WorldWideScience

Sample records for marine cyanobacterium agmenellum

  1. The marine cyanobacterium

    NARCIS (Netherlands)

    Pade, N.; Compaoré, J.; Klähn, S.; Stal, L.J.; Hagemann, M.

    2012-01-01

    Compatible solutes are small organic molecules that are involved in the acclimation to various stresses such as temperature and salinity. Marine or moderate halotolerant cyanobacteria accumulate glucosylglycerol, while cyanobacteria with low salt tolerance (freshwater strains) usually accumulate

  2. Biogeochemical tracers of the marine cyanobacterium Trichodesmium

    Science.gov (United States)

    Carpenter, Edward J.; Harvey, H. Rodger; Fry, Brian; Capone, Douglas G.

    1997-01-01

    We examined the utility of several biogeochemical tracers for following the fate of the planktonic diazotrophic cyanobacterium Trichodesmium in the sea. The presence of a (CIO) fatty acid previously reported was observed in a culture of Trichodesmium but was not found in natural samples. This cyanobacterium had high concentrations of C 14 and C 16 acids, with lesser amounts of several saturated and unsaturated C 18 fatty acids. This composition was similar to that of other marine cyanobacteria. The major hydrocarbon identified was the C 17n-alkane, which was present in all samples from the five stations examined. Sterols common to algae and copepods were observed in many samples along with hopanoids representative of bacteria, suggesting a varied community structure in colonies collected from different stations. We found no unique taxonomic marker of Trichodesmium among the sterols. Measurements of the σ 15N and σ 13C in Trichodesmium samples from the SW Sargasso and NW Caribbean Seas averaged -0.4960 (range from -0.7 to -0.25960) and -12.9%0 (range from -15.2 to -11.9960), respectively, thus confirming previous observations that this cyanobacterial diazotroph has both the lowest σ 15N and highest σ 13C of any marine phytoplankter observed to date. A culture of Trichodesmium grown under diazotrophic conditions had a σ 15N between -1.3 and -3.6960. Our results support the supposition that the relatively low σ 15N and high σ 13C values observed in suspended and sediment-trapped material from some tropical and subtropical seas result from substantial input of C and N by Trichodesmium.

  3. Three New Malyngamides from the Marine Cyanobacterium Moorea producens

    Directory of Open Access Journals (Sweden)

    Kosuke Sueyoshi

    2017-11-01

    Full Text Available Three new compounds of the malyngamide series, 6,8-di-O-acetylmalyngamide 2 (1, 6-O-acetylmalyngamide 2 (2, and N-demethyl-isomalyngamide I (3, were isolated from the marine cyanobacterium Moorea producens. Their structures were determined by spectroscopic analysis and chemical derivatization and degradation. These compounds stimulated glucose uptake in cultured L6 myotubes. In particular, 6,8-di-O-acetylmalyngamide 2 (1 showed potent activity and activated adenosine monophosphate-activated protein kinase (AMPK.

  4. Competition and facilitation between the marine nitrogen-fixing cyanobacterium Cyanothece and its associated bacterial community

    NARCIS (Netherlands)

    Brauer, Verena S; Stomp, Maayke; Bouvier, Thierry; Fouilland, Eric; Leboulanger, Christophe; Confurius-Guns, Veronique; Weissing, Franz J; Stal, Lucas J; Huisman, Jef

    2015-01-01

    N2-fixing cyanobacteria represent a major source of new nitrogen and carbon for marine microbial communities, but little is known about their ecological interactions with associated microbiota. In this study we investigated the interactions between the unicellular N2-fixing cyanobacterium Cyanothece

  5. Detection of Bioactive Exometabolites Produced by the Filamentous Marine Cyanobacterium Geitlerinema sp.

    OpenAIRE

    Caicedo, Nelson H.; Kumirska, Jolanta; Neumann, Jennifer; Stolte, Stefan; Thöming, Jorg

    2011-01-01

    Marine cyanobacteria are noted for their ability to excrete metabolites with biotic properties. This paper focuses on such exometabolites obtained from the culture of the marine filamentous cyanobacterium Geitlerinema sp. strain, their purification and subsequent analyses. By this means the recoveries of the active compounds, a prerequisite for properly determining their concentration, are quantified here for the first time. We demonstrate a new procedure using Amberlite XAD-1180 resin in com...

  6. Macrolactone Nuiapolide, Isolated from a Hawaiian Marine Cyanobacterium, Exhibits Anti-Chemotactic Activity.

    Science.gov (United States)

    Mori, Shogo; Williams, Howard; Cagle, Davey; Karanovich, Kristopher; Horgen, F David; Smith, Roger; Watanabe, Coran M H

    2015-10-09

    A new bioactive macrolactone, nuiapolide (1) was identified from a marine cyanobacterium collected off the coast of Niihau, near Lehua Rock. The natural product exhibits anti-chemotactic activity at concentrations as low as 1.3 μM against Jurkat cells, cancerous T lymphocytes, and induces a G2/M phase cell cycle shift. Structural characterization of the natural product revealed the compound to be a 40-membered macrolactone with nine hydroxyl functional groups and a rare tert-butyl carbinol residue.

  7. Macrolactone Nuiapolide, Isolated from a Hawaiian Marine Cyanobacterium, Exhibits Anti-Chemotactic Activity

    OpenAIRE

    Mori, Shogo; Williams, Howard; Cagle, Davey; Karanovich, Kristopher; Horgen, F. David; Smith, Roger; Watanabe, Coran M. H.

    2015-01-01

    A new bioactive macrolactone, nuiapolide (1) was identified from a marine cyanobacterium collected off the coast of Niihau, near Lehua Rock. The natural product exhibits anti-chemotactic activity at concentrations as low as 1.3 μM against Jurkat cells, cancerous T lymphocytes, and induces a G2/M phase cell cycle shift. Structural characterization of the natural product revealed the compound to be a 40-membered macrolactone with nine hydroxyl functional groups and a rare tert-butyl carbinol re...

  8. Macrolactone Nuiapolide, Isolated from a Hawaiian Marine Cyanobacterium, Exhibits Anti-Chemotactic Activity

    Directory of Open Access Journals (Sweden)

    Shogo Mori

    2015-10-01

    Full Text Available A new bioactive macrolactone, nuiapolide (1 was identified from a marine cyanobacterium collected off the coast of Niihau, near Lehua Rock. The natural product exhibits anti-chemotactic activity at concentrations as low as 1.3 μM against Jurkat cells, cancerous T lymphocytes, and induces a G2/M phase cell cycle shift. Structural characterization of the natural product revealed the compound to be a 40-membered macrolactone with nine hydroxyl functional groups and a rare tert-butyl carbinol residue.

  9. Production of the Neurotoxin BMAA by a Marine Cyanobacterium

    Directory of Open Access Journals (Sweden)

    Paul Alan Cox

    2007-12-01

    Full Text Available Diverse species of cyanobacteria have recently been discovered to produce theneurotoxic non-protein amino acid β-methylamino-L-alanine (BMAA. In Guam, BMAAhas been studied as a possible environmental toxin in the diets of indigenous Chamorropeople known to have high levels of Amyotrophic Lateral Sclerosis/ ParkinsonismDementia Complex (ALS/PDC. BMAA has been found to accumulate in brain tissues ofpatients with progressive neurodegenerative illness in North America. In Guam, BMAAwas found to be produced by endosymbiotic cyanobacteria of the genus Nostoc which livein specialized cycad roots. We here report detection of BMAA in laboratory cultures of afree-living marine species of Nostoc. We successfully detected BMAA in this marinespecies of Nostoc with five different methods: HPLC-FD, UPLC-UV, Amino AcidAnalyzer, LC/MS, and Triple Quadrupole LC/MS/MS. This consensus of five differentanalytical methods unequivocally demonstrates the presence of BMAA in this marinecyanobacterium. Since protein-associated BMAA can accumulate in increasing levelswithin food chains, it is possible that biomagnification of BMAA could occur in marineecosystems similar to the biomagnification of BMAA in terrestrial ecosystems. Productionof BMAA by marine cyanobacteria may represent another route of human exposure toBMAA. Since BMAA at low concentrations causes the death of motor neurons, low levelsof BMAA exposure may trigger motor neuron disease in genetically vulnerableindividuals.

  10. Detection of bioactive exometabolites produced by the filamentous marine cyanobacterium Geitlerinema sp.

    Science.gov (United States)

    Caicedo, Nelson H; Kumirska, Jolanta; Neumann, Jennifer; Stolte, Stefan; Thöming, Jorg

    2012-08-01

    Marine cyanobacteria are noted for their ability to excrete metabolites with biotic properties. This paper focuses on such exometabolites obtained from the culture of the marine filamentous cyanobacterium Geitlerinema sp. strain, their purification and subsequent analyses. By this means the recoveries of the active compounds, a prerequisite for properly determining their concentration, are quantified here for the first time. We demonstrate a new procedure using Amberlite XAD-1180 resin in combination with the eluent isopropanol for extraction of the culture media and gas chromatography as simplified chemical analysis. This procedure reduced necessary bacteria cultivation time (from 150 to 21 days) at low volumes of culture media (300 mL) required for identification of two selected bioactive compounds: 4,4'-dihydroxybiphenyl and harmane.

  11. Crystal Structure of Allophycocyanin from Marine Cyanobacterium Phormidium sp. A09DM.

    Directory of Open Access Journals (Sweden)

    Ravi Raghav Sonani

    Full Text Available Isolated phycobilisome (PBS sub-assemblies have been widely subjected to X-ray crystallography analysis to obtain greater insights into the structure-function relationship of this light harvesting complex. Allophycocyanin (APC is the phycobiliprotein always found in the PBS core complex. Phycocyanobilin (PCB chromophores, covalently bound to conserved Cys residues of α- and β- subunits of APC, are responsible for solar energy absorption from phycocyanin and for transfer to photosynthetic apparatus. In the known APC structures, heterodimers of α- and β- subunits (known as αβ monomers assemble as trimer or hexamer. We here for the first time report the crystal structure of APC isolated from a marine cyanobacterium (Phormidium sp. A09DM. The crystal structure has been refined against all the observed data to the resolution of 2.51 Å to Rwork (Rfree of 0.158 (0.229 with good stereochemistry of the atomic model. The Phormidium protein exists as a trimer of αβ monomers in solution and in crystal lattice. The overall tertiary structures of α- and β- subunits, and trimeric quaternary fold of the Phormidium protein resemble the other known APC structures. Also, configuration and conformation of the two covalently bound PCB chromophores in the marine APC are same as those observed in fresh water cyanobacteria and marine red algae. More hydrophobic residues, however, constitute the environment of the chromophore bound to α-subunit of the Phormidium protein, owing mainly to amino acid substitutions in the marine protein.

  12. The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, Eric A.; Liberton, Michelle L.; Stockel, Jana; Loh, Thomas; Elvitigala, Thanura R.; Wang, Chunyan; Wollam, Aye; Fulton, Robert S.; Clifton, Sandra W.; Jacobs, Jon M.; Aurora, Rajeev; Ghosh, Bijoy K.; Sherman, Louis A.; Smith, Richard D.; Wilson, Richard K.; Pakrasi, Himadri B.

    2008-09-30

    Cyanobacteria are oxygenic photosynthetic bacteria that have significant roles in global biological carbon sequestration and oxygen production. They occupy a diverse range of habitats, from open ocean, to hot springs, deserts, and arctic waters. Cyanobacteria are known as the progenitors of the chloroplasts of plants and algae, and are the simplest known organisms to exhibit circadian behavior4. Cyanothece sp. ATCC 51142 is a unicellular marine cyanobacterium capable of N2-fixation, a process that is biochemically incompatible with oxygenic photosynthesis. To resolve this problem, Cyanothece performs photosynthesis during the day and nitrogen fixation at night, thus temporally separating these processes in the same cell. The genome of Cyanothece 51142 was completely sequenced and found to contain a unique arrangement of one large circular chromosome, four small plasmids, and one linear chromosome, the first report of such a linear element in a photosynthetic bacterium. Annotation of the Cyanothece genome was aided by the use of highthroughput proteomics data, enabling the reclassification of 25% of the proteins with no informative sequence homology. Phylogenetic analysis suggests that nitrogen fixation is an ancient process that arose early in evolution and has subsequently been lost in many cyanobacterial strains. In cyanobacterial cells, the circadian clock influences numerous processes, including carbohydrate synthesis, nitrogen fixation, photosynthesis, respiration, and the cell division cycle. During a diurnal period, Cyanothece cells actively accumulate and degrade different storage inclusion bodies for the products of photosynthesis and N2-fixation. This ability to utilize metabolic compartmentalization and energy storage makes Cyanothece an ideal system for bioenergy research, as well as studies of how a unicellular organism balances multiple, often incompatible, processes in the same cell.

  13. Dissolved organic nitrogen and carbon release by a marine unicellular diazotrophic cyanobacterium

    NARCIS (Netherlands)

    Benavides, M.; Agawin, N.S.R.; Aristegui, J.; Peene, J.; Stal, L.J.

    2013-01-01

    Dinitrogen (N-2) fixation rates may be underestimated when recently fixed N2 is released as dissolved organic nitrogen (DON). DON release (DONr) is substantial in the filamentous cyanobacterium Trichodesmium but has never been reported in unicellular diazotrophic cyanobacteria. We used axenic

  14. Dissolved organic nitrogen and carbon release by a marine unicellular diazotrophic cyanobacterium

    NARCIS (Netherlands)

    Benavides, M.; Agawin, N.S.R.; Aristegui, J.; Peene, J.; Stal, L.J.

    2013-01-01

    Dinitrogen (N2) fixation rates may be underestimated when recently fixed N2 is released as dissolved organic nitrogen (DON). DON release (DONr) is substantial in the filamentous cyanobacterium Trichodesmium but has never been reported in unicellular diazotrophic cyanobacteria. We used axenic

  15. Transcriptional analysis of the jamaicamide gene cluster from the marine cyanobacterium Lyngbya majuscula and identification of possible regulatory proteins

    Directory of Open Access Journals (Sweden)

    Dorrestein Pieter C

    2009-12-01

    Full Text Available Abstract Background The marine cyanobacterium Lyngbya majuscula is a prolific producer of bioactive secondary metabolites. Although biosynthetic gene clusters encoding several of these compounds have been identified, little is known about how these clusters of genes are transcribed or regulated, and techniques targeting genetic manipulation in Lyngbya strains have not yet been developed. We conducted transcriptional analyses of the jamaicamide gene cluster from a Jamaican strain of Lyngbya majuscula, and isolated proteins that could be involved in jamaicamide regulation. Results An unusually long untranslated leader region of approximately 840 bp is located between the jamaicamide transcription start site (TSS and gene cluster start codon. All of the intergenic regions between the pathway ORFs were transcribed into RNA in RT-PCR experiments; however, a promoter prediction program indicated the possible presence of promoters in multiple intergenic regions. Because the functionality of these promoters could not be verified in vivo, we used a reporter gene assay in E. coli to show that several of these intergenic regions, as well as the primary promoter preceding the TSS, are capable of driving β-galactosidase production. A protein pulldown assay was also used to isolate proteins that may regulate the jamaicamide pathway. Pulldown experiments using the intergenic region upstream of jamA as a DNA probe isolated two proteins that were identified by LC-MS/MS. By BLAST analysis, one of these had close sequence identity to a regulatory protein in another cyanobacterial species. Protein comparisons suggest a possible correlation between secondary metabolism regulation and light dependent complementary chromatic adaptation. Electromobility shift assays were used to evaluate binding of the recombinant proteins to the jamaicamide promoter region. Conclusion Insights into natural product regulation in cyanobacteria are of significant value to drug discovery

  16. Physiology, Fe(II oxidation, and Fe mineral formation by a marine planktonic cyanobacterium grown under ferruginous conditions

    Directory of Open Access Journals (Sweden)

    Elizabeth D. Swanner

    2015-10-01

    Full Text Available Evidence for Fe(II oxidation and deposition of Fe(III-bearing minerals from anoxic or redox-stratified Precambrian oceans has received support from decades of sedimentological and geochemical investigation of Banded Iron Formations (BIF. While the exact mechanisms of Fe(II oxidation remains equivocal, reaction with O2 in the marine water column, produced by cyanobacteria or early oxygenic phototrophs, was likely. In order to understand the role of cyanobacteria in the deposition of Fe(III minerals to BIF, we must first know how planktonic marine cyanobacteria respond to ferruginous (anoxic and Fe(II-rich waters in terms of growth, Fe uptake and homeostasis, and Fe mineral formation. We therefore grew the common marine cyanobacterium Synechococcus PCC 7002 in closed bottles that began anoxic, and contained Fe(II concentrations that span the range of possible concentrations in Precambrian seawater. These results, along with cell suspension experiments, indicate that Fe(II is likely oxidized by this strain via chemical oxidation with oxygen produced during photosynthesis, and not via any direct enzymatic or photosynthetic pathway. Imaging of the cell-mineral aggregates with scanning electron microscopy (SEM and confocal laser scanning microscopy (CLSM are consistent with extracellular precipitation of Fe(III (oxyhydroxide minerals, but that >10% of Fe(III sorbs to cell surfaces rather than precipitating. Proteomic experiments support the role of reactive oxygen species (ROS in Fe(II toxicity to Synechococcus PCC 7002. The proteome expressed under low Fe conditions included multiple siderophore biosynthesis and siderophore and Fe transporter proteins, but most siderophores are not expressed during growth with Fe(II. These results provide a mechanistic and quantitative framework for evaluating the geochemical consequences of perhaps life’s greatest metabolic innovation, i.e. the evolution and activity of oxygenic photosynthesis, in ferruginous

  17. [Growth and metabolite production of the marine cyanobacterium Synechococcus sp. (Chroococcales) in function to irradiance].

    Science.gov (United States)

    Rosales-Loaiza, Néstor; Guevara, Miguel; Lodeiros, César; Morales, Ever

    2008-06-01

    Changes in salinity, temperature and irradiance during wet and dry seasons have induced metabolic versatility in cyanobacteria from saline environments. Cyanobacteria from these environments have biotechnological potential for the production of metabolites with pharmaceutical and industrial interest. We studied the growth, dry mass and metabolite production of the cyanobacterium Synechococcus sp. MOF-03 in function of irradiance (78, 156 and 234 micromol q m(-2) s(-1)). All batch cultures were maintained by triplicate in constant aeration, 12:12 h photoperiod, 30 +/- 2 degrees C and 35% per hundred. Maximum values of protein, carbohydrates and lipids, of 530.19 +/- 11.16, 408.94 +/- 4.27 and 56.20 +/- 1.17 microg ml(-1), respectively, were achieved at 78 micromol q m(-2) s(-1). Pigments, analyzed by HPLC, showed maximum values at 78 micromol q m(-2) s(-1) for chlorophyll a with 7.72 +/- 0.16 microg ml(-1), and at 234 micromol q m(-2) s(-1) for beta-carotene and zeaxanthin with 0.70 +/- 0.01 and 0.67 +/- 0.05 microg ml(-1). Chlorophyll a:beta-carotene ratio decreased from 17.15 to 6.91 at 78 and 234 micromol q m(-2) s(-'1); whereas beta-carotene:zeaxanthin ratio showed no changes between 78 and 156 micromol q m(-2) s(-1), around 1.21, and decreased at 234 micromol q m(-2) s(-1), to 1.04. Also, this cyanobacterium produced the greatest cell density and dry mass at 156 micromol q m(-2) s(-1), with 406.13 +/- 21.74 x l0(6) cell ml(-1) and 1.49 +/- 0.11 mg ml(-1), respectively. Exopolysaccharide production was stable between 156 y 234 micromol q m(-2) s(-1), around 110 microg ml(-1). This Synechococcus strain shows a great potential for the production of enriched biomass with high commercial value metabolites.

  18. Dark hydrogen production in nitrogen atmosphere - An approach for sustainability by marine cyanobacterium Leptolyngbya valderiana BDU 20041

    Energy Technology Data Exchange (ETDEWEB)

    Prabaharan, D.; Arun Kumar, D.; Uma, L.; Subramanian, G. [National Facility for Marine Cyanobacteria (Sponsored by DBT, Govt. of India), Department of Marine Biotechnology, Bharathidasan University, Tiruchirapalli 620 024 (India)

    2010-10-15

    Biological hydrogen production is an ideal system for three main reasons i) forms a renewable energy source, ii) gives clean fuel and iii) serves as a good supplement to oil reserves. The major challenges faced in biological hydrogen production are the presence of uptake hydrogenase and lack of sustainability in the cyanobacterial hydrogen production system. Three different marine cyanobacterial species viz. Leptolyngbya valderiana BDU 20041, Dichothrix baueriana BDU 40481 and Nostoc calcicola BDU 40302 were studied for their potential use in hydrogen production. Among these, L. valderiana BDU 20041, was found to produce hydrogen even in 100% nitrogen atmosphere which was 85% of the hydrogen produced in argon atmosphere. This is the first report of such a high rate of production of hydrogen in a nitrogen atmosphere by a cyanobacterium, which makes it possible to develop sustained hydrogen production systems. L. valderiana BDU 20041, a dark hydrogen producer uses the reductant essentially supplied by the respiratory pathway for hydrogen production. Using inhibitors, this organism was found to produce hydrogen due to the activities of both nitrogenase and bidirectional hydrogenase, while it had no 'uptake' hydrogenase activity. The other two organisms though had low levels of bidirectional hydrogenase, possessed considerable 'uptake' hydrogenase activity and hence could not release much hydrogen either in argon or nitrogen atmosphere. (author)

  19. Decoupling of ammonium regulation and ntcA transcription in the diazotrophic marine cyanobacterium Trichodesmium sp. IMS101.

    Science.gov (United States)

    Post, Anton F; Rihtman, Branko; Wang, Qingfeng

    2012-03-01

    Nitrogen (N) physiology in the marine cyanobacterium Trichodesmium IMS101 was studied along with transcript accumulation of the N-regulatory gene ntcA and of two of its target genes: napA (nitrate assimilation) and nifH (N(2) fixation). N(2) fixation was impaired in the presence of nitrite, nitrate and urea. Strain IMS101 was capable of growth on these combined N sources at ammonium. Whereas ecologically relevant N concentrations (2-20 μM) suppressed growth and assimilation, much higher concentrations were required to affect transcript levels. Transcripts of nifH accumulated under nitrogen-fixing conditions; these transcript levels were maintained in the presence of nitrate (100 μM) and ammonium (20 μM). However, nifH transcript levels were below detection at ammonium concentrations >20 μM. napA mRNA was found at low levels in both N(2)-fixing and ammonium-utilizing filaments, and it accumulated in filaments grown with nitrate. The positive effect of nitrate on napA transcription was abolished by ammonium additions of >200 μM. This effect was restored upon addition of the glutamine synthetase inhibitor L-methionin-DL-sulfoximine. Surprisingly, ntcA transcript levels remained high in the presence of ammonium, even at elevated concentrations. These findings indicate that ammonium repression is decoupled from transcriptional activation of ntcA in Trichodesmium IMS101.

  20. First Evidence of Palytoxin and 42-Hydroxy-palytoxin in the Marine Cyanobacterium Trichodesmium

    Directory of Open Access Journals (Sweden)

    Dominique Laurent

    2011-03-01

    Full Text Available Marine pelagic diazotrophic cyanobacteria of the genus Trichodesmium (Oscillatoriales are widespread throughout the tropics and subtropics, and are particularly common in the waters of New Caledonia. Blooms of Trichodesmium are suspected to be a potential source of toxins in the ciguatera food chain and were previously reported to contain several types of paralyzing toxins. The toxicity of water-soluble extracts of Trichodesmium spp. were analyzed by mouse bioassay and Neuroblastoma assay and their toxic compounds characterized using liquid chromatography coupled with tandem mass spectrometry techniques. Here, we report the first identification of palytoxin and one of its derivatives, 42-hydroxy-palytoxin, in field samples of Trichodesmium collected in the New Caledonian lagoon. The possible role played by Trichodesmium blooms in the development of clupeotoxism, this human intoxication following the ingestion of plankton-eating fish and classically associated with Ostreopsis blooms, is also discussed.

  1. Discovery and Synthesis of Caracolamide A, an Ion Channel Modulating Dichlorovinylidene Containing Phenethylamide from a Panamanian Marine Cyanobacterium cf. Symploca Species.

    Science.gov (United States)

    Naman, C Benjamin; Almaliti, Jehad; Armstrong, Lorene; Caro-Díaz, Eduardo J; Pierce, Marsha L; Glukhov, Evgenia; Fenner, Amanda; Spadafora, Carmenza; Debonsi, Hosana M; Dorrestein, Pieter C; Murray, Thomas F; Gerwick, William H

    2017-08-25

    A recent untargeted metabolomics investigation into the chemical profile of 10 organic extracts from cf. Symploca spp. revealed several interesting chemical leads for further natural product drug discovery. Subsequent target-directed isolation efforts with one of these, a Panamanian marine cyanobacterium cf. Symploca sp., yielded a phenethylamide metabolite that terminates in a relatively rare gem-dichlorovinylidene moiety, caracolamide A (1), along with a known isotactic polymethoxy-1-alkene (2). Detailed NMR and HRESIMS analyses were used to determine the structures of these molecules, and compound 1 was confirmed by a three-step synthesis. Pure compound 1 was shown to have in vitro calcium influx and calcium channel oscillation modulatory activity when tested as low as 10 pM using cultured murine cortical neurons, but was not cytotoxic to NCI-H460 human non-small-cell lung cancer cells in vitro (IC 50 > 10 μM).

  2. Diversity of the Marine Cyanobacterium Trichodesmium: Characterization of the Woods Hole Culture Collection and Quantification of Field Populations

    Science.gov (United States)

    2009-09-01

    stations on all four cruises; Fig. 5-4 C), and Plec - tonema sp. (North Pacific MP09-19, North Atlantic EN361-1, 2, 3; Fig. 5-4 D). Calothrix sp. was found in...under a chlorophyll filter; (C) ELF-labeled heterotrophic bacteria (Sta. MP09-16, 11 Aug 03, puff); (D) ELF-labeled cyanobacterium Plec - tonema sp...epiphyte of the pelagic diatom Chaetoceros (Foster and Zehr, 2006). While Plec - tonema is known to fix N2 only in lowered oxygen tension (Rippka et al

  3. Santacruzamate A, a potent and selective histone deacetylase inhibitor from the Panamanian marine cyanobacterium cf. Symploca sp.

    Science.gov (United States)

    Pavlik, Christopher M; Wong, Christina Y B; Ononye, Sophia; Lopez, Dioxelis D; Engene, Niclas; McPhail, Kerry L; Gerwick, William H; Balunas, Marcy J

    2013-11-22

    A dark brown tuft-forming cyanobacterium, morphologically resembling the genus Symploca, was collected during an expedition to the Coiba National Park, a UNESCO World Heritage Site on the Pacific coast of Panama. Phylogenetic analysis of its 16S rRNA gene sequence indicated that it is 4.5% divergent from the type strain for Symploca and thus is likely a new genus. Fractionation of the crude extract led to the isolation of a new cytotoxin, designated santacruzamate A (1), which has several structural features in common with suberoylanilide hydroxamic acid [(2), SAHA, trade name Vorinostat], a clinically approved histone deacetylase (HDAC) inhibitor used to treat refractory cutaneous T-cell lymphoma. Recognition of the structural similarly of 1 and SAHA led to the characterization of santacruzamate A as a picomolar level selective inhibitor of HDAC2, a Class I HDAC, with relatively little inhibition of HDAC4 or HDAC6, both Class II HDACs. As a result, chemical syntheses of santacruzamate A as well as a structurally intriguing hybrid molecule, which blends aspects of both agents (1 and 2), were achieved and evaluated for their HDAC activity and specificity.

  4. Santacruzamate A, a Potent and Selective Histone Deacetylase (HDAC) Inhibitor from the Panamanian Marine Cyanobacterium cf. Symploca sp.

    Science.gov (United States)

    Pavlik, Christopher M.; Wong, Christina Y.B.; Ononye, Sophia; Lopez, Dioxelis D.; Engene, Niclas; McPhail, Kerry L.; Gerwick, William H.; Balunas, Marcy J.

    2013-01-01

    A dark-brown tuft-forming cyanobacterium, morphologically resembling the genus Symploca, was collected during an expedition to the Coiba National Park, a UNESCO World Heritage Site on the Pacific coast of Panama. Phylogenetic analysis of its 16S rRNA gene sequence indicated that it is 4.5% divergent from the type strain for Symploca, and thus is likely a new genus. Fractionation of the crude extract led to the isolation of a new cytotoxin, designated santacruzamate A (1), which has several structural features in common with suberoylanilide hydroxamic acid [(2), SAHA, trade name Vorinostat®], a clinically approved histone deacetylase (HDAC) inhibitor used to treat refractory cutaneous T-cell lymphoma. Recognition of the structural similarly of 1 and SAHA led to the characterization of santacruzamate A as a picomolar level selective inhibitor of HDAC2, a Class I HDAC, with relatively little inhibition of HDAC4 or HDAC6, both Class II HDACs. As a result, chemical syntheses of santacruzamate A as well as a structurally intriguing hybrid molecule, which blends aspects of both agents (1 and 2), were achieved and evaluated for their HDAC activity and specificity. PMID:24164245

  5. In vivo toxicity of the culturable marine cyanobacterium Geitlerinema pseudacutissimum CNP 1019 extract on male Swiss albino mice (Mus musculus).

    Science.gov (United States)

    Maruthanayagam, Veerabadhran; Nagarajan, Manivel; Sundararaman, Muthuraman

    2014-01-01

    In this study, we investigated the in vivo toxicity of Geitlerinema pseudacutissimum CNP 1019 organic extract in a murine host. A single intraperitoneal injection of 1 g extract kg⁻¹ body weight (BW) did not exhibit mortality, whereas 3 g extract kg⁻¹ BW (approximate lethal dose) resulted in mortality within 5 days. To perform subchronic exposure toxicity analyses (i.e., daily exposure for a total of 14 days), a maximum concentration of ≤1 g extract kg⁻¹ BW was used. Subchronic toxicity studies in the treated mice, showed fluctuations of feed intake, loss of body weight, increase in specific activity of serum lactate dehydrogenase, alanine aminotransferase and decrease in whole serum protein concentration. LDH isoenzyme expression was found, and levels of the various isoforms were decreased as a result of the treatment. Histopathology studies in liver, kidney, and spleen isolated from the treated mice showed the presence of necrotic debris, hemorrhage, and micronuclei revealing the toxicity of the extract. The dose-dependent alterations in biochemical parameters in conjunction with the histological lesions noted in the animals treated with the prepared extract illustrate the likely potential toxicity to mammals from any encounters with the studied cyanobacterium.

  6. Transcriptional Activities of the Microbial Consortium Living with the Marine Nitrogen-Fixing Cyanobacterium Trichodesmium Reveal Potential Roles in Community-Level Nitrogen Cycling.

    Science.gov (United States)

    Lee, Michael D; Webb, Eric A; Walworth, Nathan G; Fu, Fei-Xue; Held, Noelle A; Saito, Mak A; Hutchins, David A

    2018-01-01

    Trichodesmium is a globally distributed cyanobacterium whose nitrogen-fixing capability fuels primary production in warm oligotrophic oceans. Like many photoautotrophs, Trichodesmium serves as a host to various other microorganisms, yet little is known about how this associated community modulates fluxes of environmentally relevant chemical species into and out of the supraorganismal structure. Here, we utilized metatranscriptomics to examine gene expression activities of microbial communities associated with Trichodesmium erythraeum (strain IMS101) using laboratory-maintained enrichment cultures that have previously been shown to harbor microbial communities similar to those of natural populations. In enrichments maintained under two distinct CO 2 concentrations for ∼8 years, the community transcriptional profiles were found to be specific to the treatment, demonstrating a restructuring of overall gene expression had occurred. Some of this restructuring involved significant increases in community respiration-related transcripts under elevated CO 2 , potentially facilitating the corresponding measured increases in host nitrogen fixation rates. Particularly of note, in both treatments, community transcripts involved in the reduction of nitrate, nitrite, and nitrous oxide were detected, suggesting the associated organisms may play a role in colony-level nitrogen cycling. Lastly, a taxon-specific analysis revealed distinct ecological niches of consistently cooccurring major taxa that may enable, or even encourage, the stable cohabitation of a diverse community within Trichodesmium consortia. IMPORTANCE Trichodesmium is a genus of globally distributed, nitrogen-fixing marine cyanobacteria. As a source of new nitrogen in otherwise nitrogen-deficient systems, these organisms help fuel carbon fixation carried out by other more abundant photoautotrophs and thereby have significant roles in global nitrogen and carbon cycling. Members of the Trichodesmium genus tend to

  7. Characterization of the extracellular polysaccharide produced by a marine cyanobacterium, Cyanothece sp. ATCC 51142, and its exploitation toward metal removal from solutions.

    Science.gov (United States)

    Shah, V; Ray, A; Garg, N; Madamwar, D

    2000-04-01

    Cyanobacterium, Cyanothece sp. ATCC 51142 produces an exopolysaccharide at a high level. Physical analysis of the exopolysaccharide (EPS), such as nuclear magnetic resonance, infrared spectrum, were done to determine its possible structure. Thermal gravimetric analysis, differential scanning calorimeter, and differential thermal analysis of the polymer were done to find out the thermal behavior. Calcium content within the sample was found out. Some of the physicochemical properties, such as relative viscosity, specific viscosity, and intrinsic viscosity of the EPS were studied under different conditions. The phenomenon of gel formation by the EPS was investigated for its potential application in metal removal from solutions.

  8. The marine cyanobacterium Crocosphaera watsonii WH8501 synthesizes the compatible solute trehalose by a laterally acquired OtsAB fusion protein

    NARCIS (Netherlands)

    Pade, N.; Compaoré, J.; Klähn, S.; Stal, L.J.; Hagemann, M.

    2012-01-01

    Compatible solutes are small organic molecules that are involved in the acclimation to various stresses such as temperature and salinity. Marine or moderate halotolerant cyanobacteria accumulate glucosylglycerol, while cyanobacteria with low salt tolerance (freshwater strains) usually accumulate

  9. Iron Isotope Fractionation during Fe(II) Oxidation Mediated by the Oxygen-Producing Marine Cyanobacterium Synechococcus PCC 7002

    Energy Technology Data Exchange (ETDEWEB)

    Swanner, E. D.; Bayer, T.; Wu, W.; Hao, L.; Obst, M.; Sundman, A.; Byrne, J. M.; Michel, F. M.; Kleinhanns, I. C.; Kappler, A.; Schoenberg, R.

    2017-04-11

    In this study, we couple iron isotope analysis to microscopic and mineralogical investigation of iron speciation during circumneutral Fe(II) oxidation and Fe(III) precipitation with photosynthetically produced oxygen. In the presence of the cyanobacterium Synechococcus PCC 7002, aqueous Fe(II) (Fe(II)aq) is oxidized and precipitated as amorphous Fe(III) oxyhydroxide minerals (iron precipitates, Feppt), with distinct isotopic fractionation (ε56Fe) values determined from fitting the δ56Fe(II)aq (1.79‰ and 2.15‰) and the δ56Feppt (2.44‰ and 2.98‰) data trends from two replicate experiments. Additional Fe(II) and Fe(III) phases were detected using microscopy and chemical extractions and likely represent Fe(II) and Fe(III) sorbed to minerals and cells. The iron desorbed with sodium acetate (FeNaAc) yielded heavier δ56Fe compositions than Fe(II)aq. Modeling of the fractionation during Fe(III) sorption to cells and Fe(II) sorption to Feppt, combined with equilibration of sorbed iron and with Fe(II)aq using published fractionation factors, is consistent with our resulting δ56FeNaAc. The δ56Feppt data trend is inconsistent with complete equilibrium exchange with Fe(II)aq. Because of this and our detection of microbially excreted organics (e.g., exopolysaccharides) coating Feppt in our microscopic analysis, we suggest that electron and atom exchange is partially suppressed in this system by biologically produced organics. These results indicate that cyanobacteria influence the fate and composition of iron in sunlit environments via their role in Fe(II) oxidation through O2 production, the capacity of their cell surfaces to sorb iron, and the interaction of secreted organics with Fe(III) minerals.

  10. Genetically modified cyanobacterium Nostoc muscorum ...

    Indian Academy of Sciences (India)

    Madhu

    diazotrophic cultures of the cyanobacterium N. muscorum in quantities of 5 .... growth media and then used for estimation of their characteristics. Each reading is ..... 1224–1232. Christian J H B 1950 The influence of nutrition on the water rela-.

  11. NanoSIMS Analyses of Mo Indicate Nitrogenase Activity and Help Solve a N and C Fixation Puzzle in a Marine Cyanobacterium

    Science.gov (United States)

    Pett-Ridge, J.; Weber, P. K.; Finzi, J.; Hutcheon, I. D.; Capone, D. G.

    2006-12-01

    Diazotrophic cyanobacteria are capable of both CO2 and N2 fixation, yet must separate these two functions because the nitrogenase enzymes used in N2 fixation are strongly inhibited by O2 produced during photosynthesis. Some lineages, such as Anabaena, use specialized cells (heterocysts) to maintain functional segregation. However the mechanism of this segregation is poorly understood in Trichodesmium, a critical component of marine primary production in the tropical and subtropical North Atlantic. While some Trichodesmium studies suggest a temporal segregation of the nitrogen and carbon fixing processes, others indicate nitrogen fixation is spatially isolated in differentiated cells called diazocytes. In order to isolate the intracellular location of N fixation in both species, we used a combination of TEM, SEM and NanoSIMS analysis to map the distribution of C, N and Mo (a critical nitrogenase co-factor) isotopes in intact cells. NanoSIMS is a powerful surface analysis tool which combines nanometer-scale imaging resolution with the high sensitivity of mass spectrometry. Using cells grown in a 13CO^2 and 15N2 enriched atmosphere, our analyses indicate that in Anabaena, heterocysts are consistently enriched in Mo, and Mo accumulation suggests active N fixation (as opposed to N storage). In the non- heterocystous Trichodesmium, Mo is concentrated in sub-regions of individual cells, and is not associated with regions of N storage (cyanophycin granules). We suggest that NanoSIMS mapping of metal enzyme co- factors is a unique method of identifying physiological and morphological characteristics within individual bacterial cells. This combination of NanoSIMS analysis and high resolution microscopy allows isotopic analysis to be linked to morphological features and holds great promise for fine-scale studies of bacteria metabolism.

  12. Phosphorus Physiology of the Marine Cyanobacterium Trichodesmium

    Science.gov (United States)

    2010-02-01

    Ghosh, R.K., and Das, J. (1982) Monomeric alkaline phosphatase of Vibrio cholerae . J. Bacteriol. 150: 1033-1039. Sañudo-Wilhelmy, S.A., Kustka, A.B... Vibrio cholerae . J Bacteriol 150: 1033– 1039. Sañudo-Wilhelmy, S.A., Kustka, A.B., Gobler, C.J., Hutchins, D.A., Yang, M., Lwiza, K., et al. (2001...fixation and release of fixed nitrogen by Trichodesmium spp, in the Gulf of Mexico . Limnol. Oceanogr. 51: 1762-1776. MULHOLLAND, M. R., S. FLOGE, E

  13. Nitrogen uptake dynamics of a persistent cyanobacterium ...

    African Journals Online (AJOL)

    Worldwide, persistent cyanobacterial blooms are becoming more frequent and are often associated with effects of global climate change. In June 2009, a widespread bloom of the unicellular cyanobacterium, Cyanothece sp., appeared in North Lake and False Bay of Lake St Lucia – a large (360 km2) estuarine lake system ...

  14. Growth Characteristics of an Estuarine Heterocystous Cyanobacterium

    NARCIS (Netherlands)

    Guimarães, P.; Yunes, J.S.; Cretoiu, M.S.; Stal, L.J.

    2017-01-01

    A new estuarine filamentous heterocystous cyanobacterium was isolated from intertidal sediment of the Lagoa dos Patos estuary (Brazil). The isolate may represent a new genus related to Cylindrospermopsis. While the latter is planktonic, contains gas vesicles, and is toxic, the newly isolated strain

  15. Photoacclimation of cultured strains of the cyanobacterium

    NARCIS (Netherlands)

    Bañares-España, E.; Kromkamp, J.C.; López-Rodas, V.; Costas, E.; Flores-Moya, A.

    2013-01-01

    The cyanobacterium Microcystis aeruginosa forms blooms that can consist of colonies. We have investigated how M.aeruginosa acclimatizes to changing light conditions such as can occur during blooms. Three different strains were exposed to two irradiance levels: lower (LL) and higher (HL) than the

  16. Floating cultivation of marine cyanobacteria using coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, M.; Yoshida, E.; Takeyama, H.; Matsunaga, T. [Tokyo University of Agriculture and Technology, Tokyo (Japan). Dept. of Biotetechnology

    2000-07-01

    The aim was to develop improved methodologies for bulk culturing of biotechnologically useful marine cyanobacteria in the open ocean. The viability of using coal fly ash (CFA) blocks as the support medium in a novel floating culture system for marine microalgae was investigated. The marine cyanobacterium Synechococcus sp. NKBC 040607 was found to adhere to floating CFA blocks in liquid culture medium. The marine cyanobacterium Synechococcus sp. NKBG 042902 weakly adhered to floating CFA blocks in BG-11 medium. Increasing the concentration of calcium ion in the culture medium enhanced adherence to CFA blocks.

  17. Growth Characteristics of an Estuarine Heterocystous Cyanobacterium

    Directory of Open Access Journals (Sweden)

    Pablo Guimarães

    2017-06-01

    Full Text Available A new estuarine filamentous heterocystous cyanobacterium was isolated from intertidal sediment of the Lagoa dos Patos estuary (Brazil. The isolate may represent a new genus related to Cylindrospermopsis. While the latter is planktonic, contains gas vesicles, and is toxic, the newly isolated strain is benthic and does not contain gas vesicles. It is not known whether the new strain is toxic. It grows equally well in freshwater, brackish and full salinity growth media, in the absence of inorganic or organic combined nitrogen, with a growth rate 0.6 d-1. Nitrogenase, the enzyme complex responsible for fixing dinitrogen, was most active during the initial growth phase and its activity was not different between the different salinities tested (freshwater, brackish, and full salinity seawater. Salinity shock also did not affect nitrogenase activity. The frequency of heterocysts was high, coinciding with high nitrogenase activity during the initial growth phase, but decreased subsequently. However, the frequency of heterocysts decreased considerably more at higher salinity, while no change in nitrogenase activity occurred, indicating a higher efficiency of dinitrogen fixation. Akinete frequency was low in the initial growth phase and higher in the late growth phase. Akinete frequency was much lower at high salinity, which might indicate better growth conditions or that akinete differentiation was under the same control as heterocyst differentiation. These trends have hitherto not been reported for heterocystous cyanobacteria but they seem to be well fitted for an estuarine life style.

  18. Floating cultivation of marine cyanobacteria using coal fly ash.

    Science.gov (United States)

    Matsumoto, M; Yoshida, E; Takeyama, H; Matsunaga, T

    2000-01-01

    The aim of this study was to develop improved methodologies for bulk culturing of biotechnologically useful marine cyanobacteria in the open ocean. We have investigated the viability of using coal fly ash (CFA) blocks as the support medium in a novel floating culture system for marine micro-algae. The marine cyanobacterium Synechococcus sp. NKBG 040607 was found to adhere to floating CFA blocks in liquid culture medium. Maximum density of attached cells of 2.0 x 10(8) cells/cm2 was achieved using seawater. The marine cyanobacterium Synechococcus sp. NKBG 042902 weakly adhered to floating CFA blocks in BG-11 medium. Increasing the concentration of calcium ion in the culture medium enhanced adherence to CFA blocks.

  19. Effect of solar radiation on photosynthesis and pigmentation in the cyanobacterium microcoleus chtihonoplastes

    International Nuclear Information System (INIS)

    Annan, J.N.; Galyuon, I. K. A.; Donkor, V.A.

    2007-01-01

    The effects of solar radiation on the photosynthetic oxygen production and pigmentation were investigated in the marine filamentous cyanobacterium. Microcoleus chthonoplastes harvested from the intertidal zone of the Biriwa coast in Ghana. The organism was exposed to unfiltered solar radiation (UV-B. UV-A and PAR) and solar radiation filtered through optical filters. WG320 (UV-A and PAR), GG400 (PAR only), and UG5 (only UV-B and UV-A), Photosynthetic oxygen production was impaired. The reduction in the rate of photosynthetic oxygen production took over 2 hours to occur. The photoinhibition due to unfiltered solar radiation and combined UV-A and PAR were most severe. Absorption spectra of the crude extracts of M. chthonoplastes, indicated the presence of chlorophyll a, carotenoids, phycoerythrin and phycocyanin as the photosynthetic pigments, which were significantly bleached under the various solar radiation wavelengths. Generally, the phycobilins were affected most. Fluorescence measurements showed peaks that decreased significantly in amplitude and also underwent a shift towards shorter wavelengths, with prolonged exposure time, indicating that energy transfer from the accessory pigments was adversely affected. The implication is that increased solar radiation may have severe consequences on the marine ecosystem. (au)

  20. Colony formation in the cyanobacterium Microcystis.

    Science.gov (United States)

    Xiao, Man; Li, Ming; Reynolds, Colin S

    2018-02-22

    Morphological evolution from a unicellular to multicellular state provides greater opportunities for organisms to attain larger and more complex living forms. As the most common freshwater cyanobacterial genus, Microcystis is a unicellular microorganism, with high phenotypic plasticity, which forms colonies and blooms in lakes and reservoirs worldwide. We conducted a systematic review of field studies from the 1990s to 2017 where Microcystis was dominant. Microcystis was detected as the dominant genus in waterbodies from temperate to subtropical and tropical zones. Unicellular Microcystis spp. can be induced to form colonies by adjusting biotic and abiotic factors in laboratory. Colony formation by cell division has been induced by zooplankton filtrate, high Pb 2+ concentration, the presence of another cyanobacterium (Cylindrospermopsis raciborskii), heterotrophic bacteria, and by low temperature and light intensity. Colony formation by cell adhesion can be induced by zooplankton grazing, high Ca 2+ concentration, and microcystins. We hypothesise that single cells of all Microcystis morphospecies initially form colonies with a similar morphology to those found in the early spring. These colonies gradually change their morphology to that of M. ichthyoblabe, M. wesenbergii and M. aeruginosa with changing environmental conditions. Colony formation provides Microcystis with many ecological advantages, including adaption to varying light, sustained growth under poor nutrient supply, protection from chemical stressors and protection from grazing. These benefits represent passive tactics responding to environmental stress. Microcystis colonies form at the cost of decreased specific growth rates compared with a unicellular habit. Large colony size allows Microcystis to attain rapid floating velocities (maximum recorded for a single colony, ∼ 10.08 m h -1 ) that enable them to develop and maintain a large biomass near the surface of eutrophic lakes, where they may shade

  1. Marine Synechococcus Aggregation

    Science.gov (United States)

    Neuer, S.; Deng, W.; Cruz, B. N.; Monks, L.

    2016-02-01

    Cyanobacteria are considered to play an important role in the oceanic biological carbon pump, especially in oligotrophic regions. But as single cells are too small to sink, their carbon export has to be mediated by aggregate formation and possible consumption by zooplankton producing sinking fecal pellets. Here we report results on the aggregation of the ubiquitous marine pico-cyanobacterium Synechococcus as a model organism. We first investigated the mechanism behind such aggregation by studying the potential role of transparent exopolymeric particles (TEP) and the effects of nutrient (nitrogen or phosphorus) limitation on the TEP production and aggregate formation of these pico-cyanobacteria. We further studied the aggregation and subsequent settling in roller tanks and investigated the effects of the clays kaolinite and bentonite in a series of concentrations. Our results show that despite of the lowered growth rates, Synechococcus in nutrient limited cultures had larger cell-normalized TEP production, formed a greater volume of aggregates, and resulted in higher settling velocities compared to results from replete cultures. In addition, we found that despite their small size and lack of natural ballasting minerals, Synechococcus cells could still form aggregates and sink at measureable velocities in seawater. Clay minerals increased the number and reduced the size of aggregates, and their ballasting effects increased the sinking velocity and carbon export potential of aggregates. In comparison with the Synechococcus, we will also present results of the aggregation of the pico-cyanobacterium Prochlorococcus in roller tanks. These results contribute to our understanding in the physiology of marine Synechococcus as well as their role in the ecology and biogeochemistry in oligotrophic oceans.

  2. Dependence of the cyanobacterium Prochlorococcus on hydrogen peroxide scavenging microbes for growth at the ocean's surface.

    Directory of Open Access Journals (Sweden)

    J Jeffrey Morris

    2011-02-01

    Full Text Available The phytoplankton community in the oligotrophic open ocean is numerically dominated by the cyanobacterium Prochlorococcus, accounting for approximately half of all photosynthesis. In the illuminated euphotic zone where Prochlorococcus grows, reactive oxygen species are continuously generated via photochemical reactions with dissolved organic matter. However, Prochlorococcus genomes lack catalase and additional protective mechanisms common in other aerobes, and this genus is highly susceptible to oxidative damage from hydrogen peroxide (HOOH. In this study we showed that the extant microbial community plays a vital, previously unrecognized role in cross-protecting Prochlorococcus from oxidative damage in the surface mixed layer of the oligotrophic ocean. Microbes are the primary HOOH sink in marine systems, and in the absence of the microbial community, surface waters in the Atlantic and Pacific Ocean accumulated HOOH to concentrations that were lethal for Prochlorococcus cultures. In laboratory experiments with the marine heterotroph Alteromonas sp., serving as a proxy for the natural community of HOOH-degrading microbes, bacterial depletion of HOOH from the extracellular milieu prevented oxidative damage to the cell envelope and photosystems of co-cultured Prochlorococcus, and facilitated the growth of Prochlorococcus at ecologically-relevant cell concentrations. Curiously, the more recently evolved lineages of Prochlorococcus that exploit the surface mixed layer niche were also the most sensitive to HOOH. The genomic streamlining of these evolved lineages during adaptation to the high-light exposed upper euphotic zone thus appears to be coincident with an acquired dependency on the extant HOOH-consuming community. These results underscore the importance of (indirect biotic interactions in establishing niche boundaries, and highlight the impacts that community-level responses to stress may have in the ecological and evolutionary outcomes for co

  3. Isolation, characterization and localization of extracellular polymeric substances from the cyanobacterium Arthrospira platensis strain MMG-9

    NARCIS (Netherlands)

    Ahmed, M.; Moerdijk-Poortvliet, T.C.W.; Wijnholds, A.; Stal, L.J.; Hasnain, S.

    2014-01-01

    Arthrospira platensis is a cyanobacterium known for its nutritional value and secondary metabolites. Extracellular polymeric substances (EPS) are an important trait of most cyanobacteria, including A. platensis. Here, we extracted and analysed different fractions of EPS from a locally isolated

  4. Isolation, characterization and localization of extracellular polymeric substances from the cyanobacterium

    NARCIS (Netherlands)

    Ahmed, M.; Wijnholds, A.; Stal, L.J.; Hasnain, S.

    2014-01-01

    Arthrospira platensis is a cyanobacterium known for its nutritional value and secondary metabolites. Extracellular polymeric substances (EPS) are an important trait of most cyanobacteria, including A. platensis. Here, we extracted and analysed different fractions of EPS from a locally isolated

  5. Moessbauer study of cobalt and iron in the cyanobacterium (blue green alga)

    International Nuclear Information System (INIS)

    Ambe, Shizuko

    1990-01-01

    Moessbauer emission and absorption studies have been performed on cobalt and iron in the cyanobacterium (blue-green alga). The Moessbauer spectrum of the cyanobacterium cultivated with 57 Co is decomposed into two doublets. The parameters of the major doublet are in good agreement with those of cyanocobalamin (vitamin B 12 ) labeled with 57 Co. The other minor doublet has parameters close to those of Fe(II) coordinated with six nitrogen atoms. These suggest that cobalt is used for the biosynthesis of vitamin B 12 or its analogs in the cyanobacterium. The spectra of the cyanobacterium grown with 57 Fe show that iron is in the high-spin trivalent state and possibly in the form of ferritin, iron storage protein. (orig.)

  6. Identification of genes implicated in toxin production in the cyanobacterium Cylindrospermopsis raciborskii

    DEFF Research Database (Denmark)

    Schembri, Mark; Neilan, B.A.; Saint, C.P.

    2001-01-01

    Cylindrospermopsis raciborskii is a bloom-forming cyanobacterium found in both tropical and temperate climates which produces cylindrospermopsin, a potent hepatotoxic secondary metabolite. This organism is notorious for its association with a significant human poisoning incident on Palm Island...

  7. Evidence for paralytic shellfish poisons in the freshwater cyanobacterium Lyngbya wollei (Farlow ex Gomont) comb. nov.

    OpenAIRE

    Carmichael, W W; Evans, W R; Yin, Q Q; Bell, P; Moczydlowski, E

    1997-01-01

    Lyngbya wollei (Farlow ex Gomont) comb. nov., a perennial mat-forming filamentous cyanobacterium prevalent in lakes and reservoirs of the southeastern United States, was found to produce a potent, acutely lethal neurotoxin when tested in the mouse bioassay. Signs of poisoning were similar to those of paralytic shellfish poisoning. As part of the Tennessee Valley Authority master plan for Guntersville Reservoir, the mat-forming filamentous cyanobacterium L. wollei, a species that had recently ...

  8. Heterologous expression of an algal hydrogenase in a heterocystous cyanobacterium

    Energy Technology Data Exchange (ETDEWEB)

    Thorsten Heidorn; Peter Lindblad [Dept. of Physiological Botany, Uppsala University, Villavogen 6, SE-752 36 Uppsala, (Sweden)

    2006-07-01

    For the expression of an active algal [FeFe] hydrogenase in the heterocystous cyanobacterium Nostoc punctiforme A TCC 29133 the Chlamydomonas reinhardtii hydrogenase gene hydA1 and the accessory genes hydEF and hydG are to be introduced into the cyanobacteria cells. The genes were amplified by PCR from EST clones, cloned into the cloning vector pBluescript SK+ and sequenced. An expression vector for multi-cistronic cloning, based on pSCR202, was constructed and for a functional test GFP was inserted as a reporter gene. The GFP construct was transformed into Nostoc punctiforme A TCC 29133 by electroporation and expression of GFP was visualized by fluorescence microscopy. (authors)

  9. Heterologous expression of an algal hydrogenase in a heterocystous cyanobacterium

    International Nuclear Information System (INIS)

    Thorsten Heidorn; Peter Lindblad

    2006-01-01

    For the expression of an active algal [FeFe] hydrogenase in the heterocystous cyanobacterium Nostoc punctiforme A TCC 29133 the Chlamydomonas reinhardtii hydrogenase gene hydA1 and the accessory genes hydEF and hydG are to be introduced into the cyanobacteria cells. The genes were amplified by PCR from EST clones, cloned into the cloning vector pBluescript SK+ and sequenced. An expression vector for multi-cistronic cloning, based on pSCR202, was constructed and for a functional test GFP was inserted as a reporter gene. The GFP construct was transformed into Nostoc punctiforme A TCC 29133 by electroporation and expression of GFP was visualized by fluorescence microscopy. (authors)

  10. Ultraviolet radiation effects on pigmentation in the cyanobacterium ''Phormidium uncinatum''

    International Nuclear Information System (INIS)

    Donkor, V.A.; Haeder, D.P.

    1997-01-01

    The Baikal strain of the cyanobacterium Phormidium uncinatum was found to possess the photosynthetic pigments chlorophyll a, carotenoids, phycocyanin and allophycocyanin, while the Tuebingen strain of Phormidium contained, in addition to these, the biliprotein phycoerythrin. Sucrose gradient centrifugation of the pigment extracts resulted in a separation of the phycobiliproteins into several bands, which according to their absorption and fluorescence properties, were identified as monomers, trimers and hexamers. With increasing UV-B irradiation the heavier aggregates were broken down into smaller components. Photobleaching of these accessory pigments also occurred. FPLC gel filtration analyses of the pigments also showed loss of heavier aggregates of the phycobilins and bleaching of the pigments. SDS-polyacrylamide gel electrophoresis of the sucrose gradient and FPLC fractions indicated loss of the biliproteins with increasing UV-B irradiation. The loss of the β- were more rapid than that of the α- subunits. Increasing levels of ultraviolet irradiation is therefore deleterious to these organism. (author)

  11. Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium

    Directory of Open Access Journals (Sweden)

    Latifi Amel

    2008-06-01

    Full Text Available Abstract Background The colonial cyanobacterium Microcystis proliferates in a wide range of freshwater ecosystems and is exposed to changing environmental factors during its life cycle. Microcystis blooms are often toxic, potentially fatal to animals and humans, and may cause environmental problems. There has been little investigation of the genomics of these cyanobacteria. Results Deciphering the 5,172,804 bp sequence of Microcystis aeruginosa PCC 7806 has revealed the high plasticity of its genome: 11.7% DNA repeats containing more than 1,000 bases, 6.8% putative transposases and 21 putative restriction enzymes. Compared to the genomes of other cyanobacterial lineages, strain PCC 7806 contains a large number of atypical genes that may have been acquired by lateral transfers. Metabolic pathways, such as fermentation and a methionine salvage pathway, have been identified, as have genes for programmed cell death that may be related to the rapid disappearance of Microcystis blooms in nature. Analysis of the PCC 7806 genome also reveals striking novel biosynthetic features that might help to elucidate the ecological impact of secondary metabolites and lead to the discovery of novel metabolites for new biotechnological applications. M. aeruginosa and other large cyanobacterial genomes exhibit a rapid loss of synteny in contrast to other microbial genomes. Conclusion Microcystis aeruginosa PCC 7806 appears to have adopted an evolutionary strategy relying on unusual genome plasticity to adapt to eutrophic freshwater ecosystems, a property shared by another strain of M. aeruginosa (NIES-843. Comparisons of the genomes of PCC 7806 and other cyanobacterial strains indicate that a similar strategy may have also been used by the marine strain Crocosphaera watsonii WH8501 to adapt to other ecological niches, such as oligotrophic open oceans.

  12. DL-7-azatryptophan and citrulline metabolism in the cyanobacterium Anabaena sp. strain 1F

    International Nuclear Information System (INIS)

    Chen, C.H.; Van Baalen, C.; Tabita, F.R.

    1987-01-01

    An alternative route for the primary assimilation of ammonia proceeds via glutamine synthetase-carbamyl phosphate synthetase and its inherent glutaminase activity in Anabaena sp. strain 1F, a marine filamentous, heterocystous cyanobacterium. Evidence for the presence of this possible alternative route to glutamate was provided by the use of amino acid analogs as specific enzyme inhibitors, enzymological studies, and radioistopic labeling experiments. The amino acid pool patterns of continuous cultures of Anabaena sp. strain 1F were markedly influenced by the nitrogen source. A relatively high concentration of glutamate was maintained in the amino acid pools of all cultures irrespective of the nitrogen source, reflecting the central role of glutamate in nitrogen metabolism. The addition of 1.0 microM azaserine increased the intracellular pools of glutamate and glutamine. All attempts to detect any enzymatic activity for glutamate synthase by measuring the formation of L-[ 14 C]glutamate from 2-keto-[1- 14 C]glutarate and glutamine failed. The addition of 10 microM DL-7-azatryptophan caused a transient accumulation of intracellular citrulline and alanine which was not affected by the presence of chloramphenicol. The in vitro activity of carbamyl phosphate synthetase and glutaminase increased severalfold in the presence of azatryptophan. Results from radioisotopic labeling experiments with [ 14 C]bicarbonate and L-[1- 14 C]ornithine also indicated that citrulline was formed via carbamyl phosphate synthetase and ornithine transcarbamylase. In addition to its effects on nitrogen metabolism, azatryptophan also affected carbon metabolism by inhibiting photosynthetic carbon assimilation and photosynthetic oxygen evolution

  13. Binding characteristics of copper and cadmium by cyanobacterium Spirulina platensis.

    Science.gov (United States)

    Fang, Linchuan; Zhou, Chen; Cai, Peng; Chen, Wenli; Rong, Xingmin; Dai, Ke; Liang, Wei; Gu, Ji-Dong; Huang, Qiaoyun

    2011-06-15

    Cyanobacteria are promising biosorbent for heavy metals in bioremediation. Although sequestration of metals by cyanobacteria is known, the actual mechanisms and ligands involved are not very well understood. The binding characteristics of Cu(II) and Cd(II) by the cyanobacterium Spirulina platensis were investigated using a combination of chemical modifications, batch adsorption experiments, Fourier transform infrared (FTIR) spectroscopy and X-ray absorption fine structure (XAFS) spectroscopy. A significant increase in Cu(II) and Cd(II) binding was observed in the range of pH 3.5-5.0. Dramatical decrease in adsorption of Cu(II) and Cd(II) was observed after methanol esterification of the nonliving cells demonstrating that carboxyl functional groups play an important role in the binding of metals by S. platensis. The desorption rate of Cu(II) and Cd(II) from S. platensis surface was 72.7-80.7% and 53.7-58.0% by EDTA and NH(4)NO(3), respectively, indicating that ion exchange and complexation are the dominating mechanisms for Cu(II) and Cd(II) adsorption. XAFS analysis provided further evidence on the inner-sphere complexation of Cu by carboxyl ligands and showed that Cu is complexed by two 5-membered chelate rings on S. platensis surface. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Two New Lyngbyatoxin Derivatives from the Cyanobacterium, Moorea producens

    Directory of Open Access Journals (Sweden)

    Weina Jiang

    2014-12-01

    Full Text Available The toxin-producing cyanobacterium, Moorea producens, is a known causative organism of food poisoning and seaweed dermatitis (also known as “swimmer’s itch”. Two new toxic compounds were isolated and structurally elucidated from an ethyl acetate extract of M. producens collected from Hawaii. Analyses of HR-ESI-MS and NMR spectroscopies, as well as optical rotations and CD spectra indicated two new lyngbyatoxin derivatives, 2-oxo-3(R-hydroxy-lyngbyatoxin A (1 and 2-oxo-3(R-hydroxy-13-N-desmethyl-lyngbyatoxin A (2. The cytotoxicity and lethal activities of 1 and 2 were approximately 10- to 150-times less potent than lyngbyatoxin A. Additionally, the binding activities of 1 and 2 possessed 10,000-times lower affinity for the protein kinase Cδ (PKCδ-C1B peptide when compared to lyngbyatoxin A. These findings suggest that these new lyngbyatoxin derivatives may mediate their acute toxicities through a non-PKC activation pathway.

  15. Nitrogen-fixing cyanobacterium with a high phycoerythrin content.

    Science.gov (United States)

    Rodriguez, H; Rivas, J; Guerrero, M G; Losada, M

    1989-03-01

    The elemental and molecular composition, pigment content, and productivity of a phycoerythrin-rich nitrogen-fixing cyanobacterium-an Anabaena strain isolated from the coastal lagoon Albufera de Valencia, Spain-has been investigated. When compared with other heterocystous species, this strain exhibits similar chlorophyll a, carotene, and total phycobiliprotein contents but differs remarkably in the relative proportion of specific phycobiliproteins; the content of C-phycoerythrin amounts to 8.3% (versus about 1% in the other species) of cell dry weight. Absorption and fluorescence spectra of intact phycobilisomes isolated from this Anabaena sp. corroborate the marked contribution of phycoerythrin as an antenna pigment, a circumstance that is unusual for cyanobacteria capable of fixing N(2). The pigment content of cells is affected by variations in irradiance and cell density, these adaptive changes being more patent for C-phycoerythrin than for phycocyanins. The Anabaena strain is clumpy and capable of rapid flocculation. It exhibits outdoor productivities higher than 20 g (dry weight) m day during summer.

  16. fixing cyanobacterium Anabaena oryzae Fritsch under salt stress

    African Journals Online (AJOL)

    SERVER

    2007-10-18

    Oct 18, 2007 ... main nutrient that controls the development of natural populations of cyanobacteria in many terrestrial fresh water and marine environments (Healey, 1982; Mann,. 1994 ... compounds can be utilized for growth by various algal.

  17. Elevated CO2 enhances nitrogen fixation and growth in the marine cyanobacterium Trichodesmium

    Czech Academy of Sciences Publication Activity Database

    Levitan, O.; Rosenberg, G.; Šetlík, Ivan; Šetlíková, Eva; Grígel, Juraj; Klepetář, Jiří; Prášil, Ondřej; Berman-Frank, I.

    2007-01-01

    Roč. 13, č. 2 (2007), s. 531-538 ISSN 1354-1013 R&D Projects: GA MŠk 1P05ME824; GA ČR GA206/05/0335; GA MŽP SL/1/6/04 Institutional research plan: CEZ:AV0Z50200510 Keywords : ccm * cyanobacteria * diazotrophs Subject RIV: EE - Microbiology, Virology Impact factor: 4.786, year: 2007

  18. Crystal structure analysis of C-phycoerythrin from marine cyanobacterium Phormidium sp. A09DM.

    Science.gov (United States)

    Kumar, Vinay; Sonani, Ravi R; Sharma, Mahima; Gupta, Gagan D; Madamwar, Datta

    2016-07-01

    The role of unique sequence features of C-phycoerythrin, isolated from Phormidium sp. A09DM, has been investigated by crystallographic studies. Two conserved indels (i.e. inserts or deletions) are found in the β-subunit of Phormidium phycoerythrin that are distinctive characteristics of large number of cyanobacterial sequences. The identified signatures are a two-residue deletion from position 21 and a nine-residue insertion at position 146. Crystals of Phormidium phycoerythrin were obtained at pH values of 5 and 8.5, and structures have been resolved to high precision at 1.95 and 2.1 Å resolution, respectively. In both the structures, heterodimers of α- and β- subunits assemble as hexamers. The 7-residue insertion at position 146 significantly reduces solvent exposure of π-conjugated A-C rings of a phycoerythrobilin (PEB) chromophore, and can influence energy absorption and energy transfer characteristics. The structural analyses (with 12-fold redundancy) suggest that protein micro-environment alone dictates the conformation of bound chromophores. The low- and high-energy absorbing chromophores are identified based on A-B ring coplanarity. The spatial distribution of these is found to be similar to that observed in R-phycoerythrin, suggesting the direction of energy transfer from outer-surface of hexamer to inner-hollow cavity in the Phormidium protein. The crystal structures also reveal that a commonly observed Hydrogen-bonding network in phycobiliproteins, involving chromophore bound to α-subunit and amino acid at position 73 of β-subunit, may not be essential for structural and functional integrity of C-phycoerythrin orthologs. In solution, the protein displays slight red shift and decrease in fluorescence emission at acidic pH. The mechanism for which may be static and correlates with the proximity of +ve electric field of Arg148 to the C-ring of a PEB chromophore.

  19. Programmed cell death in the marine cyanobacterium Trichodesmium mediates carbon and nitrogen export

    Science.gov (United States)

    Bar-Zeev, Edo; Avishay, Itamar; Bidle, Kay D; Berman-Frank, Ilana

    2013-01-01

    The extent of carbon (C) and nitrogen (N) export to the deep ocean depends upon the efficacy of the biological pump that transports primary production to depth, thereby preventing its recycling in the upper photic zone. The dinitrogen-fixing (diazotrophic) Trichodesmium spp. contributes significantly to oceanic C and N cycling by forming extensive blooms in nutrient-poor tropical and subtropical regions. These massive blooms generally collapse several days after forming, but the cellular mechanism responsible, along with the magnitude of associated C and N export processes, are as yet unknown. Here, we used a custom-made, 2-m high water column to simulate a natural bloom and to specifically test and quantify whether the programmed cell death (PCD) of Trichodesmium mechanistically regulates increased vertical flux of C and N. Our findings demonstrate that extremely rapid development and abrupt, PCD-induced demise (within 2–3 days) of Trichodesmium blooms lead to greatly elevated excretions of transparent exopolymers and a massive downward pulse of particulate organic matter. Our results mechanistically link autocatalytic PCD and bloom collapse to quantitative C and N export fluxes, suggesting that PCD may have an impact on the biological pump efficiency in the oceans. PMID:23887173

  20. Antagonistic interactions between filamentous heterotrophs and the cyanobacterium Nostoc muscorum

    Directory of Open Access Journals (Sweden)

    Wolf Sarah

    2011-09-01

    Full Text Available Abstract Background Little is known about interactions between filamentous heterotrophs and filamentous cyanobacteria. Here, interactions between the filamentous heterotrophic bacteria Fibrella aestuarina (strain BUZ 2 and Fibrisoma limi (BUZ 3 with an axenic strain of the autotrophic filamentous cyanobacterium Nostoc muscorum (SAG 25.82 were studied in mixed cultures under nutrient rich (carbon source present in medium and poor (carbon source absent in medium conditions. Findings F. aestuarina BUZ 2 significantly reduced the cyanobacterial population whereas F. limi BUZ 3 did not. Physical contact between heterotrophs and autotroph was observed and the cyanobacterial cells showed some level of damage and lysis. Therefore, either contact lysis or entrapment with production of extracellular compounds in close vicinity of host cells could be considered as potential modes of action. The supernatants from pure heterotrophic cultures did not have an effect on Nostoc cultures. However, supernatant from mixed cultures of BUZ 2 and Nostoc had a negative effect on cyanobacterial growth, indicating that the lytic compounds were only produced in the presence of Nostoc. The growth and survival of tested heterotrophs was enhanced by the presence of Nostoc or its metabolites, suggesting that the heterotrophs could utilize the autotrophs and its products as a nutrient source. However, the autotroph could withstand and out-compete the heterotrophs under nutrient poor conditions. Conclusions Our results suggest that the nutrients in cultivation media, which boost or reduce the number of heterotrophs, were the important factor influencing the outcome of the interplay between filamentous heterotrophs and autotrophs. For better understanding of these interactions, additional research is needed. In particular, it is necessary to elucidate the mode of action for lysis by heterotrophs, and the possible defense mechanisms of the autotrophs.

  1. Binding characteristics of copper and cadmium by cyanobacterium Spirulina platensis

    International Nuclear Information System (INIS)

    Fang Linchuan; Zhou Chen; Cai Peng; Chen Wenli; Rong Xingmin; Dai Ke; Liang Wei; Gu Jidong; Huang Qiaoyun

    2011-01-01

    Highlights: → The carboxyl groups play a vital role in the binding of Cu(II) and Cd(II) to S. platensis cells. → Ion exchange and complexation are the dominating mechanism for Cu(II) and Cd(II) adsorption. → XAFS analysis provided evidence for the inner-sphere complexation of Cu by carboxyl ligands and showed that Cu is complexed by two 5-membered chelate rings on S. platensis surface. - Abstract: Cyanobacteria are promising biosorbent for heavy metals in bioremediation. Although sequestration of metals by cyanobacteria is known, the actual mechanisms and ligands involved are not very well understood. The binding characteristics of Cu(II) and Cd(II) by the cyanobacterium Spirulina platensis were investigated using a combination of chemical modifications, batch adsorption experiments, Fourier transform infrared (FTIR) spectroscopy and X-ray absorption fine structure (XAFS) spectroscopy. A significant increase in Cu(II) and Cd(II) binding was observed in the range of pH 3.5-5.0. Dramatical decrease in adsorption of Cu(II) and Cd(II) was observed after methanol esterification of the nonliving cells demonstrating that carboxyl functional groups play an important role in the binding of metals by S. platensis. The desorption rate of Cu(II) and Cd(II) from S. platensis surface was 72.7-80.7% and 53.7-58.0% by EDTA and NH 4 NO 3 , respectively, indicating that ion exchange and complexation are the dominating mechanisms for Cu(II) and Cd(II) adsorption. XAFS analysis provided further evidence on the inner-sphere complexation of Cu by carboxyl ligands and showed that Cu is complexed by two 5-membered chelate rings on S. platensis surface.

  2. Arsenic biotransformation by a cyanobacterium Nostoc sp. PCC 7120.

    Science.gov (United States)

    Xue, Xi-Mei; Yan, Yu; Xiong, Chan; Raber, Georg; Francesconi, Kevin; Pan, Ting; Ye, Jun; Zhu, Yong-Guan

    2017-09-01

    Nostoc sp. PCC 7120 (Nostoc), a typical filamentous cyanobacterium ubiquitous in aquatic system, is recognized as a model organism to study prokaryotic cell differentiation and nitrogen fixation. In this study, Nostoc cells incubated with arsenite (As(III)) for two weeks were extracted with dichloromethane/methanol (DCM/MeOH) and the extract was partitioned between water and DCM. Arsenic species in aqueous and DCM layers were determined using high performance liquid chromatography - inductively coupled plasma mass spectrometer/electrospray tandem mass spectrometry (HPLC-ICPMS/ESIMSMS). In addition to inorganic arsenic (iAs), the aqueous layer also contained monomethylarsonate (MAs(V)), dimethylarsinate (DMAs(V)), and the two arsenosugars, namely a glycerol arsenosugar (Oxo-Gly) and a phosphate arsenosugar (Oxo-PO4). Two major arsenosugar phospholipids (AsSugPL982 and AsSugPL984) were detected in DCM fraction. Arsenic in the growth medium was also investigated by HPLC/ICPMS and shown to be present mainly as the inorganic forms As(III) and As(V) accounting for 29%-38% and 29%-57% of the total arsenic respectively. The total arsenic of methylated arsenic, arsenosugars, and arsenosugar phospholipids in Nostoc cells with increasing As(III) exposure were not markedly different, indicating that the transformation to organoarsenic in Nostoc was not dependent on As(III) concentration in the medium. Our results provide new insights into the role of cyanobacteria in the biogeochemical cycling of arsenic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Binding characteristics of copper and cadmium by cyanobacterium Spirulina platensis

    Energy Technology Data Exchange (ETDEWEB)

    Fang Linchuan [State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070 (China); Zhou Chen; Cai Peng [Key Laboratory of Subtropical Agricultural Resources and Environment, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Chen Wenli [State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070 (China); Rong Xingmin; Dai Ke; Liang Wei [Key Laboratory of Subtropical Agricultural Resources and Environment, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Gu Jidong [Department of Ecology and Biodiversity, University of Hong Kong, Pokfulam Road, Hong Kong (Hong Kong); Huang Qiaoyun, E-mail: qyhuang@mail.hzau.edu.cn [State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Subtropical Agricultural Resources and Environment, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China)

    2011-06-15

    Highlights: {yields} The carboxyl groups play a vital role in the binding of Cu(II) and Cd(II) to S. platensis cells. {yields} Ion exchange and complexation are the dominating mechanism for Cu(II) and Cd(II) adsorption. {yields} XAFS analysis provided evidence for the inner-sphere complexation of Cu by carboxyl ligands and showed that Cu is complexed by two 5-membered chelate rings on S. platensis surface. - Abstract: Cyanobacteria are promising biosorbent for heavy metals in bioremediation. Although sequestration of metals by cyanobacteria is known, the actual mechanisms and ligands involved are not very well understood. The binding characteristics of Cu(II) and Cd(II) by the cyanobacterium Spirulina platensis were investigated using a combination of chemical modifications, batch adsorption experiments, Fourier transform infrared (FTIR) spectroscopy and X-ray absorption fine structure (XAFS) spectroscopy. A significant increase in Cu(II) and Cd(II) binding was observed in the range of pH 3.5-5.0. Dramatical decrease in adsorption of Cu(II) and Cd(II) was observed after methanol esterification of the nonliving cells demonstrating that carboxyl functional groups play an important role in the binding of metals by S. platensis. The desorption rate of Cu(II) and Cd(II) from S. platensis surface was 72.7-80.7% and 53.7-58.0% by EDTA and NH{sub 4}NO{sub 3}, respectively, indicating that ion exchange and complexation are the dominating mechanisms for Cu(II) and Cd(II) adsorption. XAFS analysis provided further evidence on the inner-sphere complexation of Cu by carboxyl ligands and showed that Cu is complexed by two 5-membered chelate rings on S. platensis surface.

  4. Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs

    NARCIS (Netherlands)

    Klatt, Judith M.; Haas, Sebastian; Yilmaz, Pelin; de Beer, Dirk; Polerecky, Lubos

    We used microsensors to investigate the combinatory effect of hydrogen sulfide (H2S) and light on oxygenic photosynthesis in biofilms formed by a cyanobacterium from sulfidic springs. We found that photosynthesis was both positively and negatively affected by H2S: (i) H2S accelerated the recovery of

  5. Genome Sequence of the Thermophilic Cyanobacterium Thermosynechococcus sp. Strain NK55a.

    Energy Technology Data Exchange (ETDEWEB)

    Stolyar, Sergey; Liu, Zhenfeng; Thiel, Vera; Tomsho, Lynn P.; Pinel, Nicolas; Nelson, William C.; Lindemann, Stephen R.; Romine, Margaret F.; Haruta, Shin; Schuster, Stephan C.; Bryant, Donald A.; Fredrickson, Jim K.

    2014-01-02

    The genome of the unicellular cyanobacterium, Thermosynechococcus sp. strain NK55a, isolated from Nakabusa hot spring, comprises a single, circular, 2.5-Mb chromosome. The genome is predicted to encode 2358 protein coding genes, including genes for all typical cyanobacterial photosynthetic and metabolic functions. No genes encoding hydrogenases or nitrogenase were identified.

  6. Sterol Compositions of the Filamentous Nitrogen-Fixing Terrestrial Cyanobacterium Scytonema sp

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Dembitsky, V. M.; Go, J. V.; Dor, I.; Prell, Aleš; Hanuš, L.

    2003-01-01

    Roč. 48, č. 3 (2003), s. 357-360 ISSN 0015-5632 Institutional research plan: CEZ:AV0Z5020903 Keywords : nitrogen-fixing * cyanobacterium * scytonema Subject RIV: EE - Microbiology, Virology Impact factor: 0.857, year: 2003

  7. Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium

    NARCIS (Netherlands)

    Frangeul, L.; Quillardet, P.; Castets, A.M.; Humbert, J.F.; Matthijs, H.C.P.; Cortez, D.; Tolonen, A.; Zhang, C.C.; Gribaldo, S.; Kehr, J.C.; Zilliges, Y.; Ziemert, N.; Becker, S.; Talla, E.; Latifi, A.; Billault, A.; Lepelletier, A.; Dittmann, E.; Bouchier, C.; Tandeau de Marsac, N.

    2008-01-01

    Background The colonial cyanobacterium Microcystis proliferates in a wide range of freshwater ecosystems and is exposed to changing environmental factors during its life cycle. Microcystis blooms are often toxic, potentially fatal to animals and humans, and may cause environmental problems. There

  8. Nostoc PCC7524, a cyanobacterium which contains five sequence-specific deoxyribonucleases

    NARCIS (Netherlands)

    Reaston, J.; Duybesteyn, M.G.C.; Waard, Adrian de

    1982-01-01

    Five nucleotide sequence-specific deoxyribonucleases present in cell-free extracts of the filamentous cyanobacterium Nostoc PCC7524 have been purified and characterized. One of these enzymes, designated Nsp(7524)I cleaves at a new kind of nucleotide sequence i.e. 5'-PuCATG λ Py-3'. The other four

  9. Horizontal transfer of the nitrogen fixation gene cluster in the cyanobacterium Microcoleus chthonoplastes

    NARCIS (Netherlands)

    Bolhuis, H.; Severin, I.; Confurius-Guns, V.; Wollenzien, U.I.A.; Stal, L.J.

    2010-01-01

    The filamentous, non-heterocystous cyanobacterium Microcoleus chthonoplastes is a cosmopolitan organism, known to build microbial mats in a variety of different environments. Although most of these cyanobacterial mats are known for their capacity to fix dinitrogen, M. chthonoplastes has not been

  10. Effect of Selected Plant Extracts and D- and L-Lysine on the Cyanobacterium Microcystis aeruginosa

    NARCIS (Netherlands)

    Lurling, M.F.L.L.W.; Oosterhout, J.F.X.

    2014-01-01

    We tested extracts from Fructus mume, Salvia miltiorrhiza and Moringa oleifera as well as L-lysine and D-Lysine as curative measures to rapidly suppress the cyanobacterium Microcystis aeruginosa NIVA-CYA 43. We tested these compounds under similar conditions to facilitate comparisons. We

  11. Dried Colony in Cyanobacterium, Nostoc sp. HK-01 — Several high Space Environment Tolerances for ``Tanpopo'' Mission

    Science.gov (United States)

    Tomita-Yokotani, K.; Kimura, S.; Kimura, Y.; Igarashi, Y.; Ajioka, R.; Sato, S.; Katoh, H.; Baba, K.

    2013-11-01

    A cyanobacterium, Nostoc sp. HK-01, has high several space environmental tolerance. Nostoc sp HK-01 would have high contribution for the “Tanpopo” mission in Japan Experimental Module of the International Space Station.

  12. Dinitrogen fixation in a unicellular chlorophyll d-containing cyanobacterium

    NARCIS (Netherlands)

    Pfreundt, U.; Stal, L.J.; Voss, B.; Hess, W.R.

    2012-01-01

    Marine cyanobacteria of the genus Acaryochloris are the only known organisms that use chlorophyll d as a photosynthetic pigment. However, based on chemical sediment analyses, chlorophyll d has been recognized to be widespread in oceanic and lacustrine environments. Therefore it is highly relevant to

  13. Genetic manipulation of a metabolic enzyme and a transcriptional regulator increasing succinate excretion from unicellular cyanobacterium

    Directory of Open Access Journals (Sweden)

    Takashi eOsanai

    2015-10-01

    Full Text Available Succinate is a building block compound that the U.S. Department of Energy has declared as important in biorefineries, and it is widely used as a commodity chemical. Here, we identified the two genes increasing succinate production of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Succinate was excreted under dark, anaerobic conditions, and its production level increased by knocking out ackA, which encodes an acetate kinase, and by overexpressing sigE, which encodes an RNA polymerase sigma factor. Glycogen catabolism and organic acid biosynthesis were enhanced in the mutant lacking ackA and overexpressing sigE, leading to an increase in succinate production reaching 5 times of the wild-type levels. Our genetic and metabolomic analyses thus demonstrated the effect of genetic manipulation of a metabolic enzyme and a transcriptional regulator on succinate excretion from this cyanobacterium with the data based on metabolomic technique.

  14. A new UV-A/B protecting pigment in the terrestrial cyanobacterium Nostoc commune

    International Nuclear Information System (INIS)

    Scherer, S.; Chen, T.W.; Boeger, P.

    1988-01-01

    A new ultraviolet (UV)-A/B absorbing pigment with maxima at 312 and 330 nanometers from the cosmopolitan terrestrial cyanobacterium Nostoc commune is described. The pigment is found in high amounts (up to 10% of dry weight) in colonies grown under solar UV radiation but only in low concentrations in laboratory cultures illuminated by artificial light without UV. Its experimental induction by UV as well as its capacity to efficiently protect Nostoc against UV radiation is reported

  15. A new endonuclease recognizing the deoxynucleotide sequence CCNNGG from the cyanobacterium Synechocystis 6701.

    Science.gov (United States)

    Calléja, F; Tandeau de Marsac, N; Coursin, T; van Ormondt, H; de Waard, A

    1985-09-25

    A new sequence-specific endonuclease from the cyanobacterium Synechocystis species PCC 6701 has been purified and characterized. This enzyme, SecI, is unique in recognizing the nucleotide sequence: 5' -CCNNGG-3' 3' -GGNNCC-5' and cleaves it at the position indicated by the symbol. Two other restriction endonucleases, SecII and SecIII, found in this organism are isoschizomers of MspI and MstII, respectively.

  16. CyanOmics: an integrated database of omics for the model cyanobacterium Synechococcus sp. PCC 7002

    OpenAIRE

    Yang, Yaohua; Feng, Jie; Li, Tao; Ge, Feng; Zhao, Jindong

    2015-01-01

    Cyanobacteria are an important group of organisms that carry out oxygenic photosynthesis and play vital roles in both the carbon and nitrogen cycles of the Earth. The annotated genome of Synechococcus sp. PCC 7002, as an ideal model cyanobacterium, is available. A series of transcriptomic and proteomic studies of Synechococcus sp. PCC 7002 cells grown under different conditions have been reported. However, no database of such integrated omics studies has been constructed. Here we present Cyan...

  17. Marine ecology

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Studies on marine ecology included marine pollution; distribution patterns of Pu and Am in the marine waters, sediments, and organisms of Bikini Atoll and the influence of physical, chemical, and biological factors on their movements through marine biogeochemical systems; transfer and dispersion of organic pollutants from an oil refinery through coastal waters; transfer of particulate pollutants, including sediments dispersed during construction of offshore power plants; and raft culture of the mangrove oysters

  18. Marine pollution

    International Nuclear Information System (INIS)

    Albaiges, J.

    1989-01-01

    This book covers the following topics: Transport of marine pollutants; Transformation of pollutants in the marine environment; Biological effects of marine pollutants; Sources and transport of oil pollutants in the Persian Gulf; Trace metals and hydrocarbons in Syrian coastal waters; and Techniques for analysis of trace pollutants

  19. Marine genomics

    DEFF Research Database (Denmark)

    Oliveira Ribeiro, Ângela Maria; Foote, Andrew David; Kupczok, Anne

    2017-01-01

    Marine ecosystems occupy 71% of the surface of our planet, yet we know little about their diversity. Although the inventory of species is continually increasing, as registered by the Census of Marine Life program, only about 10% of the estimated two million marine species are known. This lag......-throughput sequencing approaches have been helping to improve our knowledge of marine biodiversity, from the rich microbial biota that forms the base of the tree of life to a wealth of plant and animal species. In this review, we present an overview of the applications of genomics to the study of marine life, from...

  20. Marine biology

    International Nuclear Information System (INIS)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index

  1. Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium.

    Directory of Open Access Journals (Sweden)

    Liang Ran

    Full Text Available BACKGROUND: An ancient cyanobacterial incorporation into a eukaryotic organism led to the evolution of plastids (chloroplasts and subsequently to the origin of the plant kingdom. The underlying mechanism and the identities of the partners in this monophyletic event remain elusive. METHODOLOGY/PRINCIPAL FINDINGS: To shed light on this evolutionary process, we sequenced the genome of a cyanobacterium residing extracellularly in an endosymbiosis with a plant, the water-fern Azolla filiculoides Lam. This symbiosis was selected as it has characters which make it unique among extant cyanobacterial plant symbioses: the cyanobacterium lacks autonomous growth and is vertically transmitted between plant generations. Our results reveal features of evolutionary significance. The genome is in an eroding state, evidenced by a large proportion of pseudogenes (31.2% and a high frequency of transposable elements (approximately 600 scattered throughout the genome. Pseudogenization is found in genes such as the replication initiator dnaA and DNA repair genes, considered essential to free-living cyanobacteria. For some functional categories of genes pseudogenes are more prevalent than functional genes. Loss of function is apparent even within the 'core' gene categories of bacteria, such as genes involved in glycolysis and nutrient uptake. In contrast, serving as a critical source of nitrogen for the host, genes related to metabolic processes such as cell differentiation and nitrogen-fixation are well preserved. CONCLUSIONS/SIGNIFICANCE: This is the first finding of genome degradation in a plant symbiont and phenotypically complex cyanobacterium and one of only a few extracellular endosymbionts described showing signs of reductive genome evolution. Our findings suggest an ongoing selective streamlining of this cyanobacterial genome which has resulted in an organism devoted to nitrogen fixation and devoid of autonomous growth. The cyanobacterial symbiont of Azolla

  2. The Effects of the Toxic Cyanobacterium Limnothrix (Strain AC0243 on Bufo marinus Larvae

    Directory of Open Access Journals (Sweden)

    Olivia Daniels

    2014-03-01

    Full Text Available Limnothrix (strain AC0243 is a cyanobacterium, which has only recently been identified as toxin producing. Under laboratory conditions, Bufo marinus larvae were exposed to 100,000 cells mL−1 of Limnothrix (strain AC0243 live cultures for seven days. Histological examinations were conducted post mortem and revealed damage to the notochord, eyes, brain, liver, kidney, pancreas, gastrointestinal tract, and heart. The histopathological results highlight the toxicological impact of this strain, particularly during developmental stages. Toxicological similarities to β-N-Methylamino-L-alanine are discussed.

  3. The Effects of the Toxic Cyanobacterium Limnothrix (Strain AC0243) on Bufo marinus Larvae

    Science.gov (United States)

    Daniels, Olivia; Fabbro, Larelle; Makiela, Sandrine

    2014-01-01

    Limnothrix (strain AC0243) is a cyanobacterium, which has only recently been identified as toxin producing. Under laboratory conditions, Bufo marinus larvae were exposed to 100,000 cells mL−1 of Limnothrix (strain AC0243) live cultures for seven days. Histological examinations were conducted post mortem and revealed damage to the notochord, eyes, brain, liver, kidney, pancreas, gastrointestinal tract, and heart. The histopathological results highlight the toxicological impact of this strain, particularly during developmental stages. Toxicological similarities to β-N-Methylamino-l-alanine are discussed. PMID:24662524

  4. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high ... or by any means without permission in writing from the copyright holder. ..... Journal of Chemical Engineering Research and Design 82 ... Indian Ocean Marine Science Association Technical.

  5. Marine Biomedicine

    Science.gov (United States)

    Bang, Frederik B.

    1977-01-01

    Describes early scientific research involving marine invertebrate pathologic processes that may have led to new insights into human disease. Discussed are inquiries of Metchnikoff, Loeb, and Cantacuzene (immunolgic responses in sea stars, horseshoe crabs, and marine worms, respectively). Describes current research stemming from these early…

  6. Marine Biology

    Science.gov (United States)

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  7. A Nostoc punctiforme sugar transporter necessary to establish a Cyanobacterium-plant symbiosis.

    Science.gov (United States)

    Ekman, Martin; Picossi, Silvia; Campbell, Elsie L; Meeks, John C; Flores, Enrique

    2013-04-01

    In cyanobacteria-plant symbioses, the symbiotic nitrogen-fixing cyanobacterium has low photosynthetic activity and is supplemented by sugars provided by the plant partner. Which sugars and cyanobacterial sugar uptake mechanism(s) are involved in the symbiosis, however, is unknown. Mutants of the symbiotically competent, facultatively heterotrophic cyanobacterium Nostoc punctiforme were constructed bearing a neomycin resistance gene cassette replacing genes in a putative sugar transport gene cluster. Results of transport activity assays using (14)C-labeled fructose and glucose and tests of heterotrophic growth with these sugars enabled the identification of an ATP-binding cassette-type transporter for fructose (Frt), a major facilitator permease for glucose (GlcP), and a porin needed for the optimal uptake of both fructose and glucose. Analysis of green fluorescent protein fluorescence in strains of N. punctiforme bearing frt::gfp fusions showed high expression in vegetative cells and akinetes, variable expression in hormogonia, and no expression in heterocysts. The symbiotic efficiency of N. punctiforme sugar transport mutants was investigated by testing their ability to infect a nonvascular plant partner, the hornwort Anthoceros punctatus. Strains that were specifically unable to transport glucose did not infect the plant. These results imply a role for GlcP in establishing symbiosis under the conditions used in this work.

  8. Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass

    International Nuclear Information System (INIS)

    Gupta, V.K.; Rastogi, A.

    2008-01-01

    This communication presents results pertaining to the sorptive and desorptive studies carried out on chromium(VI) removal onto nonviable freshwater cyanobacterium (Nostoc muscorum) biomass. Influence of varying the conditions for removal of chromium(VI), such as the pH of aqueous solution, the dosage of biosorbent, the contact time with the biosorbent, the temperature for the removal of chromium, the effect of light metal ions and the adsorption-desorption studies were investigated. Sorption interaction of chromium on to cyanobacterial species obeyed both the first and the second-order rate equation and the experimental data showed good fit with both the Langmuir and freundlich adsorption isotherm models. The maximum adsorption capacity was 22.92 mg/g at 25 o C and pH 3.0. The adsorption process was endothermic and the values of thermodynamic parameters of the process were calculated. Various properties of the cyanobacterium, as adsorbent, explored in the characterization part were chemical composition of the adsorbent, surface area calculation by BET method and surface functionality by FTIR. Sorption-desorption of chromium into inorganic solutions and distilled water were observed and this indicated the biosorbent could be regenerated using 0.1 M HNO 3 and EDTA with upto 80% recovery. The biosorbents were reused in five biosorption-desorption cycles without a significant loss in biosorption capacity. Thus, this study demonstrated that the cyanobacterial biomass N. muscorum could be used as an efficient biosorbent for the treatment of chromium(VI) bearing wastewater

  9. Cellular and functional specificity among ferritin-like proteins in the multicellular cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Ekman, Martin; Sandh, Gustaf; Nenninger, Anja; Oliveira, Paulo; Stensjö, Karin

    2014-03-01

    Ferritin-like proteins constitute a remarkably heterogeneous protein family, including ferritins, bacterioferritins and Dps proteins. The genome of the filamentous heterocyst-forming cyanobacterium Nostoc punctiforme encodes five ferritin-like proteins. In the present paper, we report a multidimensional characterization of these proteins. Our phylogenetic and bioinformatics analyses suggest both structural and physiological differences among the ferritin-like proteins. The expression of these five genes responded differently to hydrogen peroxide treatment, with a significantly higher rise in transcript level for Npun_F3730 as compared with the other four genes. A specific role for Npun_F3730 in the cells tolerance against hydrogen peroxide was also supported by the inactivation of Npun_F3730, Npun_R5701 and Npun_R6212; among these, only the ΔNpun_F3730 strain showed an increased sensitivity to hydrogen peroxide compared with wild type. Analysis of promoter-GFP reporter fusions of the ferritin-like genes indicated that Npun_F3730 and Npun_R5701 were expressed in all cell types of a diazotrophic culture, while Npun_F6212 was expressed specifically in heterocysts. Our study provides the first comprehensive analysis combining functional differentiation and cellular specificity within this important group of proteins in a multicellular cyanobacterium. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  10. Growth of Cyanobacterium aponinum influenced by increasing salt concentrations and temperature.

    Science.gov (United States)

    Winckelmann, Dominik; Bleeke, Franziska; Bergmann, Peter; Klöck, Gerd

    2015-06-01

    The increasing requirement of food neutral biofuels demands the detection of alternative sources. The use of non-arable land and waste water streams is widely discussed in this regard. A Cyanobacterium was isolated on the area of a possible algae production side near a water treatment plant in the arid desert region al-Wusta. It was identified as Cyanobacterium aponinum PB1 and is a possible lipid source. To determine its suitability of a production process using this organism, a set of laboratory experiments were performed. Its growth behavior was examined in regard to high temperatures and increasing NaCl concentrations. A productivity of 0.1 g L -1 per day was measured at an alga density below 0.75 g L -1 . C. aponinum PB1 showed no sign of altered growth behavior in media containing 70 g L -1 NaCl or less. Detection of a negative effect of NaCl on the growth using Pulse-Amplitude-Modulation chlorophyll fluorescence analysis was not more sensitive than optical density measurement.

  11. Unique thylakoid membrane architecture of a unicellular N2-fixing cyanobacterium revealed by electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Liberton, Michelle; Austin II, Jotham R; Berg, R. Howard; Pakrasi, Himadri B

    2011-04-01

    Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photosynthetic and respiratory electron transport chains function in the intracellular thylakoid membranes. Like plants, the architecture of the thylakoid membranes in cyanobacteria has direct impact on cellular bioenergetics, protein transport, and molecular trafficking. However, whole-cell thylakoid organization in cyanobacteria is not well understood. Here we present, by using electron tomography, an in-depth analysis of the architecture of the thylakoid membranes in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142. Based on the results of three-dimensional tomographic reconstructions of near-entire cells, we determined that the thylakoids in Cyanothece 51142 form a dense and complex network that extends throughout the entire cell. This thylakoid membrane network is formed from the branching and splitting of membranes and encloses a single lumenal space. The entire thylakoid network spirals as a peripheral ring of membranes around the cell, an organization that has not previously been described in a cyanobacterium. Within the thylakoid membrane network are areas of quasi-helical arrangement with similarities to the thylakoid membrane system in chloroplasts. This cyanobacterial thylakoid arrangement is an efficient means of packing a large volume of membranes in the cell while optimizing intracellular transport and trafficking.

  12. Unique Thylakoid Membrane Architecture of a Unicellular N2-Fixing Cyanobacterium Revealed by Electron Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Liberton, Michelle L.; Austin, Jotham R.; Berg, R. H.; Pakrasi, Himadri B.

    2011-04-01

    Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photosynthetic and respiratory electron transport chains function in the intracellular thylakoid membranes. Like plants, the architecture of the thylakoid membranes in cyanobacteria has direct impact on cellular bioenergetics, protein transport, and molecular trafficking. However, whole-cell thylakoid organization in cyanobacteria is not well understood. Here we present, by using electron tomography, an in-depth analysis of the architecture of the thylakoid membranes in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142. Based on the results of three-dimensional tomographic reconstructions of near-entire cells, we determined that the thylakoids in Cyanothece 51142 form a dense and complex network that extends throughout the entire cell. This thylakoid membrane network is formed from the branching and splitting of membranes and encloses a single lumenal space. The entire thylakoid network spirals as a peripheral ring of membranes around the cell, an organization that has not previously been described in a cyanobacterium. Within the thylakoid membrane network are areas of quasi-helical arrangement with similarities to the thylakoid membrane system in chloroplasts. This cyanobacterial thylakoid arrangement is an efficient means of packing a large volume of membranes in the cell while optimizing intracellular transport and trafficking.

  13. Combined Effects of CO2 and Light on the N-2-Fixing Cyanobacterium Trichodesmium IMS101: A Mechanistic View

    Czech Academy of Sciences Publication Activity Database

    Levitan, O.; Kranz, S. A.; Spungin, D.; Prášil, Ondřej; Rost, B.; Berman-Frank, I.

    2010-01-01

    Roč. 154, č. 1 (2010), s. 346-356 ISSN 0032-0889 R&D Projects: GA ČR GA206/08/1683 Institutional research plan: CEZ:AV0Z50200510 Keywords : cyanobacterium Trichodesmium * ocean * photosystem I Subject RIV: EE - Microbiology, Virology Impact factor: 6.451, year: 2010

  14. Combined effect of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101: Physiological responses 1[OA

    Czech Academy of Sciences Publication Activity Database

    Kranz, S. A.; Levitan, O.; Richter, K.-U.; Prášil, Ondřej; Berman-Frank, I.; Rost, B.

    2010-01-01

    Roč. 154, č. 1 (2010), s. 334-345 ISSN 0032-0889 R&D Projects: GA ČR GA206/08/1683 Institutional research plan: CEZ:AV0Z50200510 Keywords : Trichodesmium IMS101 * cyanobacterium * CO2 Subject RIV: EE - Microbiology, Virology Impact factor: 6.451, year: 2010

  15. Mono-, di- and trimeric PS I reaction center complexes isolated from the thermophilic cyanobacterium Synechococcus sp. Size, shape and activity

    NARCIS (Netherlands)

    Rögner, M.; Mühlenhoff, U.; Boekema, E.J.; Witt, H.T.

    1990-01-01

    Photosystem I preparations from the cyanobacterium Synechococcus sp. were treated with high concentrations of Tris and octyl glucoside at alkaline pH and elevated temperature. A sucrose density gradient yielded three pigment-protein complexes; these were further purified on a HPLC anion-exchange

  16. Two-Step Separation of Nostotrebin 6 from Cultivated Soil Cyanobacterium (Nostoc sp.) by High Performance Countercurrent Chromatography

    Czech Academy of Sciences Publication Activity Database

    Cheel, José; Kučerová, P.; Garrard, I.; Ignatova, S.; Hrouzek, Pavel; Kopecký, Jiří

    2014-01-01

    Roč. 19, č. 4 (2014), s. 8773-8787 ISSN 1420-3049 R&D Projects: GA MŠk ED2.1.00/03.0110; GA MŠk EE2.3.30.0059 Institutional support: RVO:61388971 Keywords : nostotrebin 6 * cyanobacterium * Nostoc * HPLC separation Subject RIV: EE - Microbiology, Virology Impact factor: 2.416, year: 2014

  17. Backbone dynamics of reduced plastocyanin from the cyanobacterium Anabaena variabilis: Regions involved in electron transfer have enhanced mobility

    DEFF Research Database (Denmark)

    Ma, L.X.; Hass, M.A.S.; Vierick, N.

    2003-01-01

    The dynamics of the backbone of the electron-transfer protein plastocyanin from the cyanobacterium Anabaena variabilis were determined from the N-15 and C-13(alpha) R-1 and R-2) relaxation rates and steady-state [H-1]-N-15 and [H-1]-C-13 nuclear Overhauser effects (NOEs) using the model...

  18. Pulsed nitrogen supply induces dynamic changes in the amino acid composition and microcystin production of the harmful cyanobacterium Planktothrix agardhii

    NARCIS (Netherlands)

    van de Waal, D.B.; Ferreruela, G.; Tonk, L.; van Donk, E.; Huisman, J.; Visser, P.M.; Matthijs, H.C.P.

    2010-01-01

    Planktothrix agardhii is a widespread harmful cyanobacterium of eutrophic waters, and can produce the hepatotoxins [Asp3]microcystin-LR and [Asp3]microcystin-RR. These two microcystin variants differ in their first variable amino acid position, which is occupied by either leucine (L) or arginine

  19. Pulsed nitrogen supply induces dynamic changes in the amino acid compositionand microcystin production of the harmful cyanobacterium Planktothrix agardhii

    NARCIS (Netherlands)

    Van de Waal, D.B.; Ferreruela, G.; Tonk, L.; Van Donk, E.; Huisman, J.; Visser, P.M.; Matthijs, H.C.P.

    2010-01-01

    Planktothrix agardhii is a widespread harmful cyanobacterium of eutrophic waters, and can produce the hepatotoxins [Asp3]microcystin-LR and [Asp3]microcystin-RR. These two microcystin variants differ in their first variable amino acid position, which is occupied by either leucine (L) or arginine

  20. Marine Science

    African Journals Online (AJOL)

    between humans and the coastal and marine environment. ... The journal has a new and more modern layout, published online only, and the editorial .... the population structure of Platorchestia fayetta sp. nov. and their interaction with the.

  1. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the ... tidal height and amplitude can influence light penetra- ...... to environmental parameters in cage culture area of Sepanggar Bay, Malaysia.

  2. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ... consist of special issues on major events or important thematic issues. ... of sources, including plant and animal by- products.

  3. Marine biotoxins

    National Research Council Canada - National Science Library

    2004-01-01

    ... (ciguatera fish poisoning). It discusses in detail the causative toxins produced by marine organisms, chemical structures and analytical methods, habitat and occurrence of the toxin-producing organisms, case studies and existing regulations...

  4. Marine Science

    African Journals Online (AJOL)

    pod diversity and distribution are important especially since studies on marine biodiversity are scarce .... Method II –. Zamoum &. Furla (2012) protocol. Method III. – Geist et al (2008) protocol ..... Public Library Of Science One 8: 51273.

  5. Marine pollution

    International Nuclear Information System (INIS)

    Clark, R.B.

    1992-01-01

    The effects of petroleum, waste materials, halogenated hydrocarbons, radioactivity and heat on the marine ecosystem, the fishing industry and human health are discussed using the example of the North Sea. (orig.) [de

  6. Marine Science

    African Journals Online (AJOL)

    No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form ... to optimize nucleic acid extraction protocols from marine gastropods, present an ...... Greenfield., Gomez E, Harvell CD, Sale PF, Edwards.

  7. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high ..... circulation patterns include the nutrient-rich Somali ...... matical Structures in Computer Science 24: e240311.

  8. Marine insects

    National Research Council Canada - National Science Library

    Cheng, Lanna

    1976-01-01

    .... Not only are true insects, such as the Collembola and insect parasites of marine birds and mammals, considered, but also other kinds of intertidal air-breathing arthropods, notably spiders, scorpions...

  9. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue .... shell growth is adversely affected. ... local stressors in action, such as ocean acidification ..... that the distribution of many intertidal sessile animals.

  10. BMAA Inhibits Nitrogen Fixation in the Cyanobacterium Nostoc sp. PCC 7120

    Directory of Open Access Journals (Sweden)

    Birgitta Bergman

    2013-08-01

    Full Text Available Cyanobacteria produce a range of secondary metabolites, one being the neurotoxic non-protein amino acid β-N-methylamino-L-alanine (BMAA, proposed to be a causative agent of human neurodegeneration. As for most cyanotoxins, the function of BMAA in cyanobacteria is unknown. Here, we examined the effects of BMAA on the physiology of the filamentous nitrogen-fixing cyanobacterium Nostoc sp. PCC 7120. Our data show that exogenously applied BMAA rapidly inhibits nitrogenase activity (acetylene reduction assay, even at micromolar concentrations, and that the inhibition was considerably more severe than that induced by combined nitrogen sources and most other amino acids. BMAA also caused growth arrest and massive cellular glycogen accumulation, as observed by electron microscopy. With nitrogen fixation being a process highly sensitive to oxygen species we propose that the BMAA effects found here may be related to the production of reactive oxygen species, as reported for other organisms.

  11. Inhibition of motility in the cyanobacterium, Phormidium uncinatum, by solar and monochromatic UV irradiation

    International Nuclear Information System (INIS)

    Häder, D.P.; Watanabe, M.; Furuya, M.

    1986-01-01

    The effect of solar radiation and monochromatic UV radiation on the motility of the filamentous cyanobacterium Phormidium uncinatum was determined. Solar radiation (mid-day, in midsummer at a location near Lisboa, Portugal) was found to impair motility within about 30 min. This effect is neither a result of a temperature increase nor of visible light. The spectral sensitivity determined using the Okazaki Largé Spectrograph shows the maximal effectiveness of radiation of ≤300 nm. The short time requirement for the response and the lack of any photoreactivation of motility argues against DNA being the UV target. Investigations using reagents diagnostic of superoxide free radicals and singlet oxygen failed to confirm the involvement of photodynamic effects as the molecular mechanism causing UV inhibition of motility

  12. Molecular cloning of a recA-like gene from the cyanobacterium Anabaena variabilis

    International Nuclear Information System (INIS)

    Owttrim, G.W.; Coleman, J.R.

    1987-01-01

    A recA-like gene isolated from the cyanobacterium Anabaena variabilis was cloned and partially characterized. When introduced into Escherichia coli recA mutants, the 7.5-kilobase-pair plasmid-borne DNA insert restored resistance to methyl methanesulfonate and UV irradiation, as well as recombination proficiency when measured by Hfr-mediated conjugation. The cyanobacterial recA gene restored spontaneous but not mitomycin C-induced prophage production. Restriction analysis and subcloning yielded a 1.5-kilobase-pair Sau3A fragment which also restored methylmethane sulfonate resistance and coded for a 38- to 40-kilodalton polypeptide when expressed in an in vitro transcription-translation system

  13. Enhanced production of biomass, pigments and antioxidant capacity of a nutritionally important cyanobacterium Nostochopsis lobatus.

    Science.gov (United States)

    Pandey, Usha; Pandey, J

    2008-07-01

    A diazotrophic cyanobacterium Nostochopsis lobatus was evaluated for enhanced production of biomass, pigments and antioxidant capacity. N. lobatus showed potentially high antioxidant capacity (46.12 microM AEAC) with significant improvement under immobilized cell cultures (87.05 microM AEAC). When a mixture of P and Fe was supplemented, biomass, pigments, nutritive value and antioxidant capacity increased substantially at pH 7.8. When considered separately, P appeared to be a better supplement than Fe for the production of biomass, chlorophyll and carotenoids. However, for phycocyanin, phycoerythrin, nutritive value and antioxidant capacity, Fe appeared more effective than P. Our study indicates N. lobatus to be a promising bioresource for enhanced production of nutritionally rich biomass, pigments and antioxidants. The study also suggests that P and Fe are potentially effective supplements for scale-up production for commercial application.

  14. The complex effects of ocean acidification on the prominent N2-fixing cyanobacterium Trichodesmium.

    Science.gov (United States)

    Hong, Haizheng; Shen, Rong; Zhang, Futing; Wen, Zuozhu; Chang, Siwei; Lin, Wenfang; Kranz, Sven A; Luo, Ya-Wei; Kao, Shuh-Ji; Morel, François M M; Shi, Dalin

    2017-05-05

    Acidification of seawater caused by anthropogenic carbon dioxide (CO 2 ) is anticipated to influence the growth of dinitrogen (N 2 )-fixing phytoplankton, which contribute a large fraction of primary production in the tropical and subtropical ocean. We found that growth and N 2 -fixation of the ubiquitous cyanobacterium Trichodesmium decreased under acidified conditions, notwithstanding a beneficial effect of high CO 2 Acidification resulted in low cytosolic pH and reduced N 2 -fixation rates despite elevated nitrogenase concentrations. Low cytosolic pH required increased proton pumping across the thylakoid membrane and elevated adenosine triphosphate production. These requirements were not satisfied under field or experimental iron-limiting conditions, which greatly amplified the negative effect of acidification. Copyright © 2017, American Association for the Advancement of Science.

  15. Microbial interactions with the cyanobacterium Microcystis aeruginosa and their dependence on temperature

    DEFF Research Database (Denmark)

    Dziallas, Claudia; Grossart, Hans-Peter

    2012-01-01

    and their associated community often masked this temperature effect. Both macro- and microenvironment of active cyanobacterial strains were characterized by high pH and oxygen values creating a unique habitat that potentially affects microbial diversity and function. For example, archaea including ‘anaerobic......Associated heterotrophic bacteria alter the microenvironment of cyanobacteria and potentially influence cyanobacterial development. Therefore, we studied interactions of the unicellular freshwater cyanobacterium Microcystis aeruginosa with heterotrophic bacteria. The associated bacterial community...... was greatly driven by temperature as seen by DNA Wngerprinting. However, the associated microbes also closely interacted with the cyanobacteria indicating changing ecological consequence of the associated bacterial community with temperature. Whereas concentration of dissolved organic carbon in cyanobacterial...

  16. Sacrolide A, a new antimicrobial and cytotoxic oxylipin macrolide from the edible cyanobacterium Aphanothece sacrum

    Directory of Open Access Journals (Sweden)

    Naoya Oku

    2014-08-01

    Full Text Available Macroscopic gelatinous colonies of freshwater cyanobacterium Aphanothece sacrum, a luxury ingredient for Japanese cuisine, were found to contain a new oxylipin-derived macrolide, sacrolide A (1, as an antimicrobial component. The configuration of two chiral centers in 1 was determined by a combination of chiral anisotropy analysis and conformational analysis of different ring-opened derivatives. Compound 1 inhibited the growth of some species of Gram-positive bacteria, yeast Saccharomyces cerevisiae and fungus Penicillium chrysogenum, and was also cytotoxic to 3Y1 rat fibroblasts. Concern about potential food intoxication caused by accidental massive ingestion of A. sacrum was dispelled by the absence of 1 in commercial products. A manual procedure for degrading 1 in raw colonies was also developed, enabling a convenient on-site detoxification at restaurants or for personal consumption.

  17. Space-environmental tolerances in a cyanobacterium, Nostoc sp. HK-01

    Science.gov (United States)

    Tomita-Yokotani, Kaori; Yokobori, Shin-ichi; Kimura, Shunta; Sato, Seigo; Katoh, Hiroshi; Ajioka, Reiko; Yamagishi, Akihiko; Inoue, Kotomi

    2016-07-01

    We have been investigating the tolerances to space-environments of a cyanobacterium, Nostoc sp. HK-01 (hereafter referred to as HK-01). Dry colonies of HK-01 had high tolerance to dry conditions, but more detailed information about tolerance to high-temperature, UV, gamma-ray and heavy particle beams were not deeply investigated. The obtained dry colonies of HK-01 after exposure to each of the conditions described above were investigated. In all of the tested colonies of HK-01 after exposure, all or some of the cells in the colonies were alive. One of the purposes of space agriculture is growing plants on Mars. In the early stages, of our research, cyanobacteria are introduced on Mars to promote the oxidation of the atmosphere and the formation of soil from Mars's regolith. HK-01 will contribute to each of these factors in the future.

  18. BMAA Inhibits Nitrogen Fixation in the Cyanobacterium Nostoc sp. PCC 7120

    Science.gov (United States)

    Berntzon, Lotta; Erasmie, Sven; Celepli, Narin; Eriksson, Johan; Rasmussen, Ulla; Bergman, Birgitta

    2013-01-01

    Cyanobacteria produce a range of secondary metabolites, one being the neurotoxic non-protein amino acid β-N-methylamino-L-alanine (BMAA), proposed to be a causative agent of human neurodegeneration. As for most cyanotoxins, the function of BMAA in cyanobacteria is unknown. Here, we examined the effects of BMAA on the physiology of the filamentous nitrogen-fixing cyanobacterium Nostoc sp. PCC 7120. Our data show that exogenously applied BMAA rapidly inhibits nitrogenase activity (acetylene reduction assay), even at micromolar concentrations, and that the inhibition was considerably more severe than that induced by combined nitrogen sources and most other amino acids. BMAA also caused growth arrest and massive cellular glycogen accumulation, as observed by electron microscopy. With nitrogen fixation being a process highly sensitive to oxygen species we propose that the BMAA effects found here may be related to the production of reactive oxygen species, as reported for other organisms. PMID:23966039

  19. Cadmium-mediated resistance to metals and antibiotics in a cyanobacterium

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.; Pandey, A.K.

    1982-01-01

    Cadmium-resistant strains of the cyanobacterium Nostoc calcicola were isolated through the step-wise transfer of the organism to higher levels of the metal. One of the Cd-resistant strains (CDsup(r)-10) showed cross-resistance to antibiotics like neomycin (1 ..mu..g/ml), chloramphenicol (3 ..mu..g/ml) but not to streptomycin. The Cd-resistant strain also tolerated elevated levels of metals such as zinc 20 ppm) and mercury (1 ppm). The stability of the metal-resistance required the presence of Cd/sup 2 +/ ions in the growth medium. It is suggested that metal resistance may also be determined by gene(s) on the antibiotic resistance plasmids in cyanobacteria.

  20. Utilization of a terrestrial cyanobacterium, Nostoc sp. HK-01, for space habitation

    Science.gov (United States)

    Kimura, Shunta; Tomita-Yokotani, Kaori; Arai, Mayumi; Yamashita, Masamichi; Katoh, Hiroshi; Ajioka, Reiko; Inoue, Kotomi

    2016-07-01

    A terrestrial cyanobacterium, Nostoc sp. HK-01 (hereafter HK-01), has several useful abilities for space habitation; photosynthesis, nitrogen fixation, and space environmental tolerances to vacuum, UV, gamma-ray, heavy particle beam, low and high temperature. Space environmental tolerances are important for transportation to Mars. HK-01 can grow on Martian regolith simulant (MRS) in vitro. Furthermore, HK-01 is useful as food. HK-01 may be utilized as oxygen supply, soil formation and food material for bio-chemical circulation in closed bio-ecosystems, including space habitation such as Mars. HK-01 was adopted as a biological material for the "TANPOPO" mission (JAXA et al.,), because of their high environmental tolerances. The "TANPOPO" mission is performing the space exposure experiments on the Japan Experimental Module (JEM) of the International Space Station (ISS). The results of these experiments will show the ability of HK-01 to survive in space.

  1. Composition and occurrence of lipid droplets in the cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Peramuna, Anantha; Summers, Michael L

    2014-12-01

    Inclusions of neutral lipids termed lipid droplets (LDs) located throughout the cell were identified in the cyanobacterium Nostoc punctiforme by staining with lipophylic fluorescent dyes. LDs increased in number upon entry into stationary phase and addition of exogenous fructose indicating a role for carbon storage, whereas high-light stress did not increase LD numbers. LD accumulation increased when nitrate was used as the nitrogen source during exponential growth as compared to added ammonia or nitrogen-fixing conditions. Analysis of isolated LDs revealed enrichment of triacylglycerol (TAG), α-tocopherol, and C17 alkanes. LD TAG from exponential phase growth contained mainly saturated C16 and C18 fatty acids, whereas stationary phase LD TAG had additional unsaturated fatty acids characteristic of whole cells. This is the first characterization of cyanobacterial LD composition and conditions leading to their production. Based upon their abnormally large size and atypical location, these structures represent a novel sub-organelle in cyanobacteria.

  2. Phycobiliprotein accumulation in cyanobacterium Nostoc linckia and modification of antioxidant activity

    Directory of Open Access Journals (Sweden)

    Ana VALUTA

    2015-01-01

    Full Text Available The article deals with iron(III coordination compounds with Schiff bases as ligands and their impact on phycobiliprotein accumulation by cyanobacterium Nostoc linckia. Stimulatory effect depends on the applied dose and in case of three compounds, the concentration 20 mg/L was determined as one with moderate intensity. Lower concentrations resulted in an increase of the phycobiliprotein synthesis. There was found a significant positive correlation between phycobiliprotein content and ABTS (2.2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid assay values displayed by aqueous extracts from Nostoc linckia biomass cultivated in nutrient medium with these coordination compounds. Hence, it is possible to modify the antioxidant activity of Nostoc biomass by applying low concentrations of chemical stimuli.

  3. Heterologous expression of an algal hydrogenase in a hetero-cystous cyanobacterium

    Energy Technology Data Exchange (ETDEWEB)

    Thorsten Heidorn; Peter Lindblad [Dept. of Physiological Botany, Uppsala University, V illavagen 6, SE-752 36 Uppsala, (Sweden)

    2006-07-01

    For the expression of an active algal [FeFe] hydrogenase in the hetero-cystous cyanobacterium Nostoc punctiforme A TCC 29133 the Chlamydomonas reinhardtii hydrogenase gene hydA1 and the accessory genes hydEF and hydG are to be introduced into the cyano-bacterial cells. The genes were amplified by PCR from EST clones, cloned into the cloning vector pBluescript SK+ and sequenced. An expression vector for multi-cistronic cloning, based on pSCR202, was constructed and for a functional test GFP was inserted as a reporter gene. The GFP construct was transformed into Nostoc punctiforme A TCC 29133 by electroporation and expression of GFP was visualized by fluorescence microscopy. (authors)

  4. Heterologous expression of an algal hydrogenase in a hetero-cystous cyanobacterium

    International Nuclear Information System (INIS)

    Thorsten Heidorn; Peter Lindblad

    2006-01-01

    For the expression of an active algal [FeFe] hydrogenase in the hetero-cystous cyanobacterium Nostoc punctiforme A TCC 29133 the Chlamydomonas reinhardtii hydrogenase gene hydA1 and the accessory genes hydEF and hydG are to be introduced into the cyano-bacterial cells. The genes were amplified by PCR from EST clones, cloned into the cloning vector pBluescript SK+ and sequenced. An expression vector for multi-cistronic cloning, based on pSCR202, was constructed and for a functional test GFP was inserted as a reporter gene. The GFP construct was transformed into Nostoc punctiforme A TCC 29133 by electroporation and expression of GFP was visualized by fluorescence microscopy. (authors)

  5. Jizanpeptins, Cyanobacterial Protease Inhibitors from a Symploca sp. Cyanobacterium Collected in the Red Sea.

    Science.gov (United States)

    Gallegos, David A; Saurí, Josep; Cohen, Ryan D; Wan, Xuemei; Videau, Patrick; Vallota-Eastman, Alec O; Shaala, Lamiaa A; Youssef, Diaa T A; Williamson, R Thomas; Martin, Gary E; Philmus, Benjamin; Sikora, Aleksandra E; Ishmael, Jane E; McPhail, Kerry L

    2018-05-29

    Jizanpeptins A-E (1-5) are micropeptin depsipeptides isolated from a Red Sea specimen of a Symploca sp. cyanobacterium. The planar structures of the jizanpeptins were established using NMR spectroscopy and mass spectrometry and contain 3-amino-6-hydroxy-2-piperidone (Ahp) as one of eight residues in a typical micropeptin motif, as well as a side chain terminal glyceric acid sulfate moiety. The absolute configurations of the jizanpeptins were assigned using a combination of Marfey's methodology and chiral-phase HPLC analysis of hydrolysis products compared to commercial and synthesized standards. Jizanpeptins A-E showed specific inhibition of the serine protease trypsin (IC 50 = 72 nM to 1 μM) compared to chymotrypsin (IC 50 = 1.4 to >10 μM) in vitro and were not overtly cytotoxic to HeLa cervical or NCI-H460 lung cancer cell lines at micromolar concentrations.

  6. Genetic Basis for Geosmin Production by the Water Bloom-Forming Cyanobacterium, Anabaena ucrainica

    Directory of Open Access Journals (Sweden)

    Zhongjie Wang

    2014-12-01

    Full Text Available Geosmin is a common, musty-smelling sesquiterpene, principally produced by cyanobacteria. Anabaena ucrainica (Schhorb. Watanabe, a water bloom-forming cyanobacterium, is the geosmin producer responsible for odor problems in Dianchi and Erhai lakes in China. In this study, the geosmin synthase gene (geo of A. ucrainica and its flanking regions were identified and cloned by polymerase chain reaction (PCR and genome walking. The geo gene was found to be located in a transcription unit with two cyclic nucleotide-binding protein genes (cnb. The two cnb genes were highly similar and were predicted members of the cyclic adenosine monophosphate (cAMP receptor protein/fumarate nitrate reductase regulator (Crp–Fnr family. Phylogenetic and evolutionary analyses implied that the evolution of the geosmin genes involved a horizontal gene transfer process in cyanobacteria. These genes showed a close relationship to 2-methylisoborneol genes in origin and evolution.

  7. Isolation and Purification of Heterotetrameric Catalase from a Desiccation Tolerant Cyanobacterium Lyngbya arboricola

    Directory of Open Access Journals (Sweden)

    Kapoor, Shivali

    2013-02-01

    Full Text Available The desiccation tolerant cyanobacterium Lyngbya arboricola, isolated from bark surfaces of Mangifera indica, possessed up to four stable isoforms of catalase in addition to other antioxidative enzymes, for several years under a dry state. Purification of the two most persistent isoforms of catalase (Cat has been undertaken by employing acetone precipitation, ethanol: chloroform treatment, gel filtration and ion exchange chromatography. The two isoforms of catalase remained almost unchanged on varying matric and osmotic hydration levels of mats of the cyanobacterium. The purification procedures resulted in a 1.3 % yield of purified single isoform (0.22 mg mL-1 protein with 709 Units mg-1 specific activity and a purity index of 0.83. Five millimolar of dithiothreitol (DTT was observed to be pertinent in maintaining the optimum redox state of the enzyme. The purification procedures additionally facilitated the simultaneous elimination and procurement of phycoerythrins (PE and mycosporine-like amino acids (MAA. Each purified isoform gave a single band (~45kDa upon SDS-PAGE and denaturing urea isoelectric focusing (IEF depicted the presence of 2 subunits each of CatA and CatB. The monoisotopic mass and pI value of CatA and CatB as revealed by LC-MS analysis and internal amino acid sequencing was 78.96, 5.89 and 80.77, 5.92, respectively, showing resemblance with CatA of Erysiphe graminis subs. hordei and CatB of Ajellomyces capsulata. The heterotetrameric monofunctional catalase (~320 kDa, due to its stability in the form of resistance to ethanol: chloroform, its thermoalkaliphilic nature and the presence of innumerable hydrophobic amino acid residues (~40%, thus exhibited its potential for biotechnological applications.

  8. Cellular responses and bioremoval of nonylphenol by the bloom-forming cyanobacterium Planktothrix agardhii 1113

    Science.gov (United States)

    Medvedeva, Nadezda; Zaytseva, Tatyana; Kuzikova, Irina

    2017-07-01

    Nonylphenol (NP) is extensively used in agricultural, industrial and household applications. Moreover, NP is the major breakdown product of the nonionic surfactants, nonylphenol ethoxylates (NPEOs), the most widely used group of surfactants. Nonylphenol is persistent in the environment, highly toxic to aquatic organisms and is a potential endocrine disruptor. NP and NPEOs have been identified as priority hazardous substances under the Environmental Quality Standards Directive 2013/39/EU and are referred to in the list of substances of particular risk to the Baltic Sea. The toxicity of NP to the bloom-forming cyanobacterium Planktothrix agardhii 1113 isolated from the eastern Gulf of Finland, Baltic Sea and the bioremoval of NP by P. agardhii were studied. NP in concentrations > 0.4 mg L- 1 suppressed cyanobacterial growth. The median effective concentration of NP for P. agardhii after 4 days of treatment (EC50) was 1.5 mg L- 1. The removal of NP from the culture medium was primarily due to abiotic processes and biodegradation by the cyanobacterium rather than sorption by the cells. NP significantly increased the photosynthetic pigments, extracellular proteins and soluble exopolysaccharides content. The cyanobacterial growth inhibition was accompanied by the increased synthesis of microcystin dm-RR and of the odorous metabolites, geosmin and 2-methylisoborneol (MIB), by P. agardhii 1113. NP also notably increased the microcystin released into the environment. Increased levels of extracellular proteins, soluble exopolysaccharides, microcystins and odorous metabolites may affect the microbial loop in aquatic ecosystems. An increased level of malondialdehyde (MDA) was indicative of the formation of free radicals in P. agardhii under NP stress, whereas increased levels of superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and proline indicated the occurrence of a scavenging mechanism.

  9. Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, V.K. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India)], E-mail: vinodfcy@iitr.ernet.in; Rastogi, A. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2008-06-15

    This communication presents results pertaining to the sorptive and desorptive studies carried out on chromium(VI) removal onto nonviable freshwater cyanobacterium (Nostoc muscorum) biomass. Influence of varying the conditions for removal of chromium(VI), such as the pH of aqueous solution, the dosage of biosorbent, the contact time with the biosorbent, the temperature for the removal of chromium, the effect of light metal ions and the adsorption-desorption studies were investigated. Sorption interaction of chromium on to cyanobacterial species obeyed both the first and the second-order rate equation and the experimental data showed good fit with both the Langmuir and freundlich adsorption isotherm models. The maximum adsorption capacity was 22.92 mg/g at 25 {sup o}C and pH 3.0. The adsorption process was endothermic and the values of thermodynamic parameters of the process were calculated. Various properties of the cyanobacterium, as adsorbent, explored in the characterization part were chemical composition of the adsorbent, surface area calculation by BET method and surface functionality by FTIR. Sorption-desorption of chromium into inorganic solutions and distilled water were observed and this indicated the biosorbent could be regenerated using 0.1 M HNO{sub 3} and EDTA with upto 80% recovery. The biosorbents were reused in five biosorption-desorption cycles without a significant loss in biosorption capacity. Thus, this study demonstrated that the cyanobacterial biomass N. muscorum could be used as an efficient biosorbent for the treatment of chromium(VI) bearing wastewater.

  10. Effect of UV-B on enzymes of nitrogen metabolism in the cyanobacterium Nostoc calcicola

    International Nuclear Information System (INIS)

    Kumar, A.; Sinha, R.P.; Häder, D. P.

    1996-01-01

    The effects of ultraviolet-B (UV-B; 280–315 nm) irradiation on nitrogenase and nitrate reductase (NR) activity have been studied in the filamentous and heterocystous N 2 -fixing cyanobacterium Nostoc calcicola. Exposure of cultures to UV-B (5W/m 2 ) for as little as 30 min caused complete inactivation of nitrogenase activity whereas nitrate reductase activity was stimulated twofold in comparison to one exposed to fluorescent white light. GS activity was also inhibited by UV-B treatment, but there was no total loss of activity even after 4 h. NR activity showed a gradual stimulation up to 4 h and thereafter it became constant. Stimulation was also obtained in reductant deficient cultures (12 h incubation in the dark) suggesting independence of NR of PS-II under UV-B. NR activity was also unaffected in the presence of DCMU, a known inhibitor of PS-II. However, both O 2 evolution and 14 CO 2 uptake were completely abolished following 30 min of UV-B treatment. Addition of the protein synthesis inhibitor chloramphenicol (25 μg/mL) to cultures did not show any inhibitory effect on NR activity. SDS-PAGE analysis of UV-B treated cultures elicited gradual loss of protein bands with increasing duration of exposure. Our findings suggest that UV-B irradiance has differential effects on the enzymes of the nitrogen metabolism in the cyanobacterium Nostoc calcicola. Further studies are needed to reveal the exact mechanism involved in the stimulation of NR activity by UV-B. Whether UV-B has a direct effect on NO 2 − accumulation in the cells needs detailed investigation. (author)

  11. Temporal Gene Expression of the Cyanobacterium Arthrospira in Response to Gamma Rays

    Science.gov (United States)

    Badri, Hanène; Monsieurs, Pieter; Coninx, Ilse; Nauts, Robin; Wattiez, Ruddy; Leys, Natalie

    2015-01-01

    The edible cyanobacterium Arthrospira is resistant to ionising radiation. The cellular mechanisms underlying this radiation resistance are, however, still largely unknown. Therefore, additional molecular analysis was performed to investigate how these cells can escape from, protect against, or repair the radiation damage. Arthrospira cells were shortly exposed to different doses of 60Co gamma rays and the dynamic response was investigated by monitoring its gene expression and cell physiology at different time points after irradiation. The results revealed a fast switch from an active growth state to a kind of 'survival modus' during which the cells put photosynthesis, carbon and nitrogen assimilation on hold and activate pathways for cellular protection, detoxification, and repair. The higher the radiation dose, the more pronounced this global emergency response is expressed. Genes repressed during early response, suggested a reduction of photosystem II and I activity and reduced tricarboxylic acid (TCA) and Calvin-Benson-Bassham (CBB) cycles, combined with an activation of the pentose phosphate pathway (PPP). For reactive oxygen species detoxification and restoration of the redox balance in Arthrospira cells, the results suggested a powerful contribution of the antioxidant molecule glutathione. The repair mechanisms of Arthrospira cells that were immediately switched on, involve mainly proteases for damaged protein removal, single strand DNA repair and restriction modification systems, while recA was not induced. Additionally, the exposed cells showed significant increased expression of arh genes, coding for a novel group of protein of unknown function, also seen in our previous irradiation studies. This observation confirms our hypothesis that arh genes are key elements in radiation resistance of Arthrospira, requiring further investigation. This study provides new insights into phasic response and the cellular pathways involved in the radiation resistance of

  12. Temporal Gene Expression of the Cyanobacterium Arthrospira in Response to Gamma Rays.

    Directory of Open Access Journals (Sweden)

    Hanène Badri

    Full Text Available The edible cyanobacterium Arthrospira is resistant to ionising radiation. The cellular mechanisms underlying this radiation resistance are, however, still largely unknown. Therefore, additional molecular analysis was performed to investigate how these cells can escape from, protect against, or repair the radiation damage. Arthrospira cells were shortly exposed to different doses of 60Co gamma rays and the dynamic response was investigated by monitoring its gene expression and cell physiology at different time points after irradiation. The results revealed a fast switch from an active growth state to a kind of 'survival modus' during which the cells put photosynthesis, carbon and nitrogen assimilation on hold and activate pathways for cellular protection, detoxification, and repair. The higher the radiation dose, the more pronounced this global emergency response is expressed. Genes repressed during early response, suggested a reduction of photosystem II and I activity and reduced tricarboxylic acid (TCA and Calvin-Benson-Bassham (CBB cycles, combined with an activation of the pentose phosphate pathway (PPP. For reactive oxygen species detoxification and restoration of the redox balance in Arthrospira cells, the results suggested a powerful contribution of the antioxidant molecule glutathione. The repair mechanisms of Arthrospira cells that were immediately switched on, involve mainly proteases for damaged protein removal, single strand DNA repair and restriction modification systems, while recA was not induced. Additionally, the exposed cells showed significant increased expression of arh genes, coding for a novel group of protein of unknown function, also seen in our previous irradiation studies. This observation confirms our hypothesis that arh genes are key elements in radiation resistance of Arthrospira, requiring further investigation. This study provides new insights into phasic response and the cellular pathways involved in the radiation

  13. Radiation characteristics and effective optical properties of dumbbell-shaped cyanobacterium Synechocystis sp

    International Nuclear Information System (INIS)

    Heng, Ri-Liang; Pilon, Laurent

    2016-01-01

    This study presents experimental measurements of the radiation characteristics of unicellular freshwater cyanobacterium Synechocystis sp. during their exponential growth in F medium. Their scattering phase function at 633 nm average spectral absorption and scattering cross-sections between 400 and 750 nm were measured. In addition, an inverse method was used for retrieving the spectral effective complex index of refraction of overlapping or touching bispheres and quadspheres from their absorption and scattering cross-sections. The inverse method combines a genetic algorithm and a forward model based on Lorenz–Mie theory, treating bispheres and quadspheres as projected area and volume-equivalent coated spheres. The inverse method was successfully validated with numerically predicted average absorption and scattering cross-sections of suspensions consisting of bispheres and quadspheres, with realistic size distributions, using the T-matrix method. It was able to retrieve the monomers' complex index of refraction with size parameter up to 11, relative refraction index less than 1.3, and absorption index less than 0.1. Then, the inverse method was applied to retrieve the effective spectral complex index of refraction of Synechocystis sp. approximated as randomly oriented aggregates consisting of two overlapping homogeneous spheres. Both the measured absorption cross-section and the retrieved absorption index featured peaks at 435 and 676 nm corresponding to chlorophyll a, a peak at 625 nm corresponding to phycocyanin, and a shoulder around 485 nm corresponding to carotenoids. These results can be used to optimize and control light transfer in photobioreactors. The inverse method and the equivalent coated sphere model could be applied to other optically soft particles of similar morphologies. - Highlights: • Radiation characteristics of Synechocystis sp. were measured during exponential growth. • This unicellular freshwater cyanobacterium features an interesting

  14. First report of neurotoxic effect of the cyanobacterium Cylindrospermopsis raciborskii on the motility of trematode metacercariae.

    Science.gov (United States)

    Lopes, K C; Ferrão-Filho, A S; Santos, E G N; Santos, C P

    2018-03-01

    Cylindrospermopsis raciborskii (Woloszynska) is a photosynthetic cyanobacterium that can produce cytotoxic (cylindrospermopsin) and neurotoxic cyanotoxins (saxitoxins). In Brazil the strains of C. raciborskii are reported to produce only saxitoxins (STX) and their effect on fish parasites has not been tested to date. The fish Poecilia vivipara Bloch and Schneider is a common host for the trematode Pygidiopsis macrostomum Travassos off the coast of Rio de Janeiro, and this fish-parasite interaction is a model for behavioural and ecotoxicological studies. The aim of this work was to evaluate the motility of metacercariae of P. macrostomum from P. vivipara exposed to 40 mg l-1 and 400 mg l-1 of crude lyophilized extract of the cyanobacterium C. raciborskii (CYRF-01) for 48 h. The fish were separated into groups of ten individuals and, after exposure, five fish from each group were dissected for counting and checking the motility of metacercariae. The other five fish were dissected after 48 h in clean water. The detection and quantification of STX in the solutions of cyanobacteria, and the gills and guts of fish, were performed by an enzyme-linked immunosorbent assay. The crude extract of C. raciborskii caused temporary paralysis in metacercariae of P. macrostomum after exposure of fish to both concentrations, and the motility recovered after the fish were kept for 48 h in clean water. STX was detected in the guts and gills of all fish analysed, suggesting that this toxin is involved in the paralysis of metacercariae. This is the first report on the action of neurotoxins in metacercariae of fish.

  15. Otters, Marine

    Science.gov (United States)

    Estes, James A.; Bodkin, James L.; Ben-David, M.; Perrin, William F.; Würsing, Bernd; Thewissen, J.G.M.

    2009-01-01

    The otters (Mustelidae; Lutrinae) provide an exceptional perspective into the evolution of marine living by mammals. Most extant marine mammals (e.g. the cetaceans, pinnipeds, and sirenians) have been so highly modified by long periods of selection for life in the sea that they bear little resemblance to their terrestrial ancestors. Marine otters, in contrast, are more recent expatriates from freshwater habitats and some species still live in both environments. Contrasts among species within the otters, and among the otters, terrestrial mammals, and the more highly adapted pinnipeds and cetaceans provide powerful insights into mammalian adaptations to life in the sea (Estes, 1989). Among the marine mammals, sea otters (Enhydra lutris, Fig. 1) provide the clearest understanding of consumer-induced effects on ecosystem function. This is due in part to opportunities provided by history and in part to the relative ease with which shallow coastal systems where sea otters live can be observed and studied. Although more difficult to study than sea otters, other otter species reveal the connectivity among the marine, freshwater, and terrestrial systems. These three qualities of the otters – their comparative biology, their role as predators, and their role as agents of ecosystem connectivity – are what make them interesting to marine mammalogy.The following account provides a broad overview of the comparative biology and ecology of the otters, with particular emphasis on those species or populations that live in the sea. Sea otters are features prominently, in part because they live exclusively in the sea whereas other otters have obligate associations with freshwater and terrestrial environments (Kenyon, 1969; Riedman and Estes, 1990).

  16. Marine Battlefields

    DEFF Research Database (Denmark)

    Harðardóttir, Sara

    as they are an important food source for various marine animals. For both phytoand zooplankton predation is a major cause of mortality, and strategies for protection or avoidance are important for survival. Diatoms of the genera Nitzschia and Pseudo-nitzschia are known to produce a neuro-toxin, domoic acid (DA). Despite......Phytoplankton species are photosynthetic organisms found in most aquatic habitats. In the ocean, phytoplankton are tremendously important because they produce the energy that forms the base of the marine food web. Zooplankton feed on phytoplankton and mediate the energy to higher trophic levels...

  17. Marine Science

    African Journals Online (AJOL)

    Science. The journal has a new and more modern layout, published online only, and the editorial. Board was increased to include more disciplines pertaining to marine sciences. While important chal- lenges still lie ahead, we are steadily advancing our standard to increase visibility and dissemination throughout the global ...

  18. Marine Mammals.

    Science.gov (United States)

    Meith, Nikki

    Marine mammals have not only fascinated and inspired human beings for thousands of years, but they also support a big business by providing flesh for sea-borne factories, sustaining Arctic lifestyles and traditions, and attracting tourists to ocean aquaria. While they are being harpooned, bludgeoned, shot, netted, and trained to jump through…

  19. Marine Science

    African Journals Online (AJOL)

    Mauritius Marine Conservation Society through their. Abstract. While no populations of seals are resident in the tropical Indian Ocean, vagrant animals are occasionally sighted in the region. Here we detail two new sightings of pinnipeds in the Mascarene Islands (Mauritius, Reunion and Rodri- gues) since 1996 and review ...

  20. Marine Science

    African Journals Online (AJOL)

    J O U R N A L O F. Marine Science. Coral reefs of Mauritius in a changing global climate ..... in confined aquifers, and a lesser influence in uncon- fined systems. On the ... massive cloud cover during the critical months, some. 70% bleaching ...

  1. Marine Science

    African Journals Online (AJOL)

    Copy Editor Timothy Andrew. Published ... 2007; Zhou et al., 2009) and they play an important role in the ... At both sites, zonal variation in TMPB was evident with significantly higher C-biomass closer to ... ton is considered to be an essential parameter in eco- systems ...... logical significance of toxic marine dinoflagellates.

  2. Marine Science

    African Journals Online (AJOL)

    sustainable coastal development in the region, as well as contributing to the ... between humans and the coastal and marine environment. ... exploitation for timber, fuel wood, aquaculture, urban. Abstract. Given the high dependence of coastal communities on natural resources, mangrove conservation is a challenge in.

  3. Marine Science

    African Journals Online (AJOL)

    No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means ... USA/Norway ... The last couple of years have been a time of change for the Western Indian Ocean Journal of Marine.

  4. Marine Science

    African Journals Online (AJOL)

    Chief Editor José Paula | Faculty of Sciences of University of Lisbon, Portugal. Copy Editor Timothy Andrew. Published biannually. Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high quality research generated in the Western Indian Ocean (WIO) ...

  5. Draft Genome Sequence of Leptolyngbya sp. KIOST-1, a Filamentous Cyanobacterium with Biotechnological Potential for Alimentary Purposes.

    Science.gov (United States)

    Kim, Ji Hyung; Kang, Do-Hyung

    2016-09-15

    Here, we report the draft genome of cyanobacterium Leptolyngbya sp. KIOST-1 isolated from a microalgal culture pond in South Korea. The genome consists of 13 contigs containing 6,320,172 bp, and a total of 5,327 coding sequences were predicted. This genomic information will allow further exploitation of its biotechnological potential for alimentary purposes. Copyright © 2016 Kim and Kang.

  6. Resistance to the photosystem II herbicide diuron is dominant to sensitivity in the cyanobacterium Synechococcus sp. PCC7942

    OpenAIRE

    Brusslan, Judy; Haselkorn, Robert

    1989-01-01

    The transformable cyanobacterium, Synechococcus sp. PCC7942, was used to study the genetics of resistance to the herbicide diuron. In wild-type cells, diuron binds to one of the core proteins, called D1, of photosystem II reaction centres. This binding prevents the transfer of electrons from QA, the primary quinone acceptor, to QB, which is necessary to create the charge separation that drives ATP synthesis. A single amino acid substitution in the D1 protein reduces diuron binding and confers...

  7. Identification of the n-1 fatty acid as an antibacterial constituent from the edible freshwater cyanobacterium Nostoc verrucosum.

    Science.gov (United States)

    Oku, Naoya; Yonejima, Kohsuke; Sugawa, Takao; Igarashi, Yasuhiro

    2014-01-01

    The cyanobacterium Nostoc verrucosum occurs in cool, clear streams and its gelatinous colonies, called "ashitsuki," have been eaten in ancient Japan. Its ethanolic extract was found to inhibit the growth of Gram-positive bacteria and activity-guided fractionation yielded an unusual n-1 fatty acid, (9Z,12Z)-9,12,15-hexadecatrienoic acid (1), as one of the active principles. It inhibited the growth of Staphylococcus aureus at MIC 64 μg/mL.

  8. Discovery of Rare and Highly Toxic Microcystins from Lichen-Associated Cyanobacterium Nostoc sp. Strain IO-102-I

    OpenAIRE

    Oksanen, Ilona; Jokela, Jouni; Fewer, David P.; Wahlsten, Matti; Rikkinen, Jouko; Sivonen, Kaarina

    2004-01-01

    The production of hepatotoxic cyclic heptapeptides, microcystins, is almost exclusively reported from planktonic cyanobacteria. Here we show that a terrestrial cyanobacterium Nostoc sp. strain IO-102-I isolated from a lichen association produces six different microcystins. Microcystins were identified with liquid chromatography-UV mass spectrometry by their retention times, UV spectra, mass fragmentation, and comparison to microcystins from the aquatic Nostoc sp. strain 152. The dominant micr...

  9. Short Communication: Effects of temperature on growth, pigment composition and protein content of an Antarctic Cyanobacterium Nostoc commune

    Directory of Open Access Journals (Sweden)

    RANJANA TRIPATHI

    2012-11-01

    Full Text Available Tripathi R, Dhuldhaj UP, Singh S. 2012. Short Communication: Effects of temperature on growth, pigment composition and protein content of an Antarctic Cyanobacterium Nostoc commune. Nusantara Bioscience 4: 134-137. Effect of temperature variation on biomass accumulation, pigment composition and protein content were studied for the cyanobacterium Nostoc commune, isolated from Antarctica. Results confirmed the psychrotrophic behavior (optimum growth temperature 25◦C of the cyanobacterium. Low temperature increased the duration of lag phase and exponential growth phase. Maximum increase in biomass was recorded on 24th day at 25◦C and on 12th day at 50C. The downshift from 25 to 5◦C had almost negligible effect on chl a content. Maximal protein content was recorded for cultures growing at 50C on 12th day. The carotenoids/chl a ratio was maximum (2.48 at 50C on 9th day. It remained almost constant for cultures growing at 5 and 350C. There was an induction in protein synthesis following downshift in temperature from 25 to 5◦C.

  10. Optical characterization of the oceanic unicellular cyanobacterium Synechococcus grown under a day-night cycle in natural irradiance

    Science.gov (United States)

    Stramski, Dariusz; Shalapyonok, Alexi; Reynolds, Rick A.

    1995-01-01

    The optical properties of the ocenanic cyanobacterium Synechococcus (clone WH8103) were examined in a nutrient-replete laboratory culture grown under a day-night cycle in natural irradiance. Measurements of the spectral absorption and beam attenuation coefficients, the size distribution of cells in suspension, and microscopic analysis of samples were made at intervals of 2-4 hours for 2 days. These measurements were used to calculate the optical properties at the level of a single 'mean' cell representative of the acutal population, specifically, the optical cross sections for spectral absorption bar-(sigma(sub a)), scattering bar-sigma(sub b))(lambda), and attentuation bar-(sigma(sub c))(lambda). In addition, concurrent determinations of chlorophyll a and particulate organic carbon allowed calculation of the Chl a- and C-specific optical coefficients. The refractive index of cells was derived from the observed data using a theory of light absorption and scattering by homogeneous spheres. Low irradiance because of cloudy skies resulted in slow division rates of cells in the culture. The percentage of dividing cells was unusually high (greater than 30%) throughout the experiment. The optical cross sections varied greatly over a day-night cycle, with a minimum near dawn or midmorning and maximum near dusk. During daylight hours, bar-(sigma(sub b)) and bar-(sigma(sub c)) can increase more than twofold and bar-(sigma(sub a) by as much as 45%. The real part of the refractive index n increaed during the day; changes in n had equal or greater effect than the varying size distribution on changes in bar-(sigma(sub c)) and bar-(sigma(sub b)). The contribution of changes in n to the increase of bar-(sigma(sub c))(660) during daylight hours was 65.7% and 45.1% on day 1 and 2, respectively. During the dark period, when bar-(sigma(sub c))(660) decreased by a factor of 2.9, the effect of decreasing n was dominant (86.3%). With the exception of a few hours during the second light

  11. Molecular exploration of the highly radiation resistant cyanobacterium Arthrospira sp. PCC 8005

    Science.gov (United States)

    Badri, Hanène; Leys, Natalie; Wattiez, Ruddy

    Arthrospira (Spirulina) is a photosynthetic cyanobacterium able to use sunlight to release oxygen from water and remove carbon dioxide and nitrate from water. In addition, it is suited for human consumption (edible). For these traits, the cyanobacterium Arthrospira sp. PCC 8005 was selected by the European Space Agency (ESA) as part of the life support system MELiSSA for recycling oxygen, water, and food during future long-haul space missions. However, during such extended missions, Arthrospira sp. PCC 8005 will be exposed to continuous artificial illumination and harmful cosmic radiation. The aim of this study was to investigate how Arthrospira will react and behave when exposed to such stress environment. The cyanobacterium Arthrospira sp. PCC 8005 was exposed to high gamma rays doses in order to unravel in details the response of this bacterium following such stress. Test results showed that after acute exposure to high doses of 60Co gamma radiation upto 3200 Gy, Arthrospira filaments were still able to restart photosynthesis and proliferate normally. Doses above 3200 Gy, did have a detrimental effect on the cells, and delayed post-irradiation proliferation. The photosystem activity, measured as the PSII quantum yield immediately after irradiation, decreased significantly at radiation doses above 3200 Gy. Likewise through pigment content analysis a significant decrease in phycocyanin was observed following exposure to 3200 Gy. The high tolerance of this bacterium to 60Co gamma rays (i.e. ca. 1000x more resistant than human cells for example) raised our interest to investigate in details the cellular and molecular mechanisms behind this amazing resistance. Optimised DNA, RNA and protein extraction methods and a new microarray chip specific for Arthrospira sp. PCC 8005 were developed to identify the global cellular and molecular response following exposure to 3200 Gy and 5000 Gy A total of 15,29 % and 30,18 % genes were found differentially expressed in RNA

  12. Genome Sequence and Composition of a Tolyporphin-Producing Cyanobacterium-Microbial Community.

    Science.gov (United States)

    Hughes, Rebecca-Ayme; Zhang, Yunlong; Zhang, Ran; Williams, Philip G; Lindsey, Jonathan S; Miller, Eric S

    2017-10-01

    The cyanobacterial culture HT-58-2 was originally described as a strain of Tolypothrix nodosa with the ability to produce tolyporphins, which comprise a family of distinct tetrapyrrole macrocycles with reported efflux pump inhibition properties. Upon reviving the culture from what was thought to be a nonextant collection, studies of culture conditions, strain characterization, phylogeny, and genomics have been undertaken. Here, HT-58-2 was shown by 16S rRNA analysis to closely align with Brasilonema strains and not with Tolypothrix isolates. Light, fluorescence, and scanning electron microscopy revealed cyanobacterium filaments that are decorated with attached bacteria and associated with free bacteria. Metagenomic surveys of HT-58-2 cultures revealed a diversity of bacteria dominated by Erythrobacteraceae , 97% of which are Porphyrobacter species. A dimethyl sulfoxide washing procedure was found to yield enriched cyanobacterial DNA (presumably by removing community bacteria) and sequence data sufficient for genome assembly. The finished, closed HT-58-2Cyano genome consists of 7.85 Mbp (42.6% G+C) and contains 6,581 genes. All genes for biosynthesis of tetrapyrroles (e.g., heme, chlorophyll a , and phycocyanobilin) and almost all for cobalamin were identified dispersed throughout the chromosome. Among the 6,177 protein-encoding genes, coding sequences (CDSs) for all but two of the eight enzymes for conversion of glutamic acid to protoporphyrinogen IX also were found within one major gene cluster. The cluster also includes 10 putative genes (and one hypothetical gene) encoding proteins with domains for a glycosyltransferase, two cytochrome P450 enzymes, and a flavin adenine dinucleotide (FAD)-binding protein. The composition of the gene cluster suggests a possible role in tolyporphin biosynthesis. IMPORTANCE A worldwide search more than 25 years ago for cyanobacterial natural products with anticancer activity identified a culture (HT-58-2) from Micronesia that

  13. Evidence for paralytic shellfish poisons in the freshwater cyanobacterium Lyngbya wollei (Farlow ex Gomont) comb. nov.

    Science.gov (United States)

    Carmichael, W W; Evans, W R; Yin, Q Q; Bell, P; Moczydlowski, E

    1997-08-01

    Lyngbya wollei (Farlow ex Gomont) comb. nov., a perennial mat-forming filamentous cyanobacterium prevalent in lakes and reservoirs of the southeastern United States, was found to produce a potent, acutely lethal neurotoxin when tested in the mouse bioassay. Signs of poisoning were similar to those of paralytic shellfish poisoning. As part of the Tennessee Valley Authority master plan for Guntersville Reservoir, the mat-forming filamentous cyanobacterium L. wollei, a species that had recently invaded from other areas of the southern United States, was studied to determine if it could produce any of the known cyanotoxins. Of the 91 field samples collected at 10 locations at Guntersville Reservoir, Ala., on the Tennessee River, over a 3-year period, 72.5% were toxic. The minimum 100% lethal doses of the toxic samples ranged from 150 to 1,500 mg kg of lyophilized L. wollei cells-1, with the majority of samples being toxic at 500 mg kg-1. Samples bioassayed for paralytic shellfish toxins by the Association of Official Analytical Chemists method exhibited saxitoxin equivalents ranging from 0 to 58 micrograms g (dry weight)-1. Characteristics of the neurotoxic compound(s), such as the lack of adsorption by C18 solid-phase extraction columns, the short retention times on C18 high-performance liquid chromatography (HPLC) columns, the interaction of the neurotoxins with saxiphilin (a soluble saxitoxin-binding protein), and external blockage of voltage-sensitive sodium channels, led to our discovery that this neurotoxin(s) is related to the saxitoxins, the compounds responsible for paralytic shellfish poisonings. The major saxitoxin compounds thus far identified by comparison of HPLC fluorescence retention times are decarbamoyl gonyautoxins 2 and 3. There was no evidence of paralytic shellfish poison C toxins being produced by L. wollei. Fifty field samples were placed in unialgal culture and grown under defined culture conditions. Toxicity and signs of poisoning for these

  14. Effect of carbon and nitrogen assimilation on chlorophyll fluorescence emission by the cyanobacterium Anacystis nidulans

    Energy Technology Data Exchange (ETDEWEB)

    Romero, J.M.; Lara, C. (Instituto de Bioquimica Vegetal y Fotosintesis, Univ. de Sevilla y CSIC, Sevilla (ES)); Sivak, M.N. (Dept. of Biochemistry, Michigan State Univ., East Lansing (US))

    1992-01-01

    O{sub 2} evolution and chlorophyll A fluorescence emission have been monitored in intact cells of the cyanobacterium Anacystis nidulans 1402-1 to study the influence of carbon and nitrogen assimilation on the operation of the photosynthetic apparatus. The pattern of fluorescence induction in dark-adapted cyanobacterial cells was different from that of higher plants. Cyanobacteria undergo large, rapid state transitions upon illumination, which lead to marked changes in the fluorescence yield, complicating the estimation of quenching coefficients. The Kautsky effect was not evident, although it could be masked by a state II-state I transition, upon illumination with actinic light. The use of inhibitors of carbon assimilation such as D,L-glyceraldehyde or iodoacetamide allowed us to relate changes in variable fluorescence to active CO{sub 2} fixation. Ammonium, but not nitrate, induced non-photochemical fluorescence quenching, in agreement with a previous report on green algae, indicative of an ammonium-induced state i transition. (au).

  15. CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973.

    Science.gov (United States)

    Wendt, Kristen E; Ungerer, Justin; Cobb, Ryan E; Zhao, Huimin; Pakrasi, Himadri B

    2016-06-23

    As autotrophic prokaryotes, cyanobacteria are ideal chassis organisms for sustainable production of various useful compounds. The newly characterized cyanobacterium Synechococcus elongatus UTEX 2973 is a promising candidate for serving as a microbial cell factory because of its unusually rapid growth rate. Here, we seek to develop a genetic toolkit that enables extensive genomic engineering of Synechococcus 2973 by implementing a CRISPR/Cas9 editing system. We targeted the nblA gene because of its important role in biological response to nitrogen deprivation conditions. First, we determined that the Streptococcus pyogenes Cas9 enzyme is toxic in cyanobacteria, and conjugational transfer of stable, replicating constructs containing the cas9 gene resulted in lethality. However, after switching to a vector that permitted transient expression of the cas9 gene, we achieved markerless editing in 100 % of cyanobacterial exconjugants after the first patch. Moreover, we could readily cure the organisms of antibiotic resistance, resulting in a markerless deletion strain. High expression levels of the Cas9 protein in Synechococcus 2973 appear to be toxic and result in cell death. However, introduction of a CRISPR/Cas9 genome editing system on a plasmid backbone that leads to transient cas9 expression allowed for efficient markerless genome editing in a wild type genetic background.

  16. Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring

    KAUST Repository

    Klatt, Judith M.

    2015-03-15

    Before the Earth\\'s complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism\\'s affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 - during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life.

  17. Genetic analysis of amino acid transport in the facultatively heterotrophic cyanobacterium Synechocystis sp. Strain 6803

    International Nuclear Information System (INIS)

    Labarre, J.; Thuriaux, P.; Chauvat, F.

    1987-01-01

    The existence of active transport systems (permeases) operating on amino acids in the photoautotrophic cyanobacterium Synechocystis sp. strain 6803 was demonstrated by following the initial rates of uptake with 14 C-labeled amino acids, measuring the intracellular pools of amino acids, and isolating mutants resistant to toxic amino acids. One class of mutants (Pfa1) corresponds to a regulatory defect in the biosynthesis of the aromatic amino acids, but two other classes (Can1 and Aza1) are defective in amino acid transport. The Can1 mutants are defective in the active transport of three basic amino acids (arginine, histidine, and lysine) and in one of two transport systems operating on glutamine. The Aza1 mutants are not affected in the transport of the basic amino acids but have lost the capacity to transport all other amino acids except glutamate. The latter amino acid is probably transported by a third permease which could be identical to the Can1-independent transport operating on glutamine. Thus, genetic evidence suggests that strain 6803 has only a small number of amino acid transport systems with fairly broad specificity and that, with the exception of glutamine, each amino acid is accumulated by only one major transport system. Compared with heterotrophic bacteria such as Escherichia coli, these permeases are rather inefficient in terms of affinity (apparent K/sub m/ ranging from 6 to 60 μM) and of V/sub max/

  18. Advances in the Function and Regulation of Hydrogenase in the Cyanobacterium Synechocystis PCC6803

    Science.gov (United States)

    Cassier-Chauvat, Corinne; Veaudor, Théo; Chauvat, Franck

    2014-01-01

    In order to use cyanobacteria for the biological production of hydrogen, it is important to thoroughly study the function and the regulation of the hydrogen-production machine in order to better understand its role in the global cell metabolism and identify bottlenecks limiting H2 production. Most of the recent advances in our understanding of the bidirectional [Ni-Fe] hydrogenase (Hox) came from investigations performed in the widely-used model cyanobacterium Synechocystis PCC6803 where Hox is the sole enzyme capable of combining electrons with protons to produce H2 under specific conditions. Recent findings suggested that the Hox enzyme can receive electrons from not only NAD(P)H as usually shown, but also, or even preferentially, from ferredoxin. Furthermore, plasmid-encoded functions and glutathionylation (the formation of a mixed-disulfide between the cysteines residues of a protein and the cysteine residue of glutathione) are proposed as possible new players in the function and regulation of hydrogen production. PMID:25365180

  19. Anoxygenic photosynthesis controls oxygenic photosynthesis in a cyanobacterium from a sulfidic spring.

    Science.gov (United States)

    Klatt, Judith M; Al-Najjar, Mohammad A A; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-03-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 (-) during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. A Novel Epiphytic Chlorophyll d-containing Cyanobacterium Isolated from a Mangrove-associated Red Alga.

    Science.gov (United States)

    Larkum, Anthony W D; Chen, Min; Li, Yaqiong; Schliep, Martin; Trampe, Erik; West, John; Salih, Anya; Kühl, Michael

    2012-12-01

    A new habitat and a new chlorophyll (Chl) d-containing cyanobacterium belonging to the genus Acaryochloris are reported in this study. Hyperspectral microscopy showed the presence of Chl d-containing microorganisms in epiphytic biofilms on a red alga (Gelidium caulacantheum) colonizing the pneumato-phores of a temperate mangrove (Avicennia marina). The presence of Chl d was further proven by high performance liquid chromatography (HPLC)-based pigment analysis and by confocal imaging of cultured cells. Enrichment of mangrove biofilm samples under near-infrared radiation (NIR) yielded the new Acaryochloris sp. MPGRS1, which was closely related in terms of 16S rRNA gene sequence to an isolate from the hypertrophic Salton Sea, USA. The new isolate used Chl d as its major photopigment; Chl d and Chl a contents were ~98% and 1%-2% of total cellular chlorophyll, respectively. These findings expand the variety of ecological niches known to harbor Chl d-containing cyanobacteria and support our working hypothesis that such oxyphototrophs may be ubiquitous in habitats depleted of visible light, but with sufficient NIR exposure. © 2012 Phycological Society of America.

  1. Anti-MRSA-acting carbamidocyclophanes H-L from the Vietnamese cyanobacterium Nostoc sp. CAVN2.

    Science.gov (United States)

    Preisitsch, Michael; Harmrolfs, Kirsten; Pham, Hang T L; Heiden, Stefan E; Füssel, Anna; Wiesner, Christoph; Pretsch, Alexander; Swiatecka-Hagenbruch, Monika; Niedermeyer, Timo H J; Müller, Rolf; Mundt, Sabine

    2015-03-01

    The methanol extract of the Vietnamese freshwater cyanobacterium Nostoc sp. CAVN2 exhibited cytotoxic effects against MCF-7 and 5637 cancer cell lines as well as against nontumorigenic FL and HaCaT cells and was active against methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae. High-resolution mass spectrometric analysis indicated the presence of over 60 putative cyclophane-like compounds in an antimicrobially active methanol extract fraction. A paracyclophanes-focusing extraction and separation methodology led to the isolation of 5 new carbamidocyclophanes (1-5) and 11 known paracyclophanes (6-16). The structures and their stereochemical configurations were elucidated by a combination of spectrometric and spectroscopic methods including HRMS, 1D and 2D NMR analyses and detailed comparative CD analysis. The newly described monocarbamoylated [7.7]paracyclophanes (1, 2, 4 and 5) differ by a varying degree of chlorination in the side chains. Carbamidocyclophane J (3) is the very first reported carbamidocyclophane bearing a single halogenation in both butyl residues. Based on previous studies a detailed phylogenetic examination of cyclophane-producing cyanobacteria was carried out. The biological evaluation of 1-16 against various clinical pathogens highlighted a remarkable antimicrobial activity against MRSA with MICs of 0.1-1.0 μM, and indicated that the level of antibacterial activity is related to the presence of carbamoyl moieties.

  2. Metabolomic approach to optimizing and evaluating antibiotic treatment in the axenic culture of cyanobacterium Nostoc flagelliforme.

    Science.gov (United States)

    Han, Pei-pei; Jia, Shi-ru; Sun, Ying; Tan, Zhi-lei; Zhong, Cheng; Dai, Yu-jie; Tan, Ning; Shen, Shi-gang

    2014-09-01

    The application of antibiotic treatment with assistance of metabolomic approach in axenic isolation of cyanobacterium Nostoc flagelliforme was investigated. Seven antibiotics were tested at 1-100 mg L(-1), and order of tolerance of N. flagelliforme cells was obtained as kanamycin > ampicillin, tetracycline > chloromycetin, gentamicin > spectinomycin > streptomycin. Four antibiotics were selected based on differences in antibiotic sensitivity of N. flagelliforme and associated bacteria, and their effects on N. flagelliforme cells including the changes of metabolic activity with antibiotics and the metabolic recovery after removal were assessed by a metabolomic approach based on gas chromatography-mass spectrometry combined with multivariate analysis. The results showed that antibiotic treatment had affected cell metabolism as antibiotics treated cells were metabolically distinct from control cells, but the metabolic activity would be recovered via eliminating antibiotics and the sequence of metabolic recovery time needed was spectinomycin, gentamicin > ampicillin > kanamycin. The procedures of antibiotic treatment have been accordingly optimized as a consecutive treatment starting with spectinomycin, then gentamicin, ampicillin and lastly kanamycin, and proved to be highly effective in eliminating the bacteria as examined by agar plating method and light microscope examination. Our work presented a strategy to obtain axenic culture of N. flagelliforme and provided a method for evaluating and optimizing cyanobacteria purification process through diagnosing target species cellular state.

  3. Simultaneous Production of Anabaenopeptins and Namalides by the Cyanobacterium Nostoc sp. CENA543.

    Science.gov (United States)

    Shishido, Tânia K; Jokela, Jouni; Fewer, David P; Wahlsten, Matti; Fiore, Marli F; Sivonen, Kaarina

    2017-11-17

    Anabaenopeptins are a diverse group of cyclic peptides, which contain an unusual ureido linkage. Namalides are shorter structural homologues of anabaenopeptins, which also contain an ureido linkage. The biosynthetic origins of namalides are unknown despite a strong resemblance to anabaenopeptins. Here, we show the cyanobacterium Nostoc sp. CENA543 strain producing new (nostamide B-E (2, 4, 5, and 6)) and known variants of anabaenopeptins (schizopeptin 791 (1) and anabaenopeptin 807 (3)). Surprisingly, Nostoc sp. CENA543 also produced namalide B (8) and the new namalides D (7), E (9), and F (10) in similar amounts to anabaenopeptins. Analysis of the complete Nostoc sp. CENA543 genome sequence indicates that both anabaenopeptins and namalides are produced by the same biosynthetic pathway through module skipping during biosynthesis. This unique process involves the skipping of two modules present in different nonribosomal peptide synthetases during the namalide biosynthesis. This skipping is an efficient mechanism since both anabaenopeptins and namalides are synthesized in similar amounts by Nostoc sp. CENA543. Consequently, gene skipping may be used to increase and possibly broaden the chemical diversity of related peptides produced by a single biosynthetic gene cluster. Genome mining demonstrated that the anabaenopeptin gene clusters are widespread in cyanobacteria and can also be found in tectomicrobia bacteria.

  4. Merocyclophanes C and D from the Cultured Freshwater Cyanobacterium Nostoc sp. (UIC 10110).

    Science.gov (United States)

    May, Daniel S; Chen, Wei-Lun; Lantvit, Daniel D; Zhang, Xiaoli; Krunic, Aleksej; Burdette, Joanna E; Eustaquio, Alessandra; Orjala, Jimmy

    2017-04-28

    Merocyclophanes C and D (1 and 2) were isolated from the cell extract of the cultured cyanobacterium UIC 10110. The structures were determined by one-dimensional nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectrometry and confirmed by 2D NMR techniques. The absolute configurations were determined using electronic circular dichroism spectroscopy. Merocyclophanes C and D represent the first known analogues of the merocyclophane core structure, a recently discovered scaffold of [7,7] paracyclophanes characterized by an α-branched methyl at C-1/C-14; 1 and 2 showed antiproliferative activity against the MDA-MB-435 cell line with IC 50 values of 1.6 and 0.9 μM, respectively. Partial 16S analysis determined UIC 10110 to be a Nostoc sp., and it was found to clade with UIC 10062 Nostoc sp., the only other strain known to produce merocyclophanes. The genome of UIC 10110 was sequenced, and a biosynthetic gene cluster was identified that is proposed to encode type I and type III polyketide synthases that are potentially responsible for production of the merocyclophanes; however, further experiments will be required to verify the true function of the gene cluster. The gene cluster provides a genetic basis for the observed structural differences of the [7,7] paracyclophane core structures.

  5. Nostopeptolide plays a governing role during cellular differentiation of the symbiotic cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Liaimer, Anton; Helfrich, Eric J N; Hinrichs, Katrin; Guljamow, Arthur; Ishida, Keishi; Hertweck, Christian; Dittmann, Elke

    2015-02-10

    Nostoc punctiforme is a versatile cyanobacterium that can live either independently or in symbiosis with plants from distinct taxa. Chemical cues from plants and N. punctiforme were shown to stimulate or repress, respectively, the differentiation of infectious motile filaments known as hormogonia. We have used a polyketide synthase mutant that accumulates an elevated amount of hormogonia as a tool to understand the effect of secondary metabolites on cellular differentiation of N. punctiforme. Applying MALDI imaging to illustrate the reprogramming of the secondary metabolome, nostopeptolides were identified as the predominant difference in the pks2(-) mutant secretome. Subsequent differentiation assays and visualization of cell-type-specific expression of nostopeptolides via a transcriptional reporter strain provided evidence for a multifaceted role of nostopeptolides, either as an autogenic hormogonium-repressing factor or as a chemoattractant, depending on its extracellular concentration. Although nostopeptolide is constitutively expressed in the free-living state, secreted levels dynamically change before, during, and after the hormogonium differentiation phase. The metabolite was found to be strictly down-regulated in symbiosis with Gunnera manicata and Blasia pusilla, whereas other metabolites are up-regulated, as demonstrated via MALDI imaging, suggesting plants modulate the fine-balanced cross-talk network of secondary metabolites within N. punctiforme.

  6. Structural elucidation and molecular docking of a novel antibiotic compound from cyanobacterium Nostoc sp. MGL001

    Directory of Open Access Journals (Sweden)

    Niveshika No Name

    2016-11-01

    Full Text Available Cyanobacteria are rich source of array of bioactive compounds. The present study reports a novel antibacterial bioactive compound purified from cyanobacterium Nostoc sp. MGL001 using various chromatographic techniques viz. thin layer chromatography (TLC and high performance liquid chromatography (HPLC. Further characterization was done using electrospray ionisation mass spectroscopy (ESIMS and nuclear magnetic resonance (NMR and predicted structure of bioactive compound was 9-Ethyliminomethyl-12-(morpholin - 4 - ylmethoxy -5, 8, 13, 16 – tetraaza – hexacene - 2, 3 dicarboxylic acid (EMTAHDCA. Structure of EMTAHDCA clearly indicated that it is a novel compound that was not reported in literature or natural product database. The compound exhibited growth inhibiting effects mainly against the gram negative bacterial strains and produced maximum zone of inhibition at 150 μg/mL concentration. The compound was evaluated through in silico studies for its ability to bind 30S ribosomal fragment (PDB ID: 1YRJ, 1MWL, 1J7T and 1LC4 and OmpF porin protein (4GCP, 4GCQ and 4GCS which are the common targets of various antibiotic drugs. Comparative molecular docking study revealed that EMTAHDCA has strong binding affinity for these selected targets in comparison to a number of most commonly used antibiotics. The ability of EMTAHDCA to bind the active sites on the proteins and 30S ribosomal fragments where the antibiotic drugs generally bind indicated that it is functionally similar to the commercially available drugs.

  7. Semicontinuous cultivation of the Cyanobacterium Spirulina platensis in a closed photobioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, C.C.; Costa, J.A.V. [Fundacao Universidade Federal do Rio Grande (FURG), Rio Grande, RS (Brazil). Dept. de Quimica], Email: dqmjorge@furg.br; Reinehr, C.O. [Universidade de Passo Fundo, RS (Brazil). Centro de Pesquisa em Alimentacao], Email: reinehr@upf.br

    2006-01-15

    The cultivation of photosynthetic microorganisms such as the cyanobacterium Spirulina platensis has been studied by researchers in many countries because these organisms can produce products with industrial potential. We studied the specific growth rate ({mu}{sub x}, day{sup -1}) and productivity (P{sub x}, in mg/L/day of Spirulina platensis biomass, dry weight basis) of two S. platensis strains (LEB-52 and Paracas) growing in aerated semicontinuous culture in two-liter Erlenmeyer flasks for 90 days (2160 h) at 30 deg C under 2500 lux of illumination in a 12 h photoperiod. Independent of the S. platensis strain used we found that low biomass concentrations (0.50 g/L) and high renewal rates (50% v/v) resulted in a high specific growth rate ({mu}{sub x} = 0.111 day{sup -1}) and high productivity (P{sub x} = 42.3 mg/L/day). These values are two to four times higher than those obtained in simple batch cultivation and indicate that the semicontinuous cultivation of S. platensis is viable. (author)

  8. Semicontinuous cultivation of the cyanobacterium Spirulina platensis in a closed photobioreactor

    Directory of Open Access Journals (Sweden)

    C. C. Reichert

    2006-03-01

    Full Text Available The cultivation of photosynthetic microorganisms such as the cyanobacterium Spirulina platensis has been studied by researchers in many countries because these organisms can produce products with industrial potential. We studied the specific growth rate (µx, day-1 and productivity (Px, in mg/L/day of Spirulina platensis biomass, dry weight basis of two S. platensis strains (LEB-52 and Paracas growing in aerated semicontinuous culture in two-liter Erlenmeyer flasks for 90 days (2160 h at 30°C under 2500 lux of illumination in a 12 h photoperiod. Independent of the S. platensis strain used we found that low biomass concentrations (0.50 g/L and high renewal rates (50% v/v resulted in a high specific growth rate (µx = 0.111 day-1 and high productivity (Px = 42.3 mg/L/day. These values are two to four times higher than those obtained in simple batch cultivation and indicate that the semicontinuous cultivation of S. platensis is viable.

  9. Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring

    KAUST Repository

    Klatt, Judith M.; Alnajjar, Mohammad Ahmad; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-01-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 - during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life.

  10. Proteomic analysis of the cyanobacterium of the Azolla symbiosis: identity, adaptation, and NifH modification.

    Science.gov (United States)

    Ekman, Martin; Tollbäck, Petter; Bergman, Birgitta

    2008-01-01

    Cyanobacteria are able to form stable nitrogen-fixing symbioses with diverse eukaryotes. To extend our understanding of adaptations imposed by plant hosts, two-dimensional gel electrophoresis and mass spectrometry (MS) were used for comparative protein expression profiling of a cyanobacterium (cyanobiont) dwelling in leaf cavities of the water-fern Azolla filiculoides. Homology-based protein identification using peptide mass fingerprinting [matrix-assisted laser desorption ionization-time of flight (MALDI-TOF-MS)], tandem MS analyses, and sequence homology searches resulted in an identification success rate of 79% of proteins analysed in the unsequenced cyanobiont. Compared with a free-living strain, processes related to energy production, nitrogen and carbon metabolism, and stress-related functions were up-regulated in the cyanobiont while photosynthesis and metabolic turnover rates were down-regulated, stressing a slow heterotrophic mode of growth, as well as high heterocyst frequencies and nitrogen-fixing capacities. The first molecular data set on the nature of the NifH post-translational modification in cyanobacteria was also obtained: peptide mass spectra of the protein demonstrated the presence of a 300-400 Da protein modification localized to a specific 13 amino acid sequence, within the part of the protein that is ADP-ribosylated in other bacteria and close to the active site of nitrogenase. Furthermore, the distribution of the highest scoring database hits for the identified proteins points to the possibility of using proteomic data in taxonomy.

  11. Detection of weed algae in open pond cultures of Cyanobacterium aponinum using PAM

    Directory of Open Access Journals (Sweden)

    Dominik Winckelmann

    2016-02-01

    Full Text Available Abstract The potential use of non-arable land in the al-Wusta region of the Sultanate of Oman for the production of algae biomass was examined. Brackish cleaned production water from oil production supplemented with commercial fertilizer was used as growth medium. The indigenous isolate Cyanobacterium aponinum WP7(1 was grown in open ponds using batch or semi-continuous cultivation. Biomass production rates of 15–24 g/m2/day were achieved. The change of salinity due to evaporation, which was thought to be a major challenge, did not exceed 35 ppt. All cultures showed contaminations with weed algae. Contaminations with green algae or diatoms were detectable using fluorescence pattern excited by four different wavelengths using a pulse-amplitude-modulation chlorophyll fluorometer (PAM. It is possible to estimate the health level and the mayor groups of which a culture is composed using the PAM method. Therefore, the fluorescence of the photosynthetically inactive sample is compared with the fluorescence after all copies of photosystem II were closed by exposing the sample to a high-intensity light beam. A detection limit of one weed algae cell in a hundred cells was achieved.

  12. Anilofos tolerance and its mineralization by the cyanobacterium Synechocystis sp. strain PUPCCC 64.

    Directory of Open Access Journals (Sweden)

    D P Singh

    Full Text Available This study deals with anilofos tolerance and its mineralization by the common rice field cyanobacterium Synechocystis sp. strain PUPCCC 64. The organism tolerated anilofos up to 25 mg L(-1. The herbicide caused inhibitory effects on photosynthetic pigments of the test organism in a dose-dependent manner. The organism exhibited 60, 89, 96, 85 and 79% decrease in chlorophyll a, carotenoids, phycocyanin, allophycocyanin and phycoerythrin, respectively, in 20 mg L(-1 anilofos on day six. Activities of superoxide dismutase, catalase and peroxidase increased by 1.04 to 1.80 times over control cultures in presence of 20 mg L(-1 anilofos. Glutathione content decreased by 26% while proline content was unaffected by 20 mg L(-1 anilofos. The test organism showed intracellular uptake and metabolized the herbicide. Uptake of herbicide by test organism was fast during initial six hours followed by slow uptake until 120 hours. The organism exhibited maximum anilofos removal at 100 mg protein L(-1, pH 8.0 and 30°C. Its growth in phosphate deficient basal medium in the presence of anilofos (2.5 mg L(-1 indicated that herbicide was used by the strain PUPCCC 64 as a source of phosphate.

  13. Novel toxic effects associated with a tropical Limnothrix/Geitlerinema-like cyanobacterium.

    Science.gov (United States)

    Bernard, Catherine; Froscio, Suzanne; Campbell, Rebecca; Monis, Paul; Humpage, Andrew; Fabbro, Larelle

    2011-06-01

    The presence of a toxic strain of a fine filamentous cyanobacterium belonging to the Oscillatorialean family Pseudanabaenacea was detected during a survey of cyanobacterial taxa associated with the presence of cylindrospermopsin in dams in Central Queensland (Australia). The strain, AC0243, was isolated and cultured, its genomic DNA extracted and 16S RNA gene sequenced. Phylogenetic analysis placed AC0243 with Limnothrix species, although this genus appears polyphyletic. Moreover, not all morphological characters are consistent with this genus but more closely fit the description of Geitlerinema unigranulatum (R.N. Singh) Komárek and Azevedo. The potential toxic effects of AC0243 extract were assessed chemically and biologically. Cell free protein synthesis was inhibited by the extract. Exposure of Vero cells to the extract resulted in a significant reduction in cellular ATP levels following 24-72 h incubation. The presence of cylindrospermopsin was excluded based on the nature of responses obtained in cell and cell-free assays; in addition, (i) it could not be detected by HPLC, LC-MS, or immunological assay, and (ii) no genes currently associated with the production of cylindrospermopsin were found in the genome. Other known cyanobacterial toxins were not detected. The apparent novelty of this toxin is discussed. Copyright © 2009 Wiley Periodicals, Inc.

  14. CyanOmics: an integrated database of omics for the model cyanobacterium Synechococcus sp. PCC 7002.

    Science.gov (United States)

    Yang, Yaohua; Feng, Jie; Li, Tao; Ge, Feng; Zhao, Jindong

    2015-01-01

    Cyanobacteria are an important group of organisms that carry out oxygenic photosynthesis and play vital roles in both the carbon and nitrogen cycles of the Earth. The annotated genome of Synechococcus sp. PCC 7002, as an ideal model cyanobacterium, is available. A series of transcriptomic and proteomic studies of Synechococcus sp. PCC 7002 cells grown under different conditions have been reported. However, no database of such integrated omics studies has been constructed. Here we present CyanOmics, a database based on the results of Synechococcus sp. PCC 7002 omics studies. CyanOmics comprises one genomic dataset, 29 transcriptomic datasets and one proteomic dataset and should prove useful for systematic and comprehensive analysis of all those data. Powerful browsing and searching tools are integrated to help users directly access information of interest with enhanced visualization of the analytical results. Furthermore, Blast is included for sequence-based similarity searching and Cluster 3.0, as well as the R hclust function is provided for cluster analyses, to increase CyanOmics's usefulness. To the best of our knowledge, it is the first integrated omics analysis database for cyanobacteria. This database should further understanding of the transcriptional patterns, and proteomic profiling of Synechococcus sp. PCC 7002 and other cyanobacteria. Additionally, the entire database framework is applicable to any sequenced prokaryotic genome and could be applied to other integrated omics analysis projects. Database URL: http://lag.ihb.ac.cn/cyanomics. © The Author(s) 2015. Published by Oxford University Press.

  15. ORGANIZATION OF THE nif GENES OF THE NONHETEROCYSTOUS CYANOBACTERIUM TRICHODESMIUM SP. IMS101.

    Science.gov (United States)

    Dominic, Benny; Zani, Sabino; Chen, Yi-Bu; Mellon, Mark T; Zehr, Jonathan P

    2000-08-26

    An approximately 16-kb fragment of the Trichodesmium sp. IMS101 (a nonheterocystous filamentous cyanobacterium) "conventional"nif gene cluster was cloned and sequenced. The gene organization of the Trichodesmium and Anabaena variabilis vegetative (nif 2) nitrogenase gene clusters spanning the region from nif B to nif W are similar except for the absence of two open reading frames (ORF3 and ORF1) in Trichodesmium. The Trichodesmium nif EN genes encode a fused Nif EN polypeptide that does not appear to be processed into individual Nif E and Nif N polypeptides. Fused nif EN genes were previously found in the A. variabilis nif 2 genes, but we have found that fused nif EN genes are widespread in the nonheterocystous cyanobacteria. Although the gene organization of the nonheterocystous filamentous Trichodesmium nif gene cluster is very similar to that of the A. variabilis vegetative nif 2 gene cluster, phylogenetic analysis of nif sequences do not support close relatedness of Trichodesmium and A. variabilis vegetative (nif 2) nitrogenase genes.

  16. Proteome-wide analysis and diel proteomic profiling of the cyanobacterium Arthrospira platensis PCC 8005.

    Directory of Open Access Journals (Sweden)

    Sabine Matallana-Surget

    Full Text Available The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation.

  17. Effect of Selected Plant Extracts and D- and L-Lysine on the Cyanobacterium Microcystis aeruginosa

    Directory of Open Access Journals (Sweden)

    Miquel Lürling

    2014-06-01

    Full Text Available We tested extracts from Fructus mume, Salvia miltiorrhiza and Moringa oleifera as well as L-lysine and D-Lysine as curative measures to rapidly suppress the cyanobacterium Microcystis aeruginosa NIVA-CYA 43. We tested these compounds under similar conditions to facilitate comparisons. We hypothesized that for each compound, relatively low concentrations—i.e., 5–50 mg L−1, would reduce M. aeruginosa biomass. At these low concentrations, only L-lysine caused a decline in M. aeruginosa biomass at ≥4.3 mg L−1. F. mume extract was effective to do so at high concentrations, i.e., at ≥240 mg L−1, but the others were virtually non-effective. Low pH caused by organic acids is a probable explanation for the effect of F. mume extract. No complete wipe-outs of the experimental population were achieved as Photosystem II efficiency showed a recovery after six days. L-lysine may be effective at low concentrations—meaning low material costs. However, the effect of L-lysine seems relatively short-lived. Overall, the results of our study did not support the use of the tested plant extracts and amino-acid as promising candidates for curative application in M. aeruginosa bloom control.

  18. Theoretical investigation of biomass productivities achievable in solar rectangular photobioreactors for the cyanobacterium Arthrospira platensis.

    Science.gov (United States)

    Pruvost, Jeremy; Cornet, J F; Goetz, Vincent; Legrand, Jack

    2012-01-01

    Modeling was done to simulate whole-year running of solar rectangular photobioreactors (PBRs). Introducing the concept of ideal reactor, the maximal biomass productivity that could be achieved on Earth on nitrate as N-source was calculated. Two additional factors were also analyzed with respect to dynamic calculations over the whole year: the effect of PBR location and the effects of given operating conditions on the resulting decrease in productivity compared with the ideal one. Simulations were conducted for the cyanobacterium Arthospira platensis, giving an ideal productivity (upper limit) in the range 55-60 tX ha(-1) year(-1) for a sun tracking system (and around 35-40 tX ha(-1) year(-1) for a fixed horizontal PBR). For an implantation in France (Nantes, west coast), the modification in irradiation conditions resulted in a decrease in biomass productivity of 40%. Various parameters were investigated, with special emphasis on the influence of the incident angle of solar illumination on resulting productivities, affecting both light capture and light transfer inside the bulk culture. It was also found that with appropriate optimization of the residence time as permitted by the model, productivities close to maximal could be achieved for a given location. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  19. Acclimation to and recovery from cadmium and zinc exposure by a freshwater cyanobacterium, Microcystis aeruginosa

    International Nuclear Information System (INIS)

    Zeng Jin; Yang Liuyan; Wang Wenxiong

    2009-01-01

    To understand the metal tolerance of a bloom-forming cyanobacterium, Microcystis aeruginosa, we investigated its acclimation to and recovery from cadmium (Cd) and zinc (Zn) exposure. The intracellular Cd and Zn (intra-Cd and intra-Zn) quotas increased upon acclimation to increased metal concentrations and were reduced following 1-day or 5-day recovery. Different acclimation to varying metal concentrations or durations (5 days or 15 days) did not have significant effects on the short-term uptake of Cd or Zn, whereas a 1-day recovery period promoted Cd or Zn uptake significantly. The values of median growth-inhibition concentrations (free ion concentration or intracellular quota) increased when the cyanobacterial cells were acclimated to higher Cd or Zn concentrations, indicating that M. aeruginosa became more tolerant to these metals. Consistent with the significant increase in metal uptake, the cyanobacteria become very sensitive to metals following 1-day recovery. A longer recovery (5 days) led to comparable uptake and toxicity responses to the controls. The efflux rate constants were not significantly different following metal acclimation. In the subcellular metal measurements, Cd was mostly distributed in the soluble fraction, whereas Zn was distributed evenly in the adsorbed, insoluble and soluble fractions of the cells. This study suggested the strong ability of these cyanobacteria to acclimate to different environments.

  20. Enhanced ferrihydrite dissolution by a unicellular, planktonic cyanobacterium: a biological contribution to particulate iron bioavailability.

    Science.gov (United States)

    Kranzler, Chana; Kessler, Nivi; Keren, Nir; Shaked, Yeala

    2016-12-01

    Iron (Fe) bioavailability, as determined by its sources, sinks, solubility and speciation, places severe environmental constraints on microorganisms in aquatic environments. Cyanobacteria are a widespread group of aquatic, photosynthetic microorganisms with especially high iron requirements. While iron exists predominantly in particulate form, little is known about its bioavailability to cyanobacteria. Some cyanobacteria secrete iron solubilizing ligands called siderophores, yet many environmentally relevant strains do not have this ability. This work explores the bioavailability of amorphous synthetic Fe-oxides (ferrihydrite) to the non-siderophore producing, unicellular cyanobacterium, Synechocystis sp PCC 6803. Iron uptake assays with 55 ferrihydrite established dissolution as a critical prerequisite for iron transport. Dissolution assays with the iron binding ligand, desferrioxamine B, demonstrated that Synechocystis 6803 enhances ferrihydrite dissolution, exerting siderophore-independent biological influence on ferrihydrite bioavailability. Dissolution mechanisms were studied using a range of experimental conditions; both cell-particle physical proximity and cellular electron flow were shown to be important determinants of bio-dissolution by Synechocystis 6803. Finally, the effects of ferrihydrite stability on bio-dissolution rates and cell physiology were measured, integrating biological and chemical aspects of ferrihydrite bioavailability. Collectively, these findings demonstrate that Synechocystis 6803 actively dissolves ferrihydrite, highlighting a significant biological component to mineral phase iron bioavailability in aquatic environments. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. A new antibiotic produced by the cyanobacterium-symbiotic fungus Simplicillium lanosoniveum.

    Science.gov (United States)

    Dong, Qinglin; Dong, Rongzhen; Xing, Xiangying; Li, Yukuan

    2018-06-01

    The culture broth of the cyanobacterium-symbiotic fungus Simplicillium lanosoniveum var. Tianjinienss Q. L. Dong exhibited unanticipated antibacterial activities against the Gram-positive bacteria, particularly the pathogenic bacterium Staphylococcus aureus, indicating the secretion of antibiotic-like metabolite, for which the modified Sabouraud medium was the suitable medium. The antibiotic-like metabolite was separated with macroporous resins CT-12 (absorption) and 95% ethanol (desorption), purified by ion-exchange resins D301T and displayed a characteristic absorption peak at 228 nm, suggesting the presence of nitrogen. The negative biuret and ninhydrin tests confirmed the absence of -NH 2 and -COOH groups. Further, HPLC and mass spectrometry analyses showed that the retention time and molecular weight of the antibiotic-like metabolite were 4.1031 min and 163.0182 (Δ ± 2.3 ppm), respectively. Taking together, we speculated that the antibiotic-like metabolite was a new antibiotic structurally similar to alkaloid, which was the first one isolated from the species of Simplicillium genus.

  2. Bioprocess Engineering Aspects of Biopolymer Production by the Cyanobacterium Spirulina Strain LEB 18

    Directory of Open Access Journals (Sweden)

    Roberta Guimarães Martins

    2014-01-01

    Full Text Available Microbial biopolymers can replace environmentally damaging plastics derived from petrochemicals. We investigated biopolymer synthesis by the cyanobacterium Spirulina strain LEB 18. Autotrophic culture used unmodified Zarrouk medium or modified Zarrouk medium in which the NaNO3 content was reduced to 0.25 g L−1 and the NaHCO3 content reduced to 8.4 g L−1 or increased to 25.2 g L−1. Heterotrophic culture used modified Zarrouk medium containing 0.25 g L−1 NaNO3 with the NaHCO3 replaced by 0.2 g L−1, 0.4 g L−1, or 0.6 g L−1 of glucose (C6H12O6 or sodium acetate (CH3COONa. Mixotrophic culture used modified Zarrouk medium containing 0.25 g L−1 NaNO3 plus 16.8 g L−1 NaHCO3 with the addition of 0.2 g L−1, 0.4 g L−1, or 0.6 g L−1 of glucose or sodium acetate. The highest biopolymer yield was 44% when LEB 18 was growing autotrophically in media containing 0.25 g L−1 NaNO3 and 8.4 g L−1 NaHCO3.

  3. Inhibitory effects of sanguinarine against the cyanobacterium Microcystis aeruginosa NIES-843 and possible mechanisms of action

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Jihai [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Agricultural University, Changsha 410128 (China); Liu, Deming [State Key Laboratory Breeding Base of Crop Germplasm Innovation and Resource Utilization, Hunan Agricultural University, Changsha 410128 (China); Gong, Daoxin; Zeng, Qingru; Yan, Zhiyong [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Gu, Ji-Dong, E-mail: jdgu@hku.hk [Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Agricultural University, Changsha 410128 (China); Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR (China)

    2013-10-15

    Highlights: •Sanguinarine was found as a strong algicidal biologically derived substance. •Sanguinarine can induce oxidative stress in the cells of Microcystis aeruginosa. •Photosystem is a target of toxicity of sanguinarine on M. aeruginosa. •Sanguinarine can induce DNA damage and inhibit cell division. -- Abstract: Sanguinarine showed strong inhibitory effect against Microcystis aeruginosa, a typical water bloom-forming and microcystins-producing cyanobacterium. The EC50 of sanguinarine against the growth of M. aeruginosa NIES-843 was 34.54 ± 1.17 μg/L. Results of chlorophyll fluorescence transient analysis indicated that all the electron donating side, accepting side, and the reaction center of the Photosystem II (PS II) were the targets of sanguinarine against M. aeruginosa NIES-843. The elevation of reactive oxygen species (ROS) level in the cells of M. aeruginosa NIES-843 upon exposure indicated that sanguinarine induced oxidative stress in the active growing cells of M. aeruginosa NIES-843. Further results of gene expression analysis indicated that DNA damage and cell division inhibition were also involved in the inhibitory action mechanism of sanguinarine against M. aeruginosa NIES-843. The inhibitory characteristics of sanguinarine against M. aeruginosa suggest that the ecological- and public health-risks need to be evaluated before its application in cyanobacterial bloom control to avoid devastating events irreversibly.

  4. Active Marine Station Metadata

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Active Marine Station Metadata is a daily metadata report for active marine bouy and C-MAN (Coastal Marine Automated Network) platforms from the National Data...

  5. Marine Sciences

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    PNL research in the marine sciences is focused on establishing a basic understanding of the mechanisms of stress and tolerance in marine organisms exposed to contaminants. Several environmental stressors had been investigated in earlier energy-related research. In a landmark study, for example, PNL had established that the severity of fish disease caused by the common infectious agent, Flexobacter columnaris, was seriously aggravated by thermal enhancement and certain ecological factors. Subsequent studies demonstrated that the primary immune response in fish, challenged by columnaris, could be permanently suppressed by comparatively low tritium exposures. The research has suggested that a potential exists for a significant biological impact when an aquatic stressor is added to an ambient background of other stressors, which may include heat, heavy metal ions, radiation or infectious microorganisms. More recently, PNL investigators have shown that in response to heavy metal contaminants, animals synthesize specific proteins (metallothioneins), which bind and sequester metals in the animals, thus decreasing metal mobility and effects. Companion studies with host-specific intracellular pathogens are being used to investigate the effects of heavy metals on the synthesis of immune proteins, which mitigate disease processes. The results of these studies aid in predicting the ecological effects of energy-related contaminants on valued fin and shellfish species

  6. Diurnal Regulation of Cellular Processes in the Cyanobacterium Synechocystis sp. Strain PCC 6803: Insights from Transcriptomic, Fluxomic, and Physiological Analyses

    Directory of Open Access Journals (Sweden)

    Rajib Saha

    2016-05-01

    Full Text Available Synechocystis sp. strain PCC 6803 is the most widely studied model cyanobacterium, with a well-developed omics level knowledgebase. Like the lifestyles of other cyanobacteria, that of Synechocystis PCC 6803 is tuned to diurnal changes in light intensity. In this study, we analyzed the expression patterns of all of the genes of this cyanobacterium over two consecutive diurnal periods. Using stringent criteria, we determined that the transcript levels of nearly 40% of the genes in Synechocystis PCC 6803 show robust diurnal oscillating behavior, with a majority of the transcripts being upregulated during the early light period. Such transcripts corresponded to a wide array of cellular processes, such as light harvesting, photosynthetic light and dark reactions, and central carbon metabolism. In contrast, transcripts of membrane transporters for transition metals involved in the photosynthetic electron transport chain (e.g., iron, manganese, and copper were significantly upregulated during the late dark period. Thus, the pattern of global gene expression led to the development of two distinct transcriptional networks of coregulated oscillatory genes. These networks help describe how Synechocystis PCC 6803 regulates its metabolism toward the end of the dark period in anticipation of efficient photosynthesis during the early light period. Furthermore, in silico flux prediction of important cellular processes and experimental measurements of cellular ATP, NADP(H, and glycogen levels showed how this diurnal behavior influences its metabolic characteristics. In particular, NADPH/NADP+ showed a strong correlation with the majority of the genes whose expression peaks in the light. We conclude that this ratio is a key endogenous determinant of the diurnal behavior of this cyanobacterium.

  7. The success of the cyanobacterium Cylindrospermopsis raciborskii in freshwaters is enhanced by the combined effects of light intensity and temperature

    Directory of Open Access Journals (Sweden)

    Sylvia Bonilla

    2016-06-01

    Full Text Available Toxic cyanobacterial blooms in freshwaters are thought to be a consequence of the combined effects of anthropogenic eutrophication and climate change. It is expected that climate change will affect water mixing regimes that alter the water transparency and ultimately the light environment for phytoplankton. Blooms of the potentially toxic cyanobacterium Cylindrospermopsis raciborskii are expanding from tropical towards temperate regions. Several hypotheses have been proposed to explain this expansion, including an increase in water temperature due to climate change and the high phenotypic plasticity of the species that allows it to exploit different light environments. We performed an analysis based on eight lakes in tropical, subtropical and temperate regions to examine the distribution and abundance of C. raciborskii in relation to water temperature and transparency. We then conducted a series of short-term factorial experiments that combined three temperatures and two light intensity levels using C. raciborskii cultures alone and in interaction with another cyanobacterium to identify its growth capacity. Our results from the field, in contrast to predictions, showed no differences in dominance (>40% to the total biovolume of C. raciborskii between climate regions. C. raciborskii was able to dominate the phytoplankton in a wide range of light environments (euphotic zone = 1.5 to 5 m, euphotic zone/mixing zone ratio <0.5 to >1.5. Moreover, C. raciborskii was capable of dominating the phytoplankton at low temperatures (<15°C. Our experimental results showed that C. raciborskii growing in interaction was enhanced by the increase of the temperature and light intensity. C. raciborskii growth in high light intensities and at a wide range of temperatures, suggests that any advantage that this species may derive from climate change that favors its dominance in the phytoplankton is likely due to changes in the light environment rather than changes in

  8. Interactions between phototrophic bacteria in marine sediments

    NARCIS (Netherlands)

    de Wit, Rutger

    1989-01-01

    Phototrophic bacteria are the most consicious organisms occuring in laminated microbial sediment ecosystems (microbial mats). In the Waddensea area ecosystems consisting of a toplayer of the cyanobacterium Microleus chthonoplastes overlying a red layer of the purple sulfur bacterium Thiocapsa

  9. Genome Sequence and Composition of a Tolyporphin-Producing Cyanobacterium-Microbial Community

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Rebecca-Ayme; Zhang, Yunlong; Zhang, Ran; Williams, Philip G.; Lindsey, Jonathan S.; Miller, Eric S.; Nojiri, Hideaki

    2017-07-28

    ABSTRACT

    The cyanobacterial culture HT-58-2 was originally described as a strain ofTolypothrix nodosawith the ability to produce tolyporphins, which comprise a family of distinct tetrapyrrole macrocycles with reported efflux pump inhibition properties. Upon reviving the culture from what was thought to be a nonextant collection, studies of culture conditions, strain characterization, phylogeny, and genomics have been undertaken. Here, HT-58-2 was shown by 16S rRNA analysis to closely align withBrasilonemastrains and not withTolypothrixisolates. Light, fluorescence, and scanning electron microscopy revealed cyanobacterium filaments that are decorated with attached bacteria and associated with free bacteria. Metagenomic surveys of HT-58-2 cultures revealed a diversity of bacteria dominated byErythrobacteraceae, 97% of which arePorphyrobacterspecies. A dimethyl sulfoxide washing procedure was found to yield enriched cyanobacterial DNA (presumably by removing community bacteria) and sequence data sufficient for genome assembly. The finished, closed HT-58-2Cyano genome consists of 7.85 Mbp (42.6% G+C) and contains 6,581 genes. All genes for biosynthesis of tetrapyrroles (e.g., heme, chlorophylla, and phycocyanobilin) and almost all for cobalamin were identified dispersed throughout the chromosome. Among the 6,177 protein-encoding genes, coding sequences (CDSs) for all but two of the eight enzymes for conversion of glutamic acid to protoporphyrinogen IX also were found within one major gene cluster. The cluster also includes 10 putative genes (and one hypothetical gene) encoding proteins with

  10. Using oxidized liquid and solid human waste as nutrients for Chlorella vulgaris and cyanobacterium Oscillatoria deflexa

    Science.gov (United States)

    Trifonov, Sergey V.; Kalacheva, Galina; Tirranen, Lyalya; Gribovskaya, Iliada

    At stationary terrestrial and space stations with closed and partially closed substance exchange not only plants, but also algae can regenerate atmosphere. Their biomass can be used for feeding Daphnia and Moina species, which, in their turn, serve as food for fish. In addition, it is possible to use algae for production of biological fuel. We suggested two methods of human waste mineralization: dry (evaporation with subsequent incineration in a muffle furnace) and wet (oxidation in a reactor using hydrogen peroxide). The research task was to prepare nutrient media for green alga Chlorella vulgaris and cyanobacterium Oscillatoria deflexa using liquid human waste mineralized by dry method, and to prepare media for chlorella on the basis of 1) liquid and 2) liquid and solid human waste mineralized by wet method. The algae were grown in batch culture in a climate chamber with the following parameters: illumination 7 klx, temperature 27-30 (°) C, culture density 1-2 g/l of dry weight. The control for chlorella was Tamiya medium, pH-5, and for oscillstoria — Zarrouk medium, pH-10. Maximum permissible concentrations of NaCl, Cl, urea (NH _{2}) _{2}CO, and native urine were established for algae. Missing ingredients (such as salts and acids) for experimental nutrient media were determined: their addition made it possible to obtain the biomass production not less than that in the control. The estimation was given of the mineral and biochemical composition of algae grown on experimental media. Microbiological test revealed absence of foreign microbial flora in experimental cultures.

  11. Ethylene Regulates the Physiology of the Cyanobacterium Synechocystis sp. PCC 6803 via an Ethylene Receptor.

    Science.gov (United States)

    Lacey, Randy F; Binder, Brad M

    2016-08-01

    Ethylene is a plant hormone that plays a crucial role in the growth and development of plants. The ethylene receptors in plants are well studied, and it is generally assumed that they are found only in plants. In a search of sequenced genomes, we found that many bacterial species contain putative ethylene receptors. Plants acquired many proteins from cyanobacteria as a result of the endosymbiotic event that led to chloroplasts. We provide data that the cyanobacterium Synechocystis (Synechocystis sp. PCC 6803) has a functional receptor for ethylene, Synechocystis Ethylene Response1 (SynEtr1). We first show that SynEtr1 directly binds ethylene. Second, we demonstrate that application of ethylene to Synechocystis cells or disruption of the SynEtr1 gene affects several processes, including phototaxis, type IV pilus biosynthesis, photosystem II levels, biofilm formation, and spontaneous cell sedimentation. Our data suggest a model where SynEtr1 inhibits downstream signaling and ethylene inhibits SynEtr1. This is similar to the inverse-agonist model of ethylene receptor signaling proposed for plants and suggests a conservation of structure and function that possibly originated over 1 billion years ago. Prior research showed that SynEtr1 also contains a light-responsive phytochrome-like domain. Thus, SynEtr1 is a bifunctional receptor that mediates responses to both light and ethylene. To our knowledge, this is the first demonstration of a functional ethylene receptor in a nonplant species and suggests that that the perception of ethylene is more widespread than previously thought. © 2016 American Society of Plant Biologists. All Rights Reserved.

  12. Hopanoids play a role in stress tolerance and nutrient storage in the cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Ricci, J N; Morton, R; Kulkarni, G; Summers, M L; Newman, D K

    2017-01-01

    Hopanes are abundant in ancient sedimentary rocks at discrete intervals in Earth history, yet interpreting their significance in the geologic record is complicated by our incomplete knowledge of what their progenitors, hopanoids, do in modern cells. To date, few studies have addressed the breadth of diversity of physiological functions of these lipids and whether those functions are conserved across the hopanoid-producing bacterial phyla. Here, we generated mutants in the filamentous cyanobacterium, Nostoc punctiforme, that are unable to make all hopanoids (shc) or 2-methylhopanoids (hpnP). While the absence of hopanoids impedes growth of vegetative cells at high temperature, the shc mutant grows faster at low temperature. This finding is consistent with hopanoids acting as membrane rigidifiers, a function shared by other hopanoid-producing phyla. Apart from impacting fitness under temperature stress, hopanoids are dispensable for vegetative cells under other stress conditions. However, hopanoids are required for stress tolerance in akinetes, a resting survival cell type. While 2-methylated hopanoids do not appear to contribute to any stress phenotype, total hopanoids and to a lesser extent 2-methylhopanoids were found to promote the formation of cyanophycin granules in akinetes. Finally, although hopanoids support symbiotic interactions between Alphaproteobacteria and plants, they do not appear to facilitate symbiosis between N. punctiforme and the hornwort Anthoceros punctatus. Collectively, these findings support interpreting hopanes as general environmental stress biomarkers. If hopanoid-mediated enhancement of nitrogen-rich storage products turns out to be a conserved phenomenon in other organisms, a better understanding of this relationship may help us parse the enrichment of 2-methylhopanes in the rock record during episodes of disrupted nutrient cycling. © 2016 John Wiley & Sons Ltd.

  13. Isolation and characterization of the small subunit of the uptake hydrogenase from the cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Raleiras, Patrícia; Kellers, Petra; Lindblad, Peter; Styring, Stenbjörn; Magnuson, Ann

    2013-06-21

    In nitrogen-fixing cyanobacteria, hydrogen evolution is associated with hydrogenases and nitrogenase, making these enzymes interesting targets for genetic engineering aimed at increased hydrogen production. Nostoc punctiforme ATCC 29133 is a filamentous cyanobacterium that expresses the uptake hydrogenase HupSL in heterocysts under nitrogen-fixing conditions. Little is known about the structural and biophysical properties of HupSL. The small subunit, HupS, has been postulated to contain three iron-sulfur clusters, but the details regarding their nature have been unclear due to unusual cluster binding motifs in the amino acid sequence. We now report the cloning and heterologous expression of Nostoc punctiforme HupS as a fusion protein, f-HupS. We have characterized the anaerobically purified protein by UV-visible and EPR spectroscopies. Our results show that f-HupS contains three iron-sulfur clusters. UV-visible absorption of f-HupS has bands ∼340 and 420 nm, typical for iron-sulfur clusters. The EPR spectrum of the oxidized f-HupS shows a narrow g = 2.023 resonance, characteristic of a low-spin (S = ½) [3Fe-4S] cluster. The reduced f-HupS presents complex EPR spectra with overlapping resonances centered on g = 1.94, g = 1.91, and g = 1.88, typical of low-spin (S = ½) [4Fe-4S] clusters. Analysis of the spectroscopic data allowed us to distinguish between two species attributable to two distinct [4Fe-4S] clusters, in addition to the [3Fe-4S] cluster. This indicates that f-HupS binds [4Fe-4S] clusters despite the presence of unusual coordinating amino acids. Furthermore, our expression and purification of what seems to be an intact HupS protein allows future studies on the significance of ligand nature on redox properties of the iron-sulfur clusters of HupS.

  14. Arsenic Demethylation by a C·As Lyase in Cyanobacterium Nostoc sp. PCC 7120.

    Science.gov (United States)

    Yan, Yu; Ye, Jun; Xue, Xi-Mei; Zhu, Yong-Guan

    2015-12-15

    Arsenic, a ubiquitous toxic substance, exists mainly as inorganic forms in the environment. It is perceived that organoarsenicals can be demethylated and degraded into inorganic arsenic by microorganisms. Few studies have focused on the mechanism of arsenic demethylation in bacteria. Here, we investigated arsenic demethylation in a typical freshwater cyanobacterium Nostoc sp. PCC 7120. This bacterium was able to demethylate monomethylarsenite [MAs(III)] rapidly to arsenite [As(III)] and also had the ability to demethylate monomethylarsenate [MAs(V)] to As(III). The NsarsI encoding a C·As lyase responsible for MAs(III) demethylation was cloned from Nostoc sp. PCC 7120 and heterologously expressed in an As-hypersensitive strain Escherichia coli AW3110 (ΔarsRBC). Expression of NsarsI was shown to confer MAs(III) resistance through arsenic demethylation. The purified NsArsI was further identified and functionally characterized in vitro. NsArsI existed mainly as the trimeric state, and the kinetic data were well-fit to the Hill equation with K0.5 = 7.55 ± 0.33 μM for MAs(III), Vmax = 0.79 ± 0.02 μM min(-1), and h = 2.7. Both of the NsArsI truncated derivatives lacking the C-terminal 10 residues (ArsI10) or 23 residues (ArsI23) had a reduced ability of MAs(III) demethylation. These results provide new insights for understanding the important role of cyanobacteria in arsenic biogeochemical cycling in the environment.

  15. Isolation and in silico analysis of Fe-superoxide dismutase in the cyanobacterium Nostoc commune.

    Science.gov (United States)

    Kesheri, Minu; Kanchan, Swarna; Richa; Sinha, Rajeshwar P

    2014-12-15

    Cyanobacteria are known to endure various stress conditions due to the inbuilt potential for oxidative stress alleviation owing to the presence of an array of antioxidants. The present study shows that Antarctic cyanobacterium Nostoc commune possesses two antioxidative enzymes viz., superoxide dismutase (SOD) and catalase that jointly cope with environmental stresses prevailing at its natural habitat. Native-PAGE analysis illustrates the presence of a single prominent isoform recognized as Fe-SOD and three distinct isoforms of catalase. The protein sequence of Fe-SOD in N. commune retrieved from NCBI protein sequence database was used for in silico analysis. 3D structure of N. commune was predicted by comparative modeling using MODELLER 9v11. Further, this model was validated for its quality by Ramachandran plot, ERRAT, Verify 3D and ProSA-web which revealed good structure quality of the model. Multiple sequence alignment showed high conservation in N and C-terminal domain regions along with all metal binding positions in Fe-SOD which were also found to be highly conserved in all 28 cyanobacterial species under study, including N. commune. In silico prediction of isoelectric point and molecular weight of Fe-SOD was found to be 5.48 and 22,342.98Da respectively. The phylogenetic tree revealed that among 28 cyanobacterial species, Fe-SOD in N. commune was the closest evolutionary homolog of Fe-SOD in Nostoc punctiforme as evident by strong bootstrap value. Thus, N. commune may serve as a good biological model for studies related to survival of life under extreme conditions prevailing at the Antarctic region. Moreover cyanobacteria may be exploited for biochemical and biotechnological applications of enzymatic antioxidants. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Enhanced biohydrogen production by the N{sub 2}-fixing cyanobacterium Anabaena siamensis strain TISTR 8012

    Energy Technology Data Exchange (ETDEWEB)

    Khetkorn, Wanthanee [Program of Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330 (Thailand); Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330 (Thailand); Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-75120, Uppsala (Sweden); Lindblad, Peter [Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-75120, Uppsala (Sweden); Incharoensakdi, Aran [Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330 (Thailand)

    2010-12-15

    The efficiency of hydrogen production depends on several factors. We focused on external conditions leading to enhanced hydrogen production when using the N{sub 2}-fixing cyanobacterium Anabaena siamensis TISTR 8012, a novel strain isolated from a rice paddy field in Thailand. In this study, we controlled key factors affecting hydrogen production such as cell age, light intensity, time of light incubation and source of carbon. Our results showed an enhanced hydrogen production when cells, at log phase, were adapted under N{sub 2}-fixing condition using 0.5% fructose as carbon source and a continuous illumination of 200 {mu}E m{sup -2} s{sup -1} for 12 h under anaerobic incubation. The maximum hydrogen production rate was 32 {mu}mol H{sub 2} mg chl a{sup -1} h{sup -1}. This rate was higher than that observed in the model organisms Anabaena PCC 7120, Nostoc punctiforme ATCC 29133 and Synechocystis PCC 6803. This higher production was likely caused by a higher nitrogenase activity since we observed an upregulation of nifD. The production did not increase after 12 h which was probably due to an increased activity of the uptake hydrogenase as evidenced by an increased hupL transcript level. Interestingly, a proper adjustment of light conditions such as intensity and duration is important to minimize both the photodamage of the cells and the uptake hydrogenase activity. Our results indicate that A. siamensis TISTR 8012 has a high potential for hydrogen production with the ability to utilize sugars as substrate to produce hydrogen. (author)

  17. Composition and functional property of photosynthetic pigments under circadian rhythm in the cyanobacterium Spirulina platensis.

    Science.gov (United States)

    Kumar, Deepak; Kannaujiya, Vinod K; Richa; Pathak, Jainendra; Sundaram, Shanthy; Sinha, Rajeshwar P

    2018-05-01

    Circadian rhythm is an important endogenous biological signal for sustainable growth and development of cyanobacteria in natural ecosystems. Circadian effects of photosynthetically active radiation (PAR), ultraviolet-A (UV-A) and ultraviolet-B (UV-B) radiations on pigment composition have been studied in the cyanobacterium Spirulina platensis under light (L)/dark (D) oscillation with a combination of 4/20, 8/16, 12/12, 16/8, 20/4 and 24/24 h time duration. Circadian exposure of PAR + UV-A (PA) and PAR + UV-A + UV-B (PAB) showed more than twofold decline in Chl a, total protein and phycocyanin (PC) in light phase and significant recovery was achieved in dark phase. The fluorescence emission wavelength of PC was shifted towards lower wavelengths in the light phase of PAB in comparison to P and PA whereas the same wavelength was retrieved in the dark phase. The production of free radicals was accelerated twofold in the light phase (24 h L) whereas the same was retrieved to the level of control during the dark phase. Oxidatively induced damage was alleviated by antioxidative enzymes such as catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and ascorbate peroxidase (APX) in the light phase (0-24-h L) whereas the dark phase showed significant inhibition of the same enzymes. Similar characteristic inhibition of free radicals and recovery of PC was observed inside cellular filament after circadian rhythm of 24/24 h (L/D). Circadian exposure of P, PA and PAB significantly altered the synthesis and recovery of pigments that could be crucial for optimization and sustainable production of photosynthetic products for human welfare.

  18. A Salt-Inducible Mn-Catalase (KatB) Protects Cyanobacterium from Oxidative Stress.

    Science.gov (United States)

    Chakravarty, Dhiman; Banerjee, Manisha; Bihani, Subhash C; Ballal, Anand

    2016-02-01

    Catalases, enzymes that detoxify H2O2, are widely distributed in all phyla, including cyanobacteria. Unlike the heme-containing catalases, the physiological roles of Mn-catalases remain inadequately characterized. In the cyanobacterium Anabaena, pretreatment of cells with NaCl resulted in unusually enhanced tolerance to oxidative stress. On exposure to H2O2, the NaCl-treated Anabaena showed reduced formation of reactive oxygen species, peroxides, and oxidized proteins than the control cells (i.e. not treated with NaCl) exposed to H2O2. This protective effect correlated well with the substantial increase in production of KatB, a Mn-catalase. Addition of NaCl did not safeguard the katB mutant from H2O2, suggesting that KatB was indeed responsible for detoxifying the externally added H2O2. Moreover, Anabaena deficient in KatB was susceptible to oxidative effects of salinity stress. The katB gene was strongly induced in response to osmotic stress or desiccation. Promoter-gfp analysis showed katB to be expressed only in the vegetative cells but not in heterocysts. Biochemically, KatB was an efficient, robust catalase that remained active in the presence of high concentrations of NaCl. Our findings unravel the role of Mn-catalase in acclimatization to salt/oxidative stress and demonstrate that the oxidative stress resistance of an organism can be enhanced by a simple compound such as NaCl. © 2016 American Society of Plant Biologists. All Rights Reserved.

  19. Phosphoproteome of the cyanobacterium Synechocystis sp. PCC 6803 and its dynamics during nitrogen starvation.

    Directory of Open Access Journals (Sweden)

    Philipp eSpät

    2015-03-01

    Full Text Available Cyanobacteria have shaped the earth’s biosphere as the first oxygenic photoautotrophs and still play an important role in many ecosystems. The ability to adapt to changing environmental conditions is an essential characteristic in order to ensure survival. To this end, numerous studies have shown that bacteria use protein post-translational modifications such as Ser/Thr/Tyr phosphorylation in cell signalling, adaptation and regulation. Nevertheless, our knowledge of cyanobacterial phosphoproteomes and their dynamic response to environmental stimuli is relatively limited. In this study, we applied gel-free methods and high accuracy mass spectrometry towards the unbiased detection of Ser/Thr/Tyr phosphorylation events in the model cyanobacterium Synechocystis sp. PCC 6803. We could identify over 300 phosphorylation events in cultures grown on nitrate as exclusive nitrogen source. Chemical dimethylation labelling was applied to investigate proteome and phosphoproteome dynamics during nitrogen starvation. Our dataset describes the most comprehensive (phosphoproteome of Synechocystis to date, identifying 2,382 proteins and 183 phosphorylation events and quantifying 2,111 proteins and 148 phosphorylation events during nitrogen starvation. Global protein phosphorylation levels were increased in response to nitrogen depletion after 24 hours. Among the proteins with increased phosphorylation, the PII signalling protein showed the highest fold-change, serving as positive control. Other proteins with increased phosphorylation levels comprised functions in photosynthesis and in carbon and nitrogen metabolism. This study reveals dynamics of Synechocystis phosphoproteome in response to environmental stimuli and suggests an important role of protein Ser/Thr/Tyr phosphorylation in fundamental mechanisms of homeostatic control in cyanobacteria.

  20. Cell surface acid-base properties of the cyanobacterium Synechococcus: Influences of nitrogen source, growth phase and N:P ratios

    Science.gov (United States)

    Liu, Yuxia; Alessi, D. S.; Owttrim, G. W.; Kenney, J. P. L.; Zhou, Qixing; Lalonde, S. V.; Konhauser, K. O.

    2016-08-01

    The distribution of many trace metals in the oceans is controlled by biological uptake. Recently, Liu et al. (2015) demonstrated the propensity for a marine cyanobacterium to adsorb cadmium from seawater, suggesting that cell surface reactivity might also play an important role in the cycling of metals in the oceans. However, it remains unclear how variations in cyanobacterial growth rates and nutrient supply might affect the chemical properties of their cellular surfaces. In this study we used potentiometric titrations and Fourier Transform Infrared (FT-IR) spectrometry to profile the key metabolic changes and surface chemical responses of a Synechococcus strain, PCC 7002, during different growth regimes. This included testing various nitrogen (N) to phosphorous (P) ratios (both nitrogen and phosphorous dependent), nitrogen sources (nitrate, ammonium and urea) and growth stages (exponential, stationary, and death phase). FT-IR spectroscopy showed that varying the growth substrates on which Synechococcus cells were cultured resulted in differences in either the type or abundance of cellular exudates produced or a change in the cell wall components. Potentiometric titration data were modeled using three distinct proton binding sites, with resulting pKa values for cells of the various growth conditions in the ranges of 4.96-5.51 (pKa1), 6.67-7.42 (pKa2) and 8.13-9.95 (pKa3). According to previous spectroscopic studies, these pKa ranges are consistent with carboxyl, phosphoryl, and amine groups, respectively. Comparisons between the titration data (for the cell surface) and FT-IR spectra (for the average cellular changes) generally indicate (1) that the nitrogen source is a greater determinant of ligand concentration than growth phase, and (2) that phosphorus limitation has a greater impact on Synechococcus cellular and extracellular properties than does nitrogen limitation. Taken together, these techniques indicate that nutritional quality during cell growth can

  1. Evidence regarding the possible role of c-phycoerythrin in ultraviolet-B tolerance in a thermophilic cyanobacterium

    Energy Technology Data Exchange (ETDEWEB)

    Wingard, C.E.; Castenholz, R.W. [Oregon Univ., Eugene, OR (United States). Dept. of Biology; Schiller, J.R. [Bowdoin College, Brunswick, ME (United States)

    1997-05-01

    It was recently reported that a strain of Nostoc spongiaeforme (cyanobacteria) with the photopigment c-phycoerythrin (c-PE) may be more tolerant of the adverse effects of UVB radiation than the same strain lacking c-PE due to chromatic adaptation (CA) (Tyagi et al., Photochem. Photobiol. 55, 401-407, 1992). It was proposed that this increased UVB tolerance may be due to the presence of c-PE, perhaps as a function of the ability of strains with c-PE to chromatically adapt. We tested the role of c-PE in UVB tolerance by comparing the short- and long-term effects of UVB exposure on photosynthesis pigmentation and the protein contents of four experimental cultures of the thermophilic cyanobacterium Oscillatoria cf. amphigranulata. These cultures consisted of a wild-type strain that produces c-PE, a green pigment variant (subcloned from the parent wild-type strain) incapable of producing c-PE and two chromatically adapted color forms of the wild-type strain that varied with regard to their total c-PE content. There were no significant results suggesting a role for c-PE in UVB tolerance. It is concluded that the photopigment c-PE does not confer enhanced resistance to the deleterious effects of UVB radiation on photosynthesis in this cyanobacterium. (author).

  2. The effects of the exopolysaccharide and growth rate on the morphogenesis of the terrestrial filamentous cyanobacterium Nostoc flagelliforme

    Directory of Open Access Journals (Sweden)

    Lijuan Cui

    2017-09-01

    Full Text Available The terrestrial cyanobacterium Nostoc flagelliforme, which contributes to carbon and nitrogen supplies in arid and semi-arid regions, adopts a filamentous colony form. Owing to its herbal and dietary values, this species has been overexploited. Largely due to the lack of understanding on its morphogenesis, artificial cultivation has not been achieved. Additionally, it may serve as a useful model for recognizing the morphological adaptation of colonial cyanobacteria in terrestrial niches. However, it shows very slow growth in native habitats and is easily disintegrated under laboratory conditions. Thus, a novel experimental system is necessary to explore its morphogenetic mechanism. Liquid-cultured N. flagelliforme has been well developed for exopolysaccharide (EPS production, in which microscopic colonies (micro-colonies are generally formed. In this study, we sought to gain some insight into the morphogenesis of N. flagelliforme by examining the effects of two external factors, the EPS and environmental stress-related growth rate, on the morphological shaping of micro-colonies. Our findings indicate that the EPS matrix could act as a basal barrier, leading to the bending of trichomes during their elongation, while very slow growth is conducive to their straight elongation. These findings will guide future cultivation and application of this cyanobacterium for ecological improvement.

  3. Arabinogalactan proteins occur in the free-living cyanobacterium genus Nostoc and in plant-Nostoc symbioses.

    Science.gov (United States)

    Jackson, Owen; Taylor, Oliver; Adams, David G; Knox, J Paul

    2012-10-01

    Arabinogalactan proteins (AGP) are a diverse family of proteoglycans associated with the cell surfaces of plants. AGP have been implicated in a wide variety of plant cell processes, including signaling in symbioses. This study investigates the existence of putative AGP in free-living cyanobacterial cultures of the nitrogen-fixing, filamentous cyanobacteria Nostoc punctiforme and Nostoc sp. strain LBG1 and at the symbiotic interface in the symbioses between Nostoc spp. and two host plants, the angiosperm Gunnera manicata (in which the cyanobacterium is intracellular) and the liverwort Blasia pusilla (in which the cyanobacterium is extracellular). Enzyme-linked immunosorbent assay, immunoblotting, and immunofluorescence analyses demonstrated that three AGP glycan epitopes (recognized by monoclonal antibodies LM14, MAC207, and LM2) are present in free-living Nostoc cyanobacterial species. The same three AGP glycan epitopes are present at the Gunnera-Nostoc symbiotic interface and the LM2 epitope is detected during the establishment of the Blasia-Nostoc symbiosis. Bioinformatic analysis of the N. punctiforme genome identified five putative AGP core proteins that are representative of AGP classes found in plants. These results suggest a possible involvement of AGP in cyanobacterial-plant symbioses and are also suggestive of a cyanobacterial origin of AGP.

  4. Evidence regarding the possible role of c-phycoerythrin in ultraviolet-B tolerance in a thermophilic cyanobacterium

    International Nuclear Information System (INIS)

    Wingard, C.E.; Castenholz, R.W.

    1997-01-01

    It was recently reported that a strain of Nostoc spongiaeforme (cyanobacteria) with the photopigment c-phycoerythrin (c-PE) may be more tolerant of the adverse effects of UVB radiation than the same strain lacking c-PE due to chromatic adaptation (CA) (Tyagi et al., Photochem. Photobiol. 55, 401-407, 1992). It was proposed that this increased UVB tolerance may be due to the presence of c-PE, perhaps as a function of the ability of strains with c-PE to chromatically adapt. We tested the role of c-PE in UVB tolerance by comparing the short- and long-term effects of UVB exposure on photosynthesis pigmentation and the protein contents of four experimental cultures of the thermophilic cyanobacterium Oscillatoria cf. amphigranulata. These cultures consisted of a wild-type strain that produces c-PE, a green pigment variant (subcloned from the parent wild-type strain) incapable of producing c-PE and two chromatically adapted color forms of the wild-type strain that varied with regard to their total c-PE content. There were no significant results suggesting a role for c-PE in UVB tolerance. It is concluded that the photopigment c-PE does not confer enhanced resistance to the deleterious effects of UVB radiation on photosynthesis in this cyanobacterium. (author)

  5. A Nostoc punctiforme Sugar Transporter Necessary to Establish a Cyanobacterium-Plant Symbiosis1[C][W

    Science.gov (United States)

    Ekman, Martin; Picossi, Silvia; Campbell, Elsie L.; Meeks, John C.; Flores, Enrique

    2013-01-01

    In cyanobacteria-plant symbioses, the symbiotic nitrogen-fixing cyanobacterium has low photosynthetic activity and is supplemented by sugars provided by the plant partner. Which sugars and cyanobacterial sugar uptake mechanism(s) are involved in the symbiosis, however, is unknown. Mutants of the symbiotically competent, facultatively heterotrophic cyanobacterium Nostoc punctiforme were constructed bearing a neomycin resistance gene cassette replacing genes in a putative sugar transport gene cluster. Results of transport activity assays using 14C-labeled fructose and glucose and tests of heterotrophic growth with these sugars enabled the identification of an ATP-binding cassette-type transporter for fructose (Frt), a major facilitator permease for glucose (GlcP), and a porin needed for the optimal uptake of both fructose and glucose. Analysis of green fluorescent protein fluorescence in strains of N. punctiforme bearing frt::gfp fusions showed high expression in vegetative cells and akinetes, variable expression in hormogonia, and no expression in heterocysts. The symbiotic efficiency of N. punctiforme sugar transport mutants was investigated by testing their ability to infect a nonvascular plant partner, the hornwort Anthoceros punctatus. Strains that were specifically unable to transport glucose did not infect the plant. These results imply a role for GlcP in establishing symbiosis under the conditions used in this work. PMID:23463784

  6. Characterization of the coccoid cyanobacterium Myxosarcina sp. KIOST-1 isolated from mangrove forest in Chuuk State, Federated States of Micronesia

    Science.gov (United States)

    Kim, Ji Hyung; Lee, JunMo; Affan, Md-Abu; Lee, Dae-Won; Kang, Do-Hyung

    2017-09-01

    Mangrove forests are known to be inhabited by diverse symbiotic cyanobacterial communities that are capable of N2 fixation. To investigate its biodiversity, root sediments were collected from a mangrove forest in Chuuk State, Federated States of Micronesia (FSM), and an entangled yellow-brown coccoid cyanobacterium was isolated. The isolated cyanobacterium was reproduced by multiple fission and eventually produced baeocytes. Phylogenetic analysis revealed that the isolate was most similar to the genera Myxosarcina and Chroococcidiopsis in the order Pleurocapsales. Compositions of protein, lipid and carbohydrate in the cyanobacterial cells were estimated to be 19.4 ± 0.1%, 18.8 ± 0.4% and 31.5 ± 0.1%, respectively. Interestingly, total fatty acids in the isolate were mainly composed of saturated fatty acids and monounsaturated fatty acids, whereas polyunsaturated fatty acids were not detected. Based on the molecular and biochemical characteristics, the isolate was finally classified in the genus Myxosarcina, and designated as Myxosarcina sp. KIOST-1. These results will contribute to better understanding of cyanobacterial biodiversity in the mangrove forest in FSM as well as the genus Myxosarcina, and also will allow further exploitation of its biotechnological potential on the basis of its cellular characteristics.

  7. Characterization of the cytochrome c oxidase in isolated and purified plasma membranes from the cyanobacterium Anacystis nidulans

    International Nuclear Information System (INIS)

    Peschek, G.A.; Wastyn, M.; Trnka, M.; Molitor, V.; Fry, I.V.; Packer, L.

    1989-01-01

    Functionally intact plasma membranes were isolated from the cyanobacterium (blue-green alga) Anacystis nidulans through French pressure cell extrusion of lysozyme/EDTA-treated cells, separated from thylakoid membranes by discontinuous sucrose density gradient centrifugation, and purified by repeated recentrifugation. Origin and identity of the chlorophyll-free plasma membrane fraction were confirmed by labeling of intact cells with impermeant protein markers, [ 35 S]diazobenzenesulfonate and fluorescamine, prior to membrane isolation. Rates of oxidation of reduced horse heart cytochrome c by purified plasma and thylakoid membranes were 90 and 2 nmol min -1 (mg of protein) -1 , respectively. The cytochrome oxidase in isolated plasma membranes was identified as a copper-containing aa 3 -type enzyme from the properties of its redox-active and EDTA-resistant Cu 2+ ESR signal, the characteristic inhibition profile, reduced minus oxidized difference spectra, carbon monoxide difference spectra, photoaction and photodissociation spectra of the CO-inhibited enzyme, and immunological cross-reaction of two subunits of the enzyme with antibodies against subunits I and II, and the holoenzyme, of Paracoccus denitrificans aa 3 -type cytochrome oxidase. The data presented are the first comprehensive evidence for the occurrence of aa 3 -type cytochrome oxidase in the plasma membrane of a cyanobacterium similar to the corresponding mitochondrial enzyme

  8. HupW Protease Specifically Required for Processing of the Catalytic Subunit of the Uptake Hydrogenase in the Cyanobacterium Nostoc sp. Strain PCC 7120

    Science.gov (United States)

    Lindberg, Pia; Devine, Ellenor; Stensjö, Karin

    2012-01-01

    The maturation process of [NiFe] hydrogenases includes a proteolytic cleavage of the large subunit. We constructed a mutant of Nostoc strain PCC 7120 in which hupW, encoding a putative hydrogenase-specific protease, is inactivated. Our results indicate that the protein product of hupW selectively cleaves the uptake hydrogenase in this cyanobacterium. PMID:22020512

  9. Concerted changes in gene expression and cell physiology of the cyanobacterium Synechocystis sp. strain PCC 6803 during transitions between nitrogen and light-limited growth

    NARCIS (Netherlands)

    Aquirre von Wobeser, E.; Ibelings, B.W.; Bok, J.M.; Krasikov, V.; Huisman, J.; Matthijs, H.C.P.

    2011-01-01

    Physiological adaptation and genome-wide expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to gradual transitions between nitrogen-limited and light-limited growth conditions were measured in continuous cultures. Transitions induced changes in pigment

  10. The Genome Sequence of the Cyanobacterium Oscillatoria sp. PCC 6506 Reveals Several Gene Clusters Responsible for the Biosynthesis of Toxins and Secondary Metabolites▿

    Science.gov (United States)

    Méjean, Annick; Mazmouz, Rabia; Mann, Stéphane; Calteau, Alexandra; Médigue, Claudine; Ploux, Olivier

    2010-01-01

    We report a draft sequence of the genome of Oscillatoria sp. PCC 6506, a cyanobacterium that produces anatoxin-a and homoanatoxin-a, two neurotoxins, and cylindrospermopsin, a cytotoxin. Beside the clusters of genes responsible for the biosynthesis of these toxins, we have found other clusters of genes likely involved in the biosynthesis of not-yet-identified secondary metabolites. PMID:20675499

  11. THE STRUCTURE OF PHOTOSYSTEM-I FROM THE THERMOPHILIC CYANOBACTERIUM SYNECHOCOCCUS SP DETERMINED BY ELECTRON-MICROSCOPY OF 2-DIMENSIONAL CRYSTALS

    NARCIS (Netherlands)

    BOTTCHER, B; GRABER, P; BOEKEMA, EJ

    1992-01-01

    The structure of the Photosystem I (PS I) complex from the thermophilic cyanobacterium Synechococcus sp. has been investigated by electron microscopy and image analysis of two-dimensional crystals. Crystals were obtained from isolated PS I by removal of detergents with Bio-Beads. After negative

  12. Enhancement of human adaptive immune responses by administration of a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis

    DEFF Research Database (Denmark)

    Pedersen, Morten Løbner; Walsted, Anette; Larsen, Rune

    2008-01-01

    The effect of consumption of Immulina, a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis, on adaptive immune responses was investigated by evaluation of changes in leukocyte responsiveness to two foreign recall antigens, Candida albicans (CA) and tetanus...

  13. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    Science.gov (United States)

    Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A. C.

    2014-01-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review. PMID:25356733

  14. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    KAUST Repository

    Essack, Magbubah

    2014-10-29

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  15. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    KAUST Repository

    Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A.C.

    2014-01-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  16. Transcription and Regulation of the Bidirectional Hydrogenase in the Cyanobacterium Nostoc sp. Strain PCC 7120▿

    Science.gov (United States)

    Sjöholm, Johannes; Oliveira, Paulo; Lindblad, Peter

    2007-01-01

    The filamentous, heterocystous cyanobacterium Nostoc sp. strain PCC 7120 (Anabaena sp. strain PCC 7120) possesses an uptake hydrogenase and a bidirectional enzyme, the latter being capable of catalyzing both H2 production and evolution. The completely sequenced genome of Nostoc sp. strain PCC 7120 reveals that the five structural genes encoding the bidirectional hydrogenase (hoxEFUYH) are separated in two clusters at a distance of approximately 8.8 kb. The transcription of the hox genes was examined under nitrogen-fixing conditions, and the results demonstrate that the cluster containing hoxE and hoxF can be transcribed as one polycistronic unit together with the open reading frame alr0750. The second cluster, containing hoxU, hoxY, and hoxH, is transcribed together with alr0763 and alr0765, located between the hox genes. Moreover, alr0760 and alr0761 form an additional larger operon. Nevertheless, Northern blot hybridizations revealed a rather complex transcription pattern in which the different hox genes are expressed differently. Transcriptional start points (TSPs) were identified 66 and 57 bp upstream from the start codon of alr0750 and hoxU, respectively. The transcriptions of the two clusters containing the hox genes are both induced under anaerobic conditions concomitantly with the induction of a higher level of hydrogenase activity. An additional TSP, within the annotated alr0760, 244 bp downstream from the suggested translation start codon, was identified. Electrophoretic mobility shift assays with purified LexA from Nostoc sp. strain PCC 7120 demonstrated specific interactions between the transcriptional regulator and both hox promoter regions. However, when LexA from Synechocystis sp. strain PCC 6803 was used, the purified protein interacted only with the promoter region of the alr0750-hoxE-hoxF operon. A search of the whole Nostoc sp. strain PCC 7120 genome demonstrated the presence of 216 putative LexA binding sites in total, including recA and rec

  17. The persistence and ecological impacts of a cyanobacterium genetically engineered to express mosquitocidal Bacillus thuringiensis toxins.

    Science.gov (United States)

    Ketseoglou, Irene; Bouwer, Gustav

    2016-05-10

    The cyanobacterium Anabaena PCC 7120#11 has been genetically engineered to act as a delivery vehicle for Bacillus thuringiensis subspecies israelensis mosquitocidal toxins. To address ecological concerns about releasing this genetically engineered microorganism into the environment for mosquito larva control, the persistence and ecological impacts of PCC 7120#11 was evaluated using multi-species, standardized aquatic microcosms. The microcosms were set up as described in ASTM E1366-02 (Standard Practice for Standardized Aquatic Microcosms: Fresh Water), with a few modifications. The treatment group microcosms were inoculated with PCC 7120#11 and key water quality parameters and non-target effects were compared between the treatment and control groups over a period of 35 days. PCC 7120#11 decreased from a concentration of 4.50 × 10(6) cells/ml (at inoculation) to 1.32 × 10(3) cells/ml after 4 weeks and larvicidal activity against third instar larvae of Anopheles arabiensis was only evident for two weeks after treatment. Both treatment and the interaction of treatment and time had a significant effect on nitrate, phosphate and photosynthetic microorganism concentrations. Treatment with PCC 7120#11 caused a temporary spike in ammonia in the microcosms a week after treatment, but the concentrations were well below acute and chronic criteria values for ammonia in freshwater ecosystems. Cyprinotus vidua concentrations were not significantly different between PCC 7120#11 and control microcosms. In PCC 7120#11 microcosms, Daphnia pulex concentrations were significantly lower than control concentrations between days 18 and 25. By the end of the experiment, none of the measured variables were significantly different between the treatment groups. The standard aquatic microcosm experiments provided more data on the ecological impacts of PCC 7120#11 than single-organism assessments would have. On the basis of the relatively minor, short-term effects that PCC 7120

  18. Low temperature delays timing and enhances the cost of nitrogen fixation in the unicellular cyanobacterium Cyanothece

    NARCIS (Netherlands)

    Brauer, V.S.; Stomp, M.; Rosso, C.; van Beusekom, S.A.M.; Emmerich, B.; Stal, L.J.; Huisman, J.

    2013-01-01

    Marine nitrogen-fixing cyanobacteria are largely confined to the tropical and subtropical ocean. It has been argued that their global biogeographical distribution reflects the physiologically feasible temperature range at which they can perform nitrogen fixation. In this study we refine this line of

  19. Marine animal stings or bites

    Science.gov (United States)

    Stings - marine animals; Bites - marine animals ... Things you can do to prevent a marine animal sting or bite include: Swim near a lifeguard. Observe posted signs that may warn of danger from jellyfish or other hazardous marine life. ...

  20. Mariners Weather Log

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Mariners Weather Log (MWL) is a publication containing articles, news and information about marine weather events and phenomena, worldwide environmental impact...

  1. MarineCadastre.gov

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MarineCadastre.gov is a marine information system that provides authoritative ocean data, offshore planning tools, and technical support to the offshore renewable...

  2. Marine Jurisdiction Boundaries

    Data.gov (United States)

    Department of Homeland Security — The NOAA Coastal Services Center's Marine Jurisdiction dataset was created to assist in marine spatial planning and offshore alternative energy sitting. This is a...

  3. Tsunamis and marine life

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, D.V.S.; Ingole, B.S.; Tang, D.; Satyanarayan, B.; Zhao, H.

    The 26 December 2004 tsunami in the Indian Ocean exerted far reaching temporal and spatial impacts on marine biota. Our synthesis was based on satellite data acquired by the Laboratory for Tropical Marine Environmental Dynamics (LED) of the South...

  4. Supermarket Marine Biology.

    Science.gov (United States)

    Colby, Jennifer A.; And Others

    1995-01-01

    Describes a survey used to determine the availability of intact marine vertebrates and live invertebrates in supermarkets. Results shows that local supermarkets frequently provide a variety of intact marine organisms suitable for demonstrations, experiments, or dissections. (ZWH)

  5. Seashore marine table quiz

    OpenAIRE

    Institute, Marine

    2013-01-01

    Develop an increasing awareness of plants and animals that live in local marine environments including the seashore, seas and oceans of Ireland. After learning all about the seashore and other marine related lessons, this quiz can be used to evaluate the student’s knowledge of the marine related living things and natural environments. The table quiz can be used as a guide, highlighting facts about the marine environment and some of the animals that live there.

  6. Carotenoids in Marine Animals

    OpenAIRE

    Maoka, Takashi

    2011-01-01

    Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine a...

  7. Marine Education Knowledge Inventory.

    Science.gov (United States)

    Hounshell, Paul B.; Hampton, Carolyn

    This 35-item, multiple-choice Marine Education Knowledge Inventory was developed for use in upper elementary/middle schools to measure a student's knowledge of marine science. Content of test items is drawn from oceanography, ecology, earth science, navigation, and the biological sciences (focusing on marine animals). Steps in the construction of…

  8. Marine polar steroids

    International Nuclear Information System (INIS)

    Stonik, Valentin A

    2001-01-01

    Structures, taxonomic distribution and biological activities of polar steroids isolated from various marine organisms over the last 8-10 years are considered. The peculiarities of steroid biogenesis in the marine biota and their possible biological functions are discussed. Syntheses of some highly active marine polar steroids are described. The bibliography includes 254 references.

  9. Photosynthetic and Behavioral Versatility of the Cyanobacterium Oscillatoria-Boryana in a Sulfide-Rich Microbial Mat

    DEFF Research Database (Denmark)

    CASTENHOLZ, RW; JØRGENSEN, BB; DAMELIO, E.

    1991-01-01

    resulted in a downward retreat. The result was a lowered irradiance level for the Oscillatoria but, nevertheless, a high rate of oxygenic photosynthesis. O. boryana is a versatile cyanobacterium that appears to avoid photoinhibitory conditions and to optimize its light intensity for photosynthesis...... with dense O. boryana populations were used to make vertical profiles at intervals of 0.1-0.2 mm and also to estimate rates of oxygenic and anoxygenic photosynthesis during rapid light-dark transitions. In addition, attenuation of irradiance was measured in mats with O. boryana by a spectroradiometer...... with mini-fiber optic probe. Light-dependent incorporation of [C-14]-bicarbonate and [C-14]-acetate was measured in collected field populations of O. boryana. The combined results led to the conclusion that populations of O. boryana typically employed sulfide-dependent anoxygenic photosynthesis in early...

  10. Photoreactivation and excision repair of UV induced pyrimidine dimers in the unicellular cyanobacterium Gloeocapsa alpicola (Synechocystis PCC 6308)

    International Nuclear Information System (INIS)

    O'Brien, P.A.; Houghton, J.A.

    1982-01-01

    The survival curve obtained after UV irradiation of the unicellular cyanobacterium Synechocystis is typical of a DNA repair competent organism. Inhibition of DNA replication, by incubating cells in the dark, increased resistance to the lethal effects of UV at higher fluences. Exposure of irradiated cells to near ultraviolet light (350-500 nm) restored viability to pre-irradiation levels. In order to measure DNA repair activity, techniques have been developed for the chromatographic analysis of pyrimidine dimers in synechocystis. The specificity of this method was established using a haploid strain of Saccharomyces cerevisiae. In accordance with the physiological responses of irradiated cells to photoreactivating light, pyrimidine dimers were not detected after photoreactivation treatment. Incubation of irradiated cells under non-photoreactivating growth conditions for 15h resulted in complete removal of pyrimidine dimers. It is concluded that Synechocystis contains photoreactivation and excision repair systems for the removal of pyrimidine dimers. (author)

  11. Phosphorus addition reverses the positive effect of zebra mussels (Dreissena polymorpha) on the toxic cyanobacterium, Microcystis aeruginosa.

    Science.gov (United States)

    Sarnelle, Orlando; White, Jeffrey D; Horst, Geoffrey P; Hamilton, Stephen K

    2012-07-01

    We tested the hypothesis that zebra mussels (Dreissena polymorpha) have positive effects on the toxin-producing cyanobacterium, Microcystis aeruginosa, at low phosphorus (P) concentrations, but negative effects on M. aeruginosa at high P, with a large-scale enclosure experiment in an oligotrophic lake. After three weeks, mussels had a significantly positive effect on M. aeruginosa at ambient P (total phosphorus, TP ∼10 μg L⁻¹), and a significantly negative effect at high P (simulating a TP of ∼40 μg L⁻¹ in lakes). Positive and negative effects were strong and very similar in magnitude. Thus, we were able to ameliorate a negative effect of Dreissena invasion on water quality (i.e., promotion of Microcystis) by adding P to water from an oligotrophic lake. Our results are congruent with many field observations of Microcystis response to Dreissena invasion across ecosystems of varying P availability. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Optimization and effects of different culture conditions on growth of Halomicronema hongdechloris – a filamentous cyanobacterium containing chlorophyll f

    Directory of Open Access Journals (Sweden)

    Yaqiong eLi

    2014-02-01

    Full Text Available A chlorophyll f containing cyanobacterium, Halomicronema hongdechloris (H. hongdechloris was isolated from a stromatolite cyanobacterial community. However, the extremely slower growth rate of H. hongdechloris culture became a critical factor, hindering the research on this newly isolated cyanobacterium and the investigation of chlorophyll f-photosynthesis. Therefore, optimizing H. hongdechloris culture conditions has become an essential requirement for future research. This work investigated the effects of various culture conditions, essential nutrients and light environments to determine the optimal growth conditions for H. hongdechloris and the biosynthetic rate of chlorophyll f. Based on the total chlorophyll concentration, an optimal growth rate of 0.22 ± 0.02 day-1 (doubling time: 3.1 ± 0.3 days was observed when cells were grown under continuous illumination with far-red light with an intensity of 20 µE at 32°C in modified K+ES seawater (pH 8.0 with additional supplements of 11.75 mM NaNO3 and 0.15 mM K2HPO4. High performance liquid chromatography on H. hongdechloris pigments confirmed that chlorophyll a is the major chlorophyll and chlorophyll f constitutes approximately 10% of the total chlorophyll from cells grown under far-red light. Fluorescence confocal image analysis demonstrated changes of photosynthetic membranes and the distribution of photopigments in response to different light conditions. The total photosynthetic oxygen evolution yield per cell showed no changes under different light conditions, which confirms the involvement of chlorophyll f in oxygenic photosynthesis. The implications of the presence of chlorophyll f in H. hongdechloris and its relationship to light environment are discussed.

  13. Photosystem Trap Energies and Spectrally-Dependent Energy-Storage Efficiencies in the Chl d-Utilizing Cyanobacterium, Acaryochloris Marina

    Science.gov (United States)

    Mielke, Steven P.; Kiang, Nancy Y.; Blankenship, Robert E.; Mauzerall, David

    2012-01-01

    Acaryochloris marina is the only species known to utilize chlorophyll (Chl) d as a principal photopigment. The peak absorption wavelength of Chl d is redshifted approx. 40 nm in vivo relative to Chl a, enabling this cyanobacterium to perform oxygenic phototrophy in niche environments enhanced in far-red light. We present measurements of the in vivo energy-storage (E-S) efficiency of photosynthesis in A. marina, obtained using pulsed photoacoustics (PA) over a 90-nm range of excitation wavelengths in the red and far-red. Together with modeling results, these measurements provide the first direct observation of the trap energies of PSI and PSII, and also the photosystem-specific contributions to the total E-S efficiency. We find the maximum observed efficiency in A. marina (40+/-1% at 735 nm) is higher than in the Chl a cyanobacterium Synechococcus leopoliensis (35+/-1% at 690 nm). The efficiency at peak absorption wavelength is also higher in A. marina (36+/-1% at 710 nm vs. 31+/-1% at 670 nm). In both species, the trap efficiencies are approx. 40% (PSI) and approx. 30% (PSII). The PSI trap in A. marina is found to lie at 740+/-5 nm, in agreement with the value inferred from spectroscopic methods. The best fit of the model to the PA data identifies the PSII trap at 723+/-3 nm, supporting the view that the primary electron-donor is Chl d, probably at the accessory (ChlD1) site. A decrease in efficiency beyond the trap wavelength, consistent with uphill energy transfer, is clearly observed and fit by the model. These results demonstrate that the E-S efficiency in A. marina is not thermodynamically limited, suggesting that oxygenic photosynthesis is viable in even redder light environments.

  14. Proteomic strategy for the analysis of the polychlorobiphenyl-degrading cyanobacterium Anabaena PD-1 exposed to Aroclor 1254.

    Directory of Open Access Journals (Sweden)

    Hangjun Zhang

    Full Text Available The cyanobacterium Anabaena PD-1, which was originally isolated from polychlorobiphenyl (PCB-contaminated paddy soils, has capabilities for dechlorinatin and for degrading the commercial PCB mixture Aroclor 1254. In this study, 25 upregulated proteins were identified using 2D electrophoresis (2-DE coupled with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS. These proteins were involved in (i PCB degradation (i.e., 3-chlorobenzoate-3,4-dioxygenase; (ii transport processes [e.g., ATP-binding cassette (ABC transporter substrate-binding protein, amino acid ABC transporter substrate-binding protein, peptide ABC transporter substrate-binding protein, putrescine-binding protein, periplasmic solute-binding protein, branched-chain amino acid uptake periplasmic solute-binding protein, periplasmic phosphate-binding protein, phosphonate ABC transporter substrate-binding protein, and xylose ABC transporter substrate-binding protein]; (iii energetic metabolism (e.g., methanol/ethanol family pyrroloquinoline quinone (PQQ-dependent dehydrogenase, malate-CoA ligase subunit beta, enolase, ATP synthase β subunit, FOF1 ATP synthase subunit beta, ATP synthase α subunit, and IMP cyclohydrolase; (iv electron transport (cytochrome b6f complex Fe-S protein; (v general stress response (e.g., molecular chaperone DnaK, elongation factor G, and translation elongation factor thermostable; (vi carbon metabolism (methanol dehydrogenase and malate-CoA ligase subunit beta; and (vii nitrogen reductase (nitrous oxide reductase. The results of real-time polymerase chain reaction showed that the genes encoding for dioxygenase, ABC transporters, transmembrane proteins, electron transporter, and energetic metabolism proteins were significantly upregulated during PCB degradation. These genes upregulated by 1.26- to 8.98-fold. These findings reveal the resistance and adaptation of cyanobacterium to the presence of PCBs, shedding light on the

  15. The Cyanobacterium Cylindrospermopsis raciborskii (CYRF-01 Responds to Environmental Stresses with Increased Vesiculation Detected at Single-Cell Resolution

    Directory of Open Access Journals (Sweden)

    Victor Zarantonello

    2018-02-01

    Full Text Available Secretion of membrane-limited vesicles, collectively termed extracellular vesicles (EVs, is an important biological process of both eukaryotic and prokaryotic cells. This process has been observed in bacteria, but remains to be better characterized at high resolution in cyanobacteria. In the present work, we address the release of EVs by Cylindrospermopsis raciborskii (CYRF-01, a filamentous bloom-forming cyanobacterium, exposed to environmental stressors. First, non-axenic cultures of C. raciborskii (CYRF-01 were exposed to ultraviolet radiation (UVA + UVB over a 6 h period, which is known to induce structural damage to this species. Second, C. raciborskii was co-cultured in interaction with another cyanobacterium species, Microcystis aeruginosa (MIRF-01, over a 24 h period. After the incubation times, cell density and viability were analyzed, and samples were processed for transmission electron microscopy (TEM. Our ultrastructural analyses revealed that C. raciborskii constitutively releases EVs from the outer membrane during its normal growth and amplifies such ability in response to environmental stressors. Both situations induced significant formation of outer membrane vesicles (OMVs by C. raciborskii compared to control cells. Quantitative TEM revealed an increase of 48% (UV and 60% (interaction in the OMV numbers compared to control groups. Considering all groups, the OMVs ranged in size from 20 to 300 nm in diameter, with most OMVs showing diameters between 20 and 140 nm. Additionally, we detected that OMV formation is accompanied by phosphatidylserine exposure, a molecular event also observed in EV-secreting eukaryotic cells. Altogether, we identified for the first time that C. raciborskii has the competence to secrete OMVs and that under different stress situations the genesis of these vesicles is increased. The amplified ability of cyanobacteria to release OMVs may be associated with adaptive responses to changes in environmental

  16. Temperature and irradiance influences on cadmium and zinc uptake and toxicity in a freshwater cyanobacterium, Microcystis aeruginosa

    International Nuclear Information System (INIS)

    Zeng Jin; Wang Wenxiong

    2011-01-01

    Highlights: → This study is the first to study the influences of temperature and light irradiance, two critical factors for the occurrence of cyanobacterial blooms, on metal uptake, subcellular distribution, and toxicity in a freshwater cyanobacterium commonly blooming in eutrophic lakes. → With increasing metal exposure, both cellular growth rate and photosynthesis became more sensitive to metal toxicity under elevated irradiance and temperature, primarily as a result of increased uptake and accumulation. → Cd in the metal rich granule faction increased under Cd exposure, suggesting that MRG may partially detoxify Cd in the cyanobacterial cells. → This study implies that temperature and irradiance may influence the chemical cycling of metals during cyanobacterial blooming in eutrophic freshwater ecosystems. - Abstract: Temperature and light irradiance are important factors affecting the occurrence of cyanobacterial blooms. In this study, we examined the influences of different temperatures (15, 24, and 30 ° C ) and irradiances (18, 32, and 55 μmol photons m -2 s -1 ) on the uptake and toxicity of cadmium (Cd) and zinc (Zn) in a freshwater cyanobacterium Microcystis aeruginosa. The subcellular distribution of Cd and Zn was analyzed. Enhanced growth rates were observed for the cyanobacterial cells incubated at higher temperature or irradiance conditions with lower metal concentrations. With increasing ambient Cd or Zn concentrations, both cellular growth rate and photosynthesis were significantly inhibited at elevated irradiance conditions. The observed increase in Cd and Zn toxicity might be attributed to the enhanced metal uptake and accumulation in Microcystis. Based on the intracellular Cd concentration, the 50% inhibition concentration (IC 50 ) values were higher at the higher temperature or irradiance treatment. The subcellular distribution demonstrated that Cd in the metal rich granule (MRG) faction increased with elevated [Cd 2+ ] concentration

  17. Microenvironmental Ecology of the Chlorophyll b-containing Symbiotic Cyanobacterium Prochloron in the Didemnid Ascidian Lissoclinum patella

    Directory of Open Access Journals (Sweden)

    Michael eKühl

    2012-11-01

    Full Text Available The discovery of the cyanobacterium Prochloron was the first finding of a bacterial oxyphototroph with chlorophyll (Chl b, in addition to Chl a. It was first described as Prochloron didemni but a number of clades have since been described. Prochloron is a conspicuously large (7-25 µm unicellular cyanobacterium living in a symbiotic relationship, primarily with (sub- tropical didemnid ascidians; it has resisted numerous cultivation attempts and appears truly obligatory symbiotic. Recently, a Prochloron draft genome was published, revealing no lack of metabolic genes that could explain the apparent inability to reproduce and sustain photosynthesis in a free-living stage. Possibly, the unsuccessful cultivation is partly due to a lack of knowledge about the microenvironmental conditions and ecophysiology of Prochloron in its natural habitat. We used microsensors, variable chlorophyll fluorescence imaging and imaging of O2 and pH to obtain a detailed insight to the microenvironmental ecology and photobiology of Prochloron in hospite in the didemnid ascidian Lissoclinum patella. The microenvironment within ascidians is characterized by steep gradients of light and chemical parameters that change rapidly with varying irradiances. The interior zone of the ascidians harboring Prochloron thus became anoxic and acidic within a few min of darkness, while the same zone exhibited O2 super-saturation and strongly alkaline pH after a few min of illumination. Photosynthesis showed lack of photoinhibition even at high irradiances equivalent to full sunlight, and photosynthesis recovered rapidly after periods of anoxia. We discuss these new insights on the ecological niche of Prochloron and possible interactions with its host and other microbes in light of its recently published genome and a recent study of the overall microbial diversity and metagenome of L. patella.

  18. Marine nitrogen cycle

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.

    ) such as the Marine nitrogen cycle The marine nitrogen cycle. ‘X’ and ‘Y’ are intra-cellular intermediates that do not accumulate in water column. (Source: Codispoti et al., 2001) Page 1 of 3Marine nitrogen cycle - Encyclopedia of Earth 11/20/2006http://www... and nitrous oxide budgets: Moving targets as we enter the anthropocene?, Sci. Mar., 65, 85-105, 2001. Page 2 of 3Marine nitrogen cycle - Encyclopedia of Earth 11/20/2006http://www.eoearth.org/article/Marine_nitrogen_cycle square6 Gruber, N.: The dynamics...

  19. Carotenoids in Marine Animals

    Science.gov (United States)

    Maoka, Takashi

    2011-01-01

    Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine animal carotenoids from natural product chemistry, metabolism, food chain, and chemosystematic viewpoints, and also describe new structural carotenoids isolated from marine animals over the last decade. PMID:21566799

  20. Marine Robot Autonomy

    CERN Document Server

    2013-01-01

    Autonomy for Marine Robots provides a timely and insightful overview of intelligent autonomy in marine robots. A brief history of this emerging field is provided, along with a discussion of the challenges unique to the underwater environment and their impact on the level of intelligent autonomy required.  Topics covered at length examine advanced frameworks, path-planning, fault tolerance, machine learning, and cooperation as relevant to marine robots that need intelligent autonomy.  This book also: Discusses and offers solutions for the unique challenges presented by more complex missions and the dynamic underwater environment when operating autonomous marine robots Includes case studies that demonstrate intelligent autonomy in marine robots to perform underwater simultaneous localization and mapping  Autonomy for Marine Robots is an ideal book for researchers and engineers interested in the field of marine robots.      

  1. Antagonism at combined effects of chemical fertilizers and carbamate insecticides on the rice-field N2-fixing cyanobacterium Cylindrospermum sp. in vitro

    OpenAIRE

    Padhy Rabindra N.; Nayak Nabakishore; Rath Shakti

    2014-01-01

    Effects of chemical fertilizers (urea, super phosphate and potash) on toxicities of two carbamate insecticides, carbaryl and carbofuran, individually to the N2-fixing cyanobacterium, Cylindrospermum sp. were studied in vitro at partially lethal levels (below highest permissive concentrations) of each insecticide. The average number of vegetative cells between two polar heterocysts was 16.3 in control cultures, while the mean value of filament length increased in the presence of chemical ferti...

  2. Draft Genome Sequence of Cyanobacterium sp. Strain HL-69, Isolated from a Benthic Microbial Mat from a Magnesium Sulfate-Dominated Hypersaline Lake

    Energy Technology Data Exchange (ETDEWEB)

    Mobberley, J. M.; Romine, M. F.; Cole, J. K.; Maezato, Y.; Lindemann, S. R.; Nelson, W. C.

    2018-02-08

    ABSTRACT

    The complete genome sequence ofCyanobacteriumsp. strain HL-69 consists of 3,155,247 bp and contains 2,897 predicted genes comprising a chromosome and two plasmids. The genome is consistent with a halophilic nondiazotrophic phototrophic lifestyle, and this organism is able to synthesize most B vitamins and produces several secondary metabolites.

  3. A common transport system for methionine, L-methionine-DL-sulfoximine (MSX), and phosphinothricin (PPT) in the diazotrophic cyanobacterium Nostoc muscorum.

    Science.gov (United States)

    Singh, Arvind Kumar; Syiem, Mayashree B; Singh, Rajkumar S; Adhikari, Samrat; Rai, Amar Nath

    2008-05-01

    We present evidence, for the first time, of the occurrence of a transport system common for amino acid methionine, and methionine/glutamate analogues L-methionine-DL-sulfoximine (MSX) and phosphinothricin (PPT) in cyanobacterium Nostoc muscorum. Methionine, which is toxic to cyanobacterium, enhanced its nitrogenase activity at lower concentrations. The cyanobacterium showed a biphasic pattern of methionine uptake activity that was competitively inhibited by the amino acids alanine, isoleucine, leucine, phenylalanine, proline, valine, glutamine, and asparagine. The methionine/glutamate analogue-resistant N. muscorum strains (MSX-R and PPT-R strains) also showed methionine-resistant phenotype accompanied by a drastic decrease in 35S methionine uptake activity. Treatment of protein extracts from these mutant strains with MSX and PPT reduced biosynthetic glutamine synthetase (GS) activity only in vitro and not in vivo. This finding implicated that MSX- and PPT-R phenotypes may have arisen due to a defect in their MSX and PPT transport activity. The simultaneous decrease in methionine uptake activity and in vitro sensitivity toward MSX and PPT of GS protein in MSX- and PPT-R strains indicated that methionine, MSX, and PPT have a common transport system that is shared by other amino acids as well in N. muscorum. Such information can become useful for isolation of methionine-producing cyanobacterial strains.

  4. Marine Environmental History

    DEFF Research Database (Denmark)

    Poulsen, Bo

    2012-01-01

    human society and natural marine resources. Within this broad topic, several trends and objectives are discernable. The essay argue that the so-called material marine environmental history has its main focus on trying to reconstruct the presence, development and environmental impact of past fisheries......This essay provides an overview of recent trends in the historiography of marine environmental history, a sub-field of environmental history which has grown tremendously in scope and size over the last c. 15 years. The object of marine environmental history is the changing relationship between...... and whaling operations. This ambition often entails a reconstruction also of how marine life has changed over time. The time frame rages from Paleolithicum to the present era. The field of marine environmental history also includes a more culturally oriented environmental history, which mainly has come...

  5. Marine electrical practice

    CERN Document Server

    Watson, G O

    1991-01-01

    Marine Engineering Series: Marine Electrical Practice, Sixth Edition focuses on changes in the marine industry, including the application of programmable electronic systems, generators, and motors. The publication first ponders on insulation and temperature ratings of equipment, protection and discrimination, and AC generators. Discussions focus on construction, shaft-drive generators, effect of unbalanced loading, subtransient and transient reactance, protection discrimination, fault current, measurement of ambient air temperature, and basis of machine ratings. The text then examines AC switc

  6. Biosurfactants from marine microorganisms

    Directory of Open Access Journals (Sweden)

    Suppasil Maneerat

    2005-11-01

    Full Text Available Biosurfactants are the surface-active molecules synthesized by microorganisms. With the advantage of environmental compatibility, the demand for biosurfactants has been steadily increasing and may eventually replace their chemically synthesized counterparts. Marine biosurfactants produced by some marine microorganisms have been paid more attention, particularly for the bioremediation of the sea polluted by crude oil. This review describes screening of biosurfactant-producing microorganisms, the determination of biosurfactant activity as well as the recovery of marine surfactant. The uses of marine biosurfactants for bioremediation are also discussed.

  7. Characterizing Marine Soundscapes.

    Science.gov (United States)

    Erbe, Christine; McCauley, Robert; Gavrilov, Alexander

    2016-01-01

    The study of marine soundscapes is becoming widespread and the amount of data collected is increasing rapidly. Data owners (typically academia, industry, government, and defense) are negotiating data sharing and generating potential for data syntheses, comparative studies, analyses of trends, and large-scale and long-term acoustic ecology research. A problem is the lack of standards and commonly agreed protocols for the recording of marine soundscapes, data analysis, and reporting that make a synthesis and comparison of results difficult. We provide a brief overview of the components in a marine soundscape, the hard- and software tools for recording and analyzing marine soundscapes, and common reporting formats.

  8. Antitumor activity of hierridin B, a cyanobacterial secondary metabolite found in both filamentous and unicellular marine strains.

    Directory of Open Access Journals (Sweden)

    Pedro N Leão

    Full Text Available Cyanobacteria are widely recognized as a valuable source of bioactive metabolites. The majority of such compounds have been isolated from so-called complex cyanobacteria, such as filamentous or colonial forms, which usually display a larger number of biosynthetic gene clusters in their genomes, when compared to free-living unicellular forms. Nevertheless, picocyanobacteria are also known to have potential to produce bioactive natural products. Here, we report the isolation of hierridin B from the marine picocyanobacterium Cyanobium sp. LEGE 06113. This compound had previously been isolated from the filamentous epiphytic cyanobacterium Phormidium ectocarpi SAG 60.90, and had been shown to possess antiplasmodial activity. A phylogenetic analysis of the 16S rRNA gene from both strains confirmed that these cyanobacteria derive from different evolutionary lineages. We further investigated the biological activity of hierridin B, and tested its cytotoxicity towards a panel of human cancer cell lines; it showed selective cytotoxicity towards HT-29 colon adenocarcinoma cells.

  9. An assessment of the usefulness of the cyanobacterium Synechococcus subsalsus as a source of biomass for biofuel production

    Directory of Open Access Journals (Sweden)

    Bruno R.S. Setta

    2014-05-01

    Full Text Available Nowadays algal biofuels are considered one of the most promising solutions of global energy crisis and climate change for the years to come. By manipulation of the culture conditions, many algal species can be induced to accumulate high concentrations of particular biomolecules and can be directed to the desired output for each fuel. In this context, the present study involved the assessment of the effects of CO2 availability and nitrogen starvation on growth and chemical composition of the cyanobacterium Synechococcus subsalsus, testing a fast-growing native strain. The control experiments were performed with Conway culture medium in 12-day batch cultures, in 6-liter flasks and 12 h photoperiod, with addition of 2 L min-1 filtered air to each flask. Other two experimental conditions were also tested: (i the placement into the cultures of additional dissolved nutrients except nitrogen, one week after the start of growth (N-, and (ii the input of pure CO2 into the flasks from the 5th day of growth (C+. In all cultures, daily cell counts were done throughout the cultivation, as well as measurements of pH and cell biovolumes. Maximum cell yield were found in N-experiments, while cell yields of C+ and control were similar. Dissolved nitrogen was exhausted before the end of the experiments, but dissolved phosphorus was not totally consumed. Protein and chlorophyll-a concentrations decreased from the exponential to the stationary growth phase of all experiments, except for protein in the control. In all experiments, carbohydrate, lipid and total carotenoid increased from the exponential to the stationary growth phase, as an effect of nitrogen limitation. Increments in carbohydrate concentrations were remarkable, achieving more than 42% of the dry weight (dw, but concentrations of lipid were always lower than 13% dw. The addition of pure CO2 did not cause a significant increase in biomass of S. subsalsus nor generated more lipid and carbohydrate than

  10. Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol

    Directory of Open Access Journals (Sweden)

    Li Han

    2013-01-01

    Full Text Available Abstract Background The modern society primarily relies on petroleum and natural gas for the production of fuels and chemicals. One of the major commodity chemicals 1,2-propanediol (1,2-PDO, which has an annual production of more than 0.5 million tons in the United States, is currently produced by chemical processes from petroleum derived propylene oxide, which is energy intensive and not sustainable. In this study, we sought to achieve photosynthetic production of 1,2-PDO from CO2 using a genetically engineered cyanobacterium Synechococcus elongatus PCC 7942. Compared to the previously reported biological 1,2-PDO production processes which used sugar or glycerol as the substrates, direct chemical production from CO2 in photosynthetic organisms recycles the atmospheric CO2 and will not compete with food crops for arable land. Results In this study, we reported photosynthetic production of 1,2-PDO from CO2 using a genetically engineered cyanobacterium Synechococcus elongatus PCC 7942. Introduction of the genes encoding methylglyoxal synthase (mgsA, glycerol dehydrogenase (gldA, and aldehyde reductase (yqhD resulted in the production of ~22mg/L 1,2-PDO from CO2. However, a comparable amount of the pathway intermediate acetol was also produced, especially during the stationary phase. The production of 1,2-PDO requires a robust input of reducing equivalents from cellular metabolism. To take advantage of cyanobacteria’s NADPH pool, the synthetic pathway of 1,2-PDO was engineered to be NADPH-dependent by exploiting the NADPH-specific secondary alcohol dehydrogenases which have not been reported for 1,2-PDO production previously. This optimization strategy resulted in the production of ~150mg/L 1,2-PDO and minimized the accumulation of the incomplete reduction product, acetol. Conclusion This work demonstrated that cyanobacteria can be engineered as a catalyst for the photosynthetic conversion of CO2 to 1,2-PDO. This work also characterized two NADPH

  11. Marine Mammal Protection Act

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Mammal Protection Act (MMPA or Act) prohibits, with certain exceptions, the "take" of marine mammals in U.S. waters and by U.S. citizens on the high seas,...

  12. Marine gamma spectrometric survey

    International Nuclear Information System (INIS)

    Kostoglodov, V.V.

    1979-01-01

    Presented are theoretical problems physical and geochemical prerequisites and possibilities of practical application of the method of continuous submarine gamma-spectrometric survey and radiometric survey destined for rapid study of the surface layer of marine sediments. Shown is high efficiency and advantages of this method in comparison with traditional and widely spread in marine geology methods of bottom sediments investigation

  13. Marine palynology in progress

    NARCIS (Netherlands)

    Manten, A.A.

    1966-01-01

    One of the things which the Second International Conference on Palynology (held in Utrecht, August 29-September 3, 1966) revealed, was the rapid expansion which marine palynological research has undergone in recent years. This was the main stimulus to organize this special issue of Marine

  14. High Performance Marine Vessels

    CERN Document Server

    Yun, Liang

    2012-01-01

    High Performance Marine Vessels (HPMVs) range from the Fast Ferries to the latest high speed Navy Craft, including competition power boats and hydroplanes, hydrofoils, hovercraft, catamarans and other multi-hull craft. High Performance Marine Vessels covers the main concepts of HPMVs and discusses historical background, design features, services that have been successful and not so successful, and some sample data of the range of HPMVs to date. Included is a comparison of all HPMVs craft and the differences between them and descriptions of performance (hydrodynamics and aerodynamics). Readers will find a comprehensive overview of the design, development and building of HPMVs. In summary, this book: Focuses on technology at the aero-marine interface Covers the full range of high performance marine vessel concepts Explains the historical development of various HPMVs Discusses ferries, racing and pleasure craft, as well as utility and military missions High Performance Marine Vessels is an ideal book for student...

  15. Effects of Hydrogen Peroxide and Ultrasound on Biomass Reduction and Toxin Release in the Cyanobacterium, Microcystis aeruginosa

    Directory of Open Access Journals (Sweden)

    Miquel Lürling

    2014-12-01

    Full Text Available Cyanobacterial blooms are expected to increase, and the toxins they produce threaten human health and impair ecosystem services. The reduction of the nutrient load of surface waters is the preferred way to prevent these blooms; however, this is not always feasible. Quick curative measures are therefore preferred in some cases. Two of these proposed measures, peroxide and ultrasound, were tested for their efficiency in reducing cyanobacterial biomass and potential release of cyanotoxins. Hereto, laboratory assays with a microcystin (MC-producing cyanobacterium (Microcystis aeruginosa were conducted. Peroxide effectively reduced M. aeruginosa biomass when dosed at 4 or 8 mg L−1, but not at 1 and 2 mg L−1. Peroxide dosed at 4 or 8 mg L−1 lowered total MC concentrations by 23%, yet led to a significant release of MCs into the water. Dissolved MC concentrations were nine-times (4 mg L−1 and 12-times (8 mg L−1 H2O2 higher than in the control. Cell lysis moreover increased the proportion of the dissolved hydrophobic variants, MC-LW and MC-LF (where L = Leucine, W = tryptophan, F = phenylalanine. Ultrasound treatment with commercial transducers sold for clearing ponds and lakes only caused minimal growth inhibition and some release of MCs into the water. Commercial ultrasound transducers are therefore ineffective at controlling cyanobacteria.

  16. Soft x-ray imaging of intracellular granules of filamentous cyanobacterium generating musty smell in Lake Biwa

    International Nuclear Information System (INIS)

    Takemoto, K; Mizuta, G; Namba, H; Yamamoto, A; Kihara, H; Yoshimura, M; Ichise, S

    2013-01-01

    A planktonic blue-green algae, which are currently identified as Phormidium tenue, was observed by a soft x-ray microscopy (XM) for comparing a musty smell generating green strain (PTG) and a non-smell brown strain (PTB). By XM, cells were clearly imaged, and several intracellular granules which could not be observed under a light microscope were visualized. The diameter of granules was about 0.5–1 μm, and one or a few granules were seen in a cell. XM analyses showed that width of cells and sizes of intracellular granules were quite different between PTG and PTB strains. To study the granules observed by XM, transmission in more detail, transmission electron microscopy (TEM) and indirect fluorescent-antibody technique (IFA) were applied. By TEM, carboxysomes, thylakoids and polyphosphate granules were observed. IFA showed the presence of carboxysomes. Results lead to the conclusion that intracellular granules observed under XM are carboxysomes or polyphosphate granules. These results demonstrate that soft XM is effective for analyzing fine structures of small organisms such as cyanobacterium, and for discriminating the strains which generates musty smells from others

  17. Creation of glyphosate-resistant Brassica napus L. plants expressing DesC desaturase of cyanobacterium Synechococcus vulcanus

    Directory of Open Access Journals (Sweden)

    Goldenkova-Pavlova I. V.

    2012-12-01

    Full Text Available Aim. Creation of glyphosate-resistant canola plants expressing bifunctional hybrid desC::licBM3 gene. In the hybrid gene the sequence of DesC desaturase of cyanobacterium S. vulcanus without plastid targeting was fused with the sequence of thermostable lichenase reporter LicBM3 gene. Methods. Agrobacterium tumefaciens-mediated transformation, PCR, quantitative and qualitative determination of lichenase activity, genetic analysis. Results. Transgenic canola plants, carring the enolpyruvat shikimat phosphate syntase gene (epsps, conferring on plants resistance to phosphonomethyl glycine herbicides (Roundup, as well as the desC::licBM3 gene, were selected. The presence of transgenes was confimed by multiplex PCR. The epsps gene expression in canola was shown at the transcription level, during in vitro growth and after greenhouse herbicide treatment. Activity of the licBM3 gene product as a part of hybrid protein allowed quantitative and qualitative estimation of the desaturase gene expression. Inheritance of heterologous genes and their expression in the first generation were investigated. Conclusions. Transgenic canola plants were obtained, the presence of trangenes in plant genome was proved and expression of the target genes was detected.

  18. Degradative crystal–chemical transformations of clay minerals under the influence of cyanobacterium-actinomycetal symbiotic associations

    Directory of Open Access Journals (Sweden)

    Ekaterina Ivanova

    2014-04-01

    Full Text Available Cyanobacteria and actinomycetes are essential components of soil microbial community and play an active role in ash elements leaching from minerals of the parent rock. Content and composition of clay minerals in soil determine the sorption properties of the soil horizons, water-holding capacity of the soil, stickiness, plasticity, etc. The transformative effect of cyanobacterial–actinomycetes associations on the structure of clay minerals – kaolinite, vermiculite, montmorillonite, biotite and muscovite – was observed, with the greatest structural lattice transformation revealed under the influence of association in comparison with monocultures of cyanobacterium and actinomycete. The range of the transformative effect depended both on the type of biota (component composition of association and on the crystal–chemical parameters of the mineral itself (trioctahedral mica – biotite, was more prone to microbial degradation than the dioctahedral – muscovite. The formation of the swelling phase – the product of biotite transformation into the mica–vermicullite mixed-layered formation was revealed as a result of association cultivation. Crystal chemical transformation of vermiculite was accompanied by the removal of potassium (К, magnesium (Mg and aluminum (Al from the crystal lattice. The study of such prokaryotic communities existed even in the early stages of the Earth's history helps to understand the causes and nature of the transformations undergone by the atmosphere, hydrosphere and lithosphere of the planet.contribution of treatments on structure induces and model parameters are discussed in the paper.

  19. Seawater cultivation of freshwater cyanobacterium Synechocystis sp. PCC 6803 drastically alters amino acid composition and glycogen metabolism

    Directory of Open Access Journals (Sweden)

    Hiroko eIijima

    2015-04-01

    Full Text Available Water use assessment is important for bioproduction using cyanobacteria. For eco-friendly reasons, seawater should preferably be used for cyanobacteria cultivation instead of freshwater. In this study, we demonstrated that the freshwater unicellular cyanobacterium Synechocystis sp. PCC 6803 could be grown in a medium based on seawater. The Synechocystis wild-type strain grew well in an artificial seawater (ASW medium supplemented with nitrogen and phosphorus sources. The addition of HEPES buffer improved cell growth overall, although the growth in ASW medium was inferior to that in the synthetic BG-11 medium. The levels of proteins involved in sugar metabolism changed depending on the culture conditions. The biosynthesis of several amino acids including aspartate, glutamine, glycine, proline, ornithine, and lysine, was highly up-regulated by cultivation in ASW. Two types of natural seawater (NSW were also made available for the cultivation of Synechocystis cells, with supplementation of both nitrogen and phosphorus sources. These results revealed the potential use of seawater for the cultivation of freshwater cyanobacteria, which would help to reduce freshwater consumption during biorefinery using cyanobacteria.

  20. Sulfate-driven elemental sparing is regulated at the transcriptional and posttranscriptional levels in a filamentous cyanobacterium.

    Science.gov (United States)

    Gutu, Andrian; Alvey, Richard M; Bashour, Sami; Zingg, Daniel; Kehoe, David M

    2011-03-01

    Sulfur is an essential nutrient that can exist at growth-limiting concentrations in freshwater environments. The freshwater cyanobacterium Fremyella diplosiphon (also known as Tolypothrix sp. PCC 7601) is capable of remodeling the composition of its light-harvesting antennae, or phycobilisomes, in response to changes in the sulfur levels in its environment. Depletion of sulfur causes these cells to cease the accumulation of two forms of a major phycobilisome protein called phycocyanin and initiate the production of a third form of phycocyanin, which possesses a minimal number of sulfur-containing amino acids. Since phycobilisomes make up approximately 50% of the total protein in these cells, this elemental sparing response has the potential to significantly influence the fitness of this species under low-sulfur conditions. This response is specific for sulfate and occurs over the physiological range of sulfate concentrations likely to be encountered by this organism in its natural environment. F. diplosiphon has two separate sulfur deprivation responses, with low sulfate levels activating the phycobilisome remodeling response and low sulfur levels activating the chlorosis or bleaching response. The phycobilisome remodeling response results from changes in RNA abundance that are regulated at both the transcriptional and posttranscriptional levels. The potential of this response, and the more general bleaching response of cyanobacteria, to provide sulfur-containing amino acids during periods of sulfur deprivation is examined.

  1. Effect of nitrogen on cellular production and release of the neurotoxin anatoxin-a in a nitrogen-fixing cyanobacterium

    Directory of Open Access Journals (Sweden)

    Alexis eGagnon

    2012-06-01

    Full Text Available Anatoxin-a (ANTX is a neurotoxin produced by several freshwater cyanobacteria and implicated in lethal poisonings of domesticated animals and wildlife. The factors leading to its production in nature and in culture are not well understood. Resource availability may influence its cellular production as suggested by the carbon-nutrient hypothesis, which links the amount of secondary metabolites produced by plants or microbes to the relative abundance of nutrients. We tested the effects of nitrogen supply on ANTX production and release in a toxic strain of the cyanobacterium Aphanizomenon issatschenkoi (Nostocales. We hypothesized that nitrogen deficiency might constrain the production of ANTX. However, the total concentration and more significantly the cellular content of anatoxin-a peaked (max. 146 µg/L and 1683 µg•g-1 dry weight at intermediate levels of nitrogen supply when N-deficiency was evident based on phycocyanin to chlorophyll a and carbon to nitrogen ratios. The results suggest that the cellular production of anatoxin-a may be stimulated by moderate nutrient stress as described recently for another cyanotoxin (microcystin.

  2. Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp

    International Nuclear Information System (INIS)

    Garcia-Pichel, F.; Wingard, C.E.; Castenholz, R.W.

    1993-01-01

    The mycosporine-like amino acids (MAAs) have been thought to serve a UV sunscreen role in organisms that produce or contain them because MAAs present strong absorbance in the UV region and because there is no other apparent biological function. The researchers used the cyanobacterium Gloeocapsa sp. to assess the possible sunscreen role of MAAs. Five conditions are evaluated: (1) absorption of radiation high enough to provide benefit to the organisms; (2) correlation of presence of the compound with enhansed fitness under UV; (3) concentration of the compound and resistance to UV still present under physiological inactivity; (4) effect maximal at wavelengths of maximal absorption; (5) loss of protection after artificial removal of compound. The results indicate that only a small sunscreen effect can be ascribed to the MAA in the Gloecapsa sp. under these experimental conditions. It is possible however, that in the typical undisturbed colonial growth form, MAAs and their screening action may become major factors in resistance to UV radiation. 25 refs., 7 figs., 1 tab

  3. Acute toxicity of excess mercury on the photosynthetic performance of cyanobacterium, S. platensis--assessment by chlorophyll fluorescence analysis.

    Science.gov (United States)

    Lu, C M; Chau, C W; Zhang, J H

    2000-07-01

    Measurement of chlorophyll fluorescence has been shown to be a rapid, non-invasive, and reliable method to assess photosynthetic performance in a changing environment. In this study, acute toxicity of excess Hg on the photosynthetic performance of the cyanobacterium S. platensis, was investigated by use of chlorophyll fluorescence analysis after cells were exposed to excess Hg (up to 20 microM) for 2 h. The results determined from the fast fluorescence kinetics showed that Hg induced a significant increase in the proportion of the Q(B)-non-reducing PSII reaction centers. The fluorescence parameters measured under the steady state of photosynthesis demonstrated that the increase of Hg concentration led to a decrease in the maximal efficiency of PSII photochemistry, the efficiency of excitation energy capture by the open PSII reaction centers, and the quantum yield of PSII electron transport. Mercury also resulted in a decrease in the coefficients of photochemical and non-photochemical quenching. Mercury may have an acute toxicity on cyanobacteria by inhibiting the quantum yield of photosynthesis sensitively and rapidly. Such changes occurred before any other visible damages that may be evaluated by other conventional measurements. Our results also demonstrated that chlorophyll fluorescence analysis can be used as a useful physiological tool to assess early stages of change in photosynthetic performance of algae in response to heavy metal pollution.

  4. Dynamic localization of HmpF regulates type IV pilus activity and directional motility in the filamentous cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Cho, Ye Won; Gonzales, Alfonso; Harwood, Thomas V; Huynh, Jessica; Hwang, Yeji; Park, Jun Sang; Trieu, Anthony Q; Italia, Parth; Pallipuram, Vivek K; Risser, Douglas D

    2017-10-01

    Many cyanobacteria exhibit surface motility powered by type 4 pili (T4P). In the model filamentous cyanobacterium Nostoc punctiforme, the T4P systems are arrayed in static, bipolar rings in each cell. The chemotaxis-like Hmp system is essential for motility and the coordinated polar accumulation of PilA on cells in motile filaments, while the Ptx system controls positive phototaxis. Using transposon mutagenesis, a gene, designated hmpF, was identified as involved in motility. Synteny among filamentous cyanobacteria and the similar expression patterns for hmpF and hmpD imply that HmpF is part of the Hmp system. Deletion of hmpF produced a phenotype distinct from other hmp genes, but indistinguishable from pilB or pilQ. Both an HmpF-GFPuv fusion protein, and PilA, as assessed by in situ immunofluorescence, displayed coordinated, unipolar localization at the leading pole of each cell. Reversals were modulated by changes in light intensity and preceded by the migration of HmpF-GFPuv to the lagging cell poles. These results are consistent with a model where direct interaction between HmpF and the T4P system activates pilus extension, the Hmp system facilitates coordinated polarity of HmpF to establish motility, and the Ptx system modulates HmpF localization to initiate reversals in response to changes in light intensity. © 2017 John Wiley & Sons Ltd.

  5. Gene expression of a two-component regulatory system associated with sunscreen biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133.

    Science.gov (United States)

    Janssen, Jacob; Soule, Tanya

    2016-01-01

    Long-wavelength ultraviolet radiation (UVA) can damage cells through photooxidative stress, leading to harmful photosensitized proteins and pigments in cyanobacteria. To mitigate damage, some cyanobacteria secrete the UVA-absorbing pigment scytonemin into their extracellular sheath. Comparative genomic analyses suggest that scytonemin biosynthesis is regulated by the two-component regulatory system (TCRS) proteins encoded by Npun_F1277 and Npun_F1278 in the cyanobacterium Nostoc punctiforme ATCC 29133. To understand the dynamics of these genes, their expression was measured following exposure to UVA, UVB, high visible (VIS) irradiance and oxidative stress for 20, 40 and 60 min. Overall, both genes had statistically similar patterns of expression for all four conditions and were generally upregulated, except for those exposed to UVB by 60 min and for the cells under oxidative stress. The greatest UVA response was an upregulation by 20 min, while the response to UVB was the most dramatic and persisted through 40 min. High VIS irradiance resulted in a modest upregulation, while oxidative stress caused a slight downregulation. Both genes were also found to occur on the same transcript. These results demonstrate that these genes are positively responding to several light-associated conditions, which suggests that this TCRS may regulate more than just scytonemin biosynthesis under UVA stress. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. The non-metabolizable sucrose analog sucralose is a potent inhibitor of hormogonium differentiation in the filamentous cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Splitt, Samantha D; Risser, Douglas D

    2016-03-01

    Nostoc punctiforme is a filamentous cyanobacterium which forms nitrogen-fixing symbioses with several different plants and fungi. Establishment of these symbioses requires the formation of motile hormogonium filaments. Once infected, the plant partner is thought to supply a hormogonium-repressing factor (HRF) to maintain the cyanobacteria in a vegetative, nitrogen-fixing state. Evidence implies that sucrose may serve as a HRF. Here, we tested the effects of sucralose, a non-metabolizable sucrose analog, on hormogonium differentiation. Sucralose inhibited hormogonium differentiation at a concentration approximately one-tenth that of sucrose. This result implies that: (1) sucrose, not a sucrose catabolite, is perceived by the cell and (2) inhibition is not due to a more general osmolarity-dependent effect. Additionally, both sucrose and sucralose induced the accrual of a polysaccharide sheath which bound specifically to the lectin ConA, indicating the presence of α-D-mannose and/or α-D-glucose. A ConA-specific polysaccharide was also found to be expressed in N. punctiforme colonies from tissue sections of the symbiotically grown hornwort Anthoceros punctatus. These findings imply that plant-derived sucrose or sucrose analogs may have multiple effects on N. punctiforme, including both repression of hormogonia and the induction of a polysaccharide sheath that may be essential to establish and maintain the symbiotic state.

  7. Elevated Atmospheric CO2 and Warming Stimulates Growth and Nitrogen Fixation in a Common Forest Floor Cyanobacterium under Axenic Conditions

    Directory of Open Access Journals (Sweden)

    Zoë Lindo

    2017-03-01

    Full Text Available The predominant input of available nitrogen (N in boreal forest ecosystems originates from moss-associated cyanobacteria, which fix unavailable atmospheric N2, contribute to the soil N pool, and thereby support forest productivity. Alongside climate warming, increases in atmospheric CO2 concentrations are expected in Canada’s boreal region over the next century, yet little is known about the combined effects of these factors on N fixation by forest floor cyanobacteria. Here we assess changes in N fixation in a common forest floor, moss-associated cyanobacterium, Nostoc punctiforme Hariot, under elevated CO2 conditions over 30 days and warming combined with elevated CO2 over 90 days. We measured rates of growth and changes in the number of specialized N2 fixing heterocyst cells, as well as the overall N fixing activity of the cultures. Elevated CO2 stimulated growth and N fixation overall, but this result was influenced by the growth stage of the cyanobacteria, which in turn was influenced by our temperature treatments. Taken together, climate change factors of warming and elevated CO2 are expected to stimulate N2 fixation by moss-associated cyanobacteria in boreal forest systems.

  8. Discovery of Rare and Highly Toxic Microcystins from Lichen-Associated Cyanobacterium Nostoc sp. Strain IO-102-I

    Science.gov (United States)

    Oksanen, Ilona; Jokela, Jouni; Fewer, David P.; Wahlsten, Matti; Rikkinen, Jouko; Sivonen, Kaarina

    2004-01-01

    The production of hepatotoxic cyclic heptapeptides, microcystins, is almost exclusively reported from planktonic cyanobacteria. Here we show that a terrestrial cyanobacterium Nostoc sp. strain IO-102-I isolated from a lichen association produces six different microcystins. Microcystins were identified with liquid chromatography-UV mass spectrometry by their retention times, UV spectra, mass fragmentation, and comparison to microcystins from the aquatic Nostoc sp. strain 152. The dominant microcystin produced by Nostoc sp. strain IO-102-I was the highly toxic [ADMAdda5]microcystin-LR, which accounted for ca. 80% of the total microcystins. We assigned a structure of [DMAdda5]microcystin-LR and [d-Asp3,ADMAdda5]microcystin-LR and a partial structure of three new [ADMAdda5]-XR type of microcystin variants. Interestingly, Nostoc spp. strains IO-102-I and 152 synthesized only the rare ADMAdda and DMAdda subfamilies of microcystin variants. Phylogenetic analyses demonstrated congruence between genes involved directly in microcystin biosynthesis and the 16S rRNA and rpoC1 genes of Nostoc sp. strain IO-102-I. Nostoc sp. strain 152 and the Nostoc sp. strain IO-102-I are distantly related, revealing a sporadic distribution of toxin production in the genus Nostoc. Nostoc sp. strain IO-102-I is closely related to Nostoc punctiforme PCC 73102 and other symbiotic Nostoc strains and most likely belongs to this species. Together, this suggests that other terrestrial and aquatic strains of the genus Nostoc may have retained the genes necessary for microcystin biosynthesis. PMID:15466511

  9. Culture temperature affects gene expression and metabolic pathways in the 2-methylisoborneol-producing cyanobacterium Pseudanabaena galeata.

    Science.gov (United States)

    Kakimoto, Masayuki; Ishikawa, Toshiki; Miyagi, Atsuko; Saito, Kazuaki; Miyazaki, Motonobu; Asaeda, Takashi; Yamaguchi, Masatoshi; Uchimiya, Hirofumi; Kawai-Yamada, Maki

    2014-02-15

    A volatile metabolite, 2-methylisoborneol (2-MIB), causes an unpleasant taste and odor in tap water. Some filamentous cyanobacteria produce 2-MIB via a two-step biosynthetic pathway: methylation of geranyl diphosphate (GPP) by methyl transferase (GPPMT), followed by the cyclization of methyl-GPP by monoterpene cyclase (MIBS). We isolated the genes encoding GPPMT and MIBS from Pseudanabaena galeata, a filamentous cyanobacterium known to be a major causal organism of 2-MIB production in Japanese lakes. The predicted amino acid sequence showed high similarity with that of Pseudanabaena limnetica (96% identity in GPPMT and 97% identity in MIBS). P. galeata was cultured at different temperatures to examine the effect of growth conditions on the production of 2-MIB and major metabolites. Gas chromatograph-mass spectrometry (GC-MS) measurements showed higher accumulation of 2-MIB at 30 °C than at 4 °C or 20 °C after 24 h of culture. Real-time-RT PCR analysis showed that the expression levels of the genes encoding GPPMT and MIBS decreased at 4 °C and increased at 30 °C, compared with at 20 °C. Furthermore, metabolite analysis showed dramatic changes in primary metabolite concentrations in cyanobacteria grown at different temperatures. The data indicate that changes in carbon flow in the TCA cycle affect 2-MIB biosynthesis at higher temperatures. Copyright © 2013 Elsevier GmbH. All rights reserved.

  10. Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142

    Science.gov (United States)

    Schneegurt, M. A.; Sherman, D. M.; Nayar, S.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1994-01-01

    It has been shown that some aerobic, unicellular, diazotrophic cyanobacteria temporally separate photosynthetic O2 evolution and oxygen-sensitive N2 fixation. Cyanothece sp. ATCC strain 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that fixes N2 during discrete periods of its cell cycle. When the bacteria are maintained under diurnal light-dark cycles, N2 fixation occurs in the dark. Similar cycling is observed in continuous light, implicating a circadian rhythm. Under N2-fixing conditions, large inclusion granules form between the thylakoid membranes. Maximum granulation, as observed by electron microscopy, occurs before the onset of N2 fixation, and the granules decrease in number during the period of N2 fixation. The granules can be purified from cell homogenates by differential centrifugation. Biochemical analyses of the granules indicate that these structures are primarily carbohydrate, with some protein. Further analyses of the carbohydrate have shown that it is a glucose polymer with some characteristics of glycogen. It is proposed that N2 fixation is driven by energy and reducing power stored in these inclusion granules. Cyanothece sp. strain ATCC 51142 represents an excellent experimental organism for the study of the protective mechanisms of nitrogenase, metabolic events in cyanobacteria under normal and stress conditions, the partitioning of resources between growth and storage, and biological rhythms.

  11. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    Directory of Open Access Journals (Sweden)

    Rafael Pernil

    2015-04-01

    Full Text Available Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

  12. Carbon-free production of 2-deoxy-scyllo-inosose (DOI) in cyanobacterium Synechococcus elongatus PCC 7942.

    Science.gov (United States)

    Watanabe, Satoru; Ozawa, Hiroaki; Kato, Hiroaki; Nimura-Matsune, Kaori; Hirayama, Toshifumi; Kudo, Fumitaka; Eguchi, Tadashi; Kakinuma, Katsumi; Yoshikawa, Hirofumi

    2018-01-01

    Owing to their photosynthetic capabilities, there is increasing interest in utilizing cyanobacteria to convert solar energy into biomass. 2-Deoxy-scyllo-inosose (DOI) is a valuable starting material for the benzene-free synthesis of catechol and other benzenoids. DOI synthase (DOIS) is responsible for the formation of DOI from d-glucose-6-phosphate (G6P) in the biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics such as neomycin and butirosin. DOI fermentation using a recombinant Escherichia coli strain has been reported, although a carbon source is necessary for high-yield DOI production. We constructed DOI-producing cyanobacteria toward carbon-free and sustainable DOI production. A DOIS gene derived from the butirosin producer strain Bacillus circulans (btrC) was introduced and expressed in the cyanobacterium Synechococcus elongatus PCC 7942. We ultimately succeeded in producing 400 mg/L of DOI in S. elongatus without using a carbon source. DOI production by cyanobacteria represents a novel and efficient approach for producing benzenoids from G6P synthesized by photosynthesis.

  13. Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocysti s sp. PCC 6803.

    Science.gov (United States)

    Lin, Po-Cheng; Saha, Rajib; Zhang, Fuzhong; Pakrasi, Himadri B

    2017-12-13

    Isoprenoids are diverse natural compounds, which have various applications as pharmaceuticals, fragrances, and solvents. The low yield of isoprenoids in plants makes them difficult for cost-effective production, and chemical synthesis of complex isoprenoids is impractical. Microbial production of isoprenoids has been considered as a promising approach to increase the yield. In this study, we engineered the model cyanobacterium Synechocystis sp. PCC 6803 for sustainable production of a commercially valuable isoprenoid, limonene. Limonene synthases from the plants Mentha spicata and Citrus limon were expressed in cyanobacteria for limonene production. Production of limonene was two-fold higher with limonene synthase from M. spicata than that from C. limon. To enhance isoprenoid production, computational strain design was conducted by applying the OptForce strain design algorithm on Synechocystis 6803. Based on the metabolic interventions suggested by this algorithm, genes (ribose 5-phosphate isomerase and ribulose 5-phosphate 3-epimerase) in the pentose phosphate pathway were overexpressed, and a geranyl diphosphate synthase from the plant Abies grandis was expressed to optimize the limonene biosynthetic pathway. The optimized strain produced 6.7 mg/L of limonene, a 2.3-fold improvement in productivity. Thus, this study presents a feasible strategy to engineer cyanobacteria for photosynthetic production of isoprenoids.

  14. In-situ optical and acoustical measurements of the buoyant cyanobacterium p. Rubescens: spatial and temporal distribution patterns.

    Directory of Open Access Journals (Sweden)

    Hilmar Hofmann

    Full Text Available Optical (fluorescence and acoustic in-situ techniques were tested in their ability to measure the spatial and temporal distribution of plankton in freshwater ecosystems with special emphasis on the harmful and buoyant cyanobacterium P. rubescens. Fluorescence was measured with the multi-spectral FluoroProbe (Moldaenke FluoroProbe, MFP and a Seapoint Chlorophyll Fluorometer (SCF. In-situ measurements of the acoustic backscatter strength (ABS were conducted with three different acoustic devices covering multiple acoustic frequencies (614 kHz ADCP, 2 MHz ADP, and 6 MHz ADV. The MFP provides a fast and reliable technique to measure fluorescence at different wavelengths in situ, which allows discriminating between P. rubescens and other phytoplankton species. All three acoustic devices are sensitive to P. rubescens even if other scatterers, e.g., zooplankton or suspended sediment, are present in the water column, because P. rubescens containing gas vesicles has a strong density difference and hence acoustic contrast to the ambient water and other scatterers. After calibration, the combination of optical and acoustical measurements not only allows qualitative and quantitative observation of P. rubescens, but also distinction between P. rubescens, other phytoplankton, and zooplankton. As the measuring devices can sample in situ at high rates they enable assessment of plankton distributions at high temporal (minutes and spatial (decimeters resolution or covering large temporal (seasonal and spatial (basin scale scales.

  15. Roles of xanthophyll carotenoids in protection against photoinhibition and oxidative stress in the cyanobacterium Synechococcus sp. strain PCC 7002.

    Science.gov (United States)

    Zhu, Yuehui; Graham, Joel E; Ludwig, Marcus; Xiong, Wei; Alvey, Richard M; Shen, Gaozhong; Bryant, Donald A

    2010-12-01

    Synechococcus sp. strain PCC 7002 is a robust, genetically tractable cyanobacterium that produces six different xanthophyll carotenoids (zeaxanthin, cryptoxanthin, myxoxanthophyll (myxol-2'-fucoside), echinenone, 3'-hydroxyechinenone, and synechoxanthin) and tolerates many environmental stresses, including high light intensities. Targeted mutations were introduced to block the branches of the carotenoid biosynthetic pathway leading to specific xanthophylls, and a mutant lacking all xanthophylls was constructed. Some of the mutants showed severe growth defects at high light intensities, and multi-locus mutants had somewhat lower chlorophyll contents and lower photosystem I levels. The results suggested that xanthophylls, particularly zeaxanthin and echinenone, might play regulatory roles in thylakoid biogenesis. Measurements of reactive oxygen (ROS) and nitrogen (RNS) species in the mutants showed that all xanthophylls participate in preventing ROS/RNS accumulation and that a mutant lacking all xanthophylls accumulated very high levels of ROS/RNS. Results from transcription profiling showed that mRNA levels for most genes encoding the enzymes of carotenogenesis are significantly more abundant after exposure to high light. These studies indicated that all xanthophylls contribute to protection against photo-oxidative stress. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Acute Exposure to Microcystin-Producing Cyanobacterium Microcystis aeruginosa Alters Adult Zebrafish (Danio rerio Swimming Performance Parameters

    Directory of Open Access Journals (Sweden)

    Luiza Wilges Kist

    2011-01-01

    Full Text Available Microcystins (MCs are toxins produced by cyanobacteria (blue-green algae, primarily Microcystis aeruginosa, forming water blooms worldwide. When an organism is exposed to environmental perturbations, alterations in normal behavioral patterns occur. Behavioral repertoire represents the consequence of a diversity of physiological and biochemical alterations. In this study, we assessed behavioral patterns and whole-body cortisol levels of adult zebrafish (Danio rerio exposed to cell culture of the microcystin-producing cyanobacterium M. aeruginosa (MC-LR, strain RST9501. MC-LR exposure (100 μg/L decreased by 63% the distance traveled and increased threefold the immobility time when compared to the control group. Interestingly, no significant alterations in the number of line crossings were found at the same MC-LR concentration and time of exposure. When animals were exposed to 50 and 100 μg/L, MC-LR promoted a significant increase (around 93% in the time spent in the bottom portion of the tank, suggesting an anxiogenic effect. The results also showed that none of the MC-LR concentrations tested promoted significant alterations in absolute turn angle, path efficiency, social behavior, or whole-body cortisol level. These findings indicate that behavior is susceptible to MC-LR exposure and provide evidence for a better understanding of the ecological consequences of toxic algal blooms.

  17. Marine Viruses: Key Players in Marine Ecosystems

    Directory of Open Access Journals (Sweden)

    Mathias Middelboe

    2017-10-01

    Full Text Available Viruses were recognized as the causative agents of fish diseases, such as infectious pancreatic necrosis and Oregon sockeye disease, in the early 1960s [1], and have since been shown to be responsible for diseases in all marine life from bacteria to protists, mollusks, crustaceans, fish and mammals [2].[...

  18. Seawater and marine sidements

    International Nuclear Information System (INIS)

    Eicke, H.F.

    1985-01-01

    The Deutsches Hydrographisches Institut (DHI) is responsible for monitoring the radioactive substances (such as Cs-137, Cs-134, Sr-90, H-3, Pu-239, Pu-240) in the seawater and marine sediments along the Federal German seacoasts, of the fishing grounds of the Federal German offshore fishery industry, and of marine currents moving towards these fishing grounds. The DHI has been carrying out this task since 1965, activities being placed under the responsibility of the DHI Department for Marine Radioactivity, which since 1960 is a directing centre within the Government's system for environmental radioactivity monitoring. (orig./DG) [de

  19. Marine Mineral Exploration

    DEFF Research Database (Denmark)

    in EEZ areas are fairly unknown; many areas need detailed mapping and mineral exploration, and the majority of coastal or island states with large EEZ areas have little experience in exploration for marine hard minerals. This book describes the systematic steps in marine mineral exploration....... Such exploration requires knowledge of mineral deposits and models of their formation, of geophysical and geochemical exploration methods, and of data evaluation and interpretation methods. These topics are described in detail by an international group of authors. A short description is also given of marine...

  20. Will marine productivity wane?

    Science.gov (United States)

    Laufkötter, Charlotte; Gruber, Nicolas

    2018-03-01

    If marine algae are impaired severely by global climate change, the resulting reduction in marine primary production would strongly affect marine life and the ocean's biological pump that sequesters substantial amounts of atmospheric carbon dioxide in the ocean's interior. Most studies, including the latest generation of Earth system models, project only moderate global decreases in biological production until 2100 (1, 2), suggesting that these concerns are unwarranted. But on page 1139 of this issue, Moore et al. (3) show that this conclusion might be shortsighted and that there may be much larger long-term changes in ocean productivity than previously appreciated.

  1. Iron Limitation and the Role of Siderophores in Marine Synechococcus

    Science.gov (United States)

    2009-06-01

    an equilibrium exists between free metal ions in solution and metal ions bound to a cell’s transport enzymes . In this model the metal shifts between...cyanobacterium Synechococcus PCC 6301 and the thermophilic cyanobacterium Synechococcus elongatus. Planta 205: 73-81. Michel, K.P., Pistorius, E.K., and...and nitrogen metabo- lism enzymes (Dean et al., 1993; Geider and La Roche, 1994; Lin and Stewart, 1998), it is a key element with the potential to

  2. 76 FR 76949 - Marine Mammals

    Science.gov (United States)

    2011-12-09

    ...-XR52 Marine Mammals AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric.... 14534 is requested under the authority of the Marine Mammal Protection Act of 1972, as amended (16 U.S.C. 1361 et seq.), the regulations governing the taking and importing of marine mammals (50 CFR part 216...

  3. 75 FR 68605 - Marine Mammals

    Science.gov (United States)

    2010-11-08

    ...-XX23 Marine Mammals AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric... permit to conduct research on marine mammals. ADDRESSES: The permit and related documents are available... applicant. The requested permit has been issued under the authority of the Marine Mammal Protection Act of...

  4. 77 FR 2512 - Marine Mammals

    Science.gov (United States)

    2012-01-18

    ...-XA905 Marine Mammals AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric... Dorian Houser, Ph.D., National Marine Mammal Foundation, 2240 Shelter Island Drive, 200, San Diego, CA... subject permit is requested under the authority of the Marine Mammal Protection Act of 1972, as amended...

  5. 77 FR 14352 - Marine Mammals

    Science.gov (United States)

    2012-03-09

    ...-XB065 Marine Mammals AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric... Marine Mammal Protection Act of 1972, as amended (16 U.S.C. 1361 et seq.), the regulations governing the taking and importing of marine mammals (50 CFR part 216), the Endangered Species Act of 1973, as amended...

  6. 75 FR 77616 - Marine Mammals

    Science.gov (United States)

    2010-12-13

    .... 14334] Marine Mammals AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric... Marine Mammal Protection Act of 1972, as amended (16 U.S.C. 1361 et seq.), the regulations governing the taking and importing of marine mammals (50 CFR part 216), the Endangered Species Act of 1973, as amended...

  7. Impacts of diurnal variation of ultraviolet-B and photosynthetically active radiation on phycobiliproteins of the hot-spring cyanobacterium Nostoc sp. strain HKAR-2.

    Science.gov (United States)

    Kannaujiya, Vinod K; Sinha, Rajeshwar P

    2017-01-01

    The effects of diurnal variation of photosynthetically active radiation (PAR; 400-700 nm) and ultraviolet-B (UV-B; 280-315 nm) radiation on phycobiliproteins (PBPs) and photosynthetic pigments (PP) have been studied in the hot-spring cyanobacterium Nostoc sp. strain HKAR-2. The variations in PBPs and PP were monitored by alternating light and dark under PAR, UV-B, and PAR + UV-B radiations over a period of 25 h. There was a decline in the amount of Chl a and PBPs during light periods of UV-B and PAR + UV-B and an increase during dark periods showing a circadian rhythm by destruction and resynthesis of pigment-protein complex. However, a marked induction in carotenoids was recorded during light periods of the same radiations. Moreover, the ratio of Chl a/PE and Chl a/PC was increased in dark periods showing the resynthesis of bleached Chl a. The wavelength shift in emission fluorescence of PBPs toward shorter wavelengths further indicated the bleaching and destruction of PBPs during light periods. Oxidative damage upon exposure to PAR, UV-B, and PAR + UV-B was alleviated by induction of antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The studied cyanobacterium exhibits a significant increase in the activities of SOD, CAT, and APX upon exposure to UV-B and PAR + UV-B radiations. The results indicate that pigment-protein composition of Nostoc sp. stain HKAR-2 was significantly altered during diurnal variation of light/radiation, which might play an important role in optimization for their productivity in a particular cyanobacterium.

  8. IAEA Monitors Marine Radioactivity

    International Nuclear Information System (INIS)

    Dixit, Aabha; Kaiser, Peter

    2013-01-01

    The IAEA assists Member States in using scientific tools to precisely identify and track nuclear and nonnuclear contaminants, as well as to investigate their biological effects on the marine ecosystem

  9. Permitted Marine Hydrokinetic Projects

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data represents pending or issued preliminary permits or issued licenses for marine hydrokinetic projects that produce energy from waves or directly from the...

  10. Foodborne Marine Biotoxins

    National Research Council Canada - National Science Library

    Poli, Mark

    2003-01-01

    ...). In addition to human intoxications, they cause massive fish kills, negatively impact coastal tourism and fishery industries, and have been implicated in mass mortalities of birds and marine mammals...

  11. LEGACY - EOP Marine Debris

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data contains towed diver surveys of and weights of marine debris removed from the near shore environments of the NWHI.

  12. Biotechnology of marine fungi

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, S.R.; Singh, P.; Raghukumar, S.

    Filamentous fungi are the most widely used eukaryotes in industrial and pharmaceutical applications. Their biotechnological uses include the production of enzymes, vitamins, polysaccharides, pigments, lipids and others. Marine fungi are a still...

  13. WMO Marine Final Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Final reports of the World Meteorological Organization (WMO) Commission for Marine Meteorology, Commission for Synoptic Meteorology, and Commission for Basic...

  14. PIR Marine Turtle Nesting

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Effective management of marine turtle data is essential to maximize their research value and enable timely population assessments and recovery monitoring. To provide...

  15. PIR Marine Turtle Strandings

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Effective management of marine turtle data is essential to maximize their research value and enable timely population assessments and recovery monitoring. To provide...

  16. Marine Mammals :: NOAA Fisheries

    Science.gov (United States)

    Resources Habitat Conservation Science and Technology International Affairs Law Enforcement Aquaculture Application Types Apply Online (APPS) Endangered Species Permits Marine Mammal Permits Public Display of : NMFS Pacific Islands Fisheries Science Center North Atlantic right whales North Atlantic Right whales

  17. Marine Pollution Prevention Act

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Pollution Prevention Act of 2008 implements the International Convention for the Prevention of Pollution from Ships, including related Protocols (MARPOL)...

  18. Mariner Outreach Data -

    Data.gov (United States)

    Department of Transportation — This dataset provides MARAD with the ability to determine available personnel and resources in a time of emergency. It also provides a portal for mariners to update...

  19. Marine Sanitation Devices (MSDs)

    Science.gov (United States)

    Marine sanitation devices treat or retain sewage from vessels, and have performance standards set by the EPA. This page provides information on MSDs, including who must use an MSD, states' roles, types of MSDs and standards.

  20. Marine Trackline Geophysical Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains bathymetry, magnetic, gravity and seismic shot point navigation data collected during marine cruises from 1939 to the present. Coverage is...

  1. Marine medicinal glycomics

    Directory of Open Access Journals (Sweden)

    Vitor Hugo Pomin

    2014-01-01

    Full Text Available Glycomics is an international initiative aimed to understand the structure and function of the glycans from a given type of cell, tissue, organism, kingdom or even environment, as found under certain conditions. Glycomics is one of the latest areas of intense biological research. Glycans of marine sources are unique in terms of structure and function. They differ considerably from those of terrestrial origin. This review discusses the most known marine glycans of potential therapeutic properties. They are chitin, chitosan, and sulfated polysaccharides named glycosaminoglycans, sulfated fucans and sulfated galactans. Their medical actions are very broad. When certain structural requirements are found, these glycans can exhibit beneficial effects in inflammation, coagulation, thrombosis, cancer growth/metastasis and vascular biology. Both structure and therapeutic mechanisms of action of these marine glycans are discussed here in straight context with the current glycomic age through a project suggestively named Marine Medicinal Glycomics.

  2. Marine prostanoids - a review

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; De

    The occurrence and structure of prostaglandins including clavulones, punaglandins and claviridenones in marine organisms is reviewEd. by comparison of the spectral data reported the identity of 20-acetoxy claviridenones b and c with 20 acetoxy...

  3. Marine cloud brightening

    OpenAIRE

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John

    2012-01-01

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identi...

  4. Marine Pollution and Ecotoxicology

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.

    . Heavy metals Editorial Guest The special issue of Environment International has come up with selected papers presented in the International workshop on Marine Pollution and Ecotoxicology held at the National Institute of Oceanography, Dona Paula, Goa... presented in this special issue are classified into five sections namely, Coastal water quality, Heavy metals, Trace metals, Persistent organic pollutants and Ecotoxicology. 1. Coastal water quality assessment The pollution of the marine environment has...

  5. Marine Anthropogenic Litter

    OpenAIRE

    Bergmann, Melanie; Gutow, Lars; Klages, Michael

    2015-01-01

    This book describes how manmade litter, primarily plastic, has spread into the remotest parts of the oceans and covers all aspects of this pollution problem from the impacts on wildlife and human health to socio-economic and political issues. Marine litter is a prime threat to marine wildlife, habitats and food webs worldwide. The book illustrates how advanced technologies from deep-sea research, microbiology and mathematic modelling as well as classic beach litter counts by volunteers co...

  6. Marine Ecosystem Services

    DEFF Research Database (Denmark)

    Hasler, Berit; Ahtiainen, Heini; Hasselström, Linus

    MARECOS (Marine Ecosystem Services) er et tværfagligt studie, der har haft til formål at tilvejebringe information vedrørende kortlægning og værdisætning af økosystemtjenester, som kan anvendes i forbindelse med udformning af regulering på det marine område såvel nationalt, som regionalt og inter...

  7. Marine Corps Pay Incentives

    Science.gov (United States)

    Marines from 2000 to 2017. The thesis includes a literature review on economic theory related to pay incentives in the Department of Defense, a...The purpose of this thesis to provide the Marine Corps with a comprehensive report on pay incentive programs and special pay that were available to...summarization of pay incentive categories, a data analysis on take-up rates and average annual amounts at the end of each fiscal year, and a program review

  8. Improved Marine Waters Monitoring

    Science.gov (United States)

    Palazov, Atanas; Yakushev, Evgeniy; Milkova, Tanya; Slabakova, Violeta; Hristova, Ognyana

    2017-04-01

    IMAMO - Improved Marine Waters Monitoring is a project under the Programme BG02: Improved monitoring of marine waters, managed by Bulgarian Ministry of environment and waters and co-financed by the Financial Mechanism of the European Economic Area (EEA FM) 2009 - 2014. Project Beneficiary is the Institute of oceanology - Bulgarian Academy of Sciences with two partners: Norwegian Institute for Water Research and Bulgarian Black Sea Basin Directorate. The Project aims to improve the monitoring capacity and expertise of the organizations responsible for marine waters monitoring in Bulgaria to meet the requirements of EU and national legislation. The main outcomes are to fill the gaps in information from the Initial assessment of the marine environment and to collect data to assess the current ecological status of marine waters including information as a base for revision of ecological targets established by the monitoring programme prepared in 2014 under Art. 11 of MSFD. Project activities are targeted to ensure data for Descriptors 5, 8 and 9. IMAMO aims to increase the institutional capacity of the Bulgarian partners related to the monitoring and assessment of the Black Sea environment. The main outputs are: establishment of real time monitoring and set up of accredited laboratory facilities for marine waters and sediments chemical analysis to ensure the ability of Bulgarian partners to monitor progress of subsequent measures undertaken.

  9. LexA Binds to Transcription Regulatory Site of Cell Division Gene ftsZ in Toxic Cyanobacterium Microcystis aeruginosa.

    Science.gov (United States)

    Honda, Takashi; Morimoto, Daichi; Sako, Yoshihiko; Yoshida, Takashi

    2018-05-17

    Previously, we showed that DNA replication and cell division in toxic cyanobacterium Microcystis aeruginosa are coordinated by transcriptional regulation of cell division gene ftsZ and that an unknown protein specifically bound upstream of ftsZ (BpFz; DNA-binding protein to an upstream site of ftsZ) during successful DNA replication and cell division. Here, we purified BpFz from M. aeruginosa strain NIES-298 using DNA-affinity chromatography and gel-slicing combined with gel electrophoresis mobility shift assay (EMSA). The N-terminal amino acid sequence of BpFz was identified as TNLESLTQ, which was identical to that of transcription repressor LexA from NIES-843. EMSA analysis using mutant probes showed that the sequence GTACTAN 3 GTGTTC was important in LexA binding. Comparison of the upstream regions of lexA in the genomes of closely related cyanobacteria suggested that the sequence TASTRNNNNTGTWC could be a putative LexA recognition sequence (LexA box). Searches for TASTRNNNNTGTWC as a transcriptional regulatory site (TRS) in the genome of M. aeruginosa NIES-843 showed that it was present in genes involved in cell division, photosynthesis, and extracellular polysaccharide biosynthesis. Considering that BpFz binds to the TRS of ftsZ during normal cell division, LexA may function as a transcriptional activator of genes related to cell reproduction in M. aeruginosa, including ftsZ. This may be an example of informality in the control of bacterial cell division.

  10. Construction of new synthetic biology tools for the control of gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002.

    Science.gov (United States)

    Zess, Erin K; Begemann, Matthew B; Pfleger, Brian F

    2016-02-01

    Predictive control of gene expression is an essential tool for developing synthetic biological systems. The current toolbox for controlling gene expression in cyanobacteria is a barrier to more in-depth genetic analysis and manipulation. Towards relieving this bottleneck, this work describes the use of synthetic biology to construct an anhydrotetracycline-based induction system and adapt a trans-acting small RNA (sRNA) system for use in the cyanobacterium Synechococcus sp. strain PCC 7002. An anhydrotetracycline-inducible promoter was developed to maximize intrinsic strength and dynamic range. The resulting construct, PEZtet , exhibited tight repression and a maximum 32-fold induction upon addition of anhydrotetracycline. Additionally, a sRNA system based on the Escherichia coli IS10 RNA-IN/OUT regulator was adapted for use in Synechococcus sp. strain PCC 7002. This system exhibited 70% attenuation of target gene expression, providing a demonstration of the use of sRNAs for differential gene expression in cyanobacteria. These systems were combined to produce an inducible sRNA system, which demonstrated 59% attenuation of target gene expression. Lastly, the role of Hfq, a critical component of sRNA systems in E. coli, was investigated. Genetic studies showed that the Hfq homolog in Synechococcus sp. strain PCC 7002 did not impact repression by the engineered sRNA system. In summary, this work describes new synthetic biology tools that can be applied to physiological studies, metabolic engineering, or sRNA platforms in Synechococcus sp. strain PCC 7002. © 2015 Wiley Periodicals, Inc.

  11. Ethylene Regulates the Physiology of the Cyanobacterium Synechocystis sp. PCC 6803 via an Ethylene Receptor1[OPEN

    Science.gov (United States)

    2016-01-01

    Ethylene is a plant hormone that plays a crucial role in the growth and development of plants. The ethylene receptors in plants are well studied, and it is generally assumed that they are found only in plants. In a search of sequenced genomes, we found that many bacterial species contain putative ethylene receptors. Plants acquired many proteins from cyanobacteria as a result of the endosymbiotic event that led to chloroplasts. We provide data that the cyanobacterium Synechocystis (Synechocystis sp. PCC 6803) has a functional receptor for ethylene, Synechocystis Ethylene Response1 (SynEtr1). We first show that SynEtr1 directly binds ethylene. Second, we demonstrate that application of ethylene to Synechocystis cells or disruption of the SynEtr1 gene affects several processes, including phototaxis, type IV pilus biosynthesis, photosystem II levels, biofilm formation, and spontaneous cell sedimentation. Our data suggest a model where SynEtr1 inhibits downstream signaling and ethylene inhibits SynEtr1. This is similar to the inverse-agonist model of ethylene receptor signaling proposed for plants and suggests a conservation of structure and function that possibly originated over 1 billion years ago. Prior research showed that SynEtr1 also contains a light-responsive phytochrome-like domain. Thus, SynEtr1 is a bifunctional receptor that mediates responses to both light and ethylene. To our knowledge, this is the first demonstration of a functional ethylene receptor in a nonplant species and suggests that that the perception of ethylene is more widespread than previously thought. PMID:27246094

  12. The response regulator Npun_F1278 is essential for scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133.

    Science.gov (United States)

    Naurin, Sejuti; Bennett, Janine; Videau, Patrick; Philmus, Benjamin; Soule, Tanya

    2016-08-01

    Following exposure to long-wavelength ultraviolet radiation (UVA), some cyanobacteria produce the indole-alkaloid sunscreen scytonemin. The genomic region associated with scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme includes 18 cotranscribed genes. A two-component regulatory system (Npun_F1277/Npun_F1278) directly upstream from the biosynthetic genes was identified through comparative genomics and is likely involved in scytonemin regulation. In this study, the response regulator (RR), Npun_F1278, was evaluated for its ability to regulate scytonemin biosynthesis using a mutant strain of N. punctiforme deficient in this gene, hereafter strain Δ1278. Following UVA radiation, the typical stimulus to initiate scytonemin biosynthesis, Δ1278 was incapable of producing scytonemin. A phenotypic characterization of Δ1278 suggests that aside from the ability to produce scytonemin, the deletion of the Npun_F1278 gene does not affect the cellular morphology, cellular differentiation capability, or lipid-soluble pigment complement of Δ1278 compared to the wildtype. The mutant, however, had a slower specific growth rate under white light and produced ~2.5-fold more phycocyanin per cell under UVA than the wildtype. Since Δ1278 does not produce scytonemin, this study demonstrates that the RR gene, Npun_F1278, is essential for scytonemin biosynthesis in N. punctiforme. While most of the evaluated effects of this gene appear to be specific for scytonemin, this regulator may also influence the overall health of the cell and phycobiliprotein synthesis, directly or indirectly. This is the first study to identify a regulatory gene involved in the biosynthesis of the sunscreen scytonemin and posits a link between cell growth, pigment synthesis, and sunscreen production. © 2016 Phycological Society of America.

  13. Effects of UV-B Radiation and Periodic Desiccation on the Morphogenesis of the Edible Terrestrial Cyanobacterium Nostoc flagelliforme

    Science.gov (United States)

    Feng, Yan-Na; Zhang, Zhong-Chun; Feng, Jun-Li

    2012-01-01

    The terrestrial cyanobacterium Nostoc flagelliforme Berk. et M. A. Curtis has been a popular food and herbal ingredient for hundreds of years. To meet great market demand and protect the local ecosystem, for decades researchers have tried to cultivate N. flagelliforme but have failed to get macroscopic filamentous thalli. In this study, single trichomes with 50 to 200 vegetative cells were induced from free-living cells by low light and used to investigate the morphogenesis of N. flagelliforme under low UV-B radiation and periodic desiccation. Low-fluence-rate UV-B (0.1 W m−2) did not inhibit trichome growth; however, it significantly increased the synthesis of extracellular polysaccharides and mycosporine-like amino acids and promoted sheath formation outside the trichomes. Under low UV-B radiation, single trichomes developed into filamentous thalli more than 1 cm long after 28 days of cultivation, most of which grew separately in liquid BG11 medium. With periodic desiccation treatment, the single trichomes formed flat or banded thalli that grew up to 2 cm long after 3 months on solid BG11 medium. When trichomes were cultivated on solid BG11 medium with alternate treatments of low UV-B and periodic desiccation, dark and scraggly filamentous thalli that grew up to about 3 cm in length after 40 days were obtained. In addition, the cultivation of trichomes on nitrogen-deficient solid BG11 medium (BG110) suggested that nitrogen availability could affect the color and lubricity of newly developed thalli. This study provides promising techniques for artificial cultivation of N. flagelliforme in the future. PMID:22865081

  14. Comparative genomics reveals diversified CRISPR-Cas systems of globally distributed Microcystis aeruginosa, a freshwater bloom-forming cyanobacterium

    Directory of Open Access Journals (Sweden)

    Chen eYang

    2015-05-01

    Full Text Available Microcystis aeruginosa is one of the most common and dominant bloom-forming cyanobacteria in freshwater lakes around the world. Microcystis cells can produce toxic secondary metabolites, such as microcystins, which are harmful to human health. Two M. aeruginosa strains were isolated from two highly eutrophic lakes in China and their genomes were sequenced. Comparative genomic analysis was performed with the 12 other available M. aeruginosa genomes and closely related unicellular cyanobacterium. Each genome of M. aeruginosa containing at least one clustered regularly interspaced short palindromic repeat (CRISPR locus and total 71 loci were identified, suggesting it is ubiquitous in M. aeruginosa genomes. In addition to the previously reported subtype I-D cas gene sets, three CAS subtypes I-A, III-A and III-B were identified and characterized in this study. Seven types of CRISPR direct repeat have close association with CAS subtype, confirming that different and specific secondary structures of CRISPR repeats are important for the recognition, binding and process of corresponding cas gene sets. Homology search of the CRISPR spacer sequences provides a history of not only resistance to bacteriophages and plasmids known to be associated with M. aeruginosa, but also the ability to target much more exogenous genetic material in the natural environment. These adaptive and heritable defense mechanisms play a vital role in keeping genomic stability and self-maintenance by restriction of horizontal gene transfer. Maintaining genomic stability and modulating genomic plasticity are both important evolutionary strategies for M. aeruginosa in adaptation and survival in various habitats.

  15. Identification of OmpR-family response regulators interacting with thioredoxin in the Cyanobacterium Synechocystis sp. PCC 6803.

    Directory of Open Access Journals (Sweden)

    Taro Kadowaki

    Full Text Available The redox state of the photosynthetic electron transport chain is known to act as a signal to regulate the transcription of key genes involved in the acclimation responses to environmental changes. We hypothesized that the protein thioredoxin (Trx acts as a mediator connecting the redox state of the photosynthetic electron transport chain and transcriptional regulation, and established a screening system to identify transcription factors (TFs that interact with Trx. His-tagged TFs and S-tagged mutated form of Trx, TrxMC35S, whose active site cysteine 35 was substituted with serine to trap the target interacting protein, were co-expressed in E. coli cells and Trx-TF complexes were detected by immuno-blotting analysis. We examined the interaction between Trx and ten OmpR family TFs encoded in the chromosome of the cyanobacterium Synechocystis sp. PCC 6803 (S.6803. Although there is a highly conserved cysteine residue in the receiver domain of all OmpR family TFs, only three, RpaA (Slr0115, RpaB (Slr0947 and ManR (Slr1837, were identified as putative Trx targets [corrected].The recombinant forms of wild-type TrxM, RpaA, RpaB and ManR proteins from S.6803 were purified following over-expression in E. coli and their interaction was further assessed by monitoring changes in the number of cysteine residues with free thiol groups. An increase in the number of free thiols was observed after incubation of the oxidized TFs with Trx, indicating the reduction of cysteine residues as a consequence of interaction with Trx. Our results suggest, for the first time, the possible regulation of OmpR family TFs through the supply of reducing equivalents from Trx, as well as through the phospho-transfer from its cognate sensor histidine kinase.

  16. Salinity tolerance of Picochlorum atomus and the use of salinity for contamination control by the freshwater cyanobacterium Pseudanabaena limnetica.

    Directory of Open Access Journals (Sweden)

    Nicolas von Alvensleben

    Full Text Available Microalgae are ideal candidates for waste-gas and -water remediation. However, salinity often varies between different sites. A cosmopolitan microalga with large salinity tolerance and consistent biochemical profiles would be ideal for standardised cultivation across various remediation sites. The aims of this study were to determine the effects of salinity on Picochlorum atomus growth, biomass productivity, nutrient uptake and biochemical profiles. To determine if target end-products could be manipulated, the effects of 4-day nutrient limitation were also determined. Culture salinity had no effect on growth, biomass productivity, phosphate, nitrate and total nitrogen uptake at 2, 8, 18, 28 and 36 ppt. 11 ppt, however, initiated a significantly higher total nitrogen uptake. While salinity had only minor effects on biochemical composition, nutrient depletion was a major driver for changes in biomass quality, leading to significant increases in total lipid, fatty acid and carbohydrate quantities. Fatty acid composition was also significantly affected by nutrient depletion, with an increased proportion of saturated and mono-unsaturated fatty acids. Having established that P. atomus is a euryhaline microalga, the effects of culture salinity on the development of the freshwater cyanobacterial contaminant Pseudanabaena limnetica were determined. Salinity at 28 and 36 ppt significantly inhibited establishment of P. limnetica in P. atomus cultures. In conclusion, P. atomus can be deployed for bioremediation at sites with highly variable salinities without effects on end-product potential. Nutrient status critically affected biochemical profiles--an important consideration for end-product development by microalgal industries. 28 and 36 ppt slow the establishment of the freshwater cyanobacterium P. limnetica, allowing for harvest of low contaminant containing biomass.

  17. Transcriptional analysis of the unicellular, diazotrophic cyanobacterium Cyanothece sp. ATCC 51142 grown under short day/night cycles

    Energy Technology Data Exchange (ETDEWEB)

    Toepel, Jorg; McDermott, Jason E.; Summerfield, Tina; Sherman, Louis A.

    2009-06-01

    Cyanothece sp. strain ATCC 51142 is a unicellular, diazotrophic cyanobacterium that demonstrates extensive metabolic periodicities of photosynthesis, respiration and nitrogen fixation when grown under N2-fixing conditions. We have performed a global transcription analysis of this organism using 6 h light/dark cycles in order to determine the response of the cell to these conditions and to differentiate between diurnal and circadian regulated genes. In addition, we used a context-likelihood of relatedness (CLR) analysis with this data and those from two-day light/dark and light-dark plus continuous light experiments to better differentiate between diurnal and circadian regulated genes. Cyanothece sp. adapted in several ways to growth under short light/dark conditions. Nitrogen was fixed in every second dark period and only once in each 24 h period. Nitrogen fixation was strongly correlated to the energy status of the cells and glycogen breakdown and high respiration rates were necessary to provide appropriate energy and anoxic conditions for this process. We conclude that glycogen breakdown is a key regulatory step within these complex processes. Our results demonstrated that the main metabolic genes involved in photosynthesis, respiration, nitrogen fixation and central carbohydrate metabolism have strong (or total) circadian-regulated components. The short light/dark cycles enable us to identify transcriptional differences among the family of psbA genes, as well as the differing patterns of the hup genes, which follow the same pattern as nitrogenase genes, relative to the hox genes which displayed a diurnal, dark-dependent gene expression.

  18. Wastewater utilization for poly-β-hydroxybutyrate production by the cyanobacterium Aulosira fertilissima in a recirculatory aquaculture system.

    Science.gov (United States)

    Samantaray, Shilalipi; Nayak, Jitendra Kumar; Mallick, Nirupama

    2011-12-01

    Intensive aquaculture releases large quantities of nutrients into aquatic bodies, which can lead to eutrophication. The objective of this study was the development of a biological recirculatory wastewater treatment system with a diazotrophic cyanobacterium, Aulosira fertilissima, and simultaneous production of valuable product in the form of poly-β-hydroxybutyrate (PHB). To investigate this possible synergy, batch scale tests were conducted under a recirculatory aquaculture system in fiber-reinforced plastic tanks enhanced by several manageable parameters (e.g., sedimentation, inoculum size, depth, turbulence, and light intensity), an adequate combination of which showed better productivity. The dissolved-oxygen level increased in the range of 3.2 to 6.9 mg liter⁻¹ during the culture period. Nutrients such as ammonia, nitrite, and phosphate decreased to as low as zero within 15 days of incubation, indicating the system's bioremediation capability while yielding valuable cyanobacterial biomass for PHB production. Maximum PHB accumulation in A. fertilissima was found in sedimented fish pond discharge at 20-cm culture depth with stirring and an initial inoculum size of 80 mg dry cell weight (dcw) liter⁻¹. Under optimized conditions, the PHB yield was boosted to 92, 89, and 80 g m⁻², respectively for the summer, rainy, and winter seasons. Extrapolation of the result showed that a hectare of A. fertilissima cultivation in fish pond discharge would give an annual harvest of ∼17 tons dry biomass, consisting of 14 tons of PHB with material properties comparable to those of the bacterial polymer, with simultaneous treatment of 32,640 m³ water discharge.

  19. Wastewater Utilization for Poly-β-Hydroxybutyrate Production by the Cyanobacterium Aulosira fertilissima in a Recirculatory Aquaculture System▿

    Science.gov (United States)

    Samantaray, Shilalipi; Nayak, Jitendra Kumar; Mallick, Nirupama

    2011-01-01

    Intensive aquaculture releases large quantities of nutrients into aquatic bodies, which can lead to eutrophication. The objective of this study was the development of a biological recirculatory wastewater treatment system with a diazotrophic cyanobacterium, Aulosira fertilissima, and simultaneous production of valuable product in the form of poly-β-hydroxybutyrate (PHB). To investigate this possible synergy, batch scale tests were conducted under a recirculatory aquaculture system in fiber-reinforced plastic tanks enhanced by several manageable parameters (e.g., sedimentation, inoculum size, depth, turbulence, and light intensity), an adequate combination of which showed better productivity. The dissolved-oxygen level increased in the range of 3.2 to 6.9 mg liter−1 during the culture period. Nutrients such as ammonia, nitrite, and phosphate decreased to as low as zero within 15 days of incubation, indicating the system's bioremediation capability while yielding valuable cyanobacterial biomass for PHB production. Maximum PHB accumulation in A. fertilissima was found in sedimented fish pond discharge at 20-cm culture depth with stirring and an initial inoculum size of 80 mg dry cell weight (dcw) liter−1. Under optimized conditions, the PHB yield was boosted to 92, 89, and 80 g m−2, respectively for the summer, rainy, and winter seasons. Extrapolation of the result showed that a hectare of A. fertilissima cultivation in fish pond discharge would give an annual harvest of ∼17 tons dry biomass, consisting of 14 tons of PHB with material properties comparable to those of the bacterial polymer, with simultaneous treatment of 32,640 m3 water discharge. PMID:21984242

  20. Novel derivatives of 9,10-anthraquinone are selective algicides against the musty-odor cyanobacterium Oscillatoria perornata.

    Science.gov (United States)

    Schrader, Kevin K; Nanayakkara, N P Dhammika; Tucker, Craig S; Rimando, Agnes M; Ganzera, Markus; Schaneberg, Brian T

    2003-09-01

    Musty "off-flavor" in pond-cultured channel catfish (Ictalurus punctatus) costs the catfish production industry in the United States at least 30 million US dollars annually. The cyanobacterium Oscillatoria perornata (Skuja) is credited with being the major cause of musty off-flavor in farm-raised catfish in Mississippi. The herbicides diuron and copper sulfate, currently used by catfish producers as algicides to help mitigate musty off-flavor problems, have several drawbacks, including broad-spectrum toxicity towards the entire phytoplankton community that can lead to water quality deterioration and subsequent fish death. By use of microtiter plate bioassays, a novel group of compounds derived from the natural compound 9,10-anthraquinone have been found to be much more selectively toxic towards O. perornata than diuron and copper sulfate. In efficacy studies using limnocorrals placed in catfish production ponds, application rates of 0.3 micro M (125 micro g/liter) of the most promising anthraquinone derivative, 2-[methylamino-N-(1'-methylethyl)]-9,10-anthraquinone monophosphate (anthraquinone-59), dramatically reduced the abundance of O. perornata and levels of 2-methylisoborneol, the musty compound produced by O. perornata. The abundance of green algae and diatoms increased dramatically 2 days after application of a 0.3 micro M concentration of anthraquinone-59 to pond water within the limnocorrals. The half-life of anthraquinone-59 in pond water was determined to be 19 h, making it much less persistent than diuron. Anthraquinone-59 appears to be promising for use as a selective algicide in catfish aquaculture.

  1. Novel Derivatives of 9,10-Anthraquinone Are Selective Algicides against the Musty-Odor Cyanobacterium Oscillatoria perornata

    Science.gov (United States)

    Schrader, Kevin K.; Dhammika Nanayakkara, N. P.; Tucker, Craig S.; Rimando, Agnes M.; Ganzera, Markus; Schaneberg, Brian T.

    2003-01-01

    Musty “off-flavor” in pond-cultured channel catfish (Ictalurus punctatus) costs the catfish production industry in the United States at least $30 million annually. The cyanobacterium Oscillatoria perornata (Skuja) is credited with being the major cause of musty off-flavor in farm-raised catfish in Mississippi. The herbicides diuron and copper sulfate, currently used by catfish producers as algicides to help mitigate musty off-flavor problems, have several drawbacks, including broad-spectrum toxicity towards the entire phytoplankton community that can lead to water quality deterioration and subsequent fish death. By use of microtiter plate bioassays, a novel group of compounds derived from the natural compound 9,10-anthraquinone have been found to be much more selectively toxic towards O. perornata than diuron and copper sulfate. In efficacy studies using limnocorrals placed in catfish production ponds, application rates of 0.3 μM (125 μg/liter) of the most promising anthraquinone derivative, 2-[methylamino-N-(1′-methylethyl)]-9,10-anthraquinone monophosphate (anthraquinone-59), dramatically reduced the abundance of O. perornata and levels of 2-methylisoborneol, the musty compound produced by O. perornata. The abundance of green algae and diatoms increased dramatically 2 days after application of a 0.3 μM concentration of anthraquinone-59 to pond water within the limnocorrals. The half-life of anthraquinone-59 in pond water was determined to be 19 h, making it much less persistent than diuron. Anthraquinone-59 appears to be promising for use as a selective algicide in catfish aquaculture. PMID:12957919

  2. Bioinformatic evaluation of L-arginine catabolic pathways in 24 cyanobacteria and transcriptional analysis of genes encoding enzymes of L-arginine catabolism in the cyanobacterium Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Pistorius Elfriede K

    2007-11-01

    Full Text Available Abstract Background So far very limited knowledge exists on L-arginine catabolism in cyanobacteria, although six major L-arginine-degrading pathways have been described for prokaryotes. Thus, we have performed a bioinformatic analysis of possible L-arginine-degrading pathways in cyanobacteria. Further, we chose Synechocystis sp. PCC 6803 for a more detailed bioinformatic analysis and for validation of the bioinformatic predictions on L-arginine catabolism with a transcript analysis. Results We have evaluated 24 cyanobacterial genomes of freshwater or marine strains for the presence of putative L-arginine-degrading enzymes. We identified an L-arginine decarboxylase pathway in all 24 strains. In addition, cyanobacteria have one or two further pathways representing either an arginase pathway or L-arginine deiminase pathway or an L-arginine oxidase/dehydrogenase pathway. An L-arginine amidinotransferase pathway as a major L-arginine-degrading pathway is not likely but can not be entirely excluded. A rather unusual finding was that the cyanobacterial L-arginine deiminases are substantially larger than the enzymes in non-photosynthetic bacteria and that they are membrane-bound. A more detailed bioinformatic analysis of Synechocystis sp. PCC 6803 revealed that three different L-arginine-degrading pathways may in principle be functional in this cyanobacterium. These are (i an L-arginine decarboxylase pathway, (ii an L-arginine deiminase pathway, and (iii an L-arginine oxidase/dehydrogenase pathway. A transcript analysis of cells grown either with nitrate or L-arginine as sole N-source and with an illumination of 50 μmol photons m-2 s-1 showed that the transcripts for the first enzyme(s of all three pathways were present, but that the transcript levels for the L-arginine deiminase and the L-arginine oxidase/dehydrogenase were substantially higher than that of the three isoenzymes of L-arginine decarboxylase. Conclusion The evaluation of 24

  3. A high constitutive catalase activity confers resistance to methyl viologen-promoted oxidative stress in a mutant of the cyanobacterium Nostoc punctiforme ATCC 29133.

    Science.gov (United States)

    Moirangthem, Lakshmipyari Devi; Bhattacharya, Sudeshna; Stensjö, Karin; Lindblad, Peter; Bhattacharya, Jyotirmoy

    2014-04-01

    A spontaneous methyl viologen (MV)-resistant mutant of the nitrogen-fixing cyanobacterium Nostoc punctiforme ATCC 29133 was isolated and the major enzymatic antioxidants involved in combating MV-induced oxidative stress were evaluated. The mutant displayed a high constitutive catalase activity as a consequence of which, the intracellular level of reactive oxygen species in the mutant was lower than the wild type (N. punctiforme) in the presence of MV. The superoxide dismutase (SOD) activity that consisted of a SodA (manganese-SOD) and a SodB (iron-SOD) was not suppressed in the mutant following MV treatment. The mutant was, however, characterised by a lower peroxidase activity compared with its wild type, and its improved tolerance to externally added H₂O₂ could only be attributed to enhanced catalase activity. Furthermore, MV-induced toxic effects on the wild type such as (1) loss of photosynthetic performance assessed as maximal quantum yield of photosystem II, (2) nitrogenase inactivation, and (3) filament fragmentation and cell lysis were not observed in the mutant. These findings highlight the importance of catalase in preventing MV-promoted oxidative damage and cell death in the cyanobacterium N. punctiforme. Such oxidative stress resistant mutants of cyanobacteria are likely to be a better source of biofertilisers, as they can grow and fix nitrogen in an unhindered manner in agricultural fields that are often contaminated with the herbicide MV, also commonly known as paraquat.

  4. Antagonism at combined effects of chemical fertilizers and carbamate insecticides on the rice-field N2-fixing cyanobacterium Cylindrospermum sp. in vitro

    Directory of Open Access Journals (Sweden)

    Padhy Rabindra N.

    2014-03-01

    Full Text Available Effects of chemical fertilizers (urea, super phosphate and potash on toxicities of two carbamate insecticides, carbaryl and carbofuran, individually to the N2-fixing cyanobacterium, Cylindrospermum sp. were studied in vitro at partially lethal levels (below highest permissive concentrations of each insecticide. The average number of vegetative cells between two polar heterocysts was 16.3 in control cultures, while the mean value of filament length increased in the presence of chemical fertilizers, individually. Urea at the 10 ppm level was growth stimulatory and at the 50 ppm level it was growth inhibitory in control cultures, while at 100 ppm it was antagonistic, i.e. toxicity-enhancing along with carbaryl, individually to the cyanobacterium, antagonism was recorded. Urea at 50 ppm had toxicity reducing effect with carbaryl or carbofuran. At 100 and 250 ppm carbofuran levels, 50 ppm urea only had a progressive growth enhancing effect, which was marked well at 250 ppm carbofuran level, a situation of synergism. Super phosphate at the 10 ppm level only was growth promoting in control cultures, but it was antagonistic at its higher levels (50 and 100 ppm along with both insecticides, individually. Potash (100, 200, 300 and 400 ppm reduced toxicity due to carbaryl 20 and carbofuran 250 ppm levels, but potash was antagonistic at the other insecticide levels. The data clearly showed that the chemical fertilizers used were antagonistic with both the insecticides during toxicity to Cylindrospermum sp.

  5. Antagonism at combined effects of chemical fertilizers and carbamate insecticides on the rice-field N2-fixing cyanobacterium Cylindrospermum sp. in vitro

    Science.gov (United States)

    Nayak, Nabakishore; Rath, Shakti

    2014-01-01

    Effects of chemical fertilizers (urea, super phosphate and potash) on toxicities of two carbamate insecticides, carbaryl and carbofuran, individually to the N2-fixing cyanobacterium, Cylindrospermum sp. were studied in vitro at partially lethal levels (below highest permissive concentrations) of each insecticide. The average number of vegetative cells between two polar heterocysts was 16.3 in control cultures, while the mean value of filament length increased in the presence of chemical fertilizers, individually. Urea at the 10 ppm level was growth stimulatory and at the 50 ppm level it was growth inhibitory in control cultures, while at 100 ppm it was antagonistic, i.e. toxicity-enhancing along with carbaryl, individually to the cyanobacterium, antagonism was recorded. Urea at 50 ppm had toxicity reducing effect with carbaryl or carbofuran. At 100 and 250 ppm carbofuran levels, 50 ppm urea only had a progressive growth enhancing effect, which was marked well at 250 ppm carbofuran level, a situation of synergism. Super phosphate at the 10 ppm level only was growth promoting in control cultures, but it was antagonistic at its higher levels (50 and 100 ppm) along with both insecticides, individually. Potash (100, 200, 300 and 400 ppm) reduced toxicity due to carbaryl 20 and carbofuran 250 ppm levels, but potash was antagonistic at the other insecticide levels. The data clearly showed that the chemical fertilizers used were antagonistic with both the insecticides during toxicity to Cylindrospermum sp. PMID:26038669

  6. CO2 Removal from Biogas by Cyanobacterium Leptolyngbya sp. CChF1 Isolated from the Lake Chapala, Mexico: Optimization of the Temperature and Light Intensity.

    Science.gov (United States)

    Choix, Francisco J; Snell-Castro, Raúl; Arreola-Vargas, Jorge; Carbajal-López, Alberto; Méndez-Acosta, Hugo O

    2017-12-01

    In the present study, the capacity of the cyanobacterium Leptolyngbya sp. CChF1 to remove CO 2 from real and synthetic biogas was evaluated. The identification of the cyanobacterium, isolated from the lake Chapala, was carried out by means of morphological and molecular analyses, while its potential for CO 2 removal from biogas streams was evaluated by kinetic experiments and optimized by a central composite design coupled to a response surface methodology. Results demonstrated that Leptolyngbya sp. CChF1 is able to remove CO 2 and grow indistinctly in real or synthetic biogas streams, showing tolerance to high concentrations of CO 2 and CH 4 , 25 and 75%, respectively. The characterization of the biomass composition at the end of the kinetic assays revealed that the main accumulated by-products under both biogas streams were lipids, followed by proteins and carbohydrates. Regarding the optimization experiments, light intensity and temperature were the studied variables, while synthetic biogas was the carbon source. Results showed that light intensity was significant for CO 2 capture efficiency (p = 0.0290), while temperature was significant for biomass production (p = 0.0024). The predicted CO 2 capture efficiency under optimal conditions (27.1 °C and 920 lx) was 93.48%. Overall, the results of the present study suggest that Leptolyngbya sp. CChF1 is a suitable candidate for biogas upgrading.

  7. The NADPH thioredoxin reductase C functions as an electron donor to 2-Cys peroxiredoxin in a thermophilic cyanobacterium Thermosynechococcus elongatus BP-1

    International Nuclear Information System (INIS)

    Sueoka, Keigo; Yamazaki, Teruaki; Hiyama, Tetsuo; Nakamoto, Hitoshi

    2009-01-01

    An NADPH thioredoxin reductase C was co-purified with a 2-Cys peroxiredoxin by the combination of anion exchange chromatography and electroelution from gel slices after native PAGE from a thermophilic cyanobacterium Thermosynechococcus elongatus as an NAD(P)H oxidase complex induced by oxidative stress. The result provided a strong evidence that the NADPH thioredoxin reductase C interacts with the 2-Cys peroxiredoxin in vivo. An in vitro reconstitution assay with purified recombinant proteins revealed that both proteins were essential for an NADPH-dependent reduction of H 2 O 2 . These results suggest that the reductase transfers the reducing power from NADPH to the peroxiredoxin, which reduces peroxides in the cyanobacterium under oxidative stress. In contrast with other NADPH thioredoxin reductases, the NADPH thioredoxin reductase C contains a thioredoxin-like domain in addition to an NADPH thioredoxin reductase domain in the same polypeptide. Each domain contains a conserved CXYC motif. A point mutation at the CXYC motif in the NADPH thioredoxin reductase domain resulted in loss of the NADPH oxidation activity, while a mutation at the CXYC motif in the thioredoxin-like domain did not affect the electron transfer, indicating that this motif is not essential in the electron transport from NADPH to the 2-Cys peroxiredoxin.

  8. Characterization of Function of the GlgA2 Glycogen/Starch Synthase in Cyanobacterium sp. Clg1 Highlights Convergent Evolution of Glycogen Metabolism into Starch Granule Aggregation.

    Science.gov (United States)

    Kadouche, Derifa; Ducatez, Mathieu; Cenci, Ugo; Tirtiaux, Catherine; Suzuki, Eiji; Nakamura, Yasunori; Putaux, Jean-Luc; Terrasson, Amandine Durand; Diaz-Troya, Sandra; Florencio, Francisco Javier; Arias, Maria Cecilia; Striebeck, Alexander; Palcic, Monica; Ball, Steven G; Colleoni, Christophe

    2016-07-01

    At variance with the starch-accumulating plants and most of the glycogen-accumulating cyanobacteria, Cyanobacterium sp. CLg1 synthesizes both glycogen and starch. We now report the selection of a starchless mutant of this cyanobacterium that retains wild-type amounts of glycogen. Unlike other mutants of this type found in plants and cyanobacteria, this mutant proved to be selectively defective for one of the two types of glycogen/starch synthase: GlgA2. This enzyme is phylogenetically related to the previously reported SSIII/SSIV starch synthase that is thought to be involved in starch granule seeding in plants. This suggests that, in addition to the selective polysaccharide debranching demonstrated to be responsible for starch rather than glycogen synthesis, the nature and properties of the elongation enzyme define a novel determinant of starch versus glycogen accumulation. We show that the phylogenies of GlgA2 and of 16S ribosomal RNA display significant congruence. This suggests that this enzyme evolved together with cyanobacteria when they diversified over 2 billion years ago. However, cyanobacteria can be ruled out as direct progenitors of the SSIII/SSIV ancestral gene found in Archaeplastida. Hence, both cyanobacteria and plants recruited similar enzymes independently to perform analogous tasks, further emphasizing the importance of convergent evolution in the appearance of starch from a preexisting glycogen metabolism network. © 2016 American Society of Plant Biologists. All Rights Reserved.

  9. Bioprospecting Marine Plankton

    Directory of Open Access Journals (Sweden)

    Chris Bowler

    2013-11-01

    Full Text Available The ocean dominates the surface of our planet and plays a major role in regulating the biosphere. For example, the microscopic photosynthetic organisms living within provide 50% of the oxygen we breathe, and much of our food and mineral resources are extracted from the ocean. In a time of ecological crisis and major changes in our society, it is essential to turn our attention towards the sea to find additional solutions for a sustainable future. Remarkably, while we are overexploiting many marine resources, particularly the fisheries, the planktonic compartment composed of zooplankton, phytoplankton, bacteria and viruses, represents 95% of marine biomass and yet the extent of its diversity remains largely unknown and underexploited. Consequently, the potential of plankton as a bioresource for humanity is largely untapped. Due to their diverse evolutionary backgrounds, planktonic organisms offer immense opportunities: new resources for medicine, cosmetics and food, renewable energy, and long-term solutions to mitigate climate change. Research programs aiming to exploit culture collections of marine micro-organisms as well as to prospect the huge resources of marine planktonic biodiversity in the oceans are now underway, and several bioactive extracts and purified compounds have already been identified. This review will survey and assess the current state-of-the-art and will propose methodologies to better exploit the potential of marine plankton for drug discovery and for dermocosmetics.

  10. The marine diversity spectrum

    DEFF Research Database (Denmark)

    Reuman, Daniel C.; Gislason, Henrik; Barnes, Carolyn

    2014-01-01

    of taxonomy (all the species in a region regardless of clade) are much less studied but are equally important and will illuminate a different set of ecological and evolutionary processes. We develop and test a mechanistic model of how diversity varies with body mass in marine ecosystems. The model predicts...... the form of the diversity spectrum', which quantifies the distribution of species' asymptotic body masses, is a species analogue of the classic size spectrum of individuals, and which we have found to be a new and widely applicable description of diversity patterns. The marine diversity spectrum...... is predicted to be approximately linear across an asymptotic mass range spanning seven orders of magnitude. Slope -0 center dot 5 is predicted for the global marine diversity spectrum for all combined pelagic zones of continental shelf seas, and slopes for large regions are predicted to lie between -0 center...

  11. Marine biodiversity in Colombia

    International Nuclear Information System (INIS)

    Diaz, Juan Manuel

    2002-01-01

    One decade ago, the seas and oceans were considered biologically less diverse that the terrestrial environment. Now it is known that it is on the contrary; 33 of the 34 categories of animals (phylum), they are represented in the sea, compared with those solely 15 that exist in earth. The investigation about the diversity of life in the sea has been relatively scorned, but there are big benefits that we can wait if this is protected. The captures of fish depend on it; the species captured by the fisheries are sustained of the biodiversity of their trophic chains and habitats. The marine species are probably the biggest reservoir of chemical substances that can be used in pharmaceutical products. The genetic material of some species can be useful in biotechnical applications. The paper treats topics like the current state of the knowledge in marine biodiversity and it is done a diagnostic of the marine biodiversity in Colombia

  12. Marine biosurfaces research program

    Science.gov (United States)

    The Office of Naval Research (ONR) of the U.S. Navy is starting a basic research program to address the initial events that control colonization of surfaces by organisms in marine environments. The program “arises from the Navy's need to understand and ultimately control biofouling and biocorrosion in marine environments,” according to a Navy announcement.The program, “Biological Processes Controlling Surface Modification in the Marine Environment,” will emphasize the application of in situ techniques and modern molecular biological, biochemical, and biophysical approaches; it will also encourage the development of interdisciplinary projects. Specific areas of interest include sensing and response to environmental surface (physiology/physical chemistry), factors controlling movement to and retention at surfaces (behavior/hydrodynamics), genetic regulation of attachment (molecular genetics), and mechanisms of attachment (biochemistry/surface chemistry).

  13. Marine-Design Education

    DEFF Research Database (Denmark)

    Andersen, Poul; Birmingham, R.; Sortland, B.

    2006-01-01

    This report addresses Marine-Design Education in view of present and forecasted demands of the maritime industry, determined by a drastically transforming economic and technological maritime environment. In this framework, this report discusses in depth IT-based Marine Design education (par. 4......) and reveals innovative educational concepts and initiatives, such as the EiT (Experts in a Team) concept (par. 3), the SFS (Student Friendly Software) initiative (par. 5), Education Driven Research (EDR, par. 6) and Research Based Education (RBE, par. 6). Nevertheless, the paper stresses the need...... for continuity between traditional and modern ways of teaching (par. 4) and points out that Marine Design education is not only about Design, but should also address project/business administration and decision making issues (par. 7)....

  14. Phycoerythrin-specific bilin lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus.

    Science.gov (United States)

    Shukla, Animesh; Biswas, Avijit; Blot, Nicolas; Partensky, Frédéric; Karty, Jonathan A; Hammad, Loubna A; Garczarek, Laurence; Gutu, Andrian; Schluchter, Wendy M; Kehoe, David M

    2012-12-04

    The marine cyanobacterium Synechococcus is the second most abundant phytoplanktonic organism in the world's oceans. The ubiquity of this genus is in large part due to its use of a diverse set of photosynthetic light-harvesting pigments called phycobiliproteins, which allow it to efficiently exploit a wide range of light colors. Here we uncover a pivotal molecular mechanism underpinning a widespread response among marine Synechococcus cells known as "type IV chromatic acclimation" (CA4). During this process, the pigmentation of the two main phycobiliproteins of this organism, phycoerythrins I and II, is reversibly modified to match changes in the ambient light color so as to maximize photon capture for photosynthesis. CA4 involves the replacement of three molecules of the green light-absorbing chromophore phycoerythrobilin with an equivalent number of the blue light-absorbing chromophore phycourobilin when cells are shifted from green to blue light, and the reverse after a shift from blue to green light. We have identified and characterized MpeZ, an enzyme critical for CA4 in marine Synechococcus. MpeZ attaches phycoerythrobilin to cysteine-83 of the α-subunit of phycoerythrin II and isomerizes it to phycourobilin. mpeZ RNA is six times more abundant in blue light, suggesting that its proper regulation is critical for CA4. Furthermore, mpeZ mutants fail to normally acclimate in blue light. These findings provide insights into the molecular mechanisms controlling an ecologically important photosynthetic process and identify a unique class of phycoerythrin lyase/isomerases, which will further expand the already widespread use of phycoerythrin in biotechnology and cell biology applications.

  15. Events Calendar: Smithsonian Marine Ecosystems Exhibit: Smithsonian Marine

    Science.gov (United States)

    current Smithsonian research on the plants and animals of the Indian River Lagoon and marine environments Station (SMS) at Fort Pierce Smithsonian Marine Station at Fort Pierce Website Search Box History Modeling Ecosystems Virtual Tour Facebook Instagram Twitter SMS Home › Smithsonian Marine

  16. New Waves in Marine Science Symposium: Marine Animal Communication.

    Science.gov (United States)

    Allen, Betty, Comp.

    1989-01-01

    Presented are the abstracts from three research projects on marine social systems which were a part of a marine science symposium. Five sets of activities on marine animal communication are included, one each for grades K-2, 3-5, 6-8 and 9-12, and informal education. (CW)

  17. 75 FR 19670 - Marine Highway Projects

    Science.gov (United States)

    2010-04-15

    ... DEPARTMENT OF TRANSPORTATION Maritime Administration Marine Highway Projects ACTION: Solicitation of applications for Marine highway projects. SUMMARY: The Department of Transportation is soliciting applications for Marine Highway Projects as specified in the America's Marine Highway Program Final Rule, MARAD...

  18. The biology of marine plants

    National Research Council Canada - National Science Library

    Dring, M.J

    1982-01-01

    Since over 90% of the species of marine plants are algae, most of the book is devoted to the marine representatives of this group, with examples from all oceans and coasts of the world where detailed work has been done...

  19. Antifouling Compounds from Marine Invertebrates.

    Science.gov (United States)

    Qi, Shu-Hua; Ma, Xuan

    2017-08-28

    In this review, a comprehensive overview about the antifouling compounds from marine invertebrates is described. In total, more than 198 antifouling compounds have been obtained from marine invertebrates, specifically, sponges, gorgonian and soft corals.

  20. Antifouling Compounds from Marine Invertebrates

    OpenAIRE

    Qi, Shu-Hua; Ma, Xuan

    2017-01-01

    In this review, a comprehensive overview about the antifouling compounds from marine invertebrates is described. In total, more than 198 antifouling compounds have been obtained from marine invertebrates, specifically, sponges, gorgonian and soft corals.

  1. The Danish Marine Monitoring System

    DEFF Research Database (Denmark)

    Ærtebjerg, G.

    1997-01-01

    Indeholder abstracts fra Workshop on Marine Monitoring Systems and Technology, Risø, 17-18 April 1996.......Indeholder abstracts fra Workshop on Marine Monitoring Systems and Technology, Risø, 17-18 April 1996....

  2. 76 FR 25308 - Marine Mammals

    Science.gov (United States)

    2011-05-04

    ...-XA165 Marine Mammals AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric... Jennifer Burns, Ph.D., University of Alaska Anchorage, Biology Department, 3101 Science Circle, Anchorage, AK, has been issued a permit to conduct [[Page 25309

  3. Identifying Sources of Marine Litter

    OpenAIRE

    VEIGA Joana Mira; FLEET David; KINSEY Sue; NILSSON Per; VLACHOGIANNI Thomais; WERNER Stefanie; GALGANI Francois; THOMPSON Richard; DAGEVOS Jeroen; GAGO Jesus; SOBRAL Paula; CRONIN Richard

    2016-01-01

    Marine litter is a global problem causing harm to marine wildlife, coastal communities and maritime activities. It also embodies an emerging concern for human health and safety. The reduction of marine litter pollution poses a complex challenge for humankind, requiring adjustments in human behaviour as well as in the different phases of the life-cycle of products and across multiple economic sectors. The Marine Strategy Framework Directive (MSFD) requires European Member States to monitor...

  4. Lack of Methylated Hopanoids Renders the Cyanobacterium Nostoc punctiforme Sensitive to Osmotic and pH Stress.

    Science.gov (United States)

    Garby, Tamsyn J; Matys, Emily D; Ongley, Sarah E; Salih, Anya; Larkum, Anthony W D; Walter, Malcolm R; Summons, Roger E; Neilan, Brett A

    2017-07-01

    To investigate the function of 2-methylhopanoids in modern cyanobacteria, the hpnP gene coding for the radical S -adenosyl methionine (SAM) methylase protein that acts on the C-2 position of hopanoids was deleted from the filamentous cyanobacterium Nostoc punctiforme ATCC 29133S. The resulting Δ hpnP mutant lacked all 2-methylhopanoids but was found to produce much higher levels of two bacteriohopanepentol isomers than the wild type. Growth rates of the Δ hpnP mutant cultures were not significantly different from those of the wild type under standard growth conditions. Akinete formation was also not impeded by the absence of 2-methylhopanoids. The relative abundances of the different hopanoid structures in akinete-dominated cultures of the wild-type and Δ hpnP mutant strains were similar to those of vegetative cell-dominated cultures. However, the Δ hpnP mutant was found to have decreased growth rates under both pH and osmotic stress, confirming a role for 2-methylhopanoids in stress tolerance. Evidence of elevated photosystem II yield and NAD(P)H-dependent oxidoreductase activity in the Δ hpnP mutant under stress conditions, compared to the wild type, suggested that the absence of 2-methylhopanoids increases cellular metabolic rates under stress conditions. IMPORTANCE As the first group of organisms to develop oxygenic photosynthesis, Cyanobacteria are central to the evolutionary history of life on Earth and the subsequent oxygenation of the atmosphere. To investigate the origin of cyanobacteria and the emergence of oxygenic photosynthesis, geobiologists use biomarkers, the remnants of lipids produced by different organisms that are found in geologic sediments. 2-Methylhopanes have been considered indicative of cyanobacteria in some environmental settings, with the parent lipids 2-methylhopanoids being present in many contemporary cyanobacteria. We have created a Nostoc punctiforme Δ hpnP mutant strain that does not produce 2-methylhopanoids to assess the

  5. Identification and characterization of a carboxysomal γ-carbonic anhydrase from the cyanobacterium Nostoc sp. PCC 7120.

    Science.gov (United States)

    de Araujo, Charlotte; Arefeen, Dewan; Tadesse, Yohannes; Long, Benedict M; Price, G Dean; Rowlett, Roger S; Kimber, Matthew S; Espie, George S

    2014-09-01

    Carboxysomes are proteinaceous microcompartments that encapsulate carbonic anhydrase (CA) and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco); carboxysomes, therefore, catalyze reversible HCO3 (-) dehydration and the subsequent fixation of CO2. The N- and C-terminal domains of the β-carboxysome scaffold protein CcmM participate in a network of protein-protein interactions that are essential for carboxysome biogenesis, organization, and function. The N-terminal domain of CcmM in the thermophile Thermosynechococcus elongatus BP-1 is also a catalytically active, redox regulated γ-CA. To experimentally determine if CcmM from a mesophilic cyanobacterium is active, we cloned, expressed and purified recombinant, full-length CcmM from Nostoc sp. PCC 7120 as well as the N-terminal 209 amino acid γ-CA-like domain. Both recombinant proteins displayed ethoxyzolamide-sensitive CA activity in mass spectrometric assays, as did the carboxysome-enriched TP fraction. NstCcmM209 was characterized as a moderately active and efficient γ-CA with a k cat of 2.0 × 10(4) s(-1) and k cat/K m of 4.1 × 10(6) M(-1) s(-1) at 25 °C and pH 8, a pH optimum between 8 and 9.5 and a temperature optimum spanning 25-35 °C. NstCcmM209 also catalyzed the hydrolysis of the CO2 analog carbonyl sulfide. Circular dichroism and intrinsic tryptophan fluorescence analysis demonstrated that NstCcmM209 was progressively and irreversibly denatured above 50 °C. NstCcmM209 activity was inhibited by the reducing agent tris(hydroxymethyl)phosphine, an effect that was fully reversed by a molar excess of diamide, a thiol oxidizing agent, consistent with oxidative activation being a universal regulatory mechanism of CcmM orthologs. Immunogold electron microscopy and Western blot analysis of TP pellets indicated that Rubisco and CcmM co-localize and are concentrated in Nostoc sp. PCC 7120 carboxysomes.

  6. Photosynthetic Versatility in the Genome of Geitlerinema sp. PCC 9228 (Formerly Oscillatoria limnetica 'Solar Lake'), a Model Anoxygenic Photosynthetic Cyanobacterium.

    Science.gov (United States)

    Grim, Sharon L; Dick, Gregory J

    2016-01-01

    Anoxygenic cyanobacteria that use sulfide as the electron donor for photosynthesis are a potentially influential but poorly constrained force on Earth's biogeochemistry. Their versatile metabolism may have boosted primary production and nitrogen cycling in euxinic coastal margins in the Proterozoic. In addition, they represent a biological mechanism for limiting the accumulation of atmospheric oxygen, especially before the Great Oxidation Event and in the low-oxygen conditions of the Proterozoic. In this study, we describe the draft genome sequence of Geitlerinema sp. PCC 9228, formerly Oscillatoria limnetica 'Solar Lake', a mat-forming diazotrophic cyanobacterium that can switch between oxygenic photosynthesis and sulfide-based anoxygenic photosynthesis (AP). Geitlerinema possesses three variants of psbA , which encodes protein D1, a core component of the photosystem II reaction center. Phylogenetic analyses indicate that one variant is closely affiliated with cyanobacterial psbA genes that code for a D1 protein used for oxygen-sensitive processes. Another version is phylogenetically similar to cyanobacterial psbA genes that encode D1 proteins used under microaerobic conditions, and the third variant may be cued to high light and/or elevated oxygen concentrations. Geitlerinema has the canonical gene for sulfide quinone reductase (SQR) used in cyanobacterial AP and a putative transcriptional regulatory gene in the same operon. Another operon with a second, distinct sqr and regulatory gene is present, and is phylogenetically related to sqr genes used for high sulfide concentrations. The genome has a comprehensive nif gene suite for nitrogen fixation, supporting previous observations of nitrogenase activity. Geitlerinema possesses a bidirectional hydrogenase rather than the uptake hydrogenase typically used by cyanobacteria in diazotrophy. Overall, the genome sequence of Geitlerinema sp. PCC 9228 highlights potential cyanobacterial strategies to cope with fluctuating

  7. Oceanic processes in marine pollution

    International Nuclear Information System (INIS)

    Baumgartner, D.J.; Duedall, I.W.

    1990-01-01

    This book covers the following areas: bioaccumulation of Polycyclic Aromatic hydrocarbons in marine environments; behavior of drilling fluid discharges off the coast of California; effects of drilling fluids on marine organisms; and the effects of radioactive waste disposal on marine amphipods

  8. Marine Renewable Energies

    DEFF Research Database (Denmark)

    Azzellino, Arianna; Conley, Daniel; Vicinanza, Diego

    2013-01-01

    Countries with coastlines may have valuable renewable energy resources in the form of tides, currents, waves, and offshorewind.The potential to gather energy from the sea has recently gained interest in several nations, so Marine Renewable Energy Installations (hereinafter MREIs) will likely become...

  9. Marine and Estuarine Pollution.

    Science.gov (United States)

    Reish, Donald J.

    1978-01-01

    Presents a literature review of the effects of various pollutants on marine and estuarine organisms, covering publications of 1976-77. This review includes: (1) effects of pesticides, dredging, dumping, sludge, and petroleum hydrocarbons; and (2) diseases and tissue abnormalities. A list of 441 references is also presented. (HM)

  10. NWS Marine Forecast Areas

    Science.gov (United States)

    of Commerce Ocean Prediction Center National Oceanic and Atmospheric Administration Analysis & Unified Surface Analysis Ocean Ocean Products Ice & Icebergs NIC Ice Products NAIS Iceberg Analysis Social Media Facebook Twitter YouTube Search Search For Go NWS All NOAA NWS Marine Forecast Areas

  11. Marine fog: a review

    Science.gov (United States)

    Koračin, Darko; Dorman, Clive E.; Lewis, John M.; Hudson, James G.; Wilcox, Eric M.; Torregrosa, Alicia

    2014-01-01

    The objective of this review is to discuss physical processes over a wide range of spatial scales that govern the formation, evolution, and dissipation of marine fog. We consider marine fog as the collective combination of fog over the open sea along with coastal sea fog and coastal land fog. The review includes a history of sea fog research, field programs, forecasting methods, and detection of sea fog via satellite observations where similarity in radiative properties of fog top and the underlying sea induce further complexity. The main thrust of the study is to provide insight into causality of fog including its initiation, maintenance, and destruction. The interplay between the various physical processes behind the several stages of marine fog is among the most challenging aspects of the problem. An effort is made to identify this interplay between processes that include the microphysics of fog formation and maintenance, the influence of large-scale circulation and precipitation/clouds, radiation, turbulence (air-sea interaction), and advection. The environmental impact of marine fog is also addressed. The study concludes with an assessment of our current knowledge of the phenomenon, our principal areas of ignorance, and future lines of research that hold promise for advances in our understanding.

  12. Marine fungi: A critique

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, S.; Raghukumar, C.

    in the sea have been ignored to a large extent. However, several instances of terrestrial species of fungi, active in marine environment have been reported. The arguments to support the view that terrestrial species of fungi by virtue of their physiological...

  13. Marine complex adaptive systems

    NARCIS (Netherlands)

    Bigagli, Emanuele

    2017-01-01

    Anthropogenic and climate-related stressors challenge the health of nearly every part of the global oceans. They affect the capacity of oceans to regulate global weather and climate, as well as ocean productivity and food services, and result in the loss or degradation of marine habitats and

  14. Marine Fish Hybridization

    KAUST Repository

    He, Song

    2017-04-01

    Natural hybridization is reproduction (without artificial influence) between two or more species/populations which are distinguishable from each other by heritable characters. Natural hybridizations among marine fishes were highly underappreciated due to limited research effort; it seems that this phenomenon occurs more often than is commonly recognized. As hybridization plays an important role in biodiversity processes in the marine environment, detecting hybridization events and investigating hybridization is important to understand and protect biodiversity. The first chapter sets the framework for this disseration study. The Cohesion Species Concept was selected as the working definition of a species for this study as it can handle marine fish hybridization events. The concept does not require restrictive species boundaries. A general history and background of natural hybridization in marine fishes is reviewed during in chapter as well. Four marine fish hybridization cases were examed and documented in Chapters 2 to 5. In each case study, at least one diagnostic nuclear marker, screened from among ~14 candidate markers, was found to discriminate the putative hybridizing parent species. To further investigate genetic evidence to support the hybrid status for each hybrid offspring in each case, haploweb analysis on diagnostic markers (nuclear and/or mitochondrial) and the DAPC/PCA analysis on microsatellite data were used. By combining the genetic evidences, morphological traits, and ecological observations together, the potential reasons that triggered each hybridization events and the potential genetic/ecology effects could be discussed. In the last chapter, sequences from 82 pairs of hybridizing parents species (for which COI barcoding sequences were available either on GenBank or in our lab) were collected. By comparing the COI fragment p-distance between each hybridizing parent species, some general questions about marine fish hybridization were discussed: Is

  15. Looking at the stability of life-support microorganisms in space : the MELGEN activity highlights the cyanobacterium Arthrospira sp. PCC8005

    Science.gov (United States)

    Morin, Nicolas

    The MELGEN activity (MELiSSA Genetic Stability Study) mainly covers the molecular aspects of the regenerative life-support system MELiSSA (Micro-Ecological Life Support System Alternative) of the European Space Agency (ESA). The general objective of MELGEN is to establish and validate methods and the related hardware in order to detect genetic instability and microbial contaminants in the MELISSA compartments. This includes (1) a genetic description of the MELISSA strains, (2) studies of microbial behavior and genetic stability in bioreactors and (3) the detection of chemical, genetical and biological contamination and their effect on microbial metabolism. Selected as oxygen producer and complementary food source, the cyanobacterium Arthrospira sp. PCC8005 plays a major role within the MELiSSA loop. As the genomic information on this organism was insufficient, sequencing of its genome was proposed at the French National Sequencing Center, Genoscope, as a joint effort between ESA and different laboratories. So far, a preliminary assembly of 16 contigs representing circa 6.3 million basepairs was obtained. Even though the finishing of the genome is on its way, automatic annotation of the contigs has already been performed on the MaGe annotation platform, and curation of the sequence is currently being carried out, with a special focus on biosynthesis pathways, photosynthesis, and maintenance processes of the cell. According to the index of repetitiveness described by Haubold and Wiehe (2006), we discovered that the genome of Arthrospira sp. is among the 50 most repeated bacterial genomes sequenced to date. Thanks to the sequencing project, we have identified and catalogued mobile genetics elements (MGEs) dispersed throughout the unique chromosome of this cyanobacterium. They represent a quite large proportion of the genome, as genes identified as putative transposases are indeed found in circa 5 Results : We currently have a first draft of the complete genome of

  16. Kinetic Modeling of Arsenic Cycling by a Freshwater Cyanobacterium as Influenced by N:P Ratios: A Potential Biologic Control in an Iron-Limited Drainage Basin

    Science.gov (United States)

    Markley, C. T.; Herbert, B. E.

    2004-12-01

    Elevated As levels are common in South Texas surface waters, where As is derived from the natural weathering of geogenic sources and a byproduct of historical uranium mining. The impacted surface waters of the Nueces River drainage basin supply Lake Corpus Christi (LCC), a major drinking water reservoir for the Corpus Christi area. The soils and sediments of the Nueces River drainage basin generally have low levels of reactive iron (average concentration of 2780 mg/kg), limiting the control of iron oxyhydroxides on As geochemistry and bioavailability. Given these conditions, biologic cycling of As may have a large influence on As fate and transport in LCC. Sediment cores from LCC show evidence for cyanobacterial blooms after reservoir formation based upon stable isotopes, total organic matter and specific elemental correlations. While algae have been shown to accumulate and reduce inorganic As(V), few studies have reported biologic cycling of As by cyanobacteria. Therefore, As(V) uptake, accumulation, reduction, and excretion in a 1.0 μ M As(V) solution by the freshwater cyanobacterium, Anabaena sp. Strain PCC 7120, was measured over time as a function of low, middle and high N:P ratios (1.2, 12, 120) to determine nutrient effects on As cycling by the cyanobacterium. Total As(V) reduction was observed in all three conditions upon completion of the ten-day experiment. Maximum As(V) reduction rates ranged from (0.013 mmol g C-1 day-1) in the low N:P solution to (0.398 mmol g C-1 day-1) in the high N:P solution. Increased cell biomass in the low N:P ratio solution compensated for the low maximum reduction rate to allow total As(V) reduction. Kinetic equations commonly used to model algal-nutrient interactions were utilized in modeling the current data. The Michaelis-Menten enzyme saturation equation modified with a competitive inhibition term adequately modeled As(III) excretion in the high and middle N:P ratio test conditions. The low N:P test condition further

  17. Emerging biopharmaceuticals from marine actinobacteria.

    Science.gov (United States)

    Hassan, Syed Shams Ul; Anjum, Komal; Abbas, Syed Qamar; Akhter, Najeeb; Shagufta, Bibi Ibtesam; Shah, Sayed Asmat Ali; Tasneem, Umber

    2017-01-01

    Actinobacteria are quotidian microorganisms in the marine world, playing a crucial ecological role in the recycling of refractory biomaterials and producing novel secondary metabolites with pharmaceutical applications. Actinobacteria have been isolated from the huge area of marine organisms including sponges, tunicates, corals, mollusks, crabs, mangroves and seaweeds. Natural products investigation of the marine actinobacteria revealed that they can synthesize numerous natural products including alkaloids, polyketides, peptides, isoprenoids, phenazines, sterols, and others. These natural products have a potential to provide future drugs against crucial diseases like cancer, HIV, microbial and protozoal infections and severe inflammations. Therefore, marine actinobacteria portray as a pivotal resource for marine drugs. It is an upcoming field of research to probe a novel and pharmaceutically important secondary metabolites from marine actinobacteria. In this review, we attempt to summarize the present knowledge on the diversity, chemistry and mechanism of action of marine actinobacteria-derived secondary metabolites from 2007 to 2016. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Kempopeptin C, a Novel Marine-Derived Serine Protease Inhibitor Targeting Invasive Breast Cancer

    Directory of Open Access Journals (Sweden)

    Fatma H. Al-Awadhi

    2017-09-01

    Full Text Available Kempopeptin C, a novel chlorinated analogue of kempopeptin B, was discovered from a marine cyanobacterium collected from Kemp Channel in Florida. The structure was elucidated using NMR spectroscopy and mass spectrometry (MS. The presence of the basic Lys residue adjacent to the N-terminus of the 3-amino-6-hydroxy-2-piperidone (Ahp moiety contributed to its selectivity towards trypsin and related proteases. The antiproteolytic activity of kempopeptin C was evaluated against trypsin, plasmin and matriptase and found to inhibit these enzymes with IC50 values of 0.19, 0.36 and 0.28 μM, respectively. Due to the significance of these proteases in cancer progression and metastasis, as well as their functional redundancy with respect to targeting overlapping substrates, we examined the effect of kempopeptin C on the downstream cellular substrates of matriptase: CDCP1 and desmoglein-2 (Dsg-2. Kempopeptin C was shown to inhibit the cleavage of both substrates in vitro. Additionally, kempopeptin C reduced the cleavage of CDCP1 in MDA-MB-231 cells up to 10 µM. The functional relevance of targeting matriptase and related proteases was investigated by assessing the effect of kempopeptin C on the migration of breast cancer cells. Kempopeptin C inhibited the migration of the invasive MDA-MB-231 cells by 37 and 60% at 10 and 20 µM, respectively.

  19. Efficiency of Photosynthesis in a Chl d-Utilizing Cyanobacterium is Comparable to or Higher than that in Chl a-Utilizing Oxygenic Species

    Science.gov (United States)

    Mielke, S. P.; Kiang, N. Y.; Blankenship, R. E.; Gunner, M. R.; Mauzerall, D.

    2011-01-01

    The cyanobacterium Acaryochloris marina uses chlorophyll d to carry out oxygenic photosynthesis in environments depleted in visible and enhanced in lower-energy, far-red light. However, the extent to which low photon energies limit the efficiency of oxygenic photochemistry in A. marina is not known. Here, we report the first direct measurements of the energy-storage efficiency of the photosynthetic light reactions in A. marina whole cells,and find it is comparable to or higher than that in typical, chlorophyll a-utilizing oxygenic species. This finding indicates that oxygenic photosynthesis is not fundamentally limited at the photon energies employed by A. marina, and therefore is potentially viable in even longer-wavelength light environments.

  20. Marine Bacterial Genomics

    DEFF Research Database (Denmark)

    Machado, Henrique

    For decades, terrestrial microorganisms have been used as sources of countless enzymes and chemical compounds that have been produced by pharmaceutical and biotech companies and used by mankind. There is a need for new chemical compounds, including antibiotics,new enzymatic activities and new...... microorganisms to be used as cell factories for production. Therefore exploitation of new microbial niches and use of different strategies is an opportunity to boost discoveries. Even though scientists have started to explore several habitats other than the terrestrial ones, the marine environment stands out...... as a hitherto under-explored niche. This thesis work uses high-throughput sequencing technologies on a collection of marine bacteria established during the Galathea 3 expedition, with the purpose of unraveling new biodiversity and new bioactivities. Several tools were used for genomic analysis in order...

  1. Mariner 9 Michelson interferometer.

    Science.gov (United States)

    Hanel, R.; Schlachman, B.; Rodgers, D.; Breihan, E.; Bywaters, R.; Chapman, F.; Rhodes, M.; Vanous, D.

    1972-01-01

    The Michelson interferometer on Mariner 9 measures the thermal emission spectrum of Mars between 200 and 2000 per cm (between 5 and 50 microns) with a spectral resolution of 2.4 per cm in the apodized mode. A noise equivalent radiance of 0.5 x 10 to the minus 7th W/sq cm/ster/cm is deduced from data recorded in orbit around Mars. The Mariner interferometer deviates in design from the Nimbus 3 and 4 interferometers in several areas, notably, by a cesium iodide beam splitter and certain aspects of the digital information processing. Special attention has been given to the problem of external vibration. The instrument performance is demonstrated by calibration data and samples of Mars spectra.

  2. Acetylome analysis reveals the involvement of lysine acetylation in photosynthesis and carbon metabolism in the model cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Mo, Ran; Yang, Mingkun; Chen, Zhuo; Cheng, Zhongyi; Yi, Xingling; Li, Chongyang; He, Chenliu; Xiong, Qian; Chen, Hui; Wang, Qiang; Ge, Feng

    2015-02-06

    Cyanobacteria are the oldest known life form inhabiting Earth and the only prokaryotes capable of performing oxygenic photosynthesis. Synechocystis sp. PCC 6803 (Synechocystis) is a model cyanobacterium used extensively in research on photosynthesis and environmental adaptation. Posttranslational protein modification by lysine acetylation plays a critical regulatory role in both eukaryotes and prokaryotes; however, its extent and function in cyanobacteria remain unexplored. Herein, we performed a global acetylome analysis on Synechocystis through peptide prefractionation, antibody enrichment, and high accuracy LC-MS/MS analysis; identified 776 acetylation sites on 513 acetylated proteins; and functionally categorized them into an interaction map showing their involvement in various biological processes. Consistent with previous reports, a large fraction of the acetylation sites are present on proteins involved in cellular metabolism. Interestingly, for the first time, many proteins involved in photosynthesis, including the subunits of phycocyanin (CpcA, CpcB, CpcC, and CpcG) and allophycocyanin (ApcA, ApcB, ApcD, ApcE, and ApcF), were found to be lysine acetylated, suggesting that lysine acetylation may play regulatory roles in the photosynthesis process. Six identified acetylated proteins associated with photosynthesis and carbon metabolism were further validated by immunoprecipitation and Western blotting. Our data provide the first global survey of lysine acetylation in cyanobacteria and reveal previously unappreciated roles of lysine acetylation in the regulation of photosynthesis. The provided data set may serve as an important resource for the functional analysis of lysine acetylation in cyanobacteria and facilitate the elucidation of the entire metabolic networks and photosynthesis process in this model cyanobacterium.

  3. Influence of Extractive Solvents on Lipid and Fatty Acids Content of Edible Freshwater Algal and Seaweed Products, the Green Microalga Chlorella kessleri and the Cyanobacterium Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Jarmila Vavra Ambrozova

    2014-02-01

    Full Text Available Total lipid contents of green (Chlorella pyrenoidosa, C, red (Porphyra tenera, N; Palmaria palmata, D, and brown (Laminaria japonica, K; Eisenia bicyclis, A; Undaria pinnatifida, W, WI; Hizikia fusiformis, H commercial edible algal and cyanobacterial (Spirulina platensis, S products, and autotrophically cultivated samples of the green microalga Chlorella kessleri (CK and the cyanobacterium Spirulina platensis (SP were determined using a solvent mixture of methanol/chloroform/water (1:2:1, v/v/v, solvent I and n-hexane (solvent II. Total lipid contents ranged from 0.64% (II to 18.02% (I by dry weight and the highest total lipid content was observed in the autotrophically cultivated cyanobacterium Spirulina platensis. Solvent mixture I was found to be more effective than solvent II. Fatty acids were determined by gas chromatography of their methyl esters (% of total FAMEs. Generally, the predominant fatty acids (all results for extractions with solvent mixture I were saturated palmitic acid (C16:0; 24.64%–65.49%, monounsaturated oleic acid (C18:1(n-9; 2.79%–26.45%, polyunsaturated linoleic acid (C18:2(n-6; 0.71%–36.38%, α-linolenic acid (C18:3(n-3; 0.00%–21.29%, γ-linolenic acid (C18:3(n-6; 1.94%–17.36%, and arachidonic acid (C20:4(n-6; 0.00%–15.37%. The highest content of ω-3 fatty acids (21.29% was determined in Chlorella pyrenoidosa using solvent I, while conversely, the highest content of ω-6 fatty acids (41.42% was observed in Chlorella kessleri using the same solvent.

  4. Marine cloud brightening

    Science.gov (United States)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-01-01

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identified herein—have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud–albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action

  5. Marine Cloud Brightening

    Energy Technology Data Exchange (ETDEWEB)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, H.; Connolly, P.; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Philip J.; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Robert

    2012-09-07

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could - subject to satisfactory resolution of technical and scientific problems identified herein - have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seedparticle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  6. Marine Microbiology: Facets & Opportunities

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.

    the tropical Mandovi 2 Zuari estuarine system are suggesting that the preponderant particle-colonizing bacteria perform better than their counterparts in free-living format. In their natural environments, microorganisms are exposed to a wide range of physical... Shanta Nair suggests, despite the immense clinical significance of antibiotics in health care, little is understood on the ecology of the organisms that produce them. Since marine environment harbors a wide range of microbes capable of exhibiting...

  7. Chemistry of marine sediments

    International Nuclear Information System (INIS)

    Yen, T.F.

    1977-01-01

    Some topics considered are as follows: characterization of sediments in the vicinity of offshore petroleum production; thermal alteration experiments on organic matter in recent marine sediments as a model for petroleum genesis; composition of polluted bottom sediments in Great Lakes harbors; distribution of heavy metals in sediment fractions; recent deposition of lead off the coast of southern California; release of trace constituents from sediments resuspended during dredging operations; and migration of chemical constituents in sediment-seawater interfaces

  8. Radioactive marine pollution

    International Nuclear Information System (INIS)

    Pontavice, E. du

    1976-01-01

    Certain provision in international law aim to prevent radioactive marine pollution and others concern compensation of damage from nuclear pollution. Prevention requires regulation of the disposal of wastes from nuclear industry from the operation of nuclear powered ships and from transport of fissile materials. As regards damage, if the measures to limit the extent of the damage come under the law of the sea, the priority of nuclear law over maritime law is clear in respect of financial compensation. (Auth) [fr

  9. Marine cloud brightening.

    Science.gov (United States)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-09-13

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could-subject to satisfactory resolution of technical and scientific problems identified herein-have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  10. Faunistics (marine animals)

    DEFF Research Database (Denmark)

    2009-01-01

    These PowerPoint files are compiled from various sources: Internet, field guides, scientific monographs, textbooks, my own photos and drawings, etc. I have no copyright or permission to use most of the illustrations. The file is therefore only intended for internal use within the Marine Biology...... for identification have only been included for about a quarter of the species only, because of lack of time).     These files contain information of about 570 species of marine invertebrates found in the waters around Denmark. They should be the most common species. Which species should be selected for files like......) with the programme PowerPoint X for Mac® Service Release 1.     Comments and suggestions are welcome from students and colleagues. HD&P = Køie, Kristiansen & Weitemeyer, Havets dyr og planter. DN = Danmarks Natur, vol. 3, Havet     Tomas Cedhagen, Department of Marine Ecology, University of Aarhus, Finlandsgade 14...

  11. Marine botany. Second edition

    International Nuclear Information System (INIS)

    Dawes, C.J.

    1998-01-01

    Marine plants are a diverse group that include unicellular algae, seaweeds, seagrasses, salt marshes, and mangrove forests. They carry out a variety of ecological functions and serve as the primary producers in coastal wetlands and oceanic waters. The theme that connects such a wide variety of plants is their ecology, which was also emphasized in the 1981 edition. The goal of this revision is to present taxonomic, physiological, chemical, and ecological aspects of marine plants, their adaptations, and how abiotic and biotic factors interact in their communities. The data are presented in a concise, comparative manner in order to identify similarities and differences between communities such as salt marsh and mangroves or subtidal seaweeds and seagrasses. To accomplish this, the text is organized into five chapters that introduce the marine habitats, consider abiotic and biotic factors, and anthropogenic influences on the communities followed by seven chapters that deal with microalgae, seaweeds, salt marshes, mangroves, seagrasses, and coral reefs. Two appendixes are included; one presents simple field techniques and the other is a summary of seaweed uses

  12. Viruses infecting marine molluscs.

    Science.gov (United States)

    Arzul, Isabelle; Corbeil, Serge; Morga, Benjamin; Renault, Tristan

    2017-07-01

    Although a wide range of viruses have been reported in marine molluscs, most of these reports rely on ultrastructural examination and few of these viruses have been fully characterized. The lack of marine mollusc cell lines restricts virus isolation capacities and subsequent characterization works. Our current knowledge is mostly restricted to viruses affecting farmed species such as oysters Crassostrea gigas, abalone Haliotis diversicolor supertexta or the scallop Chlamys farreri. Molecular approaches which are needed to identify virus affiliation have been carried out for a small number of viruses, most of them belonging to the Herpesviridae and birnaviridae families. These last years, the use of New Generation Sequencing approach has allowed increasing the number of sequenced viral genomes and has improved our capacity to investigate the diversity of viruses infecting marine molluscs. This new information has in turn allowed designing more efficient diagnostic tools. Moreover, the development of experimental infection protocols has answered some questions regarding the pathogenesis of these viruses and their interactions with their hosts. Control and management of viral diseases in molluscs mostly involve active surveillance, implementation of effective bio security measures and development of breeding programs. However factors triggering pathogen development and the life cycle and status of the viruses outside their mollusc hosts still need further investigations. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Transcriptome Analysis of a Bloom-Forming Cyanobacterium Microcystis aeruginosa during Ma-LMM01 Phage Infection

    Directory of Open Access Journals (Sweden)

    Daichi Morimoto

    2018-01-01

    Full Text Available Microcystis aeruginosa forms massive blooms in eutrophic freshwaters, where it is constantly exposed to lytic cyanophages. Unlike other marine cyanobacteria, M. aeruginosa possess remarkably abundant and diverse potential antiviral defense genes. Interestingly, T4-like cyanophage Ma-LMM01, which is the sole cultured lytic cyanophage infecting M. aeruginosa, lacks the host-derived genes involved in maintaining host photosynthesis and directing host metabolism that are abundant in other marine cyanophages. Based on genomic comparisons with closely related cyanobacteria and their phages, Ma-LMM01 is predicted to employ a novel infection program that differs from that of other marine cyanophages. Here, we used RNA-seq technology and in silico analysis to examine transcriptional dynamics during Ma-LMM01 infection to reveal host transcriptional responses to phage infection, and to elucidate the infection program used by Ma-LMM01 to avoid the highly abundant host defense systems. Phage-derived reads increased only slightly at 1 h post-infection, but significantly increased from 16% of total cellular reads at 3 h post-infection to 33% of all reads by 6 h post-infection. Strikingly, almost none of the host genes (0.17% showed a significant change in expression during infection. However, like other lytic dsDNA phages, including marine cyanophages, phage gene dynamics revealed three expression classes: early (host-takeover, middle (replication, and late (virion morphogenesis. The early genes were concentrated in a single ∼5.8-kb window spanning 10 open reading frames (gp054–gp063 on the phage genome. None of the early genes showed homology to the early genes of other T4-like phages, including known marine cyanophages. Bacterial RNA polymerase (σ70 recognition sequences were also found in the upstream region of middle and late genes, whereas phage-specific motifs were not found. Our findings suggest that unlike other known T4-like phages, Ma-LMM01

  14. Viruses manipulate the marine environment.

    Science.gov (United States)

    Rohwer, Forest; Thurber, Rebecca Vega

    2009-05-14

    Marine viruses affect Bacteria, Archaea and eukaryotic organisms and are major components of the marine food web. Most studies have focused on their role as predators and parasites, but many of the interactions between marine viruses and their hosts are much more complicated. A series of recent studies has shown that viruses have the ability to manipulate the life histories and evolution of their hosts in remarkable ways, challenging our understanding of this almost invisible world.

  15. Global marine radioactivity database (GLOMARD)

    International Nuclear Information System (INIS)

    Povinec, P.P.; Gayol, J.; Togawa, O.

    1999-01-01

    In response to the request of Member States and under the IAEA's mandate, the IAEA Marine Environment Laboratory (MEL) in Monaco has established and maintains a Global Marine Radioactivity Database (GLOMARD). It is a vast project compiling radionuclide measurements taken in the marine environment. It consists of systematic input of all radionuclide concentration data available for sea water, sediment, biota and suspended matter. The GLOMARD is therefore a powerful tool for the researchers of MEL as it integrates the results of analyses in most of the areas of the marine environment which have been investigated

  16. Marine biodiversity and fishery sustainability.

    Science.gov (United States)

    Shao, Kwang-Tsao

    2009-01-01

    Marine fish is one of the most important sources of animal protein for human use, especially in developing countries with coastlines. Marine fishery is also an important industry in many countries. Fifty years ago, many people believed that the ocean was so vast and so resilient that there was no way the marine environment could be changed, nor could marine fishery resources be depleted. Half a century later, we all agree that the depletion of fishery resources is happening mainly due to anthropogenic factors such as overfishing, habitat destruction, pollution, invasive species introduction, and climate change. Since overfishing can cause chain reactions that decrease marine biodiversity drastically, there will be no seafood left after 40 years if we take no action. The most effective ways to reverse this downward trend and restore fishery resources are to promote fishery conservation, establish marine-protected areas, adopt ecosystem-based management, and implement a "precautionary principle." Additionally, enhancing public awareness of marine conservation, which includes eco-labeling, fishery ban or enclosure, slow fishing, and MPA (marine protected areas) enforcement is important and effective. In this paper, we use Taiwan as an example to discuss the problems facing marine biodiversity and sustainable fisheries.

  17. Marine biogeochemistry of radionuclides

    International Nuclear Information System (INIS)

    Fowler, S.W.

    1997-01-01

    Radionuclides entering the ocean from runoff, fallout, or deliberate release rapidly become involved in marine biogeochemical cycles. Sources, sinks and transport of radionuclides and analogue elements are discussed with emphasis placed on how these elements interact with marine organisms. Water, food and sediments are the source terms from which marine biota acquire radionuclides. Uptake from water occurs by surface adsorption, absorption across body surfaces, or a combination of both. Radionuclides ingested with food are either assimilated into tissue or excreted. The relative importance of the food and water pathway in uptake varies with the radionuclide and the conditions under which exposure occurs. Evidence suggests that, compared to the water and food pathways, bioavailability of sediment-bound radionuclides is low. Bioaccumulation processes are controlled by many environmental and intrinsic factors including exposure time, physical-chemical form of the radionuclide, salinity, temperature, competitive effects with other elements, organism size, physiology, life cycle and feeding habits. Once accumulated, radionuclides are transported actively by vertical and horizontal movements of organisms and passively by release of biogenic products, e.g., soluble excreta, feces, molts and eggs. Through feeding activities, particles containing radionuclides are ''packaged'' into larger aggregates which are redistributed upon release. Most radionuclides are not irreversibly bound to such particles but are remineralized as they sink and/or decompose. In the pelagic zones, sinking aggregates can further scavenge particle-reactive elements thus removing them from the surface layers and transporting them to depth. Evidence from both radiotracer experiments and in situ sediment trap studies is presented which illustrates the importance of biological scavenging in controlling the distribution of radionuclides in the water column. (author)

  18. Persistent marine debris

    International Nuclear Information System (INIS)

    Levy, E.M.

    1992-01-01

    In this paper the distribution of persistent marine debris, adrift on world oceans and stranded on beaches globally, is reviewed and related to the known inputs and transport by the major surface currents. Since naturally occurring processes eventually degrade petroleum in the environment, international measures to reduce the inputs have been largely successful in alleviating oil pollution on a global, if not on a local, scale. Many plastics, however, are so resistant to natural degradation that merely controlling inputs will be insufficient, and more drastic and costly measures will be needed to cope with the emerging global problem posed by these materials

  19. Extremozymes from Marine Actinobacteria.

    Science.gov (United States)

    Suriya, J; Bharathiraja, S; Krishnan, M; Manivasagan, P; Kim, S-K

    Marine microorganisms that have the possibility to survive in diverse conditions such as extreme temperature, pH, pressure, and salinity are known as extremophiles. They produce biocatalysts so named as extremozymes that are active and stable at extreme conditions. These enzymes have numerous industrial applications due to its distinct properties. Till now, only a fraction of microorganisms on Earth have been exploited for screening of extremozymes. Novel techniques used for the cultivation and production of extremophiles, as well as cloning and overexpression of their genes in various expression systems, will pave the way to use these enzymes for chemical, food, pharmaceutical, and other industrial applications. © 2016 Elsevier Inc. All rights reserved.

  20. 75 FR 18095 - America's Marine Highway Program

    Science.gov (United States)

    2010-04-09

    ... Marine Highway Transportation. Authority: Energy Independence and Security Act of 2007, Sections 1121...] RIN 2133-AB70 America's Marine Highway Program AGENCY: Maritime Administration, Department of... interim final rule that established America's Marine Highway Program, under which the Secretary will...

  1. Marine conservation strategies for Maharashtra Coast

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.; Dhargalkar, V.K.

    , Wildlife Sanctuaries, Marine Parks and Protected Areas. Detailed studies of 37 sites along the Maharashtra Coast, for their marine biota and also the ecological conditions, were taken up. Out of these, seven most luxuriant areas in marine biodiversity have...

  2. A global census of marine microbes

    Digital Repository Service at National Institute of Oceanography (India)

    Amaral-Zettler, L.; Artigas, L.F.; Baross, J.; LokaBharathi, P.A; Boetius, A; Chandramohan, D.; Herndl, G.; Kogure, K.; Neal, P.; Pedros-Alio, C.; Ramette, A; Schouten, S.; Stal, L.; Thessen, A; De Leeuw, J.; Sogin, M.

    In this chapter we provide a brief history of what is known about marine microbial diversity, summarize our achievements in performing a global census of marine microbes, and reflect on the questions and priorities for the future of the marine...

  3. SANCOR: Summary report on marine research 1987

    CSIR Research Space (South Africa)

    SANCOR

    1988-01-01

    Full Text Available , Marine Linefish, Marine Pollution, Marine Sedimentology and the newly formed Ocean Engineering programme. This report includes brief statements on the activities of each of these programmes in 1987 and emphasizes important findings and conclusions...

  4. Preamble to marine microbiology: Facets and opportunities

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.

    The book titled 'Marine Microbiology: Facets & Opportunities' is an attempt to bring together some facets of marine microbiology as have been made out by many contemporaries in particular from the tropical marine regions. There are 18 contributed...

  5. Radionuclides in marine organisms

    International Nuclear Information System (INIS)

    Honda, Teruyuki

    2001-01-01

    The concentration and accumulation of radionuclides in marine organisms were explained in this paper. Secular change of the radioactivity concentration of 137 Cs in seaweed in coastal area of Japan showed more than 5Bq/kg-fresh in the first half of 1960, but decreased less than 1 Bq/kg-fresh after then and attained to less than 0.1 Bq/kg-fresh in 1990s. However, the value increased a while in 1986, which indicated the effect of Chernobyl accident. The accident increased 137 Cs of shellfish near Japan. The concentration of 239+240 Pu was the lowest value in muscles of fish, but increased from 1.7 to 42.3 mBq/kg wet wt in seaweed in 1999. 99 Tc concentration of seaweed showed from 100 to 1000 times as much as that of seawater. Radionuclides in the Irish Sea are originated from Sellafield reprocessing plant. The concentration factors of macro-algae and surface water fish (IAEA,1985) were shown. Analytical results of U in 61 kinds of marine organs showed that the concentration was different in the part of organ. The higher concentration of U was observed in hard tissue of fish. The concentration factor was different between chemical substances with the same radionuclides. (S.Y.)

  6. Marine and freshwater toxins.

    Science.gov (United States)

    Hungerford, James M

    2006-01-01

    In a very busy and exciting year, 2005 included First Action approval of a much needed official method for paralytic shellfish toxins and multiple international toxin symposia highlighted by groundbreaking research. These are the first-year milestones and activities of the Marine and Freshwater Toxins Task Force and Analytical Community. Inaugurated in 2004 and described in detail in last year's General Referee Report (1) this international toxins group has grown to 150 members from many regions and countries. Perhaps most important they are now making important and global contributions to food safety and to providing alternatives to animal-based assays. Official Method 2005.06 was first approved in late 2004 by the Task Force and subsequently Official First Action in 2005 (2) by the Methods Committee on Natural Toxins and Food Allergens and the Official Methods Board. This nonproprietary method (3) is a precolumn oxidation, liquid chromatographic method that makes good use of fluorescence detection to provide high sensitivity detection of the saxitoxins. It has also proven to be rugged enough for regulatory use and the highest level of validation. As pointed out in the report of method principle investigator and Study Director James Lawrence, approval of 2005.06 now provides the first official alternative to the mouse bioassay after many decades of shellfish monitoring. This past year in April 2005 the group also held their first international conference, "Marine and Freshwater Toxins Analysis: Ist Joint Symposium and AOAC Task Force Meeting," in Baiona, Spain. The 4-day conference consisted of research and stakeholder presentations and symposium-integrated subgroup sessions on ciguatoxins, saxitoxin assays and liquid chromatography (LC) methods for saxitoxins and domoic acids, okadaiates and azaspiracids, and yessotoxins. Many of these subgroups were recently formed in 2005 and are working towards their goals of producing officially validated analytical methods

  7. Plastics in the Marine Environment.

    Science.gov (United States)

    Law, Kara Lavender

    2017-01-03

    Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence-albeit limited-of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem.

  8. Plastics in the Marine Environment

    Science.gov (United States)

    Law, Kara Lavender

    2017-01-01

    Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence—albeit limited—of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem.

  9. Biodiversity of arctic marine fishes

    DEFF Research Database (Denmark)

    Mecklenburg, Catherine W.; Møller, Peter Rask; Steinke, Dirk

    2011-01-01

    Taxonomic and distributional information on each fish species found in arctic marine waters is reviewed, and a list of families and species with commentary on distributional records is presented. The list incorporates results from examination of museum collections of arctic marine fishes dating b...

  10. Marine line fish research programme

    CSIR Research Space (South Africa)

    SANCOR

    1979-04-01

    Full Text Available This report outlines the framework for a marine line fish programme under the aegis of the South African National Committee for Oceanographic Research (SANCOR). An attempt is made to assess the state of knowledge about South African marine line...

  11. MERCURY IN MARINE LIFE DATABASE

    Science.gov (United States)

    The purpose of the Mercury in Marine Life Project is to organize information on estuarine and marine species so that EPA can better understand both the extent of monitoring for mercury and level of mercury contamination in the biota of coastal environments. This report follows a ...

  12. 75 FR 76399 - Marine Mammals

    Science.gov (United States)

    2010-12-08

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration [File No. 781-1824] RIN 0648-XZ66 Marine Mammals AGENCY: National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Commerce. ACTION: Notice; receipt of application for permit amendment; extension of public...

  13. Marine Biology and Human Affairs

    Science.gov (United States)

    Russell, F. S.

    1976-01-01

    Marine biology has become an important area for study throughout the world. The author of this article discusses some of the important discoveries and fields of research in marine biology that are useful for mankind. Topics include food from the sea, fish farming, pesticides, pollution, and conservation. (MA)

  14. Marine Casualty and Pollution Data for Researchers

    Data.gov (United States)

    Department of Homeland Security — The Marine Casualty and Pollution Data files provide details about marine casualty and pollution incidents investigated by Coast Guard Offices throughout the United...

  15. Biosynthesis of 3-Dimethylsulfoniopropionate in Marine Algae

    National Research Council Canada - National Science Library

    Rhodes, David

    2000-01-01

    ...) in marine algae, including identification of intermediates and enzymes of the pathway in the macroalgae Enteromorpha Intestinalis, and three diverse marine phytoplankton species; Tetraselmis sp...

  16. A Guideline for Marine Corps Financial Managers

    National Research Council Canada - National Science Library

    Wright, Anthone

    1998-01-01

    ...), and Marine Corps orders, publications and directives to determine those keys areas considered most essential to Marine Corps financial management specialists in the performance of their duties...

  17. Antimycobacterial Metabolites from Marine Invertebrates.

    Science.gov (United States)

    Daletos, Georgios; Ancheeva, Elena; Chaidir, Chaidir; Kalscheuer, Rainer; Proksch, Peter

    2016-10-01

    Marine organisms play an important role in natural product-based drug research due to accumulation of structurally unique and bioactive metabolites. The exploration of marine-derived compounds may significantly extend the scientific knowledge of potential scaffolds for antibiotic drug discovery. Development of novel antitubercular agents is especially significant as the emergence of drug-resistant Mycobacterium tuberculosis strains remains threateningly high. Marine invertebrates (i.e., sponges, corals, gorgonians) as a source of new chemical entities are the center of research for several scientific groups, and the wide spectrum of biological activities of marine-derived compounds encourages scientists to carry out investigations in the field of antibiotic research, including tuberculosis treatment. The present review covers published data on antitubercular natural products from marine invertebrates grouped according to their biogenetic origin. Studies on the structure-activity relationships of these important leads are highlighted as well. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Marine spatial planning in Cyprus

    Science.gov (United States)

    Hadjimitsis, Diofantos; Agapiou, Athos; Mettas, Christodoulos; Themistocleous, Kyriacos; Evagorou, Evagoras; Cuca, Branka; Papoutsa, Christiana; Nisantzi, Argyro; Mamouri, Rodanthi-Elisavet; Soulis, George; Xagoraris, Zafiris; Lysandrou, Vasiliki; Aliouris, Kyriacos; Ioannou, Nicolas; Pavlogeorgatos, Gerasimos

    2015-06-01

    Marine Spatial Planning (MSP), which is in concept similar to land-use planning, is a public process by which the relevant Member State's authorities analyse and organise human activities in marine areas to achieve ecological, economic and social objectives. MSP aims to promote sustainable growth of maritime economies, sustainable development of marine areas and sustainable use of marine resources. This paper highlights the importance of MSP and provides basic outcomes of the main European marine development. The already successful MSP plans can provide useful feedback and guidelines for other countries that are in the process of implementation of an integrated MSP, such as Cyprus. This paper presents part of the MSP project, of which 80% funded by the European Regional Development Fund (ERDF) and 20% from national contribution. An overview of the project is presented, including data acquisition, methodology and preliminary results for the implementation of MSP in Cyprus.

  19. Effects of lindane on the photosynthetic apparatus of the cyanobacterium Anabaena: fluorescence induction studies and immunolocalization of ferredoxin-NADP+ reductase.

    Science.gov (United States)

    Bueno, Marta; Fillat, Maria F; Strasser, Reto J; Maldonado-Rodriguez, Ronald; Marina, Nerea; Smienk, Henry; Gómez-Moreno, Carlos; Barja, Francisco

    2004-01-01

    Cyanobacteria have the natural ability to degrade moderate amounts of organic pollutants. However, when pollutant concentration exceeds the level of tolerance, bleaching of the cells and death occur within 24 hours. Under stress conditions, cyanobacterial response includes the short-term adaptation of the photosynthetic apparatus to light quality, named state transitions. Moreover, prolonged stresses produce changes in the functional organization of phycobilisomes and in the core-complexes of both photosystems, which can result in large changes in the PS II fluorescence yield. The localization of ferredoxin-NADP+ reductase (FNR) at the ends of some peripheral rods of the cyanobacterial phycobilisomes, makes this protein a useful marker to check phycobilisome integrity. The goal of this work is to improve the knowledge of the mechanism of action of a very potent pesticide, lindane (gamma-hexaclorociclohexane), in the cyanobacterium Anabaena sp., which can be considered a potential candidate for bioremediation of pesticides. We have studied the effect of lindane on the photosynthetic apparatus of Anabaena using fluorescence induction studies. As ferredoxin-NADP+ reductase plays a key role in the response to oxidative stress in several systems, changes in synthesis, degradation and activity of FNR were analyzed. Immunolocalization of this enzyme was used as a marker of phycobilisome integrity. The knowledge of the changes caused by lindane in the photosynthetic apparatus is essential for rational further design of genetically-modified cyanobacteria with improved biorremediation abilities. Polyphasic chlorophyll a fluorescence rise measurements (OJIP) have been used to evaluate the vitality and stress adaptation of the nitrogen-fixing cyanobacterium Anabaena PCC 7119 in the presence of increasing concentrations of lindane. Effects of the pesticide on the ultrastructure have been investigated by electron microscopy, and FNR has been used as a marker of phycobilisome

  20. African Journal of Marine Science - Vol 36, No 2 (2014)

    African Journals Online (AJOL)

    Nitrogen uptake dynamics of a persistent cyanobacterium Cyanothece sp. bloom in Lake St Lucia, South Africa · EMAIL FULL TEXT EMAIL FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. SJ du Plooy, AJ Smit, R Perissinotto, DG Muir. http://dx.doi.org/10.2989/1814232X.2014.922124 ...

  1. Marine Renewable Energy Seascape

    Directory of Open Access Journals (Sweden)

    Alistair G.L. Borthwick

    2016-03-01

    Full Text Available Energy production based on fossil fuel reserves is largely responsible for carbon emissions, and hence global warming. The planet needs concerted action to reduce fossil fuel usage and to implement carbon mitigation measures. Ocean energy has huge potential, but there are major interdisciplinary problems to be overcome regarding technology, cost reduction, investment, environmental impact, governance, and so forth. This article briefly reviews ocean energy production from offshore wind, tidal stream, ocean current, tidal range, wave, thermal, salinity gradients, and biomass sources. Future areas of research and development are outlined that could make exploitation of the marine renewable energy (MRE seascape a viable proposition; these areas include energy storage, advanced materials, robotics, and informatics. The article concludes with a sustainability perspective on the MRE seascape encompassing ethics, legislation, the regulatory environment, governance and consenting, economic, social, and environmental constraints. A new generation of engineers is needed with the ingenuity and spirit of adventure to meet the global challenge posed by MRE.

  2. Marine radioecology. Final report

    International Nuclear Information System (INIS)

    Palsson, S.E.

    1998-06-01

    Results of the EKO-1 project for the period 1994-1997 are summarised in this report. The aim of the project was to make a joint Nordic study on radionuclides in sediment and water and the interaction between these two phases. Relatively less emphasis has been put on this factor compared to others in previous Nordic studies on marine radioecology. For some of the participating countries this work was the first of its kind undertaken. The project work involved field, laboratory and model studies. Results of the study have appeared in various scientific journal and it has formed the bases for two Ph.D. theses and two M.Sc. theses. (au)

  3. Monaco and marine environmental protection

    International Nuclear Information System (INIS)

    Grimaldi, Albert II Prince

    2006-01-01

    The importance of the protection of the marine environment for sustainable development and economy of coastal countries, like Monaco, is well known. Sadly, this environment has been under continuous threats from development, tourism, urbanisation and demographic pressure. The semi-enclosed Mediterranean sea is challenged by new pollutant cocktails, problems of fresh water management, over-fishing, and now increasingly climate change impacts. Monaco has a long history in the investigation of the marine environment. Prince Albert I, was one of the pioneers in oceanographic exploration, organizer of European oceanographic research and founder of several international organizations including the Musee Oceanographique. The International Atomic Energy Agency established in 1961 its Marine Environment Laboratory in Monaco, the only marine laboratory in the United Nations system. More than 40 years ago the IAEA joined forces with the Grimaldi family and several interested governments to establish the Marine Environment Laboratory in Monaco. Their first purpose-built facilities, dedicated to marine research, launched a new era in the investigation of the marine environment using radioactive and stable isotopes as tracers for better understanding of processes in the oceans and seas, addressing their pollution and promoting wide international cooperation. The Government of the Principality of Monaco has been actively engaged in these developments and is continuously supporting activities of the Monaco Laboratory

  4. Enzymatic Processes in Marine Biotechnology.

    Science.gov (United States)

    Trincone, Antonio

    2017-03-25

    In previous review articles the attention of the biocatalytically oriented scientific community towards the marine environment as a source of biocatalysts focused on the habitat-related properties of marine enzymes. Updates have already appeared in the literature, including marine examples of oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases ready for food and pharmaceutical applications. Here a new approach for searching the literature and presenting a more refined analysis is adopted with respect to previous surveys, centering the attention on the enzymatic process rather than on a single novel activity. Fields of applications are easily individuated: (i) the biorefinery value-chain, where the provision of biomass is one of the most important aspects, with aquaculture as the prominent sector; (ii) the food industry, where the interest in the marine domain is similarly developed to deal with the enzymatic procedures adopted in food manipulation; (iii) the selective and easy extraction/modification of structurally complex marine molecules, where enzymatic treatments are a recognized tool to improve efficiency and selectivity; and (iv) marine biomarkers and derived applications (bioremediation) in pollution monitoring are also included in that these studies could be of high significance for the appreciation of marine bioprocesses.

  5. Marine biodiversity in Japanese waters.

    Directory of Open Access Journals (Sweden)

    Katsunori Fujikura

    Full Text Available To understand marine biodiversity in Japanese waters, we have compiled information on the marine biota in Japanese waters, including the number of described species (species richness, the history of marine biology research in Japan, the state of knowledge, the number of endemic species, the number of identified but undescribed species, the number of known introduced species, and the number of taxonomic experts and identification guides, with consideration of the general ocean environmental background, such as the physical and geological settings. A total of 33,629 species have been reported to occur in Japanese waters. The state of knowledge was extremely variable, with taxa containing many inconspicuous, smaller species tending to be less well known. The total number of identified but undescribed species was at least 121,913. The total number of described species combined with the number of identified but undescribed species reached 155,542. This is the best estimate of the total number of species in Japanese waters and indicates that more than 70% of Japan's marine biodiversity remains un-described. The number of species reported as introduced into Japanese waters was 39. This is the first attempt to estimate species richness for all marine species in Japanese waters. Although its marine biota can be considered relatively well known, at least within the Asian-Pacific region, considering the vast number of different marine environments such as coral reefs, ocean trenches, ice-bound waters, methane seeps, and hydrothermal vents, much work remains to be done. We expect global change to have a tremendous impact on marine biodiversity and ecosystems. Japan is in a particularly suitable geographic situation and has a lot of facilities for conducting marine science research. Japan has an important responsibility to contribute to our understanding of life in the oceans.

  6. Databases of the marine metagenomics

    KAUST Repository

    Mineta, Katsuhiko

    2015-10-28

    The metagenomic data obtained from marine environments is significantly useful for understanding marine microbial communities. In comparison with the conventional amplicon-based approach of metagenomics, the recent shotgun sequencing-based approach has become a powerful tool that provides an efficient way of grasping a diversity of the entire microbial community at a sampling point in the sea. However, this approach accelerates accumulation of the metagenome data as well as increase of data complexity. Moreover, when metagenomic approach is used for monitoring a time change of marine environments at multiple locations of the seawater, accumulation of metagenomics data will become tremendous with an enormous speed. Because this kind of situation has started becoming of reality at many marine research institutions and stations all over the world, it looks obvious that the data management and analysis will be confronted by the so-called Big Data issues such as how the database can be constructed in an efficient way and how useful knowledge should be extracted from a vast amount of the data. In this review, we summarize the outline of all the major databases of marine metagenome that are currently publically available, noting that database exclusively on marine metagenome is none but the number of metagenome databases including marine metagenome data are six, unexpectedly still small. We also extend our explanation to the databases, as reference database we call, that will be useful for constructing a marine metagenome database as well as complementing important information with the database. Then, we would point out a number of challenges to be conquered in constructing the marine metagenome database.

  7. Climate change and marine life

    DEFF Research Database (Denmark)

    Richardson, Anthony J.; Brown, Christopher J.; Brander, Keith

    2012-01-01

    A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change...... ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC......) process, and to strengthen research into ecological impacts of climate change...

  8. Marine Radioactivity Mapping in Malaysia

    International Nuclear Information System (INIS)

    Zal U'yun Wan Mahmood; Abdul Kadir Ishak; Norfaizal Mohamad; Wo, Y.M.; Kamarudin Samuding

    2015-01-01

    This book focuses on data collection, mapping and also development of marine radioactivity which obtained from a few researchs from year 2003 until 2008. The aims of the database reported in this book is to become a benchmark as well to be a reference material for future researchers. Furthermore, this book contained the radionuclide pollution information and distribution pattern mapping in marine environment. To strengthen the content for this book, the authors also provide a complete technical information which consist methods, prepation and sample analysis either in field work or laboratory. By producing this book, the author hope that it will help future researcher who are involved in oceanography and marine radioactivity.

  9. 50 CFR 14.18 - Marine mammals.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 1 2010-10-01 2010-10-01 false Marine mammals. 14.18 Section 14.18....18 Marine mammals. Any person subject to the jurisdiction of the United States who has lawfully taken a marine mammal on the high seas and who is authorized to import such marine mammal in accordance...

  10. Effects of the filamentous cyanobacterium Nodularia on fitness and feeding behavior of young-of-the-year (YOY) Eurasian perch (Perca fluviatilis).

    Science.gov (United States)

    Persson, Karl-Johan; Stenroth, Patrik; Legrand, Catherine

    2011-06-01

    This study reveals that both cyanobacterial toxicity and turbidity have the potential to reduce the growth and energy storage of young-of-the-year (YOY) perch and thereby influence survival rates. During the 1990's a reduction in recruitment of YOY perch (Perca fluviatilis) occurred along the Swedish East coast. Concurrently, large blooms of filamentous cyanobacteria have increased in the Baltic Proper and in coastal waters. This study examined whether extended exposure to toxic and non-toxic filamentous cyanobacterium Nodularia affect YOY perch growth and feeding behavior under simulated bloom conditions (30 days at 50 μg Chl a L(-1)). Specific growth rate (SGR), the somatic condition index (SCI) and the lipid content of YOY perch (10-12 weeks old) were significantly lower in perch exposed to Nodularia compared to fed controls (no Nodularia). YOY perch exposed to non-toxic Nodularia displayed a higher attack rate than perch living in Nodularia free controls in 2 out of 3 trials. Reductions in growth and energy storage, mediated by cyanobacteria, increase the risk of starvation and predation and could locally influence recruitment of YOY perch. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Molecular Cloning and Biochemical Characterization of the Iron Superoxide Dismutase from the Cyanobacterium Nostoc punctiforme ATCC 29133 and Its Response to Methyl Viologen-Induced Oxidative Stress.

    Science.gov (United States)

    Moirangthem, Lakshmipyari Devi; Ibrahim, Kalibulla Syed; Vanlalsangi, Rebecca; Stensjö, Karin; Lindblad, Peter; Bhattacharya, Jyotirmoy

    2015-12-01

    Superoxide dismutase (SOD) detoxifies cell-toxic superoxide radicals and constitutes an important component of antioxidant machinery in aerobic organisms, including cyanobacteria. The iron-containing SOD (SodB) is one of the most abundant soluble proteins in the cytosol of the nitrogen-fixing cyanobacterium Nostoc punctiforme ATCC 29133, and therefore, we investigated its biochemical properties and response to oxidative stress. The putative SodB-encoding open reading frame Npun_R6491 was cloned and overexpressed in Escherichia coli as a C-terminally hexahistidine-tagged protein. The purified recombinant protein had a SodB specific activity of 2560 ± 48 U/mg protein at pH 7.8 and was highly thermostable. The presence of a characteristic iron absorption peak at 350 nm, and its sensitivity to H2O2 and azide, confirmed that the SodB is an iron-containing SOD. Transcript level of SodB in nitrogen-fixing cultures of N. punctiforme decreased considerably (threefold) after exposure to an oxidative stress-generating herbicide methyl viologen for 4 h. Furthermore, in-gel SOD activity analysis of such cultures grown at increasing concentrations of methyl viologen also showed a loss of SodB activity. These results suggest that SodB is not the primary scavenger of superoxide radicals induced by methyl viologen in N. punctiforme.

  12. Biochemical and Molecular Phylogenetic Study of Agriculturally Useful Association of a Nitrogen-Fixing Cyanobacterium and Nodule Sinorhizobium with Medicago sativa L.

    Directory of Open Access Journals (Sweden)

    E. V. Karaushu

    2015-01-01

    Full Text Available Seed inoculation with bacterial consortium was found to increase legume yield, providing a higher growth than the standard nitrogen treatment methods. Alfalfa plants were inoculated by mono- and binary compositions of nitrogen-fixing microorganisms. Their physiological and biochemical properties were estimated. Inoculation by microbial consortium of Sinorhizobium meliloti T17 together with a new cyanobacterial isolate Nostoc PTV was more efficient than the single-rhizobium strain inoculation. This treatment provides an intensification of the processes of biological nitrogen fixation by rhizobia bacteria in the root nodules and an intensification of plant photosynthesis. Inoculation by bacterial consortium stimulates growth of plant mass and rhizogenesis and leads to increased productivity of alfalfa and to improving the amino acid composition of plant leaves. The full nucleotide sequence of the rRNA gene cluster and partial sequence of the dinitrogenase reductase (nifH gene of Nostoc PTV were deposited to GenBank (JQ259185.1, JQ259186.1. Comparison of these gene sequences of Nostoc PTV with all sequences present at the GenBank shows that this cyanobacterial strain does not have 100% identity with any organisms investigated previously. Phylogenetic analysis showed that this cyanobacterium clustered with high credibility values with Nostoc muscorum.

  13. Plasmid stability in dried cells of the desert cyanobacterium Chroococcidiopsis and its potential for GFP imaging of survivors on Earth and in space.

    Science.gov (United States)

    Billi, Daniela

    2012-06-01

    Two GFP-based plasmids, namely pTTQ18-GFP-pDU1(mini) and pDUCA7-GFP, of about 7 kbp and 15 kbp respectively, able to replicate in Chroococcidiopsis sp. CCMEE 029 and CCMEE 123, were developed. Both plasmids were maintained in Chroococcidiopsis cells after 18 months of dry storage as demonstrated by colony PCR, plasmid restriction analysis, GFP imaging and colony-forming ability under selection of dried transformants; thus suggesting that strategies employed by this cyanobacterium to stabilize dried chromosomal DNA, must have protected plasmid DNA. The suitability of pDU1(mini)-plasmid for GFP tagging in Chroococcidiopsis was investigated by using the RecA homolog of Synechocystis sp. PCC 6803. After 2 months of dry storage, the presence of dried cells with a GFP-RecA(Syn) distribution resembling that of hydrated cells, supported its capability of preventing desiccation-induced genome damage, whereas the rewetted cells with filamentous GFP-RecA(Syn) structures revealed sub-lethal DNA damage. The long-term stability of plasmid DNA in dried Chroococcidiopsis has implication for space research, for example when investigating the recovery of dried cells after Martian and space simulations or when developing life support systems based on phototrophs with genetically enhanced stress tolerance and stored in the dry state for prolonged periods.

  14. Chromatic regulation in cyanobacterium as studies by HPLC quantitation of photosynthetic pigments. Kogosei shikiso no HPLC teiryo ni motozuku ranso no hikari tekio process tsuiseki

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, H.; Watanabe, T. (The Univ. Tokyo, Tokyo (Japan). Inst. of Industrial Science)

    1991-08-01

    Plants higher than Cyanobacterium have two kinds of resction centers(RC) which convert photon energy to a flow of electrons and whose photosensitive spectral regions are slightly deviated from each other. In the photosynthetic process, the ratio of numbers between these two kinds of reaction centers is adaptively varied so as to allow the overall flow of electrons to proceed in a well-balanced manner. It is important to rapidly and exactly determine the ratio of RC numbers between the two photochemical systems in order to investigate such photoadaptive process. The report describes the quantitative determination using high performance liquid chromatography(HPLC) for this purpose. Pigments were extracted from Cyanobacteria which are in different adaptive processes brought by being cultured in the environments differing in the quantity of light or in the environment of varying quantity of light, and subjected to quantitave determination in consideration of the fact that the reaction centers, I and II, have the respective special kinds of chlorophyl derivatives Chl-a, Chl-a{prime}. As the results, it was confirmed that validity can be given to the estimation of the numbers of reaction centers in terms of the quantities of Chl-a and Chl-a prime and the proposed method is drastically faster and simpler than the conventional methods. 14 refs., 5 figs..

  15. The interplay between siderophore secretion and coupled iron and copper transport in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120.

    Science.gov (United States)

    Nicolaisen, Kerstin; Hahn, Alexander; Valdebenito, Marianne; Moslavac, Suncana; Samborski, Anastazia; Maldener, Iris; Wilken, Corinna; Valladares, Ana; Flores, Enrique; Hantke, Klaus; Schleiff, Enrico

    2010-11-01

    Iron uptake is essential for Gram-negative bacteria including cyanobacteria. In cyanobacteria, however, the iron demand is higher than in proteobacteria due to the function of iron as a cofactor in photosynthesis and nitrogen fixation, but our understanding of iron uptake by cyanobacteria stands behind the knowledge in proteobacteria. Here, two genes involved in this process in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 were identified. ORF all4025 encodes SchE, a putative cytoplasmic membrane-localized transporter involved in TolC-dependent siderophore secretion. Inactivation of schE resulted in an enhanced sensitivity to high metal concentrations and decreased secretion of hydroxamate-type siderophores. ORF all4026 encodes a predicted outer membrane-localized TonB-dependent iron transporter, IacT. Inactivation of iacT resulted in decreased sensitivity to elevated iron and copper levels. Expression of iacT from the artificial trc promoter (P(trc)) resulted in sensitization against tested metals. Further analysis showed that iron and copper effects are synergistic because a decreased supply of iron induced a significant decrease of copper levels in the iacT insertion mutant but an increase of those levels in the strain carrying P(trc)-iacT. Our results unravel a link between iron and copper homeostasis in Anabaena sp. PCC 7120. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Intricate interactions between the bloom-forming cyanobacterium Microcystis aeruginosa and foreign genetic elements, revealed by diversified clustered regularly interspaced short palindromic repeat (CRISPR) signatures.

    Science.gov (United States)

    Kuno, Sotaro; Yoshida, Takashi; Kaneko, Takakazu; Sako, Yoshihiko

    2012-08-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) confer sequence-dependent, adaptive resistance in prokaryotes against viruses and plasmids via incorporation of short sequences, called spacers, derived from foreign genetic elements. CRISPR loci are thus considered to provide records of past infections. To describe the host-parasite (i.e., cyanophages and plasmids) interactions involving the bloom-forming freshwater cyanobacterium Microcystis aeruginosa, we investigated CRISPR in four M. aeruginosa strains and in two previously sequenced genomes. The number of spacers in each locus was larger than the average among prokaryotes. All spacers were strain specific, except for a string of 11 spacers shared in two closely related strains, suggesting diversification of the loci. Using CRISPR repeat-based PCR, 24 CRISPR genotypes were identified in a natural cyanobacterial community. Among 995 unique spacers obtained, only 10 sequences showed similarity to M. aeruginosa phage Ma-LMM01. Of these, six spacers showed only silent or conservative nucleotide mutations compared to Ma-LMM01 sequences, suggesting a strategy by the cyanophage to avert CRISPR immunity dependent on nucleotide identity. These results imply that host-phage interactions can be divided into M. aeruginosa-cyanophage combinations rather than pandemics of population-wide infectious cyanophages. Spacer similarity also showed frequent exposure of M. aeruginosa to small cryptic plasmids that were observed only in a few strains. Thus, the diversification of CRISPR implies that M. aeruginosa has been challenged by diverse communities (almost entirely uncharacterized) of cyanophages and plasmids.

  17. An alternative methionine aminopeptidase, MAP-A, is required for nitrogen starvation and high-light acclimation in the cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Drath, Miriam; Baier, Kerstin; Forchhammer, Karl

    2009-05-01

    Methionine aminopeptidases (MetAPs or MAPs, encoded by map genes) are ubiquitous and pivotal enzymes for protein maturation in all living organisms. Whereas most bacteria harbour only one map gene, many cyanobacterial genomes contain two map paralogues, the genome of Synechocystis sp. PCC 6803 even three. The physiological function of multiple map paralogues remains elusive so far. This communication reports for the first time differential MetAP function in a cyanobacterium. In Synechocystis sp. PCC 6803, the universally conserved mapC gene (sll0555) is predominantly expressed in exponentially growing cells and appears to be a housekeeping gene. By contrast, expression of mapA (slr0918) and mapB (slr0786) genes increases during stress conditions. The mapB paralogue is only transiently expressed, whereas the widely distributed mapA gene appears to be the major MetAP during stress conditions. A mapA-deficient Synechocystis mutant shows a subtle impairment of photosystem II properties even under non-stressed conditions. In particular, the binding site for the quinone Q(B) is affected, indicating specific N-terminal methionine processing requirements of photosystem II components. MAP-A-specific processing becomes essential under certain stress conditions, since the mapA-deficient mutant is severely impaired in surviving conditions of prolonged nitrogen starvation and high light exposure.

  18. Intraclade heterogeneity in nitrogen utilization by marine prokaryotes revealed using stable isotope probing coupled with tag sequencing (Tag-SIP

    Directory of Open Access Journals (Sweden)

    Michael Morando

    2016-12-01

    Full Text Available Nitrogen can greatly influence the structure and productivity of microbial communities through its relative availability and form. However, roles of specific organisms in the uptake of different nitrogen species remain poorly characterized. Most studies seeking to identify agents of assimilation have been correlative, indirectly linking activity measurements (e.g., nitrate uptake with the presence or absence of biological markers, particularly functional genes and their transcripts. Evidence is accumulating of previously underappreciated functional diversity in major microbial subpopulations, which may confer physiological advantages under certain environmental conditions leading to ecotype divergence. This microdiversity further complicates our view of genetic variation in environmental samples requiring the development of more targeted approaches. Here, next-generation tag sequencing was successfully coupled with stable isotope probing (Tag-SIP to assess the ability of individual phylotypes to assimilate a particular N source. Our results provide the first direct evidence of nitrate utilization by organisms thought to lack the genes required for this process including the heterotrophic clades SAR11 and the Archaeal Marine Group II (MG-II. We also provide new direct evidence of in situ nitrate utilization by the cyanobacterium Prochlorococcus in support of recent findings. Furthermore, these results revealed widespread functional heterogeneity, i.e. different levels of N assimilation within clades, likely reflecting niche partitioning by ecotypes. The addition of nitrate utilization to ecosystem and ecosystem models by these globally dominant clades will likely improve the mechanistic accuracy of these models.

  19. Functional Genomics and Phylogenetic Evidence Suggest Genus-Wide Cobalamin Production by the Globally Distributed Marine Nitrogen Fixer Trichodesmium.

    Science.gov (United States)

    Walworth, Nathan G; Lee, Michael D; Suffridge, Christopher; Qu, Pingping; Fu, Fei-Xue; Saito, Mak A; Webb, Eric A; Sañudo-Wilhelmy, Sergio A; Hutchins, David A

    2018-01-01

    Only select prokaryotes can biosynthesize vitamin B 12 (i.e., cobalamins), but these organic co-enzymes are required by all microbial life and can be vanishingly scarce across extensive ocean biomes. Although global ocean genome data suggest cyanobacteria to be a major euphotic source of cobalamins, recent studies have highlighted that >95% of cyanobacteria can only produce a cobalamin analog, pseudo-B 12 , due to the absence of the BluB protein that synthesizes the α ligand 5,6-dimethylbenzimidizole (DMB) required to biosynthesize cobalamins. Pseudo-B 12 is substantially less bioavailable to eukaryotic algae, as only certain taxa can intracellularly remodel it to one of the cobalamins. Here we present phylogenetic, metagenomic, transcriptomic, proteomic, and chemical analyses providing multiple lines of evidence that the nitrogen-fixing cyanobacterium Trichodesmium transcribes and translates the biosynthetic, cobalamin-requiring BluB enzyme. Phylogenetic evidence suggests that the Trichodesmium DMB biosynthesis gene, bluB , is of ancient origin, which could have aided in its ecological differentiation from other nitrogen-fixing cyanobacteria. Additionally, orthologue analyses reveal two genes encoding iron-dependent B 12 biosynthetic enzymes (cbiX and isiB), suggesting that iron availability may be linked not only to new nitrogen supplies from nitrogen fixation, but also to B 12 inputs by Trichodesmium . These analyses suggest that Trichodesmium contains the genus-wide genomic potential for a previously unrecognized role as a source of cobalamins, which may prove to considerably impact marine biogeochemical cycles.

  20. Disease in marine aquaculture

    Science.gov (United States)

    Sindermann, C. J.

    1984-03-01

    It has become almost a truism that success in intensive production of animals must be based in part on development of methods for disease diagnosis and control. Excellent progress has been made in methods of diagnosis for major pathogens of cultivated fish, crustacean and molluscan species. In many instances these have proved to be facultative pathogens, able to exert severe effects in populations of animals under other stresses (marginal physical or chemical conditions; overcrowding). The concept of stress management as a critical prophylactic measure is not new, but its significance is being demonstrated repeatedly. The particular relationship of water quality and facultative pathogens such as Vibrio, Pseudomonas and Aeromonas species has been especially apparent. Virus diseases of marine vertebrates and invertebrates — little known two decades ago — are now recognized to be of significance to aquaculture. Virus infections of oysters, clams, shrimps and crabs have been described, and mortalities have been attributed to them. Several virus diseases of fish have also been recognized as potential or actual problems in culture. In some instances, the pathogens seem to be latent in natural populations, and may be provoked into patency by stresses of artificial environments. One of the most promising approaches to disease prophylaxis is through immunization. Fish respond well to various vaccination procedures, and new non-stressing methods have been developed. Vibriosis — probably the most severe disease of ocean-reared salmon — has been controlled to a great extent through use of a polyvalent bacterin, which can be modified as new pathogenic strains are isolated. Prophylactic immunization for other bacterial diseases of cultivated fish has been attempted, especially in Japan, with some success. There is also some evidence that the larger crustaceans may be immunologically responsive, and that at least short-term protection may be afforded to cultured

  1. Marine Peptides: Bioactivities and Applications

    Directory of Open Access Journals (Sweden)

    Randy Chi Fai Cheung

    2015-06-01

    Full Text Available Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant, immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products.

  2. African Journal of Marine Science

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... The African (formerly South African) Journal of Marine Science provides an international forum for the publication of original scientific contributions or critical reviews, ...

  3. 76 FR 72681 - Marine Mammals

    Science.gov (United States)

    2011-11-25

    ...), Seattle, WA, has applied for an amendment to Scientific Research Permit No. 15126-01 for studies of marine... Alaska to investigate their foraging ecology, habitat requirements, vital rates, and effects of natural...

  4. Radiochemical tracers in marine biology

    International Nuclear Information System (INIS)

    Petrocelli, S.R.; Anderson, J.W.; Neff, J.M.

    1977-01-01

    Tracers have been used in a great variety of experimentation. More recently, labeled materials have been applied in marine biological research. Some of the existing tracer techniques have been utilized directly, while others have been modified to suit the specific needs of marine biologists. This chapter describes some of the uses of tracers in marine biological research. It also mentions the problems encountered as well as offering possible solutions and discusses further applications of these techniques. Only pertinent references are cited and additional information may be obtained by consulting these references. Due to their relative ease of maintenance, freshwater species are also utilized in studies which involve radiotracer techniques. Since most of these techniques e directly applicable to marine species, some of these studies will also be included

  5. Coastal marine contamination in Colombia

    International Nuclear Information System (INIS)

    Garay T, Jesus A; Marin Z, Bienvenido; Velez G, Ana Maria

    2002-01-01

    The paper tries about the problem of the marine contamination and their marked influence in the health of the coastal ecosystems, of their narrow relationship with the growing increase of the populations that they inhabit the coastal areas and of equal it forms, with the increment of the domestic, agricultural and industrial activities that, for the wrong handling and inadequate control of the solid and liquid waste, they affect the marine environment with significant implications at ecological, socioeconomic level and of health. Another component of the environmental problem of the marine ecosystems in the country, resides in that don't exist in general normative on the chemical quality and sanitary for its marine waters, that which limits the categorization of this agreement ecosystems with its environmental quality, conditioning this the lack of adequate mechanisms to mitigate the causes that originate the deterioration of the quality of the Colombian coasts

  6. Pre-1947 Marine Daily Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observations taken on board U.S. Navy and merchant marine vessels and submitted to the U.S. Weather Bureau. Merchant ships are of many nationalities, and mainly...

  7. Pre-1947 Marine Monthly Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observations taken on board U.S. Navy and merchant marine vessels and submitted to the U.S. Weather Bureau. Merchant ships are of many nationalities, and mainly...

  8. Marine archaeological research in India

    Digital Repository Service at National Institute of Oceanography (India)

    Tripati, S.; Sundaresh; Vora, K.H.; Bandodkar, S.N.

    of this activity. All the developed countries have made tremendous progress in this field and substantial progress has been made in India in marine archaeology. Over the years the National Institute of Oceanography in collaboration with other Government agencies...

  9. Seagrasses - The forgotton marine habitat

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.; Rodrigues, R.S.

    Seagrasses, a specialized group of flowering plants, submerged in the marine, estuarine, bay and backwater regions of the world. Though seagrass beds are of great ecological and socio economic importance, they are mostly unknown to Indians. Seagrass...

  10. The Marine Sciences Laboratory (MSL)

    Data.gov (United States)

    Federal Laboratory Consortium — The�Marine Sciences Laboratory sits on 140 acres of tidelands and uplands located on Sequim Bay, Washington. Key capabilities include 6,000 sq ft of analytical and...

  11. Studies on antagonistic marine streptomycetes

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, D.; Nair, S.

    three strains inhibited all the test cultures. In addition to the above test cultures marine bacteria (Vibrio sp., Aeromonas spp., Flavobacterium spp., Bacillus sp. and Micrococcus sp.) resistant to few known antibiotics (tetracycline, penicillin...

  12. Marine biotechnology: Opportunities for India

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, D.

    manipulation is now reality. High yielding, fast growing and disease resistant strains of fish, shellfish and algae will boost the aquaculture industry. There may be a solution for all the problems of waste disposal in the marine environment. Considering...

  13. Marine archeology: The hidden history

    Digital Repository Service at National Institute of Oceanography (India)

    Gaur, A.S.

    Chandore, Gopakapattana, and Ela, which were the port capitals at different times of the long history. Four stone anchors from Goa waters indicate an active maritime activity during the pre-Portuguese period. An important aspect of marine archaeology...

  14. NCEI Marine Geology Data Archive

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine Geologic data compilations and reports in the NCEI archive are from academic and government sources around the world. Over ten terabytes of analyses,...

  15. Marine Structures with Heavy Overtopping

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    2000-01-01

    An investigation of wave overtopping of marine structures is described. Focus is put on structures with realtively low crest levels and various slope layouts subjected to non-breaking waves. Influence of slope draught and angle is investigated....

  16. Australia's marine virtual laboratory

    Science.gov (United States)

    Proctor, Roger; Gillibrand, Philip; Oke, Peter; Rosebrock, Uwe

    2014-05-01

    In all modelling studies of realistic scenarios, a researcher has to go through a number of steps to set up a model in order to produce a model simulation of value. The steps are generally the same, independent of the modelling system chosen. These steps include determining the time and space scales and processes of the required simulation; obtaining data for the initial set up and for input during the simulation time; obtaining observation data for validation or data assimilation; implementing scripts to run the simulation(s); and running utilities or custom-built software to extract results. These steps are time consuming and resource hungry, and have to be done every time irrespective of the simulation - the more complex the processes, the more effort is required to set up the simulation. The Australian Marine Virtual Laboratory (MARVL) is a new development in modelling frameworks for researchers in Australia. MARVL uses the TRIKE framework, a java-based control system developed by CSIRO that allows a non-specialist user configure and run a model, to automate many of the modelling preparation steps needed to bring the researcher faster to the stage of simulation and analysis. The tool is seen as enhancing the efficiency of researchers and marine managers, and is being considered as an educational aid in teaching. In MARVL we are developing a web-based open source application which provides a number of model choices and provides search and recovery of relevant observations, allowing researchers to: a) efficiently configure a range of different community ocean and wave models for any region, for any historical time period, with model specifications of their choice, through a user-friendly web application, b) access data sets to force a model and nest a model into, c) discover and assemble ocean observations from the Australian Ocean Data Network (AODN, http://portal.aodn.org.au/webportal/) in a format that is suitable for model evaluation or data assimilation, and

  17. Ecological Significance of Marine Microzooplankton

    Digital Repository Service at National Institute of Oceanography (India)

    Godhantaraman, N.

    ). Studies concerning microzooplankton in marine coastal, estuarine and brackish-water systems along tropical Indian waters are limited. Hence, in the following sections, I provide the results obtained by the research conducted in the tropical Vellar... estuarine systems, southeast coast of India. This was one of the first comprehensive studies on microzooplankton in India. There are also comparative accounts of microzooplankton researches from my studies in Japanese coastal marine waters. Microzooplankton...

  18. Marine Corps Budgetary Reprogramming Effectiveness

    Science.gov (United States)

    2015-03-01

    infrastructure (Appropriations Act of Congress, 2008). The environmental restoration is a transfer account controlled by the DOD. Usually in the case of...at an average just over 11 percent and the Marine Corps encircle the backend of the DOD portion of reprogramming with the Marine Corps reprogramming...blue force tracker (BFT), radio systems, high mobility multipurpose wheeled vehicle (HMMWV), medium tactical vehicle replacement (MTVR), and

  19. Veteran Unemployment of Transitioning Marines

    Science.gov (United States)

    2013-11-01

    military experience. C2 Marines have high AFQT scores and work with information systems; they may pursue, for example, computer science degrees in college...i.e., they made a rational decision based on lack of information). DOD actuarial officials use the low MGIB benefit use rate to maintain program...such as computer science , to make their military skills transferable, while others may not. Marines in services, repair/maintenance, operator, and

  20. Marine Geophysics: a Navy Symposium

    Science.gov (United States)

    1987-09-01

    Harrison The Source of Marine Magnetic Anomalies Christopher GA. Harrison • 52 Principles of Operation and Applications of RF-driven SQUID Magnetometers... ink recorder, and thereby obtained detailed data over the limited range in which Layer 2 appeared as a first arrival. Those researchers who waited to... Extract from MPL [Marine Physical Laboratory of the Scripps Institution of Oceanography] Quarterly Reports, 1 April to 30 June 1949, by R. W. Raitt

  1. Governance in the marine environment

    OpenAIRE

    Appleby, T.

    2015-01-01

    The governance of the UK Overseas Territories and Crown Dependencies is complex, endlessly fascinating and often politically charged. There is no area where this complexity is more demonstrable than in the marine environment, where the issues of extended maritime boundaries granted under the United Nations Convention on the Law of the Sea, fishing and prospecting rights, marine conservation and competing sovereignty mean that the practical application of the law in this area is particularly d...

  2. Bioremediation of marine oil pollution

    Energy Technology Data Exchange (ETDEWEB)

    Gutnick, D L

    1991-01-01

    This report presents an assessment of the scientific and technological developments in the area of bioremediation and biodegradation of marine oil pollution, as well as a number of allied technologies. Many of the topics discussed are presented in a summary of a workshop on bioremediation of marine oil pollution. The summary includes an overview of the formal presentations as well as the results of the working groups.

  3. Origin of marine planktonic cyanobacteria.

    Science.gov (United States)

    Sánchez-Baracaldo, Patricia

    2015-12-01

    Marine planktonic cyanobacteria contributed to the widespread oxygenation of the oceans towards the end of the Pre-Cambrian and their evolutionary origin represents a key transition in the geochemical evolution of the Earth surface. Little is known, however, about the evolutionary events that led to the appearance of marine planktonic cyanobacteria. I present here phylogenomic (135 proteins and two ribosomal RNAs), Bayesian relaxed molecular clock (18 proteins, SSU and LSU) and Bayesian stochastic character mapping analyses from 131 cyanobacteria genomes with the aim to unravel key evolutionary steps involved in the origin of marine planktonic cyanobacteria. While filamentous cell types evolved early on at around 2,600-2,300 Mya and likely dominated microbial mats in benthic environments for most of the Proterozoic (2,500-542 Mya), marine planktonic cyanobacteria evolved towards the end of the Proterozoic and early Phanerozoic. Crown groups of modern terrestrial and/or benthic coastal cyanobacteria appeared during the late Paleoproterozoic to early Mesoproterozoic. Decrease in cell diameter and loss of filamentous forms contributed to the evolution of unicellular planktonic lineages during the middle of the Mesoproterozoic (1,600-1,000 Mya) in freshwater environments. This study shows that marine planktonic cyanobacteria evolved from benthic marine and some diverged from freshwater ancestors during the Neoproterozoic (1,000-542 Mya).

  4. Marine disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Woodhead, D.S.

    1980-01-01

    In a general sense, the main attraction of the marine environment as a repository for the wastes generated by human activities lies in the degree of dispersion and dilution which is readily attainable. However, the capacity of the oceans to receive wastes without unacceptable consequences is clearly finite and this is even more true of localized marine environments such as estuaries, coastal waters and semi-enclosed seas. Radionuclides have always been present in the marine environment and marine organisms and humans consuming marine foodstuffs have always been exposed, to some degree, to radiation from this source. The hazard associated with ionizing radiations is dependent upon the adsorption of energy from the radiation field within some biological entity. Thus any disposal of radioactive wastes into the marine environment has consequences, the acceptability of which must be assessed in terms of the possible resultant increase in radiation exposure of human and aquatic populations. In the United Kingdom the primary consideration has been and remains the safe-guarding of public health. The control procedures are therefore designed to minimize as far as practicable the degree of human exposure within the overall limits recommended as acceptable by the International Commission on Radiological Protection. There are several approaches through which control could be exercised and the strenghs and weaknesses of each are considered. In this review the detailed application of the critical path technique to the control of the discharge into the north-east Irish Sea from the fuel reprocessing plant at Windscale is given as a practical example. It will be further demonstrated that when human exposure is controlled in this way no significant risk attaches to the increased radiation exposure experienced by populations of marine organisms in the area. (orig.) [de

  5. Marine biogeochemistry of mercury

    International Nuclear Information System (INIS)

    Gill, G.A.

    1986-01-01

    Noncontaminating sample collection and handling procedures and accurate and sensitive analysis methods were developed to measure sub-picomolar Hg concentrations in seawater. Reliable and diagnostic oceanographic Hg distributions were obtained, permitting major processes governing the marine biogeochemistry of Hg to be identified. Mercury concentrations in the northwest Atlantic, central Pacific, southeast Pacific, and Tasman Sea ranged from 0.5 to 12 pM. Vertical Hg distributions often exhibited a maximum within or near the main thermocline. At similar depths, Hg concentrations in the northwest Atlantic Ocean were elevated compared to the N. Pacific Ocean. This pattern appears to result from a combination of enhanced supply of Hg to the northwest Atlantic by rainfall and scavenging removal along deep water circulation pathways. These observations are supported by geochemical steady-state box modelling which predicts a relatively short mean residence time for Hg in the oceans; demonstrating the reactive nature of Hg in seawater and precluding significant involvement in nutrient-type recyclic. Evidence for the rapid removal of Hg from seawater was obtained at two locations. Surface seawater Hg measurements along 160 0 W (20 0 N to 20 0 S) showed a depression in the equatorial upwelling area which correlated well with the transect region exhibiting low 234 Th/ 238 U activity ratios. This relationship implies that Hg will be scavenged and removed from surface seawater in biologically productive oceanic zones. Further, a broad minimum in the vertical distribution of Hg was observed to coincide with the intense oxygen minimum zone in the water column in coastal waters off Peru

  6. 75 FR 12734 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Operation of Offshore...

    Science.gov (United States)

    2010-03-17

    ... marine mammal or marine mammal stock in the wild by causing disruption of behavioral patterns, including... supplies; production operations; drilling operations; pipeline design, inspection, and maintenance; routine...

  7. Characterization of nifB, nifS, and nifU genes in the cyanobacterium Anabaena variabilis: NifB is required for the vanadium-dependent nitrogenase.

    OpenAIRE

    Lyons, E M; Thiel, T

    1995-01-01

    Anabaena variabilis ATCC 29413 is a heterotrophic, nitrogen-fixing cyanobacterium containing both a Mo-dependent nitrogenase encoded by the nif genes and V-dependent nitrogenase encoded by the vnf genes. The nifB, nifS, and nifU genes of A. variabilis were cloned, mapped, and partially sequenced. The fdxN gene was between nifB and nifS. Growth and acetylene reduction assays using wild-type and mutant strains indicated that the nifB product (NifB) was required for nitrogen fixation not only by...

  8. Marine oil spill response organizations

    International Nuclear Information System (INIS)

    Hendry, C.

    1997-01-01

    The obligations under the law relative to the prevention of marine oil spills and the type of emergency plans needed to mitigate any adverse effects caused by a marine oil spill were discussed. The organizational structure, spill response resources and operational management capabilities of Canada's newly created Response Organizations (ROs) were described. The overall range of oil spill response services that the RO provides to the domestic oil handling, oil transportation and the international shipping industries were reviewed. Amendments to the Canada Shipping Act which require that certain ships and oil handling facilities take oil spill preparedness and response measures, including having an arrangement with an RO certified by the Canadian Coast Guard, were outlined. Canadians now benefit from five ROs established to provide coast-to-coast oil spill response coverage. These include the Western Canada Marine Response Corporation, the Canadian Marine Response Management Corporation, the Great Lakes Response Corporation, the Eastern Canada Response Corporation and the Atlantic Emergency Response Team Ltd. ROs have the expertise necessary to organize and manage marine oil spill response services. They can provide equipment, personnel and operational management for the containment, recovery and cleanup of oil spilled on water

  9. Marine oils: Complex, confusing, confounded?

    Directory of Open Access Journals (Sweden)

    Benjamin B. Albert

    2016-09-01

    Full Text Available Marine oils gained prominence following the report that Greenland Inuits who consumed a high-fat diet rich in long-chain n-3 polyunsaturated fatty acids (PUFAs also had low rates of cardiovascular disease. Marine n-3 PUFAs have since become a billion dollar industry, which will continue to grow based on current trends. However, recent systematic reviews question the health benefits of marine oil supplements, particularly in the prevention of cardiovascular disease. Marine oils constitute an extremely complex dietary intervention for a number of reasons: i the many chemical compounds they contain; ii the many biological processes affected by n-3 PUFAs; iii their tendency to deteriorate and form potentially toxic primary and secondary oxidation products; and iv inaccuracy in the labelling of consumer products. These complexities may confound the clinical literature, limiting the ability to make substantive conclusions for some key health outcomes. Thus, there is a pressing need for clinical trials using marine oils whose composition has been independently verified and demonstrated to be minimally oxidised. Without such data, it is premature to conclude that n-3 PUFA rich supplements are ineffective.

  10. International laboratory of marine radioactivity

    International Nuclear Information System (INIS)

    1981-08-01

    The director's report presents the overall aims and objectives of the laboratory, and some of the significant findings to date. Among these is the different behaviour in oceans of Pu and Am. Thus, fallout Pu, in contrast to Am, tends to remain in the soluble form. The vertical downward transport of Am is much quicker than for Pu. Since 1980, uptake and depuration studies of sup(95m)Tc have been carried out on key marine species. Marine environmental behaviour of Tc is being evaluated carefully in view of its being a significant constituent of nuclear wastes. Growing demands are being made on the laboratory for providing intercalibration and instrument maintenance services, and for providing training for scientists from developing countries. The body of the report is divided into 5 sections dealing with marine biology, marine chemistry, marine geochemistry/sedimentation, environmental studies, and engineering services, respectively. Appendices list laboratory staff, publications by staff members, papers and reports presented at meetings or conferences, consultants to the laboratory from 1967-1980, fellowships, trainees and membership of committees, task forces and working groups

  11. Marine microorganisms. Umi no biseibutsu

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, U. (Hiroshima University, Hiroshima (Japan). Faculty of Applied Biological Science)

    1992-11-10

    This paper explains properties, interactions, and activities of marine microorganisms. Marine bacteria include bacteria of vibrio family of arteromonas genus, luminous bacteria, and aerobic photosynthetic bacteria. Majority of marine bacteria is halophilic, and many proliferate at 5[degree]C or lower. Some of them can proliferate at 20[degree]C to 30[degree]C, or as high temperature as 80[degree]C and higher. Spongiaria and tumicata have many symbiotic microorganisms, and genes equivalent to luminous bacteria genes were discovered in DNA of light emitting organs in luminous fishes. It was verified that animal groups in upwelling zones are supported by bacteria that assimilate inorganics supplied from ocean bottoms. Marine bacteria decompose almost all of organics brought in from land to sea, and those produced in sea. Marine bacteria engage in complex interrelations with other organisms for competition, antagonism, parasitism, and symbiosis. The bacteria make antibacterial substances, anti-algae bacteria, enzyme inhibitors, toxins, pharmacologically active substances, and such physiologically active substances as deposition promoting substances to undersea structures including shells and barnacles, and deposition blocking substances. 53 refs., 3 figs.

  12. The Development of Coastal and Marine

    Directory of Open Access Journals (Sweden)

    Suharto Widjojo

    2004-01-01

    Full Text Available Planning and development process of oastaland marine resources tends centralized and adopted top down policy, without any active participations from coastal and marine communities. In order to reach integrated and sustainable development in coastaland marine areas, people should have both complete and up to date information, so that planning and decision making for all aspect of the environment can be done easily. People should give a high attention of surveis, mappings, as well as science and technology of coastal and marine sectors, in order to change the paradigm of development from inland to coastal and marine. Moreover, people should give high attention of potential resources of coastal and marine areas.

  13. Metabolic engineering of the Chl d-dominated cyanobacterium Acaryochloris marina: production of a novel Chl species by the introduction of the chlorophyllide a oxygenase gene.

    Science.gov (United States)

    Tsuchiya, Tohru; Mizoguchi, Tadashi; Akimoto, Seiji; Tomo, Tatsuya; Tamiaki, Hitoshi; Mimuro, Mamoru

    2012-03-01

    In oxygenic photosynthetic organisms, the properties of photosynthetic reaction systems primarily depend on the Chl species used. Acquisition of new Chl species with unique optical properties may have enabled photosynthetic organisms to adapt to various light environments. The artificial production of a new Chl species in an existing photosynthetic organism by metabolic engineering provides a model system to investigate how an organism responds to a newly acquired pigment. In the current study, we established a transformation system for a Chl d-dominated cyanobacterium, Acaryochloris marina, for the first time. The expression vector (constructed from a broad-host-range plasmid) was introduced into A. marina by conjugal gene transfer. The introduction of a gene for chlorophyllide a oxygenase, which is responsible for Chl b biosynthesis, into A. marina resulted in a transformant that synthesized a novel Chl species instead of Chl b. The content of the novel Chl in the transformant was approximately 10% of the total Chl, but the level of Chl a, another Chl in A. marina, did not change. The chemical structure of the novel Chl was determined to be [7-formyl]-Chl d(P) by mass spectrometry and nuclear magnetic resonance spectroscopy. [7-Formyl]-Chl d(P) is hypothesized to be produced by the combined action of chlorophyllide a oxygenase and enzyme(s) involved in Chl d biosynthesis. These results demonstrate the flexibility of the Chl biosynthetic pathway for the production of novel Chl species, indicating that a new organism with a novel Chl might be discovered in the future.

  14. Transcription profiling of the model cyanobacterium Synechococcus sp. strain PCC 7002 by NextGen (SOLiD™ Sequencing of cDNA

    Directory of Open Access Journals (Sweden)

    Marcus eLudwig

    2011-03-01

    Full Text Available The genome of the unicellular, euryhaline cyanobacterium Synechococcus sp. PCC 7002 encodes about 3200 proteins. Transcripts were detected for nearly all annotated open reading frames by a global transcriptomic analysis by Next-Generation (SOLiDTM sequencing of cDNA. In the cDNA samples sequenced, ~90% of the mapped sequences were derived from the 16S and 23S ribosomal RNAs and ~10% of the sequences were derived from mRNAs. In cells grown photoautotrophically under standard conditions (38 °C, 1% (v/v CO2 in air, 250 µmol photons m-2 s-1, the highest transcript levels (up to 2% of the total mRNA for the most abundantly transcribed genes (e. g., cpcAB, psbA, psaA were generally derived from genes encoding structural components of the photosynthetic apparatus. High light exposure for one hour caused changes in transcript levels for genes encoding proteins of the photosynthetic apparatus, Type-1 NADH dehydrogenase complex and ATP synthase, whereas dark incubation for one hour resulted in a global decrease in transcript levels for photosynthesis-related genes and an increase in transcript levels for genes involved in carbohydrate degradation. Transcript levels for pyruvate kinase and the pyruvate dehydrogenase complex decreased sharply in cells incubated in the dark. Under dark anoxic (fermentative conditions, transcript changes indicated a global decrease in transcripts for respiratory proteins and suggested that cells employ an alternative phosphoenolpyruvate degradation pathway via phosphoenolpyruvate synthase (ppsA and the pyruvate:ferredoxin oxidoreductase (nifJ. Finally, the data suggested that an apparent operon involved in tetrapyrrole biosynthesis and fatty acid desaturation, acsF2-ho2-hemN2-desF, may be regulated by oxygen concentration.

  15. Levels of daily light doses under changed day-night cycles regulate temporal segregation of photosynthesis and N2 Fixation in the cyanobacterium Trichodesmium erythraeum IMS101.

    Science.gov (United States)

    Cai, Xiaoni; Gao, Kunshan

    2015-01-01

    While the diazotrophic cyanobacterium Trichodesmium is known to display inverse diurnal performances of photosynthesis and N2 fixation, such a phenomenon has not been well documented under different day-night (L-D) cycles and different levels of light dose exposed to the cells. Here, we show differences in growth, N2 fixation and photosynthetic carbon fixation as well as photochemical performances of Trichodesmium IMS101 grown under 12L:12D, 8L:16D and 16L:8D L-D cycles at 70 μmol photons m-2 s-1 PAR (LL) and 350 μmol photons m-2 s-1 PAR (HL). The specific growth rate was the highest under LL and the lowest under HL under 16L:8D, and it increased under LL and decreased under HL with increased levels of daytime light doses exposed under the different light regimes, respectively. N2 fixation and photosynthetic carbon fixation were affected differentially by changes in the day-night regimes, with the former increasing directly under LL with increased daytime light doses and decreased under HL over growth-saturating light levels. Temporal segregation of N2 fixation from photosynthetic carbon fixation was evidenced under all day-night regimes, showing a time lag between the peak in N2 fixation and dip in carbon fixation. Elongation of light period led to higher N2 fixation rate under LL than under HL, while shortening the light exposure to 8 h delayed the N2 fixation peaking time (at the end of light period) and extended it to night period. Photosynthetic carbon fixation rates and transfer of light photons were always higher under HL than LL, regardless of the day-night cycles. Conclusively, diel performance of N2 fixation possesses functional plasticity, which was regulated by levels of light energy supplies either via changing light levels or length of light exposure.

  16. Unraveling the Physiological Roles of the Cyanobacterium Geitlerinema sp. BBD and Other Black Band Disease Community Members through Genomic Analysis of a Mixed Culture

    Science.gov (United States)

    Den Uyl, Paul A.; Richardson, Laurie L.; Jain, Sunit

    2016-01-01

    Black band disease (BBD) is a cyanobacterial-dominated polymicrobial mat that propagates on and migrates across coral surfaces, necrotizing coral tissue. Culture-based laboratory studies have investigated cyanobacteria and heterotrophic bacteria isolated from BBD, but the metabolic potential of various BBD microbial community members and interactions between them remain poorly understood. Here we report genomic insights into the physiological and metabolic potential of the BBD-associated cyanobacterium Geitlerinema sp. BBD 1991 and six associated bacteria that were also present in the non-axenic culture. The essentially complete genome of Geitlerinema sp. BBD 1991 contains a sulfide quinone oxidoreductase gene for oxidation of sulfide, suggesting a mechanism for tolerating the sulfidic conditions of BBD mats. Although the operon for biosynthesis of the cyanotoxin microcystin was surprisingly absent, potential relics were identified. Genomic evidence for mixed-acid fermentation indicates a strategy for energy metabolism under the anaerobic conditions present in BBD during darkness. Fermentation products may supply carbon to BBD heterotrophic bacteria. Among the six associated bacteria in the culture, two are closely related to organisms found in culture-independent studies of diseased corals. Their metabolic pathways for carbon and sulfur cycling, energy metabolism, and mechanisms for resisting coral defenses suggest adaptations to the coral surface environment and biogeochemical roles within the BBD mat. Polysulfide reductases were identified in a Flammeovirgaceae genome (Bacteroidetes) and the sox pathway for sulfur oxidation was found in the genome of a Rhodospirillales bacterium (Alphaproteobacteria), revealing mechanisms for sulfur cycling, which influences virulence of BBD. Each genomic bin possessed a pathway for conserving energy from glycerol degradation, reflecting adaptations to the glycerol-rich coral environment. The presence of genes for detoxification

  17. Inactivation of uptake hydrogenase leads to enhanced and sustained hydrogen production with high nitrogenase activity under high light exposure in the cyanobacterium Anabaena siamensis TISTR 8012

    Directory of Open Access Journals (Sweden)

    Khetkorn Wanthanee

    2012-10-01

    Full Text Available Abstract Background Biohydrogen from cyanobacteria has attracted public interest due to its potential as a renewable energy carrier produced from solar energy and water. Anabaena siamensis TISTR 8012, a novel strain isolated from rice paddy field in Thailand, has been identified as a promising cyanobacterial strain for use as a high-yield hydrogen producer attributed to the activities of two enzymes, nitrogenase and bidirectional hydrogenase. One main obstacle for high hydrogen production by A. siamensis is a light-driven hydrogen consumption catalyzed by the uptake hydrogenase. To overcome this and in order to enhance the potential for nitrogenase based hydrogen production, we engineered a hydrogen uptake deficient strain by interrupting hupS encoding the small subunit of the uptake hydrogenase. Results An engineered strain lacking a functional uptake hydrogenase (∆hupS produced about 4-folds more hydrogen than the wild type strain. Moreover, the ∆hupS strain showed long term, sustained hydrogen production under light exposure with 2–3 folds higher nitrogenase activity compared to the wild type. In addition, HupS inactivation had no major effects on cell growth and heterocyst differentiation. Gene expression analysis using RT-PCR indicates that electrons and ATP molecules required for hydrogen production in the ∆hupS strain may be obtained from the electron transport chain associated with the photosynthetic oxidation of water in the vegetative cells. The ∆hupS strain was found to compete well with the wild type up to 50 h in a mixed culture, thereafter the wild type started to grow on the relative expense of the ∆hupS strain. Conclusions Inactivation of hupS is an effective strategy for improving biohydrogen production, in rates and specifically in total yield, in nitrogen-fixing cultures of the cyanobacterium Anabaena siamensis TISTR 8012.

  18. The biomechanical role of overall-shape transformation in a primitive multicellular organism: A case study of dimorphism in the filamentous cyanobacterium Arthrospira platensis.

    Science.gov (United States)

    Chaiyasitdhi, Atitheb; Miphonpanyatawichok, Wirat; Riehle, Mathis Oliver; Phatthanakun, Rungrueang; Surareungchai, Werasak; Kundhikanjana, Worasom; Kuntanawat, Panwong

    2018-01-01

    Morphological transformations in primitive organisms have long been observed; however, its biomechanical roles are largely unexplored. In this study, we investigate the structural advantages of dimorphism in Arthrospira platensis, a filamentous multicellular cyanobacterium. We report that helical trichomes, the default shape, have a higher persistence length (Lp), indicating a higher resistance to bending or a large value of flexural rigidity (kf), the product of the local cell stiffness (E) and the moment of inertia of the trichomes' cross-section (I). Through Atomic Force Microscopy (AFM), we determined that the E of straight and helical trichomes were the same. In contrast, our computational model shows that I is greatly dependent on helical radii, implying that trichome morphology is the major contributor to kf variation. According to our estimation, increasing the helical radii alone can increase kf by 2 orders of magnitude. We also observe that straight trichomes have improved gliding ability, due to its structure and lower kf. Our study shows that dimorphism provides mechanical adjustability to the organism and may allow it to thrive in different environmental conditions. The higher kf provides helical trichomes a better nutrient uptake through advection in aquatic environments. On the other hand, the lower kf improves the gliding ability of straight trichomes in aquatic environments, enabling it to chemotactically relocate to more favorable territories when it encounters certain environmental stresses. When more optimal conditions are encountered, straight trichomes can revert to their original helical form. Our study is one of the first to highlight the biomechanical role of an overall-shape transformation in cyanobacteria.

  19. Differential sensitivity of five cyanobacterial strains to ammonium toxicity and its inhibitory mechanism on the photosynthesis of rice-field cyanobacterium Ge-Xian-Mi (Nostoc)

    International Nuclear Information System (INIS)

    Dai Guozheng; Deblois, Charles P.; Liu Shuwen; Juneau, Philippe; Qiu Baosheng

    2008-01-01

    Effects of two fertilizers, NH 4 Cl and KCl, on the growth of the edible cyanobacterium Ge-Xian-Mi (Nostoc) and four other cyanobacterial strains were compared at pH 8.3 ± 0.2 and 25 deg. C. Their growth was decreased by at least 65% at 10 mmol L -1 NH 4 Cl but no inhibitory effect was observed at the same level of KCl. Meanwhile, the strains exhibited a great variation of sensitivity to NH 4 + toxicity in the order: Ge-Xian-Mi > Anabaena azotica FACHB 118 > Microcystis aeruginosa FACHB 905 > M. aeruginosa FACHB 315 > Synechococcus FACHB 805. The 96-h EC 50 value for relative growth rate with regard to NH 4 + for Ge-Xian-Mi was 1.105 mmol L -1 , which was much less than the NH 4 + concentration in many agricultural soils (2-20 mmol L -1 ). This indicated that the use of ammonium as nitrogen fertilizer was responsible for the reduced resource of Ge-Xian-Mi in the paddy field. After 96 h exposure to 1 mmol L -1 NH 4 Cl, the photosynthetic rate, F v /F m value, saturating irradiance for photosynthesis and PSII activity of Ge-Xian-Mi colonies were remarkably decreased. The chlorophyll synthesis of Ge-Xian-Mi was more sensitive to NH 4 + toxicity than phycobiliproteins. Thus, the functional absorption cross section of Ge-Xian-Mi PSII was increased markedly at NH 4 Cl levels ≥1 mmol L -1 and the electron transport on the acceptor side of PSII was significantly accelerated by NH 4 Cl addition ≥3 mmol L -1 . Dark respiration of Ge-Xian-Mi was significantly increased by 246% and 384% at 5 and 10 mmol L -1 NH 4 Cl, respectively. The rapid fluorescence rise kinetics indicated that the oxygen-evolving complex of PSII was the inhibitory site of NH 4 +

  20. Single-cell confocal spectrometry of a filamentous cyanobacterium Nostoc at room and cryogenic temperature. Diversity and differentiation of pigment systems in 311 cells.

    Science.gov (United States)

    Sugiura, Kana; Itoh, Shigeru

    2012-08-01

    The fluorescence spectrum at 298 and 40 K and the absorption spectrum at 298 K of each cell of the filamentous cyanobacterium Nostoc sp. was measured by single-cell confocal laser spectroscopy to study the differentiation of cell pigments. The fluorescence spectra of vegetative (veg) and heterocyst (het) cells of Nostoc formed separate groups with low and high PSII to PSI ratios, respectively. The fluorescence spectra of het cells at 40 K still contained typical PSII bands. The PSII/PSI ratio estimated for the veg cells varied between 0.4 and 1.2, while that of het cells varied between 0 and 0.22 even in the same culture. The PSII/PSI ratios of veg cells resembled each other more closely in the same filament. 'pro-het' cells, which started to differentiate into het cells, were identified from the small but specific difference in the PSII/PSI ratio. The allophycocyanin (APC)/PSII ratio was almost constant in both veg and het cells, indicating their tight couplings. Phycocyanin (PC) showed higher fluorescence in most het cells, suggesting the uncoupling from PSII. Veg cells seem to vary their PSI contents to give different PSII/PSI ratios even in the same culture, and to suppress the synthesis of PSII, APC and PC to differentiate into het cells. APC and PC are gradually liberated from membranes in het cells with the uncoupling from PSII. Single-cell spectrometry will be useful to study the differentiation of intrinsic pigments of cells and chloroplasts, and to select microbes from natural environments.

  1. Unraveling the Physiological Roles of the Cyanobacterium Geitlerinema sp. BBD and Other Black Band Disease Community Members through Genomic Analysis of a Mixed Culture.

    Science.gov (United States)

    Den Uyl, Paul A; Richardson, Laurie L; Jain, Sunit; Dick, Gregory J

    2016-01-01

    Black band disease (BBD) is a cyanobacterial-dominated polymicrobial mat that propagates on and migrates across coral surfaces, necrotizing coral tissue. Culture-based laboratory studies have investigated cyanobacteria and heterotrophic bacteria isolated from BBD, but the metabolic potential of various BBD microbial community members and interactions between them remain poorly understood. Here we report genomic insights into the physiological and metabolic potential of the BBD-associated cyanobacterium Geitlerinema sp. BBD 1991 and six associated bacteria that were also present in the non-axenic culture. The essentially complete genome of Geitlerinema sp. BBD 1991 contains a sulfide quinone oxidoreductase gene for oxidation of sulfide, suggesting a mechanism for tolerating the sulfidic conditions of BBD mats. Although the operon for biosynthesis of the cyanotoxin microcystin was surprisingly absent, potential relics were identified. Genomic evidence for mixed-acid fermentation indicates a strategy for energy metabolism under the anaerobic conditions present in BBD during darkness. Fermentation products may supply carbon to BBD heterotrophic bacteria. Among the six associated bacteria in the culture, two are closely related to organisms found in culture-independent studies of diseased corals. Their metabolic pathways for carbon and sulfur cycling, energy metabolism, and mechanisms for resisting coral defenses suggest adaptations to the coral surface environment and biogeochemical roles within the BBD mat. Polysulfide reductases were identified in a Flammeovirgaceae genome (Bacteroidetes) and the sox pathway for sulfur oxidation was found in the genome of a Rhodospirillales bacterium (Alphaproteobacteria), revealing mechanisms for sulfur cycling, which influences virulence of BBD. Each genomic bin possessed a pathway for conserving energy from glycerol degradation, reflecting adaptations to the glycerol-rich coral environment. The presence of genes for detoxification

  2. Unraveling the Physiological Roles of the Cyanobacterium Geitlerinema sp. BBD and Other Black Band Disease Community Members through Genomic Analysis of a Mixed Culture.

    Directory of Open Access Journals (Sweden)

    Paul A Den Uyl

    Full Text Available Black band disease (BBD is a cyanobacterial-dominated polymicrobial mat that propagates on and migrates across coral surfaces, necrotizing coral tissue. Culture-based laboratory studies have investigated cyanobacteria and heterotrophic bacteria isolated from BBD, but the metabolic potential of various BBD microbial community members and interactions between them remain poorly understood. Here we report genomic insights into the physiological and metabolic potential of the BBD-associated cyanobacterium Geitlerinema sp. BBD 1991 and six associated bacteria that were also present in the non-axenic culture. The essentially complete genome of Geitlerinema sp. BBD 1991 contains a sulfide quinone oxidoreductase gene for oxidation of sulfide, suggesting a mechanism for tolerating the sulfidic conditions of BBD mats. Although the operon for biosynthesis of the cyanotoxin microcystin was surprisingly absent, potential relics were identified. Genomic evidence for mixed-acid fermentation indicates a strategy for energy metabolism under the anaerobic conditions present in BBD during darkness. Fermentation products may supply carbon to BBD heterotrophic bacteria. Among the six associated bacteria in the culture, two are closely related to organisms found in culture-independent studies of diseased corals. Their metabolic pathways for carbon and sulfur cycling, energy metabolism, and mechanisms for resisting coral defenses suggest adaptations to the coral surface environment and biogeochemical roles within the BBD mat. Polysulfide reductases were identified in a Flammeovirgaceae genome (Bacteroidetes and the sox pathway for sulfur oxidation was found in the genome of a Rhodospirillales bacterium (Alphaproteobacteria, revealing mechanisms for sulfur cycling, which influences virulence of BBD. Each genomic bin possessed a pathway for conserving energy from glycerol degradation, reflecting adaptations to the glycerol-rich coral environment. The presence of genes

  3. Towards long-read metagenomics: complete assembly of three novel genomes from bacteria dependent on a diazotrophic cyanobacterium in a freshwater lake co-culture.

    Science.gov (United States)

    Driscoll, Connor B; Otten, Timothy G; Brown, Nathan M; Dreher, Theo W

    2017-01-01

    Here we report three complete bacterial genome assemblies from a PacBio shotgun metagenome of a co-culture from Upper Klamath Lake, OR. Genome annotations and culture conditions indicate these bacteria are dependent on carbon and nitrogen fixation from the cyanobacterium Aphanizomenon flos-aquae, whose genome was assembled to draft-quality . Due to their taxonomic novelty relative to previously sequenced bacteria, we have temporarily designated these bacteria as incertae sedis Hyphomonadaceae strain UKL13-1 (3,501,508 bp and 56.12% GC), incertae sedis Betaproteobacterium strain UKL13-2 (3,387,087 bp and 54.98% GC), and incertae sedis Bacteroidetes strain UKL13-3 (3,236,529 bp and 37.33% GC). Each genome consists of a single circular chromosome with no identified plasmids. When compared with binned Illumina assemblies of the same three genomes, there was ~7% discrepancy in total genome length. Gaps where Illumina assemblies broke were often due to repetitive elements. Within these missing sequences were essential genes and genes associated with a variety of functional categories. Annotated gene content reveals that both Proteobacteria are aerobic anoxygenic phototrophs, with Betaproteobacterium UKL13-2 potentially capable of phototrophic oxidation of sulfur compounds. Both proteobacterial genomes contain transporters suggesting they are scavenging fixed nitrogen from A. flos-aquae in the form of ammonium. Bacteroidetes UKL13-3 has few completely annotated biosynthetic pathways, and has a comparatively higher proportion of unannotated genes. The genomes were detected in only a few other freshwater metagenomes, suggesting that these bacteria are not ubiquitous in freshwater systems. Our results indicate that long-read sequencing is a viable method for sequencing dominant members from low-diversity microbial communities, and should be considered for environmental metagenomics when conditions meet these requirements.

  4. The tryptophan-rich sensory protein (TSPO is involved in stress-related and light-dependent processes in the cyanobacterium Fremyella diplosiphon

    Directory of Open Access Journals (Sweden)

    Andrea eBusch

    2015-12-01

    Full Text Available The tryptophan-rich sensory protein (TSPO is a membrane protein, which is a member of the 18 kilodalton translocator protein/peripheral-type benzodiazepine receptor (MBR family of proteins that is present in most organisms and is also referred to as Translocator protein 18 kDa. Although TSPO is associated with stress- and disease-related processes in organisms from bacteria to mammals, full elucidation of the functional role of the TSPO protein is lacking for most organisms in which it is found. In this study, we describe the regulation and function of a TSPO homolog in the cyanobacterium Fremyella diplosiphon, designated FdTSPO. Accumulation of the FdTSPO transcript is upregulated by green light and in response to nutrient deficiency and stress. A F. diplosiphon TSPO deletion mutant (i.e., ΔFdTSPO showed altered responses compared to the wild type strain under stress conditions, including salt treatment, osmotic stress and induced oxidative stress. Under salt stress, the FdTSPO transcript is upregulated and a ΔFdTSPO mutant accumulates lower levels of reactive oxygen species (ROS and displays increased growth compared to WT. In response to osmotic stress, FdTSPO transcript levels are upregulated and ΔFdTSPO mutant cells exhibit impaired growth compared to the wild type. By comparison, methyl viologen-induced oxidative stress results in higher ROS levels in the ΔFdTSPO mutant compared to the wild type strain. Taken together, our results provide support for the involvement of membrane-localized FdTSPO in mediating cellular responses to stress in F. diplosiphon and represent detailed functional analysis of a cyanobacterial TSPO. This study advances our understanding of the functional roles of TSPO homologs in vivo.

  5. Enzyme kinetics, inhibitors, mutagenesis and electron paramagnetic resonance analysis of dual-affinity nitrate reductase in unicellular N(2)-fixing cyanobacterium Cyanothece sp. PCC 8801.

    Science.gov (United States)

    Wang, Tung-Hei; Chen, Yung-Han; Huang, Jine-Yung; Liu, Kang-Cheng; Ke, Shyue-Chu; Chu, Hsiu-An

    2011-11-01

    The assimilatory nitrate reductase (NarB) of N(2)-fixing cyanobacterium Cyanothece sp. PCC 8801 is a monomeric enzyme with dual affinity for substrate nitrate. We purified the recombinant NarB of Cyanothece sp. PCC 8801 and further investigated it by enzyme kinetics analysis, site-directed mutagenesis, inhibitor kinetics analysis, and electron paramagnetic resonance (EPR) spectroscopy. The NarB showed 2 kinetic regimes at pH 10.5 or 8 and electron-donor conditions methyl viologen or ferredoxin (Fd). Fd-dependent NR assay revealed NarB with very high affinity for nitrate (K(m)1, ∼1μM; K(m)2, ∼270μM). Metal analysis and EPR results showed that NarB contains a Mo cofactor and a [4Fe-4S] cluster. In addition, the R352A mutation on the proposed nitrate-binding site of NarB greatly altered both high- and low-affinity kinetic components. Furthermore, the effect of azide on the NarB of Cyanothece sp. PCC 8801 was more complex than that on the NarB of Synechococcus sp. PCC 7942 with its single kinetic regime. With 1mM azide, the kinetics of the wild-type NarB was transformed from 2 kinetic regimes to hyperbolic kinetics, and its activity was enhanced significantly under medium nitrate concentrations. Moreover, EPR results also suggested a structural difference between the two NarBs. Taken together, our results show that the NarB of Cyanothece sp. PCC 8801 contains only a single Mo-catalytic center, and we rule out that the enzyme has 2 independent, distinct catalytic sites. In addition, the NarB of Cyanothece sp. PCC 8801 may have a regulatory nitrate-binding site. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  6. Cardioprotective peptides from marine sources.

    Science.gov (United States)

    Harnedy, Padraigín A; FitzGerald, Richard J

    2013-05-01

    Elevated blood pressure or hypertension is one of the fastest growing health problems worldwide. Although the etiology of essential hypertension has a genetic component, dietary factors play an important role. With the high costs and adverse side-effects associated with synthetic antihypertensive drugs and the awareness of the link between diet and health there has been increased focus on identification of food components that may contribute to cardiovascular health. In recent years special interest has been paid to the cardioprotective activity of peptides derived from food proteins including marine proteins. These peptides are latent within the sequence of the parent protein and only become active when released by proteolytic digestion during gastrointestinal digestion or through food processing. Current data on antihypertensive activity of marine-derived protein hydrolysates/peptides in animal and human studies is reviewed herein. Furthermore, products containing protein hydrolysates/peptides from marine origin with antihypertensive effects are discussed.

  7. Chitin Degradation In Marine Bacteria

    DEFF Research Database (Denmark)

    Paulsen, Sara; Machado, Henrique; Gram, Lone

    2015-01-01

    Introduction: Chitin is the most abundant polymer in the marine environment and the second most abundant in nature. Chitin does not accumulate on the ocean floor, because of microbial breakdown. Chitin degrading bacteria could have potential in the utilization of chitin as a renewable carbon...... and nitrogen source in the fermentation industry.Methods: Here, whole genome sequenced marine bacteria were screened for chitin degradation using phenotypic and in silico analyses.Results: The in silico analyses revealed the presence of three to nine chitinases in each strain, however the number of chitinases...... chitin regulatory system.Conclusions: This study has provided insight into the ecology of chitin degradation in marine bacteria. It also served as a basis for choosing a more efficient chitin degrading production strain e.g. for the use of chitin waste for large-scale fermentations....

  8. Survey on marine food consumption

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    Predicting the future effluence of low level radioactive waste water from the nuclear fuel retreating facilities to the ocean, critical food and critical group were investigated in the inhabitants of the coast of Ibaragi Prefecture since 1969. The survey included investigation of drinking water, menu of meal, and marine food consumption, and the results of the third item were chiefly presented in this paper. Both interview by visiting each family, and questionaire were adopted for investigation. Subjects were fishermans' families in Wada-cho in Chiba Prefecture and Kuji-cho in Hitachi City, non-fishermans' families in Tokai vilage, and both families in Nakaminato City and Oarai. The ratio of animal protein consumption per whole protein consumption was remarkably higher than the average of all over the country(23.8 per cent), showing 49 per cent in Kuji-cho. Fishermans' families in Kuji-cho revealed to be a critical group. Marine products of their whole body edible included immature anchovy, sardine, and immature prawn with their maximum individual consumption being 5 kg, 10 kg, and 5.6 kg respectively. Therefore, sardine and immature prawn should be taken care of other than immature anchovy. Marine food consumption of a person per day was estimated from the amount consumed during one week in every season, i.e., during 28 days a year. Marine food consumption of fishermans' families in Kuji-cho showed no seasonal change. Average of marine food consumption in fishermans' families of Kuji-cho and Nakaminato, was 190 g and 132 g of raw fishes, 8 g and 6 g of raw shells, and 4 g and 5 g of dried algae. Consumption frequency and consumption rate of marine foods by kinds and seasons were presented in the tables. (Mukohata, S.)

  9. Status and strategies for marine biodiversity of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.

    The status of marine biodiversity and factors responsible for the degradation and loss of marine biodiversity are discussed. Goa has abundant marine wealth. Phytoplankton, marine algae, manglicolous fungi, seagrasses, mangrove flora and other...

  10. Brittany. Brest tackles marine energy

    International Nuclear Information System (INIS)

    Du Guerny, Stanislas

    2015-01-01

    This article illustrates how the Brittany region finances the extension and diversification of the Brest harbour so that it will be able get new contracts and to enable the setting up of plants related to marine energies. Some local actors are already committed in this sector, notably DCNS with the first submerged marine current power installation. Moreover, a contract has been signed between the region and DCNS to develop floating offshore wind energy. Some important local actors are indicated (an existing and a projected techno-pole, Alcatel-Lucent, a research centre). They are located in Rennes, Saint-Malo, Lannion, Lorient or Fougeres

  11. Conservation physiology of marine fishes

    DEFF Research Database (Denmark)

    Jørgensen, Christian; Peck, Myron A.; Antognarelli, Fabio

    2012-01-01

    At the end of May, 17 scientists involved in an EU COST Action on Conservation Physiology of Marine Fishes met in Oristano, Sardinia, to discuss how physiology can be better used in modelling tools to aid in management of marine ecosystems. Current modelling approaches incorporate physiology...... to different extents, ranging from no explicit consideration to detailed physiological mechanisms, and across scales from a single fish to global fishery resources. Biologists from different sub-disciplines are collaborating to rise to the challenge of projecting future changes in distribution and productivity...

  12. Marine Debris Research, Prevention, and Reduction Act

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Debris Research, Prevention, and Reduction Act legally establishes the National Oceanic and Atmospheric Administration's (NOAA) Marine Debris Program. The...

  13. Ocean Disposal of Marine Mammal Carcasses

    Science.gov (United States)

    Ocean dumping of marine mammal carcasses is allowed with a permit issued by EPA under the Marine Protection, Research and Sanctuaries Act. Includes permit information, potential environmental impacts, and instructions for getting the general permit.

  14. Metabolites from marine fungus Aspergillus sp.

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; Rajmanickam, R.; DeSouza, L.

    Chemical examination of a methanolic extract of the marine fungus, Aspergillus sp., isolated from marine grass environment, yielded a steroid, ergosterol peroxide (1), and a mixture of known glyceride esters (2,3) of unsaturated fatty acids...

  15. Computerizing marine biota: a rational approach

    Digital Repository Service at National Institute of Oceanography (India)

    Chavan, V.S.; Chandramohan, D.; Parulekar, A.H.

    Data on marine biota while being extensive are also patchy and scattered; thus making retrieval and dissemination of information time consuming. This emphasise the need for computerizing information on marine biota with the objective to collate...

  16. Summary report on marine research 1988.

    CSIR Research Space (South Africa)

    SANCOR

    1989-12-01

    Full Text Available , Estuaries/ Marine Linefish, Marine Pollution, Ocean Engineering and a South African contribution to the World Ocean Circulation Experiment (WOCE). This report includes brief statements on the activities of each of these programmes in 1988 and emphasizes...

  17. Antifouling Activity of Marine Natural Products

    KAUST Repository

    Qian, Pei-Yuan; Xu, Sharon Ying

    2012-01-01

    for marine industries. Marine natural products have been considered as one of the most promising sources of antifouling compounds in recent years. In antifouling compound screening processes, bioassay systems often play most critical/vital roles in screening

  18. Southeast US Historical Marine Mammal Stranding Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data on marine mammal strandings are collected by the Southeast Marine Mammal Stranding Network. Basic data on the location, species identification, animal...

  19. Marine environment news. Vol. 2, no. 1

    International Nuclear Information System (INIS)

    2004-03-01

    In this issue of the IAEA's Marine Environment Newsletter topics including radiotracers as new barometers of ocean-climate coupling, bio-indicatos species in detecting marine radioactvity and pollution as well as training activities are covered

  20. 76 FR 18167 - Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the...

    Science.gov (United States)

    2011-04-01

    ..., many marine animals may need to remain in areas where they are exposed to chronic stimuli (Richardson... Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the Central Gulf of Alaska, June, 2011 AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric...

  1. 76 FR 77782 - Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the...

    Science.gov (United States)

    2011-12-14

    ..., 1963), but because of ecological or physiological requirements, many marine animals may need to remain... Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the Commonwealth of the Northern Mariana Islands, February to March 2012 AGENCY: National Marine Fisheries Service (NMFS), National...

  2. 77 FR 4765 - Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the...

    Science.gov (United States)

    2012-01-31

    ... physiological requirements, many marine animals may need to remain in areas where they are exposed to chronic... readily audible to the animals based on measured received levels and the hearing sensitivity of the marine... Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the Northwest Pacific...

  3. 78 FR 17359 - Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the...

    Science.gov (United States)

    2013-03-21

    ..., 1963), but because of ecological or physiological requirements, many marine animals may need to remain... Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the Northeast Atlantic Ocean, June to July, 2013 AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and...

  4. 76 FR 33246 - Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the...

    Science.gov (United States)

    2011-06-08

    ... ecological or physiological requirements, many marine animals may need to remain in areas where they are... Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the Central-Western Bering Sea, August 2011 AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and...

  5. 75 FR 8652 - Incidental Takes of Marine Mammals During Specified Activities; Marine Geophysical Survey in the...

    Science.gov (United States)

    2010-02-25

    ... for marine animals before and during airgun operations. NMFS believes that the realistic possibility... Takes of Marine Mammals During Specified Activities; Marine Geophysical Survey in the Commonwealth of the Northern Mariana Islands, April to June 2010 AGENCY: National Marine Fisheries Service (NMFS...

  6. 77 FR 25966 - Takes of Marine Mammals Incidental to Specified Activities; Three Marine Geophysical Surveys in...

    Science.gov (United States)

    2012-05-02

    ..., 1963), but because of ecological or physiological requirements, many marine animals may need to remain... Marine Mammals Incidental to Specified Activities; Three Marine Geophysical Surveys in the Northeast Pacific Ocean, June Through July 2012 AGENCY: National Marine Fisheries Service, National Oceanic and...

  7. 76 FR 6430 - Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the...

    Science.gov (United States)

    2011-02-04

    ..., many marine animals may need to remain in areas where they are exposed to chronic stimuli (Richardson... Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the Pacific Ocean off Costa Rica, April Through May, 2011 AGENCY: National Marine Fisheries Service (NMFS), National Oceanic...

  8. 76 FR 57959 - Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the...

    Science.gov (United States)

    2011-09-19

    ..., many marine animals may need to remain in areas where they are exposed to chronic stimuli (Richardson... Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey in the Central Pacific Ocean, November, 2011 Through January, 2012 AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and...

  9. 78 FR 33357 - Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to...

    Science.gov (United States)

    2013-06-04

    ... confidence in these values is unknown. Table 3--Marine Mammal Density Estimates Density Species (animals/km\\2... unintentional taking of marine animals occurring incidental to the shock testing which involved large explosives... Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to Conducting...

  10. 76 FR 7548 - Taking and Importing Marine Mammals; Taking of Marine Mammals Incidental to Conducting Precision...

    Science.gov (United States)

    2011-02-10

    ... Importing Marine Mammals; Taking of Marine Mammals Incidental to Conducting Precision Strike Weapons Testing and Training by Eglin Air Force Base in the Gulf of Mexico AGENCY: National Marine Fisheries Service... a Letter of Authorization. SUMMARY: In accordance with provisions of the Marine Mammal Protection...

  11. 77 FR 17033 - Taking and Importing Marine Mammals: Taking Marine Mammals Incidental to Navy's Training...

    Science.gov (United States)

    2012-03-23

    ... take marine mammals by harassment incidental to its training activities at the Gulf of Mexico (GOMEX... Importing Marine Mammals: Taking Marine Mammals Incidental to Navy's Training Activities at the Gulf of Mexico Range Complex AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric...

  12. 75 FR 16754 - Taking and Importing Marine Mammals; Taking of Marine Mammals Incidental to Conducting Precision...

    Science.gov (United States)

    2010-04-02

    ... Importing Marine Mammals; Taking of Marine Mammals Incidental to Conducting Precision Strike Weapons Testing and Training by Eglin Air Force Base in the Gulf of Mexico AGENCY: National Marine Fisheries Service... a Letter of Authorization. SUMMARY: In accordance with provisions of the Marine Mammal Protection...

  13. Whale Multi-Disciplinary Studies: A Marine Education Infusion Unit. Northern New England Marine Education Project.

    Science.gov (United States)

    Maine Univ., Orono. Coll. of Education.

    This multidisciplinary unit deals with whales, whaling lore and history, and the interaction of the whale with the complex marine ecosystem. It seeks to teach adaptation of marine organisms. It portrays the concept that man is part of the marine ecosystem and man's activities can deplete and degrade marine ecosystems, endangering the survival of…

  14. Promotion Factors For Enlisted Infantry Marines

    Science.gov (United States)

    2017-06-01

    Marine Corps. However, due to periods of growth during two major conflicts , quality has given way to quantity to fulfill the needs of the Marine...Corps. As conflicts draw down, the Marine Corps shifts from promoting and retaining quantity to high-quality Marines. Throughout this thesis, we use...historically possessed an innate drive to succeed, to excel in all that they do, including winning in combat. We will sustain this trait and ensure this

  15. Biomedical Applications of Enzymes From Marine Actinobacteria.

    Science.gov (United States)

    Kamala, K; Sivaperumal, P

    Marine microbial enzyme technologies have progressed significantly in the last few decades for different applications. Among the various microorganisms, marine actinobacterial enzymes have significant active properties, which could allow them to be biocatalysts with tremendous bioactive metabolites. Moreover, marine actinobacteria have been considered as biofactories, since their enzymes fulfill biomedical and industrial needs. In this chapter, the marine actinobacteria and their enzymes' uses in biological activities and biomedical applications are described. © 2017 Elsevier Inc. All rights reserved.

  16. Characterization of Function of the GlgA2 Glycogen/Starch Synthase in Cyanobacterium sp. Clg1 Highlights Convergent Evolution of Glycogen Metabolism into Starch Granule Aggregation1

    Science.gov (United States)

    Kadouche, Derifa; Arias, Maria Cecilia

    2016-01-01

    At variance with the starch-accumulating plants and most of the glycogen-accumulating cyanobacteria, Cyanobacterium sp. CLg1 synthesizes both glycogen and starch. We now report the selection of a starchless mutant of this cyanobacterium that retains wild-type amounts of glycogen. Unlike other mutants of this type found in plants and cyanobacteria, this mutant proved to be selectively defective for one of the two types of glycogen/starch synthase: GlgA2. This enzyme is phylogenetically related to the previously reported SSIII/SSIV starch synthase that is thought to be involved in starch granule seeding in plants. This suggests that, in addition to the selective polysaccharide debranching demonstrated to be responsible for starch rather than glycogen synthesis, the nature and properties of the elongation enzyme define a novel determinant of starch versus glycogen accumulation. We show that the phylogenies of GlgA2 and of 16S ribosomal RNA display significant congruence. This suggests that this enzyme evolved together with cyanobacteria when they diversified over 2 billion years ago. However, cyanobacteria can be ruled out as direct progenitors of the SSIII/SSIV ancestral gene found in Archaeplastida. Hence, both cyanobacteria and plants recruited similar enzymes independently to perform analogous tasks, further emphasizing the importance of convergent evolution in the appearance of starch from a preexisting glycogen metabolism network. PMID:27208262

  17. NODC Standard Format Marine Mammals of Coastal Alaska Data (1975-1981): Marine Mammal Specimens (F025) (NODC Accession 0014150)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC maintains data in three NODC Standard Format Marine Mammal Data Sets: Marine Mammal Sighting and Census (F127); Marine Mammal Specimens (F025); Marine Mammal...

  18. Identification & Registration of Marine Animals (IRMA)

    NARCIS (Netherlands)

    Benders, F.P.A.; Zwan, T. van der; Verboom, W.C.

    2005-01-01

    Knowledge about habitats and behaviour of marine animals has become more important following an increased concern that acoustic sources may have an influence on marine life. Databases containing the habitats and behaviour are being filled all over the world. However, at present marine mammal

  19. Smithsonian Marine Station (SMS) at Fort Pierce

    Science.gov (United States)

    share current Smithsonian research on the plants and animals of the Indian River Lagoon and marine Smithsonian Marine Station at Fort Pierce Website Search Box Search Field: SMS Website Search Twitter SMS Home › Welcome to the Smithsonian Marine Station Homepage slideshow Who We Are... The

  20. Marine environment news. Vol. 1, no. 1

    International Nuclear Information System (INIS)

    2003-09-01

    This is the first issue of the IAEA's Marine Environment Newsletter which is hoped to inform Member States, research partners, visitors and other stakeholders of highlights of the marine projects, surveys, hot issues, discoveries and training programmes being delivered by the IAEA's Marine Environment Laboratory (MEL) in Monaco. In this issue the mission of the MEL and its various activities are presented