, S.; Calvo, A.Y.; Villafane, V.; Jones, L.R.; Helbling, W.E.

    2010-01-01

    Within the framework of a project designed to evaluate the impact of UVR upon estuarine plankton, we present here a molecular analysis of plankton diversity. Water samples were exposed to three radiation treatments (PAR, PAR + UV-A and PAR + UV-A + UV-B) in microcosms for ca 10 days during the Austral summer. At the beginning (t 0 ) and at the end of the experiment samples were filtered 0 through 20, 10, 5 and 0.22 μm pore sizes. The DNA amount retained in each filter indicated that most of the plankton biomass was in the 0.22-5 μm fraction at t0. In contrast, at the end of the experiment this proportion changed according to the radiation treatment and big cells (> 20 μm) dominated. An rDNA library was obtained from the DNA corresponding to the 0.22-5 μm fraction. There was no relationship between treatments and the number and frequency of restriction genotypes. Analyses of 27 clones fraction from t 0 indicated the presence of three genera of Rhodobacteraceae, one genus of Rhodospirillaceae, one SAR11 genus, one genus of Bacillaceae, an unclassified sequences of Alphaproteobacteria, Actinobacteria and Rhodospirillaceae. Also, there were six sequences similar to Ostreococcus tauri (Mamiellales). Even though the sequence analyses are still ongoing, our initial data suggest a big impact of UV-B radiation in the amount and composition of the plankton community towards big cells. (authors)

  9. Determining surface areas of marine alga cells by acid-base titration method.

    Science.gov (United States)

    Wang, X; Ma, Y; Su, Y

    1997-09-01

    A new method for determining the surface area of living marine alga cells was described. The method uses acid-base titration to measure the surface acid/base amount on the surface of alga cells and uses the BET (Brunauer, Emmett, and Teller) equation to estimate the maximum surface acid/base amount, assuming that hydrous cell walls have carbohydrates or other structural compounds which can behave like surface Brönsted acid-base sites due to coordination of environmental H2O molecules. The method was applied to 18 diverse alga species (including 7 diatoms, 2 flagellates, 8 green algae and 1 red alga) maintained in seawater cultures. For the species examined, the surface areas of individual cells ranged from 2.8 x 10(-8) m2 for Nannochloropsis oculata to 690 x 10(-8) m2 for Dunaliella viridis, specific surface areas from 1,030 m2.g-1 for Dunaliella salina to 28,900 m2.g-1 for Pyramidomonas sp. Measurement accuracy was 15.2%. Preliminary studies show that the method may be more promising and accurate than light/electron microscopic measurements for coarse estimation of the surface area of living algae.

  10. Community barcoding reveals little effect of ocean acidification on the composition of coastal plankton communities: Evidence from a long-term mesocosm study in the Gullmar Fjord, Skagerrak.

    Directory of Open Access Journals (Sweden)

    Julia A F Langer

    Full Text Available The acidification of the oceans could potentially alter marine plankton communities with consequences for ecosystem functioning. While several studies have investigated effects of ocean acidification on communities using traditional methods, few have used genetic analyses. Here, we use community barcoding to assess the impact of ocean acidification on the composition of a coastal plankton community in a large scale, in situ, long-term mesocosm experiment. High-throughput sequencing resulted in the identification of a wide range of planktonic taxa (Alveolata, Cryptophyta, Haptophyceae, Fungi, Metazoa, Hydrozoa, Rhizaria, Straminipila, Chlorophyta. Analyses based on predicted operational taxonomical units as well as taxonomical compositions revealed no differences between communities in high CO2 mesocosms (~ 760 μatm and those exposed to present-day CO2 conditions. Observed shifts in the planktonic community composition were mainly related to seasonal changes in temperature and nutrients. Furthermore, based on our investigations, the elevated CO2 did not affect the intraspecific diversity of the most common mesozooplankter, the calanoid copepod Pseudocalanus acuspes. Nevertheless, accompanying studies found temporary effects attributed to a raise in CO2. Differences in taxa composition between the CO2 treatments could, however, only be observed in a specific period of the experiment. Based on our genetic investigations, no compositional long-term shifts of the plankton communities exposed to elevated CO2 conditions were observed. Thus, we conclude that the compositions of planktonic communities, especially those in coastal areas, remain rather unaffected by increased CO2.

  11. Community barcoding reveals little effect of ocean acidification on the composition of coastal plankton communities: Evidence from a long-term mesocosm study in the Gullmar Fjord, Skagerrak.

    Science.gov (United States)

    Langer, Julia A F; Sharma, Rahul; Schmidt, Susanne I; Bahrdt, Sebastian; Horn, Henriette G; Algueró-Muñiz, María; Nam, Bora; Achterberg, Eric P; Riebesell, Ulf; Boersma, Maarten; Thines, Marco; Schwenk, Klaus

    2017-01-01

    The acidification of the oceans could potentially alter marine plankton communities with consequences for ecosystem functioning. While several studies have investigated effects of ocean acidification on communities using traditional methods, few have used genetic analyses. Here, we use community barcoding to assess the impact of ocean acidification on the composition of a coastal plankton community in a large scale, in situ, long-term mesocosm experiment. High-throughput sequencing resulted in the identification of a wide range of planktonic taxa (Alveolata, Cryptophyta, Haptophyceae, Fungi, Metazoa, Hydrozoa, Rhizaria, Straminipila, Chlorophyta). Analyses based on predicted operational taxonomical units as well as taxonomical compositions revealed no differences between communities in high CO2 mesocosms (~ 760 μatm) and those exposed to present-day CO2 conditions. Observed shifts in the planktonic community composition were mainly related to seasonal changes in temperature and nutrients. Furthermore, based on our investigations, the elevated CO2 did not affect the intraspecific diversity of the most common mesozooplankter, the calanoid copepod Pseudocalanus acuspes. Nevertheless, accompanying studies found temporary effects attributed to a raise in CO2. Differences in taxa composition between the CO2 treatments could, however, only be observed in a specific period of the experiment. Based on our genetic investigations, no compositional long-term shifts of the plankton communities exposed to elevated CO2 conditions were observed. Thus, we conclude that the compositions of planktonic communities, especially those in coastal areas, remain rather unaffected by increased CO2.

  12. Maristem—Stem Cells of Marine/Aquatic Invertebrates: From Basic Research to Innovative Applications

    Directory of Open Access Journals (Sweden)

    Loriano Ballarin

    2018-02-01

    Full Text Available The “stem cells” discipline represents one of the most dynamic areas in biomedicine. While adult marine/aquatic invertebrate stem cell (MISC biology is of prime research and medical interest, studies on stem cells from organisms outside the classical vertebrate (e.g., human, mouse, and zebrafish and invertebrate (e.g., Drosophila, Caenorhabditis models have not been pursued vigorously. Marine/aquatic invertebrates constitute the largest biodiversity and the widest phylogenetic radiation on Earth, from morphologically simple organisms (e.g., sponges, cnidarians, to the more complex mollusks, crustaceans, echinoderms, and protochordates. These organisms contain a kaleidoscope of MISC-types that allow the production of a large number of novel bioactive-molecules, many of which are of significant potential interest for human health. MISCs further participate in aging and regeneration phenomena, including whole-body regeneration. For years, the European MISC-community has been highly fragmented and has established scarce ties with biomedical industries in an attempt to harness MISCs for human welfare. Thus, it is important to (i consolidate the European community of researchers working on MISCs; (ii promote and coordinate European research on MISC biology; (iii stimulate young researchers to embark on research in MISC-biology; (iv develop, validate, and share novel MISC tools and methodologies; (v establish the MISC discipline as a forefront interest of biomedical disciplines, including nanobiomedicine; and (vi establish collaborations with industries to exploit MISCs as sources of bioactive molecules. In order to fill the recognized gaps, the EC-COST Action 16203 “MARISTEM” has recently been launched. At its initial stage, the consortium unites 26 scientists from EC countries, Cooperating countries, and Near Neighbor Countries.

  13. The ecology of plankton in biological oceanography: a tribute to Marta Estrada’s task

    Directory of Open Access Journals (Sweden)

    Jordi Solé

    2016-09-01

    Full Text Available Plankton ecology has been the object of intense research and progress in the last few decades. This has been partly due to technological advances that have facilitated the multidisciplinary and high-resolution sampling of ecosystems and improved experimentation and analytical methodologies, and to sophisticated modelling. In addition, exceptional researchers have had the vision to integrate all these innovative tools to form a solid theoretical background in ecology. Here we provide an overview of the outstanding research work conducted by Professor Marta Estrada and her pioneering contribution to different areas of research in the last four decades. Her research in biological oceanography has mainly focussed on phytoplankton ecology, taxonomy and physiology, the functional structure of plankton communities, and physical and biological interactions in marine ecosystems. She has combined a variety of field and laboratory approaches and methodologies, from microscopy to satellite observations, including in-depth statistical data analysis and modelling. She has been a reference for scientists all over the world. Here, her contributions to plankton ecology are summarized by some of her students and closest collaborators, who had the privilege to share their science and everyday experiences with her.

  14. Design and calibration of a new optical plankton counter capable of sizing small zooplankton

    Science.gov (United States)

    Herman, Alex W.

    1992-04-01

    A new design of optical plankton counter (OPC) capable of sizing zooplankton in the size range of 256μ to 2 cm is presented. The detection sensitivity is the result of new optical design of the previous system ( HERMAN, 1988, Continental Shelf Research, 8, 205-221) that originally had a lower detection limit of 550 μm. Both theoretical and experimental calibrations for the OPC are derived and compared. Preserved copepods and eggs introduced in a flow tank demonstrate the response of the OPC and its capability for detecting plankton to a limit of 250 μm. Copepod profiles measured by the OPC mounted on plankton net samplers provided intercomparisons that showed good agreement in identifying copepod layers and identifying some species, for example, copepods as small as Calanus finmarchicus II and up to the adult stages. Profiles containing marine snow and Ceratium illustrate some of the limitations of the OPC in directly measuring and identifying copepods. An additional modification to the OPC may result in a potential lower limit detection of 120 μm, and the practicality of such applications are discussed.

  15. Mercury speciation in plankton from the Cabo Frio Bay, SE--Brazil.

    Science.gov (United States)

    Silva-Filho, Emmanoel V; Kütter, Vinicius T; Figueiredo, Thiago S; Tessier, Emmanuel; Rezende, Carlos E; Teixeira, Daniel C; Silva, Carlos A; Donard, Olivier F X

    2014-12-01

    Mercury (Hg) is considered a global pollutant, and the scientific community has shown great concern about its toxicity as it may affect the biota of entire systems, through bioaccumulation and bioamplification processes of its organic form, methylmercury (MeHg), along food web. However, few research studies deal with bioaccumulation of Hg from marine primary producers and the first-order consumers. So, this study aims to determine Hg distribution and concentration levels in phytoplankton and zooplankton in the Cabo Frio Bay, Brazil, a site influenced by coastal upwelling. The results from Hg speciation analyses show that inorganic mercury Hg(II) was the predominant specie in plankton from this bay. The annual Hg species distribution in plankton shown mean concentration of 2.00 ± 1.28 ng Hg(II) g(-1) and 0.15 ± 0.08 ng MeHg g(-1) wet weight (phytoplankton) and 2.5 ± 2.03 ng Hg(II) g(-1) and 0.25 ± 0.09 ng MeHg g(-1) wet weight (zooplankton). Therefore, upwelling zones should be considered in the Hg biogeochemical cycle models as a process that enhances Hg(II) bioaccumulation in plankton, raising its bioavailability and shelf deposition.

  16. The Continuous Plankton Imaging and Classification Sensor (CPICS): A Sensor for Quantifying Mesoplankton Biodiversity and Community Structure

    Science.gov (United States)

    Gallager, S. M.

    2016-02-01

    Marine ecosystems are changing at a variety of time scales as a function of a diverse suite of forcing functions both natural and anthropogenic. Establishing a continuous plankton time series consisting of scales from rapid (seconds) to long-term (decades), provides a sentinel for ecosystem change. The key is to measure plankton biodiversity at sufficiently fast time scales that allow disentanglement of physical (transport) and biological (growth) properties of an ecosystem. CPICS is a plankton and particle imaging microscope system that is designed to produce crisp darkfield images of light scattering material in aquatic environments. The open flow design is non-invasive and non-restrictive providing images of very fragile plankton in their natural orientation. Several magnifications are possible from 0.5 to 5x forming a field of view of 10cm to 1mm, respectively. CPICS has been installed on several cabled observing systems called OceanCubes off the coast of Okinawa and Tokyo, Japan providing a continuous stream of plankton images to a machine vision image classifier located at WHOI. Image features include custom algorithms for texture, color pattern, morphology and shape, which are extracted from in-focus target. The features are then used to train a classifier (e.g., Random Forest) resulting in classifications that are tested using cross-validation, confusion matrices and ROC curves. High (>90%) classification accuracies are possible depending on the number of training categories and target complexity. A web-based utility allows access to raw images, training sets, classifiers and classification results. Combined with chemical and physical data from the observatories, an ecologically meaningful plankton index of biodiversity and its variance is developed using a combination of species and taxon groups, which provides an approach for understanding ecosystem change without the need to identify all targets to species. http://oceancubes.whoi.edu/instruments/CPICS

  17. Comparative assessment of antibiotic susceptibility of coagulase-negative staphylococci in biofilm versus planktonic culture as assessed by bacterial enumeration or rapid XTT colorimetry.

    Science.gov (United States)

    Cerca, Nuno; Martins, Silvia; Cerca, Filipe; Jefferson, Kimberly K; Pier, Gerald B; Oliveira, Rosário; Azeredo, Joana

    2005-08-01

    To quantitatively compare the antibiotic susceptibility of biofilms formed by the coagulase-negative staphylococci (CoNS) Staphylococcus epidermidis and Staphylococcus haemolyticus with the susceptibility of planktonic cultures. Several CoNS strains were grown planktonically or as biofilms to determine the effect of the mode of growth on the level of susceptibility to antibiotics with different mechanisms of action. The utility of a new, rapid colorimetric method that is based on the reduction of a tetrazolium salt (XTT) to measure cell viability was tested by comparison with standard bacterial enumeration techniques. A 6 h kinetic study was performed using dicloxacillin, cefazolin, vancomycin, tetracycline and rifampicin at the peak serum concentration of each antibiotic. In planktonic cells, inhibitors of cell wall synthesis were highly effective over a 3 h period. Biofilms were much less susceptible than planktonic cultures to all antibiotics tested, particularly inhibitors of cell wall synthesis. The susceptibility to inhibitors of protein and RNA synthesis was affected by the biofilm phenotype to a lesser degree. Standard bacterial enumeration techniques and the XTT method produced equivalent results both in biofilms and planktonic assays. This study provides a more accurate comparison between the antibiotic susceptibilities of planktonic versus biofilm populations, because the cell densities in the two populations were similar and because we measured the concentration required to inhibit bacterial metabolism rather than to eradicate the entire bacterial population. While the biofilm phenotype is highly resistant to antibiotics that target cell wall synthesis, it is fairly susceptible to antibiotics that target RNA and protein synthesis.

  18. COPEPOD: The Coastal & Oceanic Plankton Ecology, Production, & Observation Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coastal & Oceanic Plankton Ecology, Production, & Observation Database (COPEPOD) provides NMFS scientists with quality-controlled, globally distributed...

  19. Modeling physiological processes in plankton on enzyme kinetic principles

    Directory of Open Access Journals (Sweden)

    Ted Packard

    2004-04-01

    Full Text Available Many ecologically important chemical transformations in the ocean are controlled by biochemical enzyme reactions in plankton. Nitrogenase regulates the transformation of N2 to ammonium in some cyanobacteria and serves as the entryway for N2 into the ocean biosphere. Nitrate reductase controls the reduction of NO3 to NO2 and hence new production in phytoplankton. The respiratory electron transfer system in all organisms links the carbon oxidation reactions of intermediary metabolism with the reduction of oxygen in respiration. Rubisco controls the fixation of CO2 into organic matter in phytoplankton and thus is the major entry point of carbon into the oceanic biosphere. In addition to these, there are the enzymes that control CO2 production, NH4 excretion and the fluxes of phosphate. Some of these enzymes have been recognized and researched by marine scientists in the last thirty years. However, until recently the kinetic principles of enzyme control have not been exploited to formulate accurate mathematical equations of the controlling physiological expressions. Were such expressions available they would increase our power to predict the rates of chemical transformations in the extracellular environment of microbial populations whether this extracellular environment is culture media or the ocean. Here we formulate from the principles of bisubstrate enzyme kinetics, mathematical expressions for the processes of NO3 reduction, O2 consumption, N2 fixation, total nitrogen uptake.

  20. Contribution of offshore petroleum deposits to marine food chain

    Science.gov (United States)

    Mori, S.

    2009-12-01

    Petroleum production out of offshore petroleum deposits often coincides with abundant fisheries in the world. Superposition of marine microorganism concentration distribution and offshore petroleum field distribution from various data in the literature provides to prove this coincidence. Sakhalin Island coastal regions, North Sea, Gulf of Mexico, etc. are chosen for the superpositions. Significant conformity is observed between the plankton concentration distribution and the offshore petroleum deposit distribution in all those regions. Also, most studies on the consequence of oil spills to marine eco-systems have focused mainly on hazardous marine pollution caused by spilled petroleum at high concentration in marine environment. However, some of those data clearly indicate stimulation of plankton population in properly low concentration levels of dissolved hydrocarbons and dissolved petroleum compositions. Further, increase of hydrocarbon concentration leads to its inhibition from its stimulation conditions upon crossing over a critical concentration level—a plankton stimulation/inhibition threshold concentration (SITC) of hydrocarbons. The SITC varies depending on hydrocarbon compounds, petroleum compositions, and microorganisms such as planktons. Further, petroleum composition diffusing through subterranean layers from petroleum deposits reacts with dissolved oxygen to be consumed at the ocean floor to precipitate the agglomerate suspension of hydrocarbons, leaving the sea water in a condition of oxygen depletion on the ocean floor. Such incidents are also briefly discussed.Plankton stimulation/inhibition threshold concentration of petroleum fractions

  1. Planktonic Foraminifera Proxies Calibration Off the NW Iberian Margin: Nutrients Approach

    Science.gov (United States)

    Salgueiro, E.; Castro, C. G.; Zuniga, D.; Martin, P. A.; Groeneveld, J.; de la Granda, F.; Villaceiros-Robineau, N.; Alonso-Perez, F.; Alberto, A.; Rodrigues, T.; Rufino, M. M.; Abrantes, F. F. G.; Voelker, A. H. L.

    2014-12-01

    Planktonic foraminifera (PF) shells preserved in marine sediments are a useful tool to reconstruct productivity conditions at different geological timescales. However, the accuracy of these paleoreconstructions depends on the data set and calibration quality. Several calibration works have been defining and improving the use of proxies for productivity and nutrient cycling parameters. Our contribution is centred on a multi-proxy calibration at a regional coastal upwelling system. To minimize the existing uncertainties affecting the use of trace elements and C stable isotopes as productivity proxy in the high productivity upwelling areas, we investigate the content and distribution of Ba/Ca and δ13C in the water column, its transference into the planktonic foraminifera shells, and, how the living planktonic foraminifera Ba/Ca and δ13C signal is related to the same planktonic foraminiferal species preserved in the sediment record. This study is based on a large data set from two stations (RAIA - 75m water depth, and CALIBERIA - 350m water depth) located off the NW Iberian margin (41.5-42.5ºN; 9-10ºW), and includes: i) two year monthly water column data (temperature, salinity, nutrients, chlorophyll a, Ba/Ca, and δ13C-DIC); ii) seasonal Ba/Ca, δ13C in several living PF species at both stations; and iii) Ba/Ca and δ13C in several PF species from a large set of core-top sediment samples in the study region. Additionally, total organic carbon and total alkenones were also measured in the sediment. Our results showed the link between productivity proxies in the surface sediment foraminifera assemblage and the processes regulating the actual phytoplankton dynamics in an upwelling area. The understanding of this relationship has special relevance since it gives fundamental information related to the past oceanic biogeochemistry and/or climate and improves the prevision of future changes against possible climate variability due to anthropogenic forcing.

  2. Microbial eukaryote plankton communities of high-mountain lakes from three continents exhibit strong biogeographic patterns.

    Science.gov (United States)

    Filker, Sabine; Sommaruga, Ruben; Vila, Irma; Stoeck, Thorsten

    2016-05-01

    Microbial eukaryotes hold a key role in aquatic ecosystem functioning. Yet, their diversity in freshwater lakes, particularly in high-mountain lakes, is relatively unknown compared with the marine environment. Low nutrient availability, low water temperature and high ultraviolet radiation make most high-mountain lakes extremely challenging habitats for life and require specific molecular and physiological adaptations. We therefore expected that these ecosystems support a plankton diversity that differs notably from other freshwater lakes. In addition, we hypothesized that the communities under study exhibit geographic structuring. Our rationale was that geographic dispersal of small-sized eukaryotes in high-mountain lakes over continental distances seems difficult. We analysed hypervariable V4 fragments of the SSU rRNA gene to compare the genetic microbial eukaryote diversity in high-mountain lakes located in the European Alps, the Chilean Altiplano and the Ethiopian Bale Mountains. Microbial eukaryotes were not globally distributed corroborating patterns found for bacteria, multicellular animals and plants. Instead, the plankton community composition emerged as a highly specific fingerprint of a geographic region even on higher taxonomic levels. The intraregional heterogeneity of the investigated lakes was mirrored in shifts in microbial eukaryote community structure, which, however, was much less pronounced compared with interregional beta-diversity. Statistical analyses revealed that on a regional scale, environmental factors are strong predictors for plankton community structures in high-mountain lakes. While on long-distance scales (>10 000 km), isolation by distance is the most plausible scenario, on intermediate scales (up to 6000 km), both contemporary environmental factors and historical contingencies interact to shift plankton community structures. © 2016 John Wiley & Sons Ltd.

  3. Estimating planktonic diversity through spatial dominance patterns in a model ocean.

    Science.gov (United States)

    Soccodato, Alice; d'Ovidio, Francesco; Lévy, Marina; Jahn, Oliver; Follows, Michael J; De Monte, Silvia

    2016-10-01

    In the open ocean, the observation and quantification of biodiversity patterns is challenging. Marine ecosystems are indeed largely composed by microbial planktonic communities whose niches are affected by highly dynamical physico-chemical conditions, and whose observation requires advanced methods for morphological and molecular classification. Optical remote sensing offers an appealing complement to these in-situ techniques. Global-scale coverage at high spatiotemporal resolution is however achieved at the cost of restrained information on the local assemblage. Here, we use a coupled physical and ecological model ocean simulation to explore one possible metrics for comparing measures performed on such different scales. We show that a large part of the local diversity of the virtual plankton ecosystem - corresponding to what accessible by genomic methods - can be inferred from crude, but spatially extended, information - as conveyed by remote sensing. Shannon diversity of the local community is indeed highly correlated to a 'seascape' index, which quantifies the surrounding spatial heterogeneity of the most abundant functional group. The error implied in drastically reducing the resolution of the plankton community is shown to be smaller in frontal regions as well as in regions of intermediate turbulent energy. On the spatial scale of hundreds of kms, patterns of virtual plankton diversity are thus largely sustained by mixing communities that occupy adjacent niches. We provide a proof of principle that in the open ocean information on spatial variability of communities can compensate for limited local knowledge, suggesting the possibility of integrating in-situ and satellite observations to monitor biodiversity distribution at the global scale. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Plankton motility patterns and encounter rates

    DEFF Research Database (Denmark)

    Visser, Andre; Kiørboe, Thomas

    2006-01-01

    measure of run length to reaction distance determines whether the underlying encounter is ballistic or diffusive. Since ballistic interactions are intrinsically more efficient than diffusive, we predict that organisms will display motility with long correlation run lengths compared to their reaction...... distances to their prey, but short compared to the reaction distances of their predators. We show motility data for planktonic organisms ranging from bacteria to copepods that support this prediction. We also present simple ballistic and diffusive motility models for estimating encounter rates, which lead...

  5. Marine Polysaccharides: A Source of Bioactive Molecules for Cell Therapy and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Anne-Marie Fischer

    2011-09-01

    Full Text Available The therapeutic potential of natural bioactive compounds such as polysaccharides, especially glycosaminoglycans, is now well documented, and this activity combined with natural biodiversity will allow the development of a new generation of therapeutics. Advances in our understanding of the biosynthesis, structure and function of complex glycans from mammalian origin have shown the crucial role of this class of molecules to modulate disease processes and the importance of a deeper knowledge of structure-activity relationships. Marine environment offers a tremendous biodiversity and original polysaccharides have been discovered presenting a great chemical diversity that is largely species specific. The study of the biological properties of the polysaccharides from marine eukaryotes and marine prokaryotes revealed that the polysaccharides from the marine environment could provide a valid alternative to traditional polysaccharides such as glycosaminoglycans. Marine polysaccharides present a real potential for natural product drug discovery and for the delivery of new marine derived products for therapeutic applications.

  6. Intraseasonal patterns in coastal plankton biomass off central Chile derived from satellite observations and a biochemical model

    Science.gov (United States)

    Gomez, Fabian A.; Spitz, Yvette H.; Batchelder, Harold P.; Correa-Ramirez, Marco A.

    2017-10-01

    Subseasonal (5-130 days) environmental variability can strongly affect plankton dynamics, but is often overlooked in marine ecology studies. We documented the main subseasonal patterns of plankton biomass in the coastal upwelling system off central Chile, the southern part of the Humboldt System. Subseasonal variability was extracted from temporal patterns in satellite data of wind stress, sea surface temperature, and chlorophyll from the period 2003-2011, and from a realistically forced eddy-resolving physical-biochemical model from 2003 to 2008. Although most of the wind variability occurs at submonthly frequencies (< 30 days), we found that the dominant subseasonal pattern of phytoplankton biomass is within the intraseasonal band (30-90 days). The strongest intraseasonal coupling between wind and plankton is in spring-summer, when increased solar radiation enhances the phytoplankton response to upwelling. Biochemical model outputs show intraseasonal shifts in plankton community structure, mainly associated with the large fluctuations in diatom biomass. Diatom biomass peaks near surface during strong upwelling, whereas small phytoplankton biomass peaks at subsurface depths during relaxation or downwelling periods. Strong intraseasonally forced changes in biomass and species composition could strongly impact trophodynamics connections in the ecosystem, including the recruitment of commercially important fish species such as common sardine and anchovy. The wind-driven variability of chlorophyll concentration was connected to mid- and high-latitude atmospheric anomalies, which resemble disturbances with frequencies similar to the tropical Madden-Julian Oscillation.

  7. Influence of water mixing and food web status on the response of planktonic communities to enhanced ultraviolet-B radiation

    Science.gov (United States)

    Mostajir, B.; Uvbr Team

    2003-04-01

    Two series of mesocosm experiments were carried out in 1996 and 1997 using the natural planktonic assemblage, ultraviolet-B radiation (UVBR: 280-320 nm) at the community level. The water used in the first experiment was rich in nitrate (ca. 8-10 μM) and phytoplankton biomass (5 μg Chlorophyll a L-1: Chl a), conditions typical of an eutrophic coastal zone with herbivorous food web characteristics. In contrast, the water used in the second experiment was poor in nitrate (food web. Furthermore, to understand the influence of vertical mixing on the effects of UVBR on the planktonic community, two mixing regimes (fast and slow) were tested during the mesocosm experiments of 1997. The results showed that the mixing regime can moderate the effects of UVBR on the planktonic community and can also modify completely the species composition in the mesocosms much more than the UVBR. Comparison between the impact of UVBR on the planktonic community presented in these two experiments suggested that regenerated production-based systems (e.g. microbial food webs) tolerate the effects of UVBR more efficiently than do new production-based systems (herbivorous food webs). Results regarding the potential effects of UVBR in different marine systems, coastal versus oceanic, where different physical systems dominate, fast versus slow mixing, and consequently the development of different food webs are favored, herbivorous versus microbial, will be discussed.

  8. Biofilm and planktonic pneumococci demonstrate disparate immunoreactivity to human convalescent sera

    Directory of Open Access Journals (Sweden)

    Shivshankar Pooja

    2011-11-01

    Full Text Available Abstract Background Streptococcus pneumoniae (the pneumococcus is the leading cause of otitis media, community-acquired pneumonia (CAP, sepsis, and meningitis. It is now evident that S. pneumoniae forms biofilms during nasopharyngeal colonization; the former which facilitates persistence, the latter, a prerequisite for subsequent development of invasive disease. Proteomic evaluation of S. pneumoniae suggests the antigen profile available for host-recognition is altered as a consequence of biofilm growth. This has potentially meaningful implications in regards to adaptive immunity and protection from disseminated disease. We therefore examined the antigen profile of biofilm and planktonic pneumococcal cell lysates, tested their reactivity with human convalescent sera and that generated against biofilm pneumococci, and examined whether immunization with biofilm pneumococci protected mice against infectious challenge. Results Biofilm pneumococci have dramatically altered protein profiles versus their planktonic counterparts. During invasive disease the humoral immune response is skewed towards the planktonic protein profile. Immunization with biofilm bacteria does not elicit a strong-cross-reactive humoral response against planktonic bacteria nor confer resistance against challenge with a virulent isolate from another serotype. We identified numerous proteins, including Pneumococcal serine-rich repeat protein (PsrP, which may serve as a protective antigens against both colonization and invasive disease. Conclusion Differential protein production by planktonic and biofilm pneumococci provides a potential explanation for why individuals remain susceptible to invasive disease despite previous colonization events. These findings also strongly suggest that differential protein production during colonization and disease be considered during the selection of antigens for any future protein vaccine.

  9. Zooplankton motile behavior: traits and trade-offs in planktonic copepods

    DEFF Research Database (Denmark)

    van Someren Gréve, Hans

    Research on planktonic copepod ecology is vital to understand the factors controlling marine food web dynamics since copepods are the major components of zooplankton communities and the main link between trophic levels in marine environments. Despite their taxonomic diversity, copepods share...... certain phenotypic characteristics, or ´traits´, that are essential in determining trophic interactions and fitness. One important characteristic that decisively influences organism interactions is behavior. Copepods display two distinct behavioral strategies in terms of motility: ´active´ (feeding...... differences between genders in feeding efficiency and predation risk. Finally, we also found that foraging activity decreased with increasing food availability, especially in active feeding strategies, resulting in a decrease in predation risk. Therefore, changes in behavior depending on food availability...

  10. Effect of Marine Omega 3 Fatty Acids on Methylmercury-Induced Toxicity in Fish and Mammalian Cells In Vitro

    Directory of Open Access Journals (Sweden)

    O. J. Nøstbakken

    2012-01-01

    Full Text Available Methylmercury (MeHg is a ubiquitous environmental contaminant which bioaccumulates in marine biota. Fish constitute an important part of a balanced human diet contributing with health beneficial nutrients but may also contain contaminants such as MeHg. Interactions between the marine n-3 fatty acids eicosapentaenoic acid (20:5n-3, EPA and docosahexaenoic acid (22:6n-3, DHA with MeHg-induced toxicity were investigated. Different toxic and metabolic responses were studied in Atlantic salmon kidney (ASK cell line and the mammalian kidney-derived HEK293 cell line. Both cell lines were preincubated with DHA or EPA prior to MeHg-exposure, and cell toxicity was assessed differently in the cell lines by MeHg-uptake in cells (ASK and HEK293, proliferation (HEK293 and ASK, apoptosis (ASK, oxidation of the red-ox probe roGFP (HEK293, and regulation of selected toxicological and metabolic transcriptional markers (ASK. DHA was observed to decrease the uptake of MeHg in HEK293, but not in ASK cells. DHA also increased, while EPA decreased, MeHg-induced apoptosis in ASK. MeHg exposure induced changes in selected metabolic and known MeHg biomarkers in ASK cells. Both DHA and MeHg, but not EPA, oxidized roGFP in HEK293 cells. In conclusion, marine n-3 fatty acids may ameliorate MeHg toxicity, either by decreasing apoptosis (EPA or by reducing MeHg uptake (DHA. However, DHA can also augment MeHg toxicity by increasing oxidative stress and apoptosis when combined with MeHg.

  11. Larval and Juvenile Ascothoracida (Crustacea) from the Plankton

    OpenAIRE

    Grygier, Mark J.

    1988-01-01

    Two kinds of previously recorded ascothoracid larvae from plankton over coral reefs in Hawaii and the Virgin Islands are redescribed as possible representatives of the Lauridae and Petrarcidae, respectively. A bathyal, tropical Atlantic ascothoracid larva from an epibenthic sled sample cannot confidently be identified to family. A planktonic, juvenile ascothoracidan from the eastern Indian Ocean belongs to the genus Synagoga.

  12. Influence of glyphosate in planktonic and biofilm growth of Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Ilana Schneider Lima

    2014-09-01

    Full Text Available This study evaluated the impact of different concentrations of glyphosate (Rondup® on planktonic and biofilm growth of P. aeruginosa. Aerobic and anaerobic cultures of P. aeruginosa ATCC®15442 inoculated in MHB + glyphosate (0.845 ppm, 1.690 ppm, 8.45 ppm, 16.90 ppm, 84.50 ppm, 169 ppm, 845 ppm, and 1690 ppm and cultured in normoxia and anoxia, following their OD560nm every hour for 24 h. Biofilms of adapted cells were formed in the presence of glyphosate (0.845 to 1690 ppm in normoxia and anoxia for 36 h. Glyphosate at concentrations higher than 84.5 ppm reduces the cell density of planktonic aerobic cultures (p 0.05, and more pronounced over 169 ppm. Anaerobic biofilms have their growth more readily favored (p < 0.05, regardless of concentration. In a concentration-dependent manner, glyphosate interferes with the growth ability of P. aeruginosa ATCC®15442.

  13. Suitability of flow cytometry for estimating bacterial biovolume in natural plankton samples: comparison with microscopy data

    Czech Academy of Sciences Publication Activity Database

    Felip, M.; Andreatta, S.; Sommaruga, R.; Straškrábová, Viera; Catalan, J.

    2007-01-01

    Roč. 73, č. 14 (2007), s. 4508-4514 ISSN 0099-2240 Grant - others:ASF(AT) P-19245-BO3; EU(XE) ENV4-CT98-5099; EU(XE) EMERGE Institutional research plan: CEZ:AV0Z60170517 Source of funding: R - rámcový projekt EK Keywords : aquatic bacteria * plankton * cell volumes * mountain lakes Subject RIV: EE - Microbiology, Virology Impact factor: 4.004, year: 2007

  14. Phylogeography of the tropical planktonic foraminifera lineage globigerinella reveals isolation inconsistent with passive dispersal by ocean currents.

    Directory of Open Access Journals (Sweden)

    Agnes K M Weiner

    Full Text Available Morphologically defined species of marine plankton often harbor a considerable level of cryptic diversity. Since many morphospecies show cosmopolitan distribution, an understanding of biogeographic and evolutionary processes at the level of genetic diversity requires global sampling. We use a database of 387 single-specimen sequences of the SSU rDNA of the planktonic foraminifera Globigerinella as a model to assess the biogeographic and phylogenetic distributions of cryptic diversity in marine microplankton on a global scale. Our data confirm the existence of multiple, well isolated genetic lineages. An analysis of their abundance and distribution indicates that our sampling is likely to approximate the actual total diversity. Unexpectedly, we observe an uneven allocation of cryptic diversity among the phylogenetic lineages. We show that this pattern is neither an artifact of sampling intensity nor a function of lineage age. Instead, we argue that it reflects an ongoing speciation process in one of the three major lineages. Surprisingly, four of the six genetic types in the hyperdiverse lineage are biogeographically restricted to the Indopacific. Their mutual co-occurrence and their hierarchical phylogenetic structure provide no evidence for an origin through sudden habitat fragmentation and their limitation to the Indopacific challenges the view of a global gene flow within the warm-water provinces. This phenomenon shows that passive dispersal is not sufficient to describe the distribution of plankton diversity. Rather, these organisms show differentiated distribution patterns shaped by species interactions and reflecting phylogenetic contingency with unique histories of diversification rates.

  15. Phylogeography of the tropical planktonic foraminifera lineage globigerinella reveals isolation inconsistent with passive dispersal by ocean currents.

    Science.gov (United States)

    Weiner, Agnes K M; Weinkauf, Manuel F G; Kurasawa, Atsushi; Darling, Kate F; Kucera, Michal; Grimm, Guido W

    2014-01-01

    Morphologically defined species of marine plankton often harbor a considerable level of cryptic diversity. Since many morphospecies show cosmopolitan distribution, an understanding of biogeographic and evolutionary processes at the level of genetic diversity requires global sampling. We use a database of 387 single-specimen sequences of the SSU rDNA of the planktonic foraminifera Globigerinella as a model to assess the biogeographic and phylogenetic distributions of cryptic diversity in marine microplankton on a global scale. Our data confirm the existence of multiple, well isolated genetic lineages. An analysis of their abundance and distribution indicates that our sampling is likely to approximate the actual total diversity. Unexpectedly, we observe an uneven allocation of cryptic diversity among the phylogenetic lineages. We show that this pattern is neither an artifact of sampling intensity nor a function of lineage age. Instead, we argue that it reflects an ongoing speciation process in one of the three major lineages. Surprisingly, four of the six genetic types in the hyperdiverse lineage are biogeographically restricted to the Indopacific. Their mutual co-occurrence and their hierarchical phylogenetic structure provide no evidence for an origin through sudden habitat fragmentation and their limitation to the Indopacific challenges the view of a global gene flow within the warm-water provinces. This phenomenon shows that passive dispersal is not sufficient to describe the distribution of plankton diversity. Rather, these organisms show differentiated distribution patterns shaped by species interactions and reflecting phylogenetic contingency with unique histories of diversification rates.

  16. Progress in Late Cretaceous planktonic foraminiferal stable isotope paleoecology and implications for paleoceanographic reconstructions

    Science.gov (United States)

    Petrizzo, Maria Rose; Falzoni, Francesca; Huber, Brian T.; MacLeod, Kenneth G.

    2015-04-01

    were adapted to shallow layers and eutrophic environments (Falzoni et al., 2013; Falzoni et al., in prep.). Interestingly, globigeriniform planktonic foraminifera with meridional ornamentation (Paracostellagerina and Rugoglobigerina), a morphological feature generally considered to be genetically controlled and thus taxonomically significant, typically yield higher δ13C values than co-occurring finely ornamented morphotypes (Petrizzo et al., 2008). A possible explanation to these results invokes the presence of facultative photosymbionts enhancing test calcification or alternatively, the occurrence of ecophenotypes adapted to a different sea-surface 13C/12C ratio within the same fossil species (Falzoni et al., 2014). Finally, we discuss evidences against the traditional species depth-distribution model and highlight the restrictions in performing Late Cretaceous paleoenvironmental and paleoceanographic reconstructions based on shell morphology and/or inferred life strategies of planktonic foraminifera. References Falzoni, F., Petrizzo, M.R., MacLeod, K.G., Huber, B.T. (2013). Santonian-Campanian planktonic foraminifera from Tanzania, Shatsky Rise and Exmouth Plateau: species depth ecology and paleoceanographic inferences. Marine Micropaleontology 103, 15-29. Falzoni, F., Petrizzo, M.R., Huber, B.T., MacLeod, K.G. (2014). Insights into the meridional ornamentation of the planktonic foraminiferal genus Rugoglobigerina (Late Cretaceous) and implications for taxonomy. Cretaceous Research 47, 87-104. Petrizzo, M.R., Huber, B.T., Wilson, P.A., MacLeod, K.G. (2008). Late Albian paleoceanography of the western subtropical North Atlantic. Paleoceanography 23. http://dx.doi.org/10.1029/2007PA001517 (PA1213).

  17. An Aqueous Extract of Marine Microalgae Exhibits Antimetastatic Activity through Preferential Killing of Suspended Cancer Cells and Anticolony Forming Activity

    Science.gov (United States)

    Somasekharan, Syam Prakash; El-Naggar, Amal; Sorensen, Poul H.

    2016-01-01

    Research on marine natural products as potential anticancer agents is still limited. In the present study, an aqueous extract of a Canadian marine microalgal preparation was assessed for anticancer activities using various assays and cell lines of human cancers, including lung, prostate, stomach, breast, and pancreatic cancers, as well as an osteosarcoma. In vitro, the microalgal extract exhibited marked anticolony forming activity. In addition, it was more toxic, as indicated by increased apoptosis, to nonadherent cells (grown in suspension) than to adherent cells. In vivo, an antimetastatic effect of the extract was observed in NOD-SCID mice carrying subrenal capsule xenografts of PC3 prostate cancer cells. The results of the present study suggest that the antimetastatic effect of the aqueous microalgal extract is based on inhibition of colony forming ability of cancer cells and the preferential killing of suspended cancer cells. Further research aimed at identification of the molecular basis of the anticancer activities of the microalgal extract appears to be warranted. PMID:27656243

  18. An Aqueous Extract of Marine Microalgae Exhibits Antimetastatic Activity through Preferential Killing of Suspended Cancer Cells and Anticolony Forming Activity

    Directory of Open Access Journals (Sweden)

    Syam Prakash Somasekharan

    2016-01-01

    Full Text Available Research on marine natural products as potential anticancer agents is still limited. In the present study, an aqueous extract of a Canadian marine microalgal preparation was assessed for anticancer activities using various assays and cell lines of human cancers, including lung, prostate, stomach, breast, and pancreatic cancers, as well as an osteosarcoma. In vitro, the microalgal extract exhibited marked anticolony forming activity. In addition, it was more toxic, as indicated by increased apoptosis, to nonadherent cells (grown in suspension than to adherent cells. In vivo, an antimetastatic effect of the extract was observed in NOD-SCID mice carrying subrenal capsule xenografts of PC3 prostate cancer cells. The results of the present study suggest that the antimetastatic effect of the aqueous microalgal extract is based on inhibition of colony forming ability of cancer cells and the preferential killing of suspended cancer cells. Further research aimed at identification of the molecular basis of the anticancer activities of the microalgal extract appears to be warranted.

  19. In situ monitoring of molecular changes during cell differentiation processes in marine macroalgae through mass spectrometric imaging.

    Science.gov (United States)

    Kessler, Ralf W; Crecelius, Anna C; Schubert, Ulrich S; Wichard, Thomas

    2017-08-01

    Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) was employed to discriminate between cell differentiation processes in macroalgae. One of the key developmental processes in the algal life cycle is the production of germ cells (gametes and zoids). The gametogenesis of the marine green macroalga Ulva mutabilis (Chlorophyta) was monitored by metabolomic snapshots of the surface, when blade cells differentiate synchronously into gametangia and giving rise to gametes. To establish MSI for macroalgae, dimethylsulfoniopropionate (DMSP), a known algal osmolyte, was determined. MSI of the surface of U. mutabilis followed by chemometric data analysis revealed dynamic metabolomic changes during cell differentiation. DMSP and a total of 55 specific molecular biomarkers, which could be assigned to important stages of the gametogenesis, were detected. Our research contributes to the understanding of molecular mechanisms underlying macroalgal cell differentiation. Graphical abstract Molecular changes during cell differentiation of the marine macroalga Ulva were visualized by matrix assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI).

  20. Contribution of bacterial respiration to plankton respiration from 50°N to 44°S in the Atlantic Ocean

    Science.gov (United States)

    García-Martín, E. E.; Aranguren-Gassis, M.; Hartmann, M.; Zubkov, M. V.; Serret, P.

    2017-11-01

    Marine bacteria play an important role in the global cycling of carbon and therefore in climate regulation. However, the paucity of direct measurements means that our understanding of the magnitude and variability of bacterial respiration in the ocean is poor. Estimations of respiration in the 0.2-0.8 μm size-fraction (considered as bacterial respiration), total plankton community respiration, and the contribution of bacterial respiration to total plankton community respiration were made along two latitudinal transects in the Atlantic Ocean (ca. 50°N-44°S) during 2010 and 2011. Two different methodologies were used: determination of changes in dissolved O2 concentration after standard 24 h dark bottle incubations, and measurements of in vivo reduction of 2-(ρ-iodophenyl)-3-(ρ-nitrophenyl)-5phenyl tetrazolium salt (INT). There was an overall significant correlation (r = 0.44, p community respiration estimated by both methods. Depth-integrated community respiration varied as much as threefold between regions. Maximum rates occurred in waters of the western European shelf and Patagonian shelf, and minimum rates in the North and South oligotrophic gyres. Depth-integrated bacterial respiration followed the same pattern as community respiration. There was a significantly higher cell-specific bacterial respiration in the northern subtropical gyre than in the southern subtropical gyre which suggests that bacterial carbon turnover is faster in the northern gyre. The relationships between plankton respiration and physicochemical and biological variables were different in different years. In general, INTT was correlated to both chlorophyll-a and bacterial abundance, while INT0.2-0.8 was only correlated with bacterial abundance. However, in 2010 INTT and INT0.2-0.8 were also correlated with temperature and primary production while in 2011 they were correlated with nitrate + nitrite concentration. The bacterial contribution to depth integrated community respiration was

  1. TBT toxicity on a natural planktonic assemblage exposed to enhanced ultraviolet-B radiation.

    Science.gov (United States)

    Sargian, Peggy; Pelletier, Emilien; Mostajir, Behzad; Ferreyra, Gustavo A; Demers, Serge

    2005-07-01

    A microcosm approach was designed to study the combined effects of tributyltin (TBT) from antifouling paints and ultraviolet-B radiation (UVBR: 280-320 nm), on a natural planktonic assemblage (TBT (120 ng l -1) and enhanced UVBR (giving a biologically weighted UVBR 2.15-fold higher than natural light condition) were monitored in the samples coming from following treatments: (i) NUVBR light condition without TBT (NUVBR), (ii) NUVBR light condition with TBT-added (NUVBR+TBT), (iii) HUVBR light condition without TBT (HUVBR) and (iv) HUVBR light condition with TBT-added (HUVBR+TBT). Each treatment was conducted in triplicate microcosms. Different parameters were then measured during 5 days, including TBT analysis, bacterial abundance and productivity, phytoplankton abundance, cellular characteristics and growth rates, as well as in vivo chlorophyll a (Chl a) fluorescence. Following TBT addition (NUVBR+TBT treatment), Chl a concentrations never exceeded 1 microg l-1 whereas final values as high as 54 microg l-1 were observed in TBT-free treatments (NUVBR and HUVBR). TBT addition resulted also in the lost of fluorescence signal of the maximum efficiency of the photosystem II in phytoplankton assemblage. TBT toxicity caused on phytoplankton TBT resulted in a final abundance of phytoplankton TBT relative to NUVBR treatment (i.e., 31,846+/-312 cells ml-1). Moreover, when cells were submitted to TBT under enhanced UVBR (HUVBR+TBT treatment), final abundance of phytoplankton TBT and UVBR during the last 2 days of the experiment. The same type of interaction was also observed for bacterial abundance in NUVBR+TBT and HUVBR+TBT with stimulation of 226 and of 403%, respectively due to TBT addition relative to NUVBR treatment. When considering bacterial productivity, TBT addition resulted in an inhibition of 32%, and this inhibition was significantly more pronounced under dual stresses (i.e., 77% in HUVBR+TBT). These results clearly demonstrate that the combination of TBT and UVBR

  2. TBT toxicity on a natural planktonic assemblage exposed to enhanced ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Sargian, Peggy; Pelletier, Emilien; Mostajir, Behzad; Ferreyra, Gustavo A.; Demers, Serge

    2005-01-01

    A microcosm approach was designed to study the combined effects of tributyltin (TBT) from antifouling paints and ultraviolet-B radiation (UVBR: 280-320 nm), on a natural planktonic assemblage ( -1 ) and enhanced UVBR (giving a biologically weighted UVBR 2.15-fold higher than natural light condition) were monitored in the samples coming from following treatments: (i) NUVBR light condition without TBT (NUVBR) (ii) NUVBR light condition with TBT-added (NUVBR + TBT) (iii) HUVBR light condition without TBT (HUVBR) and (iv) HUVBR light condition with TBT-added (HUVBR + TBT). Each treatment was conducted in triplicate microcosms. Different parameters were then measured during 5 days, including TBT analysis, bacterial abundance and productivity, phytoplankton abundance, cellular characteristics and growth rates, as well as in vivo chlorophyll a (Chl a) fluorescence. Following TBT addition (NUVBR + TBT treatment), Chl a concentrations never exceeded 1 μg l -1 whereas final values as high as 54 μg l -1 were observed in TBT-free treatments (NUVBR and HUVBR). TBT addition resulted also in the lost of fluorescence signal of the maximum efficiency of the photosystem II in phytoplankton assemblage. TBT toxicity caused on phytoplankton -1 in NUVBR + TBT relative to NUVBR treatment (i.e., 31,846 ± 312 cells ml -1 ). Moreover, when cells were submitted to TBT under enhanced UVBR (HUVBR + TBT treatment), final abundance of phytoplankton -1 , with a significant interaction between TBT and UVBR during the last 2 days of the experiment. The same type of interaction was also observed for bacterial abundance in NUVBR + TBT and HUVBR + TBT with stimulation of 226 and of 403%, respectively due to TBT addition relative to NUVBR treatment. When considering bacterial productivity, TBT addition resulted in an inhibition of 32%, and this inhibition was significantly more pronounced under dual stresses (i.e., 77% in HUVBR + TBT). These results clearly demonstrate that the combination of TBT

  3. Alternative Methods for the Detection of Emerging Marine Toxins: Biosensors, Biochemical Assays and Cell-Based Assays

    Directory of Open Access Journals (Sweden)

    Laia Reverté

    2014-11-01

    Full Text Available The emergence of marine toxins in water and seafood may have a considerable impact on public health. Although the tendency in Europe is to consolidate, when possible, official reference methods based on instrumental analysis, the development of alternative or complementary methods providing functional or toxicological information may provide advantages in terms of risk identification, but also low cost, simplicity, ease of use and high-throughput analysis. This article gives an overview of the immunoassays, cell-based assays, receptor-binding assays and biosensors that have been developed for the screening and quantification of emerging marine toxins: palytoxins, ciguatoxins, cyclic imines and tetrodotoxins. Their advantages and limitations are discussed, as well as their possible integration in research and monitoring programs.

  4. Alternative Methods for the Detection of Emerging Marine Toxins: Biosensors, Biochemical Assays and Cell-Based Assays

    Science.gov (United States)

    Reverté, Laia; Soliño, Lucía; Carnicer, Olga; Diogène, Jorge; Campàs, Mònica

    2014-01-01

    The emergence of marine toxins in water and seafood may have a considerable impact on public health. Although the tendency in Europe is to consolidate, when possible, official reference methods based on instrumental analysis, the development of alternative or complementary methods providing functional or toxicological information may provide advantages in terms of risk identification, but also low cost, simplicity, ease of use and high-throughput analysis. This article gives an overview of the immunoassays, cell-based assays, receptor-binding assays and biosensors that have been developed for the screening and quantification of emerging marine toxins: palytoxins, ciguatoxins, cyclic imines and tetrodotoxins. Their advantages and limitations are discussed, as well as their possible integration in research and monitoring programs. PMID:25431968

  5. Evolution of a Planktonic Foraminifer during Environmental Changes in the Tropical Oceans.

    Science.gov (United States)

    Ujiié, Yurika; Ishitani, Yoshiyuki

    2016-01-01

    Ecological adaptation to environmental changes is a strong driver of evolution, enabling speciation of pelagic plankton in the open ocean without the presence of effective physical barriers to gene flow. The tropical ocean environment, which plays an important role in shaping marine biodiversity, has drastically and frequently changed since the Pliocene. Nevertheless, the evolutionary history of tropical pelagic plankton has been poorly understood, as phylogeographic investigations are still in the developing state and paleontological approaches are insufficient to obtain a sequential record from the deep-sea sediments. The planktonic foraminifer Pulleniatina obliquiloculata is widely distributed in the tropical area throughout the world's oceans, and its phylogeography is well established. It is thus one of the best candidates to examine how past environmental changes may have shifted the spatial distribution and affected the diversification of tropical pelagic plankton. Such an examination requires the divergence history of the planktonic foraminifers, yet the gene marker (partial small subunit (SSU) rDNA) previously used for phylogeographic studies was not powerful enough to achieve a high accuracy in estimating the divergence times. The present study focuses on improving the precision of divergence time estimates for the splits between sibling species (genetic types) of planktonic foraminifers by increasing the number of genes as well as the number of nucleotide bases used for molecular clock estimates. We have amplified the entire coding regions of two ribosomal RNA genes (SSU rDNA and large subunit (LSU) rDNA) of three genetic types of P. obliquiloculata and two closely related species for the first time and applied them to the Bayesian relaxed clock method. The comparison of the credible intervals of the four datasets consisting either of sequences of the partial SSU rDNA, the complete SSU rDNA, LSU rDNA, or a combination of both genes (SSU+LSU) clearly

  6. Influence of ocean acidification on plankton community structure during a winter-to-summer succession: An imaging approach indicates that copepods can benefit from elevated CO2 via indirect food web effects

    Science.gov (United States)

    Taucher, Jan; Haunost, Mathias; Boxhammer, Tim; Bach, Lennart T.; Algueró-Muñiz, María; Riebesell, Ulf

    2017-01-01

    Plankton communities play a key role in the marine food web and are expected to be highly sensitive to ongoing environmental change. Oceanic uptake of anthropogenic carbon dioxide (CO2) causes pronounced shifts in marine carbonate chemistry and a decrease in seawater pH. These changes–summarized by the term ocean acidification (OA)–can significantly affect the physiology of planktonic organisms. However, studies on the response of entire plankton communities to OA, which also include indirect effects via food-web interactions, are still relatively rare. Thus, it is presently unclear how OA could affect the functioning of entire ecosystems and biogeochemical element cycles. In this study, we report from a long-term in situ mesocosm experiment, where we investigated the response of natural plankton communities in temperate waters (Gullmarfjord, Sweden) to elevated CO2 concentrations and OA as expected for the end of the century (~760 μatm pCO2). Based on a plankton-imaging approach, we examined size structure, community composition and food web characteristics of the whole plankton assemblage, ranging from picoplankton to mesozooplankton, during an entire winter-to-summer succession. The plankton imaging system revealed pronounced temporal changes in the size structure of the copepod community over the course of the plankton bloom. The observed shift towards smaller individuals resulted in an overall decrease of copepod biomass by 25%, despite increasing numerical abundances. Furthermore, we observed distinct effects of elevated CO2 on biomass and size structure of the entire plankton community. Notably, the biomass of copepods, dominated by Pseudocalanus acuspes, displayed a tendency towards elevated biomass by up to 30–40% under simulated ocean acidification. This effect was significant for certain copepod size classes and was most likely driven by CO2-stimulated responses of primary producers and a complex interplay of trophic interactions that allowed this

  7. Production of live prey for marine fish larvae

    OpenAIRE

    Kraul, S

    1989-01-01

    Tropical marine fish larvae vary in their requirements for live planktonic food. Selection of live prey species for culture depends on larval size and larval tolerance of water quality. This report describes some of the cultured prey species, and their uses and limits as effective food for fish larvae. Methods are presented for the culture of phytoplankton, rotifers, copepods, and other live feeds.

  8. Large-scale ocean connectivity and planktonic body size

    KAUST Repository

    Villarino, Ernesto

    2018-01-04

    Global patterns of planktonic diversity are mainly determined by the dispersal of propagules with ocean currents. However, the role that abundance and body size play in determining spatial patterns of diversity remains unclear. Here we analyse spatial community structure - β-diversity - for several planktonic and nektonic organisms from prokaryotes to small mesopelagic fishes collected during the Malaspina 2010 Expedition. β-diversity was compared to surface ocean transit times derived from a global circulation model, revealing a significant negative relationship that is stronger than environmental differences. Estimated dispersal scales for different groups show a negative correlation with body size, where less abundant large-bodied communities have significantly shorter dispersal scales and larger species spatial turnover rates than more abundant small-bodied plankton. Our results confirm that the dispersal scale of planktonic and micro-nektonic organisms is determined by local abundance, which scales with body size, ultimately setting global spatial patterns of diversity.

  9. Recent planktonic foraminifera from the sediment off Karwar and Mangalore

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.; Guptha, M.V.S.

    Eleven samples collected from the shelf-slope regions off Karwar and mangalore transects of the Arabian Sea, yielded fifteen planktonic foraminiferal species, which are identified and described. There is a progressive increase in the percentage...

  10. GLOBEC NEP Vertical Plankton Tow (VPT) Data, 1997-2001

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GLOBEC (GLOBal Ocean ECosystems Dynamics) NEP (Northeast Pacific) California Current Program Vertical Plankton Tow (VPT) Data For more information, see...

  11. GLOBEC NEP MOCNESS Plankton (MOC1) Data, 2000-2002

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GLOBEC (GLOBal Ocean ECosystems Dynamics) NEP (Northeast Pacific) California Current Program MOCNESS Plankton (MOC1) Data The MOCNESS is based on the Tucker Trawl...

  12. Large-scale ocean connectivity and planktonic body size

    KAUST Repository

    Villarino, Ernesto; Watson, James R.; Jö nsson, Bror; Gasol, Josep M.; Salazar, Guillem; Acinas, Silvia G.; Estrada, Marta; Massana, Ramó n; Logares, Ramiro; Giner, Caterina R.; Pernice, Massimo C.; Olivar, M. Pilar; Citores, Leire; Corell, Jon; Rodrí guez-Ezpeleta, Naiara; Acuñ a, José Luis; Molina-Ramí rez, Axayacatl; Gonzá lez-Gordillo, J. Ignacio; Có zar, André s; Martí , Elisa; Cuesta, José A.; Agusti, Susana; Fraile-Nuez, Eugenio; Duarte, Carlos M.; Irigoien, Xabier; Chust, Guillem

    2018-01-01

    Global patterns of planktonic diversity are mainly determined by the dispersal of propagules with ocean currents. However, the role that abundance and body size play in determining spatial patterns of diversity remains unclear. Here we analyse spatial community structure - β-diversity - for several planktonic and nektonic organisms from prokaryotes to small mesopelagic fishes collected during the Malaspina 2010 Expedition. β-diversity was compared to surface ocean transit times derived from a global circulation model, revealing a significant negative relationship that is stronger than environmental differences. Estimated dispersal scales for different groups show a negative correlation with body size, where less abundant large-bodied communities have significantly shorter dispersal scales and larger species spatial turnover rates than more abundant small-bodied plankton. Our results confirm that the dispersal scale of planktonic and micro-nektonic organisms is determined by local abundance, which scales with body size, ultimately setting global spatial patterns of diversity.

  13. Living planktonic foraminifera of the Wadge bank, Northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, K.K.; Jayalakshmy, K.V.; Panikkar, B.M.; Kutty, M.K.

    Twenty three species of living planktonic Foraminifera belonging to 11 genera have been studied from the Wadge Bank area off southern tip of the Indian peninsula. The fauna is characterized by species such as Globigerinoides conglobatus, G...

  14. Planktonic algae and cyanoprokaryotes as indicators of ecosystem ...

    African Journals Online (AJOL)

    Planktonic algae and cyanoprokaryotes as indicators of ecosystem quality in the Mooi River system in the North-West Province, South Africa. ... is important for maintaining the quality of potable water of Potchefstroom and surrounding areas.

  15. Bacteriophage-antibiotic synergism to control planktonic and biofilm ...

    African Journals Online (AJOL)

    Bacteriophage-antibiotic synergism to control planktonic and biofilm producing clinical isolates of Pseudomonas aeruginosa. Amina Amal Mahmoud Nouraldin, Manal Mohammad Baddour, Reem Abdel Hameed Harfoush, Sara AbdelAziz Mohamed Essa ...

  16. Time dependent enhanced resistance against antibiotics & metal salts by planktonic & biofilm form of Acinetobacter haemolyticus MMC 8 clinical isolate

    Directory of Open Access Journals (Sweden)

    Sharvari Vijaykumar Gaidhani

    2014-01-01

    Full Text Available Background & objectives: Available literature shows paucity of reports describing antibiotic and metal resistance profile of biofilm forming clinical isolates of Acinetobacter haemolyticus. The present study was undertaken to evaluate the antibiotic and metal resistance profile of Indian clinical isolate of A. haemolyticus MMC 8 isolated from human pus sample in planktonic and biofilm form. Methods: Antibiotic susceptibility and minimum inhibitory concentration were determined employing broth and agar dilution techniques. Biofilm formation was evaluated quantitatively by microtiter plate method and variation in complex architecture was determined by scanning electron microscopy. Minimum biofilm inhibiting concentration was checked by Calgary biofilm device. Results: Planktonic A. haemolyticus MMC 8 was sensitive to 14 antibiotics, AgNO 3 and HgC1 2 resistant to streptomycin and intermediately resistant to netilmycin and kanamycin. MMC 8 exhibited temporal variation in amount and structure of biofilm. There was 32 - 4000 and 4 - 256 fold increase in antibiotic and metal salt concentration, respectively to inhibit biofilm over a period of 72 h as against susceptible planktonic counterparts. Total viable count in the range of 10 5 -10 6 cfu / ml was observed on plating minimum biofilm inhibiting concentration on Muller-Hinton Agar plate without antimicrobial agents. Biofilm forming cells were several folds more resistant to antibiotics and metal salts in comparison to planktonic cells. Presence of unaffected residual cell population indicated presence of persister cells. Interpretation & conclusions: The results indicate that biofilm formation causes enhanced resistance against antibiotics and metal salts in otherwise susceptible planktonic A. haemolyticus MMC 8.

  17. Life spans of planktonic foraminifers: New sight through sediment traps

    Digital Repository Service at National Institute of Oceanography (India)

    Nigam, R.; Saraswat, R.; Mazumder, A.

    ), indicated by black arrows are remarkably present for all three trap locations. (Modified after Curry et l.t 1992). 2002; Eguchi, Ujiie, Kawahata and Taira 2003), (ii) all the traps can not stop functioning simultaneously and that for the same time... estimates of the life spans of planktonic foraminifera based on extrapolation of lab culture observations. According to Be et al (1981), an inverse relationship exists between feeding frequency and survival time, and that planktonic foraminifers under...

  18. PSP toxin levels and plankton community composition and abundance in size-fractionated vertical profiles during spring/summer blooms of the toxic dinoflagellate Alexandrium fundyense in the Gulf of Maine and on Georges Bank, 2007, 2008, and 2010: 2. Plankton community composition and abundance.

    Science.gov (United States)

    Petitpas, Christian M; Turner, Jefferson T; Deeds, Jonathan R; Keafer, Bruce A; McGillicuddy, Dennis J; Milligan, Peter J; Shue, Vangie; White, Kevin D; Anderson, Donald M

    2014-05-01

    As part of the Gulf of Maine Toxicity (GOMTOX) project, we determined Alexandrium fundyense abundance, paralytic shellfish poisoning (PSP) toxin levels in various plankton size fractions, and the community composition of potential grazers of A. fundyense in plankton size fractions during blooms of this toxic dinoflagellate in the coastal Gulf of Maine and on Georges Bank in spring and summer of 2007, 2008, and 2010. PSP toxins and A. fundyense cells were found throughout the sampled water column (down to 50 m) in the 20-64 μm size fractions. While PSP toxins were widespread throughout all size classes of the zooplankton grazing community, the majority of the toxin was measured in the 20-64 μm size fraction. A. fundyense cellular toxin content estimated from field samples was significantly higher in the coastal Gulf of Maine than on Georges Bank. Most samples containing PSP toxins in the present study had diverse assemblages of grazers. However, some samples clearly suggested PSP toxin accumulation in several different grazer taxa including tintinnids, heterotrophic dinoflagellates of the genus Protoperidinium , barnacle nauplii, the harpacticoid copepod Microsetella norvegica , the calanoid copepods Calanus finmarchicus and Pseudocalanus spp., the marine cladoceran Evadne nordmanni , and hydroids of the genus Clytia . Thus, a diverse assemblage of zooplankton grazers accumulated PSP toxins through food-web interactions. This raises the question of whether PSP toxins pose a potential human health risk not only from nearshore bivalve shellfish, but also potentially from fish and other upper-level consumers in zooplankton-based pelagic food webs.

  19. Using the marine unicellular algae in biological monitoring

    Directory of Open Access Journals (Sweden)

    Kapkov V. I.

    2017-06-01

    Full Text Available The possibility of using marine unicellular algae from natural plankton community in biomonitoring of pollution by heavy metals has been investigated. Algae of different taxa from the Mediterranean Sea have been allocated to culture. In the laboratory the culture conditions – i. e. growth medium, temperature, photoperiod, level of artificial light and initial density – have been selected for every species. The impact of heavy metals (Hg, Cd, Cu, Pb in the form of chloride salts on the growth of axenic algae culture has been studied in the modelling experiments. The unicellular marine algae have a very short life cycle, therefore it is possible to use them in the experiments of studying the effect of anthropogenic factors at cellular and population levels on the test-object. With biomonitoring pollution of marine environment by heavy metals and others dangerous toxicants, the major indicators of algae community condition are the cellular cycle and the condition of the photosynthetic apparatus of the cell. The subsequent lysis of cells under the influence of heavy metals leads to the excretion of secondary metabolites which can essentially affect the metal toxicity. The established scales of threshold and lethal concentration of heavy metals for algae of different taxon make it possible to use the ratio of sensitive and resistant species to heavy metals as biological markers when forecasting ecological consequences of pollution of the marine environment by heavy metals. Distinctions in the resistance of different taxon to heavy metals can result in implementing the strategy of selection of test-objects depending on the purposes of the research.

  20. Klebsiella pneumoniae Planktonic and Biofilm Reduction by Different Plant Extracts: In Vitro Study

    Directory of Open Access Journals (Sweden)

    Lucas De Paula Ramos

    2016-01-01

    Full Text Available This study evaluated the action of Pfaffia paniculata K., Juglans regia L., and Rosmarius officinalis L. extracts against planktonic form and biofilm of Klebsiella pneumoniae (ATCC 4352. Minimum inhibitory concentration (MIC and minimum microbicidal concentration (MMC values were determined for each extract by microdilution broth method, according to Clinical and Laboratory Standards Institute. Next, antimicrobial activity of the extracts on biofilm was analyzed. For this, standardized suspension at 107 UFC/mL of K. pneumoniae was distributed into 96-well microplates (n=10 and after 48 h at 37°C and biofilm was subjected to treatment for 5 min with the extracts at a concentration of 200 mg/mL. ANOVA and Tukey tests (5% were used to verify statistical significant reduction (p<0.05 of planktonic form and biofilm. P paniculata K., R. officinalis L., and J. regia L. showed reductions in biomass of 55.6, 58.1, and 18.65% and cell viability reduction of 72.4, 65.1, and 31.5%, respectively. The reduction obtained with P. paniculata and R. officinalis extracts was similar to the reduction obtained with chlorhexidine digluconate 2%. In conclusion, all extracts have microbicidal action on the planktonic form but only P. paniculata K. and R. officinalis L. were effective against biofilm.

  1. The identification of plankton tropical status in the Wonokromo, Dadapan and Juanda extreme water estuary

    Science.gov (United States)

    Sari, L. A.; Satyantini, W. H.; Manan, A.; Pursetyo, K. T.; Dewi, N. N.

    2018-04-01

    Wonokromo, Dadapan and Juanda estuaries are extreme waters located around Surabaya environment. This is because of a lot of organic material intake, which provided nutrients for plankton growth. In addition, the waters is also dynamic in reason of physico-chemical, geological and biological processes controlled by the tides and freshwater run-off from the river that empties into it. The objective of this study was to identify the presentation of plankton in extreme waters based on brightness and ammonia level. The study was conducted in January 2017. Three sampling locations were Wonokromo, Dadapan and Juanda estuaries. Each station consists of three points based on distances, which were 400, 700, and 1000 meters from the coastline. The brightness in Wonokromo, Dadapan, and Juanda environment was 60, 40, and 100 cm, respectively. The result of ammonia in Wonokromo, Dadapan, and Juanda estuary was 0.837, 0.626, and 0.396 mg/L, correspondingly. Nine classes of phytoplankton’s were found in three locations (bacillariophyceae, dynophyceae, chlorophyceae, cyanophyceae, crysophyceae, euglenoidea, trebouxlophyceae, mediophyceae, and nitachiaceae) and five classes of zooplanktons (maxillopoda, hexanuplia, copepoda, malacostraca, and oligotrichea). The density of plankton in Wonokromo, Dadapan and Juanda environments, was 37.64, 63.80, and 352.85 cells/L, respectively.

  2. Consequences of Stinging Plankton Blooms on Finfish Mariculture in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Mar Bosch-Belmar

    2017-08-01

    Full Text Available In recent years, caged finfish mariculture across European seas suffered production losses by severe fish mortality, following episodic outbreaks of invertebrate cnidarian stingers. Due to their stinging cells and injectable venoms, medusozoan jellyfish, or drifting propagules of polyp colonies at high density may impair caged fish health through toxic effects on vulnerable tissues of gills and skin, and related secondary bacterial infections. Gill disorders in European sea bass (Dicentrarchus labrax fish farms along the Spanish Mediterranean coast are commonly reported, but regular monitoring of the frequency of cnidarian outbreaks and their potential impacts on caged fish is still poorly enforced. In this study, two sea bass mariculture farms in Southern Spain (Málaga; Almería were monitored biweekly for zooplankton, phytoplankton and fish gills condition, over 13 or 30 months for the Málaga and Almería facilities, respectively, within the period 2012–2014. Significant, direct correlations were found among low water temperature, recorded fish mortalities, and high abundances of planktonic cnidarians, particularly of the hydrozoan siphonophores Muggiaea atlantica and M. kochii, and the larval stage of Ectopleura larynx, a common member of cage biofouling communities. A significant relationship between cnidarian densities and the quantitative scoring of gill pathology was also observed. In addition, high densities of long-bristled planktonic diatoms (Chaetoceros spp. coincided with a major fish mortality event (April 2012, Almería farm. Standardised monitoring of plankton dynamics and composition may help in promoting response capacities of Mediterranean mariculture managers to fish health challenges (such as stinging plankton blooms by (a improving diagnostic tools and preventative countermeasures and (b supporting the development of science-based spatial planning and sustainable growth of coastal mariculture.

  3. Influence of UVB radiation on the lethal and sublethal toxicity of dispersed crude oil to planktonic copepod nauplii.

    Science.gov (United States)

    Almeda, Rodrigo; Harvey, Tracy E; Connelly, Tara L; Baca, Sarah; Buskey, Edward J

    2016-06-01

    Toxic effects of petroleum to marine zooplankton have been generally investigated using dissolved petroleum hydrocarbons and in the absence of sunlight. In this study, we determined the influence of natural ultraviolet B (UVB) radiation on the lethal and sublethal toxicity of dispersed crude oil to naupliar stages of the planktonic copepods Acartia tonsa, Temora turbinata and Pseudodiaptomus pelagicus. Low concentrations of dispersed crude oil (1 μL L(-1)) caused a significant reduction in survival, growth and swimming activity of copepod nauplii after 48 h of exposure. UVB radiation increased toxicity of dispersed crude oil by 1.3-3.8 times, depending on the experiment and measured variables. Ingestion of crude oil droplets may increase photoenhanced toxicity of crude oil to copepod nauplii by enhancing photosensitization. Photoenhanced sublethal toxicity was significantly higher when T. turbinata nauplii were exposed to dispersant-treated oil than crude oil alone, suggesting that chemical dispersion of crude oil may promote photoenhanced toxicity to marine zooplankton. Our results demonstrate that acute exposure to concentrations of dispersed crude oil and dispersant (Corexit 9500) commonly found in the sea after oil spills are highly toxic to copepod nauplii and that natural levels of UVB radiation substantially increase the toxicity of crude oil to these planktonic organisms. Overall, this study emphasizes the importance of considering sunlight in petroleum toxicological studies and models to better estimate the impact of crude oil spills on marine zooplankton. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. The background to the proposition that plankton be used as food in the United Kingdom during the Second World War.

    Science.gov (United States)

    Moore, P G

    2011-01-01

    Food shortages, particularly of proteins, in Britain during the Second World War led to the suggestion re-surfacing that marine plankton might be harvested on an industrial scale first as human food, then turning to its potential use as a supplement to stock and poultry feed. The notion emanated in the United Kingdom from Sir John Graham Kerr, at Glasgow University. He encouraged Alister Hardy, at Hull, to develop the idea and the natural testing ground was the Clyde Sea Area (given the extensive history of plankton research at Millport). Unpublished documents from the archives of the Scottish Association for Marine Science shed new light on the interactions behind the scenes of this project between Kerr, Hardy and the Millport Marine Station's then director, Richard Elmhirst. Elmhirst, who was sceptical about the feasibility of the plan from the outset, went along with it; not least as a way of attracting welcome research funding during lean times but also, doubtless, regarding it as his patriotic duty in case the proposal proved worthwhile.

  5. Environmental Impacts—Marine Ecosystems

    DEFF Research Database (Denmark)

    Brander, Keith; Ottersen, Geir; Bakker, J.P.

    2016-01-01

    This chapter presents a review of what is known about the impacts of climate change on the biota (plankton, benthos, fish, seabirds and marine mammals) of the North Sea. Examples show how the changing North Sea environment is affecting biological processes and organisation at all scales, including...... the physiology, reproduction, growth, survival, behaviour and transport of individuals; the distribution, dynamics and evolution of populations; and the trophic structure and coupling of ecosystems. These complex responses can be detected because there are detailed long-term biological and environmental records...

  6. Hypoxia induces miR-210, leading to anti-apoptosis in ovarian follicular cells of marine medaka Oryzias melastigma

    International Nuclear Information System (INIS)

    Tse, Anna Chung-Kwan; Li, Jing-Woei; Chan, Ting-Fung; Wu, Rudolf Shiu-Sun; Lai, Keng-Po

    2015-01-01

    Highlights: • We demonstrate hypoxia induced miR-210 in ovarian follicular cells. • We show anti-apoptotic roles of miR-210 in ovarian follicular cells under hypoxia. • Apoptotic genes (DLC1, SLK, TNFRSF10B, RBM25, and USP7) are target of miR-210. • MiR-210 is vital for ovarian follicular cells proliferation in response to hypoxia. - Abstract: Hypoxia is a major global problem that impairs reproductive functions and reduces the quality and quantity of gametes and the fertilization success of marine fish. Nevertheless, the detailed molecular mechanism underlying hypoxia-induced female reproductive impairment remains largely unknown. There is increasing evidence that miRNA is vital in regulating ovarian functions and is closely associated with female fertility in humans. Certain miRNAs that regulate apoptotic genes can be induced by hypoxia, resulting in cell apoptosis. Using primary ovarian follicular cells of the marine medaka, Oryzias melastigma, as a model, we investigated the response of miR-210 to hypoxic stress in ovarian tissues to see if it would interrupt reproductive functions. A significant induction of miR-210 was found in primary ovarian follicular cells exposed to hypoxia, and gene ontology analysis further highlighted the potential roles of miR-210 in cell proliferation, cell differentiation, and cell apoptosis. A number of miR-210 target apoptotic genes, including Deleted in liver cancer 1 protein (DLC1), STE20-like serine/threonine-protein kinase (SLK), tumor necrosis factor receptor superfamily member 10b (TNFRSF10B), RNA binding motif protein 25 (RBM25), and Ubiquitin-specific-processing protease 7 (USP7), were identified. We further showed that ectopic expression of miR-210 would result in down-regulation of these apoptotic genes. On the other hand, the inhibition of miR-210 promoted apoptotic cell death and the expression of apoptotic marker – caspase 3 in follicular cells under hypoxic treatment, supporting the regulatory role of mi

  7. Hypoxia induces miR-210, leading to anti-apoptosis in ovarian follicular cells of marine medaka Oryzias melastigma

    Energy Technology Data Exchange (ETDEWEB)

    Tse, Anna Chung-Kwan [School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR (China); State Key Laboratory in Marine Pollution, Hong Kong SAR (China); Li, Jing-Woei; Chan, Ting-Fung [School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR (China); Wu, Rudolf Shiu-Sun [School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR (China); State Key Laboratory in Marine Pollution, Hong Kong SAR (China); Lai, Keng-Po, E-mail: balllai@hku.hk [School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR (China); State Key Laboratory in Marine Pollution, Hong Kong SAR (China)

    2015-08-15

    Highlights: • We demonstrate hypoxia induced miR-210 in ovarian follicular cells. • We show anti-apoptotic roles of miR-210 in ovarian follicular cells under hypoxia. • Apoptotic genes (DLC1, SLK, TNFRSF10B, RBM25, and USP7) are target of miR-210. • MiR-210 is vital for ovarian follicular cells proliferation in response to hypoxia. - Abstract: Hypoxia is a major global problem that impairs reproductive functions and reduces the quality and quantity of gametes and the fertilization success of marine fish. Nevertheless, the detailed molecular mechanism underlying hypoxia-induced female reproductive impairment remains largely unknown. There is increasing evidence that miRNA is vital in regulating ovarian functions and is closely associated with female fertility in humans. Certain miRNAs that regulate apoptotic genes can be induced by hypoxia, resulting in cell apoptosis. Using primary ovarian follicular cells of the marine medaka, Oryzias melastigma, as a model, we investigated the response of miR-210 to hypoxic stress in ovarian tissues to see if it would interrupt reproductive functions. A significant induction of miR-210 was found in primary ovarian follicular cells exposed to hypoxia, and gene ontology analysis further highlighted the potential roles of miR-210 in cell proliferation, cell differentiation, and cell apoptosis. A number of miR-210 target apoptotic genes, including Deleted in liver cancer 1 protein (DLC1), STE20-like serine/threonine-protein kinase (SLK), tumor necrosis factor receptor superfamily member 10b (TNFRSF10B), RNA binding motif protein 25 (RBM25), and Ubiquitin-specific-processing protease 7 (USP7), were identified. We further showed that ectopic expression of miR-210 would result in down-regulation of these apoptotic genes. On the other hand, the inhibition of miR-210 promoted apoptotic cell death and the expression of apoptotic marker – caspase 3 in follicular cells under hypoxic treatment, supporting the regulatory role of mi

  8. Ecological effects of scrubber water discharge on coastal plankton: Potential synergistic effects of contaminants reduce survival and feeding of the copepod Acartia tonsa

    DEFF Research Database (Denmark)

    Koski, Marja; Stedmon, Colin; Trapp, Stefan

    2017-01-01

    and hydrocarbons. We investigated 1) the threshold concentrations of scrubber discharge water for survival, feeding and reproduction of the copepod Acartia tonsa, 2) whether the effects depend on the exposure route and 3) whether exposure to discharge water can be detected in field-collected organisms. A direct...... constituents could have synergistic effects on plankton productivity and bioaccumulation of metals, although the effects will depend on their dilution in the marine environment....

  9. Modulation of cell adhesion and viability of cultured murine bone marrow cells by arsenobetaine, a major organic arsenic compound in marine animals.

    Science.gov (United States)

    Sakurai, T; Fujiwara, K

    2001-01-01

    1. In this study, we investigated the biological effects of trimethyl (carboxymethyl) arsonium zwitterion, namely arsenobetaine (AsBe), which is a major organic arsenic compound in marine animals using murine bone marrow (BM) cells and compared them with those of an inorganic arsenical, sodium arsenite, in vitro. 2. Sodium arsenite showed strong cytotoxicity in BM cells, and its IC(50) was 6 microM. In contrast, AsBe significantly enhanced the viability of BM cells in a dose-dependent manner during a 72-h incubation; about a twofold increase in the viability of cells compared with that of control cells cultured with the medium alone was observed with a microM level of AsBe. 3. In morphological investigations, AsBe enhanced the numbers of large mature adherent cells, especially granulocytes, during a 72-h BM culture. When BM cells were cultured together with AsBe and a low dose (1 u ml(-1)) of recombinant murine granulocyte/macrophage colony-stimulating factor (rMu GM-CSF), significant additive-like increasing effects were observed on the numbers of both granulocytes and macrophages originated from BM cells. However, AsBe did not cause proliferation of BM cells at all as determined by colony-forming assay using a gelatinous medium. 4. These findings demonstrate the unique and potent biological effects in mammalian cells of AsBe, a major organic arsenic compound in various marine animals which are ingested daily as seafood in many countries.

  10. Worldwide Genotyping in the Planktonic Foraminifer Globoconella inflata: Implications for Life History and Paleoceanography

    Science.gov (United States)

    Morard, Raphaël; Quillévéré, Frédéric; Douady, Christophe J.; de Vargas, Colomban; de Garidel-Thoron, Thibault; Escarguel, Gilles

    2011-01-01

    The planktonic foraminiferal morpho-species Globoconella inflata is widely used as a stratigraphic and paleoceanographic index. While G. inflata was until now regarded as a single species, we show that it rather constitutes a complex of two pseudo-cryptic species. Our study is based on SSU and ITS rDNA sequence analyses and genotyping of 497 individuals collected at 49 oceanic stations covering the worldwide range of the morpho-species. Phylogenetic analyses unveil the presence of two divergent genotypes. Type I inhabits transitional and subtropical waters of both hemispheres, while Type II is restricted to the Antarctic subpolar waters. The two genetic species exhibit a strictly allopatric distribution on each side of the Antarctic Subpolar Front. On the other hand, sediment data show that G. inflata was restricted to transitional and subtropical environments since the early Pliocene, and expanded its geographic range to southern subpolar waters ∼700 kyrs ago, during marine isotopic stage 17. This datum may correspond to a peripatric speciation event that led to the partition of an ancestral genotype into two distinct evolutionary units. Biometric measurements performed on individual G. inflata from plankton tows north and south of the Antarctic Subpolar Front indicate that Types I and II display slight but significant differences in shell morphology. These morphological differences may allow recognition of the G. inflata pseudo-cryptic species back into the fossil record, which in turn may contribute to monitor past movements of the Antarctic Subpolar Front during the middle and late Pleistocene. PMID:22028935

  11. The response of calcifying plankton to climate change in the Pliocene

    Directory of Open Access Journals (Sweden)

    C. V. Davis

    2013-09-01

    Full Text Available As a result of anthropogenic pCO2 increases, future oceans are growing warmer and lower in pH and oxygen, conditions that are likely to impact planktic communities. Past intervals of elevated and changing pCO2 and temperatures can offer a glimpse into the response of marine calcifying plankton to changes in surface oceans under conditions similar to those projected for the future. Here we present new records of planktic foraminiferal and coccolith calcification (weight and size from Deep Sea Drilling Project Site 607 (mid-North Atlantic and Ocean Drilling Program Site 999 (Caribbean Sea from the Pliocene, the last time that pCO2 was similar to today, and extending through a global cooling event into the intensification of Northern Hemisphere glaciation (3.3 to 2.6 million years ago. Test weights of both surface-dwelling Foraminifera Globigerina bulloides and thermocline-dwelling Foraminifera Globorotalia puncticulata vary with a potential link to regional temperature variation in the North Atlantic, whereas in the tropics Globigerinoides ruber test weight remains stable. In contrast, reticulofenestrid coccoliths show a narrowing size range and a decline in the largest lith diameters over this interval. Our results suggest no major changes in plankton calcite production during the high pCO2 Pliocene or during the transition into an icehouse world.

  12. Standing out from the crowd: Spotting your targets in a mixed plankton sample.

    Science.gov (United States)

    Harada, Alice E; Burton, Ronald S

    2017-11-01

    The diversity of marine organisms is staggering, and this fact is readily appreciated by microscopic examination of the contents of a plankton net after a short tow across the ocean surface. Although this diversity is beautiful, it can present a significant problem for those seeking to extract information about a single species of interest. Enumeration of the eggs and larvae of a specific target species can provide a quantitative window into reproductive dynamics that are of great use for fisheries stock assessment and management. But how do you efficiently sort through the mass of plankton and identify target species' eggs and larvae that may be morphologically indistinguishable from those of a number of other local species? In this issue of Molecular Ecology Resources, Oxley et al. () describe an innovative in situ hybridization (ISH) approach that successfully solves this important problem and opens an exciting new avenue to ichthyoplankton analysis that may be widely adopted by both fish ecologists and fisheries managers. © 2017 John Wiley & Sons Ltd.

  13. Moderate effect of damming the Romaine River (Quebec, Canada) on coastal plankton dynamics

    Science.gov (United States)

    Senneville, Simon; Schloss, Irene R.; St-Onge Drouin, Simon; Bélanger, Simon; Winkler, Gesche; Dumont, Dany; Johnston, Patricia; St-Onge, Isabelle

    2018-04-01

    Rivers' damming disrupts the seasonal cycle of freshwater and nutrient inputs into the marine system, which can lead to changes in coastal plankton dynamics. Here we use a 3-D 5-km resolution coupled biophysical model and downscale it to a 400-m resolution to simulate the effect of damming the Romaine River in Québec, Canada, which discharges on average 327 m3 s-1 of freshwater into the northern Gulf of St. Lawrence. Model results are compared with environmental data obtained from 2 buoys and in situ sampling near the Romaine River mouth during the 2013 spring-summer period. Noteworthy improvements are made to the light attenuation parametrization and the trophic links of the biogeochemical model. The modelled variables reproduced most of the observed levels of variability. Comparisons between natural and regulated discharge simulation show differences in primary production and in the dominance of plankton groups in the Romaine River plume. The maximum increase in primary production when averaged over the inner part of Mingan Archipelago is 41%, but 7.1% when the primary production anomaly is averaged from March to September.

  14. GENE EXPRESSION PROFILING OF HUMAN LIVER CARCINOMA (HepG2) CELLS EXPOSED TO THE MARINE TOXIN OKADAIC ACID

    Science.gov (United States)

    Fieber, Lynne A.; Greer, Justin B.; Guo, Fujiang; Crawford, Douglas C.; Rein, Kathleen S.

    2012-01-01

    The marine toxin, okadaic acid (OA) is produced by dinoflagellates of the genera Prorocentrum and Dinophysis and is the causative agent of the syndrome known as diarrheic shellfish poisoning (DSP). In addition, OA acts as both a tumor promoter, attributed to OA-induced inhibition of protein phosphatases as well as an inducer of apoptosis. To better understand the potentially divergent toxicological profile of OA, the concentration dependent cytotoxicity and alterations in gene expression on the human liver tumor cell line HepG2 upon OA exposure were determined using RNA microarrays, DNA fragmentation, and cell proliferation assays as well as determinations of cell detachment and cell death in different concentrations of OA. mRNA expression was quantified for approximately 15,000 genes. Cell attachment and proliferation were both negatively correlated with OA concentration. Detached cells displayed necrotic DNA signatures but apoptosis also was broadly observed. Data suggest that OA has a concentration dependent effect on cell cycle, which might explain the divergent effects that at low concentration OA stimulates genes involved in the cell cycle and at high concentrations it stimulates apoptosis. PMID:23172983

  15. Crustacean Larvae-Vision in the Plankton.

    Science.gov (United States)

    Cronin, Thomas W; Bok, Michael J; Lin, Chan

    2017-11-01

    We review the visual systems of crustacean larvae, concentrating on the compound eyes of decapod and stomatopod larvae as well as the functional and behavioral aspects of their vision. Larval compound eyes of these macrurans are all built on fundamentally the same optical plan, the transparent apposition eye, which is eminently suitable for modification into the abundantly diverse optical systems of the adults. Many of these eyes contain a layer of reflective structures overlying the retina that produces a counterilluminating eyeshine, so they are unique in being camouflaged both by their transparency and by their reflection of light spectrally similar to background light to conceal the opaque retina. Besides the pair of compound eyes, at least some crustacean larvae have a non-imaging photoreceptor system based on a naupliar eye and possibly other frontal eyes. Larval compound-eye photoreceptors send axons to a large and well-developed optic lobe consisting of a series of neuropils that are similar to those of adult crustaceans and insects, implying sophisticated analysis of visual stimuli. The visual system fosters a number of advanced and flexible behaviors that permit crustacean larvae to survive extended periods in the plankton and allows them to reach acceptable adult habitats, within which to metamorphose. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  16. Effect of mercury on taurine transport by the red blood cells of the marine polychaete, Glycera dibranchiata

    International Nuclear Information System (INIS)

    Chen, C.W.; Preston, R.L.

    1987-01-01

    The objective of this study was to characterize the effects of heavy metal exposure on the transport of the amino acid, 14 C-taurine, by the hemoglobin containing coelomocytes (red blood cells) of the marine polychaete, Glycera dibranchiata. Glycera has been used previously in studies on heavy metal absorption. Glycera red cells (RBCs) were used for this study because they contain a high concentration of taurine (190 mM) which has been implicated as a major osmolyte in cellular volume regulation in marine invertebrates. Taurine also appears to participate in osmoregulation of mammalian heart and brain tissue. The coelomic fluid bathing Glycera RBCs typically contains taurine at considerably lower concentrations (0.2 mM). The standing gradients (intracellular conc./extracellular conc.) for amino acids ranges from 40:1 for lysine to 950:1 for taurine. Preliminary experiments demonstrated that the maintenance of the large standing gradient for taurine was apparently due to the presence of a specific Na and Cl dependent taurine transport system in these cells. The fact that Glycera RBCs actively maintain large taurine gradients suggests that this tissue should be an excellent one to use in analysis of the mechanisms of heavy metal interaction with taurine transport systems

  17. Genotoxicity, potential cytotoxicity and cell uptake of titanium dioxide nanoparticles in the marine fish Trachinotus carolinus (Linnaeus, 1766)

    Energy Technology Data Exchange (ETDEWEB)

    Vignardi, Caroline P., E-mail: carolpatvig@usp.br [Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça do Oceanogáfico 191, Cidade Universitária, Butantã, São Paulo, SP 05508900 (Brazil); Hasue, Fabio M., E-mail: humbigutis@gmail.com [Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça do Oceanogáfico 191, Cidade Universitária, Butantã, São Paulo, SP 05508900 (Brazil); Sartório, Priscila V., E-mail: pri.sartorio@gmail.com [Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça do Oceanogáfico 191, Cidade Universitária, Butantã, São Paulo, SP 05508900 (Brazil); Cardoso, Caroline M., E-mail: camargonato@gmail.com [Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça do Oceanogáfico 191, Cidade Universitária, Butantã, São Paulo, SP 05508900 (Brazil); Machado, Alex S.D., E-mail: mamiferomarinho@gmail.com [Faculty of Veterinary Medicine, Integrated College North of Minas Osmane Barbosa Avenue, 11111, JK, Montes Claros, MG 39404006 (Brazil); and others

    2015-01-15

    Highlights: • TiO{sub 2}–NP cytogenotoxicity and cell uptake in marine fish was studied. • TiO{sub 2}–NP suspension was in primary particle, agglomerated and aggregated form. • TiO{sub 2}–NP genotoxicity was time/dose dependent and may induce cell uptake. • Methodology proved to be efficient for evaluating the toxic effect of TiO{sub 2}–NP. - Abstract: Nanoparticles have physicochemical characteristics that make them useful in areas such as science, technology, medicine and in products of everyday use. Recently the manufacture and variety of these products has grown rapidly, raising concerns about their impact on human health and the environment. Adverse effects of exposure to nanoparticles have been reported for both terrestrial and aquatic organisms, but the toxic effects of the substances on marine organisms remain poorly understood. The main aim of this study was to evaluate the genotoxicity of TiO{sub 2}–NP in the marine fish Trachinotus carolinus, through cytogenotoxic methods. The fish received two different doses of 1.5 μg and 3.0 μg–TiO{sub 2}–NP g{sup −1} by intraperitoneal injection. Blood samples were collected to analyze erythrocyte viability using the Trypan Blue exclusion test, comet assay (pH > 13), micronucleus (MN) and other erythrocyte nuclear abnormalities (ENA) 24, 48 and 72 h after injection. The possible cell uptake of TiO{sub 2}–NP in fish injected with the higher dose was investigated after 72 h using transmission electron microscopy (TEM). The results showed that TiO{sub 2}–NP is genotoxic and potentially cytotoxic for this species, causing DNA damage, inducing the formation of MN and other ENA, and decreasing erythrocyte viability. TEM examination revealed that cell uptake of TiO{sub 2}–NP was mainly in the kidney, liver, gills and to a lesser degree in muscle. To the extent of the authors’ knowledge, this is the first in vivo study of genotoxicity and other effects of TiO{sub 2}–NP in a marine fish.

  18. A light-induced shortcut in the planktonic microbial loop

    Science.gov (United States)

    Ptacnik, Robert; Gomes, Ana; Royer, Sarah-Jeanne; Berger, Stella A.; Calbet, Albert; Nejstgaard, Jens C.; Gasol, Josep M.; Isari, Stamatina; Moorthi, Stefanie D.; Ptacnikova, Radka; Striebel, Maren; Sazhin, Andrey F.; Tsagaraki, Tatiana M.; Zervoudaki, Soultana; Altoja, Kristi; Dimitriou, Panagiotis D.; Laas, Peeter; Gazihan, Ayse; Martínez, Rodrigo A.; Schabhüttl, Stefanie; Santi, Ioulia; Sousoni, Despoina; Pitta, Paraskevi

    2016-07-01

    Mixotrophs combine photosynthesis with phagotrophy to cover their demands in energy and essential nutrients. This gives them a competitive advantage under oligotropihc conditions, where nutrients and bacteria concentrations are low. As the advantage for the mixotroph depends on light, the competition between mixo- and heterotrophic bacterivores should be regulated by light. To test this hypothesis, we incubated natural plankton from the ultra-oligotrophic Eastern Mediterranean in a set of mesocosms maintained at 4 light levels spanning a 10-fold light gradient. Picoplankton (heterotrophic bacteria (HB), pico-sized cyanobacteria, and small-sized flagellates) showed the fastest and most marked response to light, with pronounced predator-prey cycles, in the high-light treatments. Albeit cell specific activity of heterotrophic bacteria was constant across the light gradient, bacterial abundances exhibited an inverse relationship with light. This pattern was explained by light-induced top-down control of HB by bacterivorous phototrophic eukaryotes (PE), which was evidenced by a significant inverse relationship between HB net growth rate and PE abundances. Our results show that light mediates the impact of mixotrophic bacterivores. As mixo- and heterotrophs differ in the way they remineralize nutrients, these results have far-reaching implications for how nutrient cycling is affected by light.

  19. A light-induced shortcut in the planktonic microbial loop

    KAUST Repository

    Ptacnik, Robert

    2016-07-11

    Mixotrophs combine photosynthesis with phagotrophy to cover their demands in energy and essential nutrients. This gives them a competitive advantage under oligotropihc conditions, where nutrients and bacteria concentrations are low. As the advantage for the mixotroph depends on light, the competition between mixo- and heterotrophic bacterivores should be regulated by light. To test this hypothesis, we incubated natural plankton from the ultra-oligotrophic Eastern Mediterranean in a set of mesocosms maintained at 4 light levels spanning a 10-fold light gradient. Picoplankton (heterotrophic bacteria (HB), pico-sized cyanobacteria, and small-sized flagellates) showed the fastest and most marked response to light, with pronounced predator-prey cycles, in the high-light treatments. Albeit cell specific activity of heterotrophic bacteria was constant across the light gradient, bacterial abundances exhibited an inverse relationship with light. This pattern was explained by light-induced top-down control of HB by bacterivorous phototrophic eukaryotes (PE), which was evidenced by a significant inverse relationship between HB net growth rate and PE abundances. Our results show that light mediates the impact of mixotrophic bacterivores. As mixo- and heterotrophs differ in the way they remineralize nutrients, these results have far-reaching implications for how nutrient cycling is affected by light.

  20. A light-induced shortcut in the planktonic microbial loop

    KAUST Repository

    Ptacnik, Robert; Gomes, Ana; Royer, Sarah-Jeanne; Berger, Stella A.; Calbet, Albert; Nejstgaard, Jens C.; Gasol, Josep M.; Isari, Stamatina; Moorthi, Stefanie D.; Ptacnikova, Radka; Striebel, Maren; Sazhin, Andrey F.; Tsagaraki, Tatiana M.; Zervoudaki, Soultana; Altoja, Kristi; Dimitriou, Panagiotis D.; Laas, Peeter; Gazihan, Ayse; Martí nez, Rodrigo A.; Schabhü ttl, Stefanie; Santi, Ioulia; Sousoni, Despoina; Pitta, Paraskevi

    2016-01-01

    Mixotrophs combine photosynthesis with phagotrophy to cover their demands in energy and essential nutrients. This gives them a competitive advantage under oligotropihc conditions, where nutrients and bacteria concentrations are low. As the advantage for the mixotroph depends on light, the competition between mixo- and heterotrophic bacterivores should be regulated by light. To test this hypothesis, we incubated natural plankton from the ultra-oligotrophic Eastern Mediterranean in a set of mesocosms maintained at 4 light levels spanning a 10-fold light gradient. Picoplankton (heterotrophic bacteria (HB), pico-sized cyanobacteria, and small-sized flagellates) showed the fastest and most marked response to light, with pronounced predator-prey cycles, in the high-light treatments. Albeit cell specific activity of heterotrophic bacteria was constant across the light gradient, bacterial abundances exhibited an inverse relationship with light. This pattern was explained by light-induced top-down control of HB by bacterivorous phototrophic eukaryotes (PE), which was evidenced by a significant inverse relationship between HB net growth rate and PE abundances. Our results show that light mediates the impact of mixotrophic bacterivores. As mixo- and heterotrophs differ in the way they remineralize nutrients, these results have far-reaching implications for how nutrient cycling is affected by light.

  1. Benthic foraminifera in the plankton following storms: what does this mean for (palaeo)-ecological interpretations?

    Science.gov (United States)

    Hart, Malcolm; Molina, Giulia; Smart, Christopher; Widdicombe, Claire

    2017-04-01

    The Western Channel Observatory was established by the Natural Environment Research Council (NERC), with Plymouth Marine Laboratory managing the two autonomous buoys that are located to the south of Plymouth in the English Channel (Stations L4 and E1): see Smyth et al. (2015). These two locations are now monitored continually and there is regular sampling of the water column and the sea floor at both locations. At Station L4, despite being in waters with a depth of 50 m, benthic foraminifera are regularly found in the surface water plankton samples. Some of these benthic foraminifera contain algal symbionts, indicating that they may be living at the time of capture. If benthic foraminifera can be entrained in the water column, while still living, then this provides a mechanism for 'migration' that is much more rapid and efficient than the rate at which protists could migrate within, or on, the sediment surface. Recolonization by foraminifera, following disturbance, could well be facilitated by this mechanism which has only rarely been reported in the literature (e.g., Murray, 1965). It is clearly limited to depths impacted by fair weather ( 30 m) or storm wave base (80 - 100 m). Data gathered during winter 2015-2016 certainly indicate that, following storm events, the larger the number of benthic foraminifera in the plankton tows and the greater their overall size. Some of the individuals being observed appear to contain sediment, indicating that they have been picked up from the sediment surface and, despite their greater weight, have still been transported into the plankton. Using data from the nearby sea area, off-shore and within Plymouth Sound, we are trying to ascertain if the recorded assemblage is from the L4 area, or whether they have been transported out from shallower-water environments, possibly assisted by increased run-off caused by heavy rainfall (associated with the storms). Clearly, re-distribution of foraminifera in the environment might make

  2. Negative consequences of glacial turbidity for the survival of freshwater planktonic heterotrophic flagellates.

    Science.gov (United States)

    Sommaruga, Ruben; Kandolf, Georg

    2014-02-17

    Heterotrophic (phagotrophic) flagellates are key components of planktonic food webs in freshwater and marine ecosystems because they are the main consumers of bacteria. Although they are ubiquitous in aquatic ecosystems, they were numerically undetectable in turbid glacier-fed lakes. Here we show that glacial particles had negative effects on the survival and growth of heterotrophic flagellates. The effect of glacial particles was concentration-dependent and was caused by their interference with bacterial uptake rather than by physical damage. These results are the first to reveal why establishment of heterotrophic flagellates populations is hindered in very turbid glacial lakes. Because glaciers are vanishing around the world, recently formed turbid meltwater lakes represent an excellent opportunity to understand the environmental conditions that probably shaped the establishment of lake communities at the end of the last glaciation.

  3. Toxicity of benz(a)anthracene and fluoranthene to marine phytoplankton in culture: Does cell size really matter?

    International Nuclear Information System (INIS)

    Othman, Hiba Ben; Leboulanger, Christophe; Le Floc’h, Emilie; Hadj Mabrouk, Hassine; Sakka Hlaili, Asma

    2012-01-01

    Highlights: ► Polycyclic aromatic hydrocarbons (PAHs) in the marine environment are a hazardous chemical legacy. ► Benz(a)anthracene and fluoranthene are toxic to phytoplankton photosynthesis and growth in culture. ► Acute (photosynthesis) and chronic (population growth) effects have different thresholds. ► Toxicity depends on both the species selected as a model and the compound considered. ► Further study of the size/sensitivity relationship is required to draw more general conclusions. - Abstract: The toxicity of benz(a)anthracene and fluoranthene (polycyclic aromatic hydrocarbons, PAHs) was evaluated on seven species of marine algae in culture belonging to pico-, nano-, and microphytoplankton, exposed to increasing concentrations of up to 2 mg L −1 . The short-term (24 h) toxicity was assessed using chlorophyll a fluorescence transients, linked to photosynthetic parameters. The maximum quantum yield Fv/Fm was lower at the highest concentrations tested and the toxicity thresholds were species-dependent. For acute effects, fluoranthene was more toxic than benz(a)anthracene, with LOECs of 50.6 and 186 μg L −1 , respectively. After 72 h exposure, there was a dose-dependent decrease in cell density, fluoranthene being more toxic than benz(a)anthracene. The population endpoint at 72 h was affected to a greater extent than the photosynthetic endpoint at 24 h. EC50 was evaluated using the Hill model, and species sensitivity was negatively correlated to cell biovolume. The largest species tested, the dinoflagellate Alexandrium catenella, was almost insensitive to either PAH. The population endpoint EC50s for fluoranthene varied from 54 μg L −1 for the picophytoplankton Picochlorum sp. to 418 μg L −1 for the larger diatom Chaetoceros muelleri. The size/sensitivity relationship is proposed as a useful model when there is a lack of ecotoxicological data on hazardous chemicals, especially in marine microorganisms.

  4. TBT toxicity on a natural planktonic assemblage exposed to enhanced ultraviolet-B radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sargian, Peggy [Institut des Sciences de la Mer de Rimouski (ISMER), Universite du Quebec a Rimouski, 310, Allee des Ursulines, Rimouski, Que., G5L 3A1 (Canada)]. E-mail: peggy_sargian@uqar.qc.ca; Pelletier, Emilien [Institut des Sciences de la Mer de Rimouski (ISMER), Universite du Quebec a Rimouski, 310, Allee des Ursulines, Rimouski, Que., G5L 3A1 (Canada); Mostajir, Behzad [Reseaux trophiques pelagiques (GDR 2476) et Ecologie Microbienne des milieux Aquatiques, UMR 5119 Ecosystemes lagunaires, CNRS-Universite Montpellier II, Case 093, 34095 Montpellier Cedex 5 (France); Ferreyra, Gustavo A. [Institut des Sciences de la Mer de Rimouski (ISMER), Universite du Quebec a Rimouski, 310, Allee des Ursulines, Rimouski, Que., G5L 3A1 (Canada); Instituto Antartico Argentino (IAA), Cerrito 1248 (C1010AAZ), Buenos Aires (Argentina); Demers, Serge [Institut des Sciences de la Mer de Rimouski (ISMER), Universite du Quebec a Rimouski, 310, Allee des Ursulines, Rimouski, Que., G5L 3A1 (Canada)

    2005-07-01

    A microcosm approach was designed to study the combined effects of tributyltin (TBT) from antifouling paints and ultraviolet-B radiation (UVBR: 280-320 nm), on a natural planktonic assemblage (<150 {mu}m) isolated from the St. Lawrence Estuary at the end of the springtime. Microcosms (9 l, cylindrical Teflon[reg] bags, 75 cm height x 25 cm width) were immersed in the water column of mesocosms (1800 l, polyethylene bags, 2.3 m depth) and exposed to two different UVBR regimes: natural ambient UVBR (NUVBR), and enhanced level of UVBR (HUVBR). During consecutive 5 days, effects of TBT (120 ng l{sup -1}) and enhanced UVBR (giving a biologically weighted UVBR 2.15-fold higher than natural light condition) were monitored in the samples coming from following treatments: (i) NUVBR light condition without TBT (NUVBR) (ii) NUVBR light condition with TBT-added (NUVBR + TBT) (iii) HUVBR light condition without TBT (HUVBR) and (iv) HUVBR light condition with TBT-added (HUVBR + TBT). Each treatment was conducted in triplicate microcosms. Different parameters were then measured during 5 days, including TBT analysis, bacterial abundance and productivity, phytoplankton abundance, cellular characteristics and growth rates, as well as in vivo chlorophyll a (Chl a) fluorescence. Following TBT addition (NUVBR + TBT treatment), Chl a concentrations never exceeded 1 {mu}g l{sup -1} whereas final values as high as 54 {mu}g l{sup -1} were observed in TBT-free treatments (NUVBR and HUVBR). TBT addition resulted also in the lost of fluorescence signal of the maximum efficiency of the photosystem II in phytoplankton assemblage. TBT toxicity caused on phytoplankton <20 {mu}m an increase of mean cell size and changes in shape reflected a drastic disturbance of the cell cycle leading to an inhibition of the apparent growth rate. These negative effects of TBT resulted in a final abundance of phytoplankton <20 {mu}m of 591 {+-} 35 cells ml{sup -1} in NUVBR + TBT relative to NUVBR treatment (i

  5. Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications

    Directory of Open Access Journals (Sweden)

    Yousri M.A. Welaya

    2013-12-01

    Full Text Available Strong restrictions on emissions from marine power plants (particularly SOx, NOx will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC and gas turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. It includes a study of a heat-recovery system for 18 MW SOFC fuelled by natural gas, to provide the electric power demand onboard commercial vessels. Feasible heat-recovery systems are investigated, taking into account different operating conditions of the combined system. Two types of SOFC are considered, tubular and planar SOFCs, operated with either natural gas or hydrogen fuels. This paper includes a detailed thermodynamic analysis for the combined system. Mass and energy balances are performed, not only for the whole plant but also for each individual component, in order to evaluate the thermal efficiency of the combined cycle. In addition, the effect of using natural gas as a fuel on the fuel cell voltage and performance is investigated. It is found that a high overall efficiency approaching 70% may be achieved with an optimum configuration using SOFC system under pressure. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.

  6. Single cell oil production from hydrolysate of cassava starch by marine-derived yeast Rhodotorula mucilaginosa TJY15a

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mei; Liu, Guang-Lei; Chi, Zhe; Chi, Zhen-Ming [Unesco Chinese Center of Marine Biotechnology, Ocean University of China, Yushan Road, No. 5, Qingdao 266003 (China)

    2010-01-15

    Rhodotorula mucilaginosa TJY15a which was isolated from surface of marine fish could accumulate a large amount of lipid from hydrolysate of cassava starch. The cells contained 47.9% (w/w) oil during batch cultivation, whereas 52.9% (w/w) of lipid was obtained during the fed-batch cultivation. At the end of the fed-batch cultivation, all the starch were converted into reducing sugar and only 0.34 g dm{sup -3} of reducing sugar was left in the fermented medium. Therefore, the marine-derived R. mucilaginosa TJY15a was another candidate for single cell oil production. The fatty acids from R. mucilaginosa TJY15a were mainly composed of palmitic acid (C{sub 16:0}), palmitoleic acid (C{sub 16:1}), stearic acid (C{sub 18:0}), oleic acid (C{sub 18:1}) and linolenic acid (C{sub 18:2}), suggesting that the fatty acids could be used as feedstock for biodiesel production. (author)

  7. Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications

    Science.gov (United States)

    Welaya, Yousri M. A.; Mosleh, M.; Ammar, Nader R.

    2013-12-01

    Strong restrictions on emissions from marine power plants (particularly SOx, NOx) will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC) and gas turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. It includes a study of a heatrecovery system for 18 MW SOFC fuelled by natural gas, to provide the electric power demand onboard commercial vessels. Feasible heat-recovery systems are investigated, taking into account different operating conditions of the combined system. Two types of SOFC are considered, tubular and planar SOFCs, operated with either natural gas or hydrogen fuels. This paper includes a detailed thermodynamic analysis for the combined system. Mass and energy balances are performed, not only for the whole plant but also for each individual component, in order to evaluate the thermal efficiency of the combined cycle. In addition, the effect of using natural gas as a fuel on the fuel cell voltage and performance is investigated. It is found that a high overall efficiency approaching 70% may be achieved with an optimum configuration using SOFC system under pressure. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.

  8. Energy analysis of a combined solid oxide fuel cell with a steam turbine power plant for marine applications

    Science.gov (United States)

    Welaya, Yousri M. A.; Mosleh, M.; Ammar, Nader R.

    2013-12-01

    Strong restrictions on emissions from marine power plants (particularly SO x , NO x ) will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC) and steam turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. The analyzed variant of the combined cycle includes a SOFC operated with natural gas fuel and a steam turbine with a single-pressure waste heat boiler. The calculations were performed for two types of tubular and planar SOFCs, each with an output power of 18 MW. This paper includes a detailed energy analysis of the combined system. Mass and energy balances are performed not only for the whole plant but also for each component in order to evaluate the thermal efficiency of the combined cycle. In addition, the effects of using natural gas as a fuel on the fuel cell voltage and performance are investigated. It has been found that a high overall efficiency approaching 60% may be achieved with an optimum configuration using the SOFC system. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.

  9. The Marine Fungal Metabolite, Dicitrinone B, Induces A375 Cell Apoptosis through the ROS-Related Caspase Pathway

    Directory of Open Access Journals (Sweden)

    Li Chen

    2014-04-01

    Full Text Available Dicitrinone B, a rare carbon-bridged citrinin dimer, was isolated from the marine-derived fungus, Penicillium citrinum. It was reported to have antitumor effects on tumor cells previously; however, the details of the mechanism remain unclear. In this study, we found that dicitrinone B inhibited the proliferation of multiple tumor types. Among them, the human malignant melanoma cell, A375, was confirmed to be the most sensitive. Morphologic evaluation, cell cycle arrest and apoptosis rate analysis results showed that dicitrinone B significantly induced A375 cell apoptosis. Subsequent observation of reactive oxygen species (ROS accumulation and mitochondrial membrane potential (MMP reduction revealed that the apoptosis induced by dicitrinone B may be triggered by over-producing ROS. Further studies indicated that the apoptosis was associated with both intrinsic and extrinsic apoptosis pathways under the regulation of Bcl-2 family proteins. Caspase-9, caspase-8 and caspase-3 were activated during the process, leading to PARP cleavage. The pan-caspase inhibitor, Z-VAD-FMK, could reverse dicitrinone B-induced apoptosis, suggesting that it is a caspase-dependent pathway. Our data for the first time showed that dicitrinone B inhibits the proliferation of tumor cells by inducing cell apoptosis. Moreover, compared with the first-line chemotherapy drug, 5-fluorouracil (5-Fu, dicitrinone B showed much more potent anticancer efficacy, suggesting that it might serve as a potential antitumor agent.

  10. Effects of the global changes on the aquatic ecosystems in West Europe - role of the plankton communities

    International Nuclear Information System (INIS)

    Souissi, S.

    2007-01-01

    Examination of long-term records of aquatic ecosystems has provided useful information to find out their major driving forces. Understanding the impact of climate change on these ecosystems, the management of their resources and the extrapolation between sites are the main scopes of actual and emerging studies. Such goals can be achieved by inter-site and inter-ecosystem comparisons. This approach was undertaken during our project which has the originality to tackle with marine and freshwater ecosystems. It allowed us to compile and validate several multi-decadal time series of planktonic and other physical driving forces at local and regional scales. Then, the same methodology based on the analysis of the variability of climate indices and biological data across several spatial scales was used. The different ecosystems analyzed here showed clear response to the North Atlantic climate variability. Although the local differences abrupt changes in community composition occurred in all ecosystems in the middle of the years 80. During this period there was also a major shift in climatic conditions during winter and early spring, suggesting an impact of climatic factors. Phenological changes were also observed in plankton communities in all sites. The consequences of the modifications of plankton dynamics on higher trophic levels were also showed. Fluctuations in plankton have resulted in long-term changes in cod recruitment in the North Sea (bottom-up control). On the other hand, both climate change and the improvement of trophic status in Geneva Lake favored the outbreak of whitefish during the years 90. Lower larval mortality and better recruitment are supposed to be linked to faster growth associated with warmer temperatures and better food conditions induced by better temporal overlap between larvae hatching and zooplankton development. (author)

  11. Planktonic food web structure at a coastal time-series site: I. Partitioning of microbial abundances and carbon biomass

    Science.gov (United States)

    Caron, David A.; Connell, Paige E.; Schaffner, Rebecca A.; Schnetzer, Astrid; Fuhrman, Jed A.; Countway, Peter D.; Kim, Diane Y.

    2017-03-01

    Biogeochemistry in marine plankton communities is strongly influenced by the activities of microbial species. Understanding the composition and dynamics of these assemblages is essential for modeling emergent community-level processes, yet few studies have examined all of the biological assemblages present in the plankton, and benchmark data of this sort from time-series studies are rare. Abundance and biomass of the entire microbial assemblage and mesozooplankton (>200 μm) were determined vertically, monthly and seasonally over a 3-year period at a coastal time-series station in the San Pedro Basin off the southwestern coast of the USA. All compartments of the planktonic community were enumerated (viruses in the femtoplankton size range [0.02-0.2 μm], bacteria + archaea and cyanobacteria in the picoplankton size range [0.2-2.0 μm], phototrophic and heterotrophic protists in the nanoplanktonic [2-20 μm] and microplanktonic [20-200 μm] size ranges, and mesozooplankton [>200 μm]. Carbon biomass of each category was estimated using standard conversion factors. Plankton abundances varied over seven orders of magnitude across all categories, and total carbon biomass averaged approximately 60 μg C l-1 in surface waters of the 890 m water column over the study period. Bacteria + archaea comprised the single largest component of biomass (>1/3 of the total), with the sum of phototrophic protistan biomass making up a similar proportion. Temporal variability at this subtropical station was not dramatic. Monthly depth-specific and depth-integrated biomass varied 2-fold at the station, while seasonal variances were generally web structure and function at this coastal observatory.

  12. Plankton of Southern Chilean fjords: trends and linkages

    Directory of Open Access Journals (Sweden)

    Tarcisio Antezana

    1999-12-01

    Full Text Available The present paper compiles and reviews past and recent results from Magellan and Fuegian fjords for an overview of the planktonic assemblage there. It first examines linkages to local, adjacent and remote environments. The plankton assemblage presents deviations from the biota of the Magellan biogeographic Province, where the occasional presence of Antarctic species is related to oceanographic phenomena at the Polar Front. Complex bathymetric and hydrographic features within the fjords suggest that the plankton is rather isolated. Adaptations and constraints for population survival, and the role of diel migrators and gregarious zooplankters with regard to bentho-pelagic coupling are discussed. Results on seasonal differences in the plankton of the largest and most isolated basin of the Strait of Magellan are compiled. In spring the plankton was dominated by large diatoms suggesting a short food chain where most of the phytoplankton bloom goes to the bottom, to the meroplankton and to a few dominant holoplankters. In summer, the phytoplankton was dominated by pico- and nanophytoplankton suggesting a more complex food web mediated by a bacterial loop. High abundance of holo- and meroplanktonic larvae coincided with spring blooming conditions.

  13. The biomass of the deep-sea benthopelagic plankton

    Science.gov (United States)

    Wishner, K. F.

    1980-04-01

    Deep-sea benthopelagic plankton samples were collected with a specially designed opening-closing net system 10 to 100 m above the bottom in five different oceanic regions at depths from 1000 to 4700 m. Benthopelagic plankton biomasses decrease exponentially with depth. At 1000 m the biomass is about 1% that of the surface zooplankton, at 5000 m about 0.1%. Effects of differences in surface primary productivity on deep-sea plankton biomass are much less than the effect of depth and are detectable only in a few comparisons of extreme oceanic regions. The biomass at 10 m above the bottom is greater than that at 100 m above the bottom (in a three-sample comparison), which could be a consequence of an enriched near-bottom environment. The deep-sea plankton biomass in the Red Sea is anomalously low. This may be due to increased decomposition rates in the warm (22°C) deep Red Sea water, which prevent much detritus from reaching the deep sea. A model of organic carbon utilization in the benthic boundary layer (bottom 100 m), incorporating results from deep-sea sediment trap and respiration studies, indicates that the benthopelagic plankton use only a small amount of the organic carbon flux. A large fraction of the flux is unaccounted for by present estimates of benthic and benthopelagic respiration.

  14. Continuous daylight in the high-Arctic summer supports high plankton respiration rates compared to those supported in the dark

    KAUST Repository

    Mesa, Elena; Delgado-Huertas, Antonio; Carrillo-de-Albornoz, Paloma; Garcí a-Corral, Lara S.; Sanz-Martí n, Marina; Wassmann, Paul; Reigstad, Marit; Sejr, Mikael; Dalsgaard, Tage; Duarte, Carlos M.

    2017-01-01

    Plankton respiration rate is a major component of global CO2 production and is forecasted to increase rapidly in the Arctic with warming. Yet, existing assessments in the Arctic evaluated plankton respiration in the dark. Evidence that plankton

  15. Effect of chlorine on Mycobacterium gordonae and Mycobacterium chubuense in planktonic and Biofilm State

    Directory of Open Access Journals (Sweden)

    Alejandra Soledad Oriani

    2018-01-01

    Full Text Available Background: There is evidence that drinking water could be a source of infections with pathogenic nontuberculous mycobacteria (NTM potentially risky to human health. The aim was to investigate the resistance of two NTM isolated from drinking water, Mycobacterium gordonae and Mycobacterium chubuense, at different concentrations of chlorine (as sodium hypochlorite, used in drinking water sanitation. Methods: The NTM were grown in suspension and in biofilms and were challenged with biocide for 10 and 60 min. Results: To obtain 7-log reduction from the initial population of M. chubuense, in the planktonic state, there were necessary 20 ppm of chorine and 60 min of exposure. The same effect was achieved in M. gordonae with 10 ppm for the same period. The maximum reduction of both NTM in biofilm was 3-log reduction and was achieved using 30 ppm for 60 min. The chlorine susceptibility of cells in biofilms was significantly lower than that of planktonic cells. The results highlight the resistance of both NTM to the concentrations used in routine water sanitation (0.2 ppm according to Argentine Food Code. Differences in chlorine resistance found between the two NTM in planktonic growth decrease when they are grown in biofilm. Conclusion: This suggests that current water disinfection procedures do not always achieve effective control of NTM in the public supply system, with the consequent health risk to susceptible population, and the need to take into account biofilms, because of their deep consequences in the way to analyze the survival of prokaryotic cells in different environments.

  16. Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth.

    Science.gov (United States)

    Luef, Birgit; Fakra, Sirine C; Csencsits, Roseann; Wrighton, Kelly C; Williams, Kenneth H; Wilkins, Michael J; Downing, Kenneth H; Long, Philip E; Comolli, Luis R; Banfield, Jillian F

    2013-02-01

    Iron-reducing bacteria (FeRB) play key roles in anaerobic metal and carbon cycling and carry out biogeochemical transformations that can be harnessed for environmental bioremediation. A subset of FeRB require direct contact with Fe(III)-bearing minerals for dissimilatory growth, yet these bacteria must move between mineral particles. Furthermore, they proliferate in planktonic consortia during biostimulation experiments. Thus, a key question is how such organisms can sustain growth under these conditions. Here we characterized planktonic microbial communities sampled from an aquifer in Rifle, Colorado, USA, close to the peak of iron reduction following in situ acetate amendment. Samples were cryo-plunged on site and subsequently examined using correlated two- and three-dimensional cryogenic transmission electron microscopy (cryo-TEM) and scanning transmission X-ray microscopy (STXM). The outer membranes of most cells were decorated with aggregates up to 150 nm in diameter composed of ∼3 nm wide amorphous, Fe-rich nanoparticles. Fluorescent in situ hybridization of lineage-specific probes applied to rRNA of cells subsequently imaged via cryo-TEM identified Geobacter spp., a well-studied group of FeRB. STXM results at the Fe L(2,3) absorption edges indicate that nanoparticle aggregates contain a variable mixture of Fe(II)-Fe(III), and are generally enriched in Fe(III). Geobacter bemidjiensis cultivated anaerobically in the laboratory on acetate and hydrous ferric oxyhydroxides also accumulated mixed-valence nanoparticle aggregates. In field-collected samples, FeRB with a wide variety of morphologies were associated with nano-aggregates, indicating that cell surface Fe(III) accumulation may be a general mechanism by which FeRB can grow while in planktonic suspension.

  17. Environmental modulation of the plankton community composition and size-structure along the eutrophic intertidal coast of the Río de la Plata estuary, Argentina

    Directory of Open Access Journals (Sweden)

    Maximiliano D. Garcia

    2014-05-01

    Full Text Available In this study we investigated the spatial distribution of the plankton community, bacterio-, phyto- and zooplankton, in relation with environmental conditions along the intertidal coast of the Río de la Plata estuary, Argentina. Plankton was analyzed in terms of species composition, abundance, biomass (carbon content and size-structure. We aim to evaluate the potential effects of anthropogenic impacts (e.g., nutrient enrichment and physicochemical gradients alongshore (e.g., salinity, turbidity on the composition and functioning of the plankton. We asked whether the natural structuring of the plankton by salinity and turbidity, known to be true of estuaries, is modified by eutrophication along the studied shoreline. We found that the density and biomass of bacteria and phytoplankton were strikingly enhanced by high eutrophication levels along the intertidal southwest coast of the Río de la Plata estuary. We also found that the highest zooplankton density in the most polluted area but the biomass showed a different distribution pattern. Nevertheless, when zooplankton was analyzed by means of its size fraction, we accordingly found that the microzooplankton biomass was positively associated with smaller-size phytoplankton groups and the most polluted study sites. Copepods were the major taxonomic groups that best represented the mesozooplankton biomass. We therefore expected that its distribution was modulated by the presence of its food items (i.e., large cells which, in turn, were more abundant in the middle-outer zone. In contrast, we found that the highest biomass of copepods occurred at the innermost site of the estuary and we found no significant association with other planktonic groups. Overall, this study highlights the noteworthy impacts of human activities modifying the functioning of this coastal ecosystem. The differences found in the taxonomic composition and size structure of the planktonic community assemblage between the most

  18. Anticancer effects of brominated indole alkaloid Eudistomin H from marine ascidian Eudistoma viride against cervical cancer cells (HeLa).

    Science.gov (United States)

    Rajesh, Rajaian Pushpabai; Annappan, Murugan

    2015-01-01

    Marine invertebrates called ascidians are prolific producers of bioactive substances. The ascidian Eudistoma viride, distributed along the Southeast coast of India, was investigated for its in vitro cytotoxic activity against human cervical carcinoma (HeLa) cells by the MTT assay. The crude methanolic extract of E. viride, with an IC50 of 53 μg/ml, was dose-dependently cytotoxic. It was more potent at 100 μg/ml than cyclohexamide (1 μg/ml), reducing cell viability to 9.2%. Among nine fractions separated by chromatography, ECF-8 exhibited prominent cytoxic activity at 10 μg/ml. The HPLC fraction EHF-21 of ECF-8 was remarkably dose- and time-dependently cytotoxic, with 39.8% viable cells at 1 μg/ml compared to 51% in cyclohexamide-treated cells at the same concentration; the IC50 was 0.49 μg/ml. Hoechst staining of HeLa cells treated with EHF-21 at 0.5 μg/ml revealed apoptotic events such an cell shrinkage, membrane blebbing, chromatin condensation and formation of apoptotic bodies. Cell size and granularity study showed changes in light scatter, indicating the characteristic feature of cells dying by apoptosis. The cell-cycle analysis of HeLa cells treated with fraction EHF-21 at 1 μg/ml showed the marked arrest of cells in G0/G1, S and G2/M phases and an increase in the sub G0/G1 population indicated an increase in the apoptotic cell population. The statistical analysis of the sub-G1 region showed a dose-dependent induction of apoptosis. DNA fragmentation was also observed in HeLa cells treated with EHF-21. The active EHF-21 fraction, a brominated indole alkaloid Eudistomin H, led to apoptotic death of HeLa cells. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  19. Wave of chaos in a diffusive system: Generating realistic patterns of patchiness in plankton-fish dynamics

    International Nuclear Information System (INIS)

    Upadhyay, Ranjit Kumar; Kumari, Nitu; Rai, Vikas

    2009-01-01

    We show that wave of chaos (WOC) can generate two-dimensional time-independent spatial patterns which can be a potential candidate for understanding planktonic patchiness observed in marine environments. These spatio-temporal patterns were obtained in computer simulations of a minimal model of phytoplankton-zooplankton dynamics driven by forces of diffusion. We also attempt to figure out the average lifetimes of these non-linear non-equilibrium patterns. These spatial patterns serve as a realistic model for patchiness found in aquatic systems (e.g., marine and oceanic). Additionally, spatio-temporal chaos produced by bi-directional WOCs is robust to changes in key parameters of the system; e.g., intra-specific competition among individuals of phytoplankton and the rate of fish predation. The ideas contained in the present paper may find applications in diverse fields of human endeavor.

  20. Ecology and distribution of recent planktonic foraminifera in eastern part of Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, K.K.; Jayalakshmy, K.V.; Kutty, M.K.

    Thirty species of living planktonic foraminifera have been studied from 97 plankton tows collected from the eastern Arabian Sea with an accent on their ecological and distributional aspects. Species density is higher with less dominance in the deep...

  1. Determining Microeukaryotic Plankton Community around Xiamen Island, Southeast China, Using Illumina MiSeq and PCR-DGGE Techniques.

    Directory of Open Access Journals (Sweden)

    Lingyu Yu

    Full Text Available Microeukaryotic plankton are important components of aquatic environments and play key roles in marine microbial food webs; however, little is known about their genetic diversity in subtropical offshore areas. Here we examined the community composition and genetic diversity of the microeukaryotic plankton in Xiamen offshore water by PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis, clone-based sequencing and Illumina based sequencing. The Illumina MiSeq sequencing revealed a much (approximately two orders of magnitude higher species richness of the microeukaryotic community than DGGE, but there were no significant difference in species richness and diversity among the northern, eastern, southern or western stations based on both methods. In this study, Copepoda, Ciliophora, Chlorophyta, Dinophyceae, Cryptophyta and Bacillariophyta (diatoms were the dominant groups even though diatoms were not detected by DGGE. Our Illumina based results indicated that two northern communities (sites N2 and N3 were significantly different from others in having more protozoa and fewer diatoms. Redundancy analysis (RDA showed that both temperature and salinity were the significant environmental factors influencing dominant species communities, whereas the full microeukaryotic community appeared to be affected by a complex of environmental factors. Our results suggested that extensive sampling combined with more deep sequencing are needed to obtain the complete diversity of the microeukaryotic community, and different diversity patterns for both abundant and rare taxa may be important in evaluating the marine ecosystem health.

  2. ASSESSING THE STATE OF THE PELAGIC HABITAT: A CASE STUDY OF PLANKTON AND ITS ENVIRONMENT IN THE WESTERN IRISH SEA

    Directory of Open Access Journals (Sweden)

    Cordula Scherer

    2016-11-01

    Full Text Available Much work had been undertaken on tracking change in the condition of marine pelagic ecosystems and on identifying regime shifts. However, it is also necessary to relate change to states of good ecosystem health or what the European Marine Strategy Framework Directive (MSFD calls 'Good Environmental Status' (GES. Drawing on existing scientific and legislative principles, including those of OSPAR's 'Strategy to Combat Eutrophication', we propose a framework for assessing the status of what the MSFD calls the 'pelagic habitat' in temperate coastal seas. The framework uses knowledge of local ecohydrodynamic conditions, especially those relating to the stratification and optical environment, to guide expectations of what would be recognised as healthy in terms of ecosystem 'organisation' and 'vigour'. We apply this framework to the seasonally stratified regime of the Western Irish Sea, drawing on published and new work on stratification, nutrient and phytoplankton seasonal cycles, zooplankton, and the implications of plankton community structure and production for higher trophic levels. We conclude that, despite human pressures including nutrient enrichment, and the food-web effects of fisheries, the pelagic ecosystem here is in GES, and hence may be used as a reference for the 'Plankton Index' method of tracking change in state space in seasonally stratified waters.

  3. Chloride cells as an index of the impacts of CO{sub 2} ocean sequestration on marine fish

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, M.; Ishimatsu, A. [Nagasaki Univ., Nagasaki (Japan). Marine Research Inst.; Kikkawa, T. [Nagasaki Univ., Nagasaki (Japan). Marine Research Inst.]|[Marine Ecology Research Inst., Onjuku, Chiba (Japan). Central Laboratory

    2005-07-01

    Carbon dioxide (CO{sub 2}) ocean sequestration has been proposed as a potential measure to mitigate greenhouse gas emissions to the atmosphere. However, the impacts of CO{sub 2} ocean sequestration on marine organisms must be examined in discussing the feasibility of this mitigation measure. This study examined the changes in the morphology of chloride cells (CCs) and activity of Na{sup +}, K{sup +} -ATPase of the Japanese flounder Paralichthys olivaceus during aquatic hypercapnia. The apical openings area increased 1.3 and 4.1 times in 24 hour exposures to 1 per cent and 5 per cent CO{sub 2}, respectively, while the CCs area or density did not change at both concentrations. Gill Na{sup +}, K{sup +} -ATPase activity more than doubled at 72 hours and then decreased at 1 per cent CO{sub 2}, whereas it increased to 170 per cent at 24 hours during exposure to 5 per cent CO{sub 2} . These results suggest that branchial CCs are involved in acid-base regulation in marine fish under environmental hypercapnia. 4 refs., 2 figs.

  4. Neurotoxic, cytotoxic, apoptotic and antiproliferative effects of some marine algae extracts on the NA2B cell line.

    Science.gov (United States)

    Kurt, O; Özdal-Kurt, F; Akçora, C M; Özkut, M; Tuğlu, M I

    2018-02-01

    Oxidative stress contributes to cancer pathologies and to apoptosis. Marine algae exhibit cytotoxic, antiproliferative and apoptotic effects; their metabolites have been used to treat many types of cancer. We investigated in culture extracts of Petalonia fascia, Jania longifurca and Halimeda tuna to determine their effects on mouse neuroblastoma cell line, NA2B. NA2B cells were treated with algae extracts, and the survival and proliferation of NA2B cells were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of algae extracts on oxidative stress in NA2B cells also were investigated using nitric oxide synthase (NOS) immunocytochemistry and apoptosis was assessed using terminal deoxynucleotidyl transferase dUTP nick end labeling. We observed significant neurite inhibition with moderate damage by the neurotoxicity-screening test (NST) at IC 50 dilutions of the extracts. MTT demonstrated that J. longifurca extracts were more toxic than P. fascia and H. tuna extracts. We found an increase of endothelial and inducible NOS immunostaining for oxidative stress and TUNEL analysis revealed increased apoptosis after application of extract. Our findings suggest that the algae we tested may have potential use for treatment of cancer.

  5. DNA damage in the gill cells of the marine scallop Mizuhopecten yessoensis during anoxic stress and aerobic recovery

    Science.gov (United States)

    Slobodskova, Valentina V.; Zhukovskaya, Avianna F.; Chelomin, Victor P.

    2012-06-01

    Anoxia-induced DNA damage in the gill cells of the marine scallop Mizuhopecten yessoensis was assessed with the alkaline comet assay (single-cell gel electrophoresis). The alkaline comet assay method for detecting DNA strand breaks and alkali labile sites in individual cells. DNA damage was determened in the scallops ( M. yessoensis) gill cells. The scallops were exposed to air for 8 h showing a clear increase in the levels of DNA damage. After the air exposure, M. yessoensis were re-submersed for a period of 12 h, leading values to return to a pre-aerial exposure level. Control animals were kept immersed during the whole period. The resulting data demonstrate that natural influences, such as oxygen depletion (anoxia) in seawater, can be responsible for the induction of DNA damage. If the scallops were re-immersed in oxic conditions, the anoxically induced breaks were repaired. The main mechanisms influencing the integrity of the DNA structure are discussed in this paper.

  6. Community structure and function of planktonic Crenarchaeota: changes with depth in the South China Sea.

    Science.gov (United States)

    Hu, Anyi; Jiao, Nianzhi; Zhang, Chuanlun L

    2011-10-01

    Marine Crenarchaeota represent a widespread and abundant microbial group in marine ecosystems. Here, we investigated the abundance, diversity, and distribution of planktonic Crenarchaeota in the epi-, meso-, and bathypelagic zones at three stations in the South China Sea (SCS) by analysis of crenarchaeal 16S rRNA gene, ammonia monooxygenase gene amoA involved in ammonia oxidation, and biotin carboxylase gene accA putatively involved in archaeal CO(2) fixation. Quantitative PCR analyses indicated that crenarchaeal amoA and accA gene abundances varied similarly with archaeal and crenarchaeal 16S rRNA gene abundances at all stations, except that crenarchaeal accA genes were almost absent in the epipelagic zone. Ratios of the crenarchaeal amoA gene to 16S rRNA gene abundances decreased ~2.6 times from the epi- to bathypelagic zones, whereas the ratios of crenarchaeal accA gene to marine group I crenarchaeal 16S rRNA gene or to crenarchaeal amoA gene abundances increased with depth, suggesting that the metabolism of Crenarchaeota may change from the epi- to meso- or bathypelagic zones. Denaturing gradient gel electrophoresis profiling of the 16S rRNA genes revealed depth partitioning in archaeal community structures. Clone libraries of crenarchaeal amoA and accA genes showed two clusters: the "shallow" cluster was exclusively derived from epipelagic water and the "deep" cluster was from meso- and/or bathypelagic waters, suggesting that niche partitioning may take place between the shallow and deep marine Crenarchaeota. Overall, our results show strong depth partitioning of crenarchaeal populations in the SCS and suggest a shift in their community structure and ecological function with increasing depth.

  7. Progressive changes in the Western English Channel foster a reorganization in the plankton food web

    DEFF Research Database (Denmark)

    Reygondeau, Gabriel; Molinero, J.C.; Coombs, S.

    2015-01-01

    . (2013) drive a profound restructuration of the plankton community modifying the phenology and the dominance of key planktonic groups including fish larvae. Consequently, the slow but deep modifications detected in the plankton community highlight a climate driven ecosystem shift in the Western English...

  8. Toxicity of benz(a)anthracene and fluoranthene to marine phytoplankton in culture: Does cell size really matter?

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Hiba Ben [UMR 5119 ECOSYM, CNRS-IRD-Universite Montpellier II-Ifremer-Universite Montpellier I, SMEL 2 rue des Chantiers, F-34200 Sete (France); Laboratoire de Cytologie Vegetale et Phytoplanctonologie, Faculte des Sciences de Bizerte, Universite de Carthage, Zarzouna 7021, Bizerte (Tunisia); Leboulanger, Christophe, E-mail: christophe.leboulanger@ird.fr [UMR 5119 ECOSYM, CNRS-IRD-Universite Montpellier II-Ifremer-Universite Montpellier I, SMEL 2 rue des Chantiers, F-34200 Sete (France); Le Floc' h, Emilie [UMS MEDIMEER, CNRS-Universite Montpellier II, SMEL 2 rue des Chantiers F-34200 Sete (France); Hadj Mabrouk, Hassine; Sakka Hlaili, Asma [Laboratoire de Cytologie Vegetale et Phytoplanctonologie, Faculte des Sciences de Bizerte, Universite de Carthage, Zarzouna 7021, Bizerte (Tunisia)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Polycyclic aromatic hydrocarbons (PAHs) in the marine environment are a hazardous chemical legacy. Black-Right-Pointing-Pointer Benz(a)anthracene and fluoranthene are toxic to phytoplankton photosynthesis and growth in culture. Black-Right-Pointing-Pointer Acute (photosynthesis) and chronic (population growth) effects have different thresholds. Black-Right-Pointing-Pointer Toxicity depends on both the species selected as a model and the compound considered. Black-Right-Pointing-Pointer Further study of the size/sensitivity relationship is required to draw more general conclusions. - Abstract: The toxicity of benz(a)anthracene and fluoranthene (polycyclic aromatic hydrocarbons, PAHs) was evaluated on seven species of marine algae in culture belonging to pico-, nano-, and microphytoplankton, exposed to increasing concentrations of up to 2 mg L{sup -1}. The short-term (24 h) toxicity was assessed using chlorophyll a fluorescence transients, linked to photosynthetic parameters. The maximum quantum yield Fv/Fm was lower at the highest concentrations tested and the toxicity thresholds were species-dependent. For acute effects, fluoranthene was more toxic than benz(a)anthracene, with LOECs of 50.6 and 186 {mu}g L{sup -1}, respectively. After 72 h exposure, there was a dose-dependent decrease in cell density, fluoranthene being more toxic than benz(a)anthracene. The population endpoint at 72 h was affected to a greater extent than the photosynthetic endpoint at 24 h. EC50 was evaluated using the Hill model, and species sensitivity was negatively correlated to cell biovolume. The largest species tested, the dinoflagellate Alexandrium catenella, was almost insensitive to either PAH. The population endpoint EC50s for fluoranthene varied from 54 {mu}g L{sup -1} for the picophytoplankton Picochlorum sp. to 418 {mu}g L{sup -1} for the larger diatom Chaetoceros muelleri. The size/sensitivity relationship is proposed as a useful model when

  9. Holocene planktonic foraminifera from the shelf sediments off Kerala Coast

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.

    Twenty-two planktonic foraminifers were identified from a few samples collected aboard INS KISTNA at 9~'N and 76~'E, at 89 metres depth from the bottom sediment-water interface. A few of the more characteristic features of each are described. Some...

  10. Planktonic Biodiversity of Bhoj Wetland, Bhopal, India | Neelam ...

    African Journals Online (AJOL)

    Biodiversity found on Earth today consists of many millions of distinct biological species, which is the product of nearly 3.5 billion years of evolution. This article deals with planktonic distribution of Bhoj Wetland, Bhopal, India . Bhoj Wetland comprises of two lakes i.e. Upper and Lower lakes of Bhopal. The Upper lake is ...

  11. Plankton dynamics associated with the convergence zone of a shear ...

    African Journals Online (AJOL)

    Multiple linear regression was used to determine the relationships between water quality variables and plankton abundances. Community analysis was also run on the data in order to determine community dynamics associated with frontal system convergence and downwelling. Key words: ichthyoplankton, phytoplankton, ...

  12. The effect of bacteriocin-producing Lactobacillus plantarum strains on the intracellular pH of sessile and planktonic Listeria monocytongenes single cells

    DEFF Research Database (Denmark)

    Nielsen, Dennis Sandris; Cho, Gyu-Sung; Hanak, Alexander

    2010-01-01

    and/or bacteriocin-producing LAB as “natural” food preservatives in foods such as cheese, meat and ready-to-eat products. Some strains of Lactobacillus plantarum produce bacteriocins termed plantaricins. Using a single-cell based approach, the effect on the intracellular pH as a measure......A wide range of lactic acid bacteria (LAB) produce bacteriocins mainly active against other closely related LAB, but some bacteriocins are also active against the food-borne pathogen Listeria monocytogenes. With the aim of increasing food safety it has thus been considered to utilise bacteriocins...

  13. Microbubble-Mediated Ultrasound Enhances the Lethal Effect of Gentamicin on Planktonic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Han-Xiao Zhu

    2014-01-01

    Full Text Available Previous research has found that low-intensity ultrasound enhanced the lethal effect of gentamicin on planktonic E. coli. We aimed to further investigate whether microbubble-mediated low-intensity ultrasound could further enhance the antimicrobial efficacy of gentamicin. The planktonic E. coli (ATCC 25922 was distributed to four different interventions: control (GCON, microbubble only (GMB, ultrasound only (GUS, and microbubble-mediated ultrasound (GMUS. Ultrasound was applied with 100 mW/cm2 (average intensity and 46.5 KHz, which presented no bactericidal activity. After 12 h, plate counting was used to estimate the number of bacteria, and bacterial micromorphology was observed with transmission electron microscope. The results showed that the viable counts of E. coli in GMUS were decreased by 1.01 to 1.42 log10 CFU/mL compared with GUS (P<0.01. The minimal inhibitory concentration (MIC of gentamicin against E. coli was 1 μg/mL in the GMUS and GUS groups, lower than that in the GCON and GMB groups (2 μg/mL. Transmission electron microscopy (TEM images exhibited more destruction and higher thickness of bacterial cell membranes in the GMUS than those in other groups. The reason might be the increased permeability of cell membranes for gentamicin caused by acoustic cavitation.

  14. Growth-inhibitory effects of a mineralized extract from the red marine algae, Lithothamnion calcareum, on Ca2+-sensitive and Ca2+-resistant human colon carcinoma cells

    OpenAIRE

    Nadeem Aslam, Muhammad; Bhagavathula, Narasimharao; Paruchuri, Tejaswi; Hu, Xin; Chakrabarty, Subhas; Varani, James

    2009-01-01

    Proliferation and differentiation were assessed in a series of human colon carcinoma cell lines in response to a mineral-rich extract derived from the red marine algae, Lithothamnion calcareum. The extract contains 12% Ca2+, 1% Mg2+, and detectable amounts of 72 trace elements, but essentially no organic material. The red algae extract was as effective as inorganic Ca2+ alone in suppressing growth and inducing differentiation of colon carcinoma cells that are responsive to a physiological lev...

  15. Lunar periodicity in the shell flux of planktonic foraminifera in the Gulf of Mexico

    Science.gov (United States)

    Jonkers, Lukas; Reynolds, Caitlin E.; Richey, Julie N.; Hall, Ian R.

    2015-01-01

    Synchronised reproduction offers clear benefits to planktonic foraminifera – an important group of marine calcifiers – as it increases the chances of successful gamete fusion. Such synchrony requires tuning to an internal or external clock. Evidence exists for lunar reproductive cycles in some species, but its recognition in shell flux time series has proven difficult, raising questions about reproductive strategies. Using spectral analysis of a 4-year time series (mostly at weekly resolution) from the northern Gulf of Mexico, we show that the shell flux ofGloborotalia menardii, Globigerinella siphonifera, Orbulina universa, Globigerinoides sacculifer, Globigerinoides ruber (both pink and white varieties), Pulleniatina obliquiloculata, Neogloboquadrina dutertrei, Globigerinella calida and Globigerinita glutinata is characterised by lunar periodicity. However, the lunar rhythm is not present in all size fractions of each species and tends to be more dominant in the flux of larger shells, consistent with reproduction being more prevalent in larger specimens. Lunar periodicity is superimposed on longer term/seasonal changes in the shell fluxes, but accounts for a significant part of the variance in the fluxes. The amplitude of the lunar cycle increases roughly proportional with the magnitude of the flux, demonstrating that most of the population is indeed affected by lunar-phased synchronisation. In most species peak fluxes occur predominantly around, or just after, full moon. Only G. siphonifera and G. calida show a contrasting pattern with peaks concentrated around new moon. Although the exact cause of the synchronisation remains elusive, our data considerably increase the number of species for which lunar synchronised reproduction is reported and suggest that such reproductive behaviour is common in many species of planktonic foraminifera.

  16. Concentrations of plutonium and americium in plankton from the western Mediterranean Sea.

    Science.gov (United States)

    Sanchez-Cabeza, Joan-Albert; Merino, Juan; Masqué, Pere; Mitchell, Peter I; Vintró, L León; Schell, William R; Cross, Lluïsa; Calbet, Albert

    2003-07-20

    Understanding the transfer of radionuclides through the food chain leading to man and in particular, the uptake of transuranic nuclides by plankton, is basic to assess the potential radiological risk of the consumption of marine products by man. The main sources of transuranic elements in the Mediterranean Sea in the past were global fallout and the Palomares accident, although at present smaller amounts are released from nuclear establishments in the northwestern region. Plankton from the western Mediterranean Sea was collected and analyzed for plutonium and americium in order to study their biological uptake. The microplankton fractions accounted for approximately 50% of the total plutonium contents in particulate form. At Garrucha (Palomares area), microplankton showed much higher 239,240 Pu activity, indicating the contamination with plutonium from the bottom sediments. Concentration factors were within the range of the values recommended by the International Atomic Energy Agency. Continental shelf mesoplankton was observed to efficiently concentrate transuranics. In open seawaters, concentrations were much lower. We speculate that sediments might play a role in the transfer of transuranics to mesoplankton in coastal waters, although we cannot discard that the difference in species composition may also play a role. In Palomares, both 239,240 Pu and 241Am showed activities five times higher than the mean values observed in continental shelf mesoplankton. As the plutonium isotopic ratios in the contaminated sample were similar to those found in material related to the accident, the contamination was attributed to bomb debris from the Palomares accident. Concentration factors in mesoplankton were also in relatively good agreement with the ranges recommended by IAEA. In the Palomares station the highest concentration factor was observed in the sample that showed predominance of the dynoflagellate Ceratium spp. Mean values of the enrichment factors showed, on

  17. Spatiotemporal Distribution and Assemblages of Planktonic Fungi in the Coastal Waters of the Bohai Sea

    Directory of Open Access Journals (Sweden)

    Yaqiong Wang

    2018-03-01

    Full Text Available Fungi play a critical role in the nutrient cycling and ecological function in terrestrial and freshwater ecosystems. Yet, many ecological aspects of their counterparts in coastal ecosystems remain largely elusive. Using high-throughput sequencing, quantitative PCR, and environmental data analyses, we studied the spatiotemporal changes in the abundance and diversity of planktonic fungi and their abiotic and biotic interactions in the coastal waters of three transects along the Bohai Sea. A total of 4362 ITS OTUs were identified and more than 60% of which were unclassified Fungi. Of the classified OTUs three major fungal phyla, Ascomycota, Basidiomycota, and Chytridiomycota were predominant with episodic low dominance phyla Cryptomycota and Mucoromycota (Mortierellales. The estimated average Fungi-specific 18S rRNA gene qPCR abundances varied within 4.28 × 106 and 1.13 × 107copies/L with significantly (P < 0.05 different abundances among the transects suggesting potential influence of the different riverine inputs. The spatiotemporal changes in the OTU abundance of Ascomycota and Basidiomycota phyla coincided significantly (P < 0.05 with nutrients traced to riverine inputs and phytoplankton detritus. Among the eight major fungal orders, the abundance of Hypocreales varied significantly (P < 0.01 across months while Capnodiales, Pleosporales, Eurotiales, and Sporidiobolales varied significantly (P < 0.05 across transects. In addition, our results likely suggest a tripartite interaction model for the association within members of Cryptomycota (hyperparasites, Chytridiomycota (both parasites and saprotrophs, and phytoplankton in the coastal waters. The fungal network featured several hubs and keystone OTUs besides the display of cooperative and competitive relationship within OTUs. These results support the notion that planktonic fungi, hitherto mostly undescribed, play diverse ecological roles in marine habitats and further outline niche processes

  18. Limnology and plankton diversity of salt lakes from Transylvanian Basin (Romania: A review

    Directory of Open Access Journals (Sweden)

    Mircea Alexe

    2017-09-01

    Full Text Available In the present work, we review the current knowledge on genesis, limnology and biodiversity of salt lakes distributed around the inner contour of Eastern Carpathian arc (Transylvanian Basin, Central Romania. Transylvanian salt lakes formed on ancient halite (NaCl deposits following natural processes or quarrying activities.  Most of these lakes are located in eastern (Sovata area, southern (Ocna Sibiului, and western (Turda-Cojocna parts of the Transylvanian Basin, have small surfaces (0.1-4 ha, variable depths (2-100 m, are hypersaline (>10%, w/v, total salts, mainly NaCl and permanently stratified. As consequence of steady salinity/density gradient, heat entrapment below surface layer (i.e., heliothermy develops in several Transylvanian lakes. The physical and chemical water stratification is mirrored in the partition of plankton diversity. Lakes with less saline (2-10% salinity water layers appear to harbor halotolerant representatives of phyto- (e.g., marine native Picochlorum spp. and Synechococcus spp., zoo- (e.g., Moina salina, and bacterioplankton (e.g., Actinobacteria, Verrucomicobia, whereas halophilic plankton communities (e.g., green algae Dunaliella sp., brine shrimp Artemia sp., and members of Halobacteria class dominate in the oxic surface of hypersaline (>10% salinity lakes. Molecular approaches (e.g., PCR-DGGE, 16S rRNA gene-based clone libraries, and DNA metabarcoding showed that the O2-depleted bottom brines of deep meromictic Transylvanian lakes are inhabited by known extremely halophilic anaerobes (e.g. sulfate-reducing Delta-Proteobacteria, fermenting Clostridia, methanogenic and polymer-degrading archaea in addition to representatives of uncultured/unclassified prokaryotic lineages. Overall, the plankton communities thriving in saline Transylvanian lakes seem to drive full biogeochemical cycling of main elements. However, the trophic interactions (i.e., food web structure and energy flow as well as impact of human

  19. Single-Cell Genome and Group-Specific dsrAB Sequencing Implicate Marine Members of the Class Dehalococcoidia (Phylum Chloroflexi) in Sulfur Cycling

    DEFF Research Database (Denmark)

    Wasmund, Kenneth; Cooper, Myriel; Schreiber, Lars

    2016-01-01

    The marine subsurface sediment biosphere is widely inhabited by bacteria affiliated with the class Dehalococcoidia (DEH), phylum Chloroflexi, and yet little is known regarding their metabolisms. In this report, genomic content from a single DEH cell (DEH-C11) with a 16S rRNA gene that was affilia......The marine subsurface sediment biosphere is widely inhabited by bacteria affiliated with the class Dehalococcoidia (DEH), phylum Chloroflexi, and yet little is known regarding their metabolisms. In this report, genomic content from a single DEH cell (DEH-C11) with a 16S rRNA gene...... that was affiliated with a diverse cluster of 16S rRNA gene sequences prevalent in marine sediments was obtained from sediments of Aarhus Bay, Denmark. The distinctive gene content of this cell suggests metabolic characteristics that differ from those of known DEH and Chloroflexi. The presence of genes encoding...... dissimilatory sulfite reductase (Dsr) suggests that DEH could respire oxidized sulfur compounds, although Chloroflexi have never been implicated in this mode of sulfur cycling. Using long-range PCR assays targeting DEH dsr loci, dsrAB genes were amplified and sequenced from various marine sediments. Many...

  20. Antimicrobial activity of synthetic cationic peptides and lipopeptides derived from human lactoferricin against Pseudomonas aeruginosa planktonic cultures and biofilms.

    Science.gov (United States)

    Sánchez-Gómez, Susana; Ferrer-Espada, Raquel; Stewart, Philip S; Pitts, Betsey; Lohner, Karl; Martínez de Tejada, Guillermo

    2015-07-07

    Infections by Pseudomonas aeruginosa constitute a serious health threat because this pathogen -particularly when it forms biofilms - can acquire resistance to the majority of conventional antibiotics. This study evaluated the antimicrobial activity of synthetic peptides based on LF11, an 11-mer peptide derived from human lactoferricin against P. aeruginosa planktonic and biofilm-forming cells. We included in this analysis selected N-acylated derivatives of the peptides to analyze the effect of acylation in antimicrobial activity. To assess the efficacy of compounds against planktonic bacteria, microdilution assays to determine the minimal inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time-kill studies were conducted. The anti-biofilm activity of the agents was assessed on biofilms grown under static (on microplates) and dynamic (in a CDC-reactor) flow regimes. The antimicrobial activity of lipopeptides differed from that of non-acylated peptides in their killing mechanisms on planktonic and biofilm-forming cells. Thus, acylation enhanced the bactericidal activity of the parental peptides and resulted in lipopeptides that were uniformly bactericidal at their MIC. In contrast, acylation of the most potent anti-biofilm peptides resulted in compounds with lower anti-biofilm activity. Both peptides and lipopeptides displayed very rapid killing kinetics and all of them required less than 21 min to reduce 1,000 times the viability of planktonic cells when tested at 2 times their MBC. The peptides, LF11-215 (FWRIRIRR) and LF11-227 (FWRRFWRR), displayed the most potent anti-biofilm activity causing a 10,000 fold reduction in cell viability after 1 h of treatment at 10 times their MIC. At that concentration, these two compounds exhibited low citotoxicity on human cells. In addition to its bactericidal activity, LF11-227 removed more that 50 % of the biofilm mass in independent assays. Peptide LF11-215 and two of the shortest and least

  1. Cellular metabolic responses of the marine diatom Pseudo-nitzschia multiseries associated with cell wall formation.

    Science.gov (United States)

    Xu, Bin; Luo, Chun-Shan; Liang, Jun-Rong; Chen, Dan-Dan; Zhuo, Wen-Hao; Gao, Ya-Hui; Chen, Chang-Ping; Song, Si-Si

    2014-08-01

    In this study a comparative proteomics approach involving a mass spectrometric analysis of synchronized cells was employed to investigate the cellular-level metabolic mechanisms associated with siliceous cell wall formation in the pennate diatom Pseudo-nitzschia multiseries. Cultures of P. multiseries were synchronized using the silicate limitation method. Approximately 75% of cells were arrested at the G2+M phase of the cell cycle after 48 h of silicate starvation. The majority of cells progressed to new valve synthesis within 5h of silicon replenishment. We compared the proteome of P. multiseries at 0, 4, 5, and 6h of synchronization progress upon silicon replenishment using two-dimensional gel electrophoresis. Forty-eight differentially expressed protein spots were identified in abundance (greater than two-fold change; Pwall formation. The proteomic profile analysis suggests that P. multiseries most likely employs multiple synergistic biochemical mechanisms for cell wall formation. These results improve our understanding of the molecular mechanisms underlying silicon cell wall formation and enhance our understanding of the important role played by diatoms in silicon biogeochemical cycling. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A simple filtration method to remove plankton-associated Vibrio cholerae in raw water supplies in developing countries.

    Science.gov (United States)

    Huq, A; Xu, B; Chowdhury, M A; Islam, M S; Montilla, R; Colwell, R R

    1996-07-01

    Plankton to which cells of Vibrio cholerae O1 and/or O139 were attached was introduced into 0.5% Instant Ocean microcosms maintained at 25 degrees C. The bulk of the plankton and associated particulates was removed with a filter constructed from either nylon net and one of several different types of sari material, the latter being very inexpensive and readily available in villages in Bangladesh, where V. cholerae is endemic. V. cholerae was enumerated before and after filtration to evaluate the efficiency of the filtration procedure. The results obtained indicate that 99% of V. cholerae, i.e., those cells attached to plankton, were removed from the water samples. Epidemic strains of V. cholerae O1 and O139 from various geographical sources, including Bangladesh, Brazil, India, and Mexico, were included in the experiments. Removal of vibrios from water by this simple filtration method was found to yield consistent results with all strains examined in this study. Thus, it is concluded that a simple filtration procedure involving the use of domestic sari material can reduce the number of cholera vibrios attached to plankton in raw water from ponds and rivers commonly used for drinking. Since untreated water from such sources serves as drinking water for millions of people living in developing countries (e.g., Bangladesh), filtration should prove effective at reducing the incidence and severity of outbreaks, especially in places that lack fuel wood for boiling water and/or municipal water treatment plants. The results of this study provide the basis for determining such reductions, which are to be carried out in the near future.

  3. Efficiency of phenol biodegradation by planktonic Pseudomonas pseudoalcaligenes (a constructed wetland isolate) vs. root and gravel biofilm.

    Science.gov (United States)

    Kurzbaum, Eyal; Kirzhner, Felix; Sela, Shlomo; Zimmels, Yoram; Armon, Robert

    2010-09-01

    In the last two decades, constructed wetland systems gained increasing interest in wastewater treatment and as such have been intensively studied around the world. While most of the studies showed excellent removal of various pollutants, the exact contribution, in kinetic terms, of its particular components (such as: root, gravel and water) combined with bacteria is almost nonexistent. In the present study, a phenol degrader bacterium identified as Pseudomonas pseudoalcaligenes was isolated from a constructed wetland, and used in an experimental set-up containing: plants and gravel. Phenol removal rate by planktonic and biofilm bacteria (on sterile Zea mays roots and gravel surfaces) was studied. Specific phenol removal rates revealed significant advantage of planktonic cells (1.04 × 10(-9) mg phenol/CFU/h) compared to root and gravel biofilms: 4.59 × 10(-11)-2.04 × 10(-10) and 8.04 × 10(-11)-4.39 × 10(-10) (mg phenol/CFU/h), respectively. In batch cultures, phenol biodegradation kinetic parameters were determined by biomass growth rates and phenol removal as a function of time. Based on Haldane equation, kinetic constants such as μ(max) = 1.15/h, K(s) = 35.4 mg/L and K(i) = 198.6 mg/L fit well phenol removal by P. pseudoalcaligenes. Although P. pseudoalcaligenes planktonic cells showed the highest phenol removal rate, in constructed wetland systems and especially in those with sub-surface flow, it is expected that surface associated microorganisms (biofilms) will provide a much higher contribution in phenol and other organics removal, due to greater bacterial biomass. Factors affecting the performance of planktonic vs. biofilm bacteria in sub-surface flow constructed wetlands are further discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Plankton food-webs: to what extent can they be simplified?

    Directory of Open Access Journals (Sweden)

    Domenico D'Alelio

    2016-05-01

    Full Text Available Plankton is a hugely diverse community including both unicellular and multicellular organisms, whose individual dimensions span over seven orders of magnitude. Plankton is a fundamental part of biogeochemical cycles and food-webs in aquatic systems. While knowledge has progressively accumulated at the level of single species and single trophic processes, the overwhelming biological diversity of plankton interactions is insufficiently known and a coherent and unifying trophic framework is virtually lacking. We performed an extensive review of the plankton literature to provide a compilation of data suitable for implementing food-web models including plankton trophic processes at high taxonomic resolution. We identified the components of the plankton community at the Long Term Ecological Research Station MareChiara in the Gulf of Naples. These components represented the sixty-three nodes of a plankton food-web. To each node we attributed biomass and vital rates, i.e. production, consumption, assimilation rates and ratio between autotrophy and heterotrophy in mixotrophic protists. Biomasses and rates values were defined for two opposite system’s conditions; relatively eutrophic and oligotrophic states. We finally identified 817 possible trophic links within the web and provided each of them with a relative weight, in order to define a diet-matrix, valid for both trophic states, which included all consumers, fromn anoflagellates to carnivorous plankton. Vital rates for plankton resulted, as expected, very wide; this strongly contrasts with the narrow ranges considered in plankton system models implemented so far. Moreover, the amount and variety of trophic links highlighted by our review is largely excluded by state-of-the-art biogeochemical and food-web models for aquatic systems. Plankton models could potentially benefit from the integration of the trophic diversity outlined in this paper: first, by using more realistic rates; second, by better

  5. Potential role of marine algae extract on 3T3-L1 cell proliferation and differentiation: an in vitro approach

    Directory of Open Access Journals (Sweden)

    Soundharrajan Ilavenil

    Full Text Available BACKGROUND: From ancient times, marine algae have emerged as alternative medicine and foods, contains the rich source of natural products like proteins, vitamins, and secondary metabolites, especially Chlorella vulgaris (C. vulgaris contains numerous anti-inflammatory, antioxidants and wound healing substances. Type 2 diabetes mellitus is closely associated with adipogenesis and their factors. Hence, we aimed to investigate the chemical constituents and adipo-genic modulatory properties of C. vulgaris in 3T3-L1 pre-adipocytes. RESULTS: We analysed chemical constituents in ethanolic extract of C. vulgaris (EECV by LC-MS. Results revealed that the EECV contains few triterpenoids and saponin compounds. Further, the effect of EECV on lipid accumulation along with genes and proteins expressions which are associated with adipogenesis and lipogenesis were evaluated using oil red O staining, qPCR and western blot techniques. The data indicated that that EECV treatment increased differentiation and lipid accumulation in 3T3-L1 cells, which indicates positive regulation of adipogenic and lipogenic activity. These increases were associated with up-regulation of PPAR-γ2, C/EBP-α, adiponectin, FAS, and leptin mRNA and protein expressions. Also, EECV treatments increased the concentration of glycerol releases as compared with control cells. Troglitazone is a PPAR-γ agonist that stimulates the PPAR-y2, adiponectin, and GLUT-4 expressions. Similarly, EECV treatments significantly upregulated PPAR-γ2, adiponectin, GLUT-4 expressions and glucose utilization. Further, EECV treatment decreased AMPK-α expression as compared with control and metformin treated cells. CONCLUSION: The present research findings confirmed that the EECV effectively modulates the lipid accumulation and differentiation in 3T3-L1 cells through AMPK-α mediated signalling pathway.

  6. Marine-Derived 2-Aminoimidazolone Alkaloids. Leucettamine B-Related Polyandrocarpamines Inhibit Mammalian and Protozoan DYRK & CLK Kinases

    Directory of Open Access Journals (Sweden)

    Nadège Loaëc

    2017-10-01

    Full Text Available A large diversity of 2-aminoimidazolone alkaloids is produced by various marine invertebrates, especially by the marine Calcareous sponges Leucetta and Clathrina. The phylogeny of these sponges and the wide scope of 2-aminoimidazolone alkaloids they produce are reviewed in this article. The origin (invertebrate cells, associated microorganisms, or filtered plankton, physiological functions, and natural molecular targets of these alkaloids are largely unknown. Following the identification of leucettamine B as an inhibitor of selected protein kinases, we synthesized a family of analogues, collectively named leucettines, as potent inhibitors of DYRKs (dual-specificity, tyrosine phosphorylation regulated kinases and CLKs (cdc2-like kinases and potential pharmacological leads for the treatment of several diseases, including Alzheimer’s disease and Down syndrome. We assembled a small library of marine sponge- and ascidian-derived 2-aminoimidazolone alkaloids, along with several synthetic analogues, and tested them on a panel of mammalian and protozoan kinases. Polyandrocarpamines A and B were found to be potent and selective inhibitors of DYRKs and CLKs. They inhibited cyclin D1 phosphorylation on a DYRK1A phosphosite in cultured cells. 2-Aminoimidazolones thus represent a promising chemical scaffold for the design of potential therapeutic drug candidates acting as specific inhibitors of disease-relevant kinases, and possibly other disease-relevant targets.

  7. Time-Resolved Analysis of Cytosolic and Surface-Associated Proteins of Staphylococcus aureus HG001 under Planktonic and Biofilm Conditions.

    Science.gov (United States)

    Moche, Martin; Schlüter, Rabea; Bernhardt, Jörg; Plate, Kristina; Riedel, Katharina; Hecker, Michael; Becher, Dörte

    2015-09-04

    Staphylococcal biofilms are associated with persistent infections due to their capacity to protect bacteria against the host's immune system and antibiotics. Cell-surface-associated proteins are of great importance during biofilm formation. In the present study, an optimized biotinylation approach for quantitative GeLC-MS-based analysis of the staphylococcal cell-surface proteome was applied and the cytoplasmic protein fraction was analyzed to elucidate proteomic differences between colony biofilms and planktonic cells. The experimental setup enabled a time-resolved monitoring of the proteome under both culture conditions and the comparison of biofilm cells to planktonic cells at several time points. This allowed discrimination of differences attributed to delayed growth phases from responses provoked by biofilm conditions. Biofilm cells expressed CcpA-dependent catabolic proteins earlier than planktonic cells and strongly accumulated proteins that belong to the SigB stress regulon. The amount of the cell-surface protein and virulence gene regulator Rot decreased within biofilms and MgrA-dependent regulations appeared more pronounced. Biofilm cells simultaneously up-regulated activators (e.g., SarZ) as well as repressors (e.g., SarX) of RNAIII. A decreased amount of high-affinity iron uptake systems and an increased amount of the iron-storage protein FtnA possibly indicated a lower demand of iron in biofilms.

  8. Incorporation of inorganic mercury (Hg²⁺) in pelagic food webs of ultraoligotrophic and oligotrophic lakes: the role of different plankton size fractions and species assemblages.

    Science.gov (United States)

    Soto Cárdenas, Carolina; Diéguez, Maria C; Ribeiro Guevara, Sergio; Marvin-DiPasquale, Mark; Queimaliños, Claudia P

    2014-10-01

    In lake food webs, pelagic basal organisms such as bacteria and phytoplankton incorporate mercury (Hg(2+)) from the dissolved phase and pass the adsorbed and internalized Hg to higher trophic levels. This experimental investigation addresses the incorporation of dissolved Hg(2+) by four plankton fractions (picoplankton: 0.2-2.7 μm; pico+nanoplankton: 0.2-20 μm; microplankton: 20-50 μm; and mesoplankton: 50-200 μm) obtained from four Andean Patagonian lakes, using the radioisotope (197)Hg(2+). Species composition and abundance were determined in each plankton fraction. In addition, morphometric parameters such as surface and biovolume were calculated using standard geometric models. The incorporation of Hg(2+) in each plankton fraction was analyzed through three concentration factors: BCF (bioconcentration factor) as a function of cell or individual abundance, SCF (surface concentration factor) and VCF (volume concentration factor) as functions of individual exposed surface and biovolume, respectively. Overall, this investigation showed that through adsorption and internalization, pico+nanoplankton play a central role leading the incorporation of Hg(2+) in pelagic food webs of Andean lakes. Larger planktonic organisms included in the micro- and mesoplankton fractions incorporate Hg(2+) by surface adsorption, although at a lesser extent. Mixotrophic bacterivorous organisms dominate the different plankton fractions of the lakes connecting trophic levels through microbial loops (e.g., bacteria-nanoflagellates-crustaceans; bacteria-ciliates-crustaceans; endosymbiotic algae-ciliates). These bacterivorous organisms, which incorporate Hg from the dissolved phase and through their prey, appear to explain the high incorporation of Hg(2+) observed in all the plankton fractions. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effect of enterocin AS-48 in combination with biocides on planktonic and sessile Listeria monocytogenes.

    Science.gov (United States)

    Gómez, Natacha Caballero; Abriouel, Hikmate; Grande, M A José; Pulido, Rubén Pérez; Gálvez, Antonio

    2012-05-01

    Enterocin AS-48 was tested on a cocktail of Listeria monocytogenes strains in planktonic and sessile states, singly or in combination with biocides benzalkonium chloride, cetrimide, hexadecylpyridinium chloride, didecyldimethylammonium bromide, triclosan, poly-(hexamethylen guanidinium) hydrochloride, chlorhexidine, hexachlorophene, and the commercial sanitizers P3 oxonia and P3 topax 66. Combinations of sub-inhibitory bacteriocin concentrations and biocide concentrations 4 to 10-fold lower than their minimum inhibitory concentrations (MIC) completely inhibited growth of the planktonic listeriae. Inactivation of Listeria in biofilms formed on polystyrene microtiter plates required concentrations of enterocin AS-48 greater than 50 μg/ml, and biocide concentrations ten to 100-fold higher. In combination with enterocin AS-48 (25 or 50 μg/ml), microbial inactivation increased remarkably for all biocides except P3 oxonia and P3 topax 66 solutions. Polystyrene microtiter plates conditioned with enterocin solutions (0.5-25 μg/ml) decreased the adherence and biofilm formation of the L. monocytogenes cell cocktail, avoiding biofilm formation for at least 24 h at a bacteriocin concentration of 25 μg/ml. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Italy. Report 2 [Marine Radioecology. Current Research and Future Scope

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, B. [Istituto di Zoologia, Universita-Parma (Italy)

    1967-03-15

    Present research programme (long-term): Radionuclides in plankton an marine sediments. Ecology of Anvantheria as Sr ''scanengers''. General distribution of radionuclides in marine environment Systematics and ecology of Avantharia, studied in different seas as a biological problem. Content of {sup 90}Sr in plankton in relation to the presence or absence of Avantharia Radiochemistry of sea sediments (littoral); sedimentological and petrographical researches for stratigraphic purposes. Fall-out and wastes radionuclides absorbed by sediments. Correlation between Acantharia and concentration factor for {sup 90}Sr. Stratigraphy of fall-out radionuclides in sea sediments. Biological researches on Acantharia rearing for turnover studies in vitro. Stratigraphical researches on recent coastal sediments for geochronological problems by means of fall-out radionuclides.

  11. Italy. Report 2 [Marine Radioecology. Current Research and Future Scope

    International Nuclear Information System (INIS)

    Schreiber, B.

    1967-01-01

    Present research programme (long-term): Radionuclides in plankton an marine sediments. Ecology of Anvantheria as Sr ''scanengers''. General distribution of radionuclides in marine environment Systematics and ecology of Avantharia, studied in different seas as a biological problem. Content of 90 Sr in plankton in relation to the presence or absence of Avantharia Radiochemistry of sea sediments (littoral); sedimentological and petrographical researches for stratigraphic purposes. Fall-out and wastes radionuclides absorbed by sediments. Correlation between Acantharia and concentration factor for 90 Sr. Stratigraphy of fall-out radionuclides in sea sediments. Biological researches on Acantharia rearing for turnover studies in vitro. Stratigraphical researches on recent coastal sediments for geochronological problems by means of fall-out radionuclides

  12. Marine ecology

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Studies on marine ecology included marine pollution; distribution patterns of Pu and Am in the marine waters, sediments, and organisms of Bikini Atoll and the influence of physical, chemical, and biological factors on their movements through marine biogeochemical systems; transfer and dispersion of organic pollutants from an oil refinery through coastal waters; transfer of particulate pollutants, including sediments dispersed during construction of offshore power plants; and raft culture of the mangrove oysters

  13. The role of marine zooplankton in the vertical oceanic transport of alpha-emitting nuclides

    International Nuclear Information System (INIS)

    Cherry, R.D.; Heyraud, M.; Higgo, J.J.W.; Fowler, S.W.; LaRosa, J.

    1976-01-01

    This project aims at studying, in quantitative detail, the role played by marine plankton in the vertical oceanic transport of alpha-emitting nuclides. The common Mediterranean euphausiid, Meganyotiphanes norvegica, for which the necessary quantitative biological data are available as a result of previous work in the Monaco Laboratory, has been selected as the typical macrozooplanktonic species which is the focus of this work

  14. Validation and application of fossil DNA as a recorder of past marine ecosystems and environmental conditions

    NARCIS (Netherlands)

    Boere, A.C.

    2010-01-01

    The majority of planktonic species, including those that are informative in the reconstructions of past marine environmental conditions, do not produce diagnostic features (e.g., cysts, spores, or lipid biomarkers) and would therefore escape identification from the fossil record using traditional

  15. Genes and Structural Proteins of the Phage Syn5 of the Marine Cyanobacteria Synechococcus

    Science.gov (United States)

    2005-09-01

    Morgan et al., 2002; van de Putte et al., 1980). Inversion of the segment is controlled by a phage encoded invertase , expressed by the gene gin, which...growth of marine planktonic cyanobacteria. Methods in Enzymology , 167, 100-105. 170 Weigele, P.R., Scanlon, E. and King, J. (2003) Homotrimeric, beta

  16. Marine Biology: Ecology of the Sea. A Zephyr Learning Packet. Revised.

    Science.gov (United States)

    Tanner, Joey

    From the smallest plankton to the most massive whales, marine biology is the study of the flora and fauna, the living creatures of the ocean. This Zephyr self-directed study unit was developed to bridge the gap between students as passive learners to students as active participants. Originally developed for gifted students, these units emphasize…

  17. Comparative study of potential transfer of natural and anthropogenic cadmium to plankton communities in the North-West African upwelling

    International Nuclear Information System (INIS)

    Auger, P.A.; Machu, E.; Gorgues, T.; Grima, N.; Waeles, M.

    2015-01-01

    A Lagrangian approach based on a physical–biogeochemical modeling was used to compare the potential transfer of cadmium (Cd) from natural and anthropogenic sources to plankton communities (Cd-uptake) in the North-West African upwelling. In this region, coastal upwelling was estimated to be the main natural source of Cd while the most significant anthropogenic source for marine ecosystem is provided by phosphate industry. In our model experiment, Cd-uptake (natural or anthropogenic) in the North-West African upwelling is the result of an interplay between the Cd dispersion (by advection processes) and the simulated biological productivity. In the Moroccan waters, advection processes limit the residence time of water masses resulting in a low natural Cd-uptake by plankton communities while anthropogenic Cd-uptake is high. As expected, the situation is reversed in the Senegalo-Mauritanian upwelling where natural Cd-uptake is higher than anthropogenic Cd-uptake. Based upon an estimate of Cd sources, our modeling study shows, unexpectedly, that the anthropogenic signal of potential Cd-bioaccumulation in the Moroccan upwelling is of the same order of magnitude as the natural signal mainly present in the Senegalo-Mauritanian upwelling region. A comparison with observed Cd levels in mollusk and fishes, which shows overall agreement with our simulations, is confirming our estimates. - Highlights: • We model the physical–biogeochemical dynamics in the North-West African upwelling. • We model the transport of cadmium from natural and anthropogenic sources. • We derive proxies of potential cadmium absorption and bioaccumulation in the plankton food chain. • The anthropogenic signal off Morocco at least equals the natural upwelling signal off Mauritania. • We compare our results with observed cadmium levels in mollusks and fishes

  18. Comparative study of potential transfer of natural and anthropogenic cadmium to plankton communities in the North-West African upwelling

    Energy Technology Data Exchange (ETDEWEB)

    Auger, P.A., E-mail: pierreamael.auger@gmail.com [Laboratoire de Physique des Océans (LPO), UMR-CNRS 6523/IFREMER/IRD/UBO, BP70, 29280 Plouzané (France); Machu, E.; Gorgues, T.; Grima, N. [Laboratoire de Physique des Océans (LPO), UMR-CNRS 6523/IFREMER/IRD/UBO, BP70, 29280 Plouzané (France); Waeles, M. [Université de Bretagne Occidentale (UBO), Laboratoire de l' Environnement Marin (LEMAR), UMR-CNRS 6539/IRD/UBO, place N. Copernic, 29280 Plouzané (France)

    2015-02-01

    A Lagrangian approach based on a physical–biogeochemical modeling was used to compare the potential transfer of cadmium (Cd) from natural and anthropogenic sources to plankton communities (Cd-uptake) in the North-West African upwelling. In this region, coastal upwelling was estimated to be the main natural source of Cd while the most significant anthropogenic source for marine ecosystem is provided by phosphate industry. In our model experiment, Cd-uptake (natural or anthropogenic) in the North-West African upwelling is the result of an interplay between the Cd dispersion (by advection processes) and the simulated biological productivity. In the Moroccan waters, advection processes limit the residence time of water masses resulting in a low natural Cd-uptake by plankton communities while anthropogenic Cd-uptake is high. As expected, the situation is reversed in the Senegalo-Mauritanian upwelling where natural Cd-uptake is higher than anthropogenic Cd-uptake. Based upon an estimate of Cd sources, our modeling study shows, unexpectedly, that the anthropogenic signal of potential Cd-bioaccumulation in the Moroccan upwelling is of the same order of magnitude as the natural signal mainly present in the Senegalo-Mauritanian upwelling region. A comparison with observed Cd levels in mollusk and fishes, which shows overall agreement with our simulations, is confirming our estimates. - Highlights: • We model the physical–biogeochemical dynamics in the North-West African upwelling. • We model the transport of cadmium from natural and anthropogenic sources. • We derive proxies of potential cadmium absorption and bioaccumulation in the plankton food chain. • The anthropogenic signal off Morocco at least equals the natural upwelling signal off Mauritania. • We compare our results with observed cadmium levels in mollusks and fishes.

  19. Marine pollution

    International Nuclear Information System (INIS)

    Albaiges, J.

    1989-01-01

    This book covers the following topics: Transport of marine pollutants; Transformation of pollutants in the marine environment; Biological effects of marine pollutants; Sources and transport of oil pollutants in the Persian Gulf; Trace metals and hydrocarbons in Syrian coastal waters; and Techniques for analysis of trace pollutants

  20. Marine sampling in Malaysia coastal area: the challenge, problems and solution

    International Nuclear Information System (INIS)

    Norfaizal Mohamed; Khairul Nizam Razali; Mohd Rafaie Mohd Murtadza; Muhammad Amin Abdul Ghani; Zaharudin Ahmad; Abdul Kadir Ishak

    2005-01-01

    Malaysia Marine Radioactivity Database Development Project is one of the five research contracts that was signed between MINT and AELB. Three marine sampling expeditions had been carried out using K.L. PAUS vessel owned by Malaysian Fisheries Institute, Chendering, Terengganu. The first marine sampling expedition was taken place at East Coast Peninsular Malaysia waters on August 2003, followed on February 2004 at West Coast Peninsular Malaysia waters, and lastly at Sarawak-Sabah waters on July 2004. Many challenges and problems were faced when collecting sediment, water, biota and plankton sample during this marine sampling. (Author)

  1. Plankton networks driving carbon export in the oligotrophic ocean

    Science.gov (United States)

    Larhlimi, Abdelhalim; Roux, Simon; Darzi, Youssef; Audic, Stephane; Berline, Léo; Brum, Jennifer; Coelho, Luis Pedro; Espinoza, Julio Cesar Ignacio; Malviya, Shruti; Sunagawa, Shinichi; Dimier, Céline; Kandels-Lewis, Stefanie; Picheral, Marc; Poulain, Julie; Searson, Sarah; Stemmann, Lars; Not, Fabrice; Hingamp, Pascal; Speich, Sabrina; Follows, Mick; Karp-Boss, Lee; Boss, Emmanuel; Ogata, Hiroyuki; Pesant, Stephane; Weissenbach, Jean; Wincker, Patrick; Acinas, Silvia G.; Bork, Peer; de Vargas, Colomban; Iudicone, Daniele; Sullivan, Matthew B.; Raes, Jeroen; Karsenti, Eric; Bowler, Chris; Gorsky, Gabriel

    2015-01-01

    The biological carbon pump is the process by which CO2 is transformed to organic carbon via photosynthesis, exported through sinking particles, and finally sequestered in the deep ocean. While the intensity of the pump correlates with plankton community composition, the underlying ecosystem structure driving the process remains largely uncharacterised. Here we use environmental and metagenomic data gathered during the Tara Oceans expedition to improve our understanding of carbon export in the oligotrophic ocean. We show that specific plankton communities, from the surface and deep chlorophyll maximum, correlate with carbon export at 150 m and highlight unexpected taxa such as Radiolaria, alveolate parasites, as well as Synechococcus and their phages, as lineages most strongly associated with carbon export in the subtropical, nutrient-depleted, oligotrophic ocean. Additionally, we show that the relative abundance of just a few bacterial and viral genes can predict most of the variability in carbon export in these regions. PMID:26863193

  2. Plankton networks driving carbon export in the oligotrophic ocean

    Science.gov (United States)

    2016-04-01

    The biological carbon pump is the process by which CO2 is transformed to organic carbon via photosynthesis, exported through sinking particles, and finally sequestered in the deep ocean. While the intensity of the pump correlates with plankton community composition, the underlying ecosystem structure driving the process remains largely uncharacterized. Here we use environmental and metagenomic data gathered during the Tara Oceans expedition to improve our understanding of carbon export in the oligotrophic ocean. We show that specific plankton communities, from the surface and deep chlorophyll maximum, correlate with carbon export at 150 m and highlight unexpected taxa such as Radiolaria and alveolate parasites, as well as Synechococcus and their phages, as lineages most strongly associated with carbon export in the subtropical, nutrient-depleted, oligotrophic ocean. Additionally, we show that the relative abundance of a few bacterial and viral genes can predict a significant fraction of the variability in carbon export in these regions.

  3. Growth-inhibitory effects of a mineralized extract from the red marine algae, Lithothamnion calcareum, on Ca(2+)-sensitive and Ca(2+)-resistant human colon carcinoma cells.

    Science.gov (United States)

    Aslam, Muhammad Nadeem; Bhagavathula, Narasimharao; Paruchuri, Tejaswi; Hu, Xin; Chakrabarty, Subhas; Varani, James

    2009-10-08

    Proliferation and differentiation were assessed in a series of human colon carcinoma cell lines in response to a mineral-rich extract derived from the red marine algae, Lithothamnion calcareum. The extract contains 12% Ca2+, 1% Mg2+, and detectable amounts of 72 trace elements, but essentially no organic material. The red algae extract was as effective as inorganic Ca2+ alone in suppressing growth and inducing differentiation of colon carcinoma cells that are responsive to a physiological level of extracellular Ca2+ (1.4mM). However, with cells that are resistant to Ca2+ alone, the extract was still able to reduce proliferation and stimulate differentiation.

  4. Growth-inhibitory effects of a mineralized extract from the red marine algae, Lithothamnion calcareum, on Ca2+-sensitive and Ca2+-resistant human colon carcinoma cells

    Science.gov (United States)

    Nadeem Aslam, Muhammad; Bhagavathula, Narasimharao; Paruchuri, Tejaswi; Hu, Xin; Chakrabarty, Subhas; Varani, James

    2009-01-01

    Proliferation and differentiation were assessed in a series of human colon carcinoma cell lines in response to a mineral-rich extract derived from the red marine algae, Lithothamnion calcareum. The extract contains 12% Ca2+, 1% Mg2+, and detectable amounts of 72 trace elements, but essentially no organic material. The red algae extract was as effective as inorganic Ca2+ alone in suppressing growth and inducing differentiation of colon carcinoma cells that are responsive to a physiological level of extracellular Ca2+ (1.4 mM). However, with cells that are resistant to Ca2+ alone, the extract was still able to reduce proliferation and stimulate differentiation. PMID:19394137

  5. Using the marine unicellular algae in biological monitoring

    OpenAIRE

    Kapkov V. I.; Shoshina E. V.; Belenikina O. A.

    2017-01-01

    The possibility of using marine unicellular algae from natural plankton community in biomonitoring of pollution by heavy metals has been investigated. Algae of different taxa from the Mediterranean Sea have been allocated to culture. In the laboratory the culture conditions – i. e. growth medium, temperature, photoperiod, level of artificial light and initial density – have been selected for every species. The impact of heavy metals (Hg, Cd, Cu, Pb) in the form of chloride salts on the growth...

  6. In Vitro Effects of Polyphosphate against Prevotella intermedia in Planktonic Phase and Biofilm.

    Science.gov (United States)

    Jang, Eun-Young; Kim, Minjung; Noh, Mi Hee; Moon, Ji-Hoi; Lee, Jin-Yong

    2016-02-01

    Polyphosphate (polyP) has gained a wide interest in the food industry due to its potential as a decontaminating agent. In this study, we examined the effect of sodium tripolyphosphate (polyP3; Na5P3O10) against planktonic and biofilm cells of Prevotella intermedia, a major oral pathogen. The MIC of polyP3 against P. intermedia ATCC 49046 determined by agar dilution method was 0.075%, while 0.05% polyP3 was bactericidal against P. intermedia in time-kill analysis performed using liquid medium. A crystal violet binding assay for the assessment of biofilm formation by P. intermedia showed that sub-MICs of polyP3 significantly decreased biofilm formation. Under the scanning electron microscope, decreased numbers of P. intermedia cells forming the biofilms were observed when the bacterial cells were incubated with 0.025% or higher concentrations of polyP3. Assessment of biofilm viability with LIVE/DEAD staining and viable cell count methods showed that 0.05% or higher concentrations of polyP3 significantly decreased the viability of the preformed biofilms in a concentration-dependent manner. The zone sizes of alpha-hemolysis formed on horse blood agar produced by P. intermedia were decreased in the presence of polyP3. The expression of the genes encoding hemolysins and the genes of the hemin uptake (hmu) locus was downregulated by polyP3. Collectively, our results show that polyP is an effective antimicrobial agent against P. intermedia in biofilms as well as planktonic phase, interfering with the process of hemin acquisition by the bacterium. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Exergy analysis and optimisation of a marine molten carbonate fuel cell system in simple and combined cycle configuration

    International Nuclear Information System (INIS)

    Dimopoulos, George G.; Stefanatos, Iason C.; Kakalis, Nikolaos M.P.

    2016-01-01

    Highlights: • Process modelling and optimisation of an integrated marine MCFC system. • Component-level and spatially distributed exergy analysis and balances. • Optimal simple cycle MCFC system with 45.5% overall exergy efficiency. • Optimal combined cycle MCFC system with 60% overall exergy efficiency. • Combined cycle MCFC system yields 30% CO_2 relative emissions reduction. - Abstract: In this paper we present the exergy analysis and design optimisation of an integrated molten carbonate fuel cell (MCFC) system for marine applications, considering waste heat recovery options for additional power production. High temperature fuel cells are attractive solutions for marine energy systems, as they can significantly reduce gaseous emissions, increase efficiency and facilitate the introduction of more environmentally-friendly fuels, like LNG and biofuels. We consider an already installed MCFC system onboard a sea-going vessel, which has many tightly integrated sub-systems and components: fuel delivery and pre-reforming, internal reforming sections, electrochemical conversion, catalytic burner, air supply and high temperature exhaust gas. The high temperature exhaust gasses offer significant potential for heat recovery that can be directed into both covering the system’s auxiliary heat requirements and power production. Therefore, an integrated systems approach is employed to accurately identify the true sources of losses in the various components and to optimise the overall system with respect to its energy efficiency, taking into account the various trade-offs and subject to several constraints. Here, we present a four-step approach: a. dynamic process models development of simple and combined-cycle MCFC system; b. MCFC components and system models calibration via onboard MCFC measurements; c. exergy analysis, and d. optimisation of the simple and combined-cycle systems with respect to their exergetic performance. Our methodology is based on the

  8. Massive consumption of gelatinous plankton by Mediterranean apex predators.

    Directory of Open Access Journals (Sweden)

    Luis Cardona

    Full Text Available Stable isotopes of carbon and nitrogen were used to test the hypothesis that stomach content analysis has systematically overlooked the consumption of gelatinous zooplankton by pelagic mesopredators and apex predators. The results strongly supported a major role of gelatinous plankton in the diet of bluefin tuna (Thunnus thynnus, little tunny (Euthynnus alletteratus, spearfish (Tetrapturus belone and swordfish (Xiphias gladius. Loggerhead sea turtles (Caretta caretta in the oceanic stage and ocean sunfish (Mola mola also primarily relied on gelatinous zooplankton. In contrast, stable isotope ratios ruled out any relevant consumption of gelatinous plankton by bluefish (Pomatomus saltatrix, blue shark (Prionace glauca, leerfish (Lichia amia, bonito (Sarda sarda, striped dolphin (Stenella caerueloalba and loggerhead sea turtles (Caretta caretta in the neritic stage, all of which primarily relied on fish and squid. Fin whales (Balaenoptera physalus were confirmed as crustacean consumers. The ratios of stable isotopes in albacore (Thunnus alalunga, amberjack (Seriola dumerili, blue butterfish (Stromaeus fiatola, bullet tuna (Auxis rochei, dolphinfish (Coryphaena hyppurus, horse mackerel (Trachurus trachurus, mackerel (Scomber scombrus and pompano (Trachinotus ovatus were consistent with mixed diets revealed by stomach content analysis, including nekton and crustaceans, but the consumption of gelatinous plankton could not be ruled out completely. In conclusion, the jellyvorous guild in the Mediterranean integrates two specialists (ocean sunfish and loggerhead sea turtles in the oceanic stage and several opportunists (bluefin tuna, little tunny, spearfish, swordfish and, perhaps, blue butterfish, most of them with shrinking populations due to overfishing.

  9. Planktonic Subsidies to Surf-Zone and Intertidal Communities

    Science.gov (United States)

    Morgan, Steven G.; Shanks, Alan L.; MacMahan, Jamie H.; Reniers, Ad J. H. M.; Feddersen, Falk

    2018-01-01

    Plankton are transported onshore, providing subsidies of food and new recruits to surf-zone and intertidal communities. The transport of plankton to the surf zone is influenced by wind, wave, and tidal forcing, and whether they enter the surf zone depends on alongshore variation in surf-zone hydrodynamics caused by the interaction of breaking waves with coastal morphology. Areas with gently sloping shores and wide surf zones typically have orders-of-magnitude-higher concentrations of plankton in the surf zone and dense larval settlement in intertidal communities because of the presence of bathymetric rip currents, which are absent in areas with steep shores and narrow surf zones. These striking differences in subsidies have profound consequences; areas with greater subsidies support more productive surf-zone communities and possibly more productive rocky intertidal communities. Recognition of the importance of spatial subsidies for rocky community dynamics has recently advanced ecological theory, and incorporating surf-zone hydrodynamics would be an especially fruitful line of investigation.

  10. Marine genomics

    DEFF Research Database (Denmark)

    Oliveira Ribeiro, Ângela Maria; Foote, Andrew David; Kupczok, Anne

    2017-01-01

    Marine ecosystems occupy 71% of the surface of our planet, yet we know little about their diversity. Although the inventory of species is continually increasing, as registered by the Census of Marine Life program, only about 10% of the estimated two million marine species are known. This lag......-throughput sequencing approaches have been helping to improve our knowledge of marine biodiversity, from the rich microbial biota that forms the base of the tree of life to a wealth of plant and animal species. In this review, we present an overview of the applications of genomics to the study of marine life, from...

  11. Coastal and marine biodiversity of India

    Digital Repository Service at National Institute of Oceanography (India)

    Venkataraman, K.; Wafar, M.V.M.

    endangered eco-regions of the world 1 . Among the Asian countries, India is perhaps the only one that has a long INDIAN J. MAR. SCI., VOL. 34, No. 1, MARCH 2005 58 record of inventories of coastal and marine biodiversity dating back to at least two..., planktonic algae appear to have been more completely catalogued 2,3 . Their compilation suggests that the number of pennate diatoms in the world oceans could range from 500 to 784 and that of centric diatoms, from 865 to 999. Compared with these, not more...

  12. Chitosan nanoparticles from marine squid protect liver cells against N-diethylnitrosoamine-induced hepatocellular carcinoma.

    Science.gov (United States)

    Subhapradha, Namasivayam; Shanmugam, Vairamani; Shanmugam, Annaian

    2017-09-01

    Rationale of this study was framed to investigate the protective effect and anti-cancer property of nanoparticles based on chitosan isolated from squid, Sepioteuthis lessoniana, on hepatic cells in N-Nitrosodiethylamine-induced hepatocellular carcinoma in rats. The results conferred that the chitosan nanoparticle supplementation had a protective effect on liver cells by reducing the levels of marker enzymes and bilirubin and thus increasing the albumin levels. The level of reduced glutathione, ascorbic acid and α-tocopherol significantly increased in both post- and pre-treatment with chitosan nanoparticles. The levels of antioxidant enzymes were enhanced and lipid peroxidation products were diminished while treating nitrosodiethylamine-induced hepatocellular carcinoma with chitosan nanoparticles. Supplementation of chitosan nanoparticles had potent anti-hyperlipidemic property that was evidenced by monitoring the serum lipid levels and its components. Animals pre-treated with chitosan nanoparticles along with nitrosodiethylamine showed a significant reduction in the total cholesterol and triglycerides levels with increase in the levels of phospholipids and free fatty acids. Chitosan nanoparticles treated rats showed significant increment in high-density lipoprotein cholesterol and reduction in low-density lipoprotein and very low-density lipoprotein cholesterol when compared with levels in nitrosodiethylamine-induced hepatocellular carcinoma. Nitrosodiethylamine-induced carcinoma changes on circulation and hepatic antioxidant defense mechanism were regulated by chitosan nanoparticles, concluding that the chitosan nanoparticles have a potent protective effect on liver cells which might be due to its robust antioxidant and anti-lipidemic property. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. First records of two planktonic Indo-Pacific diatoms: Chaetoceros bacteriastroides and C. pseudosymmetricus in the Adriatic Sea

    Directory of Open Access Journals (Sweden)

    Marijeta Čalić

    2018-01-01

    Full Text Available Unusual occurrence of planktonic diatom species, Chaetoceros bacteriastroides and Chaetoceros pseudosymmetricus, was noticed in three different marine ecosystems of Adriatic Sea: the Krka Estuary and Telaščica Bay in the Central Adriatic, and in southern Adriatic offshore. From 2010 to 2015, these two Chaetoceros species were recorded in heterogeneous environmental conditions and in a very low abundances. Both species are regarded as very rare in world oceans, and consequently knowledge of their distribution and ecology is rather poor. Primarily described from tropical waters and showing Indo-Pacific distribution, C. bacteriastroides and C. pseudosymmetricus findings in Adriatic represent the northernmost records in world's oceans and seas. For C. pseudosymmetricus this is also the first occurrence in European seas. Areal expansion and introduction of new phytoplankton species in the Adriatic Sea might be related to different circulation regimes in the Ionian Sea and the concurrent rise in sea temperature in the Mediterranean in the last decade. Recent investigations have shown that entering currents, of either Atlantic/Western Mediterranean or Eastern Mediterranean origin, modify the composition of the plankton community in the Adriatic by bringing different newcomers.

  14. Graphite coated with manganese oxide/multiwall carbon nanotubes composites as anodes in marine benthic microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yubin, E-mail: ffyybb@ouc.edu.cn; Yu, Jian; Zhang, Yelong; Meng, Yao

    2014-10-30

    Highlights: • MnO{sub 2}/MWCNTs composites anode exhibits faster reaction kinetics. • The surfaces of MnO{sub 2}/MWCNTs composites anode exhibits better wettability. • A BMFC using the modified anode have excellent power output. - Abstract: Improving anode performance is of great significance to scale up benthic microbial fuel cells (BMFCs) for its marine application to drive oceanography instruments. In this study, manganese oxide (MnO{sub 2})/multiwall carbon nanotubes (MWCNTs) composites are prepared to be as novel anodes in the BMFCs via a direct redox reaction between permanganate ions (MnO{sub 4}{sup −}) and MWCNTs. The results indicate that the MnO{sub 2}/MWCNTs anode has a better wettability, greater kinetic activity and higher power density than that of the plain graphite (PG) anode. It is noted that the MnO{sub 2} (50% weight percent)/MWCNTs anode shows the highest electrochemical performance among them and will be a promising material for improving bioelectricity production of the BMFCs. Finally, a synergistic mechanism of electron transfer shuttle of Mn ions and their redox reactions in the interface between modified anode and bacteria biofilm are proposed to explain its excellent electrochemical performance.

  15. The Marine Metabolite SZ-685C Induces Apoptosis in Primary Human Nonfunctioning Pituitary Adenoma Cells by Inhibition of the Akt Pathway in Vitro

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2015-03-01

    Full Text Available Nonfunctioning pituitary adenoma (NFPA is one of the most common types of pituitary adenoma. The marine anthraquinone derivative SZ-685C has been isolated from the secondary metabolites of the mangrove endophytic fungus Halorosellinia sp. (No. 1403 which is found in the South China Sea. Recent research has shown that SZ-685C possesses anticancer and tumor suppressive effects. The tetrazolium-based colorimetric assay (MTT assay to investigate the different effect of the marine compound SZ-685C on the proliferation of primary human NFPA cells, rat normal pituitary cells (RPCs and rat prolactinoma MMQ cell lines. Hoechst 33342 dye/propidium iodide (PI double staining and fluorescein isothiocyanate-conjugated Annexin V/PI (Annexin V-FITC/PI apoptosis assays detected an enhanced rate of apoptosis in cells treated with SZ-685C. Enhanced expression levels of caspase 3 and phosphate and tensin homolog (PTEN were determined by Western blotting. Notably, the protein expression levels of Akt were decreased when the primary human NFPA cells were treated with SZ-685C. Here, we show that SZ-685C induces apoptosis of human NFPA cells through inhibition of the Akt pathway in vitro. The understanding of apoptosis has provided the basis for novel targeted therapies that can induce death in cancer cells or sensitize them to established cytotoxic agents and radiation therapy.

  16. Some aspects of water quality in a polluted lowland river in relation to the intracellular chemical levels in planktonic and epilithic diatoms.

    Science.gov (United States)

    Tien, Chien-Jung

    2004-04-01

    Changes in elemental concentrations of diatoms and river water from the river Erh-Jen were determined using scanning electron microscopy energy-dispersive X-ray microanalysis and inductively coupled plasma mass spectrometry. Relatively large amounts of copper and lead found in both planktonic and epilithic diatoms implied these algae might play an important role in biogeochemical cycles and in the transfer of those elements to higher trophic levels in the aquatic environment. Changes in elemental concentrations within diatom cells were found to vary with other elements within cells and the same or different elements in water. Planktonic and epilithic cells showed different correlation patterns. For epilithic diatoms, negative correlations were found between concentrations of total phosphorus and phosphate in water and those of phosphorus within cells, and between concentrations of lead in water and in cells. Concentrations of chromium and mercury within planktonic cells and those of phosphorus, manganese and lead within epilithic ones were found to be easily influenced by other elements in river water, indicating appearance of the competitive manner on uptake of such elements by algal cells. Relatively high concentration factors (CFs) for cadmium, mercury and lead by diatoms in this study suggested they are good accumulators for these heavy metals. Significant negative corrections were found between the CFs of diatoms and the concentrations of elements in river water.

  17. Effects of xenobiotic compounds on the cell activities of Euplotes crassus, a single-cell eukaryotic test organism for the study of the pollution of marine sediments

    International Nuclear Information System (INIS)

    Trielli, Francesca; Amaroli, Andrea; Sifredi, Francesca; Marchi, Barbara; Falugi, Carla; Corrado, Maria Umberta Delmonte

    2007-01-01

    It is now widely accepted that assays with protists are relevant to be exploited for the study of environmental modifications due to the presence of xenobiotic compounds. In this work, the possibility of utilizing Euplotes crassus, an interstitial marine ciliate, for the pre-chemical screening of estuarine and coastal sediments was evaluated. For this purpose, the effects of exposure to pollutants were tested on the cell viability, fission rate and lysosomal membrane stability of E. crassus. The following toxicants were used: an organophosphate (OP) pesticide, basudin, an organochlorine hydrocarbon, AFD25, both employed especially for pest control in agricultural sites, a toxic heavy metal, mercury (HgCl 2 ) and different mixtures of the above-mentioned compounds, as they might occur in polluted sites. Exposure to these toxicants affected cell viability at concentrations ranging from 96.6 to 966 x 10 3 mg/l for basudin, from 3.3 to 33 x 10 3 mg/l for AFD25 and from 0.1 to 1 mg/l for HgCl 2 . A significant decrease in the mean fission rate (P -2 mg/l HgCl 2 . Furthermore, the Neutral Red Retention Assay showed a significant decrease in lysosomal membrane stability after 60- and 120-min exposures to AFD25 (33 mg/l) and HgCl 2 (0.33 mg/l). In addition, as it is well-known that the inhibition of acetylcholinesterase activity represents a specific biomarker of exposure to OP and carbamate pesticides in higher organisms, initially the presence of cholinesterase (ChE) activity was detected in E. crassus, using cytochemical, spectrophotometric and electrophoretic methods. Afterwards, this enzyme activity was characterized spectrophotometrically by its sensitivity to specific ChE inhibitors and to variations in pH and temperature. The ChE activity was inhibited significantly by basudin- (9.66 and 96.6 mg/l) or AFD25-exposure (3.3 mg/l). Conversely, exposure to AFD25 (33 mg/l) or HgCl 2 (0.1 and 0.3 mg/l) caused a significant increase in this enzyme activity. Moreover

  18. Effects of Marine Oils, Digested with Human Fluids, on Cellular Viability and Stress Protein Expression in Human Intestinal Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Cecilia Tullberg

    2017-11-01

    Full Text Available In vitro digestion of marine oils has been reported to promote lipid oxidation, including the formation of reactive aldehydes (e.g., malondialdehyde (MDA and 4-hydroxy-2-hexenal (HHE. We aimed to investigate if human in vitro digestion of supplemental levels of oils from algae, cod liver, and krill, in addition to pure MDA and HHE, affect intestinal Caco-2 cell survival and oxidative stress. Cell viability was not significantly affected by the digests of marine oils or by pure MDA and HHE (0–90 μM. Cellular levels of HSP-70, a chaperone involved in the prevention of stress-induced protein unfolding was significantly decreased (14%, 28%, and 14% of control for algae, cod and krill oil, respectively; p ≤ 0.05. The oxidoreductase thioredoxin-1 (Trx-1 involved in reducing oxidative stress was also lower after incubation with the digested oils (26%, 53%, and 22% of control for algae, cod, and krill oil, respectively; p ≤ 0.001. The aldehydes MDA and HHE did not affect HSP-70 or Trx-1 at low levels (8.3 and 1.4 μM, respectively, whilst a mixture of MDA and HHE lowered Trx-1 at high levels (45 μM, indicating less exposure to oxidative stress. We conclude that human digests of the investigated marine oils and their content of MDA and HHE did not cause a stress response in human intestinal Caco-2 cells.

  19. Cell and molecular biology of marine elasmobranchs: Squalus acanthias and Raja erinacea.

    Science.gov (United States)

    Mattingly, Carolyn; Parton, Angela; Dowell, Lori; Rafferty, Jason; Barnes, David

    2004-01-01

    Elasmobranchs are among the most primitive existing species exhibiting fundamental vertebrate characteristics, such as neural crest, jaws, teeth, and an adaptive immune system. They are also among the earliest-evolved vertebrates with a closed, pressurized circulatory system and related signaling molecules. Although many species are used experimentally, the spiny dogfish shark (Squalus acanthias) and little skate (Raja erinacea) have particular advantages and are the most commonly used elasmobranch biomedical models. These animals display powerful molecular systems for dealing with salt and water homeostasis, cell volume regulation, and environmental and internal osmotic sensing. They have become important unique models in studies of transport-related diseases such as cystic fibrosis and anion or xenobiotic transport. Much of this work has relied on physiological experiments combined with molecular approaches and the advantages of comparative genomic analyses to identify conserved regions representing functional protein domains. Recent work has seen the development of cell cultures and the beginning of expressed sequence tags (EST) and genomic libraries. Other areas in which elasmobranches have played critical roles include immunology and neurobiology. It also appears that sharks have tissue regenerative capability beyond what is commonly seen in mammals. For example, sharks and skates possess a region of renal regeneration, with new tubules being formed continually through adulthood. As comparative functional genomics comes of age, these comparative vertebrate models may play an increasing role in the larger picture of human biomedical research. There is plenty of ocean to share.

  20. UV sensitivity of planktonic net community production in ocean surface waters

    OpenAIRE

    Regaudie de Gioux, Aurore; Agustí, Susana; Duarte, Carlos M.

    2014-01-01

    The net plankton community metabolism of oceanic surface waters is particularly important as it more directly affects the partial pressure of CO2 in surface waters and thus the air-sea fluxes of CO2. Plankton communities in surface waters are exposed to high irradiance that includes significant ultraviolet blue (UVB, 280-315 nm) radiation. UVB radiation affects both photosynthetic and respiration rates, increase plankton mortality rates, and other metabolic and chemical processes. Here we tes...

  1. Effects of nitrogen and phosphorus on the abundance and cell size of planktonic nanoflagellate communities Efeito da concentração de nitrogênio e fósforo na abundância e tamanho celular da comunidade de nanoflagelados planctônicos

    Directory of Open Access Journals (Sweden)

    Danielle Goeldner Pereira

    2012-12-01

    Full Text Available AIM: We experimentally investigated the effects of nutrients (Nitrogen and Phosphorus enrichment on the density, biomass, and cell size of pigmented and heterotrophic plankton nanoflagellates communities. METHODS: The experiment was done in mesocosms in a tropical reservoir during a 19-day period. Four different treatments were carried out: Control (non-nutrient addition - C, phosphorus additions (P, nitrogen addition (N and phosphorus + nitrogen addition (N + P. Each treatment was performed in triplicate, sorted randomly, thus giving a total of 12 experimental carboys, which were placed transversely in the middle of the reservoir. RESULTS: In general, pigmented and heterotrophic nanoflagellates fractions responded to nutrient addition, increasing densities and biomass values at the fertilized treatments. Opposed to expected, enriched treatments resulted in a slight decrease in mean cell size of the pigmented fraction. Moreover, in nutrient-rich treatments, pigmented nanoflagellates had higher relative abundance than in the control. CONCLUSIONS: Our results indicate that: i the density and biomass of nanoflagellates responded to the nutrient enrichment, mainly when N and P were added together; ii the pigmented and heterotrophic fractions showed distinct time responses to fertilization; iii the growth of nanoflagellate community seems to be co-limited by N and P; iv the nutrient enrichment led to a greater pigmented than heterotrophic fraction contribution; and v among the analyzed variables, nanoflagellate densities seem to be more sensitive to changes in nutrient availability than biomass or mean cell size.OBJETIVO: Investigamos experimentalmente o efeito da adição de nutrientes (Nitrogênio e Fósforo sobre a densidade e o tamanho celular da comunidade de nanoflagelados planctônicos pigmentados e heterotróficos. MÉTODOS: O experimento foi desenvolvido em mesocosmos num reservatório tropical durante 19 dias. Quatro diferentes tratamentos

  2. Japan [Marine Radioecology. Current Research and Future Scope

    International Nuclear Information System (INIS)

    Saiki, M.

    1967-01-01

    Among the present research programmes: Studies on rcidiochemical analysis of sea-water and fishes; Studies on uptake of radionuclides by marine organisms; Studies on internal exposure arising from marine products; The convenient and appropriate method of analysis and determination of radioactivity in sea— water and fishes is investigated; Biological concentration of fission products and induced products in fishes and plankton arc studied from the radioecological point of view; Contribution of radionuclides in fishes and algae to those in the total Japanese diet is studied, in connection with fall-out studies

  3. The passive yet successful way of planktonic life: genomic and experimental analysis of the ecology of a free-living polynucleobacter population.

    Directory of Open Access Journals (Sweden)

    Martin W Hahn

    Full Text Available The bacterial taxon Polynucleobacter necessarius subspecies asymbioticus represents a group of planktonic freshwater bacteria with cosmopolitan and ubiquitous distribution in standing freshwater habitats. These bacteria comprise <1% to 70% (on average about 20% of total bacterioplankton cells in various freshwater habitats. The ubiquity of this taxon was recently explained by intra-taxon ecological diversification, i.e. specialization of lineages to specific environmental conditions; however, details on specific adaptations are not known. Here we investigated by means of genomic and experimental analyses the ecological adaptation of a persistent population dwelling in a small acidic pond.The investigated population (F10 lineage contributed on average 11% to total bacterioplankton in the pond during the vegetation periods (ice-free period, usually May to November. Only a low degree of genetic diversification of the population could be revealed. These bacteria are characterized by a small genome size (2.1 Mb, a relatively small number of genes involved in transduction of environmental signals, and the lack of motility and quorum sensing. Experiments indicated that these bacteria live as chemoorganotrophs by mainly utilizing low-molecular-weight substrates derived from photooxidation of humic substances.Evolutionary genome streamlining resulted in a highly passive lifestyle so far only known among free-living bacteria from pelagic marine taxa dwelling in environmentally stable nutrient-poor off-shore systems. Surprisingly, such a lifestyle is also successful in a highly dynamic and nutrient-richer environment such as the water column of the investigated pond, which was undergoing complete mixis and pronounced stratification in diurnal cycles. Obviously, metabolic and ecological versatility is not a prerequisite for long-lasting establishment of abundant bacterial populations under highly dynamic environmental conditions. Caution should be exercised

  4. Modeling and dynamics of an autothermal JP5 fuel reformer for marine fuel cell applications

    International Nuclear Information System (INIS)

    Tsourapas, Vasilis; Sun, Jing; Nickens, Anthony

    2008-01-01

    In this work, a dynamic model of an integrated autothermal reformer (ATR) and proton exchange membrane fuel cell (PEM FC) system and model-based evaluation of its dynamic characteristics are presented. The ATR reforms JP5 fuel into a hydrogen rich flow. The hydrogen is extracted from the reformate flow by a separator membrane (SEP), then supplied to the PEM FC for power generation. A catalytic burner (CB) and a turbine are also incorporated to recuperate energy from the remaining SEP flow that would otherwise be wasted. A dynamic model of this system, based on the ideal gas law and energy balance principles, is developed and used to explore the effects of the operating setpoint selection of the SEP on the overall system efficiency. The analysis reveals that a trade-off exists between the SEP efficiency and the overall system efficiency. Finally the open loop system simulation results are presented and conclusions are drawn on the SEP operation

  5. Marine medicinal glycomics

    Directory of Open Access Journals (Sweden)

    Vitor Hugo Pomin

    2014-01-01

    Full Text Available Glycomics is an international initiative aimed to understand the structure and function of the glycans from a given type of cell, tissue, organism, kingdom or even environment, as found under certain conditions. Glycomics is one of the latest areas of intense biological research. Glycans of marine sources are unique in terms of structure and function. They differ considerably from those of terrestrial origin. This review discusses the most known marine glycans of potential therapeutic properties. They are chitin, chitosan, and sulfated polysaccharides named glycosaminoglycans, sulfated fucans and sulfated galactans. Their medical actions are very broad. When certain structural requirements are found, these glycans can exhibit beneficial effects in inflammation, coagulation, thrombosis, cancer growth/metastasis and vascular biology. Both structure and therapeutic mechanisms of action of these marine glycans are discussed here in straight context with the current glycomic age through a project suggestively named Marine Medicinal Glycomics.

  6. Efficacy of a novel antimicrobial peptide against periodontal pathogens in both planktonic and polymicrobial biofilm states.

    Science.gov (United States)

    Wang, Hong-Yan; Cheng, Jya-Wei; Yu, Hui-Yuan; Lin, Li; Chih, Ya-Han; Pan, Ya-Ping

    2015-10-01

    Streptococcus gordonii, Fusobacterium nucleatum and Porphyromonas gingivalis represent the early, middle and late colonizers of the bacterial accretion in dental plaque biofilms. These sessile communities constitute a protected mode of growth that promotes survival in a hostile environment. This study describes a novel and unrecognized role for a synthetic cationic antimicrobial peptide, Nal-P-113, which inhibits and kills periodontal bacteria in planktonic state, inhibits the formation of biofilms and eradicates polymicrobial biofilms. Nal-P-113 is also stable in saliva, serum and saline solution. At a concentration less than 320 μg/mL which is harmless to normal oral cells, Nal-P-113 can kill bacteria in planktonic state. At a concentration of antimicrobial peptide Nal-P-113 (1280 μg/mL) which only causes slight damages to normal oral cells is needed to kill bacteria in biofilm state. It is worth mentioning that this concentration of Nal-P-113 is harmless to rat oral mucosa compared to chlorhexidine. The mechanism of Nal-P-113 inhibiting and killing periodontal bacteria might rely on the abilities to permeabilize and/or to form pores within the cytoplasmic membranes, thus causes the death of bacteria. Here, we provided a novel and stable antimicrobial peptide with very low mammalian cytotoxicity, which can inhibit and kill periodontal bacteria in both planktonic and polymicrobial biofilm states. Nal-P-113 is a potent antimicrobial peptide with strong antimicrobial ability, improved deficiency compared with other antibacterial peptides, and remains stable in phosphate buffered saline, saliva, brain-heart infusion medium and bovine calf serum. Nal-P-113 exhibits a broad spectrum of bacteriocidal activity with excellent eradicating capability on oral pathogens and the respective biofilms. In this study, we used propidium iodide staining, scanning electron microscopy and transmission electron microscopy to confirm that Nal-P-113 can perforate plasmalemma thereby

  7. Iron fertilization and the structure of planktonic communities in high nutrient regions of the Southern Ocean

    Science.gov (United States)

    Quéguiner, Bernard

    2013-06-01

    In this review article, plankton community structure observations are analyzed both for artificial iron fertilization experiments and also for experiments dedicated to the study of naturally iron-fertilized systems in the Atlantic, Indian and Pacific sectors of the Southern Ocean in the POOZ (Permanently Open Ocean Zone) and the PFZ (Polar Frontal Zone). Observations made in natural systems are combined with those from artificially perturbed systems, in order to evaluate the seasonal evolution of pelagic communities, taking into account controlling factors related to the life cycles and the ecophysiology of dominant organisms. The analysis considers several types of planktonic communities, including both autotrophs and heterotrophs. These communities are spatially segregated owing to different life strategies. A conceptual general scheme is proposed to account for these observations and their variability, regardless of experiment type. Diatoms can be separated into 2 groups: Group 1 has slightly silicified fast growing cells that are homogeneously distributed in the surface mixed layer, and Group 2 has strongly silicified slowly growing cells within discrete layers. During the growth season, Group 1 diatoms show a typical seasonal succession of dominant species, within time windows of development that are conditioned by physical factors (light and temperature) as well as endogenous specific rhythms (internal clock), and biomass accumulation is controlled by the availability of nutrients. Group 1 diatoms are not directly grazed by mesozooplankton which is fed by protozooplankton, linking the microbial food web to higher trophic levels. Instead, successive dominant species of Group 1 are degraded via bacterial activity at the end of their growth season. Organic detritus fragments feed protozooplankton and mesozooplankton. The effective silicon pump leads to the progressive disappearance of silicic acid in surface waters. In contrast, Group 2 is resistant to grazing

  8. Light utilization and photoinhibition of photosynthesis in marine phytoplankton

    Energy Technology Data Exchange (ETDEWEB)

    Falkowski, P.G., Greene, R., Kolber, Z.

    1993-12-31

    Introduction to Phytoplankton. Based on the record of the oldest identifiable fossils, the first oxygenic photosynthetic organisms appeared about 2 {times} l0{sup 9} years ago in the form of marine single celled, planktonic procaryotes (Riding, 1992; Sarmiento and Bender, 1993). In the intervening eons, phytoplankton have evolved and diversified; presently they represent at least 11 classes of procaryotic and euacaryotic photoautotrophs. While the carbon of these organisms cumulatively amounts to only 1 to 2% of the global plant biomass, they fix between 35 and 50 gigatonnes ({times} 10{sup 9} metric tons) of carbon annually, about 40% of the global total (Falkowski and Woodhead, 1992). On average, each gram of phytoplankton chlorophyll converts about 6% of the photosynthetically active radiation (440 to 700 nm) incident on the sea surface to photochemical energy (Morel, 1978). Despite a great deal of variability in ocean environments, this photosynthetic conversion efficiency is relatively constant for integrated water column production (Morel, 1978; Falkowski, 1981; Platt, 1986; Morel, 1991). Here we review the factors determining light utilization efficiency of phytoplankton in the oceans, and the physiological acclimations which have evolved to optimize light utilization efficiency.

  9. Report on the intercomparison run: radionuclides in seawater and plankton collected outside Mururoa Atoll

    International Nuclear Information System (INIS)

    Ballestra, S.; Noshkin, V.

    1991-07-01

    This report contains a brief outline of the sampling program and a summary of all available radiological data provided by the three participants. The Direction des Centres d'Experimentations Nucleaires Laboratory (DIRCEN-CEA), Montlhery, France; The Lawrence Livermore National Laboratory (LLNL), Livermore, CA, USA; and the IAEA International Laboratory of Marine Radioactivity, (IAEA-ILMR), Principality of Monaco. The IAEA-ILMR results are complied in a separate report by Ballestra et al. (1991) that has details of the program and copies of the protocol and the ''Proces-verbal de constat'' produced by the legal representative at the end of the sampling program. A sampling program was designed to collect 3 large volume seawater and 2 plankton samples from locations near the territorial limit outside Mururoa Atoll. The different samples were to be used for a radiological intercomparison exercise. A legal representative from Papeete, Tahiti (French Polynesia) was given the task to verify the authenticity of the samples and to ensure that the protocol was followed by the participants. 4 refs, 1 fig., 3 tabs

  10. Isolation of microplastics in biota-rich seawater samples and marine organisms

    Science.gov (United States)

    Cole, Matthew; Webb, Hannah; Lindeque, Pennie K.; Fileman, Elaine S.; Halsband, Claudia; Galloway, Tamara S.

    2014-01-01

    Microplastic litter is a pervasive pollutant present in aquatic systems across the globe. A range of marine organisms have the capacity to ingest microplastics, resulting in adverse health effects. Developing methods to accurately quantify microplastics in productive marine waters, and those internalized by marine organisms, is of growing importance. Here we investigate the efficacy of using acid, alkaline and enzymatic digestion techniques in mineralizing biological material from marine surface trawls to reveal any microplastics present. Our optimized enzymatic protocol can digest >97% (by weight) of the material present in plankton-rich seawater samples without destroying any microplastic debris present. In applying the method to replicate marine samples from the western English Channel, we identified 0.27 microplastics m−3. The protocol was further used to extract microplastics ingested by marine zooplankton under laboratory conditions. Our findings illustrate that enzymatic digestion can aid the detection of microplastic debris within seawater samples and marine biota. PMID:24681661

  11. Incorporation of inorganic mercury (Hg2+) in pelagic food webs of ultraoligotrophic and oligotrophic lakes: The role of different plankton size fractions and species assemblages

    International Nuclear Information System (INIS)

    Soto Cárdenas, Carolina; Diéguez, Maria C.; Ribeiro Guevara, Sergio; Marvin-DiPasquale, Mark; Queimaliños, Claudia P.

    2014-01-01

    In lake food webs, pelagic basal organisms such as bacteria and phytoplankton incorporate mercury (Hg 2+ ) from the dissolved phase and pass the adsorbed and internalized Hg to higher trophic levels. This experimental investigation addresses the incorporation of dissolved Hg 2+ by four plankton fractions (picoplankton: 0.2–2.7 μm; pico + nanoplankton: 0.2–20 μm; microplankton: 20–50 μm; and mesoplankton: 50–200 μm) obtained from four Andean Patagonian lakes, using the radioisotope 197 Hg 2+ . Species composition and abundance were determined in each plankton fraction. In addition, morphometric parameters such as surface and biovolume were calculated using standard geometric models. The incorporation of Hg 2+ in each plankton fraction was analyzed through three concentration factors: BCF (bioconcentration factor) as a function of cell or individual abundance, SCF (surface concentration factor) and VCF (volume concentration factor) as functions of individual exposed surface and biovolume, respectively. Overall, this investigation showed that through adsorption and internalization, pico + nanoplankton play a central role leading the incorporation of Hg 2+ in pelagic food webs of Andean lakes. Larger planktonic organisms included in the micro- and mesoplankton fractions incorporate Hg 2+ by surface adsorption, although at a lesser extent. Mixotrophic bacterivorous organisms dominate the different plankton fractions of the lakes connecting trophic levels through microbial loops (e.g., bacteria–nanoflagellates–crustaceans; bacteria–ciliates–crustaceans; endosymbiotic algae–ciliates). These bacterivorous organisms, which incorporate Hg from the dissolved phase and through their prey, appear to explain the high incorporation of Hg 2+ observed in all the plankton fractions. - Highlights: • Hg 2+ incorporation in lake plankton fractions was studied using the isotope 197 Hg 2+ . • Hg 2+ incorporation was assessed using three different

  12. Incorporation of inorganic mercury (Hg{sup 2+}) in pelagic food webs of ultraoligotrophic and oligotrophic lakes: The role of different plankton size fractions and species assemblages

    Energy Technology Data Exchange (ETDEWEB)

    Soto Cárdenas, Carolina, E-mail: sotocardenascaro@gmail.com [Laboratorio de Fotobiología, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNComahue-CONICET), Quintral 1250, 8400 San Carlos de Bariloche, Río Negro (Argentina); Diéguez, Maria C. [Laboratorio de Fotobiología, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNComahue-CONICET), Quintral 1250, 8400 San Carlos de Bariloche, Río Negro (Argentina); Ribeiro Guevara, Sergio [Laboratorio de Análisis por Activación Neutrónica, CAB, CNEA, Av. Bustillo Km 9.5, 8400, San Carlos de Bariloche, Río Negro (Argentina); Marvin-DiPasquale, Mark [United States Geological Survey, 345 Middlefield Rd./MS 480, Menlo Park, CA 94025 (United States); Queimaliños, Claudia P. [Laboratorio de Fotobiología, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNComahue-CONICET), Quintral 1250, 8400 San Carlos de Bariloche, Río Negro (Argentina)

    2014-10-01

    In lake food webs, pelagic basal organisms such as bacteria and phytoplankton incorporate mercury (Hg{sup 2+}) from the dissolved phase and pass the adsorbed and internalized Hg to higher trophic levels. This experimental investigation addresses the incorporation of dissolved Hg{sup 2+} by four plankton fractions (picoplankton: 0.2–2.7 μm; pico + nanoplankton: 0.2–20 μm; microplankton: 20–50 μm; and mesoplankton: 50–200 μm) obtained from four Andean Patagonian lakes, using the radioisotope {sup 197}Hg{sup 2+}. Species composition and abundance were determined in each plankton fraction. In addition, morphometric parameters such as surface and biovolume were calculated using standard geometric models. The incorporation of Hg{sup 2+} in each plankton fraction was analyzed through three concentration factors: BCF (bioconcentration factor) as a function of cell or individual abundance, SCF (surface concentration factor) and VCF (volume concentration factor) as functions of individual exposed surface and biovolume, respectively. Overall, this investigation showed that through adsorption and internalization, pico + nanoplankton play a central role leading the incorporation of Hg{sup 2+} in pelagic food webs of Andean lakes. Larger planktonic organisms included in the micro- and mesoplankton fractions incorporate Hg{sup 2+} by surface adsorption, although at a lesser extent. Mixotrophic bacterivorous organisms dominate the different plankton fractions of the lakes connecting trophic levels through microbial loops (e.g., bacteria–nanoflagellates–crustaceans; bacteria–ciliates–crustaceans; endosymbiotic algae–ciliates). These bacterivorous organisms, which incorporate Hg from the dissolved phase and through their prey, appear to explain the high incorporation of Hg{sup 2+} observed in all the plankton fractions. - Highlights: • Hg{sup 2+} incorporation in lake plankton fractions was studied using the isotope {sup 197}Hg{sup 2+}. • Hg{sup 2

  13. The trophic role and impact of plankton ciliates in the microbial web structure of a tropical polymictic lake dominated by filamentous cyanobacteria

    Directory of Open Access Journals (Sweden)

    Alfonso Esquivel

    2016-03-01

    Full Text Available The recent interest in the plankton structures and dynamics in tropical and subtropical lakes has revealed important trends that set these lakes apart from temperate lakes, and one of the main differences is the enhanced importance of the microbial food web with respect to net plankton. Ciliates are a key component of subtropical and tropical microbial webs because of their role as dominant picoplankton grazers and their ability to channel picoplankton production to the uppermost trophic levels. Plankton ciliates have been found to play a crucial role in the survival of fish larvae in lakes that share several features with Lake Catemaco, a eutrophic tropical Mexican lake. Therefore, the plankton ciliate composition, abundance, and biomass of Lake Catemaco were studied to assess their role in the microbial food web. The data were obtained from surface and bottom water samples collected at eleven points during three surveys in 2011 and an additional survey in 2013, with the surveys covering the local climatic seasons. The most abundant components of the plankton ciliate assemblages were small prostomatids (Urotricha spp., choreotrichs (Rimostrombidium spp., cyclotrichs (Mesodinium and Askenasia, and scuticociliates (Cyclidium, Cinetochilum, Pleuronema, and Uronema. Other important ciliates in terms of abundance and/or biomass were haptorids (Actinobolina, Belonophrya, Monodinium, Paradileptus, and Laginophrya, Halteria, oligotrichs (Limnostrombidium and Pelagostrombidium, Linostomella, Bursaridium, Cyrtolophosis, and Litonotus. The ciliate abundance averaged 57 cells mL-1 and ranged from 14 to 113 cells mL-1. The mean ciliate biomass was 71 µg C L-1 and ranged from 10 to 202 µg C L-1. Differences were not detected in ciliate abundance or biomass between the sampling points or sampling depths (surface to bottom; however, significant differences were observed between seasons for both variables. Nano-sized filamentous cyanobacteria were the most

  14. Programmed cell death in the marine cyanobacterium Trichodesmium mediates carbon and nitrogen export

    Science.gov (United States)

    Bar-Zeev, Edo; Avishay, Itamar; Bidle, Kay D; Berman-Frank, Ilana

    2013-01-01

    The extent of carbon (C) and nitrogen (N) export to the deep ocean depends upon the efficacy of the biological pump that transports primary production to depth, thereby preventing its recycling in the upper photic zone. The dinitrogen-fixing (diazotrophic) Trichodesmium spp. contributes significantly to oceanic C and N cycling by forming extensive blooms in nutrient-poor tropical and subtropical regions. These massive blooms generally collapse several days after forming, but the cellular mechanism responsible, along with the magnitude of associated C and N export processes, are as yet unknown. Here, we used a custom-made, 2-m high water column to simulate a natural bloom and to specifically test and quantify whether the programmed cell death (PCD) of Trichodesmium mechanistically regulates increased vertical flux of C and N. Our findings demonstrate that extremely rapid development and abrupt, PCD-induced demise (within 2–3 days) of Trichodesmium blooms lead to greatly elevated excretions of transparent exopolymers and a massive downward pulse of particulate organic matter. Our results mechanistically link autocatalytic PCD and bloom collapse to quantitative C and N export fluxes, suggesting that PCD may have an impact on the biological pump efficiency in the oceans. PMID:23887173

  15. Biotransformation and detoxification of xylidine orange dye using immobilized cells of marine-derived Lysinibacillus sphaericus D3

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; Wahidullah, S.; Sheikh, F.; Pereira, R.; Narkhede, N.; Amonkar, D.; Tilvi, S.; Meena, R.M.

    for decolorization and the products formed were evaluated for toxicity by disc diffusion assay against common marine bacteria which revealed the non-toxic nature of the dye-degraded products. Decolorization of the brightly colored dye to colorless products...

  16. Marine biology

    International Nuclear Information System (INIS)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index

  17. Solid oxide fuel cell/gas turbine trigeneration system for marine applications

    Science.gov (United States)

    Tse, Lawrence Kar Chung; Wilkins, Steven; McGlashan, Niall; Urban, Bernhard; Martinez-Botas, Ricardo

    2011-03-01

    Shipping contributes 4.5% to global CO2 emissions and is not covered by the Kyoto Agreement. One method of reducing CO2 emissions on land is combined cooling heating and power (CCHP) or trigeneration, with typical combined thermal efficiencies of over 80%. Large luxury yachts are seen as an ideal entry point to the off-shore market for this developing technology considering its current high cost. This paper investigates the feasibility of combining a SOFC-GT system and an absorption heat pump (AHP) in a trigeneration system to drive the heating ventilation and air conditioning (HVAC) and electrical base-load systems. A thermodynamic model is used to simulate the system, with various configurations and cooling loads. Measurement of actual yacht performance data forms the basis of this system simulation. It is found that for the optimum configuration using a double effect absorption chiller in Ship 1, the net electric power increases by 47% relative to the electrical power available for a conventional SOFC-GT-HVAC system. This is due to more air cooled to a lower temperature by absorption cooling; hence less electrical cooling by the conventional HVAC unit is required. The overall efficiency is 12.1% for the conventional system, 34.9% for the system with BROAD single effect absorption chiller, 43.2% for the system with double effect absorption chiller. This shows that the overall efficiency of a trigeneration system is far higher when waste heat recovery happens. The desiccant wheel hardly reduces moisture from the outdoor air due to a relative low mass flow rate of fuel cell exhaust available to dehumidify a very large mass flow rate of HVAC air, Hence, desiccant wheel is not recommended for this application.

  18. KOEFISIEN SAPROBIK PLANKTON DI PERAIRAN EMBUNG UNIVERSITAS NEGERI SEMARANG

    Directory of Open Access Journals (Sweden)

    AS Awaludin

    2016-04-01

    Full Text Available Embung Universitas Negeri Semarang dibangun dengan tujuan sebagai tempat penampungan air hujan dan penyerapan air di Universitas Negeri Semarang dan mempunyai kapasitas penampungan air 5.000 m3. Keberadaan embung tersebut menciptakan suatu ekosistem baru yaitu tempat hidup ikan-ikan di dalamnya. Saprobitas perairan digunakan untuk mengetahui keadaan kualitas air yang diakibatkan adanya penambahan bahan organik dalam suatu  perairan yang biasanya indikatornya adalah jumlah dan susunan spesies dari organisme di dalam perairan tersebut. Plankton dapat digunakan sebagai bioindikator perairan karena memiliki tingkat kepekaan tinggi terhadap adanya pencemaran. Penelitian ini menggunakan rancangan eksplorasi dengan metode survai, dimana penetapan stasiun pengambilan sampel dengan purposive sampling. Penempatan stasiun didasarkan atas perkiraan beban pencemar dan aktivitas yang terdapat di sepanjang aliran dari (stasiun satu sampai sembilan, pengambilan sampel dilakukan sebanyak 3 kali dengan selang waktu 2 minggu. Data dalam penelitian ini adalah data kuantitatif berupa jumlah jenis spesies plankton yang ditemukan pada penelitian ini kemudian diinterpretasikan pada tabel hubungan antara koefisien saprobitas perairan dengan tingkat pencemaran perairan. Berdasarkan perhitungan dan analisis nilai koefisien saprobik dari stasiun satu sampai sampai sembilan didapatkan nilai koefisien saprobik plankton berkisar antara -0,4 s/d 0,9. Berdasarkan kriteria tingkat pencemaran menunjukkan bahwa Embung Universitas Negeri Semarang berada dalam kondisi tercemar ringan sampai dengan sedang.Universitas Negeri Semarang Reservoir was constructed for the purpose as rain water reservoirs and water absorption in Universitas Negeri Semarang and has a water storage capacity of 5,000 cubic meters. The existence of such ponds are creating a new ecosystem where fish live in it. Saprobic waters are used to determine the state of water quality resulting from the addition of

  19. A Model of the Dynamics of Plankton Patchiness

    Directory of Open Access Journals (Sweden)

    Wolfgang Ebenhöh

    1980-04-01

    Full Text Available A mathematical model of the dynamics of plankton patchiness in the intermediate scale (1 km-10 km was developed. Mechanisms that may be important in the creation and destruction of patches were selected and modelled. Such mechanisms are: horizontal turbulent diffusion, noise in the vertical turbulence, vertical migration of the zooplankton combined with a velocity profile and consumption of zooplankton by fish in schools. Patchiness is described by thc usc of the moments of density distributions, coherence lengths and correlations of phytoplankton and zooplankton. These parameters are investigated as functions of time and, also, for their dependence on the parameters of the patch creation mechanisms.

  20. Transcriptome analyses to investigate symbiotic relationships between marine protists

    Science.gov (United States)

    Balzano, Sergio; Corre, Erwan; Decelle, Johan; Sierra, Roberto; Wincker, Patrick; Da Silva, Corinne; Poulain, Julie; Pawlowski, Jan; Not, Fabrice

    2015-01-01

    Rhizaria are an important component of oceanic plankton communities worldwide. A number of species harbor eukaryotic microalgal symbionts, which are horizontally acquired in the environment at each generation. Although these photosymbioses are determinant for Rhizaria ability to thrive in oceanic ecosystems, the mechanisms for symbiotic interactions are unclear. Using high-throughput sequencing technology (i.e., 454), we generated large Expressed Sequence Tag (EST) datasets from four uncultured Rhizaria, an acantharian (Amphilonche elongata), two polycystines (Collozoum sp. and Spongosphaera streptacantha), and one phaeodarian (Aulacantha scolymantha). We assessed the main genetic features of the host/symbionts consortium (i.e., the holobiont) transcriptomes and found rRNA sequences affiliated to a wide range of bacteria and protists in all samples, suggesting that diverse microbial communities are associated with the holobionts. A particular focus was then carried out to search for genes potentially involved in symbiotic processes such as the presence of c-type lectins-coding genes, which are proteins that play a role in cell recognition among eukaryotes. Unigenes coding putative c-type lectin domains (CTLD) were found in the species bearing photosynthetic symbionts (A. elongata, Collozoum sp., and S. streptacantha) but not in the non-symbiotic one (A. scolymantha). More particularly, phylogenetic analyses group CTLDs from A. elongata and Collozoum sp. on a distinct branch from S. streptacantha CTLDs, which contained carbohydrate-binding motifs typically observed in other marine photosymbiosis. Our data suggest that similarly to other well-known marine photosymbiosis involving metazoans, the interactions of glycans with c-type lectins is likely involved in modulation of the host/symbiont specific recognition in Radiolaria. PMID:25852650

  1. How the marine biotoxins affect human health.

    Science.gov (United States)

    Morabito, Silvia; Silvestro, Serena; Faggio, Caterina

    2018-03-01

    Several marine microalgae produce dangerous toxins very damaging to human health, aquatic ecosystems and coastal resources. These Harmful Algal Blooms (HABs) in recent decades seem greatly increased regarding frequency, severity and biogeographical level, causing serious health risks as a consequence of the consumption of contaminated seafood. Toxins can cause various clinically described syndromes, characterised by a wide range of symptoms: amnesic (ASP), diarrhoetic (DSP), azaspirazid (AZP), neurotoxic (NSP) and paralytic (PSP) shellfish poisonings and ciguatera fish poisoning. The spread of HABs is probably a result of anthropogenic activities and climate change, that influence marine planktonic systems, including global warming, habitat modification, eutrophication and growth of exogenous species in response to human pressures. HABs are a worldwide matter that requests local solutions and international cooperation. This review supplies an overview of HAB phenomena, and, in particular, we describe the major consequences of HABs on human health.

  2. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high ... or by any means without permission in writing from the copyright holder. ..... Journal of Chemical Engineering Research and Design 82 ... Indian Ocean Marine Science Association Technical.

  3. Marine Biomedicine

    Science.gov (United States)

    Bang, Frederik B.

    1977-01-01

    Describes early scientific research involving marine invertebrate pathologic processes that may have led to new insights into human disease. Discussed are inquiries of Metchnikoff, Loeb, and Cantacuzene (immunolgic responses in sea stars, horseshoe crabs, and marine worms, respectively). Describes current research stemming from these early…

  4. Genome analysis of the freshwater planktonic Vulcanococcus limneticus sp. nov. reveals horizontal transfer of nitrogenase operon and alternative pathways of nitrogen utilization.

    Science.gov (United States)

    Di Cesare, Andrea; Cabello-Yeves, Pedro J; Chrismas, Nathan A M; Sánchez-Baracaldo, Patricia; Salcher, Michaela M; Callieri, Cristiana

    2018-04-16

    Many cyanobacteria are capable of fixing atmospheric nitrogen, playing a crucial role in biogeochemical cycling. Little is known about freshwater unicellular cyanobacteria Synechococcus spp. at the genomic level, despite being recognised of considerable ecological importance in aquatic ecosystems. So far, it has not been shown whether these unicellular picocyanobacteria have the potential for nitrogen fixation. Here, we present the draft-genome of the new pink-pigmented Synechococcus-like strain Vulcanococcus limneticus. sp. nov., isolated from the volcanic Lake Albano (Central Italy). The novel species Vulcanococcus limneticus sp. nov. falls inside the sub-cluster 5.2, close to the estuarine/marine strains in a maximum-likelihood phylogenetic tree generated with 259 marker genes with representatives from marine, brackish, euryhaline and freshwater habitats. V.limneticus sp. nov. possesses a complete nitrogenase and nif operon. In an experimental setup under nitrogen limiting and non-limiting conditions, growth was observed in both cases. However, the nitrogenase genes (nifHDK) were not transcribed, i.e., V.limneticus sp. nov. did not fix nitrogen, but instead degraded the phycobilisomes to produce sufficient amounts of ammonia. Moreover, the strain encoded many other pathways to incorporate ammonia, nitrate and sulphate, which are energetically less expensive for the cell than fixing nitrogen. The association of the nif operon to a genomic island, the relatively high amount of mobile genetic elements (52 transposases) and the lower observed GC content of V.limneticus sp. nov. nif operon (60.54%) compared to the average of the strain (68.35%) support the theory that this planktonic strain may have obtained, at some point of its evolution, the nif operon by horizontal gene transfer (HGT) from a filamentous or heterocystous cyanobacterium. In this study, we describe the novel species Vulcanococcus limneticus sp. nov., which possesses a complete nif operon for

  5. Influence of Ocean Acidification on a Natural Winter-to-Summer Plankton Succession: First Insights from a Long-Term Mesocosm Study Draw Attention to Periods of Low Nutrient Concentrations.

    Directory of Open Access Journals (Sweden)

    Lennart T Bach

    Full Text Available Every year, the oceans absorb about 30% of anthropogenic carbon dioxide (CO2 leading to a re-equilibration of the marine carbonate system and decreasing seawater pH. Today, there is increasing awareness that these changes-summarized by the term ocean acidification (OA-could differentially affect the competitive ability of marine organisms, thereby provoking a restructuring of marine ecosystems and biogeochemical element cycles. In winter 2013, we deployed ten pelagic mesocosms in the Gullmar Fjord at the Swedish west coast in order to study the effect of OA on plankton ecology and biogeochemistry under close to natural conditions. Five of the ten mesocosms were left unperturbed and served as controls (~380 μatm pCO2, whereas the others were enriched with CO2-saturated water to simulate realistic end-of-the-century carbonate chemistry conditions (~760 μatm pCO2. We ran the experiment for 113 days which allowed us to study the influence of high CO2 on an entire winter-to-summer plankton succession and to investigate the potential of some plankton organisms for evolutionary adaptation to OA in their natural environment. This paper is the first in a PLOS collection and provides a detailed overview on the experimental design, important events, and the key complexities of such a "long-term mesocosm" approach. Furthermore, we analyzed whether simulated end-of-the-century carbonate chemistry conditions could lead to a significant restructuring of the plankton community in the course of the succession. At the level of detail analyzed in this overview paper we found that CO2-induced differences in plankton community composition were non-detectable during most of the succession except for a period where a phytoplankton bloom was fueled by remineralized nutrients. These results indicate: (1 Long-term studies with pelagic ecosystems are necessary to uncover OA-sensitive stages of succession. (2 Plankton communities fueled by regenerated nutrients may be

  6. Influence of Ocean Acidification on a Natural Winter-to-Summer Plankton Succession: First Insights from a Long-Term Mesocosm Study Draw Attention to Periods of Low Nutrient Concentrations

    Science.gov (United States)

    Taucher, Jan; Boxhammer, Tim; Ludwig, Andrea; Achterberg, Eric P.; Algueró-Muñiz, María; Anderson, Leif G.; Bellworthy, Jessica; Büdenbender, Jan; Czerny, Jan; Ericson, Ylva; Esposito, Mario; Fischer, Matthias; Haunost, Mathias; Hellemann, Dana; Horn, Henriette G.; Hornick, Thomas; Meyer, Jana; Sswat, Michael; Zark, Maren; Riebesell, Ulf

    2016-01-01

    Every year, the oceans absorb about 30% of anthropogenic carbon dioxide (CO2) leading to a re-equilibration of the marine carbonate system and decreasing seawater pH. Today, there is increasing awareness that these changes–summarized by the term ocean acidification (OA)–could differentially affect the competitive ability of marine organisms, thereby provoking a restructuring of marine ecosystems and biogeochemical element cycles. In winter 2013, we deployed ten pelagic mesocosms in the Gullmar Fjord at the Swedish west coast in order to study the effect of OA on plankton ecology and biogeochemistry under close to natural conditions. Five of the ten mesocosms were left unperturbed and served as controls (~380 μatm pCO2), whereas the others were enriched with CO2-saturated water to simulate realistic end-of-the-century carbonate chemistry conditions (~760 μatm pCO2). We ran the experiment for 113 days which allowed us to study the influence of high CO2 on an entire winter-to-summer plankton succession and to investigate the potential of some plankton organisms for evolutionary adaptation to OA in their natural environment. This paper is the first in a PLOS collection and provides a detailed overview on the experimental design, important events, and the key complexities of such a “long-term mesocosm” approach. Furthermore, we analyzed whether simulated end-of-the-century carbonate chemistry conditions could lead to a significant restructuring of the plankton community in the course of the succession. At the level of detail analyzed in this overview paper we found that CO2-induced differences in plankton community composition were non-detectable during most of the succession except for a period where a phytoplankton bloom was fueled by remineralized nutrients. These results indicate: (1) Long-term studies with pelagic ecosystems are necessary to uncover OA-sensitive stages of succession. (2) Plankton communities fueled by regenerated nutrients may be more

  7. UV-MAOR - UV-B-specific reactions of marine planktons. Final report

    International Nuclear Information System (INIS)

    Gerbersdorf, S.; Steeger, H.U.; Schubert, H.; Paul, R.J.

    2001-02-01

    An initial finding of the studies performed here is that under certain hydrogeographic and meteorological conditions vertical migration of phyto and zooplankton also occurs in near-shore parts of flat waters. The vertical migration of phytoplankton was induced by exceeding the threshold intensity of approx. 300 μmol photons m -2 s -1 (PAR). However, the sigmoidal course of the reaction of phytoplankton suggests that it is apparently not the PAR intensity alone but the ratio of PAR/UV-B which governs the downward migration. However, the present body of data is not sufficient for a definitive statistical verification of this finding. Light irradiation resulted in an increased density and thus in a reduced buoyancy of flounder spawn. This effect was primarily dependent on intensity and did not increase upon irradiation with UV-B, UV-A and PAR as compared to UV-A and PAR alone. Irradiation with UV-B did not influence the substance located in the vitellus whose absorption maximum was found to be 300 nm, probably gadusol

  8. Feeding, growth, and food conversion of the marine planktonic copepod Calanus helgolandicus

    Energy Technology Data Exchange (ETDEWEB)

    Paffenhoefer, G.A.

    1976-01-01

    Food intake, growth rate, and food conversion of nauplii, copepodids, and adult females of Calanus helgolandicus were investigated experimentally at 15/sup 0/C. The diatom Lauderia borealis and the dinoflagellates Gonyaulax polyedra, Gymnodinium splendens, and Prorocentrum micans were offered separately as food at concentrations ranging from 41 to 101 ..mu..g C liter/sup -1/. Amounts of food ingested differed with concentration and species. Daily exponential growth rates were highest for nauplii and young copepodids (k = 0.29 to 0.41) and decreased gradually with increasing age of the copepods to k = 0.02. Gross growth efficiency changed during the different juvenile life periods of the copepod with maximum values for the period CdI to CIII. Feeding on L. borealis at lower food concentrations resulted in an increase in gross growth efficiency. (auth)

  9. Distribution of planktonic foraminifera in waters of the submarine coral banks in southeast Arabian Sea during winter

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, K.K.; Jayalakshmy, K.V.; Balasubramanian, T.

    Twentyfive species of planktonic foraminifera are recorded from 36 plankton tows collected from waters of the submerged coral banks- Bassas de Pedro, Sesostris and Cora Divh-located at northern end of the Laccadive group of islands in southeastern...

  10. Daytime pelagic schooling behaviour and relationships with plankton patch distribution in the Sicily Strait (Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    B. Patti

    2011-06-01

    Full Text Available In this study, hydroacoustic data collected with a scientific echosounder working at two frequencies (38 and 120 kHz over the continental shelf off the southern Sicilian coast were used in order to investigate the relationship between fish schools and plankton patches. Specifically, image analysis algorithms were applied to raw echograms in order to detect and characterise pelagic fish schools and plankton aggregations, considered as a proxy of food availability. The relationship was first investigated using estimated total plankton biomass over the whole water column and, second, by dividing the study area into three sub-regions and further distinguishing plankton patches between the surface and the bottom. In the relatively lower plankton abundance areas of Zone 1 (northern sector of the study area, results showed an inverse relationship between the biomass (and density of fish schools and the biomass of co-occurring plankton patches located close to the bottom. Instead, over the Sicilian-Maltese shelf (Zone 3, characterised by higher plankton abundances, a direct relationship was found when using plankton data from the whole water column. The observed difference between Zones 1 and 3 is probably due to diverse dominant fish species in the two sub-regions.

  11. [Interdependence of plankton spatial distribution and plancton biomass temporal oscillations: mathematical simulation].

    Science.gov (United States)

    Medvedinskiĭ, A B; Tikhonova, I A; Li, B L; Malchow, H

    2003-01-01

    The dynamics of aquatic biological communities in a patchy environment is of great interest in respect to interrelations between phenomena at various spatial and time scales. To study the complex plankton dynamics in relation to variations of such a biologically essential parameter as the fish predation rate, we use a simple reaction-diffusion model of trophic interactions between phytoplankton, zooplankton, and fish. We suggest that plankton is distributed between two habitats one of which is fish-free due to hydrological inhomogeneity, while the other is fish-populated. We show that temporal variations in the fish predation rate do not violate the strong correspondence between the character of spatial distribution of plankton and changes of plankton biomass in time: regular temporal oscillations of plankton biomass correspond to large-scale plankton patches, while chaotic oscillations correspond to small-scale plankton patterns. As in the case of the constant fish predation rate, the chaotic plankton dynamics is characterized by coexistence of the chaotic attractor and limit cycle.

  12. Covariance among North Sea nutrient and climate drivers: consequences for plankton dynamics.

    NARCIS (Netherlands)

    McQuatters-Gollop, A.; Vermaat, J.E.

    2011-01-01

    Regime shift and principal component analysis of a spatially disaggregated database capturing time-series of climatic, nutrient and plankton variables in the North Sea revealed considerable covariance between groups of ecosystem indicators. Plankton and climate time-series span the period 1958-2003,

  13. Temporal changes in plankton of the North Sea: community shfits and environmental drivers

    NARCIS (Netherlands)

    Alvarez-Fernandez, S.; Lindeboom, H.J.; Meesters, H.W.G.

    2012-01-01

    This paper analyses long-term and seasonal changes in the North Sea plankton community during the period 1970 to 2008. Based on Continuous Plankton Recorder (CPR) data covering 38 yr, major changes in both phytoplankton and zooplankton abundance and community structure were identified. Regime

  14. Living planktonic foraminifera during the late summer monsoon period in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Guptha, M.V.S.; Mohan, R.; Muralinath, A.S.

    with deepening of the mixed layer, since this species preferentially dwells in nutrient-rich upwelling waters. The population density of planktonic foraminifera ranges between 31 and 185 specimens per 10@u-3@@m@u3@@. The low absolute numbers of planktonic...

  15. Short-term effects of medetomidine on photosynthesis and protein synthesis in periphyton, epipsammon and plankton communities in relation to predicted environmental concentrations.

    Science.gov (United States)

    Ohlauson, Cecilia; Eriksson, Karl Martin; Blanck, Hans

    2012-01-01

    Medetomidine is a new antifouling substance, highly effective against barnacles. As part of a thorough ecotoxicological evaluation of medetomidine, its short-term effects on algal and bacterial communities were investigated and environmental concentrations were predicted with the MAMPEC model. Photosynthesis and bacterial protein synthesis for three marine communities, viz. periphyton, epipsammon and plankton were used as effect indicators, and compared with the predicted environmental concentrations (PECs). The plankton community showed a significant decrease in photosynthetic activity of 16% at 2 mg l⁻¹ of medetomidine, which was the only significant effect observed. PECs were estimated for a harbor, shipping lane and marina environment using three different model scenarios (MAMPEC default, Baltic and OECD scenarios). The highest PEC of 57 ng l⁻¹, generated for a marina with the Baltic scenario, was at least 10,000-fold lower than the concentration that significantly decreased photosynthetic activity. It is concluded that medetomidine does not cause any acute toxic effects on bacterial protein synthesis and only small acute effects on photosynthesis at high concentrations in marine microbial communities. It is also concluded that the hazard from medetomidine on these processes is low since the effect levels are much lower than the highest PEC.

  16. Ecology of planktonic foraminifera and their symbiotic algae

    International Nuclear Information System (INIS)

    Gastrich, M.D.

    1986-01-01

    Two types of symbiotic algae occurred abundantly and persistently in the cytoplasm of several species of planktonic Foraminifera over a ten year period in different tropical and subtropical areas of the North Atlantic Ocean. These planktonic Foraminifera host species consistently harbored either dinoflagellates or a newly described minute coccoid algal type. There appeared to be a specific host-symbiont relationship in these species regardless of year, season or geographic locality. The larger ovoid dinoflagellates (Pyrrhophycophyta) occur in the spinose species Globigerinoides ruber, Globigerinoides sacculifer, G. conglobatus and Orbulina universa. The smaller alga, from 1.5 to 3.5 um in diameter, occurs in one spinose species Globigerinella aequilateralis and also in the non-spinose species Globigerinita glutinata, Globoquadrina dutertrei, Globorotalia menardii, Globorotalia cristata, Globorotalia inflata, Candeina nitida, in various juvenile specimens and at all seasons except the winter months in Pulleniatina obliquiloculata and Globorotalial hirsuta. Controlled laboratory studies indicated a significant C incorporation into the host cytoplasm and inorganic calcium carbonate test of Globigerinoides ruber. During incubation for up to two hours, the 14 C uptake into the cytoplasm and test in the light was significantly greater than uptake in the dark by living specimens or by dead foraminifers. There appears to be light-enhanced uptake of 14 C into the test with dinoflagellate photosynthesis contributing to host calcification. In culture, symbiotic algae were observed to survive for the duration of the lifespan of their hosts

  17. Salinity controls on Na incorporation in Red Sea planktonic foraminifera

    Science.gov (United States)

    Mezger, E. M.; de Nooijer, L. J.; Boer, W.; Brummer, G. J. A.; Reichart, G. J.

    2016-12-01

    Whereas several well-established proxies are available for reconstructing past temperatures, salinity remains challenging to assess. Reconstructions based on the combination of (in)organic temperature proxies and foraminiferal stable oxygen isotopes result in relatively large uncertainties, which may be reduced by application of a direct salinity proxy. Cultured benthic and planktonic foraminifera showed that Na incorporation in foraminiferal shell calcite provides a potential independent proxy for salinity. Here we present the first field calibration of such a potential proxy. Living planktonic foraminiferal specimens from the Red Sea surface waters were collected and analyzed for their Na/Ca content using laser ablation quadrupole inductively coupled plasma mass spectrometry. Using the Red Sea as a natural laboratory, the calibration covers a broad range of salinities over a steep gradient within the same water mass. For both Globigerinoides ruber and Globigerinoides sacculifer calcite Na/Ca increases with salinity, albeit with a relatively large intraspecimen and interspecimen variability. The field-based calibration is similar for both species from a salinity of 36.8 up to 39.6, while values for G. sacculifer deviate from this trend in the northernmost transect. It is hypothesized that the foraminifera in the northernmost part of the Red Sea are (partly) expatriated and hence should be excluded from the Na/Ca-salinity calibration. Incorporation of Na in foraminiferal calcite therefore provides a potential proxy for salinity, although species-specific calibrations are still required and more research on the effect of temperature is needed.

  18. Effects of xenobiotic compounds on the cell activities of Euplotes crassus, a single-cell eukaryotic test organism for the study of the pollution of marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Trielli, Francesca [Dipartimento per lo Studio del Territorio e delle sue Risorse, University of Genoa Corso Europa, 26, I-16132 Genova (Italy); Amaroli, Andrea [Dipartimento per lo Studio del Territorio e delle sue Risorse, University of Genoa Corso Europa, 26, I-16132 Genova (Italy); Sifredi, Francesca [Dipartimento per lo Studio del Territorio e delle sue Risorse, University of Genoa Corso Europa, 26, I-16132 Genova (Italy); Marchi, Barbara [Dipartimento di Biologia, University of Genoa, Viale Benedetto XV, 5, I-16132 Genova (Italy); Falugi, Carla [Dipartimento di Biologia, University of Genoa, Viale Benedetto XV, 5, I-16132 Genova (Italy); Corrado, Maria Umberta Delmonte [Dipartimento per lo Studio del Territorio e delle sue Risorse, University of Genoa Corso Europa, 26, I-16132 Genova (Italy)]. E-mail: corrado@dipteris.unige.it

    2007-08-01

    It is now widely accepted that assays with protists are relevant to be exploited for the study of environmental modifications due to the presence of xenobiotic compounds. In this work, the possibility of utilizing Euplotes crassus, an interstitial marine ciliate, for the pre-chemical screening of estuarine and coastal sediments was evaluated. For this purpose, the effects of exposure to pollutants were tested on the cell viability, fission rate and lysosomal membrane stability of E. crassus. The following toxicants were used: an organophosphate (OP) pesticide, basudin, an organochlorine hydrocarbon, AFD25, both employed especially for pest control in agricultural sites, a toxic heavy metal, mercury (HgCl{sub 2}) and different mixtures of the above-mentioned compounds, as they might occur in polluted sites. Exposure to these toxicants affected cell viability at concentrations ranging from 96.6 to 966 x 10{sup 3} mg/l for basudin, from 3.3 to 33 x 10{sup 3} mg/l for AFD25 and from 0.1 to 1 mg/l for HgCl{sub 2}. A significant decrease in the mean fission rate (P < 0.001) was found after 24- or 48-h exposures to 9.66 mg/l basudin, 3.3 mg/l AFD25 and 7 x 10{sup -2} mg/l HgCl{sub 2}. Furthermore, the Neutral Red Retention Assay showed a significant decrease in lysosomal membrane stability after 60- and 120-min exposures to AFD25 (33 mg/l) and HgCl{sub 2} (0.33 mg/l). In addition, as it is well-known that the inhibition of acetylcholinesterase activity represents a specific biomarker of exposure to OP and carbamate pesticides in higher organisms, initially the presence of cholinesterase (ChE) activity was detected in E. crassus, using cytochemical, spectrophotometric and electrophoretic methods. Afterwards, this enzyme activity was characterized spectrophotometrically by its sensitivity to specific ChE inhibitors and to variations in pH and temperature. The ChE activity was inhibited significantly by basudin- (9.66 and 96.6 mg/l) or AFD25-exposure (3.3 mg/l). Conversely

  19. The community structure and seasonal dynamics of plankton in Bange Lake, northern Tibet, China

    Science.gov (United States)

    Zhao, Wen; Zhao, Yuanyi; Wang, Qiaohan; Zheng, Mianping; Wei, Jie; Wang, Shan

    2016-11-01

    The seasonal variations in biomass, abundance, and species composition of plankton in relation to hydrography were studied in the saline Bange Lake, northern Tibet, China. Sampling was carried out between one to three times per month from May 2001 to July 2002. Salinity ranged from 14 to 146. The air and water temperature exhibited a clear seasonal pattern, and mean annual temperatures were approximately 4.8°C and 7.3°C, respectively. The lowest water temperature occurred in winter from December to March at -2°C and the highest in June and July at 17.7°C. Forty-one phytoplankton taxa, 21 zooplankton, and 5 benthic or facultative zooplankton were identified. The predominant phytoplankton species were Gloeothece linearis, Oscillatoria tenuis, Gloeocapsa punctata, Ctenocladus circinnatus, Dunaliella salina, and Spirulina major. The predominant zooplankton species included Holophrya actra, Brachionus plicatilis, Daphniopsis tibetana, Cletocamptus dertersi, and Arctodiaptomus salinus. The mean annual total phytoplankton density and biomass for the entire lake were 4.52×107 cells/L and 1.60 mg/L, respectively. The annual mean zooplankton abundance was 52, 162, 322, and 57, 144 ind./L, in the three sublakes. The annual mean total zooplankton biomass in Lakes 1-3 was 1.23, 9.98, and 2.13 mg/L, respectively. The annual mean tychoplankton abundances in Bg1, 2, and 3 were 47, 67, and 654 ind./L. The annual mean tychoplankton biomass was 2.36, 0.16, and 2.03 mg/L, respectively. The zooplankton biomass (including tychoplankton) in the lake was 9.11 mg/L. The total number of plankton species in the salt lake was significantly negatively correlated with salinity.

  20. A Simple yet Accurate Method for the Estimation of the Biovolume of Planktonic Microorganisms.

    Science.gov (United States)

    Saccà, Alessandro

    2016-01-01

    Determining the biomass of microbial plankton is central to the study of fluxes of energy and materials in aquatic ecosystems. This is typically accomplished by applying proper volume-to-carbon conversion factors to group-specific abundances and biovolumes. A critical step in this approach is the accurate estimation of biovolume from two-dimensional (2D) data such as those available through conventional microscopy techniques or flow-through imaging systems. This paper describes a simple yet accurate method for the assessment of the biovolume of planktonic microorganisms, which works with any image analysis system allowing for the measurement of linear distances and the estimation of the cross sectional area of an object from a 2D digital image. The proposed method is based on Archimedes' principle about the relationship between the volume of a sphere and that of a cylinder in which the sphere is inscribed, plus a coefficient of 'unellipticity' introduced here. Validation and careful evaluation of the method are provided using a variety of approaches. The new method proved to be highly precise with all convex shapes characterised by approximate rotational symmetry, and combining it with an existing method specific for highly concave or branched shapes allows covering the great majority of cases with good reliability. Thanks to its accuracy, consistency, and low resources demand, the new method can conveniently be used in substitution of any extant method designed for convex shapes, and can readily be coupled with automated cell imaging technologies, including state-of-the-art flow-through imaging devices.

  1. A Simple yet Accurate Method for the Estimation of the Biovolume of Planktonic Microorganisms.

    Directory of Open Access Journals (Sweden)

    Alessandro Saccà

    Full Text Available Determining the biomass of microbial plankton is central to the study of fluxes of energy and materials in aquatic ecosystems. This is typically accomplished by applying proper volume-to-carbon conversion factors to group-specific abundances and biovolumes. A critical step in this approach is the accurate estimation of biovolume from two-dimensional (2D data such as those available through conventional microscopy techniques or flow-through imaging systems. This paper describes a simple yet accurate method for the assessment of the biovolume of planktonic microorganisms, which works with any image analysis system allowing for the measurement of linear distances and the estimation of the cross sectional area of an object from a 2D digital image. The proposed method is based on Archimedes' principle about the relationship between the volume of a sphere and that of a cylinder in which the sphere is inscribed, plus a coefficient of 'unellipticity' introduced here. Validation and careful evaluation of the method are provided using a variety of approaches. The new method proved to be highly precise with all convex shapes characterised by approximate rotational symmetry, and combining it with an existing method specific for highly concave or branched shapes allows covering the great majority of cases with good reliability. Thanks to its accuracy, consistency, and low resources demand, the new method can conveniently be used in substitution of any extant method designed for convex shapes, and can readily be coupled with automated cell imaging technologies, including state-of-the-art flow-through imaging devices.

  2. LC-MS-MS aboard ship: tandem mass spectrometry in the search for phycotoxins and novel toxigenic plankton from the North Sea.

    Science.gov (United States)

    Krock, Bernd; Tillmann, Urban; John, Uwe; Cembella, Allan

    2008-11-01

    Phycotoxins produced by various species of toxigenic microalgae occurring in the plankton are a global threat to the security of seafood resources and the health of humans and coastal marine ecosystems. This has necessitated the development and application of advanced methods in liquid chromatography coupled to mass spectrometry (LC-MS) for monitoring of these compounds, particularly in plankton and shellfish. Most such chemical analyses are conducted in land-based laboratories on stored samples, and thus much information on the near real-time biogeographical distribution and dynamics of phycotoxins in the plankton is unavailable. To resolve this problem, we conducted ship-board analysis of a broad spectrum of phycotoxins collected directly from the water column on an oceanographic cruise along the North Sea coast of Scotland, Norway, and Denmark. We equipped the ship with a triple-quadrupole linear ion-trap hybrid LC-MS-MS system for detection and quantitative analysis of toxins, such as domoic acid, gymnodimine, spirolides, dinophysistoxins, okadaic acid, pectenotoxins, yessotoxins, and azaspiracids (AZAs). We focused particular attention on the detection of AZAs, a group of potent nitrogenous polyether toxins, because the culprit species associated with the occurrence of these toxins in shellfish has been controversial. Marine toxins were analyzed directly from size-fractionated plankton net tows (20 microm mesh size) and Niskin bottle samples from discrete depths, after rapid methanolic extraction but without any further clean-up. Almost all expected phycotoxins were detected in North Sea plankton samples, with domoic acid and 20-methylspirolide G being most abundant. Although AZA was the least abundant of these toxins, the high sensitivity of the LC-MS-MS enabled detailed quantification, indicating that the highest amounts of AZA-1 were present in the southern Skagerrak in the 3-20 microm size-fraction. The direct on-board toxin measurements enabled isolation

  3. High in vitro antimicrobial activity of β-peptoid-peptide hybrid oligomers against planktonic and biofilm cultures of Staphylococcus epidermidis

    DEFF Research Database (Denmark)

    Liu, Yang; Knapp, Kolja Michael; Yang, Liang

    2013-01-01

    antibiotic vancomycin. Susceptibility and time-kill assays were performed to investigate activity against planktonic cells, whilst confocal laser scanning microscopy was used to investigate the dynamics of the activity against cells within biofilms. All tested peptidomimetics were bactericidal against both...... exponentially growing and stationary-phase S. epidermidis cells with similar killing kinetics. At the minimum inhibitory concentration (MIC), all peptidomimetics inhibited biofilm formation, whilst peptidomimetics at concentrations above the MIC (80-160μg/mL) eradicated young (6-h-old) biofilms, whilst even...... higher concentrations were needed to eradicate mature (24-h-old) biofilms completely. Chiral and guanidinylated hybrids exhibited the fastest killing effects against slow-growing cells and had more favourable antibiofilm properties than analogues only containing lysine or lacking chirality in the β...

  4. Pharmacological modulation of human mesenchymal stem cell chondrogenesis by a chemically oversulfated polysaccharide of marine origin: potential application to cartilage regenerative medicine.

    Science.gov (United States)

    Merceron, Christophe; Portron, Sophie; Vignes-Colombeix, Caroline; Rederstorff, Emilie; Masson, Martial; Lesoeur, Julie; Sourice, Sophie; Sinquin, Corinne; Colliec-Jouault, Sylvia; Weiss, Pierre; Vinatier, Claire; Guicheux, Jérôme

    2012-03-01

    Mesenchymal stem cells (MSCs) are considered as an attractive source of cells for cartilage engineering due to their availability and capacity for expansion and multipotency. Differentiation of MSC into chondrocytes is crucial to successful cartilage regeneration and can be induced by various biological agents, including polysaccharides that participate in many biological processes through interactions with growth factors. Here, we hypothesize that growth factor-induced differentiation of MSC can be increased by chemically oversulfated marine polysaccharides. To test our hypothesis, human adipose tissue-derived MSCs (hATSCs) were cultured in pellets with transforming growth factor (TGF)-β1-supplemented chondrogenic medium containing either the polysaccharide GY785 DR or its oversulfated isoform GY785 DRS. Chondrogenesis was monitored by the measurement of pellet volume, quantification of DNA, collagens, glycosaminoglycans (GAGs), and immunohistological staining. Our data revealed an increase in pellet volume, total collagens, and GAG production with GY785 DRS and chondrogenic medium. The enhanced chondrogenic differentiation of hATSC was further demonstrated by the increased expression of several chondrogenic markers by real-time reverse transcription-polymerase chain reaction. In addition, surface plasmon resonance analyses revealed that TGF-β1 bound GY785 DRS with higher affinity compared to GY785 DR. In association with TGF-β1, GY785 DRS was found to upregulate the phosphorylation of extracellular signal-regulated kinase 1/2, indicating that oversulfated polysaccharide affects the mitogen activated protein kinase signaling activity. These results demonstrate the upregulation of TGF-β1-dependent stem cell chondrogenesis by a chemically oversulfated marine polysaccharide. This polysaccharide of marine origin is easily producible and therefore could be considered a promising additive to drive efficient and reliable MSC chondrogenesis for cartilage tissue

  5. Marine Cyclotripeptide X-13 Promotes Angiogenesis in Zebrafish and Human Endothelial Cells via PI3K/Akt/eNOS Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Zhong Pei

    2012-06-01

    Full Text Available Cyclotripeptide X-13 is a core of novel marine compound xyloallenoide A isolated from mangrove fungus Xylaria sp. (no. 2508. We found that X-13 dose-dependently induced angiogenesis in zebrafish embryos and in human endothelial cells, which was accompanied by increased phosphorylation of eNOS and Akt and NO release. Inhibition of PI3K/Akt/eNOS by LY294002 or l-NAME suppressed X-13-induced angiogenesis. The present work demonstrates that X-13 promotes angiogenesis via PI3K/Akt/eNOS pathways.

  6. One carbon metabolism in SAR11 pelagic marine bacteria.

    Directory of Open Access Journals (Sweden)

    Jing Sun

    Full Text Available The SAR11 Alphaproteobacteria are the most abundant heterotrophs in the oceans and are believed to play a major role in mineralizing marine dissolved organic carbon. Their genomes are among the smallest known for free-living heterotrophic cells, raising questions about how they successfully utilize complex organic matter with a limited metabolic repertoire. Here we show that conserved genes in SAR11 subgroup Ia (Candidatus Pelagibacter ubique genomes encode pathways for the oxidation of a variety of one-carbon compounds and methyl functional groups from methylated compounds. These pathways were predicted to produce energy by tetrahydrofolate (THF-mediated oxidation, but not to support the net assimilation of biomass from C1 compounds. Measurements of cellular ATP content and the oxidation of (14C-labeled compounds to (14CO(2 indicated that methanol, formaldehyde, methylamine, and methyl groups from glycine betaine (GBT, trimethylamine (TMA, trimethylamine N-oxide (TMAO, and dimethylsulfoniopropionate (DMSP were oxidized by axenic cultures of the SAR11 strain Ca. P. ubique HTCC1062. Analyses of metagenomic data showed that genes for C1 metabolism occur at a high frequency in natural SAR11 populations. In short term incubations, natural communities of Sargasso Sea microbial plankton expressed a potential for the oxidation of (14C-labeled formate, formaldehyde, methanol and TMAO that was similar to cultured SAR11 cells and, like cultured SAR11 cells, incorporated a much larger percentage of pyruvate and glucose (27-35% than of C1 compounds (2-6% into biomass. Collectively, these genomic, cellular and environmental data show a surprising capacity for demethylation and C1 oxidation in SAR11 cultures and in natural microbial communities dominated by SAR11, and support the conclusion that C1 oxidation might be a significant conduit by which dissolved organic carbon is recycled to CO(2 in the upper ocean.

  7. Foraging strategy switch of a top marine predator according to seasonal resource differences

    Directory of Open Access Journals (Sweden)

    Malcolm Daniel O'Toole

    2015-04-01

    Full Text Available The spatio-temporal variability in marine resources influences the foraging behaviour and success of top marine predators. However, little is known about the links between these animals and ocean productivity, specifically, how plankton density influences their foraging behaviour. Southern elephant seals (Mirounga leonina have two annual at-sea foraging trips: a two month post-breeding foraging trip (Nov – Jan that coincides with elevated summer productivity; and an eight month post-moulting foraging trip (Feb – Oct over winter, when productivity is low. Physical parameters are often used to describe seal habitat, whereas information about important biological parameters is lacking. We used electronic tags deployed on elephant seals during both trips to determine their movement and foraging behaviour. The tags also recorded light, which measured the bio-optical properties of the water column, the bulk of which is presumably influenced by phytoplankton. We investigated the relationship between plankton density and seal foraging behaviour; comparing trends between summer and winter trips. We found a positive relationship between plankton density and foraging behaviour, which did not vary seasonally. We propose that profitable concentrations of seal prey are more likely to coincide with planktonic aggregations, but we also acknowledge that trophic dynamics may shift in response to seasonal trends in productivity. Seal prey (mid-trophic level and plankton (lower-trophic level are expected to overlap in space and time during summer trips when peak phytoplankton blooms occur. In contrast, aggregated patches of lower trophic levels are likely to be more dispersed during winter trips when plankton density is considerably lower and heterogeneous. These results show that southern elephant seals are able to exploit prey resources in different ways throughout the year as demonstrated by the variation observed between seal foraging behaviour and trophic

  8. Marine Science

    African Journals Online (AJOL)

    between humans and the coastal and marine environment. ... The journal has a new and more modern layout, published online only, and the editorial .... the population structure of Platorchestia fayetta sp. nov. and their interaction with the.

  9. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the ... tidal height and amplitude can influence light penetra- ...... to environmental parameters in cage culture area of Sepanggar Bay, Malaysia.

  10. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ... consist of special issues on major events or important thematic issues. ... of sources, including plant and animal by- products.

  11. Marine biotoxins

    National Research Council Canada - National Science Library

    2004-01-01

    ... (ciguatera fish poisoning). It discusses in detail the causative toxins produced by marine organisms, chemical structures and analytical methods, habitat and occurrence of the toxin-producing organisms, case studies and existing regulations...

  12. Marine Science

    African Journals Online (AJOL)

    pod diversity and distribution are important especially since studies on marine biodiversity are scarce .... Method II –. Zamoum &. Furla (2012) protocol. Method III. – Geist et al (2008) protocol ..... Public Library Of Science One 8: 51273.

  13. Marine pollution

    International Nuclear Information System (INIS)

    Clark, R.B.

    1992-01-01

    The effects of petroleum, waste materials, halogenated hydrocarbons, radioactivity and heat on the marine ecosystem, the fishing industry and human health are discussed using the example of the North Sea. (orig.) [de

  14. Marine Science

    African Journals Online (AJOL)

    No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form ... to optimize nucleic acid extraction protocols from marine gastropods, present an ...... Greenfield., Gomez E, Harvell CD, Sale PF, Edwards.

  15. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high ..... circulation patterns include the nutrient-rich Somali ...... matical Structures in Computer Science 24: e240311.

  16. Marine insects

    National Research Council Canada - National Science Library

    Cheng, Lanna

    1976-01-01

    .... Not only are true insects, such as the Collembola and insect parasites of marine birds and mammals, considered, but also other kinds of intertidal air-breathing arthropods, notably spiders, scorpions...

  17. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue .... shell growth is adversely affected. ... local stressors in action, such as ocean acidification ..... that the distribution of many intertidal sessile animals.

  18. Spaceborne Lidar in the Study of Marine Systems.

    Science.gov (United States)

    Hostetler, Chris A; Behrenfeld, Michael J; Hu, Yongxiang; Hair, Johnathan W; Schulien, Jennifer A

    2018-01-03

    Satellite passive ocean color instruments have provided an unbroken ∼20-year record of global ocean plankton properties, but this measurement approach has inherent limitations in terms of spatial-temporal sampling and ability to resolve vertical structure within the water column. These limitations can be addressed by coupling ocean color data with measurements from a spaceborne lidar. Airborne lidars have been used for decades to study ocean subsurface properties, but recent breakthroughs have now demonstrated that plankton properties can be measured with a satellite lidar. The satellite lidar era in oceanography has arrived. Here, we present a review of the lidar technique, its applications in marine systems, a perspective on what can be accomplished in the near future with an ocean- and atmosphere-optimized satellite lidar, and a vision for a multiplatform virtual constellation of observational assets that would enable a three-dimensional reconstruction of global ocean ecosystems.

  19. Spaceborne Lidar in the Study of Marine Systems

    Science.gov (United States)

    Hostetler, Chris A.; Behrenfeld, Michael J.; Hu, Yongxiang; Hair, Johnathan W.; Schulien, Jennifer A.

    2018-01-01

    Satellite passive ocean color instruments have provided an unbroken ˜20-year record of global ocean plankton properties, but this measurement approach has inherent limitations in terms of spatial-temporal sampling and ability to resolve vertical structure within the water column. These limitations can be addressed by coupling ocean color data with measurements from a spaceborne lidar. Airborne lidars have been used for decades to study ocean subsurface properties, but recent breakthroughs have now demonstrated that plankton properties can be measured with a satellite lidar. The satellite lidar era in oceanography has arrived. Here, we present a review of the lidar technique, its applications in marine systems, a perspective on what can be accomplished in the near future with an ocean- and atmosphere-optimized satellite lidar, and a vision for a multiplatform virtual constellation of observational assets that would enable a three-dimensional reconstruction of global ocean ecosystems.

  20. Anti-biofilm activities from marine cold adapted bacteria against staphylococci and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Rosanna ePapa

    2015-12-01

    Full Text Available Microbial biofilms have great negative impacts on the world’s economy and pose serious problems to industry, public health and medicine. The interest in the development of new approaches for the prevention and treatment of bacterial adhesion and biofilm formation has increased. Since, bacterial pathogens living in biofilm induce persistent chronic infections due to the resistance to antibiotics and host immune system. A viable approach should target adhesive properties without affecting bacterial vitality in order to avoid the appearance of resistant mutants. Many bacteria secrete anti-biofilm molecules that function in regulating biofilm architecture or mediating the release of cells from it during the dispersal stage of biofilm life cycle. Cold-adapted marine bacteria represent an untapped reservoir of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules.The anti-biofilm activity of cell-free supernatants derived from sessile and planktonic cultures of cold-adapted bacteria belonging to Pseudoalteromonas, Psychrobacter and Psychromonas species were tested against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa strains. Reported results demonstrate that we have selected supernatants, from cold-adapted marine bacteria, containing non-biocidal agents able to destabilize biofilm matrix of all tested pathogens without killing cells. A preliminary physico-chemical characterization of supernatants was also performed, and these analyses highlighted the presence of molecules of different nature that act by inhibiting biofilm formation. Some of them are also able to impair the initial attachment of the bacterial cells to the surface, thus likely containing molecules acting as anti-biofilm surfactant molecules.The described ability of cold-adapted bacteria to produce effective anti-biofilm molecules paves the way to further characterization of the most promising molecules

  1. Potential of medicinal plants from the Brazilian semi-arid region (Caatinga) against Staphylococcus epidermidis planktonic and biofilm lifestyles.

    Science.gov (United States)

    Trentin, Danielle da Silva; Giordani, Raquel Brandt; Zimmer, Karine Rigon; da Silva, Alexandre Gomes; da Silva, Márcia Vanusa; Correia, Maria Tereza Dos Santos; Baumvol, Israel Jacob Rabin; Macedo, Alexandre José

    2011-09-01

    Medicinal plants from the Caatinga, a Brazilian xeric shrubland, are used in folk medicine to treat infections. These ethnopharmacological data can contribute to obtaining new antimicrobial/antibiofilm extracts and natural product prototypes for the development of new drugs. The aim of this study was to investigate the antibiofilm and antibacterial activities of 45 aqueous extracts from 24 Caatinga plant species. The effect of aqueous extracts on planktonic cells and on biofilm formation by Staphylococcus epidermidis was studied by the OD(600) absorbance and by the crystal violet assay, respectively. Scanning electron microscopy (SEM) was used to generate comparative images of extract-treated and untreated biofilms. Chromatographic analyses were performed to characterize the active extracts. The in vitro screening, at 0.4 mg/mL and 4.0mg/mL, showed 20 plants effective in preventing biofilm formation and 13 plants able to inhibit planktonic bacterial growth. SEM images demonstrated distinct profiles of bacterial adhesion, matrix production and cell morphology according to different treatments and surfaces. The phytochemical analysis of the selected active extracts indicates the polyphenols, coumarins, steroids and terpenes as possible active compounds. This study describes the first antibiofilm and antibacterial screening of Caatinga plants against S. epidermidis. The evaluation presented in this study confirms several ethnopharmacological reports and can be utilized to identify new antibiofilm and antibacterial products against S. epidermidis from traditional Brazilian medicine. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Attached and planktonic Listeria monocytogenes global proteomic responses and associated influence of strain genetics and temperature.

    Science.gov (United States)

    Mata, Marcia M; da Silva, Wladimir P; Wilson, Richard; Lowe, Edwin; Bowman, John P

    2015-02-06

    Contamination of industrial and domestic food usage environments by the attachement of bacterial food-borne pathogen Listeria monocytogenes has public health and economic implications. Comprehensive proteomics experiments using label-free liquid chromatography/tandem mass spectrometry were used to compare the proteomes of two different L. monocytogenes strains (Siliken_1/2c and F2365_4b), which show very different capacities to attach to surfaces. Growth temperature and strain type were highly influential on the proteomes in both attached and planktonic cells. On the basis of the proteomic data, it is highly unlikely that specific surface proteins play a direct role in adherence to inanimate surfaces. Instead, strain-dependent responses related to cell envelope polymer biosynthesis and stress response regulation likely contribute to a different ability to attach and also to survive external stressors. Collectively, the divergent proteome-level responses observed define strain- and growth-temperature-dependent differences relevant to attachment efficacy, highlight relevant proteins involved in stress protection in attached cells, and suggest that strain differences and growth conditions are important in relation to environmental persistence.

  3. Temporal variability and phylogenetic characterization of planktonic anammox bacteria in the coastal upwelling ecosystem off central Chile

    Science.gov (United States)

    Galán, Alexander; Molina, Verónica; Belmar, Lucy; Ulloa, Osvaldo

    2012-01-01

    The phylogenetic affiliation and temporal variability in the abundance of planktonic anammox bacteria were studied at a time-series station above the continental shelf off central Chile (∼36°S; bottom depth 93 m), a wind-driven, seasonal upwelling area, between August 2006 and April 2008. The study was carried out by cloning and sequencing the 16S rRNA gene and by using catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). Our results showed the presence of a single anammox bacteria-like ribotype during both upwelling and non-upwelling seasons, which was phylogenetically associated with a recently described oxygen-minimum-zone subcluster within the Candidatus Scalindua clade. Moreover, clear differences were observed in the temporal and vertical distribution of anammox cells. During the upwelling season (austral spring-summer), relatively high abundances (∼5500 cells mL -1) and large cells (0.8 μm 3-75.7 fg C cell -1) were found below 20 m depth. In contrast, during the non-upwelling season (austral fall-winter), lower abundances (∼600 cells mL -1) and smaller cells (0.1 μm 3-22.8 fg C cell -1) were found, predominantly associated with the bottom layer. Overall, our results indicate that the abundance and vertical distribution of anammox planktonic assemblages are related to the occurrence of seasonal, wind-driven, coastal upwelling, which in turn appears to offer favorable conditions for the development of these microorganisms. The dominance of a unique anammox bacteria-like ribotype could be related to the high environmental variability observed in the system, which prevents the establishment of other anammox lineages.

  4. Photosynthetic planulae and planktonic hydroids: contrasting strategies of propagule survival

    Directory of Open Access Journals (Sweden)

    Patrizia Pagliara

    2000-12-01

    Full Text Available Settlement delays can be important to prevent propagule waste when proper settling substrates are not immediately available. Under laboratory conditions, the planulae of Clytia viridicans underwent two alternative developmental patterns. Some settled on the bottom, forming a hydranth-gonotheca complex that produced up to four medusae and later either degenerated or gave rise to a hydroid colony. Other planulae settled right below the air-water interface, forming floating colonies that eventually fell to the bottom and settled. Halecium nanum released planulae with a rich population of symbiotic zooxanthellae that survived into a rearing jar for three months. After a long period of apparent quiescence (possibly fuelled by photosynthetic activities of zooxanthellae the planulae produced new colonies. Both photosynthetic planulae and settlement at the interface air-water allow a delay in the passage from a planktonic to a fully functional benthic life.

  5. Escape response of planktonic protists to fluid mechanical signals

    DEFF Research Database (Denmark)

    Jakobsen, Hans Henrik

    2001-01-01

    The escape response to fluid mechanical signals was examined in 6 protists, 4 ciliates and 2 dinoflagellates. When exposed to a siphon flow. 3 species of ciliates, Balanion comatum, Strobilidium sp., and Mesodinium pulex, responded with escape jumps. The threshold deformation rates required...... times lower than that of a non-jumping similar sized protist when the predator was Temora longicornis, which captures prey entrained in a feeding current. However, when the predator was the ambush- feeding copepod Acartia tonsa, the predation mortalities of jumping and non-jumping protists were...... of similar magnitude. Escape responses may thus be advantageous in some situations. However, jumping behaviour may also enhance susceptibility to some predators, explaining the different predator avoidance strategies (jumping or not) that have evolved in planktonic protists....

  6. Why is relating plankton community structure to pelagic production ...

    African Journals Online (AJOL)

    spamer

    The conceptual framework for quantitative marine ecology is attributable to Victor Hensen (1887), who pro- ... As fish were being “harvested” by man, it was argued that relationships .... carry their own functional chloroplasts or else derive.

  7. Resting Stage of Plankton Diversity from Singapore Coastal Water: Implications for Harmful Algae Blooms and Coastal Management

    Science.gov (United States)

    Trottet, Aurore; Wilson, Bryan; Sew Wei Xin, Genevieve; George, Christaline; Casten, Lemuel; Schmoker, Claire; Rawi, Nurul Syazana Binte Modh; Chew Siew, Moon; Larsen, Ole; Eikaas, Hans S.; Tun, Karenne; Drillet, Guillaume

    2018-02-01

    Resting strategies of planktonic organisms are important for the ecological processes of coastal waters and their impacts should be taken into consideration in management of water bodies used by multiple industries. We combined different approaches to evaluate the importance of resting stages in Singapore coastal waters. We used molecular approaches to improve the knowledge on Singapore biodiversity, we sampled and extracted cysts from sediments to evaluate the density of resting stages in Johor Strait, and we compared systematically information on Singapore planktonic biodiversity to existing published information on resting stages from these reported organisms. This is the first study evaluating the importance of resting stages in Singapore waters. Above 120 species reported in Singapore are known to produce resting stages though no previous work has ever been done to evaluate the importance of these strategies in these waters. The results from the resting stage survey confirmed 0.66 to 5.34 cyst g-1 dry weight sediment were present in the Johor Strait suggesting that cysts may be flushed by tidal currents into and out of the strait regularly. This also suggest that the blooms occurring in Singapore are likely due to secondary growth of Harmful Algae Bloom species in the water rather than from direct germination of cysts from sediment. Finally, we discuss the importance of these resting eggs for three main national industries in Singapore (shipping, marine aquaculture and provision of drinking water through seawater desalination). We argue that this study will serve as a baseline for some of the future management of Singapore waters.

  8. A trait database for marine copepods

    Science.gov (United States)

    Brun, Philipp; Payne, Mark R.; Kiørboe, Thomas

    2017-02-01

    The trait-based approach is gaining increasing popularity in marine plankton ecology but the field urgently needs more and easier accessible trait data to advance. We compiled trait information on marine pelagic copepods, a major group of zooplankton, from the published literature and from experts and organized the data into a structured database. We collected 9306 records for 14 functional traits. Particular attention was given to body size, feeding mode, egg size, spawning strategy, respiration rate, and myelination (presence of nerve sheathing). Most records were reported at the species level, but some phylogenetically conserved traits, such as myelination, were reported at higher taxonomic levels, allowing the entire diversity of around 10 800 recognized marine copepod species to be covered with a few records. Aside from myelination, data coverage was highest for spawning strategy and body size, while information was more limited for quantitative traits related to reproduction and physiology. The database may be used to investigate relationships between traits, to produce trait biogeographies, or to inform and validate trait-based marine ecosystem models. The data can be downloaded from PANGAEA, PANGAEA.862968" target="_blank">doi:10.1594/PANGAEA.862968.

  9. Biomass changes and trophic amplification of plankton in a warmer ocean

    KAUST Repository

    Chust, Guillem

    2014-05-07

    Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and

  10. Biomass changes and trophic amplification of plankton in a warmer ocean

    KAUST Repository

    Chust, Guillem; Allen, Julian Icarus; Bopp, Laurent; Schrum, Corinna; Holt, Jason T.; Tsiaras, Kostas P.; Zavatarelli, Marco; Chifflet, Marina; Cannaby, Heather; Dadou, Isabelle C.; Daewel, Ute; Wakelin, Sarah L.; Machú , Eric; Pushpadas, Dhanya; Butenschö n, Momme; Artioli, Yuri; Petihakis, George; Smith, Chris J M; Garç on, Vé ronique C.; Goubanova, Katerina; Le Vu, Briac; Fach, Bettina A.; Salihoglu, Baris; Clementi, Emanuela; Irigoien, Xabier

    2014-01-01

    Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and

  11. Biomass changes and trophic amplification of plankton in a warmer ocean.

    Science.gov (United States)

    Chust, Guillem; Allen, J Icarus; Bopp, Laurent; Schrum, Corinna; Holt, Jason; Tsiaras, Kostas; Zavatarelli, Marco; Chifflet, Marina; Cannaby, Heather; Dadou, Isabelle; Daewel, Ute; Wakelin, Sarah L; Machu, Eric; Pushpadas, Dhanya; Butenschon, Momme; Artioli, Yuri; Petihakis, George; Smith, Chris; Garçon, Veronique; Goubanova, Katerina; Le Vu, Briac; Fach, Bettina A; Salihoglu, Baris; Clementi, Emanuela; Irigoien, Xabier

    2014-07-01

    Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and

  12. Plankton as an indicator of the temporal variation of the Chernobyl fallout

    International Nuclear Information System (INIS)

    Ravera, O.; Giannoni, L.

    1995-01-01

    Here we describe the pattern of radionuclide activities (iodine-131; cesium-134; cesium-137; ruthenium-106) in net-plankton and water samples collected from two lakes in Northern Italy (Lake Monate and Lake Comabbio) during and after the presence in the area of the radioactive cloud from the Chernobyl accident: from 30 April to 3 September 1986. The results show that, because of its short lifespan, plankton is a good indicator of daily variations of environmental contamination. The contamination level of plankton depends on various factors, such as the speciation and biological role of the radionuclide, the community structure and chemical characteristics of the water

  13. Temperature, salinity, transmissivity, pressure, plankton, oxygen, nutrients, chlorophyll, and primary productivity data collected using CTD, bottle, and plankton net from the R/V Italica in the Ross Sea and Magellan Strait during 10th Italian Antarctic Expedition from 1994-11-13 to 1995-04-02 (NCEI Accession 0068289)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, transmissivity, pressure, plankton, oxygen, nutrients, chlorophyll, and primary productivity data collected using CTD, bottle, and plankton...

  14. Community cascades in a marine pelagic food web controlled by the non-visual apex predator Mnemiopsis leidyi

    DEFF Research Database (Denmark)

    Tiselius, Peter; Møller, Lene Friis

    2017-01-01

    Trophic cascades are a ubiquitous feature of many terrestrial and fresh-water food webs, but have been difficult to demonstrate in marine systems with multispecies trophic levels. Here we describe significant trophic cascades in an open coastal planktonic ecosystem exposed to an introduced top...... predator. The ctenophore Mnemiopsis leidyi was monitored for an 8-year period concurrent with measures of the food web structure of the plankton and strong trophic cascades were evident. In the 5 years when M. leidyi were found, their target prey (grazing copepods) were reduced 5-fold and the primary...

  15. The planktonic communities of the Jamaican south-east coast; a comparison of harbor, shelf and oceanic areas

    Directory of Open Access Journals (Sweden)

    Hugh Small

    2014-09-01

    Full Text Available Few studies have compared water quality and plankton along the eutrophication gradient from Kingston Harbour to oceanic waters around Jamaica. To compare the planktonic community along the expected nutrient gradient, we sampled every two weeks at four stations, from eutrophic Kingston Harbour to oceanic California Bank. Phytoplankton was assessed from whole water Niskin bottle casts and zooplankton by vertical hauls with plankton nets of three different mesh sizes: 64µm, 200µm, and 600µm. Total phytoplankton biomass declined sharply away from the harbour (1.0 μg L-1 at the Harbour Shoal Beacon to 0.2 μg L-1 at California Bank. Characteristic estuarine phytoplankton genera -such as Ceratium, Gonyaulax, Gyrodinium and Rhizosolenia- dominated harbour samples while genera characteristic of offshore locations -such as Asterionelliopsis, Navicula, Nitzschia, Rhizosolenia and Thalassionema- dominated California Bank. Highest phytoplankton densities (mean values of 34 174 cells L-1 were found at the harbor mouth. Mean zooplankton abundances ranged from maximum (5 858.5m-3 at Beacon to minimum (2 124.2 m-3 at California; 171 species of zooplankton were identified and copepods dominated with 76 species. Overall, 75 species of zooplankton were identified from Beacon, 107 from Port Royal Cays- South East Cay, 110 from the exposed shelf edge- Windward Edge, and 95 from the oceanic California Bank. Larval forms dominated; copepod nauplii, fish eggs and echinoderm larvae occurred at all sites. Lucifer faxoni and Penilia avirostris were indicative of harbor waters and Microsetella sp. and Farranula carinata of offshore waters. Some zooplankton taxa, like L. faxoni, Paracalanus parvus and copepod nauplii, despite showing gradual decline with distance from Beacon to the Edge, increased in abundance at the furthest station, California. California Bank clearly experiences enrichment which at times can be as high as near-shore areas, but the planktonic

  16. The old and the new plankton: ecological replacement of associations of mollusc plankton and giant filter feeders after the Cretaceous?

    Directory of Open Access Journals (Sweden)

    Amane Tajika

    2018-01-01

    Full Text Available Owing to their great diversity and abundance, ammonites and belemnites represented key elements in Mesozoic food webs. Because of their extreme ontogenetic size increase by up to three orders of magnitude, their position in the food webs likely changed during ontogeny. Here, we reconstruct the number of eggs laid by large adult females of these cephalopods and discuss developmental shifts in their ecologic roles. Based on similarities in conch morphology, size, habitat and abundance, we suggest that similar niches occupied in the Cretaceous by juvenile ammonites and belemnites were vacated during the extinction and later partially filled by holoplanktonic gastropods. As primary consumers, these extinct cephalopod groups were important constituents of the plankton and a principal food source for planktivorous organisms. As victims or, respectively, profiteers of this case of ecological replacement, filter feeding chondrichthyans and cetaceans likely filled the niches formerly occupied by large pachycormid fishes during the Jurassic and Cretaceous.

  17. Examination of a high resolution laser optical plankton counter and FlowCAM for measuring plankton concentration and size

    Science.gov (United States)

    Kydd, Jocelyn; Rajakaruna, Harshana; Briski, Elizabeta; Bailey, Sarah

    2018-03-01

    Many commercial ships will soon begin to use treatment systems to manage their ballast water and reduce the global transfer of harmful aquatic organisms and pathogens in accordance with upcoming International Maritime Organization regulations. As a result, rapid and accurate automated methods will be needed to monitoring compliance of ships' ballast water. We examined two automated particle counters for monitoring organisms ≥ 50 μm in minimum dimension: a High Resolution Laser Optical Plankton Counter (HR-LOPC), and a Flow Cytometer with digital imaging Microscope (FlowCAM), in comparison to traditional (manual) microscopy considering plankton concentration, size frequency distributions and particle size measurements. The automated tools tended to underestimate particle concentration compared to standard microscopy, but gave similar results in terms of relative abundance of individual taxa. For most taxa, particle size measurements generated by FlowCAM ABD (Area Based Diameter) were more similar to microscope measurements than were those by FlowCAM ESD (Equivalent Spherical Diameter), though there was a mismatch in size estimates for some organisms between the FlowCAM ABD and microscope due to orientation and complex morphology. When a single problematic taxon is very abundant, the resulting size frequency distribution curves can become skewed, as was observed with Asterionella in this study. In particular, special consideration is needed when utilizing automated tools to analyse samples containing colonial species. Re-analysis of the size frequency distributions with the removal of Asterionella from FlowCAM and microscope data resulted in more similar curves across methods with FlowCAM ABD having the best fit compared to the microscope, although microscope concentration estimates were still significantly higher than estimates from the other methods. The results of our study indicate that both automated tools can generate frequency distributions of particles

  18. Marine Natural Products from New Caledonia—A Review

    Directory of Open Access Journals (Sweden)

    Sofia-Eléna Motuhi

    2016-03-01

    Full Text Available Marine micro- and macroorganisms are well known to produce metabolites with high biotechnological potential. Nearly 40 years of systematic prospecting all around the New Caledonia archipelago and several successive research programs have uncovered new chemical leads from benthic and planktonic organisms. After species identification, biological and/or pharmaceutical analyses are performed on marine organisms to assess their bioactivities. A total of 3582 genera, 1107 families and 9372 species have been surveyed and more than 350 novel molecular structures have been identified. Along with their bioactivities that hold promise for therapeutic applications, most of these molecules are also potentially useful for cosmetics and food biotechnology. This review highlights the tremendous marine diversity in New Caledonia, and offers an outline of the vast possibilities for natural products, especially in the interest of pursuing collaborative fundamental research programs and developing local biotechnology programs.

  19. Contribution of fish to the marine inorganic carbon cycle.

    Science.gov (United States)

    Wilson, R W; Millero, F J; Taylor, J R; Walsh, P J; Christensen, V; Jennings, S; Grosell, M

    2009-01-16

    Oceanic production of calcium carbonate is conventionally attributed to marine plankton (coccolithophores and foraminifera). Here we report that marine fish produce precipitated carbonates within their intestines and excrete these at high rates. When combined with estimates of global fish biomass, this suggests that marine fish contribute 3 to 15% of total oceanic carbonate production. Fish carbonates have a higher magnesium content and solubility than traditional sources, yielding faster dissolution with depth. This may explain up to a quarter of the increase in titratable alkalinity within 1000 meters of the ocean surface, a controversial phenomenon that has puzzled oceanographers for decades. We also predict that fish carbonate production may rise in response to future environmental changes in carbon dioxide, and thus become an increasingly important component of the inorganic carbon cycle.

  20. THE EARLY PLIOCENE MAMMAL ASSEMBLAGE OF VAL DI PUGNA (TUSCANY, ITALY IN THE LIGHT OF CALCAREOUS PLANKTON BIOSTRATIGRAPHICAL DATA AND PALEOECOLOGICAL OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    GIOVANNI BIANUCCI

    2001-11-01

    Full Text Available The stratigraphy of clayey and sandy beds outcropping in Val di Pugna locality near Siena (Tuscany, Italy celebrated for the past finds of fossil mammalian remains, is studied here. The research is aimed to date and define the depositional environment of the sediments that yielded fossil bones of known provenance.  Two sequences have been studied in detail; they are located near the hamlets of Ruffolo and Case il Poggio, where both marine and land mammal remains had been found. The integrated biostratigraphic analysis of the planktonic foraminifers and calcareous nannoplankton indicates that the deposits straddle the transition from the Zone MPL3 to MPL4 of the planktonic foraminifer biostratigraphic scale, which is correlated with the Reticulofenestra pseudoumbilicus Zone (MNN14-15 Zone of the calcareous nannoplankton scale. The sedimentary characters and the faunal content are suggestive of a progressively deepening marine environment, with a transition from upper shoreface deposits to lower shoreface-offshore deposits. The vertebrates include a cetacean (Tusciziphis crispus and a sirenid (Metaxyterium gervaisi amongst the marine mammals, while the land mammals are represented by a rhino (Stephanorhinus jeanvireti and a bovid (Alephis lyrix. The sirenid remains are likely the only autochthonous elements because of their ecologic consistency with the depositional environment of the embedding sediments. The other fossil specimens are interpreted here as parts of decaying and floating carcasses that deposited their bones as they drifted away, inflated by decomposition gasses.The biostratigraphy of the sites permits to date the fossil bones. Noteworthy occurrences are those of Stephanorhinus jeanvireti and Alephis lyrix in levels correlated with Zone MN14, since they are usually reported in Zone MN16 and Zone MN15 assemblages, respectively.   

  1. Site Evaluation for Application of Fuel Cell Technology, Naval Hospital - Marine Corps Air Ground Combat Center Twentynine Palms, CA

    National Research Council Canada - National Science Library

    Binder, Michael

    2001-01-01

    ...). CERL has selected and evaluated application sites, supervised the design and installation of fuel cells, actively monitored the operation and maintenance of fuel cells, and compiled "lessons learned...

  2. The Pseudomonas aeruginosa transcriptome in planktonic cultures and static biofilms using RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Andreas Dötsch

    Full Text Available In this study, we evaluated how gene expression differs in mature Pseudomonas aeruginosa biofilms as opposed to planktonic cells by the use of RNA sequencing technology that gives rise to both quantitative and qualitative information on the transcriptome. Although a large proportion of genes were consistently regulated in both the stationary phase and biofilm cultures as opposed to the late exponential growth phase cultures, the global biofilm gene expression pattern was clearly distinct indicating that biofilms are not just surface attached cells in stationary phase. A large amount of the genes found to be biofilm specific were involved in adaptation to microaerophilic growth conditions, repression of type three secretion and production of extracellular matrix components. Additionally, we found many small RNAs to be differentially regulated most of them similarly in stationary phase cultures and biofilms. A qualitative analysis of the RNA-seq data revealed more than 3000 putative transcriptional start sites (TSS. By the use of rapid amplification of cDNA ends (5'-RACE we confirmed the presence of three different TSS associated with the pqsABCDE operon, two in the promoter of pqsA and one upstream of the second gene, pqsB. Taken together, this study reports the first transcriptome study on P. aeruginosa that employs RNA sequencing technology and provides insights into the quantitative and qualitative transcriptome including the expression of small RNAs in P. aeruginosa biofilms.

  3. Otters, Marine

    Science.gov (United States)

    Estes, James A.; Bodkin, James L.; Ben-David, M.; Perrin, William F.; Würsing, Bernd; Thewissen, J.G.M.

    2009-01-01

    The otters (Mustelidae; Lutrinae) provide an exceptional perspective into the evolution of marine living by mammals. Most extant marine mammals (e.g. the cetaceans, pinnipeds, and sirenians) have been so highly modified by long periods of selection for life in the sea that they bear little resemblance to their terrestrial ancestors. Marine otters, in contrast, are more recent expatriates from freshwater habitats and some species still live in both environments. Contrasts among species within the otters, and among the otters, terrestrial mammals, and the more highly adapted pinnipeds and cetaceans provide powerful insights into mammalian adaptations to life in the sea (Estes, 1989). Among the marine mammals, sea otters (Enhydra lutris, Fig. 1) provide the clearest understanding of consumer-induced effects on ecosystem function. This is due in part to opportunities provided by history and in part to the relative ease with which shallow coastal systems where sea otters live can be observed and studied. Although more difficult to study than sea otters, other otter species reveal the connectivity among the marine, freshwater, and terrestrial systems. These three qualities of the otters – their comparative biology, their role as predators, and their role as agents of ecosystem connectivity – are what make them interesting to marine mammalogy.The following account provides a broad overview of the comparative biology and ecology of the otters, with particular emphasis on those species or populations that live in the sea. Sea otters are features prominently, in part because they live exclusively in the sea whereas other otters have obligate associations with freshwater and terrestrial environments (Kenyon, 1969; Riedman and Estes, 1990).

  4. Monitoring of DSP toxins in small-sized plankton fraction of seawater collected in Mutsu Bay, Japan, by ELISA method: relation with toxin contamination of scallop.

    Science.gov (United States)

    Imai, Ichiro; Sugioka, Hikaru; Nishitani, Goh; Mitsuya, Tadashi; Hamano, Yonekazu

    2003-01-01

    Monitorings were conducted on DSP toxins in mid-gut gland of scallop (mouse assay), cell numbers of toxic dinoflagellate species of Dinophysis, and diarrhetic shellfish poisoning (DSP) toxins in small-sized (0.7-5 microm) plankton fraction of seawater collected from surface (0 m) and 20 m depth at a station in Mutsu Bay, Aomori Prefecture, Japan, in 2000. A specific enzyme-linked immunosorbent assay (ELISA) was employed for the analysis of DSP toxins in small-sized plankton fraction using a mouse monoclonal anti-okadaic acid antibody which recognizes okadaic acid, dinophysistoxin-1, and dinophysistoxin-3. DSP toxins were detected twice in the mid-gut gland of scallops at 1.1-2.3 MU (mouse units) g(-1) on 26 June and at 0.6-1.2 MU g(-1) on 3 July, respectively. Relatively high cell densities of D. fortii were observed on 26 June and 11 September, and may only contribute to the bivalve toxicity during late June to early July. D. acuminata did not appear to be responsible for the toxicity of scallops in Mutsu Bay in 2000. ELISA monitoring of small-sized plankton fraction in seawater could detect DSP toxins two weeks before the detection of the toxin in scallops, and could do so two weeks after the loss of the bivalve toxicity by mouse assay. On 17 July, toxic D. fortii was detected at only small number, <10 cells l(-1), but DSP toxins were detected by the ELISA assay, suggesting a presence of other toxic small-sized plankton in seawater. For the purpose of reducing negative impacts of DSP occurrences, monitorings have been carried out hitherto on DSP toxins of bivalve tissues by mouse assay and on cell densities of "toxic" species of Dinophysis. Here we propose a usefulness of ELISA monitoring of plankton toxicity, especially in small-sized fraction, which are possible foods of mixotrophic Dinophysis, as a practical tool for detecting and predicting DSPs in coastal areas of fisheries grounds of bivalve aquaculture.

  5. Marine Battlefields

    DEFF Research Database (Denmark)

    Harðardóttir, Sara

    as they are an important food source for various marine animals. For both phytoand zooplankton predation is a major cause of mortality, and strategies for protection or avoidance are important for survival. Diatoms of the genera Nitzschia and Pseudo-nitzschia are known to produce a neuro-toxin, domoic acid (DA). Despite......Phytoplankton species are photosynthetic organisms found in most aquatic habitats. In the ocean, phytoplankton are tremendously important because they produce the energy that forms the base of the marine food web. Zooplankton feed on phytoplankton and mediate the energy to higher trophic levels...

  6. Impact of multispecies diatom bloom on plankton community structure in Sundarban mangrove wetland, India

    International Nuclear Information System (INIS)

    Biswas, Sejuti Naha; Rakshit, Dibyendu; Sarkar, Santosh Kumar; Sarangi, Ranjit Kumar; Satpathy, Kamala Kanta

    2014-01-01

    Highlights: • A multispecies algal bloom was studied in coastal regions of Sundarban wetland. • Sharp changes in plankton community structure and hydrological parameters observed. • Chlorophyll a showed highest cell density (11.4 × 10 5 cells l −1 ) during bloom phase. • MODIS Aqua derived chlorophyll maps have been interpreted. - Abstract: A multispecies bloom caused by the centric diatoms, viz. Coscinodiscus radiatus, Chaetoceros lorenzianus and the pennate diatom Thalassiothrix frauenfeldii was investigated in the context of its impact on phytoplankton and microzooplankton (the loricate ciliate tintinnids) in the coastal regions of Sagar Island, the western part of Sundarban mangrove wetland, India. Both number (15–18 species) and cell densities (12.3 × 10 3 cells l −1 to 11.4 × 10 5 cells l −1 ) of phytoplankton species increased during peak bloom phase, exhibiting moderately high species diversity (H′ = 2.86), richness (R′ = 6.38) and evenness (E′ = 0.80). The diatom bloom, which existed for a week, had a negative impact on the tintinnid community in terms of drastic changes in species diversity index (1.09–0.004) and population density (582.5 × 10 3 to 50 × 10 3 ind m −3 ). The bloom is suggested to have been driven by the aquaculture activities and river effluents resulting high nutrient concentrations in this region. An attempt has been made to correlate the satellite remote sensing-derived information to the bloom conditions. MODIS-Aqua derived chlorophyll maps have been interpreted

  7. Experimental assessment of cumulative temperature and UV-B radiation effects on Mediterranean plankton metabolism

    KAUST Repository

    Garcia-Corral, Lara S.; Martinez Ayala, Juan; Duarte, Carlos M.; Agusti, Susana

    2015-01-01

    . The oligotrophic waters are already highly transparent, however, exposure of Mediterranean plankton to ultraviolet radiation (UV-B and UV-A) may increase further if the waters become more oligotrophic, thereby, allowing a deeper UV radiation penetration and likely

  8. Planktonic foraminifera from a quaternary deep sea core from the southern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.; Rao, P.S.; Pattan, J.N.

    An investigation on planktonic foraminifera and calcium carbonate content of a box core collected at a depth of 2556 m from the southern part of the Arabian sea indicates faunal changes depicting Quaternary climatic fluctuations. Based on the study...

  9. Modeling the distribution of colonial species to improve estimation of plankton concentration in ballast water

    Science.gov (United States)

    Rajakaruna, Harshana; VandenByllaardt, Julie; Kydd, Jocelyn; Bailey, Sarah

    2018-03-01

    The International Maritime Organization (IMO) has set limits on allowable plankton concentrations in ballast water discharge to minimize aquatic invasions globally. Previous guidance on ballast water sampling and compliance decision thresholds was based on the assumption that probability distributions of plankton are Poisson when spatially homogenous, or negative binomial when heterogeneous. We propose a hierarchical probability model, which incorporates distributions at the level of particles (i.e., discrete individuals plus colonies per unit volume) and also within particles (i.e., individuals per particle) to estimate the average plankton concentration in ballast water. We examined the performance of the models using data for plankton in the size class ≥ 10 μm and test ballast water compliance using the above models.

  10. An Experimental-Numerical Study of Small Scale Flow Interaction with Bioluminescent Plankton

    National Research Council Canada - National Science Library

    Latz, Michael

    1998-01-01

    Numerical and experimental approaches were used to investigate the effects of quantified flow stimuli on bioluminescence sUmulatidn at the small length and time scales appropriate for individual plankton...

  11. Sediment traps as a new tool for estimation of longevity of planktonic foraminifera

    Digital Repository Service at National Institute of Oceanography (India)

    Nigam, R.

    Sediment trap technique provides time series data of sinking particles (faunal and sediment) from surface to bottom of the sea. Besides many other applications, data can also be used to estimate life span of planktonic foraminifera. Based on rearing...

  12. Response of planktonic bacteria of New Calabar River to zinc stress ...

    African Journals Online (AJOL)

    Response of planktonic bacteria of New Calabar River to zinc stress. ... The result of the in vitro study indicated that the bacterial strains are sensitive to Zn2+ stress. Therefore, Zn2+ contamination would ... Featuring journals from 32 Countries:.

  13. Influence of monsoon upwelling on the planktonic foraminifera off Oman during Late Quaternary

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.

    Planktonic foraminifer abundances, fluxes, test sizes, and coiling properties are influenced in various ways by the southwest monsoon winds and associated upwelling in the western Arabian Sea. The influence of monsoon driven upwelling...

  14. Dosimetry of natural and man-made alpha emitters in plankton

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Baptista, G.B.; Wrenn, M.E.; Eisenbrid, M.

    1980-11-01

    Comparison between the natural and man-made alpha radiation dose rates to plankton can be important for predicting the potential long-term effects on aquatic biota resulting from the routine or accidental radioactive releases from the nuclear fuel cycle. A contribution is made here towards the goal of comparing natural with man-made alpha radiation dose rates to plankton using the same method of calculation in both cases. (Author) [pt

  15. Emergent Patterns of Diversity and Dynamics in Natural Populations of Planktonic Vibrio Bacteria

    Science.gov (United States)

    2005-06-01

    1973. Ecology of Vibrio parahemolyticus in mixed-template amplifications: formation, consequences and elimination by Chesapeake Bay. J. Bacteriol. 113...Science 1930 and Engineering DOCTORAL DISSERTATION Emergent Patterns of Diversity and Dynamics in Natural Populations of Planktonic Vibrio Bacteria by...DYNAMICS IN NATURAL POPULATIONS OF PLANKTONIC VIBRIO BACTERIA by Janelle Ren6e Thompson B.S. Biological Sciences, Stanford University 1998 M.S

  16. Marine Science

    African Journals Online (AJOL)

    Science. The journal has a new and more modern layout, published online only, and the editorial. Board was increased to include more disciplines pertaining to marine sciences. While important chal- lenges still lie ahead, we are steadily advancing our standard to increase visibility and dissemination throughout the global ...

  17. Marine Mammals.

    Science.gov (United States)

    Meith, Nikki

    Marine mammals have not only fascinated and inspired human beings for thousands of years, but they also support a big business by providing flesh for sea-borne factories, sustaining Arctic lifestyles and traditions, and attracting tourists to ocean aquaria. While they are being harpooned, bludgeoned, shot, netted, and trained to jump through…

  18. Marine Science

    African Journals Online (AJOL)

    Mauritius Marine Conservation Society through their. Abstract. While no populations of seals are resident in the tropical Indian Ocean, vagrant animals are occasionally sighted in the region. Here we detail two new sightings of pinnipeds in the Mascarene Islands (Mauritius, Reunion and Rodri- gues) since 1996 and review ...

  19. Marine Science

    African Journals Online (AJOL)

    J O U R N A L O F. Marine Science. Coral reefs of Mauritius in a changing global climate ..... in confined aquifers, and a lesser influence in uncon- fined systems. On the ... massive cloud cover during the critical months, some. 70% bleaching ...

  20. Marine Science

    African Journals Online (AJOL)

    Copy Editor Timothy Andrew. Published ... 2007; Zhou et al., 2009) and they play an important role in the ... At both sites, zonal variation in TMPB was evident with significantly higher C-biomass closer to ... ton is considered to be an essential parameter in eco- systems ...... logical significance of toxic marine dinoflagellates.

  1. Marine Science

    African Journals Online (AJOL)

    sustainable coastal development in the region, as well as contributing to the ... between humans and the coastal and marine environment. ... exploitation for timber, fuel wood, aquaculture, urban. Abstract. Given the high dependence of coastal communities on natural resources, mangrove conservation is a challenge in.

  2. Marine Science

    African Journals Online (AJOL)

    No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means ... USA/Norway ... The last couple of years have been a time of change for the Western Indian Ocean Journal of Marine.

  3. Marine Science

    African Journals Online (AJOL)

    Chief Editor José Paula | Faculty of Sciences of University of Lisbon, Portugal. Copy Editor Timothy Andrew. Published biannually. Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high quality research generated in the Western Indian Ocean (WIO) ...

  4. Analysis of endocrine disruptor compounds in marine sediments by in cell clean up-pressurized liquid extraction-liquid chromatography tandem mass spectrometry determination.

    Science.gov (United States)

    Salgueiro-González, N; Turnes-Carou, I; Muniategui-Lorenzo, S; López-Mahía, P; Prada-Rodríguez, D

    2014-12-10

    A less time-, solvent- and sorbent-consuming analytical methodology for the determination of bisphenol A and alkylphenols (4-tert-octylphenol, 4-octylphenol, 4-n-nonylphenol, nonylphenol) in marine sediment was developed and validated. The method was based on selective pressurized liquid extraction (SPLE) with a simultaneous in cell clean up combined with liquid chromatography-electrospray ionization tandem mass spectrometry in negative mode (LC-ESI-MS/MS). The SPLE extraction conditions were optimized by a Plackett-Burman design followed by a central composite design. Quantitation was performed by standard addition curves in order to correct matrix effects. The analytical features of the method were satisfactory: relative recoveries varied between 94 and 100% and repeatability and intermediate precision were <6% for all compounds. Uncertainty assessment of measurement was estimated on the basis of an in-house validation according to EURACHEM/CITAC guide. Quantitation limits of the method (MQL) ranged between 0.17 (4-n-nonylphenol) and 4.01 ng g(-1) dry weight (nonylphenol). Sensitivity, selectivity, automaticity and fastness are the main advantages of this green methodology. As an application, marine sediment samples from Galicia coast (NW of Spain) were analysed. Nonylphenol and 4-tert-octylphenol were measured in all samples at concentrations between 20.1 and 1409 ng g(-1) dry weight, respectively. Sediment toxicity was estimated and no risk to aquatic biota was found. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Abundance of plankton population densities in relation to bottom soil textural types in aquaculture ponds

    Directory of Open Access Journals (Sweden)

    F. Siddika

    2012-06-01

    Full Text Available Plankton is an important food item of fishes and indicator for the productivity of a water body. The present study was conducted to evaluate the effects of bottom soil textural conditions on abundance of plankton in aquaculture pond. The experiment was carried out using three treatments, i.e., ponds bottom with sandy loam (T1, with loam (T2 and with clay loam (T3. The ranges of water quality parameters analyzed were suitable for the growth of plankton during the experimental period. Similarly, chemical properties of soil were also within suitable ranges and every parameter showed higher ranges in T2. A total 20 genera of phytoplankton were recorded belonged to Chlorophyceae (7, Cyanophyceae (5, Bacillariophyceae (5, Euglenophyceae (2 and Dinophyceae (1. On the other hand, total 13 genera of zooplankton were recorded belonged to Crustacea (7 and Rotifera (6. The highest ranges of phytoplankton and zooplankton densities were found in T2 where low to medium-type bloom was observed during the study period. Consequently, the mean abundance of plankton (phytoplankton and zooplankton density was significantly highest in T2. The highest abundance of plankton in the T2 indicated that pond bottom with loamy soil is suitable for the growth and production of plankton in aquaculture ponds.

  6. UV sensitivity of planktonic net community production in ocean surface waters

    Science.gov (United States)

    Regaudie-de-Gioux, Aurore; Agustí, Susana; Duarte, Carlos M.

    2014-05-01

    The net plankton community metabolism of oceanic surface waters is particularly important as it more directly affects the partial pressure of CO2 in surface waters and thus the air-sea fluxes of CO2. Plankton communities in surface waters are exposed to high irradiance that includes significant ultraviolet blue (UVB, 280-315 nm) radiation. UVB radiation affects both photosynthetic and respiration rates, increase plankton mortality rates, and other metabolic and chemical processes. Here we test the sensitivity of net community production (NCP) to UVB of planktonic communities in surface waters across contrasting regions of the ocean. We observed here that UVB radiation affects net plankton community production at the ocean surface, imposing a shift in NCP by, on average, 50% relative to the values measured when excluding partly UVB. Our results show that under full solar radiation, the metabolic balance shows the prevalence of net heterotrophic community production. The demonstration of an important effect of UVB radiation on NCP in surface waters presented here is of particular relevance in relation to the increased UVB radiation derived from the erosion of the stratospheric ozone layer. Our results encourage design future research to further our understanding of UVB effects on the metabolic balance of plankton communities.

  7. Ecological-network models link diversity, structure and function in the plankton food-web

    Science.gov (United States)

    D'Alelio, Domenico; Libralato, Simone; Wyatt, Timothy; Ribera D'Alcalà, Maurizio

    2016-02-01

    A planktonic food-web model including sixty-three functional nodes (representing auto- mixo- and heterotrophs) was developed to integrate most trophic diversity present in the plankton. The model was implemented in two variants - which we named ‘green’ and ‘blue’ - characterized by opposite amounts of phytoplankton biomass and representing, respectively, bloom and non-bloom states of the system. Taxonomically disaggregated food-webs described herein allowed to shed light on how components of the plankton community changed their trophic behavior in the two different conditions, and modified the overall functioning of the plankton food web. The green and blue food-webs showed distinct organizations in terms of trophic roles of the nodes and carbon fluxes between them. Such re-organization stemmed from switches in selective grazing by both metazoan and protozoan consumers. Switches in food-web structure resulted in relatively small differences in the efficiency of material transfer towards higher trophic levels. For instance, from green to blue states, a seven-fold decrease in phytoplankton biomass translated into only a two-fold decrease in potential planktivorous fish biomass. By linking diversity, structure and function in the plankton food-web, we discuss the role of internal mechanisms, relying on species-specific functionalities, in driving the ‘adaptive’ responses of plankton communities to perturbations.

  8. Seasonal variation of plankton communities influenced by environmental factors in an artificial lake

    Science.gov (United States)

    Li, Xuemei; Yu, Yuhe; Zhang, Tanglin; Feng, Weisong; Ao, Hongyi; Yan, Qingyun

    2012-05-01

    We evaluated the seasonal variation in plankton community composition in an artificial lake. We conducted microscopic analysis and denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rRNA and 18S rRNA genes to characterize the plankton community. The clustering of unweighted pair group method with arithmetic mean (UPGMA) was then used to investigate the similarity of these plankton communities. DGGE fingerprinting revealed that samples collected at the different sites within a season shared high similarity and were generally grouped together. In contrast, we did not observe any seasonal variation based on microscopic analysis. Redundancy analysis (RDA) of the plankton operational taxonomic units (OTUs) in relation to environmental factors revealed that transparency was negatively correlated with the first axis ( R=-0.931), and temperature and total phosphorus (TP) were positively correlated with the first axis ( R=0.736 and R=0.660, respectively). In conclusion, plankton communities in the artificial lake exhibited significant seasonal variation. Transparency, phosphorus and temperature appear to be the major factors driving the differences in plankton composition.

  9. Biogenic Properties of Deep Waters from the Black Sea Reduction (Hydrogen Sulphide) Zone for Marine Algae

    OpenAIRE

    Polikarpov, Gennady G.; Lazorenko, Galina Е.; Тereschenko, Natalya N.

    2015-01-01

    Abstract Generalized data of biogenic properties investigations of the Black Sea deep waters from its reduction zone for marine algae are presented. It is shown on board and in laboratory that after pre-oxidation of hydrogen sulphide by intensive aeration of the deep waters lifted to the surface of the sea, they are ready to be used for cultivation of the Black Sea unicellular, planktonic, and multicellular, benthic, algae instead of artificial medium. Naturally balanced micro- and macroeleme...

  10. Evaluation of parameters of a plankton community's biological rhythms under the natural environment of the Black Sea using the Fourier transform method.

    Science.gov (United States)

    Mel'nikova, Ye B

    2017-05-01

    Night-time changes in bioluminescence intensity in the coastal area of the Black Sea were recorded. It was noted that the biomass of luminous organisms is closely correlated with the biomass of plankton and other pelagic organisms, including commercial pelagic fish. The parameters of plankton communities' basic biological rhythms were determined using the discrete Fourier transform method. These rhythms were manifest as spatial and temporal changes in the bioluminescence intensity. It was shown that changes in the bioluminescence intensity over a 14.0-h period were due to the duration of the light/dark cycles. By contrast, changes in bioluminescence intensity with periods of 4.7 and 2.8 h were due to the endogenous rhythms of the plankton community (feeding and cell division). An original method for evaluating of errors in the calculated periods of the biological rhythms was proposed. A strong correlation (r = 0.906) was observed between the measured and calculated values for the bioluminescence intensity, which provided support for the assumptions made. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Marine intervals in Neogene fluvial deposits of western Amazonia

    Science.gov (United States)

    Boonstra, Melanie; Troelstra, Simon; Lammertsma, Emmy; Hoorn, Carina

    2014-05-01

    Amazonia is one of the most species rich areas on Earth, but this high diversity is not homogeneous over the entire region. Highest mammal and tree-alpha diversity is found in the fluvio-lacustrine Pebas system, a Neogene wetland associated with rapid radiation of species. The estuarine to marine origin of various modern Amazonian fish, plants, and invertebrates has been associated with past marine ingressions into this freshwater Pebas system. The exact nature and age of these invasions is, however, debated. Here we present new evidence from fluvial and fluvio-lacustrine deposits of Neogene age in southeast Colombia, that point to periods of widespread marine conditions in western Amazonia. Our evidence is based on an analysis of marine palynomorphs, such as organic linings of foraminifera and dinoflagellate cysts, present in dark sandy clay sediments that outcrop along the Caqueta and Amazon rivers. Characteristically, the foraminiferal linings can be assigned to three benthic morphotypes only, e.g. Ammonia, Elphidium and Trochammina. This low diversity assemblage is associated with estuarine/marginal marine conditions. No distinct marine elements such as shelf or planktonic species were encountered. The observed foraminiferal linings and dinocyst assemblages are typical for a (eutrophic) shallow marine environment, suggesting that the Pebas freshwater wetland system occasionally changed to (marginal) marine. Although some reworked elements are found, a typical Neogene dinocyst taxon is commonly found supporting in situ deposition. Sedimentological features typical for tidal conditions that are reported for sites in Peru and northeastern Brazil likely relate to these marine ingressions. Sea level changes as well as foreland basin development related to Andes formation may have facilitated the entry of marine water during the Neogene.

  12. Eukaryotic Plankton Species Diversity in the Western Channel of the Korea Strait using 18S rDNA Sequences and its Implications for Water Masses

    Science.gov (United States)

    Lee, Sang-Rae; Song, Eun Hye; Lee, Tongsup

    2018-03-01

    Organisms entering the East Sea (Sea of Japan) through the Korea Strait, together with water, salt, and energy, affect the East Sea ecosystem. In this study, we report on the biodiversity of eukaryotic plankton found in the Western Channel of the Korea Strait for the first time using small subunit ribosomal RNA gene (18S rDNA) sequences. We also discuss the characteristics of water masses and their physicochemical factors. Diverse taxonomic groups were recovered from 18S rDNA clone libraries, including putative novel, higher taxonomic entities affiliated with Cercozoa, Raphidophyceae, Picozoa, and novel marine Stramenopiles. We also found that there was cryptic genetic variation at both the intraspecific and interspecific levels among arthropods, diatoms, and green algae. Specific plankton assemblages were identified at different sampling depths and they may provide useful information that could be used to interpret the origin and the subsequent mixing history of the water masses that contribute to the Tsushima Warm Current waters. Furthermore, the biological information highlighted in this study may help improve our understanding about the complex water mass interactions that were highlighted in the Korea Strait.

  13. Ingestion and transfer of microplastics in the planktonic food web

    International Nuclear Information System (INIS)

    Setälä, Outi; Fleming-Le